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Preface

Systems engineering is a multidisciplinary and holistic approach to develop solutions for complex 
engineering problems. The continuing increase in system complexity demands more rigorous and for-
malized systems engineering practices. In response to this demand—along with advancements in com-
puter technology—the practice of systems engineering is undergoing a fundamental transition from a 
document-based approach to a model-based approach. In a model-based approach, the emphasis shifts 
from producing and controlling documentation about the system to producing and controlling a coher-
ent model of the system. Model-based systems engineering (MBSE) can help to manage complexity, 
while improving design quality and cycle time, enhancinging communication among a diverse 
development team, and facilitating knowledge capture and design evolution.

A standardized and robust modeling language is considered a critical enabler for MBSE. The 
Systems Modeling Language (OMG SysML™) is one such general-purpose modeling language that 
supports the specification, design, analysis, and verification of systems that may include hardware and 
equipment, software, data, personnel, procedures, and facilities. SysML is a graphical modeling lan-
guage with a semantic foundation for representing requirements, behavior, structure, and properties of 
the system and its components. It is intended to model systems from a broad range of industry domains 
such as aerospace, automotive, health care, and others.

SysML is an extension of the Unified Modeling Language (UML), version 2, which is the de facto 
standard software modeling language. Requirements were issued by the Object Management Group 
(OMG) in March 2003 to extend UML to support systems modeling. UML was selected as the basis for 
SysML because it is a robust language that addresses many of the systems modeling needs, while 
enabling the systems engineering community to leverage the broad base of experience and tool vendors 
that support UML. This approach also facilitates the integration of systems and software modeling, 
which has become increasingly important for today’s software-intensive systems.

The development of the language specification was a collaborative effort between members of the 
OMG, the International Council on Systems Engineering (INCOSE), and the AP233 Working Group of 
the International Standards Organization (ISO). Following three years of development, the OMG 
SysML specification was adopted by the OMG in May 2006, and the formal version 1.0 language 
specification was released in September 2007. Since that time, new versions of the language have been 
adopted by the OMG. This edition is intended to reflect the SysML 1.4 specification. It is expected that 
SysML will continue to evolve in its expressiveness, precision, usability, and interoperability through 
further revisions to the specification based on feedback from end users, tool vendors, and research 
activities. Information on the latest version of SysML, tool implementations of SysML, and related 
resources, are available on the official OMG SysML web site at http://www.omgsysml.org/.

BOOK ORGANIZATION
This book provides the foundation for understanding and applying SysML to model systems as part of 
a model-based systems engineering approach. The book is organized into four parts: Introduction, 
Language Description, Examples of Model-Based Systems Engineering Methods, and Transitioning to 
Model-Based Systems Engineering.

http://www.omgsysml.org/
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Part I, Introduction, contains four chapters that provide an overview of systems engineering, a sum-
mary of key MBSE concepts, a chapter on getting started with SysML, and a sample problem to 
highlight the basic features of SysML. The systems engineering overview and MBSE concepts in 
Chapters 1 and 2 set the context for SysML, and Chapters 3 and 4 provide an introduction to SysML.

Part II, Language Description, provides the detailed description of the language. Chapter 5 provides an 
overview of SysML diagrams and some common diagrammatic notations. Chapters 6 through 14 describe 
key concepts related to model organization, blocks, parametrics, activities, interactions, states, use cases, 
requirements, and allocations. Chapter 15 describes the SysML specification and language architecture, and 
extension mechanisms to customize the language. The ordering of the chapters and the concepts are not 
based on the ordering of activities in the systems engineering process but are based on the dependencies 
between the language concepts. Each chapter builds the reader’s understanding of the language concepts by 
introducing SysML constructs: their meaning, notation, and examples of how they are used. The example 
used to demonstrate the language throughout Part II is a security surveillance system. This example should 
be understandable to most readers and has sufficient complexity to demonstrate the language concepts.

Part III, Examples of Model-Based Systems Engineering Methods, includes two examples to illus-
trate how SysML can support different MBSE methods. The first example in Chapter 16 is a functional 
analysis and allocation method to specify and design a water distiller system. The second example in 
Chapter 17 applies to the design of a security system consisting of a central monitoring station and 
multiple sites that are monitored. It uses a comprehensive object-oriented systems engineering method 
(OOSEM) and emphasizes how the language is used to address a range of systems engineering con-
cerns, including black-box versus white-box design, logical versus physical design, and the design of 
distributed systems. While these two methods are considered representative of how MBSE with SysML 
can be applied to model systems, SysML is intended to support other MBSE methods as well.

Part IV, Transitioning to Model-Based Systems Engineering, addresses key considerations for tran-
sitioning to an MBSE approach with SysML. Chapter 18 describes how to integrate SysML into a 
systems development environment consisting of multi-disciplinary engineering tools. It describes the 
different types of models and tools, the type of data that is exchanged, and mechanisms and standards 
for data exchange. It also includes a discussion on the selection criteria for a SysML modeling tool. 
Chapter 19 is the last chapter of the book and describes processes and strategies for deploying MBSE 
with SysML in an organization. Emphasis is placed on leveraging the organization’s improvement 
process to assess, plan, and pilot the MBSE capability prior to deploying the capability to projects, and 
on other essential elements for a successful implementation of MBSE.

Questions are included at the end of each chapter to test readers’ understanding of the material. The 
answers to the questions can be found on the web site for this book at http://www.elsevierdirect.com/ 
companions/9780123852069/.

The Appendix contains the SysML notation tables. These tables provide a reference guide for 
SysML notation along with a cross reference to the applicable sections in Part II of the book where the 
language constructs are described in detail.

USES OF THIS BOOK
This book is a practical guide targeted at a broad spectrum of industry practitioners and students. It can 
serve as an introduction and reference for practitioners, as well as a text for courses in systems model-
ing and model-based systems engineering. In addition, because SysML reuses many UML concepts, 

http://www.elsevierdirect.com/companions/9780123852069/
http://www.elsevierdirect.com/companions/9780123852069/
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software engineers familiar with UML can use this information as a basis for understanding systems 
engineering concepts. Also, many systems engineering concepts come to light when using an expres-
sive language, which enables this book to be used to help teach systems engineering concepts. Finally, 
this book can serve as a primary reference to prepare for the OMG Certified System Modeling 
Professional (OCSMP) exam (refer to http://www.omg.org/ocsmp/).

HOW TO READ THIS BOOK
A first-time reader should pay close attention to the introductory chapters, including Getting Started 
with SysML in Chapter 3 and the application of the basic feature set of SysML to the Automobile 
Example in Chapter 4. The introductory reader may also choose to do a cursory reading of the overview 
sections in Part II, and then review the simplified distiller example in Part III. A more advanced reader 
may choose to read the introductory chapters, do a more comprehensive review of Part II, and then 
review the residential security example in Part III. Part IV is of general interest to those may be involved 
in deploying MBSE with SysML in their organization or project.

The following recommendations apply when using this book as a primary reference for a course in 
SysML and MBSE. An instructor may refer to the course on SysML that was prepared and delivered 
by the Johns Hopkins University Applied Physics Lab that is available for download at http://www. 
jhuapl.edu/ott/Technologies//Copyright/SysML.asp. This course provides an introduction to the basic 
features of SysML so that students can begin to apply the language to their projects. This course con-
sists of eleven modules that use this book as the basis for the course material. The course material for 
the language concepts is included in the download, but the course material for the tool instruction is not 
included. A shorter version of this course is also included on the Johns Hopkins site, which has been 
used as a full-day tutorial to provide an introductory short course on SysML. A second course on the 
same website summarizes the Object-Oriented Systems Engineering Method (OOSEM) that is the 
subject of Chapter 17 in Part III of this book. This provides an example of applying a MBSE method to 
the specification and design of a security system.

Refer to the End-User License Agreement for each course (included with the download instructions 
on the Johns Hopkins site) for how this material can be used. An instructor can further tailor this 
material to their needs.

A typical use of the book is to require the students to review Chapters 1 and 2, and then study 
Chapter 3 on Getting Started with SysML. This chapter includes an introduction to SysML Lite, a sim-
plified MBSE method, and a general SysML modeling tool. The student then studies the automobile 
example in Chapter 4.

The instructor may then teach the language concepts in more depth, depending on the time allotted 
to this subject, and require the students to review the chapters in Part II. The instructor may focus on 
the SysML basic feature set, which is identified by the shaded sections throughout each chapter in Part 
II. The notation tables in the appendix can be used as a summary reference for the language syntax.

It is helpful for the instructor to present a simple example model of a system, such as the compressor 
model in Chapter 3, the automobile model in Chapter 4, or the distiller model in Chapter 16, and require 
student projects of similar complexity. The student projects may be performed by teams or individuals. 
The projects require the student or teams to incrementally develop their models throughout the course 
in alignment with the sequence of course modules. If a tool is required, the course should also include 
introductory tool instruction for the selected tool. Alternatively, if a modeling tool is not required, the 

http://www.omg.org/ocsmp/
http://www.jhuapl.edu/ott/Technologies//Copyright/SysML.asp
http://www.jhuapl.edu/ott/Technologies//Copyright/SysML.asp
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students can use the Visio SysML template available for download on the OMG SysML website (http:
//www.omgsysml.org/).

This book is also intended to be used to prepare for the OMG Certified Systems Modeling 
Professional (OCSMP) exams to become certified as a model user or model builder. For the first two 
levels of certification, the emphasis is on the basic SysML feature set. The automobile example in 
Chapter 4 covers most of the basic feature set of SysML, so this is an excellent place to start. One can 
also review the shaded paragraphs in each of the chapters in Part II, which cover the basic feature set, 
as do the shaded rows in the notation tables in the Appendix. The unshaded rows in the Appendix reflect 
the additional features of the full feature set, which is covered in the third level of OCSMP 
certification.

CHANGES FROM PREVIOUS EDITION
This edition is intended to update the book content to be current with version 1.4 of the SysML 
specification, which was recently adopted as of the time of this writing. The SysML specification ver-
sions are available from the OMG website at http://www.omg.org/spec/SysML/, and the specific 
changes to the SysML 1.4 specification can be identified by change bars in the specification 
document.

In addition to reflecting the SysML 1.4 changes in Part II, this edition includes refinements to the 
MBSE methods in Chapters 16 and 17 in Part III, and substantive changes to the contents of Chapters 
18 and 19 in Part IV. The discussion on the Integrated Systems Development Environment in Chapter 
18 was substantially rewritten to address model and tool integration, along with emerging tool integra-
tion standards such as OSLC and FMI. A new section that discusses elements of a deployment strategy 
is added to Chapter 19. In addition to content changes, all of the chapters are updated to improve quality 
and readability.

http://www.omgsysml.org/
http://www.omgsysml.org/
http://www.omg.org/spec/SysML/
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Part I contains four chapters that provide an overview of systems engineering, a summary of key 
model-based systems engineering (MBSE) concepts, a chapter on getting started with SysML, and a 
sample problem to highlight the basic features of SysML. These chapters provide foundations for 
MBSE with SysML, and prepare the reader for the details of the language in Part II.

PART 

I INTRODUCTION
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CHAPTER

SYSTEMS ENGINEERING 
OVERVIEW

The Object Management Group’s OMG SysML™ [1] is a general-purpose graphical modeling lan-
guage for representing systems that may include combinations of hardware and equipment, software, 
data, people, facilities, and natural objects. SysML supports the practice of model-based systems engi-
neering (MBSE) that is used to develop system solutions in response to complex and often technologi-
cally challenging problems.

This chapter introduces the systems engineering approach independent of modeling concepts to set 
the context for how SysML is used. It describes the motivation for systems engineering, introduces the 
systems engineering process, and then describes how this process is applied to a simplified automobile 
design example. This chapter also summarizes the role of standards, such as SysML, to help codify the 
practice of systems engineering.

1.1 � MOTIVATION FOR SYSTEMS ENGINEERING
Whether it is an advanced military aircraft, a hybrid vehicle, a cell phone, or a distributed information 
system, today’s systems are expected to perform at levels unimagined a generation ago. Competitive 
pressures demand that these systems leverage technological advances to provide continuously increas-
ing capability at reduced costs and within shorter delivery cycles. The increased capability often drives 
requirements for increased functionality, interoperability, performance, and reliability, often within 
smaller and smaller devices.

The interconnectivity among systems also places increased demands on systems. Systems can no 
longer be treated as stand-alone entities. They behave as part of a larger whole that includes other sys-
tems, devices, and humans. This interconnected system of systems (SoS) is not static but changes over 
time as systems are added or removed and as their uses change. These changes result in evolving 
requirements on constituent systems that may not have been anticipated when the system was devel-
oped. An example would be a mobile device that originally provided e-mail communication but evolved 
to provide Internet functionality, including access to video, global positioning services, and social 
media. Systems such as automobiles, airplanes, and financial systems are also continuously subject to 
changing requirements, particularly as they become more interconnected.

Systems engineering is an approach that has been widely accepted in the aerospace and defense 
industry to provide system solutions to technologically challenging and mission-critical problems. The 
solutions often include hardware and equipment, software, data, people, and facilities. The potential 
value that systems engineering offers for managing complexity and risk and improving productivity 
and quality has been gaining recognition and acceptance across other industries, such as automotive, 
telecommunications, and medical equipment, to name a few.

1
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1.2 � THE SYSTEMS ENGINEERING PROCESS
A system consists of a set of elements that interact with one another, and can be viewed as a whole 
that interacts with its external environment to achieve an objective. Systems engineering is a multi-
disciplinary approach to develop balanced system solutions in response to diverse stakeholder needs. 
Systems engineering includes both management and technical processes to achieve this balance and 
mitigate risks that can affect the success of the project. The systems engineering management pro-
cess is intended to ensure that development cost, schedule, and technical performance objectives are 
met. Typical management activities include planning the technical effort, monitoring technical per-
formance, managing risk, and controlling the system technical baseline. The systems engineering 
technical processes are used to analyze, specify, design, and verify the system to ensure the pieces 
work together to achieve the objectives of the whole. The practice of systems engineering is not static 
but evolves to deal with the increasing demands mentioned previously.

A simplified view of the systems engineering technical process is shown in Figure 1.1. The System 
Specification and Design process is used to specify system requirements that will meet the needs of the 
stakeholders. It then allocates the requirements to the components of the system. The components are 
designed, implemented, and tested to ensure they satisfy the requirements. The System Integration and 
Test process includes activities to integrate the components into the system and verify that the system 
satisfies its requirements. These processes are applied iteratively throughout the development of the 
system, with ongoing feedback from the different processes. In more complex applications, multiple 
levels of system decomposition begin at an enterprise or system of systems level. In those cases, vari-
ants of this process are applied recursively to each intermediate level of the design, down to the level at 
which the components are procured or built.

The System Specification and Design process in Figure 1.1 includes the following activities to pro-
vide a balanced system solution that addresses the diverse stakeholders’ needs:
 
	•	� Elicit and analyze stakeholder needs to understand the problem to be solved, the goals the system 

is intended to support, and the effectiveness measures needed to evaluate how well the system 
supports these goals and satisfies the stakeholder needs.

	•	� Specify the required system functionality, interfaces, physical and performance characteristics, 
and other quality characteristics to support the goals and effectiveness measures.

System
Specification and

Design

Component Design,
Implementation,

and Test

Component
Requirements

Verified
Components

System Integration
and Test

Design Feedback

I&T Feedback

Stakeholder
Needs

System
Solution

System Requirements

FIGURE 1.1

Simplified systems engineering technical processes.
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	•	� Synthesize alternative system solutions by partitioning the system design into components that 
can satisfy the system requirements.

	•	� Perform analysis to evaluate and select a preferred system solution that satisfies the system 
requirements and maximizes the effectiveness measures.

	•	� Maintain traceability from the system goals to the system and component requirements and 
verification results to ensure that requirements and stakeholder needs are addressed.

 

1.3 � TYPICAL APPLICATION OF THE SYSTEMS ENGINEERING PROCESS
The System Specification and Design process described in Section 1.2 can be illustrated by applying 
this process to an automobile design. A multidisciplinary systems engineering team is responsible for 
executing this process. The participants and roles of a typical systems engineering team are discussed 
in Section 1.4.

The team must first identify the stakeholders and analyze their needs. Stakeholders include the 
purchaser of the car and the users of the car, which includes the driver and the passengers. Each of 
their needs must be addressed. The stakeholder needs depend on the particular market segment, 
such as a family car, sports car, or utility vehicle. For this example, we assume the automobile is 
targeted at a typical mid-career individual who uses the car for his or her daily transportation 
needs.

In addition, a key tenet of systems engineering is the idea of addressing the needs of other stake-
holders who may be affected throughout the system’s lifecycle. Additional stakeholders include the 
manufacturers that produce the automobile and those who maintain the automobile. Each of their 
concerns must be addressed to ensure a balanced lifecycle solution. Less obvious stakeholders are 
organizations and governments that express their needs via laws, regulations, and standards. Clearly, 
not each stakeholder’s concern is of equal importance to the development of the automobile, and 
therefore stakeholder concerns must be properly prioritized and weighted. Analysis is performed to 
understand the needs of each stakeholder and to define effectiveness measures and target values that 
quantify the value for the stakeholders. The target values for these measures are used to bound the 
solution space, to evaluate alternative solutions, and to discriminate one solution from another. In 
this example, the effectiveness measures may relate to the primary goal of addressing the transporta-
tion needs, such as the availability of transportation, the time to reach a destination, safety, comfort, 
environmental impact, and other important measures that may be difficult to quantify, such as aes-
thetic qualities. The measures will also account for the total cost of transportation. These effective-
ness measures can be used to evaluate alternative transportation solutions that include driving an 
automobile or taking the bus or train. If driving an automobile is the only solution being considered, 
the effectiveness measures can be more specific, such as the costs associated with purchasing and 
owning an automobile, measures that do not apply to taking a bus or train.

The system requirements are specified to address the stakeholders’ needs and associated effective-
ness measures. Many different kinds of requirements must be specified, including functional, interface, 
performance, physical, and other quality characteristics.

The definition of the system boundary is an important starting point for specifying the requirements. 
It allows clear interfaces to be established between the system and external systems and users as shown 
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in Figure 1.2. In this example, the driver and passengers (not shown) are external users who interact 
with the automobile. The gas pump and maintenance equipment (not shown) are other examples of 
external systems that the vehicle must interact with. In addition, the vehicle interacts with the physical 
environment, such as the road. All of these external systems, including users and the physical environ-
ment, must be identified to clearly demarcate the system boundary and its associated interfaces.

The functional requirements for the automobile are specified by analyzing what the system must do 
to support its overall goals, such as functional requirements to meet transportation needs. The vehicle 
must perform functions related to accelerating, braking, and steering, and many additional functions to 
address driver and passenger needs. The functional analysis identifies the inputs and outputs for each 
function. As shown in the example in Figure 1.3, the functional requirement to accelerate the automo-
bile include an input from the driver to the system to produce the output forces needed to accelerate the 
automobile and to estimate the automobile’s speed for the driver. The analysis also specifies the 
sequence of functions, such as starting the vehicle before accelerating the vehicle.

Functional requirements must also be evaluated to determine the level of performance required for 
each function. As indicated in Figure 1.4, the automobile is required to accelerate from 0 to 60 miles 
per hour (mph) in fewer than 8 seconds under specified conditions. Similar performance requirements 
can be specified for stopping distance at various speeds and for the steering response.

Additional requirements are specified to address other concerns of each stakeholder as defined by 
the system goals and effectiveness measures. Example requirements include specifications for riding 
comfort in terms of road vibration and noise levels, fuel efficiency, reliability, maintainability, safety 

FIGURE 1.3

Specifying the functional requirements.

AutomobileDriver

Road

Pump

FIGURE 1.2

Defining the system boundary.
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characteristics, and emissions. Physical characteristics, such as maximum vehicle weight, may be 
derived from the performance requirements, while maximum vehicle length may be dictated by other 
concerns, such as standard parking space dimensions. The system requirements must be clearly trace-
able to stakeholder needs and validated to ensure that the requirements address those needs. The early 
and ongoing involvement of representative stakeholders in this process is critical to the success of the 
overall development effort.

System design involves identifying system components and specifying the component require-
ments so that the system requirements will be met. This may involve first developing a logical 
system design that is independent of the technology used, and then a physical system design that 
reflects specific technology selections. (Note: A logical design that is technology independent may 
include a component called a torque generator; alternative physical designs that are technology 
dependent may include a combustion engine or an electric motor.) In the example in Figure 1.5, 
the system’s physical components include the engine, transmission, differential, body, chassis, 
brakes, and so on.

As noted in Section 1.2, systems often include multiple levels of system decomposition. As an exam-
ple, the internal combustion engine can be further broken down into its components, such as the engine 
block, pistons, connecting rods, crankshaft, and valves, each of which may require further specification.

Design constraints are often imposed on the solution. A common constraint is the reuse of a particu-
lar component. For example, a requirement might stipulate the reuse of an engine from the inventory of 
existing engines. This constraint implies that no additional engine development is to be performed. 
Although design constraints are typically imposed to save time and money, further analysis may reveal 
that relaxing the constraint would be less expensive. For example, if the engine is reused, expensive 
filtering equipment might be needed to satisfy newly imposed pollution regulations, while an engine 
redesign that incorporates newer technology might be a less expensive alternative. Systems engineers 
should validate the assumptions that drive the constraints and perform the analysis to understand their 
impact on the design.

V
eh

ic
le

 S
pe

ed
 (

m
ph

)

10

20

30

40

50

60

70

80

Time (seconds)
1 2 3 4 5 6 7 8 9 10

Acceleration
Requirement

FIGURE 1.4

Automobile performance requirements.



CHAPTER 1  SYSTEMS ENGINEERING OVERVIEW8

The component functional requirements are specified to satisfy the system functional require-
ments. The power subsystem shown in Figure 1.6 includes the engine, transmission, and differen-
tial components. The functions for each of these components is specified to provide the power to 
accelerate the automobile. Similarly, the steering subsystem includes components that must con-
trol the direction of the vehicle, and the braking subsystem includes components that must deceler-
ate the vehicle.

Multiple analyses are performed to determine the components’ performance and physical require-
ments needed to satisfy the system requirements. As an example, an analysis would determine the 
component requirements for engine horsepower, coefficient of drag of the body, and the weight of 
each component in order to satisfy the system requirement for vehicle acceleration. Similarly, analy-
sis is performed to derive component requirements from other system performance requirements 
related to fuel economy, fuel emissions, reliability, and cost. The requirements for ride comfort may 
require multiple analyses that address human factors, considerations related to road vibration, acous-
tic noise propagation to the vehicle’s interior, space–volume analysis, and placement of displays and 
controls.

Fuel

Accelerate
Command

Accelerating
Force

Engine Differential Drive
Wheels

Transmission

FIGURE 1.6

Interaction among components to achieve the system functional and performance requirements.
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FIGURE 1.5

Automobile system decomposition into its components.
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The system design alternatives are evaluated to determine the system solution that achieves a 
balanced design while addressing multiple competing requirements. In this example, the require-
ments to increase the vehicle acceleration and improve fuel economy represent competing require-
ments, which are subject to trade-off analysis. This may result in evaluating alternative engine 
design configurations, such as a 4-cylinder versus a 6-cylinder engine. The alternative designs are 
then evaluated based on criteria that are traceable to the system requirements and effectiveness 
measures. The preferred solution is validated with the stakeholders to ensure that it addresses their 
needs.

The component requirements are input to the Component Design, Implementation, and Test process 
from Figure 1.1. The component developers provide feedback to the systems engineering team to 
ensure that component requirements can be satisfied by their designs. Some components may be pro-
cured rather than developed, so designers need to understand the difference between what has been 
specified and what can be supplied. The assessment of the system and component design and reallocating 
the requirements are part of an iterative process that is often required to achieve a balanced system 
design solution.

The system test cases are defined to verify that the system satisfies its requirements. As part of the 
System Integration and Test process, the verified components are integrated into the system, and the 
system test cases are executed to confirm that system requirements are satisfied.

As indicated in Figure 1.7, requirement traceability is maintained between the Stakeholder Needs, 
the System Requirements, and the Component Requirements to ensure design integrity. For this exam-
ple, the system and component requirements—such as vehicle acceleration, vehicle weight, and engine 
horsepower—can be traced to the stakeholder needs associated with vehicle performance and fuel 
economy.

A systematic process to develop a balanced system solution that addresses diverse stakeholder 
needs becomes essential as system complexity increases. An effective application of systems engineer-
ing requires maintaining a broad system perspective that focuses on the overall system goals and the 
needs of each stakeholder, while maintaining attention to detail and rigor that will ensure the integrity 
of the system design. SysML is intended to enable this process by providing a coherent and consistent 
model of the system that supports the analysis, specification, design, and verification activities described 
above.

Stakeholder
Needs

System
Requirements

Component
Requirements

FIGURE 1.7

Stakeholder needs flow down to system and component requirements.
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1.4 � MULTIDISCIPLINARY SYSTEMS ENGINEERING TEAM
To represent the broad set of stakeholder perspectives, systems engineering requires participation from 
many engineering and non-engineering disciplines. The participants must have an understanding of the 
end-user domain, such as the drivers of the car, and the domains that span the system lifecycle, such as 
manufacturing and maintenance. The participants must also have knowledge of the system’s technical 
domains, such as the power and steering subsystems, and an understanding of the specialty engineering 
domains, such as reliability, safety, and human factors, to support the system design trade-offs. In addi-
tion, they must have sufficient participation from the component developers and testers to ensure the 
specifications are implementable and verifiable.

A multidisciplinary systems engineering team should include representation from each of 
these perspectives. The extent of participation depends on the complexity of the system and the 
knowledge of the team members. A systems engineering team on a small project may include a 
single systems engineer who has broad knowledge of the domain and can work closely with the 
component development teams and the test team. On the other hand, the development of a large 
system may involve a systems engineering team led by a systems engineering manager who plans 
and controls the system’s engineering effort, and a chief systems engineer who has technical 
authority over the entire system design. This project may include tens or hundreds of systems 
engineers with varying expertise.

A typical multidisciplinary systems engineering team is shown in Figure 1.8. This group is some-
times called a Systems Engineering Integrated Team (SEIT). The Systems Engineering Management 
Team is responsible for the management activities related to planning and control of the technical 
effort. The Requirements Team analyzes stakeholder needs, develops the concept of operations, and 
specifies and validates the system requirements. The Architecture Team is responsible for synthesizing 
the system architecture by partitioning the system into components and defining their interactions and 
interconnections. This also includes allocating the system requirements and deriving technical specifi-
cations for these components.

The Systems Analysis Team is responsible for performing the engineering analysis on different 
aspects of the system, such as performance and physical characteristics, reliability, maintainability, and 
cost, to provide the rationale for the technical specifications. The Integration and Test Team is 

Systems Engineering
Management Team
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Requirements
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Architecture
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Stakeholder requirements
analysis and concept of
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Management of the overall
technical effort including planning
and control (e.g., risk management,
metrics, baseline management)

Verification plans,
procedures, and test
conduct

Analysis of performance,
physical, reliability, cost
...

System, hardware, and
software architecture

FIGURE 1.8

A typical multidisciplinary systems engineering team needed to represent diverse stakeholder perspectives.
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responsible for developing test plans and procedures and for conducting tests to verify the requirements 
are satisfied. Many different organizational structures can provide these roles, and individuals may fill 
different roles on multiple teams.

1.5 � CODIFYING SYSTEMS ENGINEERING PRACTICE THROUGH STANDARDS
As mentioned earlier, systems engineering is a widely accepted practice within the aerospace and 
defense industries to engineer complex, mission-critical systems that leverage advanced technology. 
These systems include land-, sea-, air-, and space-based platforms; weapon systems; command, con-
trol, and communications systems; and logistics systems

The complexity of systems being developed across industry sectors has dramatically increased due to the 
competitive demands and technological advances discussed earlier in this chapter. Specifically, many prod-
ucts incorporate the latest processing and networking technology, which has significant software content 
with substantially increased functionality. These products are often highly interconnected with increasingly 
complex interfaces. Establishing standards for systems engineering concepts, terminology, processes, and 
methods that help deal with this complexity is becoming increasingly important to the advancement and 
institutionalization of systems engineering across industry sectors and across international boundaries.

Systems engineering standards have evolved over the last several years. Figure 1.9 shows a partial 
taxonomy of standards that includes some of the systems engineering process standards, architecture 

FIGURE 1.9

A partial systems engineering standards taxonomy.
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frameworks, methods, modeling standards, and data exchange standards. A particular systems engi-
neering approach may implement one or more standards from each layer of this taxonomy. Additional 
references to standards for systems modeling can be found in the Modeling Standards section of the 
Systems Engineering Body of Knowledge (SEBoK) [2].

Systems engineering process standards include EIA 632 [3], IEEE 1220 [4], and ISO 15288 [5]. 
These standards address broad industry needs and reflect the fundamental tenets of systems engineer-
ing, providing a foundation for establishing a systems engineering approach.

The systems engineering process standards share much in common with software engineering prac-
tices. Management practices for planning, for example, are similar whether they are for complex soft-
ware development or systems development. As a result, the standards community has placed significant 
emphasis on aligning the systems and software standards where practical.

The systems engineering process defines what activities are performed but does not generally give 
details on how they are performed. A systems engineering method describes how the activities are 
performed and the kinds of systems engineering artifacts that are produced. An example of a systems 
engineering artifact is the concept of operations. As its name implies, the concept of operations defines 
what the system is intended to do from the user’s perspective. It depicts the interaction of the system 
with its external systems and users but may not show any of the system’s internal interactions. Different 
methods may use different techniques and representations to develop a concept of operations. The same 
is true for many other systems engineering artifacts.

Examples of systems engineering methods are identified in Survey of Model-Based Systems Engi-
neering (MBSE) Methodologies [6] and include Harmony [7, 8], the Object-Oriented Systems Engi-
neering Method (OOSEM; see Chapter 17) [9], the Rational Unified Process for Systems Engineering 
(RUP SE) [10, 11], the State Analysis method [12], the Vitech Model-Based Systems Engineering 
Method [13], and the Object Process Method (OPM) [14]. Many organizations have internally devel-
oped processes and methods as well. The methods are not official industry standards, but de facto 
standards may emerge as they prove their value over time. Criteria for selecting a method include its 
ease of use, its ability to address the relevant systems engineering concerns, and the level of tool sup-
port. The two example problems in Part III include the use of SysML with a functional analysis and 
allocation method, which is a kind of structured analysis method, and a top down scenario-driven 
method called OOSEM, which is a kind of object-oriented method. SysML is intended to support many 
different systems engineering methods.

In addition to systems engineering process standards and methods, several standard frameworks have 
emerged to support system architecting. An architecture framework includes specific concepts, terminol-
ogy, artifacts, and taxonomies for describing the architecture of a system. The Zachman Framework [15] 
was introduced in the 1980s to define enterprise architectures; it defines a standard set of stakeholder 
perspectives and a set of artifacts that address fundamental questions associated with each stakeholder 
group. The C4ISR framework [16] was introduced in 1996 to provide a framework for architecting infor-
mation systems for the US Department of Defense. The Department of Defense Architecture Framework 
(DoDAF) [17] evolved from the C4ISR framework to support architecting a system of systems (SoS) for 
the defense industry by defining the architecture’s operational, system, and technical views.

The United Kingdom introduced a variant of DoDAF called the Ministry of Defence Architecture 
Framework (MODAF) [18] that added the strategic and acquisition views. The IEEE 1471-2000 stan-
dard was approved in 2000 as the “Recommended Practice for Architectural Description of Software-
Intensive Systems” [19]. This practice provides additional fundamental concepts, such as the concept 



131.5  Codifying Systems Engineering Practice through Standards

of view and viewpoint, that apply to both software and systems architecting. It was superseded by ISO/
IEC 42010:2007 [20]. The Open Group Architecture Framework (TOGAF) [21] was originally 
approved in the 1990s as a method for developing architectures.

Modeling standards is another class of systems engineering standards that includes common modeling 
languages for describing systems. Behavioral models and functional flow diagrams have been de facto 
modeling standards for many years, and have been broadly used by the systems engineering community 
to support various kinds of structured analysis methods. The Integration Definition for Functional Model-
ing (IDEF0) [22] was issued by the National Institute of Standards and Technology in 1993.

The OMG SysML specification—the subject of this book—was adopted in 2006 by the Object 
Management Group as a general-purpose graphical systems modeling language that extends the Uni-
fied Modeling Language (UML). Several other extensions of UML have been developed for specific 
domains, such as the Unified Profile for DoDAF and MODAF (UPDM) [23] to describe system of 
systems and enterprise architectures that are compliant with DoDAF and MODAF requirements. The 
foundation for the UML-based modeling languages is the OMG Meta Object Facility (MOF) [24], a 
language that is used to specify other modeling languages.

Other relevant system modeling standards include Modelica [25], which is a simulation modeling 
language; the High Level Architecture (HLA) [26], which is used to support the design and execution 
of distributed simulations; and the Mathematical Markup Language (MathML), which defines a lan-
guage for describing mathematical equations using the Extensible Markup Language (XML). The 
Architecture Analysis & Design Language (AADL) [27] standardized by the Society of Automotive 
Engineers (SAE) was originally developed for modeling embedded real-time systems. The Web Ontol-
ogy Language (OWL) [28] is used to author ontologies that represent a set of concepts and the relation-
ships between those concepts within a domain, such as systems engineering. Modelica and OWL are 
further discussed in Chapter 18, Section 18.4.

Model and data exchange standards is a critical class of modeling standards that supports model 
and data exchange among tools. Within the OMG, the XML Metadata Interchange (XMI) specification 
[29] supports the exchange of model data when using a MOF-based language such as UML, SysML, 
UPDM, or other UML extension. Another data exchange standard for systems engineering data is ISO 
10303 (AP233) [30]. Other emerging data exchange standards include the web based exchange standards 
being developed through the Open Services for Lifecycle Collaboration (OSLC) [31] and the functional 
mock-up interface (FMI) standard, which supports co-simulation of interacting hardware and software 
components [32]. The data exchange standards are described in Chapter 18, Sections 18.4.3 and 18.4.4.

Additional modeling standards from the Object Management Group relate to Model Driven 
Architecture (MDA®) [33]. MDA comprises a set of concepts that include creating both technology-
independent and technology-dependent models. The MDA standards enable transformation between 
models represented in different modeling languages as described in the MDA Foundation Model 
[34]. The OMG Query View Transformation (QVT) [35] is a modeling standard that defines a  
mapping language to specify language transformations precisely. MDA encompasses OMG modeling, 
metamodeling, and exchange standards from Figure 1.9.

The development and evolution of these standards are all part of a trend toward a standards-based 
approach to the practice of systems engineering. Such an approach enables shared understanding, com-
mon training, tool interoperability, reduced dependence on vendor specific solutions, and reuse of sys-
tem specifications and design artifacts. This trend is expected to continue as systems engineering 
becomes prevalent across industries.
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1.6 � SUMMARY
Systems engineering is a multidisciplinary approach that is intended to transform a set of stakeholder 
needs into a balanced system solution that meets those needs. Systems engineering is a key practice to 
address complex and often technologically challenging problems. The systems engineering process 
includes activities to establish top-level goals that a system must support, specify system requirements, 
synthesize alternative system designs, evaluate the alternatives, allocate requirements to the compo-
nents, integrate the components into the system, and verify that the system requirements are satisfied. 
It also includes essential planning and control processes needed to manage a technical effort.

Multidisciplinary teams are an essential element of systems engineering, because they address the 
diverse stakeholder perspectives and technical domains to achieve a balanced system solution. The 
practice of systems engineering continues to evolve, with an emphasis on dealing with systems as part 
of a larger interconnected system of systems. Systems engineering practices are becoming codified in 
various standards. This codification is essential to advancing and institutionalizing the practice across 
industry domains and geographic regions.

1.7 � QUESTIONS
	1.	 �What are some of the demands that drive system development?
	2.	 �What is the purpose of systems engineering?
	3.	 �What are the key activities in the system specification and design process?
	4.	 �Who are typical stakeholders that span a system’s lifecycle?
	5.	 �What are examples of different kinds of requirements?
	6.	 �Why is it important to have a multidisciplinary systems engineering team?
	7.	 �What are some of the roles on a typical systems engineering team?
	8.	 �What role do standards play in systems engineering?
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CHAPTER

MODEL-BASED SYSTEMS 
ENGINEERING

Model-based systems engineering (MBSE) applies systems modeling as part of the systems engineer-
ing process described in Chapter 1 to support analysis, specification, design, and verification of the 
system being developed. The primary artifact of MBSE is a coherent model of the system being devel-
oped. This approach enhances specification and design quality, reuse of system specifications and 
design artifacts, and communications among the development team.

This chapter summarizes MBSE concepts without emphasizing a specific modeling language, 
method, or tool. MBSE is contrasted with the more traditional document-based approach to encourage 
the use of MBSE and to highlight its benefits. Principles for effective modeling are also discussed.

2.1 � CONTRASTING THE DOCUMENT-BASED AND MODEL-BASED 
APPROACH

The following sections contrast the document-based approach and the model-based approach to sys-
tems engineering.

2.1.1 � DOCUMENT-BASED SYSTEMS ENGINEERING APPROACH
Traditionally, large projects have employed a document-based systems engineering approach to per-
form the systems engineering activities discussed in Chapter 1, Section 1.2. This approach is character-
ized by the generation of textual specifications and design documents, in hard-copy or electronic file 
format, that are then exchanged between customers, users, developers, and testers. System require-
ments and design information are expressed in these documents as text descriptions, graphical depic-
tions generated from drawing tools, and tabular data and plots that may result from executing analysis 
models or derived from databases. A document-based systems engineering approach emphasizes con-
trolling the documentation, ensuring the documentation is valid, complete, and consistent, and confirm-
ing that the developed system complies with the documentation.

In the document-based approach, specifications for a particular system, its subsystems, and its hard-
ware and software components are usually depicted in a hierarchical tree called a specification tree. A 
systems engineering management plan (SEMP) describes how the systems engineering process is 
employed on the project, and how the engineering disciplines work together to develop the documenta-
tion needed to satisfy the requirements in the specification tree. Systems engineering activities are 
planned by estimating the time and effort to generate the documentation, and progress is measured by 
the state of completion of these documents.

Document-based systems engineering typically relies on the concept of operations document to 
define how the system supports the required mission or objective. Functional analysis is performed to 

2
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decompose the system functions and allocate them to the components of the system. Drawing tools—
such as functional flow diagrams and schematic block diagrams—are used to capture the system  
design. These diagrams are stored as separate files and included in the system design documentation. 
Engineering trade studies and analyses are performed and documented by many different disciplines to 
evaluate and optimize alternative designs and allocate performance requirements. The analysis may be 
supported by individual analysis models for performance, reliability, safety, mass properties, and other 
aspects of the system.

Requirements traceability is established and maintained in the document-based approach by tracing 
requirements between the specifications at different levels of the specification hierarchy. Requirements 
management tools are used to parse requirements contained in the specification documents and to capture 
them in a requirements database. The traceability between requirements and design is maintained by 
identifying the part of the system or subsystem that satisfies the requirement, and/or the verification pro-
cedures used to verify the requirement, and then reflecting this traceability in the requirements database.

The document-based approach can be rigorous but has some fundamental limitations. The com-
pleteness, consistency, and relationships between requirements, design, engineering analysis, and test 
information are difficult to assess because the information is spread across several documents. Under-
standing a particular aspect of the system and performing the necessary traceability and change impact 
assessments become difficult. This, in turn, leads to poor synchronization between requirements, sys-
tem level design, and lower-level detailed designs such as software, electrical, and mechanical design. 
It also makes it difficult to maintain or reuse the system requirements and design information for an 
evolving or variant system design. In addition, progress of the systems engineering effort is based on 
the documentation status, which is difficult to maintain and does not adequately reflect the quality of 
the system requirements and design. These limitations can result in inefficiencies that impact cost and 
schedule, and potential quality issues that often show up during integration and testing or—worse—
after the system is delivered to the customer.

2.1.2 � MODEL-BASED SYSTEMS ENGINEERING APPROACH
A model-based approach has been standard practice in electrical and mechanical design and other dis-
ciplines for many years. Mechanical engineering transitioned from the drawing board to increasingly 
more sophisticated two-dimensional and then three-dimensional computer-aided design tools begin-
ning in the 1980s. Electrical engineering transitioned from manual circuit design to automated sche-
matic capture and circuit analysis in a similar time-frame. Computer-aided software engineering 
became popular in the 1980s, using graphic models to represent software at abstraction levels above the 
programming language. The use of modeling for software development is becoming more widely 
adopted, particularly since the advent of the Unified Modeling Language in the 1990s.

The model-based approach is becoming more prevalent in systems engineering. A mathematical 
formalism for MBSE was introduced in 1993 by Wayne Wymore [36]. The increasing capability of 
computer processing, storage, and network technology along with emphasis on systems engineering 
standards has created an opportunity to significantly advance the state of the practice of MBSE. It is 
expected that MBSE will become standard practice in a similar way that it has with other engineering 
disciplines, and will become fully integrated into a broader model-based engineering approach.

“Model-based systems engineering (MBSE) is the formalized application of modeling to support 
system requirements, design, analysis, verification, and validation activities beginning in the 
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conceptual design phase and continuing throughout development and later lifecycle phases” [37]. 
MBSE emphasizes the use of models to perform the systems engineering activities that have tradition-
ally been performed using the document-based approach as described in the previous section. With 
MBSE, the output of the systems engineering activities is a coherent model of the system (i.e., system 
model) that is part of the engineering baseline, and the emphasis is placed on defining and evolving the 
model using model-based methods and tools. The intended result is enhanced specification and design 
quality, reuse of the system specification and design artifacts, and improved communications among 
the development team.

The System Model
The system model is generally created using a modeling tool and stored in a model repository. The 
system model includes system specifications, design, analysis, and verification information. The model 
consists of model elements that represent requirements, design, test cases, design rationale, and their 
interrelationships. Figure 2.1 shows the system model as an interconnected set of model elements that 
represent key system aspects as defined in SysML, including its structure, behavior, parametrics, and 
requirements. The multiple cross-cutting relationships between the model elements enable the system 
model to be viewed from many different perspectives that focus on different aspects of the system while 
maintaining consistency among the different views.

req

actibd

par

Structure Behavior

Requirements Parametrics

FIGURE 2.1

Representative system model example in SysML. (Specific model elements have been deliberately obscured 
and will be discussed in subsequent chapters.)
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A primary use of the system model is to enable the design of a system that satisfies its requirements 
and meets its overall objectives. This model is an output from the system specification and design pro-
cess that is discussed in Sections 1.2 and 1.3. Figure 2.2 depicts how the system model is used to 
specify the hardware and software components of the system. The system model includes component 
interconnections and interfaces, component interactions and the associated functions the components 
must perform, and component performance and physical characteristics. The textual requirements for 
the components may also be captured in the model and traced to system requirements.

The system model specifies the components of the system. The component specifications serve as 
inputs to procure and/or design a component. Component design models may be expressed in domain-
specific modeling languages, such as UML for software design or computer-aided design and com-
puter-aided engineering (CAD/CAE) models for hardware design. The information exchange between 
the system model and the component design models may be accomplished through the exchange mech-
anisms described in Chapter 18, Section 18.3, or by automatically generating the component specifica-
tions from the system model in more traditional document–based formats. The use of a system model 
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FIGURE 2.2

The system model is used to specify the components of the system.
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provides a mechanism to specify and integrate subsystem and component designs into the system, and 
maintain traceability between the system and component requirements.

The system model can also be integrated with other engineering analysis and simulation models that 
perform computation and dynamic execution. The system model can be executed directly if the system 
modeling environment is augmented with an execution environment. A growing emphasis for the sys-
tem model is its role in providing a common system description for integrating models created by other 
engineering disciplines, including hardware, software, testing, and other specialty engineering disci-
plines such as reliability, safety, and security. This is covered in Chapter 18, Section 18.2, as part of the 
discussion on specifying an integrated systems development environment.

The Model Repository
The system model contains model elements that are stored in a model repository and presented on 
diagrams with graphical symbols. The modeling tool enables the modeler to create, modify, and delete 
individual model elements and their relationships, and to store them in the model repository. The mod-
eler uses the symbols on the diagrams to enter the model information into the repository and to view 
model information from the repository. The system specification, design, analysis, and verification 
information previously captured in documents is captured as the system model in the repository. The 
model can be queried and analyzed for a variety of purposes, including integrity checks of the system 
specification and design. The system model can be viewed in diagrams or in other combinations of 
graphical, tabular, and textual reports that are generated by querying the model and presenting the 
information in the desired form. These views enable understanding and analysis of different aspects of 
the system model.

Many of the modeling tools have a flexible and automated document-generation capability that can 
significantly reduce the time and cost of building and maintaining the system specification and design 
documentation from the system model. In this way, documents that may look similar to traditional  
document-based artifacts can continue to serve as an effective means for reporting the information.  
Document generation from the model is described in more detail in Chapter 18, Sections 18.2.2 and 18.4.5.

Model elements corresponding to requirements, design, analysis, and verification information are 
traceable to one another through their relationships, even though they are often presented on different 
diagrams. For example, an engine component in an automobile system model may have many relation-
ships to other elements in the model. It is part of the automobile system, connected to the transmission, 
satisfies a power requirement, performs a function to convert fuel to mechanical energy, and has a weight 
property that contributes to the vehicle’s weight. These relationships are part of the system model.

The modeling language imposes rules that constrain which relationships are valid. For example, the 
model should not allow a requirement to contain a system component or an activity to produce inputs 
instead of outputs. Additional model constraints may be imposed based on the MBSE method and other 
domain specific constraints that are employed. An example of a method-imposed constraint may be that 
all system functions must be decomposed and allocated to at least one component of the system. A 
domain specific constraint may be that a particular type of component must include certain kinds of 
properties, such as all electrical components must include predefined electrical characteristics. Model-
ing tools enforce constraints at the time the model is constructed, although when needed, it is also pos-
sible to run a model-checking routine that provides a report of any constraint violations.

This model provides much finer control of the information than is available in a document-based 
approach, where this information may be spread across many documents and the relationships may not 
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be explicitly defined. The model-based approach promotes rigor in the specification, design, analysis, 
and verification process. It also significantly enhances the quality and timeliness of traceability and 
impact assessment over the document-based approach.

Transitioning to MBSE
Models and related diagramming techniques have been used as part of the document-based systems 
engineering approach for many years. They include functional flow diagrams, behavior diagrams, sche-
matic block diagrams, N2 charts, performance simulations, and reliability models, to name a few. 
However, the use of models has generally been limited to supporting specific types of analysis or 
selected aspects of system design. Individual models have not been integrated into a coherent model of 
the overall system, and the modeling activities have not been fully integrated with other activities that 
form the systems engineering process. The transition from document-based systems engineering to 
MBSE is a shift in emphasis from controlling the documentation about the system to controlling the 
model of the system. MBSE integrates system requirements, design, analysis, and verification informa-
tion to address multiple aspects of the system in a cohesive manner, rather than dealing with a disparate 
collection of individual models.

MBSE provides an opportunity to address many of the limitations of the document-based approach 
by providing a more rigorous means for capturing and integrating system requirements, design, analy-
sis, and verification information, and facilitating the maintenance, assessment, communication, and 
exchange of this information across the system’s lifecycle. Some of the MBSE potential benefits 
include the following:
 
	•	� Enhanced communications
	 •	 �Shared understanding of the system across the development team and other stakeholders.
	 •	 �Ability to present and integrate views of the system from multiple perspectives.
	•	� Reduced development risk
	 •	 �Ongoing requirements validation and design verification.
	 •	 �More accurate cost estimates to develop the system.
	•	� Improved quality
	 •	 �More complete, unambiguous, and verifiable requirements.
	 •	 �More rigorous traceability between requirements, design, analysis, and testing.
	 •	 �Enhanced design integrity.
	•	� Increased productivity
	 •	 �Faster and more comprehensive impact analysis of requirements and design changes.
	 •	 �More effective exploration of trade-space.
	 •	 �Reuse of existing models to support design evolution.
	 •	 �Reduced errors and time during integration and testing.
	 •	 �Automated document generation.
	•	� Leveraging the models during downstream lifecycle phases
	 •	 �Support operator training on the use of the system.
	 •	 �Support diagnostics and maintenance of the system.
	•	� Enhanced knowledge transfer
	 •	 �Efficient capture of domain knowledge about the system in a standardized form that can be 

accessed, queried, analyzed, evolved, and reused.
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MBSE can provide additional rigor to the specification and design process when implemented using 
appropriate methods and tools. However, this rigor does not come without a price. Clearly, transitioning 
to MBSE underscores the need for up-front investment in processes, methods, tools, and training. It is 
expected that during the transition to a model-based approach, MBSE will be performed in combina-
tion with document-based approaches. For example, the upgrade of a large and complex legacy system 
still relies heavily on the legacy documentation, and only parts of the system may be modeled. Careful 
tailoring of the approach and scoping of the modeling effort is essential to meet the needs of a particular 
project. Considerations for transitioning to an MBSE approach are discussed in Chapter 19.

2.2 � MODELING PRINCIPLES
The following sections provide a brief overview of some of the key modeling principles.

2.2.1 � MODEL AND MBSE METHOD DEFINITION
A model is a representation of one or more concepts that may be realized in the physical world. The 
model generally describes a domain of interest where a domain may correspond to a particular applica-
tion area (such as transportation) involving particular kinds of systems (such as automobiles) and par-
ticular facets of a system (such as vehicle performance). A key feature of a model is that it is an abstraction 
that does not contain all the detail of the modeled entities within the domain of interest, but only the 
details needed to address the intended use of the model. Models can be abstractions, such as quantitative, 
logical, and/or geometric representations, as well as concrete, physical scale models. The abstract repre-
sentation may be expressed in combinations of text (such as the text statements in a programming lan-
guage), mathematical equations, graphical symbols (such as nodes and arcs on a graph), and geometric 
layouts (such as a CAD model). A common example of a model is a blueprint of a building and a scaled 
prototype physical model. The building blueprint is a specification for one or more buildings that are 
built. The blueprint is an abstraction that does not contain all the building’s detail, such as the detailed 
characteristics of its materials. Similarly, the scaled prototype is a representation of the actual building 
to be built that does not contain all the details of the building, such as the building materials. However, 
these models serve their intended use for specifying and visualizing the structure to be built.

A system model expressed in SysML is analogous to a building blueprint that specifies a system to 
be implemented. The SysML model represents the behavior, structure, properties, constraints, and 
requirements of the system. SysML has a semantic foundation that defines the kind of model elements 
and their relationships that can appear in the system model. The model elements that constitute the 
system model are stored in a model repository and can be presented graphically as well as in tables and 
other forms. A SysML model can also be integrated with other analysis and design models to represent 
other aspects of the system.

A method is a set of related activities, techniques, conventions, representations, and artifacts that 
implement one or more processes and is generally supported by a set of tools. A model-based systems 
engineering method is a method that implements all or part of the systems engineering process and 
produces a system model as one of its primary artifacts. Chapter 3, Section 3.4, provides a simplified 
MBSE method, while Chapter 16 and Chapter 17 provide detailed examples of applying two different 
MBSE methods.
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2.2.2 � THE PURPOSE FOR MODELING A SYSTEM
The purpose for modeling a system for a particular project must be clearly defined in terms of how vari-
ous stakeholders intend to use the model, including the contributors and consumers of the model con-
tent. The stakeholders and their intended uses evolve across the lifecycle of the system’s development, 
imposing an evolving set of requirements on the use of the model. For example, during the early con-
ceptual design phase of a system, the intended use of the model may be to support the evaluation of 
alternative system design concepts. During this activity, emphasis may be placed on system sizing, 
high-level system functionality, and critical system properties. During later phases, the intended use 
may be to specify the hardware and software components of the system, where the emphasis is placed 
on specifying the behavior of the software and hardware components. As the detailed design proceeds, 
the intended use of the model may be to support component design integration and system/subsystem 
verification. The intended use for modeling a system is associated with the systems engineering activi-
ties the model is intended to support across the system lifecycle, and may include the following uses:
 
	•	� Characterize and assess an existing system
	•	� Specify and design a new or modified system
	 •	 �Represent a system concept.
	 •	 �Specify and validate system requirements.
	 •	 �Synthesize system designs.
	 •	 �Specify component requirements.
	 •	 �Maintain requirements traceability.
	•	� Evaluate the system
	 •	 �Conduct system design trade-offs.
	 •	 �Analyze system performance requirements or other quality attributes.
	 •	 �Verify that the system design satisfies its requirements.
	 •	 �Assess the impact of requirements and design changes.
	 •	 �Estimate the system cost (e.g., development cost, lifecycle cost).
	•	� Train users on how to operate or maintain a system
	•	� Support system maintenance and/or diagnostics
 

2.2.3 � MODEL VALIDATION
Model validation is the process for determining the extent to which the model accurately represents 
the domain of interest (e.g., the system and its environment) to meet the model’s intended use. For 
analysis models, the validation is often accomplished through static checks of the model and through 
review by domain experts of the input data and assumptions, the model, and the analysis results. The 
results of the analysis are generated from executing the model and are compared with real-world results 
when such data is available.

A system model in SysML represents a description of the system and its environment that must be 
a sufficiently accurate representation to fulfill its intended use. The model’s accuracy is dependent on 
the quality of the source information used to generate the model, the validity of the assumptions regard-
ing the applicability of the source information, and the extent to which the source information and 
assumptions are properly captured in the model. As with analysis models, the system model validation 
can be performed by a combination of model checks and domain expert review. In addition, the system 
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model can be used as an input to other analysis models and simulations that can be executed and vali-
dated, thus providing a further means for validating the system model.

Validating that a model is sufficient to meet its intended use also requires consideration of the inher-
ent capabilities and limitations of the modeling language. This depends on the expressiveness and 
precision of the language. For example, a modeling language that only represents process and/or func-
tional flow may not have the capability to represent system performance and physical characteristics 
and the equations that govern them.

2.2.4 � ESTABLISHING MODEL QUALITY CRITERIA
Quality criteria can be established to assess how well a model meets its intended use. However, one 
must first distinguish between a good model and a good design. One can have a good model of a poor 
design or a poor model of a good design. A good model is judged on how well the model meets its 
intended use. A good design is based on how well the design satisfies its requirements and the extent to 
which it incorporates quality design principles. As an example, one could have a good model that pro-
vides an accurate representation of a chair that has been validated for its intended use. However, the 
chair’s design may be a poor design if it does not have structural integrity. A good model can meet its 
intended use by providing visibility to aid the design team in identifying design issues and assessing 
design quality. The selected MBSE method and tools should facilitate a skilled and knowledgeable 
team to develop both a good model and a good design.

The following questions can be used to assess a model’s ability to meet its intended use and to 
derive quality attributes for the model. The quality attributes in turn can be used to establish preferred 
modeling practices. The modeling tool can assist the implementation of these practices by providing 
model checking and reports that facilitate assessment of the quality attributes.

Is the model’s purpose well defined?
The model’s purpose must be clearly stated, as described in Section 2.2.2, for both the near- and long-
term use of the model. This should include identifying representative stakeholders, such as different 
disciplines involved in the development process, and their intended use of the model throughout the 
system lifecycle. (Note: The stakeholders and their intended use can be defined as stakeholder 
viewpoints.)

Is the model’s scope sufficient to meet its intended use?
The scope of the model should be sufficient to meet the intended use of the model as described above. 
The model’s scope can be defined in terms of the model’s breadth, depth, and fidelity, which evolve 
across different phases of development. This scope should be balanced with the available schedule, 
budget, skill levels, and other resources. Understanding the model’s purpose and scope provides the 
basis for establishing realistic expectations and the required level of resources for the modeling effort.
 
	•	� Model breadth. The breadth of the model must be sufficient for the intended use. This is accom-

plished by determining which parts of the system need to be modeled. This can be determined by 
the extent of the system requirements that the model must address. For example, if new function-
ality is being added to an existing system, one may choose to focus on modeling only those 
portions needed to support the new functionality. In an automobile design, for example, if the 
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emphasis is on new or modified requirements for fuel economy and acceleration, the model may 
focus on elements related to the power train, with less focus on the braking and steering subsys-
tems. This does not imply that other parts of the system are not impacted by the change, but the 
scope of the modeling effort is limited to represent the new functionality.

	•	� Model depth. The depth of the model must be sufficient for the purpose, which is determined by 
the level of the system design hierarchy that the model must encompass. For a conceptual design 
or initial design iteration, the model may only address a high level system design. In the automo-
bile example, the initial design iteration may only model the system to the engine black box level, 
whereas if the engine is subject to further development, a future design iteration may require the 
model to include the engine components.

	•	� Model fidelity. The fidelity of the model must support the required level of detail. For example, a 
simple activity diagram with control flows may be sufficient for describing the initial functions a 
system or subsystem is required to perform. Additional model details may be required to execute 
the behavior in order to specify the software requirements fully. As another example, a low-
fidelity model for modeling interfaces may only represent the data definitions and source and 
destination of the flows, whereas a higher-fidelity model may represent the message structure, 
communication protocol, and detailed communication path. A further example is a low fidelity 
model to analyze system performance versus a higher fidelity model that includes more detailed 
timing information, system performance characteristics, and constraints.

 

Is the model complete relative to its scope?
A necessary condition for the model to be complete is that its breadth, depth, and fidelity match its 
defined scope. Other completeness criteria may relate to other quality attributes of the model described 
below (e.g., whether the naming conventions have been properly applied) and design completion crite-
ria (e.g., whether all design elements are traced to a requirement).

Is the model well-formed?
A well-formed model conforms to the rules of the modeling language. For example, the rules in SysML 
allow a component to satisfy a requirement but do not allow a requirement to satisfy a component. The 
modeling tool should enforce the constraints imposed by the rules of the modeling language and/or 
provide a report of violations.

Is the model consistent?
In SysML, some rules are built into the language to ensure model consistency. For example, type 
checking can help determine whether interfaces are compatible or whether units are consistent among 
different properties. Additional constraints can be imposed by the MBSE method used. For instance, a 
method may impose a constraint that logical components can only be allocated to hardware and equip-
ment, software, or operational procedures. These constraints can be expressed in the object constraint 
language (OCL) [38] or some other constraint language and enforced by the modeling tool.

Enforcing constraints assists in maintaining consistency across the model, but it does not prevent 
design inconsistencies. A simple example may be that two modelers inadvertently give two different 
names to what is intended to be the same component. The model treats these as different components. 
This type of inconsistency should surface through the model and design reviews and reports. However, 
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the likelihood of inconsistencies increases when multiple people are working on the same model. A 
combination of well-defined model conventions and a disciplined process can reduce the likelihood of 
this happening.

Is the model understandable?
The system model is intended to be interpretable by both humans and computers. Many factors can 
contribute to the understandability of the model by humans. In addition to the underlying semantics of 
the model, the way in which the information is presented is also important to human understanding. An 
understandable model should include views of the model that contain the information appropriate for 
the particular stakeholder’s intended use.

The understandability can be enhanced by controlling what and how information appears on the 
diagrams and other reports. Often, the model contains a lot of detail, but only selected information is 
relevant to communicate a particular aspect of the design. The information on the diagram can be con-
trolled by using the tool capability to elide (hide) nonessential information and display only the infor-
mation relevant to the diagram’s purpose. Again, the goal is to avoid information overload for the 
reviewer of the model.

The layout of the diagram does not generally contain semantic information but can impact how well 
the model is understood. For example, an activity diagram that represents a sequence of actions may be 
laid out in different ways. The layout is generally more understandable if the position of the actions on 
the diagram align with the action sequence.

The use of icons—such as the use of an icon for a particular kind of component (e.g., pump, 
valve)—can also aid in understanding. Also, tabular views may be preferred over diagrammatic views 
when presenting certain types of information to some stakeholders. Other factors that contribute  
to understandability are the use of modeling conventions and the extent to which the model is self-
documenting, as described next.

Are modeling conventions documented and used consistently?
Modeling conventions and standards are critical to ensuring consistent representation and style across 
the model. This includes establishing naming conventions for each kind of model element, diagram 
names, and diagram content. Naming conventions may include stylistic aspects of the language, such 
as when to use uppercase versus lowercase and when to use spaces. The conventions and standards 
should also account for tool-imposed constraints, such as limitations in the use of alphanumeric and 
special characters. It is also recommended that a template be established for each kind of diagram so 
that a consistent style can be applied. Standard report formats from the model should also 
beinstituted.

A domain specific vocabulary that reflects the core domain concepts and their relationships can be 
defined more formally. The formal representation may be referred to as an ontology, a conceptual 
model, or a metamodel. This representation can then be used to define domain specific extensions to the 
language. An example of an ontology is described in Chapter 18, Section 18.4.4.

Is the model self-documenting?
The use of annotations and descriptions throughout the model can help to provide value-added informa-
tion if applied consistently. This can include capturing the rationale for design decisions, listing issues 
or problem areas for resolution, and providing additional text descriptions for model elements. This 
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information may also be included in documentation that is automatically generated from the model. 
However, this information must also be maintained as part of the model, so careful consideration should 
be given to what information is captured and how.

Does the model accurately reflect the domain of interest?
This is best answered by establishing a model validation approach as described in Section 2.2.3. The 
accuracy of this description is dependent on the quality of the source information, the validity of the 
assumptions regarding the applicability of the source information, and the extent to which the source 
information and assumptions are properly captured in the model, as well as the inherent capabilities and 
limitations of the modeling language. The quality of the source information and the validity of the 
assumptions are primarily assessed through subject matter review. The assessments of the extent to 
which the source information and assumptions are properly captured in the model is determined by 
assessing other quality attributes described above as well as further expert review.

Does the model integrate with other models?
The system model may need to integrate with electrical, mechanical, software, test, and engineering 
analysis models as referred to in Section 2.1.2. The required integration is dependent on the specific 
modeling languages, tools, and methods being used. The modeling information to be exchanged, its 
presentation, and the mechanisms for information exchange must be determined. For example, the 
approach for passing information from the system model using SysML to a software model using UML 
may require establishing a relationship between the software design elements in the UML model and 
the software specification elements in the SysML model. In other cases, this may require the exchange 
of selected information though a file or through the application programming interface of the modeling 
tools. The approach for integrating models and tools is discussed in Chapter 18.

2.2.5 � MODEL-BASED METRICS
As noted in Section 2.2.4, there is a distinction between a good model and a good design. Applying the 
model quality criteria in Section 2.2.4 should help to meet the intended use of the model. However, the 
application of these criteria does not explicitly reflect the quality of the design. For example, a model 
of component requirements can be complete relative to its scope, well formed, consistent, understand-
able, well documented, validated, and integrated with other models, but not necessarily result in quality 
requirements. Such results are dependent on the skill and knowledge of the system engineering team.

Measurement data collection, analysis, and reporting can be used as a management technique through-
out the development process to assess design quality and progress. This in turn is used to assess technical, 
cost, schedule status, and risk, and to support ongoing project planning and control. Model-based metrics 
can provide useful data that can be derived from a system model expressed in SysML. Such data can help 
answer the questions below and assess the design quality and progress. The data can be collected over time 
to provide additional insights through assessment of the data trends and statistical distributions.

What is the quality of the design?
Metrics can be defined to measure the quality of a model-based system design. Some of these metrics—
such as assessing requirements satisfaction, requirements verification, and technical performance 
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measurement—are based on metrics that have been traditionally used in document-based designs. 
Other metrics may include indicators of how well the design is partitioned and measures of 
complexity.

A SysML model can include explicit relationships that can be used to measure the extent to which 
the requirements are satisfied. The model can provide granularity by identifying model elements that 
satisfy specific requirements along with the supporting rationale. The requirements traceability can be 
established from mission requirements down to component requirements. Other SysML relationships 
can be used in a similar way to measure which requirements have been verified. This data can be 
extracted directly from the model or indirectly from a requirements management tool that is integrated 
with the SysML modeling tool.

A SysML model can include critical properties that are monitored throughout the design process to 
assess technical risks and to determine the impact of requirements and design change impacts on these 
critical properties. Typical properties may include performance properties, such as response time, 
throughput, and accuracy; physical properties, such as weight, size, and power; and other properties, 
such as reliability and cost. The SysML model can also include parametric relationships between the 
properties that are used to integrate with other analysis models. These properties can be monitored 
using standard technical performance measurement techniques supported by analysis models to com-
pute the property values and sensitivities.

Design partitioning can be measured in terms of the level of cohesion and coupling of the design. 
Coupling can be measured by the number of interfaces or through more complex measures of depen-
dencies between model elements. Cohesion metrics measure the extent to which a component can 
perform its functions without requiring access to external data. The object-oriented concept of encap-
sulation reflects this concept.

What is the progress of the design and development effort?
Model-based metrics can be defined to assess design progress relative to the completion criteria for 
the design. The quality attributes in the previous section refer to whether the model is complete rela-
tive to the defined scope of the modeling effort. This is necessary—but not sufficient—to assess 
design completeness. The extent to which the system design satisfies the system requirements is a 
measure of design quality and design completeness. The components interfaces, behavior, and prop-
erties must be sufficiently specified to assess whether the system design satisfies its requirements, 
and can be assessed in terms of model-based metrics. Other metrics may include the number of use-
case scenarios that have been completed or the percent of logical components that have been allo-
cated to physical components.

Other metrics for assessing progress include the extent to which components have been verified and 
integrated into the system and how well the system has been verified to satisfy its requirements. Test 
cases and verification status can be captured in the model and used as a basis for this assessment.

What is the estimated effort to complete design and development?
The Constructive Systems Engineering Cost Model (COSYSMO) is used for estimating the cost and 
effort of performing systems engineering activities. This model includes both sizing and productivity 
parameters, where the size estimates the magnitude of the effort and productivity factors are applied to 
arrive at a labor estimate to do the work.
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When using model-based approaches, sizing parameters can be identified in the model in terms of 
the number of different modeling constructs, which may include the following:
 

• Model elements;
• Requirements;
• Use cases;
• Scenarios;
• System and component states;
• System and component interfaces;
• System and component activities or operations;
• System and component properties;
• Components by type (e.g., hardware, software, data, operational procedures);
• Constraints; and
• Test cases.

 
The metrics should also account for relationships between these model elements, such as the num-

ber of requirements that are satisfied, the number of requirements that are verified, the number of use 
cases that are realized, and the number of activities that are allocated to blocks.

The MBSE sizing parameters are integrated into the cost model. The parameters may have com-
plexity factors associated with them as well. For example, the complexity of a use case may be indi-
cated by the number of actors participating in the interaction. Additional factors to be considered are 
the amount of reuse and modification of existing models versus creating new models.

Sizing and productivity data need to be collected and validated over time to establish statistically 
meaningful data and cost estimating relationships to support accurate cost estimating. However, early 
users of MBSE can identify sizing parameters that contribute most significantly to the modeling effort, 
and use this data for local estimates and to assess productivity improvements over time.

2.2.6 � OTHER MODEL-BASED METRICS
The previous discussion is a sampling of some of the model-based metrics that can be defined. Many 
other metrics can also be derived from the model, such as the stability of the number of requirements, 
design changes over time, and potential defect rates. The metrics can also be devised to establish bench-
marks by which to measure the MBSE benefits as described in Section 2.1.2, such as the productivity 
improvements resulting from MBSE over time. These metrics should be defined and captured to sup-
port the business case for MBSE. Chapter 19, Section 19.1.1, includes a discussion of additional met-
rics related to deploying MBSE in an organization.

2.3 � SUMMARY
The practice of systems engineering is transitioning from a document-based approach to a model-based 
approach, just as many other engineering disciplines—such as mechanical and electrical—have already 
done. MBSE offers significant potential benefits that enhance specification and design quality and  
consistency, reuse of the specification and design artifacts, and communication among the development 
team, yielding overall improvements in quality and productivity, while reducing development risk. The 
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emphasis for MBSE is on producing and controlling a coherent system model, and using this model to 
specify and design the system.

System modeling can support many intended uses, such as evaluating alternative system design 
concepts or specifing the hardware and software components of the system. A good model meets its 
intended use, and a validated model accurately represents a system’s domain of interest sufficient for 
its intended use. Although, a good model does not necessarily imply a good design, it should provide 
the information necessary for a skilled and knowledgeable design team to develop a quality design that 
satisfies its requirements.

The scope of the model should support its intended use within the resource constraints of the model-
ing effort. Quality attributes of a model—such as model consistency, understandability, and well-
formedness—and modeling conventions can be used to assess the model quality and to derive preferred 
modeling practices. MBSE metrics can also be used to assess design quality, determine progress and 
risk, and support management of the development effort.

2.4 � QUESTIONS
	 1.	 �What are some of the primary distinctions between MBSE and a document-based approach?
	 2.	 �What are some of the benefits of MBSE over the document-based approach?
	 3.	 �Where are the model elements of a system model stored?
	 4.	 �Why should a model be validated?
	 5.	 �What constitutes a good model?
	 6.	 �What is the difference between a good model and a good design?
	 7.	 �Which aspects of the model can be used to define the scope of the model?
	 8.	 �What are some of the key quality criteria a model should satisfy?
	 9.	 �What are examples of questions that MBSE metrics can help answer?
	10.	 �What are possible sizing parameters that could be used to estimate an MBSE effort?
 



31A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00003-5
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

GETTING STARTED WITH  
SysML

This chapter provides an introduction to SysML and guidance on how to begin modeling with it. The 
chapter provides a brief overview of SysML, then introduces a simplified version of the language 
known as SysML-Lite, along with a simplified example and tool tips on how to capture the model in 
a typical modeling tool. This chapter also introduces a simplified model-based systems engineering 
(MBSE) method that is consistent with the systems engineering process described in Chapter 1,  
Section 1.2. The chapter finishes by describing some of the challenges involved in learning SysML 
and MBSE.

3.1 � SysML PURPOSE AND KEY FEATURES
SysML1 is a general-purpose graphical modeling language that supports the analysis, specifica-
tion, design, verification, and validation of complex systems. These systems may include hardware 
and equipment, software, data, personnel, procedures, facilities, and other elements of human-
made and natural systems. The language is intended to help specify and architect systems and to 
specify components that can then be designed using other domain-specific languages, such as 
UML for software design, VHDL for electrical design, and three-dimensional geometric modeling 
for mechanical design. SysML is intended to facilitate the application of an MBSE approach to 
create a cohesive and consistent model of the system that yields the benefits described in  
Chapter 2, Section 2.1.2.

SysML can represent the following aspects of systems, components, and other entities:
 
	•	� Structural composition, interconnection, and classification;
	•	� Flow-based, message-based, and state-based behavior;
	•	� Constraints on the physical and performance properties;
	•	� Allocations between behavior, structure, and constraints; and
	•	� Requirements and their relationship to other requirements, design elements, and test cases.
 

1OMG Systems Modeling Language (OMG SysML™) is the official name of the language, but it is referred to as 

SysML for short. Additional information on SysML can be found at the official OMG SysML website at http://www. 

omgsysml.org.

3
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3.2 � SysML DIAGRAM OVERVIEW
SysML includes nine diagrams, as shown in the taxonomy in Figure 3.1. Each diagram kind is sum-
marized here, along with its relationship to UML diagrams:
 
	•	� Package diagram – presents the organization of a model in terms of packages that contain model 

elements (same as UML package diagram).
	•	� Requirement diagram – presents text-based requirements and their relationships to other require-

ments, design elements, and test cases to support requirements traceability (not in UML).
	•	� Activity diagram – presents flow-based behavior indicating the order in which actions execute 

based on the availability of their inputs, outputs, and control, and how the actions transform the 
inputs to outputs (modification of UML activity diagram).

	•	� Sequence diagram – presents behavior in terms of a sequence of messages exchanged between 
systems or parts of systems (same as UML sequence diagram).

	•	� State machine diagram – presents behavior of an entity in terms of its transitions between states 
triggered by events (same as UML state machine diagram).

	•	� Use case diagram – presents functionality in terms of how a system is used by external entities 
(i.e., actors) to accomplish a set of goals (same as UML use case diagram).

	•	� Block definition diagram – presents structural elements, called blocks, and their composition and 
classification (modification of UML class diagram).

	•	� Internal block diagram – presents interconnection and interfaces between the parts of a block 
(modification of UML composite structure diagram).

	•	� Parametric diagram – presents constraints on property values, such as F = m * a, used to support 
engineering analysis (not in UML).
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FIGURE 3.1

SysML diagram taxonomy.
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A diagram presents selected model elements from the system model. The kinds of model elements 
and associated symbols (e.g., diagram elements) that can appear on a diagram are constrained by the 
diagram’s kind. For example, an activity diagram can include diagram elements that present actions, 
control flow, and input/output flow (i.e., object flow), but not diagram elements for connectors and 
ports. Tabular presentations, such as allocation tables, are also supported in SysML as a complement to 
diagrams.

3.3 � INTRODUCING SysML-Lite
SysML-Lite is introduced here as a simplified version of the language to help users start modeling with 
SysML. It is not referenced in the SysML specification. It includes six of the nine SysML diagrams and 
a small subset of the available language features for each diagram kind. SysML-Lite provides signifi-
cant modeling capabilities. This section provides a brief introduction to SysML-Lite, including a sim-
ple example to highlight its features. Tool tips to assist new modelers in the use of a typical modeling 
tool are also covered.

3.3.1 � SysML-Lite DIAGRAMS AND LANGUAGE FEATURES
The six kinds of diagrams that are part of SysML-Lite are highlighted in Figure 3.2. Each diagram 
contains a header that identifies the diagram kind and other information about the diagram that is 
explained in Chapter 5, Section 5.2. In particular, SysML-Lite includes:
 
	•	� package diagrams to present the model organization;
	•	� requirement diagrams to present text-based requirements and their relationships;
	•	� activity diagrams to present the behavior of the system and its components;
	•	� block definition diagrams to present the system hierarchy;
	•	� internal block diagrams to present the system interconnection; and
	•	� parametric diagrams to present the relationship among system properties to support engineering 

analysis.
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SysML-Lite includes six of the nine SysML diagrams and a subset of the language features. It is intended to 
introduce new modelers to SysML while providing substantial modeling capabilities.
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This set of diagrams provides a model user with substantial capability for modeling systems that 
covers many of the classical systems engineering diagrams and more.

SysML-Lite includes a small subset of the language features for each of the six SysML diagrams. 
Some of the features of SysML-Lite are presented in the diagrams in Figure 3.3. The precise subset of 
SysML language features can be adapted as needed. The figure also shows thick lines with arrowheads 
that are not part of the language but highlight some of the important cross diagram relationships. These 
relationships generally support classical systems engineering methods, such as functional decomposi-
tion and allocation.

The package diagram, labeled pkg, is used to organize the model elements contained in the model. 
In this diagram, the System Model appears in the diagram header and contains packages for Require-
ments, Behavior, Structure, and Parametrics. Each of these packages, in turn, contains model elements 
that are presented on the requirement diagram, activity diagram, block definition diagram, internal 
block diagram, and parametric diagram, respectively. Note that model elements for both the block defi-
nition diagram and internal block diagram are contained in the Structure package.

The requirement diagram is labeled req and presents a simple hierarchy of text-based requirements 
that are typically part of a specification document. The top level requirement named R1 contains two 
requirements, R1.1 and R1.2. The corresponding requirement statement for R1.1 is captured as a text 
property of the requirement and corresponds to the text that would be found for this requirement in a 
specification document.

The activity diagrams are labeled act. The activity diagram named A0 presents the interaction 
between System 1 and System 2. The initial node (shown as the filled dark circle) and final node (shown 
as the bulls-eye) indicate the start and finish of the activity, respectively. The activity specifies a simple 
sequence of actions, beginning with the execution of action :A1, which is followed by the execution of 
action :A2. The colon (:) in the action names and in other symbols indicates a particular usage associ-
ated with a reusable definition, which is described in Chapter 4, Section 4.3.12 and further described in 
Chapter 7, Section 7.3.1 and Chapter 9, Section 9.4.2. The output of :A1 and the input of :A2 are 
depicted by rectangles on the action boundary called pins. In addition, the activity partitions labeled 
:System 1 and :System 2 are responsible for performing the actions that are enclosed by the partitions. 
The action called :A1 satisfies the requirement R1.2, which is represented by the satisfy relationship.

The action called :A1 in the activity diagram A0 is decomposed in the activity diagram called A1 
into actions :A1.1 and :A1.2. These actions are performed by :Component 1 and :Component 2, respec-
tively. The output of the activity A1, depicted by the rectangle on its boundary, corresponds to the out-
put pin of action :A1 in activity A0. As indicated in the activity diagrams for A0 and A1, the outputs and 
inputs are consistent from one level of decomposition to the next.

The block definition diagram is labeled bdd and is often used to describe the hierarchy of a system, 
similar to a parts tree (e.g., equipment tree). A block is used to define a system or component at any 
level of the system hierarchy. The block definition diagram in the figure shows the block System Context 
composed of System 1 and System 2. System 1 is further decomposed into Component 1 and  
Component 2. The System 1 and Component blocks each contain a value property that can correspond 
to a physical or performance characteristic, such as its weight or response time.

The internal block diagram is labeled ibd and the enclosing diagram frame corresponds to System 1.  
This diagram shows how the parts of System 1 are interconnected. The small squares on System 1 (i.e,, 
the frame) and its parts (i.e., :Component 1 and :Component 2) are called ports and represent their 
interfaces. The lines connecting the ports are called connectors. System 1 is also shown as the  
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Simplified diagrams highlighting some of the language features for each kind of diagram in SysML-Lite.
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activity partition in the activity A0, and the components are similarly shown as activity partitions in the 
activity A1.

The parametric diagram is labeled par and is used to describe parametric relationships that are used 
in engineering analysis, such as performance, reliability, and mass properties analysis. In this example, 
the parametric diagram includes a single constraint called Constraint 1 that expresses an equation or set 
of equations. The small squares flush with the inside of the constraint depict the parameters of the equa-
tion. The properties of the system and component blocks can be bound to the parameters of the equa-
tions to establish an equality relationship. In this way, the parameters of a particular analysis can be 
aligned with the properties of the system design. Often, a single constraint is used to specify an analysis 
in terms of its input and output parameters, without specifying the detailed equations contained by the 
analysis.

In the above diagrams, only a small subset of the SysML language features are illustrated to indicate 
some of the key constructs used to model systems. The following simplified model of an air compressor 
illustrates how SysML-Lite diagrams and language features can be applied.

3.3.2 � SysML-Lite AIR COMPRESSOR EXAMPLE
The following is an example of using SysML-Lite to model an air compressor that is used to power a 
pneumatic tool. This model is highly simplified for the purposes of illustration and includes the same 
kind of diagrams that were shown in Figure 3.3.

Figure 3.4 shows the package diagram for the Air Compressor Model and includes packages for 
Requirements, Behavior, Structure, and Parametrics. This model organization follows a similar pattern 
as described in the section on SysML-Lite above and shown in Figure 3.3.

The Requirements package contains a set of requirements that would generally be found in a system 
specification for the air compressor. The requirements are captured in the requirement diagram in 
Figure 3.5. The top level requirement called Air Compressor Specification contains a functional require-
ment to compress air, performance requirements that specify the maximum pressure and maximum 
flow rate, a requirement to specify storage capacity, power requirements to specify the source power 
needed to compress the air, and reliability and portability requirements. The text for the Storage  
Capacity requirement appears in the diagram, whereas the text for the other requirements is not 
displayed to reduce the clutter.

FIGURE 3.4

This package diagram is used to organize the Air Compressor Model into packages for Requirements, 
Structure, Behavior, and Parametrics. Each package contains model elements that can be related to model 
elements in other packages.
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FIGURE 3.5

This requirement diagram presents the requirements contained in the Requirements package to specify the 
Air Compressor. Each requirement can include the requirements text that is typically found in a specification 
document.

The Behavior package contains an activity diagram, shown in Figure 3.6, called Operate Air 
Tool, that specifies how the Air Compressor interacts with the external systems, including the Air 
Tool, the Atmosphere, and indirectly with the Operator. The Air Compressor and the external sys-
tems are shown as activity partitions. The Air Compressor performs the function (i.e., action) 
called Compress Air, which has a low pressure air input and a high pressure air output. The activ-
ity begins at the initial node (i.e., dark-filled circle), and then the Operator executes the Control 
Tool action. The activity completes its execution at the activity final node (i.e., bulls-eye symbol), 
after the Operator completes the Control Tool action. The Compress Air action is further decom-
posed in Figure 3.9.

The Structure package contains the blocks presented in the block definition diagrams in Figure 3.7 
and Figure 3.8. The block definition diagram in Figure 3.7 called Air Compressor Top Level includes a 
block called the Air Compressor Context that is composed of the Air Compressor and the entities that 
are external to the Air Compressor representing the user, external system, and the physical environ-
ment. In this example, the user is the Operator, the external system is the Air Tool, and physical envi-
ronment is the Atmosphere. The block definition diagram in Figure 3.8 is called Air Compressor System 
Hierarchy. The Air Compressor block in this figure is the same block that is shown in Figure 3.7, but 
this figure shows that the Air Compressor block is composed of components that include the Motor 
Controller, Motor, Pump, and Tank. The Air Compressor, Motor, Tank, and Pump all include value 
properties that are used to analyze the flow rate requirements.
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The activity diagram in Figure 3.9 decomposes the action called Compress Air from Figure 3.6 to specify 
how the components of the Air Compressor interact to compress the air. The activity partitions in this activity 
diagram correspond to the components of the air compressor. The Motor Controller performs actions to 
Sense Pressure and Control Motor. The Motor performs the action to Generate Torque, the Pump performs 
the action to Pump Air, and the Tank performs the action to Store Air. The low pressure air input and high 
pressure air output are consistent with the input and output of the Compress Air action in Figure 3.6. This 
activity is contained in the Behavior package along with the Operate Air Tool activity in Figure 3.6.

The internal block diagram named Interconnection in Figure 3.10 shows how the components of the 
Air Compressor from Figure 3.8 are interconnected. The diagram frame corresponds to the Air Com-
pressor block and the ports on the diagram frame depict the external interfaces of the Air Compressor. 
The ports on the parts represent the component interfaces, and the connectors connect the ports to one 

FIGURE 3.7

This block definition diagram shows the Air Compressor, Operator, Air Tool, and Atmosphere as blocks. The 
Air Compressor Context block provides the context for the Air Compressor.

FIGURE 3.6

This activity diagram specifies the interaction between the Air Compressor, Operator, Air Tool, and Atmosphere 
to perform the Operate Air Tool activity.
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another. The component parts shown on the internal block diagram are contained in the Structure pack-
age along with the blocks on the block definition diagram.

The block definition diagram called Analysis Context in Figure 3.11 is used to define the context for 
performing the flow rate analysis. In particular, it includes a block called Flow Rate Analysis to repre-
sent the analysis. This block is composed of a constraint block called Flow Rate Equations, which 
contains the equations used to analyze flow rate. In this particular example, only the parameters of the 
flow rate equations are shown, and not the equations. The Flow Rate Analysis block also refers to the 
Air Compressor Context block from Figure 3.7, which is the subject of the analysis.

Defining the Analysis Context enables a parametric diagram to be created for the Flow Rate Analysis 
block as shown in Figure 3.12. The diagram shows the value properties of the Air Compressor and its parts, 
including flow rate, tank volume and pressure, motor horsepower, and pump efficiency, and the binding of 
these properties to the parameters of the Flow Rate Equations. The flow rate analysis equations can be solved 
by an analysis tool to determine the property values for the Air Compressor and its parts. The analysis con-
text pattern is described further in Chapter 8, Section 8.10 and Chapter 17, Section 17.3.6.

This air compressor example illustrates how a system can be modeled with a subset of SysML dia-
grams and language features called SysML-Lite. Even a simple model such as this can contain many 
model elements and quickly become difficult to manage. A modeling tool is needed to efficiently build 
a model that is self consistent and to manage complexity. The following section describes how a typical 
SysML modeling tool is used to build this model.

3.3.3 � SysML MODELING TOOL TIPS
This section provides a brief introduction on how to start modeling with a typical SysML model-
ing tool. The question of how to start modeling often arises when one uses a modeling tool for the 
first time. Although various tools may have significant differences, the tools typically share much 

FIGURE 3.8

This block definition diagram shows the Air Compressor and its components. The Air Compressor block is the 
same block that is shown in Figure 3.7.
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FIGURE 3.9

This activity diagram shows how the components of the Air Compressor interact to perform the Compress Air action from Figure 3.6.
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FIGURE 3.10

This internal block diagram shows how the components of the Air Compressor are interconnected via their 
ports, which specify the component interfaces.

FIGURE 3.11

This block definition diagram is used to specify the Flow Rate Analysis in terms of a constraint block that 
defines the equations and parameters for the analysis (equations not shown), and the Air Compressor Context, 
which is the subject of the analysis.
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in common from a user interface perspective. As a result, once a modeler learns how to build a 
SysML model in one tool, it generally takes considerably less time to learn how to model in 
another tool.

The tool interface
The user interface for a typical modeling tool is shown in Figure 3.13, and includes a diagram area, a 
pallet (also known as toolbox), a model browser, and a toolbar. The diagram appears in the diagram 
area. The pallet includes diagram elements that are used to create or modify a diagram. The pallet is 
typically context sensitive such that the diagram elements that appear in the pallet depend on the 

FIGURE 3.12

This parametric diagram shows the Flow Rate Analysis and how the parameters of the equations are bound to 
the properties of the design. Once captured, this analysis can be provided to an analysis tool to perform the 
analysis. The equations are not shown in the figure.



433.3  INTRODUCING SysML-Lite

diagram that is being viewed in the diagram area. For example, if a block definition diagram is being 
viewed in the diagram area, then the pallet will contain blocks and other elements used on a block defi-
nition diagram, whereas if an activity diagram is being viewed, the pallet will include actions and other 
elements used on an activity diagram. The model browser is a third part of the user interface. It presents 
a hierarchical view of the model elements contained in the model. A typical view of the browser shows 
the model elements grouped into a package hierarchy, where each package appears as a folder that can 
be expanded to view its contents. A package may contain other nested packages. The toolbar contains 
a set of menu selections that support different user actions related to file management, editing, viewing, 
configuring tool features, and other actions. Many modeling tools also enable further tool customiza-
tion, such as the ability to develop scripts that perform additional model checking.

Some basic tool functionality includes adding a diagram; adding elements and relationships to the 
diagram; navigating between the diagram and the browser; deleting elements from the diagram and/or 
browser; and adding, modifying, and deleting details of a particular model element.

To create a new diagram, a modeler selects a diagram kind and names the diagram. There are often 
multiple ways to select a diagram kind, such as from a diagram menu or a diagram icon from the tool-
bar. The new diagram appears in the diagram area without any content. The diagram header informa-
tion is visible and includes the diagram kind, the diagram name, and other information about the 
diagram frame.

The modeler can then drag a diagram element from the pallet onto the diagram in the diagram area 
and name the new element. Once this is done, the corresponding model element appears in the browser. 
Alternatively, the modeler can add the new model element directly in the browser, then drag this model 
element onto the diagram. A model element appears in only one place in the browser, but may appear 
on zero, one, or more diagrams.

Other diagram elements can be added to the diagram in a similar way. Allowable relationships 
between elements can be added by selecting the relationship symbol from the pallet and dragging it 
from one element to another. Alternatively, many tools provide a context sensitive menu to select the 
relationship from one element and drag it to the other element. The relationship appears in the browser 
like other model elements.

FIGURE 3.13

A typical SysML modeling tool interface consists of a diagram area, a pallet or toolbox, a model browser, and a 
toolbar. The model browser shows the hierarchy of model elements that are contained in the model.
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A modeling tool provides mechanisms to navigate between the symbol on the diagram and the cor-
responding model element in the browser. This can be convenient, because a large model may contain 
hundreds of diagrams and thousands or hundreds of thousands of model elements. Most tools allow the 
modeler to select the symbol on the diagram and find its location in the browser. A modeler can also 
select a model element in the browser and find its location on each diagram in which it appears.

The modeling tool allows the modeler to show and hide selected details of the model on any particu-
lar diagram. This is important for managing the complexity of the diagrams. The modeler only shows 
what is considered important to support the purpose of the diagram.

If the modeler wishes to delete a model element from the diagram, the tool may prompt the modeler 
whether to delete the model element from the diagram only or to delete the model element from the 
model as well by removing it from the browser. A modeler can also delete a model element directly 
from the browser.

A modeling tool has many other capabilities that enable a modeler to develop and manage a system 
model. Once the model element is created, the modeler can typically select the model element and open 
its specification, where details of the model element can be added, modified, or deleted. The modeler 
can also select a model element on the diagram and query the modeling tool to show all of the directly 
related model elements that can appear on that particular kind of diagram.

It is also worth noting that the modeling tool is often used in conjunction with a configuration man-
agement tool to put the model under configuration control. This is particularly important when model-
ing as part of a distributed team where multiple people are working on the same model. In such cases, 
a typical configuration management tool will allow read and/or write privileges to be assigned to a user 
to control access to different parts of the model. Once this is done, a modeler with read privileges 
assigned to a particular part of the model can view that part of the model, while a modeler with write 
privileges can also check out and modify that part of the model.

Chapter 18 describes how the SysML modeling tool integrates into a systems development environment 
with many other tools, including configuration management, requirements management, hardware and soft-
ware design, and analysis tools. It also includes suggested criteria for selecting a SysML modeling tool.

Building the model
The following illustrates how to build the Air Compressor Model introduced in Section 3.3.2 in a typi-
cal modeling tool. Each tool will have a particular style of user interface, and different modeling guide-
lines and MBSE methods may suggest various ways to get started. The following example provides a 
representative starting point, which can be further adapted to the specific modeling tool, modeling 
guidelines, and MBSE method.

The modeler must first install and configure the modeling tool so that it can be used to build a model 
that is expressed in SysML. Many SysML tools also support UML and perhaps other modeling lan-
guages, so the modeler may be required to select and apply the SysML profile (refer to Chapter 15, 
Section 15.5 for a discussion of profiles). Once this is done, a modeler can create a new project and 
name it. In this example, the project is named Air Compressor Project.

As indicated in Figure 3.13, the first step in building the model is to create the top level package called 
the Air Compressor Model in the browser. The modeler can then select this package in the browser and 
create nested packages for Requirements, Behavior, Structure, and Parametrics (sometimes called Analy-
sis). Alternatively, the modeler can create a new package diagram (as shown in Figure 3.13) by dragging 
new packages from the pallet onto the diagram and naming them accordingly.
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The modeler can now begin to populate the packages with model elements by creating the diagrams 
in Figure 3.5 through Figure 3.12. For this example, the sequence for creating the diagrams will mirror 
the ordering of the figures, but the sequence can vary depending on the MBSE method, the availability 
of information, and/or user preference. Some elements used on a particular diagram may be created on 
another diagram. The modeler may partially complete one diagram, switch to another diagram to add 
elements, and then return to the original diagram to use those elements. In other words, modeling can 
be a highly iterative process where various parts of the model are created on one diagram, and used on 
other diagrams.

The modeler creates the requirements diagram shown in Figure 3.5 by selecting the Requirements 
package in the browser, creating a new requirement diagram, and naming it Air Compressor Require-
ments. Once the diagram appears in the diagram area, the modeler can drag new requirements from the 
pallet onto the diagram and name them to correspond to the requirements in the figure. The top level 
parent requirement, called Air Compressor Specification, can be connected to each of its child require-
ments with the cross hair symbol by using the context sensitive menu on the parent or child. The text 
for the requirement statement can be added to the Storage Capacity requirement by opening the speci-
fication for this model element and adding the text to the text property. Additional diagram presentation 
options may be required to display or hide the text on the diagram.

The modeler next creates the top level activity diagram Operate Air Tool shown in Figure 3.6. This 
is done by selecting the Behavior package, creating a new activity diagram, and naming the diagram 
Operate Air Tool. The modeler may drag actions from the pallet onto the activity diagram, along with 
the initial and final nodes, and connect the actions with the appropriate flow. The control flow is used 
to connect the initial node to Control Tool, and another control flow connects Control Tool to the activ-
ity final node. The object flows connect the outputs from one action to the input of another. The inputs 
and outputs are the small rectangles on the actions called pins, and can be created by selecting an input 
pin or output pin from the context sensitive menu. The activity partitions can be added after the Air 
Compressor and external entities have been defined, which is done in the next step of this process.

The modeler next creates the block definition diagram for the Air Compressor Context shown in Figure 
3.7. This is accomplished by selecting the Structure package in the browser, creating a new block definition 
diagram, and naming it Air Compressor Top Level. A new block can be dragged from the pallet onto the 
diagram and called Air Compressor Context. The other blocks can then be defined similarly. The composi-
tion relationship between the Air Compressor Context block and the other blocks can be established using 
the context sensitive menu to select the composition relationship designated by the black diamond on one 
end of the line. Alternatively, the composition relationship can be selected from the pallet.

Once the blocks are defined, the activity partitions (i.e., swim lanes) that correspond to the blocks 
in the activity diagram in Figure 3.6 can be added. This activity diagram specifies the interaction 
between the Air Compressor, Operator, Air Tool, and Atmosphere to perform the Operate Air Tool 
activity. The previously created activity diagram, Operate Air Tool, can be viewed by selecting it from 
the Behavior package in the browser. The modeler then drags the activity partitions from the pallet onto 
the diagram and ensures that the actions are enclosed by the partitions as shown in the figure. In order 
to define an activity partition that corresponds to a particular block, the modeler opens the activity parti-
tion specification, then selects the particular block that is represented by the partition. For example, the 
activity partition that encloses Compress Air corresponds to the Air Compressor block. In this way, 
each action is placed within the activity partition corresponding to the block that is responsible for 
performing the action.
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The modeler can then decompose the system into its component parts by creating the block defini-
tion diagram shown in Figure 3.8. This is done by selecting the Structure package, creating a new block 
definition diagram, and naming it Air Compressor System Hierarchy. New blocks can be dragged from 
the pallet onto the diagram and named. The relationships are established in a way similar to that 
described for the block definition diagram called Air Compressor Top-Level in Figure 3.7. The ports on 
each of the blocks can then be created by dragging a port from the pallet onto the block or—
alternatively—by selecting a block, opening its specification, and adding the ports. In addition, the 
properties of the block can be added by selecting the block on the diagram or in the browser, opening 
the block’s specification, adding the property, and naming it. In Figure 3.8, the ports are included in the 
model but are not shown to further simplify the diagram.

The modeler next creates the activity diagram to Compress Air as shown in Figure 3.9. This activity 
represents the decomposition of the Compress Air action that the Air Compressor performs in the 
Operate Air Tool activity in Figure 3.6. The modeler selects the Compress Air action in the Operate Air 
Tool activity, and then creates a new activity diagram named Compress Air. The tool is expected to 
ensure that the inputs and outputs to this activity are consistent with the input and output pins for the 
Compress Air action. This activity diagram shows how the components of the Air Compressor perform 
the Compress Air activity. The actions, flows, and activity partitions contained within this activity will 
be created in a similar way as for the Operate Air Tool activity. The activity partitions correspond to the 
component blocks from the Air Compressor System Hierarchy block definition diagram.

The modeler next creates the internal block diagram shown in Figure 3.10 to show how the parts of 
the Air Compressor are connected to one another. This is accomplished by selecting the Air Compres-
sor block from the Structure package in the browser and creating a new internal block diagram. Some 
tools automatically populate the internal block diagram with the parts of the block that are typed by the 
component blocks in the Air Compressor System Hierarchy block definition diagram. A summary 
explanation of types is included in Chapter 4, Section 4.3.12, and a detailed treatment of this topic is 
provided in Chapter 7. The ports on the parts may not be visible on the diagram, even if they have been 
previously defined in the model. Many tools require the modeler to select the part and activate a menu 
item to display the ports. The ports can be connected to one another once the ports are visible on the 
diagram. A modeler may also connect the parts without ports, and add or connect to ports later if 
desired.

The modeler next creates the block definition diagram in Figure 3.11 to define the Flow Rate 
Analysis in terms of analysis constraints and the subject of the analysis. This is done by selecting the 
Parametrics package in the browser, creating a new block definition diagram, and naming the dia-
gram Analysis Context. The Flow Rate Analysis block is created, and the Air Compressor Context 
block that is contained in the Structure package is dragged onto the diagram and referenced by the 
Flow Rate Analysis block using the aggregation relationship with the white diamond. A new con-
straint block is dragged from the pallet and named Flow Rate Equations. The Flow Rate Analysis 
block is related to the constraint block with a composition relationship (black diamond). The param-
eters of the flow rate equations are added to the constraint block in a way similar to the adding of 
properties to blocks as described earlier. The equations can be defined as part of the constraint block 
as well.

The modeler next creates the parametric diagram shown in Figure 3.12 in the Parametrics package. 
The constraint property, which is typed by the Flow Rate Equations constraint block, and a part, which is 
typed by the Air Compressor Context block, are dragged from the browser onto the diagram. The tool may 
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automatically populate the diagram in the same way it does with parts. The Air Compressor Context is 
selected on the diagram, and its nested parts and properties are displayed. Different tools accomplish this 
in different ways. Once this is done, the value properties contained in the Air Compressor, Tank, Motor, 
and Pump can be connected to the parameters of the Flow Rate Equations constraint.

Creating this example in the modeling tool is a first step to learning how to model. Once this is 
understood, one can learn additional SysML language features and explore additional tool capabilities, 
such as diagram layout functions, documentation and report generation, and model execution. The 
automobile example in Chapter 4 introduces the remaining three SysML diagrams and additional lan-
guage features that can serve as a next step in the learning process. The language features are described 
in detail in the chapters in Part II.

3.4 � A SIMPLIFIED MBSE METHOD
In addition to learning the modeling language and tools, a modeler must apply a model-based systems 
engineering (MBSE) method that adheres to sound systems engineering and modeling practices in 
order to build quality system models. SysML provides a means to capture the system modeling infor-
mation without imposing a specific MBSE method.

The selected MBSE method determines the modeling activities that are performed, the ordering 
of the activities, and the kinds of modeling artifacts produced. For example, traditional structured 
analysis methods can be used to decompose the functions and then allocate the functions to compo-
nents. Alternatively, one can apply a scenario-driven method that derives the system functionality by 
analyzing the scenarios and the interactions among the parts. The two methods may involve different 
activities and produce different combinations of diagrams to present the system specification and 
design information. Several MBSE methods are documented in the Survey of Model-based Systems 
Engineering Methodologies [6]. Chapters 16 and 17 provide two examples using different MBSE 
methods.

The top level activities for a simplified MBSE method are highlighted in Figure 3.14. The activities 
are consistent with the systems engineering process introduced in Chapter 1, Section 1.2. The system 
model represents the system specification and design information, and is the primary artifact produced 
by this method. This method includes one or more iterations of the following activities to specify and 
design the system:
 
	•	� Organize the Model.
	 •	 �Define the package diagram to organize the system model.
	•	� Analyze Stakeholder Needs to understand the problem to be solved, the goals the system is 

intended to support, and the effectiveness measures needed to evaluate how well the system 
supports these goals and satisfies the stakeholder needs.

	 •	 �Identify the stakeholders and the problems to be addressed.
	 •	 �Define the domain model (e.g., block definition diagram) to identify the system and external 

systems and users.
	 •	 �Define the top level use cases to represent the goals the system is intended to support.
	 •	 �Define the effectiveness measures (moes) that can be used to quantify the value of a proposed 

solution for the stakeholders.
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	•	� Specify System Requirements, including the required system functionality, interfaces, physical and 
performance characteristics, and other quality characteristics to support the goals and effective-
ness measures.

	 •	 �Capture text-based requirements that support the system goals and effectiveness measures in a 
requirement diagram.

	 •	 �Model each use-case scenario as an activity diagram to specify the system behavior 
requirements.

	 •	 �Create the system context diagram (internal block diagram) to specify the system external 
interfaces.

FIGURE 3.14

A simplified MBSE method that is consistent with the systems engineering process described in Chapter 1, 
Section 1.2. The method is used to produce the modeling artifacts that constitute the system model.
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	•	� Synthesize Alternative System Solutions by partitioning the system design into components that 
can satisfy the system requirements.

	 •	 �Decompose the system using the block definition diagram.
	 •	 �Define the interaction among the parts using activity diagrams.
	 •	 �Define the interconnection among the parts using the internal block diagram.
	•	� Perform Analysis to evaluate and select a preferred system solution that satisfies the system 

requirements and maximizes the effectiveness measures.
	 •	 �Capture the analysis context (block definition diagram) to identify the analysis to be per-

formed, such as performance, mass properties, reliability, cost, and other critical properties.
	 •	 �Capture each analysis as a parametric diagram.
	 •	 �Perform the engineering analysis to determine the values of the system properties (Note: the 

analysis is performed using engineering analysis tools).
	•	� Maintain Requirements Traceability to ensure the proposed solution satisfies the system require-

ments and associated stakeholder needs.
	 •	 �Capture the traceability between the system requirements and the stakeholder needs (e.g., use 

cases, measures of effectiveness) on a requirements diagram.
	 •	 �Show how the system design satisfies the system requirements on a requirements diagram or 

table.
	 •	 �Identify test cases needed to verify the system requirements on a requirements diagram or 

table and capture the verification results.
 

Other systems engineering management activities—such as planning, assessment, risk manage-
ment, and configuration management—are performed in conjunction with the modeling activities 
described above. The next chapter includes a simplified example that illustrates many of the model-
based artifacts that are generated when applying a MBSE method such as the one described in this 
section. More detailed examples of how SysML can be used to support a functional analysis and alloca-
tion method and an object-oriented systems engineering method (OOSEM) are included in the model-
ing examples in Part III, Chapters 16 and 17, respectively.

3.5 � THE LEARNING CURVE FOR SysML AND MBSE
Learning SysML and MBSE requires a commitment similar to what is expected when learning model-
ing for mechanical, electrical, software, and other technical disciplines. The challenges to learning 
SysML and MBSE have additional factors that contribute to its learning curve. In particular, a major 
focus for model-based systems engineering approaches is the ability to understand a system from mul-
tiple perspectives and to ensure integration across the different perspectives. In SysML, the system 
requirements, behavior, structure, and parametrics each represents different aspects of the system that 
need to be understood both individually and together.

Each of the individual perspectives introduces its own complexity. For example, the modeler may 
represent behavior using activity diagrams to specify precisely how a system responds to a stimulus. 
This involves specifying the details of how the system executes each use-case scenario. The activity 
diagrams may be integrated into a composite system behavior that is captured in a state machine dia-
gram. Representing detailed behavior and integrating different behavior formalisms, such as activity 
diagrams and state machines, can introduce complexity.
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As stated above, the modeler must maintain a consistent model that reflects many different perspec-
tives. SysML is often used to express hierarchies for requirements, behavior, structure, and parametrics. 
Each hierarchy must be self consistent, such as the different levels of the behavior and structure hierar-
chy. The model must also be consistent across the different hierarchies. Some of these relationships are 
highlighted in the examples in Sections 3.3.1–2. Additional discipline-specific views— such as a safety 
view, reliability view, security view, or manufacturing view—may span requirements, behavior, struc-
ture, and parametrics. Again, ensuring consistency among these cross-cutting views introduces addi-
tional complexity to system modeling and MBSE.

SysML is a more complex language than some of its predecessors, such as IDEF0. It provides signifi-
cant expressive capabilities to represent the various perspectives described above. SysML is also a typed 
language, which can significantly enhance reuse. For example, a SysML model can differentiate a front 
wheel from a rear wheel of a vehicle, while reusing the same definition of wheel. As a typed language, 
SysML also enables more effective integration with analysis models by providing the capability to 
describe complex data structures, such as the position of the system in terms of its x, y, and z coordinates 
with their respective units. These capabilities do not come without some added complexity. As the lan-
guage evolves, it is anticipated that the tools will hide some of the complexity, and other enhancements 
will make the language more intuitive, such as increased emphasis on domain specific symbology.

An effective MBSE approach not only requires a language such as SysML to be capable of represent-
ing systems but also requires a method that defines the activities and artifacts, as well as a tool to imple-
ment the modeling language and method. The language, method, and tool each introduce their own 
concepts that must be learned to master model-based systems engineering. The language, method, and 
tool must be further adapted to a particular application domain, such as to the design of aircraft, automo-
biles, telecommunication systems, medical devices, and others, which introduces further complexities.

Additional modeling challenges are associated with scaling the modeling effort to larger projects. 
Challenges of managing the model come into play. Multiple modelers may be in multiple locations 
using different tools. Disciplined processes and tools are needed to manage changes to the models. The 
SysML model must integrate with many different kinds of models, such as analysis models; electrical, 
mechanical, and software design models; and verification models. The integration and management of 
the different models, tools, and other engineering artifacts is another challenge associated with MBSE.

Model-based systems engineering formalizes the practice of performing systems engineering. The 
complexity and associated challenges for learning MBSE reflect the inherent complexity and challenges 
of applying systems engineering to the development of complex systems. Some of this complexity was 
highlighted in the automobile design example in Chapter 1, Section 1.3, independent of the MBSE 
approach. When starting out on the MBSE journey, it is important to set expectations for the challenges 
of learning MBSE and how to apply it to a domain of interest. In addition to reaping the potential benefits 
of MBSE described in Chapter 2, embracing these challenges and becoming proficient in SysML and 
MBSE can provide a deeper understanding of systems and systems engineering concepts.

3.6 � SUMMARY
SysML is a general-purpose graphical language for modeling systems that may include hardware and 
equipment, software, data, people, facilities, and other elements within the physical environment. The 
language supports modeling of requirements, structure, behavior, and parametrics to provide a robust 
description of a system, its components, and its environment.
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The language includes nine diagram kinds each with many features. The semantics of the language 
enable a modeler to develop an integrated model of a system, where each kind of diagram can present 
a different view of the system being modeled. The model elements on one diagram can be related to 
model elements on other diagrams. The diagrams enable capturing the information in a model reposi-
tory and viewing the information from the repository, to help specify, design, analyze, and verify sys-
tems. To facilitate the learning process, SysML-Lite was introduced, which includes six of the nine 
SysML diagrams and a relatively small subset of the language features for each diagram kind. Learning 
how to model this subset of the language in a modeling tool can provide a sound foundation on which 
to build.

The SysML language is a critical enabler of MBSE. Effective use of the language requires a well-
defined MBSE method. This chapter introduced a simplified MBSE method to aid in getting started, but 
SysML can be used with a variety of MBSE methods.

SysML enables representation of a system from multiple perspectives. Each of the individual per-
spectives may be complex in its own right, but ensuring a consistent model that integrates across the 
different perspectives introduces additional challenges to learning SysML and MBSE. When learning 
SysML as part of an overall MBSE approach, the process, methods, and tools introduce their own con-
cepts and complexity. Using SysML in support of MBSE formalizes the practice of systems engineer-
ing. Ultimately, the challenges of SysML and MBSE reflect the inherent complexities of applying 
systems engineering to develop complex systems. The learning expectations should be set 
accordingly.

3.7 � QUESTIONS
	 1.	 �What are five aspects of a system that SysML can represent?
	 2.	 �What is a package diagram used for?
	 3.	 �What is a requirement diagram used for?
	 4.	 �What is an activity diagram used for?
	 5.	 �What is the block definition diagram used for?
	 6.	 �What is an internal block diagram used for?
	 7.	 �What is a parametric diagram used for?
	 8.	 �What are some of the common elements of the user interface of a typical SysML modeling tool?
	 9.	 �Which part of the user interface presents a hierarchical view of the model elements contained in 

the model?
	10.	 �What is the purpose of applying an MBSE method?
	11.	 �What are the primary activities of the simplified MBSE method?
 

DISCUSSION TOPICS
What are some factors that contribute to the challenges of learning SysML and MBSE, and how do they 
relate to the general challenges of learning systems engineering?



53A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00004-7
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

AN AUTOMOBILE EXAMPLE 
USING THE SysML BASIC 
FEATURE SET 4
This chapter introduces the basic feature set of SysML. The basic feature set applies to all nine 
SysML diagrams and provides an expanded subset of the language features beyond the features of 
SysML-Lite that were introduced in the previous chapter. The basic feature set provides significant 
functionality of the language without adding the complexity associated with the full feature set of 
SysML.

In this chapter, a system model of an automobile similar to the one that was introduced in Chapter 1, 
Section 1.3, illustrates the use of the basic feature set. This example includes references to the chapters 
in Part II that provide a more detailed description of the diagrams and language concepts. The subset of 
the SysML constructs that comprise the basic feature set are highlighted by shaded paragraphs in Part 
II and in the notation tables in Appendix A.

4.1 � THE SysML BASIC FEATURE SET AND SysML CERTIFICATION
The basic and full feature set provides language functionality that can be learned in steps and are 
the basis for SysML certification. The SysML certification program is called the OMG Certified 
Systems Modeling Professional (OCSMP) [39]. The OCSMP has four levels of certification. The 
first two levels of certification cover the basic feature set of SysML. These two levels are referred 
to as Model User and Model Builder-Fundamental. A modeler certified at the Model User level is 
expected to be able to interpret SysML diagrams that use the basic feature set, while a modeler 
certified at the Model Builder-Fundamental level is expected to be able to build models that use 
the basic feature set. The third level covers the full feature set of SysML. An individual certified 
at this level is called a Model Builder-Intermediate and is expected to be able to build models that 
use the full feature set of SysML. The fourth level covers additional modeling concepts that extend 
beyond SysML.

4.2 � AUTOMOBILE EXAMPLE OVERVIEW
The following simplified example illustrates how the basic feature set of SysML can be applied as 
part of a model-based approach to specify and design an automobile system. This example is similar 
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to the automobile example that was introduced in Chapter 1, Section 1.3, which described how the 
systems engineering process can be applied to the specification and system level design of an auto-
mobile. In Chapter 1, no assumptions were made regarding the use of a model-based approach. The 
example in this chapter highlights how a typical MBSE method can be used to generate modeling 
artifacts to help specify and design a system. The MBSE method is similar to the one introduced in 
Chapter 3, Section 3.4. Chapters 16 and 17 introduce much more detailed examples of how MBSE 
methods can be applied.

This example illustrates most of the SysML basic feature set and includes at least one diagram for 
each SysML diagram kind. A few features in the example extend beyond the basic feature set of 
SysML—including continuous and streaming flows and generalization sets—because they illustrate 
important features for this particular example. These additional features are noted in the example where 
they are used. References are also included in this section to the chapters and sections in Part II that 
provide a detailed description of these features.

This example also includes user-defined language concepts referred to as stereotypes. Chapter 15 
describes how stereotypes are used to customize the language for domain-specific applications. The 
user defined concepts used in this example are shown below using the name of the concept in 
brackets:
 

	�«hardware»
	�«software»
	�«store»
	�«system of interest»

 
All SysML diagrams include a diagram frame that encloses the diagram header and diagram 

content. The diagram header describes the kind of diagram, the diagram name, and additional 
information that provides context for the diagram content. Detailed information on diagram 
frames and diagram headers is described in Chapter 5, Section 5.2.

4.2.1 � PROBLEM SUMMARY
This example describes the use of SysML to specify and design an automobile system. As men-
tioned earlier, the modeling artifacts included in this example are representative of the kinds of 
modeling artifacts that are generated from a typical MBSE method similar to the one described in 
Chapter 3, Section 3.4. Only a small subset of the system requirements and design are addressed 
in this example to highlight the use of the language. The diagrams used in this example are shown 
in Table 4.1.

A marketing analysis that was conducted indicated the need to increase the automobile’s  
acceleration and fuel efficiency from its current capability. In this simplified example, selected 
aspects of the design are considered to support an initial trade-off analysis. The trade-off analysis 
includes an evaluation of alternative vehicle configurations that included a 4-cylinder engine and 
a 6-cylinder engine to determine if they can satisfy the acceleration and fuel efficiency 
requirement.
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4.3 � AUTOMOBILE MODEL
The following subsections describe the system model for the automobile example.

4.3.1 � PACKAGE DIAGRAM FOR ORGANIZING THE MODEL
The concept of an integrated system model is a foundational concept for MBSE, as described in Chapter 
2, Section 2.1.2. The model contains the model elements, which are stored in a model repository. A par-
ticular model element may appear on zero, one, or multiple diagrams. In addition, a model element often 
has relationships to other model elements that may appear on the same diagram or other diagrams.

A model organization is essential to managing the model. A well-organized model is analogous to 
having a set of drawers to organize your supplies, where each supply element is contained in a drawer, 
and each drawer is contained in a particular cabinet. The model organization facilitates understandabil-
ity, access control, change management, and reuse of the model.

The package diagram for the automobile example is shown in Figure 4.1. The diagram kind is 
shown as pkg and the name of the diagram is Model Organization. The package diagram shows how 
the model is organized into packages. This model organization includes an expanded set of packages 

Table 4.1  Diagrams Used in Automobile Example

Figure Diagram Kind Diagram Name

4.1 Package diagram Model Organization

4.2 Requirement diagram Automobile System Requirements

4.3 Block definition diagram Automobile Domain

4.4 Use case diagram Operate Vehicle

4.5 Sequence diagram Drive Vehicle

4.6 Sequence diagram Turn On Vehicle

4.7 Activity diagram Control Power

4.8 State machine diagram Drive Vehicle States

4.9 Internal block diagram Vehicle Context

4.10 Block definition diagram Vehicle Hierarchy

4.11 Activity diagram Provide Power

4.12 Internal block diagram Power Subsystem

4.13 Block definition diagram Analysis Context

4.14 Parametric diagram Vehicle Acceleration Analysis

4.15 Timing diagram (not SysML) Vehicle Performance Timeline

4.16 Block definition diagram Engine Specification

4.17 Requirement diagram Max Acceleration Requirement 
Traceability

4.18 Package diagram Architect and Regulator Viewpoints
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over those that were introduced in the air compressor example using SysML-Lite in Chapter 3, Section 
3.3.2. Each package contains a set of model elements, and each model element is contained in only one 
package. The package is said to own the elements that are contained within it. The package is also a 
namespace for the contained model elements, giving each model element a unique name within the 
model that is called its fully qualified name. A model element in one package can have relationships to 
model elements in other packages. Details on how to organize a model with packages are provided in 
Chapter 6.

The model organization for this example includes a package called the Automobile Domain. This 
package is the top-level model (designated by a triangle) that contains all the other model elements for 
the automobile example. The Automobile Domain contains nested packages for Use Cases, Behavior, 
Structure, Parametrics, IO Definitions, Viewpoints, Value Types, and Vehicle. The Vehicle package con-
tains additional nested packages for Requirements, Behavior, and Structure. The Use Cases, Behavior, 
Structure, and Parametrics packages contain model elements about the vehicle context and its external 
environment, whereas the Vehicle package contains model elements about the vehicle design. The IO 
Definitions package contains elements to specify the interfaces, such as port definitions and inputs and 
output definitions. The Viewpoints package defines selected views of the model that address specific 
stakeholder concerns. The Value Types package contains definitions that are used to specify units for 
quantitative properties called value properties.

The rest of this example describes the content of these packages. Model elements contained in pack-
ages can be referenced by their fully qualified name as described above. The qualified name includes 
the path name relative to the model in which it is contained using a double colon (::) as a separator. For 
example, an activity called Provide Power in the vehicle behavior package in Figure 4.1 is designated 
as Automobile Domain::Vehicle::Behavior::Provide Power.

FIGURE 4.1

Package diagram showing how the model is organized into packages that contain the model elements that 
comprise the Automobile Domain.
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4.3.2 � CAPTURING THE AUTOMOBILE SPECIFICATION IN A REQUIREMENT DIAGRAM
The requirement diagram for the Automobile System is shown in Figure 4.2. The upper left of the diagram 
shows req to indicate its kind as a requirement diagram and displays the diagram name as Automobile 
System Requirements. The diagram header also indicates that the diagram frame corresponds to a Package.

The diagram presents the requirements that are typically captured in a text specification. The 
requirements are shown in a containment hierarchy to represent their parent–child relationships.  
The line with the crosshairs symbol at the top denotes containment. The Automobile Specification is 
the top-level requirement that contains the other requirements.

The Automobile Specification contains requirements for Passenger and Baggage Load, Vehicle 
Performance, Riding Comfort, Emissions, Fuel Efficiency, Production Cost, Reliability, and Occupant 
Safety. The Vehicle Performance requirement contains requirements for Maximum Acceleration, Top 
Speed, Braking Distance, and Turning Radius. Each requirement includes a unique identification and 
the text of the requirement, and can also include other user-defined properties that are typically associ-
ated with requirements, such as verification status and risk. The text for the Maximum Acceleration 
requirement is “The vehicle shall accelerate from 0 to 60 mph in less than 8 seconds under specified 
conditions” and the text for the Fuel Efficiency requirement is “The vehicle shall achieve a minimum 
of 25 miles per gallon under specified driving conditions.”

«requirement»

«requirement»

«requirement»

«requirement»

«requirement»

«requirement»

«requirement»

«requirement»

«requirement»

«requirement»

«requirement»

«requirement»

«requirement»

«requirement»

«requirement»

«requirement»

FIGURE 4.2

Requirement diagram showing the system requirements contained in the Automobile Specification.
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The requirements may have been created in the SysML modeling tool or, alternatively, in a require-
ments management tool or a text document and imported into the model. Once captured in the model, 
the requirements can be related to other requirements, design elements, analysis, and test cases using 
derive, satisfy, verify, refine, trace, and copy relationships. These relationships can be used to estab-
lish requirements traceability to ensure requirements are satisfied and verified, and to manage change 
to the requirements and design. Some relationships are highlighted in Section 4.3.18.

Requirements can be presented using multiple display options to view the requirements, their prop-
erties, and their relationships. A tabular presentation is one display option. Chapter 13 provides a 
detailed description of how requirements are modeled in SysML, and Chapter 17, Section 17.3.7, gives 
additional guidance for modeling requirements.

4.3.3 � DEFINING THE VEHICLE AND ITS EXTERNAL ENVIRONMENT USING A BLOCK 
DEFINITION DIAGRAM

In system design, it is important to identify what is external to the system that may either directly or indi-
rectly interact with the system. The block definition diagram for the Automobile Domain in Figure 4.3 
defines the Vehicle and the external systems, users, and other entities with which the vehicle may 
interact.

A block is a very general modeling concept in SysML that is used to model entities that have structure, 
such as systems, hardware and equipment, software, or physical object. That is, a block can represent any 
real or abstract entity that can be conceptualized as a structural unit with one or more distinguishing fea-
tures. The block definition diagram captures the relation between blocks, such as a block hierarchy.

In the block definition diagram in Figure 4.3, the Automobile Domain is the top-level block that 
provides the context for the Vehicle. The Automobile Domain block is composed of other blocks that 
include the Vehicle block (designated as the «system of interest») and other blocks that are external 
to the Vehicle. The other blocks include the Driver, Passenger, Baggage, and Physical Environment. 

FIGURE 4.3

Block definition diagram of the Automobile Domain showing the Vehicle as the system of interest, along with the 
Vehicle Occupants and the Environment. Selected value properties for the Road and Atmosphere are also shown.
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Notice that even though the Driver, Passenger, and Baggage are assumed to be physically enclosed by 
the Vehicle, they are not part of the Vehicle, and therefore are external to it.

This whole–part relationship is called a composite association and is indicated by the black diamond 
symbol and a line with the arrowhead pointing to the blocks that compose it. The name next to the arrow 
on the part side of the composite association identifies a particular usage of a block as described in 
Sections 4.3.10 and 4.3.12. The composition hierarchy is explained in Chapter 7, Section 7.3.1. It is dif-
ferent from containment (crosshair symbol), which connects parent to child requirements as shown in 
Figure 4.2. Requirement containment hierarchies are described in Chapter 13, Section 13.9.

The Driver and Passenger are subclasses of Vehicle Occupant as indicated by the hollow triangle 
symbol. This means that they inherit common features from Vehicle Occupant. In this way, a classifica-
tion can be created by specializing blocks from more generalized blocks.

The Physical Environment is composed of the Road, Atmosphere, and multiple External Entities. 
The External Entity can represent any physical object, such as a traffic light or another vehicle, with 
which the Driver interacts. The interaction between the Driver and an External Entity can impact how 
the Driver interacts with the Vehicle, such as when the Driver sees the traffic light change from green 
to yellow or red, and then applies the brakes. The multiplicity symbol 0..* represents an undetermined 
maximum number of external entities. The multiplicity symbol can also express a positive integer such 
as 4, or a range, such as the multiplicity of 0..4, for the number of Passengers.

Each block defines a structural unit, such as a system, hardware, software, data element, or other 
conceptual entity. A block can have a set of features. The features of the block include its value prop-
erties (e.g., weight), its behavior in terms of activities allocated to the block or operations of the 
block, and its interfaces as defined by its ports. Together, these features enable a modeler to specify the 
block at the level of detail that is appropriate for the intended use.

The Road is a block that has a value property called incline with units of Radians and a value prop-
erty called friction that is defined as a real number. Similarly, Atmosphere is a block that has two value 
properties for temperature and air density. These value properties and others are used to support the 
analysis of vehicle acceleration and fuel efficiency, which are discussed in Sections 4.3.13–16.

The block definition diagram specifies the blocks and their interrelationships. It is often used in sys-
tems modeling to depict multiple levels of the system hierarchy from the top-level domain or context block 
(e.g., Automobile Domain) down to the blocks representing the vehicle components. Chapter 7 provides a 
detailed description of how blocks are modeled in SysML, including their features and relationships.

4.3.4 � USE CASE DIAGRAM FOR OPERATE VEHICLE
The use case diagram for Operate Vehicle in Figure 4.4 depicts some of the high-level functionality 
involved in operating the vehicle. The use cases are contained in the Use Cases package and include 
Enter Vehicle, Exit Vehicle, Control Vehicle Accessory, and Drive Vehicle. The Vehicle is the subject of 
the use cases and is depicted as a rectangle. The Vehicle Occupant is an actor that is external to the 
vehicle and is shown as a stick figure. In a use case diagram, the subject (e.g., Vehicle) is used by the 
actor (e.g., Vehicle Occupant) to achieve the actor goals defined by the use cases (e.g., Drive Vehicle). 
The actors are allocated to the blocks with the same name in Figure 4.3 to establish equivalence between 
them. The allocation is not shown in the diagrams.

The Passenger and Driver are both a type of Vehicle Occupant. All vehicle occupants participate in 
entering and exiting the vehicle and controlling vehicle accessories, but only the Driver participates in 
Drive Vehicle.
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SysML provides the ability to specify relationships between use cases. The Enter Vehicle and Exit 
Vehicle use cases include the Open Door use case. The Open Door use case defines common function-
ality that is always performed when the Enter Vehicle and Exit Vehicle use cases are performed. Enter 
Vehicle and Exit Vehicle are referred to as the base use cases, and Open Door is referred to as the 
included use case. The relationship is called the include or inclusion relationship. The Perform Anti-
Lock Braking use case extends the base use case called Drive Vehicle. Anti-lock braking is only per-
formed under certain conditions as specified by the extension point called Loss of Traction. This 
relationship is called extension or extends, which relates the extending use case (i.e., Perform Anti-
Lock Braking) to the base use case (i.e., Drive Vehicle). In addition to inclusion and extension relation-
ships, use cases can be specialized as indicated by the subclasses of the Control Vehicle Accessory use 
case. The specialized use cases for Control Climate Control and Control Entertainment System all 
share the common functionality of Control Vehicle Accessory use case, but also have their own specific 
functionality associated with the particular accessory.

Use cases define the goals for using the system across the system lifecycle, such as the goals associ-
ated with manufacturing, operating, and maintaining the vehicle. The primary emphasis for this exam-
ple is the operational use case for Drive Vehicle to address the acceleration and fuel efficiency 
requirements. Chapter 12 provides a detailed description of how use cases are modeled in SysML.

Use cases are often related to requirements, since use cases represent the high-level functionality or 
goals for the system. A use case often refines a set of requirements. Sometimes, a use case textual 
description is defined to accompany the use case definition. The steps in the use case description can 
also be captured as SysML requirements and related to the use case using a refine relationship.

FIGURE 4.4

The use case diagram describes the major functionality in terms of how the Vehicle is used by the Vehicle 
Occupants to Operate Vehicle. The Vehicle and Vehicle Occupants are defined on the block definition diagram 
in Figure 4.3.
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The use cases are realized through interactions between the actors (e.g., Driver) and the subject 
(e.g., Vehicle) as described in the next section.

4.3.5 � SPECIFYING DRIVE VEHICLE BEHAVIOR WITH A SEQUENCE DIAGRAM
The behavior for the Drive Vehicle use case in Figure 4.4 is shown in the sequence diagram in  
Figure 4.5. The sequence diagram specifies the interaction between the Driver and the Vehicle as indi-
cated by the names at the top of the lifelines. Time proceeds vertically down the diagram. The first 
interaction is Turn On Vehicle. This is followed by Driver and Vehicle interactions to Control Power, 
Control Brake, and Control Direction. These three interactions occur in parallel as indicated by par. 
The alt on the Control Power interaction stands for alternative and indicates that the Control Neutral 
Power, Control Forward Power, or Control Reverse Power interaction occurs as a condition of the 
vehicle state shown in brackets. The state machine diagram in Section 4.3.8 specifies the vehicle state. 
The Turn Off Vehicle interaction occurs following these interactions.

The interaction uses in the figure each reference a more detailed interaction as indicated by ref. The 
referenced interaction for Turn On Vehicle is another sequence diagram that is illustrated in Section 
4.3.6. The sequence diagrams for the Drive Vehicle and other referenced interactions are contained in the 
Automobile Domain::Behavior package. The references for Control Neutral Power, Control Forward 
Power, and Control Reverse Power are allocated to an activity diagram that is described in Section 4.3.7.

4.3.6 � REFERENCED SEQUENCE DIAGRAM TO TURN ON VEHICLE
The Turn On Vehicle sequence diagram in Figure 4.6 is an interaction that is referenced in the sequence 
diagram in Figure 4.5. As stated previously, time proceeds vertically down the diagram. In this exam-
ple, the sequence diagram shows the driver sending an ignition on signal to start the vehicle. The 
vehicle sends a vehicle on signal to the driver that the vehicle has started.

The sequence diagram can include multiple kinds of messages. In this example, the message is 
asynchronous as indicated by the open arrowhead. For asynchronous messages, the sender does not 
wait for a reply. A synchronous message is shown with a filled arrowhead. A synchronous message is 
an operation call that specifies a request for service, where the sender waits for a reply. The arguments 
of the operation call are the input data and return.

The example in Figure 4.6 is very simple. More complex sequence diagrams can include multiple 
message exchanges between multiple lifelines that represent interacting entities. The sequence diagram 
also provides additional capability to express behavior that includes other kinds of messages, timing 
constraints, additional control logic, and the ability to decompose the behavior of a lifeline into the 
interaction of its parts. Chapter 10 provides a detailed description of how interactions are modeled with 
sequence diagrams.

4.3.7 � CONTROL POWER ACTIVITY DIAGRAM
The sequence diagram is effective for expressing behavior that emphasizes control flow and discrete sig-
nal flow, such as the Turn On Vehicle sequence diagram in Figure 4.6. However, behaviors that emphasize 
input and output flow as well as control flow, such as the interactions to Control Power, Control Brake, 
and Control Direction, can sometimes be more effectively expressed with activity diagrams.
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FIGURE 4.5

The Drive Vehicle sequence diagram describes the interaction between the Driver and the Vehicle to realize 
the Drive Vehicle use case in Figure 4.4.
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The Drive Vehicle sequence diagram in Figure 4.5 includes the references to Control Neutral Power, 
Control Forward Power, and Control Reverse Power. Activity diagrams can be used to express the 
details of these interactions. To accomplish this, the Control Neutral Power, Control Forward Power, 
and Control Reverse Power interactions are allocated to a corresponding Control Power activity using 
the SysML allocate relationship (not shown). This activity is contained in the Behavior package of the 
Automobile Domain.

The activity diagram in Figure 4.7 shows the actions required of the Driver and the Vehicle to Con-
trol Power. The activity partitions (or swim lanes) correspond to the Driver and the Vehicle. The actions 
in the activity partitions specify functional requirements that the Driver and Vehicle must perform.

When the activity is initiated, it starts execution at the initial node (filled in circle), and then pro-
ceeds to the fork node to enable the start of both the Control Accelerator Position action and the Con-
trol Gear Select action that is performed by the Driver. The output of the Control Accelerator Position 
action is the Accelerator Cmd, which is a continuous input to the Provide Power action that the Vehicle 
must perform. The Control Gear Select action produces an output called Gear Select. The output of the 
Provide Power action is the continuous torque out to accelerate the Vehicle. When the Ignition Off 
signal is received by the Vehicle (called an accept event action), the activity terminates at the activity 
final node (bulls-eye symbol). Based on this scenario, the Driver is required to Control Accelerator 
Position and Control Gear Select, and the Vehicle is required to Provide Power. The Provide Power 
action is a call behavior action that invokes a more detailed behavior when it executes, which is shown 
in Figure 4.11. (Note: «continuous» is not part of the basic feature set.)

Activity diagrams include semantics for precisely specifying the behavior in terms of the flow of 
control and flow of inputs and outputs. A control flow is used to specify the sequence of actions and is 
depicted as a dashed line with an arrowhead (as shown in Figure 4.7) going to and from the fork node. 
An object flow is used to specify the flow of inputs and outputs, which are depicted by the rectangular 

FIGURE 4.6

Sequence diagram for the Turn On Vehicle interaction that was referenced in the Drive Vehicle sequence 
diagram in Figure 4.5, showing the message from the Driver requesting Vehicle to start, and the Vehicle 
responding with the vehicle on reply.
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pins on the actions. The object flow (solid line with arrowhead) connects the output pin from one action 
to the input pin of another action. Chapter 9 provides a detailed description of how activities are 
modeled.

4.3.8 � STATE MACHINE DIAGRAM FOR DRIVE VEHICLE STATES
The state machine diagram for the Drive Vehicle States is shown in Figure 4.8. This diagram shows 
the states of the Vehicle and the events that can trigger a transition between the states.

When the Vehicle is ready to be driven, it is initially in the vehicle off state. The receipt of the ignition on 
signal from the sequence diagram in Figure 4.6 is an event that triggers a transition to the vehicle on state. The 
text on the transition indicates that the Start Vehicle behavior is executed prior to entering the vehicle on state.

Upon entry to the vehicle on state, an entry behavior is performed, Check Status, to confirm the 
health of the vehicle. Following completion of the entry behavior, the Vehicle initiates the Provide 
Power behavior called a do behavior that is referred to in the activity diagram in Figure 4.7.

Once the Vehicle has entered the vehicle on state, it immediately transitions to the neutral state. A 
forward select event triggers a transition to the forward state if the guard condition [speed>=0] is 
true. The neutral select event triggers the transition from the forward state to return to the neutral state. 
The state machine diagram shows the additional transitions between the neutral and reverse states. An 
ignition off event triggers the transition back to the vehicle off state. Prior to exiting the vehicle on state 
and transitioning to the vehicle off state, the Vehicle performs an exit behavior to Turn Off Accessories. 
From the vehicle off state, the Vehicle can re-enter the vehicle on state when an ignition on event occurs.

FIGURE 4.7

Activity diagram allocated from the Control Neutral, Forward, and Reverse Power interaction uses that are 
referenced in the Drive Vehicle sequence diagram in Figure 4.5. It shows the continuous Accelerator Cmd 
input and the Gear Select input from the Driver to the Provide Power action that the Vehicle must perform.
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This state machine can be owned by the Vehicle block, in which case it resides in the same package as 
the Vehicle block, or it can be owned by the vehicle’s Behavior package and reside within that package.

A state machine can specify the lifecycle behavior of a block in terms of its discrete states and tran-
sitions, and is often used with sequence and/or activity diagrams, as shown in this example. State 
machines have many other features, which are described in Chapter 11, including support for multiple 
regions to describe concurrent behaviors and additional transition semantics.

4.3.9 � VEHICLE CONTEXT USING AN INTERNAL BLOCK DIAGRAM
The Vehicle Context Diagram is shown in Figure 4.9. The diagram shows the interfaces between the 
Vehicle, the Driver, and the Physical Environment (i.e., Road, Atmosphere, and External Entity) that 
were defined in the block definition diagram in Figure 4.3. The Vehicle directly interfaces with the 
Driver, the Atmosphere, and the Road. The Driver interfaces with the External Entities such as a traffic 
light or another vehicle via the Sensor Input to the Driver. However, the Vehicle does not directly inter-
face with the External Entities. The multiplicity on the External Entity is consistent with the multiplic-
ity shown in the block definition diagram in Figure 4.3.

This context diagram is an internal block diagram that shows how the parts of the Automobile 
Domain block from Figure 4.3 are connected. It is called an internal block diagram because it repre-
sents the internal structure of a higher-level block, which in this case is the Automobile Domain block. 
The Vehicle ports are shown as the small squares on the boundary of the parts and specify interfaces 
with other parts. Connectors are shown as lines between the ports and define how parts connect to one 
another. Parts can also be connected without ports when the details of the interface are not of interest 
to the modeler as indicated by the connections to the Atmosphere and External Entity.

FIGURE 4.8

A state machine diagram that shows the Drive Vehicle States and the transitions between them.
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The external interfaces that enable the Vehicle to provide power are shown in Figure 4.9. The inter-
faces between the rear tires and the road are shown, since the Vehicle is assumed to be rear wheel drive. 
The interfaces to both rear tires are shown, because the power can be distributed differently to the left 
and right rear wheels depending on tire-to-road traction and other factors. The interfaces between the 
front tires and the road are not shown in this diagram. It is common modeling practice to present only 
the information relevant to the purpose of the diagram, even though additional information may be 
included in the model.

The black-filled arrowheads on the connector are called item flows. They represent the items flow-
ing between parts. The items that flow may include mass, energy, and/or information. In this example, 
the Accelerator Cmd that was previously defined in the activity diagram in Figure 4.7 flows from the 
Driver Foot IF to the Vehicle Accelerator IF, and the Gear Select flows from the Driver Hand IF to the 
Vehicle Gear Select IF. The object flows that connect the inputs to the outputs on the activity diagram 
in Figure 4.7 can be allocated to the item flows on the connectors in the internal block diagram. Alloca-
tions are discussed as a general-purpose relationship for mapping one model element to another in 
Chapter 14.

SysML ports provide substantial capability to model interfaces. Ports can specify the items that 
can flow in or out of a part, and the services that are either required or provided by a part. The port 
provides a mechanism to integrate the behavior of the system with its structure by enabling access 
to a part’s behavior and other features. (Refer to the discussion on ports in Chapter 7,  
Section 7.6.)

The internal block diagram enables the modeler to specify both the external and internal interfaces 
of a block and shows how its parts are connected. Details of how to connect parts on an internal block 
diagrams are described in Chapter 7, Section 7.3.

FIGURE 4.9

The internal block diagram for the Automobile Domain describes the Vehicle Context, which shows the 
Vehicle and its external interfaces with the Driver and the Physical Environment that were defined in  
Figure 4.3.
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4.3.10 � VEHICLE HIERARCHY REPRESENTED ON A BLOCK DEFINITION DIAGRAM
The example to this point has focused on specifying the vehicle in terms of its external interactions and 
interfaces. The Vehicle package shown in Figure 4.1 contains the description of the Vehicle and its parts 
in terms of its requirements, structure, and behavior. The Vehicle block is contained in the Automobile 
Domain::Vehicle::Structure package.

The Vehicle Hierarchy in Figure 4.10 is a block definition diagram that shows the decomposition of 
the Vehicle into its components. The Vehicle is composed of the Chassis, Body, Interior, Power Train, 
and other components. Each hardware component is designated as «hardware».

The Power Train is further decomposed into the Engine, Transmission, Differential, and Wheel. 
Note that the right rear and left rear indicate different usages of a Wheel in the context of the Power 
Train. Thus, each rear wheel has a different role and may be subject to different forces, such as is the 
case when one wheel loses traction. The front wheels are not shown in this diagram.

The Engine may be either 4 or 6 cylinders as indicated by the specialization relationship. The 4- and 
6-cylinder engine configurations are alternatives being considered to satisfy the acceleration and fuel 
efficiency requirements. The engine size is {complete, disjoint}, which asserts that the 4- and 6-cylinder 
engines represent all possible engine types for this Vehicle, and that the 4- and 6-cylinder engines are 
mutually exclusive. (Note: This construct is called a generalization set and is not part of the SysML 
basic feature set.)

FIGURE 4.10

A block definition diagram of the Vehicle Hierarchy that shows the Vehicle and its components. The Power 
Train is further decomposed into its components, and the Vehicle Processor includes the Vehicle Controller 
software.
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The Vehicle Controller «software» specifies a software component that is allocated to the Vehicle 
Processor as shown in its allocation compartment. In this example, the software controls many of the 
automobile engine and transmission functions to optimize engine performance and fuel efficiency, and 
the Vehicle Processor is the execution platform for the vehicle control software. The allocatedFrom, 
label indicates that the allocation is from the software to the processor.

The Fuel is shown in a references compartment of the Fuel Tank block. It is indicated as a reference 
because it is stored by the Fuel Tank but is not physically part of the Fuel Tank.

The internal vehicle interactions and interconnections between the components are represented in a 
way similar to the external Vehicle interactions and interconnections described above. The modeling 
artifacts for this next lower level of design are used to specify the components of the Vehicle system as 
described in the next sections.

4.3.11 � ACTIVITY DIAGRAM FOR PROVIDE POWER
The activity diagram in Figure 4.7 shows that the vehicle must Provide Power in response to the driver 
accelerator command and generate torque out at the road surface. The Provide Power activity diagram 
in Figure 4.11 shows how the vehicle components generate this torque.

The external inputs to the activity include the :Accelerator Cmd and :Gear Select from the Driver, and 
:Air from the Atmosphere to support engine combustion. The outputs from the activity are the torque right 
rear and torque left rear from the right and left rear wheels respectively to the road to accelerate the Vehi-
cle. The inputs and outputs for the :Provide Power action in Figure 4.7 are elaborated as a result of further 
refinement of the model, and now include :Air as an input, and torque from each rear wheel. Some of the 
other inputs and outputs, such as exhaust from the engine, are not included for simplicity. The activity 
partitions represent usages of the vehicle components shown in the block definition diagram in Figure 4.10.

The Vehicle Controller accepts Driver inputs including the :Accelerator Cmd and :Gear Select, and 
provides outputs to the Engine and Transmission. The Fuel Tank stores and dispenses the :Fuel to the 
Engine. The :Fuel-Air Cmd from the Vehicle Controller and :Air from the Atmosphere are inputs to the 
Generate Torque action. The engine torque is input to the Amplify Torque action performed by the Trans-
mission. The amplified torque is input to the Distribute Torque action performed by the Differential, which 
distributes torque to the right and left rear wheels. The wheels Provide Traction to the road surface to 
generate the torque to accelerate the Vehicle. The Differential monitors and controls the difference in 
torque to the rear wheels. If one of the wheels loses traction, the Differential sends a Loss of Traction signal 
to the braking system to adjust braking. The Loss of Traction signal is sent using a send signal action.

A few other items are worth noting in this example. The flows are shown to be continuous for all but 
the Gear Select. The inputs and outputs continuously flow in and out of the actions. Continuous means 
that the delta time between arrival of the inputs or outputs approaches zero. Continuous flows build on the 
concept of streaming inputs and output parameters, which means that the inputs are accepted and outputs 
are produced while the action is executing. Conversely, nonstreaming inputs are only available prior to the 
start of the action execution, and nonstreaming outputs are produced only at the completion of the action 
execution. The ability to represent streaming and continuous flows adds a significant capability to classic 
behavioral modeling using functional flow diagrams. The continuous flows are assumed to be streaming 
but this is not shown in the diagram. (Note: Continuous and streaming are not part of the basic feature set.)

Modeling of activities provides the capability to specify behavior precisely in terms of the flow of 
control and data. This is explained in Chapter 9.
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4.3.12 � INTERNAL BLOCK DIAGRAM FOR THE POWER SUBSYSTEM
The previous activity diagram describes how the parts of the system interact to Provide Power. The 
parts of the system are represented by the activity partitions in the activity diagram. The internal block 
diagram for the Vehicle in Figure 4.12 shows how the parts are interconnected via their ports to achieve 
this functionality. This is a structural view of the system, as opposed to the behavioral view that was 
expressed in the activity diagram.

The internal block diagram shows the Power Subsystem that includes the parts of the Vehicle that 
interact to Provide Power. The frame of the diagram corresponds to the Vehicle black box. The ports on 
the diagram frame in Figure 4.12 correspond to the same ports shown on the Vehicle in the Vehicle 
Context diagram in Figure 4.9. The external interfaces are preserved as the internal structure of the 
Vehicle is further elaborated.

The Engine, Transmission, Differential, right rear:Wheel and left rear:Wheel, Vehicle Proces-
sor, and Fuel Tank are interconnected via their ports. The Fuel is stored in the Fuel Tank as indi-
cated by «store». Fuel is shown as a dashed rectangle to indicate that the fuel is not part of the 
Fuel Tank, but is referenced by it. Only selected item flows are shown on the connectors. The item 
flows are allocated from the inputs and outputs on the Provide Power activity diagram in  
Figure 4.11.

FIGURE 4.11  Cont’d
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Each subsystem can be expressed in a way similar to the Power Subsystem to realize specific func-
tionality, such as braking and steering. The enclosing frame for each internal block diagram can be the 
same Vehicle block, but each diagram shows only the parts relevant to the particular subsystem. This 
approach can be used to present a subsystem view of the vehicle’s internal structure. As an example, to 
express an internal block diagram for a steering subsystem, additional components would need to be 
defined beyond those shown on the block definition diagram in Figure 4.10, including the steering 
wheel, steering column, power steering pump, steering linkage, and front wheels. A composite view of 
all of the interconnected parts for all subsystems can also be presented on a single internal block dia-
gram, but this would likely contain so much information that it would not communicate effectively.

An important concept in SysML is the distinction between definition and usage. Certain kinds of 
model elements, such as blocks, can be defined one time, but their usage in different contexts can be 
uniquely identified. In Section 4.3.10, the right rear and left rear are described as different usages of a 
Wheel in the context of the Power Train. A block represents the generic definition of the part, and the 
part represents a usage of a block in a particular context. More formally, a block is the type of the part, 
and a part is typed by a block.

right rear : Ft-lb

left rear : Ft- lb
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Traction

Distribute 
Torque

torque in

torque out-left

torque out - right

Provide 
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«continuous»

«continuous»

«continuous»

«continuous»
A

FIGURE 4.11

The activity diagram for Provide Power shows how the Vehicle components generate the torque to move the 
vehicle. This activity diagram realizes the Provide Power action in Figure 4.7 with activity partitions that 
correspond to the components in Figure 4.10.
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In Figure 4.10 and Figure 4.12, the right rear and left rear are different parts that represent distinct 
usages of Wheel in the context of the Power Train. Each usage of the block requires a composition 
relationship on the block definition diagram, such as the right rear wheel and left rear wheel in Figure 
4.10. The colon (:) notation is used in Figure 4.12 to distinguish the part (i.e., usage) from the block 
(i.e., definition). The name to the right of the colon, Wheel, is the block. The names to the left of the 
colon, right rear and left rear, are particular parts or usages of Wheel. By convention, the usage names 
begin in lower case and the definitions begin with upper case.

A part enables the same block, such as a Wheel, to be reused in different contexts and be uniquely 
identified by its usage, such as right rear and left rear. Each part may be further redefined to have 
behaviors, value properties, and constraints that apply to its particular usage.

The concept of definition and usage applies to parts and blocks, but also applies to many other SysML 
language constructs. One example is that item flows can have both a definition and usage. For example,  

FIGURE 4.12

The internal block diagram for the Power Subsystem shows how the parts of the Vehicle that Provide Power 
are interconnected. The parts interact as specified by the activity diagram in Figure 4.11.
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the item flow entering the fuel tank in Figure 4.12 can be in: Fuel and the item flow exiting the fuel tank can be 
out : Fuel. Both flows are defined by Fuel, but in and out represent different usages of Fuel in the 
Vehicle context (Note: the usages are not shown in the figure). The ports on blocks and pins on actions 
can also have definitions that specify detailed interface information that can be reused. As an example, the 
interface that enables the flow of 110 volt 60 cycle power can be defined one time and reused. For the Automo-
bile example, most of the pins and ports have been typed and are contained in the IO Definitions package.

As mentioned previously, Chapter 7 provides the detailed language description for both block defi-
nition diagrams and internal block diagrams, and the key concepts for modeling blocks, parts, ports, 
and connectors.

4.3.13 � DEFINING THE EQUATIONS TO ANALYZE VEHICLE PERFORMANCE
Critical requirements for the design of this automobile are to accelerate from 0 to 60 mph in less than 
8 seconds, while achieving a fuel efficiency of greater than 25 miles per gallon. These two requirements 
impose conflicting requirements on the design space, because increasing the maximum acceleration 
capability of the vehicle can result in a design with lower fuel efficiency. Two alternative configurations 
(4- and 6-cylinder engine) are evaluated to determine which configuration is the preferred solution to 
meet the acceleration and fuel efficiency requirements.

The 4-Cylinder Engine and 6-Cylinder Engine alternatives are shown in the Vehicle Hierarchy in 
Figure 4.10. There are many possible impacts to the automobile design that may result from the selec-
tion of different engines, such as the impact on vehicle weight, body shape, and electrical power. This 
simplified example only considers some of the impacts on the Power Subsystem. The vehicle controller 
is assumed to control the fuel and air mixture. It also controls when the automatic transmission changes 
the gear to optimize engine and overall performance.

The Analysis Context block definition diagram in Figure 4.13 is used to define the equations for 
these analyses. This diagram introduces another kind of block called a constraint block. Instead of 
defining systems and components, the constraint block defines constraints in terms of reusable equa-
tions and their parameter definitions that can be used by one or more analyses.

In this example, the Vehicle Acceleration Analysis block is in the Parametrics package, as indicated 
by the diagram header, and comprises several constraint blocks that are used to analyze the vehicle 
acceleration. This analysis is performed to determine whether either the 4- or 6-cylinder vehicle con-
figuration can satisfy its acceleration requirement. The constraint blocks define generic equations for 
Gravitational Force, Drag Force, Power Train Force, Total Force, Acceleration, and an Integrator. 
The Total Force equation, as an example, shows that ft is the sum of fi, fj, and fk. Note that the param-
eters are defined along with their units in the constraint block.

The Power Train Force is further decomposed into other constraint blocks that express the torque equa-
tions for the Engine, Transmission, Differential, and Wheels. The equations are not explicitly defined, but the 
critical parameters of the equations are identified. It is often useful in the early stages of an analysis to iden-
tify the critical parameters but defer definition of the equations until the detailed analysis is performed.

The Vehicle Acceleration Analysis block also references the Automobile Domain block that was 
originally shown in the block definition diagram in Figure 4.3. The Automobile Domain is the subject 
of the analysis. By referencing the Automobile Domain, the value properties of the Vehicle and the 
Physical Environment can be accessed and bound to the parameters of the generic equations, as 
described in the next section.
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4.3.14 � ANALYZING VEHICLE ACCELERATION USING THE PARAMETRIC DIAGRAM
The previous block definition diagram defined the equations and associated parameters needed to ana-
lyze the system. The parametric diagram in Figure 4.14 shows how these equations are used to ana-
lyze the time for the Vehicle to accelerate from 0 to 60 mph and satisfy the maximum acceleration 
requirement. The diagram frame corresponds to the Vehicle Acceleration Analysis block from the block 
definition diagram in Figure 4.13.

The parametric diagram shows a network of constraints. Each constraint is a usage of a constraint 
block defined in the block definition diagram in Figure 4.13. The equations for some of the constraints 
are shown on this parametric diagram. The parameters of the equations are shown as small rectangles 
flush with the inside boundary of the constraint.

A parameter in one equation can be bound to a parameter in another equation by a binding 
connector. An example of this is the parameter ft in the Total Force equation, which is bound to the 
parameter f in the Acceleration equation. This means that ft in the Total Force equation is equal to f in 
the Acceleration equation.

The parameters can also be bound to value properties of blocks to equate the parameter of an equa-
tion to a value property of the system or environment. The value properties are shown as rectangles 
nested within the ad:Automobile Domain. An example is the binding of the coefficient of drag 

FIGURE 4.13

The block definition diagram for the Analysis Context that defines the equations for analyzing the vehicle 
acceleration requirement. The equations and their parameters are specified using constraint blocks. The 
Automobile Domain block from Figure 4.3 is referenced since it is the subject of the analysis.
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parameter cd in the Drag Force equation to the drag property called drag coef, which is a value prop-
erty of the vehicle Body. Sometimes it is more convenient not to show the nested parts but identify the 
value properties using the dot notation. The drag coefficient would be shown as ad.v.b.drag coef to 
indicate that this is a value property of the body b, which is part of the vehicle v that is part of the Auto-
mobile Domain ad. Another example is the binding of the road incline angle to the angle theta in the 
gravity force equation. This binding enables values of parameters of generic equations to be set equal 
to values of specific value properties of the blocks. In this way, generic equations can be reused to ana-
lyze different designs by binding the parameters of the generic equations to value properties of different 
designs.

The parametric diagram and related modeling information can be used to specify an analysis that is 
executed in separate simulation or analysis tools as describe in Chapter 18, Sections 18.2.2 and 18.4. 
The simulation or analysis tools can be used to perform sensitivity analysis and determine the property 
values that are required to satisfy the acceleration requirements. In this example, only some of the 
vehicle properties are shown. However, a more complete depiction would show the binding of other 
vehicle value properties to other constraint parameters. Although not shown in Figure 4.14, the Power 

FIGURE 4.14

The parametric diagram that uses the equations defined in Figure 4.13 to analyze vehicle acceleration. The 
parameters of the equations are bound to other parameters and to value properties of the Vehicle and its 
Physical Environment, some of which were defined in Figure 4.3.
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Train Force constraint includes nested constraints consistent with the constraint blocks that compose it 
from the Analysis Context block definition diagram in Figure 4.13.

In addition to the acceleration and fuel efficiency requirements, other analyses may address require-
ments for braking distance, vehicle handling, vibration, noise, safety, reliability, production cost, and 
others. These analyses can be performed to determine the required property values of the system com-
ponents (e.g., Body, Chassis, Engine, Transmission, Differential, Brakes, Steering Assembly) to satisfy 
the overall system requirements. The parametrics enable the critical value properties of the system 
design to be identified and integrated with parameters in the analytical models. Details of how to model 
constraint blocks and their usages in parametric diagrams are described in Chapter 8.

4.3.15 � ANALYSIS RESULTS FROM ANALYZING VEHICLE ACCELERATION
As mentioned in the previous section, the parametric diagram is expected to specify an analysis that is 
executed in an engineering analysis tool to provide the analysis results. This may be a separate special-
ized analysis tool, such as a simple spreadsheet or a high-fidelity performance simulation, or it may be 
a capability that the SysML modeling tool provides. The results from the execution then provide values 
that can be used to update the value properties in the SysML model.

The analysis results from executing the constraints in the parametric diagram are shown in  
Figure 4.15. This example uses the UML timing diagram to display the results. The timing diagram is 
not one of the SysML diagram kinds. It can be used with SysML, along with other more robust visual-
ization methods such as response surfaces, to show multi-parameter relationships. In this timing dia-
gram, the Vehicle Speed is shown as a function of time, and the Vehicle State is shown as a function of 
time. The Vehicle states correspond to nested states within the forward state in Figure 4.8. Based on the 
analysis performed, the 6-cylinder (V6) vehicle configuration is able to satisfy its acceleration 
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Analysis results from executing the constraints in the parametric diagram in Figure 4.14, showing the Vehicle 
Speed and Vehicle State as a function of time. This is captured in a UML timing diagram.
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requirement. A similar analysis showed that the 4-cylinder (V4) vehicle configuration does not satisfy 
the requirement.

4.3.16 � DEFINING THE VEHICLE CONTROLLER ACTIONS TO OPTIMIZE ENGINE 
PERFORMANCE

The analysis results showed that the V6 configuration is needed to satisfy the vehicle acceleration 
requirement. Additional analysis is needed to assess whether the V6 configuration can satisfy the fuel 
efficiency requirement of a minimum of 25 miles per gallon under the stated driving conditions, as 
specified in the Fuel Efficiency requirement in Figure 4.2.

The activity diagram to Provide Power in Figure 4.11 is used to support the analysis needed to 
optimize fuel efficiency and engine performance. The :Vehicle Controller «software» is allocated to 
the Vehicle Processor, as described in Section 4.3.10, and includes an action to Control Fuel Air 
Mixture that controls the engine accelerator command. The inputs to this action include the Accel-
erator Cmd from the Driver and Engine Parameters such as revolutions per minute (rpm) and engine 
temperature from the Engine. The Vehicle Controller also includes the Control Gear action to deter-
mine when to change gears based on engine speed (i.e., rpm) to optimize performance and fuel 
efficiency. The specification of the Vehicle Controller software can include a state machine diagram 
that changes state in response to the inputs consistent with the state machine diagram in Figure 4.8.

The specification of the algorithms to realize the Vehicle Controller actions requires further analy-
sis. The algorithm can be defined by further specifying the actions as mathematical and logical expres-
sions that can be captured in a more detailed activity diagram or directly in code. A parametric diagram 
can also be developed to specify the algorithm performance requirements that constrain the input and 
output of the Vehicle Controller actions. For example, the constraints may specify the required fuel and 
air mixture as a function of rpm and engine temperature to achieve optimum fuel efficiency. The algo-
rithms are used to control fuel flow rate and air intake, and perhaps other parameters, to satisfy these 
constraints. Based on the engineering analysis, whose details are omitted here, the V6 engine is able to 
satisfy the fuel efficiency requirements as well as the acceleration requirements, and is selected as the 
preferred vehicle system configuration.

4.3.17 � SPECIFYING THE VEHICLE AND ITS COMPONENTS
The block definition diagram in Figure 4.10 defined the blocks for the Vehicle and its components. The 
model is used to specify the Vehicle and each of its components in terms of the functions they perform, 
their interfaces, and their performance and physical properties. Other aspects of the specification may 
include a state machine to represent the state-based behavior of the system and its components, and 
specification of the items that are stored by the system and its components, such as fuel in the fuel tank 
or data in computer memory.

A simple example is the specification of the 6-Cylinder Engine block shown on the block definition 
diagram in Figure 4.16. The Engine block and the 6-Cylinder Engine block were originally shown in 
the Vehicle Hierarchy block definition diagram in Figure 4.10.

In this example, the Engine hardware element performs a function called generate torque, 
which is shown as an operation of the block in the operations compartment. This operation corre-
sponds to the Generate Torque action in Figure 4.11. The ports on the Engine specify its interfaces 
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as Air IF, Fuel IF, Engine Control IF, and Engine Out IF. Selected value properties of the engine 
are shown in the values compartment that represent its performance and physical properties, 
including its displacement, combustion efficiency, max power, and weight. Each value property is 
typed by a value type that specifies its data type (e.g., integer, real) and units (e.g., Percent, Cubic 
Inches).

The 6-Cylinder Engine block is a subclass of the generic Engine block and inherits all of the 
features from Engine. However, the 6-Cylinder Engine is a specialized engine that contains six 
Cylinders, as indicated in its parts compartment. In addition, the 6-Cylinder Engine may define 
values for each value property contained in the generic Engine, such as the max power and weight. 
This information is derived from the parametric analysis discussed in Sections 4.3.13–15.

Other components of the vehicle can be specified in a similar way. If desired, text requirements can 
be written to correspond to the functional, interface, performance, and physical requirements associ-
ated with each block to create traditional text specifications from the model.

4.3.18 � REQUIREMENTS TRACEABILITY
The Automobile System Requirements were shown in Figure 4.2. Capturing the text-based requirements 
in the SysML model provided the means to establish traceability between the text-based requirements 
and other specification, design, analysis, and verification elements of the model.

The requirements traceability for the Maximum Acceleration requirement is shown in Figure 4.17. 
This requirement traces to a Market Analysis, which was conducted in support of the system 

FIGURE 4.16

A block definition diagram that shows the Engine block and the features used to specify the block. This block 
was previously shown in the Vehicle Hierarchy block definition diagram in Figure 4.10.
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requirements analysis. The requirement is satisfied by the Provide Power activity that was shown in 
Figure 4.11. The Max Acceleration test case is also shown as the method to verify that the requirement 
is satisfied. In addition, the Engine Power requirement is derived from the Maximum Acceleration 
requirement and contained in the Engine Specification. The rationale for deriving the requirement 
refers to the Vehicle Acceleration Analysis parametric diagram in Figure 4.14. The 6-Cylinder Engine 
block refines the Engine Specification by more precisely expressing the text requirements. The above 
relationships enable traceability from the system requirements with the supporting rationale to the 
system design, test cases, and analysis.

The direction of the arrows points from the Provide Power activity, Max Acceleration test case, and 
Engine Power requirement to the Maximum Acceleration as the source requirement. This is in the oppo-
site direction from what is traditionally used to depict requirements flow-down. The direction reflects the 

Max Acceleration Requirements TraceabilityAutomobile Specification[Package]req [ ]

Id = "1.4.8"
Text = "The vehicle shall 
accelerate from 0 - 60 mph in 
less than 8 seconds under 
specified conditions "

«requirement»
Maximum Acceleration

Id = "2.1"
Text = "The max engine 
horsepower shall be greater 
than ... "

«requirement»
Engine Power

«requirement»

Engine Specification

«artifact»
Market Analysis

parts
cyl : Cylinder [6]

«block»
«hardware»

6-Cylinder Engine

«testCase»
Max Acceleration

«activity»
Provide Power

«rationale»
Refer to Vehicle
Acceleration Analysis
parametric diagram

«refine»

«deriveReqt»
«satisfy»

«verify»

«satisfy»

«trace»

FIGURE 4.17

The requirement diagram showing the traceability of the Maximum Acceleration requirement that was 
displayed in the Automobile Specification in Figure 4.2. The traceability to a text-based requirement includes 
the design elements to satisfy it, other requirements derived from it, and a test case to verify it. Rationale for 
the deriveReqt relationship based on parametric analysis is also shown.
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dependency of the design, test case, and derived requirement on the source requirement, such that if the 
source requirement changes, the design, test case, and derived requirement may also need to change.

The requirements are supported by multiple notation options including the direct, callout, and tabu-
lar presentation. Details of how SysML requirements and their relationships are modeled are described 
in Chapter 13.

4.3.19 � VIEW AND VIEWPOINT
SysML includes the concept of view and viewpoint to reflect perspectives of different stakeholders. 
In Figure 4.18, the Architect and Regulator viewpoints reflect perspectives of the System Architect 
and National Highway Traffic Safety Administration stakeholders, respectively. These viewpoints 
include identification of the stakeholders, purpose, language, and methods for constructing a view 
of the model to address their concerns. In this example, the System Architect is concerned about the 
fuel economy versus acceleration trade-offs, and the Government Regulator is concerned about  
the vehicle’s ability to meet safety requirements. The view is constructed by performing a query of 
the model that is specified by the viewpoint method and then presenting this information in a speci-
fied format. As indicated in the figure, the Vehicle Performance view conforms to the Architect 
viewpoint by providing traceability to the fuel efficiency and acceleration requirements and the 
associated design rationale in a requirements diagram. The Vehicle Safety Regulations view con-
forms to the Regulator viewpoint by providing the safety requirements, test cases, and test results in 
tabular format. The modeling tool can provide the query results to a rendering application to present 
the information in different formats, including documents with text, diagrams, tables, and plots.

Further details on modeling view and viewpoints can be found in Chapter 5, Section 5.6 and  
Chapter 15, Section 15.8.

FIGURE 4.18

The package diagram showing the Architect viewpoint to address concerns related to fuel economy versus 
acceleration trade-offs, and a Regulator viewpoint to address concerns related to meeting safety requirements.
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4.4 � MODEL INTERCHANGE
An important aspect of systems modeling is the ability to exchange model information among 
tools. A SysML model that is captured in a model repository can be imported and exported from a 
SysML-compliant tool in a standard format called XML metadata interchange (XMI). This 
enables other tools to exchange this information if they also support XMI. Examples may be the 
ability to export selected parts of the SysML model to a UML tool to support software develop-
ment of the Vehicle Controller software, or to import and export the requirements from a require-
ments management tool, or to import and export the parametric diagrams and related information 
to engineering analysis tools. The ability to achieve seamless model interchange capability may be 
limited by the quality of the model and by the limitations of tool conformance with the standard. 
Other interchange mechanism may use the tool’s application programming interface (API) to 
access model information. Chapter 18, Section 18.3, includes a description of XMI and other data 
exchange mechanisms.

4.5 � SUMMARY
The SysML basic feature set is a subset of the language features that applies to all nine SysML 
diagrams. It provides significant capability for representing systems, without introducing all of the 
language complexity associated with the full feature set. The basic feature set is required learning 
for the first two levels of SysML certification, called the Model User and Model Builder-Funda-
mental levels.

The automobile example demonstrates how a SysML model using the basic feature set can help to 
specify, design, analyze, and verify a system. It enables the requirements, behavior, structure, and para-
metric aspects of the system to be represented in a precise, consistent, and comprehensive manner. It is 
also clear from the example that the modeler must apply a systematic method to build a system model 
that addresses the modeling objectives associated with its intended use.

4.6 � QUESTIONS
	 1.	 �Show how a stopping distance requirement would be captured in Figure 4.2.
In the following questions, assume a change in the stopping distance is required.
	 2.	 �Would you anticipate any changes to the block definition diagram in Figure 4.3?
	 3.	 �Would you anticipate any significant changes to the use case diagram in Figure 4.4?
	 4.	 �Would you anticipate any significant changes to the sequence diagram in Figure 4.5?
	 5.	 �Describe an activity diagram analogous to Figure 4.7 to address the braking requirements.
	 6.	 �Describe an internal block diagram analogous to Figure 4.9 to address the braking requirements.
	 7.	 �Describe additions to the vehicle hierarchy in Figure 4.10 to address the braking requirements.
	 8.	 �Describe an activity diagram analogous to Figure 4.11 to address how vehicle braking is 

performed.
	 9.	 �Describe an internal block diagram analogous to Figure 4.12 for the vehicle braking subsystem.
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	10.	 �Describe a block definition diagram analogous to Figure 4.13 to define the equations needed to 
analyze vehicle braking distance performance.

	11.	 �Describe a parametric diagram analogous to Figure 4.14 to describe the analysis used to analyze 
braking distance performance.

 

DISCUSSION TOPICS
What are some observations about the changes to the model that occur as a result of a requirements 
change such as the one described above (i.e., change in stopping distance)?



II
PART 

The chapters in Part II describe the SysML language and how it can be used to model a system. Chapter 5 
introduces the SysML diagram taxonomy and the fundamental aspects of diagrams. Chapters 6–15 
describe the language concepts and notation in detail. The ordering of the chapters is based on the logi-
cal development of the language concepts, including concepts for model organization, structure, behav-
ior, allocation, requirements, and profiles. The ordering is not based on a systems engineering 
process.

Each chapter describes applicable language concepts, diagram notation, and example diagrams to 
illustrate how to create syntactically correct diagrams and models that conform to the language 
specifications.

THE SURVEILLANCE SYSTEM CASE STUDY
A single case study is used throughout this part of the book to help demonstrate the concepts in the 
SysML language.

LANGUAGE  
DESCRIPTION
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CASE STUDY OVERVIEW
A company called ACME Surveillance, Inc., produces and sells surveillance systems. Their range of 
surveillance systems products is intended to provide security for either homes or small commercial 
sites. Their systems use sophisticated pan and tilt cameras to produce video images of the surrounding 
area. For a fee, they can be connected to a central monitoring service. ACME also produces the cameras 
and sells them as separate products for “do-it-yourself” enthusiasts.

A similar example is used in Chapter 17 to demonstrate the application of a model-based systems 
engineering method to the development of a residential security system.

FIGURE II.1 shows a typical surveillance system setup for a small commercial site. The system has 
four wall-mounted surveillance cameras, three connected into the company’s Ethernet network and the 
fourth connected via a wireless access point. One office is used to house the monitoring station for the 
surveillance system, which is also connected to the office network. This particular monitoring station 
consists of one workstation and an additional screen. The office has a PBX that the monitoring station 
uses to communicate with its designated command center.

MODELING CONVENTIONS
When elements are named in the example model, the names chosen are generally valid English names. 
Whenever the names have more than one word, the words are separated by spaces. Names of model 

W

W

W

W

PBX

Monitoring
Station

FIGURE II.1

Depiction of surveillance system example.
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elements that represent definitions have the first letter of all words in uppercase. Names of features are 
all in lowercase. Definitions and features refer to certain kinds of model elements that are described in 
Chapter 7.

The following chapters contain numerous SysML diagrams used to illustrate the concepts in the 
language. With few exceptions, each diagram is accompanied by a description. To relate the description 
to the figures, names used in the diagram are presented in italic font. Terms in monotype refer to ele-
ments in the textual syntax of the language. Terms in bold are used to highlight fundamental concepts 
in the SysML language.

OCSMP CERTIFICATION COVERAGE AND SysML 1.3
The OMG Certified Systems Modeling Professional™ (OCSMP) Certification Program assesses a 
candidate’s knowledge of model-based systems engineering concepts, particularly knowledge of 
SysML. The program will award the following four levels of certification based on passing an 
examination:
 
	•	� OCSMP Model User
	•	� OCSMP Model Builder – Fundamental
	•	� OCSMP Model Builder – Intermediate
	•	� OCSMP Model Builder – Advanced
 

The OCSMP Certification Program splits SysML into two feature sets: basic and full. The first 
two examination levels of the OCSMP Certification Program use a subset of SysML called the Basic 
Feature Set, whereas the third examination level uses the full set of SysML features. This part of the 
book is intended to provide a reference for the first three levels of certification. The fourth certifica-
tion level addresses more general issues of system modeling that are discussed to some extent in 
parts I, III, and IV.

To help OCSMP candidates for the first two levels of examinations, paragraphs that describe fea-
tures in the basic OCSMP feature set are shaded. The notation appendix uses the same convention.

OCSMP does not cover versions of SysML beyond version 1.2, but we nonetheless wanted to cover 
later developments in the book. For example, SysML 1.3 added some features and deprecated others. 
The deprecated features, which are all in Chapter 7, are retained but placed in a special section at the 
end of the chapter. Features added by SysML 1.3 are identified both in the text of the chapters and in 
the description column of the tables in the notation appendix. Similarly, SysML 1.4 changed the repre-
sentation of views and viewpoints. A summary of the changes is provided in Chapter 15, Section 15.8.
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CHAPTER

VIEWING SysML MODELS WITH 
DIAGRAMS

A SysML model can represent many different aspects of a system, including its behavior, structure, 
requirements, and parametrics. Some of the basic concepts of models were introduced in Chapter 2, and 
Chapter 3 provided an introduction to SysML diagrams. This chapter discusses in detail how models 
expressed in SysML are visualized on diagrams and describes some of the common diagrammatic 
notations.

5.1 � OVERVIEW
A diagram is a view of a model for a particular purpose. A diagram may allow a user to access the 
content of the model, provide inputs to the model, or both. SysML includes nine standard diagram 
kinds that present different views of the model. In addition to diagrams, SysML supports tabular, 
matrix, and tree views of the model.

A SysML diagram contains diagram elements or symbols that correspond to model elements con-
tained in the model. The kind of diagram constrains the kind of model elements it can present and how 
they appear on that diagram. A model element may appear on any number of diagrams, and any changes 
to an element will be reflected in all the diagrams in which it appears.

SysML diagrams consist of a diagram frame and a content area. The diagram frame corresponds 
to a particular model element and sets the context for the diagram content. The diagram content is 
expressed using node symbols such as rectangles, ovals, and round-angles connected by line sym-
bols. The diagram symbols can be adorned with text, icons, and tool-specific features, such as color 
and font.

SysML also includes some general purpose diagram elements to annotate the model and group 
model elements.

5.2 � SysML DIAGRAMS
As noted in Chapter 2, Section 2.2.1, a model is a representation of one or more concepts that can be 
realized in the physical world. A SysML diagram provides a mechanism to present a focused view of a 
model for a specific purpose. The symbols on a diagram are mapped to model elements whose meaning 
is specified by the modeling language, in this case, SysML. The details of how SysML model elements 
are specified is discussed in Chapter 15, Section 15.2, and the remaining chapters in Part II describe the 
specific meaning of the symbols and their underlying model elements. These diagram concepts are 
further elaborated below.

5
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5.2.1 � DIAGRAM VERSUS MODEL
A simple example that highlights the distinction between model elements and a diagram that presents 
the model elements is shown in Figure 5.1. Some of the model elements that represent a Vehicle are 
shown in the browser view of a typical modeling tool. The model elements represent different concepts 
about the Vehicle, including selected vehicle components and the whole–part relationship between the 
Vehicle and its components. A view of the model elements is presented in a diagram, where the symbols 
on the diagram correspond to the model elements.

Note that only some of the model elements in Figure 5.1 are presented on the diagram. The diagram 
is a view of the model that is intended to address a particular purpose, and the modeler can choose what 
to present and what to hide (elide) on the diagram.

Another important aspect of a SysML model is that a particular model element can appear on zero, one, 
or many diagrams. For example, in Figure 5.2 a second diagram presents a view of the model that shows 
how an Engine is further composed of cylinders and pistons. The same model element Engine is thus pre-
sented on two different diagrams. If the model element is modified, the change will be reflected on all the 
diagrams that show the model element. For example, if we changed the model element name from Engine 
to Motor, the name would change on both diagrams as well as the browser. It should also be noted that the 
component called Body from Figure 5.1 is not presented on any diagram but is still contained in the model.

The same model element kind may map to more than one symbol. For example, various compo-
nents of Engine are shown in Figure 5.3 using different symbols. Engine and Cylinder are shown using 
box symbols, but icons can also be used to visualize model elements, as illustrated for Piston. In 

FIGURE 5.1

Distinction between model and diagram.
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addition to being shown on separate symbols, Piston and Cylinder are shown in text strings in the parts 
compartment of the symbol for Engine. All of these symbolic presentations refer to the same model 
elements. The ellipsis in the parts compartment of Engine indicates that some entries are hidden (see 
Section 5.3.6 for further information).

There are ways to view a model other than with diagrams. For example, the same model elements 
may be presented in a tabular view. An example of this can be seen in Figure 5.10.

5.2.2 � SysML DIAGRAM TAXONOMY
Figure 5.4 shows the SysML diagram taxonomy, which was previously summarized in Chapter 3, Sec-
tion 3.2. Detailed diagram notation tables that describe the symbols used on SysML diagrams can be 
found in the Appendix of this book.

Vehicle Modelbdd 

«block»
Cylinder

«block»
Piston

«block»
Engine

cylinders pistons

FIGURE 5.2

Engine shown on another diagram.

Vehicle Modelpkg 

parts
pistons : Piston
cylinders : Cylinder

«block»

Engine

Components

«block»

Cylinder

Piston

...

FIGURE 5.3

Different symbols for the same model element.
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SysML diagrams and notation are based on the UML diagrams and notation, although several of the 
UML diagrams, including the object diagram, collaboration diagram, deployment diagram, communica-
tion diagram, interaction overview diagram, timing diagram, and profile diagram were omitted from 
SysML. The omitted diagrams were not deemed essential to satisfy the requirements for modeling sys-
tems. SysML includes modifications to other UML diagrams, such as the class diagram, composite struc-
ture diagram, and activity diagram, and it adds two new diagrams for requirements and parametrics.

In addition to the graphical forms of representation used on SysML diagrams, SysML also identifies 
the need for tabular, matrix, and tree views of the model, examples of which are included in other chap-
ters in Part II, including Chapters 13 and 14 on requirements and allocations, respectively.

5.2.3 � DIAGRAM FRAMES
Every SysML diagram must have a diagram frame that encloses the diagram content. The diagram frame 
corresponds to a model element that provides the context for the diagram content. Certain diagrams can 
include symbols on the diagram frame to connect to other elements shown within the diagram frame.

The diagram frame is a rectangle with a diagram header containing standard information in the top 
left corner of the diagram. The rest of the area enclosed by the diagram frame is the content area, or 
canvas, where the symbols are shown. An optional diagram description, providing further details about 
the status and purpose of the diagram, can be attached to the diagram frame.

5.2.4 � DIAGRAM HEADER
The diagram header is a rectangle with its lower right corner cut off. It includes the following 
information:
 
	•	� Diagram kind—an abbreviation indicating the kind of diagram.
	•	� Model element kind—the kind of model element to which the diagram frame corresponds.

SysML
Diagram

Structure
Diagram

Behavior
Diagram

Requirement
Diagram

Sequence
Diagram

State
Machine
Diagram

Use Case
Diagram

Block
Definition
Diagram 

Internal
Block

Diagram

Parametric
Diagram

Package
Diagram

Activity
Diagram

FIGURE 5.4

SysML diagram taxonomy.
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	•	� Model element name—the name of the model element to which the diagram frame corresponds.
	•	� Diagram name—the name of the diagram, which is often used to indicate the diagram purpose.
	•	� Diagram usage—a keyword indicating a specialized use of a diagram.
 

An example of a diagram frame with a diagram header that includes all of the above information is 
shown in Figure 5.5.

Diagram kind
The diagram kind may take one of the following values, depending on the kind of diagram:
 
	•	� Activity diagram—act
	•	� Block definition diagram—bdd
	•	� Internal block diagram—ibd
	•	� Package diagram—pkg
	•	� Parametric diagram—par
	•	� Requirement diagram—req
	•	� Sequence diagram—sd
	•	� State machine diagram—stm
	•	� Use case diagram—uc
 

Model element kind
Different diagram kinds have diagram frames that correspond to different kinds of model elements. The 
valid permutations are listed here by diagram kind:
 
	•	� Activity diagram—activity
	•	� Block definition diagram—block, constraint block, package, model, model library
	•	� Internal block diagram—block
	•	� Package diagram—package, model, model library, profile, view
	•	� Parametric diagram—activity, block, constraint block

Content

«diagram usage»
diagram kind [model element type] model element name [diagram name]

Header

Diagram description
Version
Description
Completion status
Reference
User-defined fields

FIGURE 5.5

A diagram frame.
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	•	� Requirement diagram—package, model, model library, requirement
	•	� Sequence diagram—interaction
	•	� State machine diagram—state machine
	•	� Use case diagram—package, model, model library
 

The choice of model element kind is explained further in the following chapters in Part II, where 
the individual diagrams are discussed. The model element kind should be shown in the header to avoid 
ambiguity if the diagram can represent more than one allowable model element kind. It also aids in 
understanding the diagram context.

Diagram name
Since a model can contain considerable amounts of information, the modeler may choose to include 
only selected model elements in a particular diagram for a given purpose, while hiding other model 
elements that may detract from this purpose. The diagram name is user defined and intended to pro-
vide a concise description of the diagram’s purpose.

Diagram usage
The diagram usage indicates that a diagram is intended to support a specific use. The diagram usage 
name is included in the header in angle brackets called guillemets. For example, a use-case diagram 
may be referred to as a context diagram, where context diagram is the diagram usage name. This 
mechanism is further described as part of customizing the language in Chapter 15 Section 15.7.

5.2.5 � DIAGRAM DESCRIPTION
The diagram description is an optional note attached either inside or outside of the diagram frame. It 
is intended to enable the modeler to capture additional information about the diagram. This information 
includes some predefined fields but also has provision for user-defined fields. The following are the 
predefined fields.
 
	•	� Version: version of the diagram.
	•	� Completion status: a statement by the diagram author about the completeness of the diagram 

relative to its intended completeness. It may include statements such as “in process,” “draft,” or 
“complete,” and may also include a specific description of the information that is still missing 
from the diagram.

	•	� Description: free text description of the diagram’s content or purpose.
	•	� Reference: references to other information about the diagram, or hyperlinks to related diagrams to 

aid in navigation.
 

5.2.6 � DIAGRAM CONTENT
The diagram content area, sometimes called the canvas, contains elements that graphically represent 
model elements. The content area includes the diagram elements (symbols) that present the model ele-
ments of interest. As stated above, the kind of diagram constrains which kind of model elements can be 
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shown and how they appear. Within the constraints of the diagram, the modeler determines which 
model elements to show and which to hide to achieve the diagram intent.

5.3 � DIAGRAM NOTATIONS
SysML diagrams are composed of two kinds of diagram elements: nodes and paths. A node is a dia-
gram element that generally appears as a shape, such as a rectangle or oval with a text label. The node 
may contain additional text strings and/or other graphical symbols that may correspond to other model 
elements. A path, also known as an edge, is a diagram element that generally appears as a line that may 
have additional adornments such as arrowheads and text strings.

5.3.1 � KEYWORDS
SysML allows for the use of a keyword in guillemets (as «keyword») before the name of some model 
elements. A keyword on a symbol identifies the kind of model element to which it refers and is typically 
used to remove ambiguity when a particular symbol such as a rectangle or dashed line with an arrow-
head can represent more than one kind of model element. For example, a rectangle is used to depict 
both a requirement and a block in SysML, but adding the keyword «requirement» or «block» to the 
rectangle eliminates the ambiguity.

5.3.2 � NODE SYMBOLS
Node symbols are generally rectangular but may also be round-angles, ellipses, and other polygons. All 
node symbols have a name compartment that can be used to display the name string of the represented 
model element, along with any applicable keywords and properties. Some node symbols have extra 
compartments to display details of nested elements, either in textual or graphical form.

Figure 5.6 shows two examples of node symbols: a use case called Fly Airplane and the block 
Airplane. The Airplane symbol shows an internal compartment labeled values to store value 
properties.

5.3.3 � PATH SYMBOLS
All path symbols are some kind of line, but they have different styles and ends depending on the model-
ing concept they represent. Paths may have a text adornment that contains their name string, keywords, 

Fly Airplane

«block»
Airplane

values
call sign : String
fuel load : Liters

FIGURE 5.6

Examples of node symbols.



CHAPTER 5  VIEWING SysML MODELS WITH DIAGRAMS94

and additional properties, although this is often hidden. Additional textual information may also be 
shown on the ends of the lines when the model element requires it.

Figure 5.7 shows two examples of path symbols: an association and a generalization. The associa-
tion symbol indicates that an Airplane has exactly two wings. The generalization symbol indicates that 
an Airplane is a kind of Flying Thing.

5.3.4 � ICON SYMBOLS
Icons are typically used to represent a specific domain concept, such as a document, or perhaps a type of 
hardware component, such as a pump. A stereotype can specify an icon to be used as the symbol for the 
model element with the stereotype applied. If a model element symbolized by an icon has properties, these 
can be displayed in a text string floating near the object. Icons may also be displayed inside a node symbol 
or as adornments on line shapes. Figure 5.8 shows two examples of icons: a stick figure representing the 
actor Pilot and a small box containing an arrow that represents fuel flowing into the Airplane block.

5.3.5 � NOTE SYMBOLS
A note symbol can be attached via a dashed line to a symbol of any model element or set of model ele-
ments. The note symbol is used to annotate the model with additional textual information that may 
include a hyperlink to a reference document. The note symbol is a rectangular box with a cutoff upper 
right corner containing textual information. A note symbol may be a graphical adornment on a diagram 
that does not correspond to any model element. Note symbols can also be used to display user-defined 
tags. They are used extensively in SysML to display cross-cutting information, such as traceability to 
requirements (see Chapter 13, Section 13.5.3) and allocations (see Chapter 14, Section 14.3). In these 
cases, the content of the note symbol does correspond to specific model elements.

Figure 5.9 shows two examples of note symbols. One note symbol is a description of the Pilot, and 
the other asserts that the Airplane’s call sign satisfies the Airplane Unique Identity requirement.

«block»
Airplane

«block»
Flying Thing

«block»
Wing wings

2

FIGURE 5.7

Examples of path symbols.

«block»
Airplane

fuel in
Pilot

FIGURE 5.8

Examples of icon symbols.
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5.3.6 � OTHER SYMBOLS
SysML has a variety of other specific symbols and symbol styles that are listed here.

Ellipsis
A modeler may choose to present only a subset of the information about a model element on a given 
diagram. This is useful for reducing clutter and focusing on the diagram’s purpose, but it can be helpful 
to someone viewing that diagram to know that there is information about a model element that could 
be shown but is hidden. SysML allows a modeler to optionally show an ellipsis at the bottom of a com-
partment on a symbol to indicate that not all of the potentially visible compartment elements are shown. 
An example of this can be seen in Figure 5.3.

Off-Page connectors
A path symbol between two node symbols corresponds to a relationship between the model elements 
that are depicted by the nodes. Sometimes, however, the diagram layout makes it difficult to connect 
the two nodes due to their placement on the diagram. In this case, SysML also allows a path symbol to 
be represented by two symbols. Each of these two symbols is connected at one end to a node symbol, 
while its other end is connected to a circle with a label inside. The combination of two of these “half-
path” symbols with a common label is equivalent to a single traditional path symbol. Although this 
mechanism can be used within a single diagram, it is often used to visualize a path that connects two 
nodes on different diagrams; hence the circles are called “off-page connectors.” The SysML specifica-
tion advocates that this mechanism be used sparingly to avoid the construction of “spaghetti diagrams.” 
Refer to the Appendix for an example of an off-page connector.

Decomposition and elaboration using the rake symbol
Certain symbols can be annotated with a rake symbol to indicate whether their corresponding model 
element is described by another diagram. Details of these symbols are given in the relevant chapters, 
but for completeness a summary of the symbols is offered here:
 
	•	� Activity diagram – a call behavior action that can refer to another activity diagram.
	•	� Internal block diagram – a part that can refer to another internal block diagram.
	•	� Package diagram – a package that can refer to another package diagram.
	•	� Parametric diagram – a constraint property that can refer to another parametric diagram.

«block»
Airplane

values
call sign : String
fuel load : Liters

Pilot

A pilot flies an airplane. He or she
must have appropriate training for
the type of airplane.

satisfies
«requirement»Airplane Unique Identity

FIGURE 5.9

Examples of note symbols.
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	•	� Requirement diagram – a requirement that can refer to another requirement diagram.
	•	� Sequence diagram – an interaction fragment that can refer to another sequence diagram.
	•	� State machine diagram – a state that can refer to another state machine diagram.
	•	� Use case diagram – a use case that is realized by other behavior diagrams (activity, state machine, 

sequence).
 

A modeler can indicate whether a given diagram will show symbol decomposition and, in addition, 
whether a given symbol on that diagram will show the rake symbol or not.

5.3.7 � SYMBOL STYLE OPTIONS
	•	� Constraint Property Shape – A modeler can indicate whether the node symbol for a constraint 

property (Chapter 8, Section 8.4) has rounded or square corners.
	•	� Control Flow Style – A modeler can indicate whether the path symbol for a control flow (Chapter 

9, Section 9.6) is a dashed or solid arrow.
	•	� Line Jogs – A modeler can specify whether they wish to see line jogs, semi-circular hoops to 

indicate when two path symbols are crossing each other, on a diagram.
 

5.3.8 � DIAGRAM LAYOUT
The diagram elements on a diagram must be arranged to ensure the diagram is well organized and com-
municates effectively. For example, the sequence of actions on an activity diagram may be arranged 
from top to bottom or from left to right to reflect their time ordering. The model does not require this, 
since the precedence relationships are part of the semantics, but arrangement may make it more human 
interpretable. The diagram layout is often performed manually by the modeler. However, SysML mod-
eling tools generally provide an automatic diagram layout capability, which can reduce the time and 
effort for this part of the modeling activity. The sophistication of the layout algorithms and the com-
plexity of the diagram determine the effectiveness for a particular application.

5.4 � TABULAR, MATRIX, AND TREE VIEWS
SysML also includes nongraphical representations of model information that are often useful for effi-
ciently displaying large amounts of information. The forms of nongraphical representation that SysML 
supports are tables, matrices, and trees.

A table can be a highly efficient and expressive way to represent information. Tables have been 
used traditionally for capturing a wide variety of systems engineering information, such as require-
ments tables and N-squared (N2) charts [40] to capture interface information. SysML allows the use of 
tabular notation as an alternative diagram form to represent the modeling information contained in a 
SysML model. Tabular formats may be used to present properties of model elements and/or relation-
ships among model elements. The detail of how and what information is captured in a table is not speci-
fied, but tool vendors are encouraged to support them. Chapters 13 and 14 on requirements and 
allocations describe typical tabular formats that a tool vendor is expected to support.

When a table is used, the table is included in a diagram frame with the diagram kind table shown in 
the diagram label. Otherwise, the diagram label format is the same as that for any other kind of dia-
gram. An example of a simple requirements table is shown in Figure 5.10.
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Matrices—identified by the diagram kind matrix—are very useful for describing relationships. 
Typically, the top row and first column of the matrix represent model elements, and its other cells 
describe a relationship between the row and column elements. An example of a matrix can be seen in 
Chapter 13, Figure 13.9, where the top row of the satisfy dependency Matrix lists requirements, the first 
column lists model elements, and the other cells indicate whether relationships exist between them. 
Trees, identified by the diagram kind tree, typically describe hierarchical and other kinds of relation-
ships that are frequently presented using browser panes in SysML modeling tools.

5.5 � GENERAL PURPOSE MODEL ELEMENTS
The following model elements can be used on all diagrams for a variety of purposes. Some other model 
elements, such as dependencies and allocations, can be used on all diagrams but those model elements 
tend to have more specific usage and are covered in other chapters.

5.5.1 � COMMENT
A comment is a textual description that can be associated with any other model element. It can be 
shown on any diagram using a note symbol connected to a symbol representing the model element it 
describes. The major difference between a comment and a note symbol is that a comment is a model 
element that is part of the model, whereas a note symbol is a diagram annotation only.

5.5.2 � ELEMENT GROUP
An element group provides a light weight mechanism for grouping model elements of any kind. It can be 
used for purposes like grouping elements that are associated with a particular release, a certain risk level, 
and/or a legacy design, to name a few examples. The members of an element group can be ordered.

An element group has a name and also includes the criterion for inclusion as a member of the group. 
It should be noted that SysML doesn’t specify a semantic for the criterion. By grouping elements, the 

id req’t name req’t text

4 Capacity

4.1 CargoCapacity

4.2 FuelCapacity

4.3 PassengerCapacity

The Hybrid SUV shall carry 5 adult passengers, along with
sufficient luggage and fuel for a typical weekend campout.

The Hybrid SUV shall carry sufficient luggage for 5 people for
a typical weekend campout.

The Hybrid SUV shall carry sufficient fuel for a typical weekend
campout.

table [Requirement] Capacity [Decomposition of Capacity Requirement]

The Hybrid SUV shall carry 5 adult passengers.

FIGURE 5.10

Example of tabular format in SysML.
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modeler simply asserts that the criterion of the group applies to the member. Model elements can 
appear in multiple element groups. The element group also includes a property that can be queried to 
reflect the number of members in the group.

An element group can have other element groups as members. However, group membership is not 
transitive. This is to say that if model element 1 is a member of element group A, and element group A 
is a member of element group B, this does not imply that model element 1 is a member of element group 
B. The rationale for non-transitivity of element groups can be explained by a simple example, where the 
membership criterion for element group B is all groups with 5 members or more, and the criterion for 
element group A is all blocks that are red. A particular red block is a member of element group A, but 
is not a member of element group B.

An element group is shown using a note symbol with the keyword «elementGroup» at the top of the 
symbol. The name and size of the group are shown in braces following the keyword. Inclusion of an 
element in the group is indicated by a dashed line from the group to the element. The criterion for the 
inclusion of an element in the group is shown in the body of the comment symbol.

Figure 5.11 shows an example of an element group on a package diagram. The group Tasks includes 
a use case (Process Order), an activity (Process) and a block (Order), making the size of the group 3. 
The criterion is Elements that I have been asked to work on this week.

5.6 � VIEW AND VIEWPOINT
SysML provides a mechanism, called a viewpoint, to specify customized views of a model beyond 
those offered directly by the language. SysML viewpoint and view constructs are consistent with the 
ISO-42010 [20] standard. A viewpoint describes the point of view of a set of stakeholders by framing 
their concerns along with the method for constructing an artifact that addresses those concerns. The 
view specifies the model content that is to be presented to the stakeholder in the artifact. Typical exam-
ples may include an operational, manufacturing, or security viewpoint. Viewpoints and the views that 

Element Group Example[Package] Chapter 5pkg [  ]

Process Order «activity»
Process

«block»
Order

«elementGroup»

Elements that I have 
been asked to work on 
this week

{name = "Tasks",
size = 3 }

FIGURE 5.11

Example of an element group.
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conform to them are important because they allow SysML concepts to be shown not just in the standard 
SysML diagrams but also in ways that are suitable to a specific purpose and audience.

Viewpoint and view are covered in detail in Chapter 15, Section 15.8, but it is worth noting that 
viewpoints are an important contributor to the topic addressed by this chapter, namely visualizing a 
SysML model. A viewpoint specifies the following:
 
	•	� Its purpose;
	•	� The stakeholders and concerns that are addressed;
	•	� How the view content should be expressed (i.e. what modeling language is required for the 

information that will appear in the view?);
	•	� The file format of the artifact that is produced from the view (e.g., set of slides in PowerPoint, a 

PDF file, a Word document, a web viewable format, etc.);
	•	� How the information should be presented in the artifact (e.g., specifying that data values should be 

plotted on a graph or a particular tabular style, or that both English and Spanish text should be provided, 
or that photographs be shown in color with minimum dimensions of 100 millimeters square); and

	•	� The method for producing an artifact from a view.
 

It is important to understand that while a view is a SysML construct that exists within a SysML 
model, artifacts produced from views potentially live outside of the modeling environment. For exam-
ple, a movie or a PDF document generated from a view is not directly incorporated into a SysML 
model, while the view itself is.

5.7 � SUMMARY
The ability for modelers and model stakeholders to visualize the content of models effectively is critical 
to the success of any modeling language. The following list summarizes the important aspects of model 
visualization in SysML:
 
	•	� SysML has nine kinds of diagram that allow different aspects of a system model to be visualized 

graphically.
	•	� Any SysML diagram will show only a subset of the elements in a model and model elements may 

appear in multiple diagrams.
	•	� SysML also supports nongraphical views, such as matrices, trees, and tables.
	•	� SysML supports custom visualizations through the viewpoint mechanism.
 

5.8 � QUESTIONS
	1.	 �What is the difference between a diagram and a model?
	2.	 �What are the five elements of a diagram header and what are they used for?
	3.	 �What are the four kinds of symbols that can appear on a diagram?
	4.	 �When is a keyword needed as part of a graphical symbol?
	5.	 �What does an ellipsis indicate?
	6.	 �How are custom visualizations supported in SysML?
 



CHAPTER 5  VIEWING SysML MODELS WITH DIAGRAMS100

DISCUSSION TOPICS
Traditional engineering modeling tools show all relevant model elements in any given diagram, whereas 
SysML allows modelers to selectively hide detail. Discuss the relative benefits of these two approaches.

In addition to graphical representations of the model through diagrams, SysML supports the use of 
non-graphical representations such as tables and trees. Under which circumstances does it make sense 
to use these different representations?
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CHAPTER

ORGANIZING THE MODEL  
WITH PACKAGES

This chapter addresses the topic of model organization and describes the organizational capabilities 
provided by SysML. In SysML, the fundamental unit of model organization is the package.

6.1 � OVERVIEW  
A SysML model of a complex system can contain thousands or even millions of model elements. In 
SysML, each model element is contained within a single container that is called its owner or parent. 
Contained elements are often called the child elements. When a container is deleted or copied, its child 
elements are also deleted or copied. Some child elements can also be containers, which leads to a 
nested containment hierarchy of model elements.

Packages are one example of a container. The model elements contained within a package are called 
packageable elements, examples of which are blocks, use cases, and activities. Since packages are also 
packageable elements, they can support package hierarchies. A model is a special kind of package that 
contains a set of model elements describing a domain of interest.

In addition to having a place in a containment hierarchy, each model element with a name—called 
a named element—must also be a member of a namespace. A namespace enables its members to be 
uniquely identified within it by name. A package is a namespace for the packageable elements it con-
tains. A packageable element has a fully qualified name to unambiguously locate it in the package 
hierarchy of a model.  

An import relationship allows elements contained in one package to be imported into another pack-
age so that they can be referenced simply by their names within that package. SysML also contains a 
relationship between named elements called a dependency, which can be specialized as needed to 
reflect more specific semantics.  

This chapter describes how model elements are organized to enhance modeling effectiveness. An 
effective model organization facilitates reuse of model elements, easy access, and navigability among 
model elements. It can also support configuration management of the model and exchange of model-
ing information with other tools, as described in Chapter 18. The importance of maintaining a well-
defined model organization increases with the size of the model, but even small models benefit from 
consistently applied organizational principles. The specific criteria for partitioning the model are 
methodology dependent, but some examples of model organization principles are included later in 
this chapter.  

Because reuse is so important in modeling, SysML includes the concept of a model library, which 
is specifically intended to contain model elements that can be shared within and between models. 
Model libraries are more fully described in Chapter 15.

6
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6.2 � THE PACKAGE DIAGRAM  
The model elements contained within a package can be shown on a package diagram. The complete 
diagram header for a package diagram is as follows:
 

pkg [model element kind] package name [diagram name]
 

The diagram kind is pkg, and the model element kind can be model, package, or model library. An 
example of a package diagram is shown in Figure 6.1. It shows several levels of the package hierarchy 
for the Products package of the ACME Surveillance Systems model. The notation tables for package 
diagrams are included in Table A.1 of the Appendix.  

6.3 � DEFINING PACKAGES USING A PACKAGE DIAGRAM  
SysML models are organized into a hierarchical tree of packages that are much like folders in a computer 
directory structure. Packages are used to partition elements of the model into coherent units that can be 
subject to access control, model navigation, configuration management, and other considerations.

A package is a container for other model elements. It has a name and an optional URI, which 
uniquely identifies the package as a web-accessible resource, and is thus useful when packages are used 
widely within or between organizations. Any model element is contained in exactly one container, and 
when that container is deleted or copied, the model element it contains is deleted or copied along with 
it. This pattern of containment means that any SysML model is a tree hierarchy of model elements.

Model elements that can be contained in packages are called packageable elements and include 
blocks, activities, and value types, among others. Packages are themselves packageable elements, 
which allows packages to be hierarchically nested. The containment rules and other related character-
istics of other kinds of packageable elements are described in the relevant chapters.  

A model in SysML is a top-level package in a nested package hierarchy. In a package hierarchy, 
models may contain other models and packages. The choice of model content and detail—for example, 
whether to have a hierarchy of models—is dependent on the method used. Typically, however, a model 
is understood to represent a complete description of a system or domain of interest for some purpose, 
as described in Chapter 2.

pkg [Package] Products [Nested Packages]

Surveillance Systems

LogicalPhysical

Use Cases

Behavior Parametrics Structure

RequirementsCameras

FIGURE 6.1

An example package diagram.
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A model has a single primary hierarchy containing all elements. Its organizing principle is based on 
what is most suitable to meet the needs of the project.

Often a package is constructed with the intent that its contents will be reused in many models. 
SysML contains the concept of a model library—a package that is designated to contain reusable ele-
ments. A model library is depicted as a package symbol with the keyword «modelLibrary» above the 
package name, as shown in Figure 6.2 for Components and Standard Definitions. See Chapter 15, 
Section 15.3 for more details on model libraries.  

The diagram content area of a package diagram shows packages and other packageable elements 
within the package designated by the frame. Packages are displayed using a folder symbol, where the 
package name and keywords can appear in the tab or the body of the symbol. The URI, if specified, 
appears in braces after the package name.  

If a model appears on a package diagram, which may happen when there is a hierarchy of models, 
the standard folder symbol includes a triangle in the top right corner of the symbol’s body.

The package diagram in Figure 6.2 shows the top-level packages within the corporate model of 
ACME Surveillance Systems, as specified in the diagram header. The user-defined diagram name for 
this diagram is Top-Level Packages, indicating that the purpose of this diagram is to show the top 
level of the model’s package structure. In this example, the model contains separate package hierar-
chies for:
 
	•	� The company’s products;
	•	� Standard off-the-shelf components;
	•	� Standard engineering definitions such as SI units—from the French Système International 

d’Unités (also known as International System of Units); and
	•	� Any specific extensions required to support domain-specific notations and concepts (extensions to 

SysML, called profiles, are described in detail in Chapter 15).
 

The Components and Standard Definitions packages both have URIs because they are widely used 
within ACME Surveillance Systems and therefore need to be uniquely identified and web accessible 
across company projects.

FIGURE 6.2

Package diagram for the surveillance system model.
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Each package should contain packageable elements consistent with the model organization 
approach. These elements can then be represented as needed on different SysML diagrams including 
structure, behavior, parametric, and requirement diagrams, as described in Chapter 3, Section 3.2 and 
in more detail in later chapters.

6.4 � ORGANIZING A PACKAGE HIERARCHY
As described previously, a model is organized into a single hierarchical structure of packages. The 
top-level package is a model that generally contains packages at the next level of the model hierar-
chy, as shown in Figure 6.2. These packages in turn often contain subpackages that further partition 
model elements into logical groupings. A well-defined model organization becomes increasingly 
important as the number of model elements increase. Figure 6.3 motivates the use of a nested pack-
age structure by contrasting such a structure with a similar flattened model organization shown in 
Figure 6.4. It is evident that large models can quickly become difficult to manage if not partitioned 
into subpackages.

The approach to model organization is a critical choice facing the modeler because it impacts reuse, 
access control, navigation, configuration management, data exchange, and other key aspects of the 
development process. For example, a package may be the unit of the model to which access privileges 
are assigned, granting only selected users the ability to modify its contents. In addition, when a particu-
lar package is checked out to modify its contents, other users may be excluded from making changes 
until the package is checked in. A poorly organized model also makes it difficult for users to understand 
and navigate the model.

The model hierarchy should be based on a set of organizing principles. The following are some pos-
sible ways to organize a model:
 
	•	� By system hierarchy (e.g., system level, element level, component level);
	•	� By process lifecycle, where each model subpackage represents a stage in the process (e.g., 

requirements analysis, system design);

FIGURE 6.3

Showing nested packages on a package diagram.
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	•	� By teams that are working on the model (e.g., Requirements Team, Integrated Product Team (IPT) 
1, 2);

	•	� By the kind of model elements it contains (e.g., requirements, behavior, structure);
	•	� By model elements that are likely to change together;
	•	� By model elements organized to support reuse (e.g., model libraries);
	•	� By other logical or cohesive groupings of model elements based on defined model-partitioning 

criteria; and
	•	� A combination of the preceding principles.
 

Containment relates parents to children within a package hierarchy. Several levels of containment 
hierarchy can be shown on the package diagram using containment between container elements and 
their contained elements. Containment is shown as a line with a crosshair at the container (parent) end, 
but with no adornment on the ends associated with the contained elements (children). Each parent–
child containment relationship can be shown as a separate path, but typically they are shown as a tree 
with one crosshair symbol and many lines radiating from it. An alternative representation of contain-
ment is to show the nested model elements enclosed within the body of the package symbol.  

Figure 6.3 shows the four packages contained within the Products package of the corporate model: 
Surveillance Systems, Surveillance Network, Cameras, and Requirements. This example uses both 
notations for package containment. Different organizational principles are used for the Products, Cam-
eras, and Surveillance Systems packages. The Products package is organized to contain packages for 
the three primary product lines that the company offers, with an additional package for all requirements 
specifications. The Cameras package hierarchy is organized by modeling artifact kind, and as such it 
contains packages to capture the structural, behavioral, and parametric aspects of the camera. The Sur-
veillance Systems package hierarchy is organized based on architectural principles that require a Logi-
cal Architecture package, a Physical Architecture package, and a Use Cases package. It also contains 
an Analysis package for various kinds of analyses and their outcomes.

The containment hierarchy is generally one of the primary browser views visible in a tool. Figure 6.5 
provides an example of the expanded browser view corresponding to the model organization from  
Figure 6.3. The containment hierarchy generally expands as the model evolves to include other nested 

FIGURE 6.4

Alternate model with flat package hierarchy.
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packages containing a variety of different model elements. A tool generally enables the containment 
hierarchy and associated content to be viewed in an expanded or contracted form from the browser, 
similar to the file browser in Windows. Models and packages form the branches of the containment 
hierarchy with other model elements appearing as lower-level branches and leaves.

6.5 � SHOWING PACKAGEABLE ELEMENTS ON A PACKAGE DIAGRAM  
In addition to packages, package diagrams are used to show packageable elements. Packageable ele-
ments are normally represented by node symbols or their corresponding icons.  

The package diagram in Figure 6.6 shows more details of the Components package from Figure 6.2, 
which is a model library that contains off-the-shelf components intended for use in building cameras 
and surveillance systems. The components are blocks, as indicated by the «block» keyword, and are 
contained in the Components model library, as indicated in the diagram label. The diagram only shows 
some of the model elements within the model library to reduce clutter. As explained in Chapters 2 and 

FIGURE 6.5

Browser view of the model’s package hierarchy.
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5, diagrams are simply views of the underlying model and may not show all possible contents that can 
appear on the diagram. The diagram name is also elided but could have been included to highlight the 
diagram purpose.

6.6 � PACKAGES AS NAMESPACES  
In addition to acting as a container for packageable elements, a package is a namespace for all named 
elements within it. Most SysML model elements may have names, although a few kinds of model ele-
ment, such as a comment, cannot be named. A namespace applies a set of uniqueness rules to distin-
guish between the different named elements contained within it. The uniqueness rule for packageable 
elements in packages is simply that each element of a given element kind must have a unique name.

As stated earlier, a package hierarchy can include multiple levels of nested packages, meaning that 
a model element can be contained within a package that is contained in an arbitrary number of higher-
level packages. Containment between a parent and child is unambiguously represented in a tool’s 
browser view of the model.

A model element can appear on a diagram whose frame may or may not designate its parent 
namespace. However, a model element that is shown on a diagram that does not correspond to its parent 
may give the false impression that the model element is contained within the namespace designated by 
the diagram frame. The solution is to show a qualified name in the symbol for that model element. If 
the model element is nested within the containment hierarchy of the package designated by the dia-
gram, then the qualified name shows the relative path from that package to the contained element. If the 
model element is not nested within the package designated by the diagram, the qualified name contains 
the full path from the root model to the element.

The qualified name for a model element always ends with the model element name, preceded by a 
path, with each containing namespace in the path delimited by a double-colon symbol (::), so that when 
reading the qualified name, the path is resolved from left to right. For example, a model element X that 
is contained within package B, which in turn is contained within package A, is represented as A::B::X.  

Figure 6.7 shows some examples of the use of qualified names in a package diagram that corre-
sponds to the Standard Definitions package shown in Figure 6.2. The symbol named Basic 
Definitions::Waypoint denotes a value type called Waypoint within a package called Basic Definitions, 
within the Standard Definitions package. Waypoint is used later to specify the scan pattern of a 

pkg [modelLibrary] Components

«block»
Digital Signal Processor

«block»
Video Controller

«block»
Tilt Gimbal

«block»
SDRAM

«block»
Pan Gimbal

«block»
Focal Plane Array

«block»
Stepper Motor

«block»
Brushless DC Motor

FIGURE 6.6

Showing the contents of the components package using a package diagram.



CHAPTER 6  ORGANIZING THE MODEL WITH PACKAGES108

surveillance camera. The other two symbols represent model elements that are external to Standard 
Definitions package and therefore have fully qualified names that correspond to the path name from the 
corporate model, ACME Surveillance Systems.

In a package hierarchy, each model element can be uniquely identified by its qualified name regard-
less of the diagrams in which it appears. Note that many SysML tools hide qualified names by default 
to reduce diagram clutter.

6.7 � IMPORTING MODEL ELEMENTS INTO PACKAGES
Depending on the organization of a model, model elements from different packages and different mod-
els are often related to one another. For example, one model may contain a set of components that 
another model may want to reuse.

An import relationship is used to include an element or collection of elements belonging to a source 
namespace into another namespace, called the target namespace. The names of imported element 
names become part of the target namespace. The qualified name of the imported element is based on 
where the element resides within the target namespace, and so does not require a qualified name when 
shown on a diagram that designates the target namespace.

A package import imports an entire package, which means that all the model elements of the source 
package are imported into the target namespace. An element import imports a single model element, and 
may be used when it is unnecessary and possibly confusing to import all the elements of a package.

A name clash occurs when two or more model elements in the target namespace would have the 
same names as the result of imports. An element import has an alias field that can be used to provide an 
alternate name for a model element to prevent a name clash in the target namespace. The rules on name 
clashes are as follows:
 
	•	� If an imported element name clashes with a child element of the target namespace, that element is 

not imported unless an alias is used to provide a unique name.
	•	� If the names of two or more imported elements clash, then neither can be imported into the target 

namespace.
 

FIGURE 6.7

Using qualified names to represent model elements within a containment hierarchy.
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The named elements recognized within a namespace—whether through direct containment or as a 
result of being imported—are called members. Members have a visibility, either public or private, 
within their namespace. The default visibility for a member of a namespace is public. The visibility of 
a member determines whether it can be imported into another namespace. A package import only 
imports members with public visibility in the source package into the target namespace. Furthermore, 
an import relationship can state whether the imported names should be public or private within the 
target namespace.

When access control on a model is enforced by a modeling tool, an imported element can only be 
changed in the source package, although any changes made to the element are visible in any diagrams 
representing the target package.

The import relationship is shown using a dashed arrow labeled with the keyword «import». The 
arrow’s head points to the source from which names are being imported, and its tail points to the 
target namespace into which the names are to be imported. The arrow points either to an individual 
model element (element import) or to an entire package (package import). The keyword «access» is 
used instead of «import» when elements are to be imported as private members of the target 
namespace.

Figure 6.8 shows three packages (P1, P2, and P3) in the diagram corresponding to package Parent. 
The package called Model::P1 is not contained in the diagram’s context, and so its qualified name has 
to be used. Model::P1 contains one block, called A, with public visibility (SysML does not have a 
graphical notation for visibility, hence the notes attached to the symbols). Package P2 privately imports 
P1 and contains a set of blocks, B and C, which are defined with public visibility, and F, which is 
defined with private visibility. P2 also contains a nested package called Child of P2, which in turn con-
tains a single public block, E. Package P3 defines a public block, C, and imports the whole package P2, 
but also imports block C as a separate element with the alias D to avoid a name clash. Note that the alias 
D is annotated on the import relationship.

pkg [Package] Parent

Block F is private
in package P2

Block A is public
in package P1

«access»

«import»

«import»
«block»

A

Model::P1

«block»
B

«block»
C

«block»
F

«block»
E

Child of P2

«block»
C

P3
P2

D

FIGURE 6.8

Illustration of «import» and «access».
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Figure 6.9 demonstrates the effect of import relationships on naming. It shows a diagram corre-
sponding to package P3 showing the names of various model elements from Figure 6.8. Blocks B, C, 
and D (an alias for P2::C) can be shown using simple names because they are members of the P3, either 
by direct containment or because they were imported. Block E has to be qualified by its parent Child of 
P2, whose name is visible because P3 has imported P2. Block F has to be qualified by P2 because it 
was defined to be private and so is not imported, but P2 is visible because it is in the same namespace 
as P3. Block A has to be qualified by its parent’s fully qualified name, Model::P1, because although it 
was defined with public visibility, Model::P1 was imported privately into P2 and was therefore not 
visible in P2 and so was not imported into P3.

Figure 6.10 shows some of the import relationships within the Standard Definitions package. It 
contains an example of a reusable model library called ISO80000. (This package is defined as a 

«block»
P2::F

«block»
D

«block»
Child of P2::E

«block»
C

«block»
Model::P1::A

«block»
B

pkg [Package] P3

FIGURE 6.9

Naming in package P3.

FIGURE 6.10

Importing a library of SI unit types into the Standard Item Definitions package.
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non-normative model library in Annex E.6 of the SysML specification.) In order to make ISO8000 web 
accessible, it has a URI. ISO80000 is imported into the SI Value Types model library, which provides a 
common set of units for use throughout the model. SI Value Types is in turn imported for use within 
many other packages, one of which is the Standard Item Definitions model library, which contains defi-
nitions of information, material, and energy flowing through the surveillance systems.

6.8 � SHOWING DEPENDENCIES BETWEEN PACKAGEABLE ELEMENTS  
A dependency relationship can be applied between named elements to indicate that a change in the ele-
ment on one end of the dependency may result in a change in the element on the other end of the depen-
dency. The model elements at the two ends of the dependency are called client and supplier. The client is 
dependent on the supplier, such that a change in the supplier may result in a change in the client.

A dependency between packages is used when the content of one package is dependent on the con-
tent of another package. For example, the software applications in the application layer of the system 
software may depend on the software components within the system software’s service layer. This may 
be expressed in a model of the software architecture by a dependency between the package that repre-
sents the application layer (client) and the package that represents the service layer (supplier).  

Dependencies are often used to specify a relationship early in the modeling process that is subse-
quently replaced or augmented when the precise nature of the relationship is better defined. There are 
various kinds of dependency that can be used on the package diagram and selected other diagrams. The 
following is a list of the more common kinds of dependencies:
 
	•	� Use – indicates that the client uses the supplier as part of its definition.
	•	� Refine – indicates that the client represents an increase in detail compared to the specification of 

the supplier, such as when detailed physical and performance characteristics are included in a 
component definition. This relationship is often used in requirements analysis, as described in 
Chapter 13, Section 13.13.

	•	� Realization – indicates that the client realizes the specification expressed in the description of the 
supplier, such as when an implementation package realizes a design package.

	•	� Trace – indicates that there is a linkage between the client and supplier without imposing the 
more significant semantic constraints of a more precise relationship. This relationship is often 
used in requirements analysis, as described in Chapter 13, Section 13.14.

	•	� Allocate – indicates that one model element is allocated to another. This relationship is described 
in Chapter 14.

   
A dependency is represented by a dashed line with an open arrowhead pointing from the client to 

the supplier. The kind of dependency is indicated by a keyword in guillemets.  
Figure 6.11 shows some of the kinds of dependency relationships in the Camera Performance pack-

age. The constraint block Video Stream Rate is a more precise representation (refinement) of the Video 
Performance requirement. Video Stream Rate uses a definition of megabits per second (Mbps) as part 
of its definition. The activity Generate Video Outputs is traced to the Video Stream Rate because if this 
constraint changes, the performance of the activity may need to be reevaluated. Generate Video Outputs 
is allocated to Camera to indicate that the camera is responsible for performing that activity. Details of 
these various model elements are described in later chapters.
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6.9 � SUMMARY
A well-defined model organization is essential to ensuring that the model is partitioned into model ele-
ments that support reuse, access control, navigability, configuration management, and data exchange. 
Different organizing principles can be applied to establish a consistent package hierarchy with nested 
packages, each of which contains logical groupings of packageable elements. The following list sum-
marizes the important aspects of model organization.
 
	•	� The principal SysML organizing construct is called a package. Package diagrams are used to 

describe this model organization in terms of packages, their contents, and relationships.
	•	� A model is a kind of package that represents a domain of interest for a given purpose. Models are 

the roots of package hierarchies. If the domain of interest is sufficiently complex, it may contain 
submodels.

	•	� Package hierarchies are based on the concept of containment or ownership of packageable 
elements. An essential aspect of containment is that the packageable elements in a package get 
deleted or copied with their container. Examples of packageable elements are blocks, activities, 
and value types. A model has a single containment hierarchy, which therefore imposes a single 
organizational perspective on the model. The containment hierarchy in a model often drives the 
principal browser view in a modeling tool.

	•	� Packages are also namespaces for a set of named elements called members. A namespace defines 
a set of rules for uniquely identifying an individual member. The namespace rule for packages is 
that a member must have a unique name within its package.

	•	� The names of symbols on a diagram must allow a viewer to explicitly understand where the repre-
sented element is within the model containment hierarchy. If a symbol represents a member of the 
package that the diagram frame designates, then its name (and sometimes keyword) is all that is 
required. Otherwise a qualified name is required, which is a concatenation of the member’s name 
and a path of all the namespaces between the member and the root model or diagram context.

	•	� SysML provides a mechanism to import the members from a package or another model into a 
namespace, either as a whole package or as individual model elements. The visibility of the 
member in its source package governs whether it is a member of the target namespace. The 

FIGURE 6.11

Example of dependencies used when documenting camera performance.
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qualified name of the imported element is based on where the element resides within the target 
namespace.

	•	� Model elements depend on each other in various ways. The dependency relationship between a 
supplier and a client element indicates that the client element is subject to change if the supplier 
element changes. Different kinds of dependencies are identified with a keyword and are used for 
specific purposes such as refinement, allocation, and traceability. 

6.10 � QUESTIONS
	 1.	 �What is the diagram kind for a package diagram?
	 2.	 �Which kinds of model element can be designated by a package diagram?
	 3.	 �What is the generic term for model elements that can be contained in packages?
	 4.	 �Where does a model appear in a package hierarchy?
	 5.	 �Name three potential organizing principles that might be used to construct the package hierarchy 

of a model.
	 6.	 �How can one show on a package diagram that one package contains another?
	 7.	 �Which rule does a package enforce for the named elements that are its members?
	 8.	 �How can one tell by looking at a package diagram that a model element represented on the 

diagram is a member of the package that is designated by the diagram frame?
	 9.	 �Write down the qualified name for a block B1 contained in a package P1, which in turn is 

contained in a model M1.
	10.	 �A package P1 contains three elements—block B1, block B2, and block B3—all with public 

visibility, and a package P4 with private visibility. Another package P2 contains a package called 
B1 and two blocks called B2 and B4. If package P2 imports package P1 with public visibility, 
list all the members of P2.

	11.	 �If an empty package P9 imports P2 (as defined in Question 10) with public visibility, list all the 
members of P9.

	12.	 �What is an alias used for?
	13.	 �Name three common kinds of dependency.
	14.	 �How are dependencies shown on a package diagram?
 

DISCUSSION TOPIC
For a model that you are trying to build, discuss the kind of model organization that is appropriate for it.
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CHAPTER

MODELING STRUCTURE WITH 
BLOCKS

This chapter addresses the modeling of system structure in terms of hierarchy and interconnection, and 
the characterization of system structure using value properties. It introduces blocks, the principle struc-
tural construct of SysML, and the two types of diagrams used to represent structure, the block definition 
diagram and the internal block diagram. These representations are a formalization of traditional sys-
tems engineering block diagrams to enable a more precise representation of interfaces and other aspects 
of system structure.

7.1 � OVERVIEW  
The block is the modular unit of structure in SysML that is used to define a type of system, component, 
component interconnection, or item that flows through the system, as well as external entities, conceptual 
entities, or other logical abstractions. A block describes a set of instances that share the block’s definition. A 
block is defined by its features, which may be subdivided into structural features and behavioral features.

The block definition diagram is used to define blocks and the relationships between them, such as 
their hierarchical relationship. It can also be used to specify instances of blocks, including their con-
figurations and data values. The internal block diagram is used to describe the structure of a block in 
terms of how its parts are interconnected.

Properties are the primary structural feature of blocks. This chapter describes the different kinds of 
properties, including those that represent parts, references, and values. Parts are used to describe the 
composition hierarchy of a block and define a part in the context of its whole. Value properties describe 
quantifiable physical, performance, and other characteristics of a block such as its weight or speed. A 
value property is defined by a value type that describes its valid range of values, along with its quantity 
kind (e.g., length) and its units (e.g., feet or meters). Value properties can be related using parametric 
constraints as discussed in Chapter 8.  

Behaviors associated with a block define how the block responds to stimuli. The different behav-
ioral formalisms—including activities, interactions, and state machines—are discussed in Chapters 9 
through 11, respectively. The behavioral features of a block, which include operations and receptions, 
provide a mechanism for external stimuli to invoke these behaviors.  

Parts can be connected on an internal block diagram using connectors to enable interactions between 
them, including relaying items that flow in and out of them and invoking behaviors.

Ports are structural features of a block that specify access points at which the block can interact with 
other blocks.  

As of SysML 1.3, flow ports and flow specifications were deprecated in favor of full and proxy 
ports. SysML 1.3 also introduced additional capabilities for ports, such as the ability to nest ports, and 
the ability to specify other types of interfaces, such as mating surfaces.  

7
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In addition to composition hierarchies, blocks can be organized into classification hierarchies that 
allow blocks to be defined in terms of their similarities and differences. Within a classification hierar-
chy, a block can specialize another more general block that allows it to inherit features from the general 
block and to add new features specific to it.  

Instance specifications can be used to identify specific configurations of blocks, including the val-
ues of its value properties.

7.1.1 � BLOCK DEFINITION DIAGRAM  
The block definition diagram is used to define blocks in terms of their features and their structural 
relationships with other blocks. The complete header for a block definition diagram is as follows:

bdd [model element kind] model element name [diagram name]

The diagram kind is bdd and the model element kind that corresponds to the diagram frame can be 
a package, a block, or a constraint block.  

Figure 7.1 shows an example block definition diagram containing some of the most common sym-
bols. The diagram shows two levels of the composition hierarchy of an ACME Camera. The notation 
used in the block definition diagram to describe blocks and their relationships is shown in the Appen-
dix, Tables A.3 through A.6.

7.1.2 � INTERNAL BLOCK DIAGRAM  
The internal block diagram or ibd resembles a traditional system block diagram and shows the con-
nections between parts of a block. The internal block diagram header is depicted as follows:

ibd [block] block name [diagram name]

FIGURE 7.1

Example block definition diagram.
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The frame of an internal block diagram always corresponds to a block, so the model element kind 
is often elided in the diagram header. The block name is the name of the block that is designated by the 
frame.  

Figure 7.2 shows an example internal block diagram containing some common symbols. The dia-
gram describes part of the internal structure of the Camera and how light flows in and through various 
intermediate parts to the Optical Assembly.

The notation used in the internal block diagram to describe the usage of blocks (called parts) and 
their interconnections is shown in the Appendix, Tables A.6, A.11, and A.12. Internal block diagram 
notation can also be shown in the structure compartment of a block on a block definition diagram.  
Figures 7.26 and 7.27 both provide examples of this.

7.2 � MODELING BLOCKS ON A BLOCK DEFINITION DIAGRAM  
The block is the fundamental modular unit for describing system structure in SysML. It can define a 
type of logical or conceptual entity; a physical entity (e.g., a system); a hardware, software, or data 
component; a person; a facility; an entity that flows through the system (e.g., water); or an entity in the 
natural environment (e.g., the atmosphere or ocean). Blocks are often used to describe reusable compo-
nents that can be used in many different systems. The different kinds of block features used to define 
the block are described later and are broadly classified as structural features, behavioral features, and 
constraints.

A block is a type, that is, a description of a set of similar instances or objects, all of which 
exhibit common characteristics. A block owns a set of features that describe the characteristics of 
its instances. Structural features define its internal structure and properties. Behavioral features 
define how it interacts with its environment or modifies its own state. An example of a block is an 
automobile that may include physical, performance, other properties (e.g., weight, speed, odom-
eter reading), and vehicle registration number, and also may include definitions of how it responds 
to steering and throttle commands. Each instance of the automobile block will include these fea-
tures and may be uniquely identified by the value of some of its properties. For example, a Honda 

FIGURE 7.2

Example internal block diagram.
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Civic might be modeled as a block, and a particular Honda Civic is an instance of the Honda Civic 
block with the value A1F R3D for its vehicle registration property. An instance of a block can be 
modeled explicitly in SysML as a unique design configuration, as described in Section 7.7.6. An 
instance can include value properties whose values change over time, such as its speed and odom-
eter reading.

The block symbol is a rectangle that is segmented into a series of compartments. The name com-
partment appears at the top of the symbol and is the only mandatory compartment. Other kinds of block 
features—such as parts, operations, value properties, and ports—can be presented in other compart-
ments of the block symbol. All compartments, apart from the name compartment, have labels that 
indicate the kind of feature they contain. The labels are depicted in lower case italics, are plural, and 
include spaces between words.

Names on block definition diagrams follow the same convention as package diagrams. Model ele-
ments that are either directly contained in or imported into the namespace corresponding to the diagram 
are designated just by their names. Other model elements must be designated by their qualified names 
in order to clearly identify their location in the model hierarchy.

Any rectangle on a block definition diagram is interpreted by default as representing a block, but 
the optional keyword «block» may be used, preceding the name in the name compartment, if desired. 
To reduce clutter, the convention used in this chapter is that the «block» keyword is only used if 
blocks appear on the same block definition diagram as other model elements that are depicted as 
rectangles.  

Figure 7.3 shows a block definition diagram that has three blocks in the company’s corporate model, 
called ACME Surveillance Systems. The names of the blocks are fully qualified with their path to show 
where they are located within the package hierarchy of the model, which is shown in Chapter 6, Figure 6.5. 
The blocks shown cover a range of uses: Camera is a description of an ACME product; Stepper Motor 
Module is an off-the-shelf component used in ACME’s cameras; and Video is used to describe the video 
images that the cameras produce.

Standard Definitions::Standard Item Definitions::Video

Components::Stepper Motor Module

Products::Cameras::Structure::Camera

FIGURE 7.3

Blocks on a block definition diagram.
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7.3 � MODELING THE STRUCTURE AND CHARACTERISTICS OF BLOCKS 
USING PROPERTIES  

Properties are structural features of a block. A property has a type that defines its characteristics, 
which may be another block, or some more basic type such as an integer. This section describes three 
categories of property and their uses.
 
	•	� Part properties (parts for short) describe the decomposition of a block into its constituent ele-

ments. These are described in Section 7.3.1.
	•	� Reference properties are properties whose values refer to parts of other blocks. Reference proper-

ties are described in Section 7.3.2.
	•	� Value properties describe the quantifiable characteristics of a block, such as its weight or velocity, 

and are described in Section 7.3.4.
   

More advanced topics related to properties include the following:
 
	•	� Property derivation, static properties, and read only properties are described in Section 7.3.4.
	•	� Property redefinition and subsetting are defined in Sections 7.7.1 and 7.7.6, respectively.
	•	� Property ordering and uniqueness are defined in Chapter 8, Section 8.3.1.
 

The properties compartment of a block can display its properties of any kind.

7.3.1 � MODELING BLOCK COMPOSITION HIERARCHIES USING PARTS  
Parts describe composition relationships between blocks. This kind of hierarchical composition of 
blocks is often seen in a bill of materials (also known as a parts list or equipment tree). A composition 
relationship is also called a whole–part relationship. A part is usually typed by a block, although it can 
also be typed by an actor as described in Chapter 12, Section 12.5.1.

A part identifies the usage of its type in a context. The key distinction between a part and an instance 
of a block is that the part describes an instance or instances of a block in the context of an instance of 
its composite block, whereas an instance does not require a context.

An instance of a composite block may include multiple instances of the block at the part end. The 
potential number of instances is specified by the multiplicity of the part, which is defined as follows:
 
	•	� A lower bound (minimum number of instances) that may be 0 or any positive integer. The term 

“optional” is often used for multiplicities when the lower bound is 0, because an instance of the 
whole is not obliged to include any instances of the block at the part end.

	•	� An upper bound (maximum number of instances) that may be 1, many (denoted by “*”), or any 
positive integer equal to or greater than the lower bound.

 
A part is a feature of a block, and as such can be listed in a separate parts compartment within a 

block. The parts compartment is labeled with the keyword parts and contains one entry for each part in 
the block. Each entry has the following format:

part name: block name [multiplicity]
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The upper and lower bounds of a multiplicity are typically combined into one expression with the 
format lower bound..upper bound, except when both bounds have the same value, in which case that 
value is shown. If no multiplicity is shown on the part end, a value of 1 is assumed.  

Figure 7.4 shows a simple example of an automobile with four wheels, in which each usage of 
Wheel is uniquely identified by a part. In this case, the Automobile is the whole and the wheels are 
represented as parts. Each of the four wheels has a common block definition, Wheel, with certain char-
acteristics (e.g., size, pressure), but each wheel can have a unique usage or role in the context of a 
particular automobile. The front wheels have a different role than the rear wheels and may have differ-
ent values for their pressure. Each wheel may also behave differently when the car is turning or accel-
erating and be subject to different constraints. Similarly, the front wheels on a front wheel-drive vehicle 
may have a different role than front wheels on a rear wheel-drive vehicle.  

A part defines a set of instances that belong to an instance of the whole or composite block. If a 
block is part of more than one composite block, the SysML semantics are that an instance of that block 
is part of at most one block instance at any time. An example is an engine that can be part of two dif-
ferent types of vehicle, such as an automobile and a truck. However, any given instance of engine can 
only be part of one vehicle instance at a time. This rule implies that at the instance level the composition 
hierarchy is a strict tree, because an instance may have at most one parent.

Typically, a whole–part relationship means that certain operations that apply to the whole may also 
apply to each of its parts. For example, if a whole represents a physical object, a change in position of 
the whole could also change the position of each of its parts. A property of the whole, such as its mass, 
could also be inferred from its parts. However, these inferred characteristics must be specified in the 
model generally by using constraints as described in Chapter 8.

When blocks represent components of physical systems, the whole–part relationships can some-
times be considered an assembly relationship, where an instance of the block on the whole end is 
assembled from instances of the block on the part ends. The implications of whole–part relationships 
for software relate to creating and returning memory locations for computation. For software objects, a 

FIGURE 7.4

An automobile with four wheels described as separate parts.
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typical interpretation for the whole–part relationship is that create, delete, and copy operations of the 
whole also apply to all of its parts. As an example, the whole–part semantics specify that when an 
instance at the whole end is destroyed, the instances at the part end will also be destroyed.

Composite associations
A composite association relates two blocks in a whole–part relationship. It has two ends, one describ-
ing the whole and the other describing the part. A part is owned by the block at the whole end of the 
association. The upper bound of the multiplicity at the whole end is always 1 because an instance of a 
part may only exist in one whole at any one time. However, the lower bound of the multiplicity at the 
whole end may be 0 or 1. A value of 1 means that instances of the block at the part end must always be 
composed from instances of the block at the whole end, whereas a value of 0 means that an instance of 
the block at the part end can exist even if no whole exists. In the latter case, an instance of a block  
at the part end may be composed within many other block instances over time, but it is still mandated 
that the instance is only part of one instance at any given time. For example, an instance of an engine 
may physically exist on its own or be part of an instance of an automobile or a truck at any given time.

A composite association is shown as a line between two blocks with various adornments at its ends. 
The whole end of a composite association is adorned by a black diamond. A shorthand notation can be 
used to represent a block that has many composite associations by showing a single black diamond with 
a series of lines connecting to the part ends of each composite association.

Each end of the composite association may show a name and a multiplicity, among other adorn-
ments. When the multiplicity for an end is not shown, the default interpretation is a whole end multi-
plicity of 0..1 and a part end multiplicity of 1. If a name appears as an adornment on the part end, it 
is the name of the corresponding part, although parts do not need to be named. Association ends can 
also show adornments corresponding to other features of the property they represent, as described 
later in this chapter. In the most common use of composite associations, the whole end of the com-
posite association is generally not named and the part end has the part name and an open arrowhead. 
The absence of an arrowhead on the part end indicates the presence of a reference property as defined 
in Section 7.3.2.

The parts compartment of a block can show the parts represented at the part end of the composite 
associations. Typically on any given diagram, the part is shown either in a parts compartment or as an 
association end, but not both.  

Figure 7.5 shows a portion of the top two levels of the composition hierarchy for a Camera. The 
composite associations for Camera and Mount Assembly are shown. The parts of the Camera Module 
and Electronics Assembly are shown in compartments. Although multiple levels of decomposition can 
be shown on a single diagram, this can increase the clutter even for relatively simple systems. As a 
result, a common practice is to show only a single level of decomposition on a particular diagram. Note 
that the diagram frame corresponds to the Structure package, as indicated in the diagram header, which 
contains all the blocks shown in the figure.

There are different philosophies on which parts should have names. In this chapter, except where 
stated, the following naming philosophy is used:
 
	1.	 �Names are used to distinguish two parts with the same type (block). An example of this is the use 

of names for Stepper Motor Module to distinguish the two parts, elevation motor and azimuth 
motor.
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	2.	 �A part is given a name when the name of the type does not adequately describe the role the part 
plays. Examples of this are the names elevation gimbal and azimuth gimbal, since the block names 
Tilt Gimbal and Pan Gimbal do not explicitly describe the plane in which the gimbals move in the 
Camera application.

	3.	 �A part is not named when the type (block) name provides sufficient information to infer the role 
of the part. Examples of this are Protective Housing and Electronics Assembly. This is often the 
case when a block has been explicitly created to represent this part. This should also apply to 
Mount Assembly, Camera Module, and Imaging Assembly, but names were used to illustrate the 
part name notation in Figure 7.8 and Figure 7.54.

 
If the part has been given a name, it is referenced when describing the figure; otherwise the block 

name is used.
The lack of multiplicity adornments on all part ends in this figure indicate that there is exactly one 

instance of each part in the composition hierarchy of Camera. The multiplicity adornment on their 
whole end indicates that the Electronics Assembly, ma, and cm are always part of a Camera, whereas 
the block Protective Housing may be used in other blocks. All the parts of ma are typed by reusable 
blocks that have uses in many other contexts. The Electronics Assembly and cm are each shown with a 
parts compartment that lists their parts. None of the parts of the Electronics Assembly have a name, and 
they all have the default multiplicity of 1.

Modeling parts on an internal block diagram  
In addition to appearing on a block definition diagram, parts can be shown on another diagram called 
the internal block diagram, which presents a different visualization of block composition. The internal 
block diagram enables parts to be connected to one another using connectors and ports as described 
later.

FIGURE 7.5

Showing a block composition hierarchy on a block definition diagram.
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The relationship between composition—as shown on a block definition diagram and on an internal 
block diagram—is as follows:
 
	•	� The whole end or composite (block) is designated by the diagram frame on the internal block 

diagram with the block name in the diagram header. It provides the context for all the diagram 
elements on the diagram.

	•	� A part, shown either as a part end of a composite association whose whole end is the composite 
block or in the parts compartment of the composite block, appears as a box symbol with a solid 
boundary within the frame of the internal block diagram. The name string of the box symbol is 
composed of the part name followed by a colon followed by the type of the part. Either the part 
name or the type name can be elided.

 
The multiplicity of each part may be shown in the top right corner of the part symbol or in square 

brackets after the type name. If no multiplicity is shown, then a multiplicity of 1 is assumed.  
Figure 7.6 is an internal block diagram derived from the composite associations whose whole end is 

Mount Assembly from Figure 7.5. The diagram header identifies Mount Assembly as the enclosing block 
that provides the context for the five parts shown in the diagram. In this case, the multiplicities are not 
shown, indicating that the multiplicity is the default value of 1. (See Figure 7.13 for an example of non-
default multiplicity.) Note that this is a simplified form of internal block diagram for illustration.

A modeler may choose to indicate on a particular part symbol whether the internal structure of the 
block that types the part is further described by an internal block diagram. If they so choose and the 
block in question has an associated internal block diagram, then the symbol contains a rake icon in its 
bottom right corner. The rake icon on the residence part in Figure 7.13 indicates that that block is fur-
ther elaborated in an internal block diagram, in this case shown in Figure 7.42.

Connecting parts on an internal block diagram  
An internal block diagram can be used to show connections between the parts of a block. A connector 
is used to connect two parts and provides the opportunity for those parts to interact, although the 

ibd [Block] Mount Assembly [Parts]

azimuth motor : Stepper Motor
Module

elevation motor : Stepper Motor
Module

azimuth gimbal : Pan Gimbalelevation gimbal : Tilt Gimbal

: Platform

FIGURE 7.6

An internal block diagram for the Mount Assembly.
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connector alone says nothing about the nature of the interaction. Connectors can also connect ports, as 
described later in Section 7.6.3.  

The interaction between the parts of a block is specified by the behaviors of its parts, as described 
in Chapters 9, 10, and 11. The interaction may include the flow of inputs and outputs between parts, the 
invocation of operations on parts, or the sending and receiving of signals between parts, or may be 
specified by constraints on properties of the parts on either end. When appropriate, the nature and direc-
tion of items flowing on a connector can be shown using item flows, as described in Section 7.4.3.

A connector may be typed by an association or association block that allows further definition of the 
characteristics of the connection, as described in Section 7.3.3. The ends of a connector can include 
multiplicities that describe the number of instances that can be connected by links described by the 
type of the connector. For example, the connection between a laptop and a number of USB devices 
might be modeled as a single connector, but there will be a separate link for each connected device.

On an internal block diagram, the connector between two parts is depicted as a line connecting two 
part symbols. A part can connect to multiple parts, but a separate connector is required for each con-
nection. The full form of the connector name string is as follows:

connector name: association name

The ends of a connector can include an arrowhead, which means that the association that typed the 
connector had the equivalent adornment. This is not usually shown, however, and should not be con-
fused with flows. The ends of the connector can be adorned with the name and multiplicity of the con-
nector ends. If no multiplicity is shown, then a multiplicity of 1 is assumed. When connector symbols 
cross each other, their intersection can be designated by a semi-circular jog to distinguish the two 
connectors.  

The internal block diagram for the Camera is shown in Figure 7.7. The Protective Housing that 
protects the camera internals is mechanically connected to the Mount Assembly (ma). The Mount 
Assembly provides the platform for the Camera Module (cm) and Electronics Assembly, which are con-
nected to pass electrical signals that allow the camera to function. The connectors in this example have 
names, indicating that they are mechanically connected (m1 to m3) or electrically connected (e1), but 

FIGURE 7.7

Connecting parts on an internal block diagram.
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the names have no semantic implications. Meaningful semantics can be added by typing connectors, as 
described in Section 7.3.3, or by using a domain-specific profile as described in Chapter 15. All the 
connectors have default multiplicity implying one-to-one connections.

Modeling nested structures and connectors
Sometimes it is necessary to show multiple levels of nested parts within a system hierarchy on an inter-
nal block diagram. The nested parts can be represented by showing part symbols within part symbols, 
as shown in Figure 7.8. SysML also introduces an alternative notation to designate a nested part (also 
shown in the figure) in which each level of nesting of the part is separated by a period (dot) within the 
name string of a single part symbol. The symbol’s name string, with dot notation, represents the path 
in the decomposition hierarchy from the level of the context block for the diagram down to the nested 
part. In Figure 7.8, the azimuth gimbal is represented as a nested rectangle within the ma:Mount Assem-
bly symbol, and also represented using the dot notation with the higher-level part name, ma, and a dot 
preceding the part name, azimuth gimbal. It is expected that only the dot notation or the nested part 
notation is used on a diagram to depict a particular part.

Connectors can connect parts at different levels of nesting without directly connecting to the 
intermediate levels of nested parts. For example, a tire can be connected directly to a road without 
requiring intermediate connectors at each level of nesting from the vehicle to the suspension, the 
suspension to the wheel, and the wheel to the tire. The connector simply crosses the nested part 
boundaries in order to directly connect the tire to the road. Blocks have a special Boolean property 
called isEncapsulated, which if true prohibits connectors from crossing boundaries without con-
necting to any intermediate nested parts. It is often the case that connections are initially specified 
between top-level parts, and then as the internal details of the parts become known, connectors are 
specified between lower-level elements. It is a modeling choice as to whether the outer connectors 
are removed or kept.

Connectors with nested ends are shown in the same way as normal connectors except that they cross 
the boundaries of part symbols. The isEncapsulated property on a block is shown if true and not shown 
if false. If shown, it appears in the name compartment in braces before the block name.

ma : Mount Assembly

azimuth gimbal : Pan Gimbal

ma.azimuth gimbal : Pan Gimbal

ibd [Block] Camera [Two ways of showing azimuth gimbal] 

FIGURE 7.8

Showing deep-nested parts on an internal block diagram.
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Figure 7.9 includes a more detailed look at the connections within the subassemblies in Figure 7.7. 
After further investigation, connector m1 has been augmented with a connector, called platform to 
housing, whose nested ends directly connect the Platform of ma (the Mount Assembly) to the Camera 
Housing of the cm (the Camera Module). Similarly, the electrical connector, e1, has been augmented 
with a connector called imaging to video that connects the Imaging Assembly (ia) of cm to the Image 
Processor of the Electronics Assembly.

When a connector at one level of the structure is used to add more detail about a connector at some higher 
level, there are potential issues with maintaining the resulting model. For example, if the m1 connector from 
Figure 7.7 is removed from the model, should platform to housing be removed as well? If this kind of rela-
tionship is important, then an association block can be used to show decomposition of the connector in a 
similar way that blocks show the decomposition of parts. Association blocks are described in Section 7.3.3. 
The use of ports is also important for addressing this kind of issue as described in Section 7.6.

Binding connectors
A binding connector is a special kind of connector that constrains its ends to have the same value. It 
is fundamental to the construction of parametric models (see Chapter 8) but also has uses in structural 
modeling with internal block diagrams. Two specific examples are the binding of proxy ports to parts 
(see Section 7.6.3) and the use of bound references to specify variation in blocks (see Section 7.7.4).

A binding connector is shown using the connector notation introduced above, except that the con-
nector path optionally has the keyword «equal» shown near its center.

7.3.2 � MODELING RELATIONSHIPS BETWEEN BLOCKS USING REFERENCE 
PROPERTIES  

Reference properties, sometimes shortened to just references, enable an instance of a block that con-
tains the reference property to refer to an instance of the block which types the reference property. The 
composition semantics of whole–part relationships, as described by parts, define a specific relationship 
between an instance of the block at the whole end and an instance of the block at the part end, as 
described in the previous section. An example of this is the destruction semantics, which specify that 
destroying an instance of the block at the whole end also destroys the instances of the blocks at the part 

FIGURE 7.9

Nested connectors on an internal block diagram.
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ends. For reference properties, the destruction semantics associated with composition do not apply. 
There is also no constraint on the number of blocks that can have reference properties that refer to the 
same instance. This provides significant utility as described next.

Reference properties can be used to describe a logical hierarchy that references blocks that are part 
of other composition hierarchies. Reference properties can thus be used to cut across the tree structure 
of a composition hierarchy, which allows additional decomposition views besides the primary system 
whole–part hierarchy. This logical hierarchical organization can be represented on both the block defi-
nition diagram and internal block diagram. Binding connectors can be used to constrain the reference 
properties in a logical hierarchy to have the same value as a specific part in a composition hierarchy. 
Another use of reference properties is to model stored items (e.g., water stored in a tank). The water is 
not part of the tank in the same way that a valve is a part of the tank. For this case, the water may be 
owned by another block and shown as a reference property of the tank.

Like parts, reference properties can be listed in a separate compartment within a block. The refer-
ences compartment is headed by the keyword references and contains one entry for each reference 
property in the block, with the same presentation as parts.  

Reference associations
The composite association was discussed earlier in this chapter as representing a hierarchy of blocks. 
Reference associations are used on a block definition diagram to capture a different relationship 
between blocks, in which the block on one end of the association is referenced by the block on the other 
end. A reference association can specify a reference property on the blocks at one or both ends.

A reference association is represented as a line between two blocks. The black diamond that repre-
sents a composite association is not used. When there is a reference property on only one end, the line 
has an open arrowhead on the end of the association pointing from the owner of the reference property 
to the type that is referenced. There is no arrowhead on the end of the association that owns the refer-
ence property. If the reference association is bidirectional (i.e., has reference properties at both ends), 
then there are no arrowheads on either end. Multiplicities on the ends of reference associations have the 
same form as for composite associations.

One end of a reference association may be represented by a white diamond. SysML assigns the 
same meaning to the association whether the white diamond is present or not. However, the white dia-
mond symbol is intended to be used with an applied stereotype that may specify unique semantics for 
a particular domain.

Composite associations can also define reference properties. If there is no arrowhead on the part end 
of a composite association, then the block typing the part has a corresponding reference property whose 
name is given at the whole end of the composite association.

Figure 7.10 shows a block called Mechanical Power Subsystem that uses reference associations to 
reference the Power Supply of the Camera, its powered mechanical components, including the motors 
in the various assemblies, and the Distribution Harness. The Distribution Harness itself has references 
to other harnesses that are part of the different assemblies in the Camera. In the composition hierarchy 
for the Camera, the components are part of a number of different assemblies, some of which are shown 
in Figure 7.5. The Mechanical Power Subsystem represents a logical aggregation of these components 
that interact to provide power to the rest of the camera. The white diamond adornment is used in this 
example to emphasize the hierarchical nature of the Mechanical Power Subsystem, but this emphasis is 
strictly notational and has no semantic implications.
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Different model-based methods may include a block such as the Mechanical Power Subsystem in 
different parts of the model structure. Here it is contained in the Camera block itself, but it could just 
as easily have been placed in a special package of similar subsystems. An instance of Mechanical 
Power Subsystem does not show up in the equipment tree for the Camera but is more like a cross-cut-
ting view of a portion of the equipment tree.

Reference associations are also used to represent associations between blocks for other purposes, 
such as those that might be used in the classical entity-relationship-attribute (ERA) kind of data model-
ing or more general class modeling.

Modeling reference properties on internal block diagrams
Reference properties are depicted in a similar fashion to parts when shown on the internal block dia-
gram, except that their box symbol has a dashed instead of a solid boundary. Otherwise they have simi-
lar adornments and can be connected in the same way as any part symbol.

Figure 7.11 shows the connections between the reference properties of the Mechanical Power 
Subsystem used to support power transfer within the subsystem. In this case, a single power source 
provides all the power needs of the mechanical parts of the camera through the Distribution 
Harness.

7.3.3 � USING ASSOCIATIONS TO TYPE CONNECTORS BETWEEN PARTS
Just as blocks can be used as the types of parts to model the structure of a system, associations can be 
used as the types of connectors to model the connections between parts. Associations can be used in 
two ways: to define how blocks can be validly connected, and to define details, including further struc-
ture, of those connections.

FIGURE 7.10

Reference associations on a block definition diagram.
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Typing connectors by associations to assert compatibility
One use of a typed connector is to assert compatibility between the parts it connects by requiring that 
the parts at either end of the connector satisfy the constraints imposed by the association that types it. 
For a connector to be typed by an association, the connected parts must have a type that is compatible 
with the ends of that association. A compatible part type is either the same type as the association end 
or a specialization of that type.

A disciplined process may require all connectors be typed to ensure the compatibility of their ends. 
In such a process, a library of associations with compatible end types is provided, and every connector 
must be typed by an association from this library, which ensures that only parts that were intended to 
be connected can be. It is assumed in this process that the compatibility of the features of end types has 
also been validated (see Sections 7.4.3 and 7.5.4).

An association defines the multiplicity of block instances on each of its ends. Although connectors 
may have their own multiplicities, their lower and upper bounds are constrained to be within the mul-
tiplicity defined for the ends of the association that types it.

Figure 7.12 shows the part of the ACME Surveillance Network that deals with residential users. An 
Asynchronous Digital Subscriber Line (ADSL) connection is used to connect several Surveillance 
Systems to the Command Center, as shown by the association ADSL Connection. The ends of ADSL 
Connection represent reference properties of the blocks at each end and are named adsl dte and adsl 
dce, indicating the respective roles of the related blocks. A Surveillance System is a data terminator and 
thus has higher download than upload capacity and must be related, via its reference property adsl dce, 
to exactly one Command Center. A Command Center is related, via its reference property adsl dte, to 
zero or more Surveillance Systems.

Figure 7.13 shows the residential part of the ACME Surveillance Network on an internal block dia-
gram. It shows the residential surveillance center connected to a set of residences. The connector, res 
comms, is typed by the ADSL Connection and so must conform to both the types of its ends and their 
multiplicities, which it does. In this case the connector does not further restrict the multiplicity stated 
on the association so there is no need to add multiplicities to the connectors. For an example of connec-
tors with multiplicities, see Figure 7.42.

ibd [Block] Mechanical Power Subsystem

focus motor : Brushless DC
Motor Module

iris motor : Brushless DC
Motor Module

azimuth motor : Stepper
Motor Module

elevation motor : Stepper
Motor Module

power source : Power Supply  : Distribution Harness

FIGURE 7.11

Reference properties and their interconnections on an internal block diagram.
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Using association blocks to define the structure of connectors
More detail can be specified for connectors by typing them with association blocks. An association 
block, as the name implies, is a combination of an association and a block, so it can relate two blocks 
together but can also have internal structure and other features. The internal structure can be used to 
decompose the connector that is typed by the association block.

Each end of the association block is represented by a special kind of property called a participant 
property, which is analogous to a reference property. This enables the blocks at the ends of the associa-
tion block to be referenced by the association block, without being part of the association block. This in 
turn ensures association blocks are not confused with other parts of the system composition hierarchy.

Association blocks are shown on block definition diagrams as an association path with a block 
symbol attached to it via a dashed line. The name of the association block is shown in the block symbol 
rather than on the association path.

Figure 7.14 shows a refinement to Figure 7.12 in which ADSL Connection is now an association 
block. The figure also shows additional internal structure inside Surveillance System and Command 
Center: an ADSL Modem and an ADSL Gateway, respectively. These new parts are used to handle the 
ADSL communication between them, as shown in Figure 7.15.

FIGURE 7.12

A reference association between two blocks.

FIGURE 7.13

Connector typed by an association.
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Figure 7.14 also includes another association block, SDSL Connection. SDSL Connection repre-
sents the use of a Synchronous Digital Subscriber Line (SDSL) between Command Centers, but the 
parts required to support SDSL are not shown. In addition, the figure shows further aspects of the 
ACME Surveillance Network related to corporate customers and the connectors, res comms, bus comms 
and center comms used to connect them. Refer to the next section on connector properties for further 
discussion of these.

FIGURE 7.14

Using association blocks to relate blocks.

FIGURE 7.15

The internal structure of an association block.
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The internal structure of an association block can be specified like any other block. The most common 
way to specify the association block’s internal structure is with an internal block diagram where the frame 
of the diagram corresponds to the association block. A participant property is represented with a dashed 
box, like a reference property, but distinguished from other properties by the keyword «participant». It 
may also indicate the association end that it represents using the string end = property name in braces.

Figure 7.15 shows the internal detail of the ADSL Connection association block. Its two participant 
properties—adsl dce and adsl dte—are shown using the «participant» keyword. The nested parts of 
adsl dte and adsl dce are shown in order to describe how an ADSL Connection is achieved, in this case 
via a connector called adsl link, between an ADSL Modem and an ADSL Gateway. It is now explicit that 
every connector typed by ADSL Connection ensures that the ADSL Modem of its adsl dte and the ADSL 
Gateway of its adsl dce are connected via a connector called adsl link. Note that the connector adsl link 
is not typed, and so there is no additional detail on the link’s nature. If further internal detail is 
required—such as the nature of the physical details of the ADSL connection—the connector can be 
typed by an association block.

Figure 7.16 shows both the ADSL Connection and SDSL Connection in use. As shown in Figure 
7.14, the ACME Surveillance Network has two command centers: one for corporate clients and the 
other for residential clients. The command centers communicate to each other through an SDSL Con-
nection and to their clients through ADSL Connections.

Connector properties
As noted previously, a connector can be typed by an association or association block and is a feature of a 
block. SysML allows a connector typed by an association block to be represented by a connector prop-
erty. A connector property can be shown on a block definition diagram using a composite association 
from a block to an association block. The name on the part end represents a connector property owned by 
the block at the whole end. It can also be shown on an internal block diagram as a rectangle symbol joined 
with a dotted line to the connector path. The symbol for the connector property has the name string:

«connector» connector name: association name

FIGURE 7.16

Example of an ACME surveillance network with two command centers.
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Figure 7.14 shows three connector properties: res comms and bus comms, typed by ADSL Connec-
tion, and center comms, typed by SDSL Connection.

7.3.4 � MODELING QUANTIFIABLE CHARACTERISTICS OF BLOCKS USING VALUE 
PROPERTIES  

Value properties are used to model the quantitative characteristics of a block, such as its weight or 
speed. They can also be used to model vector quantities, such as position or velocity. Whereas the defi-
nition of a part or reference property is based on a block, the definition of a value property is based on 
a value type that specifies the range of valid values the property can take when describing an instance 
of its owning block. SysML defines the concepts of unit and quantity kind that can be used to further 
characterize a value type, although a value type does not require a quantity kind or unit. Value proper-
ties can have default values associated with them, and they can also define a probability distribution for 
their values.

Modeling value types on a block definition diagram
Value types are used to describe the values for quantities. For example, value properties called total 
weight and component weight might be typed by a value type called kilograms (kg) whose value can be 
any real number greater than or equal to 0. The intent of the value type is to provide a uniform definition 
of a quantity that can be shared by many value properties. Value type definitions can be reused by typ-
ing multiple value properties with the same value type.

A value type describes the data structure for representing a quantity and specifies its allowable set 
of values. This is especially important when relying on computers to operate on the values to perform 
various computations. A value type can be based on the predefined value types that SysML provides, 
or new value types can be defined. The following are the different categories of value type:
 
	•	� A primitive type supports the definition of scalar values. Integer, String, Boolean, and Real are 

predefined primitive types in SysML.  
	•	� An enumeration defines a set of named values called literals. Examples of enumerations are 

colors and days of the week.
	•	� A structured type represents a specification of a data structure that includes more than one data 

element, each of which is represented by a value property. Complex is a predefined structured type 
provided by SysML. Another example may be a value type called Position with value properties 
for x, y, and z.

   
Value types represent values, not entities, and so unlike blocks they have no concept of identity. In 

particular this implies that two instances of a value type are identical if they have the same values, 
which is not true of instances of blocks.

Value types are represented on a block definition diagram by a box symbol with a solid boundary. 
The name compartment of a value type has the keyword «valueType» preceding its name.  

The symbol representing an enumeration has a single compartment, labeled literals, listing all the 
literals of the enumeration and the keyword «enumeration» preceding its name in the name compart-
ment. The symbol representing a structured type also has a single compartment labeled values that lists 
the nested value properties of the value type, using the same compartment notation as shown for other 
value properties.
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Figure 7.17 shows some value types in the Basic Definitions package. Size is a structured type, with 
three nested value properties: width, height, and length; they are typed by another value type m (for 
meters). The definition of m includes its unit and is shown later in Figure 7.19. Image Quality is an 
enumeration used to specify the quality of image captured by the camera, which can be used to control 
how much data are required to capture each video frame. The other value types are all real numbers and 
so are specializations of the SysML value type Real. In this case the specialization is simply stating that 
the values for MHz, MB, and Frames per Second are real numbers. See Section 7.7 for further discus-
sion on the meaning and notation for specialization.

Adding units and quantities to value types  
SysML defines the concepts of unit and quantity kind as shareable definitions that can be used consis-
tently across a model, or captured in a model library that can be reused across a set of models. A quantity 
kind identifies a kind of physical quantity such as length, whose value may be stated in terms of defined 
units (e.g., meters or feet). To cover all potential situations, a unit can be associated with multiple quantity 
kinds, although typically a unit will be associated to just one. Often, equations can be expressed in terms 
of quantities that include quantity kinds without specifying units. Both quantity kinds and units can have 
symbols, such as those shown in Figure 7.18, which SysML model editors and other tools can use in place 
of the full names of quantity kinds and units.

In developing a system model, it is critical to ensure that the units of system data are compatible, 
and simply using a name or even a model library is not sufficient to identify a unit or quantity kind 
uniquely if many organizations and project teams are collaborating on a system development. SysML 
units and quantity kinds also include a definitionURI, which can be used to relate them to a unique web 
reference, so that definitive comparisons can be performed.

FIGURE 7.17

Definition of basic value types in a block definition diagram.
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A value type that represents a physical quantity may reference a quantity kind and/or unit as part of 
its definition, and thus assign units and quantity kinds to any value property that it types.  

Both units and quantity kinds are shown on a block definition diagram using a box symbol. They 
have their name and type (unit or quantity kind), underlined and separated by a colon, shown in the 
name compartment, and their different slots shown in a compartment.

The SI standard for units and quantity kinds
The International System of Units (SI) is a standard for units and quantity kinds published by the Inter-
national Standards Organization (ISO). The complete set of SI quantity kinds and units are described 
in a model library called ISO80000 in Annex E.6 of the OMG SysML specification, based on a sophis-
ticated foundation library that supports quantitative analysis. This model library can be imported into 
any model to allow the SI definitions to be used as is or as the basis for defining more specialized units 
and quantity kinds. Although this model library is a non-normative part of the SysML specification that 
is not required for tool vendor conformance, it is anticipated that many SysML modeling tools will 
include this library and possible extensions. All units and quantity kinds in the ISO80000 model library 
have a definition URI taken from http://www.bipm.org/.

Figure 7.18 shows some of the definitions in the SI Definitions model library in the Standard Defini-
tions library of ACME Surveillance Systems. All of the units and quantity kinds shown have definition 
URIs, although only the one for metre is displayed in the figure. SI Value Types is a locally defined 
model library that imports SI Definitions in order to define a set of SI value types for this application 
based on the SI units and quantity kinds.

Some of the value types in the SI Value Types model library are shown in Figure 7.19, using unit 
definitions imported from the SI Definitions package. This enables a consistent representation of quan-
tities that can be checked for compatibility of quantity kinds and consistency of units. Although not 
shown here, all the value types in this figure are defined to be real numbers.

FIGURE 7.18

Importing the SI definitions defined by SysML.

http://www.bipm.org/
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Adding value properties to blocks  
Once value types have been defined, they can be used to type the value properties of blocks. Value 
properties can have multiplicity and are shown in a compartment of their owning block similar to other 
properties. The values compartment has the label values.  

Figure 7.20 shows a block definition diagram containing three blocks with value properties: Cam-
era, Electronics Assembly, and Optical Assembly. Some of the value properties, such as the clock speed 
and memory of Electronics Assembly, are typed with the value types specified in Figure 7.17. Others are 
typed with value types shown in Figure 7.19. For example, the sensitivity of the Camera is typed by lux, 
which measures luminance. The names of value types are not limited to alphanumeric characters. For 
example, pan field of regard in Camera is typed by the character “°,” which is a symbol for degrees.

Read only and static properties
Properties can be specified as read only, which means that their values cannot change during the life-
time of their owner. A read only property is indicated using the keyword readOnly in braces at the end 
of the property string.

FIGURE 7.20

Use of a value type to type a value property on a block definition diagram.

FIGURE 7.19

Using units in the definition of value types.
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A property can also be specified as static, which means that its value is the same across all instances 
described by this block. A static property is often used to describe some configuration characteristic 
that has the same value for a particular type, such as the number of sides of a cube. Static properties are 
shown by underlining the name string of the property.

Derived properties
Properties can be specified as derived, which means that their values are derived from other values. In 
software systems, a derived property is typically calculated by the software in the system. In physical 
systems, a property is typically marked as derived to indicate that the values of derived properties are 
calculated based on analysis or simulation, and may well be subject to constraints as described in Chap-
ter 8, Section 8.3.1. By definition, constraints express noncausal relationships between properties, but 
derived properties can be interpreted as dependent variables, and thus allow the equations expressed in 
constraints to be treated as mathematical functions.

A derived property is indicated by placing a forward slash (/) in front of the property name.
Figure 7.21 shows Optical Assembly with an additional property f-number, which is marked as 

derived. It also shows a constraint between focal length, aperture, and f-number that can be used—
given focal length and aperture—to calculate the value of f-number.

Modeling property values and distributions  
A default value can be assigned to a property as part of its property string in the appropriate compart-
ment of a block, using the following syntax:

property name: type name = default value

The initial values for a part can be specified using a dedicated compartment labeled initial Values. 
The initial values override the default values of the properties in the block that types the part. If no 
initial value is defined, the default value is used for properties of the part. The initial values compart-
ment can be used on the part but cannot be used on the block.  

A value property whose range of values can be described by a probability distribution rather than 
a single value is called a distributed property. Annex E.7 of the OMG SysML specification defines 
some commonly used probability distributions in a model library that can be reused. The following 
notation is used to represent a distributed property:

«distributionName» {p1=value, p2 = value …} property name : type name

FIGURE 7.21

Example of derived property.
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The tags p1, p2, and so on characterize the probability distribution. For example, a mean and stan-
dard deviation are properties that characterize a normal distribution, while a min and max value char-
acterize an interval distribution.

Figure 7.22 shows a number of distributed properties, including pan field of regard and focal length. 
The pan field of regard is the size of the arc that the camera can view while panning. It is defined as an 
interval distribution with a minimum of 0° and a maximum of 360° because the actual field of regard 
will depend on where the camera is installed. The focal length of the Optical Assembly is defined as a 
normal distribution with a mean of 7 millimeters and a standard deviation of 0.35 millimeters. This is 
intended to accommodate differences arising from the combination of minor deviations in the place-
ment of lenses and mirrors during manufacturing.

The distributions of both pan field of regard and focal length are distributions over the whole popu-
lation of cameras and optical assemblies. The dimensions of the Camera and aperture of the Optical 
Assembly have default values: a simple scalar value for aperture and a value for each of the constituent 
value properties of dimensions.

7.4 � MODELING FLOWS  
Defining the flows between different parts of a system can provide an abstract view of their interactions. 
Flows may be physical in nature. For example a water pump might specify that water can flow in and 
out of the pump and that electrical power can flow in. Often, in electronic systems, it is information and/
or control that flows, such as a signal from a radar system that represents the position and velocity of a 
target, or a signal resulting from a button being pressed on a keyboard.

bdd [Package] Structure [Values]

values

Optical Assembly

Camera

values
dimensions : Size � (0.04,0.03,0.01)
«normal»{mean � "2.1", standardDeviation � "0.01"} power : W
«interval»{min � "0", max � "360"} pan field of regard : �
«interval»{min � "0.05", max � "0.1"} sensitivity : lux
«interval»{min � "0", max � "90"} tilt field of regard : �

aperture : mm � 2.4
«normal»{mean � "7", standardDeviation � "0.35"} focal length : mm

FIGURE 7.22

Examples of property values and distributions.
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Item is the general term used to define things that flow. Blocks may contain special properties, 
called flow properties, that define the items that can flow into or out of that block. In addition, item 
flows specify what actually does flow on connectors between parts.  

7.4.1 � MODELING ITEMS THAT FLOW  
An item is used to describe a kind of entity that flows. It may be a physical flow, which includes matter 
and energy, as well as a flow of information. Items may be blocks, value types, or signals. When items 
are modeled as blocks, they typically include value properties that describe characteristics of the item, 
such as the temperature and pressure for a block that represents flowing water. An item may have sig-
nificant internal structure, such as an automobile that flows through an assembly line or a complex 
message sent across a data bus. A flow may also be simplified to represent just a quantifiable property 
(e.g., water temperature), in which case the item can be represented as a value type instead of a block.

The flow of control and/or information can also be represented by signals. These signals may be 
used to control the behavior of a part that is the target of the signal flow. SysML allows—but does not 
require—that SysML implementations generate events when signals flow into or out of a block via flow 
properties. These events can be accessed by behaviors of a block and therefore may be used to control 
the behavior of a part that is the target of the signal flow (see Chapters 9, 10, and 11 for more detail on 
how these events are accessed).

Items can be defined at different levels of abstraction and may be refined throughout the design 
process. For example, an alert flowing from a security system to an operator may be represented as 
a signal at a high level of abstraction. However, in exploring the nature of how that alert is commu-
nicated in detail, the item may be redefined. If the alert is communicated as an audio alarm, for 
example, it may be redefined as a block that contains properties representing the amplitude and fre-
quency of the sound.  

Figure 7.23 shows part of the Standard Item Definitions model library that includes the items that 
flow in cameras. The items shown are modeled as blocks and contain value properties that describe 
their characteristics. The Light block defines its radiant flux in terms of Watts (W) and the illuminance 
in terms of lux. The MPEG4 block defines the frame rate in hertz and number of lines in a frame.

7.4.2 � FLOW PROPERTIES
A block may contain flow properties that specify what can flow in or out of the block. Each flow prop-
erty has a name, type, multiplicity, and direction. The type of the flow property can be a block, value 
type, or signal depending on the specification of what can flow. The multiplicity of the flow property 
defines how many values it may contain as part of an instance of its owning block.

The flow properties of a block are shown in a special compartment labeled flow properties, with 
each flow property shown in the format:

direction property name: item type[multiplicity]

The direction of the flow property can be one of in, out, or inout.
The block diagram in Figure 7.24 shows two pieces of optical equipment, a Light Source and a Light 

Sensor. The Light Source outputs a beam of Light, and the Light Sensor accepts incoming light. The 
flow properties of both blocks are typed by the Light block shown in Figure 7.23.
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7.4.3 � MODELING FLOWS BETWEEN PARTS ON AN INTERNAL BLOCK DIAGRAM
A flow occurs as a result of a value (or values if the multiplicity of the property is greater than 1) being 
assigned to a flow property, which must have out or inout direction, on one end of a connector (the 
source). The assigned value is propagated across a connector or connectors to compatible flow proper-
ties, which must have in or inout direction, on connected parts.

Flow property compatibility
The ability of items to flow across connectors between parts is dependent on the flow properties speci-
fied on the parts at either end of the connector. For a flow to occur from a source part to a target part, 
both ends of the connector must have a flow property with at least a compatible type and direction. The 
flow property types are compatible if the type of the target flow property is either the same as or a gen-
eralization of the source flow property. Their directions are compatible if both properties have direction 
inout, or their directions are the opposite of each other. If more than one flow property matches based 
on type and direction, then compatible flow properties are determined based on their names.

The internal block diagram in Figure 7.25 shows Light Source and Light Sensor from Figure 7.24 
connected inside a block called Light Test. The types and directions of their flow properties are compat-
ible, allowing Light to flow from the Light Source to the Light Sensor.

The block definition in diagram Figure 7.26 extends the definition of Light from Figure 7.24 to 
include Polarized Light, which has additional properties, and Unpolarized Light (see Section 7.7.1 for 
a discussion of classification). It shows a specific light source, a Lamp and a Polarized Light Sensor. 

FIGURE 7.23

Items that flow in the Camera system.

FIGURE 7.24

Flow properties on blocks.
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The beam emitted from the Lamp has type Unpolarized Light and so is incompatible with the incoming 
light property of the Polarized Light Sensor. Note that this is an abstraction, and it is probably more 
accurate to suggest that the Polarized Light Sensor will generate incorrect results in the presence of 
Unpolarized Light. A SysML modeling tool is expected to provide a notification of the incompatibility 
through a message or a change in the color of the connector.

Flow property propagation
If a part is connected to multiple parts that have compatible flow properties and/or any given connec-
tor represents multiple links, then a value assigned to an out flow property on that part is propagated 
across all links; this is sometimes called fan-out. The opposite case, sometimes called fan-in, occurs 
when an in flow property on the part is compatible with many out flow properties on connected parts. 
SysML does not define the assignment of multiple inflowing values to a single flow property. For 
example, the flow property may have a multiplicity equal to the number of sources of incoming 
flows, or the flow property may have a multiplicity of 1 and some form of averaging might take place. 
The language can be extended using a profile, as described in Chapter 15, to clarify the intent and 
meaning.

FIGURE 7.25

Connected parts with flow properties.

FIGURE 7.26

Connected parts with incompatible flow properties.
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Item flows
The items that actually flow across a connector are specified by item flows. An item flow specifies the 
type of item flowing and the direction of the flow. For example, water may flow between a pump and a 
tank. While the flow properties associated with the parts on the ends of connectors define what can flow, 
the actual item flowing can be different. Specifically, the item flowing may be some other element in 
the generalization hierarchy of the types of the flow properties.

An item flow may have an associated property, called an item property, contained in the enclosing 
block, which identifies a specific usage of that item in the context of the enclosing block. In particular, 
multiple item properties may have the same type, but each item property represents a different usage. For 
example, the water flowing into a pump is one usage of water, while the water flowing out of the pump is 
another usage. The in and out flowing water would be represented by different item properties.

The item flow must be compatible with the flow properties on either end of its related connector. 
SysML has relaxed compatibility constraints to provide flexibility for how item flows are modeled. 
Effectively, the only constraint on the item flowing is that it must be in the same classification hierarchy 
as its source and target flow properties. However, a common approach to compatibility is that the type 
of the item flow is the same as or more general than the source flow property, and that the type of the 
target flow property is the same as or more general than that of the item flow. In other words, the flow 
is specified more generally as you transition from the source to the target. A simple example of this 
compatibility pattern is for the type of the source flow property to be intrusion alert status, the type of 
the item flow to be alert status, and the type of the target flow property to be status. Intrusion alert status 
can then leave a source part, cross the connector as alert status, and enter the part on the other side of 
the connector as status.  

Item flows are represented as black-filled arrowheads on a connector, where the direction of the 
arrowhead indicates the direction of flow. When there are multiple item flows on a connector, all the 
item flows in the same direction are shown in a comma-separated list floating near the arrowhead for 
the appropriate flow direction. Each item flow has a type name and item property name, if it is defined. 
Item flows with opposite directions can be shown on a single connector.  

Figure 7.27 shows the items flowing between various kinds of light sources and light sensors. A new 
kind of Polarized Light, Coherent Light, is added, which is the output from the Laser light source. The 
structure compartment of block Laser Test shows three parts typed by Laser and three by Polarized 
Light Sensor. The connectors between them show three possible item flows. The top two item flows 
illustrate the expected compatibility mode. The flow between l1 and s1 has item Coherent Light, which 
is the same as source flow property beam; the target flow property incoming light (from Figure 7.26) is 
Polarized Light, which is more general than the item flowing. The flow between l2 and s2 has type 
Polarized Light, which is more general than the source flow property and the same as the target flow 
property. Also illustrated, between l3 and s3 is the least constrained case, where the item flowing is 
Light, the root of the classification hierarchy. This last case does not adhere to the pattern noted above, 
but remains valid.

Items can also flow between connected reference properties. Figure 7.28 shows the flow of electricity, 
represented by the block DC, through the Mechanical Power Subsystem block first shown in Figure 7.11. 
The overall flow is from power source through the Distribution Harness to the various motors. Each item 
flow is represented by a corresponding item property owned by Mechanical Power Subsystem.

Item properties can be constrained in parametric equations, as described in Chapter 8. For an exam-
ple of this, see Figure 16.22 in Chapter 16.
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FIGURE 7.27

Item flows between parts.

FIGURE 7.28

Item flows between reference properties.
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7.5 � MODELING BLOCK BEHAVIOR
Blocks provide a context for behaviors, which is the SysML term covering any and all descriptions of 
how the block deals with inputs, outputs, and changes to its internal state. A block may designate one 
behavior as its main or classifier behavior, which starts executing when the block is instantiated. Other 
behaviors may be designated as methods, which provide the detail of how service requests are handled. 
These two kinds of behaviors may in turn invoke other behaviors of the block. Behaviors have param-
eters that are used to pass items into or out of the behavior before, after, and sometimes during 
execution.

As Chapters 9 through 11 describe, there are three main behavioral formalisms in SysML: activities, 
state machines, and interactions.
 
	•	� Activities transform inputs to outputs.
	•	� State machines are used to describe how the block responds to events.
	•	� Interactions describe how the parts of a block interact with one another using message passing.
 

SysML recognizes two other forms of behavior within the language. An opaque behavior is repre-
sented as a textual expression in some language external to SysML. A function behavior is similar to 
an opaque behavior with the added restriction that it is not allowed to affect the state of its owning block 
directly and may only communicate using parameters. Function behaviors are often used to define 
mathematical functions.

FIGURE 7.29

A signal classification hierarchy.
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The behaviors of a block can be shown in compartments of a block symbol. The classifier behavior 
compartment shows the name of the classifier behavior, and the owned behaviors compartment shows 
the names of all the other behaviors that the block owns. The Surveillance System block in Figure 7.30 
shows the name of its classifier behavior, which is a state machine called Surveillance System, and two 
of its owned behaviors, Monitor Site and Handle Status Request. These behaviors appear later in Chap-
ters 9, 10, and 11.

7.5.1 � MODELING THE MAIN BEHAVIOR OF A BLOCK
The main behavior (also called classifier behavior) of a block starts executing at the beginning of the 
block’s lifetime and generally terminates at the end of its lifetime, although it may terminate before 
then. Depending on the nature of the block, the choice of formalism for the classifier behavior is 
between state machines (if the block is largely event-driven) and activities (if the block is largely used 

FIGURE 7.30

Blocks with behavioral features.
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to transform input items to output items). A popular hybrid approach is to use a state machine to 
describe the states of a block and to specify an activity that executes when a block is in a given state or 
when it transitions between states. Behavior can also be specified independent of a block and can be 
allocated to blocks or parts of blocks.

When a block has a main behavior and also has parts with behaviors, the modeler should ensure that 
the behavior is consistent between the whole and the parts at each level of the system hierarchy. A main 
behavior may act as a controller that plays an active role in coordinating the behaviors of its parts. In 
this case, the behavior of the block is its main behavior, which is augmented by the main behaviors of 
its parts. Another approach is for the classifier behavior of the block to be an abstraction of the behavior 
of its parts, which is often called the black box view. In this case, the main behavior of the block repre-
sents a specification that the parts must realize. The behavior of the parts, often termed the white box 
view, interact in such a way that the black box behavior is preserved.

7.5.2 � SPECIFYING THE BEHAVIORAL FEATURES OF BLOCKS
Along with structural features, blocks can also own behavioral features that describe which requests 
a block can respond to. A behavioral feature may have an associated method that is a behavior invoked 
when the block handles a request for the feature. There are two types of behavioral features: operations 
and receptions.  

An operation is a behavioral feature that is typically triggered by a synchronous request (i.e., when 
the requester waits for a response). Each operation defines a set of parameters that describes the argu-
ments passed in with the request, or passed back out once a request has been handled, or both. Note that 
an operation may be triggered by an asynchronous request (i.e., when the requester does not wait). In 
that case, no arguments are passed back to the requester.  

A reception is associated with a signal that defines a message with a set of attributes that represent 
the content of the message; the parameters of the reception must be the same as the attributes of the 
associated signal. The attributes of the signal thus indirectly define the set of arguments passed in with 
the request. Receptions in different blocks can respond to the same signal, so frequently used messages 
can be defined once and reused in many blocks. The major difference between an operation and a 
reception is that operations may be triggered by both synchronous and asynchronous requests whereas 
receptions may only be triggered by an asynchronous request. Typically, an operation triggers an imme-
diate response from the block by executing its associated method, whereas requests for receptions are 
handled by the block explicitly accepting the request, for example, when a transition between states in 
the state machine for a block is triggered by the reception’s signal, or when an activity of the block 
includes an accept signal action for the signal.

Behavioral features are discussed further in the activity, interaction, and state machine chapters—
Chapters 9 through 11, respectively.

Signals are defined using a box symbol with a solid outline and the keyword «signal» before the 
signal name. A signal symbol has a single unlabeled compartment that contains its attributes with the 
form:

attribute name: attribute type [multiplicity]

Figure 7.29 shows a set of signals that are used by a surveillance system. The signals are organized 
into a classification hierarchy, with each new layer in the hierarchy adding a new signal attribute (see 
Section 7.7 for a discussion of classification). For example, the Status Report signal has three 



1477.5  Modeling Block Behavior

attributes: report, which it defines directly; log time, from its relationship to Status Message; and id, 
from its relationship to System Message.  

Operations and receptions are shown in a separate compartment of a block labeled operations and 
are described by their signature. The signature for an operation is a combination of its name along with 
parameters, and optional return type as follows:

operation name (parameter list):return type

The parameter list is comma-separated with the format:

direction parameter name: parameter type

Parameter direction may be in, out, or inout.  
The signature for a reception is a combination of its name and a list of parameters as follows (the 

reception’s name is always the name of its associated signal):

«signal» reception name (parameter list)

As of SysML 1.3, a block must designate whether it makes requests or handles requests for the 
behavioral features it defines. Requests for a provided behavioral feature are handled by the defining 
block. If a block defines a required behavioral feature, it indicates that it expects some external entity 
to handle any requests it makes for the feature. Behavioral features may be both required and 
provided.

A provided behavioral feature is indicated by the keyword prov preceding the signature of the feature. 
A required behavioral feature is indicated by the keyword reqd. The keyword provreqd indicates that a 
feature is both provided and required. If no keyword is shown, the feature is assumed to be provided.

Figure 7.30 shows a view of the services provided and required by Surveillance System and Command 
Center. They both have the same set of receptions, which correspond to the signals described in Figure 
7.29. Most of the receptions defined by the Surveillance System are required, which means that it expects 
its environment to accept the signals it sends out, with the exception that it expects to receive Status Ack 
signals and so provides a reception for them. The reverse is true for Command Center, which only has one 
required reception; the rest are provided as indicated by the absence of a keyword. In addition, Surveil-
lance System provides an operation to get the video related to any incident that it has reported, and the 
Command Center requires such an operation. The Command Center provides an on-demand threat report, 
detailing currently known issues; the Surveillance System requires such an operation. The Command 
Center also provides and requires two other operations, alert summary and status report, which are used 
to communicate between command centers and by external agencies investigating incidents.

7.5.3 � MODELING BLOCK-DEFINED METHODS
Some behaviors owned by the block only execute in response to a particular stimulus, specifically when 
a request is made via a provided behavioral feature (operation or reception). Such a behavior is called 
a method, and it is related to the behavioral feature that was requested.

Unlike the main block behavior, methods typically have a limited lifetime, starting their execution 
following the stimulus, performing their allotted task, and then terminating, perhaps returning some 
results. Methods are usually specified using activities, opaque behaviors, or function behaviors.

It should be mentioned that not all behavioral features require methods. Requests associated with 
behavioral features can be handled directly by behaviors using the specialized constructs such as an 
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accept event action, described in Chapter 9, Section 9.7, and a state machine trigger, described in Chapter 
11, Sections 11.4.1 and 11.5. A behavioral feature cannot be related to both a method and these other 
constructs.

SysML supports the notion of polymorphism, which means that many different blocks may respond 
to the same stimulus, but each may do so in a specific way, by invoking a specific method. Polymor-
phism is strongly associated with classification, as described in Section 7.7.

7.5.4 � ROUTING REQUESTS ACROSS CONNECTORS
Requests for behavioral features may be communicated across connectors between parts and references. 
When the behavior of a block makes a request for a required behavioral feature, then that request is com-
municated across any connector whose other end is targeted by the request. Any such target must have a 
provided behavioral feature (i.e., operation or reception) of the same kind with a compatible signature.

The signatures of two features must match all the following criteria below to be compatible. Firstly, 
the feature kind, parameter names, and parameter directions must be the same. Secondly, the type, 
multiplicity, ordering, and uniqueness characteristics of parameters must be compatible, which as a 
general rule means that input parameter characteristics on provided features must be the same or more 
general than the corresponding characteristics of required features, and that output parameter charac-
teristics on provided features must be the same or more specialized than the corresponding character-
istics of required features. For types, general and specialized refer to their position in a classification 
hierarchy. For multiplicity, a broader range (i.e., more values) is considered more general. For ordering, 
unordered is considered more general, and for uniqueness, nonunique is considered more general. For 
a discussion of ordering and uniqueness please refer to Chapter 8, Section 8.3.1.

As with flow properties, if a part is connected to multiple other parts or if a connector between a part 
and another part represents multiple links, then requests can be routed across many links whose ends have 
compatible behavioral features. If there are multiple links that fan-in, then the requests either immediately 
trigger the execution of a method per the request or they are queued until a behavior accepts them. If there 
are multiple links that fan-out, then an outgoing request is propagated across all links whose ends are 
targets of the request. However, SysML does not define the mechanism by which multiple return values 
are handled by the behavior that made the request. This is left to be specified by an execution profile.

As can be seen from Figure 7.30, Command Center and Surveillance System have a number of compat-
ible behavioral features that can form the basis of communication between the two. Command centers can 
also communicate using alert summary and status report, which are both provided and required. By con-
trast, according to the definition in Figure 7.30, two connected surveillance systems would have nothing to 
say to one another. A typical configuration of these blocks is shown in Figure 7.16 in which the connector 
between residence and residential surveillance center has multiple links, which means that residential sur-
veillance center needs to support fan-in requests for the operations and receptions that it provides.

7.6 � MODELING INTERFACES USING PORTS  
Modeling interfaces is a critical aspect of systems modeling. SysML allows modelers to specify a 
diverse set of interfaces, including mechanical, electrical, software, and human–machine interfaces. In 
addition, interfaces that specify information flow must be capable of specifying both the logical content 
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of the information and the physical encoding of the information in bit, bytes, and other signal charac-
teristics. Although system interfaces may be specified simply using the features of blocks and connec-
tors between parts, SysML also introduces the concept of ports, which allow a more robust and flexible 
definition of system interfaces.

A port represents an access point on the boundary of a block and on the boundary of any part or 
reference typed by that block. A block may have many ports that specify different access points. Ports 
can be connected to one another by connectors on an internal block diagram to support the interaction 
between parts.  

SysML 1.3 introduced two new kinds of ports called full ports and proxy ports. A full port is 
equivalent to a part on the boundary of the parent block that is made available as an access point to and 
from the block. A full port is typed by a block and can have nested parts and behaviors, and can modify 
incoming and outgoing flows like any other part. A full port can represent a physical part such as an 
electrical connector or a mechanical interface assembly, and therefore is a part in the system parts tree. 
The other kind of port is a proxy port. By contrast, a proxy port does not constitute a part of its parent 
block, but instead provides external access to and from the features of its parent block or the block’s 
parts without modifying its inputs or outputs. A proxy port is essentially a pass through or relay that 
specifies what features of the owning block can be accessed at the port. A proxy port is typed by an 
interface block that specifies the features that can be accessed via the port. The interface block cannot 
have internal behavior or parts (or full ports), but may contain nested proxy ports.

Both proxy and full ports can support the same set of features, which are behavioral features and 
any kind of property (except proxy ports do not support parts). In either case, users of a block are only 
concerned with the features of its ports, regardless of whether the features are exposed by proxy ports 
or handled by full ports directly.

The decision on whether to use ports and which kind of port to use is a methodological question that 
often relates to how a block is intended to be used. A proxy port is often used to specify the system as a 
black box, in which case the interface specification does not specify any internal structure of the system. 
On the other hand, a full port is used to specify the interface in terms of an actual part of the system and 
enable that part to modify the inputs and outputs to the owning block. The choice between full and proxy 
ports is considered by some to be a design decision. To support this approach, a port can be created and 
connected without being designated as either a full or proxy port, allowing the decision to be deferred.

The concept of proxy ports and full ports was added in SysML 1.3 and was intended to replace the 
flow port and standard port concepts in SysML 1.2. In general, proxy ports provide the full functional-
ity of SysML 1.2 flow ports and standard ports, but also add capability for nesting ports and for specify-
ing nonflow properties. In SysML 1.3 and SysML 1.4, flow ports and standard ports are retained in the 
language, but the intent is to remove them in a future version. A discussion of these deprecated features 
is provided in Section 7.10.

7.6.1 � FULL PORTS
Full ports are similar to parts, in that they are included in the parts tree of their owning block. Unlike 
parts, however, they are shown graphically on the boundary of their parent. An external connector can 
connect to a full port even if its parent block is encapsulated (i.e., isEncapsulated is set to true per 
Section 7.3.1), whereas connections to nested parts cannot be made if a block is encapsulated. Full 
ports are typed by blocks and can possess the full set of features available to any other block.
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Full ports are shown as rectangles (typically square) intersecting the boundary of their parent sym-
bol. The name, type, and multiplicity of the port are shown in a string either inside or floating near the 
port symbol in the form:

«full» port name: block name[multiplicity]

When a port’s type has flow properties, an arrow inside the port’s symbol can be used to provide 
information about their direction. If all flow properties have direction in, then the arrow faces inwards. 
If all flow properties have direction out, then the arrow faces outwards. If there is a mix of directions or 
all flow properties have direction inout, then two opposing arrowheads are used. If desired, the symbol 
for a full port can include the same set of compartments as a part symbol.

Ports of all kinds can be shown in a compartment on a block symbol labelled ports, using the string:

direction port name: block name[multiplicity]

Direction is only shown when the port’s type has flow properties. A separate compartment labelled 
full ports just shows full ports.

Figure 7.31 shows a block definition diagram depicting a Mount block. The Mount has four mount-
ing points (Bolts) that are intended to be used to attach the Mount to a bracket, and another four to 
attach the Mount to a camera. As indicated by the «full» keyword, the mounting points are represented 
as full ports, typed by two blocks, M10 Bolt and M5 Bolt (10 mm and 5 mm respectively). The bracket 
mounting needs larger bolts and so the bracket mounting points are larger in diameter, as indicated by 
the name of the port types.

Full ports can contain nested ports, whose types may contain ports themselves, thus leading to a 
nested full port hierarchy of arbitrary depth. Nested ports are shown as rectangles intersecting the 
boundary of their parent port symbol. They may be placed anywhere on the boundary with the caveat 
that they may not also intersect the symbols representing elements higher in the port nesting hierarchy. 
A full port can also have nested proxy ports. In this case for example, the full port may represent a 
physical connector, but the proxy ports are used to specify selected features of the connector, such as 
its pin out specifications.

Figure 7.32 shows a block definition diagram that describes the mounting interface for the ACME 
cameras. This particular diagram shows how the Camera is fixed in place. It has a full port called mount 
typed by the Mount block described in Figure 7.31. The ports of Mount can be seen on the boundary of 

FIGURE 7.31

A block with full ports.
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their parent port. Although nested ports of full ports can be placed anywhere on the boundary of their 
parent symbol (with the caveat noted above), the nested ports of mount have been placed so that those 
intended to be connected externally are shown on the outside and those intended to be connected inter-
nally are shown on the inside.

7.6.2 � PROXY PORTS
A proxy port differs from a full port in that it does not represent a distinct part of the system, but is a 
modeling construct that exposes features of either its owning block or parts of that block. Proxy ports 
are typed by interface blocks, a specialized form of block that does not contain any internal structure 
or behavior. Whereas a full port is similar to a part, a proxy port is similar to a reference property, which 
provides access to a selected set of features of its owning block or its parts.

An interface block is shown by a block symbol with the keyword «interfaceBlock» and can 
include compartments for its features, excluding a parts compartment and full ports compartment.

Proxy ports, like full ports, are shown as rectangles intersecting the boundary of their parent sym-
bol. The name, type, and multiplicity of the port are shown in a string floating near the port in the form:

«proxy» port name: interface block name[multiplicity]

Proxy port symbols can contain compartments that list their various features, including properties, 
nested ports, and behavioral features.

Block symbols can list their proxy ports in a proxy ports compartment, using the string:

direction port name: interface block[multiplicity]

Figure 7.33 shows several interface blocks on a block definition diagram. They all represent the 
physical interfaces that are needed to physically connect a camera to its environment. Interface blocks 

FIGURE 7.32

A full port with nested ports.
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can only contain proxy ports and not full ports, so all the ports have the keyword «proxy». Figure 7.37 
shows two examples of the proxy ports compartment.

As stated above, interface blocks can own proxy ports, enabling proxy ports to have further nested 
proxy ports. Nested ports on proxy ports are shown in a similar fashion to nested ports on full ports, 
with the exception that the nested ports of proxy ports are always shown on the outside boundary of 
their parent symbol.

Figure 7.34 shows the interface blocks from Figure 7.33 in use to depict the physical interface to a 
Wired Camera (the keywords «full» and «proxy» are elided on all the ports to reduce clutter). The 
Wired Camera has three proxy ports for ethernet, power, and video, and a full port for the mount, as 
shown in Figure 7.32. Note that the bracket mounting points—but not the camera mounting points—are 
shown on mount, because this diagram is intended to show only the external interface of the camera.

Behavior ports
A proxy port can be defined to be a behavior port, which indicates that it provides access to features of 
its owning block rather than to the features of some internal part of the owning block. The flow properties 
of a behavior port can be mapped to the parameters of the block’s main (or classifier) behavior. SysML 
does not explicitly state how this should be done, allowing modelers using different methods or operating 
in different domains to establish different approaches. (See Section 7.5.1 for a description of the main 
behavior for a block.) Compatibility between features on a behavior port and features on its owning block 
are similar to those for features across connectors, except that for features with direction (i.e., flow proper-
ties and behavioral features), the directions must be the same as opposed to the opposite of each other.

A behavior of a block can both send and receive information through an arbitrarily nested behavior 
port by explicitly specifying the path to the port either when accepting events corresponding to features 
on the port or when sending signals or calling operations See Chapter 9, Sections 9.7 and 9.11.2 for 
further discussion on this.

A small round angle symbol (similar in form to an action or state) connected to a proxy port indi-
cates that it is a behavior port. For an example of this notation, see Figure 7.46.

FIGURE 7.33

Interface blocks with proxy ports.
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7.6.3 � CONNECTING PORTS  
When a block has ports, the ports can also be depicted on the part and reference properties that are 
typed by this block on an internal block diagram. Ports can be connected either to other ports or directly 
to parts using connectors. A port can be connected to more than one other port or part, although each 
connection requires a separate connector.  

In terms of feature compatibility, there is no difference between connecting to a full port and 
proxy port from an external perspective. However, the internal connections to proxy ports have dif-
ferent characteristics than the internal connections to full ports. An internal connector is one that 
connects a port to a part owned by the same block that owns the port. An external connector is one 
that connects a port to a part or port owned by some other block. The major difference between con-
necting full ports and proxy ports internally is the determination of feature compatibility, which is 
discussed in the sections below. Proxy ports that are behavior ports cannot be connected internally to 
parts of the owning block.  

The notation for connectors was introduced in the Connecting Parts on an Internal Block Diagram 
subsection of Section 7.3.1. Ports shown on the diagram frame of an internal block diagram represent 
the ports on the enclosing block designated by the diagram frame.  

In Figure 7.35, the ports on the diagram frame correspond to the ports on the Wired Camera block. 
Figure 7.35 shows how the ports of Wired Camera are connected internally. The Electronics Assembly 
and Mount Assembly (ma) are custom assemblies. The modeler decided not to encapsulate them, so 
their internal parts are connected directly from the outside without connecting through an intermediate 

FIGURE 7.34

A block with nested ports.
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port on their boundary. The video port of Wired Camera is connected directly to the Composite Con-
verter part of Electronics Assembly. Similarly, the mount port is connected to the Platform part within 
the Mount Assembly. The Power Supply and Ethernet Card blocks are off-the-shelf components that are 
encapsulated, so they must be connected via their ports and do not allow direct connection to their 
internal parts. The ethernet port of Wired Camera is connected to a port on the Ethernet Card, and the 
power port is connected to a port on the Power Supply.

Connecting full ports
Connecting full ports has the same implications and constraints as connecting parts. In particular, the 
rules for determining the compatibility of behavioral features and flow properties for connected full 
ports is the same as that for parts, as described in Section 7.4.3.

Figure 7.36 shows the Optical Assembly being exercised in a test environment with the equipment 
defined in Figure 7.24. As can be seen from the directions of the flow properties on the connected ports 
and parts, Light can flow through the components of the Optical Test Bench. A Light Source emits a 
beam of light that falls on the Filter of the Optical Assembly. The filtered light output from the Filter is 
processed by optical components in the Focusing Assembly to yield focused light, which flows out from 
the Optical Assembly through a protective screen, and is incident on the Light Sensor. This sensor mea-
sures various properties of the light it receives.

When a full port represents a physical component with substructure, the port may be further decom-
posed with its own parts and ports. Connectors to and from the port then may need to be decomposed 
in order to show the details of how the port is connected. Decomposition of ports and connectors is 
described later in this section.

FIGURE 7.35

Connecting ports internally to a block.
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Connecting proxy ports
As stated above, the default compatibility rules for external connectors are the same for both proxy 
ports and full ports (and for parts, if encapsulation is not enforced). However, the compatibility rules 
for behavioral features and flow properties across internal connectors differ between full ports and 
proxy ports. Whereas internal connectors between full ports are still concerned with matching an out-
ward flow from one part to an inward flow on another part, internal connectors to and from proxy ports 
are concerned with matching features on the type of the proxy port with corresponding features of the 
owning block or its parts. Because proxy port features represent the features of the internal parts to 
which they are connected, they require the behavioral features and flow properties to match (i.e., have 
the same rather than opposite directions) to be compatible.

Proxy ports can be connected internally to parts, full ports, or other proxy ports. If a proxy port is 
connected to a full port or part, the connector must be a binding connector, which indicates that the 
proxy port is literally a proxy for the full port or part, and does not itself represent a separate structural 
element.

In Figure 7.35, the power port on Wired Camera is connected to the power port on the Power Supply 
via an untyped internal connector. Both ports are typed by 3 Pin AC Plug Interface, whose definition 
can be seen on Figure 7.37. The ends of the connector are feature compatible because both have a cur-
rent flow property with compatible types and inout flow direction, and they both have a power flow 
property with compatible types and the same direction.

FIGURE 7.36

Connecting parts and full ports.
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The block definition diagram in Figure 7.37 shows the definitions of both 3 Pin AC Plug Interface 
and 3 Pin AC Socket Interface with an association, Plug to Socket, between them. It also shows a block 
called Wired Camera Wall Mounting with a structure compartment depicting how power is supplied to 
the camera. The external connector between wall and camera is typed by Plug To Socket. As discussed 
in Section 7.3.3, the ends of the connector are compatible with the ends of the connector’s type. The 
ends of the connector also have compatible flow properties, including a current flow property whose 
types are the same and direction is inout and a power flow property whose types are the same and whose 
directions are the opposite of each other. They also both have max current value property whose type 
is AC Current. In this case, direction compatibility rules do not apply because it is not a directed 
feature.

Conjugating ports
When two blocks interact, they may exchange similar items but in opposite directions. Rather than 
creating two separate specifications for the proxy ports on the interacting blocks, SysML provides 
a mechanism called a conjugate port to reuse a single interface block for both ports. One port is 
set to be the conjugate of the other, which indicates that the direction of behavioral features and 
flow properties in the interface block is reversed with respect to this port. The conjugation also 
applies to nested ports, reversing the direction of any of their directed features, unless of course 
they themselves are conjugated to offset the reversal. Conjugation also affects the directional 

FIGURE 7.37

Connecting proxy ports with typed connectors.
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notation on port symbols, including inward and outward arrows on port symbols, reversing their 
direction.

Full ports, like parts, cannot be conjugated. The blocks that type full ports and parts contain behav-
iors that rely on directed features like flow properties and operations having a defined direction. Con-
jugation of the part or port typed by that block reverses the direction of these features, which violates 
the assumptions on which its internal behaviors are based.

Conjugated ports are indicated by placing a tilde (∼) in front of the type of the port:

port name:∼Interface Block Name.

An example of this notation can be seen in Figure 7.41.

Decomposing ports and connectors
As described in Sections 7.6.1 and 7.6.2, both kinds of ports may have nested ports, which may be sepa-
rately connected. Figure 7.37 and Figure 7.35 showed an external connector and internal connector 
respectively to the power port of Wired Camera. The ends of each connector have nested ports (shown 
on Figure 7.34) which themselves can be connected. The connectors can be shown to connect directly 
to the nested ports, for example in Figure 7.35.

Alternatively, an association block can be used to specify this additional detail. Section 7.3.3 
described the use of an association block for defining the internal structure of connectors. This internal 
structure can simply contain a set of connectors that define the connectors between nested ports of the 
association ends. When a connector is typed by an association block, the actual interaction between the 
connected ends will typically be handled by the internal structure of the association block, which may 
define a different set of rules for feature compatibility.

In Figure 7.38, the association on Figure 7.37 is replaced by an association block to show the con-
nections between nested ports. The association block also adds a constraint that the max current of the 
plug must be greater than or equal to the max current of the socket. The connector on Figure 7.37 does 
not need to change.

Connectors between full ports can be typed by association blocks to show the structural details of 
how the connection is achieved. Figure 7.39 shows the definition of an association block, Mount Inter-
face, which provides the detail of how a Mount and Mounting Plate are connected.

Figure 7.40 shows the internal block diagram for the Mount Interface association block, previously 
described in Figure 7.39. It shows that each M5 Bolt on the Mount is connected to an M5 Hole on the 
Mounting Plate and held in place with an M5 Nut.

The block diagram in Figure 7.41 shows part of a logical rather than physical view of a system. The 
interface block Camera Interface has two proxy ports, video and control, the first for digital video and 
the other for controlling the camera’s operation. The interface block Video Interface types video and 
contains a single in flow property typed by MPEG4. The interface block Control Interface types the 
control port and contains a set of receptions and operations, all of which are required as described in 
Section 7.5.2. Camera Interface conjugates both its ports to specify an interface that can be used to type 
a port of Camera. The video port is shown in the proxy ports compartment as out even though its only 
flow property has direction in, because it is conjugated. Camera has a proxy port, digital if, typed by 
Camera Interface, which specifies the services required by a client of the Camera. The nested video 
port is shown with an outward facing arrow to indicate its effective direction.

The internal block diagram for Surveillance System in Figure 7.42 shows the communication 
between two components of the Surveillance System. As seen in Figure 7.41, Camera has a single 
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proxy port with two nested proxy ports, control and video, whereas Monitoring Station has two sepa-
rate proxy ports. Nevertheless, these two sets of ports have compatible types and can be connected, 
because the digital if port of Camera is not conjugated, but its nested ports are, resulting in compatible 
conjugation. The same would be true if the digital if port was conjugated and the nested ports were not. 
The ports have various multiplicities, which is explained in the next section.

FIGURE 7.39

Defining a structural connection using an association block.

FIGURE 7.38

Connecting proxy ports in an association block.
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FIGURE 7.40

Showing structural connections in an association block.

FIGURE 7.41

Defining nested ports with conjugation.
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Connecting a port to multiple ports
As stated above, a port may be connected to many other ports. In addition, any connector may itself 
represent multiple links (i.e., connections between block instances). This is true of both internal and 
external connectors. The number of links on a connector is determined by the multiplicity of both the 
port and its owner.

If a port is connected to multiple other ports, then items and requests exiting the port may be routed 
to some or all of the other ports depending on whether they have compatible features. This similarly 
applies to items and requests entering the port from multiple other ports.

In Figure 7.42, many cameras are connected to one Monitoring Station as indicated by their multi-
plicity. The video port on the Monitoring Station has multiplicity 1 but there are 0 to many camera video 
ports connected to it. The multiplicities on the connector between them indicates that the designer of 
the Monitoring Station wanted video from all the camera video ports to come in through one port. The 
software in the Monitoring Station must therefore be able to deal with the interleaving of video data 
from more than one source. In contrast, the control port of the Monitoring Station has a multiplicity of 
0..* and the nested control port of cameras has multiplicity 1. In this case, because there are potentially 
many instances of cameras, the actual number of connected ports might be the same. This possibility is 
confirmed by the connector between them, which has default multiplicity (1..1), requiring that one 
instance of control port on the Monitoring Station is connected to one (nested) control port on a 
Camera.

The internal block diagram in Figure 7.43 shows two external connectors to the ethernet ports proxy 
port of router (note: proxy stereotype is elided). One connector connects to the work station and one to 
the cameras. As indicated by the lack of multiplicities, the work station connector is one to one; one 
instance of the ethernet ports port on the router is connected to one ethernet port instance on the other 
end of the connection. However, the camera connector has a multiplicity of 4 on the router end, indicat-
ing that four instances of ethernet ports are connected via this connector. The ethernet ports has multi-
plicity 6. One is connected via the work station connector and 4 via the camera connector, leaving one 
spare port on the router. The caret shown before the name of modem and workstation indicates that they 
are inherited features. This notation is discussed in Section 7.7.

FIGURE 7.42

Connecting nested ports.
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SysML does not say anything about which port instances are connected by links, although when the 
connected ports and the connector all have the default multiplicity of 1, there is no ambiguity about 
which instances are connected. In other cases, such as in Figure 7.43, there is ambiguity as to which 
ethernet ports are connected to which cameras. If it is important to remove this ambiguity, either the 
design has to be elaborated to have an unambiguous configuration or additional data needs to be added 
via a profile.

7.6.4 � MODELING FLOWS BETWEEN PORTS  
As noted earlier in Section 7.4.3, item flows can be shown on connectors between parts. Item flows can 
also be shown on port-to-port connectors.  

The same compatibility rules apply for parts and full ports, but the rules for connecting to proxy 
ports differ in the case of internal connectors. When an item flow appears on an internal connector from 
a proxy port, the matching rule for flow direction is the opposite of the rule for external connectors, 
although most other compatibility rules are the same. If the flow properties are unidirectional (i.e., not 
inout), the direction of the item flow must be the same as the direction of both the source and target 
flow properties.

Figure 7.44 shows the route that light takes from an external source to the Optical Assembly of the 
Camera. Unpolarized Light is incident on the Protective Housing, which through an unspecified means 
polarizes the light to reduce glare. The resulting Polarized Light then flows into the Camera Module 
through a proxy port, light in, which is a proxy for the full port filter on the Optical Assembly. Note that 
the label for the flow properties compartment of the Protective Housing part is prefixed by a colon. This 
is the standard mechanism for indicating that these are features of the block that types the part.

FIGURE 7.43

Connectors with non-default multiplicity.
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7.6.5 � USING INTERFACES WITH PORTS
An alternative method for describing a set of behavioral features supported by a port is to define them 
in an interface. Although they are redundant with the capabilities of interface blocks, interfaces are 
retained in SysML since they are used in UML, and some methods may choose to use the same model-
ing approach in both SysML and UML. One or more interfaces can be related to a port to define the 
behavioral features it provides or requires. Typically, an interface describes a set of behavioral features 
related to some specific service, such as tracking or navigation, but the allocation of the services offered 
by a block to its ports is a methodological question. Interface definitions can be reused as needed to 
define the interfaces of ports on many blocks.

Modeling interfaces
Interfaces are defined on a block definition diagram as box symbols with the keyword «interface» 
before their name. Interface symbols have an operations compartment like block symbols.

Figure 7.45 shows five interfaces that describe different logical groupings of services for aspects of 
the surveillance system. For example, Test Tracking contains a set of receptions that allow the reporting 
of progress during camera testing. The other interfaces support other services (e.g., user and route 
management).

Adding interfaces to ports
A required interface on a port specifies one or more operations required by behaviors of the block (or 
its parts). A provided interface on a port specifies one or more operations that a block (or one or more 
of its parts) must provide. A part that has a port with a required interface needs to be connected to 
another part that provides the services it needs, typically via a port with a provided interface. The com-
patibility of behavioral features on ports defined by interfaces is the same as for ports defined by inter-
face blocks.

The required and provided interfaces of a port are represented by a notation called “ball-and-socket 
notation”. An interface is represented by either a ball or socket symbol with the name of the interface 
floating near it. The ball depicts a provided interface, and the socket depicts a required interface. A solid 
line attaches the interface symbol to the port that requires or provides the interface. A port can have one 

FIGURE 7.44

Item flows between ports.
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or more required interfaces and one or more provided interfaces, and hence can be connected to mul-
tiple interface symbols.

Figure 7.46 shows the set of ports that define interface points on the blocks UI and Monitoring Sta-
tion. UI has four ports: one that provides services, two that require services, and one that both provides 
and requires services. The port test feedback provides the services defined by the interface Test Track-
ing. The port login services requires the services defined by the interface Login Support. The port user 
if offers services defined in User Inputs and requires services defined by User Outputs. All of UI’s ports 
are behavior ports as indicated by the behavior port symbol. Monitoring Station has five ports. Two are 
defined using interface blocks as shown in Figure 7.41; the other three are defined using the interfaces 
defined in Figure 7.45.

FIGURE 7.45

A set of interfaces used to define provided or required services.

FIGURE 7.46

Defining a service-based interface using proxy ports.



CHAPTER 7  MODELING STRUCTURE WITH BLOCKS164

Required and provided interfaces can also be shown on an internal block diagram using the ball-
and-socket notation, if required, although this often adds clutter to the diagram. If the ball-and-socket 
notation is used, a quick visual check of the compatibility of connected ports is easy to perform. Ports 
connected by internal connectors should have interface symbols with the same name and shape. Ports 
connected by external connectors should have interface symbols with the same name and different 
shapes.

Figure 7.47 displays a more complete internal block diagram for Surveillance System, adding the 
user interface part. Surveillance System delegates the handling of requests on its user login port to the 
user interface part. User interface uses Login Support services of the Monitoring Station, via its login 
services port, to provide data on current users, and also passes route management requests via its route 
requests port. The Monitoring Station requests Test Tracking services of user interface. The internal 
connector from Surveillance System.user if has matching symbols for the provided and required inter-
faces on both ends. The external connectors between user interface and the Monitoring Station have 
opposite symbols. Note that the behavior port notation has been elided in this figure.

7.7 � MODELING CLASSIFICATION HIERARCHIES USING GENERALIZATION  
In SysML, a classifier is a type that may be used as the basis for more specific types. The classifiers so 
far encountered in this chapter are blocks, value types, interfaces, interface blocks, and signals.

The different kinds of classifiers can appear on a block definition diagram and can be organized into 
a classification hierarchy. In a classification hierarchy, each classifier is described as being more gen-
eral or more specialized than another. Typically a general classifier contains a set of features that are 
common to more specialized classifiers. A more specialized classifier will inherit the common features 
from the more general classifier, and may contain additional features that are unique to it. The 

FIGURE 7.47

Connecting service-based ports on an internal block diagram.
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relationship between the general classifier and specialized classifier is called generalization. Different 
terms are used to identify the classifiers at the ends of a generalization relationship. In this chapter, the 
general classifier is called the superclass, and the more specialized classifier is called the subclass.

Classification can facilitate reuse when a subclass reuses the features of a superclass and adds it own 
features. The benefits of such reuse can be substantial when the superclass has significant detail or 
when there are many different subclasses.

This section deals initially with the inheritance of structural features (i.e., properties and ports) of a 
block, covering both the addition of features and the redefinition of existing features in subclasses. 
Although the focus for this section is on blocks and interface blocks, other classifiers with structural 
features—such as interfaces and value types—can also be organized in the same way. For example, a 
subclass of a more general value type may add specific units and quantity kinds.

In addition to classification for reuse, classification can also be used to describe specific configura-
tions of a block, to identify unique configurations for testing, or to serve as the input to simulations or 
other forms of analysis.

Classification also applies to behavioral features and can be used to specialize blocks that respond 
to incoming requests in a particular way. Classification of behavioral features and the semantics implied 
by the use of classification are covered by numerous texts on object-oriented design, and so will not be 
dealt with in any detail here.

Generalization is represented by a line between two classifiers with a hollow triangular arrowhead 
on the superclass end of the relationship. Generalization paths may be displayed separately, or a set of 
generalization paths may be combined into a tree, as shown in Figure 7.48.  

Figure 7.48 shows two subclasses of Camera: Wired Camera and Wireless Camera. Both of the 
subclasses require all the characteristics of Camera but add their own specialized characteristics as 
well. Wired Camera has both a wired Power Supply and a wired Ethernet Card. The Wireless Camera 
uses a WiFi (Wireless Ethernet) Card to communicate and is battery-driven. It also includes a value 
property for battery life.

It can be useful to show the inherited features in the symbol for the subclass, particularly if the 
subclass is shown on a separate diagram from its superclasses. In that case, the feature is shown pre-
fixed by a caret (^) symbol. An example of this notation can be seen in Figure 7.43.

7.7.1 � CLASSIFICATION AND THE STRUCTURAL FEATURES OF A BLOCK
Different blocks in a classification hierarchy have different structural features, with subclasses adding 
features not present in their superclasses. Not all features added in subclasses are new; some are intro-
duced to override or otherwise change the definition of an existing feature, which is called redefinition.

When a feature from a superclass is redefined in a subclass, the original feature in the superclass is 
no longer available to the subclass. The more specific feature in the subclass, which is called the rede-
fining feature, is used in place of the feature in the superclass, which is called the redefined feature. The 
feature in the subclass often has the same name as the feature in the superclass. When used in place of 
the redefined feature, the redefining feature may:
 
	•	� Restrict its multiplicity (for example, from 0..* to 1..2, in order to reduce the number of instances 

or values that the feature can hold).
	•	� Add or change its default value.
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	•	� Provide a new distribution or change an existing distribution.
	•	� Change the type of the feature to a more restricted type (in other words, a type that is a subclass of 

the existing type).
 

Redefinition is shown in braces after the name string of the redefining feature in the subclass, using 
the keyword redefines followed by the name of the redefined feature.

In the Components package, two motor modules are described for use in the system. Both motor 
modules share a number of features in common; for example, they both have some common value 
properties, such as weight, power, and torque. In Figure 7.49, a general concept of Motor Module is 
introduced to capture the common characteristics of the two motor modules.

In addition to value properties, Motor Module defines a common concept of a control input using a 
proxy port. The Brushless DC Motor Module and the Stepper Motor Module are represented as sub-
classes of this common concept with special features of their own, such as the step size and position 
output port for the Stepper Motor Module. In addition, the common properties from Motor Module 
have been redefined in the subclasses in order to place bounds on their values that are appropriate to the 
type of motor. The value properties are described by an «interval» probability distribution to repre-
sent the range of values they can have in their given subclass.

7.7.2 � CLASSIFICATION AND BEHAVIORAL FEATURES
Just as the structural features of blocks and interface blocks can be organized into classification hierar-
chies, the behavioral features of blocks can be treated in a similar fashion. A summary description of 

FIGURE 7.48

Example of block specialization.
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the classification of behavioral features and corresponding behaviors is included here. A more complete 
discussion is beyond the scope of this book but can be found in many object-oriented design books.

General operations or receptions are described at an abstract level in the classification hierarchy, 
and more specific operations and receptions are described in more specialized blocks. As with struc-
tural features, the behavioral features of superclasses may be redefined in subclasses to modify their 
signature. Interfaces can also be classified and their behavioral features specialized in the same fashion 
as blocks.

The response of a block to a request for a behavioral feature may also be specialized. Although a 
behavioral feature may be defined in a general block, the method for that feature in a given specializa-
tion of the block may be unique to that block (see Section 7.5.3 for a discussion of methods). In soft-
ware engineering, this phenomenon is called polymorphism—from the Greek for “many 
forms”—because the response to a request for a given behavioral feature may be different depending 
on the method that actually handles the request.

In object-oriented programming languages, polymorphism is handled by a dispatching mechanism. 
If a behavior sends a request to a target object, it knows the type (e.g., block) of the target object and 
that it can support the request. Due to specialization, however, the target object can be a valid subclass 
of the requested type, and may implement a different response to the request. The dispatching mecha-
nism can ensure that the appropriate method is invoked to handle the request.

7.7.3 � MODELING OVERLAPPING CLASSIFICATIONS USING GENERALIZATION SETS
Sometimes a subclass may include features from multiple superclasses. This is called multiple gener-
alization or sometimes multiple inheritance. The subclasses of a given class may be organized into 
groupings based on how they can be used for further classification. For example, a superclass Person 
may have subclasses that represent the characteristics of an Employee OR a Manager in their job AND 
subclasses that represent the characteristics of a Woman OR a Man as their gender. This situation can 
be modeled using generalization sets, as shown in Figure 7.50.

FIGURE 7.49

Showing a classification hierarchy on a block definition diagram.
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Generalization sets have two properties that can be used to describe coverage and overlap between their 
members. The coverage property specifies whether all the instances of the superclass are instances of one or 
another of the members of the generalization set. The two values of the coverage property are complete and 
incomplete. The overlap property specifies whether an instance of the superclass can only be an instance of 
at most one subclass in the generalization. The two values of the property are disjoint and overlapping.

A generalization set may be displayed on a block definition diagram by a dashed line intersecting a 
set of generalization paths. The name of the generalization set and the values of the overlap and cover-
age properties, shown in braces, are displayed floating near the line that depicts the generalization set. 
Alternatively, if the tree form of generalization notation is used, a generalization set may be depicted 
by a tree with the generalization set name and properties floating near the triangle symbol at its root. 
Figure 7.50 shows the dashed-line variant, and Figure 7.58 shows the tree variant.

Figure 7.50 shows the example of generalization sets described earlier. Person is subclassed by four 
subclasses in two generalization sets. Gender has two members, Woman and Man, and is both disjoint 
and completely covered because all instances of Person must be an instance of either Woman or Man 
but not both. Job has two members, Employee and Manager, and is overlapping and incompletely cov-
ered because an instance of Person may be an instance of both Employee and Manager, or neither.

7.7.4 � MODELING VARIANTS USING CLASSIFICATION
The description and organization of product variants is a large and complex topic and requires solutions that 
cover many different disciplines, of which modeling is just one. Nonetheless, SysML contains concepts like 
classification and redefinition that can be used to capture some of the details and relationships needed to 
model variants. For example, classification can be used to model different variants of a block definition that 
represent alternative designs being evaluated in a trade study. This can be achieved by describing several 
specialized variants of a block as subclasses of a more general block, grouped into generalization sets. Note 
that multiple subclasses of a superclass can be recombined using multiple generalizations in subsequent 
levels of classification, but these must obey the specified overlap and coverage of their superclasses.

Figure 7.51 shows two mutually exclusive characterizations of the Camera: its intended location 
and the way that it connects with a controller. Each characterization in this case has two variants. There 
are two intended locations, indicated by the generalization set Location, served by either an Internal 

FIGURE 7.50

Showing a generalization set on a block definition diagram.
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Camera or an External Camera. There are also two intended modes of connection, indicated by the 
Connection generalization set, served by the Wired Camera and Wireless Camera originally shown in 
Figure 7.48. Three further variants, Wired Internal Camera, Wireless Internal Camera, and Wired 
External Camera, are created by multiple generalization from these four. The features of the blocks are 
hidden to reduce clutter.

Bound reference
Sometimes, the variation between two variant systems is nested deep within the composition hierarchy 
of the system, such as different types of Wheels in a Vehicle. In this case, it is convenient to refer to 
different Vehicle variants that have different types of Wheels, without having to display the entire 
Vehicle composition tree to show the variation. In particular, it is desirable to refer to the Wide Wheel 
Vehicle variant and the Standard Wheel Vehicle variant. This becomes increasingly useful as more 
variation is introduced, such as the case with a High Performance Vehicle variant that includes wide 
wheels, a larger engine, and stiffer suspension.

The concept of bound reference provides a mechanism to support a compact way to describe vari-
ants such as these. In particular, it enables the variations for the High Performance Vehicle variant to be 
displayed in the High Performance Vehicle block, without having to show composition hierarchy with 
all the deeply nested variant parts. The way this is accomplished is described below.

A bound reference is a reference property of a block that is bound using a binding connector to some 
other nested property within the composition hierarchy of the block. The properties that are connected 
using binding connectors must have compatible types and multiplicities. In this way, a bound reference 
can be a property of a high-level block in a composition tree (such as a Vehicle), which is constrained to 
be equal to a deeply nested part or property within the composition tree (such as a Wheel).

FIGURE 7.51

Modeling variant configurations on a block definition diagram.
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When the block is subclassed to create a variant, such as a High Performance Vehicle variant, each 
bound reference can be redefined to correspond to the selected variant part or property. The selected 
variant part or property must conform to the redefinition rules described in the previous section.

A bound reference is a reference property and thus has the same notation as a reference property. It 
is distinguished by the keyword «boundReference». A block can have a separate compartment for 
bound references, labeled bound references, which is convenient for identifying its variant parts, Each 
entry in the compartment has the following prefix in addition to standard property syntax:

{/bindingPath = property list; lower=integer;upper=integer}

Property list is simply a comma-separated list of the properties in the path of the property to which 
the reference is bound.

The imaging assembly of the camera contains a sensor, among other elements. There are many 
potential choices for such a sensor, two of which are shown in Figure 7.52. The Micron M9T001 sup-
ports up to 2048×1536 pixels at a frame rate of 12 frames per second; the Aptina MT9M034 supports 
up to 1280×960 pixels at 45 frames per second. The Camera block features a reference property called 
sensor, which is bound to the property Camera::cm.ia.sensor, as shown in Figure 7.53. Adding this 
bound reference to Camera allows different configurations, such as a Low Fidelity Camera and a High 
Fidelity Camera, to be specified by modifying the type of sensor, as shown in Figure 7.54.

Bound references can also be bound to full ports. Figure 7.55 shows the Bracket used to attach a 
Camera to a wall as part of a Camera Assembly. The Camera end of the Bracket is fixed to fit with the 
Mount of the Camera, as shown in Figure 7.32. However, the wall end of the bracket can have a vari-
able number of holes of various sizes to suit different materials. This flexibility can be achieved by 
connecting a bound reference to the holes on the Wall Mount. Two potential variations of the Camera 
Assembly are shown in Figure 7.56: Solid Wall Camera Assembly, with 4 M5 Holes and a Dry Wall 
Camera Assembly with 6 M10 Holes.

FIGURE 7.52

Two kinds of Imaging Assembly.
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FIGURE 7.53

Adding a bound reference to support variants.

FIGURE 7.54

Using a bound reference to describe two variants of Camera.
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FIGURE 7.55

Using a bound reference to support port variation.

FIGURE 7.56

Two variants of Camera with different Wall Mountings.
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7.7.5 � USING PROPERTY-SPECIFIC TYPES TO MODEL CONTEXT-SPECIFIC BLOCK 
CHARACTERISTICS

A property-specific type is used to designate properties of a block or value type that are further spe-
cialized for localized use within an internal block diagram. This might happen, for example, when one 
or more properties of a part have different distributions than in their original type. The property-specific 
type implicitly creates a subclass of the block that types the part to add the unique characteristics. The 
presence of a property-specific type is indicated by including the type name of a property in brackets. 
Compartments can be used to depict the unique features of the type for each part-specific property, such 
as the value properties for the different motors’ weights in the following example. Note that if a com-
partment on a part symbol is used to show features of its type, the compartment label is prefixed by a 
colon.

Figure 7.57 shows a small fragment of a particular model of surveillance camera, the SC Model 1 
A, which specializes Camera. In the SC Model 1 A, the generic Stepper Motor Module used in the 
Mount Assembly (ma) of Camera has been replaced by a specific motor module containing a Maxon 
EC10 and a Maxon EC13. To do this replacement, rather than specifically create a block that represents 
this variant of Mount Assembly, a property-specific type is used. Significant properties of the Maxon 
EC10 and Maxon EC13 are shown in the :values compartments of the parts.

7.7.6 � MODELING BLOCK CONFIGURATIONS AS SPECIALIZED BLOCKS
A block configuration describes a specific structure and specific property values intended to rep-
resent a unique instance of a block in some known context. For example, a block configuration 
may be used to identify a particular aircraft in an airline company’s fleet by its call sign and to 
provide other characteristics specific to that aircraft. In that example, the call sign is intended to 
consistently identify the same aircraft even though the values of other properties may change over 
time. Block configurations can also be used to identify the state of some entity at a given point in 
time. Extending the example of the aircraft, it might be important for an air-traffic control simula-
tion to describe a snapshot of an aircraft’s position, velocity, fuel load, and so on at certain critical 
analysis stages.

FIGURE 7.57

Property-specific types.



CHAPTER 7  MODELING STRUCTURE WITH BLOCKS174

It is important to note that because a block configuration can only describe a finite set of features 
and values, many actual instances in the physical domain may match that description. It is up to the 
modeler to ensure that the context is understood and that any ambiguity does not compromise the value 
of the model. The block typically contains a value property whose value can be used to identify a single 
instance within the context, such as a vehicle identification number.

Modeling a configuration on a block definition diagram
A block configuration is constructed using the generalization relationship described earlier. The con-
figuration becomes a subclass of the block for which it is a configuration. No specific notation exists 
for designating that a block represents a unique configuration. However, a block is often defined with a 
property that represents a unique identifier, such as the vehicle identification number, that can be used 
when modeling configurations. Often it is useful to introduce a generalization set for block configura-
tions to distinguish them from other specializations of that block.

A useful characteristic of the SysML property concept is the ability to state that one property 
may subset one or more other properties, either in its owning class or in one of that class’s super-
classes. For example, if a block for Vehicle contains a property called w:Wheel [4] corresponding 
to four wheels, then an individual wheel property, such as the right front wheel, is a subset of the 
original wheel property. In this example, the right front wheel is called the subsetting property and 
wheel is the subsetted property. The subsetted property is retained and not replaced as it is in 
redefinition.

Subsetting is shown in braces after the name string of the subsetting property using the keyword 
subsets followed by the names of the subsetted properties.

Two configurations of the company’s popular 4-Camera Wired Surveillance System are shown in 
Figure 7.58. The values for location in each case give the addresses of the installations. It is intended 
that within the context of the ACME business, the specific values for location are enough to uniquely 
identify the instance of one of their surveillance systems. The company also offers an optional service 
package, and the service level provides details of the level of service offered. Business Gold includes 
hourly visits by a security agent outside office hours. Household 24/7 ensures a response to any alert 
within 30 minutes, 24 hours a day and 7 days a week.

The 4-Camera Wired Surveillance System specializes Surveillance System and redefines its cameras 
part with a new part, also called cameras. The new part has a new type, Wired Camera, which is a subclass 
of the original type, Camera. It has also a new multiplicity of 4 that restricts the upper number of instances 
held by cameras to 4 from the original upper bound of “*,” and also raises the lower bound to 4.

To describe specific configurations, AJM Enterprises System and Jones Household System special-
ize the 4-Camera Surveillance System and redefine or subset some of its properties. Two value proper-
ties, location and service level, are redefined in order to provide specific values. If a property has an 
upper bound of greater than 1 and it is important to identify the characteristics of each instance of the 
property, a new subset property can be created to identify explicitly one of the set of instances held by 
the property in order to define its specific characteristics. In Figure 7.58, the cameras part is subsetted 
by parts that represent individual cameras in the configuration. In AJM Enterprises System, the new 
parts are called front, reception, store room, and computer room, based on their location within the 
company’s building.

The set of configurations of the 4-Camera Surveillance System is grouped by a generalization set 
called Configurations. Configurations is disjoint, because an instance of 4-Camera Wired Surveillance 
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System must be either an AJM Enterprises System or a Jones Household System, but not both. Configura-
tions is incomplete because there may be other configurations of 4-Camera Wired Surveillance System.

Modeling configuration details on an internal block diagram
When a block has been used to describe a configuration, the internal block diagram for that block can 
be used to capture the specific internal structure (e.g., precise multiplicities and connections) and values 
unique to that configuration’s properties. In particular, this should include the value of a property that 
uniquely identifies the entities in the configuration (e.g., name, serial number, call sign). A unique 
design configuration can be created by defining an identification property for each part in the block that 
corresponds to the unique identification of the enclosing block.

FIGURE 7.58

Modeling different configurations of a block on a block definition diagram.
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Given that AJM Enterprises System is a subclass of 4-Camera Surveillance System, it has four cam-
eras. Figure 7.58 identified a number of wired camera variants, including the Wired Internal Camera 
and Wired External Camera, to satisfy the installation requirements. Figure 7.59 shows how they are 
configured, including initial values for significant value properties. The camera id property of Camera 
is used to store unique identifiers for the cameras in the system, and the four cameras have these unique 
values stenciled on their casing. The configuration also describes the position and field of regard (pan 
and tilt) of each camera to facilitate coverage analysis as part of a security viewpoint.

7.8 � MODELING BLOCK CONFIGURATIONS USING INSTANCES
As described in Section 7.7.6 it is possible to model a configuration of a block by specializing it and add-
ing configuration-specific information to the specialized block. This is particularly useful if the configura-
tion adds structural or data constraints not present in the more general block. However, if a configuration 
simply consists of a set of values for value properties, an instance specification can be used.

An instance specification is shown on a block definition diagram as a rectangular symbol containing 
an underlined name string with the following format:

instance name : block name.

The symbol contains a single compartment listing values for any specific properties that override 
any established initial values. Instance specifications can be nested to mirror the composition of blocks. 

FIGURE 7.59

Showing the configuration of a block on an internal block diagram.



1777.9  Semantics of Blocks

When an instance specification symbol is nested, its name string may also show the name of the part 
(or reference) to which this instance specification corresponds, using the following notation:

instance name/property name : block name.

Figure 7.60 describes two instances of the AJM Enterprises System, showing the operating cycle in 
two different circumstances: work days and non-work days. It has been decided that the internal cam-
eras will be turned off during working hours on work days in order to cut costs. The value for operating 
cycle of the external camera (front) in the Work Days instance specification is set to 0:00–23:59, and 
the value for the internal cameras is 17:00–8:00. In the Non-Work Days instance specification, the 
values for all cameras are set to 0:00–23:59 to maintain full coverage.

Instance specifications can be connected by links, which represent instances of associations between 
blocks. A link is shown on a block definition diagram as a line between two instance specifications, 
whose ends and adornments are the same as those of the association of which it is an instance.

Figure 7.61 shows a configuration of the ACME Surveillance Network, originally introduced in 
Figure 7.13. It shows two instances of Surveillance System, Smith Residence and O’Brien Residence, 
both representing the residence property and connected to an instance of Command Centre called CC, 
representing the residential surveillance center, by instances of the ADSL Connection association.

7.9 � SEMANTICS OF BLOCKS
A SysML model can be used to specify the structure and behavior of a system, as discussed throughout 
Part II of this book. Often a SysML model is used simply to facilitate communication among project 
teams, but sometimes the model is intended to be interpreted by machines or computer programs to 
simulate the system that it specifies. This latter category of model is often called an executable 

FIGURE 7.60

Describing block configurations with instances.
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specification because it contains all the information necessary for a machine to execute it. The con-
struction of executable specifications requires the modeling formalism (SysML in this case) to have 
semantics defined precisely enough to allow execution of the model.

7.9.1 � THE FOUNDATIONAL UML SUBSET (fUML)
In 2010, the OMG adopted a specification for a subset of UML called Foundational UML (or fUML, for 
short), which selects a subset of UML 2 and specifies foundational execution semantics for it [42]. Foun-
dational UML is contained within UML4SysML, the subset of UML on which SysML is based, and so 
SysML modelers can also use Foundational UML to specify the semantics of SysML precisely.

The initial specification for Foundational UML defined:
 
	•	� A subset of the abstract syntax of UML 2, covering basic structural concepts like classes and 

associations and behavioral concepts associated with activities;
	•	� An execution model that defined an operational semantics for that UML 2 subset;
	•	� A library of classes, data types, and behaviors to define basic functionality such as the manipula-

tion of basic data types and input and output; and

FIGURE 7.61

Describing links between instances.
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	•	� A formal (declarative) definition of the semantics of the execution model, expressed using PSL [43], a 
standard execution constraint language, against a smaller subset of UML called base UML or bUML.

 
Several execution engines based on the Foundational UML standard are available. There are two 

aspects of execution: the way the specification of structure relates to construction of instances of a 
system and the way specified behaviors affect the state of these instances. Section 9.14 in Chapter 9 
describes how SysML supports the execution of activities using Foundational UML. The rest of this 
section covers the semantics of structure (i.e., blocks).

In 2013, the OMG adopted a specification called Precise Semantics of UML Composite Struc-
tures [44], which extends Foundational UML to specify the semantics of composite structures—
including parts, ports, and connectors—which are fundamental to SysML. It also added a specific 
(informative) Annex which included the semantics of the following SysML concepts:
 
	•	� Flow properties, including the flow of blocks, data, and signals;
	•	� Proxy ports, particularly behavior ports; and
	•	� Constraint blocks
 

However, there are number of significant exclusions in the structural part of Foundational UML that 
affect SysML Blocks:
 
	•	� Association classes, which enable association blocks;
	•	� Instance specifications;
	•	� Default property values; and
	•	� Subsetted, redefined, and distributed properties
 

The Foundational UML specification is continuing to be updated and over time should address 
some of these gaps.

The OMG has also adopted a complementary specification to Foundational UML called the Action 
Language for Foundational UML or Alf [45], for short. Alf is a textual concrete syntax for Founda-
tional UML modeling elements. It is particularly useful when describing the detailed behavior of activi-
ties, which can be somewhat cumbersome when expressed graphically, and so is covered in Chapter 9, 
Section 9.14.2, which describes activities.

7.10 � DEPRECATED FEATURES
Version 1.3 of SysML deprecated a number of features of blocks and ports that were in version 1.2. 
“Deprecated” means they are still formally a part of the language, but they are intended to be removed 
in a future revision. The SysML 1.3 blocks and ports subsume the SysML 1.2 functionality. This sec-
tion describes the deprecated features for the sake of completeness and because the current OCSMP 
examination is based on SysML 1.2. The following features are covered:
 
	•	� The flow port concept, whose capabilities were subsumed by proxy ports. Atomic flow ports have 

been removed from SysML.
	•	� The flow specification concept, whose capabilities were subsumed by the interface block.
 

The notation for these features is shown in the Appendix, Table A.7.
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7.10.1 � FLOW PORTS  
A flow port is used to describe an interaction point (or connection point) for items flowing in or out of 
a block. It is used to specify what input items can be received by the block and what output items can 
be sent by the block. It specifies this through its type. Like other structural features of a block, a flow 
port can have a multiplicity that indicates how many instances of the port are present on an instance of 
its owning block. A flow port can be typed by a flow specification.  

Flow specification
A flow specification is defined on a block definition diagram. The flow specification includes flow 
properties that correspond to individual specifications of input and/or output flow. Each flow property 
has a type and a direction (in, out, or inout). The type of the flow property can be a block, value type, 
or signal depending on the specification of what can flow.

When two blocks interact through connectors, they may exchange similar items but in opposite 
directions. Rather than creating two separate flow specifications for the flow ports on the interacting 
blocks, flow ports can be conjugated to reuse a single flow specification for both ports. One port is set 
to be the conjugate of the other, which indicates that the direction of all flow properties in the flow 
specification is reversed with respect to the second port.

A flow specification is shown as a box symbol with the keyword «flowSpecification» above the 
name in the name compartment. The flow properties of a flow specification are shown in a special com-
partment labeled flow properties, with each flow property shown in the format:

direction property name: item type[multiplicity]

A flow port is indicated by two angle brackets facing each other (<>) drawn inside the port symbol. 
Flow ports can be listed in a special compartment labeled flow ports in their owning block. A flow port 
is shown in the format:

port name: flow specification name[multiplicity]

A conjugate flow port is indicated by placing a tilde (∼) in front of the flow port’s type.

Connecting flow ports on an internal block diagram  
Like other ports, flow ports are shown on the boundaries of parts and reference properties on an internal 
block diagram and can be connected using connectors.

7.11 � SUMMARY
SysML structure is primarily represented on block definition diagrams and internal block diagrams. 
The following are key concepts related to modeling structure:
 
	•	� The block is the fundamental unit of structure in SysML and is represented on the block definition 

diagram and the frame of an internal block diagram. Blocks own and are defined by their features.  
A block provides the description for a set of uniquely identified instances that all have the features 
defined by the block. A block definition diagram is used to define a block, its characteristics, and its 
relationship to other blocks, as well as other types of classifiers such as interface blocks, interfaces, 
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value types, and signals. Instance specifications and links between them can also be shown on block 
definition diagrams. An internal block diagram is used to describe the internal structure of a block.

	•	� Blocks have a number of structural and behavioral features that comprise its definition. Properties 
describe a block’s structural aspects in terms of its relationship to other blocks and its quantifiable 
characteristics. Ports describe a block’s interface as a set of access points on its boundary. 
Behavioral features declare the set of services that characterize the blocks response to stimulus.

	•	� A part is used to describe the hierarchical composition (sometimes called whole–part relation-
ships) of block hierarchies. Using this terminology, the block or other classifier that owns the 
property is the whole, and the property is the part. Any given instance of the block that types a 
part may only exist as part of at most one instance of a whole at any instant of time. Composite 
associations are used to express the relationship of the part to the whole, in particular, whether 
blocks that type the part always exist in the context of an instance of the whole or may exist 
independently of the whole.

	•	� A reference property allows blocks to refer to other blocks. Reference properties support the 
creation of logical hierarchies and associated internal block diagrams that can augment a compos-
ite hierarchy.

	•	� Value properties represent quantifiable characteristics of a block, such as its physical and perfor-
mance characteristics. Value properties are typed by value types. A value type provides a reusable 
description of some quantity and may include units and quantity kinds that characterize the 
quantity. A value property may have a default value a probability distribution.

	•	� SysML has two different types of ports: a full port and a proxy port. A full port is typed by a block 
and is similar to a part except it is shown graphically on the boundary of its owning block. Proxy 
ports are typed by interface blocks that specify the black-box interface. They are similar to 
reference properties in that they do not exist in a block’s part tree but serve as access points to the 
features of their owning block or its parts. They serve as a pass-through for inputs and outputs 
without modifying them. Both full ports and proxy ports support nesting of ports.

	•	� A block has two kinds of behavioral features, operations and receptions, which enable the block to 
respond to stimuli. Operations describe synchronous interactions in which the requester waits for 
the request to be handled; receptions describe asynchronous behaviors in which the requester can 
continue without waiting for a reply. Behavioral features may be realized by methods, which are 
the behaviors that handle the requests. Requests for behavioral features may also be handled 
directly by the main (or classifier) behavior, typically an activity or state machine, as described in 
Chapters 9 and 11.

	•	� The concepts of classification and generalization sets describe how to create classification 
hierarchies of blocks and other classifiers such as value types and signals. Classifiers specialize 
other classifiers in order to reuse their features and add new features of their own. Generalization 
sets group the subclasses of a given superclass according to how they partition the instances of 
their superclass. Subclasses may overlap, which means that a given instance can be described by 
more than one subclass. Subclasses may have complete or partial coverage of the superclass, 
depending on whether the subclasses define all possible subclasses of the superclass or not, and 
whether all instances are described by one of the subclasses in the set or not.

	•	� Features of classifiers can be related in various ways within a classification hierarchy. All features 
of classifiers can be redefined by their subclasses in order to restrict certain of their characteristics, 
such as multiplicity or default value. Structural features may be defined to have the subset of 
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values of some other feature in the same classifier or superclass. This has a particular use in 
identifying a specific member of a collection in order to define characteristics that are specific to 
it. This variation may either be performed using a new classifier or in a local context using a 
property-specific type.

	•	� Blocks can be used to describe configurations, in which case the features of the block are defined 
in enough detail to identify a specific configuration of the block in the real world of the system. 
Alternatively, if the configuration does not require the application of further constraints on the 
structure or values of the block, an instance specification can be used.

	•	� SysML 1.3 deprecated the flow port concept in favor of the proxy port, although it is still in the 
language. A flow port specifies what can flow in or out of a block. The proxy port supports the 
functionality of flow ports and more.

 

7.12 � QUESTIONS
	 1.	 �What is the diagram kind of a block definition diagram, and which model elements can it 

represent?
	 2.	 �What is the diagram kind of an internal block diagram, and which model elements can it 

represent?
	 3.	 �How is a block represented on a block definition diagram?
	 4.	 �Name three categories of block property.
	 5.	 �Which type of property is used to describe composition relationships between blocks?
	 6.	 �What is the commonly used term for properties with a lower multiplicity bound of 0?
	 7.	 �What is the default interpretation of the multiplicity for both ends of an association when it is not 

shown on the diagram?
	 8.	 �Draw a block definition diagram using composite associations for blocks “Boat,” “Car,” and 

“Engine,” showing that a “Car” must have one “Engine,” and a “Boat” may have either one or 
two “Engines.”

	 9.	 �Give two situations in which the use of role names for the part end of a composite association 
should be considered.

	10.	 �How are parts shown on an internal block diagram?
	11.	 �What does the presence of a connector between two parts imply?
	12.	 �Draw an internal block diagram for the “Boat” from Question 8, but with an additional part “p” 

of type “Propeller.” Add a connector between the “Engine” part (using its role name from 
Question 8 if you provided one) and “p,” bearing in mind that one “Propeller” can be driven by 
only one “Engine.”

	13.	 �What are the two graphical mechanisms that can be used to represent properties nested more 
than one level deep on an internal block diagram?

	14.	 �What is the major difference between parts and references?
	15.	 �What is the difference in representation between the symbol for composite association and 

reference association on a block definition diagram?
	16.	 �What is an association block?
	17.	 �How are the quantitative characteristics of blocks described?
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	18.	 �What are the three categories of value types?
	19.	 �Apart from the definition of a valid set of values, what can value types describe about their  

values?
	20.	 �A block “Boat” is described by its “length” and “width” in “Feet” and a “weight” in “Tons.” 

Draw a block definition diagram describing “Boat,” with definitions of the appropriate value 
types, including units and quantity kinds.

	21.	 �What is a derived property?
	22.	 �How are probability distributions—such as an interval distribution—for a property represented 

in the values compartment on a block definition diagram?
	23.	 �Which SysML concepts can be used to represent items (i.e., things that flow)?
	24.	 �What does an item flow define?
	25.	 �How is a proxy port specified?
	26.	 �A block “Boat” takes “fuel” and “cold water” as inputs and produces “exhaust gases” and “warm 

water” as outputs. Show “Boat” on a block definition diagram with inputs and outputs as proxy 
ports, with accompanying definitions. Demonstrate the use of both port icons and the proxy ports 
compartment.

	27.	 �What is the difference between proxy and full ports?
	28.	 �What is the rule for assessing the compatibility of an item flow on a connector between two 

ports?
	29.	 �What is a behavior port on a block used for?
	30.	 �Name all five kinds of behaviors supported by SysML.
	31.	 �What are the behavioral features of blocks used for?
	32.	 �What is a method?
	33.	 �What do the required interfaces of a port specify?
	34.	 �What do the provided interfaces of a port specify?
	35.	 �Describe the ball-and-socket representation for the interfaces of ports.
	36.	 �Name four types of classifiers encountered in this chapter.
	37.	 �Name three aspects of a redefined property that a redefining property can change.
	38.	 �How is a generalization relationship represented on a block definition diagram?
	39.	 �When specifying a generalization set, what is the coverage property used to define?
	40.	 �How are generalization sets represented on a block definition diagram?
	41.	 �What is a bound reference used for and how is it shown on an internal block diagram?
	42.	 �If one property is defined to be a subset of another, what is the relationship between the elements 

of the subsetted property and the elements of the subsetting property?
	43.	 �Name two ways in SysML of specifying a block configuration.
 

DISCUSSION TOPICS
Modeling variants is of significant importance in the system engineering process. Discuss for a system 
known to you how you might model system variants.

Reference properties can be used to model cross-cutting hierarchies that correspond to specific 
subsystems, such as electrical, mechanical, etc. Discuss how you would organize a model to include 
these subsystem definitions.
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CHAPTER

MODELING CONSTRAINTS 
WITH PARAMETRICS

This chapter describes how to model constraints on the performance and physical properties of systems 
and their environment in SysML. This allows SysML models to support a wide array of engineering 
analyses and simulations.

8.1 � OVERVIEW
  
A typical design effort includes the need to perform many different types of engineering analyses, such 
as trade studies, sensitivity analysis, and design optimization. It may include the analysis of perfor-
mance, reliability, cost, and physical properties of the system under consideration. SysML supports this 
type of analysis through the use of parametric models.

Parametric models constrain the properties of a system, which can then be evaluated by an appropri-
ate analysis tool. Constraints are expressed as equations, with the parameters of the equations being 
bound to the properties of the system being analyzed. Each parametric model can capture the specifica-
tion of one or more engineering analyses of a design. A parametric model which captures multiple 
engineering analyses—such as performance, reliability, and cost—can be analyzed to evaluate a par-
ticular design alternative, to support trade-off analysis, or optimize a design based on multiple 
criteria.

SysML introduces the constraint block to support the construction of parametric models. A 
constraint block is a special kind of block used to define equations so that they can be reused and 
interconnected. Constraint blocks have two main features: a set of parameters and an expression 
that constrains those parameters. Constraint blocks follow the pattern of definition and use that 
applies to blocks and parts as described in Chapter 7. A use of a constraint block is called a con-
straint property and is analogous to a part property. The definition and use of constraint blocks is 
represented on a block definition diagram and parametric diagram, respectively. The semantics and 
notation of constraint blocks in SysML were heavily influenced by Russell Peak’s work on  
Constrained Objects [46].

8.1.1 � DEFINING CONSTRAINTS USING THE BLOCK DEFINITION DIAGRAM
Constraint blocks and their relationships are defined on block definition diagrams, similar to the way 
blocks are defined. An example of a block definition diagram containing constraint blocks is shown in 
Figure 8.1.   

8
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This figure shows three constraint blocks. Joule’s Law and Power Sum are leaf constraint blocks that 
each define an equation and its parameters. Power Consumption is a constraint block comprising 
Joule’s Law and Power Sum to build a more complex equation.

The diagram elements for defining constraint blocks in the block definition diagram are shown in 
the Appendix, Table A.8.

8.1.2 � THE PARAMETRIC DIAGRAM
  
Parametric diagrams are used to create systems of equations that can constrain the properties of 
blocks. The complete header for a parametric diagram is as follows:

par [model element kind] model element name [diagram name]

The diagram kind is par, and the model element kind can be either a block or a constraint block.  
Figure 8.2 shows a parametric diagram for the constraint block Power Consumption from Figure 8.1. 

The constraint properties ps and pe are usages of the constraint blocks Power Sum and Joule’s Law, 
respectively. The parameters of the constraint properties ps and pe are bound to each other and to the 
parameters of Power Consumption, which are shown flush with the diagram frame. The diagram elements 
of the parametric diagram are shown in the Appendix, Table A.13.

bdd [Package] Power Analysis

«constraint»
Power Sum

parameters
component demands : W [0..*]
total power : W

«constraint»
Joule’s Law

parameters

pe ps

constraints
{power � current*voltage}

constraints
{total power � sum
(component demands)}

current : A
voltage : V
power : W

«constraint»
Power Consumption

parameters

constraints
pe : Joule’s Law
ps : Power Sum

component demands : W [0..*]
current : A
voltage : V

FIGURE 8.1

Example block definition diagram with constraint blocks.
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8.2 � USING CONSTRAINT EXPRESSIONS TO REPRESENT SYSTEM 
CONSTRAINTS  

SysML includes a generic mechanism for expressing constraints on a system as text expressions that 
can be applied to any model element. SysML does not provide a built-in constraint language because it 
is expected that different constraint languages—such as the Object Constraint Language (OCL), Java, 
or MathML—will be used as appropriate to the domain. The definition of a constraint should include 
the language used to enable the constraint to be evaluated.

Constraints may be owned by any element that is a namespace, such as a package or block. If the element 
that owns the constraint can include compartments, such as a block, the constraint can be shown in a special 
compartment labeled constraints. A constraint can also be shown as a note symbol attached to the model 
element(s) it constrains, with the text of the constraint shown in the body of the note. The constraint language 
is shown in braces before the text of the expression, although it is often elided to reduce clutter.  

Figure 8.3 shows examples of the different constraint notations used in SysML that constrain the 
properties of a block. Block 1 has an explicit compartment for the constraint, which in this case is 
expressed using Java. Block 2 has a constraint that is shown in an attached note and is expressed in the 
constraint language of a specialized analysis tool called MATLAB.

8.3 � ENCAPSULATING CONSTRAINTS IN CONSTRAINT BLOCKS TO ENABLE 
REUSE  

SysML also includes a constraint block that extends the generic constraint concept. A constraint block 
encapsulates a constraint to enable it to be defined once and then used in different contexts, similar to 
the way parts represent usages of blocks in different contexts. The concept equivalent to the part is 
called a constraint property.

par [ConstraintBlock] Power Consumption

component demands : W [0..*]

voltage : V

current : A

ps: Power Sum

component demands : W [0..*]

total power : W

pe: Joule’s Law

current : A

power : W
voltage : V

FIGURE 8.2

A parametric diagram used to construct systems of equations.
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The constraint expression of a constraint block can be any mathematical expression and may have 
an explicit dependency on time, such as a time derivative in a differential equation. In addition to the 
constraint expression, a constraint block defines a set of constraint parameters—a special kind of 
property used in the constraint expression. Constraint parameters can be bound to other parameters and 
to properties of the blocks. Constraint parameters do not have direction to designate them as dependent 
or independent variables with respect to the constraint expression. Instead, the interpretation of the 
dependencies between parameters is based on the semantics of the language used to specify the con-
straint expression. For example, in the C programming language, the expression a = b + c is an assign-
ment statement which states that a is dependent on the value of b and c, whereas the expression a == 
b + c is a declarative statement and does not identify the dependent versus independent variables of the 
constraint.

Like other properties, each parameter has a type that defines the set of values that the parameter 
can take. Typically, parameters are value types that represent scalars or vectors. Through its value 
type, the parameter can also have a specific unit and quantity kind. Parameters can also support 
probability distributions like other properties.  

8.3.1 � ADDITIONAL PARAMETER CHARACTERISTICS
Properties whose multiplicity has an upper bound greater than 1 have two characteristics that are useful 
when defining collections. Modelers can specify whether the collection is ordered and whether the 
values in the collection must be unique. Ordered in this case means that the members of the collection 
are mapped to the values of a positive integer: member 1, member 2, and so on. The means by which 
the order is to be determined would have to be specified by an additional constraint or by using a behav-
ior that builds the collection. In a unique collection, all of the collection’s values must be different. 
These two characteristics are useful in specifying constraint parameters.

Another useful characteristic of properties is that they can be marked as derived (see the Derived 
Properties section in Chapter 7, Section 7.3.4). If a property is marked as derived, it means that its value 
is derived, typically from the values of other properties. This characteristic has two uses in specifying 
parametric models. First, if the calculation underlying an equation is known to be implemented as a 
function, a derived parameter can be used to identify the dependent variable. An example of this can be 
seen in Figure 8.4. Second, when the modeler wishes to guide the equation solver, derived properties 

Block 2

values
c : Real [*]
d : Real [*]
e : Real [*]

Block 1

values
a : Integer
b : Integer

{{MATLAB}c � d.*e}

constraints
{{java}a�b*2}

FIGURE 8.3

Example of the two notations for showing constraints.



1898.3  ENCAPSULATING CONSTRAINTS IN CONSTRAINT BLOCKS 

can indicate the values in a given analysis that need to be determined by solving the equation. An 
example of this can be seen later in Figure 8.16.  

A constraint block is defined in a block definition diagram, as shown in Figure 8.4. The diagram header 
is the same as any other block definition diagram, specifying the package or block to which the diagram 
frame corresponds. The name compartment of the constraint block includes the keyword «constraint» 
above the name to differentiate it from other elements on a block definition diagram. The constraint 
expression is defined in the constraints compartment of the constraint block, and the constraint parameters 
are defined in the parameters compartment using a string with the following format:

parameter name: type[multiplicity]
  

Indications of ordering and uniqueness appear as keywords in braces after the multiplicity. The 
ordering indication is either ordered or unordered; the uniqueness indication is either unique or nonu-
nique. In practice, unordered and nonunique are often indicated by the absence of a keyword. A derived 
property is shown with a forward slash (/) before its name.

Figure 8.4 shows two constraint blocks, Real Sum and Rate Monotonic Model. Real Sum is a simple reus-
able constraint where one parameter, sum, equals the sum of a set of operands, as expressed in the constraint 
in the constraints compartment. Rate Monotonic Model is also reusable but more specialized; it describes the 
equations underlying the rate monotonic analysis approach to scheduling periodic tasks on a processing 
resource. T represents the periods of the tasks, C represents the computation load of the tasks, and U repre-
sents the utilization of the processing resource. The constraint language is not shown in either case, but it can 
be seen that the constraint for Real Sum is expressed in a C-like syntax. The utilization constraint for Rate 
Monotonic Model is expressed using a more sophisticated equation language, which has the capability to be 
rendered using special symbols. Both mechanisms are equally acceptable in a SysML constraint block.

Both T and C are ordered collections, as indicated by the ordered keyword. The values of Ti are 
required to be unique because each task must have a different rate for the analysis to be correct. Parameter 
n specifies the number of tasks and an additional constraint is used to constrain the size of both T and C 
to be n. U is always the dependent variable in the underlying calculation and so is marked as derived.

«constraint»
Real Sum

parameters
operands : Real [*]
sum : Real

constraints

bdd [Package] Constraint Examples [Two Different Constraint Blocks]

{sum �� plus(operands)}

«constraint»
Rate Monotonic Model

parameters

constraints

{U � 2�1)}(� n
n

i�1
n

Ti

Ci

{size(T) � n & size(C) � n}

T : Real [*] {ordered, unique}
/U : Real
C : Real [*] {ordered}
n : Integer

FIGURE 8.4

Two reusable constraint blocks expressed on a block definition diagram.
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8.4 � USING COMPOSITION TO BUILD COMPLEX CONSTRAINT BLOCKS  
Modelers can compose complex constraint blocks from other constraint blocks on a block definition 
diagram. In this case, the composite constraint block describes an equation that binds the parameters of 
its child constraints. This enables complex equations to be defined by reusing simpler equations.

The concept of definition and usage that was described for blocks in Chapter 7 applies to constraint 
blocks as well. A block definition diagram is used to define constraint blocks. The parametric diagram 
represents the usage of constraint blocks in a particular context. This is analogous to the usage of blocks 
as parts in an internal block diagram. The usages of constraint blocks are called constraint properties.

Composition of constraint blocks is described using composite associations between constraint 
blocks. The associations are depicted using the standard association notation introduced in Chapter 7 
to represent composition hierarchies. A constraint block can also list its constraint properties in its 
constraints compartment using the following syntax:

constraint property : constraint block [multiplicity]
  

Figure 8.5 shows the decomposition of a Power Consumption constraint block into two other con-
straint blocks, Joule’s Law and Power Sum. The role names on the component end of the compositions 

bdd [Package] Power Analysis

«constraint»
Power Sum

parameters
component demands : W [0..*]
total power : W

«constraint»
Joule’s Law

parameters

pe ps

constraints constraints
{power = current*voltage} {total power = sum

(component demands)}

current : A
voltage : V
power : W

«constraint»
Power Consumption

parameters

constraints
pe : Joule’s Law
ps : Power Sum

component demands : W [0..*]
current : A
voltage : V

FIGURE 8.5

A hierarchy of constraints on a block definition diagram.
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correspond to constraint properties. Property pe is a usage of the Joule’s Law constraint block, which 
describes the standard power equation. Property ps is a usage of the Power Sum constraint block, which 
equates the total power demand to a set of component demands. Power Consumption uses these equations 
to relate the demands of a set of components to the required current and voltage of a power supply.

The Joule’s Law and Power Sum constraint blocks feature their equations in their constraints com-
partments, whereas Power Consumption lists its constituent constraint properties. Note that in this 
example, the constituent constraints of Power Consumption are represented both in its constraints 
compartment and as association symbols. Typically, in a given diagram only one form of representation 
is used.

A modeler may choose to indicate on a particular constraint property symbol whether the internal 
structure of the constraint block that types it is further described by a parametric diagram. If the con-
straint block has an associated parametric diagram, then the symbol for the constraint property contains 
a rake symbol in its bottom right corner. The constraint block Power Consumption in Figure 8.7 has a 
rake symbol, indicating that it is further elaborated, in this case by the parametric diagram in Figure 8.6.

8.5 � USING A PARAMETRIC DIAGRAM TO BIND PARAMETERS OF 
CONSTRAINT BLOCKS  

As with blocks and parts, the block definition diagram does not show all the required information 
needed to interconnect its constraint properties. Specifically, it does not show the relationship between 
the parameters of constraint properties and the parameters of their parent and siblings. This additional 
information is provided on the parametric diagram using binding connectors, which express equality 
relationships between their two ends, as discussed in Chapter 7, Section 7.3.1.

par [ConstraintBlock] Power Consumption

component demands : W [0..*]

voltage : V

current : A

ps: Power Sum

component demands : W [0..*]

total power : W

pe: Joule’s Law

current : A

power : W
voltage : V

FIGURE 8.6

Internal details of the power consumption equation using a parametric diagram.
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Two constraint parameters can be bound directly to each other on a parametric diagram using a 
binding connector, which indicates that the values of the two parameters must be the same. This enables 
a modeler to connect multiple equations to create complex sets of equations if a parameter in one equa-
tion is bound to a parameter in another equation.

The parameters of a constraint block say nothing about causality. Similarly, binding connectors 
express an equality relationship between their bound elements, but say nothing about the causality of 
the equation network. When an equation is to be solved, it is assumed that the dependent and indepen-
dent variables are identified or deduced, including the specification of initial values. This is typically 
addressed by a computational equation solver, which is generally provided in a separate analysis tool, 
as discussed in Chapter 18. As stated earlier, derived parameters or properties can be used to guide 
equation solvers if parts of the solution order are known.

Just as with the internal block diagram, the notation for constraint properties in a parametric dia-
gram relates back to their definition on the block definition diagram as follows:
 
	•	� A constraint block or block on a block definition diagram that owns constraint properties can be 

designated as the diagram frame of a parametric diagram with the constraint block or block name 
in the diagram header.

	•	� A constraint property on the component end of the composite association on the block definition 
diagram may appear as a constraint property symbol within a frame designating the constraint 
block on the composition end. The name string of the symbol uses the colon notation previously 
described for parts in Chapter 7, Section 7.3.1: 

constraint property name: constraint block name

When a composite association is used, the constraint property name corresponds to the role name 
on the component end of the association just as with parts. The type name corresponds to the name of 
the constraint block on the component end of the association.

The frame of a parametric diagram corresponds to a constraint block or a block. If the parametric 
diagram designates a constraint block, then its parameters are shown as small rectangles flush with the 
inner surface of the frame. The name, type, and multiplicity of each parameter are shown in a textual 
label floating near the parameter symbol.

On a parametric diagram, a constraint property (as described in Chapter 5, Section 5.3.7) may be 
shown either as a round-cornered rectangle (round-angle) symbol or as a rectangle with the keyword 
«constraint». The name and type of the property is shown inside the symbol, although either the 
property name or the type name can be elided if desired. The constraint expression itself can be elided, 
but if shown, it may appear either inside the round-angle or attached via a comment symbol to the 
round-angle. The parameters of the constraint property are shown flush with the inside surface of the 
constraint property symbol.  

Figure 8.6 shows an example from the surveillance system, where the Power Consumption compos-
ite constraint block, originally introduced in Figure 8.5, is depicted as the context of a parametric dia-
gram. The diagram shows how the parameters of constraint properties ps, a usage of Power Sum, and 
pe, a usage of Joule’s Law, are bound together. As stated earlier, the names in the constraint property 
symbols are produced from the component ends of the associations on the block definition diagram. 
The voltage and current parameters of pe are bound to the voltage and current parameters of the block 
Power Consumption (hence shown on the frame boundary). The power parameter of pe is bound to the 
total cumulative power of all the powered equipment, calculated by ps from the set of component 
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demands (also a parameter of Power Consumption and shown on the frame boundary). When all of the 
bindings between parameters are considered, the composed constraint for Power Consumption can be 
expressed as {sum(component demands)=current*voltage}.

It should be noted that although this is just a trivial example, it does highlight how parametric  
models can be used to construct more complex equations from reusable constraint blocks

8.6 � CONSTRAINING VALUE PROPERTIES OF A BLOCK  
Value properties of a block can be bound directly to other value properties with a binding connector to 
assert that their values are equal. However, more complex constraints on value properties can be 
expressed using constraint blocks. This is achieved by building a composition hierarchy of constraint 
blocks using a block definition diagram. In a parametric diagram, the block is designated by the enclos-
ing frame and the constraint properties represent usages of the constraint blocks. The parameters of the 
constraint properties are bound to the value properties of the block using binding connectors.

In a parametric diagram for a block, a value property is depicted as a rectangle displaying its name, 
type, and multiplicity. A nested value property within a part hierarchy can be shown nested within its con-
taining part symbol or can be shown using the dot notation that was described in Chapter 7, Section 7.3.1. 
An example of binding nested value properties using the part hierarchy notation is shown in Figure 8.7, 
and an example using the dot notation is shown in Figure 8.8.  

demand equation
: Power Consumption

component demands : W [0..*]

current : A

voltage : V

power source

: Collect

c1:W

c2:W

c3:W

c4:W

c:W[0..*]

iris motor

power : W

focus motor

power : W

altitude motor

power : W

azimuth motor

power : W

voltage : V

current : A

par [Block] Mechanical Power Subsystem [Power Consumption]

FIGURE 8.7

Binding constraints to properties on a parametric diagram.



CHAPTER 8  MODELING CONSTRAINTS WITH PARAMETRICS194

Figure 8.7 shows the constraints on the power supply for the Mechanical Power Subsystem described 
by the internal block diagram in Figure 7.11. The Power Consumption constraint block is used, via a 
constraint property demand equation, to relate the current and voltage of the power source for the 
Mechanical Power Subsystem to the load imposed on the power source by the various motors. An addi-
tional constraint block, Collect, is used to collect the power demand values of all the powered devices 
into one collection for binding to the component demands parameter of demand equation.

8.7 � CAPTURING VALUES IN BLOCK CONFIGURATIONS
To allow an analysis tool to evaluate blocks containing constraint properties, at least some of the value 
properties of the block under analysis need to have specific values defined. Often, these values are 
provided during analysis through the interface of the analysis tool, but they can also be specified using 
a block configuration. This is done by creating either a specialization of the block with the required 
initial values or by using an instance specification to describe an instance of the block. In either case, 
the analysis results can be used to update the value properties of the configuration.

Although the block in Figure 8.7 contains all the relationships required to perform an analysis of the 
Mechanical Power Subsystem block, the related properties do not have values, and so there is little scope 
for direct analysis. Figure 8.8 shows a configuration of the Mechanical Power Subsystem block, specified 
as a specialization of the original block and called Mechanical Power Subsystem with 2W and 0.4W motors.

Even though there are no mandatory naming standards for configurations, it is often useful to 
include information about the configuration as part of its name. Note that in this case, all the values for 
the related properties are shown and so the demand equation constraint property simply acts as a check 

par [Block] Mechanical Power Subsystem with 2W and 0.4W motors [All Values Supplied]

focus motor.power : W = 0.4

iris motor.power : W = 0.4

demand equation
: Power Consumption

: Collect

c1:W

c2:W

c3:W

c4:W

c:W[0.*]

power source.voltage : V = 12

power source.current : A = 0.4

azimuth motor.power : W = 2

altitude motor.power : W = 2

component demands : W [0..*]

current : A

voltage : V

FIGURE 8.8

Describing a specific analysis configuration.
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that the values are consistent. In other analysis scenarios, one or more properties may not have a value, 
in which case an equation-solving tool would be used to rearrange the constraint expression to compute 
the missing value or values or to report an error if a value cannot be determined.

8.8 � CONSTRAINING TIME-DEPENDENT PROPERTIES TO FACILITATE  
TIME-BASED ANALYSIS

A value property is often a time-varying property that may be constrained by ordinary differential equa-
tions with time derivatives or other time-dependent equations. There are two approaches to represent-
ing these time-varying properties. The first, as illustrated in Figure 8.9, is to treat time as implicit in the 
expression. This can help reduce diagram clutter and is often an accurate representation of the analysis 
approach with time provided behind the scenes by the analysis tool.

Figure 8.9 shows the calculation of the angular position, in Radians, of the azimuth gimbal over 
time. The equation simply integrates the angular velocity of the azimuth motor over time to establish 
the angular position, pos. The initial value of azimuth motor.angular velocity in this case could be 
interpreted as a constant value depending on the semantics of the analysis.

Another approach to the representation of time is to include a separate time property that explicitly 
represents time in the constraint equations. The time property can be expressed as a property of a refer-
ence clock with specified units and quantity kind. The time-varying parameters in the constraint equa-
tions can then be bound to that time property. Local clock errors, such as clock skew or time delay, can 
also be introduced by defining a clock with its own time property that is related to some reference clock 
through additional constraint equations.

azimuth motor.angular velocity: Radian/s = 0.1

azimuth gimbal. angular position: Radian

: Angle Eq
{pos = integral(velocity)}

pos: Radian

velocity: Radian/s

par [Block] Mount Assembly [Azimuth Gimbal Position]

FIGURE 8.9

Using a time-dependent constraint.
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In Figure 8.9, time was implicit and initial conditions were defined by the default value of the veloc-
ity property. Figure 8.10 shows an example of the alternate approach of explicitly showing time, and 
uses constraints on values to express conditions at time zero.

The figure shows the standard distance equation bound to the values of an object under acceleration. 
The block Accelerating Object contains a reference to a Reference Clock, whose time property is bound 
to t, a value property of Accelerating Object that records passage of time as experienced by the object. 
The acceleration a, initial velocity u, and distance traveled d are bound to the Distance Equation along 
with time t. An additional constraint, Distance at T0, is used to specify the initial distance of the object 
(i.e., at time zero), which in this case is 0. The value of property a is specified with a default value that 
represents the constant value of acceleration due to gravity. Property u has a default value of 0.

8.9 � USING CONSTRAINT BLOCKS TO CONSTRAIN ITEM FLOWS
A powerful use of constraint blocks is to show how properties associated with the flow of matter, energy, 
or information is constrained. To achieve this, item flows (or more accurately the item properties corre-
sponding to item flows) can be shown on parametric diagrams and bound to constraint parameters.

Figure 8.11 shows the amplitudes of the item flows shown on the internal block diagram in Figure 7.44. 
External is the item flow from the boundary of the Camera to the Protective Housing, and polarized is the 
item flow from the Protective Housing to the boundary of the Camera Module, cm. The Protective Housing 
provides a value for acceptable loss of light power (flux) in value property loss. The Camera owns a  
loss equation, Loss Eq, to constrain the relative values of the light flux before and after passing through the 
Protective Housing. The loss parameter in Loss Eq is bound to the loss property of the Protective Housing.

par [Block] Accelerating Object [Distance Traveled]

: Distance at T0
{if (t=0) d=0}

d : mt : s

: Distance Equation
{d=u*t�(a*t2)/2}

a : m/s2

d : m

t : s

u : m/s1

: Reference Clock

time : s

u : m/s1 = 0

a : m/s2 = 9.8

d : m

t : s

FIGURE 8.10

Explicitly representing time in a parametric diagram.
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8.10 � DESCRIBING AN ANALYSIS CONTEXT
A constraint property that constrains the value properties of a block can, as discussed earlier, be part 
of a block’s definition and thus shown in its constraints compartment. This works well when the 
constrained properties are intrinsically related in this way in all contexts. What often occurs, how-
ever, is that the constraints on block properties vary depending on the analysis requirements. For 
example, a different fidelity of analysis may be applied to the same system block depending on the 
required accuracy of the value of key properties. This type of scenario requires a more flexible 
approach such that the properties of the block can be constrained without the constraint being part of 
the block’s definition. This approach effectively decouples the constraint equations from the block 
whose properties are being constrained, and thus enables the constraint equations to be modified 
without modifying the block whose properties are being constrained. An alternative approach is to 
specialize the block under analysis and add different constraints to each subclass that are relevant to 
different analyses.

To follow this approach, a modeler creates an analysis context, which composes both the block 
whose properties are being analyzed and all the constraint blocks required to perform the analysis. 
Libraries of constraint blocks may already exist for a particular analysis domain. These constraint 
blocks are often called analysis models and may be very complex and supported by sophisticated tools. 
The general analysis models in these libraries may not precisely fit a given scenario, and the analysis 
context may contain other constraint blocks to handle transformations between the properties of the 
block and the parameters of the analysis model. An analysis context is modeled as a block with associa-
tions to the block being analyzed (i.e., subject of the analysis), the chosen analysis model, and any 
intermediate transformations. By convention, the block being analyzed is referenced by the analysis 
context block because there may be many different analysis contexts for the block being analyzed. A 
white diamond symbol or a simple association with no end adornment is used to represent a reference 
from the analysis context block to the subject of the analysis. Composite associations are used between 
the analysis context and the analysis model and any other constraint blocks. An example of an analysis 
context is shown in Figure 8.12.

par [Block] Camera [Flux Loss]

polarized : Polarized Light

flux
: Loss Eq

loss

flux
after

flux
before

external : Light

flux

loss = 0.5

: Protective Housing

FIGURE 8.11

Constraining item flows.
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Figure 8.12 shows the analysis of network throughput for a 4-Camera Wired Surveillance  
System. The analysis context is called Network Latency, which references the subject of analysis, 
a 4-Camera Wired Surveillance System. The analysis context also contains an analysis model,  
in this case a Simple Queuing Model, and uses the basic constraints RealSum4 and Compare to 
perform a load computation and a satisfaction check, respectively. Network Latency contains two 
value properties: video latency, specified in Mbps, and analysis result, which is intended to be a 
computed value and hence is derived. In this case, the equations that define the constraints are not 
shown.

In Figure 8.13, the bindings needed to perform the analysis are shown. The parameters of the analy-
sis model are bound to the properties of the subject of analysis. The loads on the system from all four 
cameras in the subject of analysis are summed to establish the total load using load computation. The 
network bandwidth of the subject of analysis is used to establish the service rate for the analysis model. 
The response time, calculated using analysis model, is then compared to the required video latency 
using satisfaction check. The video latency is a refinement of the requirement Required Network 
Throughput to establish the analysis result (see Chapter 13 for a discussion of requirements). The 
analysis result is derived to indicate that its value needs to be calculated. If the analysis result is true, 
then the network satisfies the requirement.

It is common practice for a single constraint block to represent a complex engineering analysis as a 
black box, without showing all the internal complexity of the composition. In this way, the constraint 
block specifies the input and output parameters of the analysis, and often defers to an appropriate analy-
sis tool to provide detailed equations that relate the input and output parameters. The name of the 
constraint block is generally the name of the analysis, such as Power Analysis, Power Analysis Model, 
or Power Analysis Equations.

Network Latency
values

«constraint»
Simple Queuing Model

4-Camera Wired
Surveillance System

parts
«constraint»
RealSum4

parameters

«constraint»
Compare

parameters parameters

subject
of
analysisanalysis

model
load
computation

satisfaction
check

goal : Real
actual : Real
ok : Boolean

network: Wired Network
camera 1 : Wired Camera {subsets cameras}
camera 2 : Wired Camera {subsets cameras}
camera 3 : Wired Camera {subsets cameras}
camera 4 : Wired Camera {subsets cameras}

o1 : Real
sum : Real
o2 : Real
o3 : Real
o4 : Real

video latency : Mbps
/analysis result : Boolean

bdd [Package] Analysis [Network Latency Analysis]

load : Real
service rate : Real
response time : Real

FIGURE 8.12

An analysis context shown on a bdd (constraint equations not shown).
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8.11 � MODELING EVALUATION OF ALTERNATIVES AND TRADE STUDIES
A common use of constraint blocks is to support trade studies. A trade study is used to compare a 
number of alternative solutions to see whether and how well they satisfy a particular set of criteria. 
Each solution is characterized by a set of measures of effectiveness (often abbreviated “moes”) that 
correspond to the evaluation criteria and have a calculated value or value distribution. The moes for a 
given solution are then evaluated using an objective function (often called a cost function or utility 
function), and the results for each alternative are compared to select a preferred solution.

Annex E.4 of the SysML specification introduces some concepts to support the modeling of trade 
studies. A moe is a special type of property. An objective function is a special type of constraint block 
that expresses an objective function whose parameters can be bound to a set of moes using a parametric 
diagram. A set of solutions to a problem may be specified as a set of blocks that each specialize a gen-
eral block. The general block defines all the moes that are considered relevant to evaluating the alterna-
tives, and the specialized blocks provide different values or value distributions for the moes.

A moe is indicated by the keyword «moe» in a property string for a block property. An objective func-
tion is indicated by the keyword «objectiveFunction» on a constraint block or constraint property.

Figure 8.14 shows two variants of a Camera intended to provide a solution to operate in low-light 
conditions. These variants are shown using specialization (as described in Chapter 7) and are called 

network.bandwidth : Mbps

camera 1.data rate : Mbps

camera 2.data rate : Mbps

camera 3.data rate : Mbps

camera 4.data rate : Mbps

/analysis result : Boolean

load : Real

response
time : Real

service rate : Real

o1 : Real
sum: Real

offered : Real

ok : Boolean

required : Real
video latency : Mbps

refines
«requirement» Required Network Throughput

subject of analysis
: 4-Camera Wired

Surveillance System analysis model
: Simple Queuing Model

load computation
: RealSum4

satisfaction check
: Compare

o2 : Real

o3 : Real

o4 : Real

par [Block] Network Latency

FIGURE 8.13

Binding values in an analysis context.
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Camera with Light, which is a conventional camera with an attached illuminator, and Low-Light 
Camera, which is designed to work at much lower levels of ambient light. Four relevant measures of 
effectiveness, indicated by the keyword «moe», are used to conduct the trade studies. Note that the 
moes in the specialized blocks are redefinitions of those in Camera. The redefinition keywords have 
been elided to reduce clutter.

A trade study is typically described as a type of analysis context, which references the blocks that 
represent the different alternatives. It also contains constraint properties for the objective function (or 
functions) to be used to evaluate the alternatives, and a means to record the results of the evaluation, 
typically value properties that capture the score for each alternative.

Figure 8.15 shows the definition of Night Performance Trade-off—a trade study for evaluating the 
nighttime performance of two camera variants. As indicated by its associations, Night Performance 
Trade-off contains two constraint properties, both typed by objective function NP Cost Function and 
two reference properties, one typed by Low-Light Camera and the other by Camera with Light. The 
intent of the analysis is that the equations be solved for option 1 and option 2, and so they are shown 
as derived.

Figure 8.16 shows the internal bindings of the trade study Night Performance Trade-off. One use of 
the objective function NP Cost Function, cf1, is bound to the value properties of the Low-Light Camera, 
and the other, cf2, is bound to the Camera with Light. The score parameters of cf1 and cf2 are bound to 
two value properties of the context called option 1 and option 2, which are the dependent variables in this 
particular analysis. In this case, using the values provided in Figure 8.14 for the measures of effectiveness 
of the two solutions, the scores are 400 for option 1 and 450 for option 2, indicating that the Low-Light 
Camera is the preferred solution. Additional constraint blocks can be specified to relate the moes to other 
properties in the system (refer to Chapter 17, Section 17.3.6 for an example).

bdd [Package] Night Performance [Measures of Effectiveness]

Low-Light CameraCamera with Light

Camera

values values

values

«moe»power consumption : W � 20
«moe»environmental friendliness : Integer � 4
«moe»lightlevel : lux � 0.01
«moe»weight : kg � 0.3

«moe»power consumption : W � 10
«moe»environmental friendliness : Integer � 10
«moe»lightlevel : lux � 0.25
«moe»weight : kg � 0.2

«moe»power consumption : W
«moe»environmental friendliness : Integer
«moe»light level : lux
«moe»weight : kg

FIGURE 8.14

Two variants of a camera for handling low-light conditions.
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8.12 � SUMMARY
Constraint blocks are used to model constraints on the properties of blocks to support engineering 
analyses, such as performance, reliability, cost, and mass properties analysis. The following are key 
aspects of constraint blocks and their usages:
 
	•	� SysML includes the concept of a constraint that can correspond to any mathematical or logical 

expression, including time-varying expressions and differential equations. SysML does not specify a 
constraint language but enables the language to be specified as part of the definition of the 
constraint.

	•	� SysML provides the ability to encapsulate a constraint in a constraint block so that it can be 
reused and bound with other constraints to represent complex sets of equations. A constraint 
block defines a set of constraint parameters related to each other by a constraint expression. 
Parameters may have types, units, quantity kinds, and probability distributions. The block 
definition diagram is used to define constraint blocks and their interrelationships. In particular, 
a composite association can be used to compose constraint blocks to create more complex 
equations. Constraint blocks can be defined in model libraries to facilitate specific types of 
analysis.

	•	� Constraint properties are usages of constraint blocks. The parametric diagram shows how 
constraint properties are connected by binding their parameters to one another and to the 
value properties of blocks using binding connectors. Binding connectors express equality 
between the values of the constraint parameters or value properties at their ends. In this way, 
constraint blocks can be used to constrain the values of block properties. The specific values 
needed to support the evaluation of the constraints for a block are typically specified by a 

parameters

Night Performance Trade-off

values
/option1 : Real
/option2 : Real

Low-Light Camera Camera with Light

cf2cf1

«objectiveFunction»
NP Cost Function

weight : kg{unit � Kilogram, dimension � Mass}
power : W{unit � Watt, dimension � Power}
level : lux{unit � Lux, dimension � Illuminance}
ef : Integer
score : Real

bdd [Package] Night Performance [Night Performance Trade-off]

FIGURE 8.15

A trade study represented as an analysis context.
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configuration of that block, using either a specialization of the block or an instance 
specification.

	•	� An analysis context is a block that provides the context for a system or component that is subject 
to analysis. The analysis context is composed of the constraint blocks that correspond to the 
analysis model and references the system being analyzed. A parametric diagram whose frame 
designates the analysis context is used to bind the relevant properties of the block and the param-
eters of the analysis model. The analysis context can be passed to an engineering analysis tool to 
perform the computational analysis, and the analysis results can be returned as values of proper-
ties of the analysis context.

	•	� A common and useful form of analysis used by systems engineers is the trade study, which is 
used to compare alternative solutions for a given problem based on some criteria. A moe 
(“measure of effectiveness”) is used to define a property that needs to be evaluated in a trade 
study, and a constraint block, called an objective function, is used to define how the solutions 
are evaluated.

 

par [Block] Night Performance Trade-off

: Camera with Light

«objectiveFunction»
cf1 : NP Cost Function

ef : Integer

level : lux

power : W

weight : kg

score : Real
/option 1 : Real � 400

«moe»
power consumption : W � 20

«moe»
environmental friendliness : Integer � 4

«moe»
light level : lux � 0.01

«moe»
weight : kg � 0.3

: Low-Light Camera

«objectiveFunction»
cf2 : NP Cost Function

ef : Integer

level : lux

power : W

weight : kg

score : Real
/option 2 : Real � 450

«moe»
power consumption : W � 10

«moe»
environmental friendliness : Integer � 10

«moe»
light level : lux � 0.25

«moe»
weight : kg � 0.2

FIGURE 8.16

Trade-off results between the two low-light camera variants.
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8.13 � QUESTIONS
	 1.	 �What is the diagram kind of a parametric diagram, and which kinds of model element can it 

represent?
	 2.	 �If a constraint parameter is ordered, what does that imply about its values?
	 3.	 �If a constraint parameter is unique, what does that imply about its values?
	 4.	 �How are constraint parameters represented on a block definition diagram?
	 5.	 �How is the composition of constraints represented on a block definition diagram?
	 6.	 �How are constraint properties represented on a parametric diagram?
	 7.	 �How are constraint parameters represented on a parametric diagram?
	 8.	 �What are the semantics of a binding connector?
	 9.	 �How can constraint blocks be used to constrain the value properties of blocks?
	10.	 �A block “Gas” has two value properties, “pressure” and “volume,” that vary inversely with 

respect to each other. Create an appropriate constraint block to represent the relationship, and 
use it in a parametric diagram for “Gas” to constrain “pressure” and “volume.”

	11.	 �What are the two approaches to specifying parametric models that include time-varying 
properties?

	12.	 �How are composite associations and reference associations typically used in an analysis context?
	13.	 �What is a measure of effectiveness and what is it used for?
	14.	 �What is an objective function and how is it represented on a block definition diagram and a 

parametric diagram?
 

DISCUSSION TOPICS
Under what circumstances is it useful or necessary to use derived properties or parameters in paramet-
ric models?

What are the relative merits of using constraint blocks to specify parametric equations as part of the 
definition of a block versus applying an externally defined parametric model to an existing block?
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CHAPTER

MODELING FLOW-BASED 
BEHAVIOR WITH ACTIVITIES

This chapter describes concepts needed to model behavior in terms of the flow of inputs, outputs, and 
control using an activity diagram. An activity diagram is similar to a traditional functional flow diagram 
but with many additional features to precisely specify behavior. Activities can also depict behavior 
performed by specific blocks or parts, which may represent a system or its components.

9.1 � OVERVIEW  
In SysML, an activity is a formalism for describing behavior that specifies the transformation of inputs 
to outputs through a controlled sequence of actions. The activity diagram is the primary representation 
for modeling flow-based behavior in SysML and is analogous to the functional flow diagram that has 
been widely used for modeling system behavior. Activities provide enhanced capabilities over tradi-
tional functional flow diagrams, such as the capability to express their relationship to the structural 
aspects of the system (e.g., blocks, parts) and the ability to model continuous flow behaviors. The 
semantics of a selected subset of activities are defined by the fUML specification [42] so they can be 
executed by an execution environment.

Actions are the building blocks of activities and describe how activities execute. Each action can 
accept inputs and produce outputs, called tokens. The tokens are placed on input and output buffers 
called pins until they are ready to be consumed. These tokens can correspond to anything that flows, 
such as information or a physical item (e.g., water). A certain class of actions, termed invocation 
actions, can invoke other activities that are further decomposed into other actions. In this way, invoca-
tion actions can be used to compose activities into activity hierarchies. Other actions are used to specify 
the leaf level of behavior, such as sending a signal or reading a property value.

The concept of object flow describes how input and output items flow between actions. Object flows 
can connect the output pin of one action to the input pin of another action to enable the passage of 
tokens. Flows can be discrete or continuous, where continuous flow represents the situation when the 
time between tokens is effectively zero. Complex routing of object tokens between actions can be 
specified by control nodes.

The concept of control flow provides additional constraints on when, and in which order, the actions 
within an activity will execute. A control token on an incoming control flow enables an action to start 
execution, and a control token is offered on an outgoing control flow when an action completes its 
execution. When a control flow connects one action to another, the action at the target end of the control 
flow cannot start until the source action has completed. Control nodes, such as join, fork, decision, 
merge, initial, and final nodes, can be used to route control tokens to further specify the sequence of 
actions.

9
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The sending and receiving of signals is one mechanism for communicating between activities 
executing in the context of different blocks and for handling events such as timeouts. Signals are 
sometimes used as an external control input to initiate an action within an activity that has already 
started.  

Streaming pins allow new tokens to flow into and out of an action while it is executing, whereas 
nonstreaming pins only accept and produce tokens at the start and end of execution. SysML also offers 
more advanced activity modeling concepts, such as extensions to flow semantics to deal with interrupts, 
flow rates, and probabilities.  

SysML provides several mechanisms to relate activities to the blocks that perform them. Activity 
partitions are used to partition actions in an activity according to the blocks that have responsibility for 
executing them.  

Alternatively, an activity may be specified as the main behavior of a block, which describes how inputs 
and outputs of the block are processed. An activity can also be specified as the method for an operation of 
the block that is invoked as a result of a service request for that operation. When the behavior of a block 
is specified using a state machine, activities are often used to describe the behavior of the blocks when the 
state machine transitions between states, or the behavior of the block when it is in a particular state.

Other traditional systems engineering functional representations are also supported in SysML. 
Activities can be represented on block definition diagrams to show activity hierarchies similar to func-
tional hierarchies. Activity diagrams can also be used to represent Enhanced Functional Flow Block 
Diagrams (EFFBDs) [49].

9.2 � THE ACTIVITY DIAGRAM  
The principal diagram used to describe an activity is called an activity diagram. An activity diagram 
defines the actions in an activity along with the flow of input/output and control between them. The 
complete diagram header for an activity diagram is as follows:

act [model element kind] activity name [diagram name]
The diagram kind for an activity diagram is act and the model element kind can be an activity or 

control Operator.  
Figure 9.1 shows an activity diagram for the activity Log On with some of the basic activity diagram 

symbols. Log On includes call actions that invoke other activities, such as action a2 that invokes the 
Read User Data activity. Actions have input and output pins, shown as small rectangles, to accept 
tokens that may represent units of information, matter, or energy. Pins are connected using object flows 
and control flows (solid and dashed lines respectively). The notation for activity diagrams is shown in 
the Appendix, Tables A.14 through A.17.

Figure 9.2 shows an example of an activity hierarchy that can be represented on a block definition 
diagram. The activity hierarchy provides an alternative view of the actions and invoked activities shown 
on activity diagrams, but it does not include the flows between the actions and other activity constructs 
such as control nodes. The structure of the hierarchy is shown using composite associations from a par-
ent activity—in this case, Generate Video Outputs—to other activities such as Process Frame. The role 
names on the associations, such as a2, correspond to the names of the actions used to invoke the activi-
ties in the activity diagram. The notation required to show activity hierarchies on block definition dia-
grams is described in the Appendix, Table A.9.
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FIGURE 9.1

An example activity diagram.

bdd [Package] Behavior [Example of Activity Decomposition]

«activity»
Convert to Composite

«activity»
Generate Video Outputs

«activity»
Produce Test Signal

«activity»
Process Frame

«activity»
Encode MPEG

a2 a3a1a4

FIGURE 9.2

An example of an activity hierarchy in a block definition diagram.
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9.3 � ACTIONS—THE FOUNDATION OF ACTIVITIES  
As described previously, an activity decomposes into a set of actions that describe how the activity 
executes and transforms its inputs to outputs. There are several different categories of actions in SysML 
described in this chapter, but this section provides a summary of the fundamental behavior of all actions. 
SysML activities are based on token-flow semantics related to Petri-Nets [47, 48]. Tokens hold the 
values of inputs, outputs, and control that flow from one action to another. An action processes tokens 
placed on its pins. A pin acts as a buffer where input and output tokens to an action can be stored prior 
to or during execution; tokens on input pins are consumed, processed by the action, and placed on out-
put pins for other actions to accept.  

Each pin has a multiplicity that describes the minimum and maximum number of tokens that the 
action consumes or produces in any one execution. If a pin has a minimum multiplicity of zero, then it 
is optional, marked by the keyword optional in guillemets. Otherwise, it is said to be required.  

The action symbol varies depending on the kind of action, but by default it is a rectangle with round 
corners. The pin symbols are small boxes flush with the outside surface of the action symbol and may 
contain arrows indicating whether the pin is an input or output. Once a pin is connected to a flow and 
the direction of flow becomes obvious, the arrow notation in the pin may be elided.  

Figure 9.3 shows a typical action, called a1, with a set of input and output pins. One input pin and 
one output pin are required; that is, they have a lower multiplicity bound greater than zero. The other 
two pins are optional; that is, they have a lower multiplicity bound of zero. The action also has one 
incoming control flow and one outgoing control flow shown as an arrow with a dashed line. (See  
Section 9.6 for a detailed description of control flows.) As long as its owning activity is executing, an 
action will begin execution when tokens are available on all its required inputs, including its control 
inputs as follows.

   
	•	� The number of tokens available at each required input pin is equal to or greater than its lower 

multiplicity bound.
	•	� A token is available on each of the action’s incoming control flows.
 

Once these prerequisites are met, the action will start executing and the tokens at all its input pins 
become available for consumption.

An action may terminate once it has completed its processing, providing the number of tokens it has 
made available at each required output pin is equal to or greater than its lower multiplicity bound. Once 

«optional» output [0..*]

required input [1] required output [1..*]

«optional» input [0..1]

a1

FIGURE 9.3

An action with input and output pins and input and output control flow.
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the action has terminated, the tokens at all its output pins become available to other actions connected 
to those pins. In addition, a control token is placed on each outgoing control flow.

Object and control tokens are routed using control nodes that can buffer, copy, and remove tokens. 
For more information, see Section 9.5 for object flow and Section 9.6 for control flow.  

The preceding paragraphs described the basic semantics of actions, but the following additional 
semantics are discussed later in this chapter:
 
	•	� Different kinds of actions perform different functions, and some—particularly the call actions 

discussed in Section 9.4.2—introduce additional semantics such as streaming.
	•	� SysML allows control tokens to disable as well as enable actions, but actions need control pins to 

support this, as described in Section 9.6.2.
	•	� SysML also includes continuous flows that are addressed in Section 9.9.1.
	•	� Actions can be contained inside an interruptible region, which, when interrupted, will cause its 

constituent actions to terminate immediately. Interruptible regions are described in Section 9.8.1.
 

The relationship between the semantics of blocks and activities is discussed in Section 9.11.

9.4 � THE BASICS OF MODELING ACTIVITIES  
Activities provide the context in which actions execute. Activities are used—and more importantly 
reused—through call actions. Call actions allow the composition of activities into arbitrarily deep hier-
archies that allows an activity model to scale from descriptions of simple functions to very complex 
algorithms and processes.

9.4.1 � SPECIFYING INPUT AND OUTPUT PARAMETERS FOR AN ACTIVITY
An activity may have multiple inputs and multiple outputs called parameters. Note that these param-
eters are not the same as the constraint parameters described in Chapter 8. Each parameter may have a 
type, such as a value type or block. Value types range from simple integers to complex vectors and may 
have corresponding units and quantity kinds. Parameters can also be typed by a block that may corre-
spond to a structural entity, such as fluid flowing through a hydraulic system or an automobile part 
flowing through an assembly line. Parameters have a direction that may be in, out, or both.  

Parameters also have a multiplicity that indicates how many tokens for this parameter can be con-
sumed as input or produced as output by each execution of the activity. The lower bound of the multi-
plicity indicates the minimum number of tokens that must be consumed or produced by each execution. 
As with pins, if the lower bound is greater than zero, then the parameter is said to be required; other-
wise, it is said to be optional. The upper bound of the multiplicity specifies the maximum number of 
tokens that may be consumed or produced by each execution of the activity.  

Activity parameters are shown on an activity diagram using activity parameter nodes. During 
execution, an activity parameter node contains tokens that hold the arguments corresponding to its 
parameter. An activity parameter node is related to exactly one of the activity’s parameters and 
must have the same type as its corresponding parameter. If a parameter is marked as inout, then it 
needs at least two activity parameter nodes associated with it, one for input and the other for 
output.  
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A parameter may be designated as streaming or nonstreaming, which affects the behavior of the 
corresponding activity parameter node. An activity parameter node for a nonstreaming input param-
eter may only accept tokens prior to the start of activity execution, and the activity parameter node for 
a nonstreaming output parameter can only provide tokens once the activity has finished executing. This 
contrasts with a streaming parameter, where the corresponding activity parameter node can continue 
to accept input tokens or produce output tokens throughout the activity execution. Streaming parame-
ters add significant flexibility for representing certain kinds of behavior. Parameters have a number of 
other characteristics described later in this chapter.  

Activity parameter node symbols are rectangles that straddle the activity frame boundary. Each 
symbol contains a name string composed of the parameter name, parameter type, and parameter 
multiplicity:

parameter name: parameter type[multiplicity]
If no multiplicity is shown, then the multiplicity 1..1 is assumed. An optional parameter is shown by 

the keyword «optional» above the name string in the activity parameter node. Conversely, the absence 
of the keyword «optional» indicates that the parameter is required.  

Additional characteristics of the parameter, such as its direction and whether it is streaming, are 
shown in braces either inside the parameter node symbol after the name string or floating close to the 
symbol.  

There is no specific graphical notation to indicate the direction of an activity parameter node on its 
symbol, although the direction of the parameter can be shown textually inside the symbol. Some mod-
eling guidelines suggest that input parameter nodes are shown on the left of the activity and output 
parameter nodes on the right. Once activity parameter nodes have been connected by flows to nodes 
inside the activity, the activity parameter node direction is implicitly defined by the arrow direction on 
the object flows.  

Figure 9.4 shows the inputs and outputs of the Operate Camera activity that is the main behav-
ior of the camera (refer to Chapter 7 Section 7.5.1 for a description of main behavior). As can be 
seen from the notation in the parameter nodes, Light from the camera’s environment is available 
as input using the current image parameter and two types of video signal are produced as outputs 

act Operate Camera [Activity Frame]

«optional»
composite out : Composite[0..1]

{stream, direction � out}

«optional»
MPEG out : MPEG4[0..1]
{stream, direction � out}

«optional»
current image : Light[0..1]

{stream, direction � in}

config : Configuration Data
{direction � in}

FIGURE 9.4

Specifying an activity using a frame on an activity diagram.
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using the composite out and MPEG out parameters. The input parameter config is used to provide 
configuration data to the camera when it starts.

The activity consumes a stream of inputs and produces a stream of outputs as it executes, as indi-
cated by the {stream} annotation on the main parameter nodes. The other parameter, config, is not 
streaming because it has a single value that is read when the activity starts. As stated earlier, when the 
multiplicity is not shown, for instance on parameter config, this indicates a lower bound and upper 
bound of one. The other parameters are streaming and there is not a minimum number of tokens con-
sumed or produced, so they are shown as «optional».

9.4.2 � COMPOSING ACTIVITIES USING CALL BEHAVIOR ACTIONS  
An important kind of action is the call behavior action, which invokes a behavior when it executes. 
The invoked behavior is assumed to be an activity in this chapter, although it can be other kinds of 
SysML behavior. A call behavior action has a pin for each parameter of the called behavior, and the 
characteristics of those pins must match the multiplicity and type of their corresponding parameters on 
the invoked behavior. The name string of a pin has the same form as the name string for an activity 
parameter node symbol but floats outside the pin symbol.  

If an activity parameter on the invoked activity is streaming, then the corresponding pin on the call 
behavior action also has streaming semantics. As stated earlier, tokens on nonstreaming pins, such as those 
shown in Figure 9.3, can only be available to the action for processing at the start (in the case of input pins) 
or the end (in the case of output pins) of the action execution. By comparison, tokens continue to be available 
through streaming pins while their owning action is executing, although the number of tokens consumed or 
produced by each execution is still governed by its upper and lower multiplicity bounds. As a result, it is 
generally appropriate to define an unlimited upper bound for streaming parameters.

The name string of a pin may include characteristics of the corresponding parameter, such as 
streaming. An alternative notation for a streaming pin is to shade the pin symbol.  

The call behavior action symbol is a round-cornered box containing a name string with the name of 
the action and the name of the called behavior (e.g., activity) separated by a colon as follows:

action name : behavior name.
The default notation includes just the action name without the colon or the behavior name. When 

the behavior name is shown and the action is not named, the colon is included to differentiate this nota-
tion from the default. A rake symbol in the bottom right corner of a call behavior action symbol indi-
cates that the activity being invoked is described on another diagram.  

To transform light into video signals, the Operate Camera activity invokes other activities that per-
form various subtasks using call behavior actions, as shown in Figure 9.5. The action name strings take 
the form : Activity Name, indicating that the actions do not have names. The parameter nodes and pins 
are optional in this case because the corresponding actions can start executing even if they have no 
tokens. This figure shows just activity parameter nodes and actions with their inputs and outputs. Note 
that the types of the pins have been elided here to reduce clutter.

All the invoked activities consume and produce streams of input and output tokens, as indicated by 
the {stream} annotation on the pins of the actions. Collect Images is an analog process performed by 
the camera lens. Capture Video digitizes the images from the outside world to a form of video output. 
Generate Video Outputs takes the internal video stream and produces MPEG and composite outputs for 
transmission to the camera’s users.
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9.5 � USING OBJECT FLOWS TO DESCRIBE THE FLOW OF ITEMS BETWEEN 
ACTIONS  

Object flows are used to route input/output tokens that represent information and/or physical 
items between object nodes. Activity parameter nodes and pins are two examples of object nodes. 
Object flows can be used to route items from the parameters nodes on the boundary of an activity 
to/from the pins on its constituent actions or to connect pins directly to other pins. In all cases, the 
direction of the object flow must be compatible with the direction of the object nodes at its ends 
(i.e., in or out), and the types of the object nodes on both ends of the object flow must be compat-
ible with each other.

An object flow is shown as an arrow connecting the source of the flow to the destination of the 
flow, with its head at the destination. When an object flow is between two pins that have the same 
characteristics, an alternative notation can be used where the pin symbols on the actions at both 
ends of the object flow are elided and replaced by a single rectangular symbol, specifically called 
an object node symbol. In this case, the object flow connects the source action to the object node 
symbol with an arrowhead on the object node symbol end, and then connects the object node sym-
bol to the destination action, with an arrowhead at the destination end. The object node symbol has 
the same annotations as a pin symbol, because it actually represents the pins on the source and 
destination actions.  

In Figure 9.6, the actions of Operate Camera shown in Figure 9.5 are now interconnected by object 
flows to establish the flow from light entering the camera to the output of video images in the two 
required formats. The incoming light represented by the parameter called current image flows to the 
:Collect Images action; its output, captured image, is the input to :Capture Video (note the use of a 
rectangle symbol for this object node). :Capture Video produces video images, via its video out pin, 
which in turn becomes the input for :Generate Video Outputs. :Generate Video Outputs converts its 
input video signal into MPEG and composite outputs that are then routed to corresponding output 
parameter nodes of Operate Camera.

In Figure 9.6, the actions have no names, which is indicated by the presence of a colon in the name 
string of the action symbols. See Figure 9.8 for an example where the actions are named.

FIGURE 9.5

Invocation actions on an activity diagram.
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9.5.1 � ROUTING OBJECT FLOWS  
There are many situations where simply connecting object nodes using object flows does not allow an 
adequate description of the flow of tokens through the activity. SysML provides a number of mecha-
nisms for more sophisticated expressions for routing flows. First, each object flow may have a guard 
expression that specifies a rule to govern which tokens are valid for the object flow. In addition, several 
constructs in SysML activities called collectively control nodes provide more sophisticated flow 
mechanisms, including:

	•	� A fork node has one input flow and one or more output flows—it replicates every input token it 
receives onto each of its output flows. The tokens on each output flow may be handled indepen-
dently and concurrently. Note that this replication of tokens does not imply that the items repre-
sented by the tokens are replicated. In particular, if the represented item is physical, replication of 
that physical object may not even be possible.

	•	� A join node has one output flow and one or more input flows—its default behavior for object 
flows is to produce output tokens only when an input token is available on each input flow. Once 
this occurs, it places all input object tokens on the output flow. This has the important characteris-
tic of synchronizing the flow of tokens from many sources. Note that this applies only to object 
tokens; the handling of control tokens is different, as described in Section 9.6.
	 The default behavior of join nodes can be overridden by providing a join specification that 
specifies a logical expression that the arrival of tokens on the input flows must satisfy in order to 
generate an output token on the output flow.

	•	� A decision node has one input and one or more output flows—an input token can only traverse 
one output flow. The output flow is typically established by placing mutually exclusive guards on 
all outgoing flows and offering the token to the flow whose guard expression is satisfied.  

FIGURE 9.6

Connecting pins and parameters using object flows.
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The guard expression else can be used on one of the node’s outgoing flows to ensure that there is 
always one flow that can accept a token. If more than one outgoing object flow can accept the 
token, then SysML does not define which of the flows will receive the token.  
	 A decision node can have an accompanying decision input behavior that is used to evaluate 
each incoming object token. Its result can be used in guard expressions

	•	� A merge node has one output flow and one or more input flows—it routes each input token 
received on any input flow to its output flow. Unlike a join node, a merge node does not require 
tokens on all its input flows before offering them on its output flow. Rather, it offers tokens on its 
output flow as it receives them.

   
Fork and join symbols are shown as solid bars, typically aligned either horizontally or vertically. 

Decision and merge symbols are shown as diamonds. Where forks and joins or decisions and merges 
are adjacent (i.e., would be connected by just a flow with no guards), they can be shown as a single 
symbol with the inputs and outputs of both connected to that symbol. Figure 9.12, later in the chapter, 
contains an example of a combined merge and decision node.

Join specifications and decision input behaviors are shown in notes attached to the relevant node.
Figure 9.7 shows an example of a join specification. The join node has three input flows—flow 1, 

flow 2, and flow 3—and the join specification states that output tokens are produced if input tokens are 
received on both flow 1 and flow 2, or on both flow 2 and flow 3. The expression uses the names of flows, 
so the flows must be named in this situation. Another use of flow names is to support flow allocation 
(see Chapter 14, Section 14.7). Figure 9.12 shows an example of a decision input behavior.

In Figure 9.8, the activity Generate Video Outputs accepts an input video signal and outputs it in 
appropriate formats for external use, in this case Composite video and MPEG4. The a1:Produce Test 
Signal action allows Generate Video Outputs to generate a test signal if desired. See the specification 
of Produce Test Signal later in Figure 9.14 to see how the activity knows when to generate the signal. 
The test signal, when generated, is merged into the stream of video frames using a merge node, and this 
merged stream is then converted into video frames by a2:Process Frame. Note that if tokens are pro-
duced on both the input signal parameter node and the test signal pin, then they will be interleaved into 
the raw frames pin by the merge node. That is the desired behavior in this case. If it is not the desired 

flow 2

flow 3

flow 1

«joinSpecification»
{(flow 1 & flow 2) | (flow 2 & flow 3)}

FIGURE 9.7

Example of a join specification.
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behavior, an additional control, such as a specific test mode, would be needed to ensure that incoming 
token streams were exclusive.

Once processed, the tokens representing the processed frames are then forked and offered to two 
separate actions: a4:Convert to Composite that produces the composite out output and a3:Encode 
MPEG that produces the MPEG output. These two actions can continue in parallel, each consuming 
tokens representing frames and performing a suitable translation. Note that the fork node does not 
imply that the frame data is copied (although they may be) but merely that both a3:Encode MPEG and 
a4:Convert to Composite have access to the data via their input tokens.

In this example, the name strings of the call behavior actions include both the action name and 
activity name, when arguably the actions need not be named. This helps to demonstrate the mapping 
from activities on this activity diagram to the same activities represented on the block definition dia-
gram in Figure 9.26.

9.5.2 � ROUTING OBJECT FLOWS FROM PARAMETER SETS
The parameters of an activity can be grouped together into parameter sets, which must have only input 
or only output parameters as members. When an activity is invoked that has input parameter sets, the 
parameter nodes corresponding to at most one input parameter set can contain tokens. When an activity 
that has output parameter sets completes, the parameter nodes corresponding to at most one output 
parameter set can contain tokens. A given parameter may be a member of multiple parameter sets.

Each set of parameters is shown by a rectangle on the outer boundary of the activity, which partially 
encloses the set of parameter nodes that correspond to parameters in the set. These rectangles can over-
lap to reflect the overlapping membership of parameter sets.

Figure 9.9 shows an activity called Request Camera Status with two distinct sets of outputs. 
When presented with a camera number as input, Request Camera Status will return an error and a 
diagnostic if there is a problem with the camera, or a power status and current mode if the camera is 
operational.

FIGURE 9.8

Routing object flows between invocations.
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If an invoked activity has parameter sets, then the groupings of pins corresponding to the different 
parameter sets are shown on the call behavior action, using notation similar to parameter sets on 
activities.

Figure 9.10 shows the object flow for an activity Handle Status Request that reads a camera id and 
writes a camera status. It invokes Request Camera Status with a camera number and expects one of 
two sets of outputs that correspond to two parameter sets: an error and a diagnostic or a power status 
and current mode. These two sets of outputs are used by two different string-formatting functions, Cre-
ate Error String and Create Status String. Whichever formatting function receives inputs produces an 
output string that is then conveyed via a merge node to the camera status output parameter node.

9.5.3 � BUFFERS AND DATA STORES
Pins and activity parameter nodes are the two most common kinds of object nodes, but there are cases 
when additional constructs are required. A central buffer node provides a store for object tokens out-
side of pins and parameter nodes. Tokens flow into a central buffer node and are stored there until they 
flow out again. It is needed when there are multiple producers and consumers of a single-buffered 

act [Activity] Request Camera Status

camera number

diagnostic

error

current mode

power status

FIGURE 9.9

An activity with parameter sets.

act Handle Status Request

: Request Camera Status

error
diagnostic

power status
current mode

camera number
: Create Status

String

status string
power
current status

: Create Error
String error string

error
diagnostic

camera id : Integer
camera

status : String

FIGURE 9.10

Invoking an activity with parameters sets.
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stream of tokens at the same time. This contrasts with pins and activity parameter nodes, which have 
either a single producer or single consumer for each token.

Sometimes activities require the same object tokens to be stored for access by a number of actions 
during execution. A kind of object node called a data store node can be used for this. Unlike a central 
buffer node, a data store node provides a copy of a stored token rather than the original. When an input 
token represents an object that is already in the store, it overwrites the previous token. Data stores can 
provide tokens when a receiving action is enabled, thus supporting the pull semantics of traditional flow 
charts.

Data store nodes and central buffer nodes only store tokens while their parent activity is executing. 
If the values of the tokens need more permanent storage, then a property should be used. The language 
includes primitive actions, described in Section 9.14.3, which can be used to read and write property 
values.

Both data store nodes and central buffer nodes are represented by a rectangle with a name string, 
with the keywords «datastore» and «centralBuffer» above the name string. Their names have the 
same form as pins, buffer or store name: buffer or store type, but without multiplicity. An 
example of a central buffer node is shown in Figure 9.19.

Figure 9.11 describes the internal behavior of the Capture Video activity. Light entering the camera 
lens is focused by the action :Focus Light, which produces an image that is stored in a data store node 
called current image. The image stored in current image is then used by two other actions: :Convert 
Light, which samples the images to create video frames, and :Adjust Focus, which analyzes the current 
image for sharpness and provides a focus position to :Focus Light. The use of a data store node here 
facilitates the transition between the analog nature of the incoming light from the lens and the digital 
nature of the video stream. (See Figure 9.17 for an enhanced version of this diagram, including flow 
rate information.) In this case, the data store may be allocated to the focal plane array of the camera 
along with the :Convert Light action (see Chapter 14, Section 14.7 for a description of allocation).

The object node symbol called focus position is input to Focus Light, whereas :Convert Light and 
:Adjust Focus receive their input from a data store node. The notation for the object node representation 
of flows and the representation of buffer nodes is quite similar, but buffer nodes always have the key-
word «datastore» or «centralBuffer» above their name.

FIGURE 9.11

Using a data store node to capture incoming light.
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Sections 9.9.2 and 9.9.3 discuss other mechanisms to specify the flow of tokens through data store 
and central buffers nodes, as well as other object nodes.

9.6 � USING CONTROL FLOWS TO SPECIFY THE ORDER OF ACTION 
EXECUTION  

As mentioned previously, there are control semantics associated with object flow, such as when an 
action waits for the minimum required number of tokens on all input pins before proceeding with its 
execution. However, sometimes the availability of object tokens on required pins is not enough to 
specify all the execution constraints on an action. In this case control flows are available to provide 
further control using control tokens. Although object flows have been described first in this chapter, the 
design of an activity need not necessarily start with the specification of object flows. In traditional flow 
charts, it is often the control flows that are established first and the routing of objects later.

In addition to any execution prerequisites established by required input pins, an action also cannot 
start execution until it receives a control token on all input control flows. When an action has completed 
its execution, it places control tokens on all outgoing control flows. The sequencing of actions can thus 
be controlled by the flow of control tokens between actions using control flows.

An action can have more than one control flow input. This has the same semantics as connecting the 
multiple incoming control flows to a join node, and connecting the output control flow from the join 
node to the action. Similarly, if an action has more than one control flow output, it can be modeled by 
connecting the action via an outgoing control flow to a fork node with multiple control flow outputs. As 
described in Section 9.6.2, control tokens can be used to disable actions as well as enabling them.  

9.6.1 � DEPICTING CONTROL LOGIC WITH CONTROL NODES  
All the constructs used to route object flows can also be used to route control flows. In addition, a join 
node has special semantics with respect to control tokens; even if it consumes multiple control tokens, 
it emits only one control token once its join specification is satisfied. Join nodes can also consume a 
mixture of control and object tokens, in which case once all the required tokens have been offered to 
the join node, all the object tokens (but none of the control tokens) are offered on the outgoing flow.

In addition to the constructs described in Section 9.5.1, there are some special constructs that pro-
vide additional control logic:
 
	•	� Initial node—when an activity starts executing, a control token is placed on each initial node in 

the activity. The token can then trigger the execution of an action via an outgoing control flow. 
Note that although an initial node can have multiple outgoing flows, a control token will only be 
placed on one. Typically, guards are used when there are multiple flows in order to ensure that 
only one is valid, but if this is not the case, then the choice of flow is arbitrary.

	•	� Activity final node—when a control or object token reaches an activity final node during the 
execution of an activity, the activity execution terminates.

	•	� Flow final node—control or object tokens received at a flow final node are consumed but have no 
effect on the execution of the enclosing activity. Typically they are used to terminate a particular 
sequence of actions without terminating an activity. An example of when a flow final node is used 
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is when a fork node has two output flows to two concurrent actions. If one of the action terminates 
but the other continues as part of a processing chain, a flow final node can be used to indicate that 
one action has completed its execution without terminating the activity.

   
A control flow can be represented either by using a solid line with an arrowhead at the destination end 
like an object flow or, to more clearly distinguish it from object flow, by using a dashed line with an 
arrowhead at the destination end. An initial node symbol is shown as a small solid black circle. The 
activity final node symbol is shown as a bulls-eye, Examples of the initial and activity final nodes are 
shown in Figure 9.12.

The flow final node symbol is a hollow circle containing an X. Figure 9.21 contains an example of 
a flow final node.

The console software provides the capability to drive a camera through a preset scan route, as shown 
in Figure 9.12. The activity Follow Scan Route will follow a route that is a set of positions for the cam-
era defined in terms of pan-and-tilt angles. It has one input parameter, the route as a fixed-length col-
lection of positions with size route size. When started, the activity resets its count property, then iterates 
over all points in the route—incrementing count for every point. It terminates when the return value of 
the associated decision input behavior evaluates to false (and thus satisfies the [false] rather than the 
[true] guard) indicating that the last point in the route is reached. The decision input condition is an 
opaque expression written in Alf (see Section 9.14.2 for a description of the Alf programming lan-
guage). As with constraints, the language used to specify the action can be added in braces before the 
expression. The Position Camera activity is invoked for each position token offered on the route 
parameter. Control flows dictate the order in which the activity executes.

act Follow Scan Route

{Alf}this.count = 0

:Position Camera
position

{Alf}this.count = this.count � 1;

route

[{Alf}false]

{Alf}[this.count�route
size]

[{Alf}true]

FIGURE 9.12

Control flow in activities.
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Note that in this case there is a combined merge and decision symbol that accepts two input control 
flows and has two output control flows: one leads to an activity final node and the other leads into 
another iteration of the algorithm. The activity’s count property is initialized and incremented using 
actions this.count = 0; and this.count = this.count + 1; these are opaque actions; that is, their function 
is expressed in some language external to SysML (in this case Alf).

9.6.2 � USING CONTROL OPERATORS TO ENABLE AND DISABLE ACTIONS
An action with nonstreaming inputs and outputs typically starts once it has the prerequisite incoming 
tokens and terminates execution when it completes the production of its outputs. However, the comple-
tion of the action execution may need to be controlled by a control input, particularly if the action is a 
call action with streaming inputs and/or outputs. To achieve this, a value can be sent via a control flow 
to the action to enable or disable its invoked activity. SysML provides a specific control enumeration for 
this called ControlValue, with values enable and disable. For an action to receive this control input, 
it needs to provide a control pin that can receive it. A control value of enable has the same semantics as 
the arrival of a control token, and a control value of disable will terminate the invoked activity.

A special behavior called a control operator produces control values via an output parameter, 
typed by ControlValue. A control operator can include complex control logic and can be reused in 
many different activities via a call behavior action. A control operator is also able to accept a control 
value on an appropriately typed input parameter and will treat it as an object token rather than a control 
token.

The control value type could be extended in a profile (see Chapter 15) to include other control val-
ues in addition to enable and disable. A control operator could then output these new values. A con-
trol value of suspend, for example, might not terminate execution of the action like disable. The action 
would allow execution to resume where it left off when it received a resume control value.

The definition of a control operator is indicated by the presence of the keyword «controlOperator» 
as the model element kind in the diagram label on the activity diagram frame.

Figure 9.13 shows a simple control operator, called Convert Bool to Control, that takes in a Boolean 
parameter called bool in and, depending on its value, either outputs an enable or disable value on its 
control out output parameter. The values are created using primitive actions, called value specification 
actions, whose purpose is to output a specified value. By convention, the input and output pins of these 

control out:
ControlValue

bool in : Boolean

«valueSpecification»
enable

«valueSpecification»
disable

[else]

[bool in]

act [controlOperator] Convert Bool to Control

FIGURE 9.13

Using a control operator to generate a control value.
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actions are elided. (See Section 9.14.3 for a discussion of primitive actions.) Convert Bool to Control 
is a generally useful control operator that can be reused in many applications.

A control operator is a kind of behavior and so may be invoked using a normal call behavior action. 
A call behavior action that invokes a control operator has the keyword «controlOperator» above its 
name string. A control pin symbol is a standard pin symbol with the addition of the property name 
control in braces floating near the pin symbol.

A test signal is not always wanted on the video output. A mechanism to inhibit test signal produc-
tion is shown in Figure 9.14. The Convert Bool to Control control operator shown in Figure 9.13 reads 
a Boolean flag test value from the activity Receive Test Messages to generate an enable or disable value 
on a pin called control out. This pin in turn is connected via a control flow to the inhibit pin of the 
Generate Test Signal activity. Generate Test Signal interprets this input as a control value because 
inhibit is a control pin, as indicated by the annotation {control}. When Generate Test Signal is enabled, 
it reads the time at 2 Hz from an accept time event action (see Section 9.7 for a discussion of time 
events). The activity Receive Test Messages is defined in Figure 9.24.

9.7 � HANDLING SIGNALS AND OTHER EVENTS  
In addition to obtaining inputs and producing outputs using its parameters, an activity can accept sig-
nals using an accept event action for a signal event (commonly called an accept signal action) and 
send signals using a send signal action. Communication can then be achieved between activities by 
including a send signal action in one activity and an accept signal action for a signal event representing 
the same signal in another activity. More typically, signals are sent from or received by the instances of 
the blocks that own and execute the activities, as described in Section 9.11.2. Communication via sig-
nals takes place asynchronously; that is, the sender does not wait for the signal to be accepted by the 
receiver before proceeding to other actions.

An accept signal action can output the received signal on an output pin. A send signal action has one 
input pin per attribute of the signal to be sent and one input pin to specify the target for the signal.

FIGURE 9.14

Using a control operator to control the execution of an activity.
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The accept event action can accept others kinds of events, including:
 
	•	� A time event, which corresponds to an expiration of an (implicit) timer. In this case the action has 

a single output pin that outputs a value containing the time of the accepted event occurrence.
	•	� A change event, which corresponds to a certain condition expression (often involving values of 

properties) being satisfied. In this case there is no output pin, but the action will generate a control 
token on all outgoing control flows when a change event has been accepted.  

	•	� A change event can also be related to the change in the value of a structural feature (e.g., a flow 
property). When the value of the structural feature changes, both the previous and new values of 
the feature are presented on output pins.

   
An accept event action with no incoming control flows is enabled as soon as its owning activity (or 

owning interruptible region; see Section 9.8.1) starts to execute. However, unlike other actions, it 
remains enabled after it has accepted an event and so is ready to accept others.  

As of SysML 1.3, both send signal actions and accept event actions can be sent and received, respec-
tively, through ports, including nested ports. See Chapter 7, Section 7.6 for a description of ports. An 
accept event action can specify that it accepts an event from a particular port, such as a signal arriving 
at a given port. A send signal action can specify that its signal must be sent through a particular port.  

A send signal action is represented by a rectangle with a triangle attached on one end, and an accept 
event action is represented by a rectangle with a triangular section missing from one end. When the 
event accepted is a time event, the accept event action may be shown as an hourglass symbol (see  
Figure 9.14).  

Also as of SysML 1.3, if an event is accepted through a port, the path to the port is given as a prefix 
to the name string of the accept event action with the format: «from» (portname, …). If a signal is to 
be sent through a port, the path to the port is given as a prefix to the name string of the accept event 
action with format: via portname, ….

Figure 9.15 shows how MPEG frames are transmitted over the surveillance camera network. The 
Transmit MPEG activity first sends a Frame Header signal to indicate that a frame is to follow. It 
then executes Send Frame Contents, which splits the frame into packets and sends them. When Send 
Frame Contents finishes, it outputs a packet count and two signaling actions are performed: a Frame 
Footer signal is sent and then an accept signal action waits for a Frame Acknowledgment signal. 
Once the Frame Acknowledgment signal has been received, the Check Transmission activity is 
invoked to check the packet count returned with the acknowledgment against the count provided as 
an output of Send Frame Contents. If the packet counts match, then transmission is deemed to have 
succeeded and the variable transmission OK is set to true. This variable is then tested on the outgoing 
guards of a decision node and, if true, the activity terminates; otherwise the frame is resent, having 
previously been stored.

9.8 � STRUCTURING ACTIVITIES
There are various ways in which the actions in an activity can be grouped together to obtain specific 
execution semantics. Interruptible regions allow the execution of a set of nodes to be interrupted. Struc-
tured activity nodes provide an alternate mechanism to activities for executing a set of actions with 
common inputs and outputs as a single group.
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9.8.1 � INTERRUPTIBLE REGIONS
All the action executions within an execution of an activity are terminated when the activity is termi-
nated. However, there are some circumstances when the modeler wants only a subset of the action 
executions to be terminated.

An interruptible region can be used to model this situation. An interruptible region groups a subset 
of actions within an activity and includes a mechanism for interrupting execution of those actions, 
called an interrupting edge, whose source is a node inside the interruptible region and whose destina-
tion is a node outside it. Both control and object flows can be designated as interrupting edges. Normal 
(i.e., noninterrupting) flows may have a destination outside the region as well; tokens sent on these 
flows do not interrupt the execution of the region.

When an interruptible region is entered, at least one action within the region starts to execute. An 
interruption of an interruptible region occurs whenever a token is accepted by an interrupting edge that 
leaves the region. This interruption causes the termination of all actions executing within the interrupt-
ible region, and execution continues with the activity node or nodes that accepted the token from the 
interrupting edge. (It can be more than one node because the interrupting edge can connect to a fork 
node.)

A token on an interrupting edge often results from the reception of a signal, either by the activity 
containing the interruptible region or the block that owns the activity, if it has one. In that case, the 
signal is received by an accept signal action within the interruptible region that offers a token on an 
outgoing interrupting edge to some activity node outside the region. Special semantics are associated 
with accept event actions contained in interruptible regions. As long as they have no incoming edges, 
the accept event action does not start to execute until the interruptible region is entered, as opposed to 
the normal case where the accept event action starts when the enclosing activity starts.

FIGURE 9.15

Using signals to communicate between activities.
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An interruptible region is notated by drawing a dashed round-cornered box around a set of activity 
nodes. As of SysML 1.2, the name of the region can appear inside the region, which is useful if there 
are multiple interruptible regions. An interrupting edge is represented either by a lightning bolt symbol 
or by a normal flow line with a small lightning bolt annotation floating near it.

Figure 9.16 shows a more complete definition of the overall behavior of the camera, Operate Cam-
era, previously shown in Figure 9.6. After invoking the Initialize activity, the camera waits for a Start 
Up signal to be received by an accept signal action before proceeding simultaneously with the primary 
activities that the camera performs: Collect Images, Capture Video, and Generate Video Outputs. These 
are triggered, following the acceptance of the Start Up signal, using a fork node to copy the single 
control token emerging from the accept signal action into control flows ending on each action.

The actions are enclosed in an interruptible region and continue to execute until a Shut Down signal 
is accepted by an accept signal action. When a Shut Down signal has been accepted, an interrupting 
edge leaves the interruptible region, all the actions within it terminate, and control transitions to the 
action that invokes the Shutdown activity. Once the Shutdown activity has completed, a control token is 
sent to an activity final node that terminates Operate Camera. Note that there are other flows leaving 
the interruptible region, but because they are not interrupting edges, they do not cause its termination.

9.8.2 � USING STRUCTURED ACTIVITY NODES
Activities are inherently concurrent in nature with the execution of actions only governed by the avail-
ability of object and control tokens. However, if the modeler wishes to execute a set of actions within 
an activity as a group, SysML offers a structured activity node. A structured activity node can have a 

config :
Configuration Data

input signal
{stream}

: Collect Images

captured
image
{stream}

ext image
{stream}

: Capture Video

Shut Down

: Shutdown

Start Up

: Initialize
config

«optional»
current image :

Light[0..*]
{stream}

act Operate Camera [Interruptible Region]

«optional»
MPEG output :

MPEG4[0..*]
{stream}

«optional»
composite out :
Composite[0..*]

{stream}

: Generate
Video Outputs

composite
out {stream}

captured image
{stream}

video out
{stream}

MPEG
output
{stream}

FIGURE 9.16

An interruptible region.
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set of pins through which tokens flow to and from its internal actions. A structured activity node, like 
an action, cannot start until it has the required number of object and control tokens on its inputs, and 
only delivers tokens on its outputs when all of its internal actions have completed their execution. A 
structured activity node is often used in preference to an activity when its actions are unlikely to be 
reused in more than one context. The content of a structured activity node is shown in the same diagram 
as the owning activity whereas the content of a called behavior is typically not.

There are three specialized kinds of structured activity node:
 
	•	� A sequence node, which executes its actions one after the other in a defined order;
	•	� A conditional node, which contains a number of groups of actions that are executed only under 

certain conditions;
	•	� A loop node, which contains a set of actions that are executed repeatedly;
 

A sequence node is the simplest specialized form of structured activity node, containing just a single 
grouping of actions. A successor action in the sequence cannot start to execute until its predecessor has 
completed its execution, even if all of its other execution prerequisites (see Section 9.3) have been met.

A conditional node contains a set of clauses, each containing a test and a body. It is similar to an if 
statement in a programming language like Java. When the conditional node starts to execute, the tests of 
all the clauses are executed and if one of the tests yields a true result then the body of its clause is executed. 
The body of only one clause can execute; the choice of which body to execute if more than one test yields 
true is not defined by the language. However, the modeler may specify an evaluation order for the clauses, 
which allows them to determine the outcome in such cases. There is a special clause, called the else 
clause, whose test always yields true, that will be selected for execution if no other clause is executed.

A loop node contains three sections, the setup, the test and the body. It is similar to the while and 
for statements in a programming language like C. The setup is performed once on entry to the node. 
After setup, the body of the node is executed while the test yields true; the test may either be executed 
before the body or after the body. A loop node can contain loop variables, similar to those provided in 
the C programming language, which are accessible to the setup, test, and body sections of the node.

A structured activity node is shown as a rounded rectangle with a dashed boundary and the keyword 
«structured» above its name string. SysML defines no graphical notation for sequence, conditional or 
loop nodes, but the Action Language for Foundational UML (Alf), described in Section 9.14.2, does 
provide a textual syntax for them.

9.9 � ADVANCED FLOW MODELING
In SysML, there is a default assumption that tokens flow at the rate dictated by the executing actions 
and that tokens flowing into an object node flow out in the same order and with equal probability. 
SysML offers constructs to deal with situations when these assumptions are not valid.

9.9.1 � MODELING FLOW RATES
Any streaming parameter can have a rate property that specifies the expected rate at which tokens flow 
into or out of a related pin or parameter node. Flows can also have a rate property that specifies the 
expected number of tokens that flow per time interval, that is, the expected rate at which they leave the 
source node and arrive at the target node.
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The rate property can represent a continuous or discrete rate. Continuous flow is a special case 
that indicates that the expected rate of flow is infinite or conversely that the time between token arriv-
als is zero. In other words, there are always newly arriving tokens available at whatever rate the 
tokens are read. When a discrete rate is specified, the value is only the statistically expected rate 
value. The actual value may vary over time, only averaging out to the expected value over long 
periods.

A continuous rate is indicated by the keyword «continuous» above the name string of the corre-
sponding symbol. A discrete rate is indicated by the keyword «discrete». A specific discrete rate is 
specified using the property pair rate = rate value in braces either inside or floating alongside the 
corresponding symbol.

In Figure 9.17, the object flows associated with light in the Capture Video activity are continuous. 
The Focus Light and Adjust Focus actions invoke analog processes with continuous inputs and out-
puts, as indicated by the appearance of the keyword «continuous» on object nodes associated with 
those actions, including the current image data store. However, the images generated by the Convert 
Light action must be produced at a rate of 30 frames per second, as indicated on the video out 
parameter node.

9.9.2 � MODELING FLOW ORDER
As described earlier in this chapter, tokens can be queued at pins or other object nodes as they await 
processing by the action, subject to a specified upper bound. When the upper bound of an object node 
is greater than one, the modeler can specify the order in which its tokens are read using the ordering 
property of the node that can take values of ordered, FIFO (first-in/first-out), LIFO (last-in/first-out), 
or unordered. If the ordering property is specified as ordered, the modeler must provide an explicit 
selection behavior that defines the ordering. This mechanism can be used to select the token based on 
some value, such as priority, of the represented object.

In a case when an offered token would cause the number of tokens to exceed the upper bound of the 
object node, a modeler can choose to overwrite tokens already there or to discard the newly arrived 
tokens.

FIGURE 9.17

Use of continuous flows and discrete flows with rate information.
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The notation for ordering is the name value pair ordering = ordering value placed in braces near 
or inside the object node. If no ordering is shown, then the default FIFO is assumed. The keyword 
«overwrite» is used to indicate that a token arriving at a full node removes a token that is already pres-
ent before adding itself to the node in accordance with its ordering property. The token removed is the 
one that has been in the object node the longest. For FIFO ordering, this is the token that is next to be 
selected; for LIFO it is the token that would be last to be selected. Alternatively, the keyword «noBuf-
fer» can be used to discard newly arriving tokens that are not immediately processed by the action.

9.9.3 � MODELING PROBABILISTIC FLOW
When appropriate, a flow can be tagged with a probability to specify the likelihood that a given token 
will traverse a particular flow among available alternative flows. This is typically encountered in flows 
that emanate from a decision node, although probabilities can also be specified on multiple edges going 
out of the same object node (including pins). Each token can only traverse one edge with the specified 
probability. If probabilistic flows are used, then all alternative flows must have a probability and the 
sum of the probabilities of all flows must equal 1.

Probabilities are shown either on activity flow symbols or parameter set symbols as a property/value pair 
probability = probability value enclosed in braces floating somewhere near the appropriate symbol.

Figure 9.18 shows the activity diagram for Transmit MPEG, first introduced in Figure 9.15. In this 
example, the probability of successful transmission has been added. The two flows that correspond to 
successful and unsuccessful transmission have been labeled with their relative probability of 
occurrence.

act Transmit MPEG [with probabilities]
MPEG Frame

Frame Acknowledgment

: Send Frame Contents

packet count

MPEG Frame

: Check Transmission
packets sent

frame ack

Frame Header

«datastore»
frame store

[else] {probability � "0.01"}
[transmission OK]

{probability � "0.99"}

Frame Footer

FIGURE 9.18

Probabilistic flow.
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9.10 � MODELING CONSTRAINTS ON ACTIVITY EXECUTION
The basic constraints on activity execution were covered in Section 9.3. This section describes model-
ing techniques that can be used to specify further execution constraints.

9.10.1 � MODELING PRE- AND POST-CONDITIONS AND INPUT AND OUTPUT STATES
An action is able to execute when all of the prerequisite tokens have been offered at its inputs, and simi-
larly may terminate when it has offered the postrequisite tokens on its outputs. However, sometimes 
additional constraints apply that are based on the values of those tokens or conditions currently holding 
in the execution environment. These constraints can be expressed using pre- and post-conditions on 
the actions and, in the case of call actions, on the behaviors they invoke.

In the specific case when an object represented by a token has an associated state machine, an object 
node may explicitly specify the required current state or states of that object in a state constraint.

The display of pre- and post-conditions depends on whether they are specified against the behavior or 
the action. Pre- and post-conditions on behaviors (in this case activities) are specified as text strings placed 
inside the activity frame, preceded by either the keyword «precondition» or «postcondition». Pre- and 
post-conditions on actions are placed in note symbols attached to the action, with the keyword «local-
Precondition» or «localPostcondition» at the top of the note preceding the text of the condition.

A state constraint on an object node is shown by including the state name in square brackets under-
neath the name string of the symbol for that object node. This is equivalent to a local pre-condition or 
post-condition on the owning action requiring the specified state.

Although ACME Surveillance Systems does not manufacture the cameras, they do want to have 
some say in the production process. Figure 9.19 shows their preferred process. The optimal path for the 
production process is through Assemble Cameras and Package Cameras. However, their experience is 
that some assembled cameras do not work properly but can be repaired at reasonable cost and sold as 
reconditioned.

The repair process is modeled as the activity Repair Cameras. Some cameras are unfixable, but 
even then the camera can be cannibalized (through activity Cannibalize Cameras) for spare parts that 
can be fed back into the assembly process. A camera in production progresses through a number of 

FIGURE 9.19

Example of using states on pins.
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states (see Chapter 11 for a description of state machines) as it moves through production, and different 
activities require or provide cameras in specific states. Assemble Cameras may produce cameras faster 
than they can be packaged or repaired, so they are placed in a buffer called assembled cameras. From 
there they either progress directly to Package Cameras if their state is operational, or, they progress to 
Repair Cameras if their state is damaged. Repair Cameras accepts cameras in the damaged state, and 
they are either repaired or deemed unfixable when the activity has completed.

Note that the activity Build Cameras models the process of building cameras, using tokens to repre-
sent cameras. In this example, the flow of tokens could mirror quite closely the flow of physical cameras 
through a production system. The central buffer node might be allocated to a storage rack, for example.

The previous discussion described how the states on input and output pins could be used to specify 
pre-conditions and post-conditions, respectively. A constraint on the input and output relationship can 
also be specified, in effect, by combining a pre-condition and post-condition. These constraints might, 
for example, express the relationship between the pressure of some incoming gas and the temperature 
readings provided by some outgoing electrical signal. Alternatively, this could be used to express an 
accuracy or time constraint associated with the action or activity. The constraint can be captured using 
a constraint block to support further parametric analysis.

9.10.2 � ADDING TIMING CONSTRAINTS TO ACTIONS
SysML provides a specialized form of constraint that can be used to specify the duration of an action’s 
execution. The constraint is shown using standard constraint notation, a note attached to the action 
which is constrained.

Figure 9.20 shows an additional timing constraint on frame transmission. It is used to indicate that 
the action which invokes the Send Frame Contents activity has at most 10 milliseconds to execute.

act Transmit MPEG [with duration]
MPEG Frame

Frame Acknowledgment

: Send Frame Contents
packet
count

MPEG Frame

: Check Transmission

packets
sent

frame
ack

Frame Header

«datastore»
frame store

[else]
[transmission OK]

Frame Footer

{0 .. 10ms}

FIGURE 9.20

Adding timing constraints to actions.
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9.11 � RELATING ACTIVITIES TO BLOCKS AND OTHER BEHAVIORS
Activities are often specified independently of structure (i.e., blocks), and their execution semantics do 
not depend on the presence of blocks. However, as the system design progresses, the relationship 
between the behaviors of a system, expressed in this case using activities, and the structure of a system, 
expressed using blocks, needs to be established.

Different methods approach this in different ways. A classical systems engineering functional 
decomposition method allocates the functions to components as described in the method in Chapter 16. 
Other methods approach this somewhat differently by establishing a system hierarchy and driving out 
the scenarios defined by the interaction between components as described in the method in Chapter 17.

SysML has two mechanisms to relate blocks and activities. The first is the use of an activity parti-
tion to assert that a given block (or part) is responsible for the execution of a set of actions. The second 
is for a block to own an activity, as introduced in Chapter 7, Section 7.5.1, and use this as a basis for 
specifying aspects of the block’s behavior.

9.11.1 � LINKING BEHAVIOR TO STRUCTURE USING PARTITIONS  
A set of activity nodes—in particular call actions—can be grouped into an activity partition (also 
known as a swim lane) that is used to indicate responsibility for execution of those nodes. A typical 
case is when an activity partition represents a block or a part and any behaviors invoked by call actions 
in that partition are the responsibility of the block or the part. The use of partitions to indicate which 
behaviors are the responsibilities of which blocks specifies the functional requirements of a system or 
component defined by the block.

Activity partitions are depicted as rectangular symbols that physically encompass the action sym-
bols and other activity nodes within the partition (the so-called “swim lane” notation). Each partition 
symbol has a header containing the name string of the model element represented by the partition. In 
the case of a part or reference, the name string consists of the part or reference name followed by the 
type (block) name, separated by a colon. In the case of a block, the name string simply consists of the 
block’s name. Partitions can be aligned horizontally or vertically to form rows or columns, or option-
ally can be represented by a combination of horizontal and vertical rows to form a grid pattern. An 
alternative representation for an activity partition for call actions is to include the name of the partition 
or partitions in parentheses inside the node above the action name. This can enable the activity to have 
a more efficient layout than the swim lane notation.  

Figure 9.21 contains an example of partitions taken from the model of an ACME surveillance sys-
tem. It shows how new intruder intelligence is analyzed and handled by the security guard and the 
company security system within some overall system context. Once the security guard has received new 
intelligence (signal Intruder Intel), he or she may need to address two concerns in parallel, so the token 
representing the signal is forked into two object flows. If the intruder has moved, then a Move Joystick 
action is performed to follow him or her. If the intruder is deemed to have moved out of range of the 
current camera, then a Select Camera activity is performed to select a more appropriate camera. In both 
cases, a flow final node is used to handle the tokens referencing the signal data when no action is 
required.

The company security system stores the currently selected camera in a data store node. It uses this 
information when it reacts to joystick commands by sending Pan Camera and Tilt Camera commands 
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to the selected camera. Security guard and company security system are parts, as indicated by the name 
strings in the partition headers.

Partitions themselves may have subpartitions that can represent further decomposition of the represented 
element. Figure 9.22 shows the process for an Operator (security guard) logging in to a Surveillance System 
(company security system). The security guard enters his or her details, which are read by the User Interface, 
part of the company security system, and validated by another part, the Controller, which then responds 
appropriately. The User Interface and the Controller are represented by nested partitions within company 
security system. In this case, the security guard and the company security system are themselves shown as 
nested partitions of a block representing the context for both the surveillance system and its users.
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Intruder Intel

Issue Camera Commands

tilt commands
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current
camera
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Activity partitions.
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An allocate activity partition is a special kind of partition that can be used to perform behavioral 
allocation, as described in Chapter 14.

9.11.2 � SPECIFYING AN ACTIVITY IN A BLOCK CONTEXT
In SysML, activities can be owned by blocks, in which case an instance of the owning block executes the 
activity. For a block, an activity may either represent the implementation of some service, which is termed 
a method (see Chapter 7, Section 7.5.3), or it may describe the behavior of the block over its lifetime, 
which is termed the classifier behavior or the main behavior (see Chapter 7, Section 7.5.1). During execu-
tion of an activity, an instance of its owning block provides its execution context. The execution of the 
activity can access stored state information from the instance and has access to its queue of requests.

Activities as block behaviors
When an activity serves as a classifier behavior, parameters of the activity may be mapped to flow properties 
of ports on the owning block. SysML does not explicitly say how flow properties are matched to parameters 
because there are many different approaches, depending on method and domain. An obvious strategy is to 

FIGURE 9.22

Nested activity partitions.
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match parameters to flow properties based on at least type and direction. If this still results in ambiguity, the 
names can also be used to confirm a match. Allocation can also be used to express the mapping.

Figure 9.23 shows a block called Camera that describes the design for one of ACME’s surveillance 
cameras. It has four proxy ports, three of which allow light to flow into the camera and video to flow out in 
either Composite or MPEG4 format. The fourth allows configuration data to be passed to the camera. It also 
has a port with a provided interface that supports a set of control signals used to control the operation of the 
camera. The block behavior of the camera is the activity Operate Camera that has appeared in a number of 
previous figures, most recently Figure 9.16. In Figure 9.23, the parameters of the activity match, and can 
therefore be bound to, flow properties of the proxy ports of the Camera block. (Note that the interface blocks 
for the proxy ports have not been shown here, but Video Interface was shown in Chapter 7, Figure 7.41).

In Figure 9.23, there is no direct correspondence between the control port on Camera and a parameter 
or parameters on its block behavior Operate Camera. However, when an activity acts as the behavior for 
a block, it can accept signals received through ports on the block, as long as the block declares a reception 
for that signal. These signals can be accepted using an accept event action within the activity.

Figure 9.24 shows the specification of the activity Receive Test Messages that is invoked as part of Pro-
duce Test Signal, as shown on Figure 9.14. Once the activity starts, it simply waits for Start Test Signal using 
an accept signal action, then waits for Stop Test Signal, and then repeats the sequence. The accept signal 
actions trigger value specification actions via control flows that create the right Boolean value, and these 
values are merged into a test value output. Because Receive Test Messages executes as part of the execution 

FIGURE 9.23

A block with proxy ports and a block behavior.
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of Operate Camera (albeit several levels deep in the activity hierarchy), its execution has access to signals 
received by the owning context, which in this case is an instance of Camera. The other two signals recog-
nized by the control port in Figure 9.23 are Shutdown and Start Up, which are shown in Figure 9.16.

Activities as methods
When used as a method of an owning block, an activity needs to have the same signature (i.e., same param-
eter names, types, multiplicities, and directions) as the associated behavioral feature of the block. There are 
two kinds of behavioral feature. An operation supports synchronous requests and asynchronous requests. A 
reception only supports asynchronous requests. A reception indicates that the object can receive signals of a 
particular kind, as the result of a send signal action (see Section 9.7). A method is invoked when the owning 
block instance (object) consumes a request for its associated behavioral feature. The activity executes until 
it reaches an activity final node, when the service is deemed to be handled, and if the request is synchronous, 
any output (including return) arguments are passed back to the initiator of the request.

SysML has a specific action to invoke methods via operations, called a call operation action. This 
has pins matching the parameters of the operation, and one additional input pin used to represent a 
target, which must provide the operation. When the action is executed, it sends a request to the target 
object, which handles the request, perhaps by invoking the method of the operation being called. The 
action passes its parameters as input arguments and returns any output arguments.

Just as a signal can be sent through a port, an operation can be called through a port. The path to the 
port is shown in the symbol for the call operation action with the format:

via port name, …
If an activity that is invoked as the result of a call operation action has streaming parameters, then 

the pins of the call operation action may consume and produce tokens during execution of the activity. 
However, in a typical client/server approach to system design, all parameters are nonstreaming to fit 
more easily into a client/server paradigm.

Figure 9.25 shows the Surveillance System block with one of its ports, called status. The status port 
provides an interface Camera Status that includes an operation called get camera status as shown, with 

test value:
Boolean

Start Test Signal

Stop Test Signal

«valueSpecification»
true

«valueSpecification»
false

act [Activity] Receive Test Messages

FIGURE 9.24

Using signals to control activity flow.
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an input parameter called camera id and an output parameter called camera status. The activity Handle 
Status Request, shown originally in Figure 9.10, is designated to be the method of get camera status, 
so it has the same parameters. A call operation action called a1 for get camera status is shown, with 
pins corresponding to the two parameters and a pin to identify the target, that is, the Surveillance Sys-
tem to which the request must be sent. The call operation action will result in the invocation of Handle 
Status Request with an argument for camera id, and it will expect a response on camera status.

9.11.3 � RELATIONSHIP BETWEEN ACTIVITIES AND OTHER BEHAVIORS
SysML has a generic concept of behavior that provides a common underlying base for its three specific 
behavioral formalisms: activities, state machines, and interactions. This provides flexibility to select the 
appropriate behavioral formalism for the modeling task. A call behavior action or call operation action 
in an activity can be used to invoke any kind of behavior. However, the design and analysis method 
must further specify the semantics and/or constraints for a call action to call a state machine or an inter-
action from an activity, since this is not currently fully specified. We expect future versions of SysML 
and perhaps domain-specific extensions to provide more precise semantics.

State machines may use any SysML behavior to describe what happens when a block is in certain 
states and when it transitions between states. In practice, activities are often used to describe these 
behaviors as follows:
 
	•	� What happens when a state machine enters a state (called an entry behavior).
	•	� What happens when a state machine exits a state (called an exit behavior).
	•	� What happens while a state machine is in a state (called a do behavior).
	•	� What happens when a state machine makes a transition between states (called a transition effect).
 

State machines are discussed in Chapter 11.

status
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Status

act Handle Status Request

camera id : Integer camera status : String

Method OwnsDefines

«interface»
Camera Status

+get camera status (in camera id : Integer,
                     ...    out camera status : String)
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�get camera status (in camera id : Integer,
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target:
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FIGURE 9.25

A block with behavioral features and associated methods.
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9.12 � MODELING ACTIVITY HIERARCHIES USING BLOCK DEFINITION 
DIAGRAMS

An activity can be represented as an activity hierarchy that resembles a traditional functional decom-
position. The activity hierarchy is depicted on a block definition diagram similar to a block hierarchy. 
On a block definition diagram, activities are shown using a block symbol with the keyword 
«activity».

9.12.1 � MODELING ACTIVITY INVOCATION USING COMPOSITE ASSOCIATIONS
A higher-level activity in the activity hierarchy is composed of a lower-level activity, when a call behav-
ior action contained in the higher-level activity invokes the lower-level activity. The hierarchy is mod-
eled using composite associations where the calling activity (i.e., higher-level activity) is shown at the 
black diamond end, and the called activity (i.e., lower-level activity) is at the other end of the associa-
tion. The role name on the part end of the composite association is the name of the call behavior action 
that performs the invocation.

The activities in the block definition diagram correspond to the same activities that are specified in 
activity diagrams. However, the parts in the block definition diagram have no explicit relationship to the 
call behavior actions in the activity diagrams, other than being given the same name. A part can refer to 
a call behavior action in the activity diagram by applying the adjunct property stereotype. The call 
behavior action that is referred to must be contained in the activity on the whole end of the composite 
association and invoke the activity on the part end of the association. An adjunct property can be indi-
cated on a block definition diagram by the keyword «adjunct».

Figure 9.26 shows the activity hierarchy on a block definition diagram for Generate Video Out-
puts, as described in Figure 9.8. The adjunct properties are applied to the properties on the part end 

FIGURE 9.26

An activity hierarchy modeled on a block definition diagram.
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«activity»
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FIGURE 9.27

An activity hierarchy with parameters.

of the composite associations, which have same name as the call behavior actions that they  
refer to.

9.12.2 � MODELING PARAMETER AND OTHER OBJECT NODES USING  
ASSOCIATIONS

A block definition diagram cannot represent flows from an activity diagram, but it can include param-
eters and object nodes. By convention, the relationship from activities to object nodes is represented 
with a reference association versus a composite association. This is because the tokens contained within 
the object nodes are references to entities that are not “part” of the executing activity, and they are not 
necessarily destroyed when the execution of the activity terminates. The activity is shown at the white 
diamond end, the object node type is shown at the part end, and the role name at the part end is the name 
of the object node. Properties of the object node may be shown floating near the corresponding role 
name.

Figure 9.27 shows the hierarchy of activities for the Capture Video activity originally shown in 
Figure 9.11, including its own parameter nodes and the parameter nodes of its various subactivities. 
The data store current image is also shown. The adjunct property stereotypes have been elided from the 
properties cv1, cv2, and cv3 to simplify the diagram.
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9.12.3 � ADDING PARAMETRIC CONSTRAINTS TO ACTIVITIES
It is sometimes useful to specify performance constraints of an activity execution, such as resource 
usage (e.g., processor time) or other characteristics (e.g., average execution time, accuracy). Activities 
can be treated as blocks and thus can own value properties. Constraint blocks can then be used to con-
strain their values by binding them to constraint parameters.

On a block definition diagram, an activity can be shown as a block with all of the compartments that 
a block symbol has, including its value properties. A parametric diagram can depict this activity 
enabling the use of constraint properties to bind its value properties.

Figure 9.28 shows a block definition diagram for the Generate Video Outputs activity and associ-
ated actions (adjunct stereotype not shown), with additional value properties to capture memory usage. 
It also shows a constraint block called Memory Use with four parameters: three that represent memory 
use and a fourth that represents available memory. Its constraint asserts that the total memory use must 
be less than the available memory.

Figure 9.29 shows the parametric diagram for Generate Video Outputs using the Memory Use con-
straint block. Its parameters are bound to the properties that represent available memory and memory 
use of Generate Video Outputs activity and the activities that comprise it.

9.13 � ENHANCED FUNCTIONAL FLOW BLOCK DIAGRAM
The Enhanced Functional Flow Block Diagram (EFFBD) or variants of it have been widely used in 
systems engineering to represent behavior. A function in an EFFBD is analogous to an action in an 
activity. The EFFBD does not include the distinction between an invocation action and an activity.

FIGURE 9.28

A bdd describing value properties and constraints for an activity.
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Most of the functionality of an EFFBD can be represented as a constrained use of a SysML activity 
diagram. The constraints are documented in Annex E.2 of the SysML specification [1]. Using the key-
word «effbd» in the diagram header of an activity indicates that the activity conforms to the EFFBD 
constraints. These constraints preclude the use of activity partitions and continuous and streaming 
flows, as well as many other features within activity diagrams.

Some EFFBD semantics are not explicitly addressed by the activity diagram. In particular, a func-
tion in an EFFBD can only be executed when all triggering inputs, the control input, and the specified 
resources are available to the function. A “resource” is not an explicit construct in SysML, but resource 
constraints can be modeled using pre- and post-conditions and parametrics as described in the previous 
section. Triggering inputs in EFFBDs correspond to “required inputs” in activity diagrams, non-trig-
gering inputs correspond to “optional inputs,” and control inputs correspond to control flow in activity 
diagrams. The detailed mapping between EFFBD and activity diagrams, along with an example of the 
mapping in use, is described in SysML and UML 2.0 Support for Activity Modeling [49].

9.14 � EXECUTING ACTIVITIES
This section describes how SysML supports the execution of activities using Foundational UML (previ-
ously discussed in Chapter 7, Section 7.9.1).

In order for an activity to be executed, the complete detail of all its processing—such as the trans-
formation of property values—must be specified precisely. SysML includes a set of primitive actions 
that support basic object manipulation such as creation, deletion, access to properties, object commu-
nication, and others. Foundational UML provides executable semantics for these actions.

SysML also allows modelers to include “opaque” constructs in their models. These are constructs 
whose specification is expressed as text using some language other than SysML. These opaque con-
structs are often used to specify executable behavior using a programming language and are normally 
accompanied by technologies for performing the execution, as discussed in Chapter 18. An important 
use of opaque constructs is to include behavior expressed in a language called Alf, which is a text-based 
concrete syntax for Foundational UML.

FIGURE 9.29

A parametric diagram describing constraints on an activity.
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9.14.1 � THE FOUNDATIONAL UML SUBSET (fUML)
As described in Chapter 7, Section 7.9.1, Foundational UML specifies some of the basic semantics of 
SysML structures. In addition, system modelers can also use Foundational UML to precisely specify 
the execution of activities.

Although the Foundational UML covers a majority of the fundamental SysML activity constructs, 
it does not include some key features that are useful for system modeling, such as:
 
	•	� Activity partitions and interruptible regions;
	•	� Flow final nodes;
	•	� Streaming parameters and parameter sets;
	•	� Activity pre- and post-conditions and local pre and post conditions;
	•	� Flow order, flow rates, and flow probabilities; and
	•	� Control pins and hence control values and control operators.
 

9.14.2 � THE ACTION LANGUAGE FOR FOUNDATIONAL UML (Alf)
The OMG has also adopted a complementary specification to Foundational UML called the Action 
Language for Foundational UML, or Alf [45] for short. Alf is a textual concrete syntax for Foun-
dational UML modeling elements. The key use of Alf is to act as the textual notation for specifying 
executable behaviors in UML, such as methods for class operations, the behavior of a class, or transi-
tion effects on state machines. Alf also provides an extended notation that may be used to represent 
a limited subset of structural modeling elements. Because the SysML structural and behavioral con-
structs, such as block and activity, are based on UML, Alf can be used to specify those aspects of 
SysML models.

The Alf syntax primarily reflects a C legacy that should make it familiar to Java, C++, and C# pro-
grammers. However, Alf also adopts a number of syntactic conventions from OCL [38] to capitalize on 
its strength in the manipulation of sequences of values.

The execution semantics for Alf are given by mapping the Alf concrete syntax to the abstract syntax 
specified by Foundational UML. The result of executing a fragment of Alf text is thus given by the 
semantics of the Foundational UML model to which it is mapped.

Alf is integrated into activities using either an opaque behavior or an opaque action. When used to 
specify an opaque behavior, it may be invoked by a call behavior action. An opaque action specified in 
Alf can be inserted into an activity and related to other actions in the activity.

Figure 9.30 shows the activity Position Camera from Figure 9.12, specified using Alf. In this case, 
Position Camera has a single opaque action whose language is defined to be Alf and whose body is an 
Alf statement. It ensures that position is within range and invokes the camera device driver with the 
(potentially altered) position.

9.14.3 � PRIMITIVE ACTIONS  
SysML includes a set of primitive actions and precise definitions and notations for them based on Foun-
dational UML and Alf. Other system engineering tools could specify alternative semantics and nota-
tions that could be mapped to these primitive actions.
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Some of these primitive actions have been described previously in this chapter:
 
	•	� Accept event actions respond to events in the environment of the activity.
	•	� Send signal actions support communication between executing behaviors using messages.
	•	� Call actions allow an activity to trigger the invocation of another behavior and to provide it with 

inputs and receive outputs from it.
   

In addition, there are a number of actions that have a more localized effect, such as updating proper-
ties and creating or destroying objects. These actions can be broadly categorized as:
 
	•	� Object access actions, which allow properties of blocks and the variables of activities to be 

accessed.
	•	� Object update actions, which allow those same elements to be updated or added to.
	•	� Object manipulation actions, which allow objects themselves to be created or destroyed.
	•	� Value actions, which allow the specification of values.
 

Note that the set of actions defined in SysML does not include fundamental operations such as 
mathematical operators. A set of these operators are provided in the Foundational Model Library of 
Foundational UML, but for external execution domains, these have to be provided as libraries of opaque 
behaviors—or more likely function behaviors—suitable for the domain. Opaque behaviors and func-
tion behaviors are referenced in Chapter 7, Section 7.5.

SysML provides an optional notation for primitive actions. Primitive actions are shown using an 
action symbol (round-cornered rectangle) with the kind of action shown in guillemets, along with a set 
of pins that are appropriate to the action.
Figure 9.31 shows an alternate representation of the Alf expression this.count = this.count + 1 in the 
algorithm in Figure 9.12 using primitive actions instead of the opaque action. The resulting activity 
fragment first has to execute a readSelf action to establish the context indicated by this. Having 
obtained this, a readStructuralFeature action is used to obtain the value of the count property of the 

FIGURE 9.30

An activity specified using Alf.
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context (the executing activity). The value of the count property is then passed to a call of the + function 
behavior in the Foundational UML Integer Functions package. The other input is provided by a value-
Specification action that outputs the value 1. The result of the addition is then offered to an addStruc-
turalFeatureValue action that updates the count property. Using primitive actions to create models 
can be quite arduous; Alf or other textual representations are a more compact means for specifying 
low-level behavior.

9.14.4 � EXECUTING CONTINUOUS ACTIVITIES
When a model is used as a blueprint for a system, it is expected that continuous activities will be imple-
mented by physical devices such as motors, sensors, or humans. In this case, the specification of the 
activity may be a set of equations, or it may simply be allocated to some component that is already 
known to provide the appropriate behavior. Both Alf and parametric constraints as described in Section 
9.12.3 can be used to specify these equations.
It is often important to simulate these continuous activities prior to building the system itself.  
A number of different technologies exist to execute models of continuous activities and their corre-
sponding equations. They typically impose restrictions on the constructs that can be used in the 
activity’s definition (e.g., no token buffering) and have their own specialized libraries of functions 
that need to be integrated into the model. They often also require additional constructs and seman-
tics. In SysML, these artifacts can be provided using a profile. More information on profiles can be 

FIGURE 9.31

Example of primitive actions.
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found in Chapter 15, and a discussion of integrating SysML with external tools such as simulation 
tools can be found Chapter 18.

9.15 � SUMMARY
Activities provide a means of describing flow-based behavior, which are represented on both the activ-
ity diagram and the block definition diagram.
 
	•	� An activity represents a controlled sequence of actions that transform its inputs to its outputs. The 

inputs and outputs of an activity are called parameters.
	•	� An activity is composed of actions that represent the leaf level of its behavior. An action consumes 

input tokens and produces output tokens via its pins.
	•	� Actions are connected by flows. There are two kinds of flow:
	 •	 �Object flows route object tokens between the input and output pins of actions. The flowing 

tokens may need to be queued or stored for later processing. Specialized nodes called central 
buffer nodes and data stores can store tokens. Input and output pins can also queue tokens. 
Depending on the domain, flows may be identified as streaming and continuous, which is 
particularly useful for describing physical processes.

	 •	 �Control flows transfer control from one action to other actions using control tokens.
	•	� Control nodes—including join, fork, decision, and merge—allow flows to be split and merged in 

various ways. There are also specialized control nodes that describe what happens when an action 
starts and stops. These are the initial node, activity final node, and flow final node.

	•	� Actions come in many different categories, from primitive actions, such as updating variables, to 
the invocation of entire behaviors.

	 •	 �Call actions are an important category of action because they allow one activity to invoke 
the execution of another (or in principle any kind of behavior). The pins of call actions 
correspond to the parameters of the called entity. A call behavior action allows an activity 
to include the execution of another activity as part of its processing. A call operation 
action allows an activity to make a service request on another object that can trigger the 
execution of some activity to handle the request. Operation calls make use of the dispatch-
ing mechanism of SysML blocks to decouple the caller from knowledge of the invoked 
behavior.

	 •	 �Send signal actions and accept event actions allow the activity to communicate via signals 
rather than just through its parameters. When the activity is executing in the context of a block, 
the activity can accept signals sent either to the block or sent directly to the activity.

	•	� Activity partitions provide the capability to assign responsibility for actions in an activity diagram 
to the blocks or parts that the partitions represent.

	•	� Structured activities allow modelers to group actions that need to execute together, including 
conditional execution.

	•	� Block definition diagrams are used to describe the hierarchical relationship between activities and 
the relationship of activities to their inputs and outputs. The use of a block definition diagram for 
this purpose is similar to a traditional functional hierarchy diagram.
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	•	� The behavior of actions and activities can be constrained in a variety of ways including:
	 •	 �Adding pre- and post-conditions to the execution of an activity or action, including the state of 

token values.
	 •	 �Adding a constraint on the duration of an action execution.
	 •	 �Constraining properties of the activity, such as latency or resource use, on a parametric diagram.
	•	� A constrained use of activity diagrams can provide equivalent behavioral models as Enhanced 

Functional Flow Block Diagrams (EFFBDs), which have been widely used for system behavior 
modeling.

	•	� Activities may be described as stand-alone behaviors independent of any structure, but they often 
exist as the main behavior of a block. Activities within a block can communicate using signals, 
accepting signals that arrive at the block boundary, and sending signals to other blocks. The 
parameters of a main behavior may also be mapped directly to flow properties on the ports of its 
parent block. In this case, flows to and from activity parameter nodes are routed directly through 
the ports.

	•	� An activity can also be used to implement the response to a service request when the arguments of 
the request are mapped to the activity’s parameters. As discussed in Chapter 11, activities are 
often used to describe the processing that occurs when a block is transitioning between states and 
what the block does while in a particular state.

	•	� SysML includes a subset of UML called Foundational UML or fUML, for which a formal 
executable semantics is defined. The subset includes basic UML structural elements such as 
classes and associations and also almost all of UML activities. SysML also incorporates a 
text-based concrete syntax for this subset, called the Action Language for Foundational UML, or 
Alf. SysML models based on this subset can be executed and various simulation tools based on 
fUML are available.

 

9.16 � QUESTIONS
	 1.	 �What is the diagram kind of the activity diagram, and what kinds of model elements does the 

frame correspond to?
	 2.	 �How are an action and its pins typically represented on an activity diagram?
	 3.	 �What does action a1 in Figure 9.3 require to start executing?
	 4.	 �How are the parameters of activities shown on activity diagrams?
	 5.	 �What is the difference in semantics between a streaming and nonstreaming parameter?
	 6.	 �How are parameters with a lower-multiplicity bound of 0 identified on an activity diagram?
	 7.	 �Draw an activity diagram for an activity “Pump Water,” which has a streaming input parameter 

“w in” typed by block “Water” and a streaming output parameter “w out,” also typed by “Water.”
	 8.	 �How are the set of pins for a call behavior action determined?
	 9.	 �What is an object flow used for and how is it represented?
	10.	 �How does the behavior of a join node differ from that of a merge node?
	11.	 �How does the behavior of a fork node differ from that of a decision node?
	12.	 �What are parameter sets used for and how are they represented, both in the definition and 

invocation of an activity?
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	13.	 �Figure 9.10 only shows the object flows between the call behavior actions. What else does it 
need in order to perform as the method for the get camera status in Figure 9.25? Draw a revised 
version of Figure 9.10 with suitable additions.

	14.	 �What is the difference between a data store node and a central buffer node?
	15.	 �What is the difference in behavior between a flow final and an activity final node?
	16.	 �How is an initial node represented on an activity diagram, and what sort of flows can be con-

nected to it?
	17.	 �What special capability does a control operator have?
	18.	 �An action “pump” invokes the activity “Pump Water” from Question 7 and can be enabled and 

disabled by the output of a control operator. What additional features does “pump” need in order 
to enable this?

	19.	 �Another action “provide control” calls a control operator called “Control Pump” with a single 
output parameter of type “Control Value.” Draw an activity diagram to show how the actions 
“pump” and “provide control” need to be connected in order for “provide control” to control the 
behavior of “pump.”

	20.	 �Name three kinds of events that can be accepted by an accept event action.
	21.	 �How can an interruptible region be exited?
	22.	 �What would be the appropriate construct to describe a group of actions that need to be executed 

together repeatedly while some condition holds?
	23.	 �What does a flow rate of “25 per second” on an activity edge indicate about the flow of tokens 

along that edge?
	24.	 �How would a modeler indicate that new tokens flowing into a full object node should replace 

tokens that already exist in the object node?
	25.	 �If a call behavior action is placed in an activity partition representing a block, what does this say 

about the relationship between the block and the called behavior?
	26.	 �Name the two different roles that an activity can play when owned by a block.
	27.	 �Describe the four ways in which activities can be used as part of state machines.
	28.	 �An action “a1:GetFrameBuffer” must take less than 10ms to execute. Show how this is specified 

on an activity diagram.
	29.	 �Draw an activity diagram fragment that executes either an action with the Alf expression 

“count=count+1” or an action with the Alf expression “count=count−1” based on whether count 
is greater than zero. Use a decision input behavior to make the decision.

 

DISCUSSION TOPIC
Discuss the various ways that activities with continuous flows may be executed.
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CHAPTER

MODELING MESSAGE-BASED 
BEHAVIOR WITH 
INTERACTIONS

This chapter discusses the use of sequence diagrams to model how parts of a block interact by exchang-
ing messages.

10.1 � OVERVIEW  
In Chapter 9, behavior was modeled using activity diagrams, which represent a controlled sequence of 
actions that transform inputs to outputs. In this chapter, an alternative approach to representing behav-
ior is introduced. This approach uses sequence diagrams to represent the interaction between struc-
tural elements in a model as a sequence of message exchanges. The interaction can be between the 
system and its environment or between the components of a system at any level of a system hierarchy. 
A message can represent the invocation of a service on a system component or the sending of a 
signal.

This representation of behavior is useful when modeling service-oriented concepts, when one part 
of a system requests services of another part. A service-oriented approach can represent discrete inter-
actions between software components, when one software component requests a service of another and 
when the service is specified as a set of operations. However, the sequence diagram is not limited to 
modeling interactions between software components, and has found broad application in modeling 
system-level behaviors. A sequence diagram can be written as a specification of how parts of a system 
should interact, and can also be used as a record of how the parts of a system do interact.

The structural elements of a block are represented by lifelines on a sequence diagram. The sequence 
diagram describes the interaction between these lifelines as an ordered series of occurrence specifica-
tions that describe different kinds of occurrences, such as the sending and receiving of messages, the 
creation and destruction of objects, or the start and end of behavior executions.

Many of the occurrence specifications on a sequence diagram are associated with the exchange of 
messages between lifelines. There are several different kinds of messages, including both synchronous 
messages (the sender waits for a response) and asynchronous messages (the sender continues without 
waiting for a response). A sending occurrence specification marks when the message is sent by the 
sending lifeline, and a receiving occurrence specification marks when the message is received by the 
receiving lifeline. On reception of a message, the receiving lifeline may start the execution of a behav-
ior that implements the operation or signal reception referenced in the message. The receipt of a mes-
sage may also trigger the creation or destruction of the receiving lifeline.  

10
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To model ordering of occurrences more complex than simple sequences, interactions can include  
specialized constructs called combined fragments. A combined fragment has an operator and a set of oper-
ands, which may be primitive interaction fragments such as occurrence specifications, or may themselves be 
combined fragments, thus forming a tree of interaction fragments. There are a number of operators that 
describe different ordering semantics, such as parallel, alternative, and iterative ordering of their operands.

Interactions themselves can also be composed to handle large scenarios or to allow reuse of com-
mon interaction patterns. An interaction may reference another interaction to abstract away the detail 
of some segment of the interaction between multiple lifelines, or to reference an interaction between 
the parts of a particular lifeline.  

An interaction executes in the context of an instance of its owning block, each lifeline in the interac-
tion represents a single instance that is owned by the instance of its owning block. Occurrences happen 
as the instances execute their behavior and send and receive requests corresponding to operation calls 
and signals. As an interaction executes, it observes the occurrences and compares them to its own defi-
nition of occurrence ordering.  

The sequence of occurrences for a given scenario of interest, in this case the lifetime of the interaction, is 
called a trace. Each interaction can define a set of valid traces and a set of invalid traces. A valid trace is one 
in which the occurrences are consistent with the ordering defined by the interaction. On the other hand, the 
use of the neg interaction operator indicates that any trace that is consistent with its operand is invalid. The 
assert operator states that if a trace is not consistent with its operands then it is invalid. If an assert operator 
is not used, then inconsistent traces are deemed to be undecided (i.e. neither valid or invalid).

10.2 � THE SEQUENCE DIAGRAM  
A sequence diagram represents an interaction. The complete diagram header for a sequence diagram 
is as follows:

sd [interaction] interaction name [diagram name]
The diagram kind for a sequence diagram is sd and the model element kind that corresponds to its 

frame can only be interaction.  
Figure 10.1 shows a sequence diagram with examples of many of the symbols. It shows an interaction 

between an Advanced Operator and the Surveillance System during the handling of an intruder alert. The 
notation for the sequence diagram is shown in detail in the Appendix, Tables A.18 through A.20.

10.3 � THE CONTEXT FOR INTERACTIONS  
The context for an interaction execution is an instance of the block that owns the interaction. As the 
instance (including instances of all its parts) is executing, any currently executing interactions observe 
the events occurring as a result of the execution of other behaviors, such as state machines or activities. 
As with other kinds of behavior, an interaction can either be the classifier behavior for a block, or an 
owned behavior of the block invoked by a specific invocation action. If an interaction is a classifier 
behavior, it starts executing when an instance of the block is created; if the interaction is an owned 
behavior, it begins execution when it is invoked. Interactions end their execution after they complete the 
execution of their last fragment.  
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Figure 10.2 shows an internal block diagram of the System Context block that contains all the signifi-
cant participants in the interactions that are described in the figures in this chapter. System Context is the 
context for a specific usage of a Surveillance System called company security system. In addition to the 
company security system, the context contains other parts, including a regional HQ, a set of Perimeter 
Sensors, an Alarm System, and a security guard, which correspond to entities that are external to the com-
pany security system. The diagram also shows the internal parts of the Alarm System and the company 
security system whose behavior is specified in the following interactions. The interaction lifelines can also 
represent reference properties, but this does not affect the notation or the semantics of the interaction.

FIGURE 10.1

An example sequence diagram.
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10.4 � USING LIFELINES TO REPRESENT PARTICIPANTS IN AN 
INTERACTION  

The principal structural feature of an interaction is the lifeline. A lifeline represents the relevant lifetime 
of a property of the interaction’s owning block, which will be either a part or a reference property, as 
described in Chapter 7. As explained there, a part can be typed by an actor, which enables actors to 
participate in interactions as well. However, since an actor cannot support operations, its use has restric-
tions. To avoid these restrictions, an actor may be allocated to a block that is used instead of the actor 
as the type of the part. Lifelines can also represent ports, but because proxy ports typically just relay 
messages, they rarely contribute much to the understanding of an interaction, and so are rarely used.  

When an instance of its owning block executes an interaction, each lifeline denotes an instance of 
some part of the block (see Chapter 7 for a definition of block semantics). Thus, when the lifeline rep-
resents a property with multiplicity greater than 1, an additional selector expression should be used to 
explicitly identify one instance. Otherwise, the lifeline is taken to represent an arbitrarily selected 
instance. The selector expression can take many forms depending on how instances are identified in this 
part. For example, it may be an index into an ordered collection, a specific value of some attribute of 
the part’s block, or a more informal statement of identity.  

A lifeline is shown using a rectangle (the head) with a dashed line descending from its base (the 
tail). The head contains the name and type—if applicable—of the represented property, separated by a 
colon.  

FIGURE 10.2

Internal block diagram of the interaction context.



25110.5  Exchanging Messages between Lifelines

The selector expression, if present, is shown in square brackets after the name. The head may indi-
cate the kind of model element it represents using a special shape or icon.

Figure 10.3 shows a simple sequence diagram with a diagram frame and two lifelines. One repre-
sents the Surveillance System under consideration, called company security system, and the other life-
line represents an Advanced Operator, called security guard. Because, the security guard from Figure 
10.2 has an upper bound greater than 1, the lifeline also contains a selector called Elvis to specify 
exactly which instance is interacting. The security guard is shown with a small actor icon to indicate 
that it is a user of the Surveillance System.

10.4.1 � OCCURRENCE SPECIFICATIONS  
A lifeline is related to an ordered list of occurrence specifications that describe what can happen to the 
instance represented by the lifeline during the execution of the interaction. When an interaction is 
executed, the set of occurrences ordered in time is called a trace. A comparison of the order and struc-
ture of the specifications and actual occurrences determines whether the trace is consistent with the 
interaction. Different kinds of occurrence specifications describe different kinds of occurrences. Three 
categories of occurrence are relevant to interactions:
 
	•	� The sending and receiving of messages;
	•	� The starting and ending of the execution of actions and behaviors; and
	•	� The creation and destruction of instances.
 

Constructs like messages and interaction operators—described later in this chapter—provide fur-
ther order and structure to these occurrence specifications.  

10.5 � EXCHANGING MESSAGES BETWEEN LIFELINES  
Messages can be exchanged between the instances represented by lifelines to achieve interactions. A 
message can be sent from a lifeline to itself to represent a message that is sent and received by the same 
instance.

sd Camera Control [Lifelines]

company security system : Surveillance Systemsecurity guard[Elvis] : Advanced Operator

FIGURE 10.3

An interaction with lifelines.
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A message represents an invocation or request for service from the sending lifeline to the receiving life-
line, or the sending of a signal from the sending lifeline to the receiving lifeline. A message is shown on a 
sequence diagram as a line with different arrowheads and annotations depending on the kind of message.

Messages are sent by behaviors that are executing on a lifeline, or more precisely by invocation actions, 
such as send signal or call operation actions, within those behaviors. (See Chapter 9, Section 9.7 for more 
information on send signal actions.) Receipt of a message by a lifeline can trigger the execution of a behav-
ior, or it may simply be accepted by a currently executing behavior (refer to Section 10.5.4). Note that there 
may be a delay between the time a message is sent and the time it is received and handled.

Although messages are often used to model information passed between computer systems and 
their users, they may also indicate the passage of material or energy. An interaction in a radar-tracking 
system might represent the detection of a target and the response to that detection. The request for 
manufacture of a car and the subsequent delivery of that car to a dealer might be modeled as an interac-
tion between the dealer and the manufacturer, as shown in Figure 10.4.

10.5.1 � SYNCHRONOUS AND ASYNCHRONOUS MESSAGES
The two basic kinds of messages are asynchronous and synchronous. A sender of an asynchronous 
message continues to execute after sending the message, whereas a sender of a synchronous message 
waits until it receives a reply from the receiver that it has completed its processing of the message 
before continuing execution.

Asynchronous messages correspond to either the sending of a signal or to an asynchronous invoca-
tion (or call) of an operation. A synchronous message corresponds to the synchronous invocation of an 
operation on the receiver. In the case of an operation call, the reply to the sender can be indicated using 
a separate message from the receiver back to the sender. See Chapter 7, Section 7.5.2 for a description 
of the behavioral features of blocks.

Call messages and send messages can include arguments that correspond to the input parameters of 
the associated operation, or attributes of the sent signal. Arguments can be literal values, such as num-
bers or strings; attributes of the part represented by the sending lifeline; or parameters of the currently 
executing behavior. A reply message can include arguments that correspond to output parameters or the 
return value of the called operation. When an operation returns a value, the features to which the output 
parameters and return value are assigned can be indicated. A feature can either be an attribute of the 
calling lifeline or a local attribute or parameter of the caller’s current execution.

FIGURE 10.4

A simple example of message exchange.
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The presence of a message implies two occurrences. One is related to the sending of the message by 
the instance corresponding to the sending lifeline. The other is related to the receipt of the message by 
the instance corresponding to the receiving lifeline. As one might expect, the sending occurrence has to 
happen before the receiving occurrence.

Messages are represented by arrows between lifelines. The tail represents the occurrence corre-
sponding to the sending of the message, and the head represents the occurrence corresponding to the 
receipt of the message. The shape of the arrowhead and the line style of the arrow line indicate the 
nature of the message as follows:
 
	•	� An open arrowhead means an asynchronous message. Input arguments associated with the 

message are shown in parentheses as a comma-separated list after the message name. The name of 
the operation parameter or signal attribute to which an argument corresponds may be included 
(followed by an equal sign) before the argument:

 
parameter name = value

 
If this notational option is not used, all the input arguments must be listed in the appropriate order.

 
	•	� A closed arrowhead means a synchronous message. The notation for arguments is the same as 

for asynchronous messages.
	•	� An arrowhead on a dashed line shows a reply message. Output arguments associated with the 

message are shown in parentheses after the message name, and the return value, if any, is shown 
after the argument list. The feature to which the return value is assigned is shown (followed by an 
equal sign) before the message name:

 
feature name = message name (arguments) : return value

 
As with input arguments, output arguments can be preceded by name of their corresponding param-

eters separated by an equal sign. In the rare case that both the parameter name and assigned feature are 
required, the following syntax is used:

feature name = parameter name: argument  
Figure 10.5 shows a sequence of messages exchanged between the two lifelines introduced in  

Figure 10.3. The security guard first selects camera CCC1. After selecting the camera, the guard issues 
a get current status request to retrieve that camera’s current status, to which the system responds 
“OK.” Note that although the company security system does not provide an explicit confirmation to the 
security guard that the camera has been selected, the system does not handle the get current status 
request until after it has received (and processed, as shown in Figure 10.7) the select camera request. 
The company security system obtains the status from the selected camera by issuing a subsidiary get 
status request to itself, providing the id of the currently selected camera. Having obtained an “OK” 
status, the security guard then commands the system to move the camera by giving a pan camera order 
(probably via a joystick). He asks for the status again, which this time is “Moving.”

10.5.2 � LOST AND FOUND MESSAGES
Normally, message exchange is deemed complete; that is, it has both a sending and receiving occur-
rence. However, it is also possible to describe lost messages with no receiving occurrence and found 
messages with no sending occurrence. This capability is useful, for example, to model message traf-
fic across an unreliable network and to model how message loss affects the interaction.



CHAPTER 10  MODELING MESSAGE-BASED BEHAVIOR254

The notation for lost messages is an arrow with the tail on a lifeline and the head attached to a small 
black circle. The notation for found messages is the reverse—the tail of the arrow attached to a small 
black circle and the head attached to a lifeline. An example can be seen in the Appendix, Table A.17.

10.5.3 � WEAK SEQUENCING  
An interaction imposes the most basic form of order on the messages and other occurrences that it 
contains, called weak sequencing. Weak sequencing means that the ordering of occurrences on a life-
line must be followed, but other than the constraint that message receive occurrences are ordered after 
message send occurrences, there is no ordering between occurrences on different lifelines.  

The messages on the sequence diagram in Figure 10.6 impose an order on send and receive 
occurrences; for example, A.send happens before A.receive and B.send happens before B.receive. 
Lifelines also impose an order on occurrences, so lifeline 3 states that A.receive happens before 
B.send. However, nothing is said about the ordering of B.send and D.send on lifeline 3 and lifeline 
2, respectively. Note also that it is not the messages that are sequenced but their send and receive 
occurrences. For example, B.send happens before C.send, but B.receive happens after C.receive. 
This phenomenon is sometimes referred to as message overtaking and is dealt with in more detail 
in Section 10.6.

get current status()

get current status()

pan camera(strength � 2)

select camera(camera id � "CCC1")

get status():"OK"

get status():"Moving"
get current status():"Moving"

get status
(camera id � "CCC1")

get status
(camera id � "CCC1")

get current status():"OK"

sd Camera Control [Simple Sequence]

company security system : Surveillance Systemsecurity guard [Elvis] : Advanced Operator

FIGURE 10.5

Synchronous and asynchronous messages exchanged between lifelines.
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10.5.4 � EXECUTIONS
The receipt of a message by a lifeline may trigger the execution of a behavior in the receiver. In this 
case, the receiving lifeline executes the behavior (called the method) for the behavioral feature that the 
message represents. Alternatively, the message receipt may simply trigger a change in a currently exe-
cuting behavior, such as a state machine or activity, and cause it to execute other actions. The arguments 
contained in a call or send message are passed to the behavior that handles it. If and when a reply mes-
sage is sent, the output arguments are provided to the execution that sent the corresponding synchro-
nous call message.

Lifelines can send messages to themselves. This may cause a new execution to be started, nested 
within the current execution.

Lifelines are hosts to executions, either of single actions or entire behaviors. The extent to which 
executions are modeled is left to the modeler. Typically an execution start occurrence is coincident with 
a message receipt occurrence, but it does not have to be in all cases (i.e., the execution can occur later 
due to message scheduling delays). When an execution is triggered by the receipt of a synchronous 
message, the execution end occurrence may be coincident with the sending of a reply message.

Activations are rectangular symbols overlaid vertically on lifelines. They correspond to executions 
and begin at the execution’s start occurrence and end at the execution’s end occurrence. Activations are 
opaque and may either be grey or white; this shading does not affect their meaning. When executions 
are nested, the activations are stacked from left to right. If an execution is triggered by the receipt of a 
message, the arrow is attached to the top of the activation. If an execution ends with the sending of a 
reply message, then the tail of the reply arrow is attached to the bottom of the activation. An alternate 
notation for activations is a box symbol overlaid crosswise on the lifeline with the name of the behavior 
or action inside.

Figure 10.7 shows the same interaction as Figure 10.5 but with activations added. The relevant 
behaviors and actions on the company security system and security guard lifelines are now explicit. The 
select camera operation tells the company security system to store the id of the selected camera. In a 
change from Figure 10.5, the action executed to store the camera id, current camera = camera id, is 
explicitly shown here using box notation. The processing of get current status causes a new execution 

lifeline 2 lifeline 3lifeline 1 lifeline 4

A

F

D

C
B

E

FIGURE 10.6

Explanation of weak sequencing.
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to start that is triggered by a get status message with the previously stored camera id as an argument. 
This new execution ends with a status reply of “OK.” After the pan camera command triggers the 
execution of a behavior to move the camera (which takes some time), another get status message trig-
gers a nested execution that returns the result “Moving.” The execution on the security guard’s lifeline 
continues throughout the interaction, even while waiting for a response from the company security 
system.

10.5.5 � LIFELINE CREATION AND DESTRUCTION  
In an interaction, the creation and destruction of the instances represented by lifelines can be repre-
sented by special kinds of messages. A create message represents the creation of an instance and so is 
the first occurrence on the lifeline representing the instance. A deletion message ends in a special kind 
of occurrence called a destruction occurrence, which must be the last occurrence on a lifeline. A 
destruction occurrence can also occur in isolation to indicate some undefined (presumably internal) 
cause of destruction. These occurrences generally apply to the allocation and release of memory to 

get current status()

get current status()

pan camera(strength�"2")

select camera(camera id�"CCC1")

get status():"OK"

get status():"Moving"
get current status():"Moving"

get status
(current camera)

get status
(current camera)

get current status():"OK"

sd Camera Control [Simple Sequence with Activations]

company security system : Surveillance Systemsecurity guard [Elvis] : Advanced Operator

current camera� camera id

FIGURE 10.7

Lifelines with activations.
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execute software instances. However, they can also be used to indicate the addition or removal of a 
physical part of a system from a scenario.

The notation for a create message is a dashed line with an open arrowhead, terminating on the 
header box of the lifeline being created, which is moved down in the sequence diagram to accommo-
date the notation. The dashed tail of the lifeline is drawn as normal. The create message’s name and 
input arguments are displayed in the same way as those of a call message. The notation for a destroy 
occurrence is a cross at the end of a lifeline.  

The sequence diagram in Figure 10.8 shows how new routes are created and destroyed by a surveil-
lance system. A Route is a set of pan-and-tilt angle pairs that a surveillance camera follows when in an 
automated surveillance mode. In this case the user interface component communicates with the Moni-
toring Station to perform the route maintenance operations. First, the user interface calls the create 
route service offered by the Monitoring Station, which in turn creates a new route and returns a refer-
ence to the user interface via the new route attribute. The user interface then interacts with this new 
route in order to add waypoints. Finally, when the route is complete (only some of the waypoints are 
shown here), it uses the delete route service to delete old route. Note that the execution of action verify 
waypoint is shown using box notation.

sd Route Maintenance

: Monitoring Station

new route : Route

old route : Routeuser interface : UI

new route�create route()

create route()

delete route(r�old route)

verify waypoint(nwp)

verify waypoint(nwp)

add waypoint(nwp� (50,125))

add waypoint(nwp� (10,35))

FIGURE 10.8

Create and destroy messages.
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10.6 � REPRESENTING TIME ON A SEQUENCE DIAGRAM
In a sequence diagram, time progresses vertically down the diagram and, as stated earlier, occurrences 
on a lifeline are correspondingly ordered in time. In addition, the send occurrence and receive occur-
rence for a single message are also ordered in time. However, particularly in distributed systems, a 
message may be overtaken by a subsequent message sent from the same lifeline; that is, the first mes-
sage may arrive after receipt of the second message. Sequence diagrams allow this kind of situation to 
be drawn using a downward-slanting arrow between two lifelines, as shown in Figure 10.9.

The sequence diagram in Figure 10.9 shows what happens when an Alert message overtakes a regu-
lar Status Report message. This may be because the Status Report message is queued, waiting to be 
processed, perhaps due to having a lower priority, or it may be that a manual process is used for han-
dling status reports, which slows their handling.

In addition to relative ordering in time, time can be represented explicitly on sequence diagrams. A 
time observation refers to an instant in time corresponding to the occurrence of some event during the 
execution of the interaction, and a duration observation refers to the time taken between two instants 
during the execution of the interaction. A time constraint and a duration constraint can use observa-
tions to express constraints involving the values of those observations. A time constraint identifies a 
constraint that applies to a single occurrence on the sequence diagram. A duration constraint identifies 
two occurrences, called start and end occurrences, and expresses a constraint on the duration between 
them. A duration constraint can apply to any element deemed to have duration, such as a message or an 
execution, in which case the constraint applies between the occurrences that bracket the element’s 

company security system : Surveillance
System

regional HQ : Command Center

Alert

Stand Down

Status Ack

Status Report

sd Handling Surveillance Messages [Message Overtaking]

FIGURE 10.9

Message overtaking scenario.
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duration. The expressions used for time observations and constraints make no assumption regarding the 
source of time, such as a reference clock, or how time is computed.

A time constraint is shown using a standard constraint expression in braces attached by a line to the 
constrained occurrence. A duration constraint is shown by a double-headed arrow between the two 
constrained occurrences with the constraint floating near it, also expressed in standard constraint nota-
tion (i.e., in braces). A duration constraint may also be shown as a standard constraint floating close to 
an element such as a message or an interaction use (see Section 10.8). Observations are shown in a way 
similar to constraints, but instead of an expression in braces, an observation has the name of the obser-
vation followed by an equal sign and then an expression indicating how the value for the observation is 
obtained. The actual language used to express observations and constraints, including default time 
units, must be stated as part of the observation or constraint.

Figure 10.10 shows a scenario in which the Monitoring Station is asked by the user interface to test 
the system’s cameras. The Monitoring Station in turn requests each camera to perform a self-test and 
awaits the result. While waiting for a response from each camera, the controller component internal to 
the Monitoring Station needs to provide a progress indication to the user interface, so it uses 

: Monitoring Stationuser interface : UI [c2] : Camera[c1] : Camera

t � now

d � duration

{d..d*1.5}

{5
..1

0}

Test in Progress(1)
perform self test()

{t�1..t�2}

Test Complete(1, true)

perform self test()
Test in Progress(2)

Test Complete(2, true)

System OK

test cameras()

camera test complete
(OK � true)

camera test complete
(OK � true)

sd Successful Camera Test

FIGURE 10.10

Representing time on a sequence diagram.
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asynchronous messages to interleave communication. In this case, the communication between the 
Monitoring Station and the cameras is over a network, and the communication between the controller 
and user interface is local. As a result of network delays, the Monitoring Station receives the response 
from the camera after the progress message is sent. Note that although sloping lines are used here to 
indicate the passage of time, the slope has no formal semantic implication. The only timing implica-
tions are expressed using the time and duration constraints and the ordering of occurrences.

A number of observations and constraints on this interaction are expressed in a time unit of seconds. 
A time observation, t, is taken at the point when the first self-test message is sent using the expression 
t = now. A time constraint indicates that the message receipt must occur between 1 and 2 seconds after 
t. The duration between sending and receipt of the first self-test response message is observed via a 
duration observation d, and there is a constraint on the second response message to not exceed 1.5 times 
the first duration. The total time taken between the user interface requesting a test command and the 
completion of both camera self-tests should be between 5 and 10 seconds, as indicated by the duration 
constraint on the left of the diagram.

10.7 � DESCRIBING COMPLEX SCENARIOS USING COMBINED FRAGMENTS
As stated earlier, the most basic form of an interaction is a weak sequence of occurrences—generally read 
from top to bottom of the sequence diagram. However, more complex patterns of interaction can be mod-
eled using constructs called combined fragments. Different combined fragments specify different rules 
for the ordering of messages and their associated occurrences, such as parallel and alternative traces.

A combined fragment consists of an interaction operator and its operands. An interaction oper-
and defines a group of messages and occurrence specifications that span one or more lifelines. The start 
of execution of a particular operand can be time-ordered relative to other operands. An interaction 
operator defines the logic used to time-order the execution of the operands. An example of an operator 
is a parallel operator that enables multiple operands to begin execution in parallel. An operand can 
include other combined fragments, which enables the specification of complex control logic.

Each operand has a guard containing a constraint expression that indicates the conditions under 
which it is valid for the operand to begin execution. Each guard is bound to a single lifeline and can 
only reference attributes of that lifeline in its constraint. The operands may themselves contain com-
bined fragments, and thus can be composed into a tree hierarchy. During execution of an interaction, all 
operands use weak sequencing semantics on their contents.

A combined fragment must specify which lifelines participate in the interaction defined by its operands. 
Only the occurrences on the participating lifelines are valid when considering the traces of the fragment.

10.7.1 � BASIC INTERACTION OPERATORS
The following subset of interaction operators is used most frequently:
 
	•	� Seq—weak sequencing, as described in Section 10.5.3. Weak sequencing is the default form of 

sequencing for all operands, so is rarely indicated explicitly.
	•	� Par—an operator in which operands can occur in parallel, each following weak sequencing rules. 

There is no implied order between occurrences in different operands. This operator has an 
alternate shorthand notation when applied to a single lifeline, called a coregion, where the 
operands are bracketed by vertical square brackets instead of a frame.
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	•	� Alt/else—an operator in which exactly one of its operands will be selected based on the value of 
its guard. The guard on each operand is evaluated before selection, and if the guard on one of the 
operands is valid, then that one is selected. If more than one operand has a valid guard then the 
selection is nondeterministic. An optional else fragment is valid only if none of the guards on the 
other operands are valid.

	•	� Opt—a unary operator that is equivalent to an alt with only one operand. This implies that the 
operand is either executed or skipped depending on the validity of the guard.

	•	� Loop—an operator in which the trace represented by its operand repeats until its termination 
constraint is met. A loop may define lower and upper bounds on the number of iterations as well 
as the guard expression. These bounds are documented in brackets after the loop keyword in the 
fragment label as (lower bound, upper bound), where the upper bound may have the value * 
indicating an unlimited upper bound.

 
A combined fragment is shown using a frame whose label indicates the kind of operator and some-

times other information, depending on the kind of operator.
Alt and par operators have multiple horizontal partitions separated by dashed lines that correspond 

to their operands. Other operators have just a single partition. Messages, activations, and possibly other 
combined fragments are nested within each operand. Guards are shown in braces overlapping the life-
line to which it is bound. When an operator has a single operand that is itself a combined fragment, the 
frames of the operator and operand can be merged into one. The frame label for the merged frame is 
used to indicate all the operators, such as loop par.

The frame symbol for the combined fragment must not obscure the lifelines that participate in its 
interaction, so the tails of the participating lifelines are visible on top of the frame. The frame does 
obscure the lifelines that do not participate in the fragment’s interaction.

In Figure 10.11, lifelines 1 through 3 participate in the opt fragment, but only lifelines 1 and 4 par-
ticipate in the loop fragment. To maintain the current layout, lifelines 2 and 3 are obscured by the loop 
frame to indicate that they do not participate.

loop

opt
msg 1

msg 2

msg 3

lifeline 2 lifeline 3lifeline 1 lifeline 4

FIGURE 10.11

Example of overlapping and nonoverlapping lifelines.
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Figure 10.12 shows what happens when an intruder is detected and tracked by the company security 
system. The interaction is started when some lifeline external to this interaction detects a potentially 
illegal entry into the monitored areas. This triggers the system to alert the user (the security guard) with 
the id of the sensor and raise the alarm. The security guard then attempts to find and track the intruder 
and eventually (in this case) cancels the alert.

Within this sequence, the alt operator indicates that the security guard has a choice between using 
the system’s auto-track feature and manually tracking the intruder. In the automatic case, the system 

FIGURE 10.12

Complex interactions described using interaction operators.
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attempts to acquire and track a target. Failure to acquire a target or loss of an acquired target is indicated 
by a Lost Track message. In the manual-tracking case, the security guard uses an input device to repeat-
edly pan and tilt the cameras, as indicated by the loop par fragment.

In all scenarios, the security guard is responsible for canceling the alert, which prompts the com-
pany security system to cancel the alarm. In this figure, the Illegal Entry Detected, Raise Alarm, and 
Cancel Alarm messages start or terminate at gates on the frame to interact with lifelines outside the 
current interaction (see Section 10.8 for a description of gates).

10.7.2 � ADDITIONAL INTERACTION OPERATORS
The following are other interaction operators that are less commonly used.
 
	•	� Strict—like seq except that the occurrences represented by its operands are sequenced in order 

across all participating lifelines. The strict rule does not apply to the operands of any nested 
combined fragments.

	•	� Break—an operator whose operand is executed rather than the remainder of the enclosing 
fragment. This is often used to represent the handling of exceptional scenarios.

	•	� Critical—an operator in which the sequence of operands must take place with no interleaving of 
other occurrences, at least within the participating lifelines of the fragment. This may be used 
when some higher-level par operator indicates that interleaving can occur, and this operator is 
used to constrain the interleaving.

	•	� Neg—an operator in which the traces described by its operand are deemed invalid.
 

There are cases in interaction modeling when covering all potential message occurrences is very 
onerous, such as when there are a large number of occurrences related to messages that are not relevant 
to the scenario being described. Consider and ignore operators allow occurrences and messages that 
have been explicitly ignored (or not considered) to be interleaved with valid traces of their operand:
 
	•	� Consider—only consider messages for a specified set of operations and/or signals. All occur-

rences corresponding to other messages are ignored; that is, they are not considered when 
analyzing a trace using the operator’s operand. Only considered messages can appear in the 
operand.

	•	� Ignore—do not consider messages for a specified set of operations and/or signals. Occurrences 
corresponding to ignored messages are not considered when analyzing a trace. Ignored messages 
cannot appear in the operand.

 
Unlike other operators, which determine either valid or invalid (in the case of neg) traces but not 

both, the assert operator provides a mechanism to assert that those traces that are not valid according 
to its operand are definitely invalid. This is a very powerful construct but can present challenges when 
there are many occurrences and the modeler wishes to use assert to cover traces with only some of 
them. With other interaction operators, traces that include occurrences that do not match their operands 
do not count as either valid or invalid, whereas with assert they are deemed invalid, which may not be 
desired. For this reason, fragments with consider and ignore operators are often used with assert to 
reduce the set of occurrences that are relevant so that a valid/invalid decision can be trusted.

For consider and ignore operators, messages to be considered or ignored are shown in braces fol-
lowing the keyword in the fragment label.
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Figure 10.13 describes the sequence of messages exchanged when the company security system is 
communicating with the regional HQ in an emergency. Alerts only happen while the surveillance sys-
tem is on, so the regional HQ can discount any alerts apparently received when the system is off 
(although they may wish to investigate why they happened). When a valid Alert message has been sent, 
no other messages are allowed until a Stand Down message has been received. Any other trace is 
invalid, and an assert operator is used to ensure this. However, there are always regular status updates 
and acknowledgments between any surveillance system and the regional HQ, and these should not be 
deemed to constitute an invalid trace. By enclosing the assert operator in an ignore fragment that lists 
Status Report and Status Ack, the occurrence of these state update messages does not create an invalid 
trace.

10.7.3 � STATE INVARIANTS
It is often useful to augment the message-oriented expression of valid traces by adding constraints on 
the required state of a lifeline at a given point in a sequence of occurrences. This can be achieved using 
a state invariant on a lifeline. The invariant constraint can include the values of properties or param-
eters, or the state (of a state machine) that the lifeline is expected to be in.

FIGURE 10.13

Message-filtering scenario.
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The notation for state invariants is an expression in braces shown on the lifeline that is constrained. 
If the invariant specifies the state of a state machine, it is shown as a state symbol on the lifeline.

Figure 10.14 shows a scenario for shutting down the system. The state invariant on the security 
guard’s lifeline indicates that the guard has to be logged on for the Shutdown System message to be 
valid. The state invariant on the company security system lifeline indicates that for a shutdown request 
to be valid, the number of users must be one; that is, no other users are currently logged on. A valid 
trace ends with a reply of “OK” to the security guard.

10.8 � USING INTERACTION REFERENCES TO STRUCTURE COMPLEX 
INTERACTIONS

In most systems engineering projects, the size of systems and hence the size of interactions often 
become very large. There are also many patterns of interaction—or example, initialization and shut-
down—which are used many times as parts of different scenarios.

To support large-scale uses of interactions, an interaction may include an interaction use that refer-
ences an interaction described on another sequence diagram. Interaction uses can be nested, because a 
referenced interaction can in turn reference another. This capability significantly enhances the scalabil-
ity of interactions. It also facilitates reuse since an interaction can be used (i.e., referenced) by more 
than one using interaction. The using interaction identifies the participants in the referenced interaction. 
The using interaction’s definition must have lifelines that represent all the participants in the referenced 
interaction but may include additional lifelines as well.

To allow messages to pass into and out of an interaction when it is being used by another, an interac-
tion can have connection points, called formal gates, at its boundary. There is a gate for every message 

FIGURE 10.14

State invariants.
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that enters or leaves the interaction at its boundary. When the interaction is used, the using interaction 
has actual gates that correspond one-to-one with the formal gates of the used interaction. The mes-
sages arriving or leaving the actual gates must match those arriving or leaving at their corresponding 
formal gates in terms of name, direction, kind, and values.

In the definition of an interaction, messages can connect to the frame of the interaction. There is a 
formal gate at each connection point, although no symbol represents the gate itself. Gates can be 
named, but the name is typically not shown. An example of messages connecting to the frame at the 
formal gates of an interaction is shown in Figure 10.12.

Interaction uses are shown as frames with the keyword ref in the frame label. The body of the frame 
contains the name of the referenced interaction. Messages that terminate/start at the boundary of the frame 
imply the presence of actual gates. Lifelines that participate in the nested interaction are obscured by the 
frame symbol. Note that this is opposite to the way participants are shown on combined fragments, where 
participants are not obscured. A modeler may choose to indicate on a particular interaction use symbol 
whether the internal structure of the referenced interaction is further described by another sequence dia-
gram. If so, the symbol for that interaction use contains a rake symbol in its bottom right corner.

Figure 10.15 shows an interaction that references four other interactions, as indicated by ref. The 
first-referenced interaction describes the company security system being set up by the security guard. 

FIGURE 10.15

Reference to another interaction.
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During the guard’s shift, one of two things is shown as potentially occurring. If things are quiet (normal 
status), the guard might perform some maintenance on the automated surveillance routes (the scenario 
in Figure 10.8); otherwise, the guard and the system might handle an alert (the scenario from  
Figure 10.12). These two alternatives may occur repeatedly, as indicated by the loop alt fragment, until 
the guard shuts down the system. To use the Handling Alert interaction, this interaction needs to attach 
compatible messages to all its gates. The rake symbol in the use of Handling Alert indicates that it is 
described by a sequence diagram (Figure 10.12)

Interactions, like other behaviors, can have parameters. Any use of an interaction must provide 
arguments corresponding to the interaction’s input parameters and may expect to obtain arguments 
corresponding to its output parameters. Parameters may be typed by blocks or value types and may be 
used wherever values of that type are valid, for example, in invariants and as arguments to and from 
messages.

An interaction’s parameters appear in the diagram label using the same syntax as is used to describe 
operations (see Chapter 7, Section 7.5.2). The interaction use symbol can specify arguments to the used 
interaction using the same notation as is used for operation call and reply messages (see Section 10.5.1). 
Examples of this notation are shown in the Appendix, Table A.18.

10.9 � DECOMPOSING LIFELINES TO REPRESENT INTERNAL BEHAVIOR
As described above, the property that a lifeline represents is a usage of a block, which may itself have 
nested properties. A lifeline may be decomposed to show lifelines corresponding to those 
properties.

A sequence diagram includes the provision to decompose a lifeline and further elaborate the interac-
tion among its parts. For example, a sequence diagram may be used to represent a system as a single 
lifeline, interacting with its environment. This is often referred to as a black-box interaction, when the 
internal behavior of the system is hidden and only external behavior is visible. The system lifeline can 
then be decomposed to specify a nested interaction between its parts that supports the black-box 
interaction.

The interaction between these parts is defined by a separate interaction referenced by the parent 
lifeline that is being decomposed. The referenced interaction includes formal gates that correspond 
to the sending or receiving of messages on the parent lifeline. The messages at the gates of the refer-
enced interaction must be compatible with the messages of the parent lifeline, and the message send 
and receive occurrences must occur in the same order as on the parent lifeline. Only lifelines repre-
senting properties of the block that is the type of the parent lifeline may appear in the referenced 
interaction.

A lifeline decomposition is shown by adding the name of the referenced interaction below the 
name of the lifeline, prefixed by the keyword ref. The same name is used in the frame label of the 
referenced interaction.

Figure 10.16 shows the decomposition of the black-box lifeline for the Alarm System from  
Figure 10.15. It shows how the Alarm System handles alerts. When the alarm controller receives a 
Raise Alarm message, it requests an announcement on the internal PA. It then alerts all the regis-
tered emergency services through the Emergency Comms System, providing a location and a 
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password to authenticate the alert. When the Cancel Alarm message is received, the alarm control-
ler requests another announcement and then sends a request to the emergency services to stand 
down. At least one emergency service must be alerted, but the maximum number may depend on 
circumstances.

There is an alternative to using the reference sequence diagram for representing a nested interaction. 
This is accomplished by showing the lifeline and its nested parts on the same sequence diagram, with 
the black-box lifeline shown on top of the lifelines corresponding to the nested parts. The header boxes 
of the parts are attached to the underside of the parent lifeline’s header box. The nested lifelines can be 
used to show interactions that occur within the parent lifeline or to send and receive messages directly 
to and from other external lifelines.

Figure 10.17 shows a white-box view of what happens when the security guard wishes to log in to 
the company security system. The two significant parts of the company security system—the user inter-
face and the Monitoring Station—are shown underneath the lifeline of the company security system. In 
this scenario, a login message is received by the user interface and requests the Monitoring Station to 
verify it. The user interface then checks that the maximum number of logins has not been exceeded and 
returns control to the security guard.

FIGURE 10.16

A decomposed lifeline.
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10.10 � SUMMARY
Sequence diagrams describe interactions, which are used to capture system scenarios as a set of specified 
occurrences across several parts of the system, represented by lifelines. An interaction is specified using 
occurrence specifications, which are organized into a hierarchy, and ordered by interaction operators. When 
an interaction executes, it evaluates the set of event occurrences generated by instances of its lifelines and 
determines whether they are valid. The most significant source of occurrences is the exchange of messages 
between lifelines, which may trigger executions. The following list highlights key aspects of interactions:
 
	•	� Lifelines represent parts (or references) of the block that owns the interaction. During execution, a 

lifeline may represent only one instance; so when the part has an upper bound greater than 1, an 
additional selector expression is required to specify exactly one of all the instances that may be 
represented by the part. Lifelines may run from the top to the bottom of a sequence diagram, 
indicating that the parts they represent exist before and after the execution of the interaction. They 
also may start and/or end within the sequence diagram, indicating the creation or destruction of 
instances during execution of the interaction. Lifelines may be physically nested on a diagram to 
show a white-box view of the interactions within that lifeline. State invariants on the lifelines assert 
conditions that must hold at that point in the interaction’s execution for the current trace to be valid.

	•	� Messages are exchanged between lifelines and typically represent an invocation of an operation or 
a sending of a signal. Messages do not represent data flows, but the flow of data (or other items 
such as matter or energy) can be captured via arguments of the message. Messages are sent and 
received by behaviors executing on the lifelines and can be either asynchronous (sender continues 
executing) or synchronous (sender waits for a response).

sd Logging In

security guard[Elvis] : Advanced
Operator

: Monitoring Stationuser interface : UI

login():"OK"

check capacity()

verify login details():true

check capacity():3

login("Fred Bloggs", "Squirrel007")
verify login details
(user name, pwd)

company security system : Surveillance System

{capacity�4}

FIGURE 10.17

Inline nesting of lifeline decomposition.
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	•	� The default ordering of occurrences imposed by an interaction is weak sequencing, in which 
unrelated occurrences are sequenced within but not across lifelines. A combined fragment is a 
means for specifying different ordering semantics. A combined fragment includes an operator and 
operands; the operator identifies the ordering of its operands, which may themselves be combined 
fragments. Commonly used operators include par, alt, and loop. Each operand may have a guard 
expression that must be satisfied in order for the operand to be executed.

	•	� Interactions can use other interactions as part of their definition to enhance scalability. An 
interaction can use another interaction to describe the internal interactions of one of its lifelines; 
this enables a black-box specification style. An interaction can also use another to specify part of 
its total behavior, which may involve a number of its lifelines. This decomposition is either done 
to reduce the size of a sequence diagram or to reuse some common interaction pattern. Interaction 
frames can feature connection points on their perimeter, called gates, to enable messages to pass 
across interaction boundaries. 

10.11 � QUESTIONS
	 1.	 �What is the diagram kind for a sequence diagram, and which kind of model element does its 

frame represent?
	 2.	 �What is the context for an executing interaction?
	 3.	 �Draw a sequence diagram with two lifelines: one representing a part with no name, typed by the 

actor “Customer,” and the other with the name “m,” typed by the block “Vending Machine.”
	 4.	 �What is a selector expression used for?
	 5.	 �Which kinds of occurrence are relevant when specifying interactions?
	 6.	 �List the different kinds of messages that can be exchanged between lifelines.
	 7.	 �On the diagram from Question 3, add a message from the “Customer” lifeline to the “Vending 

Machine” lifeline representing the signal “Select Product” with the argument “C3.”
	 8.	 �What does the term “message overtaking” mean?
	 9.	 �How is an action or behavior execution represented on a sequence diagram?
	10.	 �What is an observation and how is it used?
	11.	 �In the diagram from Question 7, observe the current time (provided by the “clock” function) 

when the “Select Product” message is sent.
	12.	 �How is a combined fragment represented on a sequence diagram?
	13.	 �Name four common interaction operators.
	14.	 �In the diagram from Question 7, change “Select Product” from a signal to an operation on 

“Vending Machine” and show two different replies: if the machine has stock, then it replies with 
the return string “Stock Available”; otherwise, it replies with the string “Sold Out.”

	15.	 �Messages M1 and M2 from lifeline L2 can occur in any order on lifeline L1. Show two different 
ways that this can be expressed on a sequence diagram.

	16.	 �Are the lifelines that participate in a combined fragment shown in front of or behind the frame 
box for the combined fragment?

	17.	 �Which messages are valid inside an ignore fragment?
	18.	 �What does a state invariant specify?
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	19.	 �What are gates used for?
	20.	 �Name two ways of showing the interaction between the children of a lifeline.
	21.	 �Are the lifelines that participate in an interaction use shown in front of or behind the frame box 

for the interaction use?
 

DISCUSSION TOPIC
Sequence diagrams can be used to capture test specifications or test results. What differences would 
you expect to see between sequence diagrams used for these two purposes?
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CHAPTER

MODELING EVENT-BASED 
BEHAVIOR WITH STATE 
MACHINES

This chapter describes how to use state machines to model the behavior of blocks as they respond to 
internal and external events.

11
11.1 � OVERVIEW  
State machines are typically used in SysML to describe the state-dependent behavior of a block 
throughout its lifecycle, which is defined in terms of its states and the transitions between them. A state 
machine for a block may start, for example, when it initiates power up, then transition through multiple 
states in response to different stimuli, and terminate when it completes power down. The state machine 
defines how the block’s behavior changes as it transitions between different states and while the block 
is in different states. State machines in SysML can be used to describe a wide range of state-related 
behavior, from the behavior of a simple lamp switch to the complex modes of an advanced aircraft.

State machines are normally owned by blocks and execute within the context of an instance of that 
block, but a state machine can also be owned by a package. The behavior of a state machine is specified 
by a set of regions, each of which contains its own states. The states in any one region are exclusive; 
that is, when the region is active, exactly one of its substates is active. A region normally has an initial 
pseudostate, which is the place the region starts executing when it first becomes active. When a state is 
entered, an (optional) entry behavior (e.g., an activity) is executed. Similarly, an optional exit behavior 
is executed on exit. While in a state, a state machine can execute a do behavior. A region also normally 
has a final state that signifies that the region has completed. Change of state is effected by transitions 
that connect a source state to a target state. Transitions are defined by triggers, guards, and effects. The 
trigger indicates an event that can cause a transition from the source state, the guard is evaluated in 
order to test whether the transition is valid, and the effect is a behavior executed once the transition is 
triggered. Triggers may be based on a variety of events such as the expiration of a timer or the receipt 
of a signal by the state machine’s owning object.  

Operation calls on the owning block are also valid trigger events for transitions. Junction and choice pseu-
dostates support the construction of compound transitions between states, with multiple guards and effects.

State machines in different blocks may interact with one another by either sending signals or invok-
ing operations. For example, the state machine of one block can send a signal to another block as part 
of a transition effect or state behavior. The event corresponding to the receipt of this signal by the 
receiving block can trigger a state transition in its state machine. Similarly, a state machine in one block 
may call an operation on another block that causes an event that triggers a transition.
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State hierarchies occur when a state contains its own regions. A state with just one region is the most 
common case and is called a composite state. A state with more than one region is called an orthogonal 
composite state. Finally, a kind of state called a submachine state may reference another state machine. 
To model state hierarchies effectively, additional constructs are needed. Fork and join pseudostates are 
needed to specify transitions into and out of orthogonal composite states. Entry and exit point pseu-
dostates can be used to add connection points for transitions on the boundary of a state or state machine.

State machines may also specify constraints within states or on transitions. The constraints may 
specify equations that correspond to different behaviors or different levels of performance that must be 
true in different states.

State machines can be used with other behaviors. For example, a state machine can use an activity 
or other behavior to specify what happens within a state, on entry, on exit, or on transition between 
states. State machines can also be used within interactions (see Chapter 10, Section 10.7.3) and activi-
ties (see Chapter 9, Section 9.11.3) to constrain certain aspects of their behavior. The integration of the 
semantics of different kinds of behaviors is sometimes complex and should be used with care.

11.2 � STATE MACHINE DIAGRAM  
State machine diagrams are sometimes referred to as state charts or state diagrams, but the actual name in  
SysML is the state machine diagram. The complete diagram header for a state machine diagram is as follows:

stm [stateMachine] state machine name [diagram name]

The diagram kind for a state machine diagram is stm, and the model element kind is always 
stateMachine. Because of this, the model element kind in square brackets is usually elided.  

Figure 11.1 shows many of the basic notational elements for describing state machines. It describes a state 
machine for an ACME Surveillance System. It starts in the idle state, runs through a series of states during its 

stm Surveillance System

operating

entry/Display "Operating" Status
do/Monitor Site
exit/Display "Shutdown" Status

shutting down

diagnosing

initializing

idle

System
KO

[init OK]

System OK

[r "Yes"]/
Shut Down Cameras

Confirmation
Response (r)

[not init OK]

[r "No"]

Turn Off

Startup after (60 s)/
Display "Timed Out" Status

Shutdown
[in (logged on)]/

Confirm
Shutdown

Request

FIGURE 11.1

A state machine.
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lifecycle, and finally ends up at idle again, when it may receive a Turn Off signal that causes it to complete its 
behavior. The notation for state machine diagrams is shown in the Appendix, Tables A.21 through A.23.

11.3 � SPECIFYING STATES IN A STATE MACHINE  
A state machine is a potentially reusable definition of some state-dependent behavior. State machines 
typically execute in the context of a block, and events experienced by the block instance may cause 
state transitions.

11.3.1 � REGION
A state machine can contain one or more regions, which together describe the state-related behavior of 
the state machine. Each region is defined in terms of states and pseudostates and the transitions 
between them. An active region has exactly one active state within it at a given time. The difference 
between a state and a pseudostate is that a region can never stay in pseudostate, which merely exists to 
help determine the next active state. If a state machine contains a single region, it typically is not 
named, but if there are multiple regions, they are often named.

A state machine with multiple regions may describe some concurrent behavior happening within the 
state machine’s owning block. This may represent an abstraction of the behavior of different parts of the 
block, as discussed in Chapter 7, Section 7.5.1. For example, one part of a factory may be storing incom-
ing material, another turning raw material into finished products, and yet another sending out finished 
goods. The state machine may also include concurrent behaviors—such as a camera being panned and 
tilted at the same time—that are performed by multiple parts. If the parts’ behaviors are specified, the 
relationship between the state machine for the parent block and the behaviors of its parts should also be 
specified. States can also contain multiple regions, as described in Section 11.6.2, but this section describes 
simple states only (i.e., states with no regions and therefore without nested states).

The initialization and completion of a region are described using an initial pseudostate and final 
state, respectively. An initial pseudostate is used to determine the initial state of a region. The out-
going transition from an initial pseudostate may include an effect (see Section 11.4.1 for a detailed 
discussion of transition effects). Such effects are often used to set the initial values of properties used 
by the state machine. When the active state of a region is the final state, the region has completed, 
and no more transitions take place within it. Hence, a final state can have no outgoing transitions.  

The terminate pseudostate is always associated with the state of an entire state machine. If a ter-
minate pseudostate is reached, then the behavior of the state machine terminates. A terminate pseu-
dostate has the same effect as reaching the final states of all the state machine’s regions. The termination 
of the state machine does not imply the destruction of its owning object, but it does mean that the object 
will not respond to events via its state machine.  

If a state machine has a single region, it is represented by the area inside the frame of the state 
machine diagram. Multiple regions are shown separated by dashed lines.

The notation for the concepts introduced thus far is as follows:
 
	•	� An initial pseudostate is shown as a filled circle.
	•	� A final state is shown as a bulls-eye (i.e., a filled circle surrounded by a larger hollow circle).  
	•	� A terminate pseudostate is shown as an X.
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11.3.2 � STATE  
A state represents some significant condition in the life of a block, typically because it represents some 
change in how the block responds to events and what behaviors it performs. This condition can be 
specified in terms of the values of selected properties of the block, but typically the condition is 
expressed in terms of implicit state variable(s) for each region. It is helpful to use the analogy that the 
block is controlled by a switch. Each state corresponds to a switch position for the block, and the block 
can exhibit some specified behavior in each switch position. The state machine defines all valid switch 
positions (i.e., states) and transitions between switch positions (i.e., state transitions). If there are mul-
tiple regions, each region is controlled by its own switch with its switch positions corresponding to its 
states. The switch positions can be specified by a form of truth table—similar to how logic gates can be 
specified—in which the current states and transitions define the next state.

Each state may contain entry and exit behaviors that are performed whenever the state is entered 
or exited, respectively. In addition, the state may contain a do behavior that executes once the entry 
behavior has completed. The do behavior continues to execute until it completes or the state is exited. 
Although any SysML behavior can be used, entry and exit behaviors and do behaviors are typically 
activities or opaque behaviors.

A state is represented by a round-cornered box containing its name. Entry and exit behaviors and 
do behaviors are described as text expressions preceded by the keywords entry, exit, or do and a 
forward slash. There is some flexibility in the content of the textual expression. The text expression 
typically is the name of the behavior, but when the behavior is an opaque behavior, the body of the 
opaque behavior can be used instead (refer to Chapter 7, Section 7.5 for a description of an opaque 
behavior).  

Figure 11.2 shows a simple state machine for the Surveillance System, with a single operating 
state in its single region. A transition from the region’s initial pseudostate goes to the operating 
state. On entry, the Surveillance System displays that it is operational on all operator consoles, and 
on exit, it displays a shutdown status. While the Surveillance System is in the operating state, it 
performs a do activity of its standard function to Monitor Site, which is monitoring the building 
where it is installed for any unauthorized entry. When in the operating state, a Turn Off signal trig-
gers a transition to the final state, and because there is only a single region, the state machine 
terminates.

stm Surveillance System

Turn Off

operating

entry/Display "Operating" Status
do/Monitor Site
exit/Display "Shutdown" Status

FIGURE 11.2

A state machine containing a single state.
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11.4 � TRANSITIONING BETWEEN STATES  
A transition specifies when a change of state occurs within a state machine. State machines 
always run to completion once a transition is triggered, which means that they are not able to 
consume another trigger event until the state machine has completed the processing of the current 
event.  

11.4.1 � TRANSITION FUNDAMENTALS  
A transition may include one or more triggers, a guard, and an effect as described next.

Trigger
A trigger identifies the possible stimuli that cause a transition to occur. SysML has four main kinds of 
triggering events.
 
	•	� A signal event indicates that a new asynchronous message corresponding to a signal has arrived. 

A signal event may be accompanied by a number of arguments that can be used in the transition 
effect.

	•	� A time event indicates either that a given time interval has passed since the current state was 
entered (relative) or that a given instant in time has been reached (absolute).  

	•	� A change event indicates that some condition has been satisfied (normally that some specific set 
of attribute values hold). Change events are discussed in Section 11.7.

	•	� A call event indicates that an operation on the state machine’s owning block has been requested. 
A call event may also be accompanied by a number of arguments. Call events are discussed in 
Section 11.5.

   
Once the entry behavior of a state has completed, transitions can be triggered by events irrespective 

of what is happening within the state. For example, a transition may be triggered while a do activity is 
executing, in which case the do activity is terminated.  

By default, events must be consumed when they are presented to the state machine, even if they 
do not trigger transitions. However, events may be explicitly deferred while in a specific state for 
later handling. The deferred event is not consumed as long as the state machine remains in that 
state. As soon as the state machine enters a state in which the event is not deferred, the event must 
be consumed before any others. The event triggers a transition or it is consumed without any 
effect.

Transitions can also be triggered by internally generated completion events. For a simple state, a 
completion event is generated when the entry behavior and the do behavior have completed.

Guard  
The transition guard contains an expression that must evaluate to true for the transition to occur. The 
guard is specified using a constraint, introduced in Chapter 8, Section 8.2, which includes a textual 
expression to represent the guard condition. When an event satisfies a trigger, the guard on the transi-
tion is evaluated. If the guard evaluates to true, the transition is triggered; if the guard evaluates to false, 
then the event is consumed with no effect. Guards can test the state of the state machine using the 
operators in (state x) and not in (state x).
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Effect
The third part of the transition is the transition effect. The effect is a behavior, normally an activity or an 
opaque behavior, executed during the transition from one state to another. For a signal or call event, the argu-
ments of the corresponding signal or operation call can either be used directly within the transition effect or 
be assigned to attributes of the block owning the state machine. The transition effect can be an arbitrarily 
complex behavior that may include send signal actions or operation calls used to interact with other blocks.

If the transition is triggered, first the exit behavior of the current (source) state is executed, then the 
transition effect is executed, and finally the entry behavior of the target state is executed.

A state machine can contain transitions, called internal transitions, which do not effect a change in 
state. An internal transition has the same source and destination and, if triggered, simply executes the 
transition effect. By contrast, an external transition with the same source and destination state—some-
times called a transition-to-self—triggers the execution of that state’s entry and exit behaviors as well 
as the transition effect. One frequently overlooked consequence of internal transitions is that, because 
the state is not exited and entered, timers for relative time events are not reset.

Transition notation
A transition is shown as an arrow between two states, with the head pointing to the target state. Transi-
tions-to-self are shown with both ends of the arrow attached to the same state. Internal transitions are not 
shown as graphical paths but are listed on separate lines within the state symbol, as shown in Figure 11.9.

The definition of the transition’s behavior is shown in a formatted string on the transition with the 
list of triggers first, followed by a guard in square brackets, and finally the transition effect preceded by 
a forward slash. Section 11.4.3 describes an alternate graphical syntax for transitions.

The text for a trigger depends on the event, as follows:
 
	•	� Signal and call events—the name of the signal or operation followed optionally by a list of 

attribute assignments in parentheses. Call events are typically distinguished by including the 
parentheses even when there are no attribute assignments. Although this is a useful convention, it 
is not part of the standard notation.

	•	� Time events—the term after or at followed by the time. after indicates that the time is relative 
to the moment when the state is entered. at indicates that the time is an absolute time.  

	•	� Change events—the term when followed by the condition that has to be met in parentheses. Like 
other constraint expressions, the condition is expressed in text with the expression language 
optionally in braces.

   
The effect expression may either be the name of the invoked behavior or contain the text of an 

opaque behavior.  
When an event is deferred in a state, the event is shown inside the state symbol using the text for the 

trigger followed by a “/” and the keyword defer. See Figure 11.12 for an example.
Transitions can also be named, in which case the name may appear alongside the transition instead of 

the transition expression. A name is sometimes a useful shorthand for a very long transition expression.
Figure 11.3 shows a more sophisticated state machine for the Surveillance System than in Figure 11.2, 

with all the principal states and the transitions between them. In contrast to Figure 11.2, the initial pseu-
dostate now indicates that the region starts at the idle state. The final state is now also reached from the idle 
state, but it is still triggered by the receipt of a Turn Off signal. Once processing is complete in the initializing 
state (refer to Figure 11.14 to view inside the initializing state), a completion event for initializing will be 
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generated that triggers the two outgoing transitions. If the condition variable init OK is true, the system enters 
the operating state. Otherwise, the system enters the diagnosing state in which an operator will look at the 
error logs and try to manually initialize the system. Just in case something happens and the test procedure 
does not complete, the system has a time-out after 60 seconds, which returns the system to the idle state.

From the diagnosing state, the operator indicates success using the signal System OK, which allows 
the system to enter the operating state. The signal System KO indicates that the system is beyond opera-
tor repair and causes a transition back to idle. From the operating state, a Shutdown signal will cause a 
transition to the shutting down state, as long as the operating state is in substate logged on (refer to 
Figure 11.9 for a view inside the operating state). As part of shutting down, the system requests a con-
firmation and will only exit the shutting down state when it receives a Shutdown Confirmed signal, 
whereupon it executes the Shut Down Cameras activity.

Unless the graphical notation for transitions is being used (see Section 11.4.3), transition effect—
with the exception of opaque behaviors—are specified on separate diagrams appropriate to the kind of 
behavior. Figure 11.4 shows the activity diagram for the Shut Down Cameras activity.

When invoked as a transition effect, Shut Down Cameras loops over all known cameras and sends each 
a Shutdown signal. Note that the activity does not include an accept event action; this would leave the 
invoking state machine in an ambiguous (mid-transition) state when waiting for new events to occur.

11.4.2 � ROUTING TRANSITIONS USING PSEUDOSTATES
There are a variety of situations when a simple transition directly between two states is not sufficient to 
express the required semantics. SysML includes a number of pseudostates to provide these additional 
semantics. This section introduces junction and choice pseudostates, which support compound transi-
tions between states.

stm Surveillance System

operating

entry/Display "Operating" Status
do/Monitor Site
exit/Display "Shutdown" Status

shutting down
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Confirm
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Shutdown Confirmed/Shut Down Cameras

FIGURE 11.3

Transitions between states.
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A junction pseudostate is used to construct a compound transition path between states. The com-
pound transition allows more than one alternative transition path between states to be specified, 
although only one path can be taken in response to any single event. Multiple transitions may either 
converge on or diverge from the junction pseudostate. When there are multiple outgoing transitions 
from a junction pseudostate, the selected transition will be one of those whose guard evaluates to true 
at the time the triggering event is processed. If more than one guard evaluates to true, SysML does not 
define which one of the valid transitions is chosen for execution. If a particular compound transition 
path includes more than one junction between two states, all the guards along that path must evaluate 
to true before the compound transition is taken.

The choice pseudostate also has multiple incoming transitions and outgoing transitions and, 
like the junction pseudostate, is part of a compound transition between states. The behavior of the 
choice pseudostate is distinct from that of a junction pseudostate in that the guards on its outgoing 
transitions are not evaluated until the choice pseudostate has been reached. This allows effects 
executed on the prior transition to affect the outcome of the choice. When a choice pseudostate is 
reached in the execution of a state machine, there must always be at least one valid outgoing transi-
tion. If not, the state machine is invalid. A technique that is often used to ensure the validity of a 
choice pseudostate is to use a catch-all guard on no more than one outgoing transition. This is 
specified using the keyword else. Whether a compound transition contains junction pseudostates, 
choice pseudostates, or both, any possible compound transition must contain only one trigger, 
normally on the first transition in the path.

The various routing pseudostates are represented as follows:
 
	•	� A junction pseudostate is shown, like an initial pseudostate, as a filled circle.
	•	� A choice pseudostate is shown as a diamond.
 

Figure 11.5 completes the state machine for the Surveillance System shown in Figure 11.3. The 
handling of shutdown has been improved to describe what happens if the operator does not actually 

act [Activity] Shut Down Cameras

{C}id get next camera()

id

Shutdown

target

[else]

[more cameras()]

FIGURE 11.4

Defining a transition effect using an activity.
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want to shut down the system after all. The argument of the Confirmation Response signal, which takes 
values of “Yes” or “No” is mapped to attribute r. The transition triggered by the Confirmation Response 
signal now ends at a junction, with two outgoing transitions with different guards. If r = = “Yes” then 
the system shutdown proceeds; if r = = “No,” then the system returns to the operating state.

The transition from shutting down to idle/operating could be specified using a junction pseudostate 
in Figure 11.5 because the value of r, needed to determine the complete transition path, was available as 
part of the transition’s trigger. However, Figure 11.6 shows another approach to system shutdown with-
out a shutting down state. Here, the confirmation request is made as an effect of the transition out of the 
operating state, so the value of r is not known until after the first leg of the compound transition has been 
taken. In this case, a choice pseudostate is needed to allow the value of r returned from Confirm Shut-
down to be used in the guard conditions on its exit transitions. As noted earlier, the modeler must ensure 
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FIGURE 11.5

Routing transitions.
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FIGURE 11.6

Specifying shutdown using a choice pseudostate.
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that there is always at least one valid path from a choice pseudostate, so the guard on the transition has 
been changed to [else] in order to deal with any values other than “Yes.” Then, even if Confirm Shut-
down unexpectedly returns a value other than “Yes” or “No,” the state machine will still operate.

11.4.3 � SHOWING TRANSITIONS GRAPHICALLY
Some modelers prefer to show transitions graphically on state machine diagrams. SysML introduces a 
set of special symbols that allow a modeler to depict send signal actions, other actions, and triggers 
graphically. These symbols are connected by arrows with solid heads to differentiate them from transi-
tion arrows. The graphical syntax for these symbols is as follows:
 
	•	� A rectangle with a triangular notch removed from one side represents all the transition’s triggers, 

with descriptions of the triggering events and the transition guard inside the symbol.
	•	� A rectangle with a triangle attached to one side represents a send signal action. The signal’s name, 

together with any arguments being sent, is shown within the symbol. There may be many send 
signal actions in a single transition effect, each with their own symbol. Signals are very important 
when communicating between state machines (hence the separate treatment of this action).

	•	� Any other action in the transition effect is represented by a rectangle containing text that describes the 
action to be taken. There may be many actions as part of a transition effect, each with its own symbol.

 
Figure 11.7 shows the use of transition notation to provide an equivalent definition of the transitions 

between operating, idle, and shutting down, originally shown on Figure 11.5.

11.5 � STATE MACHINES AND OPERATION CALLS
State machines can respond to operation calls on their parent block via call events. A call event may 
either be handled in a synchronous fashion—that is, the caller is blocked while waiting for a response—
or asynchronously, which results in similar behavior to the receipt of a signal. The state machine exe-
cutes all behaviors triggered by the call event until it has reached another state, and then returns any 
outputs created by those behaviors to the caller.

FIGURE 11.7

Transition-oriented notation.
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One of the components used by the surveillance system’s operators is a video player that allows 
them to review recorded surveillance data. The Video Player block, shown in Figure 11.8, provides a set 
of operations in its interface to control playback. Although many of the operations do not return data, it 
makes sense for any client of Video Player to wait until a request for these operations has been pro-
cessed; hence, it makes sense for its interface to be defined using operations. The response of the block 
to requests from these operations is defined using the state machine shown in Figure 11.8, in which call 
events related to the operations are used as triggers on transitions. Calls to the play, stop, pause, and 
resume operations cause call events that trigger transitions between the various states of Video Player. 
Calls to the operations next chapter, previous chapter, and get play time cause call events that trigger 
internal transitions to state playing. To simplify the example, Figure 11.8 does not show many of the 
transition effects, but it does show how a request on get play time gets its return argument.

11.6 � STATE HIERARCHIES
Just as state machines have regions, so can states; such states are called composite or hierarchical 
states. These allow state machines to scale to represent arbitrarily complex state-based behaviors. This 
section discusses composite states with single and multiple regions, as well as the reuse of an existing 
state machine to describe the behavior of a state.

11.6.1 � COMPOSITE STATE WITH A SINGLE REGION
Arguably the most common situation is a composite state that has a single region. A state nested within 
the region can only be active when the state enclosing the region is active. Thus, the switch position 

Video Player

get play time() : Seconds
next chapter()
pause()
play()
previous chapter()
resume()
stop()

operations

values

play time : Seconds

stm Video Player

playing

next chapter() / 
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get play time() /
return play time; 

after (1 s)/play time��
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pause()

resume()

/play time � 0

FIGURE 11.8

A state machine driven by call events for operations on its owning block.
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analogy described in Section 11.3.2 can apply to nested states by requiring that the switch position cor-
responding to the enclosing state be enabled in order to enable the switch positions corresponding to 
any of its nested states.

As stated earlier, a region typically will contain an initial pseudostate and a final state, a set of pseu-
dostates, and set of substates, which may themselves be composite states. If the region has a final state, 
then a completion event is generated when that state is reached.

When an initial pseudostate is missing from a region in a composite state, the initial state of that 
region is undefined, although extensions to SysML are free to add their own semantics. However, a 
composite state may be porous, which means transitions may cross the state boundary, starting or end-
ing on states within its regions (see Figure 11.10). In the case of a transition ending on a nested state, 
the entry behavior of the composite state, if any, is executed after the effect of the transition and before 
the execution of the entry behavior of the transition’s target nested state. In the opposite case, the exit 
behavior of the composite state is executed after the exit behavior of the source nested state and before 
the transition effect. In the case of more deeply nested state hierarchies, the same rule can be applied 
recursively to all the composite states whose boundaries have been crossed.

Figure 11.9 shows the decomposition of the state operating from Figure 11.5 into the substates of 
one of its regions. On entry to the operating state, two entry behaviors are executed: the entry behavior 
of operating, Display “Operating” status; logged in = 0, and then the entry behavior of logged off, 
Display “Logged Off.” This is because on entry, as indicated by the initial pseudostate, the initial sub-
state of operating is logged off.

When in state logged off, a Login signal will cause a transition to the logged on state and will incre-
ment the value of logged in. While in the logged on state, repeated Login and Logout signals will incre-
ment and decrement the value of logged in, often as internal transitions without a change of state. 
However, if a Logout signal is received when the value of logged in is 1, then the signal will trigger a 
transition back to logged off. The entry behavior for logged on records the time in the variable time on, 
and its exit behavior uses that to display the Session Length.

The do activity Monitor Site executes as long as the state machine for the Surveillance System is 
in the operating state or until it reaches its own activity final. State operating does not have a final 

operating

logged onlogged off

Logout [logged in 1] /
logged in logged in 1

Login/logged in
logged in 1

entry/Display "Logged
Off "

entry/Display "Operating" Status; logged in 0
do/Monitor Site
exit /Display "Shutdown" Status

entry/Display "Logged On"; time on now
exit/Display "Session Length:", now – time on
Logout [logged in 1]/logged in logged in 1
Login/logged in logged in 1

FIGURE 11.9

States nested within a composite state.
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state, and so a completion event is never generated (as described above). As can be seen in Figure 
11.5, this state is exited when a Shutdown signal is presented.

11.6.2 � COMPOSITE STATE WITH MULTIPLE (ORTHOGONAL) REGIONS
A composite state may have many regions, which may each contain substates. A composite state with 
more than one region is sometimes called an orthogonal composite state. When an orthogonal com-
posite state is active, each region has its own active state that is independent of the others, and any 
incoming event is independently analyzed within each region. A transition that ends on the composite 
state will trigger transitions from the initial pseudostate of each region, so there must be an initial pseu-
dostate in each region for such a transition to be valid. Similarly, a completion event for the composite 
state will occur when all the regions are in their final state.

When an event is associated with triggers in multiple orthogonal regions, the event may trigger a 
transition in each region, assuming the transition is valid based on the other usual criteria. A simple 
example of this scenario is shown later in Figure 11.11.

Note that a transition can never cross the boundary between two regions of the same composite state. 
Such a transition, if triggered, would leave one of the regions with no active state, which is not allowed.

In addition to transitions that start or end on the composite state, transitions from outside the com-
posite state may start or end on the nested states of its regions. In this case, one state in each region must 
be the start or end of one of a coordinated set of transitions. This coordination is performed by a fork 
pseudostate in the case of incoming transitions and a join pseudostate for outgoing transitions.

A fork pseudostate has a single incoming transition and as many outgoing transitions as there are 
orthogonal regions in the target state. Unlike junction and choice pseudostates, all outgoing transitions 
of a fork are part of the compound transition. When an incoming transition is taken to the fork pseu-
dostate, all the outgoing transitions are taken. Because all outgoing transitions of the fork pseudostate 
have to be taken, they may not have triggers or guards but may have effects.

The coordination of outgoing transitions from an orthogonal composite state is performed using a 
join pseudostate that has multiple incoming transitions and one outgoing transition. The rules on trig-
gers and guards for join pseudostates are the opposite of those for fork pseudostates. Incoming transi-
tions of the join pseudostate may not have triggers or a guard but may have an effect. The outgoing 
transition may have triggers, a guard, and an effect. When all the incoming transitions can be taken and 
the join’s outgoing transition is valid, the compound transition can occur. Incoming transitions occur 
first followed by the outgoing transition.

A fork and join pseudostate is shown as a vertical or horizontal bar with transition edges either start-
ing or ending on the bar. An example of this can be seen in Figure 11.10, which shows a possible 
decomposition of the operating state from Figure 11.5.

The presence of multiple regions within a composite state is indicated by multiple compartments 
within the state symbol, separated by dashed lines. The regions can optionally be named, in which case 
the name appears at the top of the corresponding compartment. All nodes within such a compartment 
are part of the same region. As an alternative to showing the name of a state in a compartment, its name 
can be placed in a tab attached to the outside of the state symbol. An example of this can be seen in 
Figure 11.11.

Figure 11.10 shows a further elaboration of the operating state shown in Figure 11.9. In this elabo-
ration, the logged on state has two orthogonal regions. One region, called alert management, specifies 
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states and transitions for normal and alerted modes of operation; the other region, called route mainte-
nance, specifies states and transitions for updating the route (i.e., pan-and-tilt angles) when the auto-
matic surveillance feature of the system is engaged. As before, in state logged off, the receipt of a Login 
signal triggers transition to logged on. Based on the initial pseudostates in the two regions, the two 
initial substates of logged on are idle for region route maintenance and normal for region alert manage-
ment. The receipt of an Alert signal triggers the transition from normal to alerted in alert management. 

operating

logged on

Login/logged in
logged in 1

Logout [logged in 1]/logged
in logged in 1

/alert count 0

/Display "Alerts: ", alert count

entry/Display "Logged On"; time on now
exit/Display "Session Length:", now – time on
Logout [logged in 1]/logged in logged in 1
Login/logged in logged in 1

entry/Display "Operating" Status; logged in 0
do/Monitor Site
exit/Display "Shutdown" Status

logged off

entry/Display "Logged
Off"

maintainingidle

Edit Routes

Store Routes

route maintenance

alertednormal

Alert/alert count alert count 1

Stand Down

alert management

FIGURE 11.10

Entering and leaving a set of concurrent regions.

state 1.1.1 state 1.1.2

state 1.2.1 state 1.2.2

state 2

sig1 [x 0]

sig1 [x 1]

sig1 [x 0]

stm Machine 1

t1

t2

t3

state 1

FIGURE 11.11

Illustration of transition firing order.
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Similarly, the receipt of an Edit Routes signal triggers the transition from idle to maintaining in route 
management.

To ensure appropriate operator oversight of the system, the last operator can only log off if the 
logged on state is in substates idle and normal. This constraint is specified using a join pseudostate 
whose outgoing transition is triggered by a Logout signal with a guard of logged in = = 1. The two 
incoming transitions to the join pseudostate start on idle and normal, so even if there is a Logout signal 
and the number of logged on operators is one, the outgoing transition from the join pseudostate will be 
valid only if the two active substates of logged on are idle and normal. Because the transitions from idle 
and normal cross the boundary of state logged on, its exit behavior is executed before any effects on the 
transitions. After evaluating that the guard condition on the transition evaluates to true, the order of 
execution triggered by the valid Logout signal is:
 
	•	� exit behavior of logged on—Display “Session Length:”, now-time on;
	•	� incoming transition effect to join—Display “Alerts:,” alert count;
	•	� outgoing transition effect from join—“logged in = logged in—1”; and
	•	� Entry behavior of logged off—Display “Logged Off”.
 

Having elaborated the operating state, it is apparent that the transitions Logout [logged in > 1] and 
Login are rightly internal transitions rather than transitions-to-self. Transitions-to-self always exit and 
reenter the state, which in this case would reset the substates of route maintenance and alert manage-
ment; obviously, this is not desirable in the middle of an intruder alert.

11.6.3 � TRANSITION FIRING ORDER IN NESTED STATE HIERARCHIES
It is possible that the same event may trigger transitions at several levels in a state hierarchy, and with 
the exception of concurrent regions, only one of the transitions can be taken at a time. Priority is given 
to the transition whose source state is innermost in the state hierarchy.

Consider the state machine Machine 1, shown in Figure 11.11, in its initial state (i.e., in state 1.1.1 
and 1.2.1). The signal sig1 is associated with the triggers of three transitions, each with guards based 
on the value of variable x. Note that, in this case, the transitions have both a name and a transition 
expression, whereas a transition edge normally would show one or the other. This has been done to help 
explain the behavior of the state machine. The following list shows the transitions that will fire upon 
receipt of sig1 based on values of x from −1 to 1:
 
	•	� x equals −1—transition t1 will be triggered because it is the only transition with a valid guard;
	•	� x equals 0—transition t2 will be triggered because, although transition t1 also has a valid guard, 

state 1.1.1 is the innermost of the two source states; or
	•	� x equals 1—both transitions t2 and t3 will be triggered because both their guards are valid.
 

The normal rules for execution of exit behaviors apply, so, before the transition from state 1 to state 
2 can be taken, any exit behavior of the active nested states of state 1, as well as the exit behavior of 
state 1, must be executed.

The example in Figure 11.11 is fairly straightforward. Assessing transition priority is more complex 
when compound transitions and transitions from within orthogonal composite states are used. How-
ever, the same rules apply.
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11.6.4 � USING THE HISTORY PSEUDOSTATE UPON RETURN TO A PREVIOUSLY 
INTERRUPTED REGION

In some design scenarios, it is desirable to handle an exception event by interrupting the behavior of the 
current region, responding to the event, and then returning back to the state that the region was in at the 
time of the interruption. This can be achieved by a kind of pseudostate called a history pseudostate. A 
history pseudostate represents the last active state of its owning region, and a transition ending on a 
history pseudostate has the effect of returning the region to that state. An outgoing transition from a 
history pseudostate designates a default history pseudostate. This is used when the region has no previ-
ous history or its last active state was a final state.

The two kinds of history pseudostate are deep and shallow. A deep history pseudostate records the 
states of all regions in the state hierarchy below and including the region that owns the deep history 
pseudostate. A shallow history pseudostate only records the top-level state of the region that owns it. 
As a result, the deep history pseudostate will enable a return to a nested state, while a shallow history 
pseudostate will enable a return to only the top-level state.

A history pseudostate is described using the letter “H” surrounded by a circle. The deep history 
pseudostate has a small asterisk in the top right corner of the circle.

The Surveillance System supports an emergency override mechanism, as shown in Figure 11.12. In 
a change from Figure 11.10, the reception of an Override signal with a valid password will always 
cause a transition from the logged on or logged off states, even if there is an ongoing alert. This transi-
tion is routed out of the enclosing operating state via an exit point pseudostate to the emergency over-
ride activated state (see a discussion of this at the end of Section 11.6.5). However, once the emergency 
is over, a Resume Operation signal needs to restore the operating state completely to its previous state 
so that the system can continue with its interrupted activities. To achieve this, the transition triggered 

FIGURE 11.12

Recovering from an interruption using a history pseudostate.
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by the Resume Operation signal ends (via an entry-point pseudostate) on a deep history pseudostate, 
which will restore the complete previous state of operating, including substates. By comparison, if a 
shallow history pseudostate was used, and the previous substate of operating was logged on, then the 
state machine would return to the initial states of logged on rather than previously active substates of 
logged on. If there is no previous history, the default state is Logged Off.

Alert events are deferred in the emergency override activated state so that they can be handled, if 
appropriate, in the resumed operating state.

11.6.5 � REUSING STATE MACHINES
A submachine state is a kind of state that references a state machine that can be reused by other sub-
machine states. A transition ending on a submachine state will start its referenced state machine. Simi-
larly, when the referenced state machine completes, it will generate a completion event that can trigger 
transitions whose source is the submachine state. Modelers can also benefit from two additional kinds 
of pseudostates, called entry and exit-point pseudostates, which allow the state machine to define 
additional entry and exit points that can be accessed from a submachine state.

Entry and exit points on state machines
For a single-region state machine, entry- and exit-point pseudostates are similar to junctions; that is, they are 
part of a compound transition. Their outgoing guards have to be evaluated before the compound transition is 
triggered, and only one outgoing transition will be taken. On state machines, entry-point pseudostates can 
only have outgoing transitions, and exit-point pseudostates can only have incoming transitions.

Entry- and exit-point pseudostates are described by small circles that overlap the boundary of a state 
machine or composite state. An entry-point symbol is hollow, whereas an exit-point symbol contains an X.

Figure 11.13 shows a state machine for testing cameras, called Test Camera, which uses the graphical 
form for specifying transitions. From the entry-point pseudo state, the first transition simply sets the failures 
variable to 0 and ends on a choice pseudostate. On first entry, the state machine will always take the [else] 
transition, which will result in the sending of a Test Camera signal with the current camera number (ccount) 
as its argument. The state machine then stays in the await test result state until a Test Complete signal with 
argument test result has been received. The transition triggered by a Test Complete signal ends on a junction 
that either leads to the exit-point pseudostate pass (if the test passed) or back to the initial choice pseudostate 
(if the test failed), incrementing the failures variable on the way. If the camera has failed its self-test more 
than three times, then the transition with guard [failures > 3] will be taken to exit-point fail.

stm Test Camera

Test Complete

failures failures 1

Test Camera
(ccount)

failures 0
await
test

result pass

fail

[test result fail]

[test result pass]

[failures 3]

[else]

FIGURE 11.13

A state machine with entry and exit points.
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Submachine states
A submachine state contains a reference to another state machine that is executed as part of the execution 
of the submachine state’s parent. The entry- and exit-point pseudostates of the referenced state machine 
are represented on the boundary of the submachine state by special nodes called connection points. Con-
nection points can be the source or target of transitions connected to states outside the submachine state. 
A transition whose source or target is a connection point forms part of a compound transition that includes 
the transition to or from the corresponding entry- and exit-point pseudostate in the referenced state 
machine. An example of this can be seen in Figure 11.14. In any given use of a state machine by a subma-
chine state, only a subset of its entry and exit-point pseudostates may need to be externally connected.

A submachine state is represented by a state symbol showing the name of the state, along with the 
name of the referenced state machine, separated by a colon. A submachine state also includes an icon 
shown in the bottom right corner depicting either a simple state machine or a rake to be consistent with 
the representation of diagram decomposition in other diagrams. Connection points may be placed on 
the boundary of the submachine state symbol. These symbols are identical to the entry- and exit-point 
pseudostate symbols used in the referenced state machine. Note that only those connection points that 
need to be attached to transition edges need be shown on the diagram. Figure 11.14 shows the 

testing
: Test Camera

passfail

/passed passed 1

[ccount total
cameras]

/ccount 1;
passed 0;

[ccount total
cameras]/init OK
(passed 0)

/ccount ccount 1

initializing

t1

FIGURE 11.14

Invoking a substate machine.
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initializing state of the Surveillance System. On entry, ccount (a property of the owning block that 
counts the number of cameras tested) and passed (a property that counts the number of cameras that 
passed their self-test) are initialized to 1 and 0, respectively. A junction pseudostate follows, which 
allows the algorithm to test as many cameras as required. To test each camera, the testing state uses the 
Test Camera state machine. The transition leaving the pass exit-point pseudostate has an effect that 
adds one to the passed variable; the transition leaving its fail exit-point pseudostate does not. Both 
transitions end in a junction whose outgoing transition increments the count of cameras tested. This 
transition ends on a choice, with one outgoing transition looping back to test another camera if [ccount 
< = total cameras] and the other reaching the final state of initializing. On the transition to the final 
state, the effect of the transition sets the init OK variable to true if at least one camera passed its self-test 
or false otherwise.

As stated earlier, entry- and exit-point pseudostates form part of a compound transition that, in the 
case of submachine states, incorporates transitions (and their triggers, guards, and effects) from both 
containing and referenced state machines. Looking at both Figure 11.13 and Figure 11.14, the com-
pound transition from the initial pseudostate of state initializing will be as follows:
 
	1.	 �Initial pseudostate of the (single) region owned by state initializing
	2.	 �Transition labeled with effect ccount = 1; passed = 0
	3.	 �Transition named t1
	4.	 �Transition with effect failures = 0
	5.	 �Transition with guard [else] (at least this time)
	6.	 �(Graphical) transition with effect send Test Camera signal with argument ccount
	7.	 �State await test result.
 

Entry- and exit-point pseudostates on composite states
Entry-point and exit-point pseudostates can be used on the boundaries of composite states as well as a 
state machine. If the composite state has a single region, they behave like junctions. If the composite 
state has multiple regions, they behave like forks in the case of entry-point pseudostates and joins in the 
case of exit-point pseudostates. For entry-point pseudostates, the effects of their outgoing transitions 
execute after the entry behavior of the composite state. For exit-point pseudostates, their incoming 
transitions execute before the composite state’s exit behavior. An example of entry-point and exit-point 
pseudodstates can be seen in Figure 11.12

11.7 � CONTRASTING DISCRETE AND CONTINUOUS STATES
The examples shown so far in this chapter have been based on discrete semantics, specifically state machines 
in which the triggering event is a specific stimulus (i.e., a signal, an operation call, or the expiration of a 
timer). SysML state machines can also be used to describe systems with transitions that are driven by the 
values of either discrete or continuous properties. Such transitions are triggered by change events.

A trigger on a transition may be associated with a change event whose change expression states the 
conditions, typically in terms of the values of properties, which will cause the event to occur and hence 
trigger the transition. The change expression has a body containing the expression and an indication of 
the language used, which allows a wide variety of possible expressions.
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The state machine H2O States, shown in Figure 11.15, defines the transitions between Solid, Liquid, 
and Gas states. These represent discrete states of H2O, while the values of its properties, such as tempera-
ture and pressure, represent continuous state variables. Specific values for the variable temp, plus other 
conditions (e.g., the withdrawal or addition of energy), define the expressions for the change events and 
guards on the transitions. Implicitly, therefore, the values of its state variables are used to determine the 
discrete states of H2O and the transitions between those states. Similarly, the discrete state of other con-
tinuous systems can be defined in terms of values of selected continuous properties of the system.

11.8 � SUMMARY
A state machine is used to describe the behavior of a block in terms of its states and the transitions 
between them. State machines can be composed hierarchically like other SysML behavioral constructs, 
enabling arbitrarily complex representations of state-based behavior.

The significant state machine concepts covered in this chapter include the following:
 
	•	� A state machine describes a potentially reusable definition of the state-dependent behavior of a 

block. Each state machine diagram describes a single state machine.
	•	� Each state machine contains at least one region, which itself can contain a number of states and 

pseudostates, as well as the transitions between them. During execution of a state machine, each 
of its regions has a single active state that determines the transitions that are currently viable in 
that region. A region can have an initial pseudostate and final state that correspond to its beginning 
and completion, respectively.

	•	� A state is an abstraction of some significant condition in the life of a block and specifies the effect 
of entering and leaving that condition and what the block does while it is in that condition using 
behaviors such as activities.

stm H2O States

Liquid

Solid

Gas

when (temp == 0 &
latent heat of liquification
removed)

when (temp == 0 &
latent heat of 

liquification added)

when (temp == 100 &
latent heat of vaporization
removed)

when (temp == 100 &
latent heat of

vaporization added)

[temp>=0 &
temp <=100]

[temp>100]

[temp<0]

FIGURE 11.15

State machine for H2O.
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	•	� Transitions describe valid state changes and under what circumstances those changes will happen. A 
transition has one or more triggers, a guard, and an effect. A trigger is associated with an event, 
which may correspond either to the reception of a signal (signal event) or operation call (call event) 
by the owning block; the expiration of a timer (time event); or the satisfaction of a condition 
specified in terms of properties of the block and its environment (change event). A transition can also 
be triggered by a completion event that occurs when the currently active state has completed.

	•	� A guard expresses any additional constraints that need to be satisfied if the transition is to be 
triggered. If a valid event occurs, the guard is evaluated and, if true, the transition is triggered. 
Otherwise the event is consumed with no change in state. A transition can include a transition 
effect that is described by a behavior such as an activity. If the transition is triggered, the transition 
effect is executed.

	•	� A state may specify that certain events can be deferred, in which case they are only consumed if 
they trigger a transition. Deferred events are consumed on transition to a state that does not further 
defer them.

	•	� In a number of circumstances, simple transitions between states are not sufficient to specify the 
required behavior. Junction and choice pseudostates allow several transitions to be combined into 
a compound transition. Although the compound transition can include only one transition with 
triggers, it can have multiple transitions with guards and effects. Junction and choice pseudostates 
can have multiple incoming transitions and outgoing transitions. They are used to construct 
complex transitions that have more than one transition path, each potentially having its own guard 
and effect. History pseudostates allow a region to be interrupted and then subsequently to resume 
its previously active state or states.

	•	� States may be composite with nested states in one or more regions. Just like state machines, 
during execution an active state will have one active substate per region. Composite states are 
porous; that is, transitions can cross their boundaries. Special pseudostates called fork and join 
pseudostates allow transitions to and from states in multiple regions at once. A given event may 
trigger transitions in multiple active regions.

	•	� State machines may be reused via submachine states. Interactions with the reused state machine 
take place via transitions to and from the boundary of the corresponding submachine state, either 
directly or through entry- and exit-point pseudostates.

	•	� Change events are driven by the values of variables of the state machine or properties of its 
owning block. In addition to discrete systems, change events can trigger transitions in continuous 
systems, in which transitions between the system’s discrete states are triggered by changes in the 
values of continuous state variables. In this case, a behavior is a constraint on one or more state 
variables that must be true within a given state.

 

11.9 � QUESTIONS
	 1.	 �What is the diagram kind for a state machine diagram?
	 2.	 �Which kinds of model element may a state machine region contain?
	 3.	 �What is the difference between a state and a pseudostate?
	 4.	 �A state machine has two states, “S1” and “S2.” How do you show that the initial state for this 

machine is “S1”?
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	 5.	 �What is the difference between a final state and a terminate pseudostate?
	 6.	 �A state has three behaviors associated with it. What are they called and when are they invoked?
	 7.	 �What are the three components of a transition?
	 8.	 �Under what circumstances does a completion event get generated for a state with a single 

region?
	 9.	 �What is the difference in behavior between an internal transition and an external transition with 

the same source and target state?
	10.	 �What would the transition string for a transition look like if triggered by a signal event for signal 

“S1” with guard “a > 1” and an effect “a = a + 1”?
	11.	 �Draw the same transition using the graphical notation for transitions.
	12.	 �Where and how is a deferred event represented?
	13.	 �What is the difference between a junction and a choice pseudostate?
	14.	 �If a state has several orthogonal regions, how are they displayed?
	15.	 �What is the difference between a shallow and deep history pseudostate?
	16.	 �How can a state machine be reused within another state machine?
	17.	 �How are entry- and exit-point pseudostates represented on a state machine?
	18.	 �Under what circumstances will a given change event occur?
 

DISCUSSION TOPIC
State machines describe the behavior of blocks, but so do activities (via the use of activity partitions). 
Discuss approaches to ensuring that the two descriptions of behavior are consistent when both are used 
to describe the behavior of the same block.
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CHAPTER

MODELING FUNCTIONALITY 
WITH USE CASES

This chapter describes how to model the high-level functionality of a system with use cases.

12.1 � OVERVIEW  
Use cases describe the functionality of a system in terms of how it is used to achieve the goals of its 
various users. The users of a system are described by actors, which may represent external systems or 
humans who interact with the system.

Actors can be classified using generalization. Use cases can also be classified using generalization, 
but in addition, one use case may include or extend other use cases. Actors are related to the use cases 
in which they participate. The relationships between the system under consideration, its actors, and its 
use cases are described on a use case diagram.  

Use cases have been viewed as a mechanism to capture system requirements in terms of the uses of 
the system. SysML requirements can be used to capture text requirements more explicitly with relation-
ships to use cases and other model elements (refer to Chapter 13 for a discussion on requirements). The 
steps in a use case description can also be captured as SysML requirements.

Different methodologies apply use cases in different ways [50]. For example, some methods require 
a use case description for each use case captured in text, which may include pre- and post-conditions, 
and primary, alternative, and exceptional flows. Use cases are generally elaborated with detailed 
descriptions of their behavior, using activities, interactions, and/or state machines.

12.2 � USE CASE DIAGRAM  
On a use case diagram, the frame corresponds to a package, model, model library, or block, and the 
content of the diagram describes a set of actors and use cases and the relationships between them. The 
complete diagram header for a use case diagram is as follows:

uc [model element kind] model element name [diagram name]
The diagram kind for a use case diagram is uc, and the model element kind is a package model, 

model library, or block.  
Figure 12.1 shows an example of a use case diagram containing the key diagram elements, a system 

(i.e., subject), a use case, and some actors. The diagram shows the main use case for the Surveillance 
System and the participants in that use case. The notation for use case diagrams is shown in the Appen-
dix, Table A.24.

12
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12.3 � USING ACTORS TO REPRESENT THE USERS OF A SYSTEM  
An actor is used to represent the role of a human, an organization, or any external system that partici-
pates in the use of some system. Actors may interact directly with the system or indirectly through other 
actors.

It should be noted that “actor” is a relative term, because an actor who is external to one system may 
be internal to another. For example, assume individuals in an organization request services from an inter-
nal help desk department that provides IT support for the organization. The help desk is considered the 
system and the members of the organization who are requesting service are considered the actors. How-
ever, these same individuals may in turn be providing services to an external customer. In that context, the 
individuals who were previously considered actors relative to the help desk are considered part of the 
system relative to the external customer. A similar analogy can be drawn for a subsystem, when the sub-
system can be viewed as external (i.e., an actor) to another subsystem but internal to the system.

Actors can be classified using the standard generalization relationship. Actor classification has a 
similar meaning to the classification of other classifiable model elements. For example, a specialized 
actor participates in all the use cases that the more general actor participates in.

An actor is shown either as a stick figure with the actor’s name underneath or as a rectangle contain-
ing the actor’s name below the keyword «actor». The choice of symbol is dependent on the tool and 
method being used. Actor classification is represented using the standard SysML generalization sym-
bol—a line with a hollow triangle at the general end.  

The Use Cases package for the Surveillance System contains descriptions of the system’s actors. Five 
actors are shown in Figure 12.2. The actors include an Operator who operates the system and a Supervi-
sor who manages the system. There is also an Advanced Operator whose role is a specialized version of 
the Operator because that role has additional specialized skills. Note that an Intruder is also modeled as 
an actor. Although strictly speaking not a user, an intruder does interact with the system and is an impor-
tant part of the external environment to consider. Also of interest are the Emergency Services to whom 
incidents may need to be reported. This actor could have been modeled using an actor stick-figure symbol 
but wasn’t because it is an organization composed of people, systems, and other equipment.

FIGURE 12.1

Example use case diagram.
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12.3.1 � FURTHER DESCRIPTIONS OF ACTORS
Although not defined in SysML, many methods suggest additional descriptive properties that can apply 
to actors as users of a system. Examples include the following:
 
	•	� The organization of which the actor is a part (e.g., procurement);
	•	� Physical location;
	•	� Skill level required to use the system; and
	•	� Clearance level required to access the system.
 

12.4 � USING USE CASES TO DESCRIBE SYSTEM FUNCTIONALITY  
A use case describes the goals of a system from the perspective of the users of the system. The goals 
are described in terms of functionality that the system must support. Typically, the use case description 
identifies the goal(s) of the use case, a main pattern of use, and a number of variant uses. The system 
that provides functionality in support of use cases is called the system under consideration and often 
represents a system that is being developed. The system under consideration is sometimes referred to 
as the subject and is represented by a block. We will use the term system or subject interchangeably to 
denote the system under consideration.

A use case may cover one or more scenarios that correspond to how the system interacts with its 
actors under different circumstances.

Actors are related to use cases by communication paths, which are represented as associations, 
with some restrictions. The association ends can have multiplicities, in which the multiplicity at the 
actor end describes the number of actors involved in each use case. The multiplicity at the use case end 
describes the number of instances of the use case in which the actor or actors can be involved at any one 

uc [Package] Use Cases [Actors]

«actor»
Emergency

Services

Advanced Operator

Operator Supervisor

Intruder

FIGURE 12.2

Representing actors and their interrelationships on a use case diagram.
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time. Composite associations in either direction are not permitted since actors are not part of use cases 
and use cases are not part of actors.

Neither actors nor use cases may own properties, so role names on associations do not represent 
reference properties as they might on block definition diagrams. The role name on an actor end can be 
used to describe the role an actor plays in the associated use case whenever it is not obvious from the 
actor’s name. The role name on the use case end can be used to describe the relevance of the use case 
functionality to the associated actor.

A use case is shown as an oval with the use case name inside it. Associations between actors and use 
cases are shown using standard association notation. The default multiplicity of the association ends, if 
not shown, is “0..1.” Associations cannot have arrowheads in use case diagrams because neither actors 
nor use cases may own properties. The subject of a set of use cases can be shown as a rectangle enclos-
ing the use cases, with the subject’s name centered at the top.  

The use cases owned by a model element can be shown in a specific compartment labeled owned 
use cases.

Figure 12.3 shows the central use case of the Surveillance System, called Monitor Environment. The 
main actors associated with Monitor Environment are the system’s Operator, the Intruder, and the 
Emergency Services. The multiplicities on the associations indicate that there must be at least one 
Operator and potentially many Intruders. The Emergency Services are also associated with the Monitor 
Environment use case, although they may not be active participants unless an Intruder is detected and 
reported.

12.4.1 � USE CASE RELATIONSHIPS  
Use cases can be related to one another by classification, inclusion, and extension.

Inclusion and extension
The inclusion relationship allows one use case, referred to as the base use case, to include the func-
tionality of another use case, called the included use case. The included use case is always performed 

FIGURE 12.3

A use case and the actors that participate in it.
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when the base use case is performed. A behavior that realizes the base use case often references the 
behavior of the included use case, as described in Section 12.5.

It is implicit in the definition of inclusion that any participants of a base use case may participate in 
an included use case, so an actor associated with a base use case need not be explicitly associated to any 
included use case. For example, as shown in Figure 12.4, the Operator implicitly takes part in Initialize 
System and Shutdown System through their association with Monitor Environment.

Included use cases are not intended to represent a functional decomposition of the base use case, but 
rather are intended to describe common functionality that may be included by other use cases. In a 
functional decomposition, the lower-level functions represent a complete decomposition of the higher-
level function. By contrast, a base use case and its included use cases often describe different aspects 
of the required functionality. For example, in the case of Monitor Environment in Figure 12.4, the key 
monitoring function is described by the base use case, and additional functionality is described by the 
included use cases Initialize System and Shutdown System.

A use case can also extend a base use case using the extension relationship. The extending use case 
is a fragment of functionality that is not considered part of the base use case functionality. It often 
describes some exceptional behavior in the interaction, such as error handling between subject and 
actors that does not contribute directly to the goal of the base use case.

FIGURE 12.4

A set of use cases for the Surveillance System.
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To support extensions, a base use case defines a set of extension points that represent places 
where the base use case can be extended. An extension point can be referenced as part of the use 
case description. For example, if the use case had a textual description of a sequence of steps, the 
extension point could be used to indicate at which step in the sequence an extending use case 
would be valid. An extension has to reference an extension point to indicate where in the base use 
case it can occur. The conditions under which an extension is valid can be further described by a 
constraint. The constraint is evaluated when the extension point is reached to determine whether 
the extending use case occurs. The presence of an extension point does not imply that there will be 
an extension related to it.

Unlike an included use case, the base use case does not depend on an extending use case. However, 
an extending use case may be dependent on what is happening in its base use case; for example, the 
extending use case may assume that some exceptional circumstance in the base use case has arisen. 
There is no implication that an actor associated with the base use case participates in the extending use 
case, and the extended use case in fact may have entirely different participants, as demonstrated by the 
use case Handle Camera Fault in Figure 12.4.

Inclusion and extension are shown using dashed lines with an open arrowhead at the included and 
extended ends, respectively. An inclusion line has the keyword «include» and an extension line has the 
keyword «extend». The direction of the arrows should be read as tail end includes or extends head end. 
Thus, a base use case includes an included use case, and an extending use case extends a base use case. 
A use case may have an additional compartment under its name compartment that lists all its extension 
points. The extension line can have an attached note that names its extension point and shows the condi-
tion under which the extending use case occurs.

Classification
Use cases can be classified using the standard SysML generalization relationship. The meaning of 
classification is similar to that for other classifiable model elements. One implication, for example, 
is that the scenarios for the general use case are also scenarios of the specialized use case. It also 
means that the actors associated with a specialized use case can also participate in scenarios described 
by a general use case. Classification of use cases is shown using the standard SysML generalization 
symbol.  

Figure 12.4 shows a use case diagram containing the complete set of use cases for the Surveillance 
System. As part of Monitor Environment, all Operators are allowed to oversee the automatic tracking 
of suspicious movements in the Automatically Monitor Environment use case —that is, when the sys-
tem controls the cameras. This allows the security company to use junior or less highly trained employ-
ees for this purpose. Advanced Operators can participate in the Manually Monitor Environment use 
case, when they control the cameras manually using a joystick. Advanced Operators also have the 
option to set up surveillance tracks for the cameras to follow.

The complete specification for Monitor Environment also includes system initialization and shut-
down as indicated by the include relationships between Monitor Environment and Initialize System and 
Shutdown System.

The Fault extension point represents a place in the Monitor Environment use case where camera 
fault might be handled. The Handle Camera Fault use case extends Monitor Environment at the Fault 
extension point. It is an exceptional task that will only be triggered when camera faults are detected, as 
indicated by its associated condition, and may only be performed by the Supervisor.
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12.4.2 � USE CASE DESCRIPTIONS
A text-based use case description can be used to provide additional information to support the use 
case definition. This description can contribute significantly to the use case’s value. The description 
text can be captured in the model as a single or multiple comments. It is also possible to treat each 
step in a use case description as a SysML requirement. A typical use case description may include 
the following:
 
	•	� Pre-conditions—the conditions that must hold for the use case to begin.
	•	� Post-conditions—the conditions that must hold once the use case has completed.
	•	� Primary flow—the most frequent scenario or scenarios of the use case.
	•	� Alternate and/or exception flows—the scenarios that are less frequent or other than nominal. The 

exception flows may reference extension points and generally represent flows that are not directly 
in support of the goals of the primary flow.

 
Other information may augment the basic use case description to further elaborate the interaction 

between the actors and the subject.
Here is an extract from the use case description for Monitor Environment:
Pre-condition
The Surveillance System is powered down.
Primary Flow
The Operator or Operators will use the Surveillance System to monitor the environment of the 

facility under surveillance. An Operator will initialize the system (see Initialize System) before oper-
ation and shut the system down (see Shutdown System). During normal operation, the system’s cam-
eras will automatically follow preset routes that have been set to optimize the likelihood of 
detection.

If an Intruder is detected, an alarm will be raised both internally and with a central monitoring sta-
tion, whose responsibility it is to summon any required assistance. If available, an intelligent intruder 
tracking system—which will override the standard camera search paths—will be engaged at this point 
to track the suspected intruder. If an intelligent intruder tracking system is not available, the Operators 
are expected to maintain visual track of the suspected intruder and pass this knowledge on to the Emer-
gency Services if and when they arrive.

Alternate Flow
Immediately after system initialization but before normal operation begins, it is possible that a fault will 

arise, in which case it can be handled (c.f. Fault extension point), but faults will not be handled thereafter.
Post-condition
The Surveillance System is powered down.

12.5 � ELABORATING USE CASES WITH BEHAVIORS
The textual definition for a use case, together with the use case models described previously, can 
describe the functionality of a system. If desired, however, a more detailed definition of the use case 
may be modeled with interactions, activities, and/or state machines, which are described in Chapters 9 
through 11. These are typically added to elaborate the requirements and the design after the use case 
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definition has been reviewed and accepted. The choice of behavioral formalism is often a personal or 
project preference, but in general:
 
	•	� Interactions are useful when a scenario is largely message-based.
	•	� Activities are useful when the scenario includes considerable control logic, flow of inputs and 

outputs, and/or algorithms that transform data.
	•	� State machines are useful when the interaction between the actors and the subject is asynchronous 

and not easily represented by an ordered sequence of events.
 

A modeler may choose to indicate on a particular use case symbol whether the behavior of that use 
case is further described by one of the behavior diagrams listed above. If the use case has an associated 
behavior diagram, then the symbol for that use case contains a rake symbol in its bottom right corner. 
The use case Manually Monitor Environment in Figure 12.4 has a rake symbol, indicating that it is 
further elaborated, in this case by the diagrams in Figures 12.6 and 12.7.

12.5.1 � CONTEXT DIAGRAMS
When using interactions or activities, the lifelines and partitions represent participants in the use case. It 
is useful to create an internal block diagram where the enclosing frame corresponds to the system context 
and the subject and participating actors correspond to parts in the system context internal block diagram. 
To support this technique, actors can appear on a block definition diagram, and a part on an internal block 
diagram can be typed by the actor. Alternatively, the actors can be allocated to blocks using the allocate 
relationship described in Chapter 14, and then the parts representing actors can be typed by the block.

Figure 12.5 shows an internal block diagram that describes the internal structure of the block System 
Context, which represents the context for the Surveillance System and its associated use cases. The 
system under consideration, Surveillance System, is represented as part of the System Context, called 
company security system. Two of the actors, Advanced Operator and Intruder, who participate in the 
use cases, are also represented as parts security guard and suspected thief, respectively.

12.5.2 � SEQUENCE DIAGRAMS
In addition to being described in a use case description, a use case can be elaborated by one or more inter-
actions described by sequence diagrams. Different interactions may correspond to the (base) use case, any 
included use cases, and any extending use cases. The block that owns the interactions must have parts that 
correspond to the subject and participants, which can then be represented by lifelines in the interactions.

As stated earlier, an included use case must always occur as part of its base use case. As a result, an 
interaction describing an included scenario will typically be a mandatory part of the interaction repre-
senting a base scenario. This is typically indicated within the base scenario interaction, by referencing 
the interaction for the included scenario within a combined fragment with an operator such as seq, 
strict, or loop.

Strictly speaking, an interaction representing a base use case should be specified without reference 
to extending use cases, simply noting the extension points. However, a popular approach is to reference 
extending use cases as optional constructs in the interaction representing the base scenario. In this 
approach, an interaction corresponding to an extending use case is typically contained in an operand of 
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a conditional operator, such as break, opt, or alt. The operand should be guarded using the constraint 
on the extension, if one is specified.

The block System Context, whose internal block diagram was shown in Figure 12.5, owns a number 
of interactions. The interaction describing the primary scenario of the Manually Monitor Environment 
use case, Handling Alert, is shown in Figure 12.6. In Figure 12.4, the Manually Monitor Environment 
use case included the Initialize System use case and the Shutdown System use case. The Handling Alert 
interaction includes corresponding uses of the interaction Standard Initialization, which is a scenario 
for the Initialize System use case, and the interaction Standard System Shutdown, which is a scenario 
for the Shutdown System use case.

In between these two interactions, the scenario describes how the security guard, Honoria, deals 
with an intruder alert. Because she is an Advanced Operator, she will manually control the cameras to 
track the suspected intruder. Interactions for the use case Automatically Monitor Environment, shown 
in Figure 12.4, do not include manual control of the cameras.

12.5.3 � ACTIVITY DIAGRAMS
As mentioned previously, a use case scenario can also be described by an activity diagram, in which 
case the participants are represented as activity partitions. As with interactions, an activity can elabo-
rate a base use case, included use cases, and extending use cases.

Figure 12.7 shows an alternate description of how manual tracking of suspected intruders is handled 
for the Manually Monitor Environment use case. Two activity partitions, representing the security 
guard and the company security system, are used to indicate which use case participant takes responsi-
bility for which actions.

New intruder intelligence is analyzed. The control flow initiated by the reception of the intelli-
gence is forked to address two concerns. If the intruder has moved, then a Move Joystick action is 
performed to follow the intruder. If the intruder appears to have moved out of range of the current 
camera, a Select Camera action is performed to select a more appropriate camera. In both cases, a 
flow final node is used to handle situations when no action is required. Meanwhile, this stream of 

FIGURE 12.5

Context for use case scenarios.
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inputs is turned into Pan Camera and Tilt Camera messages to the appropriate camera by the Issue 
Camera Commands action.

12.5.4 � STATE MACHINE DIAGRAMS
State machines can also be used to describe scenarios. Some methods encourage the use of a single 
state machine to represent all possible scenarios of the use case, including exception cases, while other 
methods recommend that a separate state machine be used for each scenario. Note that when using a 
state machine, there are no language constructs that can be used to explicitly identify the parties respon-
sible for taking actions. However, separate state machines may be defined for each participant, includ-
ing the system of interest and the actors.

Figure 12.8 shows part of a state machine describing the Manually Monitor Environment use case. 
It shows three states: operator idle, intruder present, and automatic tracking enabled. When in the 
operator idle state, an Intruder Alert event causes the Raise Alarm message to be sent and a transition 

FIGURE 12.6

Scenario for a use case described by a sequence diagram.
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made to the intruder present state. Once in the intruder present state, the intruder can be manually 
tracked, but an Auto Track event will trigger a transition to automatic tracking enabled and prohibit 
manual tracking until a Lost Track event happens. In this way, a single state machine can represent 
multiple scenarios.

This description shares many of the signals with Figure 12.6, but it focuses on states rather than 
messages.
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Using an activity to describe a scenario.
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12.6 � SUMMARY
Use cases are used to capture the functionality of a system needed to achieve user goals. A use case is 
often used as a means to describe the required functionality for a system and can augment SysML 
requirements to refine the definition of text-based functional requirements. The way in which use cases 
are employed is highly dependent on the method used. The following are the key use case concepts 
introduced in this chapter:
 
	•	� A use case describes a particular use of a system to achieve a desired user goal. Use case relation-

ships for inclusion, extension, and classification are useful for factoring out common functionality 
into use cases that can be reused by other use cases. An included use case is always performed as 
part of the base use case. A use case that extends the base use case is usually performed by 
exception and generally is not in direct support of the goals of the base use case.

	•	� The system under consideration (also known as the subject) provides the functionality required by 
actors, expressed as use cases.

	•	� Actors describe a role played by an entity external to the system and may represent humans, 
organizations, or external systems. Generalizations may be used to represent the classification 
relationships between different categories of actors. Associations relate actors to the use cases in 
which they participate.

	•	� The functionality described by a use case is often elaborated in more detail using interactions, 
activities, and state machines. The selection of which behavioral formalisms are used and how 
they are used is often dependent on the particular method.

 

FIGURE 12.8

Using a state machine to describe the Manually Monitor Environment use case.
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12.7 � QUESTIONS
	 1.	 �What is the diagram kind for a use case diagram, and to which model elements can the frame 

correspond?
	 2.	 �What does an actor represent?
	 3.	 �How are actors represented on a use case diagram?
	 4.	 �If one actor specializes another, what does that imply?
	 5.	 �What does a use case represent?
	 6.	 �What is another term for the system under consideration?
	 7.	 �How does a scenario differ from a use case?
	 8.	 �How is an inclusion relationship represented?
	 9.	 �Apart from a base and extending use case, which two other pieces of information might an 

extension relationship include?
	10.	 �If one use case specializes another, what does that imply about its scenarios?
	11.	 �How may use case participants and the system under consideration be represented on an internal 

block diagram?
	12.	 �How are use case participants and the system under consideration represented in interactions?
	13.	 �How are use case participants and the system under consideration represented in activities?
 

DISCUSSION TOPICS
Apart from those listed in Section 12.3.1 discuss two additional descriptive properties that would be 
useful for describing actors.

Apart from those listed in Section 12.4.2 discuss two additional descriptive properties that would be 
useful for describing use cases.
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CHAPTER

MODELING TEXT-BASED 
REQUIREMENTS AND THEIR 
RELATIONSHIP TO DESIGN

This chapter describes how text-based requirements are captured in the model and related to other 
model elements.

13
13.1 � OVERVIEW  
As stated in the SysML specification [1], a requirement specifies a capability or condition that must 
(or should) be satisfied, a function that a system must perform, or a performance condition a system 
must achieve.

Requirements come from many sources. Sometimes requirements are provided directly by the person 
or organization paying for the system, such as a customer who hires a contractor to build a house. At other 
times, requirements are generated by the organization that is developing the system, such as an automobile 
manufacturer that must determine consumer preferences for its product. The source of requirements often 
reflects multiple stakeholders. In the case of the automobile manufacturer, the requirements include govern-
ment regulations for emissions control and safety in addition to the direct preferences of the consumers.     

Irrespective of the source, it is common practice to group similar requirements for a system, ele-
ment, or component into a specification. The individual requirements should be expressed in clear and 
unambiguous terms, sufficient for the developing organization to implement a system that meets stake-
holder needs. The classic systems engineering challenge is to ensure that these requirements are con-
sistent (i.e., not contradictory), feasible (i.e., solutions are within the realm of possibility), sufficiently 
complete and validated to reflect real stakeholder needs, and verified to ensure that the system design 
and its realization actually satisfy them.

Requirements management tools are widely used to manage both requirements and the relation-
ships between them. Requirements are often maintained in a database. SysML includes a requirements 
modeling capability to provide a bridge between the text-based requirements that may be maintained in 
a requirements management tool and the system model. A combination of tool automation, the require-
ments management process, and configuration management processes are used to synchronize the 
requirements between the requirements management tool and the model. This capability is intended to 
significantly improve requirements management throughout the lifecycle of a system by enabling rigor-
ous traceability between the text-based requirements and the model elements that represent the system 
design, analysis, implementation, and test cases.

Individual or groups of text requirements may be brought into the system modeling tool from a 
requirements management tool or from a text specification. Requirements may also be created directly 
in the system modeling tool. The specifications are typically organized in the model into a hierarchical 
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package structure that corresponds to a specification tree. Each specification contains multiple require-
ments, such as a systems specification that contains the requirements for the system, or the component 
specifications that contain the requirements for each component. The requirements contained in each 
specification are often modeled in a tree structure that corresponds to the organizational structure of the 
text-based specification. The individual or aggregate requirements within the containment hierarchy 
can then be linked to other requirements in other specifications and to model elements that represent 
the system design, analysis, implementation, and test cases.  

SysML includes requirements relationships for derivation, satisfaction, verification, refinement, and 
trace that support a robust capability for relating requirements to one another and to other model elements. 
In addition to capturing the requirements and their relationships, SysML includes the capability to capture 
the rationale or basis for a particular decision, and for linking the rationale to any model element. This 
includes linking the rationale to a requirement or to a relationship between the requirement and other model 
elements. A copy relationship is also provided to accommodate appropriate reuse of requirement text.

Each individual text requirement can be captured in the model as a SysML requirement. The 
requirement construct includes a name, a text string, and an id, and may also include additional user 
defined properties such as risk.

SysML provides multiple ways to capture requirements and their relationships in both graphical 
and tabular notations. A requirement diagram can be used to represent many of these relationships. In 
addition, compact graphical notations are available to depict the requirements relationships on any 
other SysML diagrams. SysML also supports tabular views of the requirements and their relationships. 
The browser view of the requirements that is generally provided by the tool implementer also provides 
an important mechanism for visualizing requirements and their relationships.  

Use cases are used to support requirements analysis in many of the model-based approaches using 
UML and SysML. Different model-based methods may choose to leverage use cases in conjunction 
with SysML requirements. Use cases are typically effective for capturing the functional requirements 
but are not as well suited for capturing other requirements, such as physical requirements (e.g., weight, 
size, vibration), availability requirements, or other nonfunctional requirements. The incorporation of 
text-based requirements into SysML effectively accommodates a broad range of requirements.

Use cases—like any other model element—can be related to requirements using the requirement 
relationships (e.g., the refine relationship). In addition, use cases are often accompanied by a use case 
description (see Chapter 12, Section 12.4.2). The steps in the use case description can be captured as 
individual text requirements and then related to other model elements to provide more granular trace-
ability between the use cases and the model.

13.2 � REQUIREMENT DIAGRAM  
Requirements captured in SysML can be depicted on a requirement diagram, which is particularly use-
ful in graphically depicting hierarchies of specifications or requirements. Because this diagram can depict 
large numbers of relationships for a single requirement, it is useful in representing the traceability of a 
single requirement to examine how that requirement is satisfied, verified, and refined, and to examine its 
derived relationships with other requirements. The requirement diagram header is depicted as follows:

req [model element kind] model element name [diagram name]
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The requirement diagram can represent a package or a requirement, as designated by the model ele-
ment kind in square brackets. The model element name is the name of the package or requirement that 
sets the context for the diagram, and the diagram name is user defined and often describes the purpose 
of the diagram. Figure 13.1 presents an example of a requirement diagram that contains some of the 
most common symbols.  

This example highlights a number of different requirements relationships and alternative notations. 
For example, Camera satisfies the requirement called Sensor Decision. In addition to the satisfy rela-
tionship, the figure also includes examples of containment, the deriveReqt, and the verify relationship. 
The relationships are depicted using a combination of the direct notation, compartment notation, and 
callout notation. Only one of these notations is typically used for a particular relationship. The relation-
ships and notation options are discussed later in this chapter. Tables A.25 through A.27 in the Appendix 
contain a complete description of the SysML notation for requirements.

A requirement can be shown directly on block definition diagrams, package diagrams, and use 
case diagrams, along with its relationships to other model elements on the diagram. However, a 
requirement cannot be shown directly on other diagram kinds, such as internal block diagrams. For 

Example Requirements DiagramRequirements[Package] req [  ]

Id = "S1"
Text = "The system shall be capable of detecting intruders 24 hours per day, 7 days per week, under all weather conditions. "

«requirement»
Operating Environment

Id = "S1.1"
Text = "The system shall be capable of detecting intruders under all weather 
conditions. "

«requirement»
All Weather Operation

Id = "S1.2"
Text = "The system shall be capable of detecting intruders 24 
hours per day, 7 days per week. "

«requirement»
24/7 Operation

Id = "D1"
Text = "The system shall use cameras to detect intruders. "

«requirement»
Sensor Decision «block»

Camera

derivedFrom
«requirement» All Weather Operation
«requirement» 24/7 Operation
satisfiedBy
«block» Camera

satisfies
«requirement»Sensor Decision

«deriveReqt»

«satisfy»

«deriveReqt»

derived
«requirement» Sensor Decision

verifiedBy

refinedBy

«interaction» Water Spray Test

«useCase» Detection Scenario
«stateMachine» WeatherModel

FIGURE 13.1

Generic example of a requirement diagram.
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all diagram kinds, the relationships between a requirement and the other model elements can be 
represented using compartment and/or callout notations (see Sections 13.5.2 and 13.5.3 for exam-
ples). Alternative ways to view requirements are discussed in Section 13.7 (tabular views) and  
Section 13.9.1 (browser view).

13.3 � REPRESENTING A TEXT REQUIREMENT IN THE MODEL  
A requirement that is captured in text is represented in SysML as a «requirement». Each requirement 
includes predefined properties for a unique identifier and for a text string. Once captured, it can be 
related to other requirements and to other model elements through a specific set of relationships.

Figure 13.2 is an example of a text-based requirement called Operating Environment as represented 
in SysML. It is distinguished by the keyword «requirement» and contains—at a minimum—a name 
and properties for id and text. This same information can be displayed in a tabular format that is 
described later in this chapter.  

Requirements can be customized by adding properties such as verification method, verification 
status, criticality, risk, and requirements category. The verifyMethod property, for example, may 
be typed by an enumeration called VerifiyMethodKind and include values such as inspection, 
analysis, demonstration, and test. A risk or criticality property may include the values high, 
medium, and low. A requirements category property may include values such as functional, per-
formance, or physical.

An alternative method for creating requirements categories is to define additional subclasses of the 
requirement stereotype (see Chapter 15, Section 15.4 for a discussion of subclassing stereotypes). The 
stereotype enables the modeler to add constraints that restrict the types of model elements that can 
satisfy the requirement. For example, a functional requirement may be constrained so that it can only 
be satisfied by a behavioral model element such as an activity, state machine, or interaction. Annex E 
of the SysML specification [1] includes some non-normative requirement subclasses, which are also 
presented in Table 13.1.

As shown in the table, each category is represented as a stereotype of the generic SysML «require-
ment». Table 13.1 also includes a brief description of the category. Additional stereotype properties or 
constraints can be added as deemed appropriate for the application.

Other examples of requirements categories may include operational requirements, specialized 
requirements for reliability and maintainability, requirements for stores, control requirements, and a 
high-level category for stakeholder needs. Some guidance for applying a requirements profile follows. 
(General guidance on defining a profile is included in Chapter 15, Section 15.4.)
 

Id = "S1"
Text = "The system shall be capable of detecting intruders 24 hours per day, 7 days per week, under all weather conditions. "

«requirement»
Operating Environment

FIGURE 13.2

Example of a requirement as depicted in SysML.
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Table 13.1  Optional Requirements Stereotypes from SysML 1.4 Annex E.3.2

Stereotype Base Class Properties Constraints Description

«extendedRequirement» «requirement» source: String
risk: RiskKind 
verifyMethod:  
VerifyMethodKind

N/A A mix-in stereotype that 
contains generally useful 
attributes for requirements.

«functionalRequirement» «extendedrequirement» N/A Satisfied by an  
operation or behavior.

Requirement that specifies 
an operation or behavior 
that a system or part of a 
system must perform.

«interfaceRequirement» «extendedrequirement» N/A Satisfied by a port, 
connector, item flow, 
and/or constraint 
property.

Requirement that specifies 
the ports for connecting 
systems and system parts 
and that optionally may 
include the item flows 
across the connector and/
or interface constraints.

«performanceRequirement» «extendedrequirement» N/A Satisfied by a value 
property.

Requirement that  
quantitatively measures the 
extent to which a system 
or a system part satisfies 
a required capability or 
condition.

«physicalRequirement» «extendedrequirement» N/A Satisfied by a  
structural element.

Requirement that specifies 
physical characteristics 
and/or physical constraints 
of the system, or a system 
part.

«designConstraint» «extendedrequirement» N/A Satisfied by a block or 
a part.

Requirement that specifies 
a constraint on the  
implementation of the  
system or system part, such 
as “the system must use a 
commercial off-the-shelf 
component.”
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	•	� The categories should be adapted for specific applications or organizations and reflected in the 
profile. This includes agreement on the categories and their associated descriptions, stereotype 
properties, and constraints. Additional requirements categories can be added by further sub-
classing the stereotypes presented in Table 13.1 or creating additional stereotypes at the peer 
level.

	•	� Apply the more specialized requirement stereotype (e.g., functional, interface, performance, 
physical, design constraint) as applicable and ensure consistency with the description, stereotype 
properties, and constraints of these requirements.

	•	� A specific text requirement can include the application of more than one requirement category, in 
which case each stereotype should be shown in a comma-separated list within guillemets (« »).

 

13.4 � TYPES OF REQUIREMENTS RELATIONSHIPS  
SysML includes specific relationships to relate requirements to other requirements as well as to other 
model elements. These include relationships for defining a requirements hierarchy, deriving require-
ments, satisfying requirements, verifying requirements, refining requirements, and copying require-
ments, as well as a general purpose trace relationship.

Table 13.2 summarizes the specific relationships, which are discussed later in this chapter. The 
derive, and copy relationships can only relate one requirement to another. The satisfy, verify, 
refine, and trace relationships can relate requirements to other model elements. Containment can 
be used to relate a requirement to another requirement or to another namespace like a block or a 
package.  

When relating a requirement to a nested property, the specific path to the nested property should be 
used to avoid ambiguity if more than one path exists. This is described in more detail as it applies to the 
allocate relationship in Chapter 14, Section 14.10.

Table 13.2  Requirement Relationships and Compartment Notation

Relationship Name
Keyword Depicted on 
Relation

Supplier (arrow) End 
Callout/Compartment

Client (no arrow) End  
Callout/Compartment

Satisfy «satisfy» Satisfied by «model  
element»

Satisfies «requirement»

Verify «verify» Verified by «model  
element»

Verifies «requirement»

Refine «refine» Refined by «model  
element»

Refines «requirement»

Derive Requirement «deriveReqt» Derived «requirement» Derived from «requirement»

Copy «copy» (No callout) Master «requirement»

Trace «trace» Traced «model element» Traced from «requirement»

Containment 
(Requirement  
decomposition)

(Crosshair icon) (No callout) (No callout)
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13.5 � REPRESENTING CROSS-CUTTING RELATIONSHIPS IN SYSML 
DIAGRAMS  

Relationships between requirements and other model elements can appear on various diagram kinds. 
These relationships can be shown directly if the requirement and related model elements are on the 
same diagram. If the related model elements do not appear on the same diagram as the requirements, 
they can still be shown by using the compartment or callout notation. The direct notation may be 
used, for example, to show a derive requirement relationship between two requirements on a require-
ment diagram. The compartment or callout notation can be used to relate a requirement to another 
model element without requiring both the requirement and the other model element to appear on the 
same diagram. An example is a block on a block definition diagram that uses its compartment to 
show a satisfy relationship to a requirement that is not displayed on the same block definition 
diagram.

In addition to these graphical representations, SysML provides a flexible tabular notation for repre-
senting requirements and their relationships. Note that the allocation relationship (described in Chapter 
14) is represented using the same notational approaches that are described here.  

13.5.1 � DEPICTING REQUIREMENTS RELATIONSHIPS DIRECTLY  
When the requirement and the model element to which it relates are shown on the same diagram, their 
relationship may be depicted directly. Direct notation depicts this relationship as a dashed arrow with 
the name of the relationship displayed as a keyword (e.g., «satisfy», «verify», «refine», «deriv-
eReqt», «copy», and «trace»).

Figure 13.3 presents an example of a «satisfy» relationship between a Camera and a requirement, 
Sensor Decision, where the camera is part of the design that is asserted to satisfy the requirement. Note 
that the arrow points from the block to the requirement.  

It is important to recognize the significance of the arrow direction. Since most requirement relation-
ships in SysML are based on the UML dependency relationship, the arrow points from the dependent 
model element (called the client) to the independent model element (called the supplier). The general 
dependency relationship is described in Chapter 6 Section 6.8. The interpretation of this «satisfy» 
relationship is that the camera design is dependent on the requirement, meaning that if the requirement 
changes, the impact on the design must be assessed. Similarly, a derived requirement will be dependent 
on the source requirement that it is derived from. In SysML, the arrow direction is opposite of what has 
typically been used for requirements flow-down where the higher-level requirement points to the lower-
level requirement.

Id = "D1"
Text = "The system shall use cameras to detect intruders. "

«requirement»
Sensor Decision «block»

Camera
«satisfy»

FIGURE 13.3

Example of direct notation depicting a satisfy relationship.
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13.5.2 � DEPICTING REQUIREMENTS RELATIONSHIPS USING COMPARTMENT 
NOTATION  

Compartment notation is an alternative method for displaying a requirement relationship between a 
requirement and another model element that supports compartments, such as a block, part, or another 
requirement. This is a compact notation that can be used instead of displaying a direct relationship. It 
also can be used for diagrams that preclude display of a requirement directly, such as an internal block 
diagram. In Figure 13.4, the compartment notation is used to show the same satisfy relationship as the 
requirement from Figure 13.3. This should be interpreted as “the requirement Sensor Decision is satis-
fied by the Camera.” The compartment notation explicitly displays the relationship and direction (sat-
isfiedBy), the model element kind («block»), and the model element name (Camera).  

Note that the description of the requirement compartment notation in the SysML specification [1] 
has been unclear and ambiguous, so many SysML tools do not implement it as described here. This will 
be corrected in a future version of the SysML specification.

13.5.3 � DEPICTING REQUIREMENTS RELATIONSHIPS USING CALLOUT NOTATION  
Callout notation is another notation for depicting requirements relationships. It is the least restrictive 
notation in that it can be used to represent a relationship between any requirement and any other model 
element on any diagram kind. This includes relationships between requirements and model elements 
such as pins, ports, and connectors that do not support compartments and therefore cannot use the 
compartment notation.

A callout is depicted as a note symbol graphically connected to a model element. The callout sym-
bol references the model element at the other end of the relationship. The callout notation depicted in 
Figure 13.5 presents the same information as the compartment notation in Figure 13.4, and it should be 
interpreted as “the requirement Sensor Decision is satisfied by the Camera.”  

Id = "D1"
Text = "The system shall use 
cameras to detect intruders. "

«requirement»
Sensor Decision

satisfiedBy
«block» Camera

FIGURE 13.4

Example of compartment notation depicting a satisfy relationship.

Id = "D1"
Text = "The system shall use 
cameras to detect intruders. "

«requirement»
Sensor Decision

satisfiedBy
«block»Camera

FIGURE 13.5

Example of callout notation depicting a satisfy relationship.
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13.6 � DEPICTING RATIONALE FOR REQUIREMENTS RELATIONSHIPS  
A rationale is a SysML model element that can be associated with a requirement, a requirement rela-
tionship, or any other model element. As the name implies, a rationale is intended to capture the reason 
for a particular decision. Although a rationale is described here for requirements, it can be applied 
throughout the model to capture the basis for any type of decision. Rationale is based on Comment, 
which is discussed in Chapter 5, Section 5.5.1.  

As presented in Figure 13.6, the rationale is expressed using a note symbol with the keyword 
«rationale». The text in the note symbol can either provide the rationale directly or reference an exter-
nal document (e.g., a trade study or analysis report) or another part of the model such as a parametric 
diagram. The reference may include a hyperlink, although this is not explicit in the language. This 
particular example shows a reference to a trade study, T.1. The context for this particular rationale is 
presented in Figure 13.14 later in this chapter.  

A problem is a model element similar to a rationale but used to flag design issues in the model. It 
can be associated with any model element and is expressed using a note symbol with the keyword 
«problem».

A rationale or problem can be attached to any requirements relationship or to the requirement. For 
example, a rationale or problem can be attached to a satisfy relationship and refer to an analysis report 
or trade study that justifies the assertion or raises the issue of whether a particular design satisfies the 
requirement. Similarly, the rationale can be used with other relationships, such as the derive 
relationship.

13.7 � DEPICTING REQUIREMENTS AND THEIR RELATIONSHIPS IN TABLES
The requirement diagram has a distinct disadvantage when viewing large numbers of requirements. 
Large amounts of real estate are needed to depict and relate all the requirements needed to specify a 
system of even moderate complexity. The traditional method of viewing requirements in tables is a 
more compact representation than viewing them in a diagram. Modern requirements management tools 
typically maintain requirements in a database, and the results of queries to the database can be dis-
played clearly and succinctly in tables or matrices. SysML embraces the concept of displaying results 
of model queries in tables as well as using tables as a data input mechanism, but the specifics of gener-
ating tables is left to the tool implementer.

Figure 13.7 provides an example of a simple requirements table of the same requirements that 
were presented in Figure 13.1. In this example, the table lists the requirements in the System 

«rationale»
Using a camera is the most cost 
effective way of meeting these 
requirements.  See trade study T.1.

FIGURE 13.6

Example of rationale as depicted on any SysML diagram.
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Specification package as indicated by the diagram header. Depending on its capability, a tool may also 
apply query and filter criteria to generate requirements reports from a query of the model. This report 
can represent a view of the model, as described in Chapter 5, Section 5.6. In addition, the tool may sup-
port editing requirements and their properties directly in the tabular view.

13.7.1 � DEPICTING REQUIREMENT RELATIONSHIPS IN TABLES  
A relationship path can be formed by selecting one or more requirements (or other model elements) and 
navigating the relationships from the selected requirement. This can be concisely shown in tables, as 
discussed in Chapter 5, Section 5.4. In the example presented in Figure 13.8, D1 is the selected require-
ment. The path includes two deriveReqt relationships with directions as presented in Figure 13.14, as 
well as the rationale associated with each relationship.

The relationship paths can be arbitrarily deep. That is, they can navigate a single kind of relationship 
from one model element to the next or navigate different types of relationships from one model element 
to the next. This can be particularly useful when analyzing the impact of requirements changes across 
the model.  

13.7.2 � DEPICTING REQUIREMENT RELATIONSHIPS AS MATRICES  
The tabular notation can also be used to represent multiple complex interrelationships between require-
ments and other model elements in the form of matrices. Figure 13.9 presents the result of a query in 
tabular (matrix) form. It depicts the satisfy and derive relationships. In this example, the requirements 

id name text
S1 Operating Environment The system shall be capable of detecting intruders 24 hours per day.. .

S1.1 All Weather Operation The system shall be capable of detecting intruders under all weather. . .

S1.2 24/7 Operation The system shall detect intruders 24 hours per day, 7 days per week

S2 Availability The system shall exhibit an operational availability (Ao) of 0.999.. .

table [Package] System Specification [Decomposition of Top-level Requirements]

FIGURE 13.7

Example of requirements table.

FIGURE 13.8

Example of table following the deriveReqt relationship.
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are presented in the left column, and the model elements that have a derive or satisfy relationship are 
presented in the other columns. Filtering criteria can be applied to limit the size of the matrix. In this 
example, the requirements properties have been excluded, and only the derive and satisfy relationships 
have been included. These relationships are discussed later in this chapter. Again, this is an example of 
a mechanism that a tool vendor might use to construct a view of the model.  

13.8 � MODELING REQUIREMENT HIERARCHIES IN PACKAGES  
Requirements can be organized into a package structure. A typical structure may include a top-level 
package for all requirements in the model. Each nested package within this package may contain 
requirements from different specifications, such as the system specification, element specifications, and 
component specifications. Each specification package contains the text-based requirements for that 
specification. This package structure may correspond to a typical specification tree that is a useful arti-
fact for describing the scope of requirements for a project.  

An example of a requirements package structure—or specification tree—is presented in the pack-
age diagram in Figure 13.10. The containment relationship, with the crosshairs symbol at the owning 
end, is used to indicate that the Customer Specification package, the System Specification, and the 
Camera Specification are contained in the Requirements package. An alternative representation for 
defining a specification tree on a requirement diagram using trace relationships between the specifica-
tions is described in Chapter 17, Section 17.3.7.

Organizing requirements into packages corresponding to various specifications provides familiarity 
and consistency with document-based approaches and facilitates configuration management of indi-
vidual specifications at the package level. A specification document or report can be generated directly 
from the contents of the appropriate package but will require additional supporting text for headers, 
section introductions, and other aspects of document generation.

satisfy
dependency

Matrix

deriveReqt
dependency

Matrix

FIGURE 13.9

Example of tabular view of requirements as matrices tracing satisfy and derive requirement relationships, 
respectively.
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13.9 � MODELING A REQUIREMENT CONTAINMENT HIERARCHY  
Containment is used to represent how a compound requirement can be partitioned into a set of simpler 
requirements. Containment can be viewed as logically anding (conjunction) the contained require-
ments with the containing requirement. The partitioning of compound requirements into simpler 
requirements helps establish full traceability to show how individual requirements are the basis for 
further derivation and how they are satisfied and verified.  

Figure 13.11 presents a requirement diagram with a simple containment hierarchy. The Customer 
Specification package from Figure 13.10 represents a top-level specification that serves as a container 
for all other customer-generated requirements. In this example, the Customer Specification package 
contains two other requirements, as depicted by the crosshairs symbol. Note that instead of using a 
package, a specification may be modeled as a «requirement» that contains a hierarchy of other require-
ments, such as that presented in Chapter 17, Figure 17.55. A typical specification may contain hundreds 
or thousands of individual requirements, but they generally can be organized into a hierarchy that cor-
responds to the organization of a specification document.

Figure 13.12 presents how containment hierarchies can be used to create multiple levels of nested 
requirements. In this example, the Operating Environment requirement contains two additional 
requirements for All Weather Operation and 24/7 Operation.

13.9.1 � THE BROWSER VIEW OF A CONTAINMENT HIERARCHY
As described in Chapter 3, Section 3.3.3, a typical modeling tool includes a model browser that can 
depict the requirements hierarchy. In Figure 13.13, the specification packages corresponding to the 
package diagram in Figure 13.10 are presented along with the requirements corresponding to the 

Req Pkg Structure[Package] Productspkg [  ]

Customer Specification

Camera Specification

System Specification

Requirements

FIGURE 13.10

Example of a package structure for organizing requirements.
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Containment Example 1Requirements[Package] req [  ]

Id = "S1"
Text = "The system shall be capable of 
detecting intruders 24 hours per day, 7 days 
per week, under all weather conditions. "

«requirement»
Operating Environment

Id = "S2"
Text = "The system shall exhibit an 
operational availability (Ao) of 0.999 over its 
installed lifetime. "

«requirement»
Availability

Customer Specification

Customer Specification Containment Example 2[Package] req [  ]

Id = "S1"
Text = "The system shall be capable of detecting intruders 24 
hours per day, 7 days per week, under all weather conditions. "

«requirement»
Operating Environment

Id = "S2"
Text = "The system shall exhibit an operational availability (Ao) 
of 0.999 over its installed lifetime. "

«requirement»
Availability

FIGURE 13.11

Two equivalent examples of requirements contained in a package.

Customer Specification Containment Example 3[Package] req [  ]

Id = "S1"
Text = "The system shall be capable of detecting intruders 24 hours 
per day, 7 days per week, under all weather conditions. "

«requirement»
Operating Environment

Id = "S1.1"
Text = "The system shall be 
capable of detecting intruders 
under all weather conditions. "

verifiedBy

«interaction» Water Spray Test

«requirement»
All Weather Operation

Id = "S1.2"
Text = "The system shall be 
capable of detecting intruders 
24 hours per day, 7 days per 
week. "

«requirement»
24/7 Operation

FIGURE 13.12

Example of requirements containment hierarchy.
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containment hierarchy in Figure 13.12. This representation is a compact way to view the requirements 
containment hierarchy.

13.10 � MODELING REQUIREMENT DERIVATION  
Deriving requirements from source, customer, or other high-level requirements is fundamentally differ-
ent from the containment relationship described in the previous section. A derive requirement rela-
tionship between a derived requirement and a source requirement is intended to be based on an analysis. 
The derive requirement relationship is often referred to simply as the derive relationship.  

An example of the derive relationship is represented in the requirement diagram in Figure 13.14. 
The relationship is shown with a dashed line with the keyword «deriveReqt» with the arrow pointing 
to the source requirement. The «rationale» can be used to associate the derive relationship to an 
analysis that provides the justification for the derivation. Note that the «rationale» has been associ-
ated with the derivation relationship and includes a reference to a trade study T.1.

The requirements traceability matrix that is included in traditional specification documents often 
shows relationships between requirements in one specification to requirements in other higher- or 
lower-level specifications. This relationship is often semantically equivalent to a set of SysML derive 
relationships. A derive relationship often shows relationships between requirements at different levels 
of the specification hierarchy. It is also used to represent a relationship between requirements at the 

FIGURE 13.13

Example of requirements containment in a tool browser.
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peer level of the hierarchy but at different levels of abstraction. For example, the hardware or software 
requirements that are originally specified by the systems engineering team may be analyzed by the 
hardware or software team to derive more detailed requirements that reflect additional implementation 
considerations or constraints. The more detailed requirements from the hardware and software team 
may be related to the original requirements specified by the system team through derive relationships.

13.11 � ASSERTING THAT A REQUIREMENT IS SATISFIED  
The satisfy relationship is used to assert that a model element corresponding to the design or imple-
mentation satisfies a particular requirement. The actual proof that the assertion is true is accomplished 
by the verify relationship described in the next section. Figure 13.15 presents an example of a satisfy 
relationship.  

The satisfy relationship is shown with a dashed line with the keyword «satisfy» with the arrow 
pointing to the requirement to assert that the Camera satisfies the requirement. The callout notation is 
also shown on both ends of the satisfy relationship. In practice, only one of these notations would be 
used to depict this relationship on a particular diagram. The «rationale» is associated with the satisfy 
relationship to indicate why this design is asserted to satisfy the requirement. In Figure 13.16, the same 
satisfy relationship from Figure 13.15 is presented on the block definition diagram using the compart-
ment notation.

Sensor Decision Derivation RationaleSystem Specification[Package] req [  ]

Id = "S1.1"
Text = "The system shall be 
capable of detecting intruders 
under all weather conditions. "

«requirement»
All Weather Operation

Id = "D1"
Text = "The system shall use 
cameras to detect intruders. "

«requirement»
Sensor Decision

Id = "S1.2"
Text = "The system shall be 
capable of detecting intruders 24 
hours per day, 7 days per week. "

«requirement»
24/7 Operation

«rationale»
Using a camera is the most cost 
effective way of meeting these 
requirements.  See trade study T.1.

«deriveReqt»«deriveReqt»

satisfiedBy
«block» Camera

FIGURE 13.14

Example of «deriveReqt» relationship, with rationale attached.
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13.12 � VERIFYING THAT A REQUIREMENT IS SATISFIED  
The verify relationship is a relationship between a requirement and a test case or other model element 
that is used to verify that the requirement is satisfied. As stated in the previous section, the satisfy rela-
tionship is an assertion that the model elements representing the design or implementation satisfy the 
requirement, but the verify relationship is used to prove that the assertion is true (or false).  

A test case specifies the input stimulus, conditions, and expected response to verify one or more 
requirements are satisfied. The test case can reference a documented verification procedure, or it can rep-
resent a model of the verification behavior, such as an activity, state machine, or interaction (sequence 
diagram). The results from performing the test case are called the verdict, which can include a value of 
none (test not completed yet), pass, fail, inconclusive, or error (i.e., an error in the testing environment).  

Direct Relationship with CalloutsSystem Specification[Package]req [ ]

Id = "D1"
Text = "The system shall use 
cameras to detect intruders. "

«requirement»
Sensor Decision «block»

Camera

«rationale»
Using a camera is the most cost effective way of 
meeting these requirements.  See trade study T.1.

DerivedFrom
«requirement»All Weather Operation
«requirement»24/7 Operation
SatisfiedBy
«block»Camera

Satisfies
«requirement»Sensor Decision

«satisfy»

FIGURE 13.15

Example of requirement satisfy relationship and associated callout notation.

System Specification Satisfy Compartment[Package] req [  ]

satisfies 
«requirement» Sensor Decision

«block»
Camera

FIGURE 13.16

Example of satisfy relationship using compartment notation.



32513.13  Reducing Requirements Ambiguity 

Figure 13.17 provides an example of the use of the verify relationship. The verify relationship 
is shown with a dashed line with the keyword «verify» with the arrow pointing from the Water 
Spray Test test case to the All Weather Operation requirement that is being verified. An alternative 
compartment notation for both the requirement and test case is also shown to depict this 
relationship.  

A test case can be a behavior or an operation, which can be further elaborated using a sequence diagram, 
activity diagram, or state machine diagram to specify the test case method. An example of applying the test 
case keyword to an interaction (represented by a sequence diagram) is presented in Figure 13.18. This 
presents a spray tester, who is a Test Technician, using a sprayer : Nozzle to apply water to the first produc-
tion : Camera, which is the system under test (designated by the keyword «sut»). Note that the spray 
tester is expected to disassemble and inspect the camera for water leakage before determining the test out-
come. An example of a test case that is modeled as an activity can be found in Chapter 17, Figure 17.57.

In general, a test case that is modeled as a behavior can represent a measurement of almost any 
characteristic, including structural characteristics. For example, the test case could represent a behavior 
that measures system weight. In this sense, a test case is a general-purpose mechanism for verifying 
requirements. In addition, other model elements can be used to verify a requirement. An example may 
include using a constraint block to verify a requirement by analysis.

The use of test case in SysML is consistent with the UML Testing Profile [50]. This profile provides 
additional semantics for representing many other aspects of a test environment. The integration between 
the SysML modeling tools and verification tools is covered briefly in Chapter 18, Section 18.2.2 as part 
of the discussion on information flow between tools.

13.13 � REDUCING REQUIREMENTS AMBIGUITY USING THE REFINE 
RELATIONSHIP  

As discussed in Chapter 6, Section 6.8, the refine relationship provides the capability to reduce ambiguity 
in a requirement by relating a SysML requirement to another model element that clarifies and often formal-
izes the requirement. This relationship is typically used to refine a text-based requirement with some portion 
of the model, but it can also be used to refine a portion of the model with a text-based requirement. For 
example, a text-based functional requirement may be refined with a more precise representation, such as a 
use case and its realizing activity diagram. Alternatively, the model element or elements may include a fairly 

Verification ExampleWater Spray Test[Package] req [  ]

verifies 
«requirement» All Weather Operation

«testCase, interaction»
Water Spray Test

verifiedBy 
«interaction» Water Spray Test

«requirement»
All Weather Operation «verify»

FIGURE 13.17

Example of verify relationship.
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abstract representation of required system interfaces that can be refined by an interface’s text specification 
that includes a detailed description of an interface protocol or a drawing of a physical interface envelope.

A refinement should clarify the requirement meaning or context. It is distinguished from a derive 
relationship in that a refine relationship can exist between a requirement and any other model element, 
whereas a derive relationship is only between requirements. In addition, a derive relationship is intended 
to impose additional constraints based on analysis.  

An example of the refine relationship is provided in Figure 13.19. It presents how the All Weather 
Operation requirement is refined by a state machine that models weather conditions and transitions. 
The refine relationship is shown with a dashed line with the keyword «refine» with the arrow pointing 
from the element that represents the more precise representation to the element being refined. An alter-
native compartment notation is also shown to represent this relationship. Note that the Weather Model 
state machine only partially refines the requirement. The Detection Scenario use case might address, 
for example, specific detection expectations in each weather condition.

Spray Test SequenceWater Spray Test[Interaction] sd [  ]

«sut»
first production : Camera

spray tester : Test Technician sprayer : Nozzle

[no leakage]

[else]

alt

no internal moisture detected6: 

internal moisture detected8: 

Spray Water()2: 

disassemble & inspect5: 

result (pass)7: 

result (fail)9: 

Water3: 

spray done4: 

Conduct Spray Test()1: 

FIGURE 13.18

Example of a test case interaction depicted as a sequence diagram.
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13.14 � USING THE GENERAL-PURPOSE TRACE RELATIONSHIP  
A trace relationship provides a general-purpose relationship between a requirement and any other 
model element. This is also discussed in Chapter 6, Section 6.8. The trace semantics do not include any 
constraints and therefore are quite weak. However, the trace relationship can be useful for relating 
requirements to source documentation or for establishing a relationship between specifications in a 
specification tree (refer to Chapter 17, Section 17.3.7).  

As presented in Figure 13.20, the trace relationship is used to relate a particular requirement to a 
Market Survey that was conducted as part of the needs analyses. The trace relationship is shown with a 
dashed line with the keyword «trace» with the arrow pointing to the source document. The survey is 
represented as a user-defined model element with the keyword «document».

FIGURE 13.19

Example of refine relationship applied to requirement.
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13.15 � REUSING REQUIREMENTS WITH THE COPY RELATIONSHIP
The copy relationship supports reuse of requirements by explicitly relating a copy of a requirement to 
a source requirement. The text property of the copied requirement is a read-only copy of the text prop-
erty of the source requirement, but the copied requirement has a different id and may be contained in a 
different namespace. Note that the copied requirement does not retain any of the relationships or ratio-
nale of the original requirement.

An example of a copy relationship is presented in Figure 13.21. The copy relationship is shown with 
a dashed line with the keyword «copy» with the arrow pointing from the copied requirement to the 
source requirement, also known as the master requirement. In this example, the source requirement 
being copied is a requirement from a technical standard that is reused in many different requirements 
specifications.

Customer Specification Trace Example[Package] req [  ]

Id = "S1"
Text = "The system shall be capable of detecting intruders 24 
hours per day, 7 days per week, under all weather conditions. "

«requirement»
Operating Environment

«document»
Market Survey

«trace»

FIGURE 13.20

Example of trace relationship linking a requirement to an element representing an external document.

Camera Specification Copy Example[Package] req [  ]

Id = "C4.1"

master 
802.11g Power-Bandwidth

Text = "The maximum power bandwidth shall not exceed... "

«requirement»
ACME Surveillance Systems::Products::Requirements::Camera 

Specification::Wifi Power-Bandwidth

Id = "802.11g.214"
Text = "The maximum power bandwidth shall not exceed... "

«requirement»
ACME Surveillance Systems::Products::Requirements::IEEE 

Standards::802.11g Power-Bandwidth

«copy»

«requirement»

FIGURE 13.21

Example of a requirement copy relationship.
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Note that requirements in SysML are precluded from having or typing part properties. This makes 
them different from blocks (see Chapter 7, Section 7.3.1). The standard mechanism for reusing require-
ments is the copy relationship.

13.16 � SUMMARY
SysML can be used to model text-based requirements and relate them to other requirements and to 
other model elements. The following are some of the key requirements modeling concepts:
 
	•	� The SysML requirement modeling capability serves as a bridge between traditional text-based 

requirements and the modeling environment. The requirements can be imported from a require-
ments management tool or text specification, or created directly in the modeling tool.

	•	� A requirement includes a name, an id, and a text property at a minimum. Additional user defined 
properties such as risk and verification method can be included as well. Special kinds of require-
ments categories can also be created, in addition to the predefined categories in SysML (e.g., 
functional, interface, performance).

	•	� Each specification is generally captured in a package. The package structure can correspond to a 
traditional specification tree. Each specification in turn includes a containment hierarchy of the 
requirements contained within the specification. The browser view in most tools can be used to 
view the requirements containment hierarchy.

	•	� The individual or aggregate requirements contained in a specification can be related to other 
requirements in the same or other specifications, as well as to model elements that represent the 
design, analysis, implementation, and test cases. The requirements relationships include derive, 
satisfy, verify, refine, trace, and copy. These relationships provide a robust capability for managing 
requirements and supporting requirements traceability.

	•	� There are multiple notational representations to enable requirements to be related to other model 
elements on other diagrams. These include direct notation, compartment notation, and callout 
notation. The requirement diagram is generally used to represent a containment hierarchy or to 
represent the relationships for a particular requirement or set of requirements. Tabular notations 
are also used to efficiently report requirements and their relationships.

 

13.17 � QUESTIONS
	 1.	 �What is the diagram kind of a requirement diagram?
	 2.	 �Which kind of model element can the frame of a requirement diagram represent?
	 3.	 �Which standard properties are expressed in a SysML requirement?
	 4.	 �How can you add properties and constraints to a requirement?
	 5.	 �What kind of requirement relationships can only exist between requirements?
	 6.	 �Express in a sentence how you interpret Figure 13.3.
	 7.	 �How do you express the requirement relationship in Figure 13.3 using call-out notation?
	 8.	 �How do you express the requirement relationship in Figure 13.3 using compartment notation?
	 9.	 �How do you represent a «deriveReqt» relationship between Reqt A and Reqt B in a matrix?
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	10.	 �How do you represent the rationale for the derived requirement in Figure 13.14 that the deriva-
tion is based on the xyz analysis?

	11.	 �What is a satisfy relationship used for?
	 a.	 �To ensure a requirement is met
	 b.	 �To assert a requirement is met
	 c.	 �To more clearly express a requirement
	12.	 �What are the kinds of elements found on either end of a verify relationship?
	13.	 �What is used as a basis for a derived relationship?
	 a.	 �analysis
	 b.	 �design
	 c.	 �test case
	14.	 �Consider the requirement A with text that reads “The system shall do x and the system shall do 

y.” How would you show the deconvolution of requirement A into two requirements, A.1 and 
A.2, using containment?

	15.	 �Which relationship would you use to relate a requirement to a document?
	 a.	 �deriveReqt
	 b.	 �satisfy
	 c.	 �verify
	 d.	 �trace
	16.	 �Why are requirements included in SysML? (This can be a discussion topic rather than a 

question.)
 

DISCUSSION TOPICS
What are different uses of a requirement diagram?
When would you use a requirement diagram versus a table?
How can requirements and use cases be used together?
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CHAPTER

MODELING CROSS-CUTTING 
RELATIONSHIPS WITH 
ALLOCATIONS

This chapter describes how the allocate relationship is used to map from one model element to another 
to support behavioral, structural, and other forms of allocation.

14.1 � OVERVIEW  
Beginning early in systems development, the modeler may need to relate elements in the system 
model in abstract, preliminary, and sometimes tentative ways. It is inappropriate to impose detailed 
constraints on the solution too early in the development of a system. Allocation is a mechanism for 
relating model elements in a way that provides guidance for the more rigorous relationships that are 
subsequently developed during model refinement. Additional user-defined constraints can augment 
the allocate relationship to add the necessary rigor as the design progresses. For example, an alloca-
tion of functions (e.g., activities) to components may be done early in the design process. As the 
design progresses, additional constraints are imposed to ensure that the activity inputs, outputs, and 
controls are explicitly allocated to component interfaces. With appropriate user-defined constraints, 
allocation can be used to help enforce specific system development methods to ensure the model’s 
integrity.  

The allocate relationship is used to support many forms of allocation, including allocation of behav-
ior, structure, and properties. A typical example of behavioral allocation is the allocation of activities to 
blocks (traditionally called functional allocation), where each block is assigned responsibility for 
implementing a particular activity. An important distinction is made between allocation of definition 
(described in Section 14.5.2) and allocation of usage (described in Section 14.5.1). The concepts of 
definition (e.g., blocks) and usage (e.g., part properties) are explained in Chapter 7, Section 7.3.1. For 
functional allocation, allocating activities to blocks is an allocation of definition, and allocating actions 
to parts is an allocation of usage.  

SysML includes several notational options to provide flexibility for representing allocations of 
model elements. The options include both graphical and tabular representations similar to those used 
for relating requirements. Figure 14.1 shows some of the graphical representations of allocation on 
an activity diagram, on an internal block diagram, and on a block definition diagram. A complete 
description of the SysML notation for allocations can be found in the Appendix, Table A.28.  

14
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14.2 � ALLOCATE RELATIONSHIP  
As referenced in Chapter 6, Section 6.8, an allocate relationship is a kind of dependency used to allocate 
one model element to another. An allocate relationship may be established between any two named model 
elements and provides a general purpose assignment mechanism. Responsibilities that are associated with 
one model element may be assigned to another model element, such as when an activity is allocated to a 
block. For this case, the block assumes responsibility for performing the activity. Every SysML allocate 
relationship has one “from” end and one “to” end, although a model element may be allocated from or to 
more than one model element. Model element A is said to be “allocated to” model element B when the model 
element at the “from” end of the allocate relationship (i.e., the client) is A and the model element at the “to” 
end of the allocate relationship (i.e., the supplier) is B. The supplier end of the relationship has an arrow. 
Additional constraints may be placed on allocations; for example, functional allocation may be constrained 
to occur only between blocks and activities. Section 14.4 discusses various kinds of allocation.  

allocatedTo
«connector» c1

allocatedFrom
«objectFlow» of2

«block»
«logical»

Focus Optimizer

allocatedFrom

«activity» Adjust Focus Motor
«activity» Optimize Focus

«activity»
Adjust Focus Motor

«allocate»
f1 : Sharpness Detector

allocatedTo
«block» Focus Optimizer

ibd [Block] Focus Controller [Flow Allocation2]

act [Activity] Simplified Adjust Focus [Flow Allocaction1]

bdd [Package] Allocation Example [Allocation Compartment]

allocatedFrom

«action» a1 :
Measure Pixel Contrast

FIGURE 14.1

Examples of allocation on activity, block definition, and internal block diagrams.
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14.3 � ALLOCATION NOTATION  
Several different notations can be used to represent allocation of one model element to another. The 
notations that SysML uses to represent allocate relationships are similar to the graphical and tabular 
notations used to represent requirements relationships, as described in Chapter 13, Section 13.5. 
Graphical notations include the direct notation, compartment notation, and callout notation.

When the model elements at both ends of the allocate relationship can be shown on the same dia-
gram, the allocate relationship can be depicted directly, as indicated in Figure 14.2, using the keyword 
«allocate» on the relationship. Here, the Adjust Focus Motor activity is allocated to the Focus Opti-
mizer, and the arrow represents the allocatedTo end of the relationship (i.e., supplier). Although func-
tional allocation is depicted in this example, this representation is equally valid for other kinds of 
allocations.

As with requirements relationships, the model elements at either end of an allocate relationship may 
be on different diagrams. For these cases, compartment notation and callout notation can be used to 
identify the model element at the other end of the relationship.

The compartment notation identifies the element at the opposite end of the allocate relationship in 
a compartment of the model element, as shown in Figure 14.3. However, this can only be used when 
the model element can include compartments such as blocks and parts. It cannot be used for model 
elements that do not have compartments, such as connectors.

The callout notation shown in Figure 14.4 can be used to represent the opposite end of the allo-
cate relationship for any model element whether it has compartments or not. Callout notation is 
represented as a note symbol that is attached to the model element via an anchor, like a comment. 
The callout notation specifies the kind and name of the model element at the other end of the allocate 
relationship. It also identifies which end of the allocate relationship applies to the attached model 

«activity»
Adjust Focus Motor

«allocate» «block»
«logical»

Focus Optimizer

FIGURE 14.2

Example directly depicting an allocate relationship, when both model elements appear on the same diagram.

«block»
«logical»

Focus Optimizer

allocatedFrom

«activity» Adjust Focus Motor
«activity» Optimize Focus

«activity»
Adjust Focus Motor

allocatedTo
«block» Focus Optimizer

bdd [Package] Allocation Example [Allocation Compartment]

FIGURE 14.3

Example depicting an allocate relationship in compartment notation.
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element as indicated by the allocatedTo or allocatedFrom. This is similar to the callout notation for 
requirements relationships discussed in Chapter 13, Section 13.5.3. The callout notation is read by 
starting with the name of the model element that the callout notation attaches to, then reading the 
allocatedTo or allocatedFrom, and then reading the model element name in the callout symbol. For 
example, the allocate relationship in Figure 14.4 is read: “The activity Adjust Focus Motor is allo-
cated to the block Focus Optimizer,” and “the block Focus Optimizer is allocated from the activity 
Adjust Focus Motor.” The latter could be interpreted as “The block Focus Optimizer is responsible 
for the activity Adjust Focus Motor.”

A matrix notation can be used to simultaneously view multiple allocate relationships, as shown in 
Figure 14.5. In this example, activities are displayed in the left column and blocks are displayed in the 
top row. This format is not specifically prescribed by the SysML specification and will vary from tool 
to tool. The arrows in the cells of the matrix indicate the direction of the allocate relationships, consis-
tent with those shown in Figure 14.3 and Figure 14.4.

«block»
«logical»

Focus Optimizer

allocatedFrom
«activity» Adjust Focus Motor
«activity» Optimize Focus

«activity»
Adjust Focus Motor

«block» Focus Optimizer
allocatedTo

bdd [Package] Allocation Example [Allocation Callout]

FIGURE 14.4

Example depicting an allocate relationship in callout notation.
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Behavior

Adjust Focus( current : Image, focus : Command )

Adjust Focus Motor( delta : Video Parameter, focus : Command )

Measure Pixel Contrast( contrast1 : Video Parameter, current1 : Image )

Optimize Focus( contrast : Video Parameter, delta : Video Parameter )

FIGURE 14.5

Example depicting allocate relationships in tabular matrix form.
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This matrix or tabular form of representing allocations is particularly useful when a concise, com-
pact representation is needed, and it is used often in this chapter to illustrate allocation concepts.  

14.4 � KINDS OF ALLOCATION
The following section describes different kinds of allocations, including allocation of requirements, 
behavior, flow, structure, and properties.

14.4.1 � ALLOCATION OF REQUIREMENTS
The term requirement allocation represents a mechanism for mapping source requirements to other 
derived requirements, or mapping requirements to other model elements that satisfy the requirement. 
SysML does not use the «allocate» relationship to represent this form of allocation, but instead uses 
specific requirements relationships that are described in Chapter 13.

14.4.2 � ALLOCATION OF BEHAVIOR OR FUNCTION
The term behavioral allocation generally refers to a technique for segregating behavior from structure. 
A common systems engineering practice is to separate models of structure (sometimes referred to as 
models of form) from models of behavior (sometimes referred to as models of function) so that designs 
can be optimized by considering several different structures that provide the desired emergent behavior 
and properties. This approach provides the required degrees of freedom—in particular, how to decom-
pose structure, how to decompose behavior, and how to relate the structure and behavior to optimize 
designs based on trade studies among alternatives. The implication is that an explicit set of relation-
ships must be maintained between behavior and structure for each alternative.

The behavior of a block can be represented in different ways. On a block definition diagram, the 
operations of a block explicitly define the responsibility the block has for providing the associated 
behavior (see Chapter 7, Section 7.5 for more on modeling behavior of blocks). In a sequence diagram, 
a message sent to a lifeline invokes the operation on the receiving lifeline to provide the behavior (see 
Chapter 10 for more on interactions). In activity diagrams, the placement of an action in an activity 
partition implicitly defines that the part represented by the partition provides the associated behavior. 
(See Chapter 9 for more on activities.)

In this chapter, the term behavioral allocation specifically refers to the concept of allocating behav-
ioral model elements (activities, actions, states, object flow, control flow, transitions, messages, etc.) to 
structural models elements (blocks, parts, ports, connectors, item flows, etc.). The term functional 
allocation is a subset of behavioral allocation, and it refers specifically to the allocation of activities or 
actions (also known as functions) to blocks or parts, respectively.

14.4.3 � ALLOCATION OF FLOW
Flow represents the transfer of energy, mass, and/or information from one model element to another. 
Flows are typically depicted as object flows from and to action pins on activity diagrams (as described 
in Chapter 9, Section 9.5) and as item flows between ports or parts on an internal block diagram (as 



CHAPTER 14  MODELING CROSS-CUTTING RELATIONSHIPS336

described in Chapter 7, Section 7.4.3). Flow allocation is often used to allocate flows between activity 
diagrams and internal block diagrams.

14.4.4 � ALLOCATION OF STRUCTURE
Structural allocation refers to allocating elements of one kind of structure to elements of another kind of 
structure. A typical example is a logical–physical allocation, where a logical block hierarchy is often built 
and maintained at an abstract level, and in turn is mapped to another physical block hierarchy at a more 
concrete level. Software–hardware allocation is another example of structural allocation. In SysML, allo-
cation is often used to allocate abstract software elements to hardware elements. UML uses the concept of 
deployment to specify a more detailed level of allocation that requires software artifacts to be deployed to 
platforms or processing nodes. The transition from a SysML allocation to a UML deployment may be 
accomplished through model refinement and more detailed modeling and design of the software.

14.4.5 � ALLOCATION OF PROPERTIES
Allocation can also be used to allocate performance or physical properties to various elements in the system 
model. This often supports the budgeting of system performance or physical property values to property 
values of the system components. A typical example is a weight budget in which system weight is allocated 
to the weights of the system’s components. Once again, the initial allocation can be specified in more detail 
as part of model refinement using parametric constraints, as discussed in Chapter 8, Section 8.6.

14.4.6 � SUMMARY OF RELATIONSHIPS ASSOCIATED WITH THE TERM 
“ALLOCATION”

Table 14.1 is a partial list of some uses for allocation in systems modeling.

Table 14.1  Various Uses of “Allocation” and How to Represent in SysML

Kind of Allocation Reference Relationship From To

Requirement allocation Section 13.11 Satisfy requirement model element

Section 13.10 DeriveReqt requirement requirement

Section 13.13 Refine model element
requirement

requirement
model element

Functional allocation Section 14.6 Allocate activity action block part

Structural allocation (e.g., logical 
to physical, software to hardware)

Section 14.9 Allocate block block

Section 14.10 Allocate port port

Section 14.9 Allocate item flow  
connector

item flow parts 
and connectors

Flow allocation Section 14.7 Allocate object flow
object flow
object flow

connector item 
flow item
property

Property decomposition/allocation Section 7.7 Binding connector value property parameter
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14.5 � PLANNING FOR REUSE: SPECIFYING DEFINITION AND USAGE IN 
ALLOCATION

The allocation of a model element to another model element establishes a relationship between them 
that can impact their reuse. For example, allocating a function to a component, such as allocating cam-
era function to a mobile phone, may limit the ability to reuse the mobile phone for another application. 
This motivates the distinction between allocation of definition versus allocation of usage as described 
below.

The concept of definition and usage, relative to parts typed by blocks, is discussed in Chapter 7, 
Section 7.3.1. A block is defined in terms of its features. A part typed by a block represents a usage of 
that block in the context of an owning block. The distinction between definition and usage applies to 
any property, such as a constraint property typed by a constraint block or an item property typed by a 
block. The concept can also be applied to other elements such as a call behavior action and the activity 
it calls. The action can be viewed as a usage of the called activity in the context of an owning activity. 
Table 14.2 shows different kinds of diagrams, the model elements that represent usages on the dia-
grams, and the model elements that type or define them.

Allocation can be used to relate elements of definition (blocks, activities, etc.) or elements of usage 
(actions, parts, etc.) in various combinations. The following examples explicitly depict this concept for 
functional allocation, but it applies equally well to structural allocation (block to block, part to part, 
etc.). The concepts of definition and usage are a significant strength of SysML, but merit careful con-
sideration during allocation to maintain model consistency.

14.5.1 � ALLOCATING USAGE
As shown in Figure 14.6, allocation of usage applies when both the “from” and “to” ends of the allo-
cate relationship relate usage elements such as parts, actions, and connectors. When allocating usage, 
nothing is inferred about any corresponding defining elements (blocks, activities, etc.) that may type or 
invoke the usage. This is similar to property specific types as described in Chapter 7, Section 7.7.5. 
Only the specific usage is affected by the allocation. For example, if an action on an activity diagram is 
allocated to a part on an internal block diagram, the allocation is specific to that part, and not to any 
other parts that are typed by the same block. If the modeler finds a large number of similar parts with 

Table 14.2  Contextualized Elements Representing Usages and Their Definition

Diagram Kind Model Element/Usage Model Element/Definition

Activity diagram action activity

object node/action pin block

activity edge (object flow, control flow) (none)

Internal block diagram part block

connector association

item flow (none)

item property block

value property value type

Parametric diagram Constraint property constraint block
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similar allocated characteristics or functions, it may be appropriate to consider allocation of definition 
as described in Section 14.5.2.

SysML supports instance specifications, as described in Chapter 7, Section 7.8. Allocation to and 
from instance specifications can also be considered allocation of usage.

14.5.2 � ALLOCATING DEFINITION
As shown in Figure 14.7, allocation of definition applies when both the “from” and “to” ends of 
the allocate relationship relate to elements of definition, such as blocks, activities, and associa-
tions. When allocating to an element that represents definition or classifier, such as a block, then 
the allocation applies to every property that is typed by the definition. For example, when a block 

FIGURE 14.6

Allocation of usage. Functional allocation is shown here, but structural allocation is similar.

FIGURE 14.7

Allocation of definition.
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is used to type several different parts, the result of any allocation to the block applies to all the 
parts that are typed by this block. Note that allocations are not inherited when a block is 
specialized.

14.5.3 � ALLOCATING ASYMMETRICALLY
Asymmetric allocation is when one end of the allocate relationship relates to an element of definition, 
and the other end relates to an element of usage. Asymmetric allocation is used by exception; that is, it 
is not generally recommended because it can introduce ambiguity. Allocation of usage and allocation 
of definition are the preferred allocation approaches.

14.5.4 � GUIDELINES FOR ALLOCATING DEFINITION AND USAGE
The significance of using allocation of usage and allocation of definition relationships is discussed in 
Table 14.3. The following conclusions can be drawn by examining these two approaches to allocation 
with respect to functional allocation, flow allocation, and structural allocation:
 
	•	� Allocation of usage is localized to the fewest model elements and has no inferred allocations. It 

can be directly represented on diagrams of usage (e.g., internal block diagram or activity dia-
gram). It is appropriate to start with allocation of usage and consider allocation of definition after 
each of the uses has been examined.

	•	� Allocation of definition is a more complete form of allocation because it applies (is inferred) to 
every usage. Allocation of definition follows from allocation of usage, as it typically requires blocks 
or activities to be specialized or decomposed to the point where the allocation of definition is unique, 
and over-allocation (more allocations than really desired) is avoided. If a part requires a unique 
allocation, using allocation of definition requires the additional step of specializing the block to 
define the part uniquely and then allocating to (or from) that specialized block instead of to the part. 
This extra attention to refine the definition facilitates future reuse of definition hierarchies.

 

Table 14.3  Allocation Guidelines Table

Allocation of Usage Allocation of Definition

Example: part to part, action to part, connector to connector, 
property to property

Example: block to block or activity to block

Applicability: when the allocation is not intended to be reused Applicability: when the allocation is intended to 
apply to all usages

Discussion Discussion

– Most localized with least implication on other diagrams and 
elements

– Allocation inferred to all usages

– Only way to allocate flows and connectors that have no 
definition

– Can result in over-allocation (more activities 
allocated to a part than necessary)

– Possible redundancy or inconsistency as parts/actions used in 
multiple places

– Not directly represented on an activity diagram 
with allocate activity partition (see Section 14.6.3)
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14.6 � ALLOCATING BEHAVIOR TO STRUCTURE USING FUNCTIONAL 
ALLOCATION

Functional allocation is used to allocate functions to system components. Figure 14.8 defines a suitably 
complex behavioral hierarchy and a structural hierarchy to be used for the following functional alloca-
tion examples. Note that in this example, Measure Pixel Contrast is used by more than one activity, and 
Sharpness Detector is used by more than one block. See Chapter 9, Section 9.12 for modeling activity 
hierarchies on block definition diagrams and Chapter 7, Section 7.3.1 for modeling composition hier-
archies on block definition diagrams.

The surveillance camera employs a passive autofocus system that uses pixel-to-pixel contrast as a 
way of determining how well the optics are focused, and then it generates a signal to adjust the focus 
motor accordingly. The Adjust Focus activity, then, can be composed of actions defined by three other 
activities: a1 : Measure Pixel Contrast, a2 : Optimize Focus, and a3 : Adjust Focus Motor. An activity 
diagram describing the behavior of the autofocus portion of the surveillance camera is depicted on the 
left side of Figure 14.9. Note that a separate activity to detect edges of objects in the video frame may 
also use the Measure Pixel Contrast activity, as shown in Figure 14.8.

A logical structure for the autofocus portion of the camera is also depicted in Figure 14.8. The 
Focus Controller block is composed of parts f1 : Sharpness Detector and f2 : Focus Optimizer. 

«activity»
Measure Pixel

Contrast

«activity»
Adjust Focus

Motor

«activity»
Adjust Focus

«activity»
Optimize Focus

«activity»
Detect Edges

a1a2 d1a3

bdd [Package] Behavior [Example Activity Hierarchy]

f2 v1f1

bdd [Package] Logical Structure [Example Structural Hierarchy]

«block»
«logical»

Focus Optimizer

«block»
«logical»

Focus Controller

«block»
«logical»

Sharpness Detector

«block»
«logical»

Video Quality Checker

FIGURE 14.8

Example of behavioral and structural hierarchy definition.
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Assume, hypothetically, that the block Sharpness Detector may also define a part used by some 
other logical block whose purpose is to check video quality.

14.6.1 � MODELING FUNCTIONAL ALLOCATION OF USAGE
As discussed in an earlier section, functional allocation of usage (e.g., action to part) should be used 
over functional allocation of definition (e.g., activity to block) when the action is not intended to be 
reused by other usages of the block. Allocation of usage should also be considered if the action uses 
different inputs/outputs (i.e., pins) that may result in different interfaces on the associated block.

Figure 14.9 depicts functional allocation of usage. This example shows the use of the callout nota-
tion for representing allocations from the actions on the activity diagram to the parts on the internal 
block diagram. Note that action a1 : Measure Pixel Contrast on the activity diagram is allocated to part 
f1 : Sharpness Detector, but that none of the other actions are allocated. This is because their defining 
activities are allocated in Section 14.6.2, so it is not appropriate to also allocate the usage. Also, notice 
that object flow of2 is allocated to connector c1. This kind of flow allocation can only be allocation of 
usage and is described in more detail in Section 14.7.3.

The allocation callouts on the internal block diagram are the reciprocal of the allocation callouts on 
the activity diagram. An allocation matrix is also provided as an alternative concise representation of 
the allocate relationships in the other diagrams.

14.6.2 � MODELING FUNCTIONAL ALLOCATION OF DEFINITION
Allocation of definition between an activity and a block is used when each usage of the activity is allo-
cated to a usage of the block. This can be depicted on block definition diagrams. The allocate 
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- f1  : Sharpness Detector

FIGURE 14.9

Example of functional allocation of usage, with allocation matrix.



CHAPTER 14  MODELING CROSS-CUTTING RELATIONSHIPS342

relationship between an activity and a block can include the activity or block on the “to” or “from” end 
of the allocation, but the allocation is generally from an activity to a block.

Figure 14.10 shows an example of functional allocation of definition using the allocate relationship. 
Note that the activities Optimize Focus and Adjust Focus Motor are allocated to the block Focus Opti-
mizer. The use of Focus Optimizer in the block Focus Controller—and everywhere else it is used—has 
an inferred allocation of these two activities. This allocation can later be realized by creating two opera-
tions for Focus Optimizer whose methods are Optimize Focus and Adjust Focus Motor. These new 
operations would then be available to every instance typed by Focus Optimizer.

Note that the activity Measure Pixel Contrast is not allocated to the block Sharpness Detector, even 
though a conceptual relationship exists between them. In this particular example, Measure Pixel Con-
trast is also used by the activity Detect Edges, which is a processing technique not associated with 
picture sharpness. Measure Pixel Contrast does not have any inferred allocation to Sharpness Detector 
when it is used in Detect Edges, thus allocation of definition is inappropriate. Allocation of usage is the 
correct technique in this case.

Figure 14.11 is a block definition diagram of a system similar to the water distiller example in Chap-
ter 16. Note that the Meter Flow activity has been allocated to the block Valve, which infers that the 
Meter Flow activity applies to each usage of the Valve block. This is appropriate because every valve 
performs an activity to meter fluid flow. Note also that the activity Boil Water has been allocated to the 
block Boiler, which infers that all the usages of the Boiler can perform the activity Boil Water.

«activity»
Optimize Focus

«activity»
Adjust Focus Motor

«activity»
Adjust Focus

«activity»
Measure Pixel

Contrast

«activity»
Detect Edges

«block»
«logical»

Focus Optimizer

«block»
«logical»

Focus Controller

«block»
«logical»

Sharpness Detector

a1 d1a2 a3

«allocate» «allocate»

f2 f1

bdd [Package] Behavior [Functional Allocation of Definition]

Note: Allocation of
definition from Measure
Pixel Contrast to Sharpness
Detector is inappropriate,
since Detect Edges
would then be dependent
on Sharpness Detector.

FIGURE 14.10

Example of functional allocation of definition.
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Figure 14.12 is a block definition diagram describing a Power Station, and it uses many of the 
blocks previously defined for the Distiller. The allocation of definition to the Boiler and Valve refer-
enced in Figure 14.11 is still valid. The part stm gen : Boiler has an inferred allocation from the Boil 
Water activity, and both the feed and throttle usages of Valve include an inferred allocation from the 
Meter Flow activity.

«block»
Heat Exchanger

«block»
Valve

«block»
Boiler

«block»
Distiller

«activity»
Meter Flow

«activity»
Boil Water

draincondenser

«allocate»«allocate»

evaporator

bdd [Package] Initial Distiller [Distiller Allocation of Definition]

FIGURE 14.11

Functional allocation of definition from distiller example.

bdd [Package] Power Station Structure [Power Station Allocation of Definition]

«block»
Boiler

allocatedFrom
«activity» Boil Water

«block»
Valve

allocatedFrom
«activity» Meter Flow

«block»
Heat Exchanger

«block»
Power Station

«block»
Generator

«block»
Turbine

«block»
Pump

throttlefeed

t1g1

stm gen main condenser

feed

FIGURE 14.12

Implications of functional allocation of definition as seen in the power station example.
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14.6.3 � MODELING FUNCTIONAL ALLOCATION USING ALLOCATE ACTIVITY 
PARTITIONS (ALLOCATE SWIM LANES)  

Activity partitions are discussed in Chapter 9, Section 9.11.1. An allocate activity partition is a special 
type of activity partition that is distinguished by the keyword «allocate». The presence of an allocate 
activity partition on an activity diagram implies an allocate relationship between any action node within 
the partition and the part or block represented by the partition (which appears as the name of the parti-
tion), as depicted in Figure 14.13. Note that allocate activity partitions can only explicitly depict alloca-
tion of usage or asymmetric allocation. This is because activities (definition) cannot be directly 
represented on activity diagrams; only the call behavior actions (usages) that invoke activities can. If 
allocation of definition is desired, the activity must be allocated to the block that can be directly depicted 
on a block definition diagram or by using compartment or callout notation.  

Functional allocation using allocate activity partitions (allocate swim lanes) is depicted in  
Figure 14.14. This is a subset of the example previously shown in Figure 14.9, where action node a1 (a 
usage of activity Measure Pixel Contrast) has been allocated to part f1 (a usage of block Sharpness Detec-
tor). This allocation is depicted graphically by the allocate activity partition on the activity diagram.

We have assumed that each action on an activity diagram is meant to be allocated to only one part. 
If for some reason an action is intended to be allocated to multiple parts, then a new untyped part may 
be created that aggregates the parts in question. An allocate activity partition is used to represent this 
new aggregation, and the action is placed in this new allocate activity partition.

If a standard activity partition is used without the «allocate» keyword, the part or block represented by 
the partition retains responsibility for execution of all action nodes in the partition (see Chapter 9, Section 
9.11.1). This does not employ the SysML allocate relationship but instead tightly couples the behavior defi-
nition to the structural definition. For example, when a call operation action is in a standard activity partition, 
most tools will automatically populate a corresponding operation in the block that represents the partition.

«allocate»
part name : Block Name

action name : Activity Name

FIGURE 14.13

Allocate activity partition.

act [Activity] Simplified Adjust Focus [Allocate Swimlane]

«allocate»
f1 : Sharpness Detector

a1 : Measure Pixel Contrast a2 : Optimize Focus

FIGURE 14.14

Simple example of functional allocation using an allocate activity partition (swim lanes).
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14.7 � ALLOCATING BEHAVIORAL FLOWS TO STRUCTURAL FLOWS
Flow between activities can either be control flow or object flow as described in Chapter 9, Section 9.5 
and 9.6. The following sections address allocating object flow as represented on activity diagrams. 
Allocation of control flow may be depicted in a similar way as allocation of object flow. Flow allocation 
is typically an allocation of usage, because items that flow between model elements are usually speci-
fied in the context of their usage.

14.7.1 � OPTIONS FOR ALLOCATING FLOW
Item flows are used to depict flow between parts on internal block diagrams, as described in Chapter 7, 
Section 7.4. Item flows can have an associated item property. The item flow represents the direction of 
flow and relates the item property to the connector, and the item property is the usage of the item that 
flows. Item properties can be defined (i.e., typed) by blocks just as parts are typed by blocks.

Chapter 9, Section 9.5 discusses the equivalent depiction of object flows (solid arrows on activity 
diagrams) in either action pin notation (small squares on the edges of action nodes) or object node nota-
tion (larger rectangles between action nodes). The object node notation on activity diagrams represents 
both an output pin and an input pin. To avoid ambiguity of the allocate relationship, it is recommended 
that action pin notation be used when performing flow allocation.

The following sections discuss allocating an object flow to a connector, allocating an object flow to 
an item flow, and allocating item properties between diagrams. Other kinds of flow allocation can be 
used as well, such as allocating an action pin to an item flow or an activity parameter node to a port. 
These additional allocations are an advanced topic that is a function of the specific design method used 
and are not discussed here.

14.7.2 � ALLOCATING AN OBJECT FLOW TO A CONNECTOR
Figure 14.15 extends the example shown in Figure 14.14 and is also a subset of the example shown in 
Figure 14.9. The object flow of2 is allocated to the connector c1. This is a convenient preliminary form 
of allocation to use before item flows have been defined or if item flows are not modeled. It can be 
ambiguous, however, if more than one item flow or item property is associated with the connector. 
Control flows can also be allocated to connectors, but the semantics and physical implications of allo-
cating control flows are also highly dependent on the design method. Additional model refinement may 
be required before unambiguous control flow allocation can be achieved.

14.7.3 � ALLOCATING OBJECT FLOW TO ITEM FLOW
Figure 14.16 depicts an alternative method of flow allocation from Figure 14.15. In this case object flow 
of2 has been allocated to the item flow if1. This can be depicted on an activity diagram or internal block 
diagram using callout notation. In addition to the activity diagram, an allocation matrix is provided to 
explicitly show the allocate relationships. The nesting of the allocation matrix around the activity dia-
gram is done solely for convenience and is not a standard SysML representation. This is a more specific 
form of allocation than object flow to connector, and it is unambiguous even if more than one item flow 
is associated with the connector. In general, activity edges that represent control flow or object flow can 
be allocated to item flows.
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a2 : Optimize Focusof2

allocatedTo
«connector» c1

f2 : Focus Optimizer
c1

allocatedFrom
«objectFlow» of2

«allocate»
f1 : Sharpness Detector

ibd [Block] Focus Controller [Flow Allocation2]

act [Activity] Simplified Adjust Focus [Flow Allocation1]

allocatedFrom

«action» a1 :
Measure Pixel Contrast

f1 : Sharpness Detector

a1: Measure Pixel Contrast

FIGURE 14.15

Object flow to connector allocation.

FIGURE 14.16

Object flow to item flow allocation with allocation matrix.
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Allocating an object flow or control flow to an item flow does not affect the behavior represented on 
the activity diagram. If the modeling tool animates or executes the activity diagram, it is the object flow 
that will be part of that execution semantic, not the item flow.

When allocating object flows to item flows, it is important to ensure consistent typing. The built-in 
constraints on object flows ensure that the action pins on each end of the object flow are typed consis-
tently. When allocating the object flow to an item flow, the type of the action pins associated with the 
object flow should be consistent with the conveyed classifier that types the item flow and any associated 
item property. This is an example of what might be expected from a model checker provided by the tool 
to reduce the likelihood of error and the workload of the modeler.

Rather than allocate the object flow to the item flow, it may be appropriate to allocate the object flow 
to the item property associated with the item flow. Figure 14.17 shows the results of this kind of allocation 
in the surveillance camera. This particular method of allocation is also used in the water distiller example 
in Chapter 16 because it ties the object flows in the functional model to specific properties of the water 
flowing through the system. The values of these properties are used for subsequent engineering analysis.

FIGURE 14.17

Object flow to item property allocation.



CHAPTER 14  MODELING CROSS-CUTTING RELATIONSHIPS348

14.8 � ALLOCATING BETWEEN INDEPENDENT STRUCTURAL HIERARCHIES
There are times to consider more than one model of structure. For example, it is a common practice to 
group capabilities, functions, or operations into an abstract or logical structure while maintaining a 
separate implementation-specific physical structure. An example of developing a logical architecture 
and allocating the logical components to the physical architecture can be found in Chapter 17, Section 
17.3.5 (Define Node Physical Architecture) and in Figure 17.33. The logical to physical allocation 
provides an opportunity to address alternative allocations that are subject to trade study evaluation.

A particular method for logical architecture development should relate elements of logical structure 
with elements of physical structure. SysML allocation provides a mechanism to perform and analyze 
this mapping. Implementation of the physical structure may require further model development to real-
ize the logical structure, but this development should wait until the logical-to-physical allocation is 
stable and consistent across the system model.

The physical structure may itself be divided into software structures and hardware structures. UML 
software modelers typically use deployment relationships to map software structures to hardware struc-
tures. SysML allocation provides a more abstract mechanism for this kind of mapping, which does not 
have to consider host–target environment, compiler, or other more detailed implementation consider-
ations. These considerations may be deferred until after preliminary software-to-hardware allocation 
has been performed and analyzed.

14.8.1 � MODELING STRUCTURAL ALLOCATION OF USAGE
An example of a structural allocation of usage is shown in Figure 14.18 using a block definition dia-
gram. The diagram shows both ends of the structural allocation of the blocks’ internal structure. The 
structure compartment of a block on a block definition diagram corresponds to what is depicted on the 
internal block diagram of that block.

«block»
«logical»

Focus Controller

«allocate»

«allocate»

«allocate»

c1 j1

f1 : Sharpness Detector

f2 : Focus Optimizer

 bdd [Package] Physical Structure [Structural Allocation of Usage]

«block»
«physical»

Mother Board

mb1 : ADC Chipset

mb4 : Control Processor

FIGURE 14.18

Structural allocation of usage example.
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Allocation between parts in different structure compartments, as shown, can only depict allocation 
of usage. Likewise, allocation shown between connectors on internal block diagrams or structure com-
partments can only represent allocation of usage.

14.8.2 � ALLOCATING A LOGICAL CONNECTOR TO A PHYSICAL STRUCTURE
A connector is used to connect parts or ports. A connector depicted in an abstract or logical structure 
may be allocated to one or more interfacing parts in a physical structure, such as a wiring harness, a bus, 
or a complex network.

The example in Figure 14.19 depicts the allocation of a connector in a logical structure—where 
physical connection details are not considered—to a physical part (ea5 : PWB Backplane) and the 

 

 

t

FIGURE 14.19

Refining a connector using allocation.
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associated connectors. The use of allocation is an appropriate way to show the refinement of the logi-
cal connector without requiring undue extension of the logical architecture into implementation 
details. Any item flow on the logical connector can be allocated to multiple item flows in the physical 
structure, such as allocating an item flow on a logical connector to the item flows entering and exiting 
a cable.

14.8.3 � MODELING STRUCTURAL ALLOCATION OF DEFINITION
Figure 14.20 shows structural allocation of definition for the autofocus portion of the surveillance cam-
era. This is different from the allocation represented previously in Figure 14.18, which depicted alloca-
tion of usage. If a structural allocation is meant to apply to all its usages, then allocation of definition is 
appropriate. In this example, wherever the block Vector Processor is used, it will include the inferred 
allocation from Image Processor, even if it is not used in a Mother Board.

FIGURE 14.20

Depicting structural allocation of definition.
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14.9 � MODELING STRUCTURAL FLOW ALLOCATION
The item that flows, which may be represented by a block, can be used to type the flow on both an 
abstract (e.g., logical) internal block diagram and a concrete (e.g., physical) internal block diagram. 
This enables a common structural data model to be maintained between logical and physical 
hierarchies.

There may be good reasons, however, to establish separate abstract logical and physical data mod-
els. For example, a standard logical data model may be required, but the data-level implementation may 
need to be optimized. In the case in which an item flow depicted at an abstract level needs to be allo-
cated to structures at a more concrete level, it may be necessary to decompose the abstract item flow so 
that it may be uniquely allocated. If a block is used to represent the item that flows at the abstract level, 
it can be decomposed into a set of blocks that represent the items that flow at the more concrete level. 
The abstract item flow can then be allocated to the more concrete item flows that use the appropriate 
blocks to type item properties.

Figure 14.21 shows how an item flow or item property at an abstract level can be allocated to an item 
flow or item property at a more concrete level. Note in the structural compartments of the Focus Controller 

FIGURE 14.21

Example of structural flow allocation with allocation matrix.
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and Motherboard blocks on the block definition diagram that only the names of the item properties are dis-
played, not the names of the item flows. It is possible to allocate from an item property on one diagram 
directly to an item property on another diagram, in this case sharpness : Video Parameter allocated to pixel 
contrast : Signal. Because the logical data model is independent of the physical data model, the types (con-
veyed classifiers) of each item property are different (Video Parameter and Signal). Note that allocation 
between item flows or item properties is most clearly represented on the allocation matrix. The name of the 
item flow in Focus Controller is if1. Likewise, the name of the item flow in Mother Board is if3.

14.10 � ALLOCATING DEEPLY NESTED PROPERTIES
Special care may be required to avoid ambiguity when allocating deeply nested usages/properties such as 
parts and callBehaviorActions. The block definition diagram in Figure 14.22 presents a structural hierarchy 
and a behavioral hierarchy. When allocating callBehaviorAction y1 specifically to part c1, the information 
on the block definition diagram can be ambiguous. The internal block diagram in Fig 14.22 presents the 
plausible internal structure of Block A, where both b1 and b2 include c1 in their internal structure.

An allocate relationship can include a property path, which is a combination of namespace qualified 
name notation (::) discussed in Chapter 6, Section 6.6 and dot notation discussed in Chapter 7, Section 
7.3.1. As a result, the allocate relationship can specify a property path to a nested property on either of 
its ends and remove any ambiguity. The example previously shown in Figure 14.06 includes a nested 
property on the “from” end of the allocation, expressed as A::b1.c1, thus eliminating any ambiguity. A 
is the context block that is the root of the property path. The first property in the property path is con-
tained in the context block and therefore is referenced by preceding it with a double colon. The dot 
notation is then used to navigate from the first property down to the nested property of interest.

This notation can be used to remove ambiguity for other kinds of relationships besides allocation,such 
as requirement relationships and other dependency relationships.

FIGURE 14.22

Example of potential ambiguity introduced by deeply nested parts. When allocating to part c1, which one is it?
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14.11 � EVALUATING ALLOCATION ACROSS A USER MODEL
The integrity and completeness of the allocate relationships are largely dependent on the system’s stage 
of development. Since allocation may be used as an abstract prelude to more concrete relationships, the 
quality of allocation at a given point in time is assessed with respect to the system development method 
or strategy being employed.

14.11.1 � ESTABLISHING BALANCE AND CONSISTENCY
The model can be assessed in terms of the completeness and consistency of the allocate relationships 
and the overall balance of the allocation as described next.

Completeness and consistency can be evaluated using user defined rules or constraints. In func-
tional allocation, for example, allocation of a package of activities is said to be complete when each 
activity has an allocate relationship to a block in the model. It may not be judged to be consistent, for 
example, until the actions in the activities are depicted in a valid activity diagram. The inferred alloca-
tion to parts is depicted on a valid internal block diagram, and any object flows on the activity diagram 
are allocated to appropriate connectors on the internal block diagram. Consistency can also involve 
checking for circular allocations, redundant allocations, and what the modeler may define as inappro-
priate allocations (e.g., allocating an activity to another activity). Again, automated model checking is 
expected to assist with this.

Evaluating the balance of the allocation is more subjective and likely to require experience and 
judgment on the part of the modeler. One aspect of balance may involve assessing the level of detail 
represented by the model element at each end of the allocate relationship. For example, balance might 
involve either examining portions of the model that are rich in allocation to determine whether the level 
of detail is too high or assessing whether the allocation-poor portions of the model need further refine-
ment. When evaluating functional allocation, for example, if a large number of activities are allocated 
to a single block but other blocks have few or no activities allocated, the modeler may ask: 1) Have the 
activities of the system been completely modeled? or 2) Has the structural design incorporated too 
much functionality into a single block? The answers to these questions will help determine the direc-
tion for the future modeling effort. For Question 1, it might mean fleshing out the activity model in 
other areas; for Question 2, it might involve decomposing the over-allocated block into lower-level 
blocks.

14.12 � TAKING ALLOCATION TO THE NEXT STEP
Once allocation across the model is balanced and complete, each allocation may be refined by a more 
formal relationship that preserves and elaborates the constraints from the “from” end to the “to” end of 
the allocation. In this way, allocation is used to direct the system design activity through the model 
without prematurely deciding how the relationship between model elements will be refined. Of course, 
this is highly dependent on the modeling method.

SysML allocations allow the modeler to keep model refinement options open. For example, func-
tional allocations can be refined by designating activities allocated to a block as methods called by 
operations of the block, which requires the additional step of creating the operations. Deferring the 
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decision allows the modeler to work at a consistent level of abstraction, without prematurely commit-
ting to modeling details.

Even after the model is refined, it is appropriate to retain the allocate relationships, possibly captur-
ing supporting «rationale» in the model to provide a history of how the model was developed. This 
can be very important information when considering reuse of the model on a different program or 
product.

14.13 � SUMMARY
The allocate relationship provides significant flexibility for relating model elements to one another 
beginning early in the development process. Key concepts for modeling allocations include the 
following:
 
	•	� An allocate relationship is a form of mapping between model elements that provides the capabil-

ity to assign responsibility associated with one model element to another.
	•	� Use of allocation enables certain implementation decisions to be deferred by specifying the 

model at higher levels of abstraction and then using allocations as a basis for further model 
refinement.

	•	� There are many different kinds of allocation, including allocation of behavior, structure, and 
properties. Allocation supports traditional systems engineering concepts, such as allocating 
behavior to structure by allocating activities to blocks. Also supported are allocations of logical 
connectors to physical interfaces, software to hardware, object flows to item flows, and many 
others.

	•	� A key distinction must be made between an allocation of definition and an allocation of usage. In 
allocation of definition, defined elements (e.g., activities) are allocated to other defined elements 
(e.g., blocks); allocation between the activity and the block is valid for all usages of the activity 
and all usages of the block, regardless of the context. For allocation of usage—such as when an 
action is allocated to a part—the allocation is only valid in the specific context of the part proper-
ties/roles and actions.

	•	� An allocate activity partition provides an explicit mechanism to allocate responsibility of an action 
to a part.

	•	� There are multiple graphical and tabular representations for representing allocations similar to 
those used for representing requirements relationships. Graphical representations include direct 
notation, compartment notation, and callout notation. Matrix and tabular representations can 
provide a compact form for representing multiple allocate relationships.

 

14.14 � QUESTIONS
	 1.	 �List four ways that allocations can be depicted on SysML diagrams.
	 2.	 �Which kinds of model elements can participate in an allocate relationship in SysML?
	 3.	 �Is the allocate relationship appropriate to use when allocating requirements?
	 4.	 �List and describe three uses of the allocate relationship in SysML.
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	 5.	 �For each of the following allocate relationships, indicate whether they are allocation of definition 
or allocation of usage:

	 a.	 �action on activity diagram to part on internal block diagram
	 b.	 �activity to block
	 c.	 �object flow to connector
	 d.	 �activity parameter node to interface block
	 6.	 �What is the significance of choosing an allocation of definition instead of an allocation of usage?
	 7.	 �Should an object flow ever be allocated to a block? Explain your answer.
	 8.	 �Should an activity ever be allocated to a part? Explain your answer.
	 9.	 �Should a connector ever be allocated to a block? Explain your answer.
	10.	 �Describe what is being allocated in Figure 14.21 and its significance.
 

DISCUSSION TOPICS
What is the purpose of allocation? What role does it play in system development? How can good or 
poor allocation impact the overall quality of the system design?

Describe an appropriate next step after completing functional allocation. Which mechanisms are 
available to implement functionality in blocks?
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CHAPTER

CUSTOMIZING SysML FOR 
SPECIFIC DOMAINS

This chapter introduces metamodeling concepts that are typically of interest to language designers and 
provides an overview of the SysML language specification itself. It then describes how to customize 
SysML using profiles and model libraries to support a wide range of systems modeling domains. In 
addition, this chapter includes a discussion of SysML view and viewpoint, and how these constructs are 
used to customize the presentation of modeling information for different stakeholders.

15.1 � OVERVIEW  
SysML is a general-purpose systems modeling language that is intended to support a wide range of 
domain-specific applications such as the modeling of automotive or aerospace systems. The SysML 
language is described in a metamodel, whose elements—called metaclasses—describe concepts in the 
system modeling domain. Section 15.2 of this chapter provides an overview of both metamodeling and 
the SysML specification.

SysML has been designed to enable extensions that explicitly support specialized domains. An 
example may be a customization of SysML for the automotive domain that includes specific automo-
tive concepts and representations of standard domain elements such as engines, chassis, brakes, roads, 
drivers, and passengers.

To accomplish this, SysML includes extension mechanisms called stereotypes, which are grouped 
into special kinds of packages called profiles. Stereotypes extend existing SysML language concepts 
with additional properties and constraints. SysML also supports model libraries—collections of reus-
able model elements commonly used in a particular domain. Profiles and model libraries are them-
selves contained in models, but they typically are authored by language designers rather than the 
general system modeler. The term “user model” refers to a model authored by a system modeler to 
describe a system or systems.

Model libraries provide constructs that can be reused by a model, such as blocks that specify reusable 
components, value types that define valid units, and quantity kinds for value properties. Profiles, on the 
other hand, provide constructs that extend the modeling language itself. For example, SysML is a profile 
of UML that extends basic constructs such as a UML class to create the concept of a SysML block.  

Profiles and model libraries are often depicted on package diagrams (as described in Chapter 6) or 
block definition diagrams (as described in Chapter 7, with additional notations described in this chap-
ter). The model element kinds corresponding to the frame of the package diagram are profile and 
modelLibrary respectively.

Figure 15.1 shows a package diagram with much of the notation used for defining stereotypes. This 
diagram contains the definitions of three stereotypes and their properties to support simulations. Flow-Based 
Simulation and Flow Simulation Element both extend the SysML Activity metaclass and add information 

15
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about the kind of simulation and how it executes. Probe extends both the ObjectFlow and ObjectNode meta-
classes—part of the activity specification—and is used to tell the simulation which data to monitor.

Table A.2 in the Appendix shows the additional notation needed to represent the extensions for 
model libraries and profiles on a package diagram.

Figure 15.2 shows a model library of elements that are themselves extended using the stereotypes 
shown in Figure 15.1. The model elements in the Flow Simulation Elements model library are intended 
for use in building flow-based simulations. They are activities (i.e., model elements whose type is the 
metaclass Activity shown in Figure 15.1) with the stereotype Flow Simulation Element applied. Note 
that when stereotypes are applied, the keyword for a stereotype by convention has a different typo-
graphic style than the style of the stereotype’s name and is described in Section 15.6. These activities 
can be invoked from actions owned by a flow-based simulation. The values for the stereotype’s proper-
ties allow the simulation tool to determine their validity based on the kind of simulation required (e.g., 
continuous, discrete).

Table A.29 in the Appendix shows the additional notation needed on SysML diagrams to represent 
model elements that have been extended by stereotypes.

Sections 15.3 through 15.7 discuss model libraries and profiles in detail. Section 15.3 describes model 
libraries and their use in defining reusable components. Sections 15.4 and 15.5 cover the definition of 
stereotypes and the use of profiles to describe a set of stereotypes and supporting definitions. Sections 
15.6 and 15.7 focus on the use of profiles and model libraries to build domain-specific user models.

Section 15.8 describes views and viewpoints, which can be used to present modeling information in 
ways other than those provided by the SysML language and are an important aspect of customizing the 
language. A viewpoint specifies how to produce a custom visualization of model information to address 

FIGURE 15.1

Example of a profile defined on a package diagram.
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a set of stakeholder concerns. A view conforms to a viewpoint and specifies the set of model elements 
that will be exposed in the visualization. Table A.30 in the Appendix shows the notation for represent-
ing views and viewpoints.

15.2 � THE SysML SPECIFICATION AND LANGUAGE ARCHITECTURE
The SysML language itself is specified by extending UML using profiles and model libraries. This sec-
tion introduces the fundamental concepts of modeling language design and then describes the architec-
ture of SysML.

15.2.1 � MODELING LANGUAGE DESIGN
The concepts needed to specify UML-based modeling languages, such as SysML, are discussed below.

A modeling language specification has three parts:
 
	•	� Abstract syntax describes the concepts in the language, the relationships between the concepts, 

and a set of rules about how the concepts can be put together, sometimes referred to as 
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FIGURE 15.2

Example of the application of stereotypes to model elements.
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well-formedness rules. The abstract syntax for a modeling language is described using a 
metamodel. The Meta Object Facility (MOF) [24] is an OMG standard that is used to define 
metamodels to specify modeling languages such as UML and SysML.

	•	� Notation or concrete syntax describes how the concepts in the language are visualized. In the case 
of SysML, the notation is described both in notation tables that map language concepts to 
graphical symbols on diagrams and in SysML DI, an extension of UML DI, a metamodel that 
describes the structure and layout of UML-based diagrams. See Chapter 18, Section 18.3.2 for a 
discussion of SysML DI.

	•	� Semantics describe the meaning of the language concepts by mapping them to concepts in the 
domain that is being represented by the language—for example, systems engineering. Sometimes 
the semantics are defined using formal techniques, such as mathematics, but in SysML the 
semantics are mostly described using natural language. However, the foundational UML subset of 
UML, which is also a subset of SysML, and the Precise Semantics of UML Composite Structures 
(described in Chapter 7, Section 7.9.1 and Chapter 9, Section 9.14.1) have formal semantics. 
Additional efforts are anticipated to continue to define formal semantics for more of UML and 
SysML, and to integrate SysML with other formal languages such as Modelica [25].

 
The individual concepts in a metamodel are described by metaclasses, which are related to one 

another using generalizations and associations in a similar fashion to the way blocks can be related to 
one another on a block definition diagram. Each metaclass has a description and a set of metaclass 
properties that characterize the concept it represents, as well as a set of constraints that impose rules on 
the values of those properties.

The package diagram in Figure 15.3 shows a small fragment of the UML metamodel on which 
SysML is based. It shows one of the fundamental language concepts of UML, called Class, and some 
of its most important relationships. Class specializes Classifier, through which it gains the capability of 
forming classification hierarchies. The figure also shows the Class associations to Property and Opera-
tion, which between them define most of the important features of a Class. The figure also shows some 
metaclass properties such as the isAbstract metaclass property contained by Classifier.

Profiles and model libraries (discussed in detail in Sections 15.3–5) are used to add new capabilities 
to a modeling language. Profiles extend an existing metamodel, called a reference metamodel, with 
additional concepts called stereotypes, which have their own properties, rules, and relationships. They 
therefore allow the language defined by the original metamodel to be augmented with concepts for 
domains not covered by it directly. Model libraries can contain model elements that are described by 
metaclasses in the metamodel, or concepts that have been further extended by stereotypes in a profile.

A user model of a system contains model elements that are instances of the metaclasses and stereo-
types that are defined in the language. For example, an instance of the metaclass Package is a particular 
package in the user model. These instances have references to other instances based on the metaclass 
properties and relationships defined in the metamodel.

These model elements are visualized using a concrete syntax (e.g., symbols on diagrams) as 
described in Chapter 5, Section 5.3. The symbols are mapped to metaclasses and stereotypes in the 
language so that each symbol represents a specific concept. For example, a block and its properties have 
a specific graphical representation as a box symbol with compartments.

Figure 15.4 shows a fragment of a block definition diagram for defining airplanes, along with the 
mapping to the metaclasses and stereotypes that represent the various concepts. Airplane Model is a 
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package containing Airplane and Wing blocks; Pilot, an actor (i.e., external to the system); and Liters, 
a value type. Airplane has two properties that describe two of its quantifiable characteristics: call sign, 
whose valid values are described by String (a primitive concept defined by SysML), and fuel load, with 
type Liters. Airplane has an association to block Wing, which describes part of its structure, in this case 
its (two) wings.

FIGURE 15.3

Fragment of UML, the underlying metamodel for SysML.

FIGURE 15.4

Relationship of metaclasses to model elements in the user model.
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15.2.2 � SysML LANGUAGE SPECIFICATION AND ARCHITECTURE
The official OMG SysML specification [1] defines a set of language concepts, using the architecture 
described in Section 15.2.1, which can be used to model systems. It was developed in response to the 
requirements specified in the UML for Systems Engineering Request for Proposal (UML for SE RFP) 
[52]. It was formally adopted by the Object Management Group in 2006 as an extension to the Unified 
Modeling Language [53] and became publicly available in September 2007. The SysML specification 
is maintained and evolved by the OMG SysML Revision Task Force.

SysML extends UML, which was originally specified as a modeling language for software design 
to support general-purpose software modeling. As indicated in the Venn diagram in Figure 15.5, SysML 
reuses a subset of UML and adds extensions to meet the requirements in the UML for SE RFP.

Approximately half of UML was reused. The subset of UML reused by SysML is called UML4SysML 
as indicated in the diagram. The other portion of UML was not viewed as essential to meet the require-
ments of the UML for SE RFP. Limiting the portion of UML that was used reduced the requirements for 
SysML training and tool implementation, while satisfying the requirements for systems modeling.

The reused portion of UML was in some cases used as-is without modification, such as interactions, 
state machines, and use cases. Other parts of the reused portion of UML were extended to address 
unique systems engineering needs using a profile. The profile is the standard UML mechanism used to 
specify extensions to the language and is described in more detail in Section 15.5. The profile-based 
approach was chosen over other extension mechanisms because many UML tools can interpret profiles 
directly. This enables the systems modeling community to leverage widely used UML-based tools for 
systems modeling. An additional benefit is that a profile of UML can be used in conjunction with UML 
to help bridge the gap between systems and software modeling.

The SysML profile is organized into the following discrete language units that extend UML to pro-
vide additional system modeling capabilities:
 
	•	� Model elements—extensions to support views and viewpoints and other general modeling 

mechanisms.

FIGURE 15.5

Relationship between SysML and UML.
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	•	� Requirements—extensions to support textual requirements and their relationships to each other 
and to models.

	•	� Blocks—extensions to represent system structure and properties.
	•	� Activities—extensions to support continuous behavior.
	•	� Constraint blocks—extensions to model constraints and parametric models that support engineer-

ing analysis.
	•	� Ports and flows—extensions to support flow of information, matter, and energy between system 

elements, as well as nested ports and other interface concepts needed to support the diversity of 
systems interfaces.

	•	� Allocations—extensions to support mapping relationships between model elements
 

SysML also defines three model libraries:
 
	•	� PrimitiveValueTypes—introduces a set of standard primitive values types including Real and 

Complex.
	•	� ControlValues—introduces a value type called ControlValue, which is used by control operators 

(see Chapter 9, Section 9.6.2).
	•	� UnitAndQuantityKind—introduces Unit and QuantityKind, which are used to express the units of 

value types (see Chapter 7, Section 7.3.4).
 

The SysML profile is intended to be applied strictly (see Section 15.6), which means that models 
developed using the SysML extensions may only use that subset of UML defined in UML4SysML. 
SysML as described in the specification is therefore the combination of UML4SysML and the SysML 
profile as indicated in Figure 15.5.

15.3 � DEFINING MODEL LIBRARIES TO PROVIDE REUSABLE CONSTRUCTS
A model library is a special type of package that is intended to contain a set of reusable model ele-
ments for a given domain. Model libraries are not used to extend the language concepts of SysML, 
although model elements in the library may have stereotypes applied if they support a specialized 
domain, as shown in Figure 15.2. A model library can contain model elements of specifications similar 
to those found in a parts catalog, or they can contain model elements with wider applicability, such as 
the ISO80000 model library provided in the SysML specification.

Any packageable model element (see Chapter 6, Section 6.5), such as a block, a value type, an activ-
ity, or a constraint block, can be included in a model library. Elements in a model library may be con-
tained directly in that library, or they may have been defined in other models or packages and imported. 
In the latter case, the model library acts as a mechanism to gather and organize elements from disparate 
sources for reuse.

The contents of a model library may be shown on a package diagram or block definition diagram 
using the standard symbols for those diagrams. When a model library is shown on a package diagram, 
it is designated by a package symbol with the keyword «modelLibrary» appearing above the name of 
the model library in the name compartment or tab of the package. (See Figure 15.11 for an example of 
the former notation.) When a model library corresponds to the frame of a diagram, modelLibrary is 
shown in square brackets in the diagram header as the model element kind.
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The model library in Figure 15.6 defines a set of blocks to represent some very basic physical 
concepts intended to be specialized by domain-specific blocks. Physical Thing describes things with 
mass and density and provides a constraint on its mass via the constraint property me. The type of 
me, Mass Equation, defines a constraint which relates the total parameter to the sum of the parameter 
componentMass, a collection of component masses. The block Moving Thing specializes Physical 
Thing with properties of motion (e.g., acceleration and velocity). It also has a property force, which 
allows force to be applied to accelerate or decelerate a Moving Thing. Instead of modeling equations 
as constraints, the properties of Moving Thing are calculated using a simulation, as shown later in 
Figure 15.13.

FIGURE 15.6

A model library defining some basic physical concepts.
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15.4 � DEFINING STEREOTYPES TO EXTEND SysML CONCEPTS  
Whereas the elements of model libraries use existing language concepts to describe reusable constructs, 
stereotypes add new language concepts, typically to support a specific application domain. Stereotypes 
are grouped together in special packages called profiles. SysML itself is defined as a profile of UML 
and uses stereotypes to define system concepts such as block and requirement. Just as user models 
contain instances of metaclasses, they can also contain instances of stereotypes, although instances of 
stereotypes have special rules along with different conventions for how they are displayed.

A stereotype extends one or more metaclasses in a reference metamodel. In the case of SysML, the 
reference metamodel is the subset of UML called UML4SysML as described in 15.2.2. The relationship 
between a base metaclass and a stereotype is a kind of association called an extension. An extension is 
conceptually similar to a generalization in that it applies the stereotype’s characteristics to the base meta-
class. The choice of the base metaclass or metaclasses for a stereotype depends on the kind of concepts 
that need to be described. A language designer will identify a base metaclass with some of the character-
istics needed to represent the new concept and then add or potentially remove other characteristics.

Metamodels, including UML, contain abstract metaclasses that cannot be instantiated directly in the 
user model but exist to provide a set of common characteristics that are specialized by concrete meta-
classes that can be instantiated in the user model. A stereotype that extends an abstract metaclass or a 
concrete metaclass that is further specialized is equivalent to the stereotype extending all the specializa-
tions of that metaclass.

A profile is a special kind of package that contains stereotypes, metaclasses, and their interrelation-
ships. A profile can be shown on a package diagram with profile as the model element kind that cor-
responds to the diagram frame. A metaclass is represented by a rectangle with the keyword «metaclass» 
centered at the top, followed by the name of the metaclass. A stereotype is represented by a rectangle 
with the keyword «stereotype» centered at the top, followed by the name of the stereotype. An exten-
sion relationship is depicted as a line with a filled triangle at the metaclass end.

Figure 15.7 shows a profile that contains a set of stereotypes that describe new concepts for repre-
senting flow-based simulation artifacts. The stereotype Flow-Based Simulation allows modelers to 

FIGURE 15.7

A package diagram containing stereotypes that support flow-based simulations.
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define simulations of system flow. Flow-Based Simulation extends Activity, because activities already 
have a flow-based semantic and so have many of the right characteristics. The stereotype Flow Simula-
tion Element is used to model a specialized form of activity that can be added to a flow-based 
simulation.

A very useful capability of simulations is to monitor the values of certain elements as the simula-
tion runs. The Probe stereotype allows the modeler to indicate that certain elements of the simulation 
should be monitored. Probe extends both ObjectFlow and ObjectNode because these are both con-
structs through which values (as tokens) flow. Probe extends ObjectNode, which is an abstract meta-
class as indicated by the use of italic font for its name. This means that all the concrete subclasses of 
ObjectNode (e.g., DataStoreNode and ActivityParameterNode) are implicitly extended as well. Note 
that this is an example of how extension and generalization differ. Probe is not a specialization of 
both ObjectFlow and ObjectNode; rather an instance of Probe may extend an instance of ObjectFlow 
or an instance of ObjectNode (or one of its concrete subclasses), but not both. The extension enables 
the properties and constraints of a Probe stereotype to be applied to an object flow or object node in 
the user model.

In addition to extending a metaclass, a stereotype can also be defined in the metamodel by special-
izing an existing stereotype or stereotypes using the generalization mechanism described in Chapter 7, 
Section 7.7.1. In this case the new stereotype inherits all the characteristics of the stereotypes it special-
izes, including extensions. The new stereotype can then add characteristics which are relevant to the 
new concept. Stereotypes may be abstract, which means they cannot be used directly in a user model, 
but can be specialized and their characteristics inherited. Stereotype specialization is shown using the 
standard generalization notation—a line with a hollow triangle at the general end.
Figure 15.8 shows an example from SysML of a stereotype that specializes another stereotype. Block 
extends the UML metaclass Class, and ConstraintBlock specializes Block. It inherits the property 
isEncapsulated, which indicates whether a connector can cross its boundary, from Block. The 

FIGURE 15.8

Specialization example from SysML.
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following is a snippet of the description for ConstraintBlock in Section 10.3.2.1 of the SysML 
specification:

“A constraint block is a block that packages the statement of a constraint so it may be applied in a 
reusable way to constrain properties of other blocks.”

“SysML also reuses a stereotype from UML called Trace, and specializes it to represent relation-
ships in the Requirements section of SysML.

15.4.1 � ADDING PROPERTIES AND CONSTRAINTS TO STEREOTYPES
A stereotype definition can include both properties and constraints. Stereotypes that specialize other 
stereotypes inherit the properties and constraints of their general stereotype.

Stereotype properties are like metaclass properties; they represent metadata about the model ele-
ment to which the stereotype is applied. The properties have a type that defines the kind of data that is 
represented. SysML defines a set of primitive types—String, Integer, Boolean, Real, and Complex—
but profiles can add their own types or use types defined in model libraries.

It is important to distinguish between the properties of blocks and the properties of stereotypes. For 
example, a block Vehicle may have a property called inspector, which records who checked this instance 
of Vehicle as it came off the production line. At the same time, someone could extend the Block stereotype 
to include an inspector property, but this would record the identity of someone who checked the specifica-
tion of the Vehicle block and have nothing to do with the instances described by the Vehicle block.

Constraints can be added to a stereotype to specify rules about valid uses of its properties or to 
restrict the use of an existing concept by further constraining the properties of the metaclasses that are 
extended. Constraints are specified using a textual expression in a specified language. The constraint 
language OCL [38] is often used for expressing constraints in profiles.

A stereotype may also include properties that are typed by either stereotypes or metaclasses. This 
allows instances of the stereotype in the user model to contain references to instances of other stereo-
types and metaclasses in the user model. These properties can be defined in the metamodel using asso-
ciations between the stereotype and other stereotypes or metaclasses, or simply as properties of the 
stereotype definition. Metaclasses in the reference metamodel cannot be modified by a profile. This 
means that an association between a stereotype and metaclass can define properties on the stereotype 
but not on the metaclass.

Stereotype properties and constraints are shown in a similar way to the properties and constraints of 
blocks (i.e., in compartments below the name compartment). Constraints can also be shown in note symbols 
attached to the constrained stereotype. In addition to properties and constraints, a stereotype definition may 
include an image that can optionally be displayed when the stereotype is applied to a model element. The 
iconic representation may be extremely useful for representing concepts in a particular domain.

Figure 15.9 shows the properties and constraints of the stereotypes first shown in Figure 15.7 and 
some enumerations that are needed to define some of those properties. The definition of Flow-Based 
Simulation includes three properties that govern the kind of simulation performed. Simulation type is 
typed by the enumeration Simulation Kind, which has two values, discrete and continuous, stating 
whether a continuous or discrete solution is required. Step type stipulates whether the simulation steps 
are fixed in size or can vary. Solver defines the kind of solver to be used. The definition of Flow Simula-
tion Element includes a property called compatibility, which gives the kinds of simulation with which 
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FIGURE 15.9

Providing additional detail for the flow-based simulation stereotypes.
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it is compatible. A value of continuous means that this element can only be used in continuous simula-
tions; a value of discrete means it can be used in both discrete and continuous simulations.

These stereotypes also define constraints that affect activities with the various stereotypes applied. 
A constraint on Flow Simulation Element states that an element whose compatibility property has the 
value continuous can be used only if the simulation type of their owning activity has the value continu-
ous. Another constraint states that a Flow Simulation Element may be invoked only by an action con-
tained in a Flow-Based Simulation. A constraint on Flow-Based Simulation states that a variable step 
solver (ode45 or ode23) must be used if the value for step type is variable. (Note: ode refers to ordinary 
differential equations.)

Probe has a property action that indicates the action to take place for values on the monitored ele-
ment. Its type, Probe Action Kind, can have three values: display means display values in a simulation 
window; log means log these values to a log file; both means do both. Flow-Based Simulation has a 
property probes that references all the probes defined within it, as indicated by the association between 
Flow-Based Simulation and Probe.

For practical reasons of tool implementation, stereotypes are not metaclasses but rather define addi-
tional elements that are created along with instances of metaclasses in the user model. However, some 
stereotypes are viewed more like metaclasses, while others are viewed more like ancillary constructs.

For example, a modeler probably intends to create a Flow-Based Simulation (see Figure 15.9) rather 
than create an Activity and then apply the Flow-Based Simulation stereotype to it. A Flow-Based Simu-
lation has constraints placed on it that an activity is unlikely to satisfy. On the other hand, the stereotype 
Audited Item in Figure 15.15 is an example of a stereotype that is a provider of ancillary information. 
Audited Item adds auditing information to a model element and is only needed once auditing of the 
element has begun. It is therefore natural in this scenario to imagine creating an instance of Classifier 
(like a block) and only applying Audited Item at some later date.

In a user model, a stereotype can be applied to any model element that has a metaclass that the 
stereotype extends or to any model element whose metaclass is a subclass of a metaclass that the ste-
reotype extends. Typically, it is the modeler who dictates whether a stereotype is used or not, but occa-
sionally the profile designer may wish to enforce that every model element of a particular metaclass 
must have a specific stereotype applied. The extension is then said to be required. Required extensions 
can be useful when the use of the model depends on all model elements of a certain metaclass having 
some special characteristics. If the stereotype is required, then the property keyword {required} is 
shown near the stereotype end of the extension. Figure 15.15 shows an example of a required extension 
that adds configuration data—perhaps in conjunction with some configuration management tool—to 
all model elements of metaclasses that are deemed worthy of configuration control.

15.5 � EXTENDING THE SysML LANGUAGE USING PROFILES
A profile is a kind of package used as the container for a set of stereotypes and supporting definitions. 
Typically a profile will contain a set of stereotypes that represent a cohesive set of concepts for a given 
modeling domain. More complex profiles may contain either subprofiles or subpackages that further 
divide the overall domain into subsets of related domain concepts. The difference between creating 
subprofiles and subpackages is that subprofiles may be applied apart from each other, whereas all of the 
subpackages of a profile are applied with their owning profile. So, if the intention of the profile authors 
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is simply to partition a profile for ease of communication, then they should use subpackages, but if the 
subsets of the profile contents can be used independently of each other, then subprofiles should be used.

Profiles typically serve one of two potential uses: either the profile defines a set of concepts that 
support a new domain or it defines a set of concepts that add new information to a model in a domain 
that is already supported. It is often useful to keep this distinction in mind when creating a profile.

The former use is sometimes called a domain-specific language and offers a new set of language 
concepts that a modeler might use when building models in that domain. The Simulations profile shown 
in Figure 15.9 is an example of this use. A modeler will set out to build a simulation using language 
concepts in the Simulations profile and will think in terms of those concepts. In this kind of use, the 
stereotypes in the profile will predominantly resemble metaclasses, as described in the previous 
section.

In the latter use, a stereotype defines additional data that can be stored about existing model ele-
ments. A process or configuration management profile, such as the Quality Assurance profile shown 
later in Figure 15.15, is a good example of this use. Stereotypes from the Quality Assurance profile will 
be added to existing model elements when quality-assurance information about them is required, and 
removed if and when the information is no longer relevant.

15.5.1 � REFERENCING A METAMODEL OR METACLASS FROM A PROFILE
Section 15.4 described how stereotypes are defined by either extending a metaclass or subclassing a 
stereotype. For a stereotype to extend a metaclass, the profile that contains the stereotype must include 
a reference to the metaclass, or a reference to the metamodel that contains the metaclass, using a special 
kind of import relationship called a reference relationship (see Chapter 6, Section 6.7 for a discussion 
on the import relationship). To specialize a stereotype contained in another profile, the profile must 
import the stereotype the profile that contains the stereotype. When a profile is importing an existing 
profile, metaclass references made by the imported profile are the basis for its reference metamodel, 
although it may reference additional metaclasses as well.

The notation for the reference relationship is a dashed arrow, annotated with the keyword «refer-
ence», with its head pointing at the referenced metaclass or metamodel. The import relationship is also 
shown as a dashed arrow with its head pointing toward the imported stereotype or profile, but it is 
annotated with the keyword «import».

In Figure 15.10, the SysML profile references the UML metamodel to extend its metaclasses. The 
«metamodel» keyword is used, and the triangle indicates that this is a model. The Simulations profile 
imports the SysML profile, and hence its reference metamodel is also UML. Stereotypes inside the 
Simulations profile can now extend metaclasses in UML (e.g., Activity) and subclass SysML stereo-
types (e.g., Block).

15.6 � APPLYING PROFILES TO USER MODELS IN ORDER TO USE 
STEREOTYPES

The two previous sections in this chapter have described how to define a profile and the stereotypes 
contained within the profile. For modelers to use constructs from the profile in their model, they need to 
apply the profile to their model or to a subpackage of their model. Once the profile has been applied, the 
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stereotypes and other model elements in the profile and the metaclasses from its reference metamodel 
may be used anywhere within the containment hierarchy of the model or package.

A profile is applied to a model or package using a profile application relationship. The user of 
the profile can choose whether to apply the profile strictly by using the strict property of the 
profile application relationship. A strict application implies that only metaclasses from the pro-
file’s reference metamodel can be used within the model or package applying the profile. This 
ensures that all profiles applied to a package or model must reference the same set of metaclasses. 
If the strict property is not set on the profile application, there is no restriction on which meta-
classes can be used, and so a package or model may apply multiple profiles with different meta-
classes. A modeler can add or remove a profile application relationship at any time. However, 
when a profile application is removed, any instances of stereotypes from the profile are also 
removed from the user model. Therefore, any such removal should be undertaken with care, and a 
backup copy of the model should be made.

Whenever possible, it is recommended that the reference model for a profile be constructed in such 
a way that the profile can be applied strictly (i.e., that it has all the constructs required to support the 
profile domain). If users need to use metaclasses other than those referenced by the profile, it is likely 
that the impact of using them in combination with profile concepts will not have been fully considered. 
The SysML profile has been defined to be applied strictly, but this restriction can be removed to use 
additional software-related concepts from the UML metamodel if supported by a well-thought out 
systems and software development methodology.

The notation for applying a profile to a user model or subpackage is a dashed arrow, labeled with 
the keyword «apply», whose head points toward the profile that is applied.

Figure 15.11 shows a package diagram that contains the Physical Elements model library. Physical 
Elements applies the Simulations profile so that elements within it can have simulation extensions 
applied. Note that the Simulations profile is applied strictly, which means that only metaclasses from 
its reference metamodel (via its import of SysML shown on Figure 15.10) can be used in the Physical 

FIGURE 15.10

Defining the inputs required to specify the Simulations profile.
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Elements model library. Physical Elements also imports a model library called Flow Simulation Ele-
ments so that it can use the simulation elements it contains.

15.7 � APPLYING STEREOTYPES WHEN BUILDING A MODEL  
Once a user model has a profile applied to it, the stereotypes from the profile may be applied to model 
elements within that user model. How stereotypes are used depends on whether the intended purpose 
of the profile is a domain-specific language or a source of ancillary data and rules to support a par-
ticular aspect of the model. Although nothing in the specification of a profile differentiates the two 
cases, often tool vendors will add custom support tailored to the intended use when building the 
profile.

For a given stereotype, its extension relationships define the model elements that it can validly 
extend, subject to the model element satisfying any additional constraints that the stereotype specifies. 
A model element may have any number of valid stereotypes applied to it, in which case it must satisfy 
the constraints of each stereotype.

Although the intention of the SysML graphical notation for stereotypes—and the intention of many 
tool vendor implementations of profiles—is to hide these details and to provide a visualization that 
matches the modeler’s expectation, the mechanics of how stereotypes are applied is worthy of some 
explanation. When a stereotype is applied to a model element in the user model (i.e., a metaclass 
instance), an instance of the stereotype is created in the user model and is related to the model element. 
Once an instance of the stereotype exists, the modeler can then add values for the stereotype’s proper-
ties to the instance. An instance of a stereotype cannot exist without a related metaclass instance to 
extend, and therefore when a model element is deleted, all its related stereotype instances are also 
deleted.

FIGURE 15.11

Applying the Simulations profile to a model and importing elements to support flow-based simulations.
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Subject to these basic rules, how the modeler actually applies stereotypes is often governed by a 
modeling tool, based on the intended use of the stereotype. For example, the tool may create an 
instance of the stereotype and an instance of the base metaclass at the same time, or it may allow the 
modeler to create a model element first and then add and potentially remove the stereotype as sepa-
rate actions.  

Information from a stereotype is shown as part of the symbol of the model element to which it is 
applied or in a callout attached to the symbol. A stereotyped model element is shown with the name of 
the stereotype in guillemets (e.g., «stereotypeName»), followed by the name of the model element. The 
stereotype name may be capitalized and may contain spaces in its definition. However, the convention 
in SysML is for the stereotype name to be shown as a single word using camel case (the first letter of 
the name is lowercase, while the first letter of the second and subsequent words in the name are capital-
ized) when applied to a model element in a user model.

If a model element is represented by a node symbol (e.g., rectangle), the stereotype name is 
shown in the name compartment of the symbol. If the model element is represented by a path symbol 
(e.g., a line), the stereotype name is shown in a label next to the line and near the name of the ele-
ment. Stereotype keywords can also be shown for elements in compartments before the element 
name.

If a model element has more than one stereotype applied, by default each stereotype name is shown 
on a separate line in a name compartment. If no stereotype properties are shown, multiple stereotype 
names can appear in a comma-separated list within one set of guillemets. See Figure 15.16 for an 
example of the application of multiple stereotypes. Whenever stereotypes are applied to a model ele-
ment whose symbol normally has a keyword, its standard keyword is displayed before/above the ste-
reotype keywords. The properties for a stereotype may be displayed in braces after the stereotype label 
or, if the symbol supports compartments, in a separate compartment with the stereotype name as the 
compartment label.

A stereotyped model element may also be shown with a special image that is part of the stereotype 
definition. For node symbols, that image may appear in the top right corner of the symbol, in which 
case it is often shown instead of the stereotype keyword. Alternatively, the image may replace the entire 
symbol.

Figure 15.12 shows some of the elements in the Flow Simulation Elements model library. They 
all have the Flow Simulation Element stereotype applied so that their version and compatibility 
properties can be specified. In this case Derivative and Integrator are only compatible with con-
tinuous simulations; the rest are compatible with discrete and continuous simulations. They all 
have version “7.5” except the Signal Generator, which has version “7.6.” Note that because the 
underlying model elements are all activities, the keyword «activity» is shown, as described in 
Chapter 9, Section 9.12. These elements can be used in the construction of flow-based 
simulations.

The activity diagram in Figure 15.13 shows a simulation model of the motion of the Moving Thing 
block, first shown in Figure 15.6, using continuous semantics (the «continuous» keyword is elided in 
the figure). The activity Motion Simulation is the classifier behavior of Moving Thing, so the model 
shows what happens to it over its lifetime. The simulation calculates the values of acceleration, veloc-
ity, and distance over time. The algorithm first calculates the acceleration from the mass of the object 
(inherited from Physical Thing) and the force applied. It then integrates the acceleration to get the 
velocity. Finally, it integrates the sum of the velocity due to acceleration and the initial velocity to get 
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the distance traveled, which is stored in data store distance (the initial state of the integrator activity is 
0, so the initial value for distance is 0). The current values of acceleration and velocity from the simula-
tion are used to update the relevant properties of a Moving Thing. In this simulation model, time is 
implicit to the calculation and is not shown.

Three probes are used over time to display the values of acceleration, velocity, and distance. The 
first two values are obtained via probes on object flows, and the third by a probe on a data store.
Figure 15.14 shows Motion Simulation as an activity hierarchy (note that the adjunct keyword 
described in Chapter 9, Section 9.12.1 is not shown in this figure). This view is useful because it 
shows the properties of the simulation elements. Motion Simulation and its children in the activity 
hierarchy satisfy all the constraints imposed by the stereotypes Flow-Based Simulation and Flow 
Simulation Element, as defined in Figure 15.9:
 
	•	� All the invoked activities of Motion Simulation are stereotyped by Flow Simulation Element.
	•	� All the invoked activities have version numbers at least as high as Motion Simulation itself.
	•	� The ode45 solver is appropriate for a variable step continuous simulation.
	•	� Motion Simulation is a continuous simulation, so both discrete and continuous Flow Simulation 

Elements are allowed.
	•	� Data store distance is typed by the value type m (meters).
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FIGURE 15.12

Defining a library of flow-based simulation elements using stereotypes to add simulation details.
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FIGURE 15.13

Using flow-based simulation stereotypes and library elements in the definition of a simulation.
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Instead of showing the keyword «flowBasedSimulation» for Motion Simulation, this figure shows 
the stereotype’s image in the top right corner of the symbol. The image is part of the stereotype’s defini-
tion and is stored as part of the profile.

15.7.1 � SPECIALIZING MODEL ELEMENTS WITH APPLIED STEREOTYPES
A potential area of confusion is the effect of specializing a classifier, such as a block, that has a stereo-
type applied to it in the user model. Applying a stereotype to a classifier does not imply that the stereo-
type is applied to subclasses of the classifier. If this is desired, the stereotype definition should include 
a constraint to ensure that the stereotype is applied to each subclass of the classifier that the stereotype 
is applied.

Even when a constraint forces subclasses to have the same stereotype as their superclasses, they do 
not inherit values for stereotype properties. If this is desired, the stereotype should include an additional 
constraint that every subclass has the stereotype applied and also inherits the values of the stereotype’s 
properties.

Figure 15.15 and Figure 15.16 describe an example in which neither the applied stereotypes nor the 
values of their properties are inherited. Figure 15.15 shows two stereotypes from the profile Quality 
Assurance. The stereotype Audited Item, which extends the metaclass Classifier and can be applied to 
blocks among other model elements, is used when a classifier has been audited for quality—typically, 
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FIGURE 15.14

Block definition diagram showing the activity hierarchy for Motion Simulation.
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FIGURE 15.15

Definitions of two stereotypes used as part of quality assurance on a model.

FIGURE 15.16

Application of quality-assurance stereotypes to two blocks, one of which specializes the other.
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when it reaches a certain level of maturity. It has properties to capture the audit date, the auditor, and 
the quality level that may take values from low to high. The stereotype Configured Item contains prop-
erties that must be applied to every classifier, hence the presence of the {required} property.

Figure 15.16 shows the Audited Item and Configured Item stereotypes in use. In this case the block 
General Block has been audited and so has values for audit date, auditor, and quality level. Its subclass 
Specialized Block is still in early design, so it has not yet been audited. It clearly does not make sense 
to assume that just because General Block has the Audited Item stereotype applied to it that Specialized 
Block will also have this stereotype applied.

Even when a stereotype, such as Configured Item, is required and therefore applied to all blocks, it 
clearly is not the case that the configuration properties of a block (e.g., General Block) will be inherited 
by a subclass like Specialized Block. The information stored in the properties of Configured Item is 
specific to the model element to which it is applied.

Note that General Block has two stereotypes applied to it, demonstrating one of the notations that 
can be used where multiple stereotypes are applied. The keywords representing the two applied stereo-
types both appear separated by a comma inside a single set of guillemets. The properties of the two 
stereotypes appear in separate compartments, labeled using the keyword of their owning stereotype.

15.8 � DEFINING AND USING VIEWPOINTS TO GENERATE VIEWS  
OF THE MODEL

SysML models contain comprehensive descriptive information about the system and its environment 
that can be presented in SysML diagrams and tables as described throughout this part of the book. 
However, it is important to be able to customize the presentation of this information to support a diverse 
set of consumers. SysML has adopted the concepts of viewpoint and view from ISO-42010 (formerly 
IEEE-1471) [20] to address this need.

A viewpoint is a specification of the conventions and rules for producing artifacts that offer custom-
ized presentations of information contained in a SysML model. These presentations may contain 
SysML diagrams but in addition may present information in other forms including graphs, textual 
documentation, and other tabular formats. The artifacts produced by a viewpoint are intended to address 
the concerns of one or more stakeholders in the development of the system. A stakeholder is a role, 
group, or individual that has concerns that need to be addressed. For example, a security viewpoint may 
describe the production and presentation of a security report required by certification authorities. Mul-
tiple viewpoints may be needed to address all of the concerns of any given stakeholder. A view specifies 
a set of model elements that will be processed by a viewpoint to produce a specific artifact presenting 
information from those elements. Viewpoints can be referenced by multiple views to present informa-
tion from different sets of model elements.

A viewpoint specifies both the process used to generate the artifacts and how the artifacts should be 
presented to the stakeholders, which may include figures, tables, plots, entire documents, presentation 
slides, or video. The process used to construct the artifacts is specified in an owned behavior of the 
viewpoint, identified as the method of the viewpoint’s constructor operation. It may be expressed 
informally as a guide to producing the artifacts manually or in a formal language that can automatically 
produce the artifacts. The behavior may invoke other behaviors defined by both its owning viewpoint 
and other viewpoints.
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A viewpoint is depicted by a box symbol with the keyword «viewpoint» at the top of its name 
compartment. The various properties of the viewpoint are shown in a second compartment, labelled 
«viewpoint», consisting of:
 
	•	� The list of stakeholders for whom the viewpoint is intended;
	•	� The set of concerns that the viewpoint addresses;
	•	� The purpose of the viewpoint, which may state how stakeholder concerns have been addressed;
	•	� The language used to describe the model content, which may be some profile of SysML;
	•	� The method used to produce the viewpoint artifacts; and
	•	� The presentation constraints of the generated artifacts, such as file format, language, etc.
 

Viewpoint concerns may also be shown in comment symbols linked to the viewpoint symbol. The 
constructor operation, which is always called View, can be shown in a separate compartment labeled 
operations.

The symbol for a stakeholder may either be a box symbol or an actor symbol. In the case of a box 
symbol, the symbol’s name compartment contains the keyword «stakeholder» and a compartment 
labelled «stakeholder» that lists the stakeholder’s concerns. In the case of an actor, the keyword and 
properties are listed before the actor name. As with viewpoint, the concerns of a stakeholder can also 
be shown in attached comment symbols.

The package diagram in Figure 15.17 shows a viewpoint called ICD, whose purpose is “To docu-
ment the interface of a block”. The sole stakeholder is the System Architect, who in this case is modeled 
as an actor. For the sake of completeness, the stakeholder concern addressed by the viewpoint is shown 
both in a separate comment symbol and in the viewpoint compartment, although typically only one 
rendering is used. The construction method is called Generate ICD.

In order to generate artifacts, the viewpoint method needs to be provided with a list of model ele-
ments whose information is to be queried for presentation. This list of model elements is specified by a 
view. When the view is instantiated, the method of the view’s nominated viewpoint is invoked with the 

FIGURE 15.17

A viewpoint.
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list of model elements to produce the artifacts for that view. The method describes how the model ele-
ments are navigated to extract the desired information.

A view is said to conform to the viewpoint that generates the view’s artifacts. The set of model ele-
ments presented in the generated artifact are said to be exposed by the view. The conformance of a view 
to a viewpoint is expressed using a conform relationship from a view to a viewpoint. A view exposes 
a model element using an expose relationship, which relates a view to exposed model elements.

A view is shown as a box symbol with the keyword «view» at the top of its name compartment. 
Another compartment, labeled «view», shows the viewpoint to which this view conforms and the 
stakeholders of that viewpoint and hence the view. A conform relationship is shown as a dashed line 
with a hollow triangle at the viewpoint end and the keyword «conform» shown near the line. An expose 
relationship is shown as a dashed line with an open arrowhead pointing towards the element exposed 
with the keyword «expose» shown near the line.

Figure 15.18 shows a view, called Wired Camera Interface, which conforms to the ICD viewpoint. 
It exposes the Wired Camera block. Figure 15.19 shows an extract from the spreadsheet generated by 
the viewpoint method Generate ICD from Wired Camera Interface. It shows all of the ports of Wired 
Camera and their characteristics.

It is sometimes desirable to construct composite views that incorporate other views. To support 
this, a view may reference one or more views via its properties, each of which conforms to a view-
point. The viewpoint to which the composite view conforms has access to these properties of the 
view and may invoke the constructors of their viewpoints to construct corresponding artifacts. Prop-
erties of the view can be ordered and this information can be used to order the presentation of the 
artifacts.

FIGURE 15.18

A view.
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Figure 15.20 shows a view, called Wired Camera Product Description, which is composed of two 
further views: Wired Camera Interface (from Figure 15.18) and Wired Camera Bill of Materials, which 
describes the parts list for the Wired Camera so that a manufacturer knows how to build one. Product 
Description, the viewpoint to which Wired Camera Product Description conforms, can access its prop-
erties to construct a complete product description artifact.

SysML 1.4 introduced significant changes to view and viewpoint. The changes are summarized 
below:
 
	•	� A viewpoint uses the same symbol as before, but viewpoint concerns can now be shown in 

separate comment symbols. The method of a viewpoint is now specified as the method of a 
constructor operation, whereas previously the method was defined as a string.

	•	� A stakeholder is now represented by a separate model element, whereas previously stakeholders 
were listed solely as strings in a compartment of the viewpoint symbol.

	•	� A view is now shown as a box rather than package symbol and can list the stakeholders of its 
viewpoint. Views can now own properties typed by views and participate in associations to other 
views.

	•	� An expose relationship is now used instead of an import relationship to specify the set of model 
elements exposed by the view.

	•	� The conform relationship now has a solid line with a hollow triangle at its head instead of a 
dashed line with an open arrowhead.

 
Annex C.5 of the SysML specification includes guidelines to transition earlier versions of SysML 

view and viewpoint to SysML 1.4.

15.9 � SUMMARY
SysML is a general-purpose systems modeling language that includes built-in mechanisms, called 
model libraries and profiles, to customize the language. Model libraries and profiles can be used to sup-
port domain-specific modeling for many different domains. The following are some of the key concepts 
for domain-specific modeling:
 
	•	� A modeling language is defined using a metamodel and contains a number of distinct language 

concepts, represented by metaclasses. Metaclasses have a set of properties and constraints on 
them. Metaclasses can also be associated with one another, thus allowing the language concepts to 
be related to one another. The underlying metamodel for SysML is a subset of UML called 

FIGURE 15.19

An extract from an artifact generated from a view.
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UML4SysML, an existing modeling language. UML4SysML contains the subset of UML 
concepts that are needed for systems modeling. SysML defines a graphical notation, based on 
UML, to represent the concepts in the metamodel.

	•	� A model library is a special kind of package that contains model elements intended for reuse in 
multiple models. They can vary from very specific, such as representing a set of electronic 
components, to general, such as a definition of a common set of units and quantity kinds.

	•	� A profile adds new concepts to a language (in this case SysML) by means of stereotypes. A profile 
extends a reference metamodel, which for SysML profiles is always its reference metamodel—
UML. SysML itself is defined as a profile that extends UML, but it also makes the profile mecha-
nism available to SysML modelers so that they may further extend the language. A profile can 
import another profile in order to reuse the stereotypes and metaclasses it contains.

FIGURE 15.20

A composite view.
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	•	� A stereotype can extend one or more metaclasses in the referenced metamodel. A stereotype can 
contain properties and constraints that may constrain both the values of its own properties and the 
property values of its base metaclasses. Even if a stereotype extends more than one metaclass, any 
given stereotype instance extends only one metaclass instance in the user model.

	•	� User models contain model elements, which are instances of metaclasses contained in a 
metamodel or stereotypes from profiles. These model elements have values for the properties of 
their metaclasses or stereotypes and can be related according to the associations defined between 
their metaclasses or stereotypes.

	•	� To use a profile, a modeler must apply it to his or her model or some subpackage of the model 
using a profile application relationship. A profile may be applied strictly, which means that model 
elements in the model or package that applies the profile may only be instances of metaclasses in 
the profile’s reference metamodel.

	•	� When a profile has been applied, stereotypes from that profile may be applied to appropriate 
model elements within it. More than one stereotype may be applied to a model element. Once a 
stereotype has been applied, modelers may provide values based on the stereotype’s properties, 
and the constraints of the stereotype are applied to the model element. SysML includes a graphi-
cal notation that describes how a stereotyped model element appears in a diagram, which includes 
the use of special images or icons.

	•	� SysML provides standard presentations of the model information, including SysML diagrams and 
tabular formats. SysML also includes the ability to generate customized visualizations to meet the 
needs of a broad set of stakeholders who may consume the information contained in SysML 
models. A viewpoint describes a set of rules for constructing such customized visualizations. A 
view conforms to a single viewpoint and identifies model elements that should be exposed in a 
specific visualization. Views may be composed of other views to allow the incremental definition 
of composite visualizations.

 

15.10 � QUESTIONS
	 1.	 �What does the abstract syntax of a modeling language describe?
	 2.	 �What are the two parts of the SysML abstract syntax?
	 3.	 �How are language concepts defined in a metamodel?
	 4.	 �What is a profile and what does it contain?
	 5.	 �What do the semantics of a modeling language describe?
	 6.	 �Which kind of diagram is used to define model libraries and profiles?
	 7.	 �List the three parts of a modeling language like UML and SysML.
	 8.	 �What is the relationship between metaclasses in the metamodel and model elements in the user 

model?
	 9.	 �What is a model library used for?
	10.	 �What is the relationship between a stereotype and its base metaclass called and how is it repre-

sented on a diagram?
	11.	 �Which rule applies to an association between a stereotype and a metaclass and why?
	12.	 �Which model elements can a profile contain?
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	13.	 �What is the reference relationship used for?
	14.	 �What must modelers do before they can apply stereotypes to elements in their models?
	15.	 �On a diagram, how can a modeler tell that a stereotype has been applied to a model element?
	16.	 �How can the applied stereotype and stereotype property values for a graphical path (line) symbol 

be shown?
	17.	 �How can the applied stereotype and stereotype property values for a block symbol be shown?
	18.	 �When a block subclasses another block with a stereotype applied to it, which of the following 

describes the effect?
	 a.	 �The subclass automatically inherits the stereotypes applied to its superclass.
	 b.	 �The subclass automatically inherits the stereotypes applied to its superclass and also inherits 

the values of any stereotype properties.
	 c.	 �The subclass cannot inherit either applied stereotypes or the values of stereotype properties.
	 d.	 �The subclass can inherit applied stereotypes and the values of stereotype properties, but the 

stereotype has to be explicitly specified with a suitable constraint.
	19.	 �Name three properties of a viewpoint.
	20.	 �How do you represent a view V1, which conforms to a viewpoint VP1, on a package diagram?
 

DISCUSSION TOPICS
When adding new concepts to a language, when does it make sense to use a profile and when to use a 
model library?

What is the difference in meaning and use between a property of a stereotype and the property of a 
block?



III
Part III includes two examples to illustrate how SysML can support different MBSE methods. The first 
example (Chapter 16) is a functional analysis and allocation method to specify and design a water dis-
tiller system. The second example (Chapter 17) applies to the design of a security system consisting of 
a central monitoring station and multiple sites that are monitored. It uses a comprehensive object-oriented 
systems engineering method (OOSEM) and emphasizes how the language is used to address a range of 
systems engineering concerns, including black-box versus white-box design, logical versus physical 
design, and the design of distributed systems. While these two methods are considered representative 
of how MBSE with SysML can be applied to model systems, SysML is intended to support other 
MBSE methods as well.

EXAMPLES OF  
MODEL-BASED  
SYSTEMS  
ENGINEERING 
METHODS

PART
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CHAPTER

WATER DISTILLER EXAMPLE 
USING FUNCTIONAL ANALYSIS

This chapter contains an example that describes the application of SysML to the design of a water 
distiller intended for use in remote, undeveloped areas of the world. This example will start with a 
description of the problem and the model-based approach using a traditional functional analysis 
method, which is both familiar and intuitive to many practicing systems engineers. This approach is 
generally consistent with the simplified MBSE method introduced in Chapter 3, Section 3.4.

16.1 � STATING THE PROBLEM—THE NEED FOR CLEAN DRINKING WATER
Consider the needs of a humanitarian organization dedicated to providing safe drinking water to 
the broadest possible spectrum of people, especially in impoverished parts of the world where it is 
not readily available. For purposes of this example, it is assumed that cost effectively supplying a 
sustainable long-term source of pure water in remote, impoverished areas is of paramount 
importance.

It is also assumed that studies have shown sources of water generally available in these target areas 
of the world, but because of viral and bacterial contamination, it is seldom safe to drink. Since the cost 
of transporting water to these remote areas over the long term would be prohibitive, the decision was 
made by this humanitarian organization to pursue the development of an extremely simple, inexpensive 
water purifier. Initial studies indicated that filter-based approaches to water purification are not sustain-
able, because of the limited effective lifetime of low cost viral grade filters, and the high logistical cost 
of maintaining a ready supply of replacement filters in remote areas.

This humanitarian organization is already making a substantial investment in deploying thousands of 
very simple solar powered low temperature evaporative stills, which have proven quite effective in sunny 
regions. They are now seeking an alternative for use in areas where a solar still is not suitable, such as 
under a forest canopy, in deep canyons, under predominantly overcast conditions, or in the presence of 
pathogens requiring high temperature sterilization. In particular, they seek to develop and deploy a large 
number of extremely simple thermal-powered, high-temperature (boiling) water distillers of a common 
design that is both economical to build and adaptable to the variety of energy sources anticipated in these 
remote areas. This example problem addresses the design and analysis of this thermal powered water 
distiller system.

Many assumptions are made regarding the feasibility of various solutions to make the scope of 
this sample problem manageable. The scope of this example is limited solely to the design of the 
distiller unit itself, but it is acknowledged that an actual solution must consider the greater issue of 
transportation, installation, logistics support, and operator training in order to meet the operational 
need.

16
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16.2 � DEFINING THE MODEL-BASED SYSTEMS ENGINEERING APPROACH
The selection of a model-based systems engineering approach depends largely on the nature of the 
problem to be solved, the expected outputs, and the resources available to work the problem. Note that 
while the steps are shown as a sequence, they are often performed in parallel and iteratively.

The nature of the water distiller system is neither complex nor software intensive. The selected 
MBSE method needs to provide a framework for specifying both the structure and operation of the 
system and for analyzing its performance. This leads to a method that supports functional analysis sup-
ported by domain experts to help define appropriate operational contexts. This example is generally 
consistent with the simplified MBSE method described in Chapter 3, Section 3.4, as outlined below.
 
	•	� Organize the model—This is addressed in Section 16.3.
	•	� Elicit and analyze stakeholder needs—This is addressed in Section 16.4.1, which focuses on 

capturing the stakeholder mission statement, top-level requirements, and assumptions. These are 
then used to establish the top-level system context and use cases.

	•	� Specify functionality, interfaces, physical, and performance characteristics—The stakeholder 
needs are used as a basis to derive and elaborate specific system requirements. A hierarchy of 
system requirements for the system is proposed in Section 16.4.2. These in turn drive the system 
design. Required system behavior is addressed in Section 16.4.3, along with relationships and 
constraints on the resulting system.

	•	� Synthesize alternative solutions—The initial goal during system synthesis, as covered in Section 
16.5, is to determine the simple low cost system that meets the overall requirements. Performance 
of the resulting configuration is predicted using a heat balance analysis in Section 16.6.

	•	� Tradeoff analysis—Tradeoffs should normally be considered whenever alternatives arise. This 
example discusses trading off fundamental behavior in Section 16.4.4 and examines alternatives to 
improve basic functionality and the user interface in Section 16.7.

	•	� Maintain traceability—Traceability to system requirements is demonstrated throughout the process via 
requirement relationships and functional allocation. This is most evident in Sections 16.4.3 and 16.5.

 

16.3 � ORGANIZING THE MODEL
A critical step prior to initiating a significant modeling effort is the establishment of the initial organiza-
tion of the model, which is done by defining the model’s overall package structure. The organization 
should also consider what model libraries may be leveraged for the development. Chapter 6, Section 
6.4, includes a number of approaches that can be used to organize the model. Caution must be exercised 
when organizing the model to avoid prematurely constraining or biasing the design.

The package diagram in Figure 16.1 presents the organization for this model. The diagram header 
indicates that the context for this diagram is the root-level model Distiller Project. Each package on the 
diagram is contained within this model. The user-defined diagram name for this package diagram is 
model organization, which may be used to differentiate it from any other package diagram that desig-
nates the Distiller Project for its context. The conventions for diagram headers are used consistently 
throughout this example and are important for understanding the context of each diagram within the 
model organization. See Chapter 5, Section 5.2.3, for more information on diagram headers.
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The packages in this model are primarily organized based on the types of artifacts developed using the 
selected process, including requirements, use cases, and behavioral and structural models. The Engineering 
Analysis package includes the constraint blocks and parametric models used to analyze the performance.

Note that the Value Types package in Figure 16.1 imports the ISO 80000 package, which is a reus-
able model library package available to multiple models. It contains a system of units and quantity-
Kinds that is described in Chapter 7, Section 7.3.4, and Annex E of the OMG SysML specification [1]. 
The Value Types package uses the imported definitions of units and quantity kinds to create specific 
value types, which are then applied to value properties with consistent units throughout the model.

A package for Item Types is included to capture the types of things that flow in the system. Segregat-
ing item types into its own package allows the modeler to concentrate on defining the things that flow 
and leverage reuse libraries that may exist independent of where they flow or how they are used. This 
segregation is similar to establishing a reusable library of components. For this example, water and heat 
flow through the system. Providing a separate package for item types allows the modeler to consolidate 
all the relevant information about water, heat, and the other item types used in this model.

The browser of the modeling tool typically provides a view of these packages in a folder-like struc-
ture that is populated as the model is developed. It may be convenient to revise the organization of the 
model over time as the model is refined and updated. For example, after an initial design has been 
established, packages may be established for each component that is subject to further design and 
analysis.

16.4 � ESTABLISHING REQUIREMENTS
The following sections describe how requirements are elicited and elaborated sufficiently to drive the 
design of the distiller system.

FIGURE 16.1

Package diagram of the organization of the distiller model.
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16.4.1 � CHARACTERIZING STAKEHOLDER NEEDS
The requirements for the distiller system need to be captured and traced in the system model. Section 
16.1 provides a set of mission statements that provide a basis for more specific mission requirements. 
These mission requirements are used to derive effectiveness measures and then through analysis lead 
to a comprehensive set of system requirements for the distiller specification. Figure 16.2 presents the 
package structure that accommodates these kinds of requirements. Figure 16.3 presents a table of 

FIGURE 16.2

Organization of requirements for distiller problem.

table [Package] Mission Statement [Table of Mission Requirements]

FIGURE 16.3

Capture of mission statement as a set of requirements.
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requirements from the original mission statement. The tabular format is an allowable notation in SysML 
and represents a traditional and convenient way to view requirements. This table is generated from 
requirements contained in the system model and contains the same information that can be shown in a 
requirement diagram: requirement id, name, and text. In this case, the table relies on the numbering to 
indicate the hierarchy that is captured in the model using containment, but this could have also been 
shown by level of indentation or another mechanism. Note that the identifiers for each of these require-
ments start with the letters “MS”, to indicate that they represent parts of the mission statement.

Figure 16.4 presents how a compound mission statement requirement has been separated into sim-
pler requirements, without adding to or changing its meaning. This process is often referred to as 
“requirements decomposition” but it is more accurately described as “requirement de-convolution.” It 
is important to recognize that requirements de-convolution and system decomposition are very different 
kinds of relationships in SysML.

The purpose of the distiller system is to provide clean drinking water economically in a wide variety 
of remote, undeveloped areas. A survey of conditions in such areas leads to the following mission 
requirements, which are also captured in the model:
 
	•	� Electrical power will generally not be available.
	•	� Sources of heat for the distillation process will vary widely based on the climate, native vegeta-

tion, agricultural, and mineral resources of the region. Liquid fuel or solid fuel heaters may need 
to be accommodated.

	•	� The source of unclean water may be still or flowing. In some cases, elevation will be sufficient to 
gravity feed water to the distiller. In other cases, water will need to be carried and poured into the 
distiller manually.

	•	� Sufficient human resources will be available locally to operate the distiller, but it must be intuitive 
to operate by untrained personnel.

	•	� The output of the distiller will feed local water distribution systems, which might include anything 
from storage tanks and pipelines to a series of hand carried water jars.

 

FIGURE 16.4

Decomposing a requirement using containment.
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An initial analysis of these requirements yields the following set of effectiveness measures for the 
distiller project, which are also captured in the model:
 
	•	� Sustained cost per unit of clean water provided. This must consider labor, fuel, power, consum-

ables and maintenance.
	•	� Quality of water provided, which must be above a minimum accepted safety threshold.
	•	� Cost per distiller, including transportation. This drives the number of units that may be procured, 

and thus the number of people served.
	•	� Usability by local, untrained operators.
 

Because of the variety of heat and water sources that must be accommodated, it is appropriate ini-
tially to view them as being independent of the basic distiller design. Refinement of the design may 
incorporate water handling equipment and heating sources, including fuel storage, if deemed appropri-
ate for broad deployment.

The Distiller System Context block was created within the Distiller Structure package. Its inter-
nal block diagram is presented in Figure 16.5. Note that blocks representing Water Source, Dis-
tiller, Heat Source, and Water Distribution System were also created and used to type parts of the 
Distiller System Context block. Other properties are typed by the Operator and Water User actors 
contained in the Distiller Use Cases package. Flows in and out of the Distiller have been depicted 
using item flows, typed by appropriate item types (H2O, Heat) contained in the Item Types 
package.

The initial intent is to have the Heat Source procured locally, if possible, and thus minimize trans-
portation costs. For this reason, the Heat Source will be modeled as if it were external to the Distiller. 
The Water Source may be any suitable body of water or a locally provided holding tank. Note that in 
addition to operating the Distiller itself, the operator(s) will also need to interact with the Water Source 
and the Heat Source.

An initial use case diagram for the distiller is presented in Figure 16.6. For purposes of this example, 
emphasis is placed on the operation of the Distiller itself. Distribution of clean water, along with trans-
portation, setup, maintenance and takedown of the distiller are beyond the scope of this example. This 

FIGURE 16.5

Establishing a context for the distiller system.
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context is restricted in order to present a compact, manageable example problem. A more complete 
treatment of the problem should also consider the customer’s transportation and logistical resources, as 
well as suggest an approach for maintaining distillers and training operators. It is assumed that this 
broader context is considered only after a feasible point of departure design for the distiller has been 
achieved.

16.4.2 � CHARACTERIZING SYSTEM REQUIREMENTS
This section describes the breakdown of stakeholder needs, assumptions, and constraints into a cohe-
sive set of requirements. All essential requirements for the distiller are explicitly stated so that their 
satisfaction may be specifically related to the system design. Figure 16.7 presents the initial derivation 
of a requirement for the distiller to purify water, which was not explicitly stated in the mission require-
ments. Note that the rationale for this derivation is also stated.

The system requirements are derived from an analysis of each mission requirement. The resulting 
derivation of distiller system requirements is presented in Figure 16.8. The External Heat Source, 
Gravity Feed, Cooling and Boiling requirements, together with the previously identified Purification 
requirement, are used to drive the initial system design. Note that requirements that make up the dis-
tiller specification contain “DS” in their ID property.

Although multiple relationships from a requirements tree can be shown graphically on the require-
ment diagram, it is often more compact to view the information in tabular format.  
Figure 16.9 presents a table of the system requirements and their derivation. In addition to ID and 
name, the table captures the derive relationship. Tools are expected to provide the tabular format for 
editing and viewing requirements and other types of modeling information, as described in Chapter 5,  
Section 5.4.

Modelers may want to leverage the non-normative requirement types presented in Chapter 13, 
Section 13.3, and/or create user-defined extensions using the profile mechanism described in Chapter 
15, Section 15.4.

FIGURE 16.6

Establishing an initial set of use cases for the distiller system, based on system context.
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16.4.3 � CHARACTERIZING REQUIRED BEHAVIORS
This section describes techniques to characterize system behavior based on functional requirements. 
An initial decomposition of the Distill Water function is presented as a block definition diagram in 
Figure 16.10. The word “function” is used interchangeably with the word “activity” throughout this 
example. The boxes on the diagram are functions, not blocks, and they are named using verbs. The role 
names at the end of the composite association denotes the name of the call behavior actions contained 
in Distill Water that calls each associated activity (e.g., action a2 calling activity Boil Water). The 
approach to decomposing activities is discussed in Chapter 9, Section 9.12.

A satisfy relationship is established between the Boiling requirement and the Boil Water function, 
and between the Cooling requirement and the Condense Steam function. The cooling requirement may 
not be fully satisfied simply by condensing the steam, because the resulting condensate may still be too 
hot to distribute easily. To simplify the initial analysis, it is assumed that the condensate is allowed to 
cool in the external collection device prior to distribution.

A satisfy relationship is also established between the Purification requirement and the top level 
Distill Water function. This relationship may later be augmented by additional satisfy relationships 
between requirements derived from Purification (e.g., minimum water temperature over minimum 
time) and additional functions of the distiller (e.g., monitor temperature, monitor flow rate).

FIGURE 16.7

Establishing purification requirement.
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Heat Water is an essential function, even though it doesn’t immediately satisfy a stated requirement. 
If we assume that the water from the source will be at ambient temperature, heating and boiling water 
must be distinguished because the mechanism of heat transfer is different. The function Heat Water 
raises the water’s temperature without changing its state. The function Boil Water changes the water’s 
state without changing its temperature. Nothing is implied about how or where these functions are 
performed, and in fact they might be performed by the same device (e.g., a pot on a stove). Nonetheless, 
they are two separate functions and must be treated accordingly.

FIGURE 16.8

Derivation of initial distiller system requirements.
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FIGURE 16.10

Initial decomposition of distiller functions.

Derive Requirement
Dependency Matrix

FIGURE 16.9

Tracking deriveReqt relationships in a matrix.
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H2O is modeled as a block in the Item Types package. The state of H2O as it flows through the 
distiller must be understood when analyzing the distiller’s performance. The state machine in  
Figure 16.11 presents its state changes between gas (steam) and liquid as it proceeds through the Distill 
Water process. Latent heat of vaporization must be added to transition from liquid to gas. The same 
latent heat of vaporization must be removed when transitioning from gas to liquid.

The relationship of the three functions that compose the Distill Water function is captured in the activity 
diagram presented in Figure 16.12. The enclosing frame designates an activity called Distill Water as desig-
nated in the diagram header. As described in Chapter 9, Section 9.3, round-cornered boxes designate actions 
(usages) that can invoke activities (definitions). The dashed lines are control flows that define the sequence 
of actions; dashed lines are an optional notation in place of solid lines and help to distinguish control flow 

FIGURE 16.11

Representing states of H2O.

FIGURE 16.12

Initial activity diagram of Distill Water.
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from object flow more clearly. Note that the flow of control presented in Figure 16.12 is a sequential process, 
where each action must complete before the next action begins. The actions and action pins include their role 
names (usages) and types (definitions) using the standard role name : Type Name notation.

The input and output activity parameters of the Distill Water function are typed by the blocks from 
the Item Types package (Heat, H2O). Use of item types in this way maintains a consistent representa-
tion of the things flowing in the system. The activity parameter external : Heat has a satisfy relationship 
to the distiller specification requirement External Heat Source, indicating that the heat is being gener-
ated external to the distiller system.

Each of the other functions that compose Distill Water has activity parameters identified that are 
typed by blocks in the Item Types package. The type of the pins on the call behavior actions on the 
activity diagram (a1, a2, a3) are consistent with the type of the activity parameters on the activities (i.e., 
functions) they call.

The sequence of actions for the Distill Water function is indicated by the control flow from the ini-
tial node, via the dashed lines connecting the actions, to the final node. This sequence is subsequently 
re-examined as the behavior model is more fully developed.

The object flow presented in Figure 16.12 indicates how various kinds and phases of water flow 
between the actions. The input to the Distill Water function is cold dirty : H2O, and the output is 
pure : H2O. The input parameter external : Heat is an input to both Boil Water and Heat Water func-
tions. Because it is needed for both a1 : Heat Water and a2 : Boil Water sequentially, external : Heat 
must be a streaming parameter. Similarly, Condense Steam has waste : Heat as an output 
parameter.

The function Boil Water has only one output, steam : H2O. However, this does not account for the 
fact that boiling separates volatile substances, such as water, from nonvolatile substances, such as sedi-
ment, salts, metals, and nitrates. This cannot be overlooked due to the potential of using highly polluted 
sources of water. In order to accommodate the need to dispose of the accumulated residue, a new 
requirement is derived and a new function is proposed to be performed by the distiller. This, along with 
the associated rationale, is presented in Figure 16.13. The use of the Drain Residue function is pre-
sented in subsequent activity diagrams, starting with Figure 16.15

FIGURE 16.13

Derivation of the Drain Residue requirement.
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16.4.4 � REFINING BEHAVIOR
This section describes techniques for elaborating the distiller behavior and introduces behavioral allo-
cation. After initially defining overall behavior, it is common to refine system behavior and system 
structure in parallel. One of the key tenets of functional decomposition is to consider behavior and 
structure independently (at least at a given level of abstraction) and to specifically allocate one onto the 
other. This segregation of concerns helps explore the variety of structural alternatives available to 
implement a particular functional need. In this example, alternative behavioral constructs that satisfy 
the requirements will be subject to trade-off, and the simplest possible structures that can effectively 
support those behaviors will be selected.

Batch and continuous distillers exhibit fundamentally different behaviors. The left side of  
Figure 16.14 presents a batch distiller that includes a boiler and a condenser. In batch process, the boiler 
is filled with water, and a heat source is used to heat the water in the boiler. Steam is then generated, 
and the distilled water is collected from the condenser. The process stops when there is no more water 
in the boiler; purifying more requires refilling the boiler with water. The right side of Figure 16.14 
presents a continuous distiller that can have water flow through it continuously. It includes a boiler with 
an internal heating element and a heat exchanger that has cool liquid flowing in the coils and steam 
condensing around them.

The control flow presented previously in Figure 16.13 is consistent with the behavior of a batch 
distiller. Each action ends before the next one begins. When Heat Water is complete, the action Boil 
Water is initiated. When Boil Water is complete, Condense Steam is initiated. When these actions are 
complete, the Distill Water activity is complete, and a batch of pure water is available. The entire pro-
cess must be started over to distill the next batch of water.

Figure 16.15 presents an activity model of continuous distiller behavior using the same actions 
identified previously and including a4:Drain Residue. Each action executes concurrently, and each 
action pin or activity parameter is {streaming}, meaning it provides or accepts objects while executing, 
and is stereotyped as «continuous», meaning that the time between sending and receiving objects is 

Steam

Salts, nitrates, and metals
Chemical contaminant venting

A � condensing coil
B � drain
C � dirty water

D � evaporate
E � heater
F � pure condensate

FIGURE 16.14

A batch distiller (left) and a continuous distiller (right).
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arbitrarily short. This accurately models the behavior of a distiller in which heat and water continuously 
flow through the system.

The activity models for batch and continuous may be built to execute and used as a basis for com-
paring performance of the two alternatives. This example assumes that a suitable quantitative compari-
son of these two approaches shows a greater sustained output of pure water from a continuous distiller, 
due to the additional time a batch distiller needs to cool down and refill. A design decision is made to 
proceed with design of a continuous distiller, and this rationale is documented in the model.

The Distill Water function has heat as both an input and an output. To simplify the functional design 
and improve distiller efficiency, the heat output by action a3 : Condense Steam is used as a source of 
heat for action a1 : Heat Water. Figure 16.16 presents a revised activity model of this kind of distiller 
behavior. Note that waste : Heat no longer appears as an output parameter of the Distill Water 
function.

16.5 � MODELING STRUCTURE
This section describes the use of blocks, parts, and ports for modeling of the distiller’s structure and 
behavioral allocation.

16.5.1 � DEFINING THE DISTILLER’S BLOCKS IN THE BLOCK DEFINITION DIAGRAM
Figure 16.17 presents a block definition diagram for the distiller system. The diagram presents the 
block named Distiller, which is composed of a block named Heat Exchanger, a block named Boiler, 
and a block named Valve. The composition relationship shows that the Distiller is composed of one 

FIGURE 16.15

Initial continuous distiller activity diagram.
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Heat Exchanger that fulfills the role condenser, one Boiler that fulfills the role evaporator, and one 
Valve that fulfills the role drain.

The block Distiller shows a compartment indicating that it satisfies the requirement Simple Dis-
tiller. This does not mean, of course, that the Distiller always satisfies that original mission statement 
imperative, but rather that it is asserted to satisfy it, so that the requirement needs to be carefully con-
sidered when making decisions affecting the design of the Distiller. In keeping with the mission state-
ment requirement Simple Distiller, the design philosophy for this project is to use the minimum number 
of parts necessary for effective operation. The three components shown are a good start at keeping the 
design simple. The required behaviors must now be mapped onto this structure and the resulting design 
analyzed for feasibility and performance.

FIGURE 16.16

Continuous distiller activity diagram with recovered heat.

FIGURE 16.17

Initial Distiller structure.
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16.5.2 � ALLOCATING BEHAVIOR
The initial allocation of behavior to structure has been specified using the allocate activity partitions 
(i.e., swim lanes): an action appearing in an allocate activity partition on the activity diagram represents 
an allocate relationship between the action and the part represented by the partition. In Figure 16.18, 
the initial allocation of actions is specified by the use of partitions to represent the Distiller parts con-
denser : Heat Exchanger, evaporator : Boiler, and drain : Valve. The use of the keyword «allocate» 
in the partition means that the partition is an allocate activity partition that has an explicit allocation 
relationship to the part that represents the partition, as described in Chapter 14, Section 14.6.3. This in 
turn specifies that the part is responsible for performing the actions within its partition.

As an example, the part evaporator is a usage of the block Boiler, and the action a2 : Boil Water 
is allocated to evaporator : Boiler. Note that the role names are defined for each part, and each part is 
typed by a block. For example, the role drain is a part of type Valve. This distinction is important, 
because other valves with the same definition may have different roles, as is evident later in the 
example. The specification of the parts and blocks are described next as part of the distiller 
structure.

This approach represents allocation of usage. In other words, the call behavior action a2 is allocated 
to the part evaporator. Nothing is said about the more general case between the activity Boil Water and 
the block Boiler. This allocation of usage applies only to the context of the activity Distill Water allo-
cated within the context of the block Distiller. In a different context, the block Boiler may boil a differ-
ent kind of fluid. Behavioral allocation of definition (allocating an activity to a block) should only be 
done if every use of a specific block is expected to exhibit the behavior of the allocated activity.

FIGURE 16.18

Distill Water activity model with actions allocated to parts of the Distiller.
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Note that this allocation assumes a steady-state flow in which the evaporator is only boiling the 
water, not warming it; and that the condenser is only condensing the steam, not cooling the condensate. 
At sea level, this assumption means that the temperature of the water in objectFlow of2 must be  
100° C, and the temperature of the water in objectFlow of4 must also be 100° C.

This significant simplifying assumption is not universally valid, especially during system startup, 
but it is proposed as a best-case efficient use of heat energy through the distiller and an appropriate 
starting point to evaluate the feasibility of this initial distiller design. Subsequent refinement of the 
distiller design should consider the cases where each of these temperatures is less than 100° C, with 
additional heating occurring in the evaporator and additional cooling occurring in the condenser.

16.5.3 � DEFINING THE PORTS ON THE BLOCKS
An internal block diagram can be developed based on the block definition diagram to show how parts 
are connected to one another. However, before doing this, the blocks on the block definition diagram 
are further elaborated by identifying the ports on the blocks and their definitions so that the ports can 
be connected in the internal block diagram.

The ports are identified on the blocks on the block definition diagram in Figure 16.19. The ports in this 
example are all undefined ports (neither proxy ports nor full ports), which is legal in SysML and appropriate 
for this initial stage of design. Each port has been typed by an interface block, so that they specify the items 
that can flow in and out of the block and have no behaviors of their own. They are also unidirectional, mean-
ing that the interface block that types the port have flow properties that flow in only one direction. Two kinds 
of interface blocks (or kinds of ports) have been created, one named Fport that has a flow property passing 
Fluid and one named Hport that has a flow property passing Heat. For both interface blocks, the default flow 
direction is in. The block Valve has ports for in : Fport and out : ∼Fport (the conjugate of Fport, which 
reverses the direction of the flow property). Note that these port definitions apply to all uses of a two-port 

FIGURE 16.19

Distiller breakdown with ports.
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valve. The Heat Exchanger has a cold loop (c in and c out) and a hot loop (h in and h out); a feature common 
to all counter-flow heat exchangers. Note that careful attention to specifying the port configurations can 
facilitate their reuse. The Boiler has 3 ports typed by Fport (top, middle, and bottom) and one typed Heat 
(bottom). The stratification of sediment and steam in an operating boiler makes it efficient to extract steam 
from the top, sludge from the bottom, and to inject feed water in the middle.

The next step is to show usage of these blocks in the context of the Distiller on an internal block 
diagram, including the connections and flows between them.

16.5.4 � CREATING THE INTERNAL BLOCK DIAGRAM WITH PARTS, PORTS, 
CONNECTORS, AND ITEM FLOWS

Figure 16.20 presents an internal block diagram for the Distiller system. The diagram header identifies 
the enclosing block as the Distiller. The user-defined diagram name is initial distiller internal configu-
ration. The parts represent how the blocks are used in the Distiller context and have the same role 
names as were shown on the block definition diagram. The ports are consistent with their definition on 
the block definition diagram. The allocation of actions to parts first presented on Figure 16.18 is also 
shown here using compartment notation on each of the three parts. These allocation relationships are 
explicitly depicted in the allocation compartments; allocatedFrom indicates the direction of the rela-
tionship—namely, from the elements specified in the compartment to the part.

The connectors between the parts and the item flows on the connectors on the internal block dia-
gram represent information that is not available on the block definition diagram. The connectors relate 
the ports (both internal and external) and reflect the distiller’s internal structure.

As discussed in Chapter 7, Section 7.4, item flows depict things flowing on connectors. They spec-
ify what flows and the direction of flow. In this example, all the blocks used to type things that flow are 
kept in the Item Types package. These are then used to type activity parameters, action pins, flow prop-
erties of interface blocks, and properties referenced by item flows (item properties), messages, signals, 
etc. Using a common repository for all of the kinds of things that flow is a key principle of effective 
interface management.

FIGURE 16.20

Initial distiller internal configuration with item flow and allocation.
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A naming convention for item properties is used to identify the items flowing through the system. 
The main flow of water (H2O) through the Distiller is shown as follows: main1 is the flow of H2O into 
the system and into the cold loop of the consenser; main2 is the flow of H2O out of the cold loop of the 
condenser and into the evaporator; main3 is the flow of H2O (steam) out of the evaporator and into the 
hot loop of the condenser; and main4 is the flow of H2O (condensate or pure water) out of the con-
denser and out of the system. The flow of sludge has been similarly designated: sludge1 flows out of 
the evaporator and into the drain valve, and sludge2 flows out of the drain valve and out of the system. 
The only additional flow is q1, which represents heat flowing into the system and into the evaporator.

The Distiller’s structure is defined on the block definition diagram, and the connection and context 
of how these elements are used, along with the physical flows, are represented on the internal block 
diagram. The allocation of behavior (actions) to structure (parts) is in the context of the Distiller sys-
tem, using allocate activity partitions presented in Figure 16.18. It is now appropriate to allocate the 
flow in the activity model to flow in the structural model.

16.5.5 � ALLOCATION OF FLOW
In the activity diagram, the flows are as specified by the name and type of the action pins, and the object 
flows provide the context and connection between the pins. When specifying flows as part of the struc-
ture, ports specify what can flow on blocks and parts, and item flows specify what actually flows in the 
context of the owning block. In this example, object flows are allocated directly to item properties, 
requiring the type of the action pins connected by the object flow to be checked for consistency with 
the type of the item property. Each object flow on the activity diagram (Figure 16.18) is allocated to a 
corresponding unique item property on the internal block diagram (Figure 16.20). Subsequent analysis 
of system performance focuses on relevant characteristics of these item properties, such as temperature 
and mass flow rate.

The matrix presented in Figure 16.21 is used to depict flow allocation. The arrows in the matrix 
represent the direction of the allocation relationship. A matrix like this generally provides a more com-
pact representation of flow allocation than callouts or compartments.

Allocation
Matrix

FIGURE 16.21

Allocating flows from Distill Water object flows to Distiller properties.
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16.6 � ANALYZE PERFORMANCE
In this section, the Distiller performance is analyzed to determine the feasibility of the design.

16.6.1 � ITEM FLOW HEAT BALANCE ANALYSIS
A key aspect of distiller performance is the appropriate balance of mass flow and heat flow through the 
system. To evaluate the flow balance, the analysis focuses on the physical flow of water and heat, as 
expressed by item properties on the internal block diagram. An alternative analysis approach that 
focused on the flows in the activity diagram was briefly explored but discarded in favor of the more 
intuitive approach of analyzing physical flow on the internal block diagram.

The feasibility of the design is assessed by fixing the mass flow rate of the H2O through the system 
and then analyzing the heat flow required for the associated H2O temperature and phase changes. This 
analysis is simplified by the fact that the entire system is isobaric; that is, the pressure throughout the 
system is assumed uniformly atmospheric.

Figure 16.22 depicts the parametric diagram used to support this analysis. The Distiller Isobaric 
Heat Balance block is designated by the diagram frame. Establishing a clear analysis context is impor-
tant, especially early in the design process. This diagram is used to express simple mathematical rela-
tionships between the physical flows, consistent with the simplifying assumptions listed in Section 
16.5.2. The twelve rectangular boxes on the left of the diagram (main1.mass flow rate : gm/sec, main1.
water temp : °C, and so on) represent value properties (e.g., mass flow rate) within item properties (e.g., 
main1) on the Distiller internal block diagram (Figure 16.20). Note that each item property has associ-
ated value properties unique to its usage, such as temperature and mass flow rate. Specific heat and 
latent heat are common, invariant (read only) properties of H2O that also need to be considered in the 
analysis, so they are included as well. The round-angles on the right of the diagram represent constraint 
properties of the Initial Distiller Analysis block; each has a corresponding constraint expressed as a 
mathematical formula enclosed within curly brackets. Before the analysis can proceed, an instance of 
the entire distiller system must be created, thus providing slots for specific values for each of the value 
properties. The name of this instance of the distiller is initial distiller.

Based on the topology of the initial distiller design, the steady state mass flow rates main1, main2, 
main3, and main4 must be equal. This equivalence is presented in Figure 16.22 by the value bindings 
between initial distiller.main1.mass flow rate, initial distiller.main2.mass flow rate, initial distiller.
main3.mass flow rate, and initial distiller.main4.mass flow rate.

The system must concurrently heat water and condense steam as specified in the activity dia-
gram. The single-phase heat transfer equation, which is applied when heating liquid water, relates 
mass flow rate, change in temperature, and specific heat to heat flow (q rate). Note that the con-
straint heating feedwater : Single Phase Heat Xfer Equation shows each of these parameters in 
small square boxes. Binding connectors are used to bind the value properties associated with the 
main1 and main2 mass flow rates and temperatures and the specific heat of water to the parameters 
of this constraint. The q rate from condensing : Phase Change Heat Xfer Equation is bound to an 
intermediate value property of distiller, initial distiller.q_int : dQ/dt, which is in turn the q rate for 
s1 : Single Phase Heat Xfer Equation. This is because the energy used to heat the water comes 
from condensing steam.



40716.6  Analyze Performance

A simple phase change equation is used to determine how much heat needs to be extracted for a 
given mass flow rate of steam. In this example, the constraint block, Phase Change Heat Xfer Equation, 
is used both for condensing steam and for boiling water. This equation is defined only once as a con-
straint block, and it used to type the two constraints: condensing and boiling. Both condensing and 
boiling constraints have identical parameters but are bound to different properties. Specific heat and 
latent heat are bound as value properties of main4 out of convenience; they are inherited from H2O and 
are constant across all four flows.

This parametric diagram defines the mathematical relationships between properties, but it does not 
execute the analysis. It explicitly constrains properties of the items that flow through the distiller. The 
next step is to perform the analysis by evaluating the equations.

16.6.2 � RESOLVING HEAT BALANCE
An analysis tool (i.e., a constraint solver) is used to solve the constraints specified by the parametric 
diagram above. As shown in Figure 16.23, a typical mass flow rate through the system is set as a given 
parameter, and the input heat flow q1 is the target value to be solved. 10gm/sec (approximately 36L/hr) 

FIGURE 16.22

Defining parametric relationships as a prelude to analysis.
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was chosen as a mass flow rate large enough to service a village of about 200 people. This capacity will 
need to be revisited during subsequent cost/performance trades, but it is adequate for this initial heat 
balance analysis.

The values and equations are passed to the analysis tool to solve for the target value of input 
heat flow. In this case, an alert is generated indicating that the system of equations may be over 
constrained. A check reveals that the heat used to bring a fixed mass of feed water from 20 to 100° 
C is about 1/7th of the heat that must be removed from the same mass of steam to condense it fully. 
The cooling flow through the condenser is not enough to adequately condense the steam. Without 
a way to remove more heat from the steam, this is determined to be an infeasible design.

16.7 � MODIFY THE ORIGINAL DESIGN
Since the analysis revealed a fundamental flaw in the original distiller design, this section describes 
modifications to the design to overcome performance limitations.

16.7.1 � UPDATING BEHAVIOR
As presented in Figure 16.24, the design is modified by adding another part called diverter assem-
bly :, which is represented as an allocate activity partition with an action to divert water called a5 
: Divert Feed. This now allows excess heated water to exit the system without entering the  
boiler.

FIGURE 16.23

Analysis reveals a problem in the initial design.
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16.7.2 � UPDATING ALLOCATION AND STRUCTURE
The allocate activity partition corresponds to a new part, which includes another usage of the pre-
viously defined Valve block. This new part, its internal structure, and the associated flows are 
presented in the internal block diagram in Figure 16.25. This assembly is decomposed into a split-
ter : Tee Fitting to divert most of the flow out of the system (m2.2 : H2O), and a feed : Valve to 
throttle the water entering the boiler (m2.1 : H2O). The diverter assembly : is a simple collection 
of parts. The use of nested connector ends avoids the need to use flow ports on the diverter 
assembly.

Note how the block Valve has been reused. The drain : Valve and the feed :Valve each have two 
ports, both of which have the same definition but are connected differently.

This refined distiller design seems feasible and represents an adequate point of departure for a more 
detailed design. The previous parametric analysis is updated, and results are presented in  
Figure 16.26. The analysis tool is used to solve for the relative flow through the feed valve and is able 
to complete the calculation with no alerts or inconsistencies. Note that in a steady-state condition, the 
feed valve allows only 14.8% of the total flow to enter the boiler. This analysis establishes the maxi-
mum percentage of total flow that can feed the boiler. A more complete analysis of the distiller can now 
be performed, considering cooling of the condensate in the condenser and heating of water in the boiler 
as mentioned in Section 16.5.2. Elaborating this distiller model to this more general case is left as an 

FIGURE 16.24

Revising behavior to accommodate diverting feed water.
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exercise for the student. Note that the structural design of the distiller may not need to change, but that 
the functional allocation and the parametric analysis will definitely need to be updated.

16.7.3 � CONTROLLING THE DISTILLER AND THE USER INTERACTION
Up to this point, the design has not explicitly considered how the user interacts with the distiller. The 
design seems adequate for continuous operation, but the process of starting up and shutting down the 
distiller must now be specified.

A design excursion is proposed that considers how the distiller operability can be enhanced if a 
source of reliable electrical power is available. The availability of electrical power can facilitate control 
of the distiller in two ways: it allows for electric heating, and it also allows for a controller/processor to 
monitor the operation and perform routine adjustments to the distiller, thus greatly simplifying the 
operation of the distiller and minimizing the training and skill required. A control panel provides a 
uniform centralized operator interface for the distiller.

The original use case diagram presented in Figure 16.6 is still valid, but the Operate Distiller use 
case needs to be elaborated to address startup, steady-state operation, and shutdown using a control 
panel based interface. The use case description is as follows:

The Operator starts by turning the Distiller on and observes a Power Lamp On. When the Distiller 
reaches operating temperature, the Operator observes the Operating Lamp On; the distiller then cycles 

FIGURE 16.25

Revised distiller internal structure with flow diverter.
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as it produces distilled water. The Operator turns the Distiller off, and the Power Lamp Off signal is 
returned by the Distiller.

The next section examines the interaction of the operator, control panel, and controller during dis-
tiller operation.

FIGURE 16.26

Analysis of revised distiller confirms benefit of flow diverter.
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16.7.4 � DEVELOPING A USER INTERFACE AND A CONTROLLER
The interaction between the distiller Operator, the Control Panel, and the distiller Controller is pre-
sented on a sequence diagram in Figure 16.27. This does not reflect detailed interactions of distilling 
water but rather the specific operator interface with the distiller. This interaction imposes additional 
requirements and associated design changes on the distiller, including the parts needed for the Operator 
to provide inputs to the system and system status to the Operator (e.g., the lamps), and for the auto-
mated control of some distiller functions.

FIGURE 16.27

Defining operator interaction using a sequence diagram.
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Figure 16.28 presents an internal block diagram that reflects the update to the design to realize the 
use case. A Control Panel has been added with the switches to turn the Distiller on and off and lamps 
that the operator observes. A Controller has been added to ensure that the valves are operated in the 
proper sequence and that the lamps are turned on and off.

Power input is provided to the heaters in the Boiler to convert electrical power to heat. It makes 
sense to use the controller to provide power to the Boiler. An interface block named Boiler Signals is 
used to specify the kind of signals expected to pass between the Controller and the Boiler. Flow proper-
ties in the Boiler Signals interface block may include information such as the position of float switches 
in the boiler to indicate whether the level is high or low.

Figure 16.29 presents the new interface blocks necessary for this advanced design. Note that 
Boiler Signals uses two flow properties, control and status, and the direction is appropriate for the 
heat and valve : Controller presented in Figure 16.28. The evaporator : Boiler uses a conjugate 
port with the same interface block as the port on the Controller. The Cport interface block includes 
a flow property for controlling one valve, and the Pport interface block includes a flow property 
for electric power.

FIGURE 16.28

Distiller internal structure with controller and user interface.
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16.7.5 � STARTUP AND SHUTDOWN CONSIDERATIONS
The startup, shutdown and other aspects of system control can be specified by a state machine diagram 
for the Controller, as presented in Figure 16.30. The states and transitions in the diagram are identified 
by examining the sequence diagram associated with the Operate Distiller use case.

FIGURE 16.29

Interface block for boiler signals.

FIGURE 16.30

Controller state machine for distiller.
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Several things have to happen before transitioning the Distiller from the Off state, in which it is cold 
and dry, to the On state, where it begins producing clean water. The first step is to fill the boiler with 
water. While in the Filling state, the feed : Valve opens. As soon as the water level in the Boiler is ade-
quate to cover the heater coils, the heater can be turned on without damage. The system can now enter 
the Warming Up state, where the boiler heaters are turned on and the boiler begins to warm up.

Once the boiler temperature reaches 100° C, the system enters the Operating state. In this state, the 
boiler heaters are still on, but two substates, Controlling Boiler Level and Controlling Residue, occur 
in parallel. In this example, control of residue relies on a simple timer to transition between the Build-
ing Up Residue substate when the drain : Valve is closed and the Purging Residue substate when the 
drain : Valve is open to dispose of the residue. The Distiller state machine periodically blows down the 
boiler to limit the sludge build up.

When controlling the water level in the Boiler, one of three substates exists: either Level OK, in 
which case the drain : Valve and feed : Valve both need to be closed; Level Low, in which the feed : Valve 
needs to be open; or Level High, where the drain : Valve needs to be open.

When operations are finished, the Distiller goes through a shutdown procedure. Otherwise, corro-
sion will severely limit the lifespan of the Distiller. The first step in this procedure is to cool the system. 
In the Cooling Off state, the heaters are turned off and the feed : Valve and the drain : Valve opened, 
allowing cool water to flow freely through the entire system. Once the boiler temperature reaches a safe 
level, the Boiler needs to be drained. In the Draining state, the feed : Valve is shut while the drain : 
Valve remains open and all water is drained out of the Boiler. Once the Boiler is empty, the Distiller 
power is safely switched off.

16.8 � SUMMARY
This example presents how SysML can be used to model a system with a traditional functional analysis 
method. The example also illustrates its application to modeling physical systems with limited software 
functionality. Examples of each SysML diagram are used to support the specification, design, and 
analysis, along with leveraging some of the fundamental SysML language concepts such as the distinc-
tion between definition and use.

16.9 � QUESTIONS
The following questions may best be addressed in a classroom or group project environment.
 
	1.	 �Evaluate the “significant simplifying assumption” mentioned in Section 16.5.2.
	 a.	 �Describe how the activity model depicted in Figure 16.24 should be modified to account for 

the fact that water may be heated in the evaporator and the condensate may be cooled in the 
condenser. In other words, the temperature of water entering the evaporator and the condensate 
leaving the condenser may be less than 100°C.

	 b.	 �Describe how the parametric model depicted in Figure 16.22 needs to be modified to accom-
modate these changes, and describe the overall impact of adding this fidelity to the heat 
balance.
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	2.	 �The customer has introduced this new requirement: “The water distiller shall be able to operate at 
least 2 meters vertically above the source of dirty water.” Show the impact of this new require-
ment on the system design, as expressed in each of the following modeling artifacts.

	 a.	 �Requirement diagram (relate new requirement to existing requirements).
	 b.	 �Activity diagram (define and incorporate new activities to support the new requirement).
	 c.	 �Block definition diagram (define and incorporate new blocks to support the new requirement).
	 d.	 �Internal block diagram (define flows and interfaces to any new parts necessary to support the 

new requirement, and any functional and flow allocations from the activity diagram).
	 e.	 �Parametric diagram (describe how the heat balance is affected by this new requirement).
	 f.	 �Use case diagram (describe any changes to the operational scenario).
	 g.	 �Sequence diagram (elaborate any changes to the Operate Distiller use case).
	 h.	 �State machine diagram (describe how the Controller state machine would be affected by the 

preceding design changes).
	3.	 �Concern has been expressed about the energy inefficiency of the revised distiller design, in that 

only 1/7th of the water entering the distiller actually emerges as clean water, and the rest is simply 
used for cooling. Lowering the pressure in the evaporator can significantly reduce the temperature 
at which the water boils, thus reducing the amount of energy used and also requiring less cooling 
water.

	 a.	 �Redesign the distiller so that the evaporator can operate at below atmospheric temperature. 
Update the activity model with any additional actions required and the structural model with 
any additional components required.

	 b.	 �Assume that the minimum safe temperature for boiling water in a distiller is 70° C. Update the 
parametric model to determine the steady state mixing valve position, using 70° C for the 
temperature of main 2, main 3 and main 4, and keeping the other parameters the same as in 
Figure 16.26.

	4.	 �Discuss the applicability and physical significance of control flows in the distiller activity model 
as presented on Figure 16.12 and Figure 16.14. In which situations are control flows useful 
representations of behavior?
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CHAPTER

RESIDENTIAL SECURITY 
SYSTEM EXAMPLE USING THE 
OBJECT-ORIENTED SYSTEMS 
ENGINEERING METHOD

The example in this chapter describes the application of SysML to the development of a residential 
security system using the Object-Oriented Systems Engineering Method (OOSEM). A simplified 
version of this method is introduced in Chapter 3, Section 3.4, and a typical set of modeling artifacts 
resulting from its application is introduced in the Automobile example in Chapter 4, Section 4.3.

The application of OOSEM along with the functional analysis method in Chapter 16 is an example 
of how SysML is applied using a model-based systems engineering method. SysML can be applied 
with other methods as well. The intent of this chapter is to provide a robust model-based system speci-
fication and design method that readers can adapt to meet the needs of their application.

This chapter begins with a brief introduction to the method and how it fits into an overall develop-
ment process, and then it shows how OOSEM is applied to the residential security example. The reader 
should refer to the language description in Part II for the foundational language concepts used to model 
this example.

17.1 � METHOD OVERVIEW
This section provides an introduction to OOSEM. It includes the motivation and background for the 
method, a high-level summary of the system development process that provides the context for OOSEM, 
and describes the OOSEM system specification and design process that is part of the system develop-
ment process.

17.1.1 � MOTIVATION AND BACKGROUND
OOSEM is a top-down, scenario-driven process that uses SysML to support the analysis, specification, 
design, and verification of systems. The process leverages object-oriented concepts and other modeling 
techniques to help architect flexible and extensible systems that can accommodate evolving technology 
and changing requirements. OOSEM is also intended to ease integration with object-oriented software 
development, hardware development, and test processes.

In OOSEM and other model-based systems engineering approaches, the system model is a primary 
output of the system specification and design process. The model artifacts present different views of the 
system such as behavior, structure, properties, and traceability to its requirements. OOSEM helps ensure 
the various views provide a consistent representation of the system, as described in Chapter 2, Section 2.1.2.

17
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OOSEM includes the fundamental systems engineering activities such as stakeholder needs analy-
sis, requirements analysis, architecture design, trade studies and analysis, and verification. It has simi-
larities with other methods such as the Harmony process [7, 8] and the Rational Unified Process for 
Systems Engineering (RUP SE) [10, 11], which also apply a top-down, scenario-driven approach that 
leverages SysML as the modeling language. OOSEM leverages object-oriented concepts such as 
encapsulation and specialization, but these concepts are applied at the system level somewhat differ-
ently than they are applied to software design. In particular, OOSEM integrates structured analysis 
concepts, such as data flow, with selected object-oriented concepts. OOSEM also includes modeling 
techniques, such as causal analysis, black box and white box descriptions, logical decomposition, par-
titioning criteria, node distribution, variant design, and enabling systems that span the life cycle, to deal 
with a broad spectrum of system concerns. In particular, OOSEM emphasizes the separation of con-
cerns to manage complexity and integrate the concerns into a cohesive model of the system.

OOSEM was developed in 1998 [53,54] and further evolved as part of a joint effort between Lock-
heed Martin Corporation and the Systems and Software Consortium (SSCI), which previously was the 
Software Productivity Consortium [9]. Early pilots were conducted to assess the feasibility of the 
method [55], and then it was further refined by the INCOSE OOSEM Working Group beginning in 
2002. In its original form, OOSEM utilized UML with nonstandard extensions to express many of the 
modeling artifacts. Tool support was substantially improved for OOSEM with the adoption of the 
SysML specification beginning in 2006.

17.1.2 � SYSTEM DEVELOPMENT PROCESS OVERVIEW
The full system engineering lifecycle process includes processes for developing, producing, deploying, 
operating, supporting, and disposing the system. The successful output of the development process is 
a verified and validated system that satisfies the operational requirements, capabilities, and other life-
cycle requirements for production, deployment, support, and disposal.

OOSEM is part of a development process that was originally based on the Integrated Systems and 
Software Engineering Process (ISSEP) [56]. A modified version of this process as it applies to OOSEM 
is highlighted in the Develop System process in Figure 17.1, and includes the management process, the 
system specification and design process, the development processes at the next level of design, and the 
system integration and verification process. In the figure, the development processes includes the devel-
opment of the hardware, software, database, and operational procedures. More generally, this process 
can be applied recursively to multiple levels of a system’s hierarchy in a way similar to a Vee develop-
ment process [57], where the development process is applied to successively lower levels of the system 
hierarchy. This development process is different from a typical Vee process in that it applies both the 
management processes and the technical processes at each level of the Vee, whereas a typical Vee pro-
cess applies only the technical processes at each level of the Vee.

Applying the process at each level result in the specification of elements at the next lower level of 
the system hierarchy. For example, applying the process at the system-of-systems (SoS) level results in 
the specification and verification of one or more systems. Applying the process at the system level 
results in the specification and verification of the system elements, and applying the process at the ele-
ment level result in the specification and verification of the components. The hardware and software 
development processes are then applied at the component level to analyze the component requirements 
and to design, implement, and verify the components.
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The leaf level of the process is the level at which an element or component is procured or imple-
mented. In the automobile design example in Chapter 4, if the automotive design team procures the 
engine, the team specifies the engine requirements as indicated in Figure 4.16 and verifies that the 
engine satisfies its requirements. On the other hand, if the engine is subject to further design, the pro-
cess is applied to the next level of engine design to specify the engine components and verify that the 
components satisfy their requirements.

The development process may be applied iteratively throughout different phases of development 
including conceptual design, preliminary design, detailed design, and later phases as shown in  
Figure 17.2. However, the levels and detail of the specification and design process is generally adapted 
to the phase of development. For example, during the early conceptual design phase, the process is 

FIGURE 17.1

System development process.



CHAPTER 17  RESIDENTIAL SECURITY SYSTEM420

applied at the SoS and system level to identify the external systems, critical mission parameters, and 
mission performance. This is followed by the identification of major system elements, key functional-
ity, physical sizing constraints, and critical system properties such as response times, accuracies, range, 
speed, and power consumption. During the preliminary and detailed design phases, the emphasis shifts 
to detailed specification and design of the system elements and components respectively, and in later 
phases the emphasis shifts to the integration and verification of the components, system elements, and 
system. In practice, some level of design and verification activity is often done throughout all phases of 
development. The development team must determine the scope and rigor of specification and design 
that is appropriate for their application at each level of design and each phase of development, and tailor 
the method accordingly.

The following subsections provide a high-level summary of each process shown in the Develop 
System process in Figure 17.1.

Manage system development
This process includes project planning and controlling the execution of the work in accordance with the 
plan. Project control includes monitoring cost, schedule, and performance metrics to assess progress 
against the plan, to manage risk, and to control changes to the technical baseline. The model-based 
metrics described in Chapter 2, Section 2.2.5 can be used to support the management process.

The management process also includes selection of the lifecycle model, such as waterfall, incre-
mental, or spiral, that defines the ordering of the activities for each level of design and for each phase 
of development. Use cases that are defined in the model provide units of functionality that can serve as 
an effective organizing principle for planning and controlling the scope of work to be accomplished for 
a particular development spiral or increment. For example, the design realization of selected mission 

FIGURE 17.2

The specification and design activities are applied to progressively lower levels of the system design hierarchy 
(e.g., system, element, component) during each phase of the system development process.
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use cases or the design of critical infrastructure elements that supports the realization of multiple use 
cases may take priority for a particular design increment.

The management process also includes tailoring the activities and artifacts defined by the systems 
engineering methods to meet the project’s needs. Tailoring depends on the level of design and the phase 
of development as noted previously, plus a variety of other factors that may include the extent to which 
the system is a new design (i.e., unprecedented), the system size and complexity, the available time and 
resources, and the level of experience of the development team. As an example, a system design may 
be constrained to include significant legacy or predefined commercial off-the-shelf (COTS) compo-
nents. This can significantly impact which activities are performed and the ordering of the activities. 
The activities may include early characterization of the COTS component capabilities in parallel with 
other system specification and design activities. The design emphasis is placed on how the COTS com-
ponents interact to achieve the system requirements and how to interface with the COTS components.

Additional tailoring of the process and its artifacts may be required for specific domains at each 
level of the system’s hierarchy. For example, applying the method to specify and design the power 
train, body, braking, and steering assembly of an automobile each include unique types of analysis that 
need to be performed and require specific design techniques and modeling artifacts.

Specify and design system
This process is implemented by OOSEM, which is summarized in Section 17.1.3, and applies to the left 
side of the Vee process. The system specification and design process includes activities to analyze the 
system requirements, define the system architecture, and specify the requirements for the next level of 
design. The next level of design performs a similar set of activities to satisfy its requirements. For more 
complex systems, there may be multiple intermediate levels of design, which are generically referred 
to as “element levels.” The component level is typically the lowest level of design that the hardware, 
software, database, and operational procedures are designed, implemented, and tested. The specifica-
tion and design activities also provide requirements and test cases as inputs to the Integrate and Verify 
process that is performed on the right side of the Vee process.

Develop hardware, software, database, and operational procedures
These development processes include the analysis and further refinement of the specification that is 
flowed down from the next higher level, and the design, supporting analysis, implementation, and veri-
fication of the components. For hardware, implementation is accomplished by fabricating and/or con-
structing the hardware components; for software, implementation is accomplished by generating code 
for the software components. If there are multiple intermediate levels of hardware and software, the 
development process in Figure 17.1 can be applied recursively to each intermediate level.

Integrate and verify system
This process integrates the system elements and/or components and verifies that the integrated design 
satisfies its requirements. The process includes developing verification plans, procedures, and meth-
ods (e.g., inspection, demonstration, analysis, testing), conducting the integration and verification, 
analyzing the results, and generating the verification reports. OOSEM supports the right side of the 
Vee by specifying the test cases at each level of design. The test cases are then used to develop the 
verification plans and procedures and the requirements for the verification system as described in 
Section 17.3.8,
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Product integration and verification is performed as part of the processes on the right side of the 
Vee, where the physical hardware and software are integrated at each level, and the test cases are exe-
cuted to verify that the component-, element-, and system-level requirements are satisfied. In a model-
based approach, design integration and verification can also be performed early in the design process 
to gain confidence that the system, element, and components satisfy their requirements. This is some-
times called virtual integration and verification. This process is accomplished by integrating a lower-
level design model into a higher-level design model and then verifying that the integrated model at each 
level satisfies its requirements through analysis. As an example, design integration and verification of 
an automobile design may include verifying the engine controller design model satisfies its require-
ments through analysis, and then integrating the engine controller design model into the engine design 
model. After verifying through analysis that the engine design satisfies its requirements, the engine 
design model is integrated into the automobile system design model, which is then verified. The inte-
grated model is used to verify that the engine component designs satisfy their requirements, the engine 
design satisfies its requirements, and the automobile system design satisfies its requirements using a 
combination of design and analysis models.

17.1.3 � OOSEM SYSTEM SPECIFICATION AND DESIGN PROCESS
Figure 17.3 is a high-level summary of the OOSEM Specify and Design System process. A simplified 
version of this process is introduced in Chapter 3, Section 3.4. The number in each action refers to the 
section number in this chapter where the action is further elaborated and described. The referenced 
section includes an activity diagram to show the next level of detail. To simplify the process descrip-
tion, the activity diagram includes neither the process iteration loops nor the input and output artifacts 
from each activity. However, the referenced sections in Figure 17.3 include a description and example 
of the modeling artifacts that are produced. The action names are shown in lower case, but the names 
of the corresponding activity names in the referenced sections start with upper case.

The Set-up Model activity establishes the basic prerequisites for developing the model, including 
establishing the modeling guidelines and organizing the model (refer to Section 17.3.1). The Ana-
lyze Stakeholder Needs activity characterizes the as-is system and enterprise, describes its limita-
tions and potential improvement areas, and specifies the mission requirements that the to-be system 
must support (refer to Section 17.3.2). The Analyze System Requirements activity specifies the sys-
tem requirements in terms of input and output responses and other black-box characteristics needed 
to support the mission requirements (refer to Section 17.3.3). The Define Logical Architecture activ-
ity decomposes the system into logical components and defines how the logical components interact 
to realize the system requirements (refer to Section 17.3.4). The Synthesize Candidate Physical 
Architectures activity allocates the logical components to physical components that are implemented 
in hardware, software, data, and procedures (refer to Section 17.3.5). The Optimize and Evaluate 
Alternatives activity is invoked throughout the process to perform engineering analysis that supports 
system design trade studies and design optimization (refer to Section 17.3.6). The Manage Require-
ments Traceability activity is used to manage traceability from the mission-level requirements to the 
component requirements (refer to Section 17.3.7). OOSEM also includes activities that support the 
Integrate and Verify System process (refer to Section 17.3.8). Each of these activities is applied to 
the residential security example in the rest of the chapter. The simplified MBSE method in Chapter 3,  
Section 3.4 excludes the logical architecture design activity, and only includes a subset of the other 
activities.
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When capturing this method for use by an organization or project, the level of detail of the process 
documentation should be tailored to address organizational and project needs. The documentation can 
be further elaborated to describe the detailed process description for creating each modeling artifact, 
such as a use case. In addition, the process flows can be further refined to reflect the design iterations 
and the flow of inputs and outputs. This level of detail is not included in any of the process flows in this 
example to simplify the process description. The process can be documented in a process modeling 
and/or process authoring tool and published to a web environment. This approach facilitates mainte-
nance, the tailoring of the process, and the use of the process information. In the example below, the 
process model is contained in a package called OOSEM Process.

FIGURE 17.3

OOSEM Specify and Design System process. The action numbers refer to the subsection where the action is 
described.
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17.2 � RESIDENTIAL SECURITY EXAMPLE OVERVIEW
This section provides an overview of the residential security example, including the problem back-
ground and project startup activities.

17.2.1 � PROBLEM BACKGROUND
A company called Security Systems, Inc., has been providing residential security systems to the local 
area for many years. Their security systems are installed at local residences and are monitored by a 
central monitoring station (CMS). The system is intended to detect potential intruders. When an intruder 
is detected by the security system, an operator at the CMS contacts the local emergency dispatcher who 
dispatches the police to the residence to intercept the intruder.

Security Systems, Inc., had a successful business for many years. In the past several years, however, 
their sales significantly dropped, and many of their existing customers have terminated their contracts 
in favor of their competitors. It has become evident to the management of the company that their cur-
rent system is becoming obsolete in terms of its capabilities and that they must reestablish their market 
position. In particular, they have decided to launch a major initiative to develop an enhanced security 
system (ESS) that is intended to help regain their market share.

17.2.2 � PROJECT STARTUP
The Systems Engineering Integrated Team (SEIT) is responsible for providing technical management 
as part of the manage system development process in Figure 17.1, including technical planning, risk 
management, the technical baseline management, and technical reviews. In addition, the SEIT includes 
team members who are responsible for the system requirements analysis, system architecture design, 
engineering analysis, integration, and verification of the ESS, as described in Chapter 1, Section 1.4. 
The implementation teams are responsible for analyzing the requirements that are allocated to the ESS 
components by the SEIT, designing and implementing the components, and verifying that the compo-
nents satisfy their requirements.

The SEIT selected an incremental development process as its lifecycle model. During the first incre-
ment, the SEIT established the incremental project plan and project infrastructure. The second incre-
ment includes analysis of stakeholder needs, specifying the black-box system requirements, and 
evaluating and selecting the preferred system architecture and specifying the preliminary component 
requirements for the proposed ESS solution. The follow-on increments focus on architecture refine-
ment and implementing the component requirements needed to achieve incremental capabilities cor-
responding to selected ESS use cases.

As part of establishing the project plan and infrastructure during the first increment, the initial 
activities for the modeling effort included defining the modeling objectives; scoping the model to meet 
the objectives; selecting and tailoring the MBSE method; selecting, acquiring, and installing the tools; 
defining the schedule for the modeling activities and delivery of the modeling artifacts; staffing the 
effort; and providing the necessary training.

The SEIT selected OOSEM as their model-based systems engineering method in conjunction with 
SysML as their graphical modeling language. This was based on the results of an earlier pilot project 
to assess how well the method and tools would support their needs (refer to discussion on pilots in 
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Chapter 19, Section 19.1.4). They selected tools based on the tool selection criteria described in  
Chapter 18, Section 18.5. The systems development environment includes SysML modeling tools, a 
UML-based software development environment; hardware design tools; engineering analysis tools; 
testing tools; configuration management tools; a requirements management tool; and other project 
management tools for planning, scheduling, and risk management. The SEIT and selected members of 
other implementation teams received training in SysML, OOSEM, and the use of their selected tools.

17.3 � APPLYING OOSEM TO SPECIFY AND DESIGN THE RESIDENTIAL 
SECURITY SYSTEM

The example in this chapter is intended to describe the modeling activities for the second increment. 
During this increment, the ESS modeling is initiated and used to specify and validate system require-
ments, architect the solution, and allocate requirements to the ESS hardware, software, and data com-
ponents. The components are either developed by the implementation teams or procured as COTS 
products. It is anticipated that there will be significant software and database development, but the 
hardware components—such as sensors, cameras, processors, and network devices—are primarily 
COTS. The model is also used to develop new operational procedures for the customers and central 
monitoring station operators that define how to interact with the system.

The following subsections elaborate the Specify and Design System process and artifacts that were sum-
marized in Section 17.1.3. The subsection numbers correspond to the numbers referenced in the actions in 
Figure 17.3. The activities—Manage Requirements Traceability and Optimize and Evaluate Alternatives—
are included toward the end of this section, even though they occur as supporting activities throughout this 
process. The model objectives and scope for this example are intended to illustrate the approach by focus-
ing on the intruder-monitoring thread and not elaborating other functionality of the system.

17.3.1 � SETUP MODEL
Setting up the model is a critical first step in any modeling effort. This includes establishing the model-
ing conventions and standards, and organizing the model as shown in Figure 17.4.

Establish modeling conventions and standards
Modeling conventions and standards are needed to ensure that consistent presentation and style of 
modeling is applied across the model, and to help ensure the integrity of the model. The conventions 
and standards can be defined, documented, and shared at the organizational level, such that each indi-
vidual project is able to use them as their starting point.

The conventions and standards include establishing naming conventions for diagrams and for model 
elements, such as package names. The conventions and standards also identify other stylistic aspects of 
the language, such as when to use upper case versus lower case and when to use spaces in the names, 
and also account for tool-imposed constraints, such as limitations on the use of alphanumeric and spe-
cial characters. It is also recommended that a template be established for each diagram kind to highlight 
diagram layout standards. Additional guidelines can be developed to generate customized reports from 
the model, customize the language concepts and terminology through stereotypes, and develop custom-
ized scripts for model checking.
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Some example guidelines that are used in this example include the following:
 

Use of Upper and Lower Case
Upper case is used for the first letter of each word for all definitions/types, such as blocks and 
value types, and for packages and requirements, with a space between compound names that have 
more than one word.
Example: “Video Camcorder”
Lower case is used for all letters in names of parts, properties, item properties, actions, and states 
with a space between compound names that have more than one word.
Example: “record data” (this is an action name)
Verb/Noun Form—The verb/noun form is used to name activities, actions, and use cases.
Example: “Monitor Intruder” (this is an Activity Name)
Names of Port Types—Names of port types typically are appended with IF for interface.
Examples: “Video IF”
Tool-Specific Notation—The diagrams in this chapter are generated directly from a modeling tool 
with little post editing. Some of the notation may differ somewhat from the SysML specification 
that is described in Part II due to tool specific implementations. However, the guidelines should 
note any tool specific notations as distinct from the standard notation.
Model Element Descriptions—Another example of a modeling guideline is defining the appropri-
ate level of text description for each model element. A standard text description may include a 
terse definition of the model element and possibly the source of the information. This can be 
captured as a comment or in the documentation field for the model element that most tools 
provide. If this is done properly, it can enhance the understandability and maintenance of the 

FIGURE 17.4

Set-up Model process.
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model. This information can also support automated generation of documentation from the model, 
which can include both the diagrams and the text descriptions. Chapter 18, Section 18.4.5 
describes how documents and other views can be automatically generated from the model.
Customized Stereotypes and Model Libraries—Projects often require customization of the 
language with specific stereotypes that are applicable to their domain and/or method. Table 17.1 
contains a list of user-defined stereotypes for an OOSEM-specific profile of SysML that is used in 
this example. In addition to these stereotypes, a project using OOSEM may choose to define 
additional stereotypes and model libraries that are unique to their domain. The approach for 
defining a profile is described in Chapter 15, Section 15.4.

 
Some terms used in this example are unique to this method, including:

 
Domain—This term is used to represent the scope of the model.
Example: Operational Domain refers to the portion of the model that includes the operational 
system, users, and environment. The term Operational Context is a synonym for Operational 
Domain.
Enterprise—An aggregation of systems and users that work together to accomplish a goal. In 
OOSEM, the term System-of-Systems could be considered a synonym for Enterprise.

Table 17.1  OOSEM-Specific Profile of SysML-User-Defined Stereotypes

OOSEM Stereotype Base Class

«analysis» Block, Property
«caused by» Dependency
«configuration item» Block, Property
«data» Block, Part Property
«document» Block
«failure mode» Constraint Block
«file» Block, Part Property
«hardware» Block, Part Property
«logical» Block, Part Property
«mop» Property
«moe» Property
«node logical» Block, Part Property
«node physical» Block, Part Property
«operator» Block, Part Property
«procedure» Block, Part Property
«software» Block, Part Property
«status» Property
«store» Property
«system of interest» Block, Part Property
«test component» Block, Part Property
«test objective» Comment, Requirement
«violates» Dependency
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Example: Security Enterprise refers to the logical aggregation of the security system, emergency 
services, and the communication systems that collaborate to respond to emergencies.
Logical—An abstraction of a physical entity that is intended to capture its functionality but is not 
constrained by the specific technology or implementation.
Example: An entry sensor is a logical component that is an abstraction of a physical component 
such as an optical sensor or contact sensor.
Subsystem—A logical aggregation of components that either perform one or more system func-
tions (Example A) or have a common feature among the parts (Example B).
Example A: A power management subsystem that is an aggregation of components that manage 
and distribute power
Example B: An electrical subsystem that is an aggregation of electrical components
Node—A partitioning of entities based on some criteria. A node in OOSEM is generally used to 
describe a distributed system where each node represents a partitioning of components based on 
their physical location. Nodes may also be defined based on other criteria such as organizational 
responsibility (e.g., the people and resources assigned to a particular department).
Example: The Site Installation nodes and the Central Monitoring Station node represent a set of 
components at different physical locations.
Mission—A primary task that the system(s) and enterprise are intended to support.
Example: The Enhanced Security System and Emergency Services support the mission to 
“Enhance security of life and property by providing emergency response for single-family resi-
dence, multi-family residence, and small business, to theft, burglary, fire, and health and safety.”
Customized model scripts—A project can leverage the model in many ways to improve productiv-
ity, quality, and provide additional capabilities. This is often done through the development and 
use of customized scripts that most modeling tools support. The scripts can be used to implement 
validation rules that validate that the model conforms to the project guidelines. The scripts should 
be subject to proper development guidelines and made available in a common library to be applied 
consistently throughout the project and/or organization.

 

Organize the model
The model organization is recognized as a critical aspect of developing an effective system model. The 
complexity of the system model can quickly overwhelm the users of the model and become intractable, 
particularly for large distributed teams. This in turn can impact the ability of model developers to main-
tain a consistent model and to maintain control of the model baseline. Refer to Chapter 6 for consider-
ations for how to organize the model with packages.

OOSEM includes a standard approach for how to organize the model that is defined by the package 
structure. The model organization builds on the concepts first introduced as part of SysML-Lite in 
Chapter 3, Section 3.3 and in Chapter 4, Section 4.3.1 but includes additional package structure to deal 
with more complex models.

The model organization typically includes a recursive package structure that mirrors the system 
hierarchy. A package may be defined for a block that is further decomposed. This package may contain 
nested packages for the blocks requirements, structure, and behavior, and may include additional nested 
packages for the blocks at the next lower level of system decomposition. The parametrics or analysis 
package may also be included at each level of the system hierarchy or maintained at the top level.
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The model organization also includes other packages that are not nested within the packages at each 
level of the system hierarchy. These packages contain model elements that may be reused at multiple 
levels of the system hierarchy, such as packages for value types and viewpoints. These packages may 
contain their own hierarchy consisting of nested packages that may be independent of the system 
hierarchy.

The model organization for this example is highlighted by the package structure in the package 
diagram and browser view in Figure 17.5. The package diagram named Model Organization shown in 
the figure mirrors the model organization presented in the browser view.

The OOSEM Profile Extensions is one package, and the Model is the other package at the top level 
of the containment tree. The Model package contains packages for Process Guidance, Security Domain 
as-is, Security Domain to-be, Value Types, and Viewpoints.

The Process Guidance package provides a convenient mechanism to capture process definition, tool 
issues, and other process information that is captured by the systems engineering team throughout the 
modeling process. If the information is relevant across projects, it should be reflected in updates to the 
organization’s standard processes. For this example, the package contains the activity diagrams that 
describe OOSEM, including the activity diagram in Figure 17.3, and the lower-level activities that are 
included in Section 17.3.1–7. Alternatively, other process-modeling tools can be used to capture the 
process information, which can be referenced from this package.

The Security Domain as-is package contains model information about the as-is domain to aid in 
understanding the limitations of the current system and enterprise and to identify the parts of the as-is 
model that may be reused in the to-be model.

The Value Types package contains value types with units and quantity kinds for use throughout the 
model. This package imports the ISO 80000 package (not shown), which contains a library of standard units 
and quantity kinds. Value types and the ISO 80000 model library are described in Chapter 7, Section 7.3.4.

The Viewpoints package contains viewpoints and associated views for different ESS stakeholders. 
Viewpoints and views are described in Chapter 15, Section 15.8. The viewpoints for this example are 
discussed in Section 17.3.5 under the subsection Defining Other Architecture Views.

The Security Domain to-be package contains nested packages that contain systems and enterprises 
that implement different lifecycle processes. In particular, it contains the Installation package and the 
Operational package, but could contain other packages for other lifecycle processes, such as Manufac-
turing, Support, and Disposal. Each of these packages contains model elements that specify the systems 
that implement a particular lifecycle process. For example, the Installation package contains model ele-
ments that specify and design the installation system and enterprise to implement the installation pro-
cess. The model elements in this package represent the installers and the installation system, including 
the installation trucks and installation equipment. The Installation package is described in Section 17.3.9.

Most of the elaboration of this model is contained within the Operational package, since the focus 
of this example is on the design of the operational system called ESS. The Operational package con-
tains nested packages for Requirements, Structure, Use Cases, Behavior, Parametrics, Interface Defi-
nitions, and the ESS, which is the system of interest. Some of the package names start with a number 
to establish the order in which they appear in the package hierarchy. However, these numbers are not 
included when they are referenced in the text below. The packages for other lifecycle processes are 
organized similar to the Operational package.

The Operational package contains model elements that describe different aspects of the operational 
domain. The Requirements package contains the mission requirements for the ESS. The Structure 
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package defines the context for the ESS, including its external systems and users. The Use Cases pack-
age contains the enterprise use cases that the ESS must support. The Behavior package contains the 
mission scenarios for each use case. The Parametrics package contains the top level engineering analy-
sis that support trade studies and design optimization.

The Interface Definitions package contains the input and output definitions and the port specifica-
tions that are used throughout the model. These definitions are not limited to a single level of the hier-
archy and are therefore contained at the highest level at which they apply. The ESS package contains 
the model elements that represent the ESS. As shown in Figure 17.5, the ESS contains nested packages 
for its Black Box Specification, Logical Design, Node Logical Design, Node Physical Design, and Veri-
fication. The Node Physical Design contains nested packages for hardware, software, data, and opera-
tional procedures (not shown).

Each of the preceding packages contains model elements that are created by applying OOSEM to 
the specification and design of the system. The content of each package is described in the sections of 
this chapter that correspond to the OOSEM activity that the content is created.

Diagrams contained in particular packages are highlighted in the browser with special symbols that 
are unique to each tool. As an example, a symbol in Figure 17.5 towards the bottom of the browser 
refers to the Model Organization package diagram shown in the tool’s diagram area.

As described in Chapter 5, Section 5.2, the diagram frame actually designates a model element. The 
model element that is designated by the diagram frame determines where the diagram appears in the 
browser hierarchy. In this case, the diagram frame corresponds to the Model as indicated in the diagram 
header, so the diagram symbol appears under the Model in the browser.

Model elements contained in one package can be related to model elements contained in another 
package. When a model element from another package appears on a diagram, its fully qualified name 
identifies the package that contains it. This enables each model element on a diagram to be uniquely 
identified, even if two model elements in different packages have the same name. The fully qualified 
name can be shown with the double-colon notation described in Chapter 6, Section 6.6. The fully quali-
fied name is elided in figures throughout this chapter to reduce diagram clutter.

In order to ease the navigation of the model, it is sometimes useful to create a package diagram that 
contains hyperlinks to the diagrams of interest that facilitates navigation to selected modeling artifacts. 
The diagram symbol for the package diagram named Navigation is also shown in the browser. This 
diagram includes hyperlinks to other diagrams contained throughout the model to enable easy access 
to the diagrams without having to know the details of the package structure. An example of a diagram 
hyperlink icon is shown in the Model Organization package diagram in Figure 17.5. Clicking on this 
icon provides a hyperlink to the Navigation diagram.

17.3.2 � ANALYZE STAKEHOLDER NEEDS
The Analyze Stakeholder Needs activity is referenced in Figure 17.3 and is shown in Figure 17.6. As 
mentioned previously, this simplified process flow does not include inputs and outputs or process itera-
tions. Performing this activity provides the analysis to understand the stakeholder problems to be 
solved, specify the mission-level requirements that must be satisfied, and set the context for the 
system(s) needed to solve the problem.

This analysis includes assessing the limitations of the current systems by characterizing the 
as-is system and enterprise and by performing causal analysis to determine the limitations and 
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potential improvement areas from the perspective of each stakeholder. Analysis results are used to 
derive mission requirements and overall objectives for the to-be system and enterprise that address 
the limitations of the current system and enterprise. The modeling artifacts generated from this 
activity include the causal analysis, mission requirements, the to-be domain model, the enterprise 
use cases, and the measures of effectiveness. A mission requirements review is conducted to vali-
date that the mission requirements address the stakeholder needs and the proper context is set for 
the solution.

FIGURE 17.6

Analyze Stakeholder Needs activity to specify mission requirements.



43317.3  OOSEM to Specify and Design the Residential Security System

A stakeholder refers to any person or organization that has an interest in the ESS across its lifecycle, 
including ESS development, installation, operations, and support. The stakeholder identification 
includes users of the system, installers of the system, and participants involved in the development of 
the system. As the specification and design process progresses, additional stakeholders are identified, 
such as the police who respond to ESS alerts. The stakeholders and their concerns are explicitly cap-
tured in viewpoints, which are discussed at the end of Section 17.3.5.

For this example, OOSEM is applied to the design of a single system called ESS. The external sys-
tems, such as Emergency Services, are assumed to be specified and are not subject to further design As 
a result, there is little emphasis placed on developing the architecture at SoS or enterprise level. If SoS 
or enterprise architecting is required, then the OOSEM specification and design activities are first 
applied at the SoS level [58] and then recursively applied to the system and lower levels of design. In 
particular, the OOSEM activities following analyze stakeholder needs in Figure 17.3 would include 
activities to analyze SoS requirements, define SoS logical architecture, and synthesize candidate SoS 
physical architectures. The output from these activities is the SoS architecture, which is followed by 
analyzing the system requirements. As noted in Section 17.1.2, additional tailoring is required to adapt 
the method to each level of design.

Characterize as-is system and enterprise
The as-is system, users, and enterprise are characterized at a level sufficient to understand the 
stakeholders’ concerns. This involves modeling the as-is system and enterprise only as needed to 
provide insight into the problem. If an as-is solution does not exist, there is obviously nothing to 
characterize, and one can proceed directly to specifying the mission requirements. However, a cur-
rent set of users, systems, and enterprises are already in place, which provide a starting point for 
the analysis.

The Operational Domain as-is is shown in the block definition diagram in Figure 17.7. It includes 
a top-level block called the Operational Domain as-is, which provides the context for the other blocks 
in the domain. This block is decomposed into the Security Enterprise as-is and Site as-is, which has a 
multiplicity that indicates there can be from one to many sites.

In OOSEM, an enterprise block is established to represent an aggregation of systems and users that 
collaborate to achieve a set of mission objectives. In this example, the as-is enterprise includes the as-is 
security system, which is stereotyped as the «system of interest»; the Emergency Services, which 
includes the Dispatcher and the Police; and the Communication Network, which enables communica-
tion between the as-is security system and the Emergency Services. These blocks collaborate to monitor 
a residence for potential intruders.

The sites that are being protected are external to the enterprise. Each site is composed of a Single-
Family Residence with one or more Occupants and zero to many Intruders.

The domain model described above helps establish the boundary between the system of interest and 
the external systems and users with which the system either directly or indirectly interacts. The as-is 
security system includes multiple site installations, as indicated by the multiplicity on the association 
end, and a single central monitoring station. Note that the site installation, which represents the secu-
rity equipment that is installed at a site, is owned (black diamond) by the Security System as-is and is 
referenced (white diamond) by the Single-Family Residence as-is. The reference provides a mecha-
nism to represent a more complex system boundary, where a part is owned by one block and referenced 
by another.
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In Figure 17.8, an alternative depiction of the as-is domain shows the system and external sys-
tems in iconic form. This provides a means to communicate a simplified depiction of the as-is 
operational domain that can be annotated to represent selected interactions and relationships 
among the entities. The relationships between the entities could be expressed as associations, but 
for the purpose of this example, it is assumed that they are merely annotations on the block defini-
tion diagram. The relationships are expressed later as connectors with item flows on an internal 
block diagram.

Perform causal analysis
The as-is system and enterprise are analyzed to assess their capabilities and limitations and to identify 
potential improvement areas. Other sources of data may be required to support this analysis, including 
marketing data such as customer surveys and competitive data.

A useful technique for structuring the causal analysis is to use a fishbone diagram to present a tree of 
cause–effect dependencies. A fishbone diagram showing the causal analysis for the Security Enterprise as-is 
is shown in Figure 17.9. The root node of the tree represents a problem from the perspective of each stake-
holder. This problem can be related to one or more measure of effectiveness (moe) that represents stake-
holder value. The nodes of the tree can impact the root of the tree through their cause-effect dependencies.

Business sales are a moe of particular importance to the company owner, as well as to the investors 
of Security Systems, Inc., and Lack of Sales is the corresponding root of the tree. The cause–effect 

FIGURE 17.7

The as-is operational domain.
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dependencies show that sales are impacted by Customer Satisfaction and the Market Size. Customer 
Satisfaction is measured in terms of System Cost and Security Effectiveness. System Cost is measured 
in terms of its Installation Cost and Service Cost. Security Effectiveness is measured in terms of 
response time, false alarms, missed detections, and other parameters.

A similar causal analysis is performed for the other ESS stakeholders—including the customer, the 
police department, and internal stakeholders such as central monitoring station operators and system 
installers. The stakeholder concerns for the police department include the number of false alarms and 
the associated cost to the city of unnecessary deployment of resources. The cause–effect relationships 
for each stakeholder can be integrated into a composite fishbone diagram to provide a comprehensive 
multi-stakeholder view of the problems and potential contributing factors. The stakeholder viewpoints 
defined at the end of Section 17.3.5 should reflect these concerns.

In this example, the fishbone diagram is not expressed in SysML, but the diagram can be referenced 
under the Parametrics package. If this diagram needs to be expressed more formally, stereotypes can 
be defined to represent the relevant concepts, similar to the approach shown in Figure 17.21, which 
captures constraint violations and cause–effect dependencies to support identification of failures. This 
kind of modeling artifact can be used to support analysis of various kinds, including failure modes and 
effects analysis, fault tree analysis, risk analysis, and others.

Additional engineering analysis is performed to quantify the impact of the contributing parameters 
implied by the fishbone diagram, such as the contribution of response time, false alarm, and cost param-
eters to the moes. This analysis may include timeline analysis, reliability analysis, and lifecycle cost 
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The as-is operational domain (iconic presentation).
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analysis. This analysis is captured in parametric diagrams as discussed later in this section and in  
Section 17.3.6.

For this example, a primary deficiency identified during the causal analysis is the limited functional-
ity of the current security system relative to the competing systems. A stakeholder need is identified to 
extend the functionality beyond intruder detection to include protection for fire and medical emergen-
cies. Also, it was determined that the market size for the security systems needs to be expanded to 
provide protection for multi-family residences and small businesses in addition to single-family 
residences.

Specify mission requirements
Based on the preceding analysis, a prioritized set of mission requirements is defined that address the 
limitations of the as-is domain. The mission requirements are captured as text requirements, as shown 
in the requirement diagram in Figure 17.10. The top-level mission requirement for the ESS includes the 
text statement, “Enhance security of life and property by providing emergency response for single-
family residence, multi-family residence, and small business, to theft, burglary, fire, and health and 
safety.” The mission requirements are contained in the Operational::Requirements package. The trace-
ability between the mission requirements and lower-level requirements is discussed in Section 17.3.7.
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Causal analysis of the Security Enterprise as-is from the Company Owner perspective.
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Capture measures of effectiveness (moe)
Moes are mission-level performance requirements that reflect value to the customer and other stake-
holders. They are derived from the stakeholder needs analysis that includes causal analysis and other 
mission analysis. The moes for the ESS are the emergency response time, probability of intruder con-
viction, availability, and operational cost. The target value for each moe is established to address stake-
holder needs and achieve a competitive advantage.

The moes are captured in the top-level parametric diagram in Figure 17.11. The «objective Func-
tion» defines the overall cost effectiveness of the design solution in terms of a weighted sum of the 
utility associated with each parameter of the objective function. The parameters of the objective func-
tion are bound to the moes, which are properties of the Security Enterprise.

Engineering analysis is performed throughout the development effort to support evaluation, selec-
tion, and optimization of the design solution in terms of the moes. A parametric diagram can be defined 
to support the analysis of each moe. The parametric diagram relates the moe to the lower-level param-
eters that impact the moe value. This provides a mechanism to flow down the moes to critical system 
parameters, also known as technical performance measures (tpms) or measures of performance (mops), 
as the model is further elaborated. This is discussed further in Section 17.3.6.

Define to-be domain model
Based on the preceding analysis, the scope for the to-be system and enterprise can be established. The 
block definition diagram for the to-be operational domain is shown in Figure 17.12. The diagram pres-
ents the hierarchy of blocks with the Operational Domain as the top-level block. This block is con-
tained in the Operational::Structure package. The to-be operational domain includes significant 
changes from the as-is operational domain in Figure 17.7. The to-be operational domain reflects the 
broader set of mission requirements that were derived from the causal analysis.

The Emergency Services includes the Fire Fighter and Paramedic in addition to the Police and 
Dispatcher that were included in the as-is domain. The Police, Firefighter, and Paramedic are 

FIGURE 17.10

ESS mission requirements.
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subclasses of Responder. The Multi-Family Residence, Small Business, and Single-Family Residence 
are specializations of Property from the as-is domain. The Physical Environment is included because 
the system must now monitor the environment for fire.

More generally, capturing the physical environment and classifying the different types of environ-
ments are important considerations in the design of the system. As an example, the ESS environment 
may also include the electromagnetic environment induced by lightning. These effects are then subject 
to analysis and factored into the specification and design.

The Security Enterprise is responsible for satisfying the mission requirements and providing pro-
tection services to the customer and Occupants. The moes are a special kind of value property («moe») 
of the Security Enterprise block along with their corresponding units. Target values and/or value distri-
butions can be specified as well. The Security Enterprise is composed of the ESS, Emergency Services, 
and Communications Network. The ESS replaces the as-is security system and is the «system of 
interest» for this development effort.

The Investigator investigates burglaries, thefts, and other mishaps to increase the probability of 
intruder conviction. This moe significantly impacts the specification and design of the ESS by requiring 

FIGURE 17.11

ESS top-level parametric diagram showing operational cost effectiveness and its relationship to the measures 
of effectiveness (moes).
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the ESS to capture and store information about emergency events that can be accessed by the 
Investigator.

As complexity increases, it may be necessary to create a separate block definition diagram of the 
specialization hierarchies for the external systems and users to reduce the amount of information shown 
on a single diagram.

Define enterprise use cases
As noted above, the Security Enterprise is responsible for satisfying the mission requirements. 
Mission objectives can be derived from the mission requirements in Figure 17.10 and used to define 
the Security Enterprise use cases. The mission objectives and associated use cases are to provide 
responses to intruders, fire, and medical emergencies, as shown in the use case diagram in  
Figure 17.13. Each use case is specialized from a more general use case called Provide Emergency 
Response.

FIGURE 17.12

The to-be operational domain.
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An extending use case called Mitigate Failure is also defined. Introducing this use case at the mis-
sion level provides a starting point for developing fault tolerant solutions to mitigate failure modes that 
can impact the success of the mission.

An additional use case, called Provide Investigative Data, supports post-emergency response actions, 
such as providing evidence to convict an intruder. This use case includes the Investigator as an actor.

The Security Enterprise is the subject in the use case diagram and is used by the actors to achieve 
the use case goals (i.e., mission objectives). The actors are allocated to the blocks that are external to 
the enterprise in the Operational Domain block definition diagram in Figure 17.12. The Physical Envi-
ronment is also shown as an actor that participates in the Provide Fire Emergency Response use case to 
indicate its role as the source of the fire.

The use cases in this example refine the mission requirements using the refine relationship. An exam-
ple of the refine relationship is shown in Figure 17.56. The use cases may also trace to other source docu-
mentation such as a concept of operations or marketing data. The enterprise use cases are further elaborated 
by mission scenarios that define the interaction between the actors and the enterprise or its parts. This 
analysis is used to help specify the ESS black-box requirements, as described in the next section.

Each use case may be augmented with a use case description (as discussed in Chapter 12,  
Section 12.4.2) that includes a textual description of the use case scenario. Many books are available 
that cover how to write and model use cases for software analysis [49]. The textual description can be 
captured as SysML requirements that can be traced to other model elements, such as specific actions in 
an activity diagram. The use case description may include additional information such as alternative 
flows and pre- and post-conditions.

FIGURE 17.13

Security Enterprise Use Cases.
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17.3.3 � ANALYZE SYSTEM REQUIREMENTS
The Analyze System Requirements activity is shown in Figure 17.14. This activity specifies the require-
ments for the system as a black box in terms of its input and output behavior and other externally observ-
able characteristics. Scenario analyses for each of the enterprise use cases describe how the system interacts 
with the external systems and users identified in the domain model to achieve the mission objectives.

The scenarios are modeled using either activity diagrams with activity partitions or sequence dia-
grams. A system context diagram is described using an internal block diagram of the operational 
domain to define the interfaces between the system and the external systems and users. Critical system 
properties, which can impact the measures of effectiveness, are identified. Based on this analysis, the 
system is specified as a black box in terms of its system functions, interfaces, stores, and performance 
and physical properties. The system state machine specifies the conditions and events that trigger the 
functions or operations that the system performs in support of the use case scenarios. As described in 
Section 17.3.7, the text requirements to specify the system are related to the system black box and its 
features, and traceability is maintained from mission level down to component level.

In addition to specifying the black box, design constraints that are imposed on the system design, 
such as the required use of a COTS component, are also identified and captured and later integrated into 
the architecture. The identification of potential failures, based on analysis of the system functions, sup-
ports the development of a fault tolerant system design. Requirements variation analysis is performed 
to evaluate the probability that a requirement will change, and the results are used in the architecture 
activities to architect a robust solution that can accommodate the potential requirements change.

A system requirements review is conducted to validate that the requirements address the stakeholder 
needs and mission requirements and to ensure the quality of the requirements (e.g., sufficient, unam-
biguous and concise, verifiable). This review may be performed incrementally, perhaps at the comple-
tion of the analysis for each enterprise use case.

Define mission scenarios
In this activity, one or more mission scenarios are defined for each enterprise use case to specify the inter-
action between the system and the external systems and users to achieve the use case goals (i.e., mission 
objectives). The mission scenarios provide the basis for specifying the system behavioral requirements. A 
complete set of scenarios that correspond to each primary and alternative path for each use case are 
needed to specify the system requirements completely. Some refactoring of the use cases may be done to 
leverage common functionality that can be shared across different use cases. The selection of the use case 
scenarios should ensure sufficient coverage of the required functionality by considering the following:
 
	•	� High likelihood scenarios;
	•	� Performance stressing scenarios and scenarios that significantly impact the moes;
	•	� Failure and exception scenarios;
	•	� Critical system functionality;
	•	� New system functionality; and
	•	� Interactions that include all external systems and users.
 

The mission scenarios are modeled with activity or sequence diagrams. The activity partitions (also 
known as swim lanes) in the activity diagram or the lifelines in the sequence diagram represent the 
system and external systems and users from the to-be domain model. For this example, the mission 
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FIGURE 17.14

Analyze System Requirements activity to specify black-box system requirements.
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scenarios are expressed with activity diagrams. The actions in the activity partition are performed by 
the entity that corresponds to the activity partition.

A representative enterprise use case scenario, called Provide Intruder Emergency Response, is 
shown in Figure 17.15. This scenario is contained in the Operational::Behavior package and corre-
sponds to the Provide Intruder Emergency Response use case in Figure 17.13. The scenario is expressed 

FIGURE 17.15

The Provide Intruder Emergency Response scenario realizes an enterprise use case.
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by an activity diagram with activity partitions for the ESS, Emergency Services, Occupant, and Intruder. 
The ESS and Emergency Services are sub partitions of the Security Enterprise. (Note: If the method is 
being applied at the SoS level, then the Enterprise is treated as a black box without defining its subpar-
titions until the next level of design.) The actions in each activity partition specify what the correspond-
ing block must do. The ESS must activate and deactivate the system in response to the Occupant input 
and must monitor the environment to detect an Intruder. The allocate activity partition described in 
Chapter 14, Section 14.6.3 can be used to allocate responsibility for the actions.

The accept event action represents the arrival of an Intruder. The streaming pins on the monitor 
intruder action indicate that the action continues to accept inputs and/or provide outputs as it monitors 
the environment to detect the Intruder. The Alert Status output from the monitor intruder action asserts 
that the output must be in the validated state for the alert message to be sent to the Emergency Services, 
which imposes additional requirements on the ESS.

Another feature in this activity diagram is the use of three flow final nodes (symbol with X inside of 
circle). One example shows the output control flow from deactivate system terminating on a flow final 
node. This enables the deactivate system action to complete without terminating the overall activity.

In order to specify the inputs and outputs of the actions fully, their pins must be typed. The block 
definition diagram in Figure 17.16 specifies the type of the input and output pins for the actions in the 
Provide Intruder Emergency Response activity diagram. The tool should perform type checking to 
confirm the compatibility between the output and input types, and provide a validation error if they do 
not conform to the matching rules. These types are also used to type the item properties in the corre-
sponding internal block diagram described in the next section.

FIGURE 17.16

Input and Output Definitions for the Provide Intruder Emergency Response scenario.
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Define system context
The System Context diagram is shown as an internal block diagram in Figure 17.17. This diagram 
depicts the ESS and its interfaces to the external systems and users that participate in the mission sce-
narios. The frame of the internal block diagram corresponds to the Operational Domain block. The 
parts of the Operational Domain correspond to the Security Enterprise and the enterprise actors from 
the block definition diagram in Figure 17.12. The parts typed by ESS and Emergency Services are 

FIGURE 17.17

System Context showing the interfaces between the ESS and the external systems, users, and physical 
environment.
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nested within the seo:Security Enterprise, and the parts typed by Occupant, Property, Intruder, and 
Physical Environment are nested within the s:Site. The input and output flows (i.e., object flows) from 
the Provide Intruder Emergency Response activity diagram in Figure 17.15 are allocated to item flows 
that flow across the connectors between the parts (refer to Chapter 14, Section 14.7). The item proper-
ties are typed by the type of the input and output pins from the activity diagram.

Ports are used to specify interfaces that describe how parts are connected to each other. The details are 
specified by the type of the port and in some cases by the type of the connector. The port types can specify 
detailed interface specifications for logical and physical interfaces as described in Chapter 7, Section 7.6. 
The type of the port can contain flow properties to specify the items that can flow through the port. The 
item flows indicate the types of things that flow across the connectors, including Electrical Power, 
Occupant Input, Site Status, Target Signatures, and Alert Status. The item flows on the connector and the 
flow properties contained in the ports must conform to the compatibility rules described in Section 7.4.3.

Capture critical system properties and constraints
Critical performance requirements can be captured as value properties of the system black box or of 
items that flow. For example, the required system response time may be specified as a value property of 
the system black box, and the max flow rate that the system can support may be specified as a value 
property of an item that flows in or out of the system black box. The performance requirements are 
derived based on engineering analysis.

One example of a performance analysis is a timeline analysis. The timing diagram in Figure 17.18 
specifies the mission timeline for the Provide Intruder Emergency Response scenario in Figure 17.15. 
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Intruder Emergency Response timeline.
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The actions from the activity diagram are shown on the y-axis, and the required or assumed time to 
perform the actions are shown on the x-axis. The timeline is used to allocate time to each action in the 
scenario in order to satisfy the mission response time that was identified as a moe. In this example, the 
intruder detection response time is the time from the intruder entering the property until the ESS reports 
the alert to the Emergency Services. This is viewed as a critical system property, referenced as a mea-
sure of performance and expressed as «mop» in the model. The value for this property can be budgeted 
based on its impact on overall security effectiveness. Figure 17.18 is a UML timing diagram that is not 
part of SysML. A timeline is one of many presentations that can be used to visualize the results of an 
engineering analysis.

Other critical system properties that require analysis to satisfy requirements include probability of 
intruder detection, probability of intruder identification, and probability of intruder false alarm. The 
constraints on these properties are captured in parametric diagrams as part of the engineering analysis 
described in Section 17.3.6 and contribute to the moes in Figure 17.11.

Specify black-box system requirements
The application of OOSEM results in the specification of the system based on the scenario analysis and 
other engineering analyses performed, as described earlier in this section. The specification is often 
called a black-box specification in that it defines the system’s externally observable behavior and physi-
cal characteristics. The black-box specification does not specify how the system achieves the externally 
observable behavior, which is defined by the system design. Design constraints may augment the black-
box specification to constrain how the black-box requirements are implemented. An example is a 
design constraint to use a particular COTS component or a particular algorithm in the design.

The specification of a black box is expressed as a block with the following features:
 
	•	� The required functions it must perform and the associated inputs and outputs. The required 

functions are modeled as activities that are allocated to the block or methods of the operation of 
the block. The associated inputs and outputs are the inputs and outputs to the action or operation 
that calls the activity.

	•	� The required external interfaces that enable it to interact with other external systems and users. 
The interfaces are specified by the ports on the block and the associated port type.

	•	� The required performance and quality characteristics that impact how well the functions must be 
performed or a physical characteristic such as its weight and size. These characteristics are 
specified as value properties typed by Value Types that define the units and quantity kind. The 
value properties may have deterministic values or probability distributions associated with their 
values. Constraints on value properties are captured using parametric constraints. OOSEM applies 
the «mop» stereotype to properties that are identified as critical (e.g., can significantly impact 
mission performance).

	•	� The required control in terms of input events and pre-conditions that determine when functions 
are performed. The required control is expressed by a state machine for the block that specifies 
which activities are performed in response to different triggering events, and their associated 
guard conditions.

	•	� The required items that the system must store including data, energy, and mass. The required 
stores can be modeled as reference properties of the block. OOSEM applies the «store» stereo-
type to these properties.
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The specification features for the ESS block are shown in Figure 17.19. In this example, an opera-
tion is defined for the ESS block that corresponds to each action in the ESS activity partition in Figure 
17.15. Additional operations are defined for each action in the other mission scenarios that are ana-
lyzed. The action in the ESS activity partition in the activity diagram can be a call operation action 

FIGURE 17.19

ESS black-box specification.
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or a call behavior action. The call operation action calls an operation of the block. This method of 
the operation can be an activity. Alternatively, the action can be a call behavior action that  
calls an activity that is allocated to the ESS block. For this example, call behavior actions are used, 
but the call behavior actions are allocated to operations of the block with the same name. The  
activity that is called by the call behavior action is allocated to the block. This hybrid approach 
enables the operations to be used as a proxy for the actions, which can then be inherited and 
redefined.

The performance properties, such as probability of intruder detection, probability of intruder false 
alarm, intruder detection response time, and mean time between failures, are stereotyped as measures 
of performance «mop». Parametric constraints on these properties can support various engineering anal-
ysis. The ports and their types specify the system interfaces. The items that are stored, such as the 
:Event Log, :Sensor Data, and aux pwr:Electrical Power are reference properties that are stereotyped 
as «store». The state machine, shown in the classifier behavior compartment, is also part of the black 
-box specification and is discussed in the next subsection.

The black-box specification and its features can be related to the mission requirements as described 
in Section 17.3.7 using the appropriate requirements relationships. Traceability can be defined at a fine-
grained feature level or at a less granular level depending on the need.

The black-box specification can be applied at any level of design, including system, element, and 
component levels. This approach to specifying features of a block is used later in the chapter to specify 
component requirements.

Define system state machine
The activity diagrams for each mission scenario define actions that the ESS must perform. The ESS 
state machine specifies the composite behavior that the ESS must perform based on the actions from all 
of the scenarios that the ESS participates in. The state machine specifies when the ESS performs spe-
cific actions. This is done by specifying when a state is entered and exited and enabling specific behav-
iors in specific states. The transition between states is triggered by events subject to the guard conditions, 
and the events are associated with the receipt of inputs (i.e., signal or call event), a change event, or time 
event. The details of state machines are discussed in Chapter 11.

The ESS evaluates the guard conditions in response to an input event to determine whether to 
transition to a next state. The guard conditions can specify conditions on the input values, current 
state, and resource availability. If the transition is triggered, the block executes the exit behavior 
from the current state, executes the transition behavior (i.e., effect), and enters the next state. It then 
executes the entry behavior of the next state followed by its do/behavior, which is defined by an 
activity. (Note: If the next state is a composite state, the ESS transitions from the initial pseudostate 
to its nested state.) The transition behavior may include a send signal action that can trigger a transi-
tion in an external system’s state machine. The entry, exit, do, and transition behaviors can corre-
spond to activities called by call behavior actions in the ESS activity partition. The system’s logical 
and physical design must implement the control requirements imposed by the system state machine 
including receipt of inputs, evaluation of guard conditions, changes of state, and invocations of 
behavior.

A state machine specifies the control requirements as a series of statements as follows. If an input 
event occurs while in the current state and the guard conditions are satisfied, then the system transitions 
to the next state and executes the specified actions within the specified performance constraints. This 
transition logic can also be reflected in an activity diagram using constructs such as pre- and 
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post-conditions on actions, guard conditions on control nodes, interruptible regions, accept event 
actions, and send signal actions.

A portion of the ESS state machine is shown in Figure 17.20. The state machine includes power off, 
power up, power on, and power down states. The power on state is a composite state with multiple 
regions for activation-deactivation, intruder monitoring, fire monitoring, fault monitoring, and power 
source management. The system has an active state in each of its orthogonal regions at any given time.

The system transitions from deactivated to activated based on the Activate Select. As shown in the 
intruder monitoring region, the ESS initially transitions to the intruder nonalert state. If an intruder is 
detected and the ESS is in the activated state, it sets the alarm and transitions to the intruder alert state. 
In the intruder alert state, the alert is initially unvalidated. Once the alert has been validated, the system 
transitions to the validated state and sends the validated intruder alert to Emergency Services.

Identify potential failures
A systematic approach to identify potential failure modes and/or off-nominal conditions is an essential 
step to achieve a fault tolerant design. Common failure analysis methods include fault tree analysis and 
failure modes, effects, and criticality analysis (FMECA).

In OOSEM, the Mitigate Failure use case in Figure 17.13 provides a starting point for this analysis. 
This use case is elaborated through further analysis of the failure and exception scenarios noted earlier 
in this section. The black-box specification facilitates the identification of potential failure modes and 
off-nominal conditions by clearly specifying the system functions and other features of the black box 
that can fail [59]. As the design progresses, the failure modes of the system are related to failure modes 
introduced by the system elements and components, as well as other external contributors to failure 
such as high stress environmental conditions and threat induced failures.

The identification of failures and their dependencies are input to and/or reconciled with the fault tree 
analysis and FMECA. The FMECA is a bottoms-up analysis that identifies failure modes associated 
with the components, whereas the fault tree analysis is a top-down analysis that identifies failure modes 
and fail events associated with the functions and performance.

The potential failures can be identified for each function by assessing the inability to perform, based 
on the requirements for that function. This includes the inability for the function to produce its expected 
outputs within its nominal performance bounds. For example, if an air conditioner is intended to main-
tain the steady state air temperature (T) within an acceptable temperature range between Tmin and 
Tmax, then the air conditioner is off-nominal when T<Tmin or T>Tmax. Off nominal performance 
does not necessarily imply a failure. A failure mode may be defined in terms of more extreme threshold 
values than the thresholds for off-nominal performance. In the air conditioner example, a failure mode 
may be defined when the temperature exceeds the minimum or maximum threshold, such as when 
T<Tmin-10 or when T>Tmax+10.

The failure mode for the air conditioner that occurs when the output air temperature is below the 
lower temperature threshold, is often a different failure mode than when the output air temperature 
exceeds the upper temperature threshold. For example, a room temperature below its lower threshold 
may be caused by a failure mode of a switch that is stuck in the cool-on position, whereas a room tem-
perature above its upper threshold may be caused by a failure mode of the compressor, so the air con-
ditioner is unable to cool the air. In general, for each output of each function, at least one failure mode 
can be identified when the output is below some minimum performance threshold and another failure 
mode can be identified when the output is above some maximum performance threshold.
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FIGURE 17.20

ESS State Machine.
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The threshold for off nominal performance and failure modes may vary over time or as a function 
of the state of the system or component. For the air conditioner example, the temperature thresholds 
may be different during the night versus during the day.

Another kind of failure mode occurs when the system produces unanticipated outputs. For example, 
the air conditioner should not produce outputs other than conditioned air and status data for the user. If 
the air conditioner leaks coolant into the environment, this is considered an off-nominal condition and/
or a failure mode depending on its severity.

OOSEM includes specific stereotypes to capture failure modes and their dependencies. Failure 
modes can be identified based on the analysis of the ESS functions in Figure 17.15. In Figure 17.21, a 
potential failure mode of the ESS called Alarm Signal Stuck Off is the inability for the monitor intruder 
to generate the Alarm Signal. A second failure mode called Alarm Signal Stuck On occurs when the 
Alarm Signal cannot be turned off. The Alarm Signal Stuck Off failure mode could potentially be 
caused by the inability for the ESS to activate system, which is required to Set Alarm based on the state 
machine in Figure 17.20. Other failure modes that are not shown for monitor intruder are associated 
with the Alert Status output, and called High Probability of Intruder False Alarm and Low Probability 
of Intruder Detection.

There are various contributors to a failure mode. An off-nominal input to a function can contribute to 
an off-nominal output of the function. The off-nominal input in turn may result from a failed output from 
another function, such as the impact of an Inability to Activate failure mode in Figure 17.21 causing an 
inability to generate an alarm signal. This may also result from a failure of the connection so that the 
output from one function is not received as an input to another function. The failure may also be caused 

FIGURE 17.21

Failure mode identification and causal dependencies.
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by a component failure that occurs from an off-nominal environmental condition, such as when a part 
breaks due to thermal or structural stress. The component failure can in turn impact the functions that 
the component performs, such as the failure of an overheated circuit card that causes the failure to per-
form one or more functions. As noted above, the component failures are often identified by the FMECA.

As the design progresses, lower-level functions are identified along with their failure modes. The 
failure modes associated with the inability of a lower-level function to meet its performance may result 
in the failure mode of the parent function to meet its performance. For example, the inability to flow air 
through a clogged air filter adversely impacts the parent function to cool the air.

An operation of the black box called manage faults imposes a requirement on the ESS to provide 
fault management functionality. Alternative approaches are identified to reduce the likelihood of failure 
and/or to detect, isolate, and recover from the failure if it does occur. The alternative fault management 
approaches are evaluated and selected as part of the architecture and design tradeoffs. In addition, test 
cases are defined to inject potential faults to verify that the mitigation performs as intended.

Analyze system requirements variation
Requirements variation analysis is intended to define the potential change in requirements that can 
result from different sources, such as a likely change to an external interface, a possible increase in the 
number of system users, or possible new functionality. A systematic approach for identifying potential 
requirement changes is to evaluate each feature of the system block in Figure 17.19 that correspond to 
the system functional, interface, and performance requirements, along with each item flow and external 
entity in Figure 17.17. This evaluation can identify how the system black box specification and its con-
text are likely to change. For the ESS, some potential requirements changes can result from assessing 
the potential increase in the number of expected site installations shown in Figure 17.17, as indicated 
by the multiplicity on the Site Installation. Other requirements changes can result from assessing the 
possible additional ESS functionality, such as monitoring carbon monoxide or extinguishing fires, 
which can be defined as additional operations of the ESS in Figure 17.19.

Requirements variation is evaluated in terms of the probability that a requirement will change and 
its potential impact, which can be quantified as high, medium, or low. The results of the analysis are 
input to the risk analysis to assess the technical, cost, and schedule impact of the change and to develop 
risk-mitigation strategies. The mitigation strategy is reflected in the architecture and design approach, 
such as isolating the source of the changing requirement on the design. A similar approach can be 
applied to assess potential technology changes.

In addition to the potential variation in requirements described above, it is often the case that there 
are planned variant designs, each with different requirements. It is appropriate to capture the black-box 
specifications for each variant. This typically involves identifying the common and variant features of 
the black box and generating subclasses with redefinition as required. As the design evolves, each vari-
ant specification will result in a variant design. The approach to developing variant architectures is 
briefly described in Section 17.3.4.

Identify system design constraints
Design constraints are those constraints that are imposed on the design solution, which in this example 
refers to the ESS design. These constraints are typically imposed by the customer, by the development 
organization, or by external regulations. The constraints may be imposed on the hardware, software, 
data, operational procedures, interfaces, or any other part of the system. Examples may include a 
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constraint that the system must use predefined COTS hardware or software, use of a particular algo-
rithm, or implement a specific interface protocol. For the ESS system, the design is constrained to 
include the legacy central monitoring station hardware as well as the communications network between 
the central monitoring station and the site installations.

Design constraints can have a significant impact on the design and should be validated prior to 
imposing them on the solution. A straightforward approach to address design constraints is to catego-
rize the type of constraints (e.g., hardware, software, procedure, algorithm), identify the specific con-
straints for each category, and capture them as system requirements in the Requirements package along 
with the corresponding rationale. The design constraints are then integrated into the physical architec-
ture, as discussed in Section 17.3.5.

17.3.4 � DEFINE LOGICAL ARCHITECTURE
The Define Logical Architecture activity is shown in Figure 17.22 This activity is part of the system 
architecture design that includes decomposing the system into logical components that interact to 
satisfy the system requirements. The logical components are abstractions of the physical components 
that perform the system functionality without imposing implementation constraints. An example of a 
logical component is a user interface that may be realized by a web browser or display console, or an 
entry/exit sensor that may be realized by an optical sensor or contact sensor. The logical architecture 
serves as an intermediate level of abstraction between the black-box system requirements and the 
physical architecture. It can help the design team to manage the impact of requirements and technology 
changes. For example, if the ESS performance requirements for detecting an intruder change, the entry/
exit sensor will persist as part of the logical design but the specific technology selection may change. 
In addition, the logical architecture can serve as a reference architecture for a family of products that 
support different physical implementations to meet a range of mission requirements.

The logical architecture definition activity includes decomposing the system into logical compo-
nents. Logical scenarios are created to describe how the logical components interact to realize each 
operation (e.g., function) of the system block. The internal block diagram of the system defines the 
interconnection between the logical components. The logical components identified from the initial 
logical decomposition may be further decomposed and refined to repartition their functionality, stores, 
and properties. Each logical component is then specified in a similar way as the ESS black-box specifi-
cation in the previous section. A logical component may include a state machine as part of its specifica-
tion if it has significant state-based behavior. The traceability between the system-level requirements 
and the logical components is maintained, as discussed in Section 17.3.7. The logical components are 
allocated to the physical components to develop the physical architecture, as described in Section 17.3.5.

Define logical decomposition
The ESS block is specified as part of the system requirements analysis described in Section 17.3.3. In 
OOSEM, the system block has separate logical and physical decompositions. In order to achieve this, 
a separate subclass of the system block is created for the logical and physical decompositions. The ESS 
Logical block is a subclass of the ESS block that inherits all the features of the ESS block, including its 
operations, stores, properties, and ports. The ESS Logical block is decomposed into logical compo-
nents. An ESS Physical block is created in a similar way but is decomposed into physical components, 
as described in Section 17.3.5.
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OOSEM includes specific techniques to decompose the ESS Logical block into logical components, 
as shown in the ESS Logical block definition diagram in Figure 17.23. The logical components have the 
«logical» stereotype applied. The system is decomposed into three classes of logical components:
 
	•	� External Interface Components manage the interface to each external system or user, which 

includes providing the connection to the external system or user and encoding and decoding signals 
for transmission and processing (refer to systems and users external to ESS in Figure 17.17).

FIGURE 17.22

Define Logical Architecture activity decomposes the system into logical components and describes their 
interactions and interconnections needed to satisfy the system requirements.
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	•	� Application Components provide the basic functionality (i.e., business logic) to process each 
external input and output item flow (refer to item flows in ESS context diagram in Figure 17.17).

	•	� Infrastructure Components manage internal resources such as time, memory, processing, inter-
nally generated heat, and interconnection infrastructure such as wiring and plumbing. The internal 
resources are derived from the design and are not necessarily derivable from the external environ-
ment like the External Interface Components and Application Components.

 

FIGURE 17.23

Block definition diagram showing the ESS Logical block as a subclass of the ESS block and its decomposition 
into logical components including External Interface Components, Application Components, and Infrastructure 
Components.
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In the ESS logical decomposition, an Occupant IF Mgr is an example of an External Interface Com-
ponent, the Site Configuration Mgr is an example of an Infrastructure Component, and the Event Detec-
tion Mgr and Alert Validation Mgr are examples of an Application Component. This approach ensures 
that the system logical architecture includes components with the functionality to communicate and inter-
face with external systems, process the inputs and outputs, and manage internally generated resources.

The selected ESS logical components based on the above decomposition heuristics include:
 
	•	� The sensors are transducers that connect to the external environment to general signals that can be 

processed.
	•	� The Event Detection Mgr and System Controller provide the business logic to process the signals 

from the sensors and control the actions in response to detection events. This is a typical pattern 
that has broad application.

	•	� The Auxiliary Power managed by the Power Manager is introduced to support the stringent 
availability requirements for the ESS.

	•	� Occupant Input Data Mgr validates the user when they enter the code.
 

Define interaction between logical components to realize each system operation  
or allocated activity
The operations of the ESS Logical block are inherited from the ESS block. As stated in the previous 
section, each operation corresponds to an action that the ESS must perform that is realized by an activ-
ity in the logical design.

Figure 17.24 shows the Monitor Intruder-ESS Logical activity diagram that realizes the monitor intruder 
operation of the ESS Logical block. The inputs and outputs of the activity match the pins from the monitor 
intruder action in the Provide Intruder Emergency Response scenario in Figure 17.15. The activity partitions 
correspond to the logical components from the ESS Logical Block Definition Diagram in Figure17.23.

The External Sensor, Entry Sensor, Exit Sensor, and Internal Sensor generate Detections. The Event 
Detection Manager processes the Detection to generate an intruder:Event and stores the event informa-
tion in the event log. The System Controller then controls the system actions in response to the Event. The 
controller actions request the Site Status Mgr to provide a status update. If the system has been activated, 
the System Controller sends a signal to trigger the alarm, to record the external sensor data in the Sensor 
Data Recorder, and to request validation of the alert. If the alert is validated, the alert status is commu-
nicated to Emergency Services. The control logic can be captured by the System Controller state machine 
or can be expressed with pre- and post-conditions on the controller action. Some of the actions in the 
activity diagram include streaming inputs and outputs but are not shown to simplify the diagram.

Activity diagrams are created in a similar way as above to realize each ESS black=box operation 
shown in Figure 17.19. For example, an activity diagram to manage faults defines how the logical com-
ponents interact to mitigate the potential system failures identified in Analyze System Requirements.

Define system logical internal block diagram
The ESS Logical internal block diagram shown in Figure 17.25 presents the interconnection of the parts 
that are typed by the logical components. The enclosing frame corresponds to the ESS Logical  
block. The ports on the ESS Logical block are consistent with the ports defined for the ESS in  
Figure 17.17. The ports represent the external interfaces on the ESS Logical block and can be connected 
to ports on the logical parts or directly to the logical parts without ports.
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The parts typed by the external interface components provide the communications and interface to 
the ESS external environment. The parts typed by the application components provide the business logic. 
For example, the sensors in the figure are external interface components. The Event Detection Mgr and 
System Controller are application components that provide the business logic to process the detections 
from the sensors and control the response to the intruder detection. The connectors between the parts 

FIGURE 17.24

The Monitor Intruder-ESS Logical activity diagram is a thread through the ESS logical system design that 
realizes the monitor intruder operation of the ESS Logical block.
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enable the controller to send requests to the Alarm, Sensor Data Recorder, Site Status Mgr, and Alert 
Validation Mgr. In addition; the Investigative Data Mgr has access to the investigative data, including the 
Event Log and the Sensor Data Recorder. The item flows are not shown to simplify the diagrams.

When complete, the internal block diagram for the logical design contains all of the logical parts of the 
system. Sometimes, however, , it is desirable to view only a subset of the parts based on a particular need. 

FIGURE 17.25

ESS Logical internal block diagram showing the interconnection between the logical components of the 
system.
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One common approach is to create a view of this internal block diagram that shows only the logical parts 
for a particular subsystem, where a subsystem corresponds to those parts that perform a particular system 
function or other cross-cutting view. An example is an internal block diagram showing the power subsys-
tem with the parts that provide power, or the fault management subsystem with the parts that manage faults.

Specify logical components
The specification of each logical component includes the specification of features that are captured in 
their respective block in the same way as the ESS system block as described in Section 17.3.3. The 
actions from the activity diagrams are captured as operations; the logical interfaces are captured as 
ports; persistent stores are captured as reference properties with the «store» stereotype applied; and 
performance and physical properties are captured as value properties.

Define logical component state machine
A component specification can include a state machine if it has state behavior that is dependent on input 
events and conditions. A simple state-dependent behavior for a component may include a wait state, 
where the component waits until it receives an input event. The component then transitions to another 
state to execute a particular do/behavior that is defined by an activity. It then transitions back to its wait 
state when the activity is complete and waits for the next triggering event.

For this example, the Event Detection Mgr and the System Controller are logical components that 
have complex state-dependent behavior. The System Controller is a logical component that is respon-
sible for controlling actions in response to events from the Event Detection Mgr. Because the controller 
must respond differently to different events and its behavior is also dependent on the current state of the 
system, it is appropriate to represent the controller’s behavior with a state machine. The controller 
states mirror many of the states that are in the system state machine in Figure 17.20, but the transitions 
and behaviors will reflect System Controller inputs and System Controller behaviors rather than the 
ESS system inputs and behaviors.

More generally, the component states are specified to realize the behavior specified by a system state. 
A simple example is that when the system state transitions to its on state and performs, each component 
must transition to its on state. As part of the transition to the on state, the system may perform a self-test to 
verify it is working properly, in which case the components may be required to perform self-tests as well.

17.3.5 � SYNTHESIZE CANDIDATE PHYSICAL ARCHITECTURES
The Synthesize Candidate Physical Architectures activity is shown in Figure 17.26. This activity synthesizes 
alternative physical architectures to satisfy the system requirements. The architecture is defined in terms of 
the physical components, their relationships, and their distribution across system nodes. The physical com-
ponents of the system include hardware, software, persistent data, and operational procedures. The system 
nodes partition the components based on their physical location or other criteria such as organizational 
responsibility. A system that is not a distributed system is a degenerative case consisting of a single node.

The partitioning criteria are defined and used to partition the physical components and address con-
cerns such as performance, reliability, and security. The system nodes are defined, and then the logical 
node architecture determines how the logical components and their associated functionality, persistent 
data, and control are distributed across the system nodes. A physical node architecture is then defined 
where each logical component in each node is allocated to one or more physical components that may 
include a combination of hardware, software, and persistent data components, as well as operational 
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procedures performed by operators. The system design constraints that were identified in  
Section 17.3.3 are imposed on the physical architecture.

The software, hardware, and data architecture are specialized views of the physical architecture that 
only include the applicable software, hardware, and data components. For example, the software 

FIGURE 17.26

Synthesize Candidate Physical Architectures activity to specify the physical components of the system.
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architecture focuses on the software components and their behavioral and structural relationships, 
whereas the hardware architecture describes the hardware components and their behavioral and struc-
tural relationships. The geometric model is developed concurrently with the system model in SysML to 
provide the essential geometric and spatial representation for a physical system. Defining these archi-
tectures includes additional partitioning of the components based on implementation-specific concerns. 
The requirements are then specified for each physical component and traced to the system 
requirements.

The critical component properties that are identified in this activity are input to engineering analysis 
and trade studies that are performed to evaluate, select, and refine the preferred physical architecture, as 
described in Section 17.3.6. It should be noted that trade studies and analysis are performed throughout the 
OOSEM process beginning with Analyze Stakeholder Needs. A system design review is conducted incre-
mentally to ensure the physical architecture satisfies the system requirements and the stakeholder needs.

Define partitioning criteria
Partitioning is a fundamental aspect of systems architecting. Criteria are established to partition functional-
ity, persistent data, and control among the logical and physical components, and to partition the compo-
nents among subsystems, nodes, and layers of the architecture. Applying partitioning criteria throughout 
the design process can result in component designs that maximize cohesion and minimize coupling to 
reduce interface complexity. Applying the criteria can also reduce the impact of requirements and technol-
ogy changes and more effectively address key requirements such as performance, reliability, maintainabil-
ity, and security. Design practices, sometimes referred to as Design for X (e.g., design for assembly, design 
for maintainability), often include the definition and application of partitioning criteria as well as other 
design guidelines and standards. Some examples of partitioning considerations include the following:
 
	•	� Refactoring common functionality into shared components;
	•	� Partitioning components and functionality based on their update rate, such as partitioning compo-

nents with high update rates versus those with low update rates;
	•	� Partitioning software components into architecture layers based on the level of dependency of the 

functionality or services they provide;
	•	� Partitioning data into separate repositories based on their security classification level;
	•	� Physical partitioning to ease maintainability such as making low reliability components easier to 

access;
	•	� Physical partitioning of components to reduce the number of moving parts for assembly and 

disassembly;
	•	� Partitioning components based on the application of common patterns;
	•	� Partitioning components to reduce the ripple impact of changes in requirements or technology (the 

requirements variation analysis that is performed as part of specifying the black box system 
requirements can be used to identify the most likely requirements changes); and

	•	� Partitioning functionality and components based on development considerations such as whether 
they are part of a particular incremental delivery.

 
Partitioning considerations should be augmented by other design strategies, such as those indicated 

below, to ensure a robust and extensible design.
 
	•	� Use of standard interfaces (e.g., plug and play);
	•	� Provisions to add functionality through software upgrades;
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	•	� Use of modular and reconfigurable components;
	•	� Strategies for fault detection, isolation, and recovery, including the ability to operate in degraded 

modes (e.g., safe mode); and
	•	� Strategies for variant design.
 

Define geometric model
The geometric model is sometimes called the three-dimensional (3D) computer-aided design (CAD) 
model and is a critical representation needed to design physical systems. The geometric model is not 
part of the SysML model, but the two models can and should be integrated to ensure both representa-
tions of the system are consistent with each other. The general approach to integration is to ensure that 
the system elements in the system model have a correspondence with the components in the geometric 
model. The level of correspondence depends on the scope of the two models. For example, a system 
element may represent an assembly that is composed of multiple physical components. The geometric 
model is another view of the system and its components. It describes the geometric relationships that 
specify the spatial extent of a given component. The CAD model may also include many additional 
properties, such as its material properties. A typical CAD tool has the capability to compute the com-
ponent mass properties and can be integrated with other engineering analysis tools to evaluate other 
physical characteristics such as stress and thermal profiles.

A balanced system architecture must concurrently incorporate representations of system behavior, 
structure, and physical layout. For example, a naval architect who is designing a new ship to achieve 
desired performance in terms of stability and maneuverability must account for the weight of system 
components and achieve an optimal spatial arrangement of components in terms of their inboard loca-
tion and the resultant centroid.

The system model in SysML and the CAD model should be developed concurrently, beginning in 
the conceptual design phase of a system and continuing throughout the development lifecycle. The 
system model provides an abstract representation of the component that can specify its functionality, 
interface, performance, and quality characteristics, while the CAD model provides the geometric rep-
resentation of the component. The system model can establish component relationships to require-
ments, define more generalized components, and specify the components’ environment. The system 
model provides specification information that the geometric model can realize. At the same time, the 
geometric model provides essential information to the system model, including critical sizing and toler-
ances, other physical properties, and mechanical interconnection. The interfaces between these two 
models are summarized in Chapter 18 Section 18.2.2.

Define node logical architecture
Up to this point, there has been no discussion of how the functionality is distributed across system 
nodes. A node often represents a partitioning of components and associated functionality, control, and 
persistent data based on the physical location of the components. The node may include a fixed facility 
or a moving platform such as an aircraft. Many modern systems are distributed across multiple system 
nodes. Nodes may also be defined based on other criteria such as organizational responsibility (e.g., the 
people and resources assigned to a particular department). In OOSEM, a logical node represents an 
aggregation (or set) of logical components at a particular location. A physical node represents an aggre-
gation (or set) of physical components at a particular location. The logical components at a logical node 
are allocated to physical components at a physical node, as described later in this section.
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Functionality, control, and persistent data can be distributed in many ways. A system can be highly 
distributed, such that each node can autonomously handle all the functionality, control, and data. Alter-
natively, the distribution may be highly centralized, where most of the functionality, control, and data 
are associated with a central node, and the local nodes primarily provide an interface to external sys-
tems and users at a particular location. Between the extremes of highly distributed and highly central-
ized, functionality, control, and data can be partially distributed across regional and local nodes, where 
each node performs a subset of the total functionality.

A distributed system can be characterized as fully distributed, partially distributed, or centralized based 
on the above description. Distribution options can include any combination of a central node, multiple 
regional nodes, and multiple local nodes in each region. Trade studies are typically performed to optimize 
the distribution approach based on considerations such as performance, availability, security, and cost. Many 
types of systems are highly distributed, including information systems with networked communications, 
electrical power distribution systems, and complex system of systems such as transportation systems.

For the ESS, the nodes represent the Central Monitoring Station (CMS) and the Site Installations 
that are installed at a Single-Family Residence, Multifamily Residence, or Small Business. Although not 
included in this example, a CMS backup facility may be an additional node to provide disaster recovery 
to satisfy the system availability requirement.

The ESS Node Logical block definition diagram is shown in Figure 17.27. The ESS Node Logical is 
another subclass of the ESS block, which inherits all of its features, similar to the ESS Logical block 

FIGURE 17.27

Block definition diagram showing the ESS Node Logical block as a subclass of the ESS block and its decom-
position into the Site Installation and Central Monitoring Station logical nodes.
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described in Section 17.3.4. Each subclass has its own decomposition. This block is decomposed into 
the Site Installation and Central Monitoring Station nodes that are stereotyped as «node logical». 
These nodes may include a property to define their location. For example, the site installation nodes 
may have a location property to specify their address.

The Site Installation logical node is further specialized into the Site Installation-SFR, Site Installa-
tion-MFR, and Site Installation-Business to represent nodes corresponding to single-family residences, 
multi-family residences, and small businesses respectively. Each subclass of Site Installation can 
accommodate its unique requirements and support variant design solutions.

The Site Installation and the Central Monitoring Station nodes are composed of logical components 
as shown in Figures 17.28 and 17.29, respectively. This decomposition includes logical components 
that are defined in the logical design in Section 17.3.4.

A particular logical component can be part of more than one node. However, the logical component 
may have different requirements for each node. An example of a logical component that is part of more 
than one node is the Sensor Data Recorder that is part of both the Site Installation and the Central 
Monitoring Station node. The distribution is driven by the need to record local sensor data at the site 
and to store sensor data from many sites at the CMS to be accessed centrally. The requirements for the 
CMS and site sensor data recorders are quite different in terms of the amount of data stored, backup, 
and access controls. In this case a subclass of the Sensor Data Recorder logical component is defined 
for both the Site Installation and the Central Monitoring Station nodes with their specialized 
requirements.

The Event Log is also part of both the Site Installation and the Central Monitoring Station, so event 
data from multiple sites can be accessed centrally. This imposes requirements to synchronize the data 
between the Site Installations and the Central Monitoring Station that the database design must address. 
As shown in the figure, the Site Installation and the Central Monitoring Station nodes also include 
components called Site to CMS IF and CMS to Site IF to support communications between the nodes. 
These components are derived from the distribution concept and were not part of the original logical 
design in Section 17.3.4.

A similar set of modeling artifacts that were used to define the ESS Logical architecture in the previ-
ous section can also be developed to define the ESS Node Logical architecture. This includes the activ-
ity diagrams and internal block diagram for the ESS Node Logical. An elaboration of each activity 
diagram that was created for the ESS Logical architecture is created for the ESS Node Logical architec-
ture to specify how the activity is executed by the logical components that are distributed across the 
nodes.

The activity diagrams show the interaction of the components within each node and across nodes. 
The activity diagram called Monitor Intruder-ESS Node Logical is shown in Figure 17.30. In order to 
fit the page, this activity diagram only includes a portion of the overall Monitor Intruder behavior that 
is specified in the logical activity in Figure 17.24. The nodes are expressed as activity partitions, and 
the logical components are nested within their respective node. In this example, the process intruder 
detection and control intruder response actions are accomplished at the Site Installation node and the 
validate intruder alert is accomplished at the Central Monitoring Station node. The storing of event 
data and sensor data is performed at both nodes. The Site to SMS IF and the CMS to Site IF support the 
communications between the Site Installation and the Central Monitoring Station nodes. The overall 
behavior of this activity diagram is consistent with the behavior that was originally specified as part of 
the logical design in the Monitor Intruder-ESS Logical activity diagram in Figure 17.24. The ESS Node 
Logical internal block diagrams in Figure 17.31 and Figure 17.32 show how the logical components are 
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FIGURE 17.28

Decomposition of the Site Installation node into its logical components.
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interconnected within each node along with the interfaces to connect across nodes. This includes the 
interconnection of parts that support the communication specified in the Monitor Intruder-ESS Node 
Logical activity diagram. Once again, the system external interfaces are maintained on the ports of the 
enclosing block, but,the nodes in this example do not have ports. Instead, the external connectors con-
nect directly to the ports on the nested parts of the nodes.

FIGURE 17.29

Decomposition of the Central Monitoring Station node into its logical components.
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Define variant designs
The approach to variant design must be integrated into all OOSEM activities. It is initiated in Section 17.3.2 
by identifying variant mission requirements, moes, and enterprise use cases, and continues in Section 17.3.3 
with analysis of system requirements variation. The OOSEM logical and physical architecture design activ-
ities must then identify architecture variants that can support the system requirements variation.

As noted above, there are variant designs of the Site Installation for single-family residences, multi-
family residences, and small businesses. An example of a variant design for the Site Installation-Busi-
ness is to provide protection against employee theft, which is applicable to a small business but not to 

FIGURE 17.30

The Monitor Intruder-ESS Node Logical activity diagram showing the interaction of selected components and 
the communications between nodes.
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a residence. In this case, the Intruder is an employee. A variant of the Monitor Intruder activity diagram 
beginning with the logical design in the previous section is created to represent the employee theft 
scenarios. Similarly, variants of the internal block diagrams are created as well.

The approach to variant design leverages redefinition of features of the superclass as described in 
Chapter 7 Section 7.7.1. For example, a particular type of sensor may be used to monitor employee 

FIGURE 17.31

Site Installation internal block diagram showing the interconnection between its parts.
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access to the cash register, which is used to redefine the more generic Internal Sensor. A design for each 
variant component reuses common features, while adding its unique features as needed.

An options tree defines all the allowable components that are available for all variants. The top 
level block in the option tree represents a superset of all possible variant configurations, such as a 
vehicle with 4-cylinder and 6-cylinder variant designs. The top-level block is decomposed at multiple 
levels. Each level of decomposition defines generic blocks that have optional multiplicity if they are not 
part of all variants. For the vehicle example, a sunroof may be part of some variants and not part of 
others, so its multiplicity is 0..1. Each generic block is further specialized into all its possible variants. 

FIGURE 17.32

Central Monitoring Station internal block diagram showing the interconnection between its parts.



47117.3  OOSEM to Specify and Design the Residential Security System

In this example, the generic engine includes a specialization for a 4-cylinder engine and 6-cylinder 
engine.

A particular variant system design is a subclass of the top-level block in the options tree. The variant 
redefines the generic components to represent the specific components for the variant. This may include 
redefining the multiplicity. For example, a variant vehicle configuration with 6-cylinder engine and a 
sunroof redefines the generic engine to be a 6- cylinder engine, and redefines the multiplicity of the 
sunroof from 0..1 to 1. Constraints define allowable combinations of components, such as a constraint 
that wide rim wheels are valid with the 6-cylinder engine option but not with the 4-cylinder engine 
option. Once the variant design is captured in a block definition diagram, it is further elaborated by 
generating and/or refining other OOSEM modeling artifacts to capture requirements, design, analysis, 
and verification artifacts for the selected variant.

Define node physical architecture
The functionality for the logical components in the ESS logical architecture is partitioned among the logi-
cal nodes and captured in the ESS node logical architecture as described in the previous section. This is 
accomplished by distributing the logical components to each logical node based on partitioning consid-
erations that are somewhat independent of how the components are implemented. For example, it makes 
sense for the Entry Sensor logical component to be part of the Site Installation node and not part of the 
Central Monitoring Station node regardless of what technology is used to realize the Entry Sensor.

The logical components at each node are then allocated to physical components at each node to 
constitute the ESS node physical architecture. A partial allocation of the logical components to hard-
ware components and logical components to software components at the Site Installation node and the 
Central Monitoring Station node is shown in the allocation tables in Figure 17.33 and Figure 17.34, 
respectively. The allocation decisions are critical design decisions, so the rationale should be captured 
along with the allocate relationship.

The design constraints that were identified during the system requirements analysis in Section 
17.3.3 are imposed on the physical architecture as part of the logical-to-physical allocation. For exam-
ple, a logical component may be allocated to a particular COTS component that has been imposed as a 
design constraint. A reference physical architecture may also constrain the solution space with pre-
defined or legacy components such as a set of common services. As an example, the reference software 
architecture for the Central Monitoring Station software is a multilayered software architecture that 
includes specific types of components associated with each architecture layer—that is, presentation, 
mission application, infrastructure, and operating system layers.

The logical-to-physical component allocations may also be based on leveraging architectural pat-
terns. The patterns may represent common solutions and their associated technologies. For example, 
the Event Detection Mgr and System Controller constitute a logical design pattern that can be imple-
mented using a common software design solution.

Alternative physical architectures are often defined by allocating logical components to alternative 
physical components that are subject to trade-off analysis. As an example, the Entry Sensor includes 
alternative allocations to an Optical Sensor and a Contact Sensor, and the Contact Sensor was selected 
as the preferred alternative. This is a key decision, so the rationale for this decision is attached to the 
allocate relationship and refers to the applicable trade study that resulted in this decision.

Trade studies are performed to select the preferred physical architecture based on selection criteria 
that optimize the measures of effectiveness and measures of performance. In this example, the ESS 
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probability of intruder detection and probability of false alarm may drive the Site Installation perfor-
mance requirements, while the number and type of Site Installations that are monitored and emergency 
response times may drive the Central Monitoring Station performance requirements. Performance 
requirements must be subject to trade-off with availability, cost, and other critical requirements to 
arrive at a balanced system solution.

When a logical component is allocated to software, the software component must also be allocated 
to a corresponding hardware component to execute it. In addition to software allocation, persistent data 
are allocated to hardware components that store the data, and operational procedures are allocated to 
operators that execute the procedures. These allocations can also be reflected in allocation tables simi-
lar to Figures 17.33 and 17.34.

A similar approach that was used to model the ESS node logical architecture can be applied to the 
ESS node physical architecture. The ESS Node Physical block is defined as a subclass of the ESS block 
and decomposed into physical nodes as shown in Figure 17.35. In addition to the Site Installation and 
Central Monitoring Station nodes, the Communication Network is also a node in the node physical 
architecture, while it was abstracted away in the node logical architecture. The Site Installation physi-
cal node is further specialized in to the Site Installation-SFR, Site Installation-MFR, and Site Installa-
tion-Business, to correspond to the single- family residences, multi-family residences, and small 
businesses as it was for the logical site installation nodes.

FIGURE 17.33

Allocation of logical components to hardware components in Site Installation and Central Monitoring Station 
nodes.
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The ESS Node Physical block definition diagrams for the Site Installation and Central Monitoring 
Station are shown in Figure 17.36 and Figure 17.37, respectively. In these block definition diagrams, the 
logical components from the logical nodes in Figure 17.28 and Figure 17.29 have been allocated to 
physical components based on the allocation tables in Figure 17.33 and 17.34. The physical components 
comprise the Site Installation and Central Monitoring Station physical nodes. The physical components 
have stereotypes applied to represent the kind of component, such as «hardware» or «software».

The Monitor Intruder-ESS Node Physical activity diagram for the Site Installation and the Central 
Monitoring Station is shown in Figure 17.38. The activity partitions correspond to the components of the 
ESS node physical architecture. The activity diagram captures the interaction between the hardware and 
the Site Software, as well as the operators of the system. The Site Software aggregates all of the software 
components that were allocated to the Site Processor and is stereotyped as a configuration item. This 
software executes on the Site Processor, although this is not shown as an activity partition in the activity 
diagram. The detailed interaction among the software components as described later in this section must 
preserve the interaction that was specified in the logical architecture and node logical architecture. The 
other activity partitions correspond to the hardware components and security operator.

The activity diagram must be consistent with the behavior from the corresponding logical and node 
logical activity diagrams in Figure 17.24 and Figure 17.30, respectively, and also realize the original 
behavior specified for the monitor intruder action in Figure 17.15, including its inputs, outputs, and any 
pre- and post-conditions. This activity diagram includes more detail to show how the physical compo-
nents in each node interact.

The ESS Node Physical internal block diagrams for the Site Installation and Central Monitoring 
Station in Figure 17.39 and Figure 17.40 show how the physical parts are interconnected within 

FIGURE 17.34

Allocation of logical components to software components in Site Installation and Central Monitoring Station 
nodes.
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each node along with the interfaces to connect across nodes. The ESS Node Physical block is the 
enclosing frame.

The physical ports on each of the components are specified as physical interfaces. The external port 
on the Video Camcorder is p2 and typed by an Optical Interface, which redefines the port on the ESS 
typed by External Sensor IF (refer to Figure 17.17). The other ports on the Video Camcorder include a 
port p1 typed by Video IF and a port typed by Power IF (not shown). Most of the ports on the internal 
parts are not fully defined in this example and therefore do not show the direction of flow.

Since the ESS Node Physical block is a subclass of the ESS block, it inherits its features—including its 
ports—from the ESS block. However, the physical ports on the ESS Node Physical block may not share a 
common type with the ports on the original ESS black box, which may have been defined as logical ports. 
When dealing with the flow of data, the physical interface is often specified by a communications protocol, 
and the logical interface represents the information content. Therefore, these physical ports on the ESS Node 
Physical block need to replace the logical ports from the original ESS block. This can be accomplished by 
defining a multiplicity on the original ports as 0..1, such that the ESS Node Physical block does not have to 
use the original port definitions. It does this by redefining the multiplicity as 0 and then adding its own ports 
as required. Once this is done, the logical ports from the ESS Node Logical block can be allocated to the 
physical ports of the ESS Node Physical block. An alternative to replacing the port is to defer typing the port 
on the original ESS black box and type them on the ESS Node Logical and ESS Node Physical blocks.

FIGURE 17.35

Block definition diagram showing the ESS Node Physical block as a subclass of the ESS block and its 
decomposition into the Site Installation and Central Monitoring Station physical nodes.
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The item flows are defined as logical item flows in the logical architecture that are allocated to 
physical item flows in the physical architecture. The item flow definitions have been deferred in this 
example, pending the detailed interface specifications on the parts.

The ESS node physical architecture defines the physical components of the system, including hard-
ware, software, persistent data, and other stored items (e.g., fluid, energy), and operational procedures 
that are performed by operators. The software components and persistent data stores are nested within 
the hardware component to which they are allocated. In Figure 17.39, for example, several software 

FIGURE 17.36

Site Installation physical node block definition diagram showing the hierarchy of physical components.
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parts have been allocated to the Site Processor. The allocation of software to hardware is an abstraction 
of a UML deployment of a software component to a hardware processor.

The ESS node physical architecture serves to integrate the hardware and software components and 
operators of the system. The ESS Node Physical Design package in Figure 17.5 contains nested 

FIGURE 17.37

Central Monitoring Station physical node block definition diagram showing the hierarchy of physical components.
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packages for Structure and Behavior of the node physical architecture. In addition, the Node Physical 
Design package also contains packages for the Site Installation and the Central Monitoring Station, 
which each contain additional nested packages for the hardware, software, persistent data, and opera-
tional procedures. The physical components of the system that are part of the ESS node physical archi-
tecture are contained in these nested packages. The following subsections describe the activities to 
architect and specify the software, data, and hardware architecture. In addition, the subsections describe 
how to define specialty views of the architecture, such as security, and specify the operational proce-
dures needed to operate the system.

FIGURE 17.38

The Monitor Intruder-ESS Node Physical activity diagram showing the interaction of the physical components.
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Define software architecture
The software architecture is a view of the overall system architecture that includes the software com-
ponents and their interrelationships. Software architecting is critical to effectively specifying software 
components that support the system requirements.

The ESS Software block definition diagram is shown in Figure 17.41. The Site Software and the 
CMS Software blocks aggregate the software components that were defined in the ESS node physical 

FIGURE 17.39

Site Installation physical node internal block diagram.
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decompositions for the Site Installation and Central Monitoring Station in Figures 17.36 and 17.37, 
respectively. The Site Software and CMS Software blocks provide a means to aggregate the software 
into a «configuration item». The software components are contained in software packages, which in 
turn are contained in the applicable Site Installation and Central Monitoring Station packages.

The modeling artifacts for the system-level software architecture include modeling artifacts similar 
to those described previously. The software behavior can be specified to conform to the activity dia-
grams specified as part of the logical, node logical, and node physical activity diagrams. The behavior 
may be specified as activity diagrams, sequence diagrams, and/or state machine diagrams. This may 
include defining activity diagrams, sequence diagrams, and/or state machine diagrams to refine the 

FIGURE 17.40

Central Monitoring Station physical node internal block diagram.
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interaction between the software components that were originally specified in activity diagrams for the 
logical components. Internal block diagrams can be created for the Site Software and CMS Software 
blocks to further refine the software interconnection that is consistent with the ESS node physical archi-
tecture internal block diagrams in Figures 17.39 and 17.40. The interfaces may include typed ports that 
specify the required and provided interfaces. Both the behavior diagrams and the internal block dia-
grams should be consistent with the behavioral and structural requirements specified by the physical 
architecture activity diagrams and internal block diagrams. The software architecture refinement may 
be expressed in SysML or UML as described later in this section.

The initial allocation from the logical-to-physical components may not include the allocation to all 
infrastructure and operating system components that are required to support the application compo-
nents, so this must be addressed as part of defining the software architecture. In addition, the software 
components may require additional refinement to address the software-specific concerns and fully 
specify the software requirements. Some of the software architecture concerns depend on the applica-
tion domain. For information systems, the software architecture is often a layered architecture, where 
each layer includes software components that may depend on a lower layer for the services it provides. 
This may include a presentation layer, mission application layer, infrastructure layer, operating system 
layer, and data layer, as shown in the package diagram for the CMS software in Figure 17.42. The soft-
ware components from the physical architecture are further elaborated and partitioned into these differ-
ent layers. A reference architecture can be imposed as a design constraint that includes reusable 
components that define the infrastructure layer, such as messaging, access control services, and data-
base interfaces. For embedded real-time software design, the architecture must also address concerns 
related to scheduling algorithms and how to address concurrency, prioritization, and contention for bus, 

FIGURE 17.41

ESS Software block definition diagram shows the Site Installation software and Central Monitoring Station software.
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memory, and processor resources. These and other concerns must be addressed to define the software 
architecture fully.

Define data architecture
The data architecture is a view of the physical architecture that represents the persistent data, how the 
data are used, and where the data are stored. The physical architecture provides the integration frame-
work to ensure that the data architecture is consistent with the overall system design. The persistent 
data requirements can be derived from the scenario analysis. Persistent data are stored by a component 
(logical or physical) and expressed as a reference property of the component with the «store» stereo-
type applied. As part of the logical design, the persistent data are encapsulated in the logical component 
that operates on them. The logical components are allocated to physical components of the physical 
architecture, which may include data files and memory storage devices that store the data, and software 
applications such as relational database applications that manage the data.

The persistent data definition types for both the Site Installation and the CMS are specified on an ESS 
Persistent Data block definition diagram as shown in Figure 17.43. This includes the Event Log, Video, and 

FIGURE 17.42

Package diagram showing dependencies between software layers.
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Site Config Data as types of persistent data that are stereotyped as «file». The data definitions can be com-
plex data structures that are expressed as blocks or value types. For example, the Event Log is a complex data 
structure that includes records of many different types of events, such as power-up events, system activation 
events, intruder detection events, and others, that were derived from the scenario analysis. The persistent data 
are contained in nested packages within the Site Installation and Central Monitoring Station packages.

The data architecture may include domain-specific artifacts to refine the data specifications. The 
data relationships may be specified by an entity relation attribute (ERA) diagram or directly on the 
block definition diagram using associations among the blocks that define the data. This description can 
be viewed as the conceptual data model that represents the requirements for implementing the database. 
The implementation of the conceptual data model is dependent on the technology employed, such as 
flat file, relational database, and/or an object-oriented database.

Many other domain-specific aspects of the data architecture must be considered, such as data nor-
malization, data synchronization, data backup and recovery, and data migration strategies. One exam-
ple of data synchronization is the need to synchronize the event logs from each Site Installation with 
the Central Monitoring Station. The selection of the data architecture and the specific technology is 
determined through trade studies and analyses, as described in Section 17.3.6.

Define hardware architecture
The hardware architecture is a view of the physical architecture that represents the hardware compo-
nents and their interrelationships. The ESS Hardware block definition diagram shown in Figure 17.44 

FIGURE 17.43

Block definition diagram showing persistent data stored by the system at the Site Installation and Central 
Monitoring Station.
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includes the Site Hardware and CMS Hardware block. These blocks aggregate the hardware compo-
nents in a similar way as the ESS Software in Figure 17.41.

The hardware components are allocated from the logical components in Figure 17.33, as described 
previously. The ESS Node Physical internal block diagrams in Figures 17.39 and 17.40 show the inter-
connection of the hardware components. This can be more fully elaborated with more detailed hard-
ware interfaces, including signal characteristics, physical connectors, and cabling. The specific selection 
of the hardware architecture and component technology results from the engineering analysis and trade 
studies, as described in Section 17.3.6. This includes the performance analysis to support sizing and 
other the hardware component requirements, and reliability, maintainability, and availability analysis to 
evaluate supportability requirements. The geometric view of the hardware components is captured in 
the geometric model described earlier in this section. The components in the geometric model are 
mapped to the hardware components in the system model as described in an earlier subsection (Define 
Geometric Model).

Define operational procedures
Operators can be external or internal to the system depending on how the system boundary is defined. For 
the ESS, the Occupants of the property are external to the system, as defined in the Operational Domain 
block definition diagram in Figure 17.12. On the other hand, the Central Monitoring Station Security 
Operator and Administrator in Figure 17.37 are considered internal to the ESS. Some logical components 
are allocated to internal operators to perform selected tasks. Both internal and external operators/users of 

FIGURE 17.44

ESS Hardware block definition diagram shows the hardware for the Site Installation and Central Monitoring Station.
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the system are presented on activity diagrams to describe how they interact with the rest of the system. 
They are also included in other diagrams like any other external system or system component.

The requirements for what an operator must do to operate the system can be specified by operational 
procedures that define the tasks required of each Operator. The task analysis, timeline analyses, cognitive 
analysis, and other supporting analyses are performed to determine levels of task performance that are 
consistent with the specified skill levels. The ESS operational procedures are identified in the ESS Proce-
dures block definition diagram in Figure 17.45. Each procedure has the «procedure» stereotype applied.

Specify component requirements
The physical architecture—which includes the elaboration of the software architecture, data architec-
ture, hardware architecture, and operational procedures—results in the specification of the components 
of the system architecture to be implemented in software, data, hardware, and operational procedures, 
respectively. The component specifications are a primary output from systems specification and design 
process. The component specifications are typically captured as blocks with the appropriate black-box 
specification features, in a way similar to that described in Section 17.3.3 in the subsection called 
Specify Black Box System Requirements. An example of a software component specification and hard-
ware component specification model are shown in Figure 17.46. The software component in the figure 
is the Controller that is part of the Site Software, with the OOSEM «software» stereotype applied. A 
stereotype property called status indicates this is a Development Item. The controller operations and 

FIGURE 17.45

Block definition diagram showing operational procedures for the ESS external user and internal operators.
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ports are specified. Required and provided interfaces can be reflected in the port types. Activity dia-
grams can be used to define the methods for the operations to specify computational and/or logic inten-
sive algorithms. Parametric diagrams can be used to specify the algorithm performance requirements 
in terms of the desired input/output response. A state machine can define the main behavior for the 
controller in terms of the events that trigger the operations.

The develop software process referenced in Figure 17.1 is used to perform software requirements 
analysis to derive more detailed requirements, perform software design, and implement and test the 
software components. UML can be used to support this process. The SysML model can be referenced 
as a specification model by the software design team. Classes can be defined as subclasses of the 
SysML software component specifications or allocated from the SysML software component specifica-
tion and presented on class diagrams. The UML composite structure diagram can be used to refine the 
SysML internal block diagram from the node physical architecture in Figures 17.39 and 17.40 to reflect 

Example Component Black Box Specifications2-Structure[Package]bdd [ ]

parts
«software» : Image Processing

references
«hardware» : Memory Card

values
«mop» mean time between failures : Hours
«mop» resolution : Megapixels
«mop» field of view : rad{unit = radian}
«mop» sensitivity : Lux{unit = lux}
«mop» mass : kg{unit = kilogram}

«block»
«hardware»

Video Camcorder

p1 : Video Interface

p2 : Optical Interface

p3 : Power IF

«block»
«software»
Controller

p1 : Event IF

p3 : Status Control IF

p4 : Pwr Control IF

p5 : Alarm Control IF

«software»
status = Development Item

control activation()
control deactivation()
control alarm()
control status update()
control alert validation()
control built in test response()
control power source()

proxy ports
...

«stateMachine»Controller States( )
classifier behavior

operations

proxy ports
...

«hardware»
status = COTS

generate video()
process video()
store video()

operations

FIGURE 17.46

Example of software and hardware component specifications.
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the interconnection and interfaces between the software components. The software design realizes the 
software component interfaces, operations, and state machine behavior specified in the SysML model 
by introducing more detailed structures and behaviors. The software sequence diagrams are further 
elaborated to show the interaction between the lower-level software design components. The UML 
component diagram and deployment diagram can also be used for software design to show more explic-
itly how the software is deployed beyond the abstract allocation of software to hardware in  
Figures 17.39 and 17.40.

The hardware component specification in Figure 17.46 is the Video Camcorder that is part of the 
Site Hardware, with the OOSEM «hardware» stereotype applied. The stereotype property called status 
indicates this is intended to be a COTS item. The black-box component specification includes func-
tional requirements derived from the scenario analysis and performance properties with stereotype 
«mop» whose values are determined through engineering analysis and trade studies, as described in 
Section 17.3.6. The ports are used to specify the interfaces and show the direction of their flow proper-
ties. It is also apparent from the compartments that the Video Camcorder has a Memory Card and 
includes Image Processing software. If software components are allocated to the hardware, they can be 
presented in an allocation compartment. In addition, a property can also be added to the hardware com-
ponent that references a geometric drawing of the component, or the tooling can enable direct access to 
the component in the geometric model based on the mapping described earlier in this section. Addi-
tional specification features can be added to address the needs.

The component blocks represent black-box specifications of the components in a similar way that 
the ESS block represents a black box of the system. The specification features of the component blocks 
are analogous to the features described in Section 17.3.3. The features can be used as a basis for defin-
ing text requirements for each component. Each feature of the block can include a text description that 
corresponds to all or part of a requirement’s shall statement, or, alternatively, the feature can refine a 
text requirement. For example, the text for the operations can specify the functional requirements, the 
text for the ports can specify the interface requirements, and the text for the value properties can specify 
the performance and physical requirements. The text can be captured in the description field for the 
corresponding model element or the text can be captured as SysML requirements, which are then 
related to the specification feature through the appropriate requirements relationship (e.g., refine, sat-
isfy). Document generation tools can be used to automatically generate the text specification based on 
a specification template (refer to Chapter 18 Section 18.4.5).

The component specifications described here can be further specialized to accommodate further 
specification and design variation. For example, the Video Camcorders may have multiple design varia-
tions. A particular system design configuration may leverage redefinition to specify a particular variant.

Defining other architecture views
Other architectural views of the system may address specific stakeholder perspectives, such as a secu-
rity architecture. The security architecture can be presented as a filtered subset of the node physical 
architecture, which includes hardware, software, data, and procedures that address security require-
ments. The views provide a mechanism that can help to specify, analyze, and integrate critical cross-
cutting facets of the architecture. This may include cross-cutting behavior, structure, parametrics, and 
requirements associated with the specific concern.

A viewpoint represents a stakeholder perspective, such as a security architect viewpoint. The view-
point is used to specify a subset of the model that is of interest to the stakeholder and addresses their 
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concerns. The causal analysis from Section 17.3.2 can provide inputs to identify the stakeholder 
concerns.

As described in Chapter 5, Section 5.6 and Chapter 15, Section 15.8, a viewpoint includes rules that 
specify how a particular view is constructed to reflect the stakeholder’s perspective. The rules can be 
specified by the viewpoint method to query the model. A view presents a filtered portion of the model that 
conforms to the viewpoint by returning the model elements in response to the model query. A view can 
be presented in many different formats, such as a combination of diagrams, tables, matrixes, and trees.

The Viewpoints package is introduced in the discussion of model organization in Section 17.3.1 and 
is shown in Figure 17.5. Selected ESS Stakeholder Viewpoints are shown in Figure 17.47, including the 
Emergency Services viewpoint and the System Security viewpoint. The System Security viewpoint may 
specify query criteria to return all components needed to satisfy the system security requirements, such 
as the confidentiality, integrity, and availability requirements. The security view shows the information 

ESS Stakeholder Viewpoints[Package] Viewpointspkg [ ]

concern = "System vulnerabilities resulting from mal-intent, accidental actions, or 
natural occurring environmental events."

purpose = "Support assessment of overall system security."

«viewpoint»

method = Generate System Security View

stakeholder = 
City Government
Emergency Services Provider

«viewpoint»
System Security Viewpoint

concern = "Security system availability and probability of false alarm of an emergency"

purpose = "Address concerns that impact cost effectiveness of city services."

«viewpoint»

method = Generate Emergency Services View

stakeholder = Security Architect

«viewpoint»
Emergency Services Viewpoint

«block»
«analysis»

Probability of Intruder
Conviction Analysis

«requirement»
Intrusion Detection

and False Alarm Rate

«block»
«analysis»

Vulnerability Analysis

«requirement»
System Vulnerability

«block»
«analysis»

Availability Analysis

«block»
«analysis»

Availability Analysis

«view»
Emergency

Services View

«view»
System

Security View

«expose»

«expose»

«expose»

«expose»
«expose»

«conform»

«expose»

«conform»

FIGURE 17.47

ESS Viewpoints specifies stakeholder perspectives that are reflected in views of the model.
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presented to the stakeholder in response to the query and includes the model elements that satisfy the 
security requirements. Other stakeholder viewpoints may represent the Company Owner, the Customer, 
and other development team roles.

17.3.6 � OPTIMIZE AND EVALUATE ALTERNATIVES
The Optimize and Evaluate Alternatives activity is shown in Figure 17.48. This activity is invoked 
throughout all other OOSEM activities to support engineering analysis and trade studies. This activity 
includes identifying the analysis needed, defining the analysis context, specifying the analysis in para-
metric diagrams, and performing the engineering analysis.

Chapter 8 describes how to model constraints with parametrics. SysML enables critical system char-
acteristics to be captured in the model so that they can be analyzed. This provides a mechanism to integrate 
the system design models with the multitude of engineering analysis models, such as performance, 

FIGURE 17.48

Optimize and Evaluate Alternatives activity to support trade studies and analysis.
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reliability, and mass properties analysis. Chapter 18 includes further discussion of how engineering analy-
sis and simulation models are integrated with SysML models in the Systems Development Environment.

Identify analyses to be performed
The analyses to be performed should support specific analysis objectives, which may include the 
following:
 
	•	� Characterize or predict some aspect of the system, such as its performance, reliability, mass 

properties, or cost;
	•	� Optimize the design through sensitivity analysis;
	•	� Evaluate and select a preferred solution among alternative design approaches;
	•	� Verify a design using analysis; and
	•	� Support technical planning, such as cost estimating and risk analysis.
 

Different types and fidelity of engineering analyses are identified throughout the design process to 
meet the analysis objectives. Stereotypes can also be defined to include properties that capture addi-
tional analysis metadata, such as the analysis assumptions or information about the analysis tool or 
solver. (Refer to the simulation profile and model libraries in Chapter 15.)

Define the analysis context
A block definition diagram is used to define each analysis. Figure 17.49 shows a block diagram called the 
ESS Analysis Context. The Analysis Context block is composed of blocks that represent each analysis to 

FIGURE 17.49

ESS Analysis Context defines the analysis blocks to support the analysis of the measures of effectiveness.
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be performed. The «analysis» stereotype is applied to each analysis block. In this example, an analysis 
is identified for each of the moes listed in Section 17.3.2, including the Availability Analysis, Emergency 
Response Time Analysis, Probability of Intruder Conviction Analysis, and Operational Cost Analysis. In 
addition, the Cost Effectiveness Analysis block is used to analyze the overall value of the system.

Each analysis block identified in the Analysis Context is used to specify the analysis further. In  
Figure 17.50, the Cost Effectiveness Analysis block is composed of a constraint block called Operational 
Cost Effectiveness Equation. This constraint block has the «objectiveFunction» stereotype applied and 
specifies an equation that relates operational cost effectiveness to the parameters that correspond to the moes 
for availability, emergency response time, probability of intruder conviction, and operational cost. In this 
example, the equation is a weighted sum of utility functions for the parameters associated with each moe.

The Cost Effectiveness Analysis block also refers to the Operational Domain block as the subject of 
the analysis. In this case, the subject of the analysis is the top block in the system hierarchy. By refer-
encing this block, a parametric diagram can be defined that relates the parameters in the analysis equa-
tions to the properties of the ESS and external systems and users. The Operational Domain—or more 
generally the subject of the analysis—can be subclassed to support trade-off analysis of variant designs. 
(Refer to Chapter 8, Section 8.11.)

Cost Effectiveness Analysis Cost Effectiveness Analysis[Package]bdd [ ]

parameters
avail : Real
cost-effectiveness : Real
ert : Minutes
oc : Dollars{unit = dollar}
pic : Percent

constraints
{cost effectiveness=weighted sum utility of moes}

«constraint»
«objectiveFunction»

Operational Cost Effectivenss Equation

values
«moe» operational cost effectiveness : Real

«block»
«analysis»

Cost Effectiveness Analysis
«block»

Operational Domain
od

optimization eq

FIGURE 17.50

Cost Effectiveness Analysis block composed of an objective function that weights each parameter and 
references the Operational Domain as the subject of the analysis.
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Using the same pattern as above, each analysis can be defined by decomposing the analysis block 
into the applicable analysis equations and referencing the subject of the analysis.

Specify analysis in parametric diagrams
The parametric diagram enables integration between the design and analysis models. It does this by 
binding the parameters of the analysis equations that are defined for each analysis to the properties of 
the subject of the analysis (e.g., the system).

The top-level parametric diagram for the ESS discussed in Section 17.3.2 is shown in Figure 17.11. 
This parametric diagram is derived from the Cost Effectiveness Analysis in the block definition diagram 
in Figure 17.50. The parametric diagram binds the parameters of the objective function to the moes in 
the Security Enterprise shown in Figure 17.12.

As the system design evolves, additional engineering analysis is needed to evaluate the impact of the 
system design properties on the moes. The availability property in Figure 17.11 represents a moe whose 
value is determined by the Availability Analysis identified in Figure 17,49. Figure 17.51 show the block 
definition diagram for the Availability Analysis, which includes constraint blocks for availability, reli-
ability, and repair time. The corresponding parametric diagram that binds the parameters of the 

Availability Analysis Availability Analysis[Package]bdd [ ]

constraints
{avail=mtbf/(mtbf+mttr)}

parameters
avail : Real
mtbf : Hours
mttr : Hours

«constraint»
Availability Equation

parameters
component i mtbf : Hours
system mtbf : Hours

«constraint»
Reliability Equation

{isEncapsulated = false }
parameters

component i mttr : Hours
system mttr : Hours

«constraint»
Repair Time Equation
{isEncapsulated = false }

«block»
«analysis»

Availability Analysis

«block»
Operational Domain

od

FIGURE 17.51

Availability Analysis composed of constraint block and referencing subject of the analysis.
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equations to properties of the ESS, including mean time between failures and mean time to repair, is 
shown in Figure 17.52. The parametric diagrams provide the mechanism to maintain explicit relation-
ships between the moes and their flow down to critical system, element, and component properties.

Parametrics can also be used to constrain inputs, outputs, and the input/output relationship associ-
ated with the behavior of a system or component. From the Monitor Intruder-ESS Node Physical activ-
ity diagram in Figure 17.38, a constraint block can be defined to specify the mathematical relation 
between the probability of detection of the signal output and the signal-to-noise ratio of the signal input 
to the Video Camcorder. The constraint block can then be used on a parametric diagram to bind to the 
component specific properties to analyze the detection performance.

The state of the system can also be treated as a value property that is used in parametrics. The value 
of this property represents the state of the system at any point in time and is determined by the ESS state 
machine behavior. This property can be used in parametrics by binding a state-dependent constraint to 
the state property. For a bouncing ball example, the constraints that apply to the forces on the ball depend 
on the state of the ball in terms of whether it is in contact with the ground or not. The state-dependent 
constraint can be conditioned on the state of the ball. In this example, the state-dependent constraint 
expresses one set of equations when the state of the ball is “contact with ground” and another set of equa-
tions when the state of the ball is “not in contact with the ground.” For the ESS example, the Video 
Camcorder could include a state machine that specifies its performance under low-light conditions 

Availability Analysispar [ ]

mean time between failures :
Hours

mean time to repair
: Hours

«block»
«system of interest»

ess : ESS

availability : Real

«block»
seo : Security Enterprise

od : Operational Domain

«constraint»
: Repair Time Equation

system mttr : Hours

component i mttr : Hours

«constraint»
: Reliability Equation

system mtbf : Hours

component i mtbf : Hours

«constraint»
: Availability Equation

{avail=mtbf/(mtbf+mttr)}

avail : Real

mttr : Hours

mtbf : Hours

FIGURE 17.52

Availability Analysis model captured in a parametric diagram.
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versus daylight conditions. The performance constraints in the parametric diagram are then dependent 
on the value of the camcorder state property. The property value can be set on entry to the state.

Perform engineering analysis
A computational capability is required to execute the equations in the parametric diagram. This can be 
done with the aid of engineering analysis tools, as described in Chapter 18. The detailed equations are 
often captured in the analysis model instead of in the SysML constraint blocks. The parametric dia-
grams specify the input and output parameters to the analysis and ensure these parameters are bound to 
corresponding system design properties. The analysis results determine the specific values or range of 
values of the system properties that satisfy the constraints. The values can be incorporated back into the 
system model in SysML. As an example, the mission availability resulting from executing the Avail-
ability Analysis in Figure 17.52 can estimate the extent to which the ESS properties for mean time 
between failures and mean time to repair from Figure 17.19 satisfy the availability requirement.

17.3.7 � MANAGE REQUIREMENTS TRACEABILITY
The Manage Requirements Traceability activity is shown in Figure 17.53. This activity is invoked 
throughout all OOSEM activities to establish requirements traceability between the stakeholder require-
ments and the system specification and design model. This includes defining the specification tree; 
capturing the text-based requirements in the model; establishing relationships between the text-based 
requirements and the model elements using derive, satisfy, verify, and refine relationships; and generat-
ing the traceability reports and specification documentation. The language concepts for requirements 
modeling are described in Chapter 13.

Define specification tree
The ESS Specification Tree is shown in Figure 17.54. The specification tree shows the specifications at 
each level of the system hierarchy. The specification tree includes the ESS Mission Requirements, ESS 
System Specification, Site Installation Specification, Central Monitoring Station Specification, and Site 
Installation and Central Monitoring Station Hardware and Software Specifications. The trace relation-
ship shows the traceability between the specifications at each level. The specification tree also shows 
traceability from the ESS Mission Requirements to a Stakeholder Needs Assessment document.

The trace relationship is used to establish coarse-grained traceability between requirements specifi-
cations that does not include the fine-grained traceability between individual requirements. The fine-
grained traceability leverages other requirements relationships to relate requirements to design, 
analysis, and verification elements, as described in Chapter 13 and later in this section.

Capture text-based requirements in model
The stakeholder requirements are often documented in text specifications external to the modeling 
environment or a requirements management tool. The text-based requirements are captured in the 
model by creating a SysML requirement for each text requirement. Many of the SysML modeling tools 
provide a mechanism to import text requirements from documents or requirements management tools, 
and maintain synchronization between the requirements in the source tool and in the SysML modeling 
tool. Alternatively, text requirements can be created in the SysML modeling tool, which can be exported 
to a requirements management tool or output as a document in text or tabular format.
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The Requirements package was briefly discussed in Section 17.3.1 and shown in the model organi-
zation in Figure 17.5. A nested package is created for each specification in the ESS Specification Tree. 
The requirements package contains the requirements for the specification. The requirements package 
for each specification is nested within the applicable level of the system hierarchy.

Manage Requirements Traceabilityact [  ]

analyze 
traceability gaps

establish 
requirements 
relationships 
and rationale

capture 
text-based 

requirements in 
model

manage 
requirements 

updates

define 
specification 

tree

«comment»
derive, satisfy, 
verify, refine

 [update req'd]  [gap identified] [updates 
complete]

 [no gaps]

FIGURE 17.53

Manage Requirements Traceability activity, intended to maintain traceability between stakeholder require-
ments and the system specification and design model.
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As an example, the ESS Requirements are nested within the ESS::Black Box Specification package. 
The requirements are shown in the requirement diagram in Figure 17.55. The top-level requirement is 
the ESS System Specification and serves as a container for the other requirements in the specification. 
The containment hierarchy of requirements in each individual specification generally corresponds to 
the organization of the text-based specification document, as indicated by the first-tier requirements in 
the diagram. The requirements hierarchy includes containers for Interface, Functional and Perfor-
mance, Reliability, Maintainability,Availability, and other typical categories of requirements. Each 
requirement has a name, an id, and text, and may also include additional requirement properties, such 
as criticality, uncertainty, probability of change, and verification method, although this information is 
not shown in the diagram. Tabular notations are often used as a more compact presentation of the 
requirements as described in Chapter 13, Section 13.7.1.

ESS Specification Tree1-Requirements[Package] req [  ]

«block»
«document»

Stakeholder Needs Assessment

«requirement»
Site Installation Specification

«requirement»
ESS Mission Requirements

«requirement»
Central Monitoring Station 

Specification

«requirement»
Central Monitoring Station 

Hardware Specification

«requirement»
Central Monitoring Station 

Software Specification

«requirement»
ESS System Specification

«requirement»
Site Installation Software

 Specification

«requirement»
Site Installation 

Hardware Specification

«block»
«document»

Competitive System 
Capabilities

«block»
«document»

Security Enterprise 
Capabilities as-is

«trace» «trace»

«trace»

«trace»

«trace» «trace»

FIGURE 17.54

ESS Specification Tree on a requirement diagram showing the hierarchy of specifications.
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Establish requirements relationships and rationale
Requirements traceability is maintained by establishing relationships between the text-based 
requirements in the model and other model elements that correspond to other requirements, design 
elements, and test cases. The rationale for the relationship can also be captured in the model as 
well.

An example of requirements traceability and flow down from a mission requirement to a system 
requirement to a component requirement can be seen in the requirement diagram in Figure 17.56. The 
diagram shows traceability from the mission requirement for Intruder Emergency Response to the 
Video Camcorder performance requirements for Field of View, Resolution, and Sensitivity, and func-
tional requirement to Capture Video.

FIGURE 17.55

ESS System Specification showing the requirements contained in the system specification on a requirement 
diagram.
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The mission requirement for Intruder Emergency Response is refined by the use case called Provide 
Intruder Emergency Response. The ESS system requirement for Intruder Detection and False Alarm 
Rate is derived from the mission requirement and satisfied by the Monitor Intruder-ESS Node Physical 
activity. Although not shown in the figure, the requirement may be also be refined by the ESS black box 

FIGURE 17.56

Requirement diagram showing traceability and flowdown from the Intruder Emergency Response mission 
requirement to Video Camcorder component requirements and design.
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mops for probability of intruder detection and probability of intruder false alarm. The Verify Entry 
Detection test case verifies that the Intruder Detection and False Alarm Rate requirement is satisfied.

The Intruder Detection and False Alarm Rate requirement contains the requirements for Entry-Exit 
Detection and Perimeter Detection. The requirements contained in the Video Camera Specification are 
derived from the Perimeter Detection requirement. The Video Camcorder is asserted to satisfy the Video 
Camera Specification. The rationale for the derivation of the Video Camcorder performance requirements 
from the Perimeter Detection requirement refers to the Intruder detection and false alarm analysis.

The level of granularity at which the traceability is maintained is determined as part of the process 
tailoring. For example, it may be sufficient to assert that a particular component satisfies a requirement, 
such as the Video Camcorder in Figure 17.56. Alternatively, it may be necessary to show that a particular 
feature of a component, such as one of its value properties, satisfies a particular performance require-
ment. The finer granularity adds precision to the traceability (which can assist in change impact assess-
ment, for example) but requires more effort to establish and maintain the traceability relationships.

Analyze traceability gaps
Traceability reports are generated and used to analyze traceability gaps and assess how the system design 
satisfies the system requirements. Metrics can also be used to determine requirements coverage in terms of 
both satisfy and verify relationships. The results from this analysis are used to drive updates to the system 
design and verification and to update the traceability. Matrix and tabular presentations are often used to cap-
ture the requirements relationships and gap reports as described in Chapter 13, Section 13.7.2. In this exam-
ple, a report can be generated that depicts which system requirements are satisfied and what gaps remain.

Viewpoints and their corresponding views can aid in requirements traceability analysis by providing 
a means to query the model for the elements that satisfy a particular set of requirements. This is dis-
cussed in Section 17.3.5 in the subsection called Defining Other Architecture Views. If the satisfaction 
of selected requirements is the basis for defining the query criteria for a viewpoint, the view that con-
forms to the viewpoint can be a report of the model elements that satisfy the selected set of require-
ments. A view can be presented in many different formats, such as a combination of diagrams, tables, 
matrixes, trees, and documents that contain this information.

Managing requirements updates
The requirements management activity may result in proposed updates to existing requirements and/or 
the generation of new requirements. In some cases, new text requirements are defined for each black-
box specification feature, such as those shown in Figures 17.19 and 17.46 for the ESS and its compo-
nents. The model helps to uncover ambiguous, inconsistent, incomplete, or unverifiable requirements, 
which can then be refined by proposing changes to requirements and managing the change through the 
project’s change management process.

On larger projects, a requirements management tool is generally used in conjunction with the sys-
tems modeling tool. Integration between the two tools is important to ensuring that the requirements 
and their relationships are synchronized between both tools. The change process must determine how 
changes to requirements are handled. One approach is to make changes to requirements text in the 
requirements management tool and to establish the relationships between the model elements and text 
requirements in the modeling tool. Chapter 18 includes additional discussion on integrating the system 
modeling tools with the requirements management tool. The specification document with text require-
ments can also be output directly from the modeling tool using the tool’s automatic document genera-
tion capability and standard requirements templates.
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17.3.8 � OOSEM SUPPORT TO INTEGRATE AND VERIFY SYSTEM
The Integrate and Verify System process is part of the system development process shown in Figure 17.1 
and described in Section 17.1.2. The goal of this process is to verify that the system satisfies its require-
ments. System, element, and component verification is typically accomplished by a combination of inspec-
tion, analysis, demonstration, and testing. The process includes developing verification plans and procedures, 
executing the verification procedures, analyzing verification results, and generating verification reports.

OOSEM supports this process in several ways. The system model can be used as a basis for devel-
oping test cases and associated verification procedures. The model can also be used to support other 
modeling artifacts that support verification planning and to support design of the verification environ-
ment. In addition, the model of the operational system can be integrated with an execution environment 
to support early requirements validation and design verification.

As described in Chapter 13, Section 13.12, SysML includes a test case and verify relationship, 
which can be used in conjunction with requirements to show how requirements can be verified at 
system, element, and component levels. From Figure 17.56, the Verify Entry Detection test case 
verifies the Intrusion Detection and False Alarm Rate requirement. This requirement can be elabo-
rated to ensure it is verifiable by specifying the inputs, conditions, and expected outputs. The test 
case is expressed as an activity diagram in Figure 17.57 with the «testCase» key word shown in the 
diagram header. The ESS Node Physical is the unit under test. In this example, a Video Source and 

«Test Case»
Verify Entry Detectionact [  ]

generate 
scenario video

Scene 
Select scene : Video

emulate contact
 sensor 

response

DetectionSensor Select

setup test

assess pass/fail
Verification Result

configure input

Sensor Select

expected : 
Alert Status

monitor entry

Alert Status

Video

Detection

compare to 
expected 
response

Verification Result

expected : 
Alert Status

unit under test : ESS Node Physical«block»
«test component»

Contact Sensor Emulator

«block»
«test component»

Test Monitor

«block»
«test component»

Video Source

«block»
«operator»

Tester

FIGURE 17.57

Verify Entry Detection test case.
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the Contact Sensor Emulator represents the ESS external environment that generates the stimulus 
to the ESS, and the Test Monitor compares the ESS response to the expected response. A Tester 
initiates the test.

The test case specification defines the stimulus, the conditions, and the expected response. The 
verification result from the test case execution is compared with the expected response. The results 
can then be recorded to determine whether the system provideed the expected response. The result 
is called the verdict and may include pass, fail, undetermined, or some other set of values. The 
requirement verification status is updated to reflect the verification results from the test case 
execution.

As mentioned above, the method of verification includes inspection, analysis, demonstration, and 
testing. The test case definition and execution depends on the method of verification. For example, the 
method of verification for a system requirement that “The system shall weigh between 98 and 100 
pounds” may be performed by testing or analysis. To verify the requirement by testing, a test case is 
defined to weigh the system on a scale and compare the measured weight against the required weight. 
To verify this requirement by analysis, the estimated weight of each component is summed to esti-
mate the system weight. In the latter case, a parametric diagram may be used to verify the requirement 
by analysis.

To verify the requirement by analysis, an executable model can be used to represent the unit under 
test in place of the actual hardware or software. The results from executing the test case with the system 
model can be used to get early indications of requirements verification prior to building the hardware 
and software. In the very early stages of the system specification and design process, the system model 
can be used to validate that the system and component requirements satisfy the mission requirements. 
This may include use of a discrete event simulation such as fUML, as described in Chapter 9, Section 
9.14. As the development progresses, more detailed component design models can be integrated with 
the system model to verify that the component designs satisfy the system requirements. There are many 
considerations for how to effectively leverage a system model to support this capability. Chapter 18 
includes additional discussion on how SysML is used with a variety of simulation and analytical mod-
els that can be used to support requirements verification.

The execution of the test cases requires a verification environment to generate the stimulus and 
assess the response, and a unit under test to respond to the stimulus. The verification environment may 
include hardware, software, facilities, and personnel. In the next section, the application of OOSEM to 
model the verification environment is discussed.

17.3.9 � DEVELOP ENABLING SYSTEMS
Enabling systems may need to be developed and/or modified to develop a complete capability that 
supports the entire system lifecycle. The enabling systems include the manufacturing system to pro-
duce the system, support systems such as support equipment to maintain the system, and verification 
systems to verify the system. These lifecycle considerations should be addressed early to avoid 
adverse impacts later. For example, if the manufacturing system capability is not considered early, the 
cost of producing the system may increase substantially due to imposing higher cost manufacturing 
methods. As a result, the enabling systems are developed concurrently with the operational system so 
that specific concerns, which may impact other parts of the lifecycle, are addressed early in the devel-
opment process.
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Figure 17.58 shows the processes for concurrent development of the ESS operational system with 
the ESS enabling systems for verification and installation. More generally, this process could include 
development of other enabling systems, such as the manufacturing system. The OOSEM method is 
applied to the development of the operational system in the previous sections. However, the method and 
associated artifacts can be tailored and applied to specify and design the enabling systems as well. For 
very complex enabling systems, the entire method may be applied. For simpler enabling systems, only 
selected aspects of the method may apply.

As an example, the verification system may be quite complex, such as when precision measurement 
equipment is required to verify the system. The requirements on the measurement equipment may be 
more stringent than the requirements on the operational system under test. If the measurement equip-
ment is to be designed and developed, a rigorous application of OOSEM may be required, along with 
the application of the UML Testing Profile [50] to provide additional modeling constructs that are 
applicable to the test domain. In Figure 17.59, the Verification Domain includes the Verification Con-
text-Entry Detection for the Verify Entry Detection test case that was shown in Figure 17.56. This sup-
ports the broader test objectives to verify intruders are detected. The test case is seen as an operation of 

FIGURE 17.58

Concurrent development process of the operational system and enabling systems.
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FIGURE 17.59

Block definition diagram of the Verification Domain to support design of the verification system.

FIGURE 17.60

Installation Domain block definition diagram, a starting point for the specification and design of the ESS 
Installation System.
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the Verification Context whose method is the activity diagram in Figure 17.57. The Verification Context 
includes the test components that are part of the verification system and references the unit under test. 
The Verification Domain block definition diagram is similar to the Operational Domain block defini-
tion diagram in Figure 17.12. OOSEM can be applied to develop the overall verification system using 
an approach similar to that applied to the specification and design of the operational system.

The ESS Installation System may be also complex and may warrant the application of OOSEM 
for its specification and design. The Installation package in Figure 17.5 contains the model ele-
ments that enable implementation of this part of the system lifecycle. The block definition diagram 
for the ESS Installation Domain is shown in Figure 17.60. The Installation Enterprise includes the 
ESS Installation System and external Suppliers that support the installation objectives, as defined by 
installation use cases. The ESS Installation System includes the Installers and their Installation 
Equipment, such as Installation Trucks and Installation Tools. This serves as a starting point for 
specifying and designing the ESS Installation System in a similar way as the Operational Domain 
block definition diagram (in Figure 17.12), which was a starting point for the specification and 
design of the ESS operational system. The Installation package in Figure 17.5 has a similar struc-
ture of nested packages and contains modeling artifacts similar to those in the Operational 
package.

17.4 � SUMMARY
The example described in this chapter illustrates how SysML is used as part of a model-based systems 
engineering method called OOSEM to solve a systems engineering problem. The top-down scenario-
driven method is used to flow the requirements down from stakeholder needs to component-level speci-
fications, which include hardware, software, persistent data, and operational procedures. The OOSEM 
approach includes analysis of stakeholder needs, analysis of black-box system requirements, definition 
of the logical architecture, synthesis of candidate physical architectures, and support of activities to 
optimize and evaluate alternatives and manage requirements traceability.

The method also supports the verification process in the up-side of the Vee development process and 
the development of other enabling systems such as the installation system. The approach illustrates how 
different aspects of the system are analyzed to address a multitude of concerns related to system func-
tionality, interfaces, performance, distribution, lifecycle, and changes in requirements and technology, 
to develop a robust solution that satisfies the stakeholder needs.

OOSEM should be tailored to satisfy the particular project objectives and constraints by clearly 
defining the modeling objectives, scope, and tool and resource constraints. The tailoring involves 
selecting the level of rigor that is applied to each of the OOSEM activities, determining which model-
ing artifacts are generated and to what level of detail, and incorporating the activities and artifacts into 
the project schedule.

17.5 � QUESTIONS
	1.	 �Develop the following artifacts for the Provide Fire Emergency Response use case shown in 

Figure 17.13.
	 a.	 �Provide Fire Emergency Response activity diagram (equivalent to Figure 17.15)
	 b.	 �Monitor Fire-ESS Logical activity diagram (equivalent to Figure 17.24)
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	2.	 �The customer has introduced the following new requirement: “The ESS shall provide the ability to 
integrate with a fire-suppression system to extinguish fires when detected with minimal adverse 
impact to the property.” Describe the impact of this new requirement on the system design by 
identifying the changes to each of the following modeling artifacts.

	 a.	 �ESS Requirements (Figure 17.55)
	 b.	 �Security Enterprise Use Cases (Figure 17.13)
	 c.	 �Provide Fire Emergency Response activity diagram (refer to response to Question 1a)
	 d.	 �System Context (Figure 17.17)
	 e.	 �ESS Black-Box Specification (Figure 17.19)
	 f.	 �ESS Logical Decomposition (Figure 17.23)
	 g.	 �Monitor Fire-ESS Logical activity diagram (refer to response to Question 1b)
	 h.	 �ESS Logical internal block diagram (Figure 17.25)
	 i.	 �ESS Node Logical block definition diagram (Figure 17.28 and Figure 17.29)
	 j.	 �ESS Node Logical Internal Block Diagram (Figure 17.31 and Figure 17.32)
	 k.	 �Allocation tables for logical components to hardware and logical components to software 

(Figure 17.33 and Figure 17.34)
	 l.	 �Site Installation internal block diagram (Figure 17.39)
	3.	 �How are the measures of effectiveness impacted by this requirements change?
	4.	 �How does this impact the top-level parametric diagram in Figure 17.11?
	5.	 �What additional types of analysis are required, and how can this be reflected in parametric 

diagrams?
	6.	 �Discuss how the preceding requirements change impacts the overall model, and how the model 

helps to address requirements change.
 



IVTRANSITIONING  
TO MODEL- 
BASED  
SYSTEMS 
ENGINEERING
Part IV addresses key considerations for transitioning to an MBSE approach with SysML. Chapter 18 
describes how to integrate SysML into a systems development environment consisting of 
multi-disciplinary engineering tools. Chapter 19, the last chapter of the book, describes processes and 
strategies for deploying MBSE with SysML in an organization.

PART 
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CHAPTER

INTEGRATING SysML INTO A 
SYSTEMS DEVELOPMENT 
ENVIRONMENT

This chapter describes an approach and key considerations for integrating SysML with other models 
and tools in a systems development environment. This includes a discussion of the different kinds of 
models and their relationships, the different kinds of tools in a development environment, the logical 
interfaces between the system modeling tool and other tools in the development environment, configu-
ration management concepts, approaches and applications for data exchange between tools, and criteria 
for selecting a SysML tool.

18.1 � THE SYSTEM MODEL IN THE BROADER DEVELOPMENT CONTEXT
This section describes how the system model relates to other kinds of models, including other descrip-
tive and analytical models and how a model relates to simulation.

18.1.1 � THE SYSTEM MODEL AS AN INTEGRATING FRAMEWORK
As discussed in Chapter 2, Section 2.1.2, the system model is a primary artifact of model-based systems 
engineering (MBSE) and is an integral part of the technical baseline of the system. Any changes to the 
system requirements or design are reflected in the system model and propagated through the model 
artifacts, views, and other linkages to various stakeholders affected by the change. While this goal of 
MBSE is gaining broad acceptance across the industry [60], the specifics of how these artifacts, views, 
and linkages are established and maintained vary with different MBSE approaches.

The system model from Chapter 2 Figure 2.1, is depicted in Figure 18.1as an integrating framework 
for system development. The system model provides a consistent source of the system specification, 
design, analysis, and verification information, while maintaining traceability and rationale for key deci-
sions. The information provides a context and critical input for more detailed hardware and software 
design and verification activities, which may also be model-based. In particular, the system model 
relates the text requirements to the system design, provides the system design information needed to 
support multi-disciplinary analysis, serves as a specification for the hardware and software design, and 
provides the test cases and related information needed to support verification. Each technical disci-
pline—including mechanical, electrical, software, and test—elaborates the information contained in 
the system model with more detailed specification, design, analysis, and verification information. To 
ensure a cohesive overall representation of the system, traceability is maintained between the more 
detailed discipline-specific information and the information in the system model.

18
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18.1.2 � KINDS OF MODELS IN THE SYSTEMS DEVELOPMENT ENVIRONMENT
As stated in Chapter 2, Section 2.2.1, a model is a representation of one or more concepts that may be 
realized in the physical world. Applying MBSE to the development of a system involves building mod-
els that represent the system and its environment. Different models are intended to describe various 
aspects of the system under development, and with varying degrees of fidelity. A scale model or physi-
cal mockup is a physical construction that can represent an actual system or other physical entity. A 
typical example is a scale model of a building, or a scale model of a vehicle that is used in a wind tunnel 
to determine its aerodynamic characteristics. On the other hand, a symbolic model is an abstraction of 
the system that is meant to be interpreted by humans and/or computers.

Figure 18.2 is a taxonomy of the various kinds of symbolic models that are referenced in this chap-
ter. As described in Chapter 15, Section 15.2, these models are typically constructed using a formally 
defined modeling language that includes rules for abstract syntax, concrete syntax, and semantics. 
Some representative modeling languages are summarized in Chapter 1 Section 1.5. A further classifica-
tion of symbolic models is discussed below, but it should be noted that any given model may include 
characteristics of more than one kind of symbolic model.
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FIGURE 18.1

The system model as a framework for analysis and traceability.
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Descriptive models
A descriptive model describes a system or other entity and its relationship to its environment. It is 
generally used to help specify and/or understand what the system is, what it does, and how it does it.

A geometric model or spatial model is a descriptive model that represents geometric and/or spatial 
relationships. Mechanical three-dimensional computer aided design (CAD) models are geometric mod-
els that include detailed information, including dimensions, tolerances, and other descriptive data such 
as material characteristics. A 3D representation of land topography and other features that are often 
presented as maps and other visualizations is also a kind of spatial model.

A logical model is a descriptive model that primarily represents logical relationships and dependen-
cies such as functional, connectivity, and traceability relationships. Examples of logical models include 
a circuit design model that describes electrical components and their interconnections, and a model of 
system composition such as a bill-of-materials.

The system model is a logical model that is introduced in Chapter 2 Section 2.1.2. This model 
captures the requirements, structure, behavior, and parametric constraints associated with a system and 
its environment, along with the relationships between these elements. As discussed throughout this 
book, SysML is a modeling language used to capture the system model. SysML supports various 
abstraction techniques and provides the ability to represent many different views of the system, such as 
a black-box view, white-box view, and a security view. The system model can also be queried and ana-
lyzed for different purposes, such as providing traceability analysis, assessing the completeness of the 
model, and validating model correctness.

Analytical models
An analytical model is primarily quantitative or computational in nature and represents the system in 
terms of a set of mathematical equations that specify parametric relationships and their associated 
parameter values as a function of time, space, and/or other system parameters. This is typically done by 
modeling the underlying phenomena to predict or assess how well the system performs or other system 

[Package] Modelsbdd [symbolic model taxonomy]
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Geometric Model

«block»
Analytical Model

«block»
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FIGURE 18.2

A taxonomy of models.
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characteristics. Various kinds of analytical models are used to represent different aspects of the system 
and its environment, such as its performance, reliability, or mass properties.

An analytical model may represent parameter values that are a function of time, such as a model of 
vehicle dynamics, or parameter values that do not change with time, such as the mass properties or 
geometric characteristics of a static structure. The analytical model may be solved via a closed form 
solution such as the position of a point mass given an initial position, velocity, and constant accelera-
tion. Other solutions require numerical analysis methods to determine the change in state of the system 
as a function of time, space, and other parameters. In addition, the parameter values may be determin-
istic or probabilistic. In the latter case, the parameters in the model are defined with an associated prob-
ability distribution.

The equations that are defined in the model must be a sufficiently precise representation of the sys-
tem and environment to meet the purpose of the model. For example, it may be sufficient for a model 
of a spring-mass to include only first-order effects to predict the acceleration, velocity, and position of 
the mass, while in other circumstances, more detailed equations may be needed to provide a higher 
fidelity representation of some second-order affects.

The analysis results are expressed in terms of parameter values that are often functions of other 
parameters and time. The analysis results are presented in plots, tables, and other visualizations. Some 
example visualizations include response surfaces, spider charts, carpet plots, and others. Animation is 
a particular form of visualization that describes state changes of a system or other entity.

Relationship between model and simulation
A simulation of a system is a way to represent the system response as a function of time and space. A 
simulation can take many forms. For example, a simulation may be used to assess how well astronauts 
perform a particular task in a simulated weightless environment. In this example, the astronauts and the 
tools they use to perform their tasks are the real=world entities, but the environment is a simulated 
physical environment intended to represent the zero-gravity space environment.

The focus for this discussion is on computer simulations that simulate some aspect of the system 
and its environment. A computer simulation includes a dynamic model of the system and its envi-
ronment, the initial conditions, a specification of how the external inputs to the system change over 
time, and an execution environment to execute the model. The dynamic model includes a set of 
equations which define how the system state changes over time, and requires numerical methods to 
determine the solution, rather than a closed form solution. A dynamic or other analytical model that 
is expressed sufficiently precise to be executed by an execution environment is sometimes called an 
executable model. This model is often expressed in a programming language such as Java or C++ 
that can be executed, or a higher-level modeling language that can be transformed to code. The 
execution environment applies the initial conditions to represent the initial state of the system and its 
environment, updates the external inputs to the system over time, and solves the equations expressed 
by the model to determine the change of state of the system and environment as a function of time. 
A model checker is usually used to validate the model and the initial conditions prior to starting the 
simulation.

As an example, a simulation of a robotic vacuum cleaner may be used to predict and assess the 
robot’s cleaning performance over a wide range of trajectories and control algorithms. The simulation 
may include a model of the room that is being cleaned, such as a representation of the carpet, dust, and 
other obstacles, and a model of the robotic system that includes sensors, processors, and actuators that 
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control the trajectory and cleaning actions. The simulation may represent how the robot cleans particu-
lar segments of the carpet given the initial conditions of the robot and the environment. A simulation 
may include the actual environment and/or actual hardware and software elements of the system in 
place of the corresponding part of the model. In other examples, the simulation may include actual or 
simulated operators that interact with the system.

There are many different classifications of simulation. A system performance simulation pro-
vides the capability for analysis of system behavior, resource consumption, and other physics-based 
phenomenology. The performance simulation may also include the capability to evaluate the stochas-
tic nature of system performance (e.g., by providing a Monte Carlo capability). Data-analysis tools, 
sophisticated visualization tools, and animation may be used to present the results from executing the 
simulations.

A distributed simulation, such as the High-Level Architecture (HLA) standard [26], executes across 
a distributed execution environment. Simulations based on HLA require development of Federated 
Object Models (FOM), which represent individual simulation modules that can communicate with one 
another. The Run-Time Infrastructure (RTI) provides the computational environment to manage simu-
lation time, publish/subscribe information exchange, coordinate messaging, and perform other features 
to coordinate the distributed simulation execution.

Other kinds of simulations are classified according to their characteristics, such as the form of the 
equations and/or how they are solved. For example, a discrete event simulation describes how the sys-
tem responds to a sequence of events, whereas a continuous simulation solves a set of differential-
algebraic equations or differential equations to describe the system response as a function of time. The 
simulations may be further classified in terms of whether the equations are solved using procedural or 
declarative (constraint-based) solvers. When the actual hardware or software is part of the simulation 
environment, the simulation is referred to as hardware-in-the-loop or software-in-the-loop simulations. 
Other references [61] elaborate the kinds of simulations and how they are used.

Further classification of models
As described earlier in this section, the different kinds of symbolic models are descriptive and analyti-
cal models. Descriptive models can be geometric or logical. The taxonomy shown in Figure 18.2 can 
be elaborated to include additional model classifications, such as models that represent technical, func-
tional, and application domains. An example may be a model of an electrical design (technical domain) 
of a power subsystem (functional domain) of a vehicle system (application domain). A particular model 
can have multiple classifications, such as an electrical design model that represents a circuit layout 
(geometric), a circuit interconnection (logical), and/or a circuit analysis (analytical). This model tax-
onomy can be used to classify the diverse models in a systems development environment and assist in 
understanding their various roles.

18.1.3 � RELATING DATA FROM DIFFERENT MODELS
The system model is generally used to represent multiple aspects of a system at a fairly abstract level. 
As discussed in Chapter 2, Section 2.1.2, the system model is often used to specify the system and its 
components down to some level of the system hierarchy. The system model is also used with other 
models that represent more detailed aspects of the system or may represent other aspects of the system 
not addressed by the system model. Since the information contained in the system model is often 
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related to information in other models and data repositories, the consistency of the information across 
the different models and repositories must be maintained.

The relationship between the data contained in different models is illustrated in Figure 18.3. This 
figure shows a system model, a geometric design model (CAD), and an analytical model, along with a 
requirements repository and a configuration management repository. These models are all intended to 
represent various aspects of the same system. Data elements contained in the different models are indi-
cated by the dots. The lines represent relationships between the data elements. The solid lines relate 
data elements contained within a single model (internal relationships), while the dashed lines relate 
data elements contained in different models (external relationships). An element in one model or data-
base is said to be equivalent to an element in another model or data repository if the concepts they 
represent are intended to mean the same thing (i.e., are semantically equivalent).

These models are further highlighted with a particular Vehicle example in Figure 18.4. The require-
ments for Vehicle Acceleration and Total Weight are contained in the requirements management reposi-
tory along with other requirements, such as Engine Power and Engine Weight (not shown). The 
requirements in the system model are equivalent to the requirements in the requirements management 
repository. The system model also represents the Vehicle and some of its properties, including maxAc-
cleration and weight. A satisfy relationship connects the maxAccleration property and the Vehicle 
Acceleration requirement, and another satisfy relationship links the weight property and the Total 
Weight requirement. The system model shows the decomposition relationship of the Vehicle into the 
Engine and Transmission. The Engine contains a maxPower and weight property. An instance specifi-
cation veh01:Vehicle provides a particular specification of values for these properties.

The values of maxPower for this instance of the Engine in the system model are intended to be equiva-
lent to the values of Est Power in the 3D CAD model. The value of the maxAcceleration in this instance 
of the Vehicle in the system model is intended to be equivalent to the Max Acceleration property value in 
the analysis model. In this example, the analytical model is assumed to be the authoritative source for the 
maximum acceleration value, such that the value of maxAcceleration in the system model is updated to 
reflect the Max Acceleration parameter in the analytical model. Note that additional parameter values are 
required for the analytical model to calculate Max Acceleration, some of which may be derived from the 
system model—such as the initial weight of the fuel (not shown)—and from other sources. The sources 
may include other analytical models, such as a model that calculates the total weight of the vehicle based 
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Relationships between data elements within and between models and repositories.
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FIGURE 18.4

Equivalent relationships between system modeling and other models.
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on the weight values of each component (not shown). It is evident from this simple example that there can 
be many relationships and associated dependencies between the different models.

A special case of an equivalent relationship is where two models represent different levels of 
abstraction of the same thing. For example, two analytical models may contain a parameter that rep-
resents the same property of a design but at different levels of fidelity, such as a low-fidelity analyti-
cal model to predict maxAcceleration and a high-fidelity analytical model. Similarly, the 
maxAcceleration property in the system model in Figure 18.4 may be bound to a very simple con-
straint that relates maximum acceleration to engine maximum torque and vehicle weight, where as 
the Max Acceleration parameter in the analytical models may consider the torque curve of the engine 
as a function of engine speed, driveline ratios, efficiencies, and other engine parameters and driving 
conditions that vary over time.

Other kinds of relationships between data in different models and repositories do not imply equiva-
lence (i.e., non-equivalent relationships). For example, one model may represent the requirements for 
a component, and another model may represent the design of the component. In Figure 18.04, the 
Engine in the system model represents a fairly abstract specification of key engine features, such as its 
interfaces, functions, and key performance and physical characteristics, while 6 Cyl Turbo Engine in 
the 3D CAD model represents a detailed design for an engine that is intended to satisfy this specifica-
tion. The Engine’s weight property in the system model may represent a required weight for the Engine, 
whereas the Est Weight property in the CAD model may represent the estimated design weight. The two 
data elements are not equivalent but are related by a specification-to-design relationship, such as a 
satisfy or realization relationship.

In Figure 18.4, the configuration management repository contains versioning data about the require-
ments in the requirement management repository. This versioning data is metadata about the require-
ment, including its version, when it was updated, and who updated it. The relationship between the 
requirements and the metadata must be established and maintained.

Relationships between data elements within a particular model are part of the model. Relation-
ships between data elements that extend across models are not necessarily part of either model but 
must be maintained and managed to ensure consistency and to support impact assessment across 
models. A model management approach is needed to account for the nature of the relationships, the 
meaning of the data elements on either end of the relationships, and the dependencies between the 
elements. In particular, one side of the relationship may be designated as the source, and the other 
side of the relationship may be designated as the client. When the source is updated, the client must 
also be updated. As the number of models and their interdependencies increase, the propagation of 
change across models and the need to synchronize them become essential. Some aspects of manag-
ing this change to models are addressed in the discussion on configuration management in Section 
18.2.3.

The integration of the system model with models and structured data developed by other engi-
neering disciplines is essential to ensure a cohesive model-based solution. Each discipline relies 
on developing descriptive models to represent their design and analytical models and simulations 
to support performance analysis and other design decisions. Managing the relationships between 
the data in the different models reduce inconsistencies that improve design integrity and quality, 
and reduce impact analysis cycle times. The data interfaces between a system modeling tool and 
other system development tools must maintain these data relationships, and are discussed in 
Sections 18.2.2.
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18.2 � SPECIFYING AN INTEGRATED SYSTEMS DEVELOPMENT 
ENVIRONMENT

The term systems development environment refers to the tools and repositories used by teams to 
develop systems from concept through the final verification and validation of a delivered system. Typi-
cal tools may include system modeling tools; hardware and software design and development tools; 
simulation and analysis tools; test tools; requirements management; configuration management; and 
project management tools. The tools and repositories are computer-based, multi-user, networked appli-
cations supported by a computing and network infrastructure. An integrated systems development envi-
ronment implies some logical connectivity between these tools and repositories to support collaborative 
engineering.

Establishing an integrated systems development environment requires the application of a systems 
engineering approach in its own right. The full lifecycle of the systems development environment 
should be considered, from its initial procurement, through installation and configuration, operation, 
and maintenance. Architecting the system’s development environment should include a definition of its 
interfaces and the standards required to support them. This section specifies an integrated systems 
development environment in terms of the kinds of tools in the environment, their functionality, and the 
information exchange between them. The information exchange must preserve the data relationships 
among the different models as discussed in Section 18.1.3. Section 18.3 describes the mechanisms and 
approaches for exchanging this information, and Section 18.4 includes examples of integrating a sys-
tem modeling tool with other standards-based tools.

18.2.1 � TOOLS IN A SYSTEMS DEVELOPMENT ENVIRONMENT
A systems development environment includes a wide spectrum of modeling tools and other applica-
tions. The kinds of models can be classified by the taxonomy described in Section 18.1.2. A model-
ing tool is used to create, modify, store, present, exchange, and analyze a model, and check its 
validity. Modeling tools may support different standard and nonstandard mechanisms to exchange 
their modeling information.

This section defines a set of roles for tools to support system development. The tool roles describe 
the kind of functionality a tool provides without reference to a particular vendor implementation. A 
particular vendor implementation may support all or part of one or more tool roles. For example, a 
particular vendor implementation may support both systems modeling in SysML and some analytical 
modeling. For the remainder of the section, the term tool is used to reflect a tool role.

Figure 18.5 depicts an environment that integrates multiple kinds of tools that support different 
parts of a system development process, such as system specification and design, hardware and soft-
ware development, system integration and verification, and project management activities. (Refer to 
the system development process in Chapter 17, Section 17.1.2.) The tools in this environment create 
and maintain system models, as well as mechanical, electrical, and software design models, simula-
tion and analysis models, and verification models. Other tools provide support for requirements 
management, configuration and data management, project management, and document and view 
generation. There may be many other tools within a particular development environment that support 
other discipline specific activities, but this tool classification provides a representative set. These 
tools are summarized below.
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Project Management tools support planning, assessment, and control of the overall development 
effort to manage cost, schedule, and technical performance. These tools also include workflow engines 
to control the execution of the development process, such as orchestrating assignment of tasks and 
approval of deliverables.

System-of-systems modeling tools support SoS, enterprise, and business process modeling. They 
may include support for architecture frameworks such as DoDAF and MODAF, using modeling lan-
guages such as the Unified Profile for DoDAF/MODAF (UPDM) and the Business Process Modeling 
Notation (BPMN).

System modeling tools support development of the system model as described in Section 18.1.2. 
This is assumed to be a SysML modeling tool.

Systems Development Environment System Modeling Tool Interfaces[Block]ibd [ ]

: System Modeling Tool

: Project Management Modeling Tool

: Configuration & Data Management Tool

: Document & View Generation Tool
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: Verification Tool
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queryResult :
Model

technical : Metrics

FIGURE 18.5

High level information exchange between the system modeling tool and other tools.
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Simulation and analysis tools support trade-off analysis, sensitivity analysis, optimization, char-
acterization, and prediction at all levels of design. These tools provide a range of execution environ
ments and solvers to support specialized analysis (e.g., performance, reliability, safety, security, cost, 
mass properties analysis), and design integrity checking.

Requirements management tools generate, trace, track, and report text-based requirements and 
assemble them into specification documents.

Mechanical modeling tools are used to design, implement, and test the mechanical aspects of sys-
tems and components and includes two- and/or three-dimensional CAD modeling, and may include the 
modeling of materials, geometric dimensioning and tolerancing, and manufacturing process design. 
The mechanical modeling tools are supported by many different simulation and analysis tools to ana-
lyze the mechanical aspects of a design, including mass properties, stress, dynamics, and thermal 
characteristics.

Electrical modeling tools are used to design, implement, and test the electronic aspects of systems 
and components, and include circuit design/schematic capture, circuit layout, Field Programmable 
Gate Array (FPGA) design, and manufacturing process design. The electrical modeling tools are sup-
ported by many different simulation and analysis tools to analyze electrical designs, including power, 
grounding, signals, and data.

Software modeling tools are used to design, implement, and test software components and may 
include UML modeling tools, compilers, debuggers, and other tools that are part of an integrated software 
development environment. The OMG’s Model Driven Architecture (MDA) approach to software devel-
opment relies on capturing and maintaining the technical baseline of the software product in a model, 
generating code from this model, and synchronizing changes to the model with changes to the code.

A specialized class of software tools supports Real-Time Embedded (RTE) system development. 
Examples of RTE modeling languages include the Modeling and Analysis of Real Time and Embedded 
systems (MARTE) UML profile [62], and the SAE Architecture Analysis and Design Language 
(AADL) standard [27]. The software modeling tools are supported by many different simulation and 
analysis tools to analyze software designs, including scheduling, real-time performance analysis, and 
complexity analysis.

Software modeling can also support design of information intensive systems that include concep-
tual, logical, and physical database design to store, query, and synchronize data.

Verification tools are used to verify requirements are satisfied at each level of the system hierarchy, 
from SoS down to component level,throughout the lifecycle of system development. The verification 
tools address the breadth of requirements that include functional, interface, performance, physical, and 
environmental requirements, to name a few. The tools may support different methods of verification, 
including inspection, analysis, demonstration, and test. The verification environment can include tools 
that range from simple drivers to stimulate a component and assess its response, to complex facilities 
and equipment such as an environmental test facility to verify the vibration, shock, temperature, and 
end-of-life requirements for a system or component.

For this discussion, we assume validation tools may be a kind of verification tool. However, valida-
tion tools must support a broad range of validation methods, some of which are not typically associated 
with verification. For example, validation methods can include reviewing requirements with the stake-
holders to ensure their needs are being addressed and conducting an operational test in an actual envi-
ronment to determine how well the system addresses the user needs. The latter is an example of 
verification, whereas the former is not.
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Document and view generation tools are used to generate documentation of the system specifica-
tion and design. In a model-based environment, the documentation presents different views of the 
system that are generated by querying the model on demand and presenting the results in a form that is 
useful to the consumers of the information.

Configuration and data management tools ensure that the models and associated development 
artifacts—such as specifications, design, analyses, and verification artifacts—are maintained in a con-
trolled fashion. Product data management tools encompass configuration and data management tools 
that manage the full lifecycle of technical data needed to specify product configurations.

18.2.2 � INTERFACES BETWEEN THE SYSTEM MODELING TOOL AND OTHER TOOLS
Figure 18.5 is an internal block diagram of an integrated systems development environment emphasiz-
ing the logical connections between the system modeling tool and the other kinds of tools summarized 
in the previous section. Since the focus is on the interface with the system modeling tool, the connec-
tions between the other kinds of tools are not shown.

The information that is exchanged across the connections is intended to preserve the data relation-
ships between the models as discussed in Section 18.1.3. The typical information exchanged between 
the system modeling tool and the other kinds of tools are also shown in Figure 18.5 and discussed 
below. The exchanges depicted in the figure are at a summary level but provide a starting point for 
defining more detailed interfaces for a specific environment. The mechanisms for how the information 
can be exchanged are discussed in Section 18.3.

Interface with requirements management tool
Figure 18.5 shows the data interface between the System Modeling tool and a Requirements Manage-
ment tool, which includes the exchange of requirements and/or their relationships. This can be a one- or 
two-way exchange of information that is highly process dependent, and is a function of which tool is 
designated as the source of the requirements and which tool is the client.

A typical approach within a systems development environment is to capture some subset of the 
requirements from the Requirements Management tool in the System Modeling tool, along with a set of 
links that establish the equivalence relationship. The System Modeling tool is used to propose updates 
to requirements, but they are formally updated and controlled in the Requirements Management tool. 
The derive relationship (i.e., deriveReqt) between requirements is maintained in the Requirements 
Management tool because this relationship is only between text-based requirements. Other require-
ments relationships, such as satisfy, verify, and refine relationships between the requirements and the 
other model elements, are maintained in the System Modeling tool. The requirements and relationships 
in both tools are synchronized to maintain their equivalence.

Interface with SoS/business models and tools
Figure 18.5 shows the data interface between the System Modeling tool and a SoS/Business Modeling 
tool. The SoS modeling tool provides the context for the system under development and the needs of 
each stakeholder. The system model defines the system and how it meets the needs.

Architecture frameworks provide a structure for describing these contexts and needs. Modeling 
languages like UPDM [23] directly support these frameworks. UPDM also leverages SysML for its 
foundation, which facilitates the integration between the SysML model and the UDPM model. The 
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integration can be achieved by using common model elements that participate in both the SoS and Sys-
tem Model or by maintaining separate models with equivalence relationships between them.

Interface with development models and tools
A principal reason for developing a system model is to specify the requirements and constraints on the 
system’s components, which typically includes hardware (and equipment) and software. The interfaces 
between the System Modeling tool and hardware and software development tools are critical. In par-
ticular, the System Modeling tool provides the component specifications to hardware and software 
Engineering Development tools, which in turn provide design data that demonstrate how the hardware 
and software design models satisfy the specifications.

Figure 18.5 depicts the kinds of information that flow between a System Modeling tool and Software 
Modeling, Mechanical Modeling, and Electrical Modeling tools. In each case, the System Modeling 
tool provides component specifications specific to that domain, as well as the system context for the 
specification. The interface from the System Modeling tool to the development tools may be expressed 
as blocks that represent component black-box specifications with their ports, functions/operations, and 
value properties (refer to Chapter 17, Section 17.3.5, under Specify Component Requirements). The 
black-box specification can be accompanied by text-based requirements that are related through a 
refine relationship. In response, Software Modeling, Mechanical Modeling, and Electrical Modeling 
tools provide the relationships between their designs and their requirements with rationales, along with 
issues that need to be addressed.

Software development
For software development environments using UML, the interface between the System Modeling tool and 
the UML Software Modeling tool is dependent on the specific model-based methods employed, even 
though the underlying language concepts have the same roots. The software specifications from the 
SysML model are input to the UML modeling tool to realize the software design. The component black-
box specification from the system model is mapped to corresponding elements in the software develop-
ment model to maintain traceability of the design (Note: this may be an allocate or realize relationship).

As discussed in Section 18.1.2, simulation and analytical tools can be used to specify and analyze 
performance of systems. Some of these tools can capture both hardware processing constraints and the 
algorithm design implemented in software, and some can be used to automatically generate code from 
the model.

Mechanical hardware development
The foundation mechanical model is the geometric model from a 3D CAD tool. The interface between 
the System Modeling tool and the 3D CAD tool is generally accomplished indirectly through the prod-
uct data management (PDM) application. In particular, the PDM application manages the configuration 
in terms of a parts breakdown or a bill-of-materials (BOM). The PDM tool maintains relationships 
between the parts and their corresponding CAD files. The system elements from the system breakdown 
in SysML can be mapped to corresponding parts in the bill-of-materials. The black-box specifications 
can then specify requirements for the mechanical design, including functionality, mechanical interface, 
key properties, and environmental requirements. Physical constraints expressed in the System Modeling 
tool can be analyzed with mechanical simulation and analysis tools that include mass properties, stress, 
dynamics, and thermal analysis.
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Virtual mock-up capability that includes 3D animations has become increasingly important for vali-
dating manufacturing process and usability requirements. Maintaining linkage between the system 
model and the corresponding mechanical parts that are animated in the virtual mockup can help bridge 
user-to-product-to-process requirements traceability.

Electrical hardware development
Elements in the System Modeling tool that are associated with the electrical design, such as sensors, 
actuators, processors, busses, controllers, and networks, are mapped to the corresponding elements in 
the Electrical Modeling tools (e.g., Electrical Computer Aided Design [ECAD] or Computer Aided 
Engineering [CAE]) using a approach similar to that described for mechanical hardware development. 
The black-box specifications in the system model can specify electrical interfaces and behaviors, 
including off-nominal behaviors. Electrical performance and power constraints expressed in the System 
Modeling tool can be analyzed with electrical simulation and analysis tools.

Interface with simulations and analysis tools
As discussed in 18.1.2, the system model is a descriptive model that describes logical relationships 
among the system, such as whole–part, connectivity, and information flow. Analyzing the system to 
ensure it satisfies its requirements requires suitably detailed and accurate analytical models and simula-
tions. The system modeling tool can be integrated with simulation and analysis tools by providing criti-
cal system specification and design information needed by the analytical models. The nature of the 
integration can vary significantly depending on the kind of information being exchanged as summa-
rized below.

Although system models expressed in SysML are descriptive, the semantics for a subset of SysML 
models can be executed when supported by an execution environment. One example is the execution 
semantics of activities described in Chapter 7, Section 7.9. When the model is executed, the sequencing 
of actions, input/output, message flow, and state changes can be animated. The simulation can be exe-
cuted using pre-scripted scenarios, or it can react to specific user interaction (e.g., “toggle this input and 
see what happens”). In this way, system behavior expressed in SysML can provide significant informa-
tion to help validate functional and interface requirements, perform what-if behavior analysis, and 
explore user interaction concepts.

The behavior of the system or component may need to be further specified in terms of differential 
equations to analyze performance and other critical aspects of the design. A system model in SysML 
can be integrated with other analytical models using SysML parametrics to capture constraints and 
their parameters. For these cases, a portion of the system model in SysML must be expressed precisely 
enough for analysis to be performed. This is often done with extensions specified as profiles and/or by 
using opaque constructs that encapsulate statements in other languages.

The system model is often intended to represent a higher level of abstraction without capturing the 
detailed properties and equations. Although the system model captures critical performance and physi-
cal properties, it is generally not the intent, for example, to capture all the detailed thermal properties 
and equations needed to perform a high fidelity thermal analysis. There are tools much better suited for 
this that have the appropriate constructs to express the details of this analysis domain. In this case, the 
portion of the system model that represents the abstract information relevant to the analysis can be 
extracted, transformed, and augmented with the necessary details in the analytical model before the 
analysis is performed in the analytical tool. In some cases, the relevant part of the system model is a 



52118.2  Specifying an Integrated Systems Development Environment

specification of the input and output parameters of the analysis. For this case, the input and output 
parameters of the analysis are bound to the properties of the design using SysML parametrics.

Some SysML tools include equation solvers that can operate on parametric models directly, thus 
integrating the system model and analytical model in the same tool. Third-party plug-ins are also avail-
able to enable a SysML parametric model to interface with external math solvers and other analytical 
tools.

If the system structure is modified, the analytical model must be correspondingly modified to reflect 
this change in structure. A simple example is a system model that represents a system with two assem-
blies. The weight analysis model can roll up the weights of the two assemblies by simply adding the 
weight of assembly one to the weight of assembly two. If the weight of one assembly changes in the 
system model, the weight analysis model can roll up the change in the total weight of the system. If a 
third assembly is added to the system model, however, the analytical model does not automatically 
account for the weight of the third assembly in the total weight calculation unless the analytical model 
is updated to reflect this new structure. The analytical model must be maintained consistent with the 
structure captured in the system model. A transformation can be performed to update the models each 
time one of the models change. An example is the SysML to Modelica Transformation that transforms 
the system model in SysML to a Modelica model that can be executed by a Modelica execution envi-
ronment (refer to Section 18.4.1).

In all the above approaches for integrating SysML models with other analytical models, the analysis 
results may be returned to the system model to reflect the updated property values.

The SysML concept of viewpoint described in Chapter 15, Section 15.8, can be used to describe the 
purpose, stakeholders, and concerns that a particular analytical model should address. The viewpoint 
can also expose the relevant portion of the system model that is used to support the analysis problem. 
It can further specify which modeling language and tool is intended to be used to perform the analysis, 
and specify which view artifacts are needed to conform to the viewpoint.

Interface with verification tools
As shown in Figure 18.5, the System Modeling tool can provide to the Verification tool the context, test 
cases, and associated requirements to be verified for the specific system configuration under test. The 
system model can also provide related information to specify the verification environment and verifica-
tion plans, as discussed in Chapter 17, Sections 17.3.8 and 17.3.9. Verification results can be provided 
to update the System Modeling tool with verification status.

Interface with project management tools
Effective program and technical management of a complex project may require information from all 
models and tools used in the systems development environment. Project management can leverage 
information from the system model to assist in planning and controlling the technical effort. The model-
based metrics described in Chapter 2, Section 2.2.5, are examples of metrics that can be extracted from 
the system model to assess design quality, help track status, and support estimates of cost, schedule, and 
technical performance. The metrics can be automatically reported from the model, typically by using 
the scripting capability of a given tool.

Extensions to SysML can be specified to provide further support to project management. This may 
include capturing process information in terms of activities being performed and their associated deliv-
erables, milestones, organizational roles, and work packages. The addition of a work package 
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stereotype can facilitate traceability between the work performed and the system specification and 
design. Some project management extensions are already included in UPDM and other profiles, such 
as project, organization, milestone, and others. An executable model of the development process can be 
integrated with workflow engines to help automate the development process.

Interface with documentation and view generation tools
Document and View Generation tools are used to prepare and manage documentation of the system. 
Documents and tabular data are a traditionally effective means for organizing and communicating sys-
tem specification and design information to the stakeholder community (e.g., customers, managers, 
design engineers, test engineers).

Figure 18.5 shows the information exchanged between the System Modeling tool and a Document 
Generation tool. SysML View and Viewpoint mechanisms are used to query the system model for the 
desired information and then pass this information to a rendering tool to present the information in the 
desired format. This may include a combination of textual, tabular, and graphical formats in a variety 
of different media (e.g., HTML). In addition to reporting the information from the model, additional 
capabilities can enable comments and updates of the model information from an external application—
such as a web client—to facilitate broader use of the modeling information.

Many SysML tools include some inherent document-generation capability, including web publish-
ing of the model in HTML format. Additional document and view generation capability is required to 
effectively span multiple models and sources of information, providing more complete and extensive 
views of the system design information. An approach to document and view generation that integrates 
with a typical system modeling tool is described in Section 18.4.5.

Interface with configuration and data management tools
The Configuration and Data Management Tools manage changes to the baseline technical data gener-
ated by the systems development environment throughout the system development lifecycle. This 
requires that the data be versioned at some level of granularity. Updates and access to the data are 
controlled by these tools. Figure 18.5 shows the typical information exchanged between a System Mod-
eling tool and the Configuration and Data Management tool. The Configuration and Data Management 
tools provide baseline technical data to the system model, and the system model provides model updates 
to these tools. The concepts for configuration management as it applies to a model-based environment 
are discussed in Section 18.2.3.

18.2.3 � USING CONFIGURATION MANAGEMENT TOOLS TO MANAGE MODEL 
VERSIONS

Configuration Management (CM) tools ensure that models and other development artifacts (e.g., speci-
fications, plans, analyses, test results) are maintained in a controlled fashion, such that the latest version 
can always be identified. CM tools also enable the impact of each update to be considered. The content 
of the model is managed, along with related artifacts that may be produced from the model and the tool 
configuration that is used to create the model.

The focus for this section is on managing changes to the system model, where one or more modelers 
are making changes to the model at any given time. The complexity increases with the number of mod-
elers and the frequency of changes, along with the number and kind of relationships between the parts 
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of the model that are being modified. Managing updates establishes a common baseline of the system 
model and enables the impact of changes to be properly considered as the design evolves.

The more general scope of model management deals with updates and synchronization of different 
kinds of models and tools across a distributed development environment to ensure consistency of infor-
mation. This broader challenge must account for the propagation of changes across different models 
based on the data relationships that are described in Section 18.1.2. Data exchange between models is 
a prerequisite to enabling effective model management. Data exchange mechanisms and applications 
are discussed in Sections 18.3 and 18.4.

Functions and tools for managing configurations
A configuration management environment typically fulfills three functions as part of a systems devel-
opment environment:
 
	•	� Manage the artifacts (often called configuration items) being developed, including controlling 

access to the current working set of artifacts (often called a configuration), and archiving versions 
of the working set (called baselines). Tools that fulfill this function are typically called configura-
tion management tools.

	•	� Manage changes to the working set, including enforcing a consistent change control process (e.g., 
one based on change requests) and analyzing the impact of changes to configuration items. Tools 
that fulfill this function are typically called change management tools and often incorporate 
configuration management functions.

	•	� Ensure that products built from a project baseline are complete and consistent, including the 
identification of different variants of system components and the compatibility between them. 
This supports the identification of valid variant configurations and the associated bills-of-materials 
that are maintained throughout the product lifecycle. Tools that fulfill this function are typically 
called Product Data Management tools. They often incorporate both change management and 
configuration management functions.

 
Each of these tools stores additional data (often called metadata) about configuration items, such as 

their dependencies and compatibility with each other. Product data may also contain metadata, such as 
a part in a bill-of-materials that contains its version, requiring that the product data and configuration 
metadata be kept consistent.

The CM environment establishes a valid configuration by identifying a consistent set of versions of 
configuration items that are maintained by the different tools in the development environment. Any 
given tool operates on a version of configuration items that is identified by the CM environment. In 
practice, some tools perform both roles by identifying the version and operating on the version of con-
figuration items.

Maintaining a model configuration
A configuration management challenge that models introduce over more traditional non-model-based 
artifacts is the need to maintain the fine-grain data relationships between model elements in different 
models as described in Section 18.1.3. This can impact the level of resolution at which configuration 
items are identified to be versioned and controlled. For a system model in SysML, two obvious candi-
dates are the various kinds of packages—including models, model libraries, and profiles—and the vari-
ous kinds of definitions—such as blocks and activities.
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When considering packages as configuration items, a project needs a policy covering how to handle 
package hierarchies. The simplest approach is to treat only the top level of packages in a model as 
configuration items. This has the advantage of having none of the configuration items contain other 
configuration items. On a large project, however, this results in a flat model structure with a large num-
ber of packages at the top level of the model, making it more difficult to understand, navigate, and 
control. It can also lead to configuration items that become very large, making it difficult to partition 
work among engineers. As a result, hierarchical configuration items with a combination of packages 
and other model elements are often required on larger projects.

An OMG standard called MOF Versioning [63] offers a framework for configuration management 
of models to address the challenges posed above. Figure 18.6 shows the concept of a Workspace, which 
is used by a team or individual to manage their model data. A Workspace contains a collection of con-
figurations and versionedExtents. A VersionedExtent is equivalent to a configuration item in traditional 
configuration management and refers to a set of model elements. (Note: it provides a query that returns 
the collection of elements.) The VersionedExtent can have different levels of granularity. For example, 
it can refer to a package and all the model elements contained in the package, or it can refer to a block 
and all the model elements contained in the block.

A Configuration identifies a set of compatible VersionedExtents that together comprise some sig-
nificant set of model elements. The Configuration does not refer to the model elements directly but only 
identifies the set of VersionedExtents.

A VersionedExtent can also be a Configuration that identifies one or more of its elements as a Ver-
sionedExtent. In this way, configurations can be hierarchical. An example is a parent VersionedExtent 
that refers to a package and its contents, and a child VersionedExtent that refers to a nested package and 
its contents. Both the parent and child are also configurations.

The previous contents of VersionedExtents are stored as Versions, and the previous contents of Con-
figurations are stored as Baselines. These versioning concepts define operations to manage the history 
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FIGURE 18.6

A workspace in the MOF Versioning specification.
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of VersionedExtents and Configurations. The checkOut operation on VersionedExtent makes it editable; 
the checkIn operation creates a new Version by taking a snapshot of its current state. The makeBaseline 
operation on Configuration creates a new Baseline from all the current Versions of all the VersionedEx-
tents in the Configuration.

Figure 18.7 shows versioning of both VersionedExtents and Configurations. A VersionHistory con-
tains a collection of versions for a VersionedExtent, one of which is the initial version called the root-
Version. Any Version may have any number of previousVersions to support branches due to long-term 
variants or short-term parallel development. The baseVersion of the VersionedExtent is the Version that 
holds the most recent copy of its contents. Just as a Configuration identifies a set of VersionedExtents, 
a Baseline of a Configuration identifies a set of versions of those VersionedExtents that are claimed to 
represent a complete and consistent set for the Configuration. The current source of a Configuration in 
its Baseline collection is called its baseline. As can be seen, the pattern for a Baseline is similar to that 
for a Version, allowing Baselines to also have a history to represent all of the important states of a Con-
figuration. Baselines can have branches to represent variants and parallel development. Baselines can 
also be members of other Baselines which supports the archival of hierarchical Configurations.

The organization of the system model is discussed in Chapter 6. Typical model organizations are 
also included in the examples in Chapter 16, Section 16.3, and Chapter 17, Section 17.3.1. As noted 
above, packages are often used to partition the model and serve as a unit of configuration control. For 
large projects, the development team accesses and updates a dedicated part of the model that it controls. 
The Configuration Management tool controls changes to the model by controlling access to the model 
elements through check-out/check-in or read-only access. The configuration management tool also 
ensures that each package is appropriately versioned as model elements are updated. It typically retains 
these versions in a Repository.
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How versions and baselines work in the MOF Versioning specification.
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Successful systems engineering on large projects requires disciplined management of technical 
baselines. The development and ongoing update of the technical baseline spans all the information in 
the systems development environment and requires configuration management environments to control 
this information.

Updates to the technical baseline must be reviewed and assessed to understand the impact of pro-
posed changes on the rest of the baseline. The System Modeling tool can be used to assess change 
impacts and to query the model and generate reports of the impact. For example, if a requirement 
changes, the internal relationships within the system model can be navigated to identify the impacted 
elements. External relationships to data in other models and repositories can be navigated through 
external links to assess the impact on the other models and tools. Approaches for integrating the system 
modeling tool with other modeling tools is discussed in Sections 18.3 and 18.4.

18.3 � DATA EXCHANGE MECHANISMS
Section 18.2 discussed the kinds of tools in a systems development environment and the information 
that is typically exchanged among them. When a model is updated—and the model has data relation-
ships with other models—a data exchange may be required to maintain the consistency of the informa-
tion among the different models. This exchange can be manual, automated, or a combination of the two.

A simple example of related information contained in different models is described in Section 
18.1.2 and Figures 18.3 and 18.4. One set of the relationships is between the weight properties in the 
system model and the corresponding parameters in an analytical model or CAD model. The system 
model from the system modeling tool contains a weight property for the system and for each compo-
nent, and an analytical tool computes the weight of the system based on the weights of each component. 
This section discusses standards and approaches for data exchange between tools to maintain these 
relationships and consistency among the models.

18.3.1 � CONSIDERATIONS FOR DATA EXCHANGE
When selecting an approach for data exchange among tools and models, the following factors should 
be considered:
 
	•	� What data are exchanged?
	•	� Are data exchanged in both directions?
	•	� What is the volume of data?
	•	� How often is the data exchanged and over what duration?
	•	� What is the required performance for the exchange?
	•	� What is the required reliability of the exchange?
	•	� Do the tools use the same modeling language or is translation required? If so, is additional 

information required?
 

Selecting a data exchange approach between any two tools must account for the long- 
term value of the tool integration in terms of efficiencies and quality versus the cost of 
implementation.
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The data exchange mechanism
Exchange of data between tools in a systems development environment may be accomplished using the 
following exchange mechanisms:
 
	•	� Manual exchange involving re-entering the data from one tool into another tool;
	•	� File-based exchange using a proprietary file format or standard exchange format (e.g., XMI); or
	•	� Interaction-based exchange using APIs.
 

In a file-based approach, a mapping from the domain language to a file format is defined, and tools 
declare their ability to write and/or read files in that format. In an API-based approach, the domain 
language is mapped to a set of API calls that the tool exposes to read and/or write to the model.

Direction of exchange
Data exchange may be either unidirectional or bidirectional. The exchange may be unidirectional when 
one side of the exchange is designated as the supplier of the data and the other side is designated as the 
client. This may be driven by process or by the assumption that the supplier side is the more accurate 
source of the data. For this case, the client side is updated to be consistent with the supplier side. Gen-
erator tools, such as code generators or document generators, are typically unidirectional from the 
model to the code or document. Data exchange between modeling tools—such as between a system 
modeling tool and an analytical modeling tool—may be bidirectional based on relationships between 
model elements. This provides the ability for the system modeling tool to provide input parameter val-
ues to support the analysis, and for the analytical tool to return analysis results back to the system 
modeling tool. The term round-tripping is used to describe bidirectional exchange between two tools 
that both modify the same data via their equivalence relationships.

Transformations
A transformation is necessary to support data exchange when the languages on the two sides of the 
exchange are different. The transformation involves mapping concepts between the two languages, 
which may be applied in one or both directions. The two languages may have similar concepts, in 
which case something close to a one-to-one mapping may be possible. In such a case, a transformation 
simply needs to translate from one modeling language to the other. Bidirectional exchange is relatively 
straightforward in this case.

Alternatively, one language may be more abstract than the other. When the language of the data 
source is more abstract, a source concept might map to a set of target concepts to establish the equiva-
lence. For example, a state transition in state machine may map to many lines of code that may corre-
spond to classes in a language like C++. When the data source is more concrete than the target, 
additional data are required to determine what the corresponding target concept should be. A common 
example is when the source is a programming language and the target is a modeling language. For 
example, the transformation may require the addition of comments in the code to support the mapping 
from some C++ classes to UML classes.

In round-tripping scenarios (transformations from model to code and from code back to the 
model), the model may need to include comments that are added to the code. For example, the trans-
formation of an entry action on a state machine may need to include a comment to be added to the 
code. The comment contains information that can be used when transforming from the code back to 
the state machine.
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Data exchange architecture
Exchange of model data may be achieved either by a point-to-point connection between two tools or 
through a shared repository. Point-to-point exchange between two tools is easiest when both tools con-
form to the same standard for data exchange (e.g., a common file format or API). When the two tools 
do not share a common standard, the exchange may be accomplished using a bridge or other interface 
software application.

Another approach is to use some intermediate shared repository of information. Such a repository 
is often a configuration-managed database, accessible to two or more tools, which holds data that the 
tools share. Repositories generally support multiple file or API standards to enable integration with 
many different tools. Maintaining systems engineering data in a repository enables the use of consis-
tency checkers on the entire repository data rather than relying on consistency checkers in the individ-
ual tools. Repositories that maintain this kind of systems engineering data can publish a metadata 
catalog, allowing other tools access to both the data and their meaning.

18.3.2 � FILE-BASED EXCHANGE
The exchange of data between modeling tools has traditionally been accomplished by creating a bridge 
between individual tools using the mechanisms described earlier. This can be costly, because each tool 
pairing requires its own interface mechanism. Implementing point-to-point interfaces can require the 
development of n2 interfaces for n tools. In addition, the interface mechanism must be updated as each 
tool changes. The emphasis for an integrated systems development environment is on the use of data 
exchange and other modeling standards to support tool and model interoperability. Some of the relevant 
standards related to SysML are discussed next.

XML metadata interchange
XMI is short for eXtensible Markup Language (XML) Metadata Interchange [29], a standard format 
for exchanging UML and SysML models between tools. The XMI for SysML is based on three indus-
try standards: XML, the Meta Object Facility (MOF) [24], and UML [52]. UML and MOF are model-
ing and metadata repository standards from the Object Management Group (OMG). XML is a text-based 
language from the World Wide Web Consortium (W3C) that supports the use of tags to describe struc-
tured data. XMI is in essence a set of rules for converting a metamodel expressed using MOF, UML, 
and UML profiles into a set of custom tags in XML. Hence SysML, which is a UML profile, also has 
implicit data exchange standards using XMI. This in turn enables a SysML model to be exchanged as 
an XMI file. The OMG’s Model Interchange Working Group [64] established test cases to demonstrate 
and enhance the quality of XMI-based data exchange among UML, SysML, and UPDM tool vendors.

Figure 18.8 shows a simple SysML diagram, where Block1 is composed of Block2, both of which 
have properties. Figure 18.9 is the equivalent XMI representation generated from the model. The XMI 
fragment identifies each model element in terms of its UML metaclass type, unique id, and other infor-
mation depending on its metaclass.

Note that the ids in Figure 18.9 have been simplified because globally unique ids are cumbersome 
to include in the figure. The diagram frame denotes a package with the name Parent that is also cap-
tured in the XMI as the owner of both Block1 and Block2. However, the diagram kind, user-defined 
diagram name, and other diagram information (e.g., symbol positions) are not included in the 
exchange.
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If the model elements represent SysML concepts, they are expressed as instances of SysML stereo-
types, as described in Chapter 15, Sections 15.4 and 15.7. In this case, instances of the stereotypes 
reference the UML element they extend.

Application protocol 233
STEP, the Standard for the Exchange of Product Model Data (more formally known as ISO 10303 [30]), is 
an international standard for the computer-interpretable representation and exchange of product data. The 
objective is to provide a mechanism that is capable of describing product data throughout the lifecycle of a 
product, independent of any particular system. The nature of this description makes it suitable not only for 
neutral file exchange but also as a basis for implementing and sharing product databases and archiving.

Application Protocol 233 (AP233) is a STEP-based data exchange standard targeted to support the 
needs of the systems engineering community. It is consistent with standards in CAD; structural, electri-
cal, and engineering analysis; and support domains. SysML was developed in coordination with the 

bdd [Package] Parent [XMI Example]

b2

property2

«block»
Block2

property1

«block»
Block1

FIGURE 18.8

Simple SysML diagram for illustrating XMI.

-<ownedMember xmi:type="uml:Package" xmi:id="ID0" name="Parent" visibility="public"�
         -<ownedMember xmi:type="uml:Class" xmi:id="ID1" name="Block1" visibility="public"�
                   <ownedAttribute xmi:type="uml:Property" xmi:id="ID2" name="Property1" visibility="private" ��
                   <ownedAttribute xmi:type="uml:Property" xmi:id="ID3" name="b2" visibility="private"
                 aggregation="composite" type="ID=" association="ID4" ��
         </ownedMember�
        -<ownedMember xmi:type="uml:Class" xmi:id="ID=" name="Block2" visibility="public"�
                   <ownedAttribute xmi:type="uml:Property" xmi:id="ID6" name="Property2" visibility="private" ��
         </ownedMember�
        -<ownedMember xmi:type="uml:Association" xmi:id="ID4" visibility="public"�
                   <memberEnd xmi:idref="ID3" ��
                   <memberEnd xmi:idref="ID7" ��
                   <ownedEnd xmi:type="uml:Property" xmi:id="ID7" visibility="private" type="ID1" association="ID4" ��
         </ownedMember�
</ownedMember�
…
<SysML:Block xmi:id="ID8" base_Class="ID1" ��
<SysML:Block xmi:id="ID9" base_Class="ID5" ��
<SysML:BlockProperty xmi:id="ID10" base_Property="ID2" ��
<SysML:BlockProperty xmi:id="ID11" base_Property="ID3" ��
<SysML:BlockProperty xmi:id="ID12" base_Property="ID6" ��

FIGURE 18.9

Equivalent XMI (fragment) for Figure 18.12.
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development of the AP233 standard, which resulted in shared systems engineering domain concepts. 
SysML tools can leverage AP233 as a neutral format for exchanging SysML models.

Diagram exchange standards
An important distinction is made between data exchange and diagram exchange. The preceding stan-
dards can support the exchange of model data but do not explicitly document how to exchange diagram 
layout information, including symbol definitions and where they appear on a diagram. If the model 
information is exchanged, some tools provide a capability to auto-generate the diagram from the model 
repository. However, the diagram does not reflect the original diagram layout because this information 
is not part of the exchange.

The OMG Diagram Definition standard [65] provides a file-based exchange of diagram information. It 
has two components, the Diagram Interchange specification (DI) and the Diagram Graphics specifica-
tion (DG). The Diagram Interchange specification specifies a file format expressed in XML that allows two 
tools to exchange information about the topology of a diagram, such as whether a model element is repre-
sented by a node or arc, whether a node has any nested symbols, and its position relative to the diagram 
origin. The Diagram Graphics specification supports the description of the geometry and content of a dia-
gram, such as the shape of a node and the text that appears in that node. Each graphical language defines a 
specific version of the Diagram Interchange specification, and a transformation from the combination of the 
language specification and Diagram Interchange specification into the Diagram Graphics specification.

An overview of the approach for defining diagram exchange for the SysML language is shown in 
Figure 18.10. SysML DI extends UML DI, which itself is a specialization of DI. The SysML Mapping 

DI

SysML SysML DI

Abstract
Syntax

Diagram
Syntax

SysML Mapping
Specification

Concrete
Syntax

DG

group : Group

bounds = {10,25,25,10}
data = "Purchase"

text : Text

center = {25,15}
radii = {25,15}

ellipse : Ellipse

bounds = {0,0,50,30}
shape : UMLShape

bounds = {10,35,25,10}
label : UMLLabel

Purchase : Use Case
SysML Mapping

UML DIUML

FIGURE 18.10

Diagram interchange in SysML.
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Specification, which is expected to be part of a future version of the SysML specification, explains how to 
map from diagram elements expressed in SysML DI to DG. The bottom of the figure shows an example 
of a use case, Purchase, where Purchase is an element in a user model that is an instance of the metaclass 
Use Case. The diagram element is expressed as a shape containing a label using DI classes inherited from 
UML DI. The DI classes and the SysML Mapping Specification contain all the information necessary to 
map the use case diagram element into a symbol on a diagram that is specified by DG elements.

The SysML tools that support a standard transformation from SysML DI to Diagram Graphics and 
support the Diagram Graphics standard can exchange the model Diagram Interchange information 
along with the model data (the bottom left boxes in Figure 18.10). It is expected that standard mappings 
can be defined between the Diagram Graphics specification and standard graphics languages such as 
SVG [66] to provide additional exchange capability.

18.3.3 � API-BASED EXCHANGE
An exchange of data between tools may also occur without a file exchange by direct interaction between 
the tools. This is facilitated by the use of a tool’s application programming interface (API). Typically 
one tool will perform the exchange by using the API of the other to access the data it requires and per-
form any transformation, before updating its own internal model. This method can be very rapid, 
repeatable, and reliable, but it is important to understand how the development process anticipates 
using each tool, the data dependencies between tools, and how often these interactions occur.

Several standards exist for file-based exchange of modeling data, but there is no such standard for 
API-based exchange. Each tool has its own API, and point-to-point applications are used to facilitate 
exchange. MOF-based modeling tools, such as UML and SysML, may offer similar but not standard 
APIs. Tool vendors generally try to keep their API stable across tool versions, even when there is no 
standard for the API.

18.3.4 � PERFORMING TRANSFORMATIONS
As described in Section 18.2.1, many different modeling tools are used on a typical development proj-
ect for systems, hardware, and software development, as well as domain-specific languages for busi-
ness process modeling, real-time analysis, and other functions. In Section 18.1.3, the overlap that exists 
between the data in different models is described. For tools to exchange model information that are 
expressed in different modeling languages, a model transformation is used to translate data from one 
modeling language to another. This involves mapping the concepts in one language to concepts in 
another language.

The standard for specifying transformations based on the OMG Meta Object Facility (MOF) [24] is 
called the Queries, Views, and Transformations standard (QVT) [35], which provides a foundation 
for transformations if the metamodel for both languages is expressed in MOF. There are many other 
approaches to model transformation. This area is increasingly important as standard model-based 
approaches and domain-specific languages become more prevalent.

A common transformation scenario is the translation from an abstract model to one that is more 
specific. This scenario is the basis of the OMGs Model Driven Architecture (MDA) approach [33, 
34]. In MDA terms, a Platform Independent Model (PIM) is transformed into a Platform Specific 
Model (PSM) by adding data about the platform. For example, a PIM might contain details of the 
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algorithm used for processing a radar signal, and the maximum allowable latency between a signal 
arriving and it becoming available. A corresponding PSM might include details of how the algorithm is 
distributed across processing nodes, allowing a better estimation of the actual latency.

The basis of a transformation is a description of the languages used on each side of the transforma-
tion that shows how concepts in one language map to concepts in the other. This mapping can either be 
defined in one direction—from source to target—or it can be defined in both directions (refer to discus-
sion in Section 18.3.1). Models (or model fragments) defined in one language are then used as input to 
a translator based on the transformation, which produces transformed models or model fragments in the 
other language.

18.4 � DATA EXCHANGE EXAMPLES BASED ON CURRENT AND EMERGING 
STANDARDS

Standards-based approaches to data exchange among models are expected to continue to evolve and 
proliferate. The following sections include five examples of data exchange from a SysML model to 
another standard-based model or data representation.

18.4.1 � PERFORMING TRANSFORMATIONS BETWEEN SysML AND MODELICA 
MODELS

The transformation between SysML and Modelica demonstrates how two modeling languages can be 
integrated using a model transformation approach. Modelica is an analytical modeling language stan-
dardized by the Modelica Association [25]. It supports differential-algebraic equations for physics-
based modeling and other analytical modeling that spans multiple engineering domains. The OMG 
SysML–Modelica Transformation Specification [67] defines a standard mapping between these two 
modeling languages. The goal is to leverage the strengths of both languages to provide a robust system 
design and analytical modeling capability.

Modelica is an object-oriented language that specifies acausal declarative equations. An important 
aspect of the Modelica modeling approach is the use of declarative equations to model the component 
dynamics and the interface between components using conservation laws such as Kirchhoff’s laws. As 
an example, the interface between two electrical components, such as a resistor and capacitor, is defined 
using equations that assert the voltages at the two connected ends are equal and the currents at their 
interface sum to zero. The voltage is called an across variable and the current is designated a through 
variable. A similar approach can be used to specify the interfaces of many different types of physical 
components that are subject to similar conservation laws, such as mechanical mating surfaces and 
hydraulic and electromagnetic interfaces. Additional equations define the component behavior, thus 
enabling the analysis of interconnected components in a system.

As shown in Figure 18.11, the SysML–Modelica Transformation Specification includes the Sys-
ML4Modelica profile, the abstract syntax defining the Modelica metamodel, and the SysML–Modelica 
Transformation between the SysML4Modelica profile and the Modelica metamodel. The SysML4Mod-
elica profile simplifies the transformation by defining SysML stereotypes that correspond directly to 
constructs in the Modelica metamodel. This mapping includes both a tabular mapping and a formal 
mapping using QVT.
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Once the transformation is specified, a transformation engine can execute the SysML–Modelica 
Transformation for a particular model. For example, a SysML4Modelica model of a particular system 
can be input to the transformation engine, and the corresponding Modelica model is the output from 
the transformation. The input SysML4Modelica Analytical Model is provided in XMI format, and the 
output Modelica Model is represented in a data format that can be interpreted by a Modelica tool. 
The transformation is bidirectional, such that the Modelica Model can be input to the transformation 
engine, and the corresponding SysML4Modelica Analytical Model is the output of the 
transformation.

An example of applying the transformation specification to a simplified robot model is described in 
the SysML–Modelica Transformation Specification. Figure 18.12 shows the robot internal structure 
represented as a SysML internal block diagram. Figure 18.13 shows the use of allocation to define the 
SysML4Modelica Analytical Model from the SysML model. This model is then transformed into an 
equivalent Modelica Model that can be executed by a Modelica tool. The results of the execution can 
be passed back to the SysML model through the reverse transformation.

«profile»
SysML4Modelica

«metamodel»
Modelica

SysML4 Modelica

pkg SysML-Modelica Transformation Approach

«model»
SysML4Modelica

«apply»

«model»
Modelica

«conformsTo»

«model»
SysML-Modelica

«instanceOf»

SysML-Modelica Transformation Specification

«transformation»

Transformation
Record

Analytical Model Model

Transformation

FIGURE 18.11

The SysML–Modelica Transformation Specification is used to transform a SysML4Modelica Analytical Model to 
a Modelica Model.
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18.4.2 � USING OSLC AND LINKED DATA TO SUPPORT DATA EXCHANGE  
AND TOOL INTEGRATION

The Open Services for Lifecycle Collaboration (OSLC) [31] initiative is driven by an open community to 
develop tool integration standards based on web technology. Specifically, the focus is on using linked data 
concepts to create a family of web services and specifications to link data between different tools. Each 
OSLC compliant tool can define what data it chooses to expose through these services, similar to an API.

The term linked data refers to the use of the web technology to create links between related data 
elements as described in Section 18.1.3. Each data element that is linked is called a resource and is 
uniquely identified by its Uniform Resource Identifier (URI) [68]. A URI is used similar to the way a 
Uniform Resource Locator (URL) is used to access web pages.

Linked data can be expressed in a format called the Resource Description Framework (RDF) [69], 
which encodes data in triples composed of a subject, predicate, and object. A triple represents a state-
ment about something, such as “a vehicle satisfies the weight requirement,” where the vehicle is the 
subject, satisfies is the predicate, and weight requirement is the object. The predicate specifies how the 
subject and object are related. The subject and predicate of a triple are both identified with a URI.  
The object can be either a literal value, such as a string, or a resource identified by its URI.
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Example of internal structure of a Robot consistent with the SysML–Modelica Transformation specification.
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Structural Model to Analytical Model CorrespondenceRobotAnalysisContext[Block] ibd [  ]

«modelicaValueProperty»
arraySize = "3"
declarationEquation = "{0.1,0.25.0.1}"
variability = parameter

«modelicaValueProperty»
rLoad

«modelicaPart»
mechanics : MechanicalStructure

«modelicaPart»
pathPlanning : PathPlanning6

«modelicaValueProperty»
modification = "min=0"
variability = parameter

«modelicaValueProperty»
mLoad : Mass

«modelicaPart»
axis2 : AxisType1

«modelicaPart»
axis3 : AxisType1

«modelicaPart»
axis4 : AxisType2

«modelicaPart»
axis5 : AxisType2

«modelicaPart»
axis6 : AxisType2

«modelicaPart»
axis1 : AxisType1

«modelicaModel»
modelicaRobotDomain : RobotAnalyticalDomain

«modelicaPort»
controlBus : ControlBus

arm : Arm

cb : ControlBus

pp : PathPlanner

axis1 : Actuator

axis2 : Actuator

axis3 : Actuator

axis4 : Actuator

axis5 : Actuator

axis6 : Actuator

rob : Robot

mass : kg = 15

relPos : PosVect

load : Load

dr : Driver

pf : Platform

rd : RobotDomain
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«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

«allocate»

FIGURE 18.13

Defining the SysML4Modelica Model for the Robot example, using allocation to enable transformation to a 
Modelica model.
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Linked data is accessed through HTTP, the basic protocol used for accessing web pages on the 
internet. HTTP is used to create, read, update, and delete linked data. HTTP provides verbs such as 
GET, PUT, POST, and DELETE, which allow web clients to invoke web services to manipulate linked 
data. Web services which can be invoked only by using HTTP—in contrast to SOAP-based web ser-
vices requiring additional information in XML—are called RESTful web services or RESTful web 
APIs, as they conform to the principles of the Representational State Transfer (REST) architecture. 
Linked data are made available on the web through RESTful web APIs.

An OSLC resource is a linked data resource corresponding to an engineering concept like a require-
ment or a change request. An OSLC resource is typically constrained to conform to an OSLC resource 
shape, which is similar to a MOF metaclass or SysML stereotype (see Chapter 15, Sections 15.2.1 and 
15.4). A resource shape defines the set of properties that the resource is expected to have including its 
type, allowed values, and cardinality. An OSLC specification defines a set of resource shapes for a 
particular domain.

Interoperability between OSLC tools is supported through conformance to OSLC specifications. A 
tool that supports OSLC can request or respond to queries from other OSLC compliant tools. For 
example, the OSLC Requirements Management specification defines domain-specific concepts such as 
a requirement and a derived requirement relationship. An OSLC-compliant tool can respond to a 
request from another tool for a particular requirement based on its URI and return it in RDF, according 
to the OSLC Requirements Management specification, as well as in other formats such as HTML.

The list of OSLC resources (i.e., data elements) and services of an OSLC-compliant tool can be 
discovered through its OSLC Service Provider Catalog. The storage medium for resources is not con-
strained by OSLC, and can be a relational database, a flat-file on disk, a source code control system, or 
some other medium.

An OSLC-compliant tool offers a core set of capabilities, defined in the OSLC core specification 
[70]. The OSLC core specification defines a number of capabilities that an OSLC service offers, 
including:
 
	•	� Query capabilities to enable query of resources and discovery of the resources managed by the 

service;
	•	� Resource paging to enable clients to retrieve resources one page at a time;
	•	� Resource management operations via HTTP (create, retrieve, update, and delete);
	•	� Delegation user interfaces that allow a service provider to embed a creation or selection UI into 

another application using a combination of HTML and JavaScript code; and
	•	� Preview user interfaces that can be used to show a user in-context information when displaying a 

link to a resource and to show more information when the user’s mouse hovers over the link.
 

Different groups within the OSLC organization are responsible for defining domain-specific speci-
fications. Each of the domain-specific specifications is built upon the core specification described 
above. The OSLC specifications are managed through the OASIS standards body, which is responsible 
for many other web standards.

There are a number of OSLC specifications that are relevant to systems modeling, such as require-
ments and change management, but currently no specification covers system modeling more broadly. 
The OSLC4MBSE Working Group [71] was initiated as a collaborative effort between members of the 
OMG systems engineering and OSLC communities to develop an OSLC approach to support MBSE. 
An initial step is the development of an RDF representation of SysML that can be integrated with 
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existing OSLC specifications. A standard OSLC specification for SysML provides a standard API to 
enable OSLC-compliant tools to request SysML data, and for SysML tools to request OSLC data from 
OSLC-compliant tools.

18.4.3 � EXCHANGING DATA TO ENABLE CO-SIMULATION
The Functional Mock-up Interface (FMI) is a standard to support both model exchange and co-sim-
ulation of models expressed as ordinary differential equations (ODEs). FMI uses a combination of 
XML files and compiled C code. Although initially developed as part of the Modelisar project [72], the 
maintenance and further development of FMI is now performed by the Modelica Association Project, 
FMI [32]. The aim of the FMI standard is to support use cases such as:
 
	•	� Simulating heterogeneous systems authored in multiple modeling tools;
	•	� Partitioning and parallelizing large system simulations to improve simulation performance; and
	•	� Easing the integration of hardware-in-the-loop into a simulation.
 

A component which implements FMI is called a Functional Mockup Unit (FMU). A FMU is a 
zipped file (*.fmu) containing an XML description file and an implementation in source or binary form 
that executes the equations that represent the component behavior. The XML file contains the definition 
of all variables of the FMU that are exposed to the environment in which the FMU will be used, includ-
ing inputs, outputs, parameters, and other model information, such as units. The component implemen-
tation consists of a set of C functions, which can either be provided in source or binary form. Binary 
forms for different platforms can be included in the same model zip file.

FMI supports two categories of execution:
 
	•	� Co-simulation, where the intention is to couple two or more FMUs in a co-simulation environ-

ment. The data exchange between these FMUs is restricted to discrete communication points. In 
the time between two communication points, the FMUs are solved independently from each other 
by their own individual solver. Master algorithms in the co-simulation environment control the 
data exchange between FMUs and the synchronization of all slave simulation solvers.

	•	� Model exchange, where the intention is that the FMUs are all executed under a solver provided by 
an integrating simulation environment. This approach makes it possible to use the same FMU in a 
variety of simulation environments, including those using variable-step solver solutions. FMUs 
(without internal solvers) implement differential, algebraic, and discrete equations with time-, 
state- and step-events that are raised by a common solver.

 
There have also been some experiments that export SysML blocks as FMUs [73]. Future efforts are 

needed to map the SysML definition of a block interface to an FMI XML file. It should also be noted 
that FMI is designed to support the simulation of systems based on ODEs and so does not cover all of 
the other behavioral semantics that can be expressed by SysML models.

18.4.4 � INTERCHANGING SysML MODELS AND ONTOLOGIES
An ontology represents some area of knowledge as a set of concepts within a domain and the relation-
ships between those concepts. Ontologies are increasingly being used as part of MBSE approaches to 
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capture knowledge about the domains involved in the development of a system, including both general 
domains applicable across a wide range of systems and application-specific domains.

The Web Ontology Language (OWL) [28] is a family of knowledge representation languages for 
authoring ontologies. An OWL class represents an ontological concept and can have properties and 
relationships to other classes. A particular ontology defines a set of OWL classes. A specific project 
creates instances of these classes to describe entities in their domain. A variety of tools are available to 
reason about these instances.

SysML on the other hand is used to describe the structure and behavior of the system being devel-
oped and to support the development of its components. There is increased interest in leveraging the 
expressive capability of SysML models with the formalisms and associated reasoning capability pro-
vided by OWL models.

Some organizations are taking the approach of mapping their ontologies to SysML profiles. This 
approach establishes a domain specific language expressed in SysML. Classes in OWL ontologies are 
mapped onto stereotypes in one or more SysML profiles. A SysML model with the ontology stereo-
types applied can then be transformed into OWL so that OWL-based tools can reason about the model. 
Both file-based and API-based exchange can be used to exchange the data between the SysML model-
ing tool and the OWL reasoning tools.

One such example is the effort by NASA’s Jet Propulsion Laboratory (JPL) to establish a mapping 
between SysML and OWL to support flight project development [74]. The basis of the transformation 
is a mapping from the concepts and properties in the JPL ontologies to SysML modeling concepts. For 
example, the JPL concept of Component is mapped to a SysML block, and the JPL concept of Work 
Package is mapped to a SysML package.

18.4.5 � DOCUMENT AND VIEW GENERATION FROM MODELS
A key factor in the successful transition of MBSE from a document-based systems engineering approach 
is the ability to automatically generate documents and other traditional artifacts from models. Most 
MBSE modeling tools have document generators that can be used to generate documents in formats 
such as Office Open XML, Portable Document Format (PDF), DocBook, or HTML. A model-based 
document generator implements a unidirectional transformation from a model to a language that under-
stands nothing of the model’s meaning but is able to present the model information in a form that eases 
understanding for a broad range of stakeholders.

A document generator can adopt a default mapping from a model to a document (e.g., mapping each 
package to a chapter). Different SysML tool vendors use different document generation tools with vari-
ous formatting mechanisms.

One approach, implemented as part of the European Southern Observatory Active Phasing Experi-
ment (APE) [75], is to use a SysML profile to define the document layout and formatting. The APE 
DocBook profile contains stereotypes that correspond to elements in the DocBook documentation lan-
guage. These include stereotypes such as chapter, section, appendix and glossary, which extend 
package. The profile is then used to author a model of a DocBook document, and elements in this docu-
ment model reference elements in the system model. A document generator that is based on the profile 
can therefore understand the mapping between the structure of the system model and the structure of 
the generated document. Other stereotypes include a figure stereotype that can be used to dictate pre-
sentation options such as scaling and cropping for figures. A different document model can be authored 



53918.5  Selecting a System Modeling Tool

for each document that needs to be generated from the model. In terms of the considerations discussed 
in Section 18.4.1, this application performs a unidirectional transformation from an abstract to a more 
concrete language, with exchange being mediated through files.

Practices continue to evolve to facilitate the generation of many different views of the information 
contained in the model. The views can also integrate information contained in the model with other 
information that is generated external to the model. These approaches leverage the SysML view and 
viewpoint capability as described in Chapter 15, Section 15.8, to query the model using standard librar-
ies of query methods and then present this information in a variety of formats using standard rendering 
applications (refer to Section 18.2.2 under Interface With Document and View Generation Tools).

18.5 � SELECTING A SYSTEM MODELING TOOL
This section provides guidance on the selection of a SysML modeling tool that is integrated into the sys-
tems development environment. A system modeling tool may support SysML and MBSE to a greater or 
lesser extent based on its conformance to the modeling standards and other strengths and weaknesses.

18.5.1 � TOOL SELECTION CRITERIA
The following criteria form the basis for evaluating and selecting a SysML modeling tool:
 
	•	� Conformance to SysML specification (latest version)
	•	� Usability
	•	� Document, view, and report generation capability
	•	� Metrics support
	•	� Model execution capability including both integration with fUML and parametric solvers
	•	� Conformance to XMI and other exchange standards
	•	� Access to model repository through its API
	•	� Integration with other engineering tools (including legacy tools within the existing systems 

development environment)
	 •	 �Requirements management
	 •	 �Configuration and data management (including product data management)
	 •	 �Engineering analytical tools
	 •	 �Performance simulation tools
	 •	 �Software development tools
	 •	 �Electrical design tools
	 •	 �Mechanical CAD tool
	 •	 �Testing and verification tools
	 •	 �Project management tools
	•	� Performance (maximum number of users, model size)
	•	� Model checking to verify model conformance with well-formedness rules
	•	� Training, online help, and support
	•	� Availability of model libraries (e.g., units)
	•	� Lifecycle cost (acquisition, training, support)
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	•	� Other tool lifecycle considerations (e.g., acquisition, configuration, installation, operation, 
support, upgrade)

	•	� Vendor viability
	•	� Acquirer’s previous experience with the tool
	•	� Support for selected model-based method (e.g., scripts that automate certain parts of the method, 

standard reports, etc.)
	•	� Further customization support through profiles and notational enhancements (i.e., iconic 

representations) 

18.5.2 � SysML CONFORMANCE
One of the important evaluation criteria identified in the previous section is tool conformance to the SysML 
specification. Significant benefits can result from using a conforming tool, including improved model 
exchange capability, mitigation of tool vendor lock-in, increased opportunity to leverage future revisions to 
the language, and improved ability to leverage industry available training, practices, and other resources.

According to the SysML specification, “an implementation of SysML must comply with both the 
subset of UML4SysML and the SysML extensions,” both of which are summarized in Chapter 15, 
Section 15.2. This includes conformance with the abstract syntax that specify the underlying language 
constructs, like metaclasses, stereotypes, and constraints; conformance with concrete syntax (e.g., 
graphical notation); and conformance with the XMI specification to support data exchange. Standard 
test cases are available to assess model interchange conformance among UML, SysML, and UPDM 
modeling tools [64]. It is anticipated that these test cases will continue to be updated over time to reflect 
evolving versions of the specification. However, they can also be used as examples to develop custom-
ized test cases that are unique to an organization’s or project’s needs.

18.6 � SUMMARY
Integrating SysML into a systems development environment includes some of the following 
considerations.
 
	•	� The system model is a descriptive model captured in SysML. It is an integral part of the overall system 

development effort and establishes the technical baseline used to relate text requirements to the design, 
provide design information needed to support analysis, serve as a specification for subsystem and 
component design models, and provide test case and related information needed to support verification.

	•	� There are many different kinds of models in a development environment including descriptive and 
analytical. Descriptive models include geometric and logical models. Models can be further 
classified by their application, functional, and technical domain. A simulation consists of an 
executable model and an execution environment along with initial conditions.

	•	� The relationships among the data contained in different models must be managed in order to 
ensure consistency of information across models and to support impact analysis.

	•	� System modeling tools do not stand alone but must be integrated into a systems development 
environment that includes many other kinds of tools that support requirements management, 
engineering analysis, hardware and software development, verification, project management, 
configuration management, and document generation.
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	•	� A systems engineering approach should be applied to specify the requirements and interfaces for 
the integrated systems development environment.

	•	� Data exchange between tools can be accomplished by manual, file-based, and interaction-based (i.e., 
APIs) mechanisms. Portions of models may be transformed between languages and tools to facilitate 
this data exchange. The connections may be point-to-point or through shared repositories.

	•	� A standards-based approach to data and model exchange is the preferred approach to reduce the 
cost and improve the quality of the data exchange. XMI is a data exchange standard for the model 
content, and diagram definition is an exchange standard for the diagram layout. Other emerging 
standards such as OSLC provide a linked data approach to data exchange using web technologies.

	•	� SysML tool selection should be based on an evaluation against a defined set of criteria that 
includes both review of vendor information and hands-on use of the tool in the expected environ-
ment. Tool compliance to the SysML standard is a critical criterion.

 

18.7 � QUESTIONS
	 1.	 �How does SysML facilitate establishing a model-based systems development environment?
	 2.	 �What is the difference between a descriptive model and an analytical model?
	 3.	 �What is a simulation? How does it relate to descriptive models and analytical models?
	 4.	 �How can a SysML model be used with a set of analytical models? What information in the 

SysML model should be used in the analytical model and vice versa?
	 5.	 �List three functions necessary for managing the configuration of an MBSE project.
	 6.	 �What information does a SysML model provide to a component developer?
	 7.	 �Describe how XMI and AP233 are used with SysML.
	 8.	 �Describe the difference between file-based exchange and interaction-based exchange using APIs.
	 9.	 �Why is a model transformation used?
	10.	 �List five criteria for selecting a SysML tool.
	11.	 �What can be done to limit the impact of future tool changes or upgrades on the cost of your 

systems development environment?
 

DISCUSSION TOPICS
Describe the role of the system model in the systems development environment.
Describe the meaning of the term “executable model” and the purpose for developing executable 

models.
Describe how the use of a system model can potentially increase the effectiveness of a systems 

development environment.
Build a matrix listing eight types of tools that can benefit from sharing data with a system modeling 

tool. In one column, list beneficial information that can flow from the system modeling tool, and in 
another column, list information that can flow to the system modeling tool.

Describe different ways of exchanging data between tools in a systems development environment, 
and when it might be most appropriate.
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CHAPTER

DEPLOYING SysML IN AN 
ORGANIZATION

This chapter describes how to deploy SysML and a model-based systems engineering (MBSE) approach 
across an organization. The first section describes an improvement process to deploy MBSE, and the 
second section describes key elements of a deployment strategy.

In the context of this chapter, an organization is a group of people with responsibilities, authorities, 
and a supporting infrastructure for on-going development and delivery of a range of systems and ser-
vices, whereas a project is an organization whose scope is limited to developing and delivering particu-
lar systems and services over a specified duration. Organizations often include multiple projects.

19.1 � IMPROVEMENT PROCESS
Introducing any significant change into an organization requires a strategy, a plan, and disciplined 
implementation to be successful. Deploying a MBSE approach with SysML should leverage the orga-
nization’s improvement process. Clear responsibility for the improvement initiative should be estab-
lished, and the expected cost and benefits of the change should be understood and accepted by the 
stakeholders.

A typical improvement process is shown in Figure 19.1. The includes monitoring and assessing 
projects to determine the issues to be addressed and the improvement goals; developing the improve-
ment plan; defining proposed changes to the process, methods, tools, and training; piloting the approach; 
and incrementally deploying the capability to the project(s). The improvement process to deploy an 
MBSE approach is described next.

19.1.1 � MONITOR AND ASSESS
To introduce a change to improve the organization’s capability, a baseline for measuring the improve-
ment should be established. In particular, the organization should assess how systems engineering is 
currently practiced and identify the issues, improvement goals, and costs expected from transitioning 
to MBSE with SysML. The MBSE benefits described in Chapter 2, Section 2.1.2 are possible motiva-
tions for the change. The issues to be addressed and the improvement goals can be used to derive met-
rics that can be monitored over time. These metrics can be used to assess the cost and effectiveness of 
the change, provide a basis for building the business case, and provide an input for follow-up improve-
ment planning.

The maturity of MBSE will vary from project to project in a large organization. It may range from 
a document-based systems engineering approach on some projects with no concept of a system model 
to projects where the system model is developed but not maintained as part of the technical baseline, to 
other projects with advanced systems modeling where the system model is an integral part of the 

19
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project technical baseline and is maintained along with other engineering models by the project’s sys-
tems development environment (refer to Chapter 18, Section 18.2). An organization can conduct a 
state-of-practice assessment of the maturity of MBSE and how well MBSE is working on its projects. 
The assessment results can be used to identify preferred practices to be shared across projects and the 
issues to be addressed by the improvement plan. The results can also be used to identify and select 
candidate pilot projects and potential target projects for deployment.

A questionnaire can be prepared to support the assessment. It should include questions regarding 
the purpose and scope of MBSE on projects; the methods, tools, and training that are being used; how 
well they are working; and issues and lessons learned. The OMG issued a survey as part of the Systems 
Modeling Language Request for Information (RFI) [76] that can be adapted for use to support an orga-
nizational MBSE assessment. This questionnaire can be administered to organizational and project 
representatives remotely or through face-to-face meetings. Representation from multiple projects and 
disciplines should be sufficiently diverse to provide a comprehensive assessment.

Metrics can be defined to assess the organization’s MBSE capability. The metrics reflect the matu-
rity and capability of the organizational infrastructure to support MBSE, the level of MBSE adoption 
by projects, and the resulting value of MBSE to the projects. The maturity metrics reflect the readiness 
of the organizations’ model-based tools, methods, training, and expertise to support project adoption of 
MBSE. Potential deployment metrics include the number and percentage of people trained in SysML 
and MBSE, and the number and type of projects that are applying MBSE. The value of MBSE to the 
projects is measured in terms of incremental improvements in productivity and quality, such as the 
reduction in time to assess a requirements or design change impact, or the reduction in the number of 
requirements changes or discrepancies that are identified during integration and test. This information 
provides indicators of the impact of MBSE on project cost, schedule, technical performance, and risk 
in terms of the benefits identified in Chapter 2, Section 2.1.2. The overall effectiveness of the improve-
ment program is measured in terms of progress against improvement goals, how well the identified 
issues are being addressed, and the impact on business objectives.

Plan the
Improvement

Pilot the
Approach

Monitor
and Assess

Define the
Changes

Incrementally
Deploy the Changes

FIGURE 19.1

Improvement process for deploying SysML.



54519.1  Improvement Process

19.1.2 � PLAN THE IMPROVEMENT
The improvement plan describes how to accomplish the improvement goals and to develop and 
deploy change across the organization. The plan includes the activities from the improvement pro-
cess in Figure 19.1 and the responsibilities, resources, and schedule for implementing these 
activities.

As with any plan, stakeholder participation is essential in both its formulation and its execution. It 
is important to get representation from the key stakeholders early in the process to ensure that their 
concerns are being addressed and obtain their support. The stakeholders for deploying MBSE with 
SysML include members of the improvement team responsible for defining the change, as well as the 
project stakeholders who are expected to implement the change. The stakeholder representation 
includes project management, systems engineering, and the development teams for software, hardware, 
and test, and may include customers and subcontractors.

19.1.3 � DEFINE CHANGES TO PROCESS, METHODS, TOOLS, AND TRAINING
The transition to MBSE with SysML requires changes to the organization’s process, methods, tools, 
and training. The changes should be defined, documented, reviewed, and approved by the affected 
stakeholders to ensure the changes are implementable and can achieve the desired results.

Process changes
It is assumed that the baseline systems engineering process for the organization and/or project is 
defined. If not, establishing a baseline that reflects the current process is an important first step. The 
process standards referred to in Chapter 1, Section 1.5 provides a starting point for defining the systems 
engineering process. Sometimes, a significant difference exists between the documented processes for 
an organization and the way those processes are implemented on projects. This issue should be 
addressed, but it is not the focus for this discussion. The systems engineering processes should be 
evaluated to determine how transitioning to MBSE with SysML impacts the current processes. This 
includes the impact on both the technical processes and the management processes, such as project 
planning, configuration management, review processes, and measurement.

Method changes
An MBSE method is selected to support the systems engineering process. The method may be adapted 
from existing systems engineering methods. Alternatively, the method may be adapted from MBSE 
methods that are available from industry sources. A simplified MBSE method is described in Chapter 3,  
Section 3.4, and two other methods are described in Chapters 16 and 17. Additional methods are 
identified in a Survey of MBSE Methodologies [6].

The criteria for selecting a method includes how well it addresses the concerns of the project, the 
level of tool support, and the training requirements. The method is documented, along with an exam-
ple problem and the associated modeling artifacts, to show how the method is applied. The method 
also includes general modeling conventions (refer to Chapter 17, Section 17.3.1 for an example) and 
the recommended model organization (refer to Chapter 6, Section 6.4 and the examples in Chapters 
16 and 17).
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Tool changes
The MBSE tools also are evaluated and selected. Criteria for selecting a SysML modeling tool are 
included in Chapter 18, Section 18.5. The evaluation also includes trial use of the tool to see how well 
it addresses the evaluation criteria. Documentation is developed to describe how the tools are acquired, 
installed, configured, used, and maintained, as well as how the tools are integrated into the systems 
development environment as described in Chapter 18, Section 18.2. Documentation is also developed 
to describe how the method is adapted for use with the tool and how to create the modeling artifacts in 
the tool.

Training Changes
Training is needed to develop the skill level in the use of the language, method, and tools. SysML train-
ing should focus on the language concepts described in Part II. The method training should include 
examples of how the method is applied to a relevant domain such as the examples in Part III. The intro-
ductory tool training may be provided by the tool vendor to show how the tool is used. Additional train-
ing may be required on how the tool is used as part of the specific systems development environment 
(refer to Chapter 18) with the selected method.

19.1.4 � PILOT THE APPROACH
As with any significant change, the recommendation is to walk before you run. This involves piloting 
the changes to validate and refine the MBSE approach, and to build expertise in the modeling language, 
method, and tools. Undoubtedly, modifications will be made to the initial MBSE approach based on the 
results of the pilot project.

A pilot project also requires careful planning, willing participants, necessary resources, and man-
agement support. A typical pilot plan includes the following:
 
	•	� Pilot objectives and metrics
	•	� Pilot scope
	•	� Pilot deliverables
	•	� Pilot schedule
	•	� Responsibilities and staffing
	•	� Process and method guidance
	 •	 �High-level process flow
	 •	 �Model artifact checklist
	 •	 �Tool-specific guidance
	•	� Tool support
	•	� Training
 

The pilot’s objectives often include validating that the proposed MBSE method, tools, and training 
meet the needs of the organization and projects. A small team is identified to work on the pilot with a 
team lead. The continuity among the core team members must be maintained through the pilot.

The selected tools must be acquired, installed, and configured. The pilot team receives training in 
the language, method, and tools. The pilot team should include a member who is skilled in the lan-
guage, method, and tools to provide guidance to other team members. Alternately,external support with 
the necessary expertise can be provided.
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The pilot project adequately exercises the method and tools by selecting a thread through the system 
and generating at least one example of each artifact from the method. The pilot schedule includes mile-
stones to create each modeling artifact, and the team conducts a peer-review process to review each 
modeling artifact and refine the MBSE approach as needed.

The pilot results are captured in a report on how well the pilot achieves its objectives, the modifica-
tions made to the MBSE approach, and lessons learned, including quantitative data and metrics where 
practical. The pilot report from an early application of the OOSEM method that is described in Chapter 
17, is an example of how to conduct a pilot [55].

Based on a pilot’s results, the process, methods, tools, metrics, and training are updated to reflect 
the new baseline MBSE approach. The results serve as training material for the broader MBSE rollout. 
The pilot participants can also become advocates to help deploy MBSE with SysML to projects.

19.1.5 � DEPLOY CHANGES INCREMENTALLY
The pilot results help determine the requirements and approach for deploying MBSE to projects. The 
pilot provides a basis for assessing the type of training required, the time it takes to reach a level of 
proficiency, how to adapt the organizational MBSE method and tools to the needs of a project, and 
realistic expectations of the results from the modeling effort.

Criteria are established to select a project or projects for MBSE deployment. The criteria include the 
project’s phase, longevity, size, level of internal and customer support, and the extent to which MBSE 
benefits can provide recognized value to the project both incrementally and over the longer term. In 
addition, the state-of-practice assessment referenced in Section 19.1.1 can help identify potential proj-
ect opportunities to introduce MBSE based on business need and other considerations.

Different projects introduce different scopes for MBSE depending on their current state of practice, 
their experience level in modeling, and their particular needs. Ideally, MBSE with SysML is introduced 
during the start-up phase of a project or at a point in its lifecycle that is appropriate to introduce change, 
for example, at the start of a new development increment. It is important for the project’s leadership and 
customers to be willing advocates for the change.

The MBSE approach is integrated into the project plan. The plan reflects realistic expectations in 
terms of the time, effort, deliverables, and expected results from the modeling effort. The outline for the 
modeling plan is similar to the pilot plan outline in Section 19.1.4. The purpose and scope of the effort 
is defined and balanced with project resources, as described in Chapter 2, Sections 2.2.2 and 2.2.5. The 
initial set up of the modeling environment, including the tools, staffing, and training is reflected in the 
plan and schedule, along with the MBSE activities, modeling artifacts, and related project deliverables. 
Typical project start-up activities are discussed in Chapter 17, Section 17.2.2.

The selected MBSE method is tailored to satisfy the modeling objectives, scope, and project con-
straints. The tailoring may include adding or deleting certain activities, tailoring the sequencing of 
activities, and customizing the modeling artifacts to satisfy the requirements for the project deliver-
ables. Some considerations for tailoring depend on whether the system development is constrained by 
a legacy system design versus the development of a new system, the phase of development, and the 
modeling expertise available to the development team.

The model can be leveraged to provide information for the project deliverables. Auto-generation of 
the project documentation from the model, as described in Chapter 18, Section 18.4.5, can provide 
efficiencies and quality improvements.
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The project organization should include roles with responsibilities for the modeling activities. A 
small core modeling team can be established, with a modeling lead and representatives from the other 
engineering teams on the project. The modeling team works closely with the rest of the project to build 
the model by obtaining on-going inputs to the model from the project team representatives. The model-
ing lead schedules regular peer reviews of the model to ensure that the model reflects the design intent 
of the project teams and that the MBSE method and modeling guidelines are followed. The model is a 
fundamental part of the technical baseline and is controlled like other primary engineering artifacts 
using the project’s technical review process. The MBSE method and modeling guidelines are periodi-
cally reviewed and updated based on lessons learned from the project.

MBSE metrics, such as those in Chapter 2, Sections 2.2.5–6, are identified to support project 
objectives. The model can be an excellent source of information to assist in assessing technical, cost, 
and schedule performance and risk. The approach for metrics data collection is also defined, including 
how the data is captured from the tools. The reporting of metrics is included in the project plan, includ-
ing which metrics, how often the data are collected, and how the data are used.

The selected tools are acquired, installed, and configured for use. On a larger project, the tools are 
configured for a multi-user environment. Additional levels of tool integration may be required, as 
described in Chapter 18. The configuration management approach and model organization for control-
ling the model baseline are defined.

The MBSE deployment includes start-up training in SysML and the selected MBSE method and tool. 
The training material leverages the pilot project documentation and results. Different levels of training are 
appropriate for different stakeholders. For example, some of the systems engineering team, which is desig-
nated as the core modeling team, require detailed training in SysML, MBSE methods, and the modeling 
tools, whereas other systems engineers and some hardware and software developers may only require lim-
ited SysML training sufficient to interpret the SysML models. The discipline-specific training addresses 
how the model impacts their particular tasks or methods. For example, testers need to understand how to 
derive detailed test cases from the model, and the individual responsible for requirements management 
needs to understand how the SysML modeling tool is used with the requirements management tool.

A successful deployment also requires ongoing support and mentoring from individuals who have 
expertise in the methods and tools. The improvement metrics are monitored to assess the MBSE effort, 
and lessons learned are captured to further refine the process, methods, and tools, and drive the improve-
ment process.

19.2 � ELEMENTS OF A DEPLOYMENT STRATEGY
The previous section describes how to deploy MBSE with SysML as part of an organizational improve-
ment process. This section describes elements of a deployment strategy from both organizational and 
project perspectives that include:
 
	•	� Stakeholder identification
	•	� Value proposition
	•	� Relationship to other initiatives
	•	� Approach:
	 •	 �Method selection



54919.2  Elements of a Deployment Strategy

	 •	 �Tool selection and integration
	 •	 �Skill acquisition and development
	 •	 �Measurement
	 •	 �Organization and roles
 

19.2.1 � ORGANIZATIONAL DEPLOYMENT STRATEGIES
Stakeholder identification
Developing and evolving an organizational strategy to introduce an improvement involves funda-
mental tenets of organizational change management. This clearly requires a champion who is will-
ing and able to initiate and lead the change. The particular strategy and the primary stakeholders 
depend on the stage of adoption of the organization. For example, during the very early stage of 
adoption, it may be appropriate to initiate the change at a grassroots level with practitioners who are 
willing to take on the challenges and risks of being an early adopter. The early adopters have the 
ability to demonstrate early success and motivate others to participate, and to begin to build the 
knowledge of how MBSE with SysML is practiced. At later stages of adoption, it becomes critical 
to engage senior management who see the potential value of the change and are willing to sponsor 
the initiative with funding and resources. The engagement broadens to include other stakeholders to 
mature the practices, to build the skills, and to establish clear ownership across the organization to 
institutionalize the change.

Value proposition
The value proposition for MBSE must be adapted to the organization and to the specific stakeholders. 
The value proposition ultimately must be defined in terms that are meaningful to the stakeholders. For 
example, the practitioner must see value in terms of improving his or her job. At the same time, the 
value proposition for senior management must be tied to organizational and business objectives. An 
example may be to demonstrate how MBSE with SysML provide a discriminator to help win new busi-
ness or address systemic issues that result in improvements in quality, productivity, and/or schedule 
reduction. Typical systemic issues are associated with integration across disciplines and/or across life-
cycle phases. These issues must be stated in ways that are relevant to the organization, and the case for 
how MBSE with SysML address the issues and provide the value must be compelling.

As a caution, the sponsors and others may be asking for the return on investment from the onset. It 
is often quite challenging to get this data, particularly in the early stages of adoption. One can look for 
external data, but many companies do not share this data, even if they have it. Furthermore, it is often 
difficult to measure the return due to any specific change unless the change is performed in a controlled 
environment. It is often more feasible to provide a business case that is based on demonstrated 
mini-successes.

Relationship to other initiatives
Introducing a change into an organization can be perceived as just another initiative. Organizations may 
have many initiatives underway, and another initiative can be viewed by many as a burden that just 
requires more for them to do. It may be more effective to integrate MBSE with SysML into an on-going 
initiative, preferably one that is well funded with clear sponsorship and support.
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Approach
An organizational strategy should address two key elements: 1) building the organizational infrastruc-
ture in terms of the methods, tools, training, and skilled practitioners needed to implement MBSE with 
SysML; and 2) deploying MBSE with SysML to the projects. Some of the specific considerations for 
both elements are discussed in Section 19.1 and further elaborated below.

Building the organizational infrastructure for MBSE
An important aspect related to the MBSE infrastructure is establishing a community of practice 
(COP) to share the knowledge and lessons learned across the organization. The community of practice 
should have a credible leader with the skills needed to engage the community. Funding the leadership 
role is important to the success of the COP. The lead may hold regularly scheduled telecons and webi-
nars to provide an opportunity for practitioners to share their experiences and for tool vendors and other 
outside experts to introduce new capabilities.

The lead may also develop and maintain a website to host the modeling practices, guidelines, and 
resources, and may include identification of subject matter experts, training opportunities, and other infor-
mation. The COP lead or other members may also provide direct project support beginning at project start-
up by assisting in the planning of the MBSE effort. The COP should document incremental successes and 
lessons learned and share them more broadly. This also presents an opportunity to share models for reuse 
across the organization, which helps to build the business case and value proposition for MBSE with SysML.

An important aspect of transitioning MBSE to an organization is to demystify MBSE and relate it 
to current practice. It can be helpful to map the MBSE method to the current practices and to demon-
strate how more traditional systems engineering artifacts such as concept of operations, specifications, 
architecture descriptions, test documentation, and others can be generated using a model-based 
approach. This activity can be performed by the COP.

The organization may also identify a tool lead to manage the modeling tool environment for the 
organization. This lead may be responsible for the selection of a standard modeling tool for use across 
projects and for integrating the modeling tool with other tools in the systems development environment. 
The tool lead is also responsible for assisting projects in setting up their modeling tool environment and 
providing full-lifecycle support that includes acquiring the tool, installing and configuring the tool, and 
managing new tool versions.

The organization may also provide a combination of in-house and vendor-provided training to proj-
ects in the modeling language, methods, and tools. In particular, this training may begin at project start-
up and continue as needed throughout the lifecycle of the project. A training plan is developed that 
identifies training needs and defines how to provide training solutions for the organization.

The organization may also fund specific pilot projects to validate the use of MBSE with SysML. It 
is beneficial to pilot MBSE for specific projects so the results of the pilot can provide direct benefit to 
the project and so the pilot is focused on real needs. Preferably, the pilot is conducted prior to the start 
of the project with individuals who are going to support the project directly.

Deploying MBSE to projects
The organizational strategy must include criteria for selecting the right projects and the right time to 
deploy MBSE with SysML as discussed in Section 19.1. The strategy must also address on-going 
needs of the projects and what changes to the MBSE infrastructure are needed to provide the most 
effective support.
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Organizational roles
The organizational roles described in this section each contribute to maintaining and improving the 
overall organizational MBSE capability. The strategy should include considerations for how to manage 
and coordinate the MBSE effort across the organization to ensure overall success.

19.2.2 � PROJECT DEPLOYMENT STRATEGIES
A project that deploys MBSE with SysML may or may not be able to leverage the organizational infra-
structure described above. If it is early in the adoption stage, the infrastructure may not exist or resources 
may not be available to leverage the infrastructure. Whether the organizational infrastructure is avail-
able or not, a project should develop a deployment strategy that addresses its unique needs.

Stakeholder identification
The primary project stakeholders for the MBSE approach generally include the chief engineer on the 
project, the systems engineering team, the hardware and software developers, the testers, and other 
members of the development team who contribute to and consume the modeling information. The 
stakeholders also include customers, subcontractors, and program management, all of whom may be 
impacted by changes to project processes and/or deliverables.

Value proposition
This begins with the value proposition for the modeling effort in terms how MBSE with SysML can 
support the project objectives. Typical purposes for applying MBSE are identified in Chapter 2, Section 
2.2.2, and some of the potential benefits are identified in Chapter 2, Section 2.1.2. As noted in Chapter 
2, Section 2.2.2, the modeling purpose depends in part on the lifecycle phase of the project, such as the 
conceptual design, detailed design, integration and test, production, or operation and support phase. As 
one shifts further down the lifecycle, the emphasis for the modeling effort shifts from exploring broad 
system design alternatives to managing changes to the technical baseline.

It is important to set expectations for the modeling effort to understand what it does and does not 
provide, and also to understand that this effort requires a steady commitment from both the modeling 
team and other members of the project that contribute to and/or use the model.

Modeling approach
Defining the scope of the model to support its purpose is a critical part of the project’s deployment 
strategy and plan. An approach to establishing model scope is described in Chapter 2, Section 2.2.4, 
and focuses on determining the appropriate level of model breadth, depth, and fidelity. The scope must 
be consistent with other project constraints, such as the project schedule and funding.

As noted in Section 19.2.1, the model should initially be leveraged to create traditional systems 
engineering artifacts that are familiar to the project and systems engineering team. In addition, the 
initial scope should be small and focused, and then expanded over time. For example, the initial model-
ing effort may focus on developing the system block diagram and establishing traceability to the top 
level requirements. This can provide near-term value while the project gains familiarity with the model 
and begins to see its value. A well-defined system block diagram provides a shared understanding of 
the system that helps to integrate the subsystems and other disciplines. The level and detail of the block 
diagram can be incrementally increased over time, such as the addition of ports with more detailed 
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interface information. In addition, the model can be used to identify and manage critical properties 
needed to support engineering analysis related to performance, physical, and other quality characteris-
tics. Capturing key mission, system, and subsystem requirements and tracing these requirements to the 
system design can be part of the initial modeling effort. These modeling artifacts can be used to gener-
ate traditional systems engineering documentation such as specifications, traceability reports, and sys-
tem architecture and interface descriptions.

The model can be leveraged for many different purposes. Some of these purposes are predefined 
while others are discovered as the model evolves. New content may be identified based on on-going 
reviews of the model and the need to create new kinds of reports that had not previously been available. 
Some content and/or certain modeling artifacts may turn out to be less useful, and a determination may 
be made to discontinue that part of the modeling effort. It is important to always drive the model based 
on purpose and intent but recognize that the purpose will evolve.

The MBSE approach must support the project objectives, and integrate with the overall project plan 
as described in Section 19.1.5. This includes identifying and tailoring the modeling method and arti-
facts, tool environment, staffing needs, training, metrics, and roles needed to support the modeling 
effort. The modeling milestones should provide the needed visibility to track progress of the modeling 
effort that is meaningful to the project and should be updated as needed.

Organizing the modeling effort
Organizing the modeling effort is an important part of the MBSE approach. The modeling team 
generally starts with a few modelers who have developed sufficient modeling expertise, perhaps 
through supporting a pilot or a previous modeling effort. The lead for the modeling effort must 
have technical credibility on the project and strong leadership skills. This individual needs to man-
age or oversee the model development and promote its adoption on the project. The lead will 
maintain a disciplined approach to model development and manage the scope of the effort to 
ensure incremental success.

The model development is divided up among members of the modeling team. For example, some 
members of the modeling team may be responsible for capturing the requirements and others may be 
responsible for selected use cases. The modeling lead should ensure that consistent guidelines are 
applied and that the model is subject to on-going quality reviews.

Stakeholder participation in the modeling effort
Many of the contributors to the modeling effort may not be directly involved in building the model but 
will contribute to the model content. Of particular importance is the establishment of ownership of the 
model data. For example, the subsystem leads may be responsible for the model content associated with 
their subsystem. They will identify the domain content for their subsystem that is to be captured in the 
model and review the resulting model to validate that the model reflects their intent. In the end, the 
model can only be as good as the quality of the source data. Clear ownership adds credibility to  
the model and ensures the project stakeholders have a real stake in the model.

It is also important for new design information to attain a level of stability before entering it into the 
model to limit unnecessary rework of the model. Teams may use other informal drawing tools for initial 
concepts and only capture information in the model after the concept has reached an appropriate level 
of stability. Additional design issues may surface as this information is captured more formally in the 
model and integrated with other parts of the system.
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One of the key challenges facing the acceptance of the model may be the presentation of the infor-
mation in a model versus more conventional document-based formats.. The model can be very precise 
and rich in content, but the project stakeholders that consume the modeling information must be com-
fortable with how the modeling information is presented. In many cases, the stakeholders may prefer to 
see the data presented in a way that is more familiar to them, such as tabular data, textual reports, or 
graphical representations with domain specific icons. This can be accomplished by extracting the data 
from the model and presenting the information in the desired form using the concepts of view and 
viewpoint that are described in Chapter 15, Section 15.8 and Chapter 18, Sections18.2.2 and 18.4.5.

The modeling information is often presented as part of technical reviews. It may be presented in 
traditional artifacts as described in the previous paragraph. For some audiences, it can be advantageous 
to conduct the review using a predefined storyboard to walk through selected parts of the model directly. 
Presenting the system specification, design, analysis, and verification information in this way leverages 
the model navigation capability to weave together important threads of an overall story.

Maintaining the model
Managing change to the model to ensure consistent and up-to-date information is critical to the success 
of the model. During the early phases of design, simple version control is sufficient to manage the 
model. As the design progresses and matures, managing change becomes more complex and more 
rigorous. A change to the model must be supported by change impact analysis to understand what other 
parts of the system model are impacted. Techniques such as branch and merge are introduced to ensure 
multiple independent changes are properly synchronized in a new version of the model. Other engi-
neering models and artifacts may be impacted as well, which must be managed through the project 
change management process. In addition, new versions of the modeling tool may be introduced. This 
also must be taken into account as part of the overall configuration management approach as described 
in Chapter 18 Section 18.2.3.

It is important to maintain the model as part of the technical baseline. An on-going challenge is to 
ensure that the model is recognized as a primary source of information. The modeling team can par-
tially measure its success in terms of the extent to which other members of the project treat the model 
as the source of information they use to do their job. This requires a disciplined approach to ensure 
overall value of the model is maintained in terms of the quality, credibility, value, and currency of the 
content, and the effectiveness of its presentation.

19.3 � SUMMARY
SysML is deployed as part of an MBSE approach using the organization’s improvement process. A 
successful deployment must be planned, piloted, and incrementally deployed. Success of the modeling 
effort on one project is a key ingredient in motivating other projects to follow. The result of the model-
ing effort, including its benefits and lessons learned, are quantified, where practical, and used as a basis 
for future deployments and improvements.

There are many elements to a MBSE deployment strategy. The deployment strategy for an organization 
depends on the stage of adoption of MBSE. The strategy includes a clear definition of the MBSE value 
proposition, a focus on building the infrastructure to enable use of MBSE on projects, the selection of the 
right projects at the right time for deployment, and the support needed to help make projects successful.
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The deployment strategy for a project focuses on incrementally building and maintaining a model 
in a disciplined manner to bring value to the project, and on the means to engage the project stakehold-
ers so they become contributors and consumers of the model content.

19.4 � QUESTIONS
	1.	 �When SysML is being deployed, which other aspects of MBSE should be considered?
	2.	 �What are the activities in the improvement process?
	3.	 �Who are some of the stakeholders in the improvement process?
	4.	 �What is the purpose of the monitor and assessment activity?
	5.	 �What is the purpose of piloting the MBSE approach?
	6.	 �What are some of the up-front project activities that must be planned when deploying SysML to a 

project?
	7.	 �What are key elements that a deployment strategy should address?
 

DISCUSSION TOPICS
How might one organize an improvement effort to deploy MBSE across a large organization?
Describe sample content for a modeling plan from startup of a new modeling effort through the initial 
design review.
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APPENDIX

SysML Reference Guide A
Appendix A provides a reference guide to the graphical notation for SysML as a set of notation 

tables which are organized by diagram kind.

A.1 � OVERVIEW
This appendix provides a reference guide to the graphical notation for SysML as a set of notation tables. 
It is organized by diagram kind in the following order, consistent with their introduction in Part II:
	•	� Package Diagram
	•	� Block Definition Diagram
	•	� Internal Block Diagram
	•	� Parametric Diagram
	•	� Activity Diagram
	•	� Sequence Diagram
	•	� State Machine Diagram
	•	� Use Case Diagram
	•	� Requirement Diagram

There are also notation tables for the use of allocations and stereotypes, which are used across a 
number of different diagrams.

It is recommended that you read Section 4.3 in Chapter 4 for an overview of SysML diagrams and 
their contents before reading this appendix.

A.2 � NOTATIONAL CONVENTIONS
This section describes how to interpret the notation tables in the rest of the appendix. This includes 
identifying those notational elements that are in the OCSMP basic features set.

NOTATION TABLES
Each diagram is described by at least one notation table. For diagrams with many symbols, there are 
separate tables for nodes and paths, where node symbols are typically rectangles and ovals, and path 
symbols are lines. Package diagrams and block definition diagrams have several subsections to describe 
different uses of the diagram with corresponding notation tables. The rows in each table are ordered to 
correspond with the order in which they are introduced in the relevant chapter or chapters.
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The notation tables have four columns:

	•	� Diagram Element—the name of the diagram element represented in this row, generally identified 
as a node or path. The term symbol is used when it is neither a node nor a path, such as a text 
expression in brackets.

	•	� Notation—the graphical notation for the diagram element.
	•	� Description—a description of the SysML concept represented by the diagram element.
	•	� Section—a reference to the section(s) in Part II that contains further explanation of the relevant 

SysML concept.
The following conventions are used in the tables:

	•	� < Name>—the name of the model element represented by the symbol.
	•	� < Element>—the name of some model element.
	•	� < Type>—the name of some type (Block, ValueType, etc.).
	•	� < String>—a text string.
	•	� < Expression>, <ValueSpecification>—a text string intended to represent some kind of mathemat-

ical expression.
	•	� < ElementKind>—the keyword representing some kind of model element.
	•	� < Multiplicity>—a representation of multiplicity, thus: <LowerBound>… <UpperBound>, where 

LowerBound is any natural number and UpperBound is any natural number or “*.”
The names inside the angled brackets are intended to be self-explanatory references to SysML 

model elements, but occasionally extra explanation is provided in the Description column of a 
symbol.

It should be noted that various parts of the graphical and textual notation may be elided by a mod-
eler, and the tables do not provide guidance on what can be elided and when. In addition, certain model 
elements have additional keywords and properties that are listed in the Description column of the rel-
evant symbol.

OCSMP AND SysML 1.3
The tables are shaded to identify those SysML elements which are in the OCSMP basic feature set. The 
shading is added as follows:
	•	� Node and note symbols are shaded to indicate that they are in the basic feature set. If a node 

symbol has multiple compartments, only compartments covered by the basic feature set are 
shaded.

	•	� Path symbols covered by the basic feature set are enclosed in a shaded area.
	•	� Those parts of the description column that describe basic features have a shaded background.

SysML 1.3 added some new features and deprecated others. Table A.7 lists the symbols for depre-
cated features. Tables A.4 and A.6 contain symbols for concepts that were added in SysML 1.3. SysML 
1.3 notation is indicated in the description column of the affected tables.
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A.3 � PACKAGE DIAGRAM
Package diagrams are used principally to describe model organization. They are also used to define 
SysML language extensions called profiles.

Table A.1  Package Diagram Nodes and Paths

Section
Diagram
Element

Notation Description

A model in SysML is a top-level package in a nested
package hierarchy. In a package hierarchy, models
may contain other models, packages, and views.

Model elements that can be contained in packages
are called packageable elements and include blocks,
activities, and value types among others.

The containment relationship relates parents to
children within a package hierarchy.

An import relationship is used to bring an element 
or collection of elements into a namespace. Private
import is marked by the keyword «access».

A dependency relationship indicates that a change to
the supplier (arrow) end of the dependency may
result in a change to the other end of the dependency.
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Table A.2  Notation for Describing SysML Extensions on Package Diagrams
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A.4 � BLOCK DEFINITION DIAGRAM
The block definition diagram is used to define the characteristics of blocks in terms of structural and 
behavioral features, and the relationships between the blocks, such as their hierarchical relationship. 
Extensions to the block definition diagram are used to define parametric constraints and to show a 
hierarchical view of activities.

Table A.3  Block Definition Diagram Nodes for Representing Block Structure and Values
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Blocks have two additional compartments:

Structure, which has the same symbols as an internal block diagram.
Namespace, which has the same symbols as a block definition diagram.

Table A.4  Block Definition Diagram Nodes for Representing Interfaces
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Table A.5  Block Definition Diagram Paths

7.3.3

7.7

7.3.2

Section
Diagram
Element

Notation Description

7.3.1
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Table A.6  Nodes for Representing Ports

Table A.7  Symbols That Are Deprecated in SysML 1.3



Table A.8  Additional Notation to Define Parametric Models on Block Definition Diagrams

Section
Diagram
Element

Notation Description

Table A.9  Additional Notation to Define Activity Models on Block Definition Diagrams
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Table A.10  Additional Notation to Define Instance Specifications and Physical Quantities on Block 
Definition Diagrams

Section
Diagram
Element

Notation Description

7.8

7.8
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A.5 � INTERNAL BLOCK DIAGRAM
The internal block diagram is used to describe the internal structure of a block in terms of how its parts 
are interconnected. Please note that the symbols for ports described in are also used on the internal 
block diagram.

Table A.11  Internal Block Diagram Nodes
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Table A.12  Internal Block Diagram Paths

7.4.3

7.3.3

Section
Diagram
Element

Notation Description

7.3.1, 7.3.3
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A.6 � PARAMETRIC DIAGRAM
Parametric diagrams are used to create systems of equations that can be used to constrain the properties 
of blocks.

Table A.13  Parametric Diagram Notation
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A.7 � ACTIVITY DIAGRAM
The activity diagram is used to model behavior in terms of the flow of inputs, outputs, and control. An 
activity diagram is similar to a traditional functional flow diagram.

Table A.14  Activity Diagram Structural Nodes
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Table A.15  Activity Diagram Control Nodes
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Table A.16  Activity Diagram Object and Action Nodes
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Table A.17  Activity Diagram Paths

Section
Diagram
Element

Notation Description
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A.8 � SEQUENCE DIAGRAM
The sequence diagram is used to represent the interaction between structural elements of a block as a 
sequence of message exchanges.

Table A.18  Sequence Diagram Structural Nodes
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Table A.19  Sequence Diagram Paths and Activation Nodes
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Table A.20  Sequence Diagram Temporal Observation and Constraint Nodes
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A.9 � STATE MACHINE DIAGRAM
A state machine diagram is used in SysML to describe the state-dependent behavior of a block through-
out its lifecycle in terms of its states and the transitions between them.

Table A.21  State Machine Diagram State Nodes
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Table A.22  State Machine Diagram Pseudostate and Transition Nodes
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Table A.23  State Machine Diagram Paths

Section
Diagram
Element

Notation Description
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A.10 � USE CASE DIAGRAM
The use case diagram is used to model the relationships between the system under consideration or 
subject, its actors, and use cases.

Table A.24  Use Case Diagram Notation
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A.11 � REQUIREMENT DIAGRAM
The requirement diagram is used to graphically depict hierarchies of requirements or to depict an indi-
vidual requirement and its relationship to other model elements.

Table A.25  Requirement Diagram Nodes
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Table A.26  Requirement Diagram Paths
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Table A.27  Requirement Diagram Callouts
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A.12 � ALLOCATION
SysML includes several notational options to provide flexibility for representing allocations of model 
elements across the system model. The graphical representations are similar to those used for relating 
requirements to other model elements.

Table A.28  Notation for Allocations
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A.13 � STEREOTYPES AND VIEWPOINTS
Stereotypes are used to introduce new concepts or augment existing concepts into SysML to customize 
the language for specific domains. Stereotypes may be applied to elements on any diagram using a 
common notation across all diagrams. Information about applied stereotypes can be shown either inside 
node symbols, as part of name strings, or using callout notation.

Viewpoints and views allow modelers to generate custom visualizations of their SysML models.

Table A.29  Notation for Stereotyped Element
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Table A.30  Nodes for Representing Views and Viewpoints

Section
Diagram
Element

Notation Description

A view conforms to a viewpoint. The view exposes 
a set of model elements according to the viewpoint  
methods and is expressed in the viewpoint 
languages to present the relevant information to its 
stakeholders.

A viewpoint describes a perspective of interest to a
set of stakeholders that is used to specify a view of
a model.

Used to specify a model element that is exposed by 
a  view 

«expose»

Used to assert that a view conforms to a
viewpoint.

«conform»

A stakeholder is a role, group or individual that has
concerns that need to be addressed
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Abstract syntax, 359–360, 540
Accept event action, 63

description of, 221, 241
node, 570t

Accept signal action, 221, 241
Accept time action node, 570t
Act, 206
Action Language for Foundational UML (Alf), 179, 240, 244
Action pins, 347
Action(s), 208

accept event. See Accept event action
accept signal, 221, 241
call. See Call actions
control operators used to enable and disable, 220–221
definition of, 205, 208–209
example of, 208
node for, 576t
with nonstreaming input and output, 220–221
opaque action, 219
primitive, 240–242, 242f
requirements for, 208
send signal, 221, 241, 252, 282, 570t
tokens created by, 205, 208

Activations, 255, 256f
Activities, 209

behavior depicted by, 206
as block behaviors, 232–234
in block context, 232–235
communicating between, 206
continuous, 242–243
control flow in. See Control flow
definition of, 205
do, 235
executing, 239–240
function of, 144, 205, 209
invocation, composite associations used to model, 236–237
as methods, 234–235
node, 563t
signals used to communicate between, 223f
structured, 224–225, 568t
use case with, 302

Activity composition node, 563t
Activity diagram, 61–64, 68, 69f–70f, 206

allocation on, 332f
automobile system application of, 64f
definition of, 205
description of, 32, 32f

example of, 207f
invocation actions on, 212f
nodes, 568t, 570t
paths, 571t
purpose of, 568–572
residential security system, 458f
use case and, 303–304

Activity final node, 63, 218, 569t
Activity flow, 234f
Activity hierarchy, 236

block definition diagrams used to model, 236–238
description of, 207f, 208

Activity parameters
description of, 209–211
nodes, 209, 211, 216–217, 568t

Activity partitions, 63, 230
allocate, 61–64, 344
description of, 63, 230–232, 231f, 303
node, 568t

Actor, 59, 296
associations used with, 297–298
definition of, 295
node, 559t, 578t
system users represented using, 296–297

Actor part node, 565t
Actual gates, 265–266
Adjunct property, 236
Alf, 179
Alias, 108
Allocate, 111
Allocate activity partitions, 61–64, 344
Allocated, 59
Allocate relationship, 332

balance of, 353
in callout notation, 333–334, 334f
in compartment notation, 333, 333f
completeness and consistency evaluations, 353
creation of, 332
description of, 332
in matrix format, 334, 334f

Allocation
asymmetric, 339
of behavior, 335
behavioral, 331
definition of, 332
of definition. See Allocation of definition
evaluation of, across user model, 353
of flow. See Flow allocation
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Allocation (Continued )
of function. See Functional allocation
functional, 331
between independent structural hierarchies, 348–350
inferred, 342
of instances. See Allocation of usage
logical–physical, 336, 471
notation for, 333–335, 582t
of properties, 336
reference property relationships shown through, 127
of requirements, 335
software–hardware, 336
of structure. See Structural allocation
of usage. See Allocation of usage
water distiller case study of. See Water distiller system

Allocation matrix, 345
Allocation of definition, 338–339

description of, 332, 337–340, 338f, 339t
functional, 340–344, 340f
structural, 350

Allocation of usage, 337–338
description of, 331, 337–338, 338f, 339t
functional, 341, 341f
structural, 348–349

Alt/else, 61, 261
Alternate flow, 301
Analysis context

definition of, 202
description of, 197
trade study as, 199

Analysis models, 197
Analytical model, 509–510
Application programming interface (API), 527, 531
Application Protocol, 529–530
Architectural frameworks, 12
Architecture Team, 14
Assert, 248, 263
Assessment questionnaire, 544
Association blocks, 130

description of, 130–132
node, 561t
path, 561t

Association path, 558t, 578t
Association(s)

with actors, 297–298
composite. See Composite associations
definition of, 128
reference. See Reference associations

Asymmetric allocation, 339
Asynchronous, 61
Asynchronous digital subscriber line connection, 129
Asynchronous message, 252–253, 573t
Asynchronous requests, 234

Atomic flow ports
description of, 179
node, 562t

Atomic state node, 575t
Automobile design

activity diagram, 61–64, 68, 69f–70f
block definition diagram, 54, 58f, 67–68, 67f, 76
internal block diagram, 64–66, 69–72
parametric diagram, 73–75, 74f
requirement diagram, 53–54, 57f, 78f
sequence diagram, 61, 63f
state machine diagram, 64–65
systems engineering application to, 5–9
use case diagram, 59–61

B
Base UML (bUML), 179
Base use case, 298–299
Basic feature set, 53
bdd, 116
Behavior

classifier, 145–146
description of, 232–234, 233f–234f
entry, 235
execution of, 255–256, 256f
exit, 235
main, 145–146
opaque, 144
state machine, 273
use cases elaborated with, 301–305, 303f–306f

Behavioral allocation, 335
description of, 331, 335
to structure, 340–344, 340f–341f

Behavioral features, 146
block response to request for, 167
classification and, 166–167
description of, 146–147

Behavior port, 152
Binding connectors, 73, 126
Black-box interaction, 267
Black-box specification, 447–449, 448f
Block, 58, 117

association. See Association blocks
behavioral features of, 146–147
definition of, 58, 115, 117
constraint. See Constraint block
example of, 117–118, 118f
isEncapsulated property, 125
properties of, 73–74
structural elements of, 247
symbol for, 118
value properties, 136, 193–194, 193f–194f
whole–part relationship for, 120
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Block composition hierarchy
on block definition diagram, 122f
part properties used to model, 119–126

Block configurations, 173–176, 175f–176f, 194–195
Block definition diagram, 58, 116

activity hierarchies, 207f, 236–238
airplane example application of, 360–361
allocation on, 332f
association blocks on, 130
automobile system application of, 54, 58f, 67–68,  

67f, 76
block composition hierarchy on, 122f
block configuration modeled on, 123, 173–176, 176f
classification hierarchy on, 167f
compartments, 560
constraint blocks on, 185–186, 186f
description of, 32, 32f
example of, 116f
generalization set on, 168f
header of, 116
model library components represented on, 363, 364f
names on, 118
nodes, 559t–560t, 563t
object nodes modeled using, 237
parameters modeled using, 237, 563t
part properties on, 122f
purpose of, 115–117, 556
reference association on, 127–128
residential security system, 464f, 466f–467f, 480f, 

482f–484f, 502f
value types modeled on, 133–134
variant configurations modeled on, 169f
water distiller case study of, 400–401

Block node, 559t, 563t
Bound reference, 169
BPMN, 516
Break, 263, 452–453
Bridge, 528
bUML. See Base UML (bUML)

C
Call actions

description of, 209, 241
node, 570t

Call behavior actions, 63, 448–449
control operator invoked by, 220–221, 220f–221f
definition of, 211
function of, 209
name strings of, 215
pins, 211

Call events
description of, 277, 282–283
transition path, 577t

Call operation action, 234, 252, 448–449
Callout, 316
Callout notation, 316

for allocation relationships, 333–334, 334f
for requirements relationship, 316, 316f

Canvas, 92–93
Causal analysis, 431–432, 434–436
Central buffer nodes, 216–217, 570t
Change events

description of, 222, 277, 291
transition path, 577t

Change management tools, 523
Child elements, 101
Choice pseudostate, 280

description of, 280, 281f
node, 576t

C4ISR standards framework, 12
Class, 485–486
Classification

behavioral features and, 166–167
of block, 165–166
hierarchies of, 164–176
overlapping, generalization sets for modeling of,  

167–168
for reuse, 165
variants modeled using, 168–170

Classifier behavior, 145–146, 232
Classifiers, 145–146, 164
Clause, 225
Clock, 258–259
Clock skew, 195
Closed form solution, 510
Cohesion metrics, 27
Collaboration artifacts, 433
Combined fragments

definition of, 248, 260
interaction operators, 260–263, 261f–262f

Comment, 97, 557t
Communication paths, 297–298
Community of practice, 550
Compartment notation, 316

for allocation relationships, 333, 333f
for requirements relationships, 316, 316f

Completion events, 277
Component Design, Implementation, and Test, 9
Component design models, 18–19
Components package, 106–107
Component specifications, 309–310
Composite associations, 59

definition of, 121
description of, 197, 206, 236–237
part properties, 121–122
path, 561t
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Composite state
definition of, 283
node, 575t
orthogonal, 285–287
with single region, 283–285

Compound transition, 280
Computer simulation, 510
Concept of operations

description of, 12
document-based systems engineering use of, 15–16

Concrete syntax, 360, 540
Conditional node, 225
Configuration management, 525
Configuration management tools, 522–526
Conform, 380
Conjugate port, 156–157, 180
Connection points, 290
Connector allocation, 345, 346f
Connector property, 132
Connector property node, 566t
Connector property path, 566t
Connector(s), 73, 123–124

associations used to define features of, 129
binding connector, 126, 192
connecting ports, 153–161
definition of, 123–124
modeling of, 125–126
parts connected on internal block diagram using, 124–125, 

124f
path, 566t

Consider, 33
Constraint, 187

definition of, 185
duration, 255–256
encapsulation of, in constraint blocks, 187–189, 201–203
state, 228
stereotypes with, 367–369
summary of, 201–203
time, 258–259
time-dependent, 195–196
value properties of block, 193–194

Constraint block, 72, 187, 193–194
analysis models, 197
on block definition, 185–186, 186f
composite associations between, 190
composition used to build, 190–191
constraints encapsulated in, 187–189, 201–203
definition of, 185, 192
description of, 72
features of, 185
item flows constrained using, 196
libraries of, 197

node, 563t
parametric diagram, 186, 191–193
value properties of block constrained using, 193–194

Constraint expression, 185, 187
Constraint parameters

binding of, using parametric diagram, 191–193
characteristics of, 188–189
definition of, 188
derived, 188–189
node, 567t
ordered, 188
unique, 188

Constraint properties
description of, 187, 192, 197, 201–202
node, 567t

Constructive Systems Engineering Cost Model, 27
Contained elements, 101
Containment, 57, 105, 107, 320
Containment hierarchy, 105, 112, 309–310, 320–322
Containment path, 557t, 580t
Context diagram, 65–66, 302, 303f
Continuous activities, 242–243
Continuous flow, 205, 226
Continuous state, 291–292, 292f
Control flow, 218

allocation of, to connectors, 345–347
description of, 205
order of action execution specified  

using, 218–221
path, 571t
schematic diagram of, 219f

Control nodes, 213
control logic depicted with, 218–220
description of, 205

Control operators, 220
action node, 570t
description of, 220–221

Control tokens, 205, 218
ControlValue, 220
Copy path, 580t
Copy relationship, 328–329, 328f
Coregion, 260

definition of, 248
symbol for, 573t

Cost function, 199
COSYSMO. See Constructive Systems  

Engineering Cost Model
Coverage, 168
Coverage property, 168
Create messages

description of, 256–257
path, 573t
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Critical, 263
Criticality property of requirement, 312
Critical performance requirements, 446
Cross-cutting relationships, 315–317

D
Data architecture, 481–482, 482f
Data exchange, 526

mechanisms of, 526–532, 529f–530f
standards for, 13

Data interchange standards, 13
Data store nodes, 217, 570t
Data type, 76–77
Decision node, 213–214, 569t
Decomposition of lifelines, 267–268, 268f–269f
Deep history pseudostate, 288
Default value, 137
Definition, allocation of

description of, 331, 337–340, 337t, 338f
functional, 341–343, 342f–343f
structural, 350, 350f
URI, 134

Deletion messages, 256–257
Department of Defense Architecture Framework (DoDAF), 12
Dependencies, 111, 112f, 113
Dependency path, 557t
Deployment, 543–554, 544f
Deployment strategy, 418, 435, 475–476, 485–486, 548
Derivation callout, 581t
Derivation path, 580t
Derived property, 137, 137f
Derive requirement relationship, 322–323, 323f
Descriptive model, 509, 509f, 511
Design constraints, 7, 453–454, 471
Destroy event node, 573t
Destruction occurrence, 256–257
Development process, 418–422, 419f–420f
Development tools, 514–515, 519
Diagram content, 54, 92–93
Diagram definition, OMG specification, 530
Diagram description, 92
Diagram frames, 54, 90
Diagram Graphics, OMG specification, 530
Diagram header, 54, 90–92, 91f
Diagram interchange, 530, 530f
Diagram kind, 91
Diagram name, 92
Diagram(s). See also specific diagrams

exchange standards for, 530–531, 530f
UML, 90

Diagram usage, 92
Direct notation, 315

Disable, 220
Discrete rate, 226
Discrete state, 291–292, 292f
Distributed property, 137
Do behavior, 64, 276
DocBook, 538
Documentation, 546
Document-based approach

characteristics of, 15
MBSE vs., 15–21
specification tree, 15

Document-based systems engineering, concept of operations 
document used in, 15–16

limitations of, 16
Document & view generation tools,  

518, 522
DoDAF. See Department of Defense Architecture Framework 

(DoDAF)
Domain of interest, 21, 26, 101–102, 112
Domain-specific language, 370
Dot notation, 125
Duration constraint

description of, 258–259
symbol for, 574t

Duration observation
description of, 258–259
symbol for, 574t

Dynamic model, 510

E
EFFBD. See Enhanced Functional Flow Block Diagrams 

(EFFBD)
EIA 632, 12
Electrical engineering, 16
Electrical modeling tools, 517
Element Group, 97–98, 98f
Element import, 108–109
Elements. See Model elements
Else, 261
Else clause, 225
Enable, 220
Enabling systems, 500–503, 501f–502f
Enhanced Functional Flow Block Diagrams (EFFBD), 206, 

238–239
Enterprise, 427
Enterprise use cases, 439–440, 440f
Entry behavior, 64, 235
Entry, 276
Entry point pseudostate, 274, 289, 289f
Enumeration, 133
Enumeration node, 559t
Equivalent relationship (semantic equivalence), 512, 513f, 514
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Events
call, 277, 282–283, 577t
change, 277, 577t
completion, 277
signal, 277, 577t
time. See Time events

Executable behavior, 239
Executable model, 500, 510
Executable specification, 177–178
Execution environment, 510
Executions, 255–256, 256f
Exit behavior, 64, 235, 276
Exit point pseudostate, 274, 289
Expose, 380–381
Extend, 299
Extending use cases, 440
Extension, 299, 365

required, 369
Extension path, 558t, 578t
Extension points, 300
Extension relationships

for stereotype, 372
for use case, 299

External transition, 278

F
Failure mode, 450
File-based data exchange, 527–531
Filtering fragment node, 572t
Final state, 275
Final state node, 576t
Flow allocations, 335–336

behavioral, 345–347
control flows, 345–347
description of, 335–336, 345
item flows, 345–347
object flows, 345
structural, 351–352
water distiller system, 404, 404f

Flow-based simulation stereotype, 365f, 368f
Flow charts, 218
Flow final node, 218–219, 569t
Flow order, 229
Flow ports

atomic, 179
connecting of, on internal block diagram, 180
description of, 232–234, 446
nonatomic, 562t

Flow property, 139, 180
Flow rates, 225–226
Flow(s)

continuous, 205, 226
control. See Control flow

discrete, 205
item. See Item flows
object. See Object flows

Flow specification, 180
definition of, 180
illustration of, 180
node, 562t

Focus of control node, 573t
Fork, 214
Fork node, 213, 569t
Fork pseudostate

description of, 285
node, 576t

Formal gates, 265–266
Foundational UML (fUML),  

178–179, 244
Found messages

description of, 253–254
path, 574t

Full port, 149
Functional allocation, 335

allocate activity partitions used to model, 344
behavior allocated to structure using, 340–344
of definition, 341–343, 342f
definition of, 331, 336t
of usage, 341f

Functional Mockup Interface (FMI), 537
Functional requirements, 6, 230
Function behavior, 144

G
Gates, 265–266
Generalization, 164–176, 365
Generalization path, 558t, 561t, 578t
Generalization set, 67, 168, 168f
General-purpose systems modeling domain,  

369–370
General-purpose systems modeling language, 357
Geometric model/spatial model, 509
Guard, 260, 277
Guard condition, 64
Guard expression on object flows,  

213–214
Guillemets, 92, 373

H
Hardware development tools, 520
Harmony, 12, 418
Hierarchical state, 283
High-Level Architecture, 511
History pseudostate, 288

description of, 288–289, 288f
node, 576t
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I
Ibd, 116
Icon symbols, 94, 94f
IEEE 1220, 12
IEEE 1471-2000 standard, 12–13
Ignore, 263
Import path, 557t
Import relationship, 108–109
Improvement plan, 545
Improvement process, 543–548
in, 277
Include, 60
Included use case, 298–299
Inclusion, 60, 298–299
Inclusion path, 578t
Inclusion relationship for use case, 298–299
Inherit, 164–165
Initial node, 63, 218, 569t
Initial pseudostate

description of, 275
node, 576t

Initial values, 137
Instances, 117–118
Instance specification, 176–177, 194
Instant, 258–259
Integration and Test Team, 10–11
Integration Definition for Functional Modeling, 13
Interaction-based data exchange, 527
Interaction operators, 260–263, 262f
Interaction references, 265–267
Interactions, 247

black-box, 267–268
context for, 248–249
definition of, 247, 269
with lifelines, 251f
lifelines used to represent participants in. See Lifelines
messages connected to frame of, 265–266
sequence diagram representation of, 248
size of, 265
use case with, 302
weak sequencing, 254

Interaction uses, 61
description of, 265
node, 572t

Interface
adding to ports, 162–164
definition of, 162
modeling, 162
node, 560t

Interface block, 149, 151
Internal block diagram, 65, 116

allocation on, 332f
automobile system application of, 65–66, 69–72, 71f

block configuration detailed modeled on, 173
connecting parts on, 123–125, 124f
description of, 32f, 33, 117
example of, 117f, 249
nested parts shown on, 125–126, 125f
nodes, 565t
part properties modeled on, 122–123, 123f
paths, 566t
ports connected on, 180
purpose of, 117
reference properties modeled on,  

126–127
residential security system, 430f, 459f, 469f–470f, 

478f–479f
Internal transition, 278
International System of Units, 135
Interruptible regions, 223

description of, 223–224, 224f
node, 568t

Interrupting edge
description of, 223
path, 571t

isEncapsulated, 125
ISO 10303. See STEP
ISO 15288, 12
ISO 80000, 135
Item, 139
Item flows, 66, 142

allocation of, 345–347
between ports, 162f
definition of, 142
description of, 196
function of, 139
heat balance analysis in water distiller system,  

406–407
modeling of, 139
node, 567t
object flows allocated to, 345–347
properties associated with, 404–405

Item property, 142

J
Join node, 213, 218, 569t
Join pseudostate

description of, 285, 287, 293
node, 576t

Join specification, 214, 214f, 218
Junction pseudostate

description of, 280
node, 576t

K
Keywords, 93
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L
Lifecycle, 5, 10, 418
Lifecycle process, 418
Lifeline decomposition, 267
Lifelines, 250

with activations, 256f
asynchronous messages exchanged between, 254f
decomposition of, 267–268
definition of, 250
executions, 255–256
interaction with, 251f
messages exchanged between, 253–254, 254f
nested, 267, 269f
node, 572t
nonoverlapping, 261f
occurrences specifications, 251
overlapping, 261f
selector expression, 250
state invariants on, 264
synchronous messages exchanged between, 254f

Linked data, 534
Links, 124
Logical architecture, 454–460
Logical component, 454
Logical connector, 349–350
Logical decomposition, 454–457
Logical model, 509
Logical–physical allocation, 336
Logical structure, 348
Loop, 225, 261
Loop node, 225
Lost messages

description of, 253–254
path, 573t

M
Main behavior, 145–146
Master requirement, 328
Master requirement callout, 581t
MATLAB, 187
Master requirement, 328
Matrices, 318–319

allocation relationships depicted as, 334, 334f
description of, 97
requirements relationships depicted as, 318–319, 319f

MBSE method. See Model-based systems engineering  
method

Measures of effectiveness, 199, 434–435, 437
Mechanical modeling tools, 517
Members

definition of, 109, 112
visibility of, 109, 112

Merge node, 214, 569t

Message(s), 61, 251
asynchronous, 252–253, 573t
call and send, 252
create, 256–257
destroy, 256–257
exchanging of, between lifelines, 251–257, 254f
filtering of, 264f
found, 253–254
lost, 253–254
reply, 253
synchronous, 252–253

Message overtaking, 254
Metaclasses

definition of, 360
model elements and, 361f
node, 558t
in reference metamodel, 367
stereotypes based on, 365–372

Metamodels
concepts associated with, 359–361
definition of, 359–360, 558t
node, 558t
reference, 365
UML4SysML, 362, 362f

Meta Object Facility, 13, 359–360, 531
Method(s), 147, 378

activities as, 234–235
definition of, 21
MBSE, 16–17
modeling of, 147–148

Metrics
description of, 26–28, 544
improvement uses of, 543–548

Ministry of Defence Architectural Frame-work, 12–13
Model-based metrics, 26–28
Model-based systems engineering (MBSE) method,  

16–17, 21, 53–55, 550
definition of, 16–17
description of, 3, 15
document-based approach vs., 15–21
fuctional analysis method, 388
history of, 15–21
improvements resulting from use of, 28
learning curve, 49–50
method, 21, 47–49
Model-based systems engineering infrastructure, 550
object-oriented systems engineering method, 417, 422, 

424–425, 503
purpose of, 19
simplified method, 47–49, 48f
steps involved in, 388
system model. See System model
transitioning to, 20–21
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Model checkers, 510
Model Driven Architecture (MDA), 13, 517,  

531–532
Model elements, 113

definition of, 34
description of, 361f
diagrammatic representation of, 90–92
importing of, into packages, 108–111, 429
in package diagram, 102
in package hierarchy, 112
packageable. See Packageable elements
qualified name for, 107
stereotyped, 358, 359f, 372–378
symbols, 373

Model element type, 92
Modelica, 521
Modeling conventions, 25
Modeling language, 357
Modeling standards, 13
Modeling team, 548
Modeling tools, 19
Model libraries, 363

definition of, 103, 357, 360
node, 560t
reusable constructs provided using, 364

Model node, 557t
Model repository, 19–20
Model(s), definition of, 13, 21, 102

breadth of, 23–24
completeness of, 24
consistency of, 24–25
containment hierarchy, 105, 112
criteria necessary to meet purpose, 23–26
definition of, 21, 112
depth of, 24
description of organization, 112
features of, 508
fidelity of, 24
good, 23
hierarchy of, 102–104
integration with other models, 26
interchange of, 80
kinds of models, 508–511
organization of, 104–106, 428–431
in package hierarchy, 102
requirements representation in, 312–314
scope of, 23–24
self-documenting, 25–26
stereotypes applied when building, 372–378
in SysML, 21
understandability of, 25
water distiller case study, organization of,  

388–389

Model semantics, 25, 96
Model standards, 13
Model validation, 22–23
Moe, 199, 437
MOF. See Meta Object Facility
Multicompartment fragment node, 572t
Multidisciplinary systems engineering team, 10

description of, 10–11
multiplicity, 59
schematic diagram of, 10f

Multiple generalization, 167
Multiple inheritance, 167
Multiplicity, 59

N
Name clash, 108
Name compartment with keywords, 583t
Named Element, 101
Namespace

definition of, 101
packages as, 107–108
purpose of, 107
target, 108
uniqueness rules, 107

Name string with keywords and properties, 583t
Neg, 263
Nested lifelines, 268, 269f
Nested packages on package diagram, 104, 104f
Nested requirements, 320
Nested structures, 125–126
Nobuffer, 227
Node distribution, 418
Node symbols, 93, 93f. See also specific nodes
Node with stereotype compartment, 583t
Nonatomic flow ports,

node, 562t
Non-equivalent relationship, 514
Nonfunctional requirement, 310
Nonoverlapping lifelines, 261f
Nonstreaming activity parameter, 210
not in, 277
Notation, trees, 96–97

allocation, 333–335
callout. See Callout notation
compartment. See Compartment notation
definition of, 117
direct, 315
matrices, 97
requirements relationships depicted using, 314
table, 96
transition, 282, 282f

Note, 94
Note symbols, 94, 95f
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O
Object access actions, 241
Object constraint language, 24
Object flows, 212

allocation of
to connector, 345, 346f
to item flow, 345–347

description of, 205
function of, 212
guard expression on, 213
node, 571t
order of, 226–227
path, 571t
pins and parameters connected using, 213f
rates of, 225–226
routing, 213–215

Objective function, 199, 437, 491
Object manipulation actions, 241
Object nodes

activity parameter nodes, 209–210, 212
block definition diagram modeling of, 237
composition path, 563t
connecting of, 212–218
description of, 212
pins. See Pins
state constraint on, 228

Object-oriented systems engineering method. See OOSEM
Objects, 117–118
Object update actions, 241
Occurrences

creation, 256–257
definition of, 251
destroy, 256–257

Occurrence Specifications, 251
OCL, 187, 367
OCSMP. See OMG Certified Systems Modeling Professional
OMG Certified Systems Modeling Professional, 53

Basic feature set, 53
Basic vs. Full features set Notation, 555–556

OOSEM
black box and white box, 418
causal analysis, 434–436
description of, 12, 49, 417
design process in, 421
development of, 418
enabling system design, 422–423
integrate and verify system process, 499
logical decomposition, 454–457
model organization, 428–431
node distribution, 418
package structure of, 428
partitioning criteria, 460–461

residential security example of. See Residential security 
system

separation of concerns, 418
system development

design levels, 422
hardware components, 421
integration, 421–422
management process, 420–421
overview of, 418
software components, 421
specifications, 421
system specification and design process, 421
verification, 421–422

system model, 417
system requirements, 421
system specification and design process, 423f

analyze stakeholder needs, 431–440
analyze system requirements, 441–454
define logical architecture, 454–460
manage requirements traceability, 493–498
optimize and evaluate alternatives, 488–493
setup model, 425–431
synthesize candidate physical architectures, 460–488

variant design, 468–471
Opaque action, 240
Opaque behavior, 144
“Opaque” constructs, 239
Open Group Architecture Framework, 12–13
Open Services for Lifecycle Collaboration (OSLC),  

534–537
Operands, 260
Operation, 59, 146
Operation calls, 282–283
Opt, 261
Optional, 209
Options tree, 470–471
Ordered, 188
Ordered constraint parameters, 188
Ordering property, 226
Organization, 543
Orthogonal composite state, 285
Overlapping lifelines, 261f
Overlap property, 168
Overwrite, 226
OWL, 538

P
Package, 55–56, 56f, 102, 107–111
Packageable elements

definition of, 102
dependencies between, 111, 113
in model library, 363
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node, 557t
on package diagram, 108–111

Package diagram, 102
dependencies on, 111
description of, 32, 357
model elements contained in, 102
model library components represented on, 363–364
model organization represented using, 389f
nested packages on, 104f, 107
nodes, 557t–558t
packageable elements on, 108–111, 557t–558t
packages defined in, 102–104
paths, 557t–558t
purpose of, 555
residential security system, 481f
sample, 32f, 79f, 102f
stereotypes depicted on, 365f

Package hierarchy
definition of, 112
model elements in, organizing of, 104–106, 112–113
model in, 103, 104f
purpose of, 112

Package import, 108
Package(s), dependency between, 44–47

components, 106–107
definition of, 102, 112–113
dependency between, 113
model elements imported into, 108–111
as namespaces, 101
nested, 104f, 107–108
node, 557t, 579t
top-level, 102

Par, 61, 186, 260
Parameters, 72, 146, 209

for activities, 209–210
block definition diagram modeling of, 237
constraint. See Constraint parameters
object flows used to connect, 213f
operations, 146
optional, 209
required, 209

Parameter sets
definition of, 215
routing object flows from, 215–216

Parametric diagram, 73, 186
automobile system application of, 74f, 75
binding connector, 126
constraint blocks, 186, 192, 201–203
definition of, 186
description of, 32, 32f
model organization using, 77–79
nodes, 567t

power distribution equation using, 191f
purpose of, 567
residential security system, 492f

Parametrics, 491–493
Part, 65, 119
Participant property, 130, 132
Participant property node, 565t
Partitioning criteria, 462–463
Part node, 565t
Part properties

block composition hierarchies modeled using, 119–126
on block definition diagram, 122f
composite associations, 121–122
connecting of, 123–125
definition of, 115, 119, 250
on internal block diagram, 122–123, 123f

Path symbols, 93–94, 94f
PDF, 538
Performance simulation tools, 517
Physical architecture, 460–488
Physical component, 422, 461f, 471, 475–476
Physical mockup, 508
Physical structure, 348–350
Pilot project, 546–547
Pins, 208

action, 347
call behavior action, 211
definition of, 208
object flows used to connect, 213f

Platform independent model (PIM), 531–532
Platform specific model (PSM), 531–532
Polymorphism, 148, 167
Portable document format. See PDF
Ports, 65, 149

behavior, 152
compatibility, 426
conjugate, 180
definition of, 115
deprecated features in v1.3, 179–180
description of, 403–404
flow. See Flow ports
flow modeling between, 161
full, 149–151
function of, 149
nesting, 150, 152
proxy, 149

Postconditions, 228–229, 301
Precise semantics of UML composite structures, 179
Preconditions, 228–229, 301
Primitive action node, 570t
Primitive actions, 240–242, 242f
Primary flow, 301
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Primitive type, 133
Probabilistic flow, 227
Probability distribution, 137
Probes, 374
Problem callout, 316–317, 581t
Product data management (PDM) tools, 523
Profile application

description of, 371
path, 558t

Profile(s)
definition of, 357, 365, 369–370
example of, 358f
node, 558t
reference metamodel for, 370
stereotypes from, 369–370, 372
user model application of, 370–372
uses of, 370

Project, 543
Project management tools, 516
Properties

coverage, 168
default value assigned to, 137
definition of, 115, 119
derived, 119, 137
flow. See Flow properties
part. See Part properties
purpose of, 119
redefining, 165
reference, 119, 249
value. See Value properties

Property derivation, 119, 137
Property-specific type, 173
Provided behavioral feature, 147
Provided interface, 162
Pseudostates, 275

choice, 280, 281f
definition of, 275
entry point, 274, 289f, 293
exit point, 274, 293
fork, 274, 285, 576t
history, 288–289, 288f, 576t
initial, 275
join, 274, 285, 287
junction, 280
terminate, 275
transitions routed using, 279–282, 281f

PSL, 179
Proxy port, 149

Q
Qualified name, 107, 112
Quantity kind, 134
Queries, views and transformations (QVT), 531

R
Rationale, 77–78, 317
Rationale as a model element, 317
Rationale callout, 581t
Rationale for requirements relationships, 317
Rational Unified Process for Systems Engineering, 11–12, 418
Read only property, 119, 136–137, 559t
Realization dependency, 111
Receptions, 146
Redefinition, 165
Ref, 61, 266
References, 126–127
Reference associations, 127

on block definition diagram, 116, 127
definition of, 127–128
path, 561t
symbol for, 127

Reference clock, 195
Referenced sequence diagram, 61
Reference metamodel

definition of, 360, 365, 367
for profile, 370

Reference node, 565t
Reference path, 558t
Reference properties, 126–127

definition of, 119, 126–127, 250
internal block diagram used to model, 128
noncomposite relationships between blocks modelled using, 

126–128
Reference relationship, 325–326, 370
Refine dependency, 111
Refinement callout, 581t
Refinement path, 580t
Refine relationship, 325–326, 327f, 440
Region(s), 275

definition of, 275–276
multiple, 285–287
single, 283–285

Relationship
allocation. See Allocation relationship
containment, 320–322
reference, 370
requirements. See Requirements relationships
satisfy, 323
verify, 324–325, 325f

Reply message, 253, 573t
Required, 209, 369
Required behavioral feature, 147
Required interface, 162
Requirement(s), 309

allocation of, 335
criticality property of, 312
definition, 309
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deriving, 322–323
expressing of, 309
function of, 309
model representation of, 312–314
nested, 320
nonfunctional, 310
package structure organization of, 319
risk property of, 312
sources of, 309
specification for, 309
stereotypes, 311f, 312
text-based, 309
verification status, 312
water distiller case study, 389–400

Requirement allocation, 335
Requirement ambiguity, 325–326
Requirement diagram, 57, 310

automobile system application of, 53–54,  
57f, 78f

callouts, 581t
description of, 32, 32f, 310–312
example of, 311f
header for, 310
nodes, 579t
paths, 580t
purpose of, 579
residential security system, 497f

Requirement node, 579t
Requirement related type node, 579t
Requirements allocation, 335
Requirements analysis, 310
Requirements categories, 312
Requirements management tools, 309
Requirements relationships

callout notation for, 316, 316f
compartment notation for, 316, 316f
copy, 310, 328
cross-cutting, 315–317
depiction of, 315
derive relationship, 322
deriveRequirement, 314t
diagram used to represent, 310
direct notation for, 315
matrix depiction of, 318–319, 319f
rationale for, 317
refine, 325–326, 327f
residential security system, 496–498
satisfy, 323
tabular depiction of, 319f
trace, 327
types of, 314
verify relationship, 324
verifying of, 325–326

Requirements table, 317–318, 318f
Requirements Team, 10
Requirements traceability, 16, 77–79, 322–323, 496
Requirements tree, 393
Requirements variation analysis, 453
Residential security system, 424–425

activity diagram, 458f
block definition diagrams, 464f, 475f–476f, 480f, 482f–484f, 

502f
engineering analysis, 437
internal block diagram, 459f, 469f–470f, 478f–479f
model development, 424–425

analyses, 489
Analyze Stakeholder Needs activity, 431–440
Analyze Systems Requirements activity, 441–454
as-is system, 433–434
black-box specification, 447–449, 448f
causal analysis, 431–432, 434–436
component requirements, 484–486
critical performance requirements, 446–447
data architecture, 481–482
Define Logical Architecture activity, 454–460
design constraints, 453–454
enabling systems, 500–503
engineering analysis, 493
enterprise scenarios, 427
enterprise use cases, 439–440
hardware architecture, 482–483
Integrate and Verify System, 499–500
logical architecture, 463–467, 464f
logical decomposition, 454–457
Manage Requirements Traceabilityactivity, 493–498
measures of effectiveness, 434, 437
mission requirements, 436, 437f
operational procedures, 483–484
Optimize and Evaluate Alternatives activity, 488–493
partitioning criteria, 462–463
physical architecture, 471–477
requirements relationships, 496–498
Requirements Variation analysis, 453
security architecture, 486–488
software architecture, 478–481
specification tree, 493
state machine, 449–450, 451f
Synthesize Candidate Physical Architecture activity, 

460–488
system context, 445–446
text-based requirements, 493–495
to-be domain model, 437–439, 439f
traceability gaps, 498
trace relationship, 493
trade studies, 471–472
verification procedures, 421–422
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Residential security system (Continued )
modeling conventions and standards, 425–428
model organization, 428–431
package diagram of, 430f, 481f
parametric diagram, 492f
problem background, 424
requirement diagram, 496f–497f
sequence diagrams, 479–480
stakeholder needs activity, 431–440
Systems Engineering Integrated Team, 424–425

Risk property of requirement, 312
Role, 120
Role name, 121–122
Round-tripping, 527
Routing

of object flows, 213–215
of transitions using pseudostates, 279–282, 281f

RUPSE. See Rational Unified Process for Systems Engineering

S
Satisfaction callout, 581t
Satisfaction path, 580t
Satisfy relationship, 323
Scale model/physical mockup, 508
Scenarios, 297
sd, 248
Selector expression, 250–251
Semantics, 51
Send signal action, 221, 241, 252, 282, 570t
Send signal node, 576t
Seq, 260
Sequence diagram, 61, 248

automobile system application of, 61, 63f
description of, 32, 32f, 247
example of, 249f
interaction representation by, 248
message exchanges in, 61
nodes, 572t–573t
paths, 573t
purpose of, 572
referenced, 61
residential security system, 485–486
time representation on, 258–260
use case elaborated with, 302–303, 304f
water distiller case study use of, 412f, 414

Sequence node, 225
Service-oriented approach, 247
Shallow history pseudostate, 288
SI, 135
Signal, 61, 146
Signal events

description of, 277
transition path, BM-577t

Signals, 146, 221–222, 252
Simple states, 275
Simulation, 510
Simulation and analytical tools, 517
Single compartment fragment node, 572t
SI units, 135, 135f
Sizing parameters, 28
Snapshot, 173
Software architecture, 478–481
Software engineering, 11–13
Software–hardware allocation, 336
Software modeling tools, 517
Spatial model, 509
Specialization of stereotypes, 366, 376–378
Specification

component, 309
definition of, 309
systems, 309–310

Specification tree, 15, 309–310, 319, 493
Stakeholders, description of, 5–9, 378
Standards

architectural frameworks, 12
data interchange, 13
evolution of, 11–12
frameworks, 12
model, 13
modeling, 13
software engineering and, 12
systems engineering, 11–13
taxonomy of, 11–12, 11f

State, 64, 276
composite. See Composite state
continuous, 291–292
definition of, 276
discrete, 291–292
entry and exit behaviors, 276, 289, 289f
hierarchical, 283
simple, 275
submachine, 274, 289–291
transitioning between. See Transition

State analysis method, 12
State charts, 274
State constraint, 228
State hierarchies

composite states, 283–291
description of, 283–291
nested, transition firing order in, 287

State invariants
description of, 264, 265f
symbol for, 572t

State machine(s)
behavior of, 273
description of, 64
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discrete, 291
interactions between, 274
operation calls, 282–283
overview of, 273
pseudostates. See Pseudostate
regions, 275–276
residential security system, 449–450, 451f
scenarios represented by, 304–305
schematic diagram of, 274f
use case with, 302
water distiller case study use of, 414f

State machine diagram, 64, 274
automobile system application of, 64–65
description of, 32, 32f, 274
example of, 274f
nodes, 575t
paths, 577t
purpose of, 575
state machine diagram, 397f
use case and, 304–305
water distiller case study of, 397f

Static property, 136–137
STEP, 529
Stereotype(s), 365

application of, during model building,  
372–378

callout, 583t
constraints added to, 367–369
definition of, 54, 357
extension relationships, 372
flow-based simulation, 368f
function of, 365
metaclasses as basis for, 365, 370
model elements, 358, 359f, 372–373
node, 558t
notation for, 583t
package diagram depiction of, 365f
profile. See Profile
properties added to, 367–369
requirements, 312, 313t
specialization of, 366, 376–378
subclassing, 312
in user model, 369

stm, 274
Streaming activity parameter, 210
Strict, 263
Strict property of profile application  

relationship, 371
Structural allocation

of definition, 350
description of, 336
flow, 351–352

Structured activity nodes, 224–225, 568t

Structured type, 133
Subclasses, 59, 164–165
Subject, 59, 297
Subject node, 578t
Submachine state, 274, 289–291
Subset, 174
Superclass, 164–165
Surveillance system model, package diagram  

for, 103f
Swim lane, 230, 344
Symbolic model, 508
Symbols, 87

activity final node, 219
activity partition, 230
asynchronous message, 253
call behavior action, 211
callout, 316
composite association, 121–122
duration constraint, 259
flow final node, 219
fork, 213
icon, 94, 94f
initial node, 218
join, 213
model element, 373
node, 93, 93f
note, 94, 95f
path, 93–94, 94f
submachine state, 290–291, 290f
synchronous message, 253
time constraint, 259
transition, 278, 282

Synchronous, 61
Synchronous message, 252–253, 573t
Synchronous requests, 234
SysML, 208

automobile design application of, 55–79
description of, 31
diagram interchange, DI & mapping  

specification, 530–531
learning curve, 49–50
representation of systems, 31
transitioning to an organization, 543

SysML diagrams. See also specific diagrams
content of, 92–93
description, 92–93
frames, 54, 90
header, 54, 90–92
icon symbols, 94, 94f
keywords, 93
name, 92
node symbols, 93, 93f
note symbols, 94, 95f
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SysML diagrams (Continued )
path symbols, 93–94, 94f
purpose of, 31
summary of, 32
taxonomy of, 89, 90f
usage, 92

SysML language
architecture of, 362–363, 454–460
conformance, 540
diagram overview, 32–33
purpose, 31–32
semantics of, 360
specification, 362–363

SysML-Lite, 33–47
SysML model

critical properties, 27
description of, 21

SysML modeling tool, 39–42
SysML4Modelica profile, 532
SysML4Modelica profileSystem(s)

use case for describing functionality of, 297–301
users of, 296–297

SysML-modelica transformation specification, 532,  
533f–534f

SysML modeling tool. See System modeling tool
SysML profile, 362
SysML specification, 13
System, 4
System boundary, 5, 6f
System context, 302, 445–446
System Integration and Test, 4
System lifecycle, 5
System model

analytical, 514
definition of, 17
description of, 17–19
in systems development environment,  

507–514
intended use, 23–24
types of, 508–511

System modeling tools, 515–518
evaluation of, 546
selection of, 539–540
Tool tips, 39–47

System-of-systems, 418, 427, 516
definition of, 3, 10
modeling tools for, 516
OOSEM, 418

System performance simulation, 511
System under consideration, 297
System under test, 325
System(s), definition, 4
Systems Analysis Team, 10–11

Systems development environment, 515
data exchange in, 526–532
system model’s, 507–514

Systems engineering, 4
application of, 5–9
automobile industry application of, 5–9
configuration management tool, 523
definition of, 4
industries that use, 3
management plan, 15
methods, 12
model–based. See Model – based systems engineering
motivation for, 3
object–oriented. See OOSEM
process of, 4–5, 417
Rational Unified Process for, 12, 418
schematic diagram of, 4f
summary of, 14
team, 209–211, 322–323

Systems engineering method, 12
Systems engineering process, 12
Systems engineering standards, 11–12
Systems Engineering Integrated Team, 424
Systems engineering management plan (SEMP), 15
Systems engineering manager, 10
System Specification and Design, 4–5, 418, 421–423
Systems model, 516
Systems specification, 309–310
System under consideration, 297
System under test, 325

T
Tables

description of, 96
requirements relationships depicted in, 318, 319f

Tags, 94
Target namespace, 108
Terminate pseudostate

description of, 275
node, 576t

Test case, 77–78
description of, 324
node, 579t

Test signal, 221
Text-based requirements

description of, 417
residential security system, 493–495

Time constraint
description of, 258–259
symbol for, 574t

Time events, 277
description of, 222, 278
transition path, 577t
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Time observation
description of, 258–260
symbol for, 574t

Time representation using sequence diagram,  
258–260

Time varying properties, 195–196
Tokens

description of, 205, 208, 223
discarding of, 226–227
overwriting of, 226–227

Tool selection criteria, 539–540
Tool conformance, 540
Trace, 111, 251
Trace callout, 581t
Trace compartment, 579t
Trace dependency, 111
Trace path, 580t
Trace relationship, 327, 493
Trade studies, 199, 471–472, 488–493
Training, 546
Transition, 64, 277

compound, 280
external, 278
firing order of, in nested state hierarchies,  

287
internal, 278
naming of, 278
notation for, 278–279, 282, 282f
purpose of, 276
triggers, 277

Transition effect, 235, 278, 280f
Transition guard, 277
Trees, 97
Trigger node, 576t
Triggers, 64, 277

U
uc, 295
UML, diagrams

description of, 13, 362
profile in, 365
reusable portion of, 362
timing diagram, 75–76

UML4SysML, 360, 361f, 365
Unique, 188
Unique constraint parameters, 189
Uniqueness rules, 107
Units

definition of, 76–77, 134
nodes, 559t

UPDM, 13
Upper bound, 226
URI, 102

Usage, 70
allocation of, 337–338, 338f, 339t
definition of, 120

Use, 111
Use case description, 297, 301, 310, 439–440
Use case diagram, 59, 295

automobile system application of, 59–61
description of, 32, 32f, 295
example of, 295, 297, 300
header for, 295
nodes, 578t
paths, 578t
purpose of, 578
water distiller case study use of, 410

Use case(s), 297, 439–440
with activities, 302
activity diagram and, 303–304
actor. See Actor
base, 298–299
behaviors added to, 301–305
classification of, 300
context diagrams and, 302, 303f
definition of, 295
description of, 59–61, 295
enterprise, 439
exception, 439
extension relationship, 299
included, 298–299
inclusion relationship, 298–299
with interactions, 301–302
node, 578
relationships, 298–300
requirements analysis supported with, 310
residential security system case study of,  

439–440
scenarios, 297
sequence diagram and, 302–303, 304f
with state machine, 302
state machine diagram and, 304–305
subject, 297
system functionality described using, 297–301

Use dependency, 111
User model

allocation evaluation across, 353
definition of, 357
profiles applied to, 370–372
stereotypes in, 369

Users, 296–297
Utility function, 199

V
Value actions, 241
Value binding path, 567t
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Value properties, 59, 133
blocks with, 136
definition of, 115, 119, 133
derived, 137
description of, 188
distribution, 137–138
initial, 137
node, 565t
property-specific type, 173
purpose of, 133
time varying properties, 195–196

Value proposition, 549
Value types, 76–77

block definition diagram used to model,  
133–134

definition of, 133
node, 559t
quantity kind added to, 134
units added to, 134

Variant design, 468–471
Variants, 168–170
Vee development process, 418
Verdict, 324
Verification callout, 581t
Verification path, 580t
Verification status for requirement, 312
Verification tools, 517
Verification and validation tools, 517
Verify relationship, 311, 324–325, 325f

verifying of, 325
View, 79, 378

description of, 98–99
node, 584t

Viewpoint, 79, 378
description of, 99
node, 584t

Visibility of members, 109, 112–113
Vitech Model-Based Systems Engineering  

Method, 12

W
Water distiller system

allocation
of actions, 404–405, 404f
activity partitions, 61–64
flow, 404f, 405
updating, 408–410

blocks
block definition diagram of, 400–401
internal block diagram of, 404–405, 404f
ports on, 400–405

controller, 412–413
design modifications, 408–415
heat balance in, 406–407
internal block diagram, 404–405, 404f
item flow heat balance analysis, 406–407
MBSE approach, 388
model organization, 388–389
performance analysis, 406–407
requirements, 389–400
sequence diagram for, 412, 412f
startup and shutdown, 414–415
state machine for, 414f
structure

hierarchy of, 401f
modeling of, 400–405
updating of, 409–410

use case diagram for, 410
user interface, 412–413, 413f

Weak sequencing, 254, 260
Web ontology language. See OWL
Whole–part relationship, 120

X
XMI, 13, 80, 528–529
XML Metadata Interchange, 13, 80, 528–529

Z
Zachman framework, 12
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