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Preface

Systems engineering is a multidisciplinary and holistic approach to develop solutions for complex
engineering problems. The continuing increase in system complexity demands more rigorous and for-
malized systems engineering practices. In response to this demand—along with advancements in com-
puter technology—the practice of systems engineering is undergoing a fundamental transition from a
document-based approach to a model-based approach. In a model-based approach, the emphasis shifts
from producing and controlling documentation about the system to producing and controlling a coher-
ent model of the system. Model-based systems engineering (MBSE) can help to manage complexity,
while improving design quality and cycle time, enhancinging communication among a diverse
development team, and facilitating knowledge capture and design evolution.

A standardized and robust modeling language is considered a critical enabler for MBSE. The
Systems Modeling Language (OMG SysML™) is one such general-purpose modeling language that
supports the specification, design, analysis, and verification of systems that may include hardware and
equipment, software, data, personnel, procedures, and facilities. SysML is a graphical modeling lan-
guage with a semantic foundation for representing requirements, behavior, structure, and properties of
the system and its components. It is intended to model systems from a broad range of industry domains
such as aerospace, automotive, health care, and others.

SysML is an extension of the Unified Modeling Language (UML), version 2, which is the de facto
standard software modeling language. Requirements were issued by the Object Management Group
(OMG) in March 2003 to extend UML to support systems modeling. UML was selected as the basis for
SysML because it is a robust language that addresses many of the systems modeling needs, while
enabling the systems engineering community to leverage the broad base of experience and tool vendors
that support UML. This approach also facilitates the integration of systems and software modeling,
which has become increasingly important for today’s software-intensive systems.

The development of the language specification was a collaborative effort between members of the
OMG, the International Council on Systems Engineering (INCOSE), and the AP233 Working Group of
the International Standards Organization (ISO). Following three years of development, the OMG
SysML specification was adopted by the OMG in May 2006, and the formal version 1.0 language
specification was released in September 2007. Since that time, new versions of the language have been
adopted by the OMG. This edition is intended to reflect the SysML 1.4 specification. It is expected that
SysML will continue to evolve in its expressiveness, precision, usability, and interoperability through
further revisions to the specification based on feedback from end users, tool vendors, and research
activities. Information on the latest version of SysML, tool implementations of SysML, and related
resources, are available on the official OMG SysML web site at http://www.omgsysml.org/.

BOOK ORGANIZATION

This book provides the foundation for understanding and applying SysML to model systems as part of
a model-based systems engineering approach. The book is organized into four parts: Introduction,
Language Description, Examples of Model-Based Systems Engineering Methods, and Transitioning to
Model-Based Systems Engineering.

Xvii
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Part I, Introduction, contains four chapters that provide an overview of systems engineering, a sum-
mary of key MBSE concepts, a chapter on getting started with SysML, and a sample problem to
highlight the basic features of SysML. The systems engineering overview and MBSE concepts in
Chapters 1 and 2 set the context for SysML, and Chapters 3 and 4 provide an introduction to SysML.

Part II, Language Description, provides the detailed description of the language. Chapter 5 provides an
overview of SysML diagrams and some common diagrammatic notations. Chapters 6 through 14 describe
key concepts related to model organization, blocks, parametrics, activities, interactions, states, use cases,
requirements, and allocations. Chapter 15 describes the SysML specification and language architecture, and
extension mechanisms to customize the language. The ordering of the chapters and the concepts are not
based on the ordering of activities in the systems engineering process but are based on the dependencies
between the language concepts. Each chapter builds the reader’s understanding of the language concepts by
introducing SysML constructs: their meaning, notation, and examples of how they are used. The example
used to demonstrate the language throughout Part I is a security surveillance system. This example should
be understandable to most readers and has sufficient complexity to demonstrate the language concepts.

Part I1I, Examples of Model-Based Systems Engineering Methods, includes two examples to illus-
trate how SysML can support different MBSE methods. The first example in Chapter 16 is a functional
analysis and allocation method to specify and design a water distiller system. The second example in
Chapter 17 applies to the design of a security system consisting of a central monitoring station and
multiple sites that are monitored. It uses a comprehensive object-oriented systems engineering method
(OOSEM) and emphasizes how the language is used to address a range of systems engineering con-
cerns, including black-box versus white-box design, logical versus physical design, and the design of
distributed systems. While these two methods are considered representative of how MBSE with SysML
can be applied to model systems, SysML is intended to support other MBSE methods as well.

Part IV, Transitioning to Model-Based Systems Engineering, addresses key considerations for tran-
sitioning to an MBSE approach with SysML. Chapter 18 describes how to integrate SysML into a
systems development environment consisting of multi-disciplinary engineering tools. It describes the
different types of models and tools, the type of data that is exchanged, and mechanisms and standards
for data exchange. It also includes a discussion on the selection criteria for a SysML modeling tool.
Chapter 19 is the last chapter of the book and describes processes and strategies for deploying MBSE
with SysML in an organization. Emphasis is placed on leveraging the organization’s improvement
process to assess, plan, and pilot the MBSE capability prior to deploying the capability to projects, and
on other essential elements for a successful implementation of MBSE.

Questions are included at the end of each chapter to test readers’ understanding of the material. The
answers to the questions can be found on the web site for this book at http://www.elsevierdirect.com/
companions/9780123852069/.

The Appendix contains the SysML notation tables. These tables provide a reference guide for
SysML notation along with a cross reference to the applicable sections in Part II of the book where the
language constructs are described in detail.

USES OF THIS BOOK

This book is a practical guide targeted at a broad spectrum of industry practitioners and students. It can
serve as an introduction and reference for practitioners, as well as a text for courses in systems model-
ing and model-based systems engineering. In addition, because SysML reuses many UML concepts,
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software engineers familiar with UML can use this information as a basis for understanding systems
engineering concepts. Also, many systems engineering concepts come to light when using an expres-
sive language, which enables this book to be used to help teach systems engineering concepts. Finally,
this book can serve as a primary reference to prepare for the OMG Certified System Modeling
Professional (OCSMP) exam (refer to http://www.omg.org/ocsmp/).

HOW TO READ THIS BOOK

A first-time reader should pay close attention to the introductory chapters, including Getting Started
with SysML in Chapter 3 and the application of the basic feature set of SysML to the Automobile
Example in Chapter 4. The introductory reader may also choose to do a cursory reading of the overview
sections in Part II, and then review the simplified distiller example in Part III. A more advanced reader
may choose to read the introductory chapters, do a more comprehensive review of Part II, and then
review the residential security example in Part I1I. Part IV is of general interest to those may be involved
in deploying MBSE with SysML in their organization or project.

The following recommendations apply when using this book as a primary reference for a course in
SysML and MBSE. An instructor may refer to the course on SysML that was prepared and delivered
by the Johns Hopkins University Applied Physics Lab that is available for download at http://www.
jhuapl.edu/ott/Technologies//Copyright/SysML.asp. This course provides an introduction to the basic
features of SysML so that students can begin to apply the language to their projects. This course con-
sists of eleven modules that use this book as the basis for the course material. The course material for
the language concepts is included in the download, but the course material for the tool instruction is not
included. A shorter version of this course is also included on the Johns Hopkins site, which has been
used as a full-day tutorial to provide an introductory short course on SysML. A second course on the
same website summarizes the Object-Oriented Systems Engineering Method (OOSEM) that is the
subject of Chapter 17 in Part I1I of this book. This provides an example of applying a MBSE method to
the specification and design of a security system.

Refer to the End-User License Agreement for each course (included with the download instructions
on the Johns Hopkins site) for how this material can be used. An instructor can further tailor this
material to their needs.

A typical use of the book is to require the students to review Chapters 1 and 2, and then study
Chapter 3 on Getting Started with SysML. This chapter includes an introduction to SysML Lite, a sim-
plified MBSE method, and a general SysML modeling tool. The student then studies the automobile
example in Chapter 4.

The instructor may then teach the language concepts in more depth, depending on the time allotted
to this subject, and require the students to review the chapters in Part II. The instructor may focus on
the SysML basic feature set, which is identified by the shaded sections throughout each chapter in Part
II. The notation tables in the appendix can be used as a summary reference for the language syntax.

It is helpful for the instructor to present a simple example model of a system, such as the compressor
model in Chapter 3, the automobile model in Chapter 4, or the distiller model in Chapter 16, and require
student projects of similar complexity. The student projects may be performed by teams or individuals.
The projects require the student or teams to incrementally develop their models throughout the course
in alignment with the sequence of course modules. If a tool is required, the course should also include
introductory tool instruction for the selected tool. Alternatively, if a modeling tool is not required, the
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students can use the Visio SysML template available for download on the OMG SysML website (http:
/lwww.omgsysml.org/).

This book is also intended to be used to prepare for the OMG Certified Systems Modeling
Professional (OCSMP) exams to become certified as a model user or model builder. For the first two
levels of certification, the emphasis is on the basic SysML feature set. The automobile example in
Chapter 4 covers most of the basic feature set of SysML, so this is an excellent place to start. One can
also review the shaded paragraphs in each of the chapters in Part II, which cover the basic feature set,
as do the shaded rows in the notation tables in the Appendix. The unshaded rows in the Appendix reflect
the additional features of the full feature set, which is covered in the third level of OCSMP
certification.

CHANGES FROM PREVIOUS EDITION

This edition is intended to update the book content to be current with version 1.4 of the SysML
specification, which was recently adopted as of the time of this writing. The SysML specification ver-
sions are available from the OMG website at http://www.omg.org/spec/SysML/, and the specific
changes to the SysML 1.4 specification can be identified by change bars in the specification
document.

In addition to reflecting the SysML 1.4 changes in Part II, this edition includes refinements to the
MBSE methods in Chapters 16 and 17 in Part III, and substantive changes to the contents of Chapters
18 and 19 in Part IV. The discussion on the Integrated Systems Development Environment in Chapter
18 was substantially rewritten to address model and tool integration, along with emerging tool integra-
tion standards such as OSLC and FMI. A new section that discusses elements of a deployment strategy
is added to Chapter 19. In addition to content changes, all of the chapters are updated to improve quality
and readability.
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PART

INTRODUCTION

Part I contains four chapters that provide an overview of systems engineering, a summary of key
model-based systems engineering (MBSE) concepts, a chapter on getting started with SysML, and a
sample problem to highlight the basic features of SysML. These chapters provide foundations for
MBSE with SysML, and prepare the reader for the details of the language in Part II.



CHAPTER

SYSTEMS ENGINEERING
OVERVIEW

The Object Management Group’s OMG SysML™ [1] is a general-purpose graphical modeling lan-
guage for representing systems that may include combinations of hardware and equipment, software,
data, people, facilities, and natural objects. SysML supports the practice of model-based systems engi-
neering (MBSE) that is used to develop system solutions in response to complex and often technologi-
cally challenging problems.

This chapter introduces the systems engineering approach independent of modeling concepts to set
the context for how SysML is used. It describes the motivation for systems engineering, introduces the
systems engineering process, and then describes how this process is applied to a simplified automobile
design example. This chapter also summarizes the role of standards, such as SysML, to help codify the
practice of systems engineering.

1.1 MOTIVATION FOR SYSTEMS ENGINEERING

Whether it is an advanced military aircraft, a hybrid vehicle, a cell phone, or a distributed information
system, today’s systems are expected to perform at levels unimagined a generation ago. Competitive
pressures demand that these systems leverage technological advances to provide continuously increas-
ing capability at reduced costs and within shorter delivery cycles. The increased capability often drives
requirements for increased functionality, interoperability, performance, and reliability, often within
smaller and smaller devices.

The interconnectivity among systems also places increased demands on systems. Systems can no
longer be treated as stand-alone entities. They behave as part of a larger whole that includes other sys-
tems, devices, and humans. This interconnected system of systems (SoS) is not static but changes over
time as systems are added or removed and as their uses change. These changes result in evolving
requirements on constituent systems that may not have been anticipated when the system was devel-
oped. An example would be a mobile device that originally provided e-mail communication but evolved
to provide Internet functionality, including access to video, global positioning services, and social
media. Systems such as automobiles, airplanes, and financial systems are also continuously subject to
changing requirements, particularly as they become more interconnected.

Systems engineering is an approach that has been widely accepted in the aerospace and defense
industry to provide system solutions to technologically challenging and mission-critical problems. The
solutions often include hardware and equipment, software, data, people, and facilities. The potential
value that systems engineering offers for managing complexity and risk and improving productivity
and quality has been gaining recognition and acceptance across other industries, such as automotive,
telecommunications, and medical equipment, to name a few.

A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00001-1 3
Copyright © 2015 Elsevier Inc. All rights reserved.




4 CHAPTER 1 SYSTEMS ENGINEERING OVERVIEW

1.2 THE SYSTEMS ENGINEERING PROCESS

A system consists of a set of elements that interact with one another, and can be viewed as a whole
that interacts with its external environment to achieve an objective. Systems engineering is a multi-
disciplinary approach to develop balanced system solutions in response to diverse stakeholder needs.
Systems engineering includes both management and technical processes to achieve this balance and
mitigate risks that can affect the success of the project. The systems engineering management pro-
cess is intended to ensure that development cost, schedule, and technical performance objectives are
met. Typical management activities include planning the technical effort, monitoring technical per-
formance, managing risk, and controlling the system technical baseline. The systems engineering
technical processes are used to analyze, specify, design, and verify the system to ensure the pieces
work together to achieve the objectives of the whole. The practice of systems engineering is not static
but evolves to deal with the increasing demands mentioned previously.

A simplified view of the systems engineering technical process is shown in Figure 1.1. The System
Specification and Design process is used to specify system requirements that will meet the needs of the
stakeholders. It then allocates the requirements to the components of the system. The components are
designed, implemented, and tested to ensure they satisfy the requirements. The System Integration and
Test process includes activities to integrate the components into the system and verify that the system
satisfies its requirements. These processes are applied iteratively throughout the development of the
system, with ongoing feedback from the different processes. In more complex applications, multiple
levels of system decomposition begin at an enterprise or system of systems level. In those cases, vari-
ants of this process are applied recursively to each intermediate level of the design, down to the level at
which the components are procured or built.

The System Specification and Design process in Figure 1.1 includes the following activities to pro-
vide a balanced system solution that addresses the diverse stakeholders’ needs:

e Elicit and analyze stakeholder needs to understand the problem to be solved, the goals the system
is intended to support, and the effectiveness measures needed to evaluate how well the system
supports these goals and satisfies the stakeholder needs.

e Specify the required system functionality, interfaces, physical and performance characteristics,
and other quality characteristics to support the goals and effectiveness measures.

System Requirements

System
Specification and

Stakeholder g System Integration | System

Needs Desian > and Test Solution
9 Component Verified
A A Requirements" Components

Component Design,
Implementation,
and Test

Design Feedback

1&T Feedback
FIGURE 1.1

Simplified systems engineering technical processes.
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* Synthesize alternative system solutions by partitioning the system design into components that
can satisfy the system requirements.

e Perform analysis to evaluate and select a preferred system solution that satisfies the system
requirements and maximizes the effectiveness measures.

e Maintain traceability from the system goals to the system and component requirements and
verification results to ensure that requirements and stakeholder needs are addressed.

1.3 TYPICAL APPLICATION OF THE SYSTEMS ENGINEERING PROCESS

The System Specification and Design process described in Section 1.2 can be illustrated by applying
this process to an automobile design. A multidisciplinary systems engineering team is responsible for
executing this process. The participants and roles of a typical systems engineering team are discussed
in Section 1.4.

The team must first identify the stakeholders and analyze their needs. Stakeholders include the
purchaser of the car and the users of the car, which includes the driver and the passengers. Each of
their needs must be addressed. The stakeholder needs depend on the particular market segment,
such as a family car, sports car, or utility vehicle. For this example, we assume the automobile is
targeted at a typical mid-career individual who uses the car for his or her daily transportation
needs.

In addition, a key tenet of systems engineering is the idea of addressing the needs of other stake-
holders who may be affected throughout the system’s lifecycle. Additional stakeholders include the
manufacturers that produce the automobile and those who maintain the automobile. Each of their
concerns must be addressed to ensure a balanced lifecycle solution. Less obvious stakeholders are
organizations and governments that express their needs via laws, regulations, and standards. Clearly,
not each stakeholder’s concern is of equal importance to the development of the automobile, and
therefore stakeholder concerns must be properly prioritized and weighted. Analysis is performed to
understand the needs of each stakeholder and to define effectiveness measures and target values that
quantify the value for the stakeholders. The target values for these measures are used to bound the
solution space, to evaluate alternative solutions, and to discriminate one solution from another. In
this example, the effectiveness measures may relate to the primary goal of addressing the transporta-
tion needs, such as the availability of transportation, the time to reach a destination, safety, comfort,
environmental impact, and other important measures that may be difficult to quantify, such as aes-
thetic qualities. The measures will also account for the total cost of transportation. These effective-
ness measures can be used to evaluate alternative transportation solutions that include driving an
automobile or taking the bus or train. If driving an automobile is the only solution being considered,
the effectiveness measures can be more specific, such as the costs associated with purchasing and
owning an automobile, measures that do not apply to taking a bus or train.

The system requirements are specified to address the stakeholders’ needs and associated effective-
ness measures. Many different kinds of requirements must be specified, including functional, interface,
performance, physical, and other quality characteristics.

The definition of the system boundary is an important starting point for specifying the requirements.
It allows clear interfaces to be established between the system and external systems and users as shown



6 CHAPTER 1 SYSTEMS ENGINEERING OVERVIEW

in Figure 1.2. In this example, the driver and passengers (not shown) are external users who interact
with the automobile. The gas pump and maintenance equipment (not shown) are other examples of
external systems that the vehicle must interact with. In addition, the vehicle interacts with the physical
environment, such as the road. All of these external systems, including users and the physical environ-
ment, must be identified to clearly demarcate the system boundary and its associated interfaces.

The functional requirements for the automobile are specified by analyzing what the system must do
to support its overall goals, such as functional requirements to meet transportation needs. The vehicle
must perform functions related to accelerating, braking, and steering, and many additional functions to
address driver and passenger needs. The functional analysis identifies the inputs and outputs for each
function. As shown in the example in Figure 1.3, the functional requirement to accelerate the automo-
bile include an input from the driver to the system to produce the output forces needed to accelerate the
automobile and to estimate the automobile’s speed for the driver. The analysis also specifies the
sequence of functions, such as starting the vehicle before accelerating the vehicle.

Functional requirements must also be evaluated to determine the level of performance required for
each function. As indicated in Figure 1.4, the automobile is required to accelerate from O to 60 miles
per hour (mph) in fewer than 8 seconds under specified conditions. Similar performance requirements
can be specified for stopping distance at various speeds and for the steering response.

Additional requirements are specified to address other concerns of each stakeholder as defined by
the system goals and effectiveness measures. Example requirements include specifications for riding
comfort in terms of road vibration and noise levels, fuel efficiency, reliability, maintainability, safety

_@_

Driver Automobile Pump
|

FIGURE 1.2
Defining the system boundary.
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input
Accelerate
] Automobile
Driver  Estimated Force
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FIGURE 1.3

Specifying the functional requirements.
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characteristics, and emissions. Physical characteristics, such as maximum vehicle weight, may be
derived from the performance requirements, while maximum vehicle length may be dictated by other
concerns, such as standard parking space dimensions. The system requirements must be clearly trace-
able to stakeholder needs and validated to ensure that the requirements address those needs. The early
and ongoing involvement of representative stakeholders in this process is critical to the success of the
overall development effort.

System design involves identifying system components and specifying the component require-
ments so that the system requirements will be met. This may involve first developing a logical
system design that is independent of the technology used, and then a physical system design that
reflects specific technology selections. (Note: A logical design that is technology independent may
include a component called a torque generator; alternative physical designs that are technology
dependent may include a combustion engine or an electric motor.) In the example in Figure 1.5,
the system’s physical components include the engine, transmission, differential, body, chassis,
brakes, and so on.

As noted in Section 1.2, systems often include multiple levels of system decomposition. As an exam-
ple, the internal combustion engine can be further broken down into its components, such as the engine
block, pistons, connecting rods, crankshaft, and valves, each of which may require further specification.

Design constraints are often imposed on the solution. A common constraint is the reuse of a particu-
lar component. For example, a requirement might stipulate the reuse of an engine from the inventory of
existing engines. This constraint implies that no additional engine development is to be performed.
Although design constraints are typically imposed to save time and money, further analysis may reveal
that relaxing the constraint would be less expensive. For example, if the engine is reused, expensive
filtering equipment might be needed to satisfy newly imposed pollution regulations, while an engine
redesign that incorporates newer technology might be a less expensive alternative. Systems engineers
should validate the assumptions that drive the constraints and perform the analysis to understand their
impact on the design.

80
70+
BOfF———————————— -
50
40+
30+
20+
10}

Acceleration
Requirement

Vehicle Speed (mph)

| | | | | | | | |
12 3 456 7 8 910
Time (seconds)

FIGURE 1.4

Automobile performance requirements.
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Wheels Engine Transmission Differential Chassis Brakes Suspension Interior
FIGURE 1.5
Automobile system decomposition into its components.
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FIGURE 1.6

Interaction among components to achieve the system functional and performance requirements.

The component functional requirements are specified to satisfy the system functional require-
ments. The power subsystem shown in Figure 1.6 includes the engine, transmission, and differen-
tial components. The functions for each of these components is specified to provide the power to
accelerate the automobile. Similarly, the steering subsystem includes components that must con-
trol the direction of the vehicle, and the braking subsystem includes components that must deceler-
ate the vehicle.

Multiple analyses are performed to determine the components’ performance and physical require-
ments needed to satisfy the system requirements. As an example, an analysis would determine the
component requirements for engine horsepower, coefficient of drag of the body, and the weight of
each component in order to satisfy the system requirement for vehicle acceleration. Similarly, analy-
sis is performed to derive component requirements from other system performance requirements
related to fuel economy, fuel emissions, reliability, and cost. The requirements for ride comfort may
require multiple analyses that address human factors, considerations related to road vibration, acous-
tic noise propagation to the vehicle’s interior, space—volume analysis, and placement of displays and
controls.



1.3 TYPICAL APPLICATION OF THE SYSTEMS ENGINEERING PROCESS 9

PR AN
Stakeholder
Needs

\

System AN
Requirements

Y

Component
Requirements

AN

FIGURE 1.7
Stakeholder needs flow down to system and component requirements.

The system design alternatives are evaluated to determine the system solution that achieves a
balanced design while addressing multiple competing requirements. In this example, the require-
ments to increase the vehicle acceleration and improve fuel economy represent competing require-
ments, which are subject to trade-off analysis. This may result in evaluating alternative engine
design configurations, such as a 4-cylinder versus a 6-cylinder engine. The alternative designs are
then evaluated based on criteria that are traceable to the system requirements and effectiveness
measures. The preferred solution is validated with the stakeholders to ensure that it addresses their
needs.

The component requirements are input to the Component Design, Implementation, and Test process
from Figure 1.1. The component developers provide feedback to the systems engineering team to
ensure that component requirements can be satisfied by their designs. Some components may be pro-
cured rather than developed, so designers need to understand the difference between what has been
specified and what can be supplied. The assessment of the system and component design and reallocating
the requirements are part of an iterative process that is often required to achieve a balanced system
design solution.

The system test cases are defined to verify that the system satisfies its requirements. As part of the
System Integration and Test process, the verified components are integrated into the system, and the
system test cases are executed to confirm that system requirements are satisfied.

As indicated in Figure 1.7, requirement traceability is maintained between the Stakeholder Needs,
the System Requirements, and the Component Requirements to ensure design integrity. For this exam-
ple, the system and component requirements—such as vehicle acceleration, vehicle weight, and engine
horsepower—can be traced to the stakeholder needs associated with vehicle performance and fuel
economy.

A systematic process to develop a balanced system solution that addresses diverse stakeholder
needs becomes essential as system complexity increases. An effective application of systems engineer-
ing requires maintaining a broad system perspective that focuses on the overall system goals and the
needs of each stakeholder, while maintaining attention to detail and rigor that will ensure the integrity
of the system design. SysML is intended to enable this process by providing a coherent and consistent
model of the system that supports the analysis, specification, design, and verification activities described
above.
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1.4 MULTIDISCIPLINARY SYSTEMS ENGINEERING TEAM

To represent the broad set of stakeholder perspectives, systems engineering requires participation from
many engineering and non-engineering disciplines. The participants must have an understanding of the
end-user domain, such as the drivers of the car, and the domains that span the system lifecycle, such as
manufacturing and maintenance. The participants must also have knowledge of the system’s technical
domains, such as the power and steering subsystems, and an understanding of the specialty engineering
domains, such as reliability, safety, and human factors, to support the system design trade-offs. In addi-
tion, they must have sufficient participation from the component developers and testers to ensure the
specifications are implementable and verifiable.

A multidisciplinary systems engineering team should include representation from each of
these perspectives. The extent of participation depends on the complexity of the system and the
knowledge of the team members. A systems engineering team on a small project may include a
single systems engineer who has broad knowledge of the domain and can work closely with the
component development teams and the test team. On the other hand, the development of a large
system may involve a systems engineering team led by a systems engineering manager who plans
and controls the system’s engineering effort, and a chief systems engineer who has technical
authority over the entire system design. This project may include tens or hundreds of systems
engineers with varying expertise.

A typical multidisciplinary systems engineering team is shown in Figure 1.8. This group is some-
times called a Systems Engineering Integrated Team (SEIT). The Systems Engineering Management
Team is responsible for the management activities related to planning and control of the technical
effort. The Requirements Team analyzes stakeholder needs, develops the concept of operations, and
specifies and validates the system requirements. The Architecture Team is responsible for synthesizing
the system architecture by partitioning the system into components and defining their interactions and
interconnections. This also includes allocating the system requirements and deriving technical specifi-
cations for these components.

The Systems Analysis Team is responsible for performing the engineering analysis on different
aspects of the system, such as performance and physical characteristics, reliability, maintainability, and
cost, to provide the rationale for the technical specifications. The Integration and Test Team is

) ; Management of the overall
Systems Engineering technical effort including planning
Management Team and control (e.g., risk management,
metrics, baseline management)

[
I [ [ 1

Requirements Architecture Systems Analysis Integration and
Team Team Team Test Team
Stakeholder requirements [\ System, hardware, and Analysis of performance, [N Verification plans, AN
analysis and concept of software architecture physical, reliability, cost procedures, and test
operations conduct
FIGURE 1.8

A typical multidisciplinary systems engineering team needed to represent diverse stakeholder perspectives.
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responsible for developing test plans and procedures and for conducting tests to verify the requirements
are satisfied. Many different organizational structures can provide these roles, and individuals may fill
different roles on multiple teams.

1.5 CODIFYING SYSTEMS ENGINEERING PRACTICE THROUGH STANDARDS

As mentioned earlier, systems engineering is a widely accepted practice within the aerospace and
defense industries to engineer complex, mission-critical systems that leverage advanced technology.
These systems include land-, sea-, air-, and space-based platforms; weapon systems; command, con-
trol, and communications systems; and logistics systems

The complexity of systems being developed across industry sectors has dramatically increased due to the
competitive demands and technological advances discussed earlier in this chapter. Specifically, many prod-
ucts incorporate the latest processing and networking technology, which has significant software content
with substantially increased functionality. These products are often highly interconnected with increasingly
complex interfaces. Establishing standards for systems engineering concepts, terminology, processes, and
methods that help deal with this complexity is becoming increasingly important to the advancement and
institutionalization of systems engineering across industry sectors and across international boundaries.

Systems engineering standards have evolved over the last several years. Figure 1.9 shows a partial
taxonomy of standards that includes some of the systems engineering process standards, architecture

Process Standards
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FIGURE 1.9

A partial systems engineering standards taxonomy.
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frameworks, methods, modeling standards, and data exchange standards. A particular systems engi-
neering approach may implement one or more standards from each layer of this taxonomy. Additional
references to standards for systems modeling can be found in the Modeling Standards section of the
Systems Engineering Body of Knowledge (SEBoK) [2].

Systems engineering process standards include EIA 632 [3], IEEE 1220 [4], and ISO 15288 [5].
These standards address broad industry needs and reflect the fundamental tenets of systems engineer-
ing, providing a foundation for establishing a systems engineering approach.

The systems engineering process standards share much in common with software engineering prac-
tices. Management practices for planning, for example, are similar whether they are for complex soft-
ware development or systems development. As a result, the standards community has placed significant
emphasis on aligning the systems and software standards where practical.

The systems engineering process defines what activities are performed but does not generally give
details on how they are performed. A systems engineering method describes how the activities are
performed and the kinds of systems engineering artifacts that are produced. An example of a systems
engineering artifact is the concept of operations. As its name implies, the concept of operations defines
what the system is intended to do from the user’s perspective. It depicts the interaction of the system
with its external systems and users but may not show any of the system’s internal interactions. Different
methods may use different techniques and representations to develop a concept of operations. The same
is true for many other systems engineering artifacts.

Examples of systems engineering methods are identified in Survey of Model-Based Systems Engi-
neering (MBSE) Methodologies [6] and include Harmony [7, 8], the Object-Oriented Systems Engi-
neering Method (OOSEM; see Chapter 17) [9], the Rational Unified Process for Systems Engineering
(RUP SE) [10, 11], the State Analysis method [12], the Vitech Model-Based Systems Engineering
Method [13], and the Object Process Method (OPM) [14]. Many organizations have internally devel-
oped processes and methods as well. The methods are not official industry standards, but de facto
standards may emerge as they prove their value over time. Criteria for selecting a method include its
ease of use, its ability to address the relevant systems engineering concerns, and the level of tool sup-
port. The two example problems in Part III include the use of SysML with a functional analysis and
allocation method, which is a kind of structured analysis method, and a top down scenario-driven
method called OOSEM, which is a kind of object-oriented method. SysML is intended to support many
different systems engineering methods.

In addition to systems engineering process standards and methods, several standard frameworks have
emerged to support system architecting. An architecture framework includes specific concepts, terminol-
ogy, artifacts, and taxonomies for describing the architecture of a system. The Zachman Framework [15]
was introduced in the 1980s to define enterprise architectures; it defines a standard set of stakeholder
perspectives and a set of artifacts that address fundamental questions associated with each stakeholder
group. The C4ISR framework [16] was introduced in 1996 to provide a framework for architecting infor-
mation systems for the US Department of Defense. The Department of Defense Architecture Framework
(DoDAF) [17] evolved from the C4ISR framework to support architecting a system of systems (SoS) for
the defense industry by defining the architecture’s operational, system, and technical views.

The United Kingdom introduced a variant of DoDAF called the Ministry of Defence Architecture
Framework (MODAF) [18] that added the strategic and acquisition views. The IEEE 1471-2000 stan-
dard was approved in 2000 as the “Recommended Practice for Architectural Description of Software-
Intensive Systems” [19]. This practice provides additional fundamental concepts, such as the concept
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of view and viewpoint, that apply to both software and systems architecting. It was superseded by ISO/
IEC 42010:2007 [20]. The Open Group Architecture Framework (TOGAF) [21] was originally
approved in the 1990s as a method for developing architectures.

Modeling standards is another class of systems engineering standards that includes common modeling
languages for describing systems. Behavioral models and functional flow diagrams have been de facto
modeling standards for many years, and have been broadly used by the systems engineering community
to support various kinds of structured analysis methods. The Integration Definition for Functional Model-
ing (IDEFO) [22] was issued by the National Institute of Standards and Technology in 1993.

The OMG SysML specification—the subject of this book—was adopted in 2006 by the Object
Management Group as a general-purpose graphical systems modeling language that extends the Uni-
fied Modeling Language (UML). Several other extensions of UML have been developed for specific
domains, such as the Unified Profile for DoDAF and MODAF (UPDM) [23] to describe system of
systems and enterprise architectures that are compliant with DoDAF and MODAF requirements. The
foundation for the UML-based modeling languages is the OMG Meta Object Facility (MOF) [24], a
language that is used to specify other modeling languages.

Other relevant system modeling standards include Modelica [25], which is a simulation modeling
language; the High Level Architecture (HLA) [26], which is used to support the design and execution
of distributed simulations; and the Mathematical Markup Language (MathML), which defines a lan-
guage for describing mathematical equations using the Extensible Markup Language (XML). The
Architecture Analysis & Design Language (AADL) [27] standardized by the Society of Automotive
Engineers (SAE) was originally developed for modeling embedded real-time systems. The Web Ontol-
ogy Language (OWL) [28] is used to author ontologies that represent a set of concepts and the relation-
ships between those concepts within a domain, such as systems engineering. Modelica and OWL are
further discussed in Chapter 18, Section 18.4.

Model and data exchange standards is a critical class of modeling standards that supports model
and data exchange among tools. Within the OMG, the XML Metadata Interchange (XMI) specification
[29] supports the exchange of model data when using a MOF-based language such as UML, SysML,
UPDM, or other UML extension. Another data exchange standard for systems engineering data is ISO
10303 (AP233) [30]. Other emerging data exchange standards include the web based exchange standards
being developed through the Open Services for Lifecycle Collaboration (OSLC) [31] and the functional
mock-up interface (FMI) standard, which supports co-simulation of interacting hardware and software
components [32]. The data exchange standards are described in Chapter 18, Sections 18.4.3 and 18.4.4.

Additional modeling standards from the Object Management Group relate to Model Driven
Architecture (MDA®) [33]. MDA comprises a set of concepts that include creating both technology-
independent and technology-dependent models. The MDA standards enable transformation between
models represented in different modeling languages as described in the MDA Foundation Model
[34]. The OMG Query View Transformation (QVT) [35] is a modeling standard that defines a
mapping language to specify language transformations precisely. MDA encompasses OMG modeling,
metamodeling, and exchange standards from Figure 1.9.

The development and evolution of these standards are all part of a trend toward a standards-based
approach to the practice of systems engineering. Such an approach enables shared understanding, com-
mon training, tool interoperability, reduced dependence on vendor specific solutions, and reuse of sys-
tem specifications and design artifacts. This trend is expected to continue as systems engineering
becomes prevalent across industries.
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1.6 SUMMARY

Systems engineering is a multidisciplinary approach that is intended to transform a set of stakeholder
needs into a balanced system solution that meets those needs. Systems engineering is a key practice to
address complex and often technologically challenging problems. The systems engineering process
includes activities to establish top-level goals that a system must support, specify system requirements,
synthesize alternative system designs, evaluate the alternatives, allocate requirements to the compo-
nents, integrate the components into the system, and verify that the system requirements are satisfied.
It also includes essential planning and control processes needed to manage a technical effort.

Multidisciplinary teams are an essential element of systems engineering, because they address the
diverse stakeholder perspectives and technical domains to achieve a balanced system solution. The
practice of systems engineering continues to evolve, with an emphasis on dealing with systems as part
of a larger interconnected system of systems. Systems engineering practices are becoming codified in
various standards. This codification is essential to advancing and institutionalizing the practice across
industry domains and geographic regions.

1.7 QUESTIONS

What are some of the demands that drive system development?

What is the purpose of systems engineering?

What are the key activities in the system specification and design process?
Who are typical stakeholders that span a system’s lifecycle?

What are examples of different kinds of requirements?

Why is it important to have a multidisciplinary systems engineering team?
What are some of the roles on a typical systems engineering team?

What role do standards play in systems engineering?

NN~



CHAPTER

MODEL-BASED SYSTEMS
ENGINEERING

Model-based systems engineering (MBSE) applies systems modeling as part of the systems engineer-
ing process described in Chapter 1 to support analysis, specification, design, and verification of the
system being developed. The primary artifact of MBSE is a coherent model of the system being devel-
oped. This approach enhances specification and design quality, reuse of system specifications and
design artifacts, and communications among the development team.

This chapter summarizes MBSE concepts without emphasizing a specific modeling language,
method, or tool. MBSE is contrasted with the more traditional document-based approach to encourage
the use of MBSE and to highlight its benefits. Principles for effective modeling are also discussed.

2.1 CONTRASTING THE DOCUMENT-BASED AND MODEL-BASED
APPROACH

The following sections contrast the document-based approach and the model-based approach to sys-
tems engineering.

2.1.1 DOCUMENT-BASED SYSTEMS ENGINEERING APPROACH

Traditionally, large projects have employed a document-based systems engineering approach to per-
form the systems engineering activities discussed in Chapter 1, Section 1.2. This approach is character-
ized by the generation of textual specifications and design documents, in hard-copy or electronic file
format, that are then exchanged between customers, users, developers, and testers. System require-
ments and design information are expressed in these documents as text descriptions, graphical depic-
tions generated from drawing tools, and tabular data and plots that may result from executing analysis
models or derived from databases. A document-based systems engineering approach emphasizes con-
trolling the documentation, ensuring the documentation is valid, complete, and consistent, and confirm-
ing that the developed system complies with the documentation.

In the document-based approach, specifications for a particular system, its subsystems, and its hard-
ware and software components are usually depicted in a hierarchical tree called a specification tree. A
systems engineering management plan (SEMP) describes how the systems engineering process is
employed on the project, and how the engineering disciplines work together to develop the documenta-
tion needed to satisfy the requirements in the specification tree. Systems engineering activities are
planned by estimating the time and effort to generate the documentation, and progress is measured by
the state of completion of these documents.

Document-based systems engineering typically relies on the concept of operations document to
define how the system supports the required mission or objective. Functional analysis is performed to
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decompose the system functions and allocate them to the components of the system. Drawing tools—
such as functional flow diagrams and schematic block diagrams—are used to capture the system
design. These diagrams are stored as separate files and included in the system design documentation.
Engineering trade studies and analyses are performed and documented by many different disciplines to
evaluate and optimize alternative designs and allocate performance requirements. The analysis may be
supported by individual analysis models for performance, reliability, safety, mass properties, and other
aspects of the system.

Requirements traceability is established and maintained in the document-based approach by tracing
requirements between the specifications at different levels of the specification hierarchy. Requirements
management tools are used to parse requirements contained in the specification documents and to capture
them in a requirements database. The traceability between requirements and design is maintained by
identifying the part of the system or subsystem that satisfies the requirement, and/or the verification pro-
cedures used to verify the requirement, and then reflecting this traceability in the requirements database.

The document-based approach can be rigorous but has some fundamental limitations. The com-
pleteness, consistency, and relationships between requirements, design, engineering analysis, and test
information are difficult to assess because the information is spread across several documents. Under-
standing a particular aspect of the system and performing the necessary traceability and change impact
assessments become difficult. This, in turn, leads to poor synchronization between requirements, sys-
tem level design, and lower-level detailed designs such as software, electrical, and mechanical design.
It also makes it difficult to maintain or reuse the system requirements and design information for an
evolving or variant system design. In addition, progress of the systems engineering effort is based on
the documentation status, which is difficult to maintain and does not adequately reflect the quality of
the system requirements and design. These limitations can result in inefficiencies that impact cost and
schedule, and potential quality issues that often show up during integration and testing or—worse—
after the system is delivered to the customer.

2.1.2 MODEL-BASED SYSTEMS ENGINEERING APPROACH

A model-based approach has been standard practice in electrical and mechanical design and other dis-
ciplines for many years. Mechanical engineering transitioned from the drawing board to increasingly
more sophisticated two-dimensional and then three-dimensional computer-aided design tools begin-
ning in the 1980s. Electrical engineering transitioned from manual circuit design to automated sche-
matic capture and circuit analysis in a similar time-frame. Computer-aided software engineering
became popular in the 1980s, using graphic models to represent software at abstraction levels above the
programming language. The use of modeling for software development is becoming more widely
adopted, particularly since the advent of the Unified Modeling Language in the 1990s.

The model-based approach is becoming more prevalent in systems engineering. A mathematical
formalism for MBSE was introduced in 1993 by Wayne Wymore [36]. The increasing capability of
computer processing, storage, and network technology along with emphasis on systems engineering
standards has created an opportunity to significantly advance the state of the practice of MBSE. It is
expected that MBSE will become standard practice in a similar way that it has with other engineering
disciplines, and will become fully integrated into a broader model-based engineering approach.

“Model-based systems engineering (MBSE) is the formalized application of modeling to support
system requirements, design, analysis, verification, and validation activities beginning in the
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conceptual design phase and continuing throughout development and later lifecycle phases” [37].
MBSE emphasizes the use of models to perform the systems engineering activities that have tradition-
ally been performed using the document-based approach as described in the previous section. With
MBSE, the output of the systems engineering activities is a coherent model of the system (i.e., system
model) that is part of the engineering baseline, and the emphasis is placed on defining and evolving the
model using model-based methods and tools. The intended result is enhanced specification and design
quality, reuse of the system specification and design artifacts, and improved communications among
the development team.

The System Model

The system model is generally created using a modeling tool and stored in a model repository. The
system model includes system specifications, design, analysis, and verification information. The model
consists of model elements that represent requirements, design, test cases, design rationale, and their
interrelationships. Figure 2.1 shows the system model as an interconnected set of model elements that
represent key system aspects as defined in SysML, including its structure, behavior, parametrics, and
requirements. The multiple cross-cutting relationships between the model elements enable the system
model to be viewed from many different perspectives that focus on different aspects of the system while
maintaining consistency among the different views.

Structure Behavior
act J

AN
= I | B |

Requirements Parametrics
FIGURE 2.1

Representative system model example in SysML. (Specific model elements have been deliberately obscured
and will be discussed in subsequent chapters.)




18 CHAPTER 2 MODEL-BASED SYSTEMS ENGINEERING

A primary use of the system model is to enable the design of a system that satisfies its requirements
and meets its overall objectives. This model is an output from the system specification and design pro-
cess that is discussed in Sections 1.2 and 1.3. Figure 2.2 depicts how the system model is used to
specify the hardware and software components of the system. The system model includes component
interconnections and interfaces, component interactions and the associated functions the components
must perform, and component performance and physical characteristics. The textual requirements for
the components may also be captured in the model and traced to system requirements.

The system model specifies the components of the system. The component specifications serve as
inputs to procure and/or design a component. Component design models may be expressed in domain-
specific modeling languages, such as UML for software design or computer-aided design and com-
puter-aided engineering (CAD/CAE) models for hardware design. The information exchange between
the system model and the component design models may be accomplished through the exchange mech-
anisms described in Chapter 18, Section 18.3, or by automatically generating the component specifica-
tions from the system model in more traditional document—based formats. The use of a system model
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FIGURE 2.2

The system model is used to specify the components of the system.
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provides a mechanism to specify and integrate subsystem and component designs into the system, and
maintain traceability between the system and component requirements.

The system model can also be integrated with other engineering analysis and simulation models that
perform computation and dynamic execution. The system model can be executed directly if the system
modeling environment is augmented with an execution environment. A growing emphasis for the sys-
tem model is its role in providing a common system description for integrating models created by other
engineering disciplines, including hardware, software, testing, and other specialty engineering disci-
plines such as reliability, safety, and security. This is covered in Chapter 18, Section 18.2, as part of the
discussion on specifying an integrated systems development environment.

The Model Repository

The system model contains model elements that are stored in a model repository and presented on
diagrams with graphical symbols. The modeling tool enables the modeler to create, modify, and delete
individual model elements and their relationships, and to store them in the model repository. The mod-
eler uses the symbols on the diagrams to enter the model information into the repository and to view
model information from the repository. The system specification, design, analysis, and verification
information previously captured in documents is captured as the system model in the repository. The
model can be queried and analyzed for a variety of purposes, including integrity checks of the system
specification and design. The system model can be viewed in diagrams or in other combinations of
graphical, tabular, and textual reports that are generated by querying the model and presenting the
information in the desired form. These views enable understanding and analysis of different aspects of
the system model.

Many of the modeling tools have a flexible and automated document-generation capability that can
significantly reduce the time and cost of building and maintaining the system specification and design
documentation from the system model. In this way, documents that may look similar to traditional
document-based artifacts can continue to serve as an effective means for reporting the information.
Document generation from the model is described in more detail in Chapter 18, Sections 18.2.2 and 18.4.5.

Model elements corresponding to requirements, design, analysis, and verification information are
traceable to one another through their relationships, even though they are often presented on different
diagrams. For example, an engine component in an automobile system model may have many relation-
ships to other elements in the model. It is part of the automobile system, connected to the transmission,
satisfies a power requirement, performs a function to convert fuel to mechanical energy, and has a weight
property that contributes to the vehicle’s weight. These relationships are part of the system model.

The modeling language imposes rules that constrain which relationships are valid. For example, the
model should not allow a requirement to contain a system component or an activity to produce inputs
instead of outputs. Additional model constraints may be imposed based on the MBSE method and other
domain specific constraints that are employed. An example of a method-imposed constraint may be that
all system functions must be decomposed and allocated to at least one component of the system. A
domain specific constraint may be that a particular type of component must include certain kinds of
properties, such as all electrical components must include predefined electrical characteristics. Model-
ing tools enforce constraints at the time the model is constructed, although when needed, it is also pos-
sible to run a model-checking routine that provides a report of any constraint violations.

This model provides much finer control of the information than is available in a document-based
approach, where this information may be spread across many documents and the relationships may not
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be explicitly defined. The model-based approach promotes rigor in the specification, design, analysis,
and verification process. It also significantly enhances the quality and timeliness of traceability and
impact assessment over the document-based approach.

Transitioning to MBSE

Models and related diagramming techniques have been used as part of the document-based systems
engineering approach for many years. They include functional flow diagrams, behavior diagrams, sche-
matic block diagrams, N2 charts, performance simulations, and reliability models, to name a few.
However, the use of models has generally been limited to supporting specific types of analysis or
selected aspects of system design. Individual models have not been integrated into a coherent model of
the overall system, and the modeling activities have not been fully integrated with other activities that
form the systems engineering process. The transition from document-based systems engineering to
MBSE is a shift in emphasis from controlling the documentation about the system to controlling the
model of the system. MBSE integrates system requirements, design, analysis, and verification informa-
tion to address multiple aspects of the system in a cohesive manner, rather than dealing with a disparate
collection of individual models.

MBSE provides an opportunity to address many of the limitations of the document-based approach
by providing a more rigorous means for capturing and integrating system requirements, design, analy-
sis, and verification information, and facilitating the maintenance, assessment, communication, and
exchange of this information across the system’s lifecycle. Some of the MBSE potential benefits
include the following:

e Enhanced communications
* Shared understanding of the system across the development team and other stakeholders.
*  Ability to present and integrate views of the system from multiple perspectives.
e Reduced development risk
*  Ongoing requirements validation and design verification.
*  More accurate cost estimates to develop the system.
e Improved quality
*  More complete, unambiguous, and verifiable requirements.
*  More rigorous traceability between requirements, design, analysis, and testing.
* Enhanced design integrity.
e Increased productivity
* Faster and more comprehensive impact analysis of requirements and design changes.
*  More effective exploration of trade-space.
* Reuse of existing models to support design evolution.
* Reduced errors and time during integration and testing.
* Automated document generation.
e Leveraging the models during downstream lifecycle phases
*  Support operator training on the use of the system.
*  Support diagnostics and maintenance of the system.
¢ Enhanced knowledge transfer
« Efficient capture of domain knowledge about the system in a standardized form that can be
accessed, queried, analyzed, evolved, and reused.
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MBSE can provide additional rigor to the specification and design process when implemented using
appropriate methods and tools. However, this rigor does not come without a price. Clearly, transitioning
to MBSE underscores the need for up-front investment in processes, methods, tools, and training. It is
expected that during the transition to a model-based approach, MBSE will be performed in combina-
tion with document-based approaches. For example, the upgrade of a large and complex legacy system
still relies heavily on the legacy documentation, and only parts of the system may be modeled. Careful
tailoring of the approach and scoping of the modeling effort is essential to meet the needs of a particular
project. Considerations for transitioning to an MBSE approach are discussed in Chapter 19.

2.2 MODELING PRINCIPLES

The following sections provide a brief overview of some of the key modeling principles.

2.2.1 MODEL AND MBSE METHOD DEFINITION

A model is a representation of one or more concepts that may be realized in the physical world. The
model generally describes a domain of interest where a domain may correspond to a particular applica-
tion area (such as transportation) involving particular kinds of systems (such as automobiles) and par-
ticular facets of a system (such as vehicle performance). A key feature of a model is that it is an abstraction
that does not contain all the detail of the modeled entities within the domain of interest, but only the
details needed to address the intended use of the model. Models can be abstractions, such as quantitative,
logical, and/or geometric representations, as well as concrete, physical scale models. The abstract repre-
sentation may be expressed in combinations of text (such as the text statements in a programming lan-
guage), mathematical equations, graphical symbols (such as nodes and arcs on a graph), and geometric
layouts (such as a CAD model). A common example of a model is a blueprint of a building and a scaled
prototype physical model. The building blueprint is a specification for one or more buildings that are
built. The blueprint is an abstraction that does not contain all the building’s detail, such as the detailed
characteristics of its materials. Similarly, the scaled prototype is a representation of the actual building
to be built that does not contain all the details of the building, such as the building materials. However,
these models serve their intended use for specifying and visualizing the structure to be built.

A system model expressed in SysML is analogous to a building blueprint that specifies a system to
be implemented. The SysML model represents the behavior, structure, properties, constraints, and
requirements of the system. SysML has a semantic foundation that defines the kind of model elements
and their relationships that can appear in the system model. The model elements that constitute the
system model are stored in a model repository and can be presented graphically as well as in tables and
other forms. A SysML model can also be integrated with other analysis and design models to represent
other aspects of the system.

A method is a set of related activities, techniques, conventions, representations, and artifacts that
implement one or more processes and is generally supported by a set of tools. A model-based systems
engineering method is a method that implements all or part of the systems engineering process and
produces a system model as one of its primary artifacts. Chapter 3, Section 3.4, provides a simplified
MBSE method, while Chapter 16 and Chapter 17 provide detailed examples of applying two different
MBSE methods.
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2.2.2 THE PURPOSE FOR MODELING A SYSTEM

The purpose for modeling a system for a particular project must be clearly defined in terms of how vari-
ous stakeholders intend to use the model, including the contributors and consumers of the model con-
tent. The stakeholders and their intended uses evolve across the lifecycle of the system’s development,
imposing an evolving set of requirements on the use of the model. For example, during the early con-
ceptual design phase of a system, the intended use of the model may be to support the evaluation of
alternative system design concepts. During this activity, emphasis may be placed on system sizing,
high-level system functionality, and critical system properties. During later phases, the intended use
may be to specify the hardware and software components of the system, where the emphasis is placed
on specifying the behavior of the software and hardware components. As the detailed design proceeds,
the intended use of the model may be to support component design integration and system/subsystem
verification. The intended use for modeling a system is associated with the systems engineering activi-
ties the model is intended to support across the system lifecycle, and may include the following uses:

e Characterize and assess an existing system
e Specify and design a new or modified system
* Represent a system concept.
e Specify and validate system requirements.
* Synthesize system designs.
*  Specify component requirements.
° Maintain requirements traceability.
e Evaluate the system
*  Conduct system design trade-offs.
* Analyze system performance requirements or other quality attributes.
e Verify that the system design satisfies its requirements.
* Assess the impact of requirements and design changes.
» Estimate the system cost (e.g., development cost, lifecycle cost).
e Train users on how to operate or maintain a system
e Support system maintenance and/or diagnostics

2.2.3 MODEL VALIDATION

Model validation is the process for determining the extent to which the model accurately represents
the domain of interest (e.g., the system and its environment) to meet the model’s intended use. For
analysis models, the validation is often accomplished through static checks of the model and through
review by domain experts of the input data and assumptions, the model, and the analysis results. The
results of the analysis are generated from executing the model and are compared with real-world results
when such data is available.

A system model in SysML represents a description of the system and its environment that must be
a sufficiently accurate representation to fulfill its intended use. The model’s accuracy is dependent on
the quality of the source information used to generate the model, the validity of the assumptions regard-
ing the applicability of the source information, and the extent to which the source information and
assumptions are properly captured in the model. As with analysis models, the system model validation
can be performed by a combination of model checks and domain expert review. In addition, the system
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model can be used as an input to other analysis models and simulations that can be executed and vali-
dated, thus providing a further means for validating the system model.

Validating that a model is sufficient to meet its intended use also requires consideration of the inher-
ent capabilities and limitations of the modeling language. This depends on the expressiveness and
precision of the language. For example, a modeling language that only represents process and/or func-
tional flow may not have the capability to represent system performance and physical characteristics
and the equations that govern them.

2.2.4 ESTABLISHING MODEL QUALITY CRITERIA

Quality criteria can be established to assess how well a model meets its intended use. However, one
must first distinguish between a good model and a good design. One can have a good model of a poor
design or a poor model of a good design. A good model is judged on how well the model meets its
intended use. A good design is based on how well the design satisfies its requirements and the extent to
which it incorporates quality design principles. As an example, one could have a good model that pro-
vides an accurate representation of a chair that has been validated for its intended use. However, the
chair’s design may be a poor design if it does not have structural integrity. A good model can meet its
intended use by providing visibility to aid the design team in identifying design issues and assessing
design quality. The selected MBSE method and tools should facilitate a skilled and knowledgeable
team to develop both a good model and a good design.

The following questions can be used to assess a model’s ability to meet its intended use and to
derive quality attributes for the model. The quality attributes in turn can be used to establish preferred
modeling practices. The modeling tool can assist the implementation of these practices by providing
model checking and reports that facilitate assessment of the quality attributes.

Is the model’s purpose well defined?

The model’s purpose must be clearly stated, as described in Section 2.2.2, for both the near- and long-
term use of the model. This should include identifying representative stakeholders, such as different
disciplines involved in the development process, and their intended use of the model throughout the
system lifecycle. (Note: The stakeholders and their intended use can be defined as stakeholder
viewpoints.)

Is the model’s scope sufficient to meet its intended use?

The scope of the model should be sufficient to meet the intended use of the model as described above.
The model’s scope can be defined in terms of the model’s breadth, depth, and fidelity, which evolve
across different phases of development. This scope should be balanced with the available schedule,
budget, skill levels, and other resources. Understanding the model’s purpose and scope provides the
basis for establishing realistic expectations and the required level of resources for the modeling effort.

e Model breadth. The breadth of the model must be sufficient for the intended use. This is accom-
plished by determining which parts of the system need to be modeled. This can be determined by
the extent of the system requirements that the model must address. For example, if new function-
ality is being added to an existing system, one may choose to focus on modeling only those
portions needed to support the new functionality. In an automobile design, for example, if the
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emphasis is on new or modified requirements for fuel economy and acceleration, the model may
focus on elements related to the power train, with less focus on the braking and steering subsys-
tems. This does not imply that other parts of the system are not impacted by the change, but the

scope of the modeling effort is limited to represent the new functionality.

*  Model depth. The depth of the model must be sufficient for the purpose, which is determined by
the level of the system design hierarchy that the model must encompass. For a conceptual design
or initial design iteration, the model may only address a high level system design. In the automo-
bile example, the initial design iteration may only model the system to the engine black box level,
whereas if the engine is subject to further development, a future design iteration may require the
model to include the engine components.

*  Model fidelity. The fidelity of the model must support the required level of detail. For example, a
simple activity diagram with control flows may be sufficient for describing the initial functions a
system or subsystem is required to perform. Additional model details may be required to execute
the behavior in order to specify the software requirements fully. As another example, a low-
fidelity model for modeling interfaces may only represent the data definitions and source and
destination of the flows, whereas a higher-fidelity model may represent the message structure,
communication protocol, and detailed communication path. A further example is a low fidelity
model to analyze system performance versus a higher fidelity model that includes more detailed
timing information, system performance characteristics, and constraints.

Is the model complete relative to its scope?

A necessary condition for the model to be complete is that its breadth, depth, and fidelity match its
defined scope. Other completeness criteria may relate to other quality attributes of the model described
below (e.g., whether the naming conventions have been properly applied) and design completion crite-
ria (e.g., whether all design elements are traced to a requirement).

Is the model well-formed?
A well-formed model conforms to the rules of the modeling language. For example, the rules in SysML
allow a component to satisfy a requirement but do not allow a requirement to satisfy a component. The
modeling tool should enforce the constraints imposed by the rules of the modeling language and/or
provide a report of violations.

Is the model consistent?

In SysML, some rules are built into the language to ensure model consistency. For example, type
checking can help determine whether interfaces are compatible or whether units are consistent among
different properties. Additional constraints can be imposed by the MBSE method used. For instance, a
method may impose a constraint that logical components can only be allocated to hardware and equip-
ment, software, or operational procedures. These constraints can be expressed in the object constraint
language (OCL) [38] or some other constraint language and enforced by the modeling tool.

Enforcing constraints assists in maintaining consistency across the model, but it does not prevent
design inconsistencies. A simple example may be that two modelers inadvertently give two different
names to what is intended to be the same component. The model treats these as different components.
This type of inconsistency should surface through the model and design reviews and reports. However,
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the likelihood of inconsistencies increases when multiple people are working on the same model. A
combination of well-defined model conventions and a disciplined process can reduce the likelihood of
this happening.

Is the model understandable?

The system model is intended to be interpretable by both humans and computers. Many factors can
contribute to the understandability of the model by humans. In addition to the underlying semantics of
the model, the way in which the information is presented is also important to human understanding. An
understandable model should include views of the model that contain the information appropriate for
the particular stakeholder’s intended use.

The understandability can be enhanced by controlling what and how information appears on the
diagrams and other reports. Often, the model contains a lot of detail, but only selected information is
relevant to communicate a particular aspect of the design. The information on the diagram can be con-
trolled by using the tool capability to elide (hide) nonessential information and display only the infor-
mation relevant to the diagram’s purpose. Again, the goal is to avoid information overload for the
reviewer of the model.

The layout of the diagram does not generally contain semantic information but can impact how well
the model is understood. For example, an activity diagram that represents a sequence of actions may be
laid out in different ways. The layout is generally more understandable if the position of the actions on
the diagram align with the action sequence.

The use of icons—such as the use of an icon for a particular kind of component (e.g., pump,
valve)—can also aid in understanding. Also, tabular views may be preferred over diagrammatic views
when presenting certain types of information to some stakeholders. Other factors that contribute
to understandability are the use of modeling conventions and the extent to which the model is self-
documenting, as described next.

Are modeling conventions documented and used consistently?

Modeling conventions and standards are critical to ensuring consistent representation and style across
the model. This includes establishing naming conventions for each kind of model element, diagram
names, and diagram content. Naming conventions may include stylistic aspects of the language, such
as when to use uppercase versus lowercase and when to use spaces. The conventions and standards
should also account for tool-imposed constraints, such as limitations in the use of alphanumeric and
special characters. It is also recommended that a template be established for each kind of diagram so
that a consistent style can be applied. Standard report formats from the model should also
beinstituted.

A domain specific vocabulary that reflects the core domain concepts and their relationships can be
defined more formally. The formal representation may be referred to as an ontology, a conceptual
model, or a metamodel. This representation can then be used to define domain specific extensions to the
language. An example of an ontology is described in Chapter 18, Section 18.4.4.

Is the model self-documenting?

The use of annotations and descriptions throughout the model can help to provide value-added informa-
tion if applied consistently. This can include capturing the rationale for design decisions, listing issues
or problem areas for resolution, and providing additional text descriptions for model elements. This
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information may also be included in documentation that is automatically generated from the model.
However, this information must also be maintained as part of the model, so careful consideration should
be given to what information is captured and how.

Does the model accurately reflect the domain of interest?

This is best answered by establishing a model validation approach as described in Section 2.2.3. The
accuracy of this description is dependent on the quality of the source information, the validity of the
assumptions regarding the applicability of the source information, and the extent to which the source
information and assumptions are properly captured in the model, as well as the inherent capabilities and
limitations of the modeling language. The quality of the source information and the validity of the
assumptions are primarily assessed through subject matter review. The assessments of the extent to
which the source information and assumptions are properly captured in the model is determined by
assessing other quality attributes described above as well as further expert review.

Does the model integrate with other models?

The system model may need to integrate with electrical, mechanical, software, test, and engineering
analysis models as referred to in Section 2.1.2. The required integration is dependent on the specific
modeling languages, tools, and methods being used. The modeling information to be exchanged, its
presentation, and the mechanisms for information exchange must be determined. For example, the
approach for passing information from the system model using SysML to a software model using UML
may require establishing a relationship between the software design elements in the UML model and
the software specification elements in the SysML model. In other cases, this may require the exchange
of selected information though a file or through the application programming interface of the modeling
tools. The approach for integrating models and tools is discussed in Chapter 18.

2.2.5 MODEL-BASED METRICS

As noted in Section 2.2.4, there is a distinction between a good model and a good design. Applying the
model quality criteria in Section 2.2.4 should help to meet the intended use of the model. However, the
application of these criteria does not explicitly reflect the quality of the design. For example, a model
of component requirements can be complete relative to its scope, well formed, consistent, understand-
able, well documented, validated, and integrated with other models, but not necessarily result in quality
requirements. Such results are dependent on the skill and knowledge of the system engineering team.

Measurement data collection, analysis, and reporting can be used as a management technique through-
out the development process to assess design quality and progress. This in turn is used to assess technical,
cost, schedule status, and risk, and to support ongoing project planning and control. Model-based metrics
can provide useful data that can be derived from a system model expressed in SysML. Such data can help
answer the questions below and assess the design quality and progress. The data can be collected over time
to provide additional insights through assessment of the data trends and statistical distributions.

What is the quality of the design?
Metrics can be defined to measure the quality of a model-based system design. Some of these metrics—
such as assessing requirements satisfaction, requirements verification, and technical performance
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measurement—are based on metrics that have been traditionally used in document-based designs.
Other metrics may include indicators of how well the design is partitioned and measures of
complexity.

A SysML model can include explicit relationships that can be used to measure the extent to which
the requirements are satisfied. The model can provide granularity by identifying model elements that
satisfy specific requirements along with the supporting rationale. The requirements traceability can be
established from mission requirements down to component requirements. Other SysML relationships
can be used in a similar way to measure which requirements have been verified. This data can be
extracted directly from the model or indirectly from a requirements management tool that is integrated
with the SysML modeling tool.

A SysML model can include critical properties that are monitored throughout the design process to
assess technical risks and to determine the impact of requirements and design change impacts on these
critical properties. Typical properties may include performance properties, such as response time,
throughput, and accuracy; physical properties, such as weight, size, and power; and other properties,
such as reliability and cost. The SysML model can also include parametric relationships between the
properties that are used to integrate with other analysis models. These properties can be monitored
using standard technical performance measurement techniques supported by analysis models to com-
pute the property values and sensitivities.

Design partitioning can be measured in terms of the level of cohesion and coupling of the design.
Coupling can be measured by the number of interfaces or through more complex measures of depen-
dencies between model elements. Cohesion metrics measure the extent to which a component can
perform its functions without requiring access to external data. The object-oriented concept of encap-
sulation reflects this concept.

What is the progress of the design and development effort?
Model-based metrics can be defined to assess design progress relative to the completion criteria for
the design. The quality attributes in the previous section refer to whether the model is complete rela-
tive to the defined scope of the modeling effort. This is necessary—but not sufficient—to assess
design completeness. The extent to which the system design satisfies the system requirements is a
measure of design quality and design completeness. The components interfaces, behavior, and prop-
erties must be sufficiently specified to assess whether the system design satisfies its requirements,
and can be assessed in terms of model-based metrics. Other metrics may include the number of use-
case scenarios that have been completed or the percent of logical components that have been allo-
cated to physical components.

Other metrics for assessing progress include the extent to which components have been verified and
integrated into the system and how well the system has been verified to satisfy its requirements. Test
cases and verification status can be captured in the model and used as a basis for this assessment.

What is the estimated effort to complete design and development?

The Constructive Systems Engineering Cost Model (COSYSMO) is used for estimating the cost and
effort of performing systems engineering activities. This model includes both sizing and productivity
parameters, where the size estimates the magnitude of the effort and productivity factors are applied to
arrive at a labor estimate to do the work.
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When using model-based approaches, sizing parameters can be identified in the model in terms of
the number of different modeling constructs, which may include the following:

* Model elements;

e Requirements;

e Use cases;

e Scenarios;

* System and component states;

* System and component interfaces;

* System and component activities or operations;
* System and component properties;

» Components by type (e.g., hardware, software, data, operational procedures);
¢ Constraints; and

* Test cases.

The metrics should also account for relationships between these model elements, such as the num-
ber of requirements that are satisfied, the number of requirements that are verified, the number of use
cases that are realized, and the number of activities that are allocated to blocks.

The MBSE sizing parameters are integrated into the cost model. The parameters may have com-
plexity factors associated with them as well. For example, the complexity of a use case may be indi-
cated by the number of actors participating in the interaction. Additional factors to be considered are
the amount of reuse and modification of existing models versus creating new models.

Sizing and productivity data need to be collected and validated over time to establish statistically
meaningful data and cost estimating relationships to support accurate cost estimating. However, early
users of MBSE can identify sizing parameters that contribute most significantly to the modeling effort,
and use this data for local estimates and to assess productivity improvements over time.

2.2.6 OTHER MODEL-BASED METRICS

The previous discussion is a sampling of some of the model-based metrics that can be defined. Many
other metrics can also be derived from the model, such as the stability of the number of requirements,
design changes over time, and potential defect rates. The metrics can also be devised to establish bench-
marks by which to measure the MBSE benefits as described in Section 2.1.2, such as the productivity
improvements resulting from MBSE over time. These metrics should be defined and captured to sup-
port the business case for MBSE. Chapter 19, Section 19.1.1, includes a discussion of additional met-
rics related to deploying MBSE in an organization.

2.3 SUMMARY

The practice of systems engineering is transitioning from a document-based approach to a model-based
approach, just as many other engineering disciplines—such as mechanical and electrical—have already
done. MBSE offers significant potential benefits that enhance specification and design quality and
consistency, reuse of the specification and design artifacts, and communication among the development
team, yielding overall improvements in quality and productivity, while reducing development risk. The
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emphasis for MBSE is on producing and controlling a coherent system model, and using this model to
specify and design the system.

System modeling can support many intended uses, such as evaluating alternative system design
concepts or specifing the hardware and software components of the system. A good model meets its
intended use, and a validated model accurately represents a system’s domain of interest sufficient for
its intended use. Although, a good model does not necessarily imply a good design, it should provide
the information necessary for a skilled and knowledgeable design team to develop a quality design that
satisfies its requirements.

The scope of the model should support its intended use within the resource constraints of the model-
ing effort. Quality attributes of a model—such as model consistency, understandability, and well-
formedness—and modeling conventions can be used to assess the model quality and to derive preferred
modeling practices. MBSE metrics can also be used to assess design quality, determine progress and
risk, and support management of the development effort.

2.4 QUESTIONS

What are some of the primary distinctions between MBSE and a document-based approach?
What are some of the benefits of MBSE over the document-based approach?

Where are the model elements of a system model stored?

Why should a model be validated?

What constitutes a good model?

What is the difference between a good model and a good design?

Which aspects of the model can be used to define the scope of the model?

What are some of the key quality criteria a model should satisfy?

What are examples of questions that MBSE metrics can help answer?

What are possible sizing parameters that could be used to estimate an MBSE effort?
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CHAPTER

GETTING STARTED WITH
SysML

This chapter provides an introduction to SysML and guidance on how to begin modeling with it. The
chapter provides a brief overview of SysML, then introduces a simplified version of the language
known as SysML-Lite, along with a simplified example and tool tips on how to capture the model in
a typical modeling tool. This chapter also introduces a simplified model-based systems engineering
(MBSE) method that is consistent with the systems engineering process described in Chapter 1,
Section 1.2. The chapter finishes by describing some of the challenges involved in learning SysML
and MBSE.

3.1 SysML PURPOSE AND KEY FEATURES

SysML! is a general-purpose graphical modeling language that supports the analysis, specifica-
tion, design, verification, and validation of complex systems. These systems may include hardware
and equipment, software, data, personnel, procedures, facilities, and other elements of human-
made and natural systems. The language is intended to help specify and architect systems and to
specify components that can then be designed using other domain-specific languages, such as
UML for software design, VHDL for electrical design, and three-dimensional geometric modeling
for mechanical design. SysML is intended to facilitate the application of an MBSE approach to
create a cohesive and consistent model of the system that yields the benefits described in
Chapter 2, Section 2.1.2.
SysML can represent the following aspects of systems, components, and other entities:

e Structural composition, interconnection, and classification;

* Flow-based, message-based, and state-based behavior;

e Constraints on the physical and performance properties;

¢ Allocations between behavior, structure, and constraints; and

e Requirements and their relationship to other requirements, design elements, and test cases.

IOMG Systems Modeling Language (OMG SysML™) is the official name of the language, but it is referred to as
SysML for short. Additional information on SysML can be found at the official OMG SysML website at http://www.

omgsysml.org.

A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00003-5 3 1
Copyright © 2015 Elsevier Inc. All rights reserved.
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3.2 SysML DIAGRAM OVERVIEW

SysML includes nine diagrams, as shown in the taxonomy in Figure 3.1. Each diagram kind is sum-
marized here, along with its relationship to UML diagrams:

* Package diagram — presents the organization of a model in terms of packages that contain model
elements (same as UML package diagram).

*  Requirement diagram — presents text-based requirements and their relationships to other require-
ments, design elements, and test cases to support requirements traceability (not in UML).

e Activity diagram — presents flow-based behavior indicating the order in which actions execute
based on the availability of their inputs, outputs, and control, and how the actions transform the
inputs to outputs (modification of UML activity diagram).

e Sequence diagram — presents behavior in terms of a sequence of messages exchanged between
systems or parts of systems (same as UML sequence diagram).

e State machine diagram — presents behavior of an entity in terms of its transitions between states
triggered by events (same as UML state machine diagram).

e Use case diagram — presents functionality in terms of how a system is used by external entities
(i.e., actors) to accomplish a set of goals (same as UML use case diagram).

* Block definition diagram — presents structural elements, called blocks, and their composition and
classification (modification of UML class diagram).

e [Internal block diagram — presents interconnection and interfaces between the parts of a block
(modification of UML composite structure diagram).

e Parametric diagram — presents constraints on property values, such as F = m * a, used to support
engineering analysis (not in UML).

SysML
Diagram
Package Requirement Behavior Parametric Structure
Diagram Diagram Diagram Diagram Diagram
- State Block Internal
Activity | | Sequence | | 1o oping | | USe Case | 1 poginiiion Block
Diagram Diagram . Diagram ) .
Diagram Diagram Diagram

FIGURE 3.1

SysML diagram taxonomy.
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A diagram presents selected model elements from the system model. The kinds of model elements
and associated symbols (e.g., diagram elements) that can appear on a diagram are constrained by the
diagram’s kind. For example, an activity diagram can include diagram elements that present actions,
control flow, and input/output flow (i.e., object flow), but not diagram elements for connectors and
ports. Tabular presentations, such as allocation tables, are also supported in SysML as a complement to
diagrams.

3.3 INTRODUCING SysML-Lite

SysML-Lite is introduced here as a simplified version of the language to help users start modeling with
SysML. It is not referenced in the SysML specification. It includes six of the nine SysML diagrams and
a small subset of the available language features for each diagram kind. SysML-Lite provides signifi-
cant modeling capabilities. This section provides a brief introduction to SysML-Lite, including a sim-
ple example to highlight its features. Tool tips to assist new modelers in the use of a typical modeling
tool are also covered.

3.3.1 SysML-Lite DIAGRAMS AND LANGUAGE FEATURES

The six kinds of diagrams that are part of SysML-Lite are highlighted in Figure 3.2. Each diagram
contains a header that identifies the diagram kind and other information about the diagram that is
explained in Chapter 5, Section 5.2. In particular, SysML-Lite includes:

e package diagrams to present the model organization;

e requirement diagrams to present text-based requirements and their relationships;

e activity diagrams to present the behavior of the system and its components;

e block definition diagrams to present the system hierarchy;

e internal block diagrams to present the system interconnection; and

e parametric diagrams to present the relationship among system properties to support engineering
analysis.

SysML-Lite
Diagram

1

Package Requirement Activity BI.O.CI.( Internal Parametric

: . . Definition Block )

Diagram Diagram Diagram ) . Diagram
Diagram Diagram

FIGURE 3.2

SysML-Lite includes six of the nine SysML diagrams and a subset of the language features. It is intended to
introduce new modelers to SysML while providing substantial modeling capabilities.
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This set of diagrams provides a model user with substantial capability for modeling systems that
covers many of the classical systems engineering diagrams and more.

SysML-Lite includes a small subset of the language features for each of the six SysML diagrams.
Some of the features of SysML-Lite are presented in the diagrams in Figure 3.3. The precise subset of
SysML language features can be adapted as needed. The figure also shows thick lines with arrowheads
that are not part of the language but highlight some of the important cross diagram relationships. These
relationships generally support classical systems engineering methods, such as functional decomposi-
tion and allocation.

The package diagram, labeled pkg, is used to organize the model elements contained in the model.
In this diagram, the System Model appears in the diagram header and contains packages for Require-
ments, Behavior, Structure, and Parametrics. Each of these packages, in turn, contains model elements
that are presented on the requirement diagram, activity diagram, block definition diagram, internal
block diagram, and parametric diagram, respectively. Note that model elements for both the block defi-
nition diagram and internal block diagram are contained in the Structure package.

The requirement diagram is labeled req and presents a simple hierarchy of text-based requirements
that are typically part of a specification document. The top level requirement named R/ contains two
requirements, R1./ and R1.2. The corresponding requirement statement for R/./ is captured as a text
property of the requirement and corresponds to the text that would be found for this requirement in a
specification document.

The activity diagrams are labeled act. The activity diagram named AO presents the interaction
between System I and System 2. The initial node (shown as the filled dark circle) and final node (shown
as the bulls-eye) indicate the start and finish of the activity, respectively. The activity specifies a simple
sequence of actions, beginning with the execution of action A/, which is followed by the execution of
action :A2. The colon (:) in the action names and in other symbols indicates a particular usage associ-
ated with a reusable definition, which is described in Chapter 4, Section 4.3.12 and further described in
Chapter 7, Section 7.3.1 and Chapter 9, Section 9.4.2. The output of :A/ and the input of :A2 are
depicted by rectangles on the action boundary called pins. In addition, the activity partitions labeled
:System I and :System 2 are responsible for performing the actions that are enclosed by the partitions.
The action called A/ satisfies the requirement R/.2, which is represented by the satisfy relationship.

The action called A/ in the activity diagram A0 is decomposed in the activity diagram called A/
into actions :A/.7 and :A1.2. These actions are performed by :Component 1 and : Component 2, respec-
tively. The output of the activity A/, depicted by the rectangle on its boundary, corresponds to the out-
put pin of action A/ in activity AO. As indicated in the activity diagrams for A0 and A1, the outputs and
inputs are consistent from one level of decomposition to the next.

The block definition diagram is labeled bdd and is often used to describe the hierarchy of a system,
similar to a parts tree (e.g., equipment tree). A block is used to define a system or component at any
level of the system hierarchy. The block definition diagram in the figure shows the block System Context
composed of System I and System 2. System 1 is further decomposed into Component 1 and
Component 2. The System I and Component blocks each contain a value property that can correspond
to a physical or performance characteristic, such as its weight or response time.

The internal block diagram is labeled ibd and the enclosing diagram frame corresponds to System 1.
This diagram shows how the parts of System I are interconnected. The small squares on System 1 (i.e,,
the frame) and its parts (i.e., :Component 1 and :Component 2) are called ports and represent their
interfaces. The lines connecting the ports are called connectors. System [ is also shown as the
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activity partition in the activity A0, and the components are similarly shown as activity partitions in the
activity Al.

The parametric diagram is labeled par and is used to describe parametric relationships that are used
in engineering analysis, such as performance, reliability, and mass properties analysis. In this example,
the parametric diagram includes a single constraint called Constraint I that expresses an equation or set
of equations. The small squares flush with the inside of the constraint depict the parameters of the equa-
tion. The properties of the system and component blocks can be bound to the parameters of the equa-
tions to establish an equality relationship. In this way, the parameters of a particular analysis can be
aligned with the properties of the system design. Often, a single constraint is used to specify an analysis
in terms of its input and output parameters, without specifying the detailed equations contained by the
analysis.

In the above diagrams, only a small subset of the SysML language features are illustrated to indicate
some of the key constructs used to model systems. The following simplified model of an air compressor
illustrates how SysML-Lite diagrams and language features can be applied.

3.3.2 SysML-Lite AIR COMPRESSOR EXAMPLE

The following is an example of using SysML-Lite to model an air compressor that is used to power a
pneumatic tool. This model is highly simplified for the purposes of illustration and includes the same
kind of diagrams that were shown in Figure 3.3.

Figure 3.4 shows the package diagram for the Air Compressor Model and includes packages for
Requirements, Behavior, Structure, and Parametrics. This model organization follows a similar pattern
as described in the section on SysML-Lite above and shown in Figure 3.3.

The Requirements package contains a set of requirements that would generally be found in a system
specification for the air compressor. The requirements are captured in the requirement diagram in
Figure 3.5. The top level requirement called Air Compressor Specification contains a functional require-
ment to compress air, performance requirements that specify the maximum pressure and maximum
flow rate, a requirement to specify storage capacity, power requirements to specify the source power
needed to compress the air, and reliability and portability requirements. The text for the Storage
Capacity requirement appears in the diagram, whereas the text for the other requirements is not
displayed to reduce the clutter.

pkg Air Compressor Model [Model Organizationu

] ] ] 1

Requirements Behavior Structure Parametrics

FIGURE 3.4

This package diagram is used to organize the Air Compressor Model into packages for Requirements,
Structure, Behavior, and Parametrics. Each package contains model elements that can be related to model
elements in other packages.
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The Behavior package contains an activity diagram, shown in Figure 3.6, called Operate Air
Tool, that specifies how the Air Compressor interacts with the external systems, including the Air
Tool, the Atmosphere, and indirectly with the Operator. The Air Compressor and the external sys-
tems are shown as activity partitions. The Air Compressor performs the function (i.e., action)
called Compress Air, which has a low pressure air input and a high pressure air output. The activ-
ity begins at the initial node (i.e., dark-filled circle), and then the Operator executes the Control
Tool action. The activity completes its execution at the activity final node (i.e., bulls-eye symbol),
after the Operator completes the Control Tool action. The Compress Air action is further decom-
posed in Figure 3.9.

The Structure package contains the blocks presented in the block definition diagrams in Figure 3.7
and Figure 3.8. The block definition diagram in Figure 3.7 called Air Compressor Top Level includes a
block called the Air Compressor Context that is composed of the Air Compressor and the entities that
are external to the Air Compressor representing the user, external system, and the physical environ-
ment. In this example, the user is the Operator, the external system is the Air Tool, and physical envi-
ronment is the Afmosphere. The block definition diagram in Figure 3.8 is called Air Compressor System
Hierarchy. The Air Compressor block in this figure is the same block that is shown in Figure 3.7, but
this figure shows that the Air Compressor block is composed of components that include the Motor
Controller, Motor, Pump, and Tank. The Air Compressor, Motor, Tank, and Pump all include value
properties that are used to analyze the flow rate requirements.

req [Package] Requirements [Air Compressor Requirementsu

«requirement»
Air Compressor

/e Specification
©

«requirement» -
«requirement»

Power Reliability
«requirement» «requirement» «requirement»
Compress Air Max Pressure Portability
«requirement» «requirement»
Storage Capacity Max Flow Rate
Id="1.7"

Text ="The compressor shall have a
minimum storage capacity of 8 gallons"

FIGURE 3.5

This requirement diagram presents the requirements contained in the Requirements package to specify the
Air Compressor. Each requirement can include the requirements text that is typically found in a specification
document.
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FIGURE 3.6

This activity diagram specifies the interaction between the Air Compressor, Operator, Air Tool, and Atmosphere
to perform the Operate Air Tool activity.

bdd [Package] Structure [ Air Compresssor Top LeveIU
«block»
Air Compressor Context
«block» «block» «block» «block»
Operator Air Tool Air Compressor Atmosphere

FIGURE 3.7

This block definition diagram shows the Air Compressor, Operator, Air Tool, and Atmosphere as blocks. The
Air Compressor Context block provides the context for the Air Compressor.

The activity diagram in Figure 3.9 decomposes the action called Compress Air from Figure 3.6 to specify
how the components of the Air Compressor interact to compress the air. The activity partitions in this activity
diagram correspond to the components of the air compressor. The Motor Controller performs actions to
Sense Pressure and Control Motor. The Motor performs the action to Generate Torque, the Pump performs
the action to Pump Air, and the Tank performs the action to Store Air. The low pressure air input and high
pressure air output are consistent with the input and output of the Compress Air action in Figure 3.6. This
activity is contained in the Behavior package along with the Operate Air Tool activity in Figure 3.6.

The internal block diagram named Interconnection in Figure 3.10 shows how the components of the
Air Compressor from Figure 3.8 are interconnected. The diagram frame corresponds to the Air Com-
pressor block and the ports on the diagram frame depict the external interfaces of the Air Compressor.
The ports on the parts represent the component interfaces, and the connectors connect the ports to one
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bdd [Package] Air Compressor [Air Compressor System Hierarchy|] )
«block»
Air Compressor
values
flow rate
«block» «block» «block» «block»
Motor Controller Motor Pump Tank
values values values
horsepower efficiency volume
pressure

FIGURE 3.8

This block definition diagram shows the Air Compressor and its components. The Air Compressor block is the
same block that is shown in Figure 3.7.

another. The component parts shown on the internal block diagram are contained in the Structure pack-
age along with the blocks on the block definition diagram.

The block definition diagram called Analysis Context in Figure 3.11 is used to define the context for
performing the flow rate analysis. In particular, it includes a block called Flow Rate Analysis to repre-
sent the analysis. This block is composed of a constraint block called Flow Rate Equations, which
contains the equations used to analyze flow rate. In this particular example, only the parameters of the
flow rate equations are shown, and not the equations. The Flow Rate Analysis block also refers to the
Air Compressor Context block from Figure 3.7, which is the subject of the analysis.

Defining the Analysis Context enables a parametric diagram to be created for the Flow Rate Analysis
block as shown in Figure 3.12. The diagram shows the value properties of the Air Compressor and its parts,
including flow rate, tank volume and pressure, motor horsepower, and pump efficiency, and the binding of
these properties to the parameters of the Flow Rate Equations. The flow rate analysis equations can be solved
by an analysis tool to determine the property values for the Air Compressor and its parts. The analysis con-
text pattern is described further in Chapter 8, Section 8.10 and Chapter 17, Section 17.3.6.

This air compressor example illustrates how a system can be modeled with a subset of SysML dia-
grams and language features called SysML-Lite. Even a simple model such as this can contain many
model elements and quickly become difficult to manage. A modeling tool is needed to efficiently build
a model that is self consistent and to manage complexity. The following section describes how a typical
SysML modeling tool is used to build this model.

3.3.3 SysML MODELING TOOL TIPS

This section provides a brief introduction on how to start modeling with a typical SysML model-
ing tool. The question of how to start modeling often arises when one uses a modeling tool for the
first time. Although various tools may have significant differences, the tools typically share much
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This activity diagram shows how the components of the Air Compressor interact to perform the Compress Air action from Figure 3.6.
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This internal block diagram shows how the components of the Air Compressor are interconnected via their

ports, which specify the component interfaces.

bdd [Package] Parametrics [Analysis Context] )

«block»
Flow Rate Analysis

«constrainty
Flow Rate Equations

parameters
volume
pressure
power
pump efficiency
air flow rate

«block»
Air Compressor Context

FIGURE 3.11

This block definition diagram is used to specify the Flow Rate Analysis in terms of a constraint block that
defines the equations and parameters for the analysis (equations not shown), and the Air Compressor Context,

which is the subject of the analysis.
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FIGURE 3.12

This parametric diagram shows the Flow Rate Analysis and how the parameters of the equations are bound to
the properties of the design. Once captured, this analysis can be provided to an analysis tool to perform the
analysis. The equations are not shown in the figure.

in common from a user interface perspective. As a result, once a modeler learns how to build a
SysML model in one tool, it generally takes considerably less time to learn how to model in
another tool.

The tool interface

The user interface for a typical modeling tool is shown in Figure 3.13, and includes a diagram area, a
pallet (also known as toolbox), a model browser, and a toolbar. The diagram appears in the diagram
area. The pallet includes diagram elements that are used to create or modify a diagram. The pallet is
typically context sensitive such that the diagram elements that appear in the pallet depend on the
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A typical SysML modeling tool interface consists of a diagram area, a pallet or toolbox, a model browser, and a
toolbar. The model browser shows the hierarchy of model elements that are contained in the model.

diagram that is being viewed in the diagram area. For example, if a block definition diagram is being
viewed in the diagram area, then the pallet will contain blocks and other elements used on a block defi-
nition diagram, whereas if an activity diagram is being viewed, the pallet will include actions and other
elements used on an activity diagram. The model browser is a third part of the user interface. It presents
a hierarchical view of the model elements contained in the model. A typical view of the browser shows
the model elements grouped into a package hierarchy, where each package appears as a folder that can
be expanded to view its contents. A package may contain other nested packages. The toolbar contains
a set of menu selections that support different user actions related to file management, editing, viewing,
configuring tool features, and other actions. Many modeling tools also enable further tool customiza-
tion, such as the ability to develop scripts that perform additional model checking.

Some basic tool functionality includes adding a diagram; adding elements and relationships to the
diagram; navigating between the diagram and the browser; deleting elements from the diagram and/or
browser; and adding, modifying, and deleting details of a particular model element.

To create a new diagram, a modeler selects a diagram kind and names the diagram. There are often
multiple ways to select a diagram kind, such as from a diagram menu or a diagram icon from the tool-
bar. The new diagram appears in the diagram area without any content. The diagram header informa-
tion is visible and includes the diagram kind, the diagram name, and other information about the
diagram frame.

The modeler can then drag a diagram element from the pallet onto the diagram in the diagram area
and name the new element. Once this is done, the corresponding model element appears in the browser.
Alternatively, the modeler can add the new model element directly in the browser, then drag this model
element onto the diagram. A model element appears in only one place in the browser, but may appear
on zero, one, or more diagrams.

Other diagram elements can be added to the diagram in a similar way. Allowable relationships
between elements can be added by selecting the relationship symbol from the pallet and dragging it
from one element to another. Alternatively, many tools provide a context sensitive menu to select the
relationship from one element and drag it to the other element. The relationship appears in the browser
like other model elements.



44 CHAPTER 3 GETTING STARTED WITH SysML

A modeling tool provides mechanisms to navigate between the symbol on the diagram and the cor-
responding model element in the browser. This can be convenient, because a large model may contain
hundreds of diagrams and thousands or hundreds of thousands of model elements. Most tools allow the
modeler to select the symbol on the diagram and find its location in the browser. A modeler can also
select a model element in the browser and find its location on each diagram in which it appears.

The modeling tool allows the modeler to show and hide selected details of the model on any particu-
lar diagram. This is important for managing the complexity of the diagrams. The modeler only shows
what is considered important to support the purpose of the diagram.

If the modeler wishes to delete a model element from the diagram, the tool may prompt the modeler
whether to delete the model element from the diagram only or to delete the model element from the
model as well by removing it from the browser. A modeler can also delete a model element directly
from the browser.

A modeling tool has many other capabilities that enable a modeler to develop and manage a system
model. Once the model element is created, the modeler can typically select the model element and open
its specification, where details of the model element can be added, modified, or deleted. The modeler
can also select a model element on the diagram and query the modeling tool to show all of the directly
related model elements that can appear on that particular kind of diagram.

It is also worth noting that the modeling tool is often used in conjunction with a configuration man-
agement tool to put the model under configuration control. This is particularly important when model-
ing as part of a distributed team where multiple people are working on the same model. In such cases,
a typical configuration management tool will allow read and/or write privileges to be assigned to a user
to control access to different parts of the model. Once this is done, a modeler with read privileges
assigned to a particular part of the model can view that part of the model, while a modeler with write
privileges can also check out and modify that part of the model.

Chapter 18 describes how the SysML modeling tool integrates into a systems development environment
with many other tools, including configuration management, requirements management, hardware and soft-
ware design, and analysis tools. It also includes suggested criteria for selecting a SysML modeling tool.

Building the model

The following illustrates how to build the Air Compressor Model introduced in Section 3.3.2 in a typi-
cal modeling tool. Each tool will have a particular style of user interface, and different modeling guide-
lines and MBSE methods may suggest various ways to get started. The following example provides a
representative starting point, which can be further adapted to the specific modeling tool, modeling
guidelines, and MBSE method.

The modeler must first install and configure the modeling tool so that it can be used to build a model
that is expressed in SysML. Many SysML tools also support UML and perhaps other modeling lan-
guages, so the modeler may be required to select and apply the SysML profile (refer to Chapter 15,
Section 15.5 for a discussion of profiles). Once this is done, a modeler can create a new project and
name it. In this example, the project is named Air Compressor Project.

As indicated in Figure 3.13, the first step in building the model is to create the top level package called
the Air Compressor Model in the browser. The modeler can then select this package in the browser and
create nested packages for Requirements, Behavior, Structure, and Parametrics (sometimes called Analy-
sis). Alternatively, the modeler can create a new package diagram (as shown in Figure 3.13) by dragging
new packages from the pallet onto the diagram and naming them accordingly.
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The modeler can now begin to populate the packages with model elements by creating the diagrams
in Figure 3.5 through Figure 3.12. For this example, the sequence for creating the diagrams will mirror
the ordering of the figures, but the sequence can vary depending on the MBSE method, the availability
of information, and/or user preference. Some elements used on a particular diagram may be created on
another diagram. The modeler may partially complete one diagram, switch to another diagram to add
elements, and then return to the original diagram to use those elements. In other words, modeling can
be a highly iterative process where various parts of the model are created on one diagram, and used on
other diagrams.

The modeler creates the requirements diagram shown in Figure 3.5 by selecting the Requirements
package in the browser, creating a new requirement diagram, and naming it Air Compressor Require-
ments. Once the diagram appears in the diagram area, the modeler can drag new requirements from the
pallet onto the diagram and name them to correspond to the requirements in the figure. The top level
parent requirement, called Air Compressor Specification, can be connected to each of its child require-
ments with the cross hair symbol by using the context sensitive menu on the parent or child. The text
for the requirement statement can be added to the Storage Capacity requirement by opening the speci-
fication for this model element and adding the text to the text property. Additional diagram presentation
options may be required to display or hide the text on the diagram.

The modeler next creates the top level activity diagram Operate Air Tool shown in Figure 3.6. This
is done by selecting the Behavior package, creating a new activity diagram, and naming the diagram
Operate Air Tool. The modeler may drag actions from the pallet onto the activity diagram, along with
the initial and final nodes, and connect the actions with the appropriate flow. The control flow is used
to connect the initial node to Control Tool, and another control flow connects Control Tool to the activ-
ity final node. The object flows connect the outputs from one action to the input of another. The inputs
and outputs are the small rectangles on the actions called pins, and can be created by selecting an input
pin or output pin from the context sensitive menu. The activity partitions can be added after the Air
Compressor and external entities have been defined, which is done in the next step of this process.

The modeler next creates the block definition diagram for the Air Compressor Context shown in Figure
3.7. This is accomplished by selecting the Structure package in the browser, creating a new block definition
diagram, and naming it Air Compressor Top Level. A new block can be dragged from the pallet onto the
diagram and called Air Compressor Context. The other blocks can then be defined similarly. The composi-
tion relationship between the Air Compressor Context block and the other blocks can be established using
the context sensitive menu to select the composition relationship designated by the black diamond on one
end of the line. Alternatively, the composition relationship can be selected from the pallet.

Once the blocks are defined, the activity partitions (i.e., swim lanes) that correspond to the blocks
in the activity diagram in Figure 3.6 can be added. This activity diagram specifies the interaction
between the Air Compressor, Operator, Air Tool, and Atmosphere to perform the Operate Air Tool
activity. The previously created activity diagram, Operate Air Tool, can be viewed by selecting it from
the Behavior package in the browser. The modeler then drags the activity partitions from the pallet onto
the diagram and ensures that the actions are enclosed by the partitions as shown in the figure. In order
to define an activity partition that corresponds to a particular block, the modeler opens the activity parti-
tion specification, then selects the particular block that is represented by the partition. For example, the
activity partition that encloses Compress Air corresponds to the Air Compressor block. In this way,
each action is placed within the activity partition corresponding to the block that is responsible for
performing the action.
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The modeler can then decompose the system into its component parts by creating the block defini-
tion diagram shown in Figure 3.8. This is done by selecting the Structure package, creating a new block
definition diagram, and naming it Air Compressor System Hierarchy. New blocks can be dragged from
the pallet onto the diagram and named. The relationships are established in a way similar to that
described for the block definition diagram called Air Compressor Top-Level in Figure 3.7. The ports on
each of the blocks can then be created by dragging a port from the pallet onto the block or—
alternatively—by selecting a block, opening its specification, and adding the ports. In addition, the
properties of the block can be added by selecting the block on the diagram or in the browser, opening
the block’s specification, adding the property, and naming it. In Figure 3.8, the ports are included in the
model but are not shown to further simplify the diagram.

The modeler next creates the activity diagram to Compress Air as shown in Figure 3.9. This activity
represents the decomposition of the Compress Air action that the Air Compressor performs in the
Operate Air Tool activity in Figure 3.6. The modeler selects the Compress Air action in the Operate Air
Tool activity, and then creates a new activity diagram named Compress Air. The tool is expected to
ensure that the inputs and outputs to this activity are consistent with the input and output pins for the
Compress Air action. This activity diagram shows how the components of the Air Compressor perform
the Compress Air activity. The actions, flows, and activity partitions contained within this activity will
be created in a similar way as for the Operate Air Tool activity. The activity partitions correspond to the
component blocks from the Air Compressor System Hierarchy block definition diagram.

The modeler next creates the internal block diagram shown in Figure 3.10 to show how the parts of
the Air Compressor are connected to one another. This is accomplished by selecting the Air Compres-
sor block from the Structure package in the browser and creating a new internal block diagram. Some
tools automatically populate the internal block diagram with the parts of the block that are typed by the
component blocks in the Air Compressor System Hierarchy block definition diagram. A summary
explanation of types is included in Chapter 4, Section 4.3.12, and a detailed treatment of this topic is
provided in Chapter 7. The ports on the parts may not be visible on the diagram, even if they have been
previously defined in the model. Many tools require the modeler to select the part and activate a menu
item to display the ports. The ports can be connected to one another once the ports are visible on the
diagram. A modeler may also connect the parts without ports, and add or connect to ports later if
desired.

The modeler next creates the block definition diagram in Figure 3.11 to define the Flow Rate
Analysis in terms of analysis constraints and the subject of the analysis. This is done by selecting the
Parametrics package in the browser, creating a new block definition diagram, and naming the dia-
gram Analysis Context. The Flow Rate Analysis block is created, and the Air Compressor Context
block that is contained in the Structure package is dragged onto the diagram and referenced by the
Flow Rate Analysis block using the aggregation relationship with the white diamond. A new con-
straint block is dragged from the pallet and named Flow Rate Equations. The Flow Rate Analysis
block is related to the constraint block with a composition relationship (black diamond). The param-
eters of the flow rate equations are added to the constraint block in a way similar to the adding of
properties to blocks as described earlier. The equations can be defined as part of the constraint block
as well.

The modeler next creates the parametric diagram shown in Figure 3.12 in the Parametrics package.
The constraint property, which is typed by the Flow Rate Equations constraint block, and a part, which is
typed by the Air Compressor Context block, are dragged from the browser onto the diagram. The tool may
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automatically populate the diagram in the same way it does with parts. The Air Compressor Context is
selected on the diagram, and its nested parts and properties are displayed. Different tools accomplish this
in different ways. Once this is done, the value properties contained in the Air Compressor, Tank, Motor,
and Pump can be connected to the parameters of the Flow Rate Equations constraint.

Creating this example in the modeling tool is a first step to learning how to model. Once this is
understood, one can learn additional SysML language features and explore additional tool capabilities,
such as diagram layout functions, documentation and report generation, and model execution. The
automobile example in Chapter 4 introduces the remaining three SysML diagrams and additional lan-
guage features that can serve as a next step in the learning process. The language features are described
in detail in the chapters in Part I1.

3.4 A SIMPLIFIED MBSE METHOD

In addition to learning the modeling language and tools, a modeler must apply a model-based systems
engineering (MBSE) method that adheres to sound systems engineering and modeling practices in
order to build quality system models. SysML provides a means to capture the system modeling infor-
mation without imposing a specific MBSE method.

The selected MBSE method determines the modeling activities that are performed, the ordering
of the activities, and the kinds of modeling artifacts produced. For example, traditional structured
analysis methods can be used to decompose the functions and then allocate the functions to compo-
nents. Alternatively, one can apply a scenario-driven method that derives the system functionality by
analyzing the scenarios and the interactions among the parts. The two methods may involve different
activities and produce different combinations of diagrams to present the system specification and
design information. Several MBSE methods are documented in the Survey of Model-based Systems
Engineering Methodologies [6]. Chapters 16 and 17 provide two examples using different MBSE
methods.

The top level activities for a simplified MBSE method are highlighted in Figure 3.14. The activities
are consistent with the systems engineering process introduced in Chapter 1, Section 1.2. The system
model represents the system specification and design information, and is the primary artifact produced
by this method. This method includes one or more iterations of the following activities to specify and
design the system:

e Organize the Model.

* Define the package diagram to organize the system model.

* Analyze Stakeholder Needs to understand the problem to be solved, the goals the system is
intended to support, and the effectiveness measures needed to evaluate how well the system
supports these goals and satisfies the stakeholder needs.

e Identify the stakeholders and the problems to be addressed.

* Define the domain model (e.g., block definition diagram) to identify the system and external
systems and users.

*  Define the top level use cases to represent the goals the system is intended to support.

* Define the effectiveness measures (moes) that can be used to quantify the value of a proposed
solution for the stakeholders.
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FIGURE 3.14

A simplified MBSE method that is consistent with the systems engineering process described in Chapter 1,
Section 1.2. The method is used to produce the modeling artifacts that constitute the system model.

o Specify System Requirements, including the required system functionality, interfaces, physical and
performance characteristics, and other quality characteristics to support the goals and effective-
ness measures.

* Capture text-based requirements that support the system goals and effectiveness measures in a
requirement diagram.

*  Model each use-case scenario as an activity diagram to specify the system behavior
requirements.

* Create the system context diagram (internal block diagram) to specify the system external
interfaces.
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* Synthesize Alternative System Solutions by partitioning the system design into components that
can satisfy the system requirements.
*  Decompose the system using the block definition diagram.
* Define the interaction among the parts using activity diagrams.
* Define the interconnection among the parts using the internal block diagram.
e Perform Analysis to evaluate and select a preferred system solution that satisfies the system
requirements and maximizes the effectiveness measures.
* Capture the analysis context (block definition diagram) to identify the analysis to be per-
formed, such as performance, mass properties, reliability, cost, and other critical properties.
* Capture each analysis as a parametric diagram.
e Perform the engineering analysis to determine the values of the system properties (Note: the
analysis is performed using engineering analysis tools).
*  Maintain Requirements Traceability to ensure the proposed solution satisfies the system require-
ments and associated stakeholder needs.
* Capture the traceability between the system requirements and the stakeholder needs (e.g., use
cases, measures of effectiveness) on a requirements diagram.
*  Show how the system design satisfies the system requirements on a requirements diagram or
table.
* Identify test cases needed to verify the system requirements on a requirements diagram or
table and capture the verification results.

Other systems engineering management activities—such as planning, assessment, risk manage-
ment, and configuration management—are performed in conjunction with the modeling activities
described above. The next chapter includes a simplified example that illustrates many of the model-
based artifacts that are generated when applying a MBSE method such as the one described in this
section. More detailed examples of how SysML can be used to support a functional analysis and alloca-
tion method and an object-oriented systems engineering method (OOSEM) are included in the model-
ing examples in Part III, Chapters 16 and 17, respectively.

3.5 THE LEARNING CURVE FOR SysML AND MBSE

Learning SysML and MBSE requires a commitment similar to what is expected when learning model-
ing for mechanical, electrical, software, and other technical disciplines. The challenges to learning
SysML and MBSE have additional factors that contribute to its learning curve. In particular, a major
focus for model-based systems engineering approaches is the ability to understand a system from mul-
tiple perspectives and to ensure integration across the different perspectives. In SysML, the system
requirements, behavior, structure, and parametrics each represents different aspects of the system that
need to be understood both individually and together.

Each of the individual perspectives introduces its own complexity. For example, the modeler may
represent behavior using activity diagrams to specify precisely how a system responds to a stimulus.
This involves specifying the details of how the system executes each use-case scenario. The activity
diagrams may be integrated into a composite system behavior that is captured in a state machine dia-
gram. Representing detailed behavior and integrating different behavior formalisms, such as activity
diagrams and state machines, can introduce complexity.
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As stated above, the modeler must maintain a consistent model that reflects many different perspec-
tives. SysML is often used to express hierarchies for requirements, behavior, structure, and parametrics.
Each hierarchy must be self consistent, such as the different levels of the behavior and structure hierar-
chy. The model must also be consistent across the different hierarchies. Some of these relationships are
highlighted in the examples in Sections 3.3.1-2. Additional discipline-specific views— such as a safety
view, reliability view, security view, or manufacturing view—may span requirements, behavior, struc-
ture, and parametrics. Again, ensuring consistency among these cross-cutting views introduces addi-
tional complexity to system modeling and MBSE.

SysML is a more complex language than some of its predecessors, such as IDEFO. It provides signifi-
cant expressive capabilities to represent the various perspectives described above. SysML is also a typed
language, which can significantly enhance reuse. For example, a SysML model can differentiate a front
wheel from a rear wheel of a vehicle, while reusing the same definition of wheel. As a typed language,
SysML also enables more effective integration with analysis models by providing the capability to
describe complex data structures, such as the position of the system in terms of its X, y, and z coordinates
with their respective units. These capabilities do not come without some added complexity. As the lan-
guage evolves, it is anticipated that the tools will hide some of the complexity, and other enhancements
will make the language more intuitive, such as increased emphasis on domain specific symbology.

An effective MBSE approach not only requires a language such as SysML to be capable of represent-
ing systems but also requires a method that defines the activities and artifacts, as well as a tool to imple-
ment the modeling language and method. The language, method, and tool each introduce their own
concepts that must be learned to master model-based systems engineering. The language, method, and
tool must be further adapted to a particular application domain, such as to the design of aircraft, automo-
biles, telecommunication systems, medical devices, and others, which introduces further complexities.

Additional modeling challenges are associated with scaling the modeling effort to larger projects.
Challenges of managing the model come into play. Multiple modelers may be in multiple locations
using different tools. Disciplined processes and tools are needed to manage changes to the models. The
SysML model must integrate with many different kinds of models, such as analysis models; electrical,
mechanical, and software design models; and verification models. The integration and management of
the different models, tools, and other engineering artifacts is another challenge associated with MBSE.

Model-based systems engineering formalizes the practice of performing systems engineering. The
complexity and associated challenges for learning MBSE reflect the inherent complexity and challenges
of applying systems engineering to the development of complex systems. Some of this complexity was
highlighted in the automobile design example in Chapter 1, Section 1.3, independent of the MBSE
approach. When starting out on the MBSE journey, it is important to set expectations for the challenges
of learning MBSE and how to apply it to a domain of interest. In addition to reaping the potential benefits
of MBSE described in Chapter 2, embracing these challenges and becoming proficient in SysML and
MBSE can provide a deeper understanding of systems and systems engineering concepts.

3.6 SUMMARY

SysML is a general-purpose graphical language for modeling systems that may include hardware and
equipment, software, data, people, facilities, and other elements within the physical environment. The
language supports modeling of requirements, structure, behavior, and parametrics to provide a robust
description of a system, its components, and its environment.
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The language includes nine diagram kinds each with many features. The semantics of the language
enable a modeler to develop an integrated model of a system, where each kind of diagram can present
a different view of the system being modeled. The model elements on one diagram can be related to
model elements on other diagrams. The diagrams enable capturing the information in a model reposi-
tory and viewing the information from the repository, to help specity, design, analyze, and verify sys-
tems. To facilitate the learning process, SysML-Lite was introduced, which includes six of the nine
SysML diagrams and a relatively small subset of the language features for each diagram kind. Learning
how to model this subset of the language in a modeling tool can provide a sound foundation on which
to build.

The SysML language is a critical enabler of MBSE. Effective use of the language requires a well-
defined MBSE method. This chapter introduced a simplified MBSE method to aid in getting started, but
SysML can be used with a variety of MBSE methods.

SysML enables representation of a system from multiple perspectives. Each of the individual per-
spectives may be complex in its own right, but ensuring a consistent model that integrates across the
different perspectives introduces additional challenges to learning SysML and MBSE. When learning
SysML as part of an overall MBSE approach, the process, methods, and tools introduce their own con-
cepts and complexity. Using SysML in support of MBSE formalizes the practice of systems engineer-
ing. Ultimately, the challenges of SysML and MBSE reflect the inherent complexities of applying
systems engineering to develop complex systems. The learning expectations should be set
accordingly.

3.7 QUESTIONS

What are five aspects of a system that SysML can represent?

What is a package diagram used for?

What is a requirement diagram used for?

What is an activity diagram used for?

What is the block definition diagram used for?

What is an internal block diagram used for?

What is a parametric diagram used for?

What are some of the common elements of the user interface of a typical SysML modeling tool?
Which part of the user interface presents a hierarchical view of the model elements contained in
the model?

10. What is the purpose of applying an MBSE method?

11. What are the primary activities of the simplified MBSE method?

CoNoaRrRLON =

DISCUSSION TOPICS

What are some factors that contribute to the challenges of learning SysML and MBSE, and how do they
relate to the general challenges of learning systems engineering?



CHAPTER

AN AUTOMOBILE EXAMPLE
USING THE SysML BASIC
FEATURE SET

This chapter introduces the basic feature set of SysML. The basic feature set applies to all nine
SysML diagrams and provides an expanded subset of the language features beyond the features of
SysML-Lite that were introduced in the previous chapter. The basic feature set provides significant
functionality of the language without adding the complexity associated with the full feature set of
SysML.

In this chapter, a system model of an automobile similar to the one that was introduced in Chapter 1,
Section 1.3, illustrates the use of the basic feature set. This example includes references to the chapters
in Part II that provide a more detailed description of the diagrams and language concepts. The subset of
the SysML constructs that comprise the basic feature set are highlighted by shaded paragraphs in Part
II and in the notation tables in Appendix A.

4.1 THE SysML BASIC FEATURE SET AND SysML CERTIFICATION

The basic and full feature set provides language functionality that can be learned in steps and are
the basis for SysML certification. The SysML certification program is called the OMG Certified
Systems Modeling Professional (OCSMP) [39]. The OCSMP has four levels of certification. The
first two levels of certification cover the basic feature set of SysML. These two levels are referred
to as Model User and Model Builder-Fundamental. A modeler certified at the Model User level is
expected to be able to interpret SysML diagrams that use the basic feature set, while a modeler
certified at the Model Builder-Fundamental level is expected to be able to build models that use
the basic feature set. The third level covers the full feature set of SysML. An individual certified
at this level is called a Model Builder-Intermediate and is expected to be able to build models that
use the full feature set of SysML. The fourth level covers additional modeling concepts that extend
beyond SysML.

4.2 AUTOMOBILE EXAMPLE OVERVIEW

The following simplified example illustrates how the basic feature set of SysML can be applied as
part of a model-based approach to specify and design an automobile system. This example is similar
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to the automobile example that was introduced in Chapter 1, Section 1.3, which described how the
systems engineering process can be applied to the specification and system level design of an auto-
mobile. In Chapter 1, no assumptions were made regarding the use of a model-based approach. The
example in this chapter highlights how a typical MBSE method can be used to generate modeling
artifacts to help specify and design a system. The MBSE method is similar to the one introduced in
Chapter 3, Section 3.4. Chapters 16 and 17 introduce much more detailed examples of how MBSE
methods can be applied.

This example illustrates most of the SysML basic feature set and includes at least one diagram for
each SysML diagram kind. A few features in the example extend beyond the basic feature set of
SysML—including continuous and streaming flows and generalization sets—because they illustrate
important features for this particular example. These additional features are noted in the example where
they are used. References are also included in this section to the chapters and sections in Part II that
provide a detailed description of these features.

This example also includes user-defined language concepts referred to as stereotypes. Chapter 15
describes how stereotypes are used to customize the language for domain-specific applications. The
user defined concepts used in this example are shown below using the name of the concept in
brackets:

«hardware»
«software»

«store»

«system of interest»

All SysML diagrams include a diagram frame that encloses the diagram header and diagram
content. The diagram header describes the kind of diagram, the diagram name, and additional
information that provides context for the diagram content. Detailed information on diagram
frames and diagram headers is described in Chapter 5, Section 5.2.

4.2.1 PROBLEM SUMMARY

This example describes the use of SysML to specify and design an automobile system. As men-
tioned earlier, the modeling artifacts included in this example are representative of the kinds of
modeling artifacts that are generated from a typical MBSE method similar to the one described in
Chapter 3, Section 3.4. Only a small subset of the system requirements and design are addressed
in this example to highlight the use of the language. The diagrams used in this example are shown
in Table 4.1.

A marketing analysis that was conducted indicated the need to increase the automobile’s
acceleration and fuel efficiency from its current capability. In this simplified example, selected
aspects of the design are considered to support an initial trade-off analysis. The trade-off analysis
includes an evaluation of alternative vehicle configurations that included a 4-cylinder engine and
a 6-cylinder engine to determine if they can satisfy the acceleration and fuel efficiency
requirement.
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Table 4.1 Diagrams Used in Automobile Example

Figure Diagram Kind Diagram Name

4.1 Package diagram Model Organization

4.2 Requirement diagram Automobile System Requirements

4.3 Block definition diagram Automobile Domain

4.4 Use case diagram Operate Vehicle

4.5 Sequence diagram Drive Vehicle

4.6 Sequence diagram Turn On Vehicle

4.7 Activity diagram Control Power

4.8 State machine diagram Drive Vehicle States

4.9 Internal block diagram Vehicle Context

4.10 Block definition diagram Vehicle Hierarchy

4.11 Activity diagram Provide Power

4.12 Internal block diagram Power Subsystem

4.13 Block definition diagram Analysis Context

4.14 Parametric diagram Vehicle Acceleration Analysis

4.15 Timing diagram (not SysML) Vehicle Performance Timeline

4.16 Block definition diagram Engine Specification

4.17 Requirement diagram Max Acceleration Requirement
Traceability

4.18 Package diagram Architect and Regulator Viewpoints

4.3 AUTOMOBILE MODEL

The following subsections describe the system model for the automobile example.

4.3.1 PACKAGE DIAGRAM FOR ORGANIZING THE MODEL

The concept of an integrated system model is a foundational concept for MBSE, as described in Chapter
2, Section 2.1.2. The model contains the model elements, which are stored in a model repository. A par-
ticular model element may appear on zero, one, or multiple diagrams. In addition, a model element often
has relationships to other model elements that may appear on the same diagram or other diagrams.

A model organization is essential to managing the model. A well-organized model is analogous to
having a set of drawers to organize your supplies, where each supply element is contained in a drawer,
and each drawer is contained in a particular cabinet. The model organization facilitates understandabil-
ity, access control, change management, and reuse of the model.

The package diagram for the automobile example is shown in Figure 4.1. The diagram kind is
shown as pkg and the name of the diagram is Model Organization. The package diagram shows how
the model is organized into packages. This model organization includes an expanded set of packages
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pkg [Model] Data [ Model Organization])
Automobile Domain A
_| D
Use Cases Vehicle
Behavior 10 Definitions Requirements
Structure Viewpoints || Behavior
Parametrics Value Types L___| Structure

FIGURE 4.1

Package diagram showing how the model is organized into packages that contain the model elements that
comprise the Automobile Domain.

over those that were introduced in the air compressor example using SysML-Lite in Chapter 3, Section
3.3.2. Each package contains a set of model elements, and each model element is contained in only one
package. The package is said to own the elements that are contained within it. The package is also a
namespace for the contained model elements, giving each model element a unique name within the
model that is called its fully qualified name. A model element in one package can have relationships to
model elements in other packages. Details on how to organize a model with packages are provided in
Chapter 6.

The model organization for this example includes a package called the Automobile Domain. This
package is the top-level model (designated by a triangle) that contains all the other model elements for
the automobile example. The Automobile Domain contains nested packages for Use Cases, Behavior,
Structure, Parametrics, 10 Definitions, Viewpoints, Value Types, and Vehicle. The Vehicle package con-
tains additional nested packages for Requirements, Behavior, and Structure. The Use Cases, Behavior,
Structure, and Parametrics packages contain model elements about the vehicle context and its external
environment, whereas the Vehicle package contains model elements about the vehicle design. The /0
Definitions package contains elements to specify the interfaces, such as port definitions and inputs and
output definitions. The Viewpoints package defines selected views of the model that address specific
stakeholder concerns. The Value Types package contains definitions that are used to specify units for
quantitative properties called value properties.

The rest of this example describes the content of these packages. Model elements contained in pack-
ages can be referenced by their fully qualified name as described above. The qualified name includes
the path name relative to the model in which it is contained using a double colon (::) as a separator. For
example, an activity called Provide Power in the vehicle behavior package in Figure 4.1 is designated
as Automobile Domain::Vehicle::Behavior: :Provide Power.
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req [Package] [ Automobile System Requirements])

«requirement»
Automobile Specification

I

«requirement»

«requirement» «requirement» «requirement»
Production Cost

Passenger and Baggage Vehicle Performance Riding Comfort
Load

«requirement»
Maximum Acceleration «requirement»

d="14.8" «requirement» Reliability
Text = "The vehicle shall Space

accelerate from 0 - 60 mph in

less than 8 seconds under

e e " «requirement»
specified conditions 9

<requirement Occupant Safety
Vibration
" eniions
Top Speed - Emissions
«requirement»
Braking Distance Fuel Efficiency

Id="1.1"

Text = "The vehicle shall
«requirement» achieve a minimum of
Turning Radius 25 miles per gallon

under specified driving

conditions "

l

FIGURE 4.2
Requirement diagram showing the system requirements contained in the Automobile Specification.

4.3.2 CAPTURING THE AUTOMOBILE SPECIFICATION IN A REQUIREMENT DIAGRAM

The requirement diagram for the Automobile System is shown in Figure 4.2. The upper left of the diagram
shows req to indicate its kind as a requirement diagram and displays the diagram name as Automobile
System Requirements. The diagram header also indicates that the diagram frame corresponds to a Package.

The diagram presents the requirements that are typically captured in a text specification. The
requirements are shown in a containment hierarchy to represent their parent—child relationships.
The line with the crosshairs symbol at the top denotes containment. The Automobile Specification is
the top-level requirement that contains the other requirements.

The Automobile Specification contains requirements for Passenger and Baggage Load, Vehicle
Performance, Riding Comfort, Emissions, Fuel Efficiency, Production Cost, Reliability, and Occupant
Safety. The Vehicle Performance requirement contains requirements for Maximum Acceleration, Top
Speed, Braking Distance, and Turning Radius. Each requirement includes a unique identification and
the text of the requirement, and can also include other user-defined properties that are typically associ-
ated with requirements, such as verification status and risk. The text for the Maximum Acceleration
requirement is “The vehicle shall accelerate from 0 to 60 mph in less than 8 seconds under specified
conditions” and the text for the Fuel Efficiency requirement is ‘“The vehicle shall achieve a minimum
of 25 miles per gallon under specified driving conditions.”
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The requirements may have been created in the SysML modeling tool or, alternatively, in a require-
ments management tool or a text document and imported into the model. Once captured in the model,
the requirements can be related to other requirements, design elements, analysis, and test cases using
derive, satisfy, verify, refine, trace, and copy relationships. These relationships can be used to estab-
lish requirements traceability to ensure requirements are satisfied and verified, and to manage change
to the requirements and design. Some relationships are highlighted in Section 4.3.18.

Requirements can be presented using multiple display options to view the requirements, their prop-
erties, and their relationships. A tabular presentation is one display option. Chapter 13 provides a
detailed description of how requirements are modeled in SysML, and Chapter 17, Section 17.3.7, gives
additional guidance for modeling requirements.

4.3.3 DEFINING THE VEHICLE AND ITS EXTERNAL ENVIRONMENT USING A BLOCK
DEFINITION DIAGRAM

In system design, it is important to identify what is external to the system that may either directly or indi-
rectly interact with the system. The block definition diagram for the Automobile Domain in Figure 4.3
defines the Vehicle and the external systems, users, and other entities with which the vehicle may
interact.

A block is a very general modeling concept in SysML that is used to model entities that have structure,
such as systems, hardware and equipment, software, or physical object. That is, a block can represent any
real or abstract entity that can be conceptualized as a structural unit with one or more distinguishing fea-
tures. The block definition diagram captures the relation between blocks, such as a block hierarchy.

In the block definition diagram in Figure 4.3, the Automobile Domain is the top-level block that
provides the context for the Vehicle. The Automobile Domain block is composed of other blocks that
include the Vehicle block (designated as the «system of interest») and other blocks that are external
to the Vehicle. The other blocks include the Driver, Passenger, Baggage, and Physical Environment.

bdd [Package] Structure [Top Level Hierarchy])
«block»
A bile Domain
driver, pass|0..4 bag % pe
«block» «block» «block» «block» «block»
Driver | |Passenger | |Baggage «system of interest» Physical Environment
Vehicle
i i r ee 0.7 atm
«block» «block» «block» «block»
Vehicle Occupant Road External Entity Atmosphere
values values
friction : Real temperature : DegC{unit = DegreeCelsius}]
incline : Radian{unit = Radian} air density : Mass/Volume

FIGURE 4.3

Block definition diagram of the Autormobile Domain showing the Vehicle as the system of interest, along with the
Vehicle Occupants and the Environment. Selected value properties for the Road and Atmosphere are also shown.
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Notice that even though the Driver, Passenger, and Baggage are assumed to be physically enclosed by
the Vehicle, they are not part of the Vehicle, and therefore are external to it.

This whole—part relationship is called a composite association and is indicated by the black diamond
symbol and a line with the arrowhead pointing to the blocks that compose it. The name next to the arrow
on the part side of the composite association identifies a particular usage of a block as described in
Sections 4.3.10 and 4.3.12. The composition hierarchy is explained in Chapter 7, Section 7.3.1. It is dif-
ferent from containment (crosshair symbol), which connects parent to child requirements as shown in
Figure 4.2. Requirement containment hierarchies are described in Chapter 13, Section 13.9.

The Driver and Passenger are subclasses of Vehicle Occupant as indicated by the hollow triangle
symbol. This means that they inherit common features from Vehicle Occupant. In this way, a classifica-
tion can be created by specializing blocks from more generalized blocks.

The Physical Environment is composed of the Road, Atmosphere, and multiple External Entities.
The External Entity can represent any physical object, such as a traffic light or another vehicle, with
which the Driver interacts. The interaction between the Driver and an External Entity can impact how
the Driver interacts with the Vehicle, such as when the Driver sees the traffic light change from green
to yellow or red, and then applies the brakes. The multiplicity symbol 0..* represents an undetermined
maximum number of external entities. The multiplicity symbol can also express a positive integer such
as 4, or a range, such as the multiplicity of 0..4, for the number of Passengers.

Each block defines a structural unit, such as a system, hardware, software, data element, or other
conceptual entity. A block can have a set of features. The features of the block include its value prop-
erties (e.g., weight), its behavior in terms of activities allocated to the block or operations of the
block, and its interfaces as defined by its ports. Together, these features enable a modeler to specify the
block at the level of detail that is appropriate for the intended use.

The Road is a block that has a value property called incline with units of Radians and a value prop-
erty called friction that is defined as a real number. Similarly, Afmosphere is a block that has two value
properties for temperature and air density. These value properties and others are used to support the
analysis of vehicle acceleration and fuel efficiency, which are discussed in Sections 4.3.13-16.

The block definition diagram specifies the blocks and their interrelationships. It is often used in sys-
tems modeling to depict multiple levels of the system hierarchy from the top-level domain or context block
(e.g., Automobile Domain) down to the blocks representing the vehicle components. Chapter 7 provides a
detailed description of how blocks are modeled in SysML, including their features and relationships.

4.3.4 USE CASE DIAGRAM FOR OPERATE VEHICLE

The use case diagram for Operate Vehicle in Figure 4.4 depicts some of the high-level functionality
involved in operating the vehicle. The use cases are contained in the Use Cases package and include
Enter Vehicle, Exit Vehicle, Control Vehicle Accessory, and Drive Vehicle. The Vehicle is the subject of
the use cases and is depicted as a rectangle. The Vehicle Occupant is an actor that is external to the
vehicle and is shown as a stick figure. In a use case diagram, the subject (e.g., Vehicle) is used by the
actor (e.g., Vehicle Occupant) to achieve the actor goals defined by the use cases (e.g., Drive Vehicle).
The actors are allocated to the blocks with the same name in Figure 4.3 to establish equivalence between
them. The allocation is not shown in the diagrams.

The Passenger and Driver are both a type of Vehicle Occupant. All vehicle occupants participate in
entering and exiting the vehicle and controlling vehicle accessories, but only the Driver participates in
Drive Vehicle.
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uc [Package] Use Cases [Operate Vehicle])
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FIGURE 4.4

The use case diagram describes the major functionality in terms of how the Vehicle is used by the Vehicle
Occupants to Operate Vehicle. The Vehicle and Vehicle Occupants are defined on the block definition diagram
in Figure 4.3.

SysML provides the ability to specify relationships between use cases. The Enter Vehicle and Exit
Vehicle use cases include the Open Door use case. The Open Door use case defines common function-
ality that is always performed when the Enter Vehicle and Exit Vehicle use cases are performed. Enter
Vehicle and Exit Vehicle are referred to as the base use cases, and Open Door is referred to as the
included use case. The relationship is called the include or inclusion relationship. The Perform Anti-
Lock Braking use case extends the base use case called Drive Vehicle. Anti-lock braking is only per-
formed under certain conditions as specified by the extension point called Loss of Traction. This
relationship is called extension or extends, which relates the extending use case (i.e., Perform Anti-
Lock Braking) to the base use case (i.e., Drive Vehicle). In addition to inclusion and extension relation-
ships, use cases can be specialized as indicated by the subclasses of the Control Vehicle Accessory use
case. The specialized use cases for Control Climate Control and Control Entertainment System all
share the common functionality of Control Vehicle Accessory use case, but also have their own specific
functionality associated with the particular accessory.

Use cases define the goals for using the system across the system lifecycle, such as the goals associ-
ated with manufacturing, operating, and maintaining the vehicle. The primary emphasis for this exam-
ple is the operational use case for Drive Vehicle to address the acceleration and fuel efficiency
requirements. Chapter 12 provides a detailed description of how use cases are modeled in SysML.

Use cases are often related to requirements, since use cases represent the high-level functionality or
goals for the system. A use case often refines a set of requirements. Sometimes, a use case textual
description is defined to accompany the use case definition. The steps in the use case description can
also be captured as SysML requirements and related to the use case using a refine relationship.
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The use cases are realized through interactions between the actors (e.g., Driver) and the subject
(e.g., Vehicle) as described in the next section.

4.3.5 SPECIFYING DRIVE VEHICLE BEHAVIOR WITH A SEQUENCE DIAGRAM

The behavior for the Drive Vehicle use case in Figure 4.4 is shown in the sequence diagram in
Figure 4.5. The sequence diagram specifies the interaction between the Driver and the Vehicle as indi-
cated by the names at the top of the lifelines. Time proceeds vertically down the diagram. The first
interaction is Turn On Vehicle. This is followed by Driver and Vehicle interactions to Control Power,
Control Brake, and Control Direction. These three interactions occur in parallel as indicated by par.
The alt on the Control Power interaction stands for alternative and indicates that the Control Neutral
Power, Control Forward Power, or Control Reverse Power interaction occurs as a condition of the
vehicle state shown in brackets. The state machine diagram in Section 4.3.8 specifies the vehicle state.
The Turn Off Vehicle interaction occurs following these interactions.

The interaction uses in the figure each reference a more detailed interaction as indicated by ref. The
referenced interaction for Turn On Vehicle is another sequence diagram that is illustrated in Section
4.3.6. The sequence diagrams for the Drive Vehicle and other referenced interactions are contained in the
Automobile Domain::Behavior package. The references for Control Neutral Power, Control Forward
Power, and Control Reverse Power are allocated to an activity diagram that is described in Section 4.3.7.

4.3.6 REFERENCED SEQUENCE DIAGRAM TO TURN ON VEHICLE

The Turn On Vehicle sequence diagram in Figure 4.6 is an interaction that is referenced in the sequence
diagram in Figure 4.5. As stated previously, time proceeds vertically down the diagram. In this exam-
ple, the sequence diagram shows the driver sending an ignition on signal to start the vehicle. The
vehicle sends a vehicle on signal to the driver that the vehicle has started.

The sequence diagram can include multiple kinds of messages. In this example, the message is
asynchronous as indicated by the open arrowhead. For asynchronous messages, the sender does not
wait for a reply. A synchronous message is shown with a filled arrowhead. A synchronous message is
an operation call that specifies a request for service, where the sender waits for a reply. The arguments
of the operation call are the input data and return.

The example in Figure 4.6 is very simple. More complex sequence diagrams can include multiple
message exchanges between multiple lifelines that represent interacting entities. The sequence diagram
also provides additional capability to express behavior that includes other kinds of messages, timing
constraints, additional control logic, and the ability to decompose the behavior of a lifeline into the
interaction of its parts. Chapter 10 provides a detailed description of how interactions are modeled with
sequence diagrams.

4.3.7 CONTROL POWER ACTIVITY DIAGRAM

The sequence diagram is effective for expressing behavior that emphasizes control flow and discrete sig-
nal flow, such as the Turn On Vehicle sequence diagram in Figure 4.6. However, behaviors that emphasize
input and output flow as well as control flow, such as the interactions to Control Power, Control Brake,
and Control Direction, can sometimes be more effectively expressed with activity diagrams.
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FIGURE 4.5

The Drive Vehicle sequence diagram describes the interaction between the Driver and the Vehicle to realize
the Drive Vehicle use case in Figure 4.4.
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sd Turn On Vehicle
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FIGURE 4.6

Sequence diagram for the Turn On Vehicle interaction that was referenced in the Drive Vehicle sequence
diagram in Figure 4.5, showing the message from the Driver requesting Vehicle to start, and the Vehicle
responding with the vehicle on reply.

The Drive Vehicle sequence diagram in Figure 4.5 includes the references to Control Neutral Power,
Control Forward Power, and Control Reverse Power. Activity diagrams can be used to express the
details of these interactions. To accomplish this, the Control Neutral Power, Control Forward Power,
and Control Reverse Power interactions are allocated to a corresponding Control Power activity using
the SysML allocate relationship (not shown). This activity is contained in the Behavior package of the
Automobile Domain.

The activity diagram in Figure 4.7 shows the actions required of the Driver and the Vehicle to Con-
trol Power. The activity partitions (or swim lanes) correspond to the Driver and the Vehicle. The actions
in the activity partitions specify functional requirements that the Driver and Vehicle must perform.

When the activity is initiated, it starts execution at the initial node (filled in circle), and then pro-
ceeds to the fork node to enable the start of both the Control Accelerator Position action and the Con-
trol Gear Select action that is performed by the Driver. The output of the Control Accelerator Position
action is the Accelerator Cmd, which is a continuous input to the Provide Power action that the Vehicle
must perform. The Control Gear Select action produces an output called Gear Select. The output of the
Provide Power action is the continuous forque out to accelerate the Vehicle. When the Ignition Off
signal is received by the Vehicle (called an accept event action), the activity terminates at the activity
final node (bulls-eye symbol). Based on this scenario, the Driver is required to Control Accelerator
Position and Control Gear Select, and the Vehicle is required to Provide Power. The Provide Power
action is a call behavior action that invokes a more detailed behavior when it executes, which is shown
in Figure 4.11. (Note: «continuous» is not part of the basic feature set.)

Activity diagrams include semantics for precisely specifying the behavior in terms of the flow of
control and flow of inputs and outputs. A control flow is used to specify the sequence of actions and is
depicted as a dashed line with an arrowhead (as shown in Figure 4.7) going to and from the fork node.
An object flow is used to specify the flow of inputs and outputs, which are depicted by the rectangular
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FIGURE 4.7

Activity diagram allocated from the Control Neutral, Forward, and Reverse Power interaction uses that are
referenced in the Drive Vehicle sequence diagram in Figure 4.5. It shows the continuous Accelerator Cmd
input and the Gear Select input from the Driver to the Provide Power action that the Vehicle must perform.

pins on the actions. The object flow (solid line with arrowhead) connects the output pin from one action
to the input pin of another action. Chapter 9 provides a detailed description of how activities are
modeled.

4.3.8 STATE MACHINE DIAGRAM FOR DRIVE VEHICLE STATES

The state machine diagram for the Drive Vehicle States is shown in Figure 4.8. This diagram shows
the states of the Vehicle and the events that can trigger a transition between the states.

When the Vehicle is ready to be driven, it is initially in the vehicle off state. The receipt of the ignition on
signal from the sequence diagram in Figure 4.6 is an event that triggers a transition to the vehicle on state. The
text on the transition indicates that the Start Vehicle behavior is executed prior to entering the vehicle on state.

Upon entry to the vehicle on state, an entry behavior is performed, Check Status, to confirm the
health of the vehicle. Following completion of the entry behavior, the Vehicle initiates the Provide
Power behavior called a do behavior that is referred to in the activity diagram in Figure 4.7.

Once the Vehicle has entered the vehicle on state, it immediately transitions to the neutral state. A
Sforward select event triggers a transition to the forward state if the guard condition [speed>=0] is
true. The neutral select event triggers the transition from the forward state to return to the neutral state.
The state machine diagram shows the additional transitions between the neutral and reverse states. An
ignition off event triggers the transition back to the vehicle off state. Prior to exiting the vehicle on state
and transitioning to the vehicle off state, the Vehicle performs an exit behavior to Turn Off Accessories.
From the vehicle off state, the Vehicle can re-enter the vehicle on state when an ignition on event occurs.
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stm [State Machine] Drive Vehicle States)

ignition on / Start Vehicle ignition off / Turn Off Vehicle

out of service

vehicle on

entry / Check Status
do / Provide Power
exit/ Turn Off Accessories

neutral select

forward select [speed>=0]

neutral

reverse select [speed<=0]

FIGURE 4.8

A state machine diagram that shows the Drive Vehicle States and the transitions between them.

neutral select

This state machine can be owned by the Vehicle block, in which case it resides in the same package as
the Vehicle block, or it can be owned by the vehicle’s Behavior package and reside within that package.

A state machine can specify the lifecycle behavior of a block in terms of its discrete states and tran-
sitions, and is often used with sequence and/or activity diagrams, as shown in this example. State
machines have many other features, which are described in Chapter 11, including support for multiple
regions to describe concurrent behaviors and additional transition semantics.

4.3.9 VEHICLE CONTEXT USING AN INTERNAL BLOCK DIAGRAM

The Vehicle Context Diagram is shown in Figure 4.9. The diagram shows the interfaces between the
Vehicle, the Driver, and the Physical Environment (i.e., Road, Atmosphere, and External Entity) that
were defined in the block definition diagram in Figure 4.3. The Vehicle directly interfaces with the
Driver, the Atmosphere, and the Road. The Driver interfaces with the External Entities such as a traffic
light or another vehicle via the Sensor Input to the Driver. However, the Vehicle does not directly inter-
face with the External Entities. The multiplicity on the External Entity is consistent with the multiplic-
ity shown in the block definition diagram in Figure 4.3.

This context diagram is an internal block diagram that shows how the parts of the Automobile
Domain block from Figure 4.3 are connected. It is called an internal block diagram because it repre-
sents the internal structure of a higher-level block, which in this case is the Automobile Domain block.
The Vehicle ports are shown as the small squares on the boundary of the parts and specify interfaces
with other parts. Connectors are shown as lines between the ports and define how parts connect to one
another. Parts can also be connected without ports when the details of the interface are not of interest
to the modeler as indicated by the connections to the Atmosphere and External Entity.
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FIGURE 4.9

The internal block diagram for the Automobile Domain describes the Vehicle Context, which shows the
Vehicle and its external interfaces with the Driver and the Physical Environment that were defined in
Figure 4.3.

The external interfaces that enable the Vehicle to provide power are shown in Figure 4.9. The inter-
faces between the rear tires and the road are shown, since the Vehicle is assumed to be rear wheel drive.
The interfaces to both rear tires are shown, because the power can be distributed differently to the left
and right rear wheels depending on tire-to-road traction and other factors. The interfaces between the
front tires and the road are not shown in this diagram. It is common modeling practice to present only
the information relevant to the purpose of the diagram, even though additional information may be
included in the model.

The black-filled arrowheads on the connector are called item flows. They represent the items flow-
ing between parts. The items that flow may include mass, energy, and/or information. In this example,
the Accelerator Cmd that was previously defined in the activity diagram in Figure 4.7 flows from the
Driver Foot IF to the Vehicle Accelerator IF, and the Gear Select flows from the Driver Hand IF to the
Vehicle Gear Select IF. The object flows that connect the inputs to the outputs on the activity diagram
in Figure 4.7 can be allocated to the item flows on the connectors in the internal block diagram. Alloca-
tions are discussed as a general-purpose relationship for mapping one model element to another in
Chapter 14.

SysML ports provide substantial capability to model interfaces. Ports can specify the items that
can flow in or out of a part, and the services that are either required or provided by a part. The port
provides a mechanism to integrate the behavior of the system with its structure by enabling access
to a part’s behavior and other features. (Refer to the discussion on ports in Chapter 7,
Section 7.6.)

The internal block diagram enables the modeler to specify both the external and internal interfaces
of a block and shows how its parts are connected. Details of how to connect parts on an internal block
diagrams are described in Chapter 7, Section 7.3.
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FIGURE 4.10

A block definition diagram of the Vehicle Hierarchy that shows the Vehicle and its components. The Power
Train is further decomposed into its components, and the Vehicle Processor includes the Vehicle Controller
software.

4.3.10 VEHICLE HIERARCHY REPRESENTED ON A BLOCK DEFINITION DIAGRAM

The example to this point has focused on specifying the vehicle in terms of its external interactions and
interfaces. The Vehicle package shown in Figure 4.1 contains the description of the Vehicle and its parts
in terms of its requirements, structure, and behavior. The Vehicle block is contained in the Automobile
Domain::Vehicle::Structure package.

The Vehicle Hierarchy in Figure 4.10 is a block definition diagram that shows the decomposition of
the Vehicle into its components. The Vehicle is composed of the Chassis, Body, Interior, Power Train,
and other components. Each hardware component is designated as «hardware».

The Power Train is further decomposed into the Engine, Transmission, Differential, and Wheel.
Note that the right rear and left rear indicate different usages of a Wheel in the context of the Power
Train. Thus, each rear wheel has a different role and may be subject to different forces, such as is the
case when one wheel loses traction. The front wheels are not shown in this diagram.

The Engine may be either 4 or 6 cylinders as indicated by the specialization relationship. The 4- and
6-cylinder engine configurations are alternatives being considered to satisfy the acceleration and fuel
efficiency requirements. The engine size is { complete, disjoint}, which asserts that the 4- and 6-cylinder
engines represent all possible engine types for this Vehicle, and that the 4- and 6-cylinder engines are
mutually exclusive. (Note: This construct is called a generalization set and is not part of the SysML
basic feature set.)
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The Vehicle Controller <software» specifies a software component that is allocated to the Vehicle
Processor as shown in its allocation compartment. In this example, the software controls many of the
automobile engine and transmission functions to optimize engine performance and fuel efficiency, and
the Vehicle Processor is the execution platform for the vehicle control software. The allocatedFrom,
label indicates that the allocation is from the software to the processor.

The Fuel is shown in a references compartment of the Fuel Tank block. It is indicated as a reference
because it is stored by the Fuel Tank but is not physically part of the Fuel Tank.

The internal vehicle interactions and interconnections between the components are represented in a
way similar to the external Vehicle interactions and interconnections described above. The modeling
artifacts for this next lower level of design are used to specify the components of the Vehicle system as
described in the next sections.

4.3.11 ACTIVITY DIAGRAM FOR PROVIDE POWER

The activity diagram in Figure 4.7 shows that the vehicle must Provide Power in response to the driver
accelerator command and generate torque out at the road surface. The Provide Power activity diagram
in Figure 4.11 shows how the vehicle components generate this torque.

The external inputs to the activity include the :Accelerator Cmd and :Gear Select from the Driver, and
:Air from the Atmosphere to support engine combustion. The outputs from the activity are the forque right
rear and torque left rear from the right and left rear wheels respectively to the road to accelerate the Vehi-
cle. The inputs and outputs for the :Provide Power action in Figure 4.7 are elaborated as a result of further
refinement of the model, and now include :Air as an input, and torque from each rear wheel. Some of the
other inputs and outputs, such as exhaust from the engine, are not included for simplicity. The activity
partitions represent usages of the vehicle components shown in the block definition diagram in Figure 4.10.

The Vehicle Controller accepts Driver inputs including the :Accelerator Cmd and :Gear Select, and
provides outputs to the Engine and Transmission. The Fuel Tank stores and dispenses the :Fuel to the
Engine. The :Fuel-Air Cmd from the Vehicle Controller and :Air from the Atmosphere are inputs to the
Generate Torque action. The engine torque is input to the Amplify Torque action performed by the Trans-
mission. The amplified torque is input to the Distribute Torque action performed by the Differential, which
distributes torque to the right and left rear wheels. The wheels Provide Traction to the road surface to
generate the torque to accelerate the Vehicle. The Differential monitors and controls the difference in
torque to the rear wheels. If one of the wheels loses traction, the Differential sends a Loss of Traction signal
to the braking system to adjust braking. The Loss of Traction signal is sent using a send signal action.

A few other items are worth noting in this example. The flows are shown to be continuous for all but
the Gear Select. The inputs and outputs continuously flow in and out of the actions. Continuous means
that the delta time between arrival of the inputs or outputs approaches zero. Continuous flows build on the
concept of streaming inputs and output parameters, which means that the inputs are accepted and outputs
are produced while the action is executing. Conversely, nonstreaming inputs are only available prior to the
start of the action execution, and nonstreaming outputs are produced only at the completion of the action
execution. The ability to represent streaming and continuous flows adds a significant capability to classic
behavioral modeling using functional flow diagrams. The continuous flows are assumed to be streaming
but this is not shown in the diagram. (Note: Continuous and streaming are not part of the basic feature set.)

Modeling of activities provides the capability to specify behavior precisely in terms of the flow of
control and data. This is explained in Chapter 9.
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4.3.12 INTERNAL BLOCK DIAGRAM FOR THE POWER SUBSYSTEM

The previous activity diagram describes how the parts of the system interact to Provide Power. The
parts of the system are represented by the activity partitions in the activity diagram. The internal block
diagram for the Vehicle in Figure 4.12 shows how the parts are interconnected via their ports to achieve
this functionality. This is a structural view of the system, as opposed to the behavioral view that was
expressed in the activity diagram.

The internal block diagram shows the Power Subsystem that includes the parts of the Vehicle that
interact to Provide Power. The frame of the diagram corresponds to the Vehicle black box. The ports on
the diagram frame in Figure 4.12 correspond to the same ports shown on the Vehicle in the Vehicle
Context diagram in Figure 4.9. The external interfaces are preserved as the internal structure of the
Vehicle is further elaborated.

The Engine, Transmission, Differential, right rear:Wheel and left rear:Wheel, Vehicle Proces-
sor, and Fuel Tank are interconnected via their ports. The Fuel is stored in the Fuel Tank as indi-
cated by «store». Fuel is shown as a dashed rectangle to indicate that the fuel is not part of the
Fuel Tank, but is referenced by it. Only selected item flows are shown on the connectors. The item
flows are allocated from the inputs and outputs on the Provide Power activity diagram in
Figure 4.11.
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The activity diagram for Provide Power shows how the Vehicle components generate the torque to move the
vehicle. This activity diagram realizes the Provide Power action in Figure 4.7 with activity partitions that
correspond to the components in Figure 4.10.

Each subsystem can be expressed in a way similar to the Power Subsystem to realize specific func-
tionality, such as braking and steering. The enclosing frame for each internal block diagram can be the
same Vehicle block, but each diagram shows only the parts relevant to the particular subsystem. This
approach can be used to present a subsystem view of the vehicle’s internal structure. As an example, to
express an internal block diagram for a steering subsystem, additional components would need to be
defined beyond those shown on the block definition diagram in Figure 4.10, including the steering
wheel, steering column, power steering pump, steering linkage, and front wheels. A composite view of
all of the interconnected parts for all subsystems can also be presented on a single internal block dia-
gram, but this would likely contain so much information that it would not communicate effectively.

An important concept in SysML is the distinction between definition and usage. Certain kinds of
model elements, such as blocks, can be defined one time, but their usage in different contexts can be
uniquely identified. In Section 4.3.10, the right rear and left rear are described as different usages of a
Wheel in the context of the Power Train. A block represents the generic definition of the part, and the
part represents a usage of a block in a particular context. More formally, a block is the type of the part,
and a part is typed by a block.
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The internal block diagram for the Power Subsystem shows how the parts of the Vehicle that Provide Power
are interconnected. The parts interact as specified by the activity diagram in Figure 4.11.

In Figure 4.10 and Figure 4.12, the right rear and left rear are different parts that represent distinct
usages of Wheel in the context of the Power Train. Each usage of the block requires a composition
relationship on the block definition diagram, such as the right rear wheel and left rear wheel in Figure
4.10. The colon (:) notation is used in Figure 4.12 to distinguish the part (i.e., usage) from the block
(i.e., definition). The name to the right of the colon, Wheel, is the block. The names to the left of the
colon, right rear and left rear, are particular parts or usages of Wheel. By convention, the usage names
begin in lower case and the definitions begin with upper case.

A part enables the same block, such as a Wheel, to be reused in different contexts and be uniquely
identified by its usage, such as right rear and left rear. Each part may be further redefined to have
behaviors, value properties, and constraints that apply to its particular usage.

The concept of definition and usage applies to parts and blocks, but also applies to many other SysML
language constructs. One example is that item flows can have both a definition and usage. For example,
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the item flow entering the fuel tank in Figure 4.12 can be in: Fuel and the item flow exiting the fuel tank can be
out : Fuel. Both flows are defined by Fuel, but in and out represent different usages of Fuel in the
Vehicle context (Note: the usages are not shown in the figure). The ports on blocks and pins on actions
can also have definitions that specify detailed interface information that can be reused. As an example, the
interface that enables the flow of 110 volt 60 cycle power can be defined one time and reused. For the Automo-
bile example, most of the pins and ports have been typed and are contained in the /O Definitions package.

As mentioned previously, Chapter 7 provides the detailed language description for both block defi-
nition diagrams and internal block diagrams, and the key concepts for modeling blocks, parts, ports,
and connectors.

4.3.13 DEFINING THE EQUATIONS TO ANALYZE VEHICLE PERFORMANCE

Critical requirements for the design of this automobile are to accelerate from 0 to 60 mph in less than
8 seconds, while achieving a fuel efficiency of greater than 25 miles per gallon. These two requirements
impose conflicting requirements on the design space, because increasing the maximum acceleration
capability of the vehicle can result in a design with lower fuel efficiency. Two alternative configurations
(4- and 6-cylinder engine) are evaluated to determine which configuration is the preferred solution to
meet the acceleration and fuel efficiency requirements.

The 4-Cylinder Engine and 6-Cylinder Engine alternatives are shown in the Vehicle Hierarchy in
Figure 4.10. There are many possible impacts to the automobile design that may result from the selec-
tion of different engines, such as the impact on vehicle weight, body shape, and electrical power. This
simplified example only considers some of the impacts on the Power Subsystem. The vehicle controller
is assumed to control the fuel and air mixture. It also controls when the automatic transmission changes
the gear to optimize engine and overall performance.

The Analysis Context block definition diagram in Figure 4.13 is used to define the equations for
these analyses. This diagram introduces another kind of block called a constraint block. Instead of
defining systems and components, the constraint block defines constraints in terms of reusable equa-
tions and their parameter definitions that can be used by one or more analyses.

In this example, the Vehicle Acceleration Analysis block is in the Parametrics package, as indicated
by the diagram header, and comprises several constraint blocks that are used to analyze the vehicle
acceleration. This analysis is performed to determine whether either the 4- or 6-cylinder vehicle con-
figuration can satisfy its acceleration requirement. The constraint blocks define generic equations for
Gravitational Force, Drag Force, Power Train Force, Total Force, Acceleration, and an Integrator.
The Total Force equation, as an example, shows that f7 is the sum of fi, fj, and fk. Note that the param-
eters are defined along with their units in the constraint block.

The Power Train Force is further decomposed into other constraint blocks that express the torque equa-
tions for the Engine, Transmission, Differential, and Wheels. The equations are not explicitly defined, but the
critical parameters of the equations are identified. It is often useful in the early stages of an analysis to iden-
tify the critical parameters but defer definition of the equations until the detailed analysis is performed.

The Vehicle Acceleration Analysis block also references the Automobile Domain block that was
originally shown in the block definition diagram in Figure 4.3. The Automobile Domain is the subject
of the analysis. By referencing the Automobile Domain, the value properties of the Vehicle and the
Physical Environment can be accessed and bound to the parameters of the generic equations, as
described in the next section.
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FIGURE 4.13

The block definition diagram for the Analysis Context that defines the equations for analyzing the vehicle
acceleration requirement. The equations and their parameters are specified using constraint blocks. The
Automobile Domain block from Figure 4.3 is referenced since it is the subject of the analysis.

4.3.14 ANALYZING VEHICLE ACCELERATION USING THE PARAMETRIC DIAGRAM

The previous block definition diagram defined the equations and associated parameters needed to ana-
lyze the system. The parametric diagram in Figure 4.14 shows how these equations are used to ana-
lyze the time for the Vehicle to accelerate from O to 60 mph and satisfy the maximum acceleration
requirement. The diagram frame corresponds to the Vehicle Acceleration Analysis block from the block
definition diagram in Figure 4.13.

The parametric diagram shows a network of constraints. Each constraint is a usage of a constraint
block defined in the block definition diagram in Figure 4.13. The equations for some of the constraints
are shown on this parametric diagram. The parameters of the equations are shown as small rectangles
flush with the inside boundary of the constraint.

A parameter in one equation can be bound to a parameter in another equation by a binding
connector. An example of this is the parameter f7 in the Total Force equation, which is bound to the
parameter fin the Acceleration equation. This means that f7 in the Total Force equation is equal to fin
the Acceleration equation.

The parameters can also be bound to value properties of blocks to equate the parameter of an equa-
tion to a value property of the system or environment. The value properties are shown as rectangles
nested within the ad:Automobile Domain. An example is the binding of the coefficient of drag
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The parametric diagram that uses the equations defined in Figure 4.13 to analyze vehicle acceleration. The
parameters of the equations are bound to other parameters and to value properties of the Vehicle and its
Physical Environment, some of which were defined in Figure 4.3.

parameter cd in the Drag Force equation to the drag property called drag coef, which is a value prop-
erty of the vehicle Body. Sometimes it is more convenient not to show the nested parts but identify the
value properties using the dot notation. The drag coefficient would be shown as ad.v.b.drag coef to
indicate that this is a value property of the body b, which is part of the vehicle v that is part of the Auto-
mobile Domain ad. Another example is the binding of the road incline angle to the angle theta in the
gravity force equation. This binding enables values of parameters of generic equations to be set equal
to values of specific value properties of the blocks. In this way, generic equations can be reused to ana-
lyze different designs by binding the parameters of the generic equations to value properties of different
designs.

The parametric diagram and related modeling information can be used to specify an analysis that is
executed in separate simulation or analysis tools as describe in Chapter 18, Sections 18.2.2 and 18.4.
The simulation or analysis tools can be used to perform sensitivity analysis and determine the property
values that are required to satisfy the acceleration requirements. In this example, only some of the
vehicle properties are shown. However, a more complete depiction would show the binding of other
vehicle value properties to other constraint parameters. Although not shown in Figure 4.14, the Power
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FIGURE 4.15

Analysis results from executing the constraints in the parametric diagram in Figure 4.14, showing the Vehicle
Speed and Vehicle State as a function of time. This is captured in a UML timing diagram.

Train Force constraint includes nested constraints consistent with the constraint blocks that compose it
from the Analysis Context block definition diagram in Figure 4.13.

In addition to the acceleration and fuel efficiency requirements, other analyses may address require-
ments for braking distance, vehicle handling, vibration, noise, safety, reliability, production cost, and
others. These analyses can be performed to determine the required property values of the system com-
ponents (e.g., Body, Chassis, Engine, Transmission, Differential, Brakes, Steering Assembly) to satisfy
the overall system requirements. The parametrics enable the critical value properties of the system
design to be identified and integrated with parameters in the analytical models. Details of how to model
constraint blocks and their usages in parametric diagrams are described in Chapter 8.

4.3.15 ANALYSIS RESULTS FROM ANALYZING VEHICLE ACCELERATION

As mentioned in the previous section, the parametric diagram is expected to specify an analysis that is
executed in an engineering analysis tool to provide the analysis results. This may be a separate special-
ized analysis tool, such as a simple spreadsheet or a high-fidelity performance simulation, or it may be
a capability that the SysML modeling tool provides. The results from the execution then provide values
that can be used to update the value properties in the SysML model.

The analysis results from executing the constraints in the parametric diagram are shown in
Figure 4.15. This example uses the UML timing diagram to display the results. The timing diagram is
not one of the SysML diagram kinds. It can be used with SysML, along with other more robust visual-
ization methods such as response surfaces, to show multi-parameter relationships. In this timing dia-
gram, the Vehicle Speed is shown as a function of time, and the Vehicle State is shown as a function of
time. The Vehicle states correspond to nested states within the forward state in Figure 4.8. Based on the
analysis performed, the 6-cylinder (V6) vehicle configuration is able to satisfy its acceleration
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requirement. A similar analysis showed that the 4-cylinder (V4) vehicle configuration does not satisty
the requirement.

4.3.16 DEFINING THE VEHICLE CONTROLLER ACTIONS TO OPTIMIZE ENGINE
PERFORMANCE

The analysis results showed that the V6 configuration is needed to satisfy the vehicle acceleration
requirement. Additional analysis is needed to assess whether the V6 configuration can satisfy the fuel
efficiency requirement of a minimum of 25 miles per gallon under the stated driving conditions, as
specified in the Fuel Efficiency requirement in Figure 4.2.

The activity diagram to Provide Power in Figure 4.11 is used to support the analysis needed to
optimize fuel efficiency and engine performance. The :Vehicle Controller «software» is allocated to
the Vehicle Processor, as described in Section 4.3.10, and includes an action to Control Fuel Air
Mixture that controls the engine accelerator command. The inputs to this action include the Accel-
erator Cmd from the Driver and Engine Parameters such as revolutions per minute (rpm) and engine
temperature from the Engine. The Vehicle Controller also includes the Control Gear action to deter-
mine when to change gears based on engine speed (i.e., rpm) to optimize performance and fuel
efficiency. The specification of the Vehicle Controller software can include a state machine diagram
that changes state in response to the inputs consistent with the state machine diagram in Figure 4.8.

The specification of the algorithms to realize the Vehicle Controller actions requires further analy-
sis. The algorithm can be defined by further specifying the actions as mathematical and logical expres-
sions that can be captured in a more detailed activity diagram or directly in code. A parametric diagram
can also be developed to specify the algorithm performance requirements that constrain the input and
output of the Vehicle Controller actions. For example, the constraints may specify the required fuel and
air mixture as a function of rpm and engine temperature to achieve optimum fuel efficiency. The algo-
rithms are used to control fuel flow rate and air intake, and perhaps other parameters, to satisfy these
constraints. Based on the engineering analysis, whose details are omitted here, the V6 engine is able to
satisfy the fuel efficiency requirements as well as the acceleration requirements, and is selected as the
preferred vehicle system configuration.

4.3.17 SPECIFYING THE VEHICLE AND ITS COMPONENTS

The block definition diagram in Figure 4.10 defined the blocks for the Vehicle and its components. The
model is used to specify the Vehicle and each of its components in terms of the functions they perform,
their interfaces, and their performance and physical properties. Other aspects of the specification may
include a state machine to represent the state-based behavior of the system and its components, and
specification of the items that are stored by the system and its components, such as fuel in the fuel tank
or data in computer memory.

A simple example is the specification of the 6-Cylinder Engine block shown on the block definition
diagram in Figure 4.16. The Engine block and the 6-Cylinder Engine block were originally shown in
the Vehicle Hierarchy block definition diagram in Figure 4.10.

In this example, the Engine hardware element performs a function called generate torque,
which is shown as an operation of the block in the operations compartment. This operation corre-
sponds to the Generate Torque action in Figure 4.11. The ports on the Engine specify its interfaces
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bdd [Package] Structure [Engine Specification] )

«block»
«hardware»

Engine

values

weight : LBS

combustion efficiency : Percent
max power : Horsepower
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structure

<>| : Engine Control IF
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T
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«hardware»
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:Fuel IF

parts
cyl : Cylinder [6]

FIGURE 4.16

A block definition diagram that shows the Engine block and the features used to specify the block. This block
was previously shown in the Vehicle Hierarchy block definition diagram in Figure 4.10.

as Air IF, Fuel IF, Engine Control IF, and Engine Out IF. Selected value properties of the engine
are shown in the values compartment that represent its performance and physical properties,
including its displacement, combustion efficiency, max power, and weight. Each value property is
typed by a value type that specifies its data type (e.g., integer, real) and units (e.g., Percent, Cubic
Inches).

The 6-Cylinder Engine block is a subclass of the generic Engine block and inherits all of the
features from Engine. However, the 6-Cylinder Engine is a specialized engine that contains six
Cylinders, as indicated in its parts compartment. In addition, the 6-Cylinder Engine may define
values for each value property contained in the generic Engine, such as the max power and weight.
This information is derived from the parametric analysis discussed in Sections 4.3.13—-15.

Other components of the vehicle can be specified in a similar way. If desired, text requirements can
be written to correspond to the functional, interface, performance, and physical requirements associ-
ated with each block to create traditional text specifications from the model.

4.3.18 REQUIREMENTS TRACEABILITY

The Automobile System Requirements were shown in Figure 4.2. Capturing the text-based requirements
in the SysML model provided the means to establish traceability between the text-based requirements
and other specification, design, analysis, and verification elements of the model.

The requirements traceability for the Maximum Acceleration requirement is shown in Figure 4.17.
This requirement traces to a Market Analysis, which was conducted in support of the system
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requirements analysis. The requirement is satisfied by the Provide Power activity that was shown in
Figure 4.11. The Max Acceleration test case is also shown as the method to verify that the requirement
is satisfied. In addition, the Engine Power requirement is derived from the Maximum Acceleration
requirement and contained in the Engine Specification. The rationale for deriving the requirement
refers to the Vehicle Acceleration Analysis parametric diagram in Figure 4.14. The 6-Cylinder Engine
block refines the Engine Specification by more precisely expressing the text requirements. The above
relationships enable traceability from the system requirements with the supporting rationale to the
system design, test cases, and analysis.

The direction of the arrows points from the Provide Power activity, Max Acceleration test case, and
Engine Power requirement to the Maximum Acceleration as the source requirement. This is in the oppo-
site direction from what is traditionally used to depict requirements flow-down. The direction reflects the

req [Package] Automobile Specification [ Max Acceleration Requirements Traceability ])

«artifacr» [
Market Analysis

ot Py

«trace»

L
«requirement»
Maximum Acceleration

Id="1.4.8" «rationale»
Text = "The vehicle shall Refer to Vehicle
accelerate from 0 - 60 mph in Acceleration Analysis
less than 8 seconds under parametric diagram
specified conditions "

71T N 4
/

«verify»
/ «requirement»
Engine Specification

«testCase» \ ( «deriveReqt» ﬂ\
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\ |
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Text = "The max engine ‘
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than ..." ‘

«satisfy» ‘
N
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FIGURE 4.17

The requirement diagram showing the traceability of the Maximum Acceleration requirement that was
displayed in the Automobile Specification in Figure 4.2. The traceability to a text-based requirement includes
the design elements to satisfy it, other requirements derived from it, and a test case to verify it. Rationale for
the deriveReqt relationship based on parametric analysis is also shown.
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dependency of the design, test case, and derived requirement on the source requirement, such that if the
source requirement changes, the design, test case, and derived requirement may also need to change.

The requirements are supported by multiple notation options including the direct, callout, and tabu-
lar presentation. Details of how SysML requirements and their relationships are modeled are described
in Chapter 13.

4.3.19 VIEW AND VIEWPOINT

SysML includes the concept of view and viewpoint to reflect perspectives of different stakeholders.
In Figure 4.18, the Architect and Regulator viewpoints reflect perspectives of the System Architect
and National Highway Traffic Safety Administration stakeholders, respectively. These viewpoints
include identification of the stakeholders, purpose, language, and methods for constructing a view
of the model to address their concerns. In this example, the System Architect is concerned about the
fuel economy versus acceleration trade-offs, and the Government Regulator is concerned about
the vehicle’s ability to meet safety requirements. The view is constructed by performing a query of
the model that is specified by the viewpoint method and then presenting this information in a speci-
fied format. As indicated in the figure, the Vehicle Performance view conforms to the Architect
viewpoint by providing traceability to the fuel efficiency and acceleration requirements and the
associated design rationale in a requirements diagram. The Vehicle Safety Regulations view con-
forms to the Regulator viewpoint by providing the safety requirements, test cases, and test results in
tabular format. The modeling tool can provide the query results to a rendering application to present
the information in different formats, including documents with text, diagrams, tables, and plots.

Further details on modeling view and viewpoints can be found in Chapter 5, Section 5.6 and
Chapter 15, Section 15.8.

pkg [Package] Viewpoints [Architect and Regulator Viewpointsy

«viewpoint»
Architect Viewpoint

Automobile Domain A\

«viewpoint» .
stakeholder=System Architect <F—— Vehicle Parformance . — =1
purpose ="fuel economy vs. acceleration trade-offs” «conformy, «expose»

language="SysML"
/method=Requirements traceability and rationale

«viewpoint»
Regulator Viewpoint

«viewpoint» «view»
stakeholder=National Highway Traffic Safety Administration Vehicle Safety — —
purpose ="ability to meet safety regulations” «conform» Regulations «expose»

language="SysML"
/method=Safety requirements, test cases, and results

FIGURE 4.18

The package diagram showing the Architect viewpoint to address concerns related to fuel economy versus
acceleration trade-offs, and a Regulator viewpoint to address concerns related to meeting safety requirements.
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4.4 MODEL INTERCHANGE

An important aspect of systems modeling is the ability to exchange model information among
tools. A SysML model that is captured in a model repository can be imported and exported from a
SysML-compliant tool in a standard format called XML metadata interchange (XMI). This
enables other tools to exchange this information if they also support XMI. Examples may be the
ability to export selected parts of the SysML model to a UML tool to support software develop-
ment of the Vehicle Controller software, or to import and export the requirements from a require-
ments management tool, or to import and export the parametric diagrams and related information
to engineering analysis tools. The ability to achieve seamless model interchange capability may be
limited by the quality of the model and by the limitations of tool conformance with the standard.
Other interchange mechanism may use the tool’s application programming interface (API) to
access model information. Chapter 18, Section 18.3, includes a description of XMI and other data
exchange mechanisms.

4.5 SUMMARY

The SysML basic feature set is a subset of the language features that applies to all nine SysML
diagrams. It provides significant capability for representing systems, without introducing all of the
language complexity associated with the full feature set. The basic feature set is required learning
for the first two levels of SysML certification, called the Model User and Model Builder-Funda-
mental levels.

The automobile example demonstrates how a SysML model using the basic feature set can help to
specify, design, analyze, and verify a system. It enables the requirements, behavior, structure, and para-
metric aspects of the system to be represented in a precise, consistent, and comprehensive manner. It is
also clear from the example that the modeler must apply a systematic method to build a system model
that addresses the modeling objectives associated with its intended use.

4.6 QUESTIONS

1. Show how a stopping distance requirement would be captured in Figure 4.2.
In the following questions, assume a change in the stopping distance is required.
Would you anticipate any changes to the block definition diagram in Figure 4.3?
Would you anticipate any significant changes to the use case diagram in Figure 4.47
Would you anticipate any significant changes to the sequence diagram in Figure 4.5?
Describe an activity diagram analogous to Figure 4.7 to address the braking requirements.
Describe an internal block diagram analogous to Figure 4.9 to address the braking requirements.
Describe additions to the vehicle hierarchy in Figure 4.10 to address the braking requirements.
Describe an activity diagram analogous to Figure 4.11 to address how vehicle braking is
performed.
9. Describe an internal block diagram analogous to Figure 4.12 for the vehicle braking subsystem.

NGO N
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10. Describe a block definition diagram analogous to Figure 4.13 to define the equations needed to
analyze vehicle braking distance performance.

11. Describe a parametric diagram analogous to Figure 4.14 to describe the analysis used to analyze
braking distance performance.

DISCUSSION TOPICS

What are some observations about the changes to the model that occur as a result of a requirements
change such as the one described above (i.e., change in stopping distance)?



PART

LANGUAGE
DESCRIPTION

The chapters in Part IT describe the SysML language and how it can be used to model a system. Chapter 5
introduces the SysML diagram taxonomy and the fundamental aspects of diagrams. Chapters 615
describe the language concepts and notation in detail. The ordering of the chapters is based on the logi-
cal development of the language concepts, including concepts for model organization, structure, behav-
ior, allocation, requirements, and profiles. The ordering is not based on a systems engineering
process.

Each chapter describes applicable language concepts, diagram notation, and example diagrams to
illustrate how to create syntactically correct diagrams and models that conform to the language
specifications.

THE SURVEILLANCE SYSTEM CASE STUDY

A single case study is used throughout this part of the book to help demonstrate the concepts in the
SysML language.
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CASE STUDY OVERVIEW

A company called ACME Surveillance, Inc., produces and sells surveillance systems. Their range of
surveillance systems products is intended to provide security for either homes or small commercial
sites. Their systems use sophisticated pan and tilt cameras to produce video images of the surrounding
area. For a fee, they can be connected to a central monitoring service. ACME also produces the cameras
and sells them as separate products for “do-it-yourself” enthusiasts.

A similar example is used in Chapter 17 to demonstrate the application of a model-based systems
engineering method to the development of a residential security system.

FIGURE II.1 shows a typical surveillance system setup for a small commercial site. The system has
four wall-mounted surveillance cameras, three connected into the company’s Ethernet network and the
fourth connected via a wireless access point. One office is used to house the monitoring station for the
surveillance system, which is also connected to the office network. This particular monitoring station
consists of one workstation and an additional screen. The office has a PBX that the monitoring station
uses to communicate with its designated command center.

MODELING CONVENTIONS

When elements are named in the example model, the names chosen are generally valid English names.
Whenever the names have more than one word, the words are separated by spaces. Names of model

|
|
I
|
Monitoring :
Station fﬂ\ /ll :
1
|
|
U

FIGURE 11.1
Depiction of surveillance system example.
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elements that represent definitions have the first letter of all words in uppercase. Names of features are
all in lowercase. Definitions and features refer to certain kinds of model elements that are described in
Chapter 7.

The following chapters contain numerous SysML diagrams used to illustrate the concepts in the
language. With few exceptions, each diagram is accompanied by a description. To relate the description
to the figures, names used in the diagram are presented in ifalic font. Terms in monotype refer to ele-
ments in the textual syntax of the language. Terms in bold are used to highlight fundamental concepts
in the SysML language.

OCSMP CERTIFICATION COVERAGE AND SysML 1.3

The OMG Certified Systems Modeling Professional™ (OCSMP) Certification Program assesses a
candidate’s knowledge of model-based systems engineering concepts, particularly knowledge of
SysML. The program will award the following four levels of certification based on passing an
examination:

¢ OCSMP Model User

¢ OCSMP Model Builder — Fundamental
¢ OCSMP Model Builder — Intermediate
¢ OCSMP Model Builder — Advanced

The OCSMP Certification Program splits SysML into two feature sets: basic and full. The first
two examination levels of the OCSMP Certification Program use a subset of SysML called the Basic
Feature Set, whereas the third examination level uses the full set of SysML features. This part of the
book is intended to provide a reference for the first three levels of certification. The fourth certifica-
tion level addresses more general issues of system modeling that are discussed to some extent in
parts I, III, and I'V.

To help OCSMP candidates for the first two levels of examinations, paragraphs that describe fea-
tures in the basic OCSMP feature set are shaded. The notation appendix uses the same convention.

OCSMP does not cover versions of SysML beyond version 1.2, but we nonetheless wanted to cover
later developments in the book. For example, SysML 1.3 added some features and deprecated others.
The deprecated features, which are all in Chapter 7, are retained but placed in a special section at the
end of the chapter. Features added by SysML 1.3 are identified both in the text of the chapters and in
the description column of the tables in the notation appendix. Similarly, SysML 1.4 changed the repre-
sentation of views and viewpoints. A summary of the changes is provided in Chapter 15, Section 15.8.



CHAPTER

VIEWING SysML MODELS WITH
DIAGRAMS

A SysML model can represent many different aspects of a system, including its behavior, structure,
requirements, and parametrics. Some of the basic concepts of models were introduced in Chapter 2, and
Chapter 3 provided an introduction to SysML diagrams. This chapter discusses in detail how models
expressed in SysML are visualized on diagrams and describes some of the common diagrammatic
notations.

5.1 OVERVIEW

A diagram is a view of a model for a particular purpose. A diagram may allow a user to access the
content of the model, provide inputs to the model, or both. SysML includes nine standard diagram
kinds that present different views of the model. In addition to diagrams, SysML supports tabular,
matrix, and tree views of the model.

A SysML diagram contains diagram elements or symbols that correspond to model elements con-
tained in the model. The kind of diagram constrains the kind of model elements it can present and how
they appear on that diagram. A model element may appear on any number of diagrams, and any changes
to an element will be reflected in all the diagrams in which it appears.

SysML diagrams consist of a diagram frame and a content area. The diagram frame corresponds
to a particular model element and sets the context for the diagram content. The diagram content is
expressed using node symbols such as rectangles, ovals, and round-angles connected by line sym-
bols. The diagram symbols can be adorned with text, icons, and tool-specific features, such as color
and font.

SysML also includes some general purpose diagram elements to annotate the model and group
model elements.

5.2 SysML DIAGRAMS

As noted in Chapter 2, Section 2.2.1, a model is a representation of one or more concepts that can be
realized in the physical world. A SysML diagram provides a mechanism to present a focused view of a
model for a specific purpose. The symbols on a diagram are mapped to model elements whose meaning
is specified by the modeling language, in this case, SysML. The details of how SysML model elements
are specified is discussed in Chapter 15, Section 15.2, and the remaining chapters in Part II describe the
specific meaning of the symbols and their underlying model elements. These diagram concepts are
further elaborated below.

A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00005-9 87
Copyright © 2015 Elsevier Inc. All rights reserved.
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5.2.1 DIAGRAM VERSUS MODEL

A simple example that highlights the distinction between model elements and a diagram that presents
the model elements is shown in Figure 5.1. Some of the model elements that represent a Vehicle are
shown in the browser view of a typical modeling tool. The model elements represent different concepts
about the Vehicle, including selected vehicle components and the whole—part relationship between the
Vehicle and its components. A view of the model elements is presented in a diagram, where the symbols
on the diagram correspond to the model elements.

Note that only some of the model elements in Figure 5.1 are presented on the diagram. The diagram
is a view of the model that is intended to address a particular purpose, and the modeler can choose what
to present and what to hide (elide) on the diagram.

Another important aspect of a SysML model is that a particular model element can appear on zero, one,
or many diagrams. For example, in Figure 5.2 a second diagram presents a view of the model that shows
how an Engine is further composed of cylinders and pistons. The same model element Engine is thus pre-
sented on two different diagrams. If the model element is modified, the change will be reflected on all the
diagrams that show the model element. For example, if we changed the model element name from Engine
to Motor, the name would change on both diagrams as well as the browser. It should also be noted that the
component called Body from Figure 5.1 is not presented on any diagram but is still contained in the model.

The same model element kind may map to more than one symbol. For example, various compo-
nents of Engine are shown in Figure 5.3 using different symbols. Engine and Cylinder are shown using
box symbols, but icons can also be used to visualize model elements, as illustrated for Piston. In

Vehicle Model (LI D4 ‘ o’{}a' - ** 4y 88 » -: » z »
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FIGURE 5.1

Distinction between model and diagram.
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addition to being shown on separate symbols, Piston and Cylinder are shown in text strings in the parts
compartment of the symbol for Engine. All of these symbolic presentations refer to the same model
elements. The ellipsis in the parts compartment of Engine indicates that some entries are hidden (see

Section 5.3.6 for further information).

There are ways to view a model other than with diagrams. For example, the same model elements
may be presented in a tabular view. An example of this can be seen in Figure 5.10.

5.2.2 SysML DIAGRAM TAXONOMY

Figure 5.4 shows the SysML diagram taxonomy, which was previously summarized in Chapter 3, Sec-
tion 3.2. Detailed diagram notation tables that describe the symbols used on SysML diagrams can be

found in the Appendix of this book.

bdd Vehicle Model|

«block»
Engine
cylinders  pistons
«block» «block»
Cylinder Piston
FIGURE 5.2
Engine shown on another diagram.
pkg Vehicle Model)
Components
«block» «block»
Cylinder Engine
parts

pistons : Piston
cylinders : Cylinder

FIGURE 5.3

Different symbols for the same model element.
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SysML
Diagram
Package Requirement Behavior Parametric Structure
Diagram Diagram Diagram Diagram Diagram
- State Block Internal
A.Ct'V'ty Se:quence Machine U.se Case Definition Block
Diagram Diagram ) Diagram ) .
Diagram Diagram Diagram

FIGURE 5.4
SysML diagram taxonomy.

SysML diagrams and notation are based on the UML diagrams and notation, although several of the
UML diagrams, including the object diagram, collaboration diagram, deployment diagram, communica-
tion diagram, interaction overview diagram, timing diagram, and profile diagram were omitted from
SysML. The omitted diagrams were not deemed essential to satisfy the requirements for modeling sys-
tems. SysML includes modifications to other UML diagrams, such as the class diagram, composite struc-
ture diagram, and activity diagram, and it adds two new diagrams for requirements and parametrics.

In addition to the graphical forms of representation used on SysML diagrams, SysML also identifies
the need for tabular, matrix, and tree views of the model, examples of which are included in other chap-
ters in Part II, including Chapters 13 and 14 on requirements and allocations, respectively.

5.2.3 DIAGRAM FRAMES

Every SysML diagram must have a diagram frame that encloses the diagram content. The diagram frame
corresponds to a model element that provides the context for the diagram content. Certain diagrams can
include symbols on the diagram frame to connect to other elements shown within the diagram frame.

The diagram frame is a rectangle with a diagram header containing standard information in the top
left corner of the diagram. The rest of the area enclosed by the diagram frame is the content area, or
canvas, where the symbols are shown. An optional diagram description, providing further details about
the status and purpose of the diagram, can be attached to the diagram frame.

5.2.4 DIAGRAM HEADER

The diagram header is a rectangle with its lower right corner cut off. It includes the following
information:

* Diagram kind—an abbreviation indicating the kind of diagram.
*  Model element kind—the kind of model element to which the diagram frame corresponds.
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Diagram description
Version
Description
Completion status
Reference
Header User-defined fields

-
-
s
-
-
-

| «diagram usage»
diagram kind [model element type] model element name [diagram name]

Content

FIGURE 5.5
A diagram frame.

*  Model element name—the name of the model element to which the diagram frame corresponds.
e Diagram name—the name of the diagram, which is often used to indicate the diagram purpose.
e Diagram usage—a keyword indicating a specialized use of a diagram.

An example of a diagram frame with a diagram header that includes all of the above information is
shown in Figure 5.5.

Diagram kind
The diagram kind may take one of the following values, depending on the kind of diagram:

e Activity diagram—act

e Block definition diagram—bdd
e Internal block diagram—ibd

e Package diagram—pkg

e Parametric diagram—par

e Requirement diagram—req

e Sequence diagram—sd

e State machine diagram—stm

e Use case diagram—uc

Model element kind
Different diagram kinds have diagram frames that correspond to different kinds of model elements. The
valid permutations are listed here by diagram kind:

e Activity diagram—activity

* Block definition diagram—block, constraint block, package, model, model library
e Internal block diagram—block

e Package diagram—package, model, model library, profile, view

e Parametric diagram—activity, block, constraint block
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*  Requirement diagram—package, model, model library, requirement
e Sequence diagram—interaction

e State machine diagram—state machine

e Use case diagram—package, model, model library

The choice of model element kind is explained further in the following chapters in Part II, where
the individual diagrams are discussed. The model element kind should be shown in the header to avoid
ambiguity if the diagram can represent more than one allowable model element kind. It also aids in
understanding the diagram context.

Diagram name

Since a model can contain considerable amounts of information, the modeler may choose to include
only selected model elements in a particular diagram for a given purpose, while hiding other model
elements that may detract from this purpose. The diagram name is user defined and intended to pro-
vide a concise description of the diagram’s purpose.

Diagram usage

The diagram usage indicates that a diagram is intended to support a specific use. The diagram usage
name is included in the header in angle brackets called guillemets. For example, a use-case diagram
may be referred to as a context diagram, where context diagram is the diagram usage name. This
mechanism is further described as part of customizing the language in Chapter 15 Section 15.7.

5.2.5 DIAGRAM DESCRIPTION

The diagram description is an optional note attached either inside or outside of the diagram frame. It
is intended to enable the modeler to capture additional information about the diagram. This information
includes some predefined fields but also has provision for user-defined fields. The following are the
predefined fields.

e Version: version of the diagram.

e Completion status: a statement by the diagram author about the completeness of the diagram
relative to its intended completeness. It may include statements such as “in process,” “draft,” or
“complete,” and may also include a specific description of the information that is still missing
from the diagram.

e Description: free text description of the diagram’s content or purpose.

* Reference: references to other information about the diagram, or hyperlinks to related diagrams to
aid in navigation.

5.2.6 DIAGRAM CONTENT

The diagram content area, sometimes called the canvas, contains elements that graphically represent
model elements. The content area includes the diagram elements (symbols) that present the model ele-
ments of interest. As stated above, the kind of diagram constrains which kind of model elements can be
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shown and how they appear. Within the constraints of the diagram, the modeler determines which
model elements to show and which to hide to achieve the diagram intent.

5.3 DIAGRAM NOTATIONS

SysML diagrams are composed of two kinds of diagram elements: nodes and paths. A node is a dia-
gram element that generally appears as a shape, such as a rectangle or oval with a text label. The node
may contain additional text strings and/or other graphical symbols that may correspond to other model
elements. A path, also known as an edge, is a diagram element that generally appears as a line that may
have additional adornments such as arrowheads and text strings.

5.3.1 KEYWORDS

SysML allows for the use of a keyword in guillemets (as «keyword») before the name of some model
elements. A keyword on a symbol identifies the kind of model element to which it refers and is typically
used to remove ambiguity when a particular symbol such as a rectangle or dashed line with an arrow-
head can represent more than one kind of model element. For example, a rectangle is used to depict
both a requirement and a block in SysML, but adding the keyword «requirement» or «block» to the
rectangle eliminates the ambiguity.

5.3.2 NODE SYMBOLS

Node symbols are generally rectangular but may also be round-angles, ellipses, and other polygons. All
node symbols have a name compartment that can be used to display the name string of the represented
model element, along with any applicable keywords and properties. Some node symbols have extra
compartments to display details of nested elements, either in textual or graphical form.

Figure 5.6 shows two examples of node symbols: a use case called Fly Airplane and the block
Airplane. The Airplane symbol shows an internal compartment labeled values to store value
properties.

5.3.3 PATH SYMBOLS

All path symbols are some kind of line, but they have different styles and ends depending on the model-
ing concept they represent. Paths may have a text adornment that contains their name string, keywords,

«block»

Airplane
Fly Airplane
values

call sign : String
fuel load : Liters

FIGURE 5.6

Examples of node symbols.
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and additional properties, although this is often hidden. Additional textual information may also be
shown on the ends of the lines when the model element requires it.

Figure 5.7 shows two examples of path symbols: an association and a generalization. The associa-
tion symbol indicates that an Airplane has exactly two wings. The generalization symbol indicates that
an Airplane is a kind of Flying Thing.

5.3.4 ICON SYMBOLS

Icons are typically used to represent a specific domain concept, such as a document, or perhaps a type of
hardware component, such as a pump. A stereotype can specify an icon to be used as the symbol for the
model element with the stereotype applied. If a model element symbolized by an icon has properties, these
can be displayed in a text string floating near the object. Icons may also be displayed inside a node symbol
or as adornments on line shapes. Figure 5.8 shows two examples of icons: a stick figure representing the
actor Pilot and a small box containing an arrow that represents fuel flowing into the Airplane block.

5.3.5 NOTE SYMBOLS

A note symbol can be attached via a dashed line to a symbol of any model element or set of model ele-
ments. The note symbol is used to annotate the model with additional textual information that may
include a hyperlink to a reference document. The note symbol is a rectangular box with a cutoff upper
right corner containing textual information. A note symbol may be a graphical adornment on a diagram
that does not correspond to any model element. Note symbols can also be used to display user-defined
tags. They are used extensively in SysML to display cross-cutting information, such as traceability to
requirements (see Chapter 13, Section 13.5.3) and allocations (see Chapter 14, Section 14.3). In these
cases, the content of the note symbol does correspond to specific model elements.

Figure 5.9 shows two examples of note symbols. One note symbol is a description of the Pilot, and
the other asserts that the Airplane’s call sign satisfies the Airplane Unique Identity requirement.

«block»
Flying Thing
«block» 2 «block»
Wing wings Airplane

FIGURE 5.7
Examples of path symbols.

fuel in «block> %

Airplane Pilot

FIGURE 5.8

Examples of icon symbols.
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5.3.6 OTHER SYMBOLS

SysML has a variety of other specific symbols and symbol styles that are listed here.

Ellipsis

A modeler may choose to present only a subset of the information about a model element on a given
diagram. This is useful for reducing clutter and focusing on the diagram’s purpose, but it can be helpful
to someone viewing that diagram to know that there is information about a model element that could
be shown but is hidden. SysML allows a modeler to optionally show an ellipsis at the bottom of a com-
partment on a symbol to indicate that not all of the potentially visible compartment elements are shown.
An example of this can be seen in Figure 5.3.

Off-Page connectors

A path symbol between two node symbols corresponds to a relationship between the model elements
that are depicted by the nodes. Sometimes, however, the diagram layout makes it difficult to connect
the two nodes due to their placement on the diagram. In this case, SysML also allows a path symbol to
be represented by two symbols. Each of these two symbols is connected at one end to a node symbol,
while its other end is connected to a circle with a label inside. The combination of two of these “half-
path” symbols with a common label is equivalent to a single traditional path symbol. Although this
mechanism can be used within a single diagram, it is often used to visualize a path that connects two
nodes on different diagrams; hence the circles are called “off-page connectors.” The SysML specifica-
tion advocates that this mechanism be used sparingly to avoid the construction of “spaghetti diagrams.”
Refer to the Appendix for an example of an off-page connector.

Decomposition and elaboration using the rake symhol

Certain symbols can be annotated with a rake symbol to indicate whether their corresponding model
element is described by another diagram. Details of these symbols are given in the relevant chapters,
but for completeness a summary of the symbols is offered here:

e Activity diagram — a call behavior action that can refer to another activity diagram.

e Internal block diagram — a part that can refer to another internal block diagram.

» Package diagram — a package that can refer to another package diagram.

e Parametric diagram — a constraint property that can refer to another parametric diagram.

A pilot flies an airplane. He or she
must have appropriate training for satisfies
the type of airplane. «requirement»Airplane Unique Identity
/ //
// <<b|ock>> 7

% ,/ Airplane
values

call sign : String

fuel load : Liters

FIGURE 5.9

Examples of note symbols.
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¢ Requirement diagram — a requirement that can refer to another requirement diagram.

e Sequence diagram — an interaction fragment that can refer to another sequence diagram.

* State machine diagram — a state that can refer to another state machine diagram.

e Use case diagram — a use case that is realized by other behavior diagrams (activity, state machine,
sequence).

A modeler can indicate whether a given diagram will show symbol decomposition and, in addition,
whether a given symbol on that diagram will show the rake symbol or not.

5.3.7 SYMBOL STYLE OPTIONS

e Constraint Property Shape — A modeler can indicate whether the node symbol for a constraint
property (Chapter 8, Section 8.4) has rounded or square corners.

* Control Flow Style — A modeler can indicate whether the path symbol for a control flow (Chapter
9, Section 9.6) is a dashed or solid arrow.

e Line Jogs — A modeler can specify whether they wish to see line jogs, semi-circular hoops to
indicate when two path symbols are crossing each other, on a diagram.

5.3.8 DIAGRAM LAYOUT

The diagram elements on a diagram must be arranged to ensure the diagram is well organized and com-
municates effectively. For example, the sequence of actions on an activity diagram may be arranged
from top to bottom or from left to right to reflect their time ordering. The model does not require this,
since the precedence relationships are part of the semantics, but arrangement may make it more human
interpretable. The diagram layout is often performed manually by the modeler. However, SysML mod-
eling tools generally provide an automatic diagram layout capability, which can reduce the time and
effort for this part of the modeling activity. The sophistication of the layout algorithms and the com-
plexity of the diagram determine the effectiveness for a particular application.

5.4 TABULAR, MATRIX, AND TREE VIEWS

SysML also includes nongraphical representations of model information that are often useful for effi-
ciently displaying large amounts of information. The forms of nongraphical representation that SysML
supports are tables, matrices, and trees.

A table can be a highly efficient and expressive way to represent information. Tables have been
used traditionally for capturing a wide variety of systems engineering information, such as require-
ments tables and N-squared (N2) charts [40] to capture interface information. SysML allows the use of
tabular notation as an alternative diagram form to represent the modeling information contained in a
SysML model. Tabular formats may be used to present properties of model elements and/or relation-
ships among model elements. The detail of how and what information is captured in a table is not speci-
fied, but tool vendors are encouraged to support them. Chapters 13 and 14 on requirements and
allocations describe typical tabular formats that a tool vendor is expected to support.

When a table is used, the table is included in a diagram frame with the diagram kind table shown in
the diagram label. Otherwise, the diagram label format is the same as that for any other kind of dia-
gram. An example of a simple requirements table is shown in Figure 5.10.
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table [Requirement] Capacity [Decomposition of Capacity Requirement])

id |req’t name req’t text

The Hybrid SUV shall carry 5 adult passengers, along with

4 Capacity sufficient luggage and fuel for a typical weekend campout.

The Hybrid SUV shall carry sufficient luggage for 5 people for

4.1 | CargoCapacity a typical weekend campout.

The Hybrid SUV shall carry sufficient fuel for a typical weekend

4.2 | FuelCapacity campout

4.3 | PassengerCapacity The Hybrid SUV shall carry 5 adult passengers.

FIGURE 5.10
Example of tabular format in SysML.

Matrices—identified by the diagram kind matrix—are very useful for describing relationships.
Typically, the top row and first column of the matrix represent model elements, and its other cells
describe a relationship between the row and column elements. An example of a matrix can be seen in
Chapter 13, Figure 13.9, where the top row of the satisfy dependency Matrix lists requirements, the first
column lists model elements, and the other cells indicate whether relationships exist between them.
Trees, identified by the diagram kind tree, typically describe hierarchical and other kinds of relation-
ships that are frequently presented using browser panes in SysML modeling tools.

5.5 GENERAL PURPOSE MODEL ELEMENTS

The following model elements can be used on all diagrams for a variety of purposes. Some other model
elements, such as dependencies and allocations, can be used on all diagrams but those model elements
tend to have more specific usage and are covered in other chapters.

5.5.1 COMMENT

A comment is a textual description that can be associated with any other model element. It can be
shown on any diagram using a note symbol connected to a symbol representing the model element it
describes. The major difference between a comment and a note symbol is that a comment is a model
element that is part of the model, whereas a note symbol is a diagram annotation only.

5.5.2 ELEMENT GROUP

An element group provides a light weight mechanism for grouping model elements of any kind. It can be
used for purposes like grouping elements that are associated with a particular release, a certain risk level,
and/or a legacy design, to name a few examples. The members of an element group can be ordered.

An element group has a name and also includes the criterion for inclusion as a member of the group.
It should be noted that SysML doesn’t specify a semantic for the criterion. By grouping elements, the
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pkg [Package] Chapter 5 [Element Group Example]J

«elementGroup»
{name = "Tasks",

size = 3}
Elements that | have
been asked to work on
this week

/ i
s g / N
< [ N

«activity» «blocky
Process Order

FIGURE 5.11

Example of an element group.

modeler simply asserts that the criterion of the group applies to the member. Model elements can
appear in multiple element groups. The element group also includes a property that can be queried to
reflect the number of members in the group.

An element group can have other element groups as members. However, group membership is not
transitive. This is to say that if model element 1 is a member of element group A, and element group A
is a member of element group B, this does not imply that model element I is a member of element group
B. The rationale for non-transitivity of element groups can be explained by a simple example, where the
membership criterion for element group B is all groups with 5 members or more, and the criterion for
element group A is all blocks that are red. A particular red block is a member of element group A, but
is not a member of element group B.

An element group is shown using a note symbol with the keyword «elementGroup» at the top of the
symbol. The name and size of the group are shown in braces following the keyword. Inclusion of an
element in the group is indicated by a dashed line from the group to the element. The criterion for the
inclusion of an element in the group is shown in the body of the comment symbol.

Figure 5.11 shows an example of an element group on a package diagram. The group Zasks includes
a use case (Process Order), an activity (Process) and a block (Order), making the size of the group 3.
The criterion is Elements that I have been asked to work on this week.

5.6 VIEW AND VIEWPOINT

SysML provides a mechanism, called a viewpoint, to specify customized views of a model beyond
those offered directly by the language. SysML viewpoint and view constructs are consistent with the
ISO-42010 [20] standard. A viewpoint describes the point of view of a set of stakeholders by framing
their concerns along with the method for constructing an artifact that addresses those concerns. The
view specifies the model content that is to be presented to the stakeholder in the artifact. Typical exam-
ples may include an operational, manufacturing, or security viewpoint. Viewpoints and the views that
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conform to them are important because they allow SysML concepts to be shown not just in the standard
SysML diagrams but also in ways that are suitable to a specific purpose and audience.

Viewpoint and view are covered in detail in Chapter 15, Section 15.8, but it is worth noting that
viewpoints are an important contributor to the topic addressed by this chapter, namely visualizing a
SysML model. A viewpoint specifies the following:

e Its purpose;

¢ The stakeholders and concerns that are addressed;

e How the view content should be expressed (i.e. what modeling language is required for the
information that will appear in the view?);

e The file format of the artifact that is produced from the view (e.g., set of slides in PowerPoint, a
PDF file, a Word document, a web viewable format, etc.);

e How the information should be presented in the artifact (e.g., specifying that data values should be
plotted on a graph or a particular tabular style, or that both English and Spanish text should be provided,
or that photographs be shown in color with minimum dimensions of 100 millimeters square); and

e The method for producing an artifact from a view.

It is important to understand that while a view is a SysML construct that exists within a SysML
model, artifacts produced from views potentially live outside of the modeling environment. For exam-
ple, a movie or a PDF document generated from a view is not directly incorporated into a SysML
model, while the view itself is.

5.7 SUMMARY

The ability for modelers and model stakeholders to visualize the content of models effectively is critical
to the success of any modeling language. The following list summarizes the important aspects of model
visualization in SysML:

e SysML has nine kinds of diagram that allow different aspects of a system model to be visualized
graphically.

e Any SysML diagram will show only a subset of the elements in a model and model elements may
appear in multiple diagrams.

e SysML also supports nongraphical views, such as matrices, trees, and tables.

e SysML supports custom visualizations through the viewpoint mechanism.

5.8 QUESTIONS

What is the difference between a diagram and a model?

What are the five elements of a diagram header and what are they used for?
What are the four kinds of symbols that can appear on a diagram?

When is a keyword needed as part of a graphical symbol?

What does an ellipsis indicate?

How are custom visualizations supported in SysML?

coaghrwnN=
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DISCUSSION TOPICS

Traditional engineering modeling tools show all relevant model elements in any given diagram, whereas
SysML allows modelers to selectively hide detail. Discuss the relative benefits of these two approaches.

In addition to graphical representations of the model through diagrams, SysML supports the use of
non-graphical representations such as tables and trees. Under which circumstances does it make sense
to use these different representations?



CHAPTER

ORGANIZING THE MODEL
WITH PACKAGES

This chapter addresses the topic of model organization and describes the organizational capabilities
provided by SysML. In SysML, the fundamental unit of model organization is the package.

OVERVIEW

A SysML model of a complex system can contain thousands or even millions of model elements. In
SysML, each model element is contained within a single container that is called its owner or parent.
Contained elements are often called the child elements. When a container is deleted or copied, its child
elements are also deleted or copied. Some child elements can also be containers, which leads to a
nested containment hierarchy of model elements.

Packages are one example of a container. The model elements contained within a package are called
packageable elements, examples of which are blocks, use cases, and activities. Since packages are also
packageable elements, they can support package hierarchies. A model is a special kind of package that
contains a set of model elements describing a domain of interest.

In addition to having a place in a containment hierarchy, each model element with a name—called
a named element—must also be a member of a namespace. A namespace enables its members to be
uniquely identified within it by name. A package is a namespace for the packageable elements it con-
tains. A packageable element has a fully qualified name to unambiguously locate it in the package
hierarchy of a model.

An import relationship allows elements contained in one package to be imported into another pack-
age so that they can be referenced simply by their names within that package. SysML also contains a
relationship between named elements called a dependency, which can be specialized as needed to
reflect more specific semantics.

This chapter describes how model elements are organized to enhance modeling effectiveness. An
effective model organization facilitates reuse of model elements, easy access, and navigability among
model elements. It can also support configuration management of the model and exchange of model-
ing information with other tools, as described in Chapter 18. The importance of maintaining a well-
defined model organization increases with the size of the model, but even small models benefit from
consistently applied organizational principles. The specific criteria for partitioning the model are
methodology dependent, but some examples of model organization principles are included later in
this chapter.

Because reuse is so important in modeling, SysML includes the concept of a model library, which
is specifically intended to contain model elements that can be shared within and between models.
Model libraries are more fully described in Chapter 15.

A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00006-0 1 0 1
Copyright © 2015 Elsevier Inc. All rights reserved.
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pkg [Package] Products [Nested Packages] )
Surveillance Systems |
Cameras Requirements
— q
D
Use Cases
1 1 1 1 1
Physical Logical Behavior Parametrics Structure
FIGURE 6.1

An example package diagram.

6.2 THE PACKAGE DIAGRAM

The model elements contained within a package can be shown on a package diagram. The complete
diagram header for a package diagram is as follows:

pkg [model element kind] package name [diagram name]

The diagram kind is pkg, and the model element kind can be model, package, or model library. An
example of a package diagram is shown in Figure 6.1. It shows several levels of the package hierarchy
for the Products package of the ACME Surveillance Systems model. The notation tables for package
diagrams are included in Table A.1 of the Appendix.

6.3 DEFINING PACKAGES USING A PACKAGE DIAGRAM

SysML models are organized into a hierarchical tree of packages that are much like folders in a computer
directory structure. Packages are used to partition elements of the model into coherent units that can be
subject to access control, model navigation, configuration management, and other considerations.

A package is a container for other model elements. It has a name and an optional URI, which
uniquely identifies the package as a web-accessible resource, and is thus useful when packages are used
widely within or between organizations. Any model element is contained in exactly one container, and
when that container is deleted or copied, the model element it contains is deleted or copied along with
it. This pattern of containment means that any SysML model is a tree hierarchy of model elements.

Model elements that can be contained in packages are called packageable elements and include
blocks, activities, and value types, among others. Packages are themselves packageable elements,
which allows packages to be hierarchically nested. The containment rules and other related character-
istics of other kinds of packageable elements are described in the relevant chapters.

A model in SysML is a top-level package in a nested package hierarchy. In a package hierarchy,
models may contain other models and packages. The choice of model content and detail—for example,
whether to have a hierarchy of models—is dependent on the method used. Typically, however, a model
is understood to represent a complete description of a system or domain of interest for some purpose,
as described in Chapter 2.
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pkg [Model]ACME Surveillance Systems [Top-Level PackagesJJ

1
Products «modelLibrary»
Components

{uri=http://ACME/Standards/Components.html}

1

Profiles «modelLibrary»
Standard Definitions

{uri=http://ACME/Standards/StandardDefinitions.html}

FIGURE 6.2

Package diagram for the surveillance system model.

A model has a single primary hierarchy containing all elements. Its organizing principle is based on
what is most suitable to meet the needs of the project.

Often a package is constructed with the intent that its contents will be reused in many models.
SysML contains the concept of a model library—a package that is designated to contain reusable ele-
ments. A model library is depicted as a package symbol with the keyword «modelLibrary» above the
package name, as shown in Figure 6.2 for Components and Standard Definitions. See Chapter 15,
Section 15.3 for more details on model libraries.

The diagram content area of a package diagram shows packages and other packageable elements
within the package designated by the frame. Packages are displayed using a folder symbol, where the
package name and keywords can appear in the tab or the body of the symbol. The URI, if specified,
appears in braces after the package name.

If a model appears on a package diagram, which may happen when there is a hierarchy of models,
the standard folder symbol includes a triangle in the top right corner of the symbol’s body.

The package diagram in Figure 6.2 shows the top-level packages within the corporate model of
ACME Surveillance Systems, as specified in the diagram header. The user-defined diagram name for
this diagram is Top-Level Packages, indicating that the purpose of this diagram is to show the top
level of the model’s package structure. In this example, the model contains separate package hierar-
chies for:

e The company’s products;

e Standard off-the-shelf components;

* Standard engineering definitions such as SI units—from the French Systéme International
d’Unités (also known as International System of Units); and

e Any specific extensions required to support domain-specific notations and concepts (extensions to
SysML, called profiles, are described in detail in Chapter 15).

The Components and Standard Definitions packages both have URIs because they are widely used
within ACME Surveillance Systems and therefore need to be uniquely identified and web accessible
across company projects.
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Each package should contain packageable elements consistent with the model organization
approach. These elements can then be represented as needed on different SysML diagrams including
structure, behavior, parametric, and requirement diagrams, as described in Chapter 3, Section 3.2 and
in more detail in later chapters.

6.4 ORGANIZING A PACKAGE HIERARCHY

As described previously, a model is organized into a single hierarchical structure of packages. The
top-level package is a model that generally contains packages at the next level of the model hierar-
chy, as shown in Figure 6.2. These packages in turn often contain subpackages that further partition
model elements into logical groupings. A well-defined model organization becomes increasingly
important as the number of model elements increase. Figure 6.3 motivates the use of a nested pack-
age structure by contrasting such a structure with a similar flattened model organization shown in
Figure 6.4. It is evident that large models can quickly become difficult to manage if not partitioned
into subpackages.

The approach to model organization is a critical choice facing the modeler because it impacts reuse,
access control, navigation, configuration management, data exchange, and other key aspects of the
development process. For example, a package may be the unit of the model to which access privileges
are assigned, granting only selected users the ability to modify its contents. In addition, when a particu-
lar package is checked out to modify its contents, other users may be excluded from making changes
until the package is checked in. A poorly organized model also makes it difficult for users to understand
and navigate the model.

The model hierarchy should be based on a set of organizing principles. The following are some pos-
sible ways to organize a model:

e By system hierarchy (e.g., system level, element level, component level);
e By process lifecycle, where each model subpackage represents a stage in the process (e.g.,
requirements analysis, system design);

pkg [Package] Products [Nested Packages] )
Surveillance Systems |
Surveillance :
R t:
— — Network Cameras equirements
D
Use Cases Analysis
1 1 1 1 1
Physical Logical Behavior Parametrics Structure
FIGURE 6.3

Showing nested packages on a package diagram.
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e By teams that are working on the model (e.g., Requirements Team, Integrated Product Team (IPT)
1,2);

e By the kind of model elements it contains (e.g., requirements, behavior, structure);

¢ By model elements that are likely to change together;

e By model elements organized to support reuse (e.g., model libraries);

e By other logical or cohesive groupings of model elements based on defined model-partitioning
criteria; and

e A combination of the preceding principles.

Containment relates parents to children within a package hierarchy. Several levels of containment
hierarchy can be shown on the package diagram using containment between container elements and
their contained elements. Containment is shown as a line with a crosshair at the container (parent) end,
but with no adornment on the ends associated with the contained elements (children). Each parent—
child containment relationship can be shown as a separate path, but typically they are shown as a tree
with one crosshair symbol and many lines radiating from it. An alternative representation of contain-
ment is to show the nested model elements enclosed within the body of the package symbol.

Figure 6.3 shows the four packages contained within the Products package of the corporate model:
Surveillance Systems, Surveillance Network, Cameras, and Requirements. This example uses both
notations for package containment. Different organizational principles are used for the Products, Cam-
eras, and Surveillance Systems packages. The Products package is organized to contain packages for
the three primary product lines that the company offers, with an additional package for all requirements
specifications. The Cameras package hierarchy is organized by modeling artifact kind, and as such it
contains packages to capture the structural, behavioral, and parametric aspects of the camera. The Sur-
veillance Systems package hierarchy is organized based on architectural principles that require a Logi-
cal Architecture package, a Physical Architecture package, and a Use Cases package. It also contains
an Analysis package for various kinds of analyses and their outcomes.

The containment hierarchy is generally one of the primary browser views visible in a tool. Figure 6.5
provides an example of the expanded browser view corresponding to the model organization from
Figure 6.3. The containment hierarchy generally expands as the model evolves to include other nested

pkg [Package]ACME Surveillance Systems [Flat Package Hierarchy])

1 1 1

Use Cases Logical ‘ Analysis‘ Physical ‘
1 1 ]

Behavior Structure Parametrics

FIGURE 6.4

Alternate model with flat package hierarchy.
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Er-E5 ACME Surveillance Systems
Components
E-E3 Products
E}E] Cameras
E] Behavior
E| Parametrics
E] Structure
=7 Requirements
F‘_‘| Camera Specification
E] Customer Specification
&£ IEEE Standards
I=_‘| System Specification
E] Verification
B} Surveillance Network
B3 Surveillance Systems
[’_‘] Analysis
E] Logical
D Physical
F_“] Use Cases
-3 Profiles
E-E7 Standard Definitions
E] Basic Constraints
-- Basic Definitions
-- SI Types
B} Standard Item Definitions

FIGURE 6.5
Browser view of the model’s package hierarchy.

packages containing a variety of different model elements. A tool generally enables the containment
hierarchy and associated content to be viewed in an expanded or contracted form from the browser,
similar to the file browser in Windows. Models and packages form the branches of the containment
hierarchy with other model elements appearing as lower-level branches and leaves.

6.5 SHOWING PACKAGEABLE ELEMENTS ON A PACKAGE DIAGRAM

In addition to packages, package diagrams are used to show packageable elements. Packageable ele-
ments are normally represented by node symbols or their corresponding icons.

The package diagram in Figure 6.6 shows more details of the Components package from Figure 6.2,
which is a model library that contains off-the-shelf components intended for use in building cameras
and surveillance systems. The components are blocks, as indicated by the «block» keyword, and are
contained in the Components model library, as indicated in the diagram label. The diagram only shows
some of the model elements within the model library to reduce clutter. As explained in Chapters 2 and
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pkg [modelLibrary] Components)

«block» «block» «block» «block»
Brushless DC Motor Stepper Motor | |Focal Plane Array | |Pan Gimbal

«block» «block» «block» «block»
SDRAM Digital Signal Processor | | Tilt Gimbal Video Controller

FIGURE 6.6
Showing the contents of the components package using a package diagram.

5, diagrams are simply views of the underlying model and may not show all possible contents that can
appear on the diagram. The diagram name is also elided but could have been included to highlight the
diagram purpose.

6.6 PACKAGES AS NAMESPACES

In addition to acting as a container for packageable elements, a package is a namespace for all named
elements within it. Most SysML model elements may have names, although a few kinds of model ele-
ment, such as a comment, cannot be named. A namespace applies a set of uniqueness rules to distin-
guish between the different named elements contained within it. The uniqueness rule for packageable
elements in packages is simply that each element of a given element kind must have a unique name.

As stated earlier, a package hierarchy can include multiple levels of nested packages, meaning that
a model element can be contained within a package that is contained in an arbitrary number of higher-
level packages. Containment between a parent and child is unambiguously represented in a tool’s
browser view of the model.

A model element can appear on a diagram whose frame may or may not designate its parent
namespace. However, a model element that is shown on a diagram that does not correspond to its parent
may give the false impression that the model element is contained within the namespace designated by
the diagram frame. The solution is to show a qualified name in the symbol for that model element. If
the model element is nested within the containment hierarchy of the package designated by the dia-
gram, then the qualified name shows the relative path from that package to the contained element. If the
model element is not nested within the package designated by the diagram, the qualified name contains
the full path from the root model to the element.

The qualified name for a model element always ends with the model element name, preceded by a
path, with each containing namespace in the path delimited by a double-colon symbol (::), so that when
reading the qualified name, the path is resolved from left to right. For example, a model element X that
is contained within package B, which in turn is contained within package A, is represented as A::B::X.

Figure 6.7 shows some examples of the use of qualified names in a package diagram that corre-
sponds to the Standard Definitions package shown in Figure 6.2. The symbol named Basic
Definitions:: Waypoint denotes a value type called Waypoint within a package called Basic Definitions,
within the Standard Definitions package. Waypoint is used later to specify the scan pattern of a



108 CHAPTER 6 ORGANIZING THE MODEL WITH PACKAGES

pkg [Package] Standard Definitions [Some Named Elements])

«block»
ACME Surveillance Systems::Components::Stepper Motor

]

ACME Surveillance Systems::Products::Cameras

«valueType»
Basic Definitions::Waypoint

FIGURE 6.7
Using qualified names to represent model elements within a containment hierarchy.

surveillance camera. The other two symbols represent model elements that are external to Standard
Definitions package and therefore have fully qualified names that correspond to the path name from the
corporate model, ACME Surveillance Systems.

In a package hierarchy, each model element can be uniquely identified by its qualified name regard-
less of the diagrams in which it appears. Note that many SysML tools hide qualified names by default
to reduce diagram clutter.

6.7 IMPORTING MODEL ELEMENTS INTO PACKAGES

Depending on the organization of a model, model elements from different packages and different mod-
els are often related to one another. For example, one model may contain a set of components that
another model may want to reuse.

An import relationship is used to include an element or collection of elements belonging to a source
namespace into another namespace, called the target namespace. The names of imported element
names become part of the target namespace. The qualified name of the imported element is based on
where the element resides within the target namespace, and so does not require a qualified name when
shown on a diagram that designates the target namespace.

A package import imports an entire package, which means that all the model elements of the source
package are imported into the target namespace. An element import imports a single model element, and
may be used when it is unnecessary and possibly confusing to import all the elements of a package.

A name clash occurs when two or more model elements in the target namespace would have the
same names as the result of imports. An element import has an alias field that can be used to provide an
alternate name for a model element to prevent a name clash in the target namespace. The rules on name
clashes are as follows:

e If an imported element name clashes with a child element of the target namespace, that element is
not imported unless an alias is used to provide a unique name.

e If the names of two or more imported elements clash, then neither can be imported into the target
namespace.
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pkg [Package] Parent )

Block A is public
in package P1

Block F is private
in package P2

P2 —
L ) P3
«block» «block» «import» D
F c [ biock
Model::P1 R ?:C
block «import»
«block> < “caccess B
A
Child of P2
«block»
E

FIGURE 6.8

[llustration of «import» and «access».

The named elements recognized within a namespace—whether through direct containment or as a
result of being imported—are called members. Members have a visibility, either public or private,
within their namespace. The default visibility for a member of a namespace is public. The visibility of
a member determines whether it can be imported into another namespace. A package import only
imports members with public visibility in the source package into the target namespace. Furthermore,
an import relationship can state whether the imported names should be public or private within the
target namespace.

When access control on a model is enforced by a modeling tool, an imported element can only be
changed in the source package, although any changes made to the element are visible in any diagrams
representing the target package.

The import relationship is shown using a dashed arrow labeled with the keyword «import». The
arrow’s head points to the source from which names are being imported, and its tail points to the
target namespace into which the names are to be imported. The arrow points either to an individual
model element (element import) or to an entire package (package import). The keyword «access» is
used instead of «import» when elements are to be imported as private members of the target
namespace.

Figure 6.8 shows three packages (P1, P2, and P3) in the diagram corresponding to package Parent.
The package called Model::P1 is not contained in the diagram’s context, and so its qualified name has
to be used. Model::P1 contains one block, called A, with public visibility (SysML does not have a
graphical notation for visibility, hence the notes attached to the symbols). Package P2 privately imports
P1 and contains a set of blocks, B and C, which are defined with public visibility, and F, which is
defined with private visibility. P2 also contains a nested package called Child of P2, which in turn con-
tains a single public block, E. Package P3 defines a public block, C, and imports the whole package P2,
but also imports block C as a separate element with the alias D to avoid a name clash. Note that the alias
D is annotated on the import relationship.
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Figure 6.9 demonstrates the effect of import relationships on naming. It shows a diagram corre-
sponding to package P3 showing the names of various model elements from Figure 6.8. Blocks B, C,
and D (an alias for P2::C) can be shown using simple names because they are members of the P3, either
by direct containment or because they were imported. Block E has to be qualified by its parent Child of
P2, whose name is visible because P3 has imported P2. Block F has to be qualified by P2 because it
was defined to be private and so is not imported, but P2 is visible because it is in the same namespace
as P3. Block A has to be qualified by its parent’s fully qualified name, Model::P1, because although it
was defined with public visibility, Model::P1 was imported privately into P2 and was therefore not
visible in P2 and so was not imported into P3.

Figure 6.10 shows some of the import relationships within the Standard Definitions package. It
contains an example of a reusable model library called 1SO80000. (This package is defined as a

pkg [Package] P3 I
«block» «block»
D P2::F
«block» «block»
C Child of P2::E
«block» «block»
B Model::P1::A

FIGURE 6.9
Naming in package P3.

pkg [modelLibrary] Standard Definition [Importing S Types])

«modelLibrary»
1S080000
{uri=http://www.omg.org/spec/SysML/20120322/ISO-80000}
)

I
I«|mport»

— —

«modelLibrary» «import» «modelLibrary»

S| Value Types Standard Item Definitions

FIGURE 6.10
Importing a library of S| unit types into the Standard ltem Definitions package.
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non-normative model library in Annex E.6 of the SysML specification.) In order to make ZSO8000 web
accessible, it has a URIL. ISO80000 is imported into the SI Value Types model library, which provides a
common set of units for use throughout the model. SI Value Types is in turn imported for use within
many other packages, one of which is the Standard Item Definitions model library, which contains defi-
nitions of information, material, and energy flowing through the surveillance systems.

6.8 SHOWING DEPENDENCIES BETWEEN PACKAGEABLE ELEMENTS

A dependency relationship can be applied between named elements to indicate that a change in the ele-
ment on one end of the dependency may result in a change in the element on the other end of the depen-
dency. The model elements at the two ends of the dependency are called client and supplier. The client is
dependent on the supplier, such that a change in the supplier may result in a change in the client.

A dependency between packages is used when the content of one package is dependent on the con-
tent of another package. For example, the software applications in the application layer of the system
software may depend on the software components within the system software’s service layer. This may
be expressed in a model of the software architecture by a dependency between the package that repre-
sents the application layer (client) and the package that represents the service layer (supplier).

Dependencies are often used to specify a relationship early in the modeling process that is subse-
quently replaced or augmented when the precise nature of the relationship is better defined. There are
various kinds of dependency that can be used on the package diagram and selected other diagrams. The
following is a list of the more common kinds of dependencies:

» Use — indicates that the client uses the supplier as part of its definition.

* Refine — indicates that the client represents an increase in detail compared to the specification of
the supplier, such as when detailed physical and performance characteristics are included in a
component definition. This relationship is often used in requirements analysis, as described in
Chapter 13, Section 13.13.

* Realization — indicates that the client realizes the specification expressed in the description of the
supplier, such as when an implementation package realizes a design package.

e Trace — indicates that there is a linkage between the client and supplier without imposing the
more significant semantic constraints of a more precise relationship. This relationship is often
used in requirements analysis, as described in Chapter 13, Section 13.14.

¢ Allocate — indicates that one model element is allocated to another. This relationship is described
in Chapter 14.

A dependency is represented by a dashed line with an open arrowhead pointing from the client to
the supplier. The kind of dependency is indicated by a keyword in guillemets.

Figure 6.11 shows some of the kinds of dependency relationships in the Camera Performance pack-
age. The constraint block Video Stream Rate is a more precise representation (refinement) of the Video
Performance requirement. Video Stream Rate uses a definition of megabits per second (Mbps) as part
of its definition. The activity Generate Video Outputs is traced to the Video Stream Rate because if this
constraint changes, the performance of the activity may need to be reevaluated. Generate Video Outputs
is allocated to Camera to indicate that the camera is responsible for performing that activity. Details of
these various model elements are described in later chapters.
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pkg [Package] Camera Performance [Some Dependenciesﬂ

«block» «requirement»

Camera Video Performance
) )
I I
| |
| |

«allocate» | | «refine»

| |
| |
I I
Il Il

«activity» B _«_t@ge_»_) «constraint» | _«use» «valueType»

Generate Video Outputs Video Stream Rate Mbps

FIGURE 6.11

Example of dependencies used when documenting camera performance.

6.9 SUMMARY

A well-defined model organization is essential to ensuring that the model is partitioned into model ele-
ments that support reuse, access control, navigability, configuration management, and data exchange.
Different organizing principles can be applied to establish a consistent package hierarchy with nested
packages, each of which contains logical groupings of packageable elements. The following list sum-
marizes the important aspects of model organization.

The principal SysML organizing construct is called a package. Package diagrams are used to
describe this model organization in terms of packages, their contents, and relationships.

A model is a kind of package that represents a domain of interest for a given purpose. Models are
the roots of package hierarchies. If the domain of interest is sufficiently complex, it may contain
submodels.

Package hierarchies are based on the concept of containment or ownership of packageable
elements. An essential aspect of containment is that the packageable elements in a package get
deleted or copied with their container. Examples of packageable elements are blocks, activities,
and value types. A model has a single containment hierarchy, which therefore imposes a single
organizational perspective on the model. The containment hierarchy in a model often drives the
principal browser view in a modeling tool.

Packages are also namespaces for a set of named elements called members. A namespace defines
a set of rules for uniquely identifying an individual member. The namespace rule for packages is
that a member must have a unique name within its package.

The names of symbols on a diagram must allow a viewer to explicitly understand where the repre-
sented element is within the model containment hierarchy. If a symbol represents a member of the
package that the diagram frame designates, then its name (and sometimes keyword) is all that is
required. Otherwise a qualified name is required, which is a concatenation of the member’s name
and a path of all the namespaces between the member and the root model or diagram context.
SysML provides a mechanism to import the members from a package or another model into a
namespace, either as a whole package or as individual model elements. The visibility of the
member in its source package governs whether it is a member of the target namespace. The
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qualified name of the imported element is based on where the element resides within the target
namespace.

e Model elements depend on each other in various ways. The dependency relationship between a
supplier and a client element indicates that the client element is subject to change if the supplier
element changes. Different kinds of dependencies are identified with a keyword and are used for
specific purposes such as refinement, allocation, and traceability.

6.10 QUESTIONS

What is the diagram kind for a package diagram?

Which kinds of model element can be designated by a package diagram?

What is the generic term for model elements that can be contained in packages?

Where does a model appear in a package hierarchy?

Name three potential organizing principles that might be used to construct the package hierarchy

of a model.

How can one show on a package diagram that one package contains another?

Which rule does a package enforce for the named elements that are its members?

How can one tell by looking at a package diagram that a model element represented on the

diagram is a member of the package that is designated by the diagram frame?

9. Write down the qualified name for a block B1 contained in a package P1, which in turn is

contained in a model M1.

10. A package P1 contains three elements—block B1, block B2, and block B3—all with public
visibility, and a package P4 with private visibility. Another package P2 contains a package called
B1 and two blocks called B2 and B4. If package P2 imports package P1 with public visibility,
list all the members of P2.

11. If an empty package P9 imports P2 (as defined in Question 10) with public visibility, list all the
members of P9.

12. What is an alias used for?

13. Name three common kinds of dependency.

14. How are dependencies shown on a package diagram?

agrwN=

o NP

DISCUSSION TOPIC

For a model that you are trying to build, discuss the kind of model organization that is appropriate for it.



CHAPTER

MODELING STRUCTURE WITH
BLOCKS

This chapter addresses the modeling of system structure in terms of hierarchy and interconnection, and
the characterization of system structure using value properties. It introduces blocks, the principle struc-
tural construct of SysML, and the two types of diagrams used to represent structure, the block definition
diagram and the internal block diagram. These representations are a formalization of traditional sys-
tems engineering block diagrams to enable a more precise representation of interfaces and other aspects
of system structure.

7.1 OVERVIEW

The block is the modular unit of structure in SysML that is used to define a type of system, component,
component interconnection, or item that flows through the system, as well as external entities, conceptual
entities, or other logical abstractions. A block describes a set of instances that share the block’s definition. A
block is defined by its features, which may be subdivided into structural features and behavioral features.

The block definition diagram is used to define blocks and the relationships between them, such as
their hierarchical relationship. It can also be used to specify instances of blocks, including their con-
figurations and data values. The internal block diagram is used to describe the structure of a block in
terms of how its parts are interconnected.

Properties are the primary structural feature of blocks. This chapter describes the different kinds of
properties, including those that represent parts, references, and values. Parts are used to describe the
composition hierarchy of a block and define a part in the context of its whole. Value properties describe
quantifiable physical, performance, and other characteristics of a block such as its weight or speed. A
value property is defined by a value type that describes its valid range of values, along with its quantity
kind (e.g., length) and its units (e.g., feet or meters). Value properties can be related using parametric
constraints as discussed in Chapter 8.

Behaviors associated with a block define how the block responds to stimuli. The different behav-
ioral formalisms—including activities, interactions, and state machines—are discussed in Chapters 9
through 11, respectively. The behavioral features of a block, which include operations and receptions,
provide a mechanism for external stimuli to invoke these behaviors.

Parts can be connected on an internal block diagram using connectors to enable interactions between
them, including relaying items that flow in and out of them and invoking behaviors.

Ports are structural features of a block that specify access points at which the block can interact with
other blocks.

As of SysML 1.3, flow ports and flow specifications were deprecated in favor of full and proxy
ports. SysML 1.3 also introduced additional capabilities for ports, such as the ability to nest ports, and
the ability to specify other types of interfaces, such as mating surfaces.

A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00007-2 1 1 5
Copyright © 2015 Elsevier Inc. All rights reserved.
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bdd [Package] Structure )

Camera

il

L

Protective Housing

n1aJ/

J

=]

Mount Assembly I‘I'I

Electronics Assembly

Camera Module

parts

: MPEG Converter
: Composite Converter
: Image Processor

parts
: Camera Housing
ia : Imaging Assembly

"1

: Optical Assembly

azimuth motor

elevation motor \I/

\I/elevation gimbal \|/azimuth gimbal

Stepper Motor

Module Platform

Tilt Gimbal Pan Gimbal

FIGURE 7.1
Example block definition diagram.

In addition to composition hierarchies, blocks can be organized into classification hierarchies that
allow blocks to be defined in terms of their similarities and differences. Within a classification hierar-
chy, a block can specialize another more general block that allows it to inherit features from the general
block and to add new features specific to it.

Instance specifications can be used to identify specific configurations of blocks, including the val-
ues of its value properties.

7.1.1 BLOCK DEFINITION DIAGRAM

The block definition diagram is used to define blocks in terms of their features and their structural
relationships with other blocks. The complete header for a block definition diagram is as follows:

bdd [model element kind] model element name [diagram name]

The diagram kind is bdd and the model element kind that corresponds to the diagram frame can be
a package, a block, or a constraint block.

Figure 7.1 shows an example block definition diagram containing some of the most common sym-
bols. The diagram shows two levels of the composition hierarchy of an ACME Camera. The notation
used in the block definition diagram to describe blocks and their relationships is shown in the Appen-
dix, Tables A.3 through A.6.

7.1.2 INTERNAL BLOCK DIAGRAM

The internal block diagram or ibd resembles a traditional system block diagram and shows the con-
nections between parts of a block. The internal block diagram header is depicted as follows:

ibd [block] block name [diagram name]
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ibd [Block] Camera [Light Path] J
boundary : : Camera Module
| It-'grfht : Protective Housing : Light
nieriace “flow properties Interface : Filter——: Optical Assembly
I:_):l ' in external light : Unpolarized Light ' . i
external : out internal light : Polarized Light polarized : internal :
Unpolarized Light Polarized Light Light
FIGURE 7.2

Example internal block diagram.

The frame of an internal block diagram always corresponds to a block, so the model element kind
is often elided in the diagram header. The block name is the name of the block that is designated by the
frame.

Figure 7.2 shows an example internal block diagram containing some common symbols. The dia-
gram describes part of the internal structure of the Camera and how light flows in and through various
intermediate parts to the Optical Assembly.

The notation used in the internal block diagram to describe the usage of blocks (called parts) and
their interconnections is shown in the Appendix, Tables A.6, A.11, and A.12. Internal block diagram
notation can also be shown in the structure compartment of a block on a block definition diagram.
Figures 7.26 and 7.27 both provide examples of this.

7.2 MODELING BLOCKS ON A BLOCK DEFINITION DIAGRAM

The block is the fundamental modular unit for describing system structure in SysML. It can define a
type of logical or conceptual entity; a physical entity (e.g., a system); a hardware, software, or data
component; a person; a facility; an entity that flows through the system (e.g., water); or an entity in the
natural environment (e.g., the atmosphere or ocean). Blocks are often used to describe reusable compo-
nents that can be used in many different systems. The different kinds of block features used to define
the block are described later and are broadly classified as structural features, behavioral features, and
constraints.

A block is a type, that is, a description of a set of similar instances or objects, all of which
exhibit common characteristics. A block owns a set of features that describe the characteristics of
its instances. Structural features define its internal structure and properties. Behavioral features
define how it interacts with its environment or modifies its own state. An example of a block is an
automobile that may include physical, performance, other properties (e.g., weight, speed, odom-
eter reading), and vehicle registration number, and also may include definitions of how it responds
to steering and throttle commands. Each instance of the automobile block will include these fea-
tures and may be uniquely identified by the value of some of its properties. For example, a Honda
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Civic might be modeled as a block, and a particular Honda Civic is an instance of the Honda Civic
block with the value A1F R3D for its vehicle registration property. An instance of a block can be
modeled explicitly in SysML as a unique design configuration, as described in Section 7.7.6. An
instance can include value properties whose values change over time, such as its speed and odom-
eter reading.

The block symbol is a rectangle that is segmented into a series of compartments. The name com-
partment appears at the top of the symbol and is the only mandatory compartment. Other kinds of block
features—such as parts, operations, value properties, and ports—can be presented in other compart-
ments of the block symbol. All compartments, apart from the name compartment, have labels that
indicate the kind of feature they contain. The labels are depicted in lower case italics, are plural, and
include spaces between words.

Names on block definition diagrams follow the same convention as package diagrams. Model ele-
ments that are either directly contained in or imported into the namespace corresponding to the diagram
are designated just by their names. Other model elements must be designated by their qualified names
in order to clearly identify their location in the model hierarchy.

Any rectangle on a block definition diagram is interpreted by default as representing a block, but
the optional keyword «b1ock» may be used, preceding the name in the name compartment, if desired.
To reduce clutter, the convention used in this chapter is that the «block» keyword is only used if
blocks appear on the same block definition diagram as other model elements that are depicted as
rectangles.

Figure 7.3 shows a block definition diagram that has three blocks in the company’s corporate model,
called ACME Surveillance Systems. The names of the blocks are fully qualified with their path to show
where they are located within the package hierarchy of the model, which is shown in Chapter 6, Figure 6.5.
The blocks shown cover a range of uses: Camera is a description of an ACME product; Stepper Motor
Module is an off-the-shelf component used in ACME’s cameras; and Video is used to describe the video
images that the cameras produce.

bdd [Model] ACME Surveillance Systems [Some Blocks])

Products::Cameras::Structure::Camera

Components::Stepper Motor Module

Standard Definitions::Standard ltem Definitions::Video

FIGURE 7.3
Blocks on a block definition diagram.
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MODELING THE STRUCTURE AND CHARACTERISTICS OF BLOCKS
USING PROPERTIES

Properties are structural features of a block. A property has a type that defines its characteristics,
which may be another block, or some more basic type such as an integer. This section describes three
categories of property and their uses.

e Part properties (parts for short) describe the decomposition of a block into its constituent ele-
ments. These are described in Section 7.3.1.

e Reference properties are properties whose values refer to parts of other blocks. Reference proper-
ties are described in Section 7.3.2.

e Value properties describe the quantifiable characteristics of a block, such as its weight or velocity,
and are described in Section 7.3.4.

More advanced topics related to properties include the following:

* Property derivation, static properties, and read only properties are described in Section 7.3.4.
* Property redefinition and subsetting are defined in Sections 7.7.1 and 7.7.6, respectively.
e Property ordering and uniqueness are defined in Chapter 8, Section 8.3.1.

The properties compartment of a block can display its properties of any kind.

MODELING BLOCK COMPOSITION HIERARCHIES USING PARTS

Parts describe composition relationships between blocks. This kind of hierarchical composition of
blocks is often seen in a bill of materials (also known as a parts list or equipment tree). A composition
relationship is also called a whole—part relationship. A part is usually typed by a block, although it can
also be typed by an actor as described in Chapter 12, Section 12.5.1.

A part identifies the usage of its type in a context. The key distinction between a part and an instance
of a block is that the part describes an instance or instances of a block in the context of an instance of
its composite block, whereas an instance does not require a context.

An instance of a composite block may include multiple instances of the block at the part end. The
potential number of instances is specified by the multiplicity of the part, which is defined as follows:

e A lower bound (minimum number of instances) that may be O or any positive integer. The term
“optional” is often used for multiplicities when the lower bound is 0, because an instance of the
whole is not obliged to include any instances of the block at the part end.

e An upper bound (maximum number of instances) that may be 1, many (denoted by “*”), or any
positive integer equal to or greater than the lower bound.

A part is a feature of a block, and as such can be listed in a separate parts compartment within a
block. The parts compartment is labeled with the keyword parts and contains one entry for each part in
the block. Each entry has the following format:

part name: block name [multiplicity]
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The upper and lower bounds of a multiplicity are typically combined into one expression with the
format lower bound..upper bound, except when both bounds have the same value, in which case that
value is shown. If no multiplicity is shown on the part end, a value of 1 is assumed.

Figure 7.4 shows a simple example of an automobile with four wheels, in which each usage of
Wheel is uniquely identified by a part. In this case, the Automobile is the whole and the wheels are
represented as parts. Each of the four wheels has a common block definition, Wheel, with certain char-
acteristics (e.g., size, pressure), but each wheel can have a unique usage or role in the context of a
particular automobile. The front wheels have a different role than the rear wheels and may have differ-
ent values for their pressure. Each wheel may also behave differently when the car is turning or accel-
erating and be subject to different constraints. Similarly, the front wheels on a front wheel-drive vehicle
may have a different role than front wheels on a rear wheel-drive vehicle.

A part defines a set of instances that belong to an instance of the whole or composite block. If a
block is part of more than one composite block, the SysML semantics are that an instance of that block
is part of at most one block instance at any time. An example is an engine that can be part of two dif-
ferent types of vehicle, such as an automobile and a truck. However, any given instance of engine can
only be part of one vehicle instance at a time. This rule implies that at the instance level the composition
hierarchy is a strict tree, because an instance may have at most one parent.

Typically, a whole—part relationship means that certain operations that apply to the whole may also
apply to each of its parts. For example, if a whole represents a physical object, a change in position of
the whole could also change the position of each of its parts. A property of the whole, such as its mass,
could also be inferred from its parts. However, these inferred characteristics must be specified in the
model generally by using constraints as described in Chapter 8.

When blocks represent components of physical systems, the whole—part relationships can some-
times be considered an assembly relationship, where an instance of the block on the whole end is
assembled from instances of the block on the part ends. The implications of whole—part relationships
for software relate to creating and returning memory locations for computation. For software objects, a

bdd [Package] Automobile Example )

Wheel Automobile

values parts
pressure : psi left front : Wheel
size : mm right front : Wheel

left rear : Wheel
right rear : Wheel

values
weight : kg
vehicle id : String

FIGURE 7.4

An automobile with four wheels described as separate parts.
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typical interpretation for the whole—part relationship is that create, delete, and copy operations of the
whole also apply to all of its parts. As an example, the whole—part semantics specify that when an
instance at the whole end is destroyed, the instances at the part end will also be destroyed.

Composite associations

A composite association relates two blocks in a whole—part relationship. It has two ends, one describ-
ing the whole and the other describing the part. A part is owned by the block at the whole end of the
association. The upper bound of the multiplicity at the whole end is always 1 because an instance of a
part may only exist in one whole at any one time. However, the lower bound of the multiplicity at the
whole end may be O or 1. A value of 1 means that instances of the block at the part end must always be
composed from instances of the block at the whole end, whereas a value of 0 means that an instance of
the block at the part end can exist even if no whole exists. In the latter case, an instance of a block
at the part end may be composed within many other block instances over time, but it is still mandated
that the instance is only part of one instance at any given time. For example, an instance of an engine
may physically exist on its own or be part of an instance of an automobile or a truck at any given time.

A composite association is shown as a line between two blocks with various adornments at its ends.
The whole end of a composite association is adorned by a black diamond. A shorthand notation can be
used to represent a block that has many composite associations by showing a single black diamond with
a series of lines connecting to the part ends of each composite association.

Each end of the composite association may show a name and a multiplicity, among other adorn-
ments. When the multiplicity for an end is not shown, the default interpretation is a whole end multi-
plicity of 0..1 and a part end multiplicity of 1. If a name appears as an adornment on the part end, it
is the name of the corresponding part, although parts do not need to be named. Association ends can
also show adornments corresponding to other features of the property they represent, as described
later in this chapter. In the most common use of composite associations, the whole end of the com-
posite association is generally not named and the part end has the part name and an open arrowhead.
The absence of an arrowhead on the part end indicates the presence of a reference property as defined
in Section 7.3.2.

The parts compartment of a block can show the parts represented at the part end of the composite
associations. Typically on any given diagram, the part is shown either in a parts compartment or as an
association end, but not both.

Figure 7.5 shows a portion of the top two levels of the composition hierarchy for a Camera. The
composite associations for Camera and Mount Assembly are shown. The parts of the Camera Module
and Electronics Assembly are shown in compartments. Although multiple levels of decomposition can
be shown on a single diagram, this can increase the clutter even for relatively simple systems. As a
result, a common practice is to show only a single level of decomposition on a particular diagram. Note
that the diagram frame corresponds to the Structure package, as indicated in the diagram header, which
contains all the blocks shown in the figure.

There are different philosophies on which parts should have names. In this chapter, except where
stated, the following naming philosophy is used:

1. Names are used to distinguish two parts with the same type (block). An example of this is the use
of names for Stepper Motor Module to distinguish the two parts, elevation motor and azimuth
motor.
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bdd [Package] Structure )

Camera

il

L

Protective Housing

n1aJ/

J

=]

Mount Assembly

i

)

Electronics Assembly

Camera Module

parts

: MPEG Converter
: Composite Converter
: Image Processor

parts
: Camera Housing
ia : Imaging Assembly
: Optical Assembly

azimuth motor

elevation motor \L

\I/elevation gimbal \|/azimuth gimbal

Stepper Motor

Module Platform

Tilt Gimbal Pan Gimbal

FIGURE 7.5
Showing a block composition hierarchy on a block definition diagram.

2. A part is given a name when the name of the type does not adequately describe the role the part
plays. Examples of this are the names elevation gimbal and azimuth gimbal, since the block names
Tilt Gimbal and Pan Gimbal do not explicitly describe the plane in which the gimbals move in the
Camera application.

3. A part is not named when the type (block) name provides sufficient information to infer the role
of the part. Examples of this are Protective Housing and Electronics Assembly. This is often the
case when a block has been explicitly created to represent this part. This should also apply to
Mount Assembly, Camera Module, and Imaging Assembly, but names were used to illustrate the
part name notation in Figure 7.8 and Figure 7.54.

If the part has been given a name, it is referenced when describing the figure; otherwise the block
name is used.

The lack of multiplicity adornments on all part ends in this figure indicate that there is exactly one
instance of each part in the composition hierarchy of Camera. The multiplicity adornment on their
whole end indicates that the Electronics Assembly, ma, and cm are always part of a Camera, whereas
the block Protective Housing may be used in other blocks. All the parts of ma are typed by reusable
blocks that have uses in many other contexts. The Electronics Assembly and cm are each shown with a
parts compartment that lists their parts. None of the parts of the Electronics Assembly have a name, and
they all have the default multiplicity of 1.

Modeling parts on an internal block diagram

In addition to appearing on a block definition diagram, parts can be shown on another diagram called
the internal block diagram, which presents a different visualization of block composition. The internal
block diagram enables parts to be connected to one another using connectors and ports as described
later.
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ibd [Block] Mount Assembly [Parts] )
elevation gimbal : Tilt Gimbal azimuth gimbal : Pan Gimbal
: Platform
elevation motor : Stepper Motor azimuth motor : Stepper Motor
Module Module

FIGURE 7.6
An internal block diagram for the Mount Assembly.

The relationship between composition—as shown on a block definition diagram and on an internal
block diagram—is as follows:

e The whole end or composite (block) is designated by the diagram frame on the internal block
diagram with the block name in the diagram header. It provides the context for all the diagram
elements on the diagram.

e A part, shown either as a part end of a composite association whose whole end is the composite
block or in the parts compartment of the composite block, appears as a box symbol with a solid
boundary within the frame of the internal block diagram. The name string of the box symbol is
composed of the part name followed by a colon followed by the type of the part. Either the part
name or the type name can be elided.

The multiplicity of each part may be shown in the top right corner of the part symbol or in square
brackets after the type name. If no multiplicity is shown, then a multiplicity of 1 is assumed.

Figure 7.6 is an internal block diagram derived from the composite associations whose whole end is
Mount Assembly from Figure 7.5. The diagram header identifies Mount Assembly as the enclosing block
that provides the context for the five parts shown in the diagram. In this case, the multiplicities are not
shown, indicating that the multiplicity is the default value of 1. (See Figure 7.13 for an example of non-
default multiplicity.) Note that this is a simplified form of internal block diagram for illustration.

A modeler may choose to indicate on a particular part symbol whether the internal structure of the
block that types the part is further described by an internal block diagram. If they so choose and the
block in question has an associated internal block diagram, then the symbol contains a rake icon in its
bottom right corner. The rake icon on the residence part in Figure 7.13 indicates that that block is fur-
ther elaborated in an internal block diagram, in this case shown in Figure 7.42.

Connecting parts on an internal block diagram
An internal block diagram can be used to show connections between the parts of a block. A connector
is used to connect two parts and provides the opportunity for those parts to interact, although the
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connector alone says nothing about the nature of the interaction. Connectors can also connect ports, as
described later in Section 7.6.3.

The interaction between the parts of a block is specified by the behaviors of its parts, as described
in Chapters 9, 10, and 11. The interaction may include the flow of inputs and outputs between parts, the
invocation of operations on parts, or the sending and receiving of signals between parts, or may be
specified by constraints on properties of the parts on either end. When appropriate, the nature and direc-
tion of items flowing on a connector can be shown using item flows, as described in Section 7.4.3.

A connector may be typed by an association or association block that allows further definition of the
characteristics of the connection, as described in Section 7.3.3. The ends of a connector can include
multiplicities that describe the number of instances that can be connected by links described by the
type of the connector. For example, the connection between a laptop and a number of USB devices
might be modeled as a single connector, but there will be a separate link for each connected device.

On an internal block diagram, the connector between two parts is depicted as a line connecting two
part symbols. A part can connect to multiple parts, but a separate connector is required for each con-
nection. The full form of the connector name string is as follows:

connector name: association name

The ends of a connector can include an arrowhead, which means that the association that typed the
connector had the equivalent adornment. This is not usually shown, however, and should not be con-
fused with flows. The ends of the connector can be adorned with the name and multiplicity of the con-
nector ends. If no multiplicity is shown, then a multiplicity of 1 is assumed. When connector symbols
cross each other, their intersection can be designated by a semi-circular jog to distinguish the two
connectors.

The internal block diagram for the Camera is shown in Figure 7.7. The Protective Housing that
protects the camera internals is mechanically connected to the Mount Assembly (ma). The Mount
Assembly provides the platform for the Camera Module (cm) and Electronics Assembly, which are con-
nected to pass electrical signals that allow the camera to function. The connectors in this example have
names, indicating that they are mechanically connected (m! to m3) or electrically connected (el), but

ibd [Block] Camera [Part Connections])

: Protective Housing

m2

ma : Mount Assembly
m1 m3

1
cm : Camera Module ° : Electronics Assembly

FIGURE 7.7
Connecting parts on an internal block diagram.
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the names have no semantic implications. Meaningful semantics can be added by typing connectors, as
described in Section 7.3.3, or by using a domain-specific profile as described in Chapter 15. All the
connectors have default multiplicity implying one-to-one connections.

Modeling nested structures and connectors

Sometimes it is necessary to show multiple levels of nested parts within a system hierarchy on an inter-
nal block diagram. The nested parts can be represented by showing part symbols within part symbols,
as shown in Figure 7.8. SysML also introduces an alternative notation to designate a nested part (also
shown in the figure) in which each level of nesting of the part is separated by a period (dot) within the
name string of a single part symbol. The symbol’s name string, with dot notation, represents the path
in the decomposition hierarchy from the level of the context block for the diagram down to the nested
part. In Figure 7.8, the azimuth gimbal is represented as a nested rectangle within the ma:Mount Assem-
bly symbol, and also represented using the dot notation with the higher-level part name, ma, and a dot
preceding the part name, azimuth gimbal. It is expected that only the dot notation or the nested part
notation is used on a diagram to depict a particular part.

Connectors can connect parts at different levels of nesting without directly connecting to the
intermediate levels of nested parts. For example, a tire can be connected directly to a road without
requiring intermediate connectors at each level of nesting from the vehicle to the suspension, the
suspension to the wheel, and the wheel to the tire. The connector simply crosses the nested part
boundaries in order to directly connect the tire to the road. Blocks have a special Boolean property
called isEncapsulated, which if true prohibits connectors from crossing boundaries without con-
necting to any intermediate nested parts. It is often the case that connections are initially specified
between top-level parts, and then as the internal details of the parts become known, connectors are
specified between lower-level elements. It is a modeling choice as to whether the outer connectors
are removed or kept.

Connectors with nested ends are shown in the same way as normal connectors except that they cross
the boundaries of part symbols. The isEncapsulated property on a block is shown if true and not shown
if false. If shown, it appears in the name compartment in braces before the block name.

ibd [Block] Camera [Two ways of showing azimuth gimbal] )

ma : Mount Assembly

azimuth gimbal : Pan Gimbal

ma.azimuth gimbal : Pan Gimbal

FIGURE 7.8
Showing deep-nested parts on an internal block diagram.
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ibd [Block] Camera [Lower Part Connections] )

ma : Mount Assembly cm : Camera Module
) | platform [ )
: Platform Mo housing | : Camera Housing | : Electronics Assembly
) - | imaging [
| ia : Imaging Assembly | to video | Image Processor |
| : Optical Assembly | : MPEG Converter |

FIGURE 7.9

Nested connectors on an internal block diagram.

Figure 7.9 includes a more detailed look at the connections within the subassemblies in Figure 7.7.
After further investigation, connector m/ has been augmented with a connector, called platform to
housing, whose nested ends directly connect the Platform of ma (the Mount Assembly) to the Camera
Housing of the cm (the Camera Module). Similarly, the electrical connector, e/, has been augmented
with a connector called imaging to video that connects the Imaging Assembly (ia) of cm to the Image
Processor of the Electronics Assembly.

When a connector at one level of the structure is used to add more detail about a connector at some higher
level, there are potential issues with maintaining the resulting model. For example, if the m/ connector from
Figure 7.7 is removed from the model, should platform to housing be removed as well? If this kind of rela-
tionship is important, then an association block can be used to show decomposition of the connector in a
similar way that blocks show the decomposition of parts. Association blocks are described in Section 7.3.3.
The use of ports is also important for addressing this kind of issue as described in Section 7.6.

Binding connectors

A binding connector is a special kind of connector that constrains its ends to have the same value. It

is fundamental to the construction of parametric models (see Chapter 8) but also has uses in structural

modeling with internal block diagrams. Two specific examples are the binding of proxy ports to parts

(see Section 7.6.3) and the use of bound references to specify variation in blocks (see Section 7.7.4).
A binding connector is shown using the connector notation introduced above, except that the con-

nector path optionally has the keyword «equal» shown near its center.

7.3.2 MODELING RELATIONSHIPS BETWEEN BLOCKS USING REFERENCE
PROPERTIES

Reference properties, sometimes shortened to just references, enable an instance of a block that con-
tains the reference property to refer to an instance of the block which types the reference property. The
composition semantics of whole—part relationships, as described by parts, define a specific relationship
between an instance of the block at the whole end and an instance of the block at the part end, as
described in the previous section. An example of this is the destruction semantics, which specify that
destroying an instance of the block at the whole end also destroys the instances of the blocks at the part
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ends. For reference properties, the destruction semantics associated with composition do not apply.
There is also no constraint on the number of blocks that can have reference properties that refer to the
same instance. This provides significant utility as described next.

Reference properties can be used to describe a logical hierarchy that references blocks that are part
of other composition hierarchies. Reference properties can thus be used to cut across the tree structure
of a composition hierarchy, which allows additional decomposition views besides the primary system
whole—part hierarchy. This logical hierarchical organization can be represented on both the block defi-
nition diagram and internal block diagram. Binding connectors can be used to constrain the reference
properties in a logical hierarchy to have the same value as a specific part in a composition hierarchy.
Another use of reference properties is to model stored items (e.g., water stored in a tank). The water is
not part of the tank in the same way that a valve is a part of the tank. For this case, the water may be
owned by another block and shown as a reference property of the tank.

Like parts, reference properties can be listed in a separate compartment within a block. The refer-
ences compartment is headed by the keyword references and contains one entry for each reference
property in the block, with the same presentation as parts.

Reference associations

The composite association was discussed earlier in this chapter as representing a hierarchy of blocks.
Reference associations are used on a block definition diagram to capture a different relationship
between blocks, in which the block on one end of the association is referenced by the block on the other
end. A reference association can specify a reference property on the blocks at one or both ends.

A reference association is represented as a line between two blocks. The black diamond that repre-
sents a composite association is not used. When there is a reference property on only one end, the line
has an open arrowhead on the end of the association pointing from the owner of the reference property
to the type that is referenced. There is no arrowhead on the end of the association that owns the refer-
ence property. If the reference association is bidirectional (i.e., has reference properties at both ends),
then there are no arrowheads on either end. Multiplicities on the ends of reference associations have the
same form as for composite associations.

One end of a reference association may be represented by a white diamond. SysML assigns the
same meaning to the association whether the white diamond is present or not. However, the white dia-
mond symbol is intended to be used with an applied stereotype that may specify unique semantics for
a particular domain.

Composite associations can also define reference properties. If there is no arrowhead on the part end
of a composite association, then the block typing the part has a corresponding reference property whose
name is given at the whole end of the composite association.

Figure 7.10 shows a block called Mechanical Power Subsystem that uses reference associations to
reference the Power Supply of the Camera, its powered mechanical components, including the motors
in the various assemblies, and the Distribution Harness. The Distribution Harness itself has references
to other harnesses that are part of the different assemblies in the Camera. In the composition hierarchy
for the Camera, the components are part of a number of different assemblies, some of which are shown
in Figure 7.5. The Mechanical Power Subsystem represents a logical aggregation of these components
that interact to provide power to the rest of the camera. The white diamond adornment is used in this
example to emphasize the hierarchical nature of the Mechanical Power Subsystem, but this emphasis is
strictly notational and has no semantic implications.
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bdd [Block] Camera [Power Subsystem])

Mechanical Power
Subsystem

il

azimuth elevation
motor motor iris motor focus motor power source
Stepper Motor Distribution Harness Brushless DC Motor
Power Supply
Module references Module

: Camera Harness

: Electronics Harness

: Mount Harness

FIGURE 7.10

Reference associations on a block definition diagram.

Different model-based methods may include a block such as the Mechanical Power Subsystem in
different parts of the model structure. Here it is contained in the Camera block itself, but it could just
as easily have been placed in a special package of similar subsystems. An instance of Mechanical
Power Subsystem does not show up in the equipment tree for the Camera but is more like a cross-cut-
ting view of a portion of the equipment tree.

Reference associations are also used to represent associations between blocks for other purposes,
such as those that might be used in the classical entity-relationship-attribute (ERA) kind of data model-
ing or more general class modeling.

Modeling reference properties on internal block diagrams

Reference properties are depicted in a similar fashion to parts when shown on the internal block dia-
gram, except that their box symbol has a dashed instead of a solid boundary. Otherwise they have simi-
lar adornments and can be connected in the same way as any part symbol.

Figure 7.11 shows the connections between the reference properties of the Mechanical Power
Subsystem used to support power transfer within the subsystem. In this case, a single power source
provides all the power needs of the mechanical parts of the camera through the Distribution
Harness.

7.3.3 USING ASSOCIATIONS TO TYPE CONNECTORS BETWEEN PARTS

Just as blocks can be used as the types of parts to model the structure of a system, associations can be
used as the types of connectors to model the connections between parts. Associations can be used in
two ways: to define how blocks can be validly connected, and to define details, including further struc-
ture, of those connections.
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ibd [Block] Mechanical Power Subsystem )

iris motor : Brushless DC
Motor Module

azimuth motor : Stepper
Motor Module

focus motor : Brushless DC
Motor Module

: elevation motor : Stepper
Motor Module

FIGURE 7.11
Reference properties and their interconnections on an internal block diagram.

Typing connectors by associations to assert compatibility

One use of a typed connector is to assert compatibility between the parts it connects by requiring that
the parts at either end of the connector satisfy the constraints imposed by the association that types it.
For a connector to be typed by an association, the connected parts must have a type that is compatible
with the ends of that association. A compatible part type is either the same type as the association end
or a specialization of that type.

A disciplined process may require all connectors be typed to ensure the compatibility of their ends.
In such a process, a library of associations with compatible end types is provided, and every connector
must be typed by an association from this library, which ensures that only parts that were intended to
be connected can be. It is assumed in this process that the compatibility of the features of end types has
also been validated (see Sections 7.4.3 and 7.5.4).

An association defines the multiplicity of block instances on each of its ends. Although connectors
may have their own multiplicities, their lower and upper bounds are constrained to be within the mul-
tiplicity defined for the ends of the association that types it.

Figure 7.12 shows the part of the ACME Surveillance Network that deals with residential users. An
Asynchronous Digital Subscriber Line (ADSL) connection is used to connect several Surveillance
Systems to the Command Center, as shown by the association ADSL Connection. The ends of ADSL
Connection represent reference properties of the blocks at each end and are named ads! dte and adsl
dce, indicating the respective roles of the related blocks. A Surveillance System is a data terminator and
thus has higher download than upload capacity and must be related, via its reference property adsl dce,
to exactly one Command Center. A Command Center is related, via its reference property adsl dte, to
zero or more Surveillance Systems.

Figure 7.13 shows the residential part of the ACME Surveillance Network on an internal block dia-
gram. It shows the residential surveillance center connected to a set of residences. The connector, res
comms, is typed by the ADSL Connection and so must conform to both the types of its ends and their
multiplicities, which it does. In this case the connector does not further restrict the multiplicity stated
on the association so there is no need to add multiplicities to the connectors. For an example of connec-
tors with multiplicities, see Figure 7.42.
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bdd [Package] Logical [Residential Users])

ACME Surveillance Network

residence |0..* residential surveillance center |1
Command Center

Surveillance System| | 4 adsl dce

0.* ADSL Connection 1

FIGURE 7.12
A reference association between two blocks.

ibd [Block] ACME Surveillance Network [Residential])

res comms: ADSL
residence : Surveillance System [0..*] |ads! dte Connection ads| dce

rh

residential surveillance center :
Command Center [1]

FIGURE 7.13
Connector typed by an association.

Using association blocks to define the structure of connectors

More detail can be specified for connectors by typing them with association blocks. An association
block, as the name implies, is a combination of an association and a block, so it can relate two blocks
together but can also have internal structure and other features. The internal structure can be used to
decompose the connector that is typed by the association block.

Each end of the association block is represented by a special kind of property called a participant
property, which is analogous to a reference property. This enables the blocks at the ends of the associa-
tion block to be referenced by the association block, without being part of the association block. This in
turn ensures association blocks are not confused with other parts of the system composition hierarchy.

Association blocks are shown on block definition diagrams as an association path with a block
symbol attached to it via a dashed line. The name of the association block is shown in the block symbol
rather than on the association path.

Figure 7.14 shows a refinement to Figure 7.12 in which ADSL Connection is now an association
block. The figure also shows additional internal structure inside Surveillance System and Command
Center: an ADSL Modem and an ADSL Gateway, respectively. These new parts are used to handle the
ADSL communication between them, as shown in Figure 7.15.
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bdd [Package] Logical [Full Communicationsu

ACME Surveillance Network

center comms

SDSL Connection
bus T
res comms| omms |
ADSL Connection residential | corporate
company residence surveillance| surveillance
sds| host center center
0.” 0." sdsl client 1 1 1
Surveillance System Command Center

structure structure

|
|
| 1
|
|

: ADSL Modem adsl dte adsl dce : ADSL Gateway
0..* 1
FIGURE 7.14
Using association blocks to relate blocks.
ibd [Block] ADSL Connection )
r-—"—-"-"-""""""="="="="=""=""="="""="—""= r-r——=""""""""""="""""7"="/=—"= |

x|
«participant» 0.
{end=adsl dte}
adsl dte : Surveillance System

«participant»
{end=adsl dce}
adsl dce : Command Center

structure

adsl link
: ADSL Modem

: ADSL Gateway

|
|
|
|
1
structure |
|
|
|
|

FIGURE 7.15
The internal structure of an association block.

Figure 7.14 also includes another association block, SDSL Connection. SDSL Connection repre-
sents the use of a Synchronous Digital Subscriber Line (SDSL) between Command Centers, but the
parts required to support SDSL are not shown. In addition, the figure shows further aspects of the
ACME Surveillance Network related to corporate customers and the connectors, res comms, bus comms
and center comms used to connect them. Refer to the next section on connector properties for further
discussion of these.
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The internal structure of an association block can be specified like any other block. The most common
way to specify the association block’s internal structure is with an internal block diagram where the frame
of the diagram corresponds to the association block. A participant property is represented with a dashed
box, like a reference property, but distinguished from other properties by the keyword «participant». It
may also indicate the association end that it represents using the string end = property name in braces.

Figure 7.15 shows the internal detail of the ADSL Connection association block. Its two participant
properties—adsl dce and adsl dte—are shown using the «participant» keyword. The nested parts of
adsl dte and adsl dce are shown in order to describe how an ADSL Connection is achieved, in this case
via a connector called ads! link, between an ADSL Modem and an ADSL Gateway. It is now explicit that
every connector typed by ADSL Connection ensures that the ADSL Modem of its adsl dte and the ADSL
Gateway of its adsl dce are connected via a connector called adsl link. Note that the connector ads! link
is not typed, and so there is no additional detail on the link’s nature. If further internal detail is
required—such as the nature of the physical details of the ADSL connection—the connector can be
typed by an association block.

Figure 7.16 shows both the ADSL Connection and SDSL Connection in use. As shown in Figure
7.14, the ACME Surveillance Network has two command centers: one for corporate clients and the
other for residential clients. The command centers communicate to each other through an SDSL Con-
nection and to their clients through ADSL Connections.

Connector properties

As noted previously, a connector can be typed by an association or association block and is a feature of a
block. SysML allows a connector typed by an association block to be represented by a connector prop-
erty. A connector property can be shown on a block definition diagram using a composite association
from a block to an association block. The name on the part end represents a connector property owned by
the block at the whole end. It can also be shown on an internal block diagram as a rectangle symbol joined
with a dotted line to the connector path. The symbol for the connector property has the name string:

«connector» connector name: association name

ibd [Block] ACME Surveillance Networld
. . . sdsl client sdsl host ’
residential surveillance center : corporate surveillance center :
Command Center [1] center comms : SDSL Command Center [1]
Connection
adsl dte adsl dce
res comms : ADSL Connection bus comms : ADSL
Connection
adsl dce adsl dte
residence : Surveillance System [0..*] company : Surveillance System [0..*]
FIGURE 7.16

Example of an ACME surveillance network with two command centers.
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Figure 7.14 shows three connector properties: res comms and bus comms, typed by ADSL Connec-
tion, and center comms, typed by SDSL Connection.

MODELING QUANTIFIABLE CHARACTERISTICS OF BLOCKS USING VALUE
PROPERTIES

Value properties are used to model the quantitative characteristics of a block, such as its weight or
speed. They can also be used to model vector quantities, such as position or velocity. Whereas the defi-
nition of a part or reference property is based on a block, the definition of a value property is based on
a value type that specifies the range of valid values the property can take when describing an instance
of its owning block. SysML defines the concepts of unit and quantity kind that can be used to further
characterize a value type, although a value type does not require a quantity kind or unit. Value proper-
ties can have default values associated with them, and they can also define a probability distribution for
their values.

Modeling value types on a block definition diagram

Value types are used to describe the values for quantities. For example, value properties called total
weight and component weight might be typed by a value type called kilograms (kg) whose value can be
any real number greater than or equal to 0. The intent of the value type is to provide a uniform definition
of a quantity that can be shared by many value properties. Value type definitions can be reused by typ-
ing multiple value properties with the same value type.

A value type describes the data structure for representing a quantity and specifies its allowable set
of values. This is especially important when relying on computers to operate on the values to perform
various computations. A value type can be based on the predefined value types that SysML provides,
or new value types can be defined. The following are the different categories of value type:

e A primitive type supports the definition of scalar values. Integer, String, Boolean, and Real are
predefined primitive types in SysML.

* An enumeration defines a set of named values called literals. Examples of enumerations are
colors and days of the week.

* A structured type represents a specification of a data structure that includes more than one data
element, each of which is represented by a value property. Complex is a predefined structured type
provided by SysML. Another example may be a value type called Position with value properties
for x, y, and z.

Value types represent values, not entities, and so unlike blocks they have no concept of identity. In
particular this implies that two instances of a value type are identical if they have the same values,
which is not true of instances of blocks.

Value types are represented on a block definition diagram by a box symbol with a solid boundary.
The name compartment of a value type has the keyword «valueType» preceding its name.

The symbol representing an enumeration has a single compartment, labeled literals, listing all the
literals of the enumeration and the keyword «enumeration» preceding its name in the name compart-
ment. The symbol representing a structured type also has a single compartment labeled values that lists
the nested value properties of the value type, using the same compartment notation as shown for other
value properties.
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bdd [Package] Basic Definitions)

«valueType» «valueType»
«enumeration» Waypoint Size
Image Quality
i values values
| literals x : Real width : m
r?:rlmal y : Real height : m
high length : m
«valueType»
Real
AN

«valueType» «valueType» «valueType»
Frames per Second MHz MB

FIGURE 7.17

Definition of basic value types in a block definition diagram.

Figure 7.17 shows some value types in the Basic Definitions package. Size is a structured type, with
three nested value properties: width, height, and length; they are typed by another value type m (for
meters). The definition of m includes its unit and is shown later in Figure 7.19. Image Quality is an
enumeration used to specify the quality of image captured by the camera, which can be used to control
how much data are required to capture each video frame. The other value types are all real numbers and
so are specializations of the SysML value type Real. In this case the specialization is simply stating that
the values for MHz, MB, and Frames per Second are real numbers. See Section 7.7 for further discus-
sion on the meaning and notation for specialization.

Adding units and quantities to value types

SysML defines the concepts of unit and quantity kind as shareable definitions that can be used consis-
tently across a model, or captured in a model library that can be reused across a set of models. A quantity
kind identifies a kind of physical quantity such as length, whose value may be stated in terms of defined
units (e.g., meters or feet). To cover all potential situations, a unit can be associated with multiple quantity
kinds, although typically a unit will be associated to just one. Often, equations can be expressed in terms
of quantities that include quantity kinds without specifying units. Both quantity kinds and units can have
symbols, such as those shown in Figure 7.18, which SysML model editors and other tools can use in place
of the full names of quantity kinds and units.

In developing a system model, it is critical to ensure that the units of system data are compatible,
and simply using a name or even a model library is not sufficient to identify a unit or quantity kind
uniquely if many organizations and project teams are collaborating on a system development. SysML
units and quantity kinds also include a definitionURI, which can be used to relate them to a unique web
reference, so that definitive comparisons can be performed.
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bdd [Package] Standard Definitions [Dependenciesu
«modelLibrary» modelLibrary
« »
Sl Definitions
c «import» S| Value Types
metre : Unit AN
definitionURI = "http://www.bipm.org/en/si/si_brochure/chapter2/2-1/metre.html" I I
quantityKind = length I I
symbol = "m" I I
«import» ' '
|- - - - -~ .
length : QuantityKind | [power : QuantityKind watt : Unit _l | —l I«Import»
symbol ="V symbol ="P* quantityKind = power «modelLibrary» «modelLibrary»
symbol = "W"
Basic Definitions| |Standard Item Definitions|
FIGURE 7.18

Importing the Sl definitions defined by SysML.

A value type that represents a physical quantity may reference a quantity kind and/or unit as part of
its definition, and thus assign units and quantity kinds to any value property that it types.

Both units and quantity kinds are shown on a block definition diagram using a box symbol. They
have their name and type (unit or quantity kind), underlined and separated by a colon, shown in the
name compartment, and their different slots shown in a compartment.

The Sl standard for units and quantity kinds

The International System of Units (SI) is a standard for units and quantity kinds published by the Inter-
national Standards Organization (ISO). The complete set of SI quantity kinds and units are described
in a model library called ISO80000 in Annex E.6 of the OMG SysML specification, based on a sophis-
ticated foundation library that supports quantitative analysis. This model library can be imported into
any model to allow the SI definitions to be used as is or as the basis for defining more specialized units
and quantity kinds. Although this model library is a non-normative part of the SysML specification that
is not required for tool vendor conformance, it is anticipated that many SysML modeling tools will
include this library and possible extensions. All units and quantity kinds in the ZSO80000 model library
have a definition URI taken from http://www.bipm.org/.

Figure 7.18 shows some of the definitions in the SI Definitions model library in the Standard Defini-
tions library of ACME Surveillance Systems. All of the units and quantity kinds shown have definition
URIs, although only the one for metre is displayed in the figure. SI Value Types is a locally defined
model library that imports SI Definitions in order to define a set of SI value types for this application
based on the SI units and quantity kinds.

Some of the value types in the ST Value Types model library are shown in Figure 7.19, using unit
definitions imported from the SI Definitions package. This enables a consistent representation of quan-
tities that can be checked for compatibility of quantity kinds and consistency of units. Although not
shown here, all the value types in this figure are defined to be real numbers.
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bdd [Package] S| ValueTypes [SI Types with Units] )
«valueType» «valueType»,
w Ix
«valueType» «valueType»
unit = watt unit = lux
«valueType» «valueType» «valueType»
kg s m
«valueType» «valueType» «valueType»
unit = kilogram unit = second unit = metre

FIGURE 7.19
Using units in the definition of value types.

Adding value properties to blocks

Once value types have been defined, they can be used to type the value properties of blocks. Value
properties can have multiplicity and are shown in a compartment of their owning block similar to other
properties. The values compartment has the label values.

Figure 7.20 shows a block definition diagram containing three blocks with value properties: Cam-
era, Electronics Assembly, and Optical Assembly. Some of the value properties, such as the clock speed
and memory of Electronics Assembly, are typed with the value types specified in Figure 7.17. Others are
typed with value types shown in Figure 7.19. For example, the sensitivity of the Camera is typed by lux,
which measures luminance. The names of value types are not limited to alphanumeric characters. For

o

example, pan field of regard in Camera is typed by the character “°,” which is a symbol for degrees.

Read only and static properties

Properties can be specified as read only, which means that their values cannot change during the life-
time of their owner. A read only property is indicated using the keyword read0On1y in braces at the end
of the property string.

bdd [Package] Structure [Value Properties with Types])

Camera Electronics Assembly Optical Assembly
values values values
dimensions : Size clock speed : MHz aperture : mm
power : W memory : MB focal length : mm

pan field of regard : °
sensitivity : lux
tilt field of regard : °©

FIGURE 7.20
Use of a value type to type a value property on a block definition diagram.
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A property can also be specified as static, which means that its value is the same across all instances
described by this block. A static property is often used to describe some configuration characteristic
that has the same value for a particular type, such as the number of sides of a cube. Static properties are
shown by underlining the name string of the property.

Derived properties
Properties can be specified as derived, which means that their values are derived from other values. In
software systems, a derived property is typically calculated by the software in the system. In physical
systems, a property is typically marked as derived to indicate that the values of derived properties are
calculated based on analysis or simulation, and may well be subject to constraints as described in Chap-
ter 8, Section 8.3.1. By definition, constraints express noncausal relationships between properties, but
derived properties can be interpreted as dependent variables, and thus allow the equations expressed in
constraints to be treated as mathematical functions.

A derived property is indicated by placing a forward slash (/) in front of the property name.

Figure 7.21 shows Optical Assembly with an additional property f-number, which is marked as
derived. It also shows a constraint between focal length, aperture, and f-number that can be used—
given focal length and aperture—to calculate the value of f-number.

Modeling property values and distributions
A default value can be assigned to a property as part of its property string in the appropriate compart-
ment of a block, using the following syntax:

property name: type name = default value

The initial values for a part can be specified using a dedicated compartment labeled initial Values.
The initial values override the default values of the properties in the block that types the part. If no
initial value is defined, the default value is used for properties of the part. The initial values compart-
ment can be used on the part but cannot be used on the block.

A value property whose range of values can be described by a probability distribution rather than
a single value is called a distributed property. Annex E.7 of the OMG SysML specification defines
some commonly used probability distributions in a model library that can be reused. The following
notation is used to represent a distributed property:

«distributionName» {pl=value, p2 = value ...} property name : type name

Optical Assembly

constraints
{f-number == aperture/focal length}

values
aperture : mm
focal length : mm
/f-number : Real

FIGURE 7.21
Example of derived property.
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bdd [Package] Structure [Values] J

Camera

values
dimensions : Size = (0.04,0.03,0.01)
«normal»{mean = "2.1", standardDeviation = "0.01"} power : W
«interval»{min = "0", max = "360"} pan field of regard : ©
«interval»{min = "0.05", max = "0.1"} sensitivity : lux
«interval»{min = "0", max = "90"} tilt field of regard : °

Optical Assembly

values
aperture : mm = 2.4
«normal»{mean = "7", standardDeviation = "0.35"} focal length : mm

FIGURE 7.22

Examples of property values and distributions.

The tags p1, p2, and so on characterize the probability distribution. For example, a mean and stan-
dard deviation are properties that characterize a normal distribution, while a min and max value char-
acterize an interval distribution.

Figure 7.22 shows a number of distributed properties, including pan field of regard and focal length.
The pan field of regard is the size of the arc that the camera can view while panning. It is defined as an
interval distribution with a minimum of 0° and a maximum of 360° because the actual field of regard
will depend on where the camera is installed. The focal length of the Optical Assembly is defined as a
normal distribution with a mean of 7 millimeters and a standard deviation of 0.35 millimeters. This is
intended to accommodate differences arising from the combination of minor deviations in the place-
ment of lenses and mirrors during manufacturing.

The distributions of both pan field of regard and focal length are distributions over the whole popu-
lation of cameras and optical assemblies. The dimensions of the Camera and aperture of the Optical
Assembly have default values: a simple scalar value for aperture and a value for each of the constituent
value properties of dimensions.

7.4 MODELING FLOWS

Defining the flows between different parts of a system can provide an abstract view of their interactions.
Flows may be physical in nature. For example a water pump might specify that water can flow in and
out of the pump and that electrical power can flow in. Often, in electronic systems, it is information and/
or control that flows, such as a signal from a radar system that represents the position and velocity of a
target, or a signal resulting from a button being pressed on a keyboard.
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Item is the general term used to define things that flow. Blocks may contain special properties,
called flow properties, that define the items that can flow into or out of that block. In addition, item
flows specify what actually does flow on connectors between parts.

7.4.1 MODELING ITEMS THAT FLOW

An item is used to describe a kind of entity that flows. It may be a physical flow, which includes matter
and energy, as well as a flow of information. Items may be blocks, value types, or signals. When items
are modeled as blocks, they typically include value properties that describe characteristics of the item,
such as the temperature and pressure for a block that represents flowing water. An item may have sig-
nificant internal structure, such as an automobile that flows through an assembly line or a complex
message sent across a data bus. A flow may also be simplified to represent just a quantifiable property
(e.g., water temperature), in which case the item can be represented as a value type instead of a block.

The flow of control and/or information can also be represented by signals. These signals may be
used to control the behavior of a part that is the target of the signal flow. SysML allows—but does not
require—that SysML implementations generate events when signals flow into or out of a block via flow
properties. These events can be accessed by behaviors of a block and therefore may be used to control
the behavior of a part that is the target of the signal flow (see Chapters 9, 10, and 11 for more detail on
how these events are accessed).

Items can be defined at different levels of abstraction and may be refined throughout the design
process. For example, an alert flowing from a security system to an operator may be represented as
a signal at a high level of abstraction. However, in exploring the nature of how that alert is commu-
nicated in detail, the item may be redefined. If the alert is communicated as an audio alarm, for
example, it may be redefined as a block that contains properties representing the amplitude and fre-
quency of the sound.

Figure 7.23 shows part of the Standard Item Definitions model library that includes the items that
flow in cameras. The items shown are modeled as blocks and contain value properties that describe
their characteristics. The Light block defines its radiant flux in terms of Watts (W) and the illuminance
in terms of /ux. The MPEG4 block defines the frame rate in hertz and number of /ines in a frame.

7.4.2 FLOW PROPERTIES

A block may contain flow properties that specify what can flow in or out of the block. Each flow prop-
erty has a name, type, multiplicity, and direction. The type of the flow property can be a block, value
type, or signal depending on the specification of what can flow. The multiplicity of the flow property
defines how many values it may contain as part of an instance of its owning block.

The flow properties of a block are shown in a special compartment labeled flow properties, with
each flow property shown in the format:

direction property name: item typelmultiplicity]

The direction of the flow property can be one of in, out, or inout.

The block diagram in Figure 7.24 shows two pieces of optical equipment, a Light Source and a Light
Sensor. The Light Source outputs a beam of Light, and the Light Sensor accepts incoming light. The
flow properties of both blocks are typed by the Light block shown in Figure 7.23.
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bdd [Package] Standard Item Definitions)

«block» «block»
Light MPEG4
values values
flux : W{unit = watt} frame rate : Hz{unit = hertz}
illuminance : Ix{unit = lux} lines : Integer

FIGURE 7.23
Items that flow in the Camera system.

bdd [Package] Optical Analysis [Optical Equipment])

«block» «block»
Light Source Light Sensor
flow properties flow properties
out beam : Light in incoming light : Light

FIGURE 7.24
Flow properties on blocks.

7.4.3 MODELING FLOWS BETWEEN PARTS ON AN INTERNAL BLOCK DIAGRAM

A flow occurs as a result of a value (or values if the multiplicity of the property is greater than 1) being
assigned to a flow property, which must have out or inout direction, on one end of a connector (the
source). The assigned value is propagated across a connector or connectors to compatible flow proper-
ties, which must have in or inout direction, on connected parts.

Flow property compatibility

The ability of items to flow across connectors between parts is dependent on the flow properties speci-
fied on the parts at either end of the connector. For a flow to occur from a source part to a target part,
both ends of the connector must have a flow property with at least a compatible type and direction. The
flow property types are compatible if the type of the target flow property is either the same as or a gen-
eralization of the source flow property. Their directions are compatible if both properties have direction
inout, or their directions are the opposite of each other. If more than one flow property matches based
on type and direction, then compatible flow properties are determined based on their names.

The internal block diagram in Figure 7.25 shows Light Source and Light Sensor from Figure 7.24
connected inside a block called Light Test. The types and directions of their flow properties are compat-
ible, allowing Light to flow from the Light Source to the Light Sensor.

The block definition in diagram Figure 7.26 extends the definition of Light from Figure 7.24 to
include Polarized Light, which has additional properties, and Unpolarized Light (see Section 7.7.1 for
a discussion of classification). It shows a specific light source, a Lamp and a Polarized Light Sensor.
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ibd [Block] Light Test

: Light Source : Light Sensor

FIGURE 7.25
Connected parts with flow properties.

bdd [Package] Optical Analysis [Polarized Light])

«block»
Polarized Light Test

structure

«block»
Light

values

flux : W{unit = watt} . i . .
illuminance : Ix{unit = lux} - Polarized Light Sensor|

e

«block» «block» «block» «block»
Polarized Light Unpolarized Light Lamp Polarized Light Sensor
values flow properties flow properties
orientation : rad{unit = radian} out beam : Unpolarized Light in incoming light : Polarized Light
polarization : PolarizationKind

FIGURE 7.26
Connected parts with incompatible flow properties.

The beam emitted from the Lamp has type Unpolarized Light and so is incompatible with the incoming
light property of the Polarized Light Sensor. Note that this is an abstraction, and it is probably more
accurate to suggest that the Polarized Light Sensor will generate incorrect results in the presence of
Unpolarized Light. A SysML modeling tool is expected to provide a notification of the incompatibility
through a message or a change in the color of the connector.

Flow property propagation

If a part is connected to multiple parts that have compatible flow properties and/or any given connec-
tor represents multiple links, then a value assigned to an out flow property on that part is propagated
across all links; this is sometimes called fan-out. The opposite case, sometimes called fan-in, occurs
when an in flow property on the part is compatible with many out flow properties on connected parts.
SysML does not define the assignment of multiple inflowing values to a single flow property. For
example, the flow property may have a multiplicity equal to the number of sources of incoming
flows, or the flow property may have a multiplicity of 1 and some form of averaging might take place.
The language can be extended using a profile, as described in Chapter 15, to clarify the intent and
meaning.
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Item flows

The items that actually flow across a connector are specified by item flows. An item flow specifies the
type of item flowing and the direction of the flow. For example, water may flow between a pump and a
tank. While the flow properties associated with the parts on the ends of connectors define what can flow,
the actual item flowing can be different. Specifically, the item flowing may be some other element in
the generalization hierarchy of the types of the flow properties.

An item flow may have an associated property, called an item property, contained in the enclosing
block, which identifies a specific usage of that item in the context of the enclosing block. In particular,
multiple item properties may have the same type, but each item property represents a different usage. For
example, the water flowing into a pump is one usage of water, while the water flowing out of the pump is
another usage. The in and out flowing water would be represented by different item properties.

The item flow must be compatible with the flow properties on either end of its related connector.
SysML has relaxed compatibility constraints to provide flexibility for how item flows are modeled.
Effectively, the only constraint on the item flowing is that it must be in the same classification hierarchy
as its source and target flow properties. However, a common approach to compatibility is that the type
of the item flow is the same as or more general than the source flow property, and that the type of the
target flow property is the same as or more general than that of the item flow. In other words, the flow
is specified more generally as you transition from the source to the target. A simple example of this
compatibility pattern is for the type of the source flow property to be intrusion alert status, the type of
the item flow to be alert status, and the type of the target flow property to be status. Intrusion alert status
can then leave a source part, cross the connector as alert status, and enter the part on the other side of
the connector as status.

Item flows are represented as black-filled arrowheads on a connector, where the direction of the
arrowhead indicates the direction of flow. When there are multiple item flows on a connector, all the
item flows in the same direction are shown in a comma-separated list floating near the arrowhead for
the appropriate flow direction. Each item flow has a type name and item property name, if it is defined.
Item flows with opposite directions can be shown on a single connector.

Figure 7.27 shows the items flowing between various kinds of light sources and light sensors. A new
kind of Polarized Light, Coherent Light, is added, which is the output from the Laser light source. The
structure compartment of block Laser Test shows three parts typed by Laser and three by Polarized
Light Sensor. The connectors between them show three possible item flows. The top two item flows
illustrate the expected compatibility mode. The flow between // and s/ has item Coherent Light, which
is the same as source flow property beam; the target flow property incoming light (from Figure 7.26) is
Polarized Light, which is more general than the item flowing. The flow between /2 and s2 has type
Polarized Light, which is more general than the source flow property and the same as the target flow
property. Also illustrated, between /3 and s3 is the least constrained case, where the item flowing is
Light, the root of the classification hierarchy. This last case does not adhere to the pattern noted above,
but remains valid.

Items can also flow between connected reference properties. Figure 7.28 shows the flow of electricity,
represented by the block DC, through the Mechanical Power Subsystem block first shown in Figure 7.11.
The overall flow is from power source through the Distribution Harness to the various motors. Each item
flow is represented by a corresponding item property owned by Mechanical Power Subsystem.

Item properties can be constrained in parametric equations, as described in Chapter 8. For an exam-
ple of this, see Figure 16.22 in Chapter 16.
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bdd [Package] Optical Analysis [Laser Test])

«block» «block»
Light Laser
values flow properties
flux : W{unit = watt} out beam : Coherent Light
illuminance : Ix{unit = lux}

«block»
«block» Laser Test
Polarized Light structure
values 1 : Laser » s1: Polarized Light Sensor
orientation : rad{unit = radian} h t - Coh t Light
polarization : PolarizationKind coherent - Loherent Lig
T 12 : Laser > s2 : Polarized Light Sensor
«block» polarized : Polarized Light
Coherent Light
values 13 : Laser > s3 : Polarized Light Sensor
coherence length : m{unit = metre} lioht - Liaht
frequency : Hz{unit = hertz} ight- Hig
FIGURE 7.27
Item flows between parts.
ibd [Block] Mechanical Power Subsystem [Power Flovy
im supply : DC
CTTTTTTTTo T o r-o T . iris motor : Brushless DC 1!

Motor Module !

I
: power source : Power Supply ' : Distribution Harness .—}—:
I

__________________ L e = = -_- - -
supply : DC

" azimuth motor : Stepper 1
Motor Module !

fmsupply:DC - ----- oo -~ .
focus motor : Brushless DC 1

Motor Module !

elm supply : DC fmmm e mm e m— - = .
- 1 elevation motor : Stepper 1
v : Motor Module !

FIGURE 7.28

Item flows between reference properties.
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7.5 MODELING BLOCK BEHAVIOR

Blocks provide a context for behaviors, which is the SysML term covering any and all descriptions of
how the block deals with inputs, outputs, and changes to its internal state. A block may designate one
behavior as its main or classifier behavior, which starts executing when the block is instantiated. Other
behaviors may be designated as methods, which provide the detail of how service requests are handled.
These two kinds of behaviors may in turn invoke other behaviors of the block. Behaviors have param-
eters that are used to pass items into or out of the behavior before, after, and sometimes during
execution.

As Chapters 9 through 11 describe, there are three main behavioral formalisms in SysML: activities,
state machines, and interactions.

e Activities transform inputs to outputs.
e State machines are used to describe how the block responds to events.
* Interactions describe how the parts of a block interact with one another using message passing.

SysML recognizes two other forms of behavior within the language. An opaque behavior is repre-
sented as a textual expression in some language external to SysML. A function behavior is similar to
an opaque behavior with the added restriction that it is not allowed to affect the state of its owning block
directly and may only communicate using parameters. Function behaviors are often used to define
mathematical functions.

bdd [Package] Logical [Surveillance System Signals])

«signal»
System Message
id : System Id
«signal» «signal» «signal» «signal»

Alert Message| [System On| [System Off| [Status Message
alert : Alert Id log time : Date
«signal»| | «signal» «signal» «signal»

Alert | [Stand Down Status Report| (Status Ack

report : String

FIGURE 7.29

A signal classification hierarchy.
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The behaviors of a block can be shown in compartments of a block symbol. The classifier behavior
compartment shows the name of the classifier behavior, and the owned behaviors compartment shows
the names of all the other behaviors that the block owns. The Surveillance System block in Figure 7.30
shows the name of its classifier behavior, which is a state machine called Surveillance System, and two
of its owned behaviors, Monitor Site and Handle Status Request. These behaviors appear later in Chap-
ters 9, 10, and 11.

7.5.1 MODELING THE MAIN BEHAVIOR OF A BLOCK

The main behavior (also called classifier behavior) of a block starts executing at the beginning of the
block’s lifetime and generally terminates at the end of its lifetime, although it may terminate before
then. Depending on the nature of the block, the choice of formalism for the classifier behavior is
between state machines (if the block is largely event-driven) and activities (if the block is largely used

bdd [Package]Logical[Behavioral Features])

«block»
Command Center
operations

prov threat report() : String

provreqd alert summary() : String

reqd incident video(alert : Alert Id) : MPEG4

provreqd status report(system : System Id, report time : Date)
«signal»Status Report(id : System Id, log time : Date, report : String)
reqd «signal»Status Ack(id : System Id, log time : Date)
«signal»System On(id : System Id)

«signal»System Off(id : System Id)

«signal»Alert(id : System Id, alert : Alert Id)

«signal»Stand Down(id : System Id, alert : Alert Id)

«block»
Surveillance System

classifier behavior
«stateMachine»Surveillance System()

owned behaviors
«activity»Monitor Site( )
«activity»Handle Status Request(camera id:Integer):String

operations

reqd threat report() : String

prov incident video(alert : Alert Id) : MPEG4

reqd «signal»Status Report(id : System Id, log time : Date, report : String)
prov «signal»Status Ack(id : System Id, log time : Date)

reqd «signal»System On(id : System Id)

reqd «signal»System Off(id : System Id)

reqd «signal»Alert(id : System Id, alert : Alert Id)

FIGURE 7.30

Blocks with behavioral features.
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to transform input items to output items). A popular hybrid approach is to use a state machine to
describe the states of a block and to specify an activity that executes when a block is in a given state or
when it transitions between states. Behavior can also be specified independent of a block and can be
allocated to blocks or parts of blocks.

When a block has a main behavior and also has parts with behaviors, the modeler should ensure that
the behavior is consistent between the whole and the parts at each level of the system hierarchy. A main
behavior may act as a controller that plays an active role in coordinating the behaviors of its parts. In
this case, the behavior of the block is its main behavior, which is augmented by the main behaviors of
its parts. Another approach is for the classifier behavior of the block to be an abstraction of the behavior
of its parts, which is often called the black box view. In this case, the main behavior of the block repre-
sents a specification that the parts must realize. The behavior of the parts, often termed the white box
view, interact in such a way that the black box behavior is preserved.

7.5.2 SPECIFYING THE BEHAVIORAL FEATURES OF BLOCKS

Along with structural features, blocks can also own behavioral features that describe which requests
a block can respond to. A behavioral feature may have an associated method that is a behavior invoked
when the block handles a request for the feature. There are two types of behavioral features: operations
and receptions.

An operation is a behavioral feature that is typically triggered by a synchronous request (i.e., when
the requester waits for a response). Each operation defines a set of parameters that describes the argu-
ments passed in with the request, or passed back out once a request has been handled, or both. Note that
an operation may be triggered by an asynchronous request (i.e., when the requester does not wait). In
that case, no arguments are passed back to the requester.

A reception is associated with a signal that defines a message with a set of attributes that represent
the content of the message; the parameters of the reception must be the same as the attributes of the
associated signal. The attributes of the signal thus indirectly define the set of arguments passed in with
the request. Receptions in different blocks can respond to the same signal, so frequently used messages
can be defined once and reused in many blocks. The major difference between an operation and a
reception is that operations may be triggered by both synchronous and asynchronous requests whereas
receptions may only be triggered by an asynchronous request. Typically, an operation triggers an imme-
diate response from the block by executing its associated method, whereas requests for receptions are
handled by the block explicitly accepting the request, for example, when a transition between states in
the state machine for a block is triggered by the reception’s signal, or when an activity of the block
includes an accept signal action for the signal.

Behavioral features are discussed further in the activity, interaction, and state machine chapters—
Chapters 9 through 11, respectively.

Signals are defined using a box symbol with a solid outline and the keyword «signal» before the
signal name. A signal symbol has a single unlabeled compartment that contains its attributes with the
form:

attribute name: attribute type [multiplicity]

Figure 7.29 shows a set of signals that are used by a surveillance system. The signals are organized
into a classification hierarchy, with each new layer in the hierarchy adding a new signal attribute (see
Section 7.7 for a discussion of classification). For example, the Status Report signal has three
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attributes: report, which it defines directly; log time, from its relationship to Status Message; and id,
from its relationship to System Message.

Operations and receptions are shown in a separate compartment of a block labeled operations and
are described by their signature. The signature for an operation is a combination of its name along with
parameters, and optional return type as follows:

operation name (parameter Tist):return type
The parameter list is comma-separated with the format:
direction parameter name: parameter type

Parameter direction may be in, out, or inout.
The signature for a reception is a combination of its name and a list of parameters as follows (the
reception’s name is always the name of its associated signal):

«signal» reception name (parameter Tist)

As of SysML 1.3, a block must designate whether it makes requests or handles requests for the
behavioral features it defines. Requests for a provided behavioral feature are handled by the defining
block. If a block defines a required behavioral feature, it indicates that it expects some external entity
to handle any requests it makes for the feature. Behavioral features may be both required and
provided.

A provided behavioral feature is indicated by the keyword prov preceding the signature of the feature.
A required behavioral feature is indicated by the keyword reqd. The keyword provreqd indicates that a
feature is both provided and required. If no keyword is shown, the feature is assumed to be provided.

Figure 7.30 shows a view of the services provided and required by Surveillance System and Command
Center. They both have the same set of receptions, which correspond to the signals described in Figure
7.29. Most of the receptions defined by the Surveillance System are required, which means that it expects
its environment to accept the signals it sends out, with the exception that it expects to receive Status Ack
signals and so provides a reception for them. The reverse is true for Command Center, which only has one
required reception; the rest are provided as indicated by the absence of a keyword. In addition, Surveil-
lance System provides an operation to get the video related to any incident that it has reported, and the
Command Center requires such an operation. The Command Center provides an on-demand threat report,
detailing currently known issues; the Surveillance System requires such an operation. The Command
Center also provides and requires two other operations, alert summary and status report, which are used
to communicate between command centers and by external agencies investigating incidents.

7.5.3 MODELING BLOCK-DEFINED METHODS

Some behaviors owned by the block only execute in response to a particular stimulus, specifically when
a request is made via a provided behavioral feature (operation or reception). Such a behavior is called
a method, and it is related to the behavioral feature that was requested.

Unlike the main block behavior, methods typically have a limited lifetime, starting their execution
following the stimulus, performing their allotted task, and then terminating, perhaps returning some
results. Methods are usually specified using activities, opaque behaviors, or function behaviors.

It should be mentioned that not all behavioral features require methods. Requests associated with
behavioral features can be handled directly by behaviors using the specialized constructs such as an
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accept event action, described in Chapter 9, Section 9.7, and a state machine trigger, described in Chapter
11, Sections 11.4.1 and 11.5. A behavioral feature cannot be related to both a method and these other
constructs.

SysML supports the notion of polymorphism, which means that many different blocks may respond
to the same stimulus, but each may do so in a specific way, by invoking a specific method. Polymor-
phism is strongly associated with classification, as described in Section 7.7.

7.5.4 ROUTING REQUESTS ACROSS CONNECTORS

Requests for behavioral features may be communicated across connectors between parts and references.
When the behavior of a block makes a request for a required behavioral feature, then that request is com-
municated across any connector whose other end is targeted by the request. Any such target must have a
provided behavioral feature (i.e., operation or reception) of the same kind with a compatible signature.

The signatures of two features must match all the following criteria below to be compatible. Firstly,
the feature kind, parameter names, and parameter directions must be the same. Secondly, the type,
multiplicity, ordering, and uniqueness characteristics of parameters must be compatible, which as a
general rule means that input parameter characteristics on provided features must be the same or more
general than the corresponding characteristics of required features, and that output parameter charac-
teristics on provided features must be the same or more specialized than the corresponding character-
istics of required features. For types, general and specialized refer to their position in a classification
hierarchy. For multiplicity, a broader range (i.e., more values) is considered more general. For ordering,
unordered is considered more general, and for uniqueness, nonunique is considered more general. For
a discussion of ordering and uniqueness please refer to Chapter 8, Section 8.3.1.

As with flow properties, if a part is connected to multiple other parts or if a connector between a part
and another part represents multiple links, then requests can be routed across many links whose ends have
compatible behavioral features. If there are multiple links that fan-in, then the requests either immediately
trigger the execution of a method per the request or they are queued until a behavior accepts them. If there
are multiple links that fan-out, then an outgoing request is propagated across all links whose ends are
targets of the request. However, SysML does not define the mechanism by which multiple return values
are handled by the behavior that made the request. This is left to be specified by an execution profile.

As can be seen from Figure 7.30, Command Center and Surveillance System have a number of compat-
ible behavioral features that can form the basis of communication between the two. Command centers can
also communicate using alert summary and status report, which are both provided and required. By con-
trast, according to the definition in Figure 7.30, two connected surveillance systems would have nothing to
say to one another. A typical configuration of these blocks is shown in Figure 7.16 in which the connector
between residence and residential surveillance center has multiple links, which means that residential sur-
veillance center needs to support fan-in requests for the operations and receptions that it provides.

7.6 MODELING INTERFACES USING PORTS

Modeling interfaces is a critical aspect of systems modeling. SysML allows modelers to specify a
diverse set of interfaces, including mechanical, electrical, software, and human—machine interfaces. In
addition, interfaces that specify information flow must be capable of specifying both the logical content
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of the information and the physical encoding of the information in bit, bytes, and other signal charac-
teristics. Although system interfaces may be specified simply using the features of blocks and connec-
tors between parts, SysML also introduces the concept of ports, which allow a more robust and flexible
definition of system interfaces.

A port represents an access point on the boundary of a block and on the boundary of any part or
reference typed by that block. A block may have many ports that specify different access points. Ports
can be connected to one another by connectors on an internal block diagram to support the interaction
between parts.

SysML 1.3 introduced two new kinds of ports called full ports and proxy ports. A full port is
equivalent to a part on the boundary of the parent block that is made available as an access point to and
from the block. A full port is typed by a block and can have nested parts and behaviors, and can modify
incoming and outgoing flows like any other part. A full port can represent a physical part such as an
electrical connector or a mechanical interface assembly, and therefore is a part in the system parts tree.
The other kind of port is a proxy port. By contrast, a proxy port does not constitute a part of its parent
block, but instead provides external access to and from the features of its parent block or the block’s
parts without modifying its inputs or outputs. A proxy port is essentially a pass through or relay that
specifies what features of the owning block can be accessed at the port. A proxy port is typed by an
interface block that specifies the features that can be accessed via the port. The interface block cannot
have internal behavior or parts (or full ports), but may contain nested proxy ports.

Both proxy and full ports can support the same set of features, which are behavioral features and
any kind of property (except proxy ports do not support parts). In either case, users of a block are only
concerned with the features of its ports, regardless of whether the features are exposed by proxy ports
or handled by full ports directly.

The decision on whether to use ports and which kind of port to use is a methodological question that
often relates to how a block is intended to be used. A proxy port is often used to specify the system as a
black box, in which case the interface specification does not specify any internal structure of the system.
On the other hand, a full port is used to specify the interface in terms of an actual part of the system and
enable that part to modify the inputs and outputs to the owning block. The choice between full and proxy
ports is considered by some to be a design decision. To support this approach, a port can be created and
connected without being designated as either a full or proxy port, allowing the decision to be deferred.

The concept of proxy ports and full ports was added in SysML 1.3 and was intended to replace the
flow port and standard port concepts in SysML 1.2. In general, proxy ports provide the full functional-
ity of SysML 1.2 flow ports and standard ports, but also add capability for nesting ports and for specify-
ing nonflow properties. In SysML 1.3 and SysML 1.4, flow ports and standard ports are retained in the
language, but the intent is to remove them in a future version. A discussion of these deprecated features
is provided in Section 7.10.

7.6.1 FULL PORTS

Full ports are similar to parts, in that they are included in the parts tree of their owning block. Unlike
parts, however, they are shown graphically on the boundary of their parent. An external connector can
connect to a full port even if its parent block is encapsulated (i.e., isEncapsulated is set to true per
Section 7.3.1), whereas connections to nested parts cannot be made if a block is encapsulated. Full
ports are typed by blocks and can possess the full set of features available to any other block.
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bdd [Package] Component Interfaces [Mount Interface])

«full»bracket mount left back : M10 Bolt [1] Mount «fullncamera mount left back : M5 Bolt [1]
«full»bracket mount left front : M10 Bolt [1] «full»camera mount left front : M5 Bolt [1]
«full»bracket mount right back : M10 Bolt [1] «fullncamera mount right back : M5 Bolt [1]
«full»bracket mount right front : M10 Bolt [1] «full»camera mount right front : M5 Bolt [1]

FIGURE 7.31
A block with full ports.

Full ports are shown as rectangles (typically square) intersecting the boundary of their parent sym-
bol. The name, type, and multiplicity of the port are shown in a string either inside or floating near the
port symbol in the form:

«full» port name: block name[multiplicity]

When a port’s type has flow properties, an arrow inside the port’s symbol can be used to provide
information about their direction. If all flow properties have direction in, then the arrow faces inwards.
If all flow properties have direction out, then the arrow faces outwards. If there is a mix of directions or
all flow properties have direction inout, then two opposing arrowheads are used. If desired, the symbol
for a full port can include the same set of compartments as a part symbol.

Ports of all kinds can be shown in a compartment on a block symbol labelled ports, using the string:

direction port name: block name[multiplicity]

Direction is only shown when the port’s type has flow properties. A separate compartment labelled
full ports just shows full ports.

Figure 7.31 shows a block definition diagram depicting a Mount block. The Mount has four mount-
ing points (Bolts) that are intended to be used to attach the Mount to a bracket, and another four to
attach the Mount to a camera. As indicated by the «fu11» keyword, the mounting points are represented
as full ports, typed by two blocks, M10 Bolt and M5 Bolt (10 mm and 5 mm respectively). The bracket
mounting needs larger bolts and so the bracket mounting points are larger in diameter, as indicated by
the name of the port types.

Full ports can contain nested ports, whose types may contain ports themselves, thus leading to a
nested full port hierarchy of arbitrary depth. Nested ports are shown as rectangles intersecting the
boundary of their parent port symbol. They may be placed anywhere on the boundary with the caveat
that they may not also intersect the symbols representing elements higher in the port nesting hierarchy.
A full port can also have nested proxy ports. In this case for example, the full port may represent a
physical connector, but the proxy ports are used to specify selected features of the connector, such as
its pin out specifications.

Figure 7.32 shows a block definition diagram that describes the mounting interface for the ACME
cameras. This particular diagram shows how the Camera is fixed in place. It has a full port called mount
typed by the Mount block described in Figure 7.31. The ports of Mount can be seen on the boundary of
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bdd [Package] Physical [Camera Mounting Interface])

Camera

«full» «full» «full»  «full»
camera camera camera camera
mount  mount mount mount
right right left left
front [1] back [1]  front[1] back [1]

1 1

L] L]

«full» mount : Mount

1 1

L L
«full» «full» «full» «full»

bracket bracket bracket bracket
mount  mount mount  mount
right right left left

front [1] back [1] front[1] back [1]

FIGURE 7.32
A full port with nested ports.

their parent port. Although nested ports of full ports can be placed anywhere on the boundary of their
parent symbol (with the caveat noted above), the nested ports of mount have been placed so that those
intended to be connected externally are shown on the outside and those intended to be connected inter-
nally are shown on the inside.

7.6.2 PROXY PORTS

A proxy port differs from a full port in that it does not represent a distinct part of the system, but is a
modeling construct that exposes features of either its owning block or parts of that block. Proxy ports
are typed by interface blocks, a specialized form of block that does not contain any internal structure
or behavior. Whereas a full port is similar to a part, a proxy port is similar to a reference property, which
provides access to a selected set of features of its owning block or its parts.

An interface block is shown by a block symbol with the keyword «interfaceBlock» and can
include compartments for its features, excluding a parts compartment and full ports compartment.

Proxy ports, like full ports, are shown as rectangles intersecting the boundary of their parent sym-
bol. The name, type, and multiplicity of the port are shown in a string floating near the port in the form:

«proxy» port name: interface block name[multiplicity]

Proxy port symbols can contain compartments that list their various features, including properties,
nested ports, and behavioral features.
Block symbols can list their proxy ports in a proxy ports compartment, using the string:

direction port name: interface block[multiplicity]

Figure 7.33 shows several interface blocks on a block definition diagram. They all represent the
physical interfaces that are needed to physically connect a camera to its environment. Interface blocks
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bdd [Package] Components [Physical Inten‘aces])

«Proxy»  «proxy»  «proxy»  «proxy»
BI_D3-[1] BI_D3+[1] BI_D4- [1] BI_D4+ [1]
1 ]

L L
«interfaceBlock»
RJ45 Interface (Female)

«interfaceBlock» «interfaceBlock»
3 Pin AC Plug Interface Composite Video Interface

[] []
L L
«ProxXy» «Proxy» «proxy» «proxy» «proxy» «proxy» «proxy» - «proxy» - «proxy»
live neutral  ground conductor sheath TX_D1+ [1] RX_D2+ [1] RX_D2- [1] TX_D1-[1]
center
FIGURE 7.33

Interface blocks with proxy ports.

can only contain proxy ports and not full ports, so all the ports have the keyword «proxy». Figure 7.37
shows two examples of the proxy ports compartment.

As stated above, interface blocks can own proxy ports, enabling proxy ports to have further nested
proxy ports. Nested ports on proxy ports are shown in a similar fashion to nested ports on full ports,
with the exception that the nested ports of proxy ports are always shown on the outside boundary of
their parent symbol.

Figure 7.34 shows the interface blocks from Figure 7.33 in use to depict the physical interface to a
Wired Camera (the keywords «ful1» and «proxy» are elided on all the ports to reduce clutter). The
Wired Camera has three proxy ports for ethernet, power, and video, and a full port for the mount, as
shown in Figure 7.32. Note that the bracket mounting points—but not the camera mounting points—are
shown on mount, because this diagram is intended to show only the external interface of the camera.

Behavior ports

A proxy port can be defined to be a behavior port, which indicates that it provides access to features of
its owning block rather than to the features of some internal part of the owning block. The flow properties
of a behavior port can be mapped to the parameters of the block’s main (or classifier) behavior. SysML
does not explicitly state how this should be done, allowing modelers using different methods or operating
in different domains to establish different approaches. (See Section 7.5.1 for a description of the main
behavior for a block.) Compatibility between features on a behavior port and features on its owning block
are similar to those for features across connectors, except that for features with direction (i.e., flow proper-
ties and behavioral features), the directions must be the same as opposed to the opposite of each other.

A behavior of a block can both send and receive information through an arbitrarily nested behavior
port by explicitly specifying the path to the port either when accepting events corresponding to features
on the port or when sending signals or calling operations See Chapter 9, Sections 9.7 and 9.11.2 for
further discussion on this.

A small round angle symbol (similar in form to an action or state) connected to a proxy port indi-
cates that it is a behavior port. For an example of this notation, see Figure 7.46.
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bdd [Package] Physical [ Wired Camera Physical Interface])

«block»
neutral Wired Camera TX_D1-[1]
power : 3 Pin TX_D1+[1]
live AC Plug
Interface RX_D2-[1]
ethernet :
ground RJ45 RX_D2+ [1]
Interface
(Female) BI_D4-[1]
center video :
conductor Composite BI_D4+ [1]
Video
sheath Interface Bl_D3-[1]
mount : Mount BLD3+ [1]

1—A+—1FF
bracket bracket bracket bracket
mount mount mount mount
left back left front right back right front

(1 1 (11 (11

FIGURE 7.34
A block with nested ports.

7.6.3 CONNECTING PORTS

When a block has ports, the ports can also be depicted on the part and reference properties that are
typed by this block on an internal block diagram. Ports can be connected either to other ports or directly
to parts using connectors. A port can be connected to more than one other port or part, although each
connection requires a separate connector.

In terms of feature compatibility, there is no difference between connecting to a full port and
proxy port from an external perspective. However, the internal connections to proxy ports have dif-
ferent characteristics than the internal connections to full ports. An internal connector is one that
connects a port to a part owned by the same block that owns the port. An external connector is one
that connects a port to a part or port owned by some other block. The major difference between con-
necting full ports and proxy ports internally is the determination of feature compatibility, which is
discussed in the sections below. Proxy ports that are behavior ports cannot be connected internally to
parts of the owning block.

The notation for connectors was introduced in the Connecting Parts on an Internal Block Diagram
subsection of Section 7.3.1. Ports shown on the diagram frame of an internal block diagram represent
the ports on the enclosing block designated by the diagram frame.

In Figure 7.35, the ports on the diagram frame correspond to the ports on the Wired Camera block.
Figure 7.35 shows how the ports of Wired Camera are connected internally. The Electronics Assembly
and Mount Assembly (ma) are custom assemblies. The modeler decided not to encapsulate them, so
their internal parts are connected directly from the outside without connecting through an intermediate
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ibd [Block] Wired Camera[Wired Camerau «proxy»
video :
ma : Mount Assembly : Electronics Assembly Composite
Video
I:—| «fully : Platform - Composite Interfacer]
— «full» late - . «proxy» L
mount : I\/FI)ounting Converter : _Composite
Mount Plate Video Interface
«proxy»
«proxy» )
power : 3 Pin :RJ45
AC Plug Interface
Interface : Power Supply : Ethernet Card (Female) «proxy» r]
I: «Proxy» ethernet : L
power : 3 Pin RJ45
AC Plug Interface
Interface (Female)
FIGURE 7.35

Connecting ports internally to a block.

port on their boundary. The video port of Wired Camera is connected directly to the Composite Con-
verter part of Electronics Assembly. Similarly, the mount port is connected to the Platform part within
the Mount Assembly. The Power Supply and Ethernet Card blocks are off-the-shelf components that are
encapsulated, so they must be connected via their ports and do not allow direct connection to their
internal parts. The ethernet port of Wired Camera is connected to a port on the Ethernet Card, and the
power port is connected to a port on the Power Supply.

Connecting full ports

Connecting full ports has the same implications and constraints as connecting parts. In particular, the
rules for determining the compatibility of behavioral features and flow properties for connected full
ports is the same as that for parts, as described in Section 7.4.3.

Figure 7.36 shows the Optical Assembly being exercised in a test environment with the equipment
defined in Figure 7.24. As can be seen from the directions of the flow properties on the connected ports
and parts, Light can flow through the components of the Optical Test Bench. A Light Source emits a
beam of light that falls on the Filter of the Optical Assembly. The filtered light output from the Filter is
processed by optical components in the Focusing Assembly to yield focused light, which flows out from
the Optical Assembly through a protective screen, and is incident on the Light Sensor. This sensor mea-
sures various properties of the light it receives.

When a full port represents a physical component with substructure, the port may be further decom-
posed with its own parts and ports. Connectors to and from the port then may need to be decomposed
in order to show the details of how the port is connected. Decomposition of ports and connectors is
described later in this section.
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bdd [Package] Optical Analysis [Optical Testing] )

«block»
Optical Test Bench

structure

fully : Optical Assembly «fully

) screen
filter -Window |: Light Sensor

ﬂ[ : Focusing Assembly ]7

: Light Source

«block» «block» «block»
Window Filter Focusing Assembly
flow properties flow properties flow properties

out light : Light out filtered light : Light out focused light : Light
in light : Light in incoming light : Light in external light : Light

FIGURE 7.36
Connecting parts and full ports.

Connecting proxy ports

As stated above, the default compatibility rules for external connectors are the same for both proxy
ports and full ports (and for parts, if encapsulation is not enforced). However, the compatibility rules
for behavioral features and flow properties across internal connectors differ between full ports and
proxy ports. Whereas internal connectors between full ports are still concerned with matching an out-
ward flow from one part to an inward flow on another part, internal connectors to and from proxy ports
are concerned with matching features on the type of the proxy port with corresponding features of the
owning block or its parts. Because proxy port features represent the features of the internal parts to
which they are connected, they require the behavioral features and flow properties to match (i.e., have
the same rather than opposite directions) to be compatible.

Proxy ports can be connected internally to parts, full ports, or other proxy ports. If a proxy port is
connected to a full port or part, the connector must be a binding connector, which indicates that the
proxy port is literally a proxy for the full port or part, and does not itself represent a separate structural
element.

In Figure 7.35, the power port on Wired Camera is connected to the power port on the Power Supply
via an untyped internal connector. Both ports are typed by 3 Pin AC Plug Interface, whose definition
can be seen on Figure 7.37. The ends of the connector are feature compatible because both have a cur-
rent flow property with compatible types and inout flow direction, and they both have a power flow
property with compatible types and the same direction.
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bdd [Package] Physical [Camera Mounting])

«interfaceBlock» «interfaceBlock»
3 Pin AC Socket Interface 3 Pin AC Plug Interface

) flow properties socket Plug To Socket plug | . flow properties
inout current : AC Current inout current : AC Current
out power : W 1 1in power : W

values values
max Current : AC Current max current : AC Current

proxy ports . proxy ports
live : Electrical Socket live : Electrical Pin
neutral : Electrical Socket neutral : Electrical Pin
ground: Electrical Socket ground: Electrical Pin
«block»

Wired Camera Wall Mounting

structure

: Wall Plate : Wired Ca;nera
power :
:3PinAC [ J20%ket PUIrh b ac piug
Socket Interface]: Plug To Socket Interface

FIGURE 7.37
Connecting proxy ports with typed connectors.

The block definition diagram in Figure 7.37 shows the definitions of both 3 Pin AC Plug Interface
and 3 Pin AC Socket Interface with an association, Plug to Socket, between them. It also shows a block
called Wired Camera Wall Mounting with a structure compartment depicting how power is supplied to
the camera. The external connector between wall and camera is typed by Plug To Socket. As discussed
in Section 7.3.3, the ends of the connector are compatible with the ends of the connector’s type. The
ends of the connector also have compatible flow properties, including a current flow property whose
types are the same and direction is inout and a power flow property whose types are the same and whose
directions are the opposite of each other. They also both have max current value property whose type
is AC Current. In this case, direction compatibility rules do not apply because it is not a directed
feature.

Conjugating ports

When two blocks interact, they may exchange similar items but in opposite directions. Rather than
creating two separate specifications for the proxy ports on the interacting blocks, SysML provides
a mechanism called a conjugate port to reuse a single interface block for both ports. One port is
set to be the conjugate of the other, which indicates that the direction of behavioral features and
flow properties in the interface block is reversed with respect to this port. The conjugation also
applies to nested ports, reversing the direction of any of their directed features, unless of course
they themselves are conjugated to offset the reversal. Conjugation also affects the directional
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notation on port symbols, including inward and outward arrows on port symbols, reversing their
direction.

Full ports, like parts, cannot be conjugated. The blocks that type full ports and parts contain behav-
iors that rely on directed features like flow properties and operations having a defined direction. Con-
jugation of the part or port typed by that block reverses the direction of these features, which violates
the assumptions on which its internal behaviors are based.

Conjugated ports are indicated by placing a tilde (~) in front of the type of the port:

port name:~Interface Block Name.

An example of this notation can be seen in Figure 7.41.

Decomposing ports and connectors

As described in Sections 7.6.1 and 7.6.2, both kinds of ports may have nested ports, which may be sepa-
rately connected. Figure 7.37 and Figure 7.35 showed an external connector and internal connector
respectively to the power port of Wired Camera. The ends of each connector have nested ports (shown
on Figure 7.34) which themselves can be connected. The connectors can be shown to connect directly
to the nested ports, for example in Figure 7.35.

Alternatively, an association block can be used to specify this additional detail. Section 7.3.3
described the use of an association block for defining the internal structure of connectors. This internal
structure can simply contain a set of connectors that define the connectors between nested ports of the
association ends. When a connector is typed by an association block, the actual interaction between the
connected ends will typically be handled by the internal structure of the association block, which may
define a different set of rules for feature compatibility.

In Figure 7.38, the association on Figure 7.37 is replaced by an association block to show the con-
nections between nested ports. The association block also adds a constraint that the max current of the
plug must be greater than or equal to the max current of the socket. The connector on Figure 7.37 does
not need to change.

Connectors between full ports can be typed by association blocks to show the structural details of
how the connection is achieved. Figure 7.39 shows the definition of an association block, Mount Inter-
face, which provides the detail of how a Mount and Mounting Plate are connected.

Figure 7.40 shows the internal block diagram for the Mount Interface association block, previously
described in Figure 7.39. It shows that each M5 Bolt on the Mount is connected to an M5 Hole on the
Mounting Plate and held in place with an M5 Nut.

The block diagram in Figure 7.41 shows part of a logical rather than physical view of a system. The
interface block Camera Interface has two proxy ports, video and control, the first for digital video and
the other for controlling the camera’s operation. The interface block Video Interface types video and
contains a single in flow property typed by MPEG4. The interface block Control Interface types the
control port and contains a set of receptions and operations, all of which are required as described in
Section 7.5.2. Camera Interface conjugates both its ports to specify an interface that can be used to type
a port of Camera. The video port is shown in the proxy ports compartment as out even though its only
flow property has direction in, because it is conjugated. Camera has a proxy port, digital if, typed by
Camera Interface, which specifies the services required by a client of the Camera. The nested video
port is shown with an outward facing arrow to indicate its effective direction.

The internal block diagram for Surveillance System in Figure 7.42 shows the communication
between two components of the Surveillance System. As seen in Figure 7.41, Camera has a single
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bdd [Package] Component Interfaces [Camera Mountingu

«interfaceBlock» | plug Plug To Socket socket «interfaceBlock»
T

3 Pin AC Plug Interface| 1 3 Pin AC Socket Interface
I

«block»
Plug To Socket

constraints
{plug.max current >= socket.max current}

structure

| «participant» | | «participant»
{end = plug} {end = socket}
I plug : 3 Pin AC Plug Interface socket : 3 Pin AC Socket Interface
live live
|

|
|
| neutral |—| neutral
|
|

ground I::]—E] ground

FIGURE 7.38
Connecting proxy ports in an association block.

bdd [Package] Component Interfaces [Mounting Inten‘ace])

«block» Mount Interface «block»
Mount |4 I 1 [Mounting Plate
| | —

«block»
Mount Interface

FIGURE 7.39
Defining a structural connection using an association block.

proxy port with two nested proxy ports, control and video, whereas Monitoring Station has two sepa-
rate proxy ports. Nevertheless, these two sets of ports have compatible types and can be connected,
because the digital if port of Camera is not conjugated, but its nested ports are, resulting in compatible
conjugation. The same would be true if the digital if port was conjugated and the nested ports were not.
The ports have various multiplicities, which is explained in the next section.
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ibd [Block] Mount Interface)

: Mount

M5 Bolt [1]

M5 Bolt [1]

M5 Bolt [1]

M5 Bolt [1]

«participant»

camera mount right front :

camera mount left front :

camera mount left back :

camera mount right back :

: M5 Nut

: M5 Nut

: M5 Nut

: M5 Nut

«participant»
: Mounting Plate

«proxy»mount right front
: M5 Hole [1]

«proxy»mount left front I
: M5 Hole [1] I

«proxy»mount left back |
: M5 Hole [1] |

«proxy»mount right back|
: M5 Hole [1] I
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Showing structural connections in an association block.

bdd [Package] Logical [Camera Digital InterfaceJJ

«interfaceBlock»
Control Interface

operations

reqd get status()
reqd perform self test()

reqd «signal»Stop Surveillance(mode : SurveillanceMode)

reqd «signal»Start Surveillance()

reqd «signal»Start Test Signal(test duration : Seconds)

reqd «signal»Stop Test Signal()

«interfaceBlock»
Video Interface

flow properties
in video : MPEG4

«proxy»video : ~Video
Interface
«proxy»control : ~Control .
Interface

«interfaceBlock»
Camera Interface

proxy ports

control : ~Control Interface
out video : ~Video Interface

«proxy»
digital if :
Camera

Interface

«block»
Camera

FIGURE 7.41

Defining nested ports with conjugation.
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ibd [Block] Surveillance System [Camera and Monitoring Station Connections])

: Monitoring Station [1]

control : cameras :
) ~Control Camera [0..*]
control : Interface [1]
Control
'”t%”f‘ce L digital if
0.7 Camera
Interface

video :
~Video
Interface [1]

video : Video
Interface [1]

FIGURE 7.42

Connecting nested ports.

Connecting a port to multiple ports

As stated above, a port may be connected to many other ports. In addition, any connector may itself
represent multiple links (i.e., connections between block instances). This is true of both internal and
external connectors. The number of links on a connector is determined by the multiplicity of both the
port and its owner.

If a port is connected to multiple other ports, then items and requests exiting the port may be routed
to some or all of the other ports depending on whether they have compatible features. This similarly
applies to items and requests entering the port from multiple other ports.

In Figure 7.42, many cameras are connected to one Monitoring Station as indicated by their multi-
plicity. The video port on the Monitoring Station has multiplicity 1 but there are 0 to many camera video
ports connected to it. The multiplicities on the connector between them indicates that the designer of
the Monitoring Station wanted video from all the camera video ports to come in through one port. The
software in the Monitoring Station must therefore be able to deal with the interleaving of video data
from more than one source. In contrast, the control port of the Monitoring Station has a multiplicity of
0..* and the nested control port of cameras has multiplicity 1. In this case, because there are potentially
many instances of cameras, the actual number of connected ports might be the same. This possibility is
confirmed by the connector between them, which has default multiplicity (1..1), requiring that one
instance of control port on the Monitoring Station is connected to one (nested) control port on a
Camera.

The internal block diagram in Figure 7.43 shows two external connectors to the ethernet ports proxy
port of router (note: proxy stereotype is elided). One connector connects to the work station and one to
the cameras. As indicated by the lack of multiplicities, the work station connector is one to one; one
instance of the ethernet ports port on the router is connected to one ethernet port instance on the other
end of the connection. However, the camera connector has a multiplicity of 4 on the router end, indicat-
ing that four instances of ethernet ports are connected via this connector. The ethernet ports has multi-
plicity 6. One is connected via the work station connector and 4 via the camera connector, leaving one
spare port on the router. The caret shown before the name of modem and workstation indicates that they
are inherited features. This notation is discussed in Section 7.7.
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ibd [Block] 4-Camera Wired Surveillance Systerd

Acomin: _
RJ11(Female) “modem : ADSL Modem [1] etr;]rzgt :
[ ads| : RJ11(Female) Intorface
M (Female) “workstation : PC [1]

ethernet : RJ45 Interface (Female)
: Ethernet Cable

work

station :

Ethernet
Cable

modem : RJ45 Interface (Female)

L

router : 6 Port Router

ethernet ports :
RJ45 Interface
(Female) [6]

ethernet : RJ45
Interface
(Female)

cameras : Wired Camera [4]

camera :
Ethernet
Cable

FIGURE 7.43
Connectors with non-default multiplicity.

SysML does not say anything about which port instances are connected by links, although when the
connected ports and the connector all have the default multiplicity of 1, there is no ambiguity about
which instances are connected. In other cases, such as in Figure 7.43, there is ambiguity as to which
ethernet ports are connected to which cameras. If it is important to remove this ambiguity, either the
design has to be elaborated to have an unambiguous configuration or additional data needs to be added
via a profile.

7.6.4 MODELING FLOWS BETWEEN PORTS

As noted earlier in Section 7.4.3, item flows can be shown on connectors between parts. Item flows can
also be shown on port-to-port connectors.

The same compatibility rules apply for parts and full ports, but the rules for connecting to proxy
ports differ in the case of internal connectors. When an item flow appears on an internal connector from
a proxy port, the matching rule for flow direction is the opposite of the rule for external connectors,
although most other compatibility rules are the same. If the flow properties are unidirectional (i.e., not
inout), the direction of the item flow must be the same as the direction of both the source and target
flow properties.

Figure 7.44 shows the route that light takes from an external source to the Optical Assembly of the
Camera. Unpolarized Light is incident on the Protective Housing, which through an unspecified means
polarizes the light to reduce glare. The resulting Polarized Light then flows into the Camera Module
through a proxy port, light in, which is a proxy for the full port filter on the Optical Assembly. Note that
the label for the flow properties compartment of the Protective Housing part is prefixed by a colon. This
is the standard mechanism for indicating that these are features of the block that types the part.
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ibd [Block] CameralLight Path])

t;(&rgég?y : : Camera Module

Light . : : «proxy» «full
Interface : Protective Housing I'g.ht in: filter
“flow properties Filter - : Filter—: Optical Assembly
I::l ' in external light : Unpolarized Light > . L
external :  |out internal light : Polarized Light polarized : internal :
Unpolarized Light Polarized Light Light
FIGURE 7.44

Item flows between ports.

7.6.5 USING INTERFACES WITH PORTS

An alternative method for describing a set of behavioral features supported by a port is to define them
in an interface. Although they are redundant with the capabilities of interface blocks, interfaces are
retained in SysML since they are used in UML, and some methods may choose to use the same model-
ing approach in both SysML and UML. One or more interfaces can be related to a port to define the
behavioral features it provides or requires. Typically, an interface describes a set of behavioral features
related to some specific service, such as tracking or navigation, but the allocation of the services offered
by a block to its ports is a methodological question. Interface definitions can be reused as needed to
define the interfaces of ports on many blocks.

Modeling interfaces
Interfaces are defined on a block definition diagram as box symbols with the keyword «interface»
before their name. Interface symbols have an operations compartment like block symbols.

Figure 7.45 shows five interfaces that describe different logical groupings of services for aspects of
the surveillance system. For example, Test Tracking contains a set of receptions that allow the reporting
of progress during camera testing. The other interfaces support other services (e.g., user and route
management).

Adding interfaces to ports

A required interface on a port specifies one or more operations required by behaviors of the block (or
its parts). A provided interface on a port specifies one or more operations that a block (or one or more
of its parts) must provide. A part that has a port with a required interface needs to be connected to
another part that provides the services it needs, typically via a port with a provided interface. The com-
patibility of behavioral features on ports defined by interfaces is the same as for ports defined by inter-
face blocks.

The required and provided interfaces of a port are represented by a notation called “ball-and-socket
notation”. An interface is represented by either a ball or socket symbol with the name of the interface
floating near it. The ball depicts a provided interface, and the socket depicts a required interface. A solid
line attaches the interface symbol to the port that requires or provides the interface. A port can have one
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bdd [Package] Logical [Inten‘aces])
«interface» «interface» «interface»
Login Support User Outputs Route Management
operations operations operations
verify login details() : Boolean| | «signal»Intruder Alert()| |create route() : Route
check capacity() delete route(r : Route)
«interface» «interface»
Test Tracking User Inputs
operations operations
«signal»Test Complete(camera id : String, OK : Boolean) auto track()
«signal»Test in Progress(camera id : String) login()
«signal»System OK() logout()
FIGURE 7.45
A set of interfaces used to define provided or required services.
bdd [Package] Logical [Ports and Inten‘acesu
Login
User o Support
Inputs ogin
«block» Support «locko
ur login Monitoring Station | yideo : Video
]/D services Route login services L] interface [1]
user if Management
route
requests Route route requests
User test feedback Management I: control : Control
Outputs test feedback : Interface [0..]
Test . Test Tracking
Tracking Test
Tracking
FIGURE 7.46

Defining a service-based interface using proxy ports.

or more required interfaces and one or more provided interfaces, and hence can be connected to mul-

tiple interface symbols.

Figure 7.46 shows the set of ports that define interface points on the blocks UI and Monitoring Sta-
tion. UI has four ports: one that provides services, two that require services, and one that both provides
and requires services. The port test feedback provides the services defined by the interface Test Track-
ing. The port login services requires the services defined by the interface Login Support. The port user
if offers services defined in User Inputs and requires services defined by User Outputs. All of UI’s ports
are behavior ports as indicated by the behavior port symbol. Monitoring Station has five ports. Two are
defined using interface blocks as shown in Figure 7.41; the other three are defined using the interfaces

defined in Figure 7.45.
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ibd [Block] Surveillance Systenﬂ
Login
User User
Inputs Inputs user interface : Ul : Monitoring Station control : cameras :
i i ~Control Camera [0..*]
Q login services Rout login services control : | |nterface [1]
user if M(;l:\: ement Control
user if g Interface digital if :
(0.1 J
t ‘ - Camera
User route requests I: route requests Interface
Outputs
oUster < P Rout video : Video |  video :
utpu Mou © Interface [1] ~Video
test feedbackl: anagement test feedback Interface
Test
Test Tracking
Tracking
FIGURE 7.47

Connecting service-based ports on an internal block diagram.

Required and provided interfaces can also be shown on an internal block diagram using the ball-
and-socket notation, if required, although this often adds clutter to the diagram. If the ball-and-socket
notation is used, a quick visual check of the compatibility of connected ports is easy to perform. Ports
connected by internal connectors should have interface symbols with the same name and shape. Ports
connected by external connectors should have interface symbols with the same name and different
shapes.

Figure 7.47 displays a more complete internal block diagram for Surveillance System, adding the
user interface part. Surveillance System delegates the handling of requests on its user login port to the
user interface part. User interface uses Login Support services of the Monitoring Station, via its login
services port, to provide data on current users, and also passes route management requests via its route
requests port. The Monitoring Station requests Test Tracking services of user interface. The internal
connector from Surveillance System.user if has matching symbols for the provided and required inter-
faces on both ends. The external connectors between user interface and the Monitoring Station have
opposite symbols. Note that the behavior port notation has been elided in this figure.

7.7 MODELING CLASSIFICATION HIERARCHIES USING GENERALIZATION

In SysML, a classifier is a type that may be used as the basis for more specific types. The classifiers so
far encountered in this chapter are blocks, value types, interfaces, interface blocks, and signals.

The different kinds of classifiers can appear on a block definition diagram and can be organized into
a classification hierarchy. In a classification hierarchy, each classifier is described as being more gen-
eral or more specialized than another. Typically a general classifier contains a set of features that are
common to more specialized classifiers. A more specialized classifier will inherit the common features
from the more general classifier, and may contain additional features that are unique to it. The
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relationship between the general classifier and specialized classifier is called generalization. Different
terms are used to identify the classifiers at the ends of a generalization relationship. In this chapter, the
general classifier is called the superclass, and the more specialized classifier is called the subclass.

Classification can facilitate reuse when a subclass reuses the features of a superclass and adds it own
features. The benefits of such reuse can be substantial when the superclass has significant detail or
when there are many different subclasses.

This section deals initially with the inheritance of structural features (i.e., properties and ports) of a
block, covering both the addition of features and the redefinition of existing features in subclasses.
Although the focus for this section is on blocks and interface blocks, other classifiers with structural
features—such as interfaces and value types—can also be organized in the same way. For example, a
subclass of a more general value type may add specific units and quantity kinds.

In addition to classification for reuse, classification can also be used to describe specific configura-
tions of a block, to identify unique configurations for testing, or to serve as the input to simulations or
other forms of analysis.

Classification also applies to behavioral features and can be used to specialize blocks that respond
to incoming requests in a particular way. Classification of behavioral features and the semantics implied
by the use of classification are covered by numerous texts on object-oriented design, and so will not be
dealt with in any detail here.

Generalization is represented by a line between two classifiers with a hollow triangular arrowhead
on the superclass end of the relationship. Generalization paths may be displayed separately, or a set of
generalization paths may be combined into a tree, as shown in Figure 7.48.

Figure 7.48 shows two subclasses of Camera: Wired Camera and Wireless Camera. Both of the
subclasses require all the characteristics of Camera but add their own specialized characteristics as
well. Wired Camera has both a wired Power Supply and a wired Ethernet Card. The Wireless Camera
uses a WiFi (Wireless Ethernet) Card to communicate and is battery-driven. It also includes a value
property for battery life.

It can be useful to show the inherited features in the symbol for the subclass, particularly if the
subclass is shown on a separate diagram from its superclasses. In that case, the feature is shown pre-
fixed by a caret () symbol. An example of this notation can be seen in Figure 7.43.

7.7.1 CLASSIFICATION AND THE STRUCTURAL FEATURES OF A BLOCK

Different blocks in a classification hierarchy have different structural features, with subclasses adding
features not present in their superclasses. Not all features added in subclasses are new; some are intro-
duced to override or otherwise change the definition of an existing feature, which is called redefinition.

When a feature from a superclass is redefined in a subclass, the original feature in the superclass is
no longer available to the subclass. The more specific feature in the subclass, which is called the rede-
fining feature, is used in place of the feature in the superclass, which is called the redefined feature. The
feature in the subclass often has the same name as the feature in the superclass. When used in place of
the redefined feature, the redefining feature may:

e Restrict its multiplicity (for example, from 0..* to 1..2, in order to reduce the number of instances
or values that the feature can hold).
e Add or change its default value.
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bdd [Package] Physical [Two Specialized Types of Cameraﬂ

«block»
Camera

parts
: Electronics Assembly|
: Protective Housing
: Camera Module
ma : Mount Assembly

I

I

«block» «block»
Wired Camera Wireless Camera
parts parts
: Ethernet Card : Battery
: Power Supply : WiFi Card
values
battery life : s{unit = hour}

FIGURE 7.48
Example of block specialization.

e Provide a new distribution or change an existing distribution.
e Change the type of the feature to a more restricted type (in other words, a type that is a subclass of
the existing type).

Redefinition is shown in braces after the name string of the redefining feature in the subclass, using
the keyword redefines followed by the name of the redefined feature.

In the Components package, two motor modules are described for use in the system. Both motor
modules share a number of features in common; for example, they both have some common value
properties, such as weight, power, and torque. In Figure 7.49, a general concept of Motor Module is
introduced to capture the common characteristics of the two motor modules.

In addition to value properties, Motor Module defines a common concept of a control input using a
proxy port. The Brushless DC Motor Module and the Stepper Motor Module are represented as sub-
classes of this common concept with special features of their own, such as the step size and position
output port for the Stepper Motor Module. In addition, the common properties from Motor Module
have been redefined in the subclasses in order to place bounds on their values that are appropriate to the
type of motor. The value properties are described by an «interval» probability distribution to repre-
sent the range of values they can have in their given subclass.

7.7.2 CLASSIFICATION AND BEHAVIORAL FEATURES

Just as the structural features of blocks and interface blocks can be organized into classification hierar-
chies, the behavioral features of blocks can be treated in a similar fashion. A summary description of
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bdd [Package] Components [Types of Motorﬂ

Motor Module

values

. i . weight : g
«proxy»control input : control if |=> power : W
torque : MNm

Stepper Motor Brushless DC Motor
Module Module
values values
«interval»{min = "8", max = "30"}weight : g{redefines weight} «interval»{min ="0.3", max = "1.5"}weight : g{redefines weight}
«interval»{min = "5", max = "12"}power : W{redefines power} «interval»{min = "0.2", max = "0.5"}power : W{redefines power}
«interval»{min = "1.5", max = "6"}torque : mNm{redefines torque} «interval»{min = "0.02", max = "0.03"}torque : mNm{redefines torque}
step size : mm
I}
Lv ]

«proxy»position : position if

FIGURE 7.49
Showing a classification hierarchy on a block definition diagram.

the classification of behavioral features and corresponding behaviors is included here. A more complete
discussion is beyond the scope of this book but can be found in many object-oriented design books.

General operations or receptions are described at an abstract level in the classification hierarchy,
and more specific operations and receptions are described in more specialized blocks. As with struc-
tural features, the behavioral features of superclasses may be redefined in subclasses to modify their
signature. Interfaces can also be classified and their behavioral features specialized in the same fashion
as blocks.

The response of a block to a request for a behavioral feature may also be specialized. Although a
behavioral feature may be defined in a general block, the method for that feature in a given specializa-
tion of the block may be unique to that block (see Section 7.5.3 for a discussion of methods). In soft-
ware engineering, this phenomenon is called polymorphism—from the Greek for “many
forms”—because the response to a request for a given behavioral feature may be different depending
on the method that actually handles the request.

In object-oriented programming languages, polymorphism is handled by a dispatching mechanism.
If a behavior sends a request to a target object, it knows the type (e.g., block) of the target object and
that it can support the request. Due to specialization, however, the target object can be a valid subclass
of the requested type, and may implement a different response to the request. The dispatching mecha-
nism can ensure that the appropriate method is invoked to handle the request.

7.7.3 MODELING OVERLAPPING CLASSIFICATIONS USING GENERALIZATION SETS

Sometimes a subclass may include features from multiple superclasses. This is called multiple gener-
alization or sometimes multiple inheritance. The subclasses of a given class may be organized into
groupings based on how they can be used for further classification. For example, a superclass Person
may have subclasses that represent the characteristics of an Employee OR a Manager in their job AND
subclasses that represent the characteristics of a Woman OR a Man as their gender. This situation can
be modeled using generalization sets, as shown in Figure 7.50.
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bdd [Package] Generalization Set [Person Example])
Person
{complete, disjoint}\\\ ~~_ - <~ {incomplete, overlapping}
Gender Job
Woman Man Employee Manager

FIGURE 7.50
Showing a generalization set on a block definition diagram.

Generalization sets have two properties that can be used to describe coverage and overlap between their
members. The coverage property specifies whether all the instances of the superclass are instances of one or
another of the members of the generalization set. The two values of the coverage property are complete and
incomplete. The overlap property specifies whether an instance of the superclass can only be an instance of
at most one subclass in the generalization. The two values of the property are disjoint and overlapping.

A generalization set may be displayed on a block definition diagram by a dashed line intersecting a
set of generalization paths. The name of the generalization set and the values of the overlap and cover-
age properties, shown in braces, are displayed floating near the line that depicts the generalization set.
Alternatively, if the tree form of generalization notation is used, a generalization set may be depicted
by a tree with the generalization set name and properties floating near the triangle symbol at its root.
Figure 7.50 shows the dashed-line variant, and Figure 7.58 shows the tree variant.

Figure 7.50 shows the example of generalization sets described earlier. Person is subclassed by four
subclasses in two generalization sets. Gender has two members, Woman and Man, and is both disjoint
and completely covered because all instances of Person must be an instance of either Woman or Man
but not both. Job has two members, Employee and Manager, and is overlapping and incompletely cov-
ered because an instance of Person may be an instance of both Employee and Manager, or neither.

7.7.4 MODELING VARIANTS USING CLASSIFICATION

The description and organization of product variants is a large and complex topic and requires solutions that
cover many different disciplines, of which modeling is just one. Nonetheless, SysML contains concepts like
classification and redefinition that can be used to capture some of the details and relationships needed to
model variants. For example, classification can be used to model different variants of a block definition that
represent alternative designs being evaluated in a trade study. This can be achieved by describing several
specialized variants of a block as subclasses of a more general block, grouped into generalization sets. Note
that multiple subclasses of a superclass can be recombined using multiple generalizations in subsequent
levels of classification, but these must obey the specified overlap and coverage of their superclasses.

Figure 7.51 shows two mutually exclusive characterizations of the Camera: its intended location
and the way that it connects with a controller. Each characterization in this case has two variants. There
are two intended locations, indicated by the generalization set Location, served by either an Internal
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bdd [Package] Physical [Camera VariantsJJ

Camera

{complete, overlapping}
Connection ~ < _

{complete, overlapping}
_ - Location

Wireless Camera Wired Camera Internal Camera External Camera
A
Wireless Internal Camera Wired Internal Camera Wired External Camera
FIGURE 7.51

Modeling variant configurations on a block definition diagram.

Camera or an External Camera. There are also two intended modes of connection, indicated by the
Connection generalization set, served by the Wired Camera and Wireless Camera originally shown in
Figure 7.48. Three further variants, Wired Internal Camera, Wireless Internal Camera, and Wired
External Camera, are created by multiple generalization from these four. The features of the blocks are
hidden to reduce clutter.

Bound reference

Sometimes, the variation between two variant systems is nested deep within the composition hierarchy
of the system, such as different types of Wheels in a Vehicle. In this case, it is convenient to refer to
different Vehicle variants that have different types of Wheels, without having to display the entire
Vehicle composition tree to show the variation. In particular, it is desirable to refer to the Wide Wheel
Vehicle variant and the Standard Wheel Vehicle variant. This becomes increasingly useful as more
variation is introduced, such as the case with a High Performance Vehicle variant that includes wide
wheels, a larger engine, and stiffer suspension.

The concept of bound reference provides a mechanism to support a compact way to describe vari-
ants such as these. In particular, it enables the variations for the High Performance Vehicle variant to be
displayed in the High Performance Vehicle block, without having to show composition hierarchy with
all the deeply nested variant parts. The way this is accomplished is described below.

A bound reference is a reference property of a block that is bound using a binding connector to some
other nested property within the composition hierarchy of the block. The properties that are connected
using binding connectors must have compatible types and multiplicities. In this way, a bound reference
can be a property of a high-level block in a composition tree (such as a Vehicle), which is constrained to
be equal to a deeply nested part or property within the composition tree (such as a Wheel).
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bdd [Package] Components [Imagingu

«block»
Image Sensor

values
frame rate : fps
resolution : pixel area

T

«block» «block»
Micron MT9T001 Aptina MT9M034
values values
frame rate : fps = 12{redefines frame rate} frame rate : fps = 45{redefines frame rate}
resolution : pixel area = 2048x1536{redefines resolution}| |resolution : pixel area = 1280x960{redefines resolution}

FIGURE 7.52
Two kinds of Imaging Assembly.

When the block is subclassed to create a variant, such as a High Performance Vehicle variant, each
bound reference can be redefined to correspond to the selected variant part or property. The selected
variant part or property must conform to the redefinition rules described in the previous section.

A bound reference is a reference property and thus has the same notation as a reference property. It
is distinguished by the keyword «boundReference». A block can have a separate compartment for
bound references, labeled bound references, which is convenient for identifying its variant parts, Each
entry in the compartment has the following prefix in addition to standard property syntax:

{/bindingPath = property list; lower=integer;upper=integer}

Property list is simply a comma-separated list of the properties in the path of the property to which
the reference is bound.

The imaging assembly of the camera contains a sensor, among other elements. There are many
potential choices for such a sensor, two of which are shown in Figure 7.52. The Micron M9T001 sup-
ports up to 2048x1536 pixels at a frame rate of 12 frames per second; the Aptina MT9MO034 supports
up to 1280x960 pixels at 45 frames per second. The Camera block features a reference property called
sensor, which is bound to the property Camera::cm.ia.sensor, as shown in Figure 7.53. Adding this
bound reference to Camera allows different configurations, such as a Low Fidelity Camera and a High
Fidelity Camera, to be specified by modifying the type of sensor, as shown in Figure 7.54.

Bound references can also be bound to full ports. Figure 7.55 shows the Bracket used to attach a
Camera to a wall as part of a Camera Assembly. The Camera end of the Bracket is fixed to fit with the
Mount of the Camera, as shown in Figure 7.32. However, the wall end of the bracket can have a vari-
able number of holes of various sizes to suit different materials. This flexibility can be achieved by
connecting a bound reference to the holes on the Wall Mount. Two potential variations of the Camera
Assembly are shown in Figure 7.56: Solid Wall Camera Assembly, with 4 M5 Holes and a Dry Wall
Camera Assembly with 6 M10 Holes.
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ibd [Block] Camera [Sensor Variationﬂ

cm : Camera Module

ia : Imaging Assembly

sensor : Image Sensor

«equal»

«boundReference» |

FIGURE 7.53
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Adding a bound reference to support variants.

bdd [Package] Structure [Camera Fidelityﬂ

«

block»

Camera

parts

: Electronics Assembly
: Protective Housing
ma : Mount Assembly
cm : Camera Module

bound references

{/bindingPath=cm,ia,sensor} sensor : Image Sensor

f

«block»

Low Fidelity Camera

«block»

High Fidelity Camera

bound references
sensor : Aptina MTIMO034 {redefines sensor}

bound references

sensor : Micron MT9T001{redefines sensor}

FIGURE 7.54

Using a bound reference to describe two variants of Camera.
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ibd [Block] Camera Assembly [Bracket Fixingﬂ
bracket : Bracket : Camera : Camera
Mount mount:
E Mount
: Jointed Arm '—' :|
wm : Wall Mount
hole : Hole [0..*]
«full»
r _«bc;md_Referer;e»_ B
|bracket fixing : Hole [0..*]J
FIGURE 7.55
Using a bound reference to support port variation.
bdd [Package] Physical[Camera Mountingu
«block» blocko
Camera Assembly Hole
parts
: Camera
bracket : Bracket
bound references «block» «block»
{/bindingPath=bracket,wm,bracket fixing}bracket fixing : Hole [0..*]| (M5 Hole| [M10 Hole
«block» «block»
Solid Wall Camera Assembly Dry Wall Camera Assembly
bound references bound references
bracket fixing : M5 Hole [4]{redefines bracket fixing} bracket fixing : M10 Hole [6]{redefines bracket fixing}

FIGURE 7.56

Two variants of Camera with different Wall Mountings.
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ibd [Block] SC Model 1A [Specific Motors])

ma : [Mount Assembly]

elevation motor : Maxon EC10 azimuth motor : Maxon EC13
:values :values
weight : g = 13{redefines weight} weight : g = 29{redefines weight}
power : W = 8{redefines power} power : W = 12{redefines power}
torque : mNm = 1.72{redefines torque} torque : mNm = 5.15{redefines torque}

FIGURE 7.57
Property-specific types.

7.7.5 USING PROPERTY-SPECIFIC TYPES TO MODEL CONTEXT-SPECIFIC BLOCK
CHARACTERISTICS

A property-specific type is used to designate properties of a block or value type that are further spe-
cialized for localized use within an internal block diagram. This might happen, for example, when one
or more properties of a part have different distributions than in their original type. The property-specific
type implicitly creates a subclass of the block that types the part to add the unique characteristics. The
presence of a property-specific type is indicated by including the type name of a property in brackets.
Compartments can be used to depict the unique features of the type for each part-specific property, such
as the value properties for the different motors’ weights in the following example. Note that if a com-
partment on a part symbol is used to show features of its type, the compartment label is prefixed by a
colon.

Figure 7.57 shows a small fragment of a particular model of surveillance camera, the SC Model 1
A, which specializes Camera. In the SC Model 1 A, the generic Stepper Motor Module used in the
Mount Assembly (ma) of Camera has been replaced by a specific motor module containing a Maxon
ECI10 and a Maxon EC13. To do this replacement, rather than specifically create a block that represents
this variant of Mount Assembly, a property-specific type is used. Significant properties of the Maxon
EC10 and Maxon EC13 are shown in the :values compartments of the parts.

7.7.6 MODELING BLOCK CONFIGURATIONS AS SPECIALIZED BLOCKS

A block configuration describes a specific structure and specific property values intended to rep-
resent a unique instance of a block in some known context. For example, a block configuration
may be used to identify a particular aircraft in an airline company’s fleet by its call sign and to
provide other characteristics specific to that aircraft. In that example, the call sign is intended to
consistently identify the same aircraft even though the values of other properties may change over
time. Block configurations can also be used to identify the state of some entity at a given point in
time. Extending the example of the aircraft, it might be important for an air-traffic control simula-
tion to describe a snapshot of an aircraft’s position, velocity, fuel load, and so on at certain critical
analysis stages.
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It is important to note that because a block configuration can only describe a finite set of features
and values, many actual instances in the physical domain may match that description. It is up to the
modeler to ensure that the context is understood and that any ambiguity does not compromise the value
of the model. The block typically contains a value property whose value can be used to identify a single
instance within the context, such as a vehicle identification number.

Modeling a configuration on a block definition diagram

A block configuration is constructed using the generalization relationship described earlier. The con-
figuration becomes a subclass of the block for which it is a configuration. No specific notation exists
for designating that a block represents a unique configuration. However, a block is often defined with a
property that represents a unique identifier, such as the vehicle identification number, that can be used
when modeling configurations. Often it is useful to introduce a generalization set for block configura-
tions to distinguish them from other specializations of that block.

A useful characteristic of the SysML property concept is the ability to state that one property
may subset one or more other properties, either in its owning class or in one of that class’s super-
classes. For example, if a block for Vehicle contains a property called w:Wheel [4] corresponding
to four wheels, then an individual wheel property, such as the right front wheel, is a subset of the
original wheel property. In this example, the right front wheel is called the subsetting property and
wheel is the subsetted property. The subsetted property is retained and not replaced as it is in
redefinition.

Subsetting is shown in braces after the name string of the subsetting property using the keyword
subsets followed by the names of the subsetted properties.

Two configurations of the company’s popular 4-Camera Wired Surveillance System are shown in
Figure 7.58. The values for location in each case give the addresses of the installations. It is intended
that within the context of the ACME business, the specific values for location are enough to uniquely
identify the instance of one of their surveillance systems. The company also offers an optional service
package, and the service level provides details of the level of service offered. Business Gold includes
hourly visits by a security agent outside office hours. Household 24/7 ensures a response to any alert
within 30 minutes, 24 hours a day and 7 days a week.

The 4-Camera Wired Surveillance System specializes Surveillance System and redefines its cameras
part with a new part, also called cameras. The new part has a new type, Wired Camera, which is a subclass
of the original type, Camera. It has also a new multiplicity of 4 that restricts the upper number of instances
held by cameras to 4 from the original upper bound of ‘“*,” and also raises the lower bound to 4.

To describe specific configurations, AJM Enterprises System and Jones Household System special-
ize the 4-Camera Surveillance System and redefine or subset some of its properties. Two value proper-
ties, location and service level, are redefined in order to provide specific values. If a property has an
upper bound of greater than 1 and it is important to identify the characteristics of each instance of the
property, a new subset property can be created to identify explicitly one of the set of instances held by
the property in order to define its specific characteristics. In Figure 7.58, the cameras part is subsetted
by parts that represent individual cameras in the configuration. In AJM Enterprises System, the new
parts are called front, reception, store room, and computer room, based on their location within the
company’s building.

The set of configurations of the 4-Camera Surveillance System is grouped by a generalization set
called Configurations. Configurations is disjoint, because an instance of 4-Camera Wired Surveillance
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bdd [Package] Camera Systems [System Conﬁgurations])

«block»
Surveillance System

parts
cameras : Camera [0..*]
modem : ADSL Modem [1]
workstation : PC [1]

values
location : String
service level : String

|

«block»
4-Camera Wired Surveillance System

parts
cameras : Wired Camera [4]{subsets cameras
router : 6 Port Router

{incomplete, disjoint}
Configurations

«block» «block»
AJM Enterprises System Jones Household System

parts parts
computer room : Wired Internal Camera {subsets cameras} front door : Wired External Camera{subsets cameras}
front : Wired External Camera {subsets cameras} garage : Wired External Camera{subsets cameras}
reception : Wired Internal Camera {subsets cameras} pool : Wired External Camera{subsets cameras}
store room : Wired Internal Camera {subsets cameras} rear door : Wired External Camera{subsets cameras}

values values
location : String = "Sulte A, AJM House, NY"{redefines location} location : String = "200 Oak Ave, Newark"{redefines location},
service level = "Business Gold"{redefines service level} service level = "Household 24/7"{redefines service level}

FIGURE 7.58

Modeling different configurations of a block on a block definition diagram.

System must be either an AJM Enterprises System or a Jones Household System, but not both. Configura-
tions is incomplete because there may be other configurations of 4-Camera Wired Surveillance System.

Modeling configuration details on an internal block diagram

When a block has been used to describe a configuration, the internal block diagram for that block can
be used to capture the specific internal structure (e.g., precise multiplicities and connections) and values
unique to that configuration’s properties. In particular, this should include the value of a property that
uniquely identifies the entities in the configuration (e.g., name, serial number, call sign). A unique
design configuration can be created by defining an identification property for each part in the block that
corresponds to the unique identification of the enclosing block.
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ibd [Block] AJM Enterprises System)

router : 6 Port Router

ethernet ports : RJ45
Interface (Female) [6]

1 |

front : Wired External
Camera

computer room : Wired
Internal Camera

initialValues initialValues

camera id = "AJMIWI1"
position = "(1.5,2.1,2.5)"
tilt field of regard = "90"
pan field of regard = "270"

L

reception : Wired Internal

ethernet : RJ45
Interface (Female)

ethernet : RJ45
Interface (Female)

||
L

camera id = "AJMWL3"
position ="(1.5,2.5,2.3)"
pan field of regard = "180"
tilt field of regard = "80"

store room : Wired

Camera Internal Camera

initialValues
camera id = "AJIMWL1" [ ]
position = "(1.2,1.0,3.0)"
tilt field of regard = "75"
pan field of regard = "180"

initialValues

] cameraid = "AJMWL2"
position = "(1.6,2.2,2.0)"
tilt field of regard = "90"
pan field of regard = "90"

1

ethernet : RJ45
Interface (Female)

ethernet : RJ45
Interface (Female)

FIGURE 7.59

Showing the configuration of a block on an internal block diagram.

Given that AJM Enterprises System is a subclass of 4-Camera Surveillance System, it has four cam-
eras. Figure 7.58 identified a number of wired camera variants, including the Wired Internal Camera
and Wired External Camera, to satisfy the installation requirements. Figure 7.59 shows how they are
configured, including initial values for significant value properties. The camera id property of Camera
is used to store unique identifiers for the cameras in the system, and the four cameras have these unique
values stenciled on their casing. The configuration also describes the position and field of regard (pan
and tilt) of each camera to facilitate coverage analysis as part of a security viewpoint.

7.8 MODELING BLOCK CONFIGURATIONS USING INSTANCES

As described in Section 7.7.6 it is possible to model a configuration of a block by specializing it and add-
ing configuration-specific information to the specialized block. This is particularly useful if the configura-
tion adds structural or data constraints not present in the more general block. However, if a configuration
simply consists of a set of values for value properties, an instance specification can be used.

An instance specification is shown on a block definition diagram as a rectangular symbol containing

an underlined name string with the following format:
instance name : block name.

The symbol contains a single compartment listing values for any specific properties that override
any established initial values. Instance specifications can be nested to mirror the composition of blocks.
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bdd [Package] Camera Configurations [Instances of AUM Enterprises System] )

Work Days : AJM Enterprises System

Non Work Days : AJM Enterprises System

AJMWL2WD/store room : Wired Internal Camera

AJMWL2NWD/store room : Wired Internal Camera

operating cycle = "17:00 - 8:00"

operating cycle = "0:00 - 23:59"

AJMIWIT1WD/front : Wired External Camera

AJMIWITNWD/front : Wired External Camera

operating cycle = "0:00 - 23:59”

operating cycle = "0:00 - 23:59"

AJMWL3WD/computer room : Wired Internal Camera

AJMWL3NWD/computer room : Wired Internal Camera

operating cycle = "17:00 - 8:00"

operating cycle = "0:00 - 23:59"

AJMWL1WD/reception : Wired Internal Camera AJMWL1NWD/reception : Wired Internal Camera

operating cycle = "17:00 - 8:00" operating cycle = "0:00 - 23:59"

FIGURE 7.60
Describing block configurations with instances.

When an instance specification symbol is nested, its name string may also show the name of the part
(or reference) to which this instance specification corresponds, using the following notation:

instance name/property name : block name.

Figure 7.60 describes two instances of the AJM Enterprises System, showing the operating cycle in
two different circumstances: work days and non-work days. It has been decided that the internal cam-
eras will be turned off during working hours on work days in order to cut costs. The value for operating
cycle of the external camera (front) in the Work Days instance specification is set to 0:00-23:59, and
the value for the internal cameras is 17:00-8:00. In the Non-Work Days instance specification, the
values for all cameras are set to 0:00-23:59 to maintain full coverage.

Instance specifications can be connected by links, which represent instances of associations between
blocks. A link is shown on a block definition diagram as a line between two instance specifications,
whose ends and adornments are the same as those of the association of which it is an instance.

Figure 7.61 shows a configuration of the ACME Surveillance Network, originally introduced in
Figure 7.13. It shows two instances of Surveillance System, Smith Residence and O’Brien Residence,
both representing the residence property and connected to an instance of Command Centre called CC,
representing the residential surveillance center, by instances of the ADSL Connection association.

7.9 SEMANTICS OF BLOCKS

A SysML model can be used to specify the structure and behavior of a system, as discussed throughout
Part IT of this book. Often a SysML model is used simply to facilitate communication among project
teams, but sometimes the model is intended to be interpreted by machines or computer programs to
simulate the system that it specifies. This latter category of model is often called an executable
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bdd [Package] Logical [A Residential Network]

: ACME Surveillance Network

Smith Residence/residence : Surveillance System

c1: ADSL Connection

CClresidential surveillance center : Command Center|

c2 : ADSL Connection

O'Brien Residence/residence : Surveillance System

FIGURE 7.61

Describing links between instances.

specification because it contains all the information necessary for a machine to execute it. The con-
struction of executable specifications requires the modeling formalism (SysML in this case) to have
semantics defined precisely enough to allow execution of the model.

7.9.1 THE FOUNDATIONAL UML SUBSET (fUML)

In 2010, the OMG adopted a specification for a subset of UML called Foundational UML (or fUML, for
short), which selects a subset of UML 2 and specifies foundational execution semantics for it [42]. Foun-
dational UML is contained within UML4SysML, the subset of UML on which SysML is based, and so
SysML modelers can also use Foundational UML to specify the semantics of SysML precisely.

The initial specification for Foundational UML defined:

e A subset of the abstract syntax of UML 2, covering basic structural concepts like classes and
associations and behavioral concepts associated with activities;

e An execution model that defined an operational semantics for that UML 2 subset;

e A library of classes, data types, and behaviors to define basic functionality such as the manipula-
tion of basic data types and input and output; and
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e A formal (declarative) definition of the semantics of the execution model, expressed using PSL [43], a
standard execution constraint language, against a smaller subset of UML called base UML or bUML.

Several execution engines based on the Foundational UML standard are available. There are two
aspects of execution: the way the specification of structure relates to construction of instances of a
system and the way specified behaviors affect the state of these instances. Section 9.14 in Chapter 9
describes how SysML supports the execution of activities using Foundational UML. The rest of this
section covers the semantics of structure (i.e., blocks).

In 2013, the OMG adopted a specification called Precise Semantics of UML Composite Struc-
tures [44], which extends Foundational UML to specify the semantics of composite structures—
including parts, ports, and connectors—which are fundamental to SysML. It also added a specific
(informative) Annex which included the semantics of the following SysML concepts:

e Flow properties, including the flow of blocks, data, and signals;
e Proxy ports, particularly behavior ports; and
e Constraint blocks

However, there are number of significant exclusions in the structural part of Foundational UML that
affect SysML Blocks:

e Association classes, which enable association blocks;
* Instance specifications;

e Default property values; and

e Subsetted, redefined, and distributed properties

The Foundational UML specification is continuing to be updated and over time should address
some of these gaps.

The OMG has also adopted a complementary specification to Foundational UML called the Action
Language for Foundational UML or Alf [45], for short. Alf is a textual concrete syntax for Founda-
tional UML modeling elements. It is particularly useful when describing the detailed behavior of activi-
ties, which can be somewhat cumbersome when expressed graphically, and so is covered in Chapter 9,
Section 9.14.2, which describes activities.

7.10 DEPRECATED FEATURES

Version 1.3 of SysML deprecated a number of features of blocks and ports that were in version 1.2.
“Deprecated” means they are still formally a part of the language, but they are intended to be removed
in a future revision. The SysML 1.3 blocks and ports subsume the SysML 1.2 functionality. This sec-
tion describes the deprecated features for the sake of completeness and because the current OCSMP
examination is based on SysML 1.2. The following features are covered:

e The flow port concept, whose capabilities were subsumed by proxy ports. Atomic flow ports have
been removed from SysML.
e The flow specification concept, whose capabilities were subsumed by the interface block.

The notation for these features is shown in the Appendix, Table A.7.
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7.10.1 FLOW PORTS

A flow port is used to describe an interaction point (or connection point) for items flowing in or out of
a block. It is used to specify what input items can be received by the block and what output items can
be sent by the block. It specifies this through its type. Like other structural features of a block, a flow
port can have a multiplicity that indicates how many instances of the port are present on an instance of
its owning block. A flow port can be typed by a flow specification.

Flow specification

A flow specification is defined on a block definition diagram. The flow specification includes flow
properties that correspond to individual specifications of input and/or output flow. Each flow property
has a type and a direction (in, out, or inout). The type of the flow property can be a block, value type,
or signal depending on the specification of what can flow.

When two blocks interact through connectors, they may exchange similar items but in opposite
directions. Rather than creating two separate flow specifications for the flow ports on the interacting
blocks, flow ports can be conjugated to reuse a single flow specification for both ports. One port is set
to be the conjugate of the other, which indicates that the direction of all flow properties in the flow
specification is reversed with respect to the second port.

A flow specification is shown as a box symbol with the keyword «f1owSpecification» above the
name in the name compartment. The flow properties of a flow specification are shown in a special com-
partment labeled flow properties, with each flow property shown in the format:

direction property name: item typelmultiplicity]

A flow port is indicated by two angle brackets facing each other (<>) drawn inside the port symbol.
Flow ports can be listed in a special compartment labeled flow ports in their owning block. A flow port
is shown in the format:

port name: flow specification name[multiplicity]
A conjugate flow port is indicated by placing a tilde (~) in front of the flow port’s type.
Connecting flow ports on an internal block diagram

Like other ports, flow ports are shown on the boundaries of parts and reference properties on an internal
block diagram and can be connected using connectors.

7.11 SUMMARY

SysML structure is primarily represented on block definition diagrams and internal block diagrams.
The following are key concepts related to modeling structure:

e The block is the fundamental unit of structure in SysML and is represented on the block definition
diagram and the frame of an internal block diagram. Blocks own and are defined by their features.
A block provides the description for a set of uniquely identified instances that all have the features
defined by the block. A block definition diagram is used to define a block, its characteristics, and its
relationship to other blocks, as well as other types of classifiers such as interface blocks, interfaces,
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value types, and signals. Instance specifications and links between them can also be shown on block
definition diagrams. An internal block diagram is used to describe the internal structure of a block.
Blocks have a number of structural and behavioral features that comprise its definition. Properties
describe a block’s structural aspects in terms of its relationship to other blocks and its quantifiable
characteristics. Ports describe a block’s interface as a set of access points on its boundary.
Behavioral features declare the set of services that characterize the blocks response to stimulus.

A part is used to describe the hierarchical composition (sometimes called whole—part relation-
ships) of block hierarchies. Using this terminology, the block or other classifier that owns the
property is the whole, and the property is the part. Any given instance of the block that types a
part may only exist as part of at most one instance of a whole at any instant of time. Composite
associations are used to express the relationship of the part to the whole, in particular, whether
blocks that type the part always exist in the context of an instance of the whole or may exist
independently of the whole.

A reference property allows blocks to refer to other blocks. Reference properties support the
creation of logical hierarchies and associated internal block diagrams that can augment a compos-
ite hierarchy.

Value properties represent quantifiable characteristics of a block, such as its physical and perfor-
mance characteristics. Value properties are typed by value types. A value type provides a reusable
description of some quantity and may include units and quantity kinds that characterize the
quantity. A value property may have a default value a probability distribution.

SysML has two different types of ports: a full port and a proxy port. A full port is typed by a block
and is similar to a part except it is shown graphically on the boundary of its owning block. Proxy
ports are typed by interface blocks that specify the black-box interface. They are similar to
reference properties in that they do not exist in a block’s part tree but serve as access points to the
features of their owning block or its parts. They serve as a pass-through for inputs and outputs
without modifying them. Both full ports and proxy ports support nesting of ports.

A block has two kinds of behavioral features, operations and receptions, which enable the block to
respond to stimuli. Operations describe synchronous interactions in which the requester waits for
the request to be handled; receptions describe asynchronous behaviors in which the requester can
continue without waiting for a reply. Behavioral features may be realized by methods, which are
the behaviors that handle the requests. Requests for behavioral features may also be handled
directly by the main (or classifier) behavior, typically an activity or state machine, as described in
Chapters 9 and 11.

The concepts of classification and generalization sets describe how to create classification
hierarchies of blocks and other classifiers such as value types and signals. Classifiers specialize
other classifiers in order to reuse their features and add new features of their own. Generalization
sets group the subclasses of a given superclass according to how they partition the instances of
their superclass. Subclasses may overlap, which means that a given instance can be described by
more than one subclass. Subclasses may have complete or partial coverage of the superclass,
depending on whether the subclasses define all possible subclasses of the superclass or not, and
whether all instances are described by one of the subclasses in the set or not.

Features of classifiers can be related in various ways within a classification hierarchy. All features
of classifiers can be redefined by their subclasses in order to restrict certain of their characteristics,
such as multiplicity or default value. Structural features may be defined to have the subset of
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values of some other feature in the same classifier or superclass. This has a particular use in
identifying a specific member of a collection in order to define characteristics that are specific to
it. This variation may either be performed using a new classifier or in a local context using a
property-specific type.

Blocks can be used to describe configurations, in which case the features of the block are defined
in enough detail to identify a specific configuration of the block in the real world of the system.
Alternatively, if the configuration does not require the application of further constraints on the
structure or values of the block, an instance specification can be used.

SysML 1.3 deprecated the flow port concept in favor of the proxy port, although it is still in the
language. A flow port specifies what can flow in or out of a block. The proxy port supports the
functionality of flow ports and more.

7.12 QUESTIONS

1.

Noghrw N

©

10.
11.
12.

13.

14.
15.

16.
17.

What is the diagram kind of a block definition diagram, and which model elements can it
represent?

What is the diagram kind of an internal block diagram, and which model elements can it
represent?

How is a block represented on a block definition diagram?

Name three categories of block property.

Which type of property is used to describe composition relationships between blocks?

What is the commonly used term for properties with a lower multiplicity bound of 0?7

What is the default interpretation of the multiplicity for both ends of an association when it is not
shown on the diagram?

Draw a block definition diagram using composite associations for blocks “Boat,” “Car,” and
“Engine,” showing that a “Car” must have one “Engine,” and a “Boat” may have either one or
two “Engines.”

Give two situations in which the use of role names for the part end of a composite association
should be considered.

How are parts shown on an internal block diagram?

What does the presence of a connector between two parts imply?

Draw an internal block diagram for the “Boat” from Question 8, but with an additional part “p”
of type “Propeller.” Add a connector between the “Engine” part (using its role name from
Question 8 if you provided one) and “p,” bearing in mind that one “Propeller” can be driven by
only one “Engine.”

What are the two graphical mechanisms that can be used to represent properties nested more
than one level deep on an internal block diagram?

What is the major difference between parts and references?

What is the difference in representation between the symbol for composite association and
reference association on a block definition diagram?

What is an association block?

How are the quantitative characteristics of blocks described?



7.12 QUESTIONS 183

18. What are the three categories of value types?

19. Apart from the definition of a valid set of values, what can value types describe about their
values?

20. A block “Boat” is described by its “length” and “width” in “Feet” and a “weight” in “Tons.”
Draw a block definition diagram describing “Boat,” with definitions of the appropriate value
types, including units and quantity kinds.

21. What is a derived property?

22. How are probability distributions—such as an interval distribution—for a property represented
in the values compartment on a block definition diagram?

23. Which SysML concepts can be used to represent items (i.e., things that flow)?

24, What does an item flow define?

25. How is a proxy port specified?

26. A block “Boat” takes “fuel” and “cold water” as inputs and produces “exhaust gases” and “warm
water” as outputs. Show “Boat” on a block definition diagram with inputs and outputs as proxy
ports, with accompanying definitions. Demonstrate the use of both port icons and the proxy ports
compartment.

27. What is the difference between proxy and full ports?

28. What is the rule for assessing the compatibility of an item flow on a connector between two
ports?

29. What is a behavior port on a block used for?

30. Name all five kinds of behaviors supported by SysML.

31. What are the behavioral features of blocks used for?

32. What is a method?

33. What do the required interfaces of a port specify?

34. What do the provided interfaces of a port specify?

35. Describe the ball-and-socket representation for the interfaces of ports.

36. Name four types of classifiers encountered in this chapter.

37. Name three aspects of a redefined property that a redefining property can change.

38. How is a generalization relationship represented on a block definition diagram?

39. When specifying a generalization set, what is the coverage property used to define?

40. How are generalization sets represented on a block definition diagram?

41. What is a bound reference used for and how is it shown on an internal block diagram?

42. If one property is defined to be a subset of another, what is the relationship between the elements
of the subsetted property and the elements of the subsetting property?

43. Name two ways in SysML of specifying a block configuration.

DISCUSSION TOPICS

Modeling variants is of significant importance in the system engineering process. Discuss for a system
known to you how you might model system variants.

Reference properties can be used to model cross-cutting hierarchies that correspond to specific
subsystems, such as electrical, mechanical, etc. Discuss how you would organize a model to include
these subsystem definitions.



CHAPTER

MODELING CONSTRAINTS
WITH PARAMETRICS

This chapter describes how to model constraints on the performance and physical properties of systems
and their environment in SysML. This allows SysML models to support a wide array of engineering
analyses and simulations.

OVERVIEW

A typical design effort includes the need to perform many different types of engineering analyses, such
as trade studies, sensitivity analysis, and design optimization. It may include the analysis of perfor-
mance, reliability, cost, and physical properties of the system under consideration. SysML supports this
type of analysis through the use of parametric models.

Parametric models constrain the properties of a system, which can then be evaluated by an appropri-
ate analysis tool. Constraints are expressed as equations, with the parameters of the equations being
bound to the properties of the system being analyzed. Each parametric model can capture the specifica-
tion of one or more engineering analyses of a design. A parametric model which captures multiple
engineering analyses—such as performance, reliability, and cost—can be analyzed to evaluate a par-
ticular design alternative, to support trade-off analysis, or optimize a design based on multiple
criteria.

SysML introduces the constraint block to support the construction of parametric models. A
constraint block is a special kind of block used to define equations so that they can be reused and
interconnected. Constraint blocks have two main features: a set of parameters and an expression
that constrains those parameters. Constraint blocks follow the pattern of definition and use that
applies to blocks and parts as described in Chapter 7. A use of a constraint block is called a con-
straint property and is analogous to a part property. The definition and use of constraint blocks is
represented on a block definition diagram and parametric diagram, respectively. The semantics and
notation of constraint blocks in SysML were heavily influenced by Russell Peak’s work on
Constrained Objects [46].

DEFINING CONSTRAINTS USING THE BLOCK DEFINITION DIAGRAM

Constraint blocks and their relationships are defined on block definition diagrams, similar to the way
blocks are defined. An example of a block definition diagram containing constraint blocks is shown in
Figure 8.1.

A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00008-4 1 85
Copyright © 2015 Elsevier Inc. All rights reserved.
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bdd [Package] Power Analysis |

«constraint»
Power Consumption

constraints
pe : Joule’s Law
ps : Power Sum

parameters
component demands : W [0..*]
current: A
voltage : V
pe ps
«constraint» «constraint»
Joule’s Law Power Sum
constraints constraints

{power = current*voltage} {total power = sum

parameters
current: A
voltage : V
power : W

(component demands)}

parameters
component demands : W [0..*]
total power : W

FIGURE 8.1
Example block definition diagram with constraint blocks.

This figure shows three constraint blocks. Joule’s Law and Power Sum are leaf constraint blocks that
each define an equation and its parameters. Power Consumption is a constraint block comprising
Joule’s Law and Power Sum to build a more complex equation.

The diagram elements for defining constraint blocks in the block definition diagram are shown in
the Appendix, Table A.S.

8.1.2 THE PARAMETRIC DIAGRAM

Parametric diagrams are used to create systems of equations that can constrain the properties of
blocks. The complete header for a parametric diagram is as follows:

par [model element kind] model element name [diagram name]

The diagram kind is par, and the model element kind can be either a block or a constraint block.

Figure 8.2 shows a parametric diagram for the constraint block Power Consumption from Figure 8.1.
The constraint properties ps and pe are usages of the constraint blocks Power Sum and Joule’s Law,
respectively. The parameters of the constraint properties ps and pe are bound to each other and to the
parameters of Power Consumption, which are shown flush with the diagram frame. The diagram elements
of the parametric diagram are shown in the Appendix, Table A.13.
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par [ConstraintBlock] Power Consumptioﬂ

pe: Joule’s Law
. current: A
current : A[_| []
ltage : V [
power : W|_\|l0 age : V[ voltage : V'

| Jtotal power : W

ps: Power Sum component demands : W [0..*]
component demands : W [0..] E

FIGURE 8.2
A parametric diagram used to construct systems of equations.

8.2 USING CONSTRAINT EXPRESSIONS TO REPRESENT SYSTEM
CONSTRAINTS

SysML includes a generic mechanism for expressing constraints on a system as text expressions that
can be applied to any model element. SysML does not provide a built-in constraint language because it
is expected that different constraint languages—such as the Object Constraint Language (OCL), Java,
or MathML—will be used as appropriate to the domain. The definition of a constraint should include
the language used to enable the constraint to be evaluated.

Constraints may be owned by any element that is a namespace, such as a package or block. If the element
that owns the constraint can include compartments, such as a block, the constraint can be shown in a special
compartment labeled constraints. A constraint can also be shown as a note symbol attached to the model
element(s) it constrains, with the text of the constraint shown in the body of the note. The constraint language
is shown in braces before the text of the expression, although it is often elided to reduce clutter.

Figure 8.3 shows examples of the different constraint notations used in SysML that constrain the
properties of a block. Block 1 has an explicit compartment for the constraint, which in this case is
expressed using Java. Block 2 has a constraint that is shown in an attached note and is expressed in the
constraint language of a specialized analysis tool called MATLAB.

8.3 ENCAPSULATING CONSTRAINTS IN CONSTRAINT BLOCKS TO ENABLE
REUSE

SysML also includes a constraint block that extends the generic constraint concept. A constraint block
encapsulates a constraint to enable it to be defined once and then used in different contexts, similar to
the way parts represent usages of blocks in different contexts. The concept equivalent to the part is
called a constraint property.
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{{MATLAB}c = d.*e}
Block 1 Block 2
constraints values
{{java}a>b*2} ¢ : Real [1]
) d: Real [*]
vaiues e : Real [*]
a: Integer
b : Integer

FIGURE 8.3
Example of the two notations for showing constraints.

The constraint expression of a constraint block can be any mathematical expression and may have
an explicit dependency on time, such as a time derivative in a differential equation. In addition to the
constraint expression, a constraint block defines a set of constraint parameters—a special kind of
property used in the constraint expression. Constraint parameters can be bound to other parameters and
to properties of the blocks. Constraint parameters do not have direction to designate them as dependent
or independent variables with respect to the constraint expression. Instead, the interpretation of the
dependencies between parameters is based on the semantics of the language used to specify the con-
straint expression. For example, in the C programming language, the expression a = b + c is an assign-
ment statement which states that a is dependent on the value of b and ¢, whereas the expression a ==
b + c is a declarative statement and does not identify the dependent versus independent variables of the
constraint.

Like other properties, each parameter has a type that defines the set of values that the parameter
can take. Typically, parameters are value types that represent scalars or vectors. Through its value
type, the parameter can also have a specific unit and quantity kind. Parameters can also support
probability distributions like other properties.

8.3.1 ADDITIONAL PARAMETER CHARACTERISTICS

Properties whose multiplicity has an upper bound greater than 1 have two characteristics that are useful
when defining collections. Modelers can specify whether the collection is ordered and whether the
values in the collection must be unique. Ordered in this case means that the members of the collection
are mapped to the values of a positive integer: member 1, member 2, and so on. The means by which
the order is to be determined would have to be specified by an additional constraint or by using a behav-
ior that builds the collection. In a unique collection, all of the collection’s values must be different.
These two characteristics are useful in specifying constraint parameters.

Another useful characteristic of properties is that they can be marked as derived (see the Derived
Properties section in Chapter 7, Section 7.3.4). If a property is marked as derived, it means that its value
is derived, typically from the values of other properties. This characteristic has two uses in specifying
parametric models. First, if the calculation underlying an equation is known to be implemented as a
function, a derived parameter can be used to identify the dependent variable. An example of this can be
seen in Figure 8.4. Second, when the modeler wishes to guide the equation solver, derived properties
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bdd [Package] Constraint Examples [Two Different Constraint Blocks] )
«constraint»
Rate Monotonic Model «constraint»
constraints Real Sum
n A
v C; nfo_1 constraints
{u *’; %I,Sn( 2-1)} {sum == plus(operands)}
{size(T) = n & size(C) = n} parameters
operands : Real [*]
parameters sum : Real
T : Real [*] {ordered, unique}
/U : Real
C : Real [*] {ordered}
n: Integer

FIGURE 8.4
Two reusable constraint blocks expressed on a block definition diagram.

can indicate the values in a given analysis that need to be determined by solving the equation. An
example of this can be seen later in Figure 8.16.

A constraint block is defined in a block definition diagram, as shown in Figure 8.4. The diagram header
is the same as any other block definition diagram, specifying the package or block to which the diagram
frame corresponds. The name compartment of the constraint block includes the keyword «constraint»
above the name to differentiate it from other elements on a block definition diagram. The constraint
expression is defined in the constraints compartment of the constraint block, and the constraint parameters
are defined in the parameters compartment using a string with the following format:

parameter name: typelmultiplicity]

Indications of ordering and uniqueness appear as keywords in braces after the multiplicity. The
ordering indication is either ordered or unordered; the uniqueness indication is either unique or nonu-
nique. In practice, unordered and nonunique are often indicated by the absence of a keyword. A derived
property is shown with a forward slash (/) before its name.

Figure 8.4 shows two constraint blocks, Real Sum and Rate Monotonic Model. Real Sum is a simple reus-
able constraint where one parameter, sum, equals the sum of a set of operands, as expressed in the constraint
in the constraints compartment. Rate Monotonic Model is also reusable but more specialized; it describes the
equations underlying the rate monotonic analysis approach to scheduling periodic tasks on a processing
resource. T represents the periods of the tasks, C represents the computation load of the tasks, and U repre-
sents the utilization of the processing resource. The constraint language is not shown in either case, but it can
be seen that the constraint for Real Sum is expressed in a C-like syntax. The utilization constraint for Rate
Monotonic Model is expressed using a more sophisticated equation language, which has the capability to be
rendered using special symbols. Both mechanisms are equally acceptable in a SysML constraint block.

Both T and C are ordered collections, as indicated by the ordered keyword. The values of 7i are
required to be unique because each task must have a different rate for the analysis to be correct. Parameter
n specifies the number of tasks and an additional constraint is used to constrain the size of both 7" and C
to be n. U is always the dependent variable in the underlying calculation and so is marked as derived.
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8.4 USING COMPOSITION TO BUILD COMPLEX CONSTRAINT BLOCKS

Modelers can compose complex constraint blocks from other constraint blocks on a block definition
diagram. In this case, the composite constraint block describes an equation that binds the parameters of
its child constraints. This enables complex equations to be defined by reusing simpler equations.

The concept of definition and usage that was described for blocks in Chapter 7 applies to constraint
blocks as well. A block definition diagram is used to define constraint blocks. The parametric diagram
represents the usage of constraint blocks in a particular context. This is analogous to the usage of blocks
as parts in an internal block diagram. The usages of constraint blocks are called constraint properties.

Composition of constraint blocks is described using composite associations between constraint
blocks. The associations are depicted using the standard association notation introduced in Chapter 7
to represent composition hierarchies. A constraint block can also list its constraint properties in its

constraints compartment using the following syntax:
constraint property constraint block [multiplicity]

Figure 8.5 shows the decomposition of a Power Consumption constraint block into two other con-
straint blocks, Joule’s Law and Power Sum. The role names on the component end of the compositions

bdd [Package] Power Analysis)

«constraint»
Power Consumption

constraints
pe : Joule’s Law
ps : Power Sum

parameters
component demands : W [0..*]
current : A
voltage : V
pe ps
«constraint» «constraint»
Joule’s Law Power Sum

constraints
{power = current*voltage}

constraints
{total power = sum
(component demands)}

parameters
current : A parameters
voltage : V component demands : W [0..%]
power : W total power : W
FIGURE 8.5

A hierarchy of constraints on a block definition diagram.
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par [ConstraintBlock] Power Consumptioﬂ

pe: Joule’s Law
. current: A
current : A[_| []
ltage : V [
power : W|_\|/0 age : VL] voltage : V—

| Jtotal power : W

ps: Power Sum component demands : W [0..*]
component demands : W [0..”] E

FIGURE 8.6
Internal details of the power consumption equation using a parametric diagram.

correspond to constraint properties. Property pe is a usage of the Joule’s Law constraint block, which
describes the standard power equation. Property ps is a usage of the Power Sum constraint block, which
equates the total power demand to a set of component demands. Power Consumption uses these equations
to relate the demands of a set of components to the required current and voltage of a power supply.

The Joule’s Law and Power Sum constraint blocks feature their equations in their constraints com-
partments, whereas Power Consumption lists its constituent constraint properties. Note that in this
example, the constituent constraints of Power Consumption are represented both in its constraints
compartment and as association symbols. Typically, in a given diagram only one form of representation
is used.

A modeler may choose to indicate on a particular constraint property symbol whether the internal
structure of the constraint block that types it is further described by a parametric diagram. If the con-
straint block has an associated parametric diagram, then the symbol for the constraint property contains
a rake symbol in its bottom right corner. The constraint block Power Consumption in Figure 8.7 has a
rake symbol, indicating that it is further elaborated, in this case by the parametric diagram in Figure 8.6.

8.5 USING A PARAMETRIC DIAGRAM TO BIND PARAMETERS OF
CONSTRAINT BLOCKS

As with blocks and parts, the block definition diagram does not show all the required information
needed to interconnect its constraint properties. Specifically, it does not show the relationship between
the parameters of constraint properties and the parameters of their parent and siblings. This additional
information is provided on the parametric diagram using binding connectors, which express equality
relationships between their two ends, as discussed in Chapter 7, Section 7.3.1.
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Two constraint parameters can be bound directly to each other on a parametric diagram using a
binding connector, which indicates that the values of the two parameters must be the same. This enables
a modeler to connect multiple equations to create complex sets of equations if a parameter in one equa-
tion is bound to a parameter in another equation.

The parameters of a constraint block say nothing about causality. Similarly, binding connectors
express an equality relationship between their bound elements, but say nothing about the causality of
the equation network. When an equation is to be solved, it is assumed that the dependent and indepen-
dent variables are identified or deduced, including the specification of initial values. This is typically
addressed by a computational equation solver, which is generally provided in a separate analysis tool,
as discussed in Chapter 18. As stated earlier, derived parameters or properties can be used to guide
equation solvers if parts of the solution order are known.

Just as with the internal block diagram, the notation for constraint properties in a parametric dia-
gram relates back to their definition on the block definition diagram as follows:

e A constraint block or block on a block definition diagram that owns constraint properties can be
designated as the diagram frame of a parametric diagram with the constraint block or block name
in the diagram header.

e A constraint property on the component end of the composite association on the block definition
diagram may appear as a constraint property symbol within a frame designating the constraint
block on the composition end. The name string of the symbol uses the colon notation previously
described for parts in Chapter 7, Section 7.3.1:

constraint property name: constraint block name

When a composite association is used, the constraint property name corresponds to the role name
on the component end of the association just as with parts. The type name corresponds to the name of
the constraint block on the component end of the association.

The frame of a parametric diagram corresponds to a constraint block or a block. If the parametric
diagram designates a constraint block, then its parameters are shown as small rectangles flush with the
inner surface of the frame. The name, type, and multiplicity of each parameter are shown in a textual
label floating near the parameter symbol.

On a parametric diagram, a constraint property (as described in Chapter 5, Section 5.3.7) may be
shown either as a round-cornered rectangle (round-angle) symbol or as a rectangle with the keyword
«constraint». The name and type of the property is shown inside the symbol, although either the
property name or the type name can be elided if desired. The constraint expression itself can be elided,
but if shown, it may appear either inside the round-angle or attached via a comment symbol to the
round-angle. The parameters of the constraint property are shown flush with the inside surface of the
constraint property symbol.

Figure 8.6 shows an example from the surveillance system, where the Power Consumption compos-
ite constraint block, originally introduced in Figure 8.5, is depicted as the context of a parametric dia-
gram. The diagram shows how the parameters of constraint properties ps, a usage of Power Sum, and
pe, a usage of Joule’s Law, are bound together. As stated earlier, the names in the constraint property
symbols are produced from the component ends of the associations on the block definition diagram.
The voltage and current parameters of pe are bound to the voltage and current parameters of the block
Power Consumption (hence shown on the frame boundary). The power parameter of pe is bound to the
total cumulative power of all the powered equipment, calculated by ps from the set of component
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demands (also a parameter of Power Consumption and shown on the frame boundary). When all of the
bindings between parameters are considered, the composed constraint for Power Consumption can be
expressed as {sum(component demands)=current*voltage).

It should be noted that although this is just a trivial example, it does highlight how parametric
models can be used to construct more complex equations from reusable constraint blocks

8.6 CONSTRAINING VALUE PROPERTIES OF A BLOCK

Value properties of a block can be bound directly to other value properties with a binding connector to
assert that their values are equal. However, more complex constraints on value properties can be
expressed using constraint blocks. This is achieved by building a composition hierarchy of constraint
blocks using a block definition diagram. In a parametric diagram, the block is designated by the enclos-
ing frame and the constraint properties represent usages of the constraint blocks. The parameters of the
constraint properties are bound to the value properties of the block using binding connectors.

In a parametric diagram for a block, a value property is depicted as a rectangle displaying its name,
type, and multiplicity. A nested value property within a part hierarchy can be shown nested within its con-
taining part symbol or can be shown using the dot notation that was described in Chapter 7, Section 7.3.1.
An example of binding nested value properties using the part hierarchy notation is shown in Figure 8.7,
and an example using the dot notation is shown in Figure 8.8.

par [Block] Mechanical Power Subsystem [Power Consumption]) v riultubnia
! power source

demand equation voltage : V

|
T
|
: Power Consumption :
|
]

voltage : V |: current : A
I
current : A |: --------------

component demands : W [0..*] |: : Collect | |
th . | |

c:W[0.."]

FIGURE 8.7

Binding constraints to properties on a parametric diagram.
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par[Block] Mechanical Power Subsystem with 2W and 0.4W motors [All Values Supplied])

demand equation
: Power Consumption

I
voltage : V I:—’—‘ power source.current : A=0.4 |
e e e e e e e e = -
current: A[_|
component demands : W [0.."] |: : Collect |—: azimuth motor.power : W=2

cl :W|: ___________________

c2W[J—altiude motorpover: W =2 _|
] c3:W[_|

caW[ | LI focus motor.power : W=0.4 !

c:W[0."]

FIGURE 8.8

Describing a specific analysis configuration.

Figure 8.7 shows the constraints on the power supply for the Mechanical Power Subsystem described
by the internal block diagram in Figure 7.11. The Power Consumption constraint block is used, via a
constraint property demand equation, to relate the current and voltage of the power source for the
Mechanical Power Subsystem to the load imposed on the power source by the various motors. An addi-
tional constraint block, Collect, is used to collect the power demand values of all the powered devices
into one collection for binding to the component demands parameter of demand equation.

8.7 CAPTURING VALUES IN BLOCK CONFIGURATIONS

To allow an analysis tool to evaluate blocks containing constraint properties, at least some of the value
properties of the block under analysis need to have specific values defined. Often, these values are
provided during analysis through the interface of the analysis tool, but they can also be specified using
a block configuration. This is done by creating either a specialization of the block with the required
initial values or by using an instance specification to describe an instance of the block. In either case,
the analysis results can be used to update the value properties of the configuration.

Although the block in Figure 8.7 contains all the relationships required to perform an analysis of the
Mechanical Power Subsystem block, the related properties do not have values, and so there is little scope
for direct analysis. Figure 8.8 shows a configuration of the Mechanical Power Subsystem block, specified
as a specialization of the original block and called Mechanical Power Subsystem with 2W and 0.4W motors.

Even though there are no mandatory naming standards for configurations, it is often useful to
include information about the configuration as part of its name. Note that in this case, all the values for
the related properties are shown and so the demand equation constraint property simply acts as a check
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that the values are consistent. In other analysis scenarios, one or more properties may not have a value,
in which case an equation-solving tool would be used to rearrange the constraint expression to compute
the missing value or values or to report an error if a value cannot be determined.

8.8 CONSTRAINING TIME-DEPENDENT PROPERTIES TO FACILITATE
TIME-BASED ANALYSIS

A value property is often a time-varying property that may be constrained by ordinary differential equa-
tions with time derivatives or other time-dependent equations. There are two approaches to represent-
ing these time-varying properties. The first, as illustrated in Figure 8.9, is to treat time as implicit in the
expression. This can help reduce diagram clutter and is often an accurate representation of the analysis
approach with time provided behind the scenes by the analysis tool.

Figure 8.9 shows the calculation of the angular position, in Radians, of the azimuth gimbal over
time. The equation simply integrates the angular velocity of the azimuth motor over time to establish
the angular position, pos. The initial value of azimuth motor.angular velocity in this case could be
interpreted as a constant value depending on the semantics of the analysis.

Another approach to the representation of time is to include a separate time property that explicitly
represents time in the constraint equations. The time property can be expressed as a property of a refer-
ence clock with specified units and quantity kind. The time-varying parameters in the constraint equa-
tions can then be bound to that time property. Local clock errors, such as clock skew or time delay, can
also be introduced by defining a clock with its own time property that is related to some reference clock
through additional constraint equations.

par[Block] Mount Assembly [Azimuth Gimbal Position])

azimuth gimbal. angular position: Radian

pos: Radian

L]

: Angle Eq
{pos = integral(velocity)}

I_I

velocity: Radian/s

azimuth motor.angular velocity: Radian/s = 0.1

FIGURE 8.9

Using a time-dependent constraint.
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par[Block] Accelerating Object [Distance Traveled] )
:F_ _ Et;f_e;e_m—:e_ (_:I_cyt_:l:| : Distance at TO
: | {if (t=0) d=0}
time:s ! .
i ! t:s [d:m
d:m
d:m|_]
: Distance Equation
- %12
t:s . s{d_u t+(@t)/2) a:m/s?=9.8
a:m/s?
u:m/is'[ ]
u:m/s'=0

FIGURE 8.10
Explicitly representing time in a parametric diagram.

In Figure 8.9, time was implicit and initial conditions were defined by the default value of the veloc-
ity property. Figure 8.10 shows an example of the alternate approach of explicitly showing time, and
uses constraints on values to express conditions at time zero.

The figure shows the standard distance equation bound to the values of an object under acceleration.
The block Accelerating Object contains a reference to a Reference Clock, whose time property is bound
to t, a value property of Accelerating Object that records passage of time as experienced by the object.
The acceleration g, initial velocity u, and distance traveled d are bound to the Distance Equation along
with time 7. An additional constraint, Distance at T0, is used to specify the initial distance of the object
(i.e., at time zero), which in this case is 0. The value of property a is specified with a default value that
represents the constant value of acceleration due to gravity. Property u has a default value of 0.

8.9 USING CONSTRAINT BLOCKS TO CONSTRAIN ITEM FLOWS

A powerful use of constraint blocks is to show how properties associated with the flow of matter, energy,
or information is constrained. To achieve this, item flows (or more accurately the item properties corre-
sponding to item flows) can be shown on parametric diagrams and bound to constraint parameters.
Figure 8.11 shows the amplitudes of the item flows shown on the internal block diagram in Figure 7.44.
External is the item flow from the boundary of the Camera to the Protective Housing, and polarized is the
item flow from the Protective Housing to the boundary of the Camera Module, cm. The Protective Housing
provides a value for acceptable loss of light power (flux) in value property loss. The Camera owns a
loss equation, Loss Egq, to constrain the relative values of the light flux before and after passing through the
Protective Housing. The loss parameter in Loss Eq is bound to the loss property of the Protective Housing.
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par [Block] Camera [Flux Loss])

: Protective Housing

loss = 0.5

external : Light |_| loss polarized : Polarized Light

:Loss Eq
II'— flux flux flux

before after

FIGURE 8.11

Constraining item flows.

8.10 DESCRIBING AN ANALYSIS CONTEXT

A constraint property that constrains the value properties of a block can, as discussed earlier, be part
of a block’s definition and thus shown in its constraints compartment. This works well when the
constrained properties are intrinsically related in this way in all contexts. What often occurs, how-
ever, is that the constraints on block properties vary depending on the analysis requirements. For
example, a different fidelity of analysis may be applied to the same system block depending on the
required accuracy of the value of key properties. This type of scenario requires a more flexible
approach such that the properties of the block can be constrained without the constraint being part of
the block’s definition. This approach effectively decouples the constraint equations from the block
whose properties are being constrained, and thus enables the constraint equations to be modified
without modifying the block whose properties are being constrained. An alternative approach is to
specialize the block under analysis and add different constraints to each subclass that are relevant to
different analyses.

To follow this approach, a modeler creates an analysis context, which composes both the block
whose properties are being analyzed and all the constraint blocks required to perform the analysis.
Libraries of constraint blocks may already exist for a particular analysis domain. These constraint
blocks are often called analysis models and may be very complex and supported by sophisticated tools.
The general analysis models in these libraries may not precisely fit a given scenario, and the analysis
context may contain other constraint blocks to handle transformations between the properties of the
block and the parameters of the analysis model. An analysis context is modeled as a block with associa-
tions to the block being analyzed (i.e., subject of the analysis), the chosen analysis model, and any
intermediate transformations. By convention, the block being analyzed is referenced by the analysis
context block because there may be many different analysis contexts for the block being analyzed. A
white diamond symbol or a simple association with no end adornment is used to represent a reference
from the analysis context block to the subject of the analysis. Composite associations are used between
the analysis context and the analysis model and any other constraint blocks. An example of an analysis
context is shown in Figure 8.12.
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bdd [Package] Analysis [Network Latency Analysis])

Network Latency

values
video latency : Mbps
/analysis result : Boolean

? subject
of
load satisfaction analysis \l/ analysis
computation check model 4-Camera Wired
«constraint» «constraint» «constraint» Surveillance System
RealSum4 Compare Simple Queuing Model parts
network: Wired Network
parameters parameters parameters

camera 1 : Wired Camera {subsets cameras}

ot: Real goal : Real IoadA: Real . camera 2 : Wired Camera {subsets cameras}
Su”_] : Real act}JaI  Real service ratg : R.eal camera 3 : Wired Camera {subsets cameras}
02 : Real ok : Boolean response time : Real camera 4 : Wired Camera {subsets cameras}
03 : Real
04 : Real

FIGURE 8.12

An analysis context shown on a bdd (constraint equations not shown).

Figure 8.12 shows the analysis of network throughput for a 4-Camera Wired Surveillance
System. The analysis context is called Network Latency, which references the subject of analysis,
a 4-Camera Wired Surveillance System. The analysis context also contains an analysis model,
in this case a Simple Queuing Model, and uses the basic constraints RealSum4 and Compare to
perform a load computation and a satisfaction check, respectively. Network Latency contains two
value properties: video latency, specified in Mbps, and analysis result, which is intended to be a
computed value and hence is derived. In this case, the equations that define the constraints are not
shown.

In Figure 8.13, the bindings needed to perform the analysis are shown. The parameters of the analy-
sis model are bound to the properties of the subject of analysis. The loads on the system from all four
cameras in the subject of analysis are summed to establish the total load using load computation. The
network bandwidth of the subject of analysis is used to establish the service rate for the analysis model.
The response time, calculated using analysis model, is then compared to the required video latency
using satisfaction check. The video latency is a refinement of the requirement Required Network
Throughput to establish the analysis result (see Chapter 13 for a discussion of requirements). The
analysis result is derived to indicate that its value needs to be calculated. If the analysis result is true,
then the network satisfies the requirement.

It is common practice for a single constraint block to represent a complex engineering analysis as a
black box, without showing all the internal complexity of the composition. In this way, the constraint
block specifies the input and output parameters of the analysis, and often defers to an appropriate analy-
sis tool to provide detailed equations that relate the input and output parameters. The name of the
constraint block is generally the name of the analysis, such as Power Analysis, Power Analysis Model,
or Power Analysis Equations.
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par [Block] Network Latency )

subject of analysis
: 4-Camera Wired
Surveillance System

load computation

|
:
|
| analysis model
[ : RealSum4 o ;
camera 1.data rate : Mbps l*{ :l o1 : Real - Simple Queuing Model
I sum: Real [—j load : Real
[

:| 02 : Real

camera 2.data rate : Mbps

I ~ g
camera 4.data rate : Mbps l_:_;l 04 : Real ) response

time : Real

I
| camera 3.data rate : Mbps l—f—:l 03 : Real :| service rate : Real

I
network.bandwidth : Mbps I :

satisfaction check
: Compare

required : Real offered : Real

| video latency : Mbps

T
\

| ok : Boolean

refines
«requirement» Required Network Throughpllﬁ | Janalysis result : Boolean |

FIGURE 8.13

Binding values in an analysis context.

8.11 MODELING EVALUATION OF ALTERNATIVES AND TRADE STUDIES

A common use of constraint blocks is to support trade studies. A trade study is used to compare a
number of alternative solutions to see whether and how well they satisfy a particular set of criteria.
Each solution is characterized by a set of measures of effectiveness (often abbreviated “moes”) that
correspond to the evaluation criteria and have a calculated value or value distribution. The moes for a
given solution are then evaluated using an objective function (often called a cost function or utility
function), and the results for each alternative are compared to select a preferred solution.

Annex E.4 of the SysML specification introduces some concepts to support the modeling of trade
studies. A moe is a special type of property. An objective function is a special type of constraint block
that expresses an objective function whose parameters can be bound to a set of moes using a parametric
diagram. A set of solutions to a problem may be specified as a set of blocks that each specialize a gen-
eral block. The general block defines all the moes that are considered relevant to evaluating the alterna-
tives, and the specialized blocks provide different values or value distributions for the moes.

A moe is indicated by the keyword «moe» in a property string for a block property. An objective func-
tion is indicated by the keyword «objectiveFunction» on a constraint block or constraint property.

Figure 8.14 shows two variants of a Camera intended to provide a solution to operate in low-light
conditions. These variants are shown using specialization (as described in Chapter 7) and are called
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bdd [Package] Night Performance [Measures of Effectiveness] )

Camera

values
«moe»power consumption : W
«moe»environmental friendliness : Integer
«moe»light level : lux
«moe»weight : kg

T

Camera with Light Low-Light Camera
values values
«moe»power consumption : W = 20 «moe»power consumption : W = 10
«moe»environmental friendliness : Integer = 4 «moe»environmental friendliness : Integer = 10
«moen»lightlevel : lux = 0.01 «moe»lightlevel : lux = 0.25
«moe»weight : kg = 0.3 «moe»weight : kg = 0.2

FIGURE 8.14

Two variants of a camera for handling low-light conditions.

Camera with Light, which is a conventional camera with an attached illuminator, and Low-Light
Camera, which is designed to work at much lower levels of ambient light. Four relevant measures of
effectiveness, indicated by the keyword «moe», are used to conduct the trade studies. Note that the
moes in the specialized blocks are redefinitions of those in Camera. The redefinition keywords have
been elided to reduce clutter.

A trade study is typically described as a type of analysis context, which references the blocks that
represent the different alternatives. It also contains constraint properties for the objective function (or
functions) to be used to evaluate the alternatives, and a means to record the results of the evaluation,
typically value properties that capture the score for each alternative.

Figure 8.15 shows the definition of Night Performance Trade-off—a trade study for evaluating the
nighttime performance of two camera variants. As indicated by its associations, Night Performance
Trade-off contains two constraint properties, both typed by objective function NP Cost Function and
two reference properties, one typed by Low-Light Camera and the other by Camera with Light. The
intent of the analysis is that the equations be solved for option I and option 2, and so they are shown
as derived.

Figure 8.16 shows the internal bindings of the trade study Night Performance Trade-off.- One use of
the objective function NP Cost Function, cfl, is bound to the value properties of the Low-Light Camera,
and the other, ¢f2, is bound to the Camera with Light. The score parameters of ¢f/ and cf2 are bound to
two value properties of the context called option I and option 2, which are the dependent variables in this
particular analysis. In this case, using the values provided in Figure 8.14 for the measures of effectiveness
of the two solutions, the scores are 400 for option I and 450 for option 2, indicating that the Low-Light
Camera is the preferred solution. Additional constraint blocks can be specified to relate the moes to other
properties in the system (refer to Chapter 17, Section 17.3.6 for an example).
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bdd [Package] Night Performance [Night Performance Trade-off] )

Night Performance Trade-off

values
/option1 : Real
/option2 : Real

Y
cf1 Jcf2 T \|/

«objectiveFunction» Low-Light Camera Camera with Light
NP Cost Function

parameters
weight : kg{unit = Kilogram, dimension = Mass}
power : W{unit = Watt, dimension = Power}
level : lux{unit = Lux, dimension = Illluminance}
ef : Integer
score : Real

FIGURE 8.15
A trade study represented as an analysis context.

8.12 SUMMARY

Constraint blocks are used to model constraints on the properties of blocks to support engineering
analyses, such as performance, reliability, cost, and mass properties analysis. The following are key
aspects of constraint blocks and their usages:

e SysML includes the concept of a constraint that can correspond to any mathematical or logical
expression, including time-varying expressions and differential equations. SysML does not specify a
constraint language but enables the language to be specified as part of the definition of the
constraint.

e SysML provides the ability to encapsulate a constraint in a constraint block so that it can be
reused and bound with other constraints to represent complex sets of equations. A constraint
block defines a set of constraint parameters related to each other by a constraint expression.
Parameters may have types, units, quantity kinds, and probability distributions. The block
definition diagram is used to define constraint blocks and their interrelationships. In particular,
a composite association can be used to compose constraint blocks to create more complex
equations. Constraint blocks can be defined in model libraries to facilitate specific types of
analysis.

e Constraint properties are usages of constraint blocks. The parametric diagram shows how
constraint properties are connected by binding their parameters to one another and to the
value properties of blocks using binding connectors. Binding connectors express equality
between the values of the constraint parameters or value properties at their ends. In this way,
constraint blocks can be used to constrain the values of block properties. The specific values
needed to support the evaluation of the constraints for a block are typically specified by a
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par [Block] Night Performance Trade-ofd

: Camera with Light

I

L

(" . ) h I
«objectiveFunction» I «moe»

cf1 : NP Cost Function i | power consumption : W = 20
|
power : W |: i

«moe»
|
environmental friendliness : Integer = 4
Joption 1 : Real = 400|—:| ef : Integer E—’T 9
score : Real «moe»
level : lux |: light level : lux = 0.01

«moe»
weight : kg = 0.3

weight : kg |:
J

: Low-Light Camera

4 A
«objectiveFunction» «moe»

cf2 : NP Cost Function i | power consumption: W =10
|
|
power : W |: | «moe»

environmental friendliness : Integer = 10
Joption 2 : Real = 450|—:| ef : Integer E—I_E_ 9

score : Real

level : lux |:

weight : kg |:
J

«moe»
light level : lux = 0.25

«moe»
weight : kg = 0.2

FIGURE 8.16

Trade-off results between the two low-light camera variants.

configuration of that block, using either a specialization of the block or an instance
specification.

* An analysis context is a block that provides the context for a system or component that is subject
to analysis. The analysis context is composed of the constraint blocks that correspond to the
analysis model and references the system being analyzed. A parametric diagram whose frame
designates the analysis context is used to bind the relevant properties of the block and the param-
eters of the analysis model. The analysis context can be passed to an engineering analysis tool to
perform the computational analysis, and the analysis results can be returned as values of proper-
ties of the analysis context.

e A common and useful form of analysis used by systems engineers is the trade study, which is
used to compare alternative solutions for a given problem based on some criteria. A moe
(“measure of effectiveness”) is used to define a property that needs to be evaluated in a trade
study, and a constraint block, called an objective function, is used to define how the solutions
are evaluated.
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8.13 QUESTIONS

1. What is the diagram kind of a parametric diagram, and which kinds of model element can it

represent?

If a constraint parameter is ordered, what does that imply about its values?

If a constraint parameter is unique, what does that imply about its values?

How are constraint parameters represented on a block definition diagram?

How is the composition of constraints represented on a block definition diagram?

How are constraint properties represented on a parametric diagram?

How are constraint parameters represented on a parametric diagram?

What are the semantics of a binding connector?

How can constraint blocks be used to constrain the value properties of blocks?

A block “Gas” has two value properties, “pressure” and “volume,” that vary inversely with

respect to each other. Create an appropriate constraint block to represent the relationship, and

use it in a parametric diagram for “Gas” to constrain “pressure” and “volume.”

11. What are the two approaches to specifying parametric models that include time-varying
properties?

12. How are composite associations and reference associations typically used in an analysis context?

13. What is a measure of effectiveness and what is it used for?

14. What is an objective function and how is it represented on a block definition diagram and a
parametric diagram?

CoONoahrhwN

—

DISCUSSION TOPICS

Under what circumstances is it useful or necessary to use derived properties or parameters in paramet-
ric models?

What are the relative merits of using constraint blocks to specify parametric equations as part of the
definition of a block versus applying an externally defined parametric model to an existing block?



CHAPTER

MODELING FLOW-BASED
BEHAVIOR WITH ACTIVITIES

This chapter describes concepts needed to model behavior in terms of the flow of inputs, outputs, and
control using an activity diagram. An activity diagram is similar to a traditional functional flow diagram
but with many additional features to precisely specify behavior. Activities can also depict behavior
performed by specific blocks or parts, which may represent a system or its components.

OVERVIEW

In SysML, an activity is a formalism for describing behavior that specifies the transformation of inputs
to outputs through a controlled sequence of actions. The activity diagram is the primary representation
for modeling flow-based behavior in SysML and is analogous to the functional flow diagram that has
been widely used for modeling system behavior. Activities provide enhanced capabilities over tradi-
tional functional flow diagrams, such as the capability to express their relationship to the structural
aspects of the system (e.g., blocks, parts) and the ability to model continuous flow behaviors. The
semantics of a selected subset of activities are defined by the fUML specification [42] so they can be
executed by an execution environment.

Actions are the building blocks of activities and describe how activities execute. Each action can
accept inputs and produce outputs, called tokens. The tokens are placed on input and output buffers
called pins until they are ready to be consumed. These tokens can correspond to anything that flows,
such as information or a physical item (e.g., water). A certain class of actions, termed invocation
actions, can invoke other activities that are further decomposed into other actions. In this way, invoca-
tion actions can be used to compose activities into activity hierarchies. Other actions are used to specify
the leaf level of behavior, such as sending a signal or reading a property value.

The concept of object flow describes how input and output items flow between actions. Object flows
can connect the output pin of one action to the input pin of another action to enable the passage of
tokens. Flows can be discrete or continuous, where continuous flow represents the situation when the
time between tokens is effectively zero. Complex routing of object tokens between actions can be
specified by control nodes.

The concept of control flow provides additional constraints on when, and in which order, the actions
within an activity will execute. A control token on an incoming control flow enables an action to start
execution, and a control token is offered on an outgoing control flow when an action completes its
execution. When a control flow connects one action to another, the action at the target end of the control
flow cannot start until the source action has completed. Control nodes, such as join, fork, decision,
merge, initial, and final nodes, can be used to route control tokens to further specify the sequence of
actions.

A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00009-6 205
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The sending and receiving of signals is one mechanism for communicating between activities
executing in the context of different blocks and for handling events such as timeouts. Signals are
sometimes used as an external control input to initiate an action within an activity that has already
started.

Streaming pins allow new tokens to flow into and out of an action while it is executing, whereas
nonstreaming pins only accept and produce tokens at the start and end of execution. SysML also offers
more advanced activity modeling concepts, such as extensions to flow semantics to deal with interrupts,
flow rates, and probabilities.

SysML provides several mechanisms to relate activities to the blocks that perform them. Activity
partitions are used to partition actions in an activity according to the blocks that have responsibility for
executing them.

Alternatively, an activity may be specified as the main behavior of a block, which describes how inputs
and outputs of the block are processed. An activity can also be specified as the method for an operation of
the block that is invoked as a result of a service request for that operation. When the behavior of a block
is specified using a state machine, activities are often used to describe the behavior of the blocks when the
state machine transitions between states, or the behavior of the block when it is in a particular state.

Other traditional systems engineering functional representations are also supported in SysML.
Activities can be represented on block definition diagrams to show activity hierarchies similar to func-
tional hierarchies. Activity diagrams can also be used to represent Enhanced Functional Flow Block
Diagrams (EFFBDs) [49].

9.2 THE ACTIVITY DIAGRAM

The principal diagram used to describe an activity is called an activity diagram. An activity diagram
defines the actions in an activity along with the flow of input/output and control between them. The
complete diagram header for an activity diagram is as follows:

act [model element kind] activity name [diagram name]

The diagram kind for an activity diagram is act and the model element kind can be an activity or
control Operator.

Figure 9.1 shows an activity diagram for the activity Log On with some of the basic activity diagram
symbols. Log On includes call actions that invoke other activities, such as action a2 that invokes the
Read User Data activity. Actions have input and output pins, shown as small rectangles, to accept
tokens that may represent units of information, matter, or energy. Pins are connected using object flows
and control flows (solid and dashed lines respectively). The notation for activity diagrams is shown in
the Appendix, Tables A.14 through A.17.

Figure 9.2 shows an example of an activity hierarchy that can be represented on a block definition
diagram. The activity hierarchy provides an alternative view of the actions and invoked activities shown
on activity diagrams, but it does not include the flows between the actions and other activity constructs
such as control nodes. The structure of the hierarchy is shown using composite associations from a par-
ent activity—in this case, Generate Video Outputs—to other activities such as Process Frame. The role
names on the associations, such as a2, correspond to the names of the actions used to invoke the activi-
ties in the activity diagram. The notation required to show activity hierarchies on block definition dia-
grams is described in the Appendix, Table A.9.
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act Log On
o >

a3:Validate

al:Enter User a2:Read User ]
Data Data

i

[DetailsiCorrect]  [Details Incorrect]
\Vi \Vi

a4:Respond OK] [ a5:Respond with

. Error
[Logon Failed]

a6:Relay
Response

'
'
'
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'
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'
'
'
'
'
'
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FIGURE 9.1

An example activity diagram.

bdd [Package] Behavior [Example of Activity Decomposition] )

Process Frame

Convert to Composite

«activity»
Generate Video Outputs
a2 a4 al a3
«activity» «activity» «activity» «activity»

Produce Test Signal

Encode MPEG

FIGURE 9.2

An example of an activity hierarchy in a block definition diagram.
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9.3 ACTIONS—THE FOUNDATION OF ACTIVITIES

As described previously, an activity decomposes into a set of actions that describe how the activity
executes and transforms its inputs to outputs. There are several different categories of actions in SysML
described in this chapter, but this section provides a summary of the fundamental behavior of all actions.
SysML activities are based on token-flow semantics related to Petri-Nets [47, 48]. Tokens hold the
values of inputs, outputs, and control that flow from one action to another. An action processes tokens
placed on its pins. A pin acts as a buffer where input and output tokens to an action can be stored prior
to or during execution; tokens on input pins are consumed, processed by the action, and placed on out-
put pins for other actions to accept.

Each pin has a multiplicity that describes the minimum and maximum number of tokens that the
action consumes or produces in any one execution. If a pin has a minimum multiplicity of zero, then it
is optional, marked by the keyword optional in guillemets. Otherwise, it is said to be required.

The action symbol varies depending on the kind of action, but by default it is a rectangle with round
corners. The pin symbols are small boxes flush with the outside surface of the action symbol and may
contain arrows indicating whether the pin is an input or output. Once a pin is connected to a flow and
the direction of flow becomes obvious, the arrow notation in the pin may be elided.

Figure 9.3 shows a typical action, called a/, with a set of input and output pins. One input pin and
one output pin are required; that is, they have a lower multiplicity bound greater than zero. The other
two pins are optional; that is, they have a lower multiplicity bound of zero. The action also has one
incoming control flow and one outgoing control flow shown as an arrow with a dashed line. (See
Section 9.6 for a detailed description of control flows.) As long as its owning activity is executing, an
action will begin execution when tokens are available on all its required inputs, including its control
inputs as follows.

e The number of tokens available at each required input pin is equal to or greater than its lower
multiplicity bound.
e A token is available on each of the action’s incoming control flows.

Once these prerequisites are met, the action will start executing and the tokens at all its input pins
become available for consumption.

An action may terminate once it has completed its processing, providing the number of tokens it has
made available at each required output pin is equal to or greater than its lower multiplicity bound. Once

required input [1] required output [1..*]

«optional» input [0..1] «optional» output [0..*]

FIGURE 9.3

An action with input and output pins and input and output control flow.
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the action has terminated, the tokens at all its output pins become available to other actions connected
to those pins. In addition, a control token is placed on each outgoing control flow.

Object and control tokens are routed using control nodes that can buffer, copy, and remove tokens.
For more information, see Section 9.5 for object flow and Section 9.6 for control flow.

The preceding paragraphs described the basic semantics of actions, but the following additional
semantics are discussed later in this chapter:

* Different kinds of actions perform different functions, and some—particularly the call actions
discussed in Section 9.4.2—introduce additional semantics such as streaming.

e SysML allows control tokens to disable as well as enable actions, but actions need control pins to
support this, as described in Section 9.6.2.

*  SysML also includes continuous flows that are addressed in Section 9.9.1.

e Actions can be contained inside an interruptible region, which, when interrupted, will cause its
constituent actions to terminate immediately. Interruptible regions are described in Section 9.8.1.

The relationship between the semantics of blocks and activities is discussed in Section 9.11.

9.4 THE BASICS OF MODELING ACTIVITIES

Activities provide the context in which actions execute. Activities are used—and more importantly
reused—through call actions. Call actions allow the composition of activities into arbitrarily deep hier-
archies that allows an activity model to scale from descriptions of simple functions to very complex
algorithms and processes.

9.4.1 SPECIFYING INPUT AND OUTPUT PARAMETERS FOR AN ACTIVITY

An activity may have multiple inputs and multiple outputs called parameters. Note that these param-
eters are not the same as the constraint parameters described in Chapter 8. Each parameter may have a
type, such as a value type or block. Value types range from simple integers to complex vectors and may
have corresponding units and quantity kinds. Parameters can also be typed by a block that may corre-
spond to a structural entity, such as fluid flowing through a hydraulic system or an automobile part
flowing through an assembly line. Parameters have a direction that may be in, out, or both.

Parameters also have a multiplicity that indicates how many tokens for this parameter can be con-
sumed as input or produced as output by each execution of the activity. The lower bound of the multi-
plicity indicates the minimum number of tokens that must be consumed or produced by each execution.
As with pins, if the lower bound is greater than zero, then the parameter is said to be required; other-
wise, it is said to be optional. The upper bound of the multiplicity specifies the maximum number of
tokens that may be consumed or produced by each execution of the activity.

Activity parameters are shown on an activity diagram using activity parameter nodes. During
execution, an activity parameter node contains tokens that hold the arguments corresponding to its
parameter. An activity parameter node is related to exactly one of the activity’s parameters and
must have the same type as its corresponding parameter. If a parameter is marked as inout, then it
needs at least two activity parameter nodes associated with it, one for input and the other for
output.
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A parameter may be designated as streaming or nonstreaming, which affects the behavior of the
corresponding activity parameter node. An activity parameter node for a nonstreaming input param-
eter may only accept tokens prior to the start of activity execution, and the activity parameter node for
a nonstreaming output parameter can only provide tokens once the activity has finished executing. This
contrasts with a streaming parameter, where the corresponding activity parameter node can continue
to accept input tokens or produce output tokens throughout the activity execution. Streaming parame-
ters add significant flexibility for representing certain kinds of behavior. Parameters have a number of
other characteristics described later in this chapter.

Activity parameter node symbols are rectangles that straddle the activity frame boundary. Each
symbol contains a name string composed of the parameter name, parameter type, and parameter
multiplicity:

parameter name: parameter typelmultiplicity]

If no multiplicity is shown, then the multiplicity 1..1 is assumed. An optional parameter is shown by
the keyword «optional» above the name string in the activity parameter node. Conversely, the absence
of the keyword «optional» indicates that the parameter is required.

Additional characteristics of the parameter, such as its direction and whether it is streaming, are
shown in braces either inside the parameter node symbol after the name string or floating close to the
symbol.

There is no specific graphical notation to indicate the direction of an activity parameter node on its
symbol, although the direction of the parameter can be shown textually inside the symbol. Some mod-
eling guidelines suggest that input parameter nodes are shown on the left of the activity and output
parameter nodes on the right. Once activity parameter nodes have been connected by flows to nodes
inside the activity, the activity parameter node direction is implicitly defined by the arrow direction on
the object flows.

Figure 9.4 shows the inputs and outputs of the Operate Camera activity that is the main behav-
ior of the camera (refer to Chapter 7 Section 7.5.1 for a description of main behavior). As can be
seen from the notation in the parameter nodes, Light from the camera’s environment is available
as input using the current image parameter and two types of video signal are produced as outputs

act Operate Camera [Activity Frame] )

«optional»
MPEG out : MPEG4[0..1]
{stream, direction = out}

config : Configuration Data
{direction = in}

«optional» «optional»
current image : Light[0..1] composite out : Composite[0..1]
{stream, direction = in} {stream, direction = out}

FIGURE 9.4

Specifying an activity using a frame on an activity diagram.
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using the composite out and MPEG out parameters. The input parameter config is used to provide
configuration data to the camera when it starts.

The activity consumes a stream of inputs and produces a stream of outputs as it executes, as indi-
cated by the {stream} annotation on the main parameter nodes. The other parameter, config, is not
streaming because it has a single value that is read when the activity starts. As stated earlier, when the
multiplicity is not shown, for instance on parameter config, this indicates a lower bound and upper
bound of one. The other parameters are streaming and there is not a minimum number of tokens con-
sumed or produced, so they are shown as «optional».

9.4.2 COMPOSING ACTIVITIES USING CALL BEHAVIOR ACTIONS

An important kind of action is the call behavior action, which invokes a behavior when it executes.
The invoked behavior is assumed to be an activity in this chapter, although it can be other kinds of
SysML behavior. A call behavior action has a pin for each parameter of the called behavior, and the
characteristics of those pins must match the multiplicity and type of their corresponding parameters on
the invoked behavior. The name string of a pin has the same form as the name string for an activity
parameter node symbol but floats outside the pin symbol.

If an activity parameter on the invoked activity is streaming, then the corresponding pin on the call
behavior action also has streaming semantics. As stated earlier, tokens on nonstreaming pins, such as those
shown in Figure 9.3, can only be available to the action for processing at the start (in the case of input pins)
or the end (in the case of output pins) of the action execution. By comparison, tokens continue to be available
through streaming pins while their owning action is executing, although the number of tokens consumed or
produced by each execution is still governed by its upper and lower multiplicity bounds. As a result, it is
generally appropriate to define an unlimited upper bound for streaming parameters.

The name string of a pin may include characteristics of the corresponding parameter, such as
streaming. An alternative notation for a streaming pin is to shade the pin symbol.

The call behavior action symbol is a round-cornered box containing a name string with the name of
the action and the name of the called behavior (e.g., activity) separated by a colon as follows:

action name : behavior name.

The default notation includes just the action name without the colon or the behavior name. When
the behavior name is shown and the action is not named, the colon is included to differentiate this nota-
tion from the default. A rake symbol in the bottom right corner of a call behavior action symbol indi-
cates that the activity being invoked is described on another diagram.

To transform light into video signals, the Operate Camera activity invokes other activities that per-
form various subtasks using call behavior actions, as shown in Figure 9.5. The action name strings take
the form : Activity Name, indicating that the actions do not have names. The parameter nodes and pins
are optional in this case because the corresponding actions can start executing even if they have no
tokens. This figure shows just activity parameter nodes and actions with their inputs and outputs. Note
that the types of the pins have been elided here to reduce clutter.

All the invoked activities consume and produce streams of input and output tokens, as indicated by
the {stream} annotation on the pins of the actions. Collect Images is an analog process performed by
the camera lens. Capture Video digitizes the images from the outside world to a form of video output.
Generate Video Outputs takes the internal video stream and produces MPEG and composite outputs for
transmission to the camera’s users.
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act Operate Camera [Invocation Actions])
«optional» «optional» «optional» -
captured input signal MPEG «optional»
image {stream} output MPEG output :
{stream} {stream} MPEG4[0..1]
«optional» : Collect Images : Capture Video : Generate {stream, direction = out}
current image : «optional» Video Outputs
Light[0..1] ext image S
{stream, direction = in} {stream} I'I'I I'I'I = ) N
) ) «optional» «optional»
«op?onzl» «pptlonal» composite composi'te out:
capture video out out {stream} |  Composite[0..1]
image {stream} {stream, direction = out}
{stream}

FIGURE 9.5
Invocation actions on an activity diagram.

9.5 USING OBJECT FLOWS TO DESCRIBE THE FLOW OF ITEMS BETWEEN
ACTIONS

Object flows are used to route input/output tokens that represent information and/or physical
items between object nodes. Activity parameter nodes and pins are two examples of object nodes.
Object flows can be used to route items from the parameters nodes on the boundary of an activity
to/from the pins on its constituent actions or to connect pins directly to other pins. In all cases, the
direction of the object flow must be compatible with the direction of the object nodes at its ends
(i.e., in or out), and the types of the object nodes on both ends of the object flow must be compat-
ible with each other.

An object flow is shown as an arrow connecting the source of the flow to the destination of the
flow, with its head at the destination. When an object flow is between two pins that have the same
characteristics, an alternative notation can be used where the pin symbols on the actions at both
ends of the object flow are elided and replaced by a single rectangular symbol, specifically called
an object node symbol. In this case, the object flow connects the source action to the object node
symbol with an arrowhead on the object node symbol end, and then connects the object node sym-
bol to the destination action, with an arrowhead at the destination end. The object node symbol has
the same annotations as a pin symbol, because it actually represents the pins on the source and
destination actions.

In Figure 9.6, the actions of Operate Camera shown in Figure 9.5 are now interconnected by object
flows to establish the flow from light entering the camera to the output of video images in the two
required formats. The incoming light represented by the parameter called current image flows to the
:Collect Images action; its output, captured image, is the input to :Capture Video (note the use of a
rectangle symbol for this object node). :Capture Video produces video images, via its video out pin,
which in turn becomes the input for :Generate Video Outputs. :Generate Video Outputs converts its
input video signal into MPEG and composite outputs that are then routed to corresponding output
parameter nodes of Operate Camera.

In Figure 9.6, the actions have no names, which is indicated by the presence of a colon in the name
string of the action symbols. See Figure 9.8 for an example where the actions are named.
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act Operate Camera [Object Flowsu
«optional» : Collect Images
current image «optional»
{stream} ext image {stream}
«optional»
captured image tional
«optional» ]
{stream} MPEG output «optional»
«optional» {stream} MPEG output
video out {stream}
: Capture Video : Generate
Video Outputs
«optional» - «optional»
input signal «optional» composite out
{stream} composite {stream}
out {stream}

FIGURE 9.6

Connecting pins and parameters using object flows.

9.5.1 ROUTING OBJECT FLOWS

There are many situations where simply connecting object nodes using object flows does not allow an
adequate description of the flow of tokens through the activity. SysML provides a number of mecha-
nisms for more sophisticated expressions for routing flows. First, each object flow may have a guard
expression that specifies a rule to govern which tokens are valid for the object flow. In addition, several
constructs in SysML activities called collectively control nodes provide more sophisticated flow
mechanisms, including:

* A fork node has one input flow and one or more output flows—it replicates every input token it
receives onto each of its output flows. The tokens on each output flow may be handled indepen-
dently and concurrently. Note that this replication of tokens does not imply that the items repre-
sented by the tokens are replicated. In particular, if the represented item is physical, replication of
that physical object may not even be possible.

* A join node has one output flow and one or more input flows—its default behavior for object
flows is to produce output tokens only when an input token is available on each input flow. Once
this occurs, it places all input object tokens on the output flow. This has the important characteris-
tic of synchronizing the flow of tokens from many sources. Note that this applies only to object
tokens; the handling of control tokens is different, as described in Section 9.6.

The default behavior of join nodes can be overridden by providing a join specification that
specifies a logical expression that the arrival of tokens on the input flows must satisfy in order to
generate an output token on the output flow.

e A decision node has one input and one or more output flows—an input token can only traverse
one output flow. The output flow is typically established by placing mutually exclusive guards on
all outgoing flows and offering the token to the flow whose guard expression is satisfied.
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«joinSpecification»
flow 1 {(flow 1 & flow 2) | (flow 2 & flow 3)}

%I

flow 3

FIGURE 9.7
Example of a join specification.

The guard expression else can be used on one of the node’s outgoing flows to ensure that there is
always one flow that can accept a token. If more than one outgoing object flow can accept the
token, then SysML does not define which of the flows will receive the token.

A decision node can have an accompanying decision input behavior that is used to evaluate
each incoming object token. Its result can be used in guard expressions

e A merge node has one output flow and one or more input flows—it routes each input token

received on any input flow to its output flow. Unlike a join node, a merge node does not require
tokens on all its input flows before offering them on its output flow. Rather, it offers tokens on its
output flow as it receives them.

Fork and join symbols are shown as solid bars, typically aligned either horizontally or vertically.
Decision and merge symbols are shown as diamonds. Where forks and joins or decisions and merges
are adjacent (i.e., would be connected by just a flow with no guards), they can be shown as a single
symbol with the inputs and outputs of both connected to that symbol. Figure 9.12, later in the chapter,
contains an example of a combined merge and decision node.

Join specifications and decision input behaviors are shown in notes attached to the relevant node.

Figure 9.7 shows an example of a join specification. The join node has three input flows—flow I,
flow 2, and flow 3—and the join specification states that output tokens are produced if input tokens are
received on both flow I and flow 2, or on both flow 2 and flow 3. The expression uses the names of flows,
so the flows must be named in this situation. Another use of flow names is to support flow allocation
(see Chapter 14, Section 14.7). Figure 9.12 shows an example of a decision input behavior.

In Figure 9.8, the activity Generate Video Outputs accepts an input video signal and outputs it in
appropriate formats for external use, in this case Composite video and MPEG4. The al:Produce Test
Signal action allows Generate Video Outputs to generate a test signal if desired. See the specification
of Produce Test Signal later in Figure 9.14 to see how the activity knows when to generate the signal.
The test signal, when generated, is merged into the stream of video frames using a merge node, and this
merged stream is then converted into video frames by a2:Process Frame. Note that if tokens are pro-
duced on both the input signal parameter node and the test signal pin, then they will be interleaved into
the raw frames pin by the merge node. That is the desired behavior in this case. If it is not the desired
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act Generate Video Outputs [Routing FIowsJJ

video in

MPEG out
{stream}

MPEG output :

[a1 :Produce Test Signal}

LT test signal

{stream}

a3:Encode MPEG
.

MPEG4
{stream}

{stream}
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Routing object flows between invocations.

behavior, an additional control, such as a specific test mode, would be needed to ensure that incoming

token streams were exclusive.

Once processed, the tokens representing the processed frames are then forked and offered to two
separate actions: a4:Convert to Composite that produces the composite out output and a3:Encode
MPEG that produces the MPEG output. These two actions can continue in parallel, each consuming
tokens representing frames and performing a suitable translation. Note that the fork node does not
imply that the frame data is copied (although they may be) but merely that both a3:Encode MPEG and
a4:Convert to Composite have access to the data via their input tokens.

In this example, the name strings of the call behavior actions include both the action name and
activity name, when arguably the actions need not be named. This helps to demonstrate the mapping
from activities on this activity diagram to the same activities represented on the block definition dia-

gram in Figure 9.26.

9.5.2 ROUTING OBJECT FLOWS FROM PARAMETER SETS

The parameters of an activity can be grouped together into parameter sets, which must have only input
or only output parameters as members. When an activity is invoked that has input parameter sets, the
parameter nodes corresponding to at most one input parameter set can contain tokens. When an activity
that has output parameter sets completes, the parameter nodes corresponding to at most one output
parameter set can contain tokens. A given parameter may be a member of multiple parameter sets.
Each set of parameters is shown by a rectangle on the outer boundary of the activity, which partially
encloses the set of parameter nodes that correspond to parameters in the set. These rectangles can over-

lap to reflect the overlapping membership of parameter sets.

Figure 9.9 shows an activity called Request Camera Status with two distinct sets of outputs.
When presented with a camera number as input, Request Camera Status will return an error and a
diagnostic if there is a problem with the camera, or a power status and current mode if the camera is

operational.
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FIGURE 9.9

An activity with parameter sets.
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FIGURE 9.10
Invoking an activity with parameters sets.

If an invoked activity has parameter sets, then the groupings of pins corresponding to the different
parameter sets are shown on the call behavior action, using notation similar to parameter sets on
activities.

Figure 9.10 shows the object flow for an activity Handle Status Request that reads a camera id and
writes a camera status. It invokes Request Camera Status with a camera number and expects one of
two sets of outputs that correspond to two parameter sets: an error and a diagnostic or a power status
and current mode. These two sets of outputs are used by two different string-formatting functions, Cre-
ate Error String and Create Status String. Whichever formatting function receives inputs produces an
output string that is then conveyed via a merge node to the camera status output parameter node.

9.5.3 BUFFERS AND DATA STORES

Pins and activity parameter nodes are the two most common kinds of object nodes, but there are cases
when additional constructs are required. A central buffer node provides a store for object tokens out-
side of pins and parameter nodes. Tokens flow into a central buffer node and are stored there until they
flow out again. It is needed when there are multiple producers and consumers of a single-buffered



9.5 USING OBJECT FLOWS TO DESCRIBE THE FLOW OF ITEMS 217

act Capture Video J

light in focused light light in
{stream} {stream} {stream}
<<op_;t|ona|>? :Focus Light «datastore» :Convert Light video out : Video
captured image : Image )
current image - {stream}
{stream} images
{stream}
lightin
{stream}

focus position ‘Adjust Focus
{stream} |-|-|
FIGURE 9.11

Using a data store node to capture incoming light.

stream of tokens at the same time. This contrasts with pins and activity parameter nodes, which have
either a single producer or single consumer for each token.

Sometimes activities require the same object tokens to be stored for access by a number of actions
during execution. A kind of object node called a data store node can be used for this. Unlike a central
buffer node, a data store node provides a copy of a stored token rather than the original. When an input
token represents an object that is already in the store, it overwrites the previous token. Data stores can
provide tokens when a receiving action is enabled, thus supporting the pull semantics of traditional flow
charts.

Data store nodes and central buffer nodes only store tokens while their parent activity is executing.
If the values of the tokens need more permanent storage, then a property should be used. The language
includes primitive actions, described in Section 9.14.3, which can be used to read and write property
values.

Both data store nodes and central buffer nodes are represented by a rectangle with a name string,
with the keywords «datastore» and «centralBuffer» above the name string. Their names have the
same form as pins, buffer or store name: buffer or store type, but without multiplicity. An
example of a central buffer node is shown in Figure 9.19.

Figure 9.11 describes the internal behavior of the Capture Video activity. Light entering the camera
lens is focused by the action :Focus Light, which produces an image that is stored in a data store node
called current image. The image stored in current image is then used by two other actions: :Convert
Light, which samples the images to create video frames, and :Adjust Focus, which analyzes the current
image for sharpness and provides a focus position to :Focus Light. The use of a data store node here
facilitates the transition between the analog nature of the incoming light from the lens and the digital
nature of the video stream. (See Figure 9.17 for an enhanced version of this diagram, including flow
rate information.) In this case, the data store may be allocated to the focal plane array of the camera
along with the :Convert Light action (see Chapter 14, Section 14.7 for a description of allocation).

The object node symbol called focus position is input to Focus Light, whereas :Convert Light and
:Adjust Focus receive their input from a data store node. The notation for the object node representation
of flows and the representation of buffer nodes is quite similar, but buffer nodes always have the key-
word «datastore» or «centralBuffer» above their name.
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Sections 9.9.2 and 9.9.3 discuss other mechanisms to specify the flow of tokens through data store
and central buffers nodes, as well as other object nodes.

USING CONTROL FLOWS TO SPECIFY THE ORDER OF ACTION
EXECUTION

As mentioned previously, there are control semantics associated with object flow, such as when an
action waits for the minimum required number of tokens on all input pins before proceeding with its
execution. However, sometimes the availability of object tokens on required pins is not enough to
specify all the execution constraints on an action. In this case control flows are available to provide
further control using control tokens. Although object flows have been described first in this chapter, the
design of an activity need not necessarily start with the specification of object flows. In traditional flow
charts, it is often the control flows that are established first and the routing of objects later.

In addition to any execution prerequisites established by required input pins, an action also cannot
start execution until it receives a control token on all input control flows. When an action has completed
its execution, it places control tokens on all outgoing control flows. The sequencing of actions can thus
be controlled by the flow of control tokens between actions using control flows.

An action can have more than one control flow input. This has the same semantics as connecting the
multiple incoming control flows to a join node, and connecting the output control flow from the join
node to the action. Similarly, if an action has more than one control flow output, it can be modeled by
connecting the action via an outgoing control flow to a fork node with multiple control flow outputs. As
described in Section 9.6.2, control tokens can be used to disable actions as well as enabling them.

DEPICTING CONTROL LOGIC WITH CONTROL NODES

All the constructs used to route object flows can also be used to route control flows. In addition, a join
node has special semantics with respect to control tokens; even if it consumes multiple control tokens,
it emits only one control token once its join specification is satisfied. Join nodes can also consume a
mixture of control and object tokens, in which case once all the required tokens have been offered to
the join node, all the object tokens (but none of the control tokens) are offered on the outgoing flow.

In addition to the constructs described in Section 9.5.1, there are some special constructs that pro-
vide additional control logic:

e [Initial node—when an activity starts executing, a control token is placed on each initial node in
the activity. The token can then trigger the execution of an action via an outgoing control flow.
Note that although an initial node can have multiple outgoing flows, a control token will only be
placed on one. Typically, guards are used when there are multiple flows in order to ensure that
only one is valid, but if this is not the case, then the choice of flow is arbitrary.

e Activity final node—when a control or object token reaches an activity final node during the
execution of an activity, the activity execution terminates.

e Flow final node—control or object tokens received at a flow final node are consumed but have no
effect on the execution of the enclosing activity. Typically they are used to terminate a particular
sequence of actions without terminating an activity. An example of when a flow final node is used
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is when a fork node has two output flows to two concurrent actions. If one of the action terminates
but the other continues as part of a processing chain, a flow final node can be used to indicate that
one action has completed its execution without terminating the activity.

A control flow can be represented either by using a solid line with an arrowhead at the destination end
like an object flow or, to more clearly distinguish it from object flow, by using a dashed line with an
arrowhead at the destination end. An initial node symbol is shown as a small solid black circle. The
activity final node symbol is shown as a bulls-eye, Examples of the initial and activity final nodes are
shown in Figure 9.12.

The flow final node symbol is a hollow circle containing an X. Figure 9.21 contains an example of
a flow final node.

The console software provides the capability to drive a camera through a preset scan route, as shown
in Figure 9.12. The activity Follow Scan Route will follow a route that is a set of positions for the cam-
era defined in terms of pan-and-tilt angles. It has one input parameter, the route as a fixed-length col-
lection of positions with size route size. When started, the activity resets its count property, then iterates
over all points in the route—incrementing count for every point. It terminates when the return value of
the associated decision input behavior evaluates to false (and thus satisfies the [false] rather than the
[true] guard) indicating that the last point in the route is reached. The decision input condition is an
opaque expression written in Alf (see Section 9.14.2 for a description of the Alf programming lan-
guage). As with constraints, the language used to specify the action can be added in braces before the
expression. The Position Camera activity is invoked for each position token offered on the route
parameter. Control flows dictate the order in which the activity executes.

act Follow Scan Route )

)

{Alf}this.count =

[
| {Alf}[this.count=<route
: 7| size]

(O i ¥ .

[{Alf}true] i

:Position Camera

|

|

|
AV

@If}this.count = this.counts Df ————————— 4

route

position

FIGURE 9.12

Control flow in activities.
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Note that in this case there is a combined merge and decision symbol that accepts two input control
flows and has two output control flows: one leads to an activity final node and the other leads into
another iteration of the algorithm. The activity’s count property is initialized and incremented using
actions this.count = 0; and this.count = this.count + 1; these are opaque actions; that is, their function
is expressed in some language external to SysML (in this case Alf).

9.6.2 USING CONTROL OPERATORS TO ENABLE AND DISABLE ACTIONS

An action with nonstreaming inputs and outputs typically starts once it has the prerequisite incoming
tokens and terminates execution when it completes the production of its outputs. However, the comple-
tion of the action execution may need to be controlled by a control input, particularly if the action is a
call action with streaming inputs and/or outputs. To achieve this, a value can be sent via a control flow
to the action to enable or disable its invoked activity. SysML provides a specific control enumeration for
this called ControlValue, with values enable and disable. For an action to receive this control input,
it needs to provide a control pin that can receive it. A control value of enab1e has the same semantics as
the arrival of a control token, and a control value of disable will terminate the invoked activity.

A special behavior called a control operator produces control values via an output parameter,
typed by ControlValue. A control operator can include complex control logic and can be reused in
many different activities via a call behavior action. A control operator is also able to accept a control
value on an appropriately typed input parameter and will treat it as an object token rather than a control
token.

The control value type could be extended in a profile (see Chapter 15) to include other control val-
ues in addition to enable and disable. A control operator could then output these new values. A con-
trol value of suspend, for example, might not terminate execution of the action like disable. The action
would allow execution to resume where it left off when it received a resume control value.

The definition of a control operator is indicated by the presence of the keyword «control0perator»
as the model element kind in the diagram label on the activity diagram frame.

Figure 9.13 shows a simple control operator, called Convert Bool to Control, that takes in a Boolean
parameter called bool in and, depending on its value, either outputs an enable or disable value on its
control out output parameter. The values are created using primitive actions, called value specification
actions, whose purpose is to output a specified value. By convention, the input and output pins of these

act [controlOperator] Convert Bool to Control )

e A
«valueSpecification»
enable

control out:
ControlValue

bool in : Boolean

N
«valueSpecification»
disable

FIGURE 9.13

Using a control operator to generate a control value.
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FIGURE 9.14
Using a control operator to control the execution of an activity.

actions are elided. (See Section 9.14.3 for a discussion of primitive actions.) Convert Bool to Control
is a generally useful control operator that can be reused in many applications.

A control operator is a kind of behavior and so may be invoked using a normal call behavior action.
A call behavior action that invokes a control operator has the keyword «controlOperator» above its
name string. A control pin symbol is a standard pin symbol with the addition of the property name
control in braces floating near the pin symbol.

A test signal is not always wanted on the video output. A mechanism to inhibit test signal produc-
tion is shown in Figure 9.14. The Convert Bool to Control control operator shown in Figure 9.13 reads
a Boolean flag test value from the activity Receive Test Messages to generate an enable or disable value
on a pin called control out. This pin in turn is connected via a control flow to the inhibit pin of the
Generate Test Signal activity. Generate Test Signal interprets this input as a control value because
inhibit is a control pin, as indicated by the annotation {control}. When Generate Test Signal is enabled,
it reads the time at 2 Hz from an accept time event action (see Section 9.7 for a discussion of time
events). The activity Receive Test Messages is defined in Figure 9.24.

9.7 HANDLING SIGNALS AND OTHER EVENTS

In addition to obtaining inputs and producing outputs using its parameters, an activity can accept sig-
nals using an accept event action for a signal event (commonly called an accept signal action) and
send signals using a send signal action. Communication can then be achieved between activities by
including a send signal action in one activity and an accept signal action for a signal event representing
the same signal in another activity. More typically, signals are sent from or received by the instances of
the blocks that own and execute the activities, as described in Section 9.11.2. Communication via sig-
nals takes place asynchronously; that is, the sender does not wait for the signal to be accepted by the
receiver before proceeding to other actions.

An accept signal action can output the received signal on an output pin. A send signal action has one
input pin per attribute of the signal to be sent and one input pin to specify the target for the signal.
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The accept event action can accept others kinds of events, including:

e A time event, which corresponds to an expiration of an (implicit) timer. In this case the action has
a single output pin that outputs a value containing the time of the accepted event occurrence.

e A change event, which corresponds to a certain condition expression (often involving values of
properties) being satisfied. In this case there is no output pin, but the action will generate a control
token on all outgoing control flows when a change event has been accepted.

¢ A change event can also be related to the change in the value of a structural feature (e.g., a flow
property). When the value of the structural feature changes, both the previous and new values of
the feature are presented on output pins.

An accept event action with no incoming control flows is enabled as soon as its owning activity (or
owning interruptible region; see Section 9.8.1) starts to execute. However, unlike other actions, it
remains enabled after it has accepted an event and so is ready to accept others.

As of SysML 1.3, both send signal actions and accept event actions can be sent and received, respec-
tively, through ports, including nested ports. See Chapter 7, Section 7.6 for a description of ports. An
accept event action can specify that it accepts an event from a particular port, such as a signal arriving
at a given port. A send signal action can specify that its signal must be sent through a particular port.

A send signal action is represented by a rectangle with a triangle attached on one end, and an accept
event action is represented by a rectangle with a triangular section missing from one end. When the
event accepted is a time event, the accept event action may be shown as an hourglass symbol (see
Figure 9.14).

Also as of SysML 1.3, if an event is accepted through a port, the path to the port is given as a prefix
to the name string of the accept event action with the format: «from» (portname, ..). If a signal is to
be sent through a port, the path to the port is given as a prefix to the name string of the accept event
action with format: via portname, ....

Figure 9.15 shows how MPEG frames are transmitted over the surveillance camera network. The
Transmit MPEG activity first sends a Frame Header signal to indicate that a frame is to follow. It
then executes Send Frame Contents, which splits the frame into packets and sends them. When Send
Frame Contents finishes, it outputs a packet count and two signaling actions are performed: a Frame
Footer signal is sent and then an accept signal action waits for a Frame Acknowledgment signal.
Once the Frame Acknowledgment signal has been received, the Check Transmission activity is
invoked to check the packet count returned with the acknowledgment against the count provided as
an output of Send Frame Contents. If the packet counts match, then transmission is deemed to have
succeeded and the variable transmission OK is set to true. This variable is then tested on the outgoing
guards of a decision node and, if true, the activity terminates; otherwise the frame is resent, having
previously been stored.

9.8 STRUCTURING ACTIVITIES

There are various ways in which the actions in an activity can be grouped together to obtain specific
execution semantics. Interruptible regions allow the execution of a set of nodes to be interrupted. Struc-
tured activity nodes provide an alternate mechanism to activities for executing a set of actions with
common inputs and outputs as a single group.
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FIGURE 9.15
Using signals to communicate between activities.

9.8.1 INTERRUPTIBLE REGIONS

All the action executions within an execution of an activity are terminated when the activity is termi-
nated. However, there are some circumstances when the modeler wants only a subset of the action
executions to be terminated.

An interruptible region can be used to model this situation. An interruptible region groups a subset
of actions within an activity and includes a mechanism for interrupting execution of those actions,
called an interrupting edge, whose source is a node inside the interruptible region and whose destina-
tion is a node outside it. Both control and object flows can be designated as interrupting edges. Normal
(i.e., noninterrupting) flows may have a destination outside the region as well; tokens sent on these
flows do not interrupt the execution of the region.

When an interruptible region is entered, at least one action within the region starts to execute. An
interruption of an interruptible region occurs whenever a token is accepted by an interrupting edge that
leaves the region. This interruption causes the termination of all actions executing within the interrupt-
ible region, and execution continues with the activity node or nodes that accepted the token from the
interrupting edge. (It can be more than one node because the interrupting edge can connect to a fork
node.)

A token on an interrupting edge often results from the reception of a signal, either by the activity
containing the interruptible region or the block that owns the activity, if it has one. In that case, the
signal is received by an accept signal action within the interruptible region that offers a token on an
outgoing interrupting edge to some activity node outside the region. Special semantics are associated
with accept event actions contained in interruptible regions. As long as they have no incoming edges,
the accept event action does not start to execute until the interruptible region is entered, as opposed to
the normal case where the accept event action starts when the enclosing activity starts.
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An interruptible region is notated by drawing a dashed round-cornered box around a set of activity
nodes. As of SysML 1.2, the name of the region can appear inside the region, which is useful if there
are multiple interruptible regions. An interrupting edge is represented either by a lightning bolt symbol
or by a normal flow line with a small lightning bolt annotation floating near it.

Figure 9.16 shows a more complete definition of the overall behavior of the camera, Operate Cam-
era, previously shown in Figure 9.6. After invoking the Initialize activity, the camera waits for a Start
Up signal to be received by an accept signal action before proceeding simultaneously with the primary
activities that the camera performs: Collect Images, Capture Video, and Generate Video Outputs. These
are triggered, following the acceptance of the Start Up signal, using a fork node to copy the single
control token emerging from the accept signal action into control flows ending on each action.

The actions are enclosed in an interruptible region and continue to execute until a Shut Down signal
is accepted by an accept signal action. When a Shut Down signal has been accepted, an interrupting
edge leaves the interruptible region, all the actions within it terminate, and control transitions to the
action that invokes the Shutdown activity. Once the Shutdown activity has completed, a control token is
sent to an activity final node that terminates Operate Camera. Note that there are other flows leaving
the interruptible region, but because they are not interrupting edges, they do not cause its termination.

9.8.2 USING STRUCTURED ACTIVITY NODES

Activities are inherently concurrent in nature with the execution of actions only governed by the avail-
ability of object and control tokens. However, if the modeler wishes to execute a set of actions within
an activity as a group, SysML offers a structured activity node. A structured activity node can have a
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An interruptible region.



9.9 ADVANCED FLOW MODELING 225

set of pins through which tokens flow to and from its internal actions. A structured activity node, like
an action, cannot start until it has the required number of object and control tokens on its inputs, and
only delivers tokens on its outputs when all of its internal actions have completed their execution. A
structured activity node is often used in preference to an activity when its actions are unlikely to be
reused in more than one context. The content of a structured activity node is shown in the same diagram
as the owning activity whereas the content of a called behavior is typically not.

There are three specialized kinds of structured activity node:

* A sequence node, which executes its actions one after the other in a defined order;

* A conditional node, which contains a number of groups of actions that are executed only under
certain conditions;

* Aloop node, which contains a set of actions that are executed repeatedly;

A sequence node is the simplest specialized form of structured activity node, containing just a single
grouping of actions. A successor action in the sequence cannot start to execute until its predecessor has
completed its execution, even if all of its other execution prerequisites (see Section 9.3) have been met.

A conditional node contains a set of clauses, each containing a test and a body. It is similar to an if
statement in a programming language like Java. When the conditional node starts to execute, the tests of
all the clauses are executed and if one of the tests yields a true result then the body of its clause is executed.
The body of only one clause can execute; the choice of which body to execute if more than one test yields
true is not defined by the language. However, the modeler may specify an evaluation order for the clauses,
which allows them to determine the outcome in such cases. There is a special clause, called the else
clause, whose test always yields true, that will be selected for execution if no other clause is executed.

A loop node contains three sections, the setup, the test and the body. It is similar to the while and
for statements in a programming language like C. The setup is performed once on entry to the node.
After setup, the body of the node is executed while the test yields true; the test may either be executed
before the body or after the body. A loop node can contain loop variables, similar to those provided in
the C programming language, which are accessible to the setup, test, and body sections of the node.

A structured activity node is shown as a rounded rectangle with a dashed boundary and the keyword
«structured» above its name string. SysML defines no graphical notation for sequence, conditional or
loop nodes, but the Action Language for Foundational UML (Alf), described in Section 9.14.2, does
provide a textual syntax for them.

9.9 ADVANCED FLOW MODELING

In SysML, there is a default assumption that tokens flow at the rate dictated by the executing actions
and that tokens flowing into an object node flow out in the same order and with equal probability.
SysML offers constructs to deal with situations when these assumptions are not valid.

9.9.1 MODELING FLOW RATES

Any streaming parameter can have a rate property that specifies the expected rate at which tokens flow
into or out of a related pin or parameter node. Flows can also have a rate property that specifies the
expected number of tokens that flow per time interval, that is, the expected rate at which they leave the
source node and arrive at the target node.
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The rate property can represent a continuous or discrete rate. Continuous flow is a special case
that indicates that the expected rate of flow is infinite or conversely that the time between token arriv-
als is zero. In other words, there are always newly arriving tokens available at whatever rate the
tokens are read. When a discrete rate is specified, the value is only the statistically expected rate
value. The actual value may vary over time, only averaging out to the expected value over long
periods.

A continuous rate is indicated by the keyword «continuous» above the name string of the corre-
sponding symbol. A discrete rate is indicated by the keyword «discrete». A specific discrete rate is
specified using the property pair rate = rate value in braces either inside or floating alongside the
corresponding symbol.

In Figure 9.17, the object flows associated with light in the Capture Video activity are continuous.
The Focus Light and Adjust Focus actions invoke analog processes with continuous inputs and out-
puts, as indicated by the appearance of the keyword «continuous» on object nodes associated with
those actions, including the current image data store. However, the images generated by the Convert
Light action must be produced at a rate of 30 frames per second, as indicated on the video out
parameter node.

9.9.2 MODELING FLOW ORDER

As described earlier in this chapter, tokens can be queued at pins or other object nodes as they await
processing by the action, subject to a specified upper bound. When the upper bound of an object node
is greater than one, the modeler can specify the order in which its tokens are read using the ordering
property of the node that can take values of ordered, FIFO (first-in/first-out), LIFO (last-in/first-out),
or unordered. If the ordering property is specified as ordered, the modeler must provide an explicit
selection behavior that defines the ordering. This mechanism can be used to select the token based on
some value, such as priority, of the represented object.

In a case when an offered token would cause the number of tokens to exceed the upper bound of the
object node, a modeler can choose to overwrite tokens already there or to discard the newly arrived
tokens.

act Capture Video [with Rate Indication] )
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{stream} current image {stream}
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FIGURE 9.17

Use of continuous flows and discrete flows with rate information.
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The notation for ordering is the name value pair ordering = ordering value placed in braces near
or inside the object node. If no ordering is shown, then the default FIFO is assumed. The keyword
«overwrite»is used to indicate that a token arriving at a full node removes a token that is already pres-
ent before adding itself to the node in accordance with its ordering property. The token removed is the
one that has been in the object node the longest. For FIFO ordering, this is the token that is next to be
selected; for LIFO it is the token that would be last to be selected. Alternatively, the keyword «noBuf -
fer» can be used to discard newly arriving tokens that are not immediately processed by the action.

9.9.3 MODELING PROBABILISTIC FLOW

When appropriate, a flow can be tagged with a probability to specify the likelihood that a given token
will traverse a particular flow among available alternative flows. This is typically encountered in flows
that emanate from a decision node, although probabilities can also be specified on multiple edges going
out of the same object node (including pins). Each token can only traverse one edge with the specified
probability. If probabilistic flows are used, then all alternative flows must have a probability and the
sum of the probabilities of all flows must equal 1.

Probabilities are shown either on activity flow symbols or parameter set symbols as a property/value pair
probability = probability value enclosed in braces floating somewhere near the appropriate symbol.

Figure 9.18 shows the activity diagram for Transmit MPEG, first introduced in Figure 9.15. In this
example, the probability of successful transmission has been added. The two flows that correspond to
successful and unsuccessful transmission have been labeled with their relative probability of
occurrence.

[ MPEG Frame |
MPEG Frame
act Transmit MPEG [with probabilitiesu [Bniasbibhabindl

«datastore»
frame store !

MPEG Frame [ ] I frame ack

' packets sent o
o— % o _ _+ : Send Frame Contents : Check Transmission
packet count

—————— >> Frame Acknowledgment

[else] {probability = "0.01"} [transmission OK]

{probability = "0.99"}

FIGURE 9.18

Probabilistic flow.
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9.10 MODELING CONSTRAINTS ON ACTIVITY EXECUTION

The basic constraints on activity execution were covered in Section 9.3. This section describes model-
ing techniques that can be used to specify further execution constraints.

9.10.1 MODELING PRE- AND POST-CONDITIONS AND INPUT AND OUTPUT STATES

An action is able to execute when all of the prerequisite tokens have been offered at its inputs, and simi-
larly may terminate when it has offered the postrequisite tokens on its outputs. However, sometimes
additional constraints apply that are based on the values of those tokens or conditions currently holding
in the execution environment. These constraints can be expressed using pre- and post-conditions on
the actions and, in the case of call actions, on the behaviors they invoke.

In the specific case when an object represented by a token has an associated state machine, an object
node may explicitly specify the required current state or states of that object in a state constraint.

The display of pre- and post-conditions depends on whether they are specified against the behavior or
the action. Pre- and post-conditions on behaviors (in this case activities) are specified as text strings placed
inside the activity frame, preceded by either the keyword «precondition» or «postcondition». Pre- and
post-conditions on actions are placed in note symbols attached to the action, with the keyword «local -
Precondition» or «localPostcondition» at the top of the note preceding the text of the condition.

A state constraint on an object node is shown by including the state name in square brackets under-
neath the name string of the symbol for that object node. This is equivalent to a local pre-condition or
post-condition on the owning action requiring the specified state.

Although ACME Surveillance Systems does not manufacture the cameras, they do want to have
some say in the production process. Figure 9.19 shows their preferred process. The optimal path for the
production process is through Assemble Cameras and Package Cameras. However, their experience is
that some assembled cameras do not work properly but can be repaired at reasonable cost and sold as
reconditioned.

The repair process is modeled as the activity Repair Cameras. Some cameras are unfixable, but
even then the camera can be cannibalized (through activity Cannibalize Cameras) for spare parts that
can be fed back into the assembly process. A camera in production progresses through a number of

act [Activity] Build Cameras)

operational cameras

«centralBuffer» [operational]
assembled
cameras

packaged
cameras

:Assemble Cameras

camera parts { | parts cameras ||
Fh

:Package Cameras

cameras

th

[ I reclaimed cameras
[repaired]

damaged
cameras
[damaged]

:Repair Cameras

:Cannibalize Cameras

cameras
(] parts [unfixable] []

th

repaired cameras

rejected cameras th [repaired]

[unfixable]

FIGURE 9.19

Example of using states on pins.
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states (see Chapter 11 for a description of state machines) as it moves through production, and different
activities require or provide cameras in specific states. Assemble Cameras may produce cameras faster
than they can be packaged or repaired, so they are placed in a buffer called assembled cameras. From
there they either progress directly to Package Cameras if their state is operational, or, they progress to
Repair Cameras if their state is damaged. Repair Cameras accepts cameras in the damaged state, and
they are either repaired or deemed unfixable when the activity has completed.

Note that the activity Build Cameras models the process of building cameras, using tokens to repre-
sent cameras. In this example, the flow of tokens could mirror quite closely the flow of physical cameras
through a production system. The central buffer node might be allocated to a storage rack, for example.

The previous discussion described how the states on input and output pins could be used to specify
pre-conditions and post-conditions, respectively. A constraint on the input and output relationship can
also be specified, in effect, by combining a pre-condition and post-condition. These constraints might,
for example, express the relationship between the pressure of some incoming gas and the temperature
readings provided by some outgoing electrical signal. Alternatively, this could be used to express an
accuracy or time constraint associated with the action or activity. The constraint can be captured using
a constraint block to support further parametric analysis.

9.10.2 ADDING TIMING CONSTRAINTS TO ACTIONS

SysML provides a specialized form of constraint that can be used to specify the duration of an action’s
execution. The constraint is shown using standard constraint notation, a note attached to the action
which is constrained.

Figure 9.20 shows an additional timing constraint on frame transmission. It is used to indicate that
the action which invokes the Send Frame Contents activity has at most 10 milliseconds to execute.

[WPEG Frama |
MPEG Frame
act Transmit MPEG [with duratiory L

«datastore»
frame store !
1

1
frame

MPEG Frame packets ack

sent
- rame oader > -5 soa rrame CH cra Tansmssion |
packet

count

N |

0 .. 10ms} :
1

1

1

—————— >> Frame Acknowledgment

[transmission OK]

FIGURE 9.20

Adding timing constraints to actions.
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9.11 RELATING ACTIVITIES TO BLOCKS AND OTHER BEHAVIORS

Activities are often specified independently of structure (i.e., blocks), and their execution semantics do
not depend on the presence of blocks. However, as the system design progresses, the relationship
between the behaviors of a system, expressed in this case using activities, and the structure of a system,
expressed using blocks, needs to be established.

Different methods approach this in different ways. A classical systems engineering functional
decomposition method allocates the functions to components as described in the method in Chapter 16.
Other methods approach this somewhat differently by establishing a system hierarchy and driving out
the scenarios defined by the interaction between components as described in the method in Chapter 17.

SysML has two mechanisms to relate blocks and activities. The first is the use of an activity parti-
tion to assert that a given block (or part) is responsible for the execution of a set of actions. The second
is for a block to own an activity, as introduced in Chapter 7, Section 7.5.1, and use this as a basis for
specifying aspects of the block’s behavior.

9.11.1 LINKING BEHAVIOR TO STRUCTURE USING PARTITIONS

A set of activity nodes—in particular call actions—can be grouped into an activity partition (also
known as a swim lane) that is used to indicate responsibility for execution of those nodes. A typical
case is when an activity partition represents a block or a part and any behaviors invoked by call actions
in that partition are the responsibility of the block or the part. The use of partitions to indicate which
behaviors are the responsibilities of which blocks specifies the functional requirements of a system or
component defined by the block.

Activity partitions are depicted as rectangular symbols that physically encompass the action sym-
bols and other activity nodes within the partition (the so-called “swim lane” notation). Each partition
symbol has a header containing the name string of the model element represented by the partition. In
the case of a part or reference, the name string consists of the part or reference name followed by the
type (block) name, separated by a colon. In the case of a block, the name string simply consists of the
block’s name. Partitions can be aligned horizontally or vertically to form rows or columns, or option-
ally can be represented by a combination of horizontal and vertical rows to form a grid pattern. An
alternative representation for an activity partition for call actions is to include the name of the partition
or partitions in parentheses inside the node above the action name. This can enable the activity to have
a more efficient layout than the swim lane notation.

Figure 9.21 contains an example of partitions taken from the model of an ACME surveillance sys-
tem. It shows how new intruder intelligence is analyzed and handled by the security guard and the
company security system within some overall system context. Once the security guard has received new
intelligence (signal Intruder Intel), he or she may need to address two concerns in parallel, so the token
representing the signal is forked into two object flows. If the intruder has moved, then a Move Joystick
action is performed to follow him or her. If the intruder is deemed to have moved out of range of the
current camera, then a Select Camera activity is performed to select a more appropriate camera. In both
cases, a flow final node is used to handle the tokens referencing the signal data when no action is
required.

The company security system stores the currently selected camera in a data store node. It uses this
information when it reacts to joystick commands by sending Pan Camera and Tilt Camera commands
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FIGURE 9.21

Activity partitions.

to the selected camera. Security guard and company security system are parts, as indicated by the name
strings in the partition headers.

Partitions themselves may have subpartitions that can represent further decomposition of the represented
element. Figure 9.22 shows the process for an Operator (security guard) logging in to a Surveillance System
(company security system). The security guard enters his or her details, which are read by the User Interface,
part of the company security system, and validated by another part, the Controller, which then responds
appropriately. The User Interface and the Controller are represented by nested partitions within company
security system. In this case, the security guard and the company security system are themselves shown as
nested partitions of a block representing the context for both the surveillance system and its users.
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FIGURE 9.22

Nested activity partitions.

An allocate activity partition is a special kind of partition that can be used to perform behavioral
allocation, as described in Chapter 14.

9.11.2 SPECIFYING AN ACTIVITY IN A BLOCK CONTEXT

In SysML, activities can be owned by blocks, in which case an instance of the owning block executes the
activity. For a block, an activity may either represent the implementation of some service, which is termed
a method (see Chapter 7, Section 7.5.3), or it may describe the behavior of the block over its lifetime,
which is termed the classifier behavior or the main behavior (see Chapter 7, Section 7.5.1). During execu-
tion of an activity, an instance of its owning block provides its execution context. The execution of the
activity can access stored state information from the instance and has access to its queue of requests.

Activities as block behaviors

When an activity serves as a classifier behavior, parameters of the activity may be mapped to flow properties
of ports on the owning block. SysML does not explicitly say how flow properties are matched to parameters
because there are many different approaches, depending on method and domain. An obvious strategy is to
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FIGURE 9.23
A block with proxy ports and a block behavior.

match parameters to flow properties based on at least type and direction. If this still results in ambiguity, the
names can also be used to confirm a match. Allocation can also be used to express the mapping.

Figure 9.23 shows a block called Camera that describes the design for one of ACME’s surveillance
cameras. It has four proxy ports, three of which allow light to flow into the camera and video to flow out in
either Composite or MPEG4 format. The fourth allows configuration data to be passed to the camera. It also
has a port with a provided interface that supports a set of control signals used to control the operation of the
camera. The block behavior of the camera is the activity Operate Camera that has appeared in a number of
previous figures, most recently Figure 9.16. In Figure 9.23, the parameters of the activity match, and can
therefore be bound to, flow properties of the proxy ports of the Camera block. (Note that the interface blocks
for the proxy ports have not been shown here, but Video Interface was shown in Chapter 7, Figure 7.41).

In Figure 9.23, there is no direct correspondence between the control port on Camera and a parameter
or parameters on its block behavior Operate Camera. However, when an activity acts as the behavior for
a block, it can accept signals received through ports on the block, as long as the block declares a reception
for that signal. These signals can be accepted using an accept event action within the activity.

Figure 9.24 shows the specification of the activity Receive Test Messages that is invoked as part of Pro-
duce Test Signal, as shown on Figure 9.14. Once the activity starts, it simply waits for Start Test Signal using
an accept signal action, then waits for Stop Test Signal, and then repeats the sequence. The accept signal
actions trigger value specification actions via control flows that create the right Boolean value, and these
values are merged into a fest value output. Because Receive Test Messages executes as part of the execution
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FIGURE 9.24
Using signals to control activity flow.

of Operate Camera (albeit several levels deep in the activity hierarchy), its execution has access to signals
received by the owning context, which in this case is an instance of Camera. The other two signals recog-
nized by the control port in Figure 9.23 are Shutdown and Start Up, which are shown in Figure 9.16.

Activities as methods

When used as a method of an owning block, an activity needs to have the same signature (i.e., same param-
eter names, types, multiplicities, and directions) as the associated behavioral feature of the block. There are
two kinds of behavioral feature. An operation supports synchronous requests and asynchronous requests. A
reception only supports asynchronous requests. A reception indicates that the object can receive signals of a
particular kind, as the result of a send signal action (see Section 9.7). A method is invoked when the owning
block instance (object) consumes a request for its associated behavioral feature. The activity executes until
it reaches an activity final node, when the service is deemed to be handled, and if the request is synchronous,
any output (including return) arguments are passed back to the initiator of the request.

SysML has a specific action to invoke methods via operations, called a call operation action. This
has pins matching the parameters of the operation, and one additional input pin used to represent a
target, which must provide the operation. When the action is executed, it sends a request to the target
object, which handles the request, perhaps by invoking the method of the operation being called. The
action passes its parameters as input arguments and returns any output arguments.

Just as a signal can be sent through a port, an operation can be called through a port. The path to the
port is shown in the symbol for the call operation action with the format:

via port name, ...

If an activity that is invoked as the result of a call operation action has streaming parameters, then
the pins of the call operation action may consume and produce tokens during execution of the activity.
However, in a typical client/server approach to system design, all parameters are nonstreaming to fit
more easily into a client/server paradigm.

Figure 9.25 shows the Surveillance System block with one of its ports, called status. The status port
provides an interface Camera Status that includes an operation called get camera status as shown, with
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A block with behavioral features and associated methods.

an input parameter called camera id and an output parameter called camera status. The activity Handle
Status Request, shown originally in Figure 9.10, is designated to be the method of get camera status,
so it has the same parameters. A call operation action called al for get camera status is shown, with
pins corresponding to the two parameters and a pin to identify the target, that is, the Surveillance Sys-
tem to which the request must be sent. The call operation action will result in the invocation of Handle
Status Request with an argument for camera id, and it will expect a response on camera status.

9.11.3 RELATIONSHIP BETWEEN ACTIVITIES AND OTHER BEHAVIORS

SysML has a generic concept of behavior that provides a common underlying base for its three specific
behavioral formalisms: activities, state machines, and interactions. This provides flexibility to select the
appropriate behavioral formalism for the modeling task. A call behavior action or call operation action
in an activity can be used to invoke any kind of behavior. However, the design and analysis method
must further specify the semantics and/or constraints for a call action to call a state machine or an inter-
action from an activity, since this is not currently fully specified. We expect future versions of SysML
and perhaps domain-specific extensions to provide more precise semantics.

State machines may use any SysML behavior to describe what happens when a block is in certain
states and when it transitions between states. In practice, activities are often used to describe these
behaviors as follows:

e What happens when a state machine enters a state (called an entry behavior).

e What happens when a state machine exits a state (called an exit behavior).

e What happens while a state machine is in a state (called a do behavior).

e What happens when a state machine makes a transition between states (called a transition effect).

State machines are discussed in Chapter 11.
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9.12 MODELING ACTIVITY HIERARCHIES USING BLOCK DEFINITION
DIAGRAMS

An activity can be represented as an activity hierarchy that resembles a traditional functional decom-
position. The activity hierarchy is depicted on a block definition diagram similar to a block hierarchy.
On a block definition diagram, activities are shown using a block symbol with the keyword
«activity».

9.12.1 MODELING ACTIVITY INVOCATION USING COMPOSITE ASSOCIATIONS

A higher-level activity in the activity hierarchy is composed of a lower-level activity, when a call behav-
ior action contained in the higher-level activity invokes the lower-level activity. The hierarchy is mod-
eled using composite associations where the calling activity (i.e., higher-level activity) is shown at the
black diamond end, and the called activity (i.e., lower-level activity) is at the other end of the associa-
tion. The role name on the part end of the composite association is the name of the call behavior action
that performs the invocation.

The activities in the block definition diagram correspond to the same activities that are specified in
activity diagrams. However, the parts in the block definition diagram have no explicit relationship to the
call behavior actions in the activity diagrams, other than being given the same name. A part can refer to
a call behavior action in the activity diagram by applying the adjunct property stereotype. The call
behavior action that is referred to must be contained in the activity on the whole end of the composite
association and invoke the activity on the part end of the association. An adjunct property can be indi-
cated on a block definition diagram by the keyword «adjunct».

Figure 9.26 shows the activity hierarchy on a block definition diagram for Generate Video Out-
puts, as described in Figure 9.8. The adjunct properties are applied to the properties on the part end

bdd [Package] Behavior [Decomposition of Activity Generate Video Outputs])
«activity»
Generate Video Outputs

«adjunCt»aZ\I/ «adjunct»a4\|/ «adjunct»a1\|/ «adjunct»a3\|/

«activity» «activity» «activity» «activity»
Process Frame Convert to Composite Produce Test Signal Encode MPEG

«adjunct»a13 \|/ «adjunct»al2 «adjunctrali \|/

«activity» «controlOperator» «activity»
Receive Test Messages| | Convert Bool to Control Generate Test Signal
FIGURE 9.26

An activity hierarchy modeled on a block definition diagram.
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of the composite associations, which have same name as the call behavior actions that they
refer to.

9.12.2 MODELING PARAMETER AND OTHER OBJECT NODES USING
ASSOCIATIONS

A block definition diagram cannot represent flows from an activity diagram, but it can include param-
eters and object nodes. By convention, the relationship from activities to object nodes is represented
with a reference association versus a composite association. This is because the tokens contained within
the object nodes are references to entities that are not “part” of the executing activity, and they are not
necessarily destroyed when the execution of the activity terminates. The activity is shown at the white
diamond end, the object node type is shown at the part end, and the role name at the part end is the name
of the object node. Properties of the object node may be shown floating near the corresponding role
name.

Figure 9.27 shows the hierarchy of activities for the Capture Video activity originally shown in
Figure 9.11, including its own parameter nodes and the parameter nodes of its various subactivities.
The data store current image is also shown. The adjunct property stereotypes have been elided from the
properties cvl, cv2, and cv3 to simplify the diagram.

bdd [Package] Behavior [Decomposition of Activity Capture Video])
«block» | video out «activity»
Video Capture Video
images
cvi cv2 cv3
«activity» «activity» «activity»
Convert Light Adjust Focus Focus Light
focus
«valueType» position
focus uelyp PR
position Real
light in
o light in
light in «block> focused light
Light -
captured image
current image

FIGURE 9.27

An activity hierarchy with parameters.
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9.12.3 ADDING PARAMETRIC CONSTRAINTS TO ACTIVITIES

It is sometimes useful to specify performance constraints of an activity execution, such as resource
usage (e.g., processor time) or other characteristics (e.g., average execution time, accuracy). Activities
can be treated as blocks and thus can own value properties. Constraint blocks can then be used to con-
strain their values by binding them to constraint parameters.

On a block definition diagram, an activity can be shown as a block with all of the compartments that
a block symbol has, including its value properties. A parametric diagram can depict this activity
enabling the use of constraint properties to bind its value properties.

Figure 9.28 shows a block definition diagram for the Generate Video Outputs activity and associ-
ated actions (adjunct stereotype not shown), with additional value properties to capture memory usage.
It also shows a constraint block called Memory Use with four parameters: three that represent memory
use and a fourth that represents available memory. Its constraint asserts that the total memory use must
be less than the available memory.

Figure 9.29 shows the parametric diagram for Generate Video Outputs using the Memory Use con-
straint block. Its parameters are bound to the properties that represent available memory and memory
use of Generate Video Outputs activity and the activities that comprise it.

9.13 ENHANCED FUNCTIONAL FLOW BLOCK DIAGRAM

The Enhanced Functional Flow Block Diagram (EFFBD) or variants of it have been widely used in
systems engineering to represent behavior. A function in an EFFBD is analogous to an action in an
activity. The EFFBD does not include the distinction between an invocation action and an activity.

bdd [Package]Behavior [Generate Video Outputs with Parametersﬂ

«activity» «constraint»
Generate Video Outputs Memory Use
values parameters
available memory : MB available memory : MB
required memory 1 : MB

required memory 2 : MB
required memory 3 : MB

a3 a2 a4
«activity» «activity» «activity»
Encode MPEG Process Frame Convert to Composite
values values values
memory usage : MB memory usage : MB memory usage : MB

FIGURE 9.28
A bdd describing value properties and constraints for an activity.
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FIGURE 9.29
A parametric diagram describing constraints on an activity.

Most of the functionality of an EFFBD can be represented as a constrained use of a SysML activity
diagram. The constraints are documented in Annex E.2 of the SysML specification [1]. Using the key-
word «effbd» in the diagram header of an activity indicates that the activity conforms to the EFFBD
constraints. These constraints preclude the use of activity partitions and continuous and streaming
flows, as well as many other features within activity diagrams.

Some EFFBD semantics are not explicitly addressed by the activity diagram. In particular, a func-
tion in an EFFBD can only be executed when all triggering inputs, the control input, and the specified
resources are available to the function. A “resource” is not an explicit construct in SysML, but resource
constraints can be modeled using pre- and post-conditions and parametrics as described in the previous
section. Triggering inputs in EFFBDs correspond to “required inputs” in activity diagrams, non-trig-
gering inputs correspond to “optional inputs,” and control inputs correspond to control flow in activity
diagrams. The detailed mapping between EFFBD and activity diagrams, along with an example of the
mapping in use, is described in SysML and UML 2.0 Support for Activity Modeling [49].

9.14 EXECUTING ACTIVITIES

This section describes how SysML supports the execution of activities using Foundational UML (previ-
ously discussed in Chapter 7, Section 7.9.1).

In order for an activity to be executed, the complete detail of all its processing—such as the trans-
formation of property values—must be specified precisely. SysML includes a set of primitive actions
that support basic object manipulation such as creation, deletion, access to properties, object commu-
nication, and others. Foundational UML provides executable semantics for these actions.

SysML also allows modelers to include “opaque” constructs in their models. These are constructs
whose specification is expressed as text using some language other than SysML. These opaque con-
structs are often used to specify executable behavior using a programming language and are normally
accompanied by technologies for performing the execution, as discussed in Chapter 18. An important
use of opaque constructs is to include behavior expressed in a language called Alf, which is a text-based
concrete syntax for Foundational UML.
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9.14.1 THE FOUNDATIONAL UML SUBSET (fUML)

As described in Chapter 7, Section 7.9.1, Foundational UML specifies some of the basic semantics of
SysML structures. In addition, system modelers can also use Foundational UML to precisely specify
the execution of activities.

Although the Foundational UML covers a majority of the fundamental SysML activity constructs,
it does not include some key features that are useful for system modeling, such as:

e Activity partitions and interruptible regions;

* Flow final nodes;

e Streaming parameters and parameter sets;

e Activity pre- and post-conditions and local pre and post conditions;
* Flow order, flow rates, and flow probabilities; and

e Control pins and hence control values and control operators.

9.14.2 THE ACTION LANGUAGE FOR FOUNDATIONAL UML (Alf)

The OMG has also adopted a complementary specification to Foundational UML called the Action
Language for Foundational UML, or Alf [45] for short. Alf is a textual concrete syntax for Foun-
dational UML modeling elements. The key use of Alf is to act as the textual notation for specifying
executable behaviors in UML, such as methods for class operations, the behavior of a class, or transi-
tion effects on state machines. Alf also provides an extended notation that may be used to represent
a limited subset of structural modeling elements. Because the SysML structural and behavioral con-
structs, such as block and activity, are based on UML, Alf can be used to specify those aspects of
SysML models.

The Alf syntax primarily reflects a C legacy that should make it familiar to Java, C++, and C# pro-
grammers. However, Alf also adopts a number of syntactic conventions from OCL [38] to capitalize on
its strength in the manipulation of sequences of values.

The execution semantics for Alf are given by mapping the Alf concrete syntax to the abstract syntax
specified by Foundational UML. The result of executing a fragment of Alf text is thus given by the
semantics of the Foundational UML model to which it is mapped.

Alf is integrated into activities using either an opaque behavior or an opaque action. When used to
specify an opaque behavior, it may be invoked by a call behavior action. An opaque action specified in
Alf can be inserted into an activity and related to other actions in the activity.

Figure 9.30 shows the activity Position Camera from Figure 9.12, specified using Alf. In this case,
Position Camera has a single opaque action whose language is defined to be Alf and whose body is an
Alf statement. It ensures that position is within range and invokes the camera device driver with the
(potentially altered) position.

9.14.3 PRIMITIVE ACTIONS

SysML includes a set of primitive actions and precise definitions and notations for them based on Foun-
dational UML and Alf. Other system engineering tools could specify alternative semantics and nota-
tions that could be mapped to these primitive actions.
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act [Activity]PositionCamera)

- (1An )

o position . . . ., -

posw if (position.tilt>this.’max tilt’) {

position.tilt = this.’'max tilt’;

} else if (position.tilt<this.’min tilt") {
position.tilt = this.’min tilt’;

}

if (position.pan>this.'max pan’) {
position.pan = this.’"max pan’;

} else if (position.pan<this.’'min pan’) {
position.pan = this.’min pan’;

}

\_camDevDriver(position); )

FIGURE 9.30
An activity specified using Alf.

Some of these primitive actions have been described previously in this chapter:

e Accept event actions respond to events in the environment of the activity.

* Send signal actions support communication between executing behaviors using messages.

e Call actions allow an activity to trigger the invocation of another behavior and to provide it with
inputs and receive outputs from it.

In addition, there are a number of actions that have a more localized effect, such as updating proper-
ties and creating or destroying objects. These actions can be broadly categorized as:

* Object access actions, which allow properties of blocks and the variables of activities to be
accessed.

e Object update actions, which allow those same elements to be updated or added to.

e Object manipulation actions, which allow objects themselves to be created or destroyed.

e Value actions, which allow the specification of values.

Note that the set of actions defined in SysML does not include fundamental operations such as
mathematical operators. A set of these operators are provided in the Foundational Model Library of
Foundational UML, but for external execution domains, these have to be provided as libraries of opaque
behaviors—or more likely function behaviors—suitable for the domain. Opaque behaviors and func-
tion behaviors are referenced in Chapter 7, Section 7.5.

SysML provides an optional notation for primitive actions. Primitive actions are shown using an
action symbol (round-cornered rectangle) with the kind of action shown in guillemets, along with a set
of pins that are appropriate to the action.

Figure 9.31 shows an alternate representation of the Alf expression this.count = this.count + 1 in the
algorithm in Figure 9.12 using primitive actions instead of the opaque action. The resulting activity
fragment first has to execute a readSelf action to establish the context indicated by this. Having
obtained this, a readStructuralFeature action is used to obtain the value of the count property of the
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act [Activity] this.count=this.count+u

object —{ «readStructuralFeature»
count

result

[]
« i ion»
[]
«addStructuralFeatureValue»
object count

FIGURE 9.31

Example of primitive actions.

context (the executing activity). The value of the count property is then passed to a call of the + function
behavior in the Foundational UML Integer Functions package. The other input is provided by a value-
Specification action that outputs the value 1. The result of the addition is then offered to an addStruc-
turalFeatureValue action that updates the count property. Using primitive actions to create models
can be quite arduous; Alf or other textual representations are a more compact means for specifying
low-level behavior.

9.14.4 EXECUTING CONTINUOUS ACTIVITIES

When a model is used as a blueprint for a system, it is expected that continuous activities will be imple-
mented by physical devices such as motors, sensors, or humans. In this case, the specification of the
activity may be a set of equations, or it may simply be allocated to some component that is already
known to provide the appropriate behavior. Both Alf and parametric constraints as described in Section
9.12.3 can be used to specify these equations.

It is often important to simulate these continuous activities prior to building the system itself.
A number of different technologies exist to execute models of continuous activities and their corre-
sponding equations. They typically impose restrictions on the constructs that can be used in the
activity’s definition (e.g., no token buffering) and have their own specialized libraries of functions
that need to be integrated into the model. They often also require additional constructs and seman-
tics. In SysML, these artifacts can be provided using a profile. More information on profiles can be
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found in Chapter 15, and a discussion of integrating SysML with external tools such as simulation
tools can be found Chapter 18.

9.15 SUMMARY

Activities provide a means of describing flow-based behavior, which are represented on both the activ-
ity diagram and the block definition diagram.

e An activity represents a controlled sequence of actions that transform its inputs to its outputs. The
inputs and outputs of an activity are called parameters.

e An activity is composed of actions that represent the leaf level of its behavior. An action consumes
input tokens and produces output tokens via its pins.

e Actions are connected by flows. There are two kinds of flow:

* Object flows route object tokens between the input and output pins of actions. The flowing
tokens may need to be queued or stored for later processing. Specialized nodes called central
buffer nodes and data stores can store tokens. Input and output pins can also queue tokens.
Depending on the domain, flows may be identified as streaming and continuous, which is
particularly useful for describing physical processes.

* Control flows transfer control from one action to other actions using control tokens.

e Control nodes—including join, fork, decision, and merge—allow flows to be split and merged in
various ways. There are also specialized control nodes that describe what happens when an action
starts and stops. These are the initial node, activity final node, and flow final node.

e Actions come in many different categories, from primitive actions, such as updating variables, to
the invocation of entire behaviors.

» Call actions are an important category of action because they allow one activity to invoke
the execution of another (or in principle any kind of behavior). The pins of call actions
correspond to the parameters of the called entity. A call behavior action allows an activity
to include the execution of another activity as part of its processing. A call operation
action allows an activity to make a service request on another object that can trigger the
execution of some activity to handle the request. Operation calls make use of the dispatch-
ing mechanism of SysML blocks to decouple the caller from knowledge of the invoked
behavior.

* Send signal actions and accept event actions allow the activity to communicate via signals
rather than just through its parameters. When the activity is executing in the context of a block,
the activity can accept signals sent either to the block or sent directly to the activity.

e Activity partitions provide the capability to assign responsibility for actions in an activity diagram
to the blocks or parts that the partitions represent.

e Structured activities allow modelers to group actions that need to execute together, including
conditional execution.

e Block definition diagrams are used to describe the hierarchical relationship between activities and
the relationship of activities to their inputs and outputs. The use of a block definition diagram for
this purpose is similar to a traditional functional hierarchy diagram.
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The behavior of actions and activities can be constrained in a variety of ways including:
* Adding pre- and post-conditions to the execution of an activity or action, including the state of
token values.
* Adding a constraint on the duration of an action execution.
» Constraining properties of the activity, such as latency or resource use, on a parametric diagram.
A constrained use of activity diagrams can provide equivalent behavioral models as Enhanced
Functional Flow Block Diagrams (EFFBDs), which have been widely used for system behavior
modeling.
Activities may be described as stand-alone behaviors independent of any structure, but they often
exist as the main behavior of a block. Activities within a block can communicate using signals,
accepting signals that arrive at the block boundary, and sending signals to other blocks. The
parameters of a main behavior may also be mapped directly to flow properties on the ports of its
parent block. In this case, flows to and from activity parameter nodes are routed directly through
the ports.
An activity can also be used to implement the response to a service request when the arguments of
the request are mapped to the activity’s parameters. As discussed in Chapter 11, activities are
often used to describe the processing that occurs when a block is transitioning between states and
what the block does while in a particular state.
SysML includes a subset of UML called Foundational UML or f{UML, for which a formal
executable semantics is defined. The subset includes basic UML structural elements such as
classes and associations and also almost all of UML activities. SysML also incorporates a
text-based concrete syntax for this subset, called the Action Language for Foundational UML, or
Alf. SysML models based on this subset can be executed and various simulation tools based on
fUML are available.

9.16 QUESTIONS

1.

NoghrwN

10.
11.
12.

What is the diagram kind of the activity diagram, and what kinds of model elements does the
frame correspond to?

How are an action and its pins typically represented on an activity diagram?

What does action a/ in Figure 9.3 require to start executing?

How are the parameters of activities shown on activity diagrams?

What is the difference in semantics between a streaming and nonstreaming parameter?

How are parameters with a lower-multiplicity bound of O identified on an activity diagram?
Draw an activity diagram for an activity “Pump Water,” which has a streaming input parameter
“w in” typed by block “Water” and a streaming output parameter “w out,” also typed by “Water.”
How are the set of pins for a call behavior action determined?

What is an object flow used for and how is it represented?

How does the behavior of a join node differ from that of a merge node?

How does the behavior of a fork node differ from that of a decision node?

What are parameter sets used for and how are they represented, both in the definition and
invocation of an activity?

s
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13. Figure 9.10 only shows the object flows between the call behavior actions. What else does it
need in order to perform as the method for the get camera status in Figure 9.257 Draw a revised
version of Figure 9.10 with suitable additions.

14. What is the difference between a data store node and a central buffer node?

15. What is the difference in behavior between a flow final and an activity final node?

16. How is an initial node represented on an activity diagram, and what sort of flows can be con-
nected to it?

17. What special capability does a control operator have?

18. An action “pump” invokes the activity “Pump Water” from Question 7 and can be enabled and
disabled by the output of a control operator. What additional features does “pump” need in order
to enable this?

19. Another action “provide control” calls a control operator called “Control Pump” with a single
output parameter of type “Control Value.” Draw an activity diagram to show how the actions
“pump” and “provide control” need to be connected in order for “provide control” to control the
behavior of “pump.”

20. Name three kinds of events that can be accepted by an accept event action.

21. How can an interruptible region be exited?

22. What would be the appropriate construct to describe a group of actions that need to be executed
together repeatedly while some condition holds?

23. What does a flow rate of “25 per second” on an activity edge indicate about the flow of tokens
along that edge?

24. How would a modeler indicate that new tokens flowing into a full object node should replace
tokens that already exist in the object node?

25. If a call behavior action is placed in an activity partition representing a block, what does this say
about the relationship between the block and the called behavior?

26. Name the two different roles that an activity can play when owned by a block.

27. Describe the four ways in which activities can be used as part of state machines.

28. An action “al:GetFrameBuffer” must take less than 10ms to execute. Show how this is specified
on an activity diagram.

29. Draw an activity diagram fragment that executes either an action with the Alf expression
“count=count+1” or an action with the Alf expression “count=count—1" based on whether count
is greater than zero. Use a decision input behavior to make the decision.

DISCUSSION TOPIC

Discuss the various ways that activities with continuous flows may be executed.



CHAPTER

MODELING MESSAGE-BASED
BEHAVIOR WITH
INTERACTIONS

This chapter discusses the use of sequence diagrams to model how parts of a block interact by exchang-
ing messages.

OVERVIEW

In Chapter 9, behavior was modeled using activity diagrams, which represent a controlled sequence of
actions that transform inputs to outputs. In this chapter, an alternative approach to representing behav-
ior is introduced. This approach uses sequence diagrams to represent the interaction between struc-
tural elements in a model as a sequence of message exchanges. The interaction can be between the
system and its environment or between the components of a system at any level of a system hierarchy.
A message can represent the invocation of a service on a system component or the sending of a
signal.

This representation of behavior is useful when modeling service-oriented concepts, when one part
of a system requests services of another part. A service-oriented approach can represent discrete inter-
actions between software components, when one software component requests a service of another and
when the service is specified as a set of operations. However, the sequence diagram is not limited to
modeling interactions between software components, and has found broad application in modeling
system-level behaviors. A sequence diagram can be written as a specification of how parts of a system
should interact, and can also be used as a record of how the parts of a system do interact.

The structural elements of a block are represented by lifelines on a sequence diagram. The sequence
diagram describes the interaction between these lifelines as an ordered series of occurrence specifica-
tions that describe different kinds of occurrences, such as the sending and receiving of messages, the
creation and destruction of objects, or the start and end of behavior executions.

Many of the occurrence specifications on a sequence diagram are associated with the exchange of
messages between lifelines. There are several different kinds of messages, including both synchronous
messages (the sender waits for a response) and asynchronous messages (the sender continues without
waiting for a response). A sending occurrence specification marks when the message is sent by the
sending lifeline, and a receiving occurrence specification marks when the message is received by the
receiving lifeline. On reception of a message, the receiving lifeline may start the execution of a behav-
ior that implements the operation or signal reception referenced in the message. The receipt of a mes-
sage may also trigger the creation or destruction of the receiving lifeline.

A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00010-2 247
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To model ordering of occurrences more complex than simple sequences, interactions can include
specialized constructs called combined fragments. A combined fragment has an operator and a set of oper-
ands, which may be primitive interaction fragments such as occurrence specifications, or may themselves be
combined fragments, thus forming a tree of interaction fragments. There are a number of operators that
describe different ordering semantics, such as parallel, alternative, and iterative ordering of their operands.

Interactions themselves can also be composed to handle large scenarios or to allow reuse of com-
mon interaction patterns. An interaction may reference another interaction to abstract away the detail
of some segment of the interaction between multiple lifelines, or to reference an interaction between
the parts of a particular lifeline.

An interaction executes in the context of an instance of its owning block, each lifeline in the interac-
tion represents a single instance that is owned by the instance of its owning block. Occurrences happen
as the instances execute their behavior and send and receive requests corresponding to operation calls
and signals. As an interaction executes, it observes the occurrences and compares them to its own defi-
nition of occurrence ordering.

The sequence of occurrences for a given scenario of interest, in this case the lifetime of the interaction, is
called a trace. Each interaction can define a set of valid traces and a set of invalid traces. A valid trace is one
in which the occurrences are consistent with the ordering defined by the interaction. On the other hand, the
use of the neg interaction operator indicates that any trace that is consistent with its operand is invalid. The
assert operator states that if a trace is not consistent with its operands then it is invalid. If an assert operator
is not used, then inconsistent traces are deemed to be undecided (i.e. neither valid or invalid).

10.2 THE SEQUENCE DIAGRAM

A sequence diagram represents an interaction. The complete diagram header for a sequence diagram
is as follows:

sd [interaction] interaction name [diagram name]

The diagram kind for a sequence diagram is sd and the model element kind that corresponds to its
frame can only be interaction.

Figure 10.1 shows a sequence diagram with examples of many of the symbols. It shows an interaction
between an Advanced Operator and the Surveillance System during the handling of an intruder alert. The
notation for the sequence diagram is shown in detail in the Appendix, Tables A.18 through A.20.

10.3 THE CONTEXT FOR INTERACTIONS

The context for an interaction execution is an instance of the block that owns the interaction. As the
instance (including instances of all its parts) is executing, any currently executing interactions observe
the events occurring as a result of the execution of other behaviors, such as state machines or activities.
As with other kinds of behavior, an interaction can either be the classifier behavior for a block, or an
owned behavior of the block invoked by a specific invocation action. If an interaction is a classifier
behavior, it starts executing when an instance of the block is created; if the interaction is an owned
behavior, it begins execution when it is invoked. Interactions end their execution after they complete the
execution of their last fragment.
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sd Handling Alert

|security guard [Elvis] : Advanced Operator ;‘0’<| | company security system : Surveillance System

lllegal Entry Detected (id= sensor id)

Intruder Alert (sensor id)

Raise Alarm()

| alt ] {automatic mode
required}

Auto Track()

L
|
I
I
I

opt

Lost Track

{lost contact}

Cancel Alarm()

____________________________________ 1]
{manual mode I
required} :
loop par J Pan Camera(strength) \:
|

I |- ]

Tilt Camera(strength) |
AN}
|
T
Cancel Alert() I
T |
1

FIGURE 10.1

An example sequence diagram.

Figure 10.2 shows an internal block diagram of the System Context block that contains all the signifi-
cant participants in the interactions that are described in the figures in this chapter. System Context is the
context for a specific usage of a Surveillance System called company security system. In addition to the
company security system, the context contains other parts, including a regional HQ, a set of Perimeter
Sensors, an Alarm System, and a security guard, which correspond to entities that are external to the com-
pany security system. The diagram also shows the internal parts of the Alarm System and the company
security system whose behavior is specified in the following interactions. The interaction lifelines can also
represent reference properties, but this does not affect the notation or the semantics of the interaction.
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ibd [Block] System Contexd % %

security guard : suspected thief :
Advanced Operator [1..*] Intruder [0..*]
| I
: Alarm System company security system : Surveillance System

: Emergency Comms System user interface : Ul

alarm controller : Control System : Monitoring Station

internal PA : PA System cameras : Camera [1..*]

: Perimeter Sensor [1..*] | | regional HQ : Command Center

FIGURE 10.2
Internal block diagram of the interaction context.

10.4 USING LIFELINES TO REPRESENT PARTICIPANTS IN AN
INTERACTION

The principal structural feature of an interaction is the lifeline. A lifeline represents the relevant lifetime
of a property of the interaction’s owning block, which will be either a part or a reference property, as
described in Chapter 7. As explained there, a part can be typed by an actor, which enables actors to
participate in interactions as well. However, since an actor cannot support operations, its use has restric-
tions. To avoid these restrictions, an actor may be allocated to a block that is used instead of the actor
as the type of the part. Lifelines can also represent ports, but because proxy ports typically just relay
messages, they rarely contribute much to the understanding of an interaction, and so are rarely used.

When an instance of its owning block executes an interaction, each lifeline denotes an instance of
some part of the block (see Chapter 7 for a definition of block semantics). Thus, when the lifeline rep-
resents a property with multiplicity greater than 1, an additional selector expression should be used to
explicitly identify one instance. Otherwise, the lifeline is taken to represent an arbitrarily selected
instance. The selector expression can take many forms depending on how instances are identified in this
part. For example, it may be an index into an ordered collection, a specific value of some attribute of
the part’s block, or a more informal statement of identity.

A lifeline is shown using a rectangle (the head) with a dashed line descending from its base (the
tail). The head contains the name and type—if applicable—of the represented property, separated by a
colon.
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sd Camera Control [Lifelinesu
security guard[Elvis] : Advanced Operator -2- | |company security system : Surveillance System
| |
| |
| |
| |
| |
FIGURE 10.3

An interaction with lifelines.

The selector expression, if present, is shown in square brackets after the name. The head may indi-
cate the kind of model element it represents using a special shape or icon.

Figure 10.3 shows a simple sequence diagram with a diagram frame and two lifelines. One repre-
sents the Surveillance System under consideration, called company security system, and the other life-
line represents an Advanced Operator, called security guard. Because, the security guard from Figure
10.2 has an upper bound greater than 1, the lifeline also contains a selector called Elvis to specify
exactly which instance is interacting. The security guard is shown with a small actor icon to indicate
that it is a user of the Surveillance System.

10.4.1 OCCURRENCE SPECIFICATIONS

A lifeline is related to an ordered list of occurrence specifications that describe what can happen to the
instance represented by the lifeline during the execution of the interaction. When an interaction is
executed, the set of occurrences ordered in time is called a trace. A comparison of the order and struc-
ture of the specifications and actual occurrences determines whether the trace is consistent with the
interaction. Different kinds of occurrence specifications describe different kinds of occurrences. Three
categories of occurrence are relevant to interactions:

e The sending and receiving of messages;
e The starting and ending of the execution of actions and behaviors; and
e The creation and destruction of instances.

Constructs like messages and interaction operators—described later in this chapter—provide fur-
ther order and structure to these occurrence specifications.

10.5 EXCHANGING MESSAGES BETWEEN LIFELINES

Messages can be exchanged between the instances represented by lifelines to achieve interactions. A
message can be sent from a lifeline to itself to represent a message that is sent and received by the same
instance.
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sd Ordering an Automobile)

| : Manufacturing Plant

Order("GSX")

|
| |
L Automobile Delivered |
| |
I I

FIGURE 10.4
A simple example of message exchange.

A message represents an invocation or request for service from the sending lifeline to the receiving life-
line, or the sending of a signal from the sending lifeline to the receiving lifeline. A message is shown on a
sequence diagram as a line with different arrowheads and annotations depending on the kind of message.

Messages are sent by behaviors that are executing on a lifeline, or more precisely by invocation actions,
such as send signal or call operation actions, within those behaviors. (See Chapter 9, Section 9.7 for more
information on send signal actions.) Receipt of a message by a lifeline can trigger the execution of a behav-
ior, or it may simply be accepted by a currently executing behavior (refer to Section 10.5.4). Note that there
may be a delay between the time a message is sent and the time it is received and handled.

Although messages are often used to model information passed between computer systems and
their users, they may also indicate the passage of material or energy. An interaction in a radar-tracking
system might represent the detection of a target and the response to that detection. The request for
manufacture of a car and the subsequent delivery of that car to a dealer might be modeled as an interac-
tion between the dealer and the manufacturer, as shown in Figure 10.4.

10.5.17 SYNCHRONOUS AND ASYNCHRONOUS MESSAGES

The two basic kinds of messages are asynchronous and synchronous. A sender of an asynchronous
message continues to execute after sending the message, whereas a sender of a synchronous message
waits until it receives a reply from the receiver that it has completed its processing of the message
before continuing execution.

Asynchronous messages correspond to either the sending of a signal or to an asynchronous invoca-
tion (or call) of an operation. A synchronous message corresponds to the synchronous invocation of an
operation on the receiver. In the case of an operation call, the reply to the sender can be indicated using
a separate message from the receiver back to the sender. See Chapter 7, Section 7.5.2 for a description
of the behavioral features of blocks.

Call messages and send messages can include arguments that correspond to the input parameters of
the associated operation, or attributes of the sent signal. Arguments can be literal values, such as num-
bers or strings; attributes of the part represented by the sending lifeline; or parameters of the currently
executing behavior. A reply message can include arguments that correspond to output parameters or the
return value of the called operation. When an operation returns a value, the features to which the output
parameters and return value are assigned can be indicated. A feature can either be an attribute of the
calling lifeline or a local attribute or parameter of the caller’s current execution.
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The presence of a message implies two occurrences. One is related to the sending of the message by
the instance corresponding to the sending lifeline. The other is related to the receipt of the message by
the instance corresponding to the receiving lifeline. As one might expect, the sending occurrence has to
happen before the receiving occurrence.

Messages are represented by arrows between lifelines. The tail represents the occurrence corre-
sponding to the sending of the message, and the head represents the occurrence corresponding to the
receipt of the message. The shape of the arrowhead and the line style of the arrow line indicate the
nature of the message as follows:

e An open arrowhead means an asynchronous message. Input arguments associated with the
message are shown in parentheses as a comma-separated list after the message name. The name of
the operation parameter or signal attribute to which an argument corresponds may be included
(followed by an equal sign) before the argument:

parameter name = value
If this notational option is not used, all the input arguments must be listed in the appropriate order.

e A closed arrowhead means a synchronous message. The notation for arguments is the same as
for asynchronous messages.

* An arrowhead on a dashed line shows a reply message. Output arguments associated with the
message are shown in parentheses after the message name, and the return value, if any, is shown
after the argument list. The feature to which the return value is assigned is shown (followed by an
equal sign) before the message name:

feature name = message name (arguments) : return value

As with input arguments, output arguments can be preceded by name of their corresponding param-
eters separated by an equal sign. In the rare case that both the parameter name and assigned feature are
required, the following syntax is used:

feature name = parameter name: argument

Figure 10.5 shows a sequence of messages exchanged between the two lifelines introduced in
Figure 10.3. The security guard first selects camera CCC1. After selecting the camera, the guard issues
a get current status request to retrieve that camera’s current status, to which the system responds
“OK.” Note that although the company security system does not provide an explicit confirmation to the
security guard that the camera has been selected, the system does not handle the get current status
request until after it has received (and processed, as shown in Figure 10.7) the select camera request.
The company security system obtains the status from the selected camera by issuing a subsidiary get
status request to itself, providing the id of the currently selected camera. Having obtained an “OK”
status, the security guard then commands the system to move the camera by giving a pan camera order
(probably via a joystick). He asks for the status again, which this time is “Moving.”

10.5.2 LOST AND FOUND MESSAGES

Normally, message exchange is deemed complete; that is, it has both a sending and receiving occur-
rence. However, it is also possible to describe lost messages with no receiving occurrence and found
messages with no sending occurrence. This capability is useful, for example, to model message traf-
fic across an unreliable network and to model how message loss affects the interaction.
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sd Camera Control [Simple Sequence] )

security guard [Elvis] : Advanced Operator - | |company security system : Surveillance System

select camera(camera id = "CCC1")

vV

»|

|
! get current status()

! i get status

| (camera id = "CCC1")

|< get current status():"OK" P

pan camera(strength = 2) J

g get status
| (cameraid = "CCC1")

—_

get current status()

FIGURE 10.5
Synchronous and asynchronous messages exchanged between lifelines.

The notation for lost messages is an arrow with the tail on a lifeline and the head attached to a small
black circle. The notation for found messages is the reverse—the tail of the arrow attached to a small
black circle and the head attached to a lifeline. An example can be seen in the Appendix, Table A.17.

10.5.3 WEAK SEQUENCING

An interaction imposes the most basic form of order on the messages and other occurrences that it
contains, called weak sequencing. Weak sequencing means that the ordering of occurrences on a life-
line must be followed, but other than the constraint that message receive occurrences are ordered after
message send occurrences, there is no ordering between occurrences on different lifelines.

The messages on the sequence diagram in Figure 10.6 impose an order on send and receive
occurrences; for example, A.send happens before A.receive and B.send happens before B.receive.
Lifelines also impose an order on occurrences, so lifeline 3 states that A.receive happens before
B.send. However, nothing is said about the ordering of B.send and D.send on lifeline 3 and lifeline
2, respectively. Note also that it is not the messages that are sequenced but their send and receive
occurrences. For example, B.send happens before C.send, but B.receive happens after C.receive.
This phenomenon is sometimes referred to as message overtaking and is dealt with in more detail
in Section 10.6.
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FIGURE 10.6
Explanation of weak sequencing.

10.5.4 EXECUTIONS

The receipt of a message by a lifeline may trigger the execution of a behavior in the receiver. In this
case, the receiving lifeline executes the behavior (called the method) for the behavioral feature that the
message represents. Alternatively, the message receipt may simply trigger a change in a currently exe-
cuting behavior, such as a state machine or activity, and cause it to execute other actions. The arguments
contained in a call or send message are passed to the behavior that handles it. If and when a reply mes-
sage is sent, the output arguments are provided to the execution that sent the corresponding synchro-
nous call message.

Lifelines can send messages to themselves. This may cause a new execution to be started, nested
within the current execution.

Lifelines are hosts to executions, either of single actions or entire behaviors. The extent to which
executions are modeled is left to the modeler. Typically an execution start occurrence is coincident with
a message receipt occurrence, but it does not have to be in all cases (i.e., the execution can occur later
due to message scheduling delays). When an execution is triggered by the receipt of a synchronous
message, the execution end occurrence may be coincident with the sending of a reply message.

Activations are rectangular symbols overlaid vertically on lifelines. They correspond to executions
and begin at the execution’s start occurrence and end at the execution’s end occurrence. Activations are
opaque and may either be grey or white; this shading does not affect their meaning. When executions
are nested, the activations are stacked from left to right. If an execution is triggered by the receipt of a
message, the arrow is attached to the top of the activation. If an execution ends with the sending of a
reply message, then the tail of the reply arrow is attached to the bottom of the activation. An alternate
notation for activations is a box symbol overlaid crosswise on the lifeline with the name of the behavior
or action inside.

Figure 10.7 shows the same interaction as Figure 10.5 but with activations added. The relevant
behaviors and actions on the company security system and security guard lifelines are now explicit. The
select camera operation tells the company security system to store the id of the selected camera. In a
change from Figure 10.5, the action executed to store the camera id, current camera = camera id, is
explicitly shown here using box notation. The processing of gef current status causes a new execution
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sd Camera Control [Simple Sequence with Activationsu

security guard [Elvis] : Advanced Operator - | |company security system : Surveillance System|

l select camera(camera id="CCC1") R

| current camera = camera id |
|

»
>

get current status()

get status
(current camera)
- -E get status():"OK"
get current status():"OK"
<_ _____________________________________________ L
pan camera(strength ="2")
get current status()
get status
< (current camera)
get status():"Moving"
get current status():"Moving" <o
<_ _____________________________________________
n

FIGURE 10.7
Lifelines with activations.

to start that is triggered by a get status message with the previously stored camera id as an argument.
This new execution ends with a status reply of “OK.” After the pan camera command triggers the
execution of a behavior to move the camera (which takes some time), another get status message trig-
gers a nested execution that returns the result “Moving.” The execution on the security guard’s lifeline
continues throughout the interaction, even while waiting for a response from the company security
system.

10.5.5 LIFELINE CREATION AND DESTRUCTION

In an interaction, the creation and destruction of the instances represented by lifelines can be repre-
sented by special kinds of messages. A create message represents the creation of an instance and so is
the first occurrence on the lifeline representing the instance. A deletion message ends in a special kind
of occurrence called a destruction occurrence, which must be the last occurrence on a lifeline. A
destruction occurrence can also occur in isolation to indicate some undefined (presumably internal)
cause of destruction. These occurrences generally apply to the allocation and release of memory to
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sd Route Maintenancy

user interface : Ul | | : Monitoring Station | | old route : Route
| create route() R : !
new route = create route(;u ------------- >| new route : Route |
< add waypoint(nwp = (10,35)) J

»

(
I |
[
[
|

add waypoint(hwp =(50,125))

|
|
| verify waypoint(nwp)
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

......................... i |

| |

| |

: *

(Cmmmmmmm e |
|
|
|
|

FIGURE 10.8

Create and destroy messages.

execute software instances. However, they can also be used to indicate the addition or removal of a
physical part of a system from a scenario.

The notation for a create message is a dashed line with an open arrowhead, terminating on the
header box of the lifeline being created, which is moved down in the sequence diagram to accommo-
date the notation. The dashed tail of the lifeline is drawn as normal. The create message’s name and
input arguments are displayed in the same way as those of a call message. The notation for a destroy
occurrence is a cross at the end of a lifeline.

The sequence diagram in Figure 10.8 shows how new routes are created and destroyed by a surveil-
lance system. A Route is a set of pan-and-tilt angle pairs that a surveillance camera follows when in an
automated surveillance mode. In this case the user interface component communicates with the Moni-
toring Station to perform the route maintenance operations. First, the user interface calls the create
route service offered by the Monitoring Station, which in turn creates a new route and returns a refer-
ence to the user interface via the new route attribute. The user interface then interacts with this new
route in order to add waypoints. Finally, when the route is complete (only some of the waypoints are
shown here), it uses the delete route service to delete old route. Note that the execution of action verify
waypoint is shown using box notation.
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10.6 REPRESENTING TIME ON A SEQUENCE DIAGRAM

In a sequence diagram, time progresses vertically down the diagram and, as stated earlier, occurrences
on a lifeline are correspondingly ordered in time. In addition, the send occurrence and receive occur-
rence for a single message are also ordered in time. However, particularly in distributed systems, a
message may be overtaken by a subsequent message sent from the same lifeline; that is, the first mes-
sage may arrive after receipt of the second message. Sequence diagrams allow this kind of situation to
be drawn using a downward-slanting arrow between two lifelines, as shown in Figure 10.9.

The sequence diagram in Figure 10.9 shows what happens when an Alert message overtakes a regu-
lar Status Report message. This may be because the Status Report message is queued, waiting to be
processed, perhaps due to having a lower priority, or it may be that a manual process is used for han-
dling status reports, which slows their handling.

In addition to relative ordering in time, time can be represented explicitly on sequence diagrams. A
time observation refers to an instant in time corresponding to the occurrence of some event during the
execution of the interaction, and a duration observation refers to the time taken between two instants
during the execution of the interaction. A time constraint and a duration constraint can use observa-
tions to express constraints involving the values of those observations. A time constraint identifies a
constraint that applies to a single occurrence on the sequence diagram. A duration constraint identifies
two occurrences, called start and end occurrences, and expresses a constraint on the duration between
them. A duration constraint can apply to any element deemed to have duration, such as a message or an
execution, in which case the constraint applies between the occurrences that bracket the element’s

sd Handling Surveillance Messages [Message Overtaking])
company security system : Surveillance regional HQ : Command Center
System 9 :
I I
Status Report
Alert
Stand Down
Status Ack
T T
| |

FIGURE 10.9

Message overtaking scenario.
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duration. The expressions used for time observations and constraints make no assumption regarding the
source of time, such as a reference clock, or how time is computed.

A time constraint is shown using a standard constraint expression in braces attached by a line to the
constrained occurrence. A duration constraint is shown by a double-headed arrow between the two
constrained occurrences with the constraint floating near it, also expressed in standard constraint nota-
tion (i.e., in braces). A duration constraint may also be shown as a standard constraint floating close to
an element such as a message or an interaction use (see Section 10.8). Observations are shown in a way
similar to constraints, but instead of an expression in braces, an observation has the name of the obser-
vation followed by an equal sign and then an expression indicating how the value for the observation is
obtained. The actual language used to express observations and constraints, including default time
units, must be stated as part of the observation or constraint.

Figure 10.10 shows a scenario in which the Monitoring Station is asked by the user interface to test
the system’s cameras. The Monitoring Station in turn requests each camera to perform a self-test and
awaits the result. While waiting for a response from each camera, the controller component internal to
the Monitoring Station needs to provide a progress indication to the user interface, so it uses

sd Successful Camera Test )

user interface : Ul | | : Monitoring Station | | [c1] : Camera | | [c2] : Camera
I I I I
I test cameras() It = now I I
X perform self test() I I
| Test in Progress(1) | |
k | |
+1.t+
I camera test complete {th1.4+2) I
: (OK = true) | :
:/ Test Complete(1, true) d = duration : :
ey | | |
0 I Test in Progress(2) I I
ek 2 I
| perform self test()
| camera test complete
| (OK = true)
| |
:/ Test Complete(2, true) {d..d"1.5} : :
I System OK I |
ke | |
| | |
| | |
| L | |
| | |
FIGURE 10.10

Representing time on a sequence diagram.
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asynchronous messages to interleave communication. In this case, the communication between the
Monitoring Station and the cameras is over a network, and the communication between the controller
and user interface is local. As a result of network delays, the Monitoring Station receives the response
from the camera after the progress message is sent. Note that although sloping lines are used here to
indicate the passage of time, the slope has no formal semantic implication. The only timing implica-
tions are expressed using the time and duration constraints and the ordering of occurrences.

A number of observations and constraints on this interaction are expressed in a time unit of seconds.
A time observation, ¢, is taken at the point when the first self-test message is sent using the expression
¢t = now. A time constraint indicates that the message receipt must occur between 1 and 2 seconds after
t. The duration between sending and receipt of the first self-test response message is observed via a
duration observation d, and there is a constraint on the second response message to not exceed 1.5 times
the first duration. The total time taken between the user interface requesting a test command and the
completion of both camera self-tests should be between 5 and 10 seconds, as indicated by the duration
constraint on the left of the diagram.

10.7 DESCRIBING COMPLEX SCENARIOS USING COMBINED FRAGMENTS

As stated earlier, the most basic form of an interaction is a weak sequence of occurrences—generally read
from top to bottom of the sequence diagram. However, more complex patterns of interaction can be mod-
eled using constructs called combined fragments. Different combined fragments specify different rules
for the ordering of messages and their associated occurrences, such as parallel and alternative traces.

A combined fragment consists of an interaction operator and its operands. An interaction oper-
and defines a group of messages and occurrence specifications that span one or more lifelines. The start
of execution of a particular operand can be time-ordered relative to other operands. An interaction
operator defines the logic used to time-order the execution of the operands. An example of an operator
is a parallel operator that enables multiple operands to begin execution in parallel. An operand can
include other combined fragments, which enables the specification of complex control logic.

Each operand has a guard containing a constraint expression that indicates the conditions under
which it is valid for the operand to begin execution. Each guard is bound to a single lifeline and can
only reference attributes of that lifeline in its constraint. The operands may themselves contain com-
bined fragments, and thus can be composed into a tree hierarchy. During execution of an interaction, all
operands use weak sequencing semantics on their contents.

A combined fragment must specify which lifelines participate in the interaction defined by its operands.
Only the occurrences on the participating lifelines are valid when considering the traces of the fragment.

10.7.1 BASIC INTERACTION OPERATORS

The following subset of interaction operators is used most frequently:

e Seq—weak sequencing, as described in Section 10.5.3. Weak sequencing is the default form of
sequencing for all operands, so is rarely indicated explicitly.

e Par—an operator in which operands can occur in parallel, each following weak sequencing rules.
There is no implied order between occurrences in different operands. This operator has an
alternate shorthand notation when applied to a single lifeline, called a coregion, where the
operands are bracketed by vertical square brackets instead of a frame.
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e Alt/else—an operator in which exactly one of its operands will be selected based on the value of
its guard. The guard on each operand is evaluated before selection, and if the guard on one of the
operands is valid, then that one is selected. If more than one operand has a valid guard then the
selection is nondeterministic. An optional else fragment is valid only if none of the guards on the
other operands are valid.

e Opt—a unary operator that is equivalent to an alt with only one operand. This implies that the
operand is either executed or skipped depending on the validity of the guard.

e Loop—an operator in which the trace represented by its operand repeats until its termination
constraint is met. A loop may define lower and upper bounds on the number of iterations as well
as the guard expression. These bounds are documented in brackets after the loop keyword in the
fragment label as (1ower bound, upper bound), where the upper bound may have the value *
indicating an unlimited upper bound.

A combined fragment is shown using a frame whose label indicates the kind of operator and some-
times other information, depending on the kind of operator.

Alt and par operators have multiple horizontal partitions separated by dashed lines that correspond
to their operands. Other operators have just a single partition. Messages, activations, and possibly other
combined fragments are nested within each operand. Guards are shown in braces overlapping the life-
line to which it is bound. When an operator has a single operand that is itself a combined fragment, the
frames of the operator and operand can be merged into one. The frame label for the merged frame is
used to indicate all the operators, such as loop par.

The frame symbol for the combined fragment must not obscure the lifelines that participate in its
interaction, so the tails of the participating lifelines are visible on top of the frame. The frame does
obscure the lifelines that do not participate in the fragment’s interaction.

In Figure 10.11, lifelines 1 through 3 participate in the opt fragment, but only lifelines 1 and 4 par-
ticipate in the loop fragment. To maintain the current layout, lifelines 2 and 3 are obscured by the loop
frame to indicate that they do not participate.

I
L msg 2
I
I

loop

I
I
I
I
I
| msg 3
f
I
|
I
I

FIGURE 10.11

Example of overlapping and nonoverlapping lifelines.
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Figure 10.12 shows what happens when an intruder is detected and tracked by the company security
system. The interaction is started when some lifeline external to this interaction detects a potentially
illegal entry into the monitored areas. This triggers the system to alert the user (the security guard) with
the id of the sensor and raise the alarm. The security guard then attempts to find and track the intruder
and eventually (in this case) cancels the alert.

Within this sequence, the alt operator indicates that the security guard has a choice between using
the system’s auto-track feature and manually tracking the intruder. In the automatic case, the system

sd Handling Alert

|security guard [Elvis] : Advanced Operator %| | company security system : Surveillance System
I I

lllegal Entry Detected (id=sensor id)

|
: Intruder Alert (sensor id)

Raise Alarm()

a_ItJ {automatic mode

[
[
: |
required} Auto Track() |

opt {lost contact}
Lost Track

_____________________________________ 1---
{manual mode |
required} |
|
loop par J Pan Camera(strength) |
>
|
g g A SIS S S S I_ —
Tilt Camera(strength) |
/l
|
|
Cancel Alert() |
\\ Cancel Alarm()
T |
1

FIGURE 10.12

Complex interactions described using interaction operators.
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attempts to acquire and track a target. Failure to acquire a target or loss of an acquired target is indicated
by a Lost Track message. In the manual-tracking case, the security guard uses an input device to repeat-
edly pan and tilt the cameras, as indicated by the loop par fragment.

In all scenarios, the security guard is responsible for canceling the alert, which prompts the com-
pany security system to cancel the alarm. In this figure, the Illegal Entry Detected, Raise Alarm, and
Cancel Alarm messages start or terminate at gates on the frame to interact with lifelines outside the
current interaction (see Section 10.8 for a description of gates).

10.7.2 ADDITIONAL INTERACTION OPERATORS

The following are other interaction operators that are less commonly used.

e Strict—Ilike seq except that the occurrences represented by its operands are sequenced in order
across all participating lifelines. The strict rule does not apply to the operands of any nested
combined fragments.

e Break—an operator whose operand is executed rather than the remainder of the enclosing
fragment. This is often used to represent the handling of exceptional scenarios.

e Critical—an operator in which the sequence of operands must take place with no interleaving of
other occurrences, at least within the participating lifelines of the fragment. This may be used
when some higher-level par operator indicates that interleaving can occur, and this operator is
used to constrain the interleaving.

e Neg—an operator in which the traces described by its operand are deemed invalid.

There are cases in interaction modeling when covering all potential message occurrences is very
onerous, such as when there are a large number of occurrences related to messages that are not relevant
to the scenario being described. Consider and ignore operators allow occurrences and messages that
have been explicitly ignored (or not considered) to be interleaved with valid traces of their operand:

e Consider—only consider messages for a specified set of operations and/or signals. All occur-
rences corresponding to other messages are ignored; that is, they are not considered when
analyzing a trace using the operator’s operand. Only considered messages can appear in the
operand.

* Ignore—do not consider messages for a specified set of operations and/or signals. Occurrences
corresponding to ignored messages are not considered when analyzing a trace. Ignored messages
cannot appear in the operand.

Unlike other operators, which determine either valid or invalid (in the case of neg) traces but not
both, the assert operator provides a mechanism to assert that those traces that are not valid according
to its operand are definitely invalid. This is a very powerful construct but can present challenges when
there are many occurrences and the modeler wishes to use assert to cover traces with only some of
them. With other interaction operators, traces that include occurrences that do not match their operands
do not count as either valid or invalid, whereas with assert they are deemed invalid, which may not be
desired. For this reason, fragments with consider and ignore operators are often used with assert to
reduce the set of occurrences that are relevant so that a valid/invalid decision can be trusted.

For consider and ignore operators, messages to be considered or ignored are shown in braces fol-
lowing the keyword in the fragment label.
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sd Emergency Communications)

company security system : Surveillance System | regional HQ : Command Center
I I
|

|
ignore {Status Report, Status Ack} J I
I |
System On
loop assert ] Alert
Stand Down
System Off
T T
| |
| |
| |
| |

FIGURE 10.13

Message-filtering scenario.

Figure 10.13 describes the sequence of messages exchanged when the company security system is
communicating with the regional HQ in an emergency. Alerts only happen while the surveillance sys-
tem is on, so the regional HQ can discount any alerts apparently received when the system is off
(although they may wish to investigate why they happened). When a valid Alert message has been sent,
no other messages are allowed until a Stand Down message has been received. Any other trace is
invalid, and an assert operator is used to ensure this. However, there are always regular status updates
and acknowledgments between any surveillance system and the regional HQ, and these should not be
deemed to constitute an invalid trace. By enclosing the assert operator in an ignore fragment that lists
Status Report and Status Ack, the occurrence of these state update messages does not create an invalid
trace.

10.7.3 STATE INVARIANTS

It is often useful to augment the message-oriented expression of valid traces by adding constraints on
the required state of a lifeline at a given point in a sequence of occurrences. This can be achieved using
a state invariant on a lifeline. The invariant constraint can include the values of properties or param-
eters, or the state (of a state machine) that the lifeline is expected to be in.
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sd Shutdown System )

security guard [Elvis] : Advanced Operator % | | company security system : Surveillance System
I I

|
Logged On |
|
|

Shutdown System

>
P

|
f
|
| {number of
| users==1}
|

Shutdown System(’ok’)

FIGURE 10.14
State invariants.

The notation for state invariants is an expression in braces shown on the lifeline that is constrained.
If the invariant specifies the state of a state machine, it is shown as a state symbol on the lifeline.

Figure 10.14 shows a scenario for shutting down the system. The state invariant on the security
guard’s lifeline indicates that the guard has to be logged on for the Shutdown System message to be
valid. The state invariant on the company security system lifeline indicates that for a shutdown request
to be valid, the number of users must be one; that is, no other users are currently logged on. A valid
trace ends with a reply of “OK” to the security guard.

10.8 USING INTERACTION REFERENCES TO STRUCTURE COMPLEX
INTERACTIONS

In most systems engineering projects, the size of systems and hence the size of interactions often
become very large. There are also many patterns of interaction—or example, initialization and shut-
down—which are used many times as parts of different scenarios.

To support large-scale uses of interactions, an interaction may include an interaction use that refer-
ences an interaction described on another sequence diagram. Interaction uses can be nested, because a
referenced interaction can in turn reference another. This capability significantly enhances the scalabil-
ity of interactions. It also facilitates reuse since an interaction can be used (i.e., referenced) by more
than one using interaction. The using interaction identifies the participants in the referenced interaction.
The using interaction’s definition must have lifelines that represent all the participants in the referenced
interaction but may include additional lifelines as well.

To allow messages to pass into and out of an interaction when it is being used by another, an interac-
tion can have connection points, called formal gates, at its boundary. There is a gate for every message
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that enters or leaves the interaction at its boundary. When the interaction is used, the using interaction
has actual gates that correspond one-to-one with the formal gates of the used interaction. The mes-
sages arriving or leaving the actual gates must match those arriving or leaving at their corresponding
formal gates in terms of name, direction, kind, and values.

In the definition of an interaction, messages can connect to the frame of the interaction. There is a
formal gate at each connection point, although no symbol represents the gate itself. Gates can be
named, but the name is typically not shown. An example of messages connecting to the frame at the
formal gates of an interaction is shown in Figure 10.12.

Interaction uses are shown as frames with the keyword ref in the frame label. The body of the frame
contains the name of the referenced interaction. Messages that terminate/start at the boundary of the frame
imply the presence of actual gates. Lifelines that participate in the nested interaction are obscured by the
frame symbol. Note that this is opposite to the way participants are shown on combined fragments, where
participants are not obscured. A modeler may choose to indicate on a particular interaction use symbol
whether the internal structure of the referenced interaction is further described by another sequence dia-
gram. If so, the symbol for that interaction use contains a rake symbol in its bottom right corner.

Figure 10.15 shows an interaction that references four other interactions, as indicated by ref. The
first-referenced interaction describes the company security system being set up by the security guard.

sd End-to-End Scenario J

security guard[Elvis] % company security system : Alarm System
| [gate1] : Perimeter Sensor | : Advanced Operator : Surveillance System ref During Alert

ref
Setup System

T
loop alt : {normal status}

|

ref
Route Maintenance
lllegal Entry Raise Alarm()
Detected (gate1) ref
Handling Alert

th

T T Cancel Alarm()

ref
Shutdown System

I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
g I ———————————-———-———= o ———— |
| | {alert status} |
| >
| |
| |
| |
| |
| |
| |
| |
| |

FIGURE 10.15
Reference to another interaction.
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During the guard’s shift, one of two things is shown as potentially occurring. If things are quiet (normal
status), the guard might perform some maintenance on the automated surveillance routes (the scenario
in Figure 10.8); otherwise, the guard and the system might handle an alert (the scenario from
Figure 10.12). These two alternatives may occur repeatedly, as indicated by the loop alt fragment, until
the guard shuts down the system. To use the Handling Alert interaction, this interaction needs to attach
compatible messages to all its gates. The rake symbol in the use of Handling Alert indicates that it is
described by a sequence diagram (Figure 10.12)

Interactions, like other behaviors, can have parameters. Any use of an interaction must provide
arguments corresponding to the interaction’s input parameters and may expect to obtain arguments
corresponding to its output parameters. Parameters may be typed by blocks or value types and may be
used wherever values of that type are valid, for example, in invariants and as arguments to and from
messages.

An interaction’s parameters appear in the diagram label using the same syntax as is used to describe
operations (see Chapter 7, Section 7.5.2). The interaction use symbol can specify arguments to the used
interaction using the same notation as is used for operation call and reply messages (see Section 10.5.1).
Examples of this notation are shown in the Appendix, Table A.18.

10.9 DECOMPOSING LIFELINES TO REPRESENT INTERNAL BEHAVIOR

As described above, the property that a lifeline represents is a usage of a block, which may itself have
nested properties. A lifeline may be decomposed to show lifelines corresponding to those
properties.

A sequence diagram includes the provision to decompose a lifeline and further elaborate the interac-
tion among its parts. For example, a sequence diagram may be used to represent a system as a single
lifeline, interacting with its environment. This is often referred to as a black-box interaction, when the
internal behavior of the system is hidden and only external behavior is visible. The system lifeline can
then be decomposed to specify a nested interaction between its parts that supports the black-box
interaction.

The interaction between these parts is defined by a separate interaction referenced by the parent
lifeline that is being decomposed. The referenced interaction includes formal gates that correspond
to the sending or receiving of messages on the parent lifeline. The messages at the gates of the refer-
enced interaction must be compatible with the messages of the parent lifeline, and the message send
and receive occurrences must occur in the same order as on the parent lifeline. Only lifelines repre-
senting properties of the block that is the type of the parent lifeline may appear in the referenced
interaction.

A lifeline decomposition is shown by adding the name of the referenced interaction below the
name of the lifeline, prefixed by the keyword ref. The same name is used in the frame label of the
referenced interaction.

Figure 10.16 shows the decomposition of the black-box lifeline for the Alarm System from
Figure 10.15. It shows how the Alarm System handles alerts. When the alarm controller receives a
Raise Alarm message, it requests an announcement on the infernal PA. It then alerts all the regis-
tered emergency services through the Emergency Comms System, providing a location and a
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sd During Alert J

| alarm controller : Control System | | : Emergency Comms System | | internal PA : PA System
| :

L

- T
Raise Alarm() _ 1 Announce(message:= "alertmsg", repeat = "true")

loop (1,%)
{more services}

|
|
|
|
|
|
|
|
| service = get next service() :

Alert(location, password, service) VU
< _______________________________
Cancel Alarm() !

|
Announce(message = "#tandownmsg", repeat = "false")

T

loop (1,%) I

{mgre; services}

| service = get next service()

Nl
Standown(location, password, serv'ilfl
e e EEEE R

FIGURE 10.16

A decomposed lifeline.

password to authenticate the alert. When the Cancel Alarm message is received, the alarm control-
ler requests another announcement and then sends a request to the emergency services to stand
down. At least one emergency service must be alerted, but the maximum number may depend on
circumstances.

There is an alternative to using the reference sequence diagram for representing a nested interaction.
This is accomplished by showing the lifeline and its nested parts on the same sequence diagram, with
the black-box lifeline shown on top of the lifelines corresponding to the nested parts. The header boxes
of the parts are attached to the underside of the parent lifeline’s header box. The nested lifelines can be
used to show interactions that occur within the parent lifeline or to send and receive messages directly
to and from other external lifelines.

Figure 10.17 shows a white-box view of what happens when the security guard wishes to log in to
the company security system. The two significant parts of the company security system—the user inter-
face and the Monitoring Station—are shown underneath the lifeline of the company security system. In
this scenario, a login message is received by the user interface and requests the Monitoring Station to
verify it. The user interface then checks that the maximum number of logins has not been exceeded and
returns control to the security guard.
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sd Logging In J

security guard[Elvis] : Advanced . . .
Operator 2 company security system : Surveillance System

user interface : Ul : Monitoring Station
I I
login("Fred Bloggs", "Squirrel007") |

|
I |
I verify login details |
(user name, pwd) |

verify login details():true

check capacity()

check capacity():3

login():"OK" {capacity<4}
[

FIGURE 10.17

Inline nesting of lifeline decomposition.

10.10 SUMMARY

Sequence diagrams describe interactions, which are used to capture system scenarios as a set of specified
occurrences across several parts of the system, represented by lifelines. An interaction is specified using
occurrence specifications, which are organized into a hierarchy, and ordered by interaction operators. When
an interaction executes, it evaluates the set of event occurrences generated by instances of its lifelines and
determines whether they are valid. The most significant source of occurrences is the exchange of messages
between lifelines, which may trigger executions. The following list highlights key aspects of interactions:

e Lifelines represent parts (or references) of the block that owns the interaction. During execution, a
lifeline may represent only one instance; so when the part has an upper bound greater than 1, an
additional selector expression is required to specify exactly one of all the instances that may be
represented by the part. Lifelines may run from the top to the bottom of a sequence diagram,
indicating that the parts they represent exist before and after the execution of the interaction. They
also may start and/or end within the sequence diagram, indicating the creation or destruction of
instances during execution of the interaction. Lifelines may be physically nested on a diagram to
show a white-box view of the interactions within that lifeline. State invariants on the lifelines assert
conditions that must hold at that point in the interaction’s execution for the current trace to be valid.

* Messages are exchanged between lifelines and typically represent an invocation of an operation or
a sending of a signal. Messages do not represent data flows, but the flow of data (or other items
such as matter or energy) can be captured via arguments of the message. Messages are sent and
received by behaviors executing on the lifelines and can be either asynchronous (sender continues
executing) or synchronous (sender waits for a response).
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The default ordering of occurrences imposed by an interaction is weak sequencing, in which
unrelated occurrences are sequenced within but not across lifelines. A combined fragment is a
means for specifying different ordering semantics. A combined fragment includes an operator and
operands; the operator identifies the ordering of its operands, which may themselves be combined
fragments. Commonly used operators include par, alt, and loop. Each operand may have a guard
expression that must be satisfied in order for the operand to be executed.

Interactions can use other interactions as part of their definition to enhance scalability. An
interaction can use another interaction to describe the internal interactions of one of its lifelines;
this enables a black-box specification style. An interaction can also use another to specify part of
its total behavior, which may involve a number of its lifelines. This decomposition is either done
to reduce the size of a sequence diagram or to reuse some common interaction pattern. Interaction
frames can feature connection points on their perimeter, called gates, to enable messages to pass
across interaction boundaries.

10.11 QUESTIONS

1.

Ladi

Noor

10.
11.

12.
13.
14.
15.
16.

17.
18.

What is the diagram kind for a sequence diagram, and which kind of model element does its
frame represent?

What is the context for an executing interaction?

Draw a sequence diagram with two lifelines: one representing a part with no name, typed by the
actor “Customer,” and the other with the name “m,” typed by the block “Vending Machine.”
What is a selector expression used for?

Which kinds of occurrence are relevant when specifying interactions?

List the different kinds of messages that can be exchanged between lifelines.

On the diagram from Question 3, add a message from the “Customer” lifeline to the “Vending
Machine” lifeline representing the signal “Select Product” with the argument “C3.”

What does the term “message overtaking” mean?

How is an action or behavior execution represented on a sequence diagram?

What is an observation and how is it used?

In the diagram from Question 7, observe the current time (provided by the “clock” function)
when the “Select Product” message is sent.

How is a combined fragment represented on a sequence diagram?

Name four common interaction operators.

In the diagram from Question 7, change “Select Product” from a signal to an operation on
“Vending Machine” and show two different replies: if the machine has stock, then it replies with
the return string “Stock Available”; otherwise, it replies with the string “Sold Out.”

Messages M1 and M2 from lifeline L2 can occur in any order on lifeline L1. Show two different
ways that this can be expressed on a sequence diagram.

Are the lifelines that participate in a combined fragment shown in front of or behind the frame
box for the combined fragment?

Which messages are valid inside an ignore fragment?

What does a state invariant specify?
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19. What are gates used for?

20. Name two ways of showing the interaction between the children of a lifeline.

21. Are the lifelines that participate in an interaction use shown in front of or behind the frame box
for the interaction use?

DISCUSSION TOPIC

Sequence diagrams can be used to capture test specifications or test results. What differences would
you expect to see between sequence diagrams used for these two purposes?



CHAPTER

MODELING EVENT-BASED
BEHAVIOR WITH STATE
MACHINES

This chapter describes how to use state machines to model the behavior of blocks as they respond to
internal and external events.

OVERVIEW

State machines are typically used in SysML to describe the state-dependent behavior of a block
throughout its lifecycle, which is defined in terms of its states and the transitions between them. A state
machine for a block may start, for example, when it initiates power up, then transition through multiple
states in response to different stimuli, and terminate when it completes power down. The state machine
defines how the block’s behavior changes as it transitions between different states and while the block
is in different states. State machines in SysML can be used to describe a wide range of state-related
behavior, from the behavior of a simple lamp switch to the complex modes of an advanced aircraft.

State machines are normally owned by blocks and execute within the context of an instance of that
block, but a state machine can also be owned by a package. The behavior of a state machine is specified
by a set of regions, each of which contains its own states. The states in any one region are exclusive;
that is, when the region is active, exactly one of its substates is active. A region normally has an initial
pseudostate, which is the place the region starts executing when it first becomes active. When a state is
entered, an (optional) entry behavior (e.g., an activity) is executed. Similarly, an optional exit behavior
is executed on exit. While in a state, a state machine can execute a do behavior. A region also normally
has a final state that signifies that the region has completed. Change of state is effected by transitions
that connect a source state to a target state. Transitions are defined by triggers, guards, and effects. The
trigger indicates an event that can cause a transition from the source state, the guard is evaluated in
order to test whether the transition is valid, and the effect is a behavior executed once the transition is
triggered. Triggers may be based on a variety of events such as the expiration of a timer or the receipt
of a signal by the state machine’s owning object.

Operation calls on the owning block are also valid trigger events for transitions. Junction and choice pseu-
dostates support the construction of compound transitions between states, with multiple guards and effects.

State machines in different blocks may interact with one another by either sending signals or invok-
ing operations. For example, the state machine of one block can send a signal to another block as part
of a transition effect or state behavior. The event corresponding to the receipt of this signal by the
receiving block can trigger a state transition in its state machine. Similarly, a state machine in one block
may call an operation on another block that causes an event that triggers a transition.

A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00011-4 2 73
Copyright © 2015 Elsevier Inc. All rights reserved.
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State hierarchies occur when a state contains its own regions. A state with just one region is the most
common case and is called a composite state. A state with more than one region is called an orthogonal
composite state. Finally, a kind of state called a submachine state may reference another state machine.
To model state hierarchies effectively, additional constructs are needed. Fork and join pseudostates are
needed to specify transitions into and out of orthogonal composite states. Entry and exit point pseu-
dostates can be used to add connection points for transitions on the boundary of a state or state machine.

State machines may also specify constraints within states or on transitions. The constraints may
specify equations that correspond to different behaviors or different levels of performance that must be
true in different states.

State machines can be used with other behaviors. For example, a state machine can use an activity
or other behavior to specify what happens within a state, on entry, on exit, or on transition between
states. State machines can also be used within interactions (see Chapter 10, Section 10.7.3) and activi-
ties (see Chapter 9, Section 9.11.3) to constrain certain aspects of their behavior. The integration of the
semantics of different kinds of behaviors is sometimes complex and should be used with care.

11.2 STATE MACHINE DIAGRAM

State machine diagrams are sometimes referred to as state charts or state diagrams, but the actual name in
SysML is the state machine diagram. The complete diagram header for a state machine diagram is as follows:

stm [stateMachine] state machine name [diagram name]

The diagram kind for a state machine diagram is stm, and the model element kind is always
stateMachine. Because of this, the model element kind in square brackets is usually elided.

Figure 11.1 shows many of the basic notational elements for describing state machines. It describes a state
machine for an ACME Surveillance System. It starts in the idle state, runs through a series of states during its

stm Surveillance System)

? Turn Off%@ ) .
[r=="Yes") Confirmation

a Shut Down Cameras Response (1) hatting d
idle K shutting down
after (60s)/ T Shutdown
Startup Display "Timed Out' Status [r=="No"T i1 (ogged on)y
Confirm
o Shutdown
initializing [init OK] Request
System operating
K
o N entry/Display "Operating" Status
do/Monitor Site
[not init OK] ~ exit/Display "Shutdown" Status

" - System OK

FIGURE 11.1
A state machine.
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lifecycle, and finally ends up at idle again, when it may receive a Turn Off signal that causes it to complete its
behavior. The notation for state machine diagrams is shown in the Appendix, Tables A.21 through A.23.

SPECIFYING STATES IN A STATE MACHINE

A state machine is a potentially reusable definition of some state-dependent behavior. State machines
typically execute in the context of a block, and events experienced by the block instance may cause
state transitions.

REGION

A state machine can contain one or more regions, which together describe the state-related behavior of
the state machine. Each region is defined in terms of states and pseudostates and the transitions
between them. An active region has exactly one active state within it at a given time. The difference
between a state and a pseudostate is that a region can never stay in pseudostate, which merely exists to
help determine the next active state. If a state machine contains a single region, it typically is not
named, but if there are multiple regions, they are often named.

A state machine with multiple regions may describe some concurrent behavior happening within the
state machine’s owning block. This may represent an abstraction of the behavior of different parts of the
block, as discussed in Chapter 7, Section 7.5.1. For example, one part of a factory may be storing incom-
ing material, another turning raw material into finished products, and yet another sending out finished
goods. The state machine may also include concurrent behaviors—such as a camera being panned and
tilted at the same time—that are performed by multiple parts. If the parts’ behaviors are specified, the
relationship between the state machine for the parent block and the behaviors of its parts should also be
specified. States can also contain multiple regions, as described in Section 11.6.2, but this section describes
simple states only (i.c., states with no regions and therefore without nested states).

The initialization and completion of a region are described using an initial pseudostate and final
state, respectively. An initial pseudostate is used to determine the initial state of a region. The out-
going transition from an initial pseudostate may include an effect (see Section 11.4.1 for a detailed
discussion of transition effects). Such effects are often used to set the initial values of properties used
by the state machine. When the active state of a region is the final state, the region has completed,
and no more transitions take place within it. Hence, a final state can have no outgoing transitions.

The terminate pseudostate is always associated with the state of an entire state machine. If a ter-
minate pseudostate is reached, then the behavior of the state machine terminates. A terminate pseu-
dostate has the same effect as reaching the final states of all the state machine’s regions. The termination
of the state machine does not imply the destruction of its owning object, but it does mean that the object
will not respond to events via its state machine.

If a state machine has a single region, it is represented by the area inside the frame of the state
machine diagram. Multiple regions are shown separated by dashed lines.

The notation for the concepts introduced thus far is as follows:

* An initial pseudostate is shown as a filled circle.
* A final state is shown as a bulls-eye (i.e., a filled circle surrounded by a larger hollow circle).
e A terminate pseudostate is shown as an X.
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11.3.2 STATE

A state represents some significant condition in the life of a block, typically because it represents some
change in how the block responds to events and what behaviors it performs. This condition can be
specified in terms of the values of selected properties of the block, but typically the condition is
expressed in terms of implicit state variable(s) for each region. It is helpful to use the analogy that the
block is controlled by a switch. Each state corresponds to a switch position for the block, and the block
can exhibit some specified behavior in each switch position. The state machine defines all valid switch
positions (i.e., states) and transitions between switch positions (i.e., state transitions). If there are mul-
tiple regions, each region is controlled by its own switch with its switch positions corresponding to its
states. The switch positions can be specified by a form of truth table—similar to how logic gates can be
specified—in which the current states and transitions define the next state.

Each state may contain entry and exit behaviors that are performed whenever the state is entered
or exited, respectively. In addition, the state may contain a do behavior that executes once the entry
behavior has completed. The do behavior continues to execute until it completes or the state is exited.
Although any SysML behavior can be used, entry and exit behaviors and do behaviors are typically
activities or opaque behaviors.

A state is represented by a round-cornered box containing its name. Entry and exit behaviors and
do behaviors are described as text expressions preceded by the keywords entry, exit, or do and a
forward slash. There is some flexibility in the content of the textual expression. The text expression
typically is the name of the behavior, but when the behavior is an opaque behavior, the body of the
opaque behavior can be used instead (refer to Chapter 7, Section 7.5 for a description of an opaque
behavior).

Figure 11.2 shows a simple state machine for the Surveillance System, with a single operating
state in its single region. A transition from the region’s initial pseudostate goes to the operating
state. On entry, the Surveillance System displays that it is operational on all operator consoles, and
on exit, it displays a shutdown status. While the Surveillance System is in the operating state, it
performs a do activity of its standard function to Monitor Site, which is monitoring the building
where it is installed for any unauthorized entry. When in the operating state, a Turn Off signal trig-
gers a transition to the final state, and because there is only a single region, the state machine

terminates.
stm Surveillance System)
? Turn Of@
v o[
| operating |
entry/Display "Operating" Status
do/Monitor Site
exit/Display "Shutdown" Status
FIGURE 11.2

A state machine containing a single state.
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11.4 TRANSITIONING BETWEEN STATES

A transition specifies when a change of state occurs within a state machine. State machines
always run to completion once a transition is triggered, which means that they are not able to
consume another trigger event until the state machine has completed the processing of the current
event.

11.4.1 TRANSITION FUNDAMENTALS

A transition may include one or more triggers, a guard, and an effect as described next.

Trigger
A trigger identifies the possible stimuli that cause a transition to occur. SysML has four main kinds of
triggering events.

* A signal event indicates that a new asynchronous message corresponding to a signal has arrived.
A signal event may be accompanied by a number of arguments that can be used in the transition
effect.

e A time event indicates either that a given time interval has passed since the current state was
entered (relative) or that a given instant in time has been reached (absolute).

e A change event indicates that some condition has been satisfied (normally that some specific set
of attribute values hold). Change events are discussed in Section 11.7.

e A call event indicates that an operation on the state machine’s owning block has been requested.
A call event may also be accompanied by a number of arguments. Call events are discussed in
Section 11.5.

Once the entry behavior of a state has completed, transitions can be triggered by events irrespective
of what is happening within the state. For example, a transition may be triggered while a do activity is
executing, in which case the do activity is terminated.

By default, events must be consumed when they are presented to the state machine, even if they
do not trigger transitions. However, events may be explicitly deferred while in a specific state for
later handling. The deferred event is not consumed as long as the state machine remains in that
state. As soon as the state machine enters a state in which the event is not deferred, the event must
be consumed before any others. The event triggers a transition or it is consumed without any
effect.

Transitions can also be triggered by internally generated completion events. For a simple state, a
completion event is generated when the entry behavior and the do behavior have completed.

Guard

The transition guard contains an expression that must evaluate to true for the transition to occur. The
guard is specified using a constraint, introduced in Chapter 8, Section 8.2, which includes a textual
expression to represent the guard condition. When an event satisfies a trigger, the guard on the transi-
tion is evaluated. If the guard evaluates to true, the transition is triggered; if the guard evaluates to false,
then the event is consumed with no effect. Guards can test the state of the state machine using the
operators in (state x) and not in (state x).
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Effect

The third part of the transition is the transition effect. The effect is a behavior, normally an activity or an
opaque behavior, executed during the transition from one state to another. For a signal or call event, the argu-
ments of the corresponding signal or operation call can either be used directly within the transition effect or
be assigned to attributes of the block owning the state machine. The transition effect can be an arbitrarily
complex behavior that may include send signal actions or operation calls used to interact with other blocks.

If the transition is triggered, first the exit behavior of the current (source) state is executed, then the
transition effect is executed, and finally the entry behavior of the target state is executed.

A state machine can contain transitions, called internal transitions, which do not effect a change in
state. An internal transition has the same source and destination and, if triggered, simply executes the
transition effect. By contrast, an external transition with the same source and destination state—some-
times called a transition-to-self—triggers the execution of that state’s entry and exit behaviors as well
as the transition effect. One frequently overlooked consequence of internal transitions is that, because
the state is not exited and entered, timers for relative time events are not reset.

Transition notation
A transition is shown as an arrow between two states, with the head pointing to the target state. Transi-
tions-to-self are shown with both ends of the arrow attached to the same state. Internal transitions are not
shown as graphical paths but are listed on separate lines within the state symbol, as shown in Figure 11.9.
The definition of the transition’s behavior is shown in a formatted string on the transition with the
list of triggers first, followed by a guard in square brackets, and finally the transition effect preceded by
a forward slash. Section 11.4.3 describes an alternate graphical syntax for transitions.
The text for a trigger depends on the event, as follows:

e Signal and call events—the name of the signal or operation followed optionally by a list of
attribute assignments in parentheses. Call events are typically distinguished by including the
parentheses even when there are no attribute assignments. Although this is a useful convention, it
is not part of the standard notation.

e Time events—the term after or at followed by the time. after indicates that the time is relative
to the moment when the state is entered. at indicates that the time is an absolute time.

e Change events—the term when followed by the condition that has to be met in parentheses. Like
other constraint expressions, the condition is expressed in text with the expression language
optionally in braces.

The effect expression may either be the name of the invoked behavior or contain the text of an
opaque behavior.

When an event is deferred in a state, the event is shown inside the state symbol using the text for the
trigger followed by a “/”” and the keyword defer. See Figure 11.12 for an example.

Transitions can also be named, in which case the name may appear alongside the transition instead of
the transition expression. A name is sometimes a useful shorthand for a very long transition expression.

Figure 11.3 shows a more sophisticated state machine for the Surveillance System than in Figure 11.2,
with all the principal states and the transitions between them. In contrast to Figure 11.2, the initial pseu-
dostate now indicates that the region starts at the idle state. The final state is now also reached from the idle
state, but it is still triggered by the receipt of a Turn Off signal. Once processing is complete in the initializing
state (refer to Figure 11.14 to view inside the initializing state), a completion event for initializing will be
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stm Surveillance System)

? Turn Offg@

Shutdown Confirmed/Shut Down Cameras

idle h shutting down

after (60s)/ Shutdown
Startup Display "Timed Out" Status [in (logged on))/

Confirm
Shutdown

[init OK] Request

initializing

System operating

KO

entry/Display "Operating" Status
do/Monitor Site
[not init OK] exit/Display "Shutdown" Status

System OK

diagnosing

FIGURE 11.3
Transitions between states.

generated that triggers the two outgoing transitions. If the condition variable init OK is true, the system enters
the operating state. Otherwise, the system enters the diagnosing state in which an operator will look at the
error logs and try to manually initialize the system. Just in case something happens and the test procedure
does not complete, the system has a time-out after 60 seconds, which returns the system to the idle state.

From the diagnosing state, the operator indicates success using the signal System OK, which allows
the system to enter the operating state. The signal System KO indicates that the system is beyond opera-
tor repair and causes a transition back to idle. From the operating state, a Shutdown signal will cause a
transition to the shutting down state, as long as the operating state is in substate logged on (refer to
Figure 11.9 for a view inside the operating state). As part of shutting down, the system requests a con-
firmation and will only exit the shutting down state when it receives a Shutdown Confirmed signal,
whereupon it executes the Shut Down Cameras activity.

Unless the graphical notation for transitions is being used (see Section 11.4.3), transition effect—
with the exception of opaque behaviors—are specified on separate diagrams appropriate to the kind of
behavior. Figure 11.4 shows the activity diagram for the Shut Down Cameras activity.

When invoked as a transition effect, Shut Down Cameras loops over all known cameras and sends each
a Shutdown signal. Note that the activity does not include an accept event action; this would leave the
invoking state machine in an ambiguous (mid-transition) state when waiting for new events to occur.

11.4.2 ROUTING TRANSITIONS USING PSEUDOSTATES

There are a variety of situations when a simple transition directly between two states is not sufficient to
express the required semantics. SysML includes a number of pseudostates to provide these additional
semantics. This section introduces junction and choice pseudostates, which support compound transi-
tions between states.
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act [Activity] Shut Down Cameras )

i [more cameras()]

Vi
C{C}id = get next camera())
id

[ ]target

FIGURE 11.4

Defining a transition effect using an activity.

A junction pseudostate is used to construct a compound transition path between states. The com-
pound transition allows more than one alternative transition path between states to be specified,
although only one path can be taken in response to any single event. Multiple transitions may either
converge on or diverge from the junction pseudostate. When there are multiple outgoing transitions
from a junction pseudostate, the selected transition will be one of those whose guard evaluates to true
at the time the triggering event is processed. If more than one guard evaluates to true, SysML does not
define which one of the valid transitions is chosen for execution. If a particular compound transition
path includes more than one junction between two states, all the guards along that path must evaluate
to true before the compound transition is taken.

The choice pseudostate also has multiple incoming transitions and outgoing transitions and,
like the junction pseudostate, is part of a compound transition between states. The behavior of the
choice pseudostate is distinct from that of a junction pseudostate in that the guards on its outgoing
transitions are not evaluated until the choice pseudostate has been reached. This allows effects
executed on the prior transition to affect the outcome of the choice. When a choice pseudostate is
reached in the execution of a state machine, there must always be at least one valid outgoing transi-
tion. If not, the state machine is invalid. A technique that is often used to ensure the validity of a
choice pseudostate is to use a catch-all guard on no more than one outgoing transition. This is
specified using the keyword else. Whether a compound transition contains junction pseudostates,
choice pseudostates, or both, any possible compound transition must contain only one trigger,
normally on the first transition in the path.

The various routing pseudostates are represented as follows:

* A junction pseudostate is shown, like an initial pseudostate, as a filled circle.
e A choice pseudostate is shown as a diamond.

Figure 11.5 completes the state machine for the Surveillance System shown in Figure 11.3. The
handling of shutdown has been improved to describe what happens if the operator does not actually
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stm Surveillance System

? Turn Off%@ ) )
[r=="Yes")/ Confirmation
- Shut Down Cameras Response (r)
idle h

shutting down
after (60s)/ g Shutdown
Startup Display "Timed Out" Status [r=="No"] fin (logged on)y/
Confirm
o Shutdown
initializing finit OK] Request
System operating
KO N\ entry/Display "Operating" Status
do/Monitor Site
[not init OK] g exit/Display "Shutdown" Status

N " System OK

FIGURE 11.5
Routing transitions.
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FIGURE 11.6
Specifying shutdown using a choice pseudostate.

want to shut down the system after all. The argument of the Confirmation Response signal, which takes
values of “Yes” or “No” is mapped to attribute r. The transition triggered by the Confirmation Response
signal now ends at a junction, with two outgoing transitions with different guards. If r = = “Yes” then
the system shutdown proceeds; if » = = “No,” then the system returns to the operating state.

The transition from shutting down to idle/operating could be specified using a junction pseudostate
in Figure 11.5 because the value of 7, needed to determine the complete transition path, was available as
part of the transition’s trigger. However, Figure 11.6 shows another approach to system shutdown with-
out a shutting down state. Here, the confirmation request is made as an effect of the transition out of the
operating state, so the value of r is not known until after the first leg of the compound transition has been
taken. In this case, a choice pseudostate is needed to allow the value of r returned from Confirm Shut-
down to be used in the guard conditions on its exit transitions. As noted earlier, the modeler must ensure
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C shutting down ) » > Confirmation Response (r) ‘
’ Confirm Shutdown Request s
[r == "No"| [r=="Yes"]
Shutdown [in (logged on)] ‘ ’ Shut Down Cameras ‘

C operating )—/ C idle )
FIGURE 11.7

Transition-oriented notation.

that there is always at least one valid path from a choice pseudostate, so the guard on the transition has
been changed to [else] in order to deal with any values other than “Yes.” Then, even if Confirm Shut-
down unexpectedly returns a value other than “Yes” or “No,” the state machine will still operate.

11.4.3 SHOWING TRANSITIONS GRAPHICALLY

Some modelers prefer to show transitions graphically on state machine diagrams. SysML introduces a
set of special symbols that allow a modeler to depict send signal actions, other actions, and triggers
graphically. These symbols are connected by arrows with solid heads to differentiate them from transi-
tion arrows. The graphical syntax for these symbols is as follows:

e A rectangle with a triangular notch removed from one side represents all the transition’s triggers,
with descriptions of the triggering events and the transition guard inside the symbol.

e A rectangle with a triangle attached to one side represents a send signal action. The signal’s name,
together with any arguments being sent, is shown within the symbol. There may be many send
signal actions in a single transition effect, each with their own symbol. Signals are very important
when communicating between state machines (hence the separate treatment of this action).

e Any other action in the transition effect is represented by a rectangle containing text that describes the
action to be taken. There may be many actions as part of a transition effect, each with its own symbol.

Figure 11.7 shows the use of transition notation to provide an equivalent definition of the transitions
between operating, idle, and shutting down, originally shown on Figure 11.5.

11.5 STATE MACHINES AND OPERATION CALLS

State machines can respond to operation calls on their parent block via call events. A call event may
either be handled in a synchronous fashion—that is, the caller is blocked while waiting for a response—
or asynchronously, which results in similar behavior to the receipt of a signal. The state machine exe-
cutes all behaviors triggered by the call event until it has reached another state, and then returns any
outputs created by those behaviors to the caller.
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FIGURE 11.8
A state machine driven by call events for operations on its owning block.

One of the components used by the surveillance system’s operators is a video player that allows
them to review recorded surveillance data. The Video Player block, shown in Figure 11.8, provides a set
of operations in its interface to control playback. Although many of the operations do not return data, it
makes sense for any client of Video Player to wait until a request for these operations has been pro-
cessed; hence, it makes sense for its interface to be defined using operations. The response of the block
to requests from these operations is defined using the state machine shown in Figure 11.8, in which call
events related to the operations are used as triggers on transitions. Calls to the play, stop, pause, and
resume operations cause call events that trigger transitions between the various states of Video Player.
Calls to the operations next chapter, previous chapter, and get play time cause call events that trigger
internal transitions to state playing. To simplify the example, Figure 11.8 does not show many of the
transition effects, but it does show how a request on ger play time gets its return argument.

11.6 STATE HIERARCHIES

Just as state machines have regions, so can states; such states are called composite or hierarchical
states. These allow state machines to scale to represent arbitrarily complex state-based behaviors. This
section discusses composite states with single and multiple regions, as well as the reuse of an existing
state machine to describe the behavior of a state.

11.6.1 COMPOSITE STATE WITH A SINGLE REGION

Arguably the most common situation is a composite state that has a single region. A state nested within
the region can only be active when the state enclosing the region is active. Thus, the switch position
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analogy described in Section 11.3.2 can apply to nested states by requiring that the switch position cor-
responding to the enclosing state be enabled in order to enable the switch positions corresponding to
any of its nested states.

As stated earlier, a region typically will contain an initial pseudostate and a final state, a set of pseu-
dostates, and set of substates, which may themselves be composite states. If the region has a final state,
then a completion event is generated when that state is reached.

When an initial pseudostate is missing from a region in a composite state, the initial state of that
region is undefined, although extensions to SysML are free to add their own semantics. However, a
composite state may be porous, which means transitions may cross the state boundary, starting or end-
ing on states within its regions (see Figure 11.10). In the case of a transition ending on a nested state,
the entry behavior of the composite state, if any, is executed after the effect of the transition and before
the execution of the entry behavior of the transition’s target nested state. In the opposite case, the exit
behavior of the composite state is executed after the exit behavior of the source nested state and before
the transition effect. In the case of more deeply nested state hierarchies, the same rule can be applied
recursively to all the composite states whose boundaries have been crossed.

Figure 11.9 shows the decomposition of the state operating from Figure 11.5 into the substates of
one of its regions. On entry to the operating state, two entry behaviors are executed: the entry behavior
of operating, Display “Operating” status; logged in = 0, and then the entry behavior of logged off,
Display “Logged Off.” This is because on entry, as indicated by the initial pseudostate, the initial sub-
state of operating is logged off.

When in state logged off, a Login signal will cause a transition to the logged on state and will incre-
ment the value of logged in. While in the logged on state, repeated Login and Logout signals will incre-
ment and decrement the value of logged in, often as internal transitions without a change of state.
However, if a Logout signal is received when the value of logged in is 1, then the signal will trigger a
transition back to logged off. The entry behavior for logged on records the time in the variable time on,
and its exit behavior uses that to display the Session Length.

The do activity Monitor Site executes as long as the state machine for the Surveillance System is
in the operating state or until it reaches its own activity final. State operating does not have a final

operating

entry/Display "Operating" Status; logged in = 0
do/Monitor Site
exit/Display "Shutdown" Status

Login/logged in =

logged in + 1
0 (
( logged off logged on W
entzy/DlspIay "Logged entry/Display "Logged On"; time on = now
Off ) exit/Display "Session Length:", now — time on
/t Logout [logged in >1}/logged in = logged in — 1
Login/logged in = logged in + 1
Logout [logged in == 1]/

-

logged in = logged in — 1

FIGURE 11.9

States nested within a composite state.
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state, and so a completion event is never generated (as described above). As can be seen in Figure
11.5, this state is exited when a Shutdown signal is presented.

11.6.2 COMPOSITE STATE WITH MULTIPLE (ORTHOGONAL) REGIONS

A composite state may have many regions, which may each contain substates. A composite state with
more than one region is sometimes called an orthogonal composite state. When an orthogonal com-
posite state is active, each region has its own active state that is independent of the others, and any
incoming event is independently analyzed within each region. A transition that ends on the composite
state will trigger transitions from the initial pseudostate of each region, so there must be an initial pseu-
dostate in each region for such a transition to be valid. Similarly, a completion event for the composite
state will occur when all the regions are in their final state.

When an event is associated with triggers in multiple orthogonal regions, the event may trigger a
transition in each region, assuming the transition is valid based on the other usual criteria. A simple
example of this scenario is shown later in Figure 11.11.

Note that a transition can never cross the boundary between two regions of the same composite state.
Such a transition, if triggered, would leave one of the regions with no active state, which is not allowed.

In addition to transitions that start or end on the composite state, transitions from outside the com-
posite state may start or end on the nested states of its regions. In this case, one state in each region must
be the start or end of one of a coordinated set of transitions. This coordination is performed by a fork
pseudostate in the case of incoming transitions and a join pseudostate for outgoing transitions.

A fork pseudostate has a single incoming transition and as many outgoing transitions as there are
orthogonal regions in the target state. Unlike junction and choice pseudostates, all outgoing transitions
of a fork are part of the compound transition. When an incoming transition is taken to the fork pseu-
dostate, all the outgoing transitions are taken. Because all outgoing transitions of the fork pseudostate
have to be taken, they may not have triggers or guards but may have effects.

The coordination of outgoing transitions from an orthogonal composite state is performed using a
join pseudostate that has multiple incoming transitions and one outgoing transition. The rules on trig-
gers and guards for join pseudostates are the opposite of those for fork pseudostates. Incoming transi-
tions of the join pseudostate may not have triggers or a guard but may have an effect. The outgoing
transition may have triggers, a guard, and an effect. When all the incoming transitions can be taken and
the join’s outgoing transition is valid, the compound transition can occur. Incoming transitions occur
first followed by the outgoing transition.

A fork and join pseudostate is shown as a vertical or horizontal bar with transition edges either start-
ing or ending on the bar. An example of this can be seen in Figure 11.10, which shows a possible
decomposition of the operating state from Figure 11.5.

The presence of multiple regions within a composite state is indicated by multiple compartments
within the state symbol, separated by dashed lines. The regions can optionally be named, in which case
the name appears at the top of the corresponding compartment. All nodes within such a compartment
are part of the same region. As an alternative to showing the name of a state in a compartment, its name
can be placed in a tab attached to the outside of the state symbol. An example of this can be seen in
Figure 11.11.

Figure 11.10 shows a further elaboration of the operating state shown in Figure 11.9. In this elabo-
ration, the logged on state has two orthogonal regions. One region, called alert management, specifies
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operating

entry/Display "Operating" Status; logged in = 0
do/Monitor Site
exit/Display "Shutdown" Status

logged on

entry/Display "Logged On"; time on = now
exit/Display "Session Length:", now — time on

logged off :_ogingo_ggfd1 in = Logout [logged in >1]/logged in = logged in — 1
I 09ged in Login/logged in = logged in + 1
entry/Display "Logged
Off" route maintenance
Logout [logged in == 1]/logged Edit Routes

in = logged in — 1
B

idle maintaining

A _Store Routes

alert management

Alert/alert count = alert count + 1

Stand Down

/alert count = 0

normal
/Display "Alerts: ", alert count

FIGURE 11.10
Entering and leaving a set of concurrent regions.

stm Machine 1
state 1

igl [x >=0
sigl [x <= 0]
o Ltz )

FIGURE 11.11
Illustration of transition firing order.

states and transitions for normal and alerted modes of operation; the other region, called route mainte-
nance, specifies states and transitions for updating the route (i.e., pan-and-tilt angles) when the auto-
matic surveillance feature of the system is engaged. As before, in state logged off; the receipt of a Login
signal triggers transition to logged on. Based on the initial pseudostates in the two regions, the two
initial substates of logged on are idle for region route maintenance and normal for region alert manage-
ment. The receipt of an Alert signal triggers the transition from normal to alerted in alert management.
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Similarly, the receipt of an Edit Routes signal triggers the transition from idle to maintaining in route
management.

To ensure appropriate operator oversight of the system, the last operator can only log off if the
logged on state is in substates idle and normal. This constraint is specified using a join pseudostate
whose outgoing transition is triggered by a Logout signal with a guard of logged in = = 1. The two
incoming transitions to the join pseudostate start on idle and normal, so even if there is a Logout signal
and the number of logged on operators is one, the outgoing transition from the join pseudostate will be
valid only if the two active substates of logged on are idle and normal. Because the transitions from idle
and normal cross the boundary of state logged on, its exit behavior is executed before any effects on the
transitions. After evaluating that the guard condition on the transition evaluates to true, the order of
execution triggered by the valid Logout signal is:

e exit behavior of logged on—Display “Session Length:”, now-time on;
e incoming transition effect to join—Display “Alerts:,” alert count;

e outgoing transition effect from join—“logged in = logged in—1"; and
¢ Entry behavior of logged off—Display “Logged Off”.

Having elaborated the operating state, it is apparent that the transitions Logout [logged in > 1] and
Login are rightly internal transitions rather than transitions-to-self. Transitions-to-self always exit and
reenter the state, which in this case would reset the substates of route maintenance and alert manage-
ment; obviously, this is not desirable in the middle of an intruder alert.

11.6.3 TRANSITION FIRING ORDER IN NESTED STATE HIERARCHIES

It is possible that the same event may trigger transitions at several levels in a state hierarchy, and with
the exception of concurrent regions, only one of the transitions can be taken at a time. Priority is given
to the transition whose source state is innermost in the state hierarchy.

Consider the state machine Machine 1, shown in Figure 11.11, in its initial state (i.e., in state 1.1.1
and 1.2.1). The signal sig! is associated with the triggers of three transitions, each with guards based
on the value of variable x. Note that, in this case, the transitions have both a name and a transition
expression, whereas a transition edge normally would show one or the other. This has been done to help
explain the behavior of the state machine. The following list shows the transitions that will fire upon
receipt of sig/ based on values of x from —1 to 1:

e xequals —1—transition ¢/ will be triggered because it is the only transition with a valid guard;

e xequals O—transition 2 will be triggered because, although transition ¢/ also has a valid guard,
state 1.1.1 is the innermost of the two source states; or

e xequals 1—both transitions 72 and 3 will be triggered because both their guards are valid.

The normal rules for execution of exit behaviors apply, so, before the transition from state 1 to state
2 can be taken, any exit behavior of the active nested states of state 1, as well as the exit behavior of
state 1, must be executed.

The example in Figure 11.11 is fairly straightforward. Assessing transition priority is more complex
when compound transitions and transitions from within orthogonal composite states are used. How-
ever, the same rules apply.
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11.6.4 USING THE HISTORY PSEUDOSTATE UPON RETURN TO A PREVIOUSLY
INTERRUPTED REGION

In some design scenarios, it is desirable to handle an exception event by interrupting the behavior of the
current region, responding to the event, and then returning back to the state that the region was in at the
time of the interruption. This can be achieved by a kind of pseudostate called a history pseudostate. A
history pseudostate represents the last active state of its owning region, and a transition ending on a
history pseudostate has the effect of returning the region to that state. An outgoing transition from a
history pseudostate designates a default history pseudostate. This is used when the region has no previ-
ous history or its last active state was a final state.

The two kinds of history pseudostate are deep and shallow. A deep history pseudostate records the
states of all regions in the state hierarchy below and including the region that owns the deep history
pseudostate. A shallow history pseudostate only records the top-level state of the region that owns it.
As a result, the deep history pseudostate will enable a return to a nested state, while a shallow history
pseudostate will enable a return to only the top-level state.

A history pseudostate is described using the letter “H” surrounded by a circle. The deep history
pseudostate has a small asterisk in the top right corner of the circle.

The Surveillance System supports an emergency override mechanism, as shown in Figure 11.12. In
a change from Figure 11.10, the reception of an Override signal with a valid password will always
cause a transition from the logged on or logged off states, even if there is an ongoing alert. This transi-
tion is routed out of the enclosing operating state via an exit point pseudostate to the emergency over-
ride activated state (see a discussion of this at the end of Section 11.6.5). However, once the emergency
is over, a Resume Operation signal needs to restore the operating state completely to its previous state
so that the system can continue with its interrupted activities. To achieve this, the transition triggered

operating
do/Monitor Site
logged on
Display "Operating” Status; entry/Display "Logged On"; time on = now
Resume logged in =0 exit/Display "Session Length:", now — time on

emergency Operation - N Login/logged in = | Logout [logged in > 1}/logged in = logged in + 1

override ’\% logged in + 1 Login/logged in = logged in - 1

activated logged off route maintenance
Alert/defer entry/Display "Logged

Off" Edit Routes

Logout [logged intaini
in == 1]/logged maintaining
n = logged in -1 Store Routes

alert management

Alert/alert count = alert count + 1

/alert count|= 0
|
/Display "Alerts:" , alert count alerte
Stand Down
FIGURE 11.12

Recovering from an interruption using a history pseudostate.

[check (password)
== "valid"]

Override
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by the Resume Operation signal ends (via an entry-point pseudostate) on a deep history pseudostate,
which will restore the complete previous state of operating, including substates. By comparison, if a
shallow history pseudostate was used, and the previous substate of operating was logged on, then the
state machine would return to the initial states of logged on rather than previously active substates of
logged on. If there is no previous history, the default state is Logged Off.

Alert events are deferred in the emergency override activated state so that they can be handled, if
appropriate, in the resumed operating state.

11.6.5 REUSING STATE MACHINES

A submachine state is a kind of state that references a state machine that can be reused by other sub-
machine states. A transition ending on a submachine state will start its referenced state machine. Simi-
larly, when the referenced state machine completes, it will generate a completion event that can trigger
transitions whose source is the submachine state. Modelers can also benefit from two additional kinds
of pseudostates, called entry and exit-point pseudostates, which allow the state machine to define
additional entry and exit points that can be accessed from a submachine state.

Entry and exit points on state machines
For a single-region state machine, entry- and exit-point pseudostates are similar to junctions; that is, they are
part of a compound transition. Their outgoing guards have to be evaluated before the compound transition is
triggered, and only one outgoing transition will be taken. On state machines, entry-point pseudostates can
only have outgoing transitions, and exit-point pseudostates can only have incoming transitions.

Entry- and exit-point pseudostates are described by small circles that overlap the boundary of a state
machine or composite state. An entry-point symbol is hollow, whereas an exit-point symbol contains an X.

Figure 11.13 shows a state machine for testing cameras, called 7est Camera, which uses the graphical
form for specifying transitions. From the entry-point pseudo state, the first transition simply sets the failures
variable to 0 and ends on a choice pseudostate. On first entry, the state machine will always take the [else]
transition, which will result in the sending of a Test Camera signal with the current camera number (ccount)
as its argument. The state machine then stays in the await fest result state until a Test Complete signal with
argument test result has been received. The transition triggered by a Test Complete signal ends on a junction
that either leads to the exit-point pseudostate pass (if the test passed) or back to the initial choice pseudostate
(if the test failed), incrementing the failures variable on the way. If the camera has failed its self-test more
than three times, then the transition with guard [failures > 3] will be taken to exit-point fail.

stm Test Camera [test result == fail]
failures = failures + 1

Test Complete

[test result == pass]

Test Camera
(ccount)

result pass

FIGURE 11.13

A state machine with entry and exit points.
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Submachine states

A submachine state contains a reference to another state machine that is executed as part of the execution
of the submachine state’s parent. The entry- and exit-point pseudostates of the referenced state machine
are represented on the boundary of the submachine state by special nodes called connection points. Con-
nection points can be the source or target of transitions connected to states outside the submachine state.
A transition whose source or target is a connection point forms part of a compound transition that includes
the transition to or from the corresponding entry- and exit-point pseudostate in the referenced state
machine. An example of this can be seen in Figure 11.14. In any given use of a state machine by a subma-
chine state, only a subset of its entry and exit-point pseudostates may need to be externally connected.

A submachine state is represented by a state symbol showing the name of the state, along with the
name of the referenced state machine, separated by a colon. A submachine state also includes an icon
shown in the bottom right corner depicting either a simple state machine or a rake to be consistent with
the representation of diagram decomposition in other diagrams. Connection points may be placed on
the boundary of the submachine state symbol. These symbols are identical to the entry- and exit-point
pseudostate symbols used in the referenced state machine. Note that only those connection points that
need to be attached to transition edges need be shown on the diagram. Figure 11.14 shows the

initializing

/ccount = 1;
passed = 0;

testing
: Test Camera

[ccount <= total

cameras] pass

/passed = passed + 1

/ccount = ccount + 1

[ccount > total
cameras]/init OK =

(passed > 0)
®

FIGURE 11.14

Invoking a substate machine.
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initializing state of the Surveillance System. On entry, ccount (a property of the owning block that
counts the number of cameras tested) and passed (a property that counts the number of cameras that
passed their self-test) are initialized to 1 and 0, respectively. A junction pseudostate follows, which
allows the algorithm to test as many cameras as required. To test each camera, the festing state uses the
Test Camera state machine. The transition leaving the pass exit-point pseudostate has an effect that
adds one to the passed variable; the transition leaving its fail exit-point pseudostate does not. Both
transitions end in a junction whose outgoing transition increments the count of cameras tested. This
transition ends on a choice, with one outgoing transition looping back to test another camera if [ccount
< = total cameras] and the other reaching the final state of initializing. On the transition to the final
state, the effect of the transition sets the init OK variable to true if at least one camera passed its self-test
or false otherwise.

As stated earlier, entry- and exit-point pseudostates form part of a compound transition that, in the
case of submachine states, incorporates transitions (and their triggers, guards, and effects) from both
containing and referenced state machines. Looking at both Figure 11.13 and Figure 11.14, the com-
pound transition from the initial pseudostate of state initializing will be as follows:

Initial pseudostate of the (single) region owned by state initializing

Transition labeled with effect ccount = I; passed = 0

Transition named ¢/

Transition with effect failures = 0

Transition with guard [else] (at least this time)

(Graphical) transition with effect send Test Camera signal with argument ccount
State await test result.

Noghrwbh=

Entry- and exit-point pseudostates on composite states

Entry-point and exit-point pseudostates can be used on the boundaries of composite states as well as a
state machine. If the composite state has a single region, they behave like junctions. If the composite
state has multiple regions, they behave like forks in the case of entry-point pseudostates and joins in the
case of exit-point pseudostates. For entry-point pseudostates, the effects of their outgoing transitions
execute after the entry behavior of the composite state. For exit-point pseudostates, their incoming
transitions execute before the composite state’s exit behavior. An example of entry-point and exit-point
pseudodstates can be seen in Figure 11.12

11.7 CONTRASTING DISCRETE AND CONTINUOUS STATES

The examples shown so far in this chapter have been based on discrete semantics, specifically state machines
in which the triggering event is a specific stimulus (i.e., a signal, an operation call, or the expiration of a
timer). SysML state machines can also be used to describe systems with transitions that are driven by the
values of either discrete or continuous properties. Such transitions are triggered by change events.

A trigger on a transition may be associated with a change event whose change expression states the
conditions, typically in terms of the values of properties, which will cause the event to occur and hence
trigger the transition. The change expression has a body containing the expression and an indication of
the language used, which allows a wide variety of possible expressions.
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stm H20 States I

[temp>100]

when (temp == 100 &
latent heat of
vaporization added)

[temp>=0 &
. . temp <=100]

when (temp ==0 &
latent heat of
liquification added)

when (temp == 100 &
latent heat of vaporization
removed)

when (temp ==0 &
latent heat of liquification
removed)

[temp<0]

FIGURE 11.15
State machine for H,0.

The state machine H,0 States, shown in Figure 11.15, defines the transitions between Solid, Liquid,
and Gas states. These represent discrete states of H,0, while the values of its properties, such as tempera-
ture and pressure, represent continuous state variables. Specific values for the variable temp, plus other
conditions (e.g., the withdrawal or addition of energy), define the expressions for the change events and
guards on the transitions. Implicitly, therefore, the values of its state variables are used to determine the
discrete states of H,O and the transitions between those states. Similarly, the discrete state of other con-
tinuous systems can be defined in terms of values of selected continuous properties of the system.

11.8 SUMMARY

A state machine is used to describe the behavior of a block in terms of its states and the transitions
between them. State machines can be composed hierarchically like other SysML behavioral constructs,
enabling arbitrarily complex representations of state-based behavior.

The significant state machine concepts covered in this chapter include the following:

e A state machine describes a potentially reusable definition of the state-dependent behavior of a
block. Each state machine diagram describes a single state machine.

e Each state machine contains at least one region, which itself can contain a number of states and
pseudostates, as well as the transitions between them. During execution of a state machine, each
of its regions has a single active state that determines the transitions that are currently viable in
that region. A region can have an initial pseudostate and final state that correspond to its beginning
and completion, respectively.

e A state is an abstraction of some significant condition in the life of a block and specifies the effect
of entering and leaving that condition and what the block does while it is in that condition using
behaviors such as activities.
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e Transitions describe valid state changes and under what circumstances those changes will happen. A
transition has one or more triggers, a guard, and an effect. A trigger is associated with an event,
which may correspond either to the reception of a signal (signal event) or operation call (call event)
by the owning block; the expiration of a timer (time event); or the satisfaction of a condition
specified in terms of properties of the block and its environment (change event). A transition can also
be triggered by a completion event that occurs when the currently active state has completed.

e A guard expresses any additional constraints that need to be satisfied if the transition is to be
triggered. If a valid event occurs, the guard is evaluated and, if true, the transition is triggered.
Otherwise the event is consumed with no change in state. A transition can include a transition
effect that is described by a behavior such as an activity. If the transition is triggered, the transition
effect is executed.

e A state may specify that certain events can be deferred, in which case they are only consumed if
they trigger a transition. Deferred events are consumed on transition to a state that does not further
defer them.

e In a number of circumstances, simple transitions between states are not sufficient to specify the
required behavior. Junction and choice pseudostates allow several transitions to be combined into
a compound transition. Although the compound transition can include only one transition with
triggers, it can have multiple transitions with guards and effects. Junction and choice pseudostates
can have multiple incoming transitions and outgoing transitions. They are used to construct
complex transitions that have more than one transition path, each potentially having its own guard
and effect. History pseudostates allow a region to be interrupted and then subsequently to resume
its previously active state or states.

e States may be composite with nested states in one or more regions. Just like state machines,
during execution an active state will have one active substate per region. Composite states are
porous; that is, transitions can cross their boundaries. Special pseudostates called fork and join
pseudostates allow transitions to and from states in multiple regions at once. A given event may
trigger transitions in multiple active regions.

* State machines may be reused via submachine states. Interactions with the reused state machine
take place via transitions to and from the boundary of the corresponding submachine state, either
directly or through entry- and exit-point pseudostates.

e Change events are driven by the values of variables of the state machine or properties of its
owning block. In addition to discrete systems, change events can trigger transitions in continuous
systems, in which transitions between the system’s discrete states are triggered by changes in the
values of continuous state variables. In this case, a behavior is a constraint on one or more state
variables that must be true within a given state.

11.9 QUESTIONS

What is the diagram kind for a state machine diagram?

Which kinds of model element may a state machine region contain?

What is the difference between a state and a pseudostate?

A state machine has two states, “S1” and “S2.” How do you show that the initial state for this
machine is “S17?

el
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o N o

10.

11.
12.
13.
14.
15.
16.
17.
18.

What is the difference between a final state and a terminate pseudostate?

A state has three behaviors associated with it. What are they called and when are they invoked?
What are the three components of a transition?

Under what circumstances does a completion event get generated for a state with a single
region?

What is the difference in behavior between an internal transition and an external transition with
the same source and target state?

What would the transition string for a transition look like if triggered by a signal event for signal
“S1” with guard “a> 1" and an effect “a=a+ 17?7

Draw the same transition using the graphical notation for transitions.

Where and how is a deferred event represented?

What is the difference between a junction and a choice pseudostate?

If a state has several orthogonal regions, how are they displayed?

What is the difference between a shallow and deep history pseudostate?

How can a state machine be reused within another state machine?

How are entry- and exit-point pseudostates represented on a state machine?

Under what circumstances will a given change event occur?

DISCUSSION TOPIC

State machines describe the behavior of blocks, but so do activities (via the use of activity partitions).
Discuss approaches to ensuring that the two descriptions of behavior are consistent when both are used
to describe the behavior of the same block.



CHAPTER

MODELING FUNCTIONALITY
WITH USE CASES

This chapter describes how to model the high-level functionality of a system with use cases.

12.1 OVERVIEW

Use cases describe the functionality of a system in terms of how it is used to achieve the goals of its
various users. The users of a system are described by actors, which may represent external systems or
humans who interact with the system.

Actors can be classified using generalization. Use cases can also be classified using generalization,
but in addition, one use case may include or extend other use cases. Actors are related to the use cases
in which they participate. The relationships between the system under consideration, its actors, and its
use cases are described on a use case diagram.

Use cases have been viewed as a mechanism to capture system requirements in terms of the uses of
the system. SysML requirements can be used to capture text requirements more explicitly with relation-
ships to use cases and other model elements (refer to Chapter 13 for a discussion on requirements). The
steps in a use case description can also be captured as SysML requirements.

Different methodologies apply use cases in different ways [50]. For example, some methods require
a use case description for each use case captured in text, which may include pre- and post-conditions,
and primary, alternative, and exceptional flows. Use cases are generally elaborated with detailed
descriptions of their behavior, using activities, interactions, and/or state machines.

12.2 USE CASE DIAGRAM

On a use case diagram, the frame corresponds to a package, model, model library, or block, and the
content of the diagram describes a set of actors and use cases and the relationships between them. The
complete diagram header for a use case diagram is as follows:

uc [model element kind] model element name [diagram name]

The diagram kind for a use case diagram is uc, and the model element kind is a package model,
model library, or block.

Figure 12.1 shows an example of a use case diagram containing the key diagram elements, a system
(i.e., subject), a use case, and some actors. The diagram shows the main use case for the Surveillance
System and the participants in that use case. The notation for use case diagrams is shown in the Appen-
dix, Table A.24.

A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00012-6 29 5
Copyright © 2015 Elsevier Inc. All rights reserved.
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uc [Package] Use Cases [Main Use Case] )

Surveillance System

% 1.* Monitor Environment 0.* g%
—/ \

Operator Intruder
«actor»
Emergency
Services
FIGURE 12.1

Example use case diagram.

12.3 USING ACTORS TO REPRESENT THE USERS OF A SYSTEM

An actor is used to represent the role of a human, an organization, or any external system that partici-
pates in the use of some system. Actors may interact directly with the system or indirectly through other
actors.

It should be noted that “actor” is a relative term, because an actor who is external to one system may
be internal to another. For example, assume individuals in an organization request services from an inter-
nal help desk department that provides IT support for the organization. The help desk is considered the
system and the members of the organization who are requesting service are considered the actors. How-
ever, these same individuals may in turn be providing services to an external customer. In that context, the
individuals who were previously considered actors relative to the help desk are considered part of the
system relative to the external customer. A similar analogy can be drawn for a subsystem, when the sub-
system can be viewed as external (i.e., an actor) to another subsystem but internal to the system.

Actors can be classified using the standard generalization relationship. Actor classification has a
similar meaning to the classification of other classifiable model elements. For example, a specialized
actor participates in all the use cases that the more general actor participates in.

An actor is shown either as a stick figure with the actor’s name underneath or as a rectangle contain-
ing the actor’s name below the keyword «actor». The choice of symbol is dependent on the tool and
method being used. Actor classification is represented using the standard SysML generalization sym-
bol—a line with a hollow triangle at the general end.

The Use Cases package for the Surveillance System contains descriptions of the system’s actors. Five
actors are shown in Figure 12.2. The actors include an Operator who operates the system and a Supervi-
sor who manages the system. There is also an Advanced Operator whose role is a specialized version of
the Operator because that role has additional specialized skills. Note that an Intruder is also modeled as
an actor. Although strictly speaking not a user, an intruder does interact with the system and is an impor-
tant part of the external environment to consider. Also of interest are the Emergency Services to whom
incidents may need to be reported. This actor could have been modeled using an actor stick-figure symbol
but wasn’t because it is an organization composed of people, systems, and other equipment.
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uc [Package] Use Cases [Actors] )
Operator Supervisor
«actor»
Emergency
Services
Advanced Operator Intruder

FIGURE 12.2
Representing actors and their interrelationships on a use case diagram.

12.3.1 FURTHER DESCRIPTIONS OF ACTORS

Although not defined in SysML, many methods suggest additional descriptive properties that can apply
to actors as users of a system. Examples include the following:

e The organization of which the actor is a part (e.g., procurement);
e Physical location;

e Skill level required to use the system; and

e Clearance level required to access the system.

12.4 USING USE CASES TO DESCRIBE SYSTEM FUNCTIONALITY

A use case describes the goals of a system from the perspective of the users of the system. The goals
are described in terms of functionality that the system must support. Typically, the use case description
identifies the goal(s) of the use case, a main pattern of use, and a number of variant uses. The system
that provides functionality in support of use cases is called the system under consideration and often
represents a system that is being developed. The system under consideration is sometimes referred to
as the subject and is represented by a block. We will use the term system or subject interchangeably to
denote the system under consideration.

A use case may cover one or more scenarios that correspond to how the system interacts with its
actors under different circumstances.

Actors are related to use cases by communication paths, which are represented as associations,
with some restrictions. The association ends can have multiplicities, in which the multiplicity at the
actor end describes the number of actors involved in each use case. The multiplicity at the use case end
describes the number of instances of the use case in which the actor or actors can be involved at any one
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uc [Package] Use Cases [Main Use Case])

Surveillance System

% 1.* Monitor Environment 0.* g%
—/ \

Operator Intruder
«actor»
Emergency
Services
FIGURE 12.3

A use case and the actors that participate in it.

time. Composite associations in either direction are not permitted since actors are not part of use cases
and use cases are not part of actors.

Neither actors nor use cases may own properties, so role names on associations do not represent
reference properties as they might on block definition diagrams. The role name on an actor end can be
used to describe the role an actor plays in the associated use case whenever it is not obvious from the
actor’s name. The role name on the use case end can be used to describe the relevance of the use case
functionality to the associated actor.

A use case is shown as an oval with the use case name inside it. Associations between actors and use
cases are shown using standard association notation. The default multiplicity of the association ends, if
not shown, is “0..1.” Associations cannot have arrowheads in use case diagrams because neither actors
nor use cases may own properties. The subject of a set of use cases can be shown as a rectangle enclos-
ing the use cases, with the subject’s name centered at the top.

The use cases owned by a model element can be shown in a specific compartment labeled owned
use cases.

Figure 12.3 shows the central use case of the Surveillance System, called Monitor Environment. The
main actors associated with Monitor Environment are the system’s Operator, the Intruder, and the
Emergency Services. The multiplicities on the associations indicate that there must be at least one
Operator and potentially many Intruders. The Emergency Services are also associated with the Monitor
Environment use case, although they may not be active participants unless an Intruder is detected and
reported.

12.4.1 USE CASE RELATIONSHIPS

Use cases can be related to one another by classification, inclusion, and extension.

Inclusion and extension
The inclusion relationship allows one use case, referred to as the base use case, to include the func-
tionality of another use case, called the included use case. The included use case is always performed



12.4 USING USE CASES TO DESCRIBE SYSTEM FUNCTIONALITY 299

uc [Package] Use Cases [Complete])
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FIGURE 12.4

A set of use cases for the Surveillance System.
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1.7

when the base use case is performed. A behavior that realizes the base use case often references the
behavior of the included use case, as described in Section 12.5.

It is implicit in the definition of inclusion that any participants of a base use case may participate in
an included use case, so an actor associated with a base use case need not be explicitly associated to any
included use case. For example, as shown in Figure 12.4, the Operator implicitly takes part in Initialize
System and Shutdown System through their association with Monitor Environment.

Included use cases are not intended to represent a functional decomposition of the base use case, but
rather are intended to describe common functionality that may be included by other use cases. In a
functional decomposition, the lower-level functions represent a complete decomposition of the higher-
level function. By contrast, a base use case and its included use cases often describe different aspects
of the required functionality. For example, in the case of Monitor Environment in Figure 12.4, the key
monitoring function is described by the base use case, and additional functionality is described by the
included use cases Initialize System and Shutdown System.

A use case can also extend a base use case using the extension relationship. The extending use case
is a fragment of functionality that is not considered part of the base use case functionality. It often
describes some exceptional behavior in the interaction, such as error handling between subject and
actors that does not contribute directly to the goal of the base use case.
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To support extensions, a base use case defines a set of extension points that represent places
where the base use case can be extended. An extension point can be referenced as part of the use
case description. For example, if the use case had a textual description of a sequence of steps, the
extension point could be used to indicate at which step in the sequence an extending use case
would be valid. An extension has to reference an extension point to indicate where in the base use
case it can occur. The conditions under which an extension is valid can be further described by a
constraint. The constraint is evaluated when the extension point is reached to determine whether
the extending use case occurs. The presence of an extension point does not imply that there will be
an extension related to it.

Unlike an included use case, the base use case does not depend on an extending use case. However,
an extending use case may be dependent on what is happening in its base use case; for example, the
extending use case may assume that some exceptional circumstance in the base use case has arisen.
There is no implication that an actor associated with the base use case participates in the extending use
case, and the extended use case in fact may have entirely different participants, as demonstrated by the
use case Handle Camera Fault in Figure 12.4.

Inclusion and extension are shown using dashed lines with an open arrowhead at the included and
extended ends, respectively. An inclusion line has the keyword «include» and an extension line has the
keyword «extend». The direction of the arrows should be read as tail end includes or extends head end.
Thus, a base use case includes an included use case, and an extending use case extends a base use case.
A use case may have an additional compartment under its name compartment that lists all its extension
points. The extension line can have an attached note that names its extension point and shows the condi-
tion under which the extending use case occurs.

Classification

Use cases can be classified using the standard SysML generalization relationship. The meaning of
classification is similar to that for other classifiable model elements. One implication, for example,
is that the scenarios for the general use case are also scenarios of the specialized use case. It also
means that the actors associated with a specialized use case can also participate in scenarios described
by a general use case. Classification of use cases is shown using the standard SysML generalization
symbol.

Figure 12.4 shows a use case diagram containing the complete set of use cases for the Surveillance
System. As part of Monitor Environment, all Operators are allowed to oversee the automatic tracking
of suspicious movements in the Automatically Monitor Environment use case —that is, when the sys-
tem controls the cameras. This allows the security company to use junior or less highly trained employ-
ees for this purpose. Advanced Operators can participate in the Manually Monitor Environment use
case, when they control the cameras manually using a joystick. Advanced Operators also have the
option to set up surveillance tracks for the cameras to follow.

The complete specification for Monitor Environment also includes system initialization and shut-
down as indicated by the include relationships between Monitor Environment and Initialize System and
Shutdown System.

The Fault extension point represents a place in the Monitor Environment use case where camera
fault might be handled. The Handle Camera Fault use case extends Monitor Environment at the Fault
extension point. It is an exceptional task that will only be triggered when camera faults are detected, as
indicated by its associated condition, and may only be performed by the Supervisor.
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12.4.2 USE CASE DESCRIPTIONS

A text-based use case description can be used to provide additional information to support the use
case definition. This description can contribute significantly to the use case’s value. The description
text can be captured in the model as a single or multiple comments. It is also possible to treat each
step in a use case description as a SysML requirement. A typical use case description may include
the following:

* Pre-conditions—the conditions that must hold for the use case to begin.

* Post-conditions—the conditions that must hold once the use case has completed.

* Primary flow—the most frequent scenario or scenarios of the use case.

» Alternate and/or exception flows—the scenarios that are less frequent or other than nominal. The
exception flows may reference extension points and generally represent flows that are not directly
in support of the goals of the primary flow.

Other information may augment the basic use case description to further elaborate the interaction
between the actors and the subject.

Here is an extract from the use case description for Monitor Environment:

Pre-condition

The Surveillance System is powered down.

Primary Flow

The Operator or Operators will use the Surveillance System to monitor the environment of the
facility under surveillance. An Operator will initialize the system (see Initialize System) before oper-
ation and shut the system down (see Shutdown System). During normal operation, the system’s cam-
eras will automatically follow preset routes that have been set to optimize the likelihood of
detection.

If an Intruder is detected, an alarm will be raised both internally and with a central monitoring sta-
tion, whose responsibility it is to summon any required assistance. If available, an intelligent intruder
tracking system—which will override the standard camera search paths—will be engaged at this point
to track the suspected intruder. If an intelligent intruder tracking system is not available, the Operators
are expected to maintain visual track of the suspected intruder and pass this knowledge on to the Emer-
gency Services if and when they arrive.

Alternate Flow

Immediately after system initialization but before normal operation begins, it is possible that a fault will
arise, in which case it can be handled (c.f. Fault extension point), but faults will not be handled thereafter.

Post-condition

The Surveillance System is powered down.

12.5 ELABORATING USE CASES WITH BEHAVIORS

The textual definition for a use case, together with the use case models described previously, can
describe the functionality of a system. If desired, however, a more detailed definition of the use case
may be modeled with interactions, activities, and/or state machines, which are described in Chapters 9
through 11. These are typically added to elaborate the requirements and the design after the use case
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definition has been reviewed and accepted. The choice of behavioral formalism is often a personal or
project preference, but in general:

¢ Interactions are useful when a scenario is largely message-based.

e Activities are useful when the scenario includes considerable control logic, flow of inputs and
outputs, and/or algorithms that transform data.

e State machines are useful when the interaction between the actors and the subject is asynchronous
and not easily represented by an ordered sequence of events.

A modeler may choose to indicate on a particular use case symbol whether the behavior of that use
case is further described by one of the behavior diagrams listed above. If the use case has an associated
behavior diagram, then the symbol for that use case contains a rake symbol in its bottom right corner.
The use case Manually Monitor Environment in Figure 12.4 has a rake symbol, indicating that it is
further elaborated, in this case by the diagrams in Figures 12.6 and 12.7.

12.5.1 CONTEXT DIAGRAMS

When using interactions or activities, the lifelines and partitions represent participants in the use case. It
is useful to create an internal block diagram where the enclosing frame corresponds to the system context
and the subject and participating actors correspond to parts in the system context internal block diagram.
To support this technique, actors can appear on a block definition diagram, and a part on an internal block
diagram can be typed by the actor. Alternatively, the actors can be allocated to blocks using the allocate
relationship described in Chapter 14, and then the parts representing actors can be typed by the block.

Figure 12.5 shows an internal block diagram that describes the internal structure of the block System
Context, which represents the context for the Surveillance System and its associated use cases. The
system under consideration, Surveillance System, is represented as part of the System Context, called
company security system. Two of the actors, Advanced Operator and Intruder, who participate in the
use cases, are also represented as parts security guard and suspected thief, respectively.

12.5.2 SEQUENCE DIAGRAMS

In addition to being described in a use case description, a use case can be elaborated by one or more inter-
actions described by sequence diagrams. Different interactions may correspond to the (base) use case, any
included use cases, and any extending use cases. The block that owns the interactions must have parts that
correspond to the subject and participants, which can then be represented by lifelines in the interactions.

As stated earlier, an included use case must always occur as part of its base use case. As a result, an
interaction describing an included scenario will typically be a mandatory part of the interaction repre-
senting a base scenario. This is typically indicated within the base scenario interaction, by referencing
the interaction for the included scenario within a combined fragment with an operator such as seq,
strict,or Toop.

Strictly speaking, an interaction representing a base use case should be specified without reference
to extending use cases, simply noting the extension points. However, a popular approach is to reference
extending use cases as optional constructs in the interaction representing the base scenario. In this
approach, an interaction corresponding to an extending use case is typically contained in an operand of
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ibd [Block] System Context [Use Case Participants])

security guard : Advanced Operator [1..*] ;%

company security system : Surveillance System

suspected thief : Intruder [0..] %

FIGURE 12.5
Context for use case scenarios.

a conditional operator, such as break, opt, or alt. The operand should be guarded using the constraint
on the extension, if one is specified.

The block System Context, whose internal block diagram was shown in Figure 12.5, owns a number
of interactions. The interaction describing the primary scenario of the Manually Monitor Environment
use case, Handling Alert, is shown in Figure 12.6. In Figure 12.4, the Manually Monitor Environment
use case included the Initialize System use case and the Shutdown System use case. The Handling Alert
interaction includes corresponding uses of the interaction Standard Initialization, which is a scenario
for the Initialize System use case, and the interaction Standard System Shutdown, which is a scenario
for the Shutdown System use case.

In between these two interactions, the scenario describes how the security guard, Honoria, deals
with an intruder alert. Because she is an Advanced Operator, she will manually control the cameras to
track the suspected intruder. Interactions for the use case Automatically Monitor Environment, shown
in Figure 12.4, do not include manual control of the cameras.

12.5.3 ACTIVITY DIAGRAMS

As mentioned previously, a use case scenario can also be described by an activity diagram, in which
case the participants are represented as activity partitions. As with interactions, an activity can elabo-
rate a base use case, included use cases, and extending use cases.

Figure 12.7 shows an alternate description of how manual tracking of suspected intruders is handled
for the Manually Monitor Environment use case. Two activity partitions, representing the security
guard and the company security system, are used to indicate which use case participant takes responsi-
bility for which actions.

New intruder intelligence is analyzed. The control flow initiated by the reception of the intelli-
gence is forked to address two concerns. If the intruder has moved, then a Move Joystick action is
performed to follow the intruder. If the intruder appears to have moved out of range of the current
camera, a Select Camera action is performed to select a more appropriate camera. In both cases, a
flow final node is used to handle situations when no action is required. Meanwhile, this stream of
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FIGURE 12.6

Scenario for a use case described by a sequence diagram.

inputs is turned into Pan Camera and Tilt Camera messages to the appropriate camera by the Issue
Camera Commands action.

12.5.4 STATE MACHINE DIAGRAMS

State machines can also be used to describe scenarios. Some methods encourage the use of a single
state machine to represent all possible scenarios of the use case, including exception cases, while other
methods recommend that a separate state machine be used for each scenario. Note that when using a
state machine, there are no language constructs that can be used to explicitly identify the parties respon-
sible for taking actions. However, separate state machines may be defined for each participant, includ-
ing the system of interest and the actors.

Figure 12.8 shows part of a state machine describing the Manually Monitor Environment use case.
It shows three states: operator idle, intruder present, and automatic tracking enabled. When in the
operator idle state, an Intruder Alert event causes the Raise Alarm message to be sent and a transition
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FIGURE 12.7

Using an activity to describe a scenario.

made to the intruder present state. Once in the intruder present state, the intruder can be manually
tracked, but an Auto Track event will trigger a transition to automatic tracking enabled and prohibit
manual tracking until a Lost Track event happens. In this way, a single state machine can represent
multiple scenarios.

This description shares many of the signals with Figure 12.6, but it focuses on states rather than
messages.
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FIGURE 12.8
Using a state machine to describe the Manually Monitor Environment use case.

12.6 SUMMARY

Use cases are used to capture the functionality of a system needed to achieve user goals. A use case is
often used as a means to describe the required functionality for a system and can augment SysML
requirements to refine the definition of text-based functional requirements. The way in which use cases
are employed is highly dependent on the method used. The following are the key use case concepts
introduced in this chapter:

* A use case describes a particular use of a system to achieve a desired user goal. Use case relation-
ships for inclusion, extension, and classification are useful for factoring out common functionality
into use cases that can be reused by other use cases. An included use case is always performed as
part of the base use case. A use case that extends the base use case is usually performed by
exception and generally is not in direct support of the goals of the base use case.

e The system under consideration (also known as the subject) provides the functionality required by
actors, expressed as use cases.

e Actors describe a role played by an entity external to the system and may represent humans,
organizations, or external systems. Generalizations may be used to represent the classification
relationships between different categories of actors. Associations relate actors to the use cases in
which they participate.

* The functionality described by a use case is often elaborated in more detail using interactions,
activities, and state machines. The selection of which behavioral formalisms are used and how
they are used is often dependent on the particular method.
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12.7 QUESTIONS

1. What is the diagram kind for a use case diagram, and to which model elements can the frame

correspond?

What does an actor represent?

How are actors represented on a use case diagram?

If one actor specializes another, what does that imply?

What does a use case represent?

What is another term for the system under consideration?

How does a scenario differ from a use case?

How is an inclusion relationship represented?

Apart from a base and extending use case, which two other pieces of information might an

extension relationship include?

10. If one use case specializes another, what does that imply about its scenarios?

11. How may use case participants and the system under consideration be represented on an internal
block diagram?

12. How are use case participants and the system under consideration represented in interactions?

13. How are use case participants and the system under consideration represented in activities?

wCoNooghAWN

DISCUSSION TOPICS

Apart from those listed in Section 12.3.1 discuss two additional descriptive properties that would be
useful for describing actors.

Apart from those listed in Section 12.4.2 discuss two additional descriptive properties that would be
useful for describing use cases.



CHAPTER

MODELING TEXT-BASED
REQUIREMENTS AND THEIR
RELATIONSHIP TO DESIGN

This chapter describes how text-based requirements are captured in the model and related to other
model elements.

13.1 OVERVIEW

As stated in the SysML specification [1], a requirement specifies a capability or condition that must
(or should) be satisfied, a function that a system must perform, or a performance condition a system
must achieve.

Requirements come from many sources. Sometimes requirements are provided directly by the person
or organization paying for the system, such as a customer who hires a contractor to build a house. At other
times, requirements are generated by the organization that is developing the system, such as an automobile
manufacturer that must determine consumer preferences for its product. The source of requirements often
reflects multiple stakeholders. In the case of the automobile manufacturer, the requirements include govern-
ment regulations for emissions control and safety in addition to the direct preferences of the consumers.

Irrespective of the source, it is common practice to group similar requirements for a system, ele-
ment, or component into a specification. The individual requirements should be expressed in clear and
unambiguous terms, sufficient for the developing organization to implement a system that meets stake-
holder needs. The classic systems engineering challenge is to ensure that these requirements are con-
sistent (i.e., not contradictory), feasible (i.e., solutions are within the realm of possibility), sufficiently
complete and validated to reflect real stakeholder needs, and verified to ensure that the system design
and its realization actually satisfy them.

Requirements management tools are widely used to manage both requirements and the relation-
ships between them. Requirements are often maintained in a database. SysML includes a requirements
modeling capability to provide a bridge between the text-based requirements that may be maintained in
a requirements management tool and the system model. A combination of tool automation, the require-
ments management process, and configuration management processes are used to synchronize the
requirements between the requirements management tool and the model. This capability is intended to
significantly improve requirements management throughout the lifecycle of a system by enabling rigor-
ous traceability between the text-based requirements and the model elements that represent the system
design, analysis, implementation, and test cases.

Individual or groups of text requirements may be brought into the system modeling tool from a
requirements management tool or from a text specification. Requirements may also be created directly
in the system modeling tool. The specifications are typically organized in the model into a hierarchical
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package structure that corresponds to a specification tree. Each specification contains multiple require-
ments, such as a systems specification that contains the requirements for the system, or the component
specifications that contain the requirements for each component. The requirements contained in each
specification are often modeled in a tree structure that corresponds to the organizational structure of the
text-based specification. The individual or aggregate requirements within the containment hierarchy
can then be linked to other requirements in other specifications and to model elements that represent
the system design, analysis, implementation, and test cases.

SysML includes requirements relationships for derivation, satisfaction, verification, refinement, and
trace that support a robust capability for relating requirements to one another and to other model elements.
In addition to capturing the requirements and their relationships, SysML includes the capability to capture
the rationale or basis for a particular decision, and for linking the rationale to any model element. This
includes linking the rationale to a requirement or to a relationship between the requirement and other model
elements. A copy relationship is also provided to accommodate appropriate reuse of requirement text.

Each individual text requirement can be captured in the model as a SysML requirement. The
requirement construct includes a name, a text string, and an id, and may also include additional user
defined properties such as risk.

SysML provides multiple ways to capture requirements and their relationships in both graphical
and tabular notations. A requirement diagram can be used to represent many of these relationships. In
addition, compact graphical notations are available to depict the requirements relationships on any
other SysML diagrams. SysML also supports tabular views of the requirements and their relationships.
The browser view of the requirements that is generally provided by the tool implementer also provides
an important mechanism for visualizing requirements and their relationships.

Use cases are used to support requirements analysis in many of the model-based approaches using
UML and SysML. Different model-based methods may choose to leverage use cases in conjunction
with SysML requirements. Use cases are typically effective for capturing the functional requirements
but are not as well suited for capturing other requirements, such as physical requirements (e.g., weight,
size, vibration), availability requirements, or other nonfunctional requirements. The incorporation of
text-based requirements into SysML effectively accommodates a broad range of requirements.

Use cases—Ilike any other model element—can be related to requirements using the requirement
relationships (e.g., the refine relationship). In addition, use cases are often accompanied by a use case
description (see Chapter 12, Section 12.4.2). The steps in the use case description can be captured as
individual text requirements and then related to other model elements to provide more granular trace-
ability between the use cases and the model.

13.2 REQUIREMENT DIAGRAM

Requirements captured in SysML can be depicted on a requirement diagram, which is particularly use-
ful in graphically depicting hierarchies of specifications or requirements. Because this diagram can depict
large numbers of relationships for a single requirement, it is useful in representing the traceability of a
single requirement to examine how that requirement is satisfied, verified, and refined, and to examine its
derived relationships with other requirements. The requirement diagram header is depicted as follows:

req [model element kind] model element name [diagram name]
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The requirement diagram can represent a package or a requirement, as designated by the model ele-
ment kind in square brackets. The model element name is the name of the package or requirement that
sets the context for the diagram, and the diagram name is user defined and often describes the purpose
of the diagram. Figure 13.1 presents an example of a requirement diagram that contains some of the
most common symbols.

This example highlights a number of different requirements relationships and alternative notations.
For example, Camera satisfies the requirement called Sensor Decision. In addition to the satisfy rela-
tionship, the figure also includes examples of containment, the deriveReqt, and the verify relationship.
The relationships are depicted using a combination of the direct notation, compartment notation, and
callout notation. Only one of these notations is typically used for a particular relationship. The relation-
ships and notation options are discussed later in this chapter. Tables A.25 through A.27 in the Appendix
contain a complete description of the SysML notation for requirements.

A requirement can be shown directly on block definition diagrams, package diagrams, and use
case diagrams, along with its relationships to other model elements on the diagram. However, a
requirement cannot be shown directly on other diagram kinds, such as internal block diagrams. For

req [Package] Requirements [ Example Requirements DiagramD

«requirement»
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Id="81"
Text = "The system shall be capable of detecting intruders 24 hours per day, 7 days per week, under all weather conditions. "

>

«requirement»

All Weather Operation -
1d="81.1" 2<;rle7qgremetr.ﬂ»
Text = "The system shall be capable of detecting intruders under all weather peration
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Text = "The system shall be capable of detecting intruders 24

derived hours per day, 7 days per week. "
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/
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FIGURE 13.1

Generic example of a requirement diagram.
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all diagram kinds, the relationships between a requirement and the other model elements can be
represented using compartment and/or callout notations (see Sections 13.5.2 and 13.5.3 for exam-
ples). Alternative ways to view requirements are discussed in Section 13.7 (tabular views) and
Section 13.9.1 (browser view).

13.3 REPRESENTING A TEXT REQUIREMENT IN THE MODEL

A requirement that is captured in text is represented in SysML as a «requirement». Each requirement
includes predefined properties for a unique identifier and for a text string. Once captured, it can be
related to other requirements and to other model elements through a specific set of relationships.

Figure 13.2 is an example of a text-based requirement called Operating Environment as represented
in SysML. It is distinguished by the keyword «requirement» and contains—at a minimum—a name
and properties for id and text. This same information can be displayed in a tabular format that is
described later in this chapter.

Requirements can be customized by adding properties such as verification method, verification
status, criticality, risk, and requirements category. The verifyMethod property, for example, may
be typed by an enumeration called VerifiyMethodKind and include values such as inspection,
analysis, demonstration, and test. A risk or criticality property may include the values high,
medium, and low. A requirements category property may include values such as functional, per-
formance, or physical.

An alternative method for creating requirements categories is to define additional subclasses of the
requirement stereotype (see Chapter 15, Section 15.4 for a discussion of subclassing stereotypes). The
stereotype enables the modeler to add constraints that restrict the types of model elements that can
satisfy the requirement. For example, a functional requirement may be constrained so that it can only
be satisfied by a behavioral model element such as an activity, state machine, or interaction. Annex E
of the SysML specification [1] includes some non-normative requirement subclasses, which are also
presented in Table 13.1.

As shown in the table, each category is represented as a stereotype of the generic SysML «require-
ment». Table 13.1 also includes a brief description of the category. Additional stereotype properties or
constraints can be added as deemed appropriate for the application.

Other examples of requirements categories may include operational requirements, specialized
requirements for reliability and maintainability, requirements for stores, control requirements, and a
high-level category for stakeholder needs. Some guidance for applying a requirements profile follows.
(General guidance on defining a profile is included in Chapter 15, Section 15.4.)

«requirement»
Operating Environment

Id="S1"
Text = "The system shall be capable of detecting intruders 24 hours per day, 7 days per week, under all weather conditions. "

FIGURE 13.2

Example of a requirement as depicted in SysML.




Table 13.1 Optional Requirements Stereotypes from SysML 1.4 Annex E.3.2

Stereotype Base Class Properties Constraints Description
«extendedRequirement» «requirement» source: String N/A A mix-in stereotype that
risk: RiskKind contains generally useful
verifyMethod: attributes for requirements.
VerifyMethodKind
«functionalRequirement» «extendedrequirement» N/A Satisfied by an Requirement that specifies
operation or behavior. | an operation or behavior
that a system or part of a
system must perform.
«interfaceRequirement» «extendedrequirement» N/A Satisfied by a port, Requirement that specifies
connector, item flow, the ports for connecting
and/or constraint systems and system parts
property. and that optionally may
include the item flows
across the connector and/
or interface constraints.
«performanceRequirement» «extendedrequirement» N/A Satisfied by a value Requirement that
property. quantitatively measures the
extent to which a system
or a system part satisfies
a required capability or
condition.
«physicalRequirement» «extendedrequirement» N/A Satisfied by a Requirement that specifies
structural element. physical characteristics
and/or physical constraints
of the system, or a system
part.
«designConstraint» «extendedrequirement» N/A Satisfied by a block or | Requirement that specifies
a part. a constraint on the

implementation of the
system or system part, such
as “the system must use a
commercial off-the-shelf
component.”
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e The categories should be adapted for specific applications or organizations and reflected in the
profile. This includes agreement on the categories and their associated descriptions, stereotype
properties, and constraints. Additional requirements categories can be added by further sub-
classing the stereotypes presented in Table 13.1 or creating additional stereotypes at the peer
level.

e Apply the more specialized requirement stereotype (e.g., functional, interface, performance,
physical, design constraint) as applicable and ensure consistency with the description, stereotype
properties, and constraints of these requirements.

e A specific text requirement can include the application of more than one requirement category, in
which case each stereotype should be shown in a comma-separated list within guillemets (« »).

13.4 TYPES OF REQUIREMENTS RELATIONSHIPS

SysML includes specific relationships to relate requirements to other requirements as well as to other
model elements. These include relationships for defining a requirements hierarchy, deriving require-
ments, satisfying requirements, verifying requirements, refining requirements, and copying require-
ments, as well as a general purpose trace relationship.

Table 13.2 summarizes the specific relationships, which are discussed later in this chapter. The
derive, and copy relationships can only relate one requirement to another. The satisfy, verify,
refine, and trace relationships can relate requirements to other model elements. Containment can
be used to relate a requirement to another requirement or to another namespace like a block or a
package.

When relating a requirement to a nested property, the specific path to the nested property should be
used to avoid ambiguity if more than one path exists. This is described in more detail as it applies to the
allocate relationship in Chapter 14, Section 14.10.

Table 13.2 Requirement Relationships and Compartment Notation
Keyword Depicted on | Supplier (arrow) End Client (no arrow) End

Relationship Name | Relation Callout/Compartment Callout/Compartment

Satisfy Ksatisfy» Satisfied by «mode] Satisfies «requirement»
element»

Verify «verify» Verified by «mode | Verifies «requirement>»
element»

Refine «refine» Refined by «mode] Refines «requirement»
element»

Derive Requirement | «deriveReqt» Derived «requirement>» Derived from «requirement»

Copy «copy» (No callout) Master Krequirement»

Trace «trace» Traced «model element» | Traced from «requirement»

Containment (Crosshair icon) (No callout) (No callout)

(Requirement

decomposition)
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13.5 REPRESENTING CROSS-CUTTING RELATIONSHIPS IN SYSML
DIAGRAMS

Relationships between requirements and other model elements can appear on various diagram kinds.
These relationships can be shown directly if the requirement and related model elements are on the
same diagram. If the related model elements do not appear on the same diagram as the requirements,
they can still be shown by using the compartment or callout notation. The direct notation may be
used, for example, to show a derive requirement relationship between two requirements on a require-
ment diagram. The compartment or callout notation can be used to relate a requirement to another
model element without requiring both the requirement and the other model element to appear on the
same diagram. An example is a block on a block definition diagram that uses its compartment to
show a satisfy relationship to a requirement that is not displayed on the same block definition
diagram.

In addition to these graphical representations, SysML provides a flexible tabular notation for repre-
senting requirements and their relationships. Note that the allocation relationship (described in Chapter
14) is represented using the same notational approaches that are described here.

13.5.1 DEPICTING REQUIREMENTS RELATIONSHIPS DIRECTLY

When the requirement and the model element to which it relates are shown on the same diagram, their
relationship may be depicted directly. Direct notation depicts this relationship as a dashed arrow with
the name of the relationship displayed as a keyword (e.g., «satisfy», «verify», «refine», «deriv-
eReqt», «copy», and «trace»).

Figure 13.3 presents an example of a «satisfy» relationship between a Camera and a requirement,
Sensor Decision, where the camera is part of the design that is asserted to satisfy the requirement. Note
that the arrow points from the block to the requirement.

It is important to recognize the significance of the arrow direction. Since most requirement relation-
ships in SysML are based on the UML dependency relationship, the arrow points from the dependent
model element (called the client) to the independent model element (called the supplier). The general
dependency relationship is described in Chapter 6 Section 6.8. The interpretation of this «satisfy»
relationship is that the camera design is dependent on the requirement, meaning that if the requirement
changes, the impact on the design must be assessed. Similarly, a derived requirement will be dependent
on the source requirement that it is derived from. In SysML, the arrow direction is opposite of what has
typically been used for requirements flow-down where the higher-level requirement points to the lower-
level requirement.

«requirement»
Sensor Decision «satisfy» «blocky

ld="D1" Camera
Text = "The system shall use cameras to detect intruders. "

FIGURE 13.3
Example of direct notation depicting a satisfy relationship.
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13.5.2 DEPICTING REQUIREMENTS RELATIONSHIPS USING COMPARTMENT
NOTATION

Compartment notation is an alternative method for displaying a requirement relationship between a
requirement and another model element that supports compartments, such as a block, part, or another
requirement. This is a compact notation that can be used instead of displaying a direct relationship. It
also can be used for diagrams that preclude display of a requirement directly, such as an internal block
diagram. In Figure 13.4, the compartment notation is used to show the same satisfy relationship as the
requirement from Figure 13.3. This should be interpreted as “the requirement Sensor Decision is satis-
fied by the Camera.” The compartment notation explicitly displays the relationship and direction (saz-
isfiedBy), the model element kind («b7ock»), and the model element name (Camera).

Note that the description of the requirement compartment notation in the SysML specification [1]
has been unclear and ambiguous, so many SysML tools do not implement it as described here. This will
be corrected in a future version of the SysML specification.

13.5.3 DEPICTING REQUIREMENTS RELATIONSHIPS USING CALLOUT NOTATION

Callout notation is another notation for depicting requirements relationships. It is the least restrictive
notation in that it can be used to represent a relationship between any requirement and any other model
element on any diagram kind. This includes relationships between requirements and model elements
such as pins, ports, and connectors that do not support compartments and therefore cannot use the
compartment notation.

A callout is depicted as a note symbol graphically connected to a model element. The callout sym-
bol references the model element at the other end of the relationship. The callout notation depicted in
Figure 13.5 presents the same information as the compartment notation in Figure 13.4, and it should be
interpreted as “the requirement Sensor Decision is satisfied by the Camera.”

«requirement»
Sensor Decision
Id="D1"
Text = "The system shall use
cameras to detect intruders. "

satisfiedBy
«block» Camera

FIGURE 13.4
Example of compartment notation depicting a satisfy relationship.

«requirement»
Sensor Decision
|d="D1" — — — —satisfiedBy
Text = "The system shall use «block»Camera
cameras to detect intruders. "

FIGURE 13.5

Example of callout notation depicting a satisfy relationship.
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13.6 DEPICTING RATIONALE FOR REQUIREMENTS RELATIONSHIPS

A rationale is a SysML model element that can be associated with a requirement, a requirement rela-
tionship, or any other model element. As the name implies, a rationale is intended to capture the reason
for a particular decision. Although a rationale is described here for requirements, it can be applied
throughout the model to capture the basis for any type of decision. Rationale is based on Comment,
which is discussed in Chapter 5, Section 5.5.1.

As presented in Figure 13.6, the rationale is expressed using a note symbol with the keyword
«rationale». The text in the note symbol can either provide the rationale directly or reference an exter-
nal document (e.g., a trade study or analysis report) or another part of the model such as a parametric
diagram. The reference may include a hyperlink, although this is not explicit in the language. This
particular example shows a reference to a trade study, 7./. The context for this particular rationale is
presented in Figure 13.14 later in this chapter.

A problem is a model element similar to a rationale but used to flag design issues in the model. It
can be associated with any model element and is expressed using a note symbol with the keyword
«problem».

A rationale or problem can be attached to any requirements relationship or to the requirement. For
example, a rationale or problem can be attached to a satisfy relationship and refer to an analysis report
or trade study that justifies the assertion or raises the issue of whether a particular design satisfies the
requirement. Similarly, the rationale can be used with other relationships, such as the derive
relationship.

13.7 DEPICTING REQUIREMENTS AND THEIR RELATIONSHIPS IN TABLES

The requirement diagram has a distinct disadvantage when viewing large numbers of requirements.
Large amounts of real estate are needed to depict and relate all the requirements needed to specify a
system of even moderate complexity. The traditional method of viewing requirements in tables is a
more compact representation than viewing them in a diagram. Modern requirements management tools
typically maintain requirements in a database, and the results of queries to the database can be dis-
played clearly and succinctly in tables or matrices. SysML embraces the concept of displaying results
of model queries in tables as well as using tables as a data input mechanism, but the specifics of gener-
ating tables is left to the tool implementer.

Figure 13.7 provides an example of a simple requirements table of the same requirements that
were presented in Figure 13.1. In this example, the table lists the requirements in the System

«rationale»
Using a camera is the most cost
effective way of meeting these
requirements. See trade study T.1.

FIGURE 13.6

Example of rationale as depicted on any SysML diagram.
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table [Package] System Specification [Decomposition of Top-level Requirementsﬂ

id name text
S1 Operating Environment | The system shall be capable of detecting intruders 24 hours per day...

S1.1 | All Weather Operation | The system shall be capable of detecting intruders under all weather...

S1.2 | 24/7 Operation The system shall detect intruders 24 hours per day, 7 days per week
S2 Availability The system shall exhibit an operational availability (Ao) of 0.999...
FIGURE 13.7

Example of requirements table.

table [Requirement] Camera Decision [Requirements Tree] )

id | name relation id name Rationale

Using a camera is the most cost-effective way of

derivedFrom | 51.2 | 24/7 Operation meeting these requirements. See trade study T1.

D1 | Sensor
Decision . All Weather Using a camera is the most cost-effective way of
derivedFrom | S1.1 ) f -
Operation meeting these requirements. See trade study T1.
FIGURE 13.8

Example of table following the deriveReqt relationship.

Specification package as indicated by the diagram header. Depending on its capability, a tool may also
apply query and filter criteria to generate requirements reports from a query of the model. This report
can represent a view of the model, as described in Chapter 5, Section 5.6. In addition, the tool may sup-
port editing requirements and their properties directly in the tabular view.

13.7.1 DEPICTING REQUIREMENT RELATIONSHIPS IN TABLES

A relationship path can be formed by selecting one or more requirements (or other model elements) and
navigating the relationships from the selected requirement. This can be concisely shown in tables, as
discussed in Chapter 5, Section 5.4. In the example presented in Figure 13.8, D1 is the selected require-
ment. The path includes two deriveReqt relationships with directions as presented in Figure 13.14, as
well as the rationale associated with each relationship.

The relationship paths can be arbitrarily deep. That is, they can navigate a single kind of relationship
from one model element to the next or navigate different types of relationships from one model element
to the next. This can be particularly useful when analyzing the impact of requirements changes across
the model.

13.7.2 DEPICTING REQUIREMENT RELATIONSHIPS AS MATRICES

The tabular notation can also be used to represent multiple complex interrelationships between require-
ments and other model elements in the form of matrices. Figure 13.9 presents the result of a query in
tabular (matrix) form. It depicts the satisfy and derive relationships. In this example, the requirements
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FIGURE 13.9
Example of tabular view of requirements as matrices tracing satisfy and derive requirement relationships,
respectively.

are presented in the left column, and the model elements that have a derive or satisfy relationship are
presented in the other columns. Filtering criteria can be applied to limit the size of the matrix. In this
example, the requirements properties have been excluded, and only the derive and satisfy relationships
have been included. These relationships are discussed later in this chapter. Again, this is an example of
a mechanism that a tool vendor might use to construct a view of the model.

13.8 MODELING REQUIREMENT HIERARCHIES IN PACKAGES

Requirements can be organized into a package structure. A typical structure may include a top-level
package for all requirements in the model. Each nested package within this package may contain
requirements from different specifications, such as the system specification, element specifications, and
component specifications. Each specification package contains the text-based requirements for that
specification. This package structure may correspond to a typical specification tree that is a useful arti-
fact for describing the scope of requirements for a project.

An example of a requirements package structure—or specification tree—is presented in the pack-
age diagram in Figure 13.10. The containment relationship, with the crosshairs symbol at the owning
end, is used to indicate that the Customer Specification package, the System Specification, and the
Camera Specification are contained in the Requirements package. An alternative representation for
defining a specification tree on a requirement diagram using trace relationships between the specifica-
tions is described in Chapter 17, Section 17.3.7.

Organizing requirements into packages corresponding to various specifications provides familiarity
and consistency with document-based approaches and facilitates configuration management of indi-
vidual specifications at the package level. A specification document or report can be generated directly
from the contents of the appropriate package but will require additional supporting text for headers,
section introductions, and other aspects of document generation.
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pkg [Package] Products [Req Pkg Structure] )

Requirements

1

Camera Specification

1

Customer Specification

1

System Specification

FIGURE 13.10
Example of a package structure for organizing requirements.

13.9 MODELING A REQUIREMENT CONTAINMENT HIERARCHY

Containment is used to represent how a compound requirement can be partitioned into a set of simpler
requirements. Containment can be viewed as logically anding (conjunction) the contained require-
ments with the containing requirement. The partitioning of compound requirements into simpler
requirements helps establish full traceability to show how individual requirements are the basis for
further derivation and how they are satisfied and verified.

Figure 13.11 presents a requirement diagram with a simple containment hierarchy. The Customer
Specification package from Figure 13.10 represents a top-level specification that serves as a container
for all other customer-generated requirements. In this example, the Customer Specification package
contains two other requirements, as depicted by the crosshairs symbol. Note that instead of using a
package, a specification may be modeled as a «requirement> that contains a hierarchy of other require-
ments, such as that presented in Chapter 17, Figure 17.55. A typical specification may contain hundreds
or thousands of individual requirements, but they generally can be organized into a hierarchy that cor-
responds to the organization of a specification document.

Figure 13.12 presents how containment hierarchies can be used to create multiple levels of nested
requirements. In this example, the Operating Environment requirement contains two additional
requirements for All Weather Operation and 24/7 Operation.

13.9.1 THE BROWSER VIEW OF A CONTAINMENT HIERARCHY

As described in Chapter 3, Section 3.3.3, a typical modeling tool includes a model browser that can
depict the requirements hierarchy. In Figure 13.13, the specification packages corresponding to the
package diagram in Figure 13.10 are presented along with the requirements corresponding to the
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req [Package] Requirements[ Containment Example 1D

Customer Specification

«requirement»
Operating Environment

Id="s1"

Text = "The system shall be capable of
detecting intruders 24 hours per day, 7 days
per week, under all weather conditions. "

«requirement»
Availability

Id ="S2"

Text = "The system shall exhibit an
operational availability (Ao) of 0.999 over its
installed lifetime. "

req [Package] Customer Specification[ Containment Example ZJJ

«requirement»
Operating Environment

Id="81"
Text = "The system shall be capable of detecting intruders 24
hours per day, 7 days per week, under all weather conditions. "

«requirement»
Availability

Id="S2"
Text = "The system shall exhibit an operational availability (Ao)
of 0.999 over its installed lifetime. "

FIGURE 13.11

Two equivalent examples of requirements contained in a package.

FIGURE 13.12

req [Package] Customer Specification[ Containment Example SJJ

«requirement»
Operating Environment

Id="81"

Text = "The system shall be capable of detecting intruders 24 hours
per day, 7 days per week, under all weather conditions. "

«requirement»
All Weather Operation

«requirement»
24]7 Operation

Id="81.1"

Text = "The system shall be
capable of detecting intruders
under all weather conditions. "

Id="81.2"

Text = "The system shall be
capable of detecting intruders
24 hours per day, 7 days per

verifiedBy

«interaction» Water Spray Test

week. "

Example of requirements containment hierarchy.
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BE-Z= ACME Surveillance Systems
£3 Components «modelLibrary
-3 Products
3 Cameras
[ Requirements
{*7 Camera Specification
{1 Customer Specification
-7 Relations
8 S1 Operating Environment «Requirement»
8 S1.1 All Weather Operation «Requirement
8 S1.2 24/7 Operation «Requirement»
3 S2 Availability «Requirement
B Market Survey «document» «RequirementRelated
£ Weather Model «Require
B IEEE Standards
B3 System Specification
7 Relations
8 1 Video Performance «Requirement
8 D1 Sensor Decision «Requirement» «RequirementRelated
& Using a ca... «Rationale
B Verification
B[ Surveillance Systems
- Profiles
-7 Standard Definitions «modelLibrary

mentRelated>

FIGURE 13.13

Example of requirements containment in a tool browser.

containment hierarchy in Figure 13.12. This representation is a compact way to view the requirements
containment hierarchy.

13.10 MODELING REQUIREMENT DERIVATION

Deriving requirements from source, customer, or other high-level requirements is fundamentally differ-
ent from the containment relationship described in the previous section. A derive requirement rela-
tionship between a derived requirement and a source requirement is intended to be based on an analysis.
The derive requirement relationship is often referred to simply as the derive relationship.

An example of the derive relationship is represented in the requirement diagram in Figure 13.14.
The relationship is shown with a dashed line with the keyword «deriveReqt» with the arrow pointing
to the source requirement. The «rationale» can be used to associate the derive relationship to an
analysis that provides the justification for the derivation. Note that the «rationale» has been associ-
ated with the derivation relationship and includes a reference to a trade study 7.1.

The requirements traceability matrix that is included in traditional specification documents often
shows relationships between requirements in one specification to requirements in other higher- or
lower-level specifications. This relationship is often semantically equivalent to a set of SysML derive
relationships. A derive relationship often shows relationships between requirements at different levels
of the specification hierarchy. It is also used to represent a relationship between requirements at the



13.11 ASSERTING THAT A REQUIREMENT IS SATISFIED 323

req [Package] System Specification [Sensor Decision Derivation RationalelJ
«requirement» «requirement»
All Weather Operation 24/7 Operation
Id="81.1" Id="81.2"
Text = "The system shall be Text = "The system shall be
capable of detecting intruders capable of detecting intruders 24
under all weather conditions. " hours per day, 7 days per week. "
A 7
| /
«deriveReqt» | «deriveReqt» , /
N ~
~ /
| ~ N
| A ~ N
«requirement» h
Sensor Decision «rationale»
Id="D1" Using a camera is the most cost
Text = "The system shall use effective way of meeting these
cameras to detect intruders. " requirements. See trade study T.1.
satisfiedBy
«block» Camera

FIGURE 13.14
Example of «deriveReqt» relationship, with rationale attached.

peer level of the hierarchy but at different levels of abstraction. For example, the hardware or software
requirements that are originally specified by the systems engineering team may be analyzed by the
hardware or software team to derive more detailed requirements that reflect additional implementation
considerations or constraints. The more detailed requirements from the hardware and software team
may be related to the original requirements specified by the system team through derive relationships.

13.11 ASSERTING THAT A REQUIREMENT IS SATISFIED

The satisfy relationship is used to assert that a model element corresponding to the design or imple-
mentation satisfies a particular requirement. The actual proof that the assertion is true is accomplished
by the verify relationship described in the next section. Figure 13.15 presents an example of a satisty
relationship.

The satisty relationship is shown with a dashed line with the keyword «satisfy» with the arrow
pointing to the requirement to assert that the Camera satisfies the requirement. The callout notation is
also shown on both ends of the satisfy relationship. In practice, only one of these notations would be
used to depict this relationship on a particular diagram. The «rationale» is associated with the satisfy
relationship to indicate why this design is asserted to satisfy the requirement. In Figure 13.16, the same
satisfy relationship from Figure 13.15 is presented on the block definition diagram using the compart-
ment notation.
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req [Package] System Specification[Direct Relationship with Callouts])

«rationale»
Using a camera is the most cost effective way of

«requirement» meeting these requirements. See trade study T.1.
Sensor Decision «satisfy» «block»
Id ="D1" < — — £ — — 4 Camera
Text = "The system shall use
cameras to detect intruders. " 7

\ /

DerivedFrom

«requirement»All Weather Operation
«requirement»24/7 Operation Satisfies

SatisfiedBy «requirement»Sensor Decision
«block»Camera

FIGURE 13.15
Example of requirement satisfy relationship and associated callout notation.

req [Package] System Specification[ Satisfy Compartment])

«block»
Camera

satisfies

«requirement» Sensor Decision

FIGURE 13.16
Example of satisfy relationship using compartment notation.

13.12 VERIFYING THAT A REQUIREMENT IS SATISFIED

The verify relationship is a relationship between a requirement and a test case or other model element
that is used to verify that the requirement is satisfied. As stated in the previous section, the satisfy rela-
tionship is an assertion that the model elements representing the design or implementation satisfy the
requirement, but the verify relationship is used to prove that the assertion is true (or false).

A test case specifies the input stimulus, conditions, and expected response to verify one or more
requirements are satisfied. The test case can reference a documented verification procedure, or it can rep-
resent a model of the verification behavior, such as an activity, state machine, or interaction (sequence
diagram). The results from performing the test case are called the verdict, which can include a value of
none (test not completed yet), pass, fail, inconclusive, or error (i.e., an error in the testing environment).
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req [Package] Water Spray Test [ Verification Example])

«requirement» «testCase, interaction»
All Weather Operation «verify» Water Spray Test
verifiedBy . verifies
«interaction» Water Spray Test «requirement» All Weather Operation

FIGURE 13.17
Example of verify relationship.

Figure 13.17 provides an example of the use of the verify relationship. The verify relationship
is shown with a dashed line with the keyword «verify» with the arrow pointing from the Water
Spray Test test case to the All Weather Operation requirement that is being verified. An alternative
compartment notation for both the requirement and test case is also shown to depict this
relationship.

A test case can be a behavior or an operation, which can be further elaborated using a sequence diagram,
activity diagram, or state machine diagram to specify the test case method. An example of applying the test
case keyword to an interaction (represented by a sequence diagram) is presented in Figure 13.18. This
presents a spray tester, who is a Test Technician, using a sprayer : Nozzle to apply water to the first produc-
tion : Camera, which is the system under test (designated by the keyword «sut»). Note that the spray
tester is expected to disassemble and inspect the camera for water leakage before determining the test out-
come. An example of a test case that is modeled as an activity can be found in Chapter 17, Figure 17.57.

In general, a test case that is modeled as a behavior can represent a measurement of almost any
characteristic, including structural characteristics. For example, the test case could represent a behavior
that measures system weight. In this sense, a test case is a general-purpose mechanism for verifying
requirements. In addition, other model elements can be used to verify a requirement. An example may
include using a constraint block to verify a requirement by analysis.

The use of test case in SysML is consistent with the UML Testing Profile [50]. This profile provides
additional semantics for representing many other aspects of a test environment. The integration between
the SysML modeling tools and verification tools is covered briefly in Chapter 18, Section 18.2.2 as part
of the discussion on information flow between tools.

13.13 REDUCING REQUIREMENTS AMBIGUITY USING THE REFINE
RELATIONSHIP

As discussed in Chapter 6, Section 6.8, the refine relationship provides the capability to reduce ambiguity
in a requirement by relating a SysML requirement to another model element that clarifies and often formal-
izes the requirement. This relationship is typically used to refine a text-based requirement with some portion
of the model, but it can also be used to refine a portion of the model with a text-based requirement. For
example, a text-based functional requirement may be refined with a more precise representation, such as a
use case and its realizing activity diagram. Alternatively, the model element or elements may include a fairly
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sd[Interaction] Water Spray Test [Spray Test Sequenceu

spray tester : Test Technician | sprayer : Nozzle «suty

first production : Camera

1 Conduct Spray Test() 2: Spray Water()
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FIGURE 13.18

Example of a test case interaction depicted as a sequence diagram.

abstract representation of required system interfaces that can be refined by an interface’s text specification
that includes a detailed description of an interface protocol or a drawing of a physical interface envelope.

A refinement should clarify the requirement meaning or context. It is distinguished from a derive
relationship in that a refine relationship can exist between a requirement and any other model element,
whereas a derive relationship is only between requirements. In addition, a derive relationship is intended
to impose additional constraints based on analysis.

An example of the refine relationship is provided in Figure 13.19. It presents how the All Weather
Operation requirement is refined by a state machine that models weather conditions and transitions.
The refine relationship is shown with a dashed line with the keyword «refine» with the arrow pointing
from the element that represents the more precise representation to the element being refined. An alter-
native compartment notation is also shown to represent this relationship. Note that the Weather Model
state machine only partially refines the requirement. The Detection Scenario use case might address,
for example, specific detection expectations in each weather condition.



FIGURE 13.19

13.14 USING THE GENERAL-PURPOSE TRACE RELATIONSHIP

req [Package] Customer Specification [Refinement Exampleu

«requirement»

Text = "The system shall be wefiney =

capable of detecting intruders [ —
under all weather conditions. "

derived
«requirements Sensor Decision & — __ «refine»

—

verifiedBy - <
«interaction» Water Spray Test

refinedBy
«useCase» Detection Scenario
«stateMachine» Weather Model

—
—

All Weath i
eather Operation Detection Scenario
Id="81.1" >

«statemachine»

| Weather Model

stm[State Machine] Weather Model [Refinement Using State Machineu

when (barometric pressure = falling)

when (barometric pressure = rising)

Not Clear
when (air temp <= dewpoint

when (air temp > dewpoint)

when (air temp > 0

when (precip = true)
when (air temp <= 0)

Foggy
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Example of refine relationship applied to requirement.

13.14 USING THE GENERAL-PURPOSE TRACE RELATIONSHIP

A trace relationship provides a general-purpose relationship between a requirement and any other
model element. This is also discussed in Chapter 6, Section 6.8. The trace semantics do not include any
constraints and therefore are quite weak. However, the trace relationship can be useful for relating
requirements to source documentation or for establishing a relationship between specifications in a
specification tree (refer to Chapter 17, Section 17.3.7).

As presented in Figure 13.20, the trace relationship is used to relate a particular requirement to a
Market Survey that was conducted as part of the needs analyses. The trace relationship is shown with a
dashed line with the keyword «trace» with the arrow pointing to the source document. The survey is
represented as a user-defined model element with the keyword «document».
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req [Package] Customer Specification [ Trace Example])

«requirement»
Operating Environment
«tracen «document»

d=st = - - - = K
- Market S
Text = "The system shall be capable of detecting intruders 24 ARGt Sdrvey

hours per day, 7 days per week, under all weather conditions. "

FIGURE 13.20
Example of trace relationship linking a requirement to an element representing an external document.

req [Package] Camera Specification [Copy Example] )

«requirement»
ACME Surveillance Systems::Products::Requirements::IEEE
Standards::802.11g Power-Bandwidth
Id ="802.11g.214"

Text = "The maximum power bandwidth shall not exceed... "
A

|

| copy»

1
«requirement»

ACME Surveillance Systems::Products::Requirements::Camera
Specification::Wifi Power-Bandwidth

Id="C4.1"

Text = "The maximum power bandwidth shall not exceed... "
master

«requirement» 802.11g Power-Bandwidth

FIGURE 13.21
Example of a requirement copy relationship.

13.15 REUSING REQUIREMENTS WITH THE COPY RELATIONSHIP

The copy relationship supports reuse of requirements by explicitly relating a copy of a requirement to
a source requirement. The text property of the copied requirement is a read-only copy of the text prop-
erty of the source requirement, but the copied requirement has a different id and may be contained in a
different namespace. Note that the copied requirement does not retain any of the relationships or ratio-
nale of the original requirement.

An example of a copy relationship is presented in Figure 13.21. The copy relationship is shown with
a dashed line with the keyword «copy» with the arrow pointing from the copied requirement to the
source requirement, also known as the master requirement. In this example, the source requirement
being copied is a requirement from a technical standard that is reused in many different requirements
specifications.
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Note that requirements in SysML are precluded from having or typing part properties. This makes
them different from blocks (see Chapter 7, Section 7.3.1). The standard mechanism for reusing require-
ments is the copy relationship.

13.16 SUMMARY

SysML can be used to model text-based requirements and relate them to other requirements and to
other model elements. The following are some of the key requirements modeling concepts:

e The SysML requirement modeling capability serves as a bridge between traditional text-based
requirements and the modeling environment. The requirements can be imported from a require-
ments management tool or text specification, or created directly in the modeling tool.

e A requirement includes a name, an id, and a text property at a minimum. Additional user defined
properties such as risk and verification method can be included as well. Special kinds of require-
ments categories can also be created, in addition to the predefined categories in SysML (e.g.,
functional, interface, performance).

e Each specification is generally captured in a package. The package structure can correspond to a
traditional specification tree. Each specification in turn includes a containment hierarchy of the
requirements contained within the specification. The browser view in most tools can be used to
view the requirements containment hierarchy.

e The individual or aggregate requirements contained in a specification can be related to other
requirements in the same or other specifications, as well as to model elements that represent the
design, analysis, implementation, and test cases. The requirements relationships include derive,
satisfy, verify, refine, trace, and copy. These relationships provide a robust capability for managing
requirements and supporting requirements traceability.

e There are multiple notational representations to enable requirements to be related to other model
elements on other diagrams. These include direct notation, compartment notation, and callout
notation. The requirement diagram is generally used to represent a containment hierarchy or to
represent the relationships for a particular requirement or set of requirements. Tabular notations
are also used to efficiently report requirements and their relationships.

13.17 QUESTIONS

What is the diagram kind of a requirement diagram?

Which kind of model element can the frame of a requirement diagram represent?

Which standard properties are expressed in a SysML requirement?

How can you add properties and constraints to a requirement?

What kind of requirement relationships can only exist between requirements?

Express in a sentence how you interpret Figure 13.3.

How do you express the requirement relationship in Figure 13.3 using call-out notation?

How do you express the requirement relationship in Figure 13.3 using compartment notation?
How do you represent a «deriveReqt» relationship between Reqt A and Reqt B in a matrix?

CoNoaRrRON =
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10.

11.

12.
13.

14.

15.

16.

How do you represent the rationale for the derived requirement in Figure 13.14 that the deriva-
tion is based on the xyz analysis?

What is a satisfy relationship used for?

a. To ensure a requirement is met

b. To assert a requirement is met

c. To more clearly express a requirement

What are the kinds of elements found on either end of a verify relationship?

What is used as a basis for a derived relationship?

a. analysis

b. design

C. test case

Consider the requirement A with text that reads “The system shall do x and the system shall do
y.” How would you show the deconvolution of requirement A into two requirements, A.1 and
A.2, using containment?

Which relationship would you use to relate a requirement to a document?

a. deriveReqt

b. satisfy

c. verify

d. trace

Why are requirements included in SysML? (This can be a discussion topic rather than a
question.)

DISCUSSION TOPICS

What are different uses of a requirement diagram?
When would you use a requirement diagram versus a table?
How can requirements and use cases be used together?



CHAPTER

MODELING CROSS-CUTTING
RELATIONSHIPS WITH
ALLOCATIONS

This chapter describes how the allocate relationship is used to map from one model element to another
to support behavioral, structural, and other forms of allocation.

14.1 OVERVIEW

Beginning early in systems development, the modeler may need to relate elements in the system
model in abstract, preliminary, and sometimes tentative ways. It is inappropriate to impose detailed
constraints on the solution too early in the development of a system. Allocation is a mechanism for
relating model elements in a way that provides guidance for the more rigorous relationships that are
subsequently developed during model refinement. Additional user-defined constraints can augment
the allocate relationship to add the necessary rigor as the design progresses. For example, an alloca-
tion of functions (e.g., activities) to components may be done early in the design process. As the
design progresses, additional constraints are imposed to ensure that the activity inputs, outputs, and
controls are explicitly allocated to component interfaces. With appropriate user-defined constraints,
allocation can be used to help enforce specific system development methods to ensure the model’s
integrity.

The allocate relationship is used to support many forms of allocation, including allocation of behav-
ior, structure, and properties. A typical example of behavioral allocation is the allocation of activities to
blocks (traditionally called functional allocation), where each block is assigned responsibility for
implementing a particular activity. An important distinction is made between allocation of definition
(described in Section 14.5.2) and allocation of usage (described in Section 14.5.1). The concepts of
definition (e.g., blocks) and usage (e.g., part properties) are explained in Chapter 7, Section 7.3.1. For
functional allocation, allocating activities to blocks is an allocation of definition, and allocating actions
to parts is an allocation of usage.

SysML includes several notational options to provide flexibility for representing allocations of
model elements. The options include both graphical and tabular representations similar to those used
for relating requirements. Figure 14.1 shows some of the graphical representations of allocation on
an activity diagram, on an internal block diagram, and on a block definition diagram. A complete
description of the SysML notation for allocations can be found in the Appendix, Table A.28.

A Practical Guide to SysML. http://dx.doi.org/10.1016/B978-0-12-800202-5.00014-X 33 1
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14.2 ALLOCATE RELATIONSHIP

As referenced in Chapter 6, Section 6.8, an allocate relationship is a kind of dependency used to allocate
one model element to another. An allocate relationship may be established between any two named model
elements and provides a general purpose assignment mechanism. Responsibilities that are associated with
one model element may be assigned to another model element, such as when an activity is allocated to a
block. For this case, the block assumes responsibility for performing the activity. Every SysML allocate
relationship has one “from” end and one “to”” end, although a model element may be allocated from or to
more than one model element. Model element A is said to be “allocated to”” model element B when the model
element at the “from” end of the allocate relationship (i.e., the client) is A and the model element at the “to”
end of the allocate relationship (i.e., the supplier) is B. The supplier end of the relationship has an arrow.
Additional constraints may be placed on allocations; for example, functional allocation may be constrained
to occur only between blocks and activities. Section 14.4 discusses various kinds of allocation.

FIGURE 14.1

act [Activity] Simplified Adjust Focus [Flow Allocaction1])

«allocate»
f1 : Sharpness Detector

a1l : Measure Pixel Contrast

(o)

2 -7,

BN

allocatedTo
«connector» c1

i

a2 : Optimize Focus

bdd [Package] Allocation Example [Allocation Compartment] )

«activity»
Adjust Focus Motor

N
N
N
N

allocatedTo

«block» Focus Optimizer

AN

«block»
«logical»
Focus Optimizer

allocatedFrom

«activity» Adjust Focus Motor
«activity» Optimize Focus

ibd [Block] Focus Controller [Flow AIIocation2])

f1 : Sharpness Detector

allocatedFrom

«action» a1t :

allocatedFrom
«objectFlow» of2

-

=l
Measure Pixel Contrast Ll-l

f2 : Focus Optimizer

Examples of allocation on activity, block definition, and internal block diagrams.
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14.3 ALLOCATION NOTATION

Several different notations can be used to represent allocation of one model element to another. The
notations that SysML uses to represent allocate relationships are similar to the graphical and tabular
notations used to represent requirements relationships, as described in Chapter 13, Section 13.5.
Graphical notations include the direct notation, compartment notation, and callout notation.

When the model elements at both ends of the allocate relationship can be shown on the same dia-
gram, the allocate relationship can be depicted directly, as indicated in Figure 14.2, using the keyword
«allocate» on the relationship. Here, the Adjust Focus Motor activity is allocated to the Focus Opti-
mizer, and the arrow represents the allocatedTo end of the relationship (i.e., supplier). Although func-
tional allocation is depicted in this example, this representation is equally valid for other kinds of
allocations.

As with requirements relationships, the model elements at either end of an allocate relationship may
be on different diagrams. For these cases, compartment notation and callout notation can be used to
identify the model element at the other end of the relationship.

The compartment notation identifies the element at the opposite end of the allocate relationship in
a compartment of the model element, as shown in Figure 14.3. However, this can only be used when
the model element can include compartments such as blocks and parts. It cannot be used for model
elements that do not have compartments, such as connectors.

The callout notation shown in Figure 14.4 can be used to represent the opposite end of the allo-
cate relationship for any model element whether it has compartments or not. Callout notation is
represented as a note symbol that is attached to the model element via an anchor, like a comment.
The callout notation specifies the kind and name of the model element at the other end of the allocate
relationship. It also identifies which end of the allocate relationship applies to the attached model

«activity» «allocate» «block>

Adjust Focus Motor |~~~ 7 «logical>
Focus Optimizer

FIGURE 14.2
Example directly depicting an allocate relationship, when both model elements appear on the same diagram.

bdd [Package] Allocation Example [Allocation Compartment])

«activity» « b|90k»
Adjust Focus Motor «logical»
Focus Optimizer
allocatedTo allocatedFrom
«block Focus Optimizer «activity» Adjust Focus Motor

«activity» Optimize Focus

FIGURE 14.3

Example depicting an allocate relationship in compartment notation.
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bdd [Package] Allocation Example [Allocation CaIIout])

«activity» «block>
Adjust Focus Motor «logical»
- Focus Optimizer
allocatedTo allocatedFrom
«block» Focus Optimizer «activity» Adjust Focus Motor
«activity» Optimize Focus

FIGURE 14.4
Example depicting an allocate relationship in callout notation.
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= 3 Behavior
a3 Adjust Focus( current :Image, focus : Command )
@3 Adjust Focus Motor( delta :Video Parameter, focus : Command )
3 Measure Pixel Contrast( contrast1 :Video Parameter, current1 :Image )
43 Optimize Focus( contrast :Video Parameter, delta :Video Parameter)

FIGURE 14.5
Example depicting allocate relationships in tabular matrix form.

element as indicated by the allocatedTo or allocatedFrom. This is similar to the callout notation for
requirements relationships discussed in Chapter 13, Section 13.5.3. The callout notation is read by
starting with the name of the model element that the callout notation attaches to, then reading the
allocatedTo or allocatedFrom, and then reading the model element name in the callout symbol. For
example, the allocate relationship in Figure 14.4 is read: “The activity Adjust Focus Motor is allo-
cated to the block Focus Optimizer,” and “the block Focus Optimizer is allocated from the activity
Adjust Focus Motor.” The latter could be interpreted as “The block Focus Optimizer is responsible
for the activity Adjust Focus Motor.”

A matrix notation can be used to simultaneously view multiple allocate relationships, as shown in
Figure 14.5. In this example, activities are displayed in the left column and blocks are displayed in the
top row. This format is not specifically prescribed by the SysML specification and will vary from tool
to tool. The arrows in the cells of the matrix indicate the direction of the allocate relationships, consis-
tent with those shown in Figure 14.3 and Figure 14.4.
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This matrix or tabular form of representing allocations is particularly useful when a concise, com-
pact representation is needed, and it is used often in this chapter to illustrate allocation concepts.

14.4 KINDS OF ALLOCATION

The following section describes different kinds of allocations, including allocation of requirements,
behavior, flow, structure, and properties.

14.4.1 ALLOCATION OF REQUIREMENTS

The term requirement allocation represents a mechanism for mapping source requirements to other
derived requirements, or mapping requirements to other model elements that satisfy the requirement.
SysML does not use the «allocate» relationship to represent this form of allocation, but instead uses
specific requirements relationships that are described in Chapter 13.

14.4.2 ALLOCATION OF BEHAVIOR OR FUNCTION

The term behavioral allocation generally refers to a technique for segregating behavior from structure.
A common systems engineering practice is to separate models of structure (sometimes referred to as
models of form) from models of behavior (sometimes referred to as models of function) so that designs
can be optimized by considering several different structures that provide the desired emergent behavior
and properties. This approach provides the required degrees of freedom—in particular, how to decom-
pose structure, how to decompose behavior, and how to relate the structure and behavior to optimize
designs based on trade studies among alternatives. The implication is that an explicit set of relation-
ships must be maintained between behavior and structure for each alternative.

The behavior of a block can be represented in different ways. On a block definition diagram, the
operations of a block explicitly define the responsibility the block has for providing the associated
behavior (see Chapter 7, Section 7.5 for more on modeling behavior of blocks). In a sequence diagram,
a message sent to a lifeline invokes the operation on the receiving lifeline to provide the behavior (see
Chapter 10 for more on interactions). In activity diagrams, the placement of an action in an activity
partition implicitly defines that the part represented by the partition provides the associated behavior.
(See Chapter 9 for more on activities.)

In this chapter, the term behavioral allocation specifically refers to the concept of allocating behav-
ioral model elements (activities, actions, states, object flow, control flow, transitions, messages, etc.) to
structural models elements (blocks, parts, ports, connectors, item flows, etc.). The term functional
allocation is a subset of behavioral allocation, and it refers specifically to the allocation of activities or
actions (also known as functions) to blocks or parts, respectively.

14.4.3 ALLOCATION OF FLOW

Flow represents the transfer of energy, mass, and/or information from one model element to another.
Flows are typically depicted as object flows from and to action pins on activity diagrams (as described
in Chapter 9, Section 9.5) and as item flows between ports or parts on an internal block diagram (as
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described in Chapter 7, Section 7.4.3). Flow allocation is often used to allocate flows between activity
diagrams and internal block diagrams.

14.4.4 ALLOCATION OF STRUCTURE

Structural allocation refers to allocating elements of one kind of structure to elements of another kind of
structure. A typical example is a logical-physical allocation, where a logical block hierarchy is often built
and maintained at an abstract level, and in turn is mapped to another physical block hierarchy at a more
concrete level. Software-hardware allocation is another example of structural allocation. In SysML, allo-
cation is often used to allocate abstract software elements to hardware elements. UML uses the concept of
deployment to specify a more detailed level of allocation that requires software artifacts to be deployed to
platforms or processing nodes. The transition from a SysML allocation to a UML deployment may be
accomplished through model refinement and more detailed modeling and design of the software.

14.4.5 ALLOCATION OF PROPERTIES

Allocation can also be used to allocate performance or physical properties to various elements in the system
model. This often supports the budgeting of system performance or physical property values to property
values of the system components. A typical example is a weight budget in which system weight is allocated
to the weights of the system’s components. Once again, the initial allocation can be specified in more detail
as part of model refinement using parametric constraints, as discussed in Chapter 8, Section 8.6.

14.4.6 SUMMARY OF RELATIONSHIPS ASSOCIATED WITH THE TERM
“ALLOCATION"

Table 14.1 is a partial list of some uses for allocation in systems modeling.

Table 14.1 Various Uses of “Allocation” and How to Represent in SysML
Kind of Allocation Reference Relationship From To
Requirement allocation Section 13.11 | Satisfy requirement model element
Section 13.10 | DeriveReqt requirement requirement
Section 13.13 | Refine model element requirement
requirement model element
Functional allocation Section 14.6 Allocate activity action block part
Structural allocation (e.g., logical Section 14.9 Allocate block block
to physical, software to hardware)
Section 14.10 | Allocate port port
Section 14.9 Allocate item flow item flow parts
connector and connectors
Flow allocation Section 14.7 Allocate object flow connector item
object flow flow item
object flow property
Property decomposition/allocation | Section 7.7 Binding connector | value property parameter
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14.5 PLANNING FOR REUSE: SPECIFYING DEFINITION AND USAGE IN
ALLOCATION

The allocation of a model element to another model element establishes a relationship between them
that can impact their reuse. For example, allocating a function to a component, such as allocating cam-
era function to a mobile phone, may limit the ability to reuse the mobile phone for another application.
This motivates the distinction between allocation of definition versus allocation of usage as described
below.

The concept of definition and usage, relative to parts typed by blocks, is discussed in Chapter 7,
Section 7.3.1. A block is defined in terms of its features. A part typed by a block represents a usage of
that block in the context of an owning block. The distinction between definition and usage applies to
any property, such as a constraint property typed by a constraint block or an item property typed by a
block. The concept can also be applied to other elements such as a call behavior action and the activity
it calls. The action can be viewed as a usage of the called activity in the context of an owning activity.
Table 14.2 shows different kinds of diagrams, the model elements that represent usages on the dia-
grams, and the model elements that type or define them.

Allocation can be used to relate elements of definition (blocks, activities, etc.) or elements of usage
(actions, parts, etc.) in various combinations. The following examples explicitly depict this concept for
functional allocation, but it applies equally well to structural allocation (block to block, part to part,
etc.). The concepts of definition and usage are a significant strength of SysML, but merit careful con-
sideration during allocation to maintain model consistency.

14.5.1 ALLOCATING USAGE

As shown in Figure 14.6, allocation of usage applies when both the “from” and “to” ends of the allo-
cate relationship relate usage elements such as parts, actions, and connectors. When allocating usage,
nothing is inferred about any corresponding defining elements (blocks, activities, etc.) that may type or
invoke the usage. This is similar to property specific types as described in Chapter 7, Section 7.7.5.
Only the specific usage is affected by the allocation. For example, if an action on an activity diagram is
allocated to a part on an internal block diagram, the allocation is specific to that part, and not to any
other parts that are typed by the same block. If the modeler finds a large number of similar parts with

Table 14.2 Contextualized Elements Representing Usages and Their Definition

Diagram Kind Model Element/Usage Model Element/Definition

Activity diagram action activity
object node/action pin block
activity edge (object flow, control flow) (none)

Internal block diagram part block
connector association
item flow (none)
item property block
value property value type

Parametric diagram Constraint property constraint block
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act [Activity] Do_X
ibd [Block] A ‘

b1:B

c1:C
allocatedFrom alloca;‘\?_ctljo ]
«callBehaviorAction» Do_X::y1 «part» Azb1.c

FIGURE 14.6
Allocation of usage. Functional allocation is shown here, but structural allocation is similar.

bdd [Model] Allocation Example [Allocation of Definition] )

«block» «activity»
A Do_X
«adjunct»
b1 b2 y1
«block» «activity»
B «allocate» Do Y
allocatedFrom allocatedTo
«activity»Do_Y «block»B

FIGURE 14.7
Allocation of definition.

similar allocated characteristics or functions, it may be appropriate to consider allocation of definition
as described in Section 14.5.2.

SysML supports instance specifications, as described in Chapter 7, Section 7.8. Allocation to and
from instance specifications can also be considered allocation of usage.

14.5.2 ALLOCATING DEFINITION

As shown in Figure 14.7, allocation of definition applies when both the “from” and “to” ends of
the allocate relationship relate to elements of definition, such as blocks, activities, and associa-
tions. When allocating to an element that represents definition or classifier, such as a block, then
the allocation applies to every property that is typed by the definition. For example, when a block
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Table 14.3 Allocation Guidelines Table
Allocation of Usage Allocation of Definition

Example: part to part, action to part, connector to connector, Example: block to block or activity to block
property to property
Applicability: when the allocation is not intended to be reused Applicability: when the allocation is intended to
apply to all usages

Discussion Discussion

— Most localized with least implication on other diagrams and — Allocation inferred to all usages

elements

— Only way to allocate flows and connectors that have no — Can result in over-allocation (more activities
definition allocated to a part than necessary)

— Possible redundancy or inconsistency as parts/actions used in | — Not directly represented on an activity diagram
multiple places with allocate activity partition (see Section 14.6.3)

is used to type several different parts, the result of any allocation to the block applies to all the
parts that are typed by this block. Note that allocations are not inherited when a block is
specialized.

14.5.3 ALLOCATING ASYMMETRICALLY

Asymmetric allocation is when one end of the allocate relationship relates to an element of definition,
and the other end relates to an element of usage. Asymmetric allocation is used by exception; that is, it
is not generally recommended because it can introduce ambiguity. Allocation of usage and allocation
of definition are the preferred allocation approaches.

14.5.4 GUIDELINES FOR ALLOCATING DEFINITION AND USAGE

The significance of using allocation of usage and allocation of definition relationships is discussed in
Table 14.3. The following conclusions can be drawn by examining these two approaches to allocation
with respect to functional allocation, flow allocation, and structural allocation:

e Allocation of usage is localized to the fewest model elements and has no inferred allocations. It
can be directly represented on diagrams of usage (e.g., internal block diagram or activity dia-
gram). It is appropriate to start with allocation of usage and consider allocation of definition after
each of the uses has been examined.

e Allocation of definition is a more complete form of allocation because it applies (is inferred) to
every usage. Allocation of definition follows from allocation of usage, as it typically requires blocks
or activities to be specialized or decomposed to the point where the allocation of definition is unique,
and over-allocation (more allocations than really desired) is avoided. If a part requires a unique
allocation, using allocation of definition requires the additional step of specializing the block to
define the part uniquely and then allocating to (or from) that specialized block instead of to the part.
This extra attention to refine the definition facilitates future reuse of definition hierarchies.
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14.6 ALLOCATING BEHAVIOR TO STRUCTURE USING FUNCTIONAL
ALLOCATION

Functional allocation is used to allocate functions to system components. Figure 14.8 defines a suitably
complex behavioral hierarchy and a structural hierarchy to be used for the following functional alloca-
tion examples. Note that in this example, Measure Pixel Contrast is used by more than one activity, and
Sharpness Detector is used by more than one block. See Chapter 9, Section 9.12 for modeling activity
hierarchies on block definition diagrams and Chapter 7, Section 7.3.1 for modeling composition hier-
archies on block definition diagrams.

The surveillance camera employs a passive autofocus system that uses pixel-to-pixel contrast as a
way of determining how well the optics are focused, and then it generates a signal to adjust the focus
motor accordingly. The Adjust Focus activity, then, can be composed of actions defined by three other
activities: al : Measure Pixel Contrast, a2 : Optimize Focus, and a3 : Adjust Focus Motor. An activity
diagram describing the behavior of the autofocus portion of the surveillance camera is depicted on the
left side of Figure 14.9. Note that a separate activity to detect edges of objects in the video frame may
also use the Measure Pixel Contrast activity, as shown in Figure 14.8.

A logical structure for the autofocus portion of the camera is also depicted in Figure 14.8. The
Focus Controller block is composed of parts fI : Sharpness Detector and f2 : Focus Optimizer.

bdd [Package] Behavior [Example Activity Hierarchyﬂ

«activity»

Adjust Focus

«activity»
Detect Edges

a2 a3 al d1
«activity» «activity» «activity»

Optimize Focus Adjust Focus Measure Pixel
Motor Contrast

bdd [Package] Logical Structure [Example Structural Hierarchyﬂ

Focus Controller

«block»
«logical»

«block»
«logical»

Video Quality Checker

f2

f1

vi

«block»
«logical»
Focus Optimizer

«block»
«logical»
Sharpness Detector

FIGURE 14.8

Example of behavioral and structural hierarchy definition.
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Assume, hypothetically, that the block Sharpness Detector may also define a part used by some
other logical block whose purpose is to check video quality.

14.6.1 MODELING FUNCTIONAL ALLOCATION OF USAGE

As discussed in an earlier section, functional allocation of usage (e.g., action to part) should be used
over functional allocation of definition (e.g., activity to block) when the action is not intended to be
reused by other usages of the block. Allocation of usage should also be considered if the action uses
different inputs/outputs (i.e., pins) that may result in different interfaces on the associated block.

Figure 14.9 depicts functional allocation of usage. This example shows the use of the callout nota-
tion for representing allocations from the actions on the activity diagram to the parts on the internal
block diagram. Note that action a/ : Measure Pixel Contrast on the activity diagram is allocated to part
f1 : Sharpness Detector, but that none of the other actions are allocated. This is because their defining
activities are allocated in Section 14.6.2, so it is not appropriate to also allocate the usage. Also, notice
that object flow of2 is allocated to connector c/. This kind of flow allocation can only be allocation of
usage and is described in more detail in Section 14.7.3.

The allocation callouts on the internal block diagram are the reciprocal of the allocation callouts on
the activity diagram. An allocation matrix is also provided as an alternative concise representation of
the allocate relationships in the other diagrams.

14.6.2 MODELING FUNCTIONAL ALLOCATION OF DEFINITION

Allocation of definition between an activity and a block is used when each usage of the activity is allo-
cated to a usage of the block. This can be depicted on block definition diagrams. The allocate

act [Activity] Adjust Focus [FunctionalAlIoc1D ibd [Block] Focus Controller [Functional AllOCZD
a1 : Measure p1 : Video
@: m Pixel Contrast f1 : Sharpness Detector * Interface
current : Image I‘h
[ Jet:
allocatedTo Contrast allocatedFrom
«part» f1 : Sharpness Detector of2 «callBehaviorAction» a1
—~ . @
- c: . cl ©
- Contrast sharpness : Video Paramete/rv g ®
a2 : Optimize allocatedFroml o g
allocatedTo Focus «objectFlow» of2 R
«connector» c1 a 2
v 2
d: 2 : Focus Optimizer 5 0o
Focus Delta p1: Video 8 s
of3 . o O
. Interface s 9
d1: —~ 9
[ ]Focus Delta © O
a3 : Adjust
focus : Command Focus Motorrh E & Focus Controller [Logical S...
focus1: Command +* Connector:c1[p1 - p1] | /
CH - f1 : Sharpness Detector ||/

FIGURE 14.9

Example of functional allocation of usage, with allocation matrix.
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relationship between an activity and a block can include the activity or block on the “to” or “from” end
of the allocation, but the allocation is generally from an activity to a block.

Figure 14.10 shows an example of functional allocation of definition using the allocate relationship.
Note that the activities Optimize Focus and Adjust Focus Motor are allocated to the block Focus Opti-
mizer. The use of Focus Optimizer in the block Focus Controller—and everywhere else it is used—has
an inferred allocation of these two activities. This allocation can later be realized by creating two opera-
tions for Focus Optimizer whose methods are Optimize Focus and Adjust Focus Motor. These new
operations would then be available to every instance typed by Focus Optimizer.

Note that the activity Measure Pixel Contrast is not allocated to the block Sharpness Detector, even
though a conceptual relationship exists between them. In this particular example, Measure Pixel Con-
trast is also used by the activity Detect Edges, which is a processing technique not associated with
picture sharpness. Measure Pixel Contrast does not have any inferred allocation to Sharpness Detector
when it is used in Detect Edges, thus allocation of definition is inappropriate. Allocation of usage is the
correct technique in this case.

Figure 14.11 is a block definition diagram of a system similar to the water distiller example in Chap-
ter 16. Note that the Meter Flow activity has been allocated to the block Valve, which infers that the
Meter Flow activity applies to each usage of the Valve block. This is appropriate because every valve
performs an activity to meter fluid flow. Note also that the activity Boil Water has been allocated to the
block Boiler, which infers that all the usages of the Boiler can perform the activity Boil Water.

bdd [Package] Behavior [Functional Allocation of Definition])
«activity» «activity»
Adjust Focus Detect Edges
a2 a3 at d1 5
1
L L «activity» i
«activity» «activity» ival Lo __ R !
Optimize Focus Adjust Focus Motor Measure Pixel i i
Contrast ' !
T i i
E «allocate» ! «allocate» ! !
Vi ' i i
«block» «block» : E
«logical» SEREEEEEEEE ' «logical» A
Focus Optimizer Sharpness Detector i E i
P4
o 1 Note: Allocation of
«block» definition from Measure
«logical» Pixel Contrast to Sharpness
Focus Controller Detector is inappropriate,
since Detect Edges
would then be dependent
on Sharpness Detector.

FIGURE 14.10

Example of functional allocation of definition.
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Figure 14.12 is a block definition diagram describing a Power Station, and it uses many of the
blocks previously defined for the Distiller. The allocation of definition to the Boiler and Valve refer-
enced in Figure 14.11 is still valid. The part stm gen : Boiler has an inferred allocation from the Boil
Water activity, and both the feed and throttle usages of Valve include an inferred allocation from the
Meter Flow activity.

FIGURE 14.11

bdd [Package] Initial Distiller [Distiller Allocation of Definitionﬂ

«block»

condenser

Heat Exchanger

«block»

Distiller

evaporator

«block»
Boiler

<allocate»

«activity»
Boil Water

drain

«block»
Valve

«allocate» !

Meter Flow

«activity»

Functional allocation of definition from distiller example.

bdd [Package] Power Station Structure [Power Station Allocation of Definitionu

Power Station

«block»

gl feedT t1
«block» «block» «block»
Generator Pump Turbine
stm gen main condenser feed | throttle
«block» «block» «block»
Boiler Heat Exchanger Valve
allocatedFrom allocatedFrom

«activity» Boil Water

«activity» Meter Flow

FIGURE 14.12

Implications of functional allocation of definition as seen in the power station example.
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14.6.3 MODELING FUNCTIONAL ALLOCATION USING ALLOCATE ACTIVITY
PARTITIONS (ALLOCATE SWIM LANES)

Activity partitions are discussed in Chapter 9, Section 9.11.1. An allocate activity partition is a special
type of activity partition that is distinguished by the keyword «allocate». The presence of an allocate
activity partition on an activity diagram implies an allocate relationship between any action node within
the partition and the part or block represented by the partition (which appears as the name of the parti-
tion), as depicted in Figure 14.13. Note that allocate activity partitions can only explicitly depict alloca-
tion of usage or asymmetric allocation. This is because activities (definition) cannot be directly
represented on activity diagrams; only the call behavior actions (usages) that invoke activities can. If
allocation of definition is desired, the activity must be allocated to the block that can be directly depicted
on a block definition diagram or by using compartment or callout notation.

Functional allocation using allocate activity partitions (allocate swim lanes) is depicted in
Figure 14.14. This is a subset of the example previously shown in Figure 14.9, where action node a/ (a
usage of activity Measure Pixel Contrast) has been allocated to part f/ (a usage of block Sharpness Detec-
tor). This allocation is depicted graphically by the allocate activity partition on the activity diagram.

We have assumed that each action on an activity diagram is meant to be allocated to only one part.
If for some reason an action is intended to be allocated to multiple parts, then a new untyped part may
be created that aggregates the parts in question. An allocate activity partition is used to represent this
new aggregation, and the action is placed in this new allocate activity partition.

If a standard activity partition is used without the «al1ocate» keyword, the part or block represented by
the partition retains responsibility for execution of all action nodes in the partition (see Chapter 9, Section
9.11.1). This does not employ the SysML allocate relationship but instead tightly couples the behavior defi-
nition to the structural definition. For example, when a call operation action is in a standard activity partition,
most tools will automatically populate a corresponding operation in the block that represents the partition.

«allocate»
part name : Block Name

[action name : Activity Name)

FIGURE 14.13
Allocate activity partition.

act [Activity] Simplified Adjust Focus [Allocate Swimlane])

«allocate»
f1 : Sharpness Detector

(a1 : Measure Pixel Contrast):k EI a2 : Optimize Focus ]
FIGURE 14.14

Simple example of functional allocation using an allocate activity partition (swim lanes).
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14.7 ALLOCATING BEHAVIORAL FLOWS TO STRUCTURAL FLOWS

Flow between activities can either be control flow or object flow as described in Chapter 9, Section 9.5
and 9.6. The following sections address allocating object flow as represented on activity diagrams.
Allocation of control flow may be depicted in a similar way as allocation of object flow. Flow allocation
is typically an allocation of usage, because items that flow between model elements are usually speci-
fied in the context of their usage.

14.7.1 OPTIONS FOR ALLOCATING FLOW

Item flows are used to depict flow between parts on internal block diagrams, as described in Chapter 7,
Section 7.4. Item flows can have an associated item property. The item flow represents the direction of
flow and relates the item property to the connector, and the item property is the usage of the item that
flows. Item properties can be defined (i.e., typed) by blocks just as parts are typed by blocks.

Chapter 9, Section 9.5 discusses the equivalent depiction of object flows (solid arrows on activity
diagrams) in either action pin notation (small squares on the edges of action nodes) or object node nota-
tion (larger rectangles between action nodes). The object node notation on activity diagrams represents
both an output pin and an input pin. To avoid ambiguity of the allocate relationship, it is recommended
that action pin notation be used when performing flow allocation.

The following sections discuss allocating an object flow to a connector, allocating an object flow to
an item flow, and allocating item properties between diagrams. Other kinds of flow allocation can be
used as well, such as allocating an action pin to an item flow or an activity parameter node to a port.
These additional allocations are an advanced topic that is a function of the specific design method used
and are not discussed here.

14.7.2 ALLOCATING AN OBJECT FLOW TO A CONNECTOR

Figure 14.15 extends the example shown in Figure 14.14 and is also a subset of the example shown in
Figure 14.9. The object flow of2 is allocated to the connector c/. This is a convenient preliminary form
of allocation to use before item flows have been defined or if item flows are not modeled. It can be
ambiguous, however, if more than one item flow or item property is associated with the connector.
Control flows can also be allocated to connectors, but the semantics and physical implications of allo-
cating control flows are also highly dependent on the design method. Additional model refinement may
be required before unambiguous control flow allocation can be achieved.

14.7.3 ALLOCATING OBJECT FLOW TO ITEM FLOW

Figure 14.16 depicts an alternative method of flow allocation from Figure 14.15. In this case object flow
of2 has been allocated to the item flow if]. This can be depicted on an activity diagram or internal block
diagram using callout notation. In addition to the activity diagram, an allocation matrix is provided to
explicitly show the allocate relationships. The nesting of the allocation matrix around the activity dia-
gram is done solely for convenience and is not a standard SysML representation. This is a more specific
form of allocation than object flow to connector, and it is unambiguous even if more than one item flow
is associated with the connector. In general, activity edges that represent control flow or object flow can
be allocated to item flows.
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act [Activity] Simplified Adjust Focus [Flow Allocation1] )

«allocate»
f1 : Sharpness Detector

of2 -

allocatedTo
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al: Measure Pixel Contrast
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FIGURE 14.15
Obiject flow to connector allocation.
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FIGURE 14.16

Object flow to item flow allocation with allocation matrix.
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Allocating an object flow or control flow to an item flow does not affect the behavior represented on
the activity diagram. If the modeling tool animates or executes the activity diagram, it is the object flow
that will be part of that execution semantic, not the item flow.

When allocating object flows to item flows, it is important to ensure consistent typing. The built-in
constraints on object flows ensure that the action pins on each end of the object flow are typed consis-
tently. When allocating the object flow to an item flow, the type of the action pins associated with the
object flow should be consistent with the conveyed classifier that types the item flow and any associated
item property. This is an example of what might be expected from a model checker provided by the tool
to reduce the likelihood of error and the workload of the modeler.

Rather than allocate the object flow to the item flow, it may be appropriate to allocate the object flow
to the item property associated with the item flow. Figure 14.17 shows the results of this kind of allocation
in the surveillance camera. This particular method of allocation is also used in the water distiller example
in Chapter 16 because it ties the object flows in the functional model to specific properties of the water
flowing through the system. The values of these properties are used for subsequent engineering analysis.

act [Activity] Simplified Adjust Focus 3 [Flow Allocation4 ] )

«allocate»
f1 : Sharpness Detector allocatedTo
«part» Focus Controller::sharpness

7/
7/

[31 : Measure Pixel Contrast I of2 7 5 a2 : Optimize Focus

ibd [Block] Focus Controller [Flow Allocation5] )

f1 : Sharpness Detector* p1: Video Interface
cl

sharpness : Video Parameter

f2 : Focus Optimizer *
p1: Video Interface

= 7] Behavior
B <4 Simplified Adjust Focus 3
© al:Measure Pixel Contrast /
"% Object Flow:of2[contrast? ya

: Video Parameter

-f 1: Sharpness Detector
-f 2 : Focus Optimizer

+sharpness

FIGURE 14.17

Object flow to item property allocation.
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14.8 ALLOCATING BETWEEN INDEPENDENT STRUCTURAL HIERARCHIES

There are times to consider more than one model of structure. For example, it is a common practice to
group capabilities, functions, or operations into an abstract or logical structure while maintaining a
separate implementation-specific physical structure. An example of developing a logical architecture
and allocating the logical components to the physical architecture can be found in Chapter 17, Section
17.3.5 (Define Node Physical Architecture) and in Figure 17.33. The logical to physical allocation
provides an opportunity to address alternative allocations that are subject to trade study evaluation.

A particular method for logical architecture development should relate elements of logical structure
with elements of physical structure. SysML allocation provides a mechanism to perform and analyze
this mapping. Implementation of the physical structure may require further model development to real-
ize the logical structure, but this development should wait until the logical-to-physical allocation is
stable and consistent across the system model.

The physical structure may itself be divided into software structures and hardware structures. UML
software modelers typically use deployment relationships to map software structures to hardware struc-
tures. SysML allocation provides a more abstract mechanism for this kind of mapping, which does not
have to consider host—target environment, compiler, or other more detailed implementation consider-
ations. These considerations may be deferred until after preliminary software-to-hardware allocation
has been performed and analyzed.

14.8.1 MODELING STRUCTURAL ALLOCATION OF USAGE

An example of a structural allocation of usage is shown in Figure 14.18 using a block definition dia-
gram. The diagram shows both ends of the structural allocation of the blocks’ internal structure. The
structure compartment of a block on a block definition diagram corresponds to what is depicted on the
internal block diagram of that block.

bdd [Package] Physical Structure [Structural Allocation of Usageu
«block» «block»
«logical» «physical»
Focus Controller Mother Board
structure structure
f1 : Sharpness Detector | | _«@llocate» | | 1 : ADC Chipset
[V} V]
«allocate» .
ctbp-————>—>"""—"""1—"—————=> i
L «allocate» L
f2 : Focus Optimizer [T~~~ ~"7~~7] =] mb4 : Control Processor

FIGURE 14.18

Structural allocation of usage example.
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Allocation between parts in different structure compartments, as shown, can only depict allocation
of usage. Likewise, allocation shown between connectors on internal block diagrams or structure com-
partments can only represent allocation of usage.

14.8.2 ALLOCATING A LOGICAL CONNECTOR TO A PHYSICAL STRUCTURE

A connector is used to connect parts or ports. A connector depicted in an abstract or logical structure
may be allocated to one or more interfacing parts in a physical structure, such as a wiring harness, a bus,

or a complex network.

The example in Figure 14.19 depicts the allocation of a connector in a logical structure—where
physical connection details are not considered—to a physical part (ea5 : PWB Backplane) and the

bdd [Package] Physical Structure [Physical Connector AIIocationu
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FIGURE 14.19

Refining a connector using allocation.
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associated connectors. The use of allocation is an appropriate way to show the refinement of the logi-
cal connector without requiring undue extension of the logical architecture into implementation
details. Any item flow on the logical connector can be allocated to multiple item flows in the physical
structure, such as allocating an item flow on a logical connector to the item flows entering and exiting

a cable.

14.8.3 MODELING STRUCTURAL ALLOCATION OF DEFINITION

Figure 14.20 shows structural allocation of definition for the autofocus portion of the surveillance cam-
era. This is different from the allocation represented previously in Figure 14.18, which depicted alloca-
tion of usage. If a structural allocation is meant to apply to all its usages, then allocation of definition is
appropriate. In this example, wherever the block Vector Processor is used, it will include the inferred

allocation from Image Processor, even if it is not used in a Mother Board.

FIGURE 14.20
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14.9 MODELING STRUCTURAL FLOW ALLOCATION

The item that flows, which may be represented by a block, can be used to type the flow on both an
abstract (e.g., logical) internal block diagram and a concrete (e.g., physical) internal block diagram.
This enables a common structural data model to be maintained between logical and physical
hierarchies.

There may be good reasons, however, to establish separate abstract logical and physical data mod-
els. For example, a standard logical data model may be required, but the data-level implementation may
need to be optimized. In the case in which an item flow depicted at an abstract level needs to be allo-
cated to structures at a more concrete level, it may be necessary to decompose the abstract item flow so
that it may be uniquely allocated. If a block is used to represent the item that flows at the abstract level,
it can be decomposed into a set of blocks that represent the items that flow at the more concrete level.
The abstract item flow can then be allocated to the more concrete item flows that use the appropriate
blocks to type item properties.

Figure 14.21 shows how an item flow or item property at an abstract level can be allocated to an item
flow or item property at a more concrete level. Note in the structural compartments of the Focus Controller
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FIGURE 14.21
Example of structural flow allocation with allocation matrix.
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and Motherboard blocks on the block definition diagram that only the names of the item properties are dis-
played, not the names of the item flows. It is possible to allocate from an item property on one diagram
directly to an item property on another diagram, in this case sharpness : Video Parameter allocated to pixel
contrast : Signal. Because the logical data model is independent of the physical data model, the types (con-
veyed classifiers) of each item property are different (Video Parameter and Signal). Note that allocation
between item flows or item properties is most clearly represented on the allocation matrix. The name of the
item flow in Focus Controller is ifl. Likewise, the name of the item flow in Mother Board is if3.

14.10 ALLOCATING DEEPLY NESTED PROPERTIES

Special care may be required to avoid ambiguity when allocating deeply nested usages/properties such as
parts and callBehaviorActions. The block definition diagram in Figure 14.22 presents a structural hierarchy
and a behavioral hierarchy. When allocating callBehaviorAction y/ specifically to part c/, the information
on the block definition diagram can be ambiguous. The internal block diagram in Fig 14.22 presents the
plausible internal structure of Block A, where both b1 and b2 include ¢! in their internal structure.

An allocate relationship can include a property path, which is a combination of namespace qualified
name notation (::) discussed in Chapter 6, Section 6.6 and dot notation discussed in Chapter 7, Section
7.3.1. As a result, the allocate relationship can specify a property path to a nested property on either of
its ends and remove any ambiguity. The example previously shown in Figure 14.06 includes a nested
property on the “from” end of the allocation, expressed as A::b1.cl, thus eliminating any ambiguity. A
is the context block that is the root of the property path. The first property in the property path is con-
tained in the context block and therefore is referenced by preceding it with a double colon. The dot
notation is then used to navigate from the first property down to the nested property of interest.

This notation can be used to remove ambiguity for other kinds of relationships besides allocation,such
as requirement relationships and other dependency relationships.

bdd [Model] Allocation Example J
«block» «activity» ibd [Block] A
A Do_X 1 B
«adjunct»
b1 b2 y1 c1:C||c2:C
«block» «activity»
B Do_Y
b2:B
el e c1:¢|[e2:C
«block»
c

FIGURE 14.22

Example of potential ambiguity introduced by deeply nested parts. When allocating to part c1, which one is it?
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14.11 EVALUATING ALLOCATION ACROSS A USER MODEL

The integrity and completeness of the allocate relationships are largely dependent on the system’s stage
of development. Since allocation may be used as an abstract prelude to more concrete relationships, the
quality of allocation at a given point in time is assessed with respect to the system development method
or strategy being employed.

14.11.1 ESTABLISHING BALANCE AND CONSISTENCY

The model can be assessed in terms of the completeness and consistency of the allocate relationships
and the overall balance of the allocation as described next.

Completeness and consistency can be evaluated using user defined rules or constraints. In func-
tional allocation, for example, allocation of a package of activities is said to be complete when each
activity has an allocate relationship to a block in the model. It may not be judged to be consistent, for
example, until the actions in the activities are depicted in a valid activity diagram. The inferred alloca-
tion to parts is depicted on a valid internal block diagram, and any object flows on the activity diagram
are allocated to appropriate connectors on the internal block diagram. Consistency can also involve
checking for circular allocations, redundant allocations, and what the modeler may define as inappro-
priate allocations (e.g., allocating an activity to another activity). Again, automated model checking is
expected to assist with this.

Evaluating the balance of the allocation is more subjective and likely to require experience and
judgment on the part of the modeler. One aspect of balance may involve assessing the level of detail
represented by the model element at each end of the allocate relationship. For example, balance might
involve either examining portions of the model that are rich in allocation to determine whether the level
of detail is too high or assessing whether the allocation-poor portions of the model need further refine-
ment. When evaluating functional allocation, for example, if a large number of activities are allocated
to a single block but other blocks have few or no activities allocated, the modeler may ask: 1) Have the
activities of the system been completely modeled? or 2) Has the structural design incorporated too
much functionality into a single block? The answers to these questions will help determine the direc-
tion for the future modeling effort. For Question 1, it might mean fleshing out the activity model in
other areas; for Question 2, it might involve decomposing the over-allocated block into lower-level
blocks.

14.12 TAKING ALLOCATION TO THE NEXT STEP

Once allocation across the model is balanced and complete, each allocation may be refined by a more
formal relationship that preserves and elaborates the constraints from the “from” end to the “to” end of
the allocation. In this way, allocation is used to direct the system design activity through the model
without prematurely deciding how the relationship between model elements will be refined. Of course,
this is highly dependent on the modeling method.

SysML allocations allow the modeler to keep model refinement options open. For example, func-
tional allocations can be refined by designating activities allocated to a block as methods called by
operations of the block, which requires the additional step of creating the operations. Deferring the
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decision allows the modeler to work at a consistent level of abstraction, without prematurely commit-
ting to modeling details.

Even after the model is refined, it is appropriate to retain the allocate relationships, possibly captur-
ing supporting «rationale» in the model to provide a history of how the model was developed. This
can be very important information when considering reuse of the model on a different program or
product.

14.13 SUMMARY

The allocate relationship provides significant flexibility for relating model elements to one another
beginning early in the development process. Key concepts for modeling allocations include the
following:

e An allocate relationship is a form of mapping between model elements that provides the capabil-
ity to assign responsibility associated with one model element to another.

e Use of allocation enables certain implementation decisions to be deferred by specifying the
model at higher levels of abstraction and then using allocations as a basis for further model
refinement.

e There are many different kinds of allocation, including allocation of behavior, structure, and
properties. Allocation supports traditional systems engineering concepts, such as allocating
behavior to structure by allocating activities to blocks. Also supported are allocations of logical
connectors to physical interfaces, software to hardware, object flows to item flows, and many
others.

e A key distinction must be made between an allocation of definition and an allocation of usage. In
allocation of definition, defined elements (e.g., activities) are allocated to other defined elements
(e.g., blocks); allocation between the activity and the block is valid for all usages of the activity
and all usages of the block, regardless of the context. For allocation of usage—such as when an
action is allocated to a part—the allocation is only valid in the specific context of the part proper-
ties/roles and actions.

e An allocate activity partition provides an explicit mechanism to allocate responsibility of an action
to a part.

e There are multiple graphical and tabular representations for representing allocations similar to
those used for representing requirements relationships. Graphical representations include direct
notation, compartment notation, and callout notation. Matrix and tabular representations can
provide a compact form for representing multiple allocate relationships.

14.14 QUESTIONS

1. List four ways that allocations can be depicted on SysML diagrams.

2. Which kinds of model elements can participate in an allocate relationship in SysML?
3. Is the allocate relationship appropriate to use when allocating requirements?

4. List and describe three uses of the allocate relationship in SysML.
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5. For each of the following allocate relationships, indicate whether they are allocation of definition
or allocation of usage:

a. action on activity diagram to part on internal block diagram

b. activity to block

c. object flow to connector

d. activity parameter node to interface block

What is the significance of choosing an allocation of definition instead of an allocation of usage?
Should an object flow ever be allocated to a block? Explain your answer.

Should an activity ever be allocated to a part? Explain your answer.

Should a connector ever be allocated to a block? Explain your answer.

Describe what is being allocated in Figure 14.21 and its significance.

COoRNO

DISCUSSION TOPICS

What is the purpose of allocation? What role does it play in system development? How can good or
poor allocation impact the ove