
SPRINGER BRIEFS IN INFORMATION SYSTEMS

Diogo R. Ferreira

A Primer on 
Process Mining
Practical Skills with 
Python and Graphviz  



SpringerBriefs in Information Systems

Series editor
Jörg Becker



More information about this series at http://www.springer.com/series/10189

http://www.springer.com/series/10189


Diogo R. Ferreira

A Primer on
Process Mining
Practical Skills with
Python and Graphviz

123



Diogo R. Ferreira
Instituto Superior Técnico
University of Lisbon
Oeiras, Portugal

ISSN 2192-4929 ISSN 2192-4937 (electronic)
SpringerBriefs in Information Systems
ISBN 978-3-319-56426-5 ISBN 978-3-319-56427-2 (eBook)
DOI 10.1007/978-3-319-56427-2

Library of Congress Control Number: 2017938642

© The Author(s) 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

Over the years, I had to introduce a number of M.Sc. and Ph.D. students to the
topic of process mining. Invariably, it was difficult to find a concise introduction
to the topic, despite the fact that some of the fundamental ideas of process mining
are quite simple. In principle, it should not be necessary to go through a series of
research papers in order to get a good grasp of those ideas.

On the other hand, I did not want my students to start using ProM1 or Disco2

right away, without understanding what is happening behind the scenes. Instead, I
would prefer to provide them with the working knowledge that would allow them to
implement some simple process mining techniques on their own, even if only in a
rudimentary form. It always seemed to me that being able to implement something
is the best way to develop a solid understanding of a new topic.

The main goal of this book is to explain the core ideas of process mining and
to show how these ideas can be implemented using just some basic tools that are
available to any computer scientist or data scientist. One of such tools is the Python
programming language, which has become very popular since it allows writing
complex programs in a clear and concise form. Another tool that is very useful is the
Graphviz library, which is able to display graphs and automatically calculate their
layout without requiring the programmer to do so. Graphviz provides an effortless
way to visualize the results of many process mining techniques.

Before going further, some disclaimers are in order; namely, this book is not
meant to be a reference on process mining. In that sense, it would be very
incomplete, since we will be using only a simplified version of a very small subset
of process mining techniques. Also, the text does not delve into a wide variety of
process models that can be generated by those techniques. Here, we will be using

1http://www.promtools.org/.
2https://fluxicon.com/disco/.

v

http://www.promtools.org/
https://fluxicon.com/disco/


vi Preface

graphs (both directed and undirected, but just plain graphs) without getting into
more sophisticated process modeling languages, such as Petri nets3 and BPMN.4

Nevertheless, this bare-bones approach should suffice to provide a feeling for
what process mining is, while developing some skills that will definitely be useful
in practice.

I prepared this text to be a very first introduction to process mining, and hence I
called it a primer. After this, the reader can jump more confidently to the existing
literature, namely the book by Wil van der Aalst,5 and the extensive set of research
publications in this field. I hope that this text will contribute towards a deeper
understanding of process mining tools and techniques.

Lisbon, Portugal Diogo R. Ferreira
February 2017

3http://www.informatik.uni-hamburg.de/TGI/PetriNets/.
4http://www.bpmn.org/.
5See [18] in the list of references on page 95.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.bpmn.org/


Contents

1 Event Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Process Model vs. Process Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Task Allocation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Identifying the Process Instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Recording Events in an Event Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Event Logs in CSV Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Reading an Event Log with Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Sorting an Event Log with Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 Reading the Event Log as a Dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Control-Flow Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 The Transition Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 The Control-Flow Algorithm .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Implementation in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Introducing Graphviz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Using PyGraphviz.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Edge Thickness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Activity Counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Node Coloring.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Organizational Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1 Handover of Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Implementing Handover of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Working Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Implementing Working Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Edge Thickness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 Users and Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8 Work Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



viii Contents

4 Performance Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Dates and Times in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Parsing the Timestamps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Average Timestamp Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Drawing the Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Analyzing the Timeline of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Plotting the Dotted Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Using Relative Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8 Activity Duration.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Process Mining in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1 The BPI Challenge 2012 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Understanding the XES Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Reading XES with Python .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Analyzing the Control-Flow Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Analyzing the Organizational Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.6 Analyzing the Performance Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7 Process Mining with Disco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.8 Process Mining with ProM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



Chapter 1
Event Logs

Organizations have information systems that record activities of interest, such as
the registration of a new customer, the sale of a product, the approval of a purchase
request, the processing of a payment, etc. All of these activities result in one or more
events being recorded in some information system.

In the past, such events were mainly used for the purpose of record-keeping,
accounting, auditing, etc. More recently, organizations have started leveraging those
data for business analytics, namely the kind of analysis that can be performed with
data warehouses and online analytical processing (OLAP).1

Process mining is concerned with a different goal: the aim of process mining is
to take advantage of event data in order to understand how an organization works.
For example, with process mining it is possible to discover the sequence of tasks
that are performed in a certain business process, and also the interactions that take
place between the participants in that process.

Analyzing business processes in this way is important for a number of reasons,
namely to assess the internal performance of an organization, to raise awareness of
how people work and how they interact with each other, and ultimately to identify
opportunities for efficiency improvements and better usage of resources.

The starting point for process mining is an event log. This event log may be the
actual log of some information system (e.g. the log file of an application server), or it
may be a log file that is built from historical data recorded in a database, for example.
Whatever the source, the data in an event log must have (or must be converted to)
a specific structure. The goal of this chapter is to explain that structure. However,
to understand why an event log has such structure, it is useful to introduce some
general concepts about business processes first.

1For a reference on this topic, see e.g. [16].

© The Author(s) 2017
D.R. Ferreira, A Primer on Process Mining, SpringerBriefs in Information Systems,
DOI 10.1007/978-3-319-56427-2_1

1



2 1 Event Logs

a. Fill out 
request

b. Approve 
request

c. Archive 
request

d. Order 
product

e. Receive 
product

f. Update
stock

g. Handle 
payment

h. Close 
request

Requisition
approved?

Yes

No

+ +

Fig. 1 Example of a process model (adapted from [3]). Adapted from Computers in Industry, 70,
Ferreira, D.R., Vasilyev, E.: Using logical decision trees to discover the cause of process delays
from event logs, pp 194-207, © 2015, with permission from Elsevier

1.1 Process Model vs. Process Instances

It is often said that a business process is a set of activities which, collectively,
produce some output that is of value for a business organization or for its
customers.2 Our main interest here is to understand how the process unfolds over
time while being executed. In particular, it is common to think of a business process
as sequence of discrete steps, called activities.

An activity is a unit of work that makes sense from a business point of view. For
example, creating a purchase order or approving a purchase request are examples of
what could be seen as activities in a purchase process. Figure 1 shows an example
of how such process could look like.

Here, an employee fills out a request form (activity a) and sends it to a manager
for approval (activity b). If the request is not approved, it is archived (activity c) and
the process ends. If the request is approved, the product is ordered from a supplier
(activity d). Then two things happen at the same time: the warehouse receives
the product (activity e) and updates the stock (activity f ), while the accounting
department takes care of payment to the supplier (activity g). When these activities
are over, the request is closed (activity h), and the process ends.

Figure 1 shows a representation of the process that is usually called a process
model. It is a graphical, step-by-step description of the process in a form that is
similar to a flowchart. In this particular example, it is a model of what happens
when an employee wants to buy something.

The process model describes the sequence of activities in a general, abstract form.
Every time someone wants to buy something in this organization, there will be an
instance of this process for that particular purchase request.

The instances of this process may have different behaviors. For example, suppose
that there two purchase requests, where one is approved and the other is not. Then
these two instances will follow different paths in the model of Fig. 1: the first will
go through activity d and the second will end up in activity c.

2For similar definitions, see [27] and [1].



1.2 Task Allocation 3

Even if two instances follow the same path, there may be differences in their
behavior. For example, since activity g is in parallel with e and f , it may happen that
g is performed before e and f in one instance, and in another instance it is performed
after e and f , or even in between them.

With process mining, it is possible to analyze how this process is performed in the
organization. This is useful for a number of different purposes, such as determining
the percentage of purchase requests that get approved, discovering the most frequent
sequences of activities, estimating the time that it takes for the process to complete,
etc. In addition, sometimes it happens that a process instance displays a behavior that
does not comply with the model, such as executing activities in a different order, or
even executing activities that are not in the original model.

It is in these scenarios that process mining becomes a valuable tool to discover
how the process is actually being executed, as opposed to how the process was
supposed to be executed. In some scenarios, it will be possible to compare the
behavior of a process model defined at design-time with the behavior of process
instances observed at run-time, and this is also a important topic of research in
the field of process mining.3 Here, we will be focusing mostly on the problem of
discovering the run-time behavior of business processes.

1.2 Task Allocation

Following the example of the purchase process above, one could imagine an
organization with many employees, with several people trying to buy things every
now and then, or even at the same time. The business process will be instantiated
multiple times, one for each purchase request, and several of those process instances
may be active simultaneously at any given point in time.

Suppose that in one process instance the product is being ordered, while in
another process instance the product has already been received, and in yet another
process instance the request is still waiting for approval, etc. All of these process
instances are active at the same time, as people are working on them.

Additionally, suppose that there are eight people (employees) involved in this
process. We will refer to them generically as users. If there are four process instances
to be executed, then the allocation of all of these activities to the eight users could
be as shown in Fig. 2.

In these four process instances, two of them get approved and the other two do
not. We leave it as an exercise for the reader to determine how many instances of
each activity a; b; : : : ; h are there to be performed.

Each instance of these activities will have to be performed by someone. We refer
to each of these activity instances as a task. Figure 2 shows how these tasks have
been distributed among users.

3This topic is usually referred to as conformance checking [12].



4 1 Event Logs

h
a a

b
b b d g

f
e f

c
e

dg
ha

c
b

u3 u4 u5 u6 u7 u8u2u1

tasks

users

a. Fil l out 
request

b. Approve 
request

c. Archive 
request

a. Fil l out 
request

b. Approve 
request

d. Order 
product

e. Receive 
product

f. Update
stock

g. Handle 
payment

h. Close 
request+ +

a. Fil l out 
request

b. Approve 
request

c. Archive 
request

a. Fil l out 
request

b. Approve 
request

d. Order 
product

e. Receive 
product

f. Update
stock

g. Handle 
payment

h. Close 
request+ +

Fig. 2 Allocation of tasks to users

It appears that this distribution is somewhat unbalanced, and this may be due to
several reasons, such as the length or complexity of each task, the responsibilities
of each user, the fact that some users may not be available at a certain moment, etc.
There may be some level of unpredictability in the allocation of work.

Also, Fig. 2 shows the allocation of tasks to users as if all tasks had been pre-
assigned at once. In reality, such allocation is dynamic and it happens on-the-fly as
the process is being executed. Usually, tasks are assigned to users at the moment
when those tasks need to be performed. Typically, this occurs when the previous
task has been completed.

For example, if a purchase request is approved (as a result of activity b), then the
next activity is d and it will be necessary to assign a new task d to some user. On the
other hand, if the request is not approved, then the next activity to be assigned is c
and the choice of user may be different.

Task allocation is another aspect of business processes that can be analyzed
through process mining techniques. Namely, it is possible to discover the workload
assigned to each user, and also how users interact and collaborate with each other
when performing a business process, i.e. who passes work to whom and who works
together with whom on each process instance.

1.3 Identifying the Process Instances

In practice, every process instance has some kind of unique identifier. For example,
in a sales process, each order has a unique number; in a technical support process,
each reported problem has a ticket number; and so on.



1.4 Recording Events in an Event Log 5

Similarly, in the purchase process above, each purchase request will have a
unique number. The purpose of having a unique identifier is to be able to track
the status and progress of each process instance.

In the purchase process above, an employee will want to know whether a certain
purchase request has been approved or not. For that purpose, the unique identifier of
the purchase request must be provided in order to distinguish it from other purchase
requests. This applies to other kinds of business process as well. For example, in a
technical support process, it is usually required to provide an issue number in any
follow-up contacts regarding a previously reported problem.

In the context of process mining, the identifier of a process instance is usually
called the case id. The reason for this is that, in many business scenarios, each
process instance is referred to as a case, so the term case id became popular.

This may be easier to understand if we think in terms of a patient that goes to
a hospital, for example. There will be several tasks performed by different people
(nurses, doctors, etc.) while taking care of a patient. The patient is referred to as a
case, and of course there will be many different cases to take care of, as new patients
keep entering the hospital. In this context, treating a patient (i.e. handling a certain
case) is equivalent to executing an instance of some clinical process.

In the purchase process above, we can also look at each purchase request as a
different case that needs to be handled, and we can identify each process instance
by its case id, which is the purchase request number.

1.4 Recording Events in an Event Log

When a user performs a task in a process instance, this represents an event of interest
that should be recorded. Gathering such events will allow a subsequent analysis with
process mining techniques. When a significant number of such events have been
recorded, we refer to that collection of events as an event log.

For the purpose of process mining, each event that is recorded in an event log
should contain at least the following information:

• a case id, which identifies the process instance;
• a task name, which identifies the activity that has been performed;
• a user name, which identifies the participant who performed the task;
• a timestamp, which indicates the date and time when the task was completed.

Table 1 shows a sample event log that resulted from the execution of three
instances of the purchase process. The event log contains the four columns
mentioned above, and the events are presented in chronological order (increasing
timestamp), which reflects the order in which they were recorded.

The events from these three process instances are somewhat intertwined. Namely,
events from case id 1 are interspersed with events from case id 2, and the same
happens with the events from case ids 2 and 3. This often happens in practice, when
there are multiple process instances running concurrently.



6 1 Event Logs

Table 1 Example of an event
log

Case id Task User Timestamp

1 a u1 2016-04-09 17:36:47

1 b u3 2016-04-11 09:11:13

1 d u6 2016-04-12 10:00:12

1 e u7 2016-04-12 18:21:32

1 f u8 2016-04-13 13:27:41

2 a u2 2016-04-14 08:56:09

2 b u3 2016-04-14 09:36:02

2 d u5 2016-04-15 10:16:40

1 g u6 2016-04-18 19:14:14

2 g u6 2016-04-19 15:39:15

1 h u2 2016-04-19 16:48:16

2 e u7 2016-04-20 14:39:45

2 f u8 2016-04-22 09:16:16

3 a u2 2016-04-25 08:39:24

2 h u1 2016-04-26 12:19:46

3 b u4 2016-04-29 10:56:14

3 c u1 2016-04-30 15:41:22

In this sample event log, the tasks and users have been abbreviated with a single
letter and number. This was done mostly for simplicity, but it should be noted
that task names and user names in an event log are somewhat arbitrary. In some
scenarios, they can be anonymized due to privacy reasons.

Regardless of the actual names, what matters is their relationships, such as the
order in which they appear in the event log, and whether they appear within the same
case id or not. It is these relationships that process mining techniques will focus on,
in order to discover the behavior of the business process.

1.5 Event Logs in CSV Format

In practice, an event log may take different forms. The simplest form is a text file,
but an event log may also be stored in the form of a database table, for example. In
any case, it should be possible to export an event log as a text file.

The most common format for storing and exporting event logs is the well-known
text format known as CSV (comma-separated values). This format is commonly
used in spreadsheet applications, for example.

In a CSV file, each event is usually stored in a single line, and the four fields (case
id, task, user, and timestamp) are separated by some punctuation symbol, usually a
comma (,). If the comma is used as a decimal symbol or as a digit grouping symbol,
then it is common to separate the fields by a semicolon (;) instead.



1.6 Reading an Event Log with Python 7

Listing 1 Event log in CSV format
1 1;a;u1;2016-04-09 17:36:47
2 1;b;u3;2016-04-11 09:11:13
3 1;d;u6;2016-04-12 10:00:12
4 1;e;u7;2016-04-12 18:21:32
5 1;f;u8;2016-04-13 13:27:41
6 2;a;u2;2016-04-14 08:56:09
7 2;b;u3;2016-04-14 09:36:02
8 2;d;u5;2016-04-15 10:16:40
9 1;g;u6;2016-04-18 19:14:14

10 2;g;u6;2016-04-19 15:39:15
11 1;h;u2;2016-04-19 16:48:16
12 2;e;u7;2016-04-20 14:39:45
13 2;f;u8;2016-04-22 09:16:16
14 3;a;u2;2016-04-25 08:39:24
15 2;h;u1;2016-04-26 12:19:46
16 3;b;u4;2016-04-29 10:56:14
17 3;c;u1;2016-04-30 15:41:22

Listing 1 shows the same event log as in Table 1, but now in CSV format. Fields
are separated by semicolons, so there should be no semicolon inside a field, or else
it will be interpreted as a separator.

To avoid this problem, the CSV format allows the use of text delimiters, typically
a double quote (") to enclose any field that might have symbols that could be
misinterpreted as a separator. However, unless the task names or user names are
allowed to contain such symbols, the use of text delimiters is not very common in
event logs that are used for process mining.

1.6 Reading an Event Log with Python

Reading an event log in Python is relatively simple (simpler than reading it in C, for
example) since the Python language has built-in data structures such as lists, tuples,
and dictionaries that facilitate most programming tasks.

The fundamental idea for reading an event log in CSV format is to open the
file, read it line by line, and split each line wherever the separator symbol is found.
Listing 2 shows how this can be done in Python.4

The code in Listing 2 opens the file for reading and then creates an empty list to
store the events that will be read from the file. A for-loop iterates through the file,
reading it line by line, until the end-of-file (EOF) is reached.

For each line fetched from the file, the first thing to do is to trim (strip) the line
of any leading and trailing whitespace characters. This is being done here to remove
the newline character at the end of each line.

4We use Python 2 because, in most systems, the python command defaults to that version.



8 1 Event Logs

Listing 2 Reading and printing an event log
1 f = open('eventlog.csv', 'r')
2
3 log = []
4
5 for line in f:
6 line = line.strip()
7 if len(line) == 0:
8 continue
9 parts = line.split(';')

10 caseid = parts[0]
11 task = parts[1]
12 user = parts[2]
13 timestamp = parts[3]
14 event = (caseid, task, user, timestamp)
15 log.append(event)
16
17 f.close()
18
19 for (caseid, task, user, timestamp) in log:
20 print caseid, task, user, timestamp

Listing 3 Output of the previous script
1 1 a u1 2016-04-09 17:36:47
2 1 b u3 2016-04-11 09:11:13
3 1 d u6 2016-04-12 10:00:12
4 1 e u7 2016-04-12 18:21:32
5 1 f u8 2016-04-13 13:27:41
6 2 a u2 2016-04-14 08:56:09
7 2 b u3 2016-04-14 09:36:02
8 2 d u5 2016-04-15 10:16:40
9 1 g u6 2016-04-18 19:14:14

10 2 g u6 2016-04-19 15:39:15
11 1 h u2 2016-04-19 16:48:16
12 2 e u7 2016-04-20 14:39:45
13 2 f u8 2016-04-22 09:16:16
14 3 a u2 2016-04-25 08:39:24
15 2 h u1 2016-04-26 12:19:46
16 3 b u4 2016-04-29 10:56:14
17 3 c u1 2016-04-30 15:41:22

If, as a result of this trimming, the line becomes empty, then this is just a blank
line and we can proceed to the next line. Sometimes, there is a blank line at the end
of the log file, so it is a good idea to skip it instead of attempting to parse it.

If the line is not empty, the script assumes that it will be possible to split the line
into four parts that are separated by semicolon. The split() function returns a list
of parts, and each of those parts is assigned to a different variable. If the event log
contains additional columns, which sometimes happens in practice, then there will
be some extra parts that will remain unused.

The script then creates a tuple with those variables (line 14), and appends this
tuple to the list of events (line 15). After having done this for every line, the script
closes the file (this is important not to forget).

Finally, just for illustrative purposes, the script iterates through the list of events
and prints their contents. The output is shown in Listing 3.



1.7 Sorting an Event Log with Python 9

For more complicated event logs with text delimiters, escape characters, different
line terminators, etc., the Python language provides a built-in csv module5 that can
handle all those variants. The NumPy library6 and the Pandas library7 also have
powerful routines to read CSV files, but they are more geared towards numerical
applications. Anyway, this is just a matter of getting familiar with the documentation
for those modules and libraries, so we leave it to the interested reader to explore
further. Our main goal here is to focus on the fundamental ideas.

1.7 Sorting an Event Log with Python

Listing 3 shows that the event log is sorted by timestamp, and this is usually what
happens in practice, as events are recorded sequentially in the order in which they
occurred. However, for the purpose of process mining, it is often convenient to bring
together all the events that belong to the same case id.

Sorting the event log must be done carefully in order to keep the relative order of
events within the same case id. Consider what happens when running log.sort()

on the list created in Listing 2. The sort() method will sort the events by case id
and then, if two events have the same case id, it will sort them by task. As a result,
we could end up with the output shown in Listing 4.

Here, the sorting has changed the order of events in case id 2. While, in Listing 3,
case id 2 had the task transitions g ! e ! f , in Listing 4 the transitions are
e ! f ! g because these tasks have been brought into alphabetical order.

Clearly, we need to sort the events by case id and timestamp in order to keep the
relative order of events within the same case id. In Python, we can do this by telling
the sort() method which fields should be used for sorting.

The sort() method accepts a named argument called key. This key is a function
that is called on each element of the list prior to sorting them. The idea is to use
this function to do some processing on the element and return a key to be used
for sorting. The elements end up being sorted by the key returned by the function
instead of being sorted based on their original contents.

The syntax for doing this in Python involves a so-called lambda function. A
lambda function is an anonymous function that has simply a list of arguments and
an expression to compute its result. For example, the lambda function in Listing 5
computes the square of its argument.

Going back to our problem, we need to sort the event log by case id and
timestamp. For this purpose, it is possible to use a lambda function that extracts
the case id and timestamp from a given event. The case id and timestamp will be
used as key for sorting. Listing 6 shows how to do this.

5https://docs.python.org/2/library/csv.html.
6http://www.numpy.org/.
7http://pandas.pydata.org/.

https://docs.python.org/2/library/csv.html
http://www.numpy.org/
http://pandas.pydata.org/


10 1 Event Logs

Listing 4 Wrong sorting of the event log by case id
1 1 a u1 2016-04-09 17:36:47
2 1 b u3 2016-04-11 09:11:13
3 1 d u6 2016-04-12 10:00:12
4 1 e u7 2016-04-12 18:21:32
5 1 f u8 2016-04-13 13:27:41
6 1 g u6 2016-04-18 19:14:14
7 1 h u2 2016-04-19 16:48:16
8 2 a u2 2016-04-14 08:56:09
9 2 b u3 2016-04-14 09:36:02

10 2 d u5 2016-04-15 10:16:40
11 2 e u7 2016-04-20 14:39:45
12 2 f u8 2016-04-22 09:16:16
13 2 g u6 2016-04-19 15:39:15 # this event is misplaced
14 2 h u1 2016-04-26 12:19:46
15 3 a u2 2016-04-25 08:39:24
16 3 b u4 2016-04-29 10:56:14
17 3 c u1 2016-04-30 15:41:22

Listing 5 A simple lambda function
1 f = lambda x: x**2
2 y = f(2) + f(3) # the result is 4 + 9 = 13
3 print y

Listing 6 Sorting with a lambda function
1 log.sort(key = lambda event: (event[0], event[-1]))

Listing 7 Correct sorting of the event log by case id and timestamp
1 1 a u1 2016-04-09 17:36:47
2 1 b u3 2016-04-11 09:11:13
3 1 d u6 2016-04-12 10:00:12
4 1 e u7 2016-04-12 18:21:32
5 1 f u8 2016-04-13 13:27:41
6 1 g u6 2016-04-18 19:14:14
7 1 h u2 2016-04-19 16:48:16
8 2 a u2 2016-04-14 08:56:09
9 2 b u3 2016-04-14 09:36:02

10 2 d u5 2016-04-15 10:16:40
11 2 g u6 2016-04-19 15:39:15
12 2 e u7 2016-04-20 14:39:45
13 2 f u8 2016-04-22 09:16:16
14 2 h u1 2016-04-26 12:19:46
15 3 a u2 2016-04-25 08:39:24
16 3 b u4 2016-04-29 10:56:14
17 3 c u1 2016-04-30 15:41:22

Basically, the lambda function receives an event and returns a tuple containing
the case id and the timestamp from that event. Remember that an event is a 4-tuple
containing a case id, task, user, and timestamp. The lambda function retrieves only
the first and the last fields from that tuple, packs them into a 2-tuple, and returns this
as a key to be used for sorting.

As a result of this sorting, we get the correct result shown in Listing 7. Of course,
if we want to get back to the event log sorted globally by timestamp, we can use a
lambda function that returns only the timestamp from each event.



1.8 Reading the Event Log as a Dictionary 11

1.8 Reading the Event Log as a Dictionary

Another way to bring together the events that belong to the same case id is to read
the event log into a dictionary, instead of reading it into a list.

Similarly to a list, a Python dictionary is a data structure that holds a collection of
items. However, instead of having each item at certain position, in a dictionary each
item is associated with a certain key. A key and its corresponding item are usually
referred to as a key-value pair (even though the “value” here may be a complex data
structure). A dictionary is a collection of key-value pairs.

To bring together events within the same case id, the idea is to use the case id as
key. Associated with that key, there will be a list of events (i.e. the item or “value”
associated with the key is actually a list of events). In other words, each case id
(serving here as key) will be associated with the list of events that belong to that
case id. Naturally, this list of events must be sorted by timestamp.

Listing 8 shows how the events can be read into a dictionary.
The code is very similar to Listing 2 on page 8, but has the following differ-

ences:

• The log variable is now initialized as a dict() rather than as a list ([]).
• For each line that is read from the log file, it is necessary to check if the case id

already exists in the dictionary. If it does not exist (line 14), then a new key is
inserted into the dictionary (line 15). The list of events associated with this key
is initially empty.

• In contrast to Listing 2, each event is now a 3-tuple with task, user, and timestamp
(line 16). The event is appended to the list of events associated with the case id
(line 17).

Listing 8 Reading and printing an event log with a dictionary
1 f = open('eventlog.csv', 'r')
2
3 log = dict()
4
5 for line in f:
6 line = line.strip()
7 if len(line) == 0:
8 continue
9 parts = line.split(';')

10 caseid = parts[0]
11 task = parts[1]
12 user = parts[2]
13 timestamp = parts[3]
14 if caseid not in log:
15 log[caseid] = []
16 event = (task, user, timestamp)
17 log[caseid].append(event)
18
19 f.close()
20
21 for caseid in log:
22 for (task, user, timestamp) in log[caseid]:
23 print caseid, task, user, timestamp



12 1 Event Logs

Listing 9 Output of the previous script
1 1 a u1 2016-04-09 17:36:47
2 1 b u3 2016-04-11 09:11:13
3 1 d u6 2016-04-12 10:00:12
4 1 e u7 2016-04-12 18:21:32
5 1 f u8 2016-04-13 13:27:41
6 1 g u6 2016-04-18 19:14:14
7 1 h u2 2016-04-19 16:48:16
8 3 a u2 2016-04-25 08:39:24
9 3 b u4 2016-04-29 10:56:14

10 3 c u1 2016-04-30 15:41:22
11 2 a u2 2016-04-14 08:56:09
12 2 b u3 2016-04-14 09:36:02
13 2 d u5 2016-04-15 10:16:40
14 2 g u6 2016-04-19 15:39:15
15 2 e u7 2016-04-20 14:39:45
16 2 f u8 2016-04-22 09:16:16
17 2 h u1 2016-04-26 12:19:46

Listing 10 Sorting the output by caseid and the events by timestamp
1 for caseid in sorted(log.keys()):
2 log[caseid].sort(key = lambda event: event[-1])
3 for (task, user, timestamp) in log[caseid]:
4 print caseid, task, user, timestamp

• When iterating through the event log, we need to go through each key (line 21)
and then go through the list of events associated with that key (line 22).

The output of this script is shown in Listing 9. Note that case id 3 appears before
case id 2 because, in a dictionary, keys have no particular order. However, events
within the same case id appear together as desired.

If, for some reason, we would like to sort this output by case id (only the output,
not the dictionary itself), then this can be done by using a list of sorted keys, as
shown in Listing 10 (line 1).

For completeness, Listing 10 also includes an instruction to make sure that the
list of events for each case id is sorted by timestamp (line 2). This sorting is being
done in-place (i.e. by changing the list itself). The output of this code is the same as
in Listing 7.

1.9 Summary

Before we proceed to the next chapter, here is a recap of the main points so far:

• Business processes are often represented as graphical models that specify the
sequences of activities that are expected to be performed at run-time.

• A single process model may give origin to many process instances at run-time,
with variations in their behavior and in their participants.

• Tasks are assigned to users in a non-deterministic way, depending on the
conditions that are found at run-time when a process instance is being executed.



1.9 Summary 13

• Process mining is a means to analyze the run-time behavior of process instances,
in terms of their sequence of tasks and participating users.

• Each process instance is identified by a unique case id.
• An event log is a list of recorded events, where each event contains a case id,

task, user, and timestamp.
• When events logs are stored in CSV format, they can be easily parsed with the

split() function available in Python.
• An event log can be loaded as list of events, or as a dictionary where the key is

the case id and the value is the list of events associated with that case id.
• Events should be sorted by caseid and timestamp. This can be done in Python

with the sort() method and a lambda function.



Chapter 2
Control-Flow Perspective

The control-flow perspective is a type of analysis that focuses on the discovery of
the sequence of activities in a business process. The idea is that by analyzing how
tasks follow each other in the event log, it should be possible to come up with a
model that describes the overall behavior of the process.

There are several algorithms to discover the sequential behavior of a process,
with notable examples being the ˛-algorithm [19], the heuristics miner [25], the
genetic miner [9], and the fuzzy miner [4]. These algorithms employ different
approaches to arrive at essentially the same result, which is a model that depicts
the transitions between tasks.

The simplest way to do this is as follows: every time task a is followed by task b,
we count that transition. We do this for all pairs of consecutive tasks within the same
case id. (Transitions between tasks in different case ids do not count.) Doing this
across the whole event log will provide a count of how many times each transition
has occurred. Then, it is possible to combine these transitions in order to generate
an output graph that captures the sequential behavior of the process.

This idea is the essence of many control-flow algorithms. Rather than looking at
a range of different algorithms and their specific details, here we will focus on this
single fundamental idea. Armed with a good understanding of how this idea can be
implemented, the interested reader will find it easier to get acquainted with more
advanced algorithms in the field of process mining.

2.1 The Transition Matrix

As stated above, we will be looking at a simple version of a control-flow algorithm.
This algorithm will work with case ids and tasks. The algorithm will be described
mainly in abstract terms, meaning that we will refer to examples of tasks such as

© The Author(s) 2017
D.R. Ferreira, A Primer on Process Mining, SpringerBriefs in Information Systems,
DOI 10.1007/978-3-319-56427-2_2

15



16 2 Control-Flow Perspective

a and b without implying a connection to the purchase process from the previous
chapter. In the present context, a, b, c, etc., are just some arbitrary tasks.

Let us think for a moment on how we should store the information about the
transitions between these tasks. Before analyzing the event log, we do not know
which transitions have actually occurred, so we can only assume that any transition
between those activities is possible. If we have N activities, then there are N2

possible transitions between these activities. For example, with three activities
fa; b; cg there are nine possible transitions, namely:

fa!a; a!b; a!c; b!a; b!b; b!c; c!a; c!b; c!cg

To store the count of how many times each transition has occurred, it becomes
more convenient to represent these transitions in matrix form:

a b c
a
b
c

The nine cells in this matrix can be used to store the count of each transition.
This is called the transition matrix. The goal of the control-flow algorithm is to go
through the event log and to fill in this transition matrix with a count in each cell.

In particular, the transition matrix should be read in the following way: if in row
i we find activity a and in column j we find activity b, then the cell .i; j/ contains the
number of times that transition a!b has been observed.

To formally describe the algorithm, it becomes more convenient to use the
notation ai for the activity in row i and aj for the activity in column j. The activities
are then fa1; a2; a3; : : :g and the transition matrix has the following form:

a1 a2 a3 : : :

a1
a2
a3
: : :

2.2 The Control-Flow Algorithm

Let T be the set of distinct tasks recorded in an event log, and let jTj be the size of
that set. For example, if T D fa; b; c; d; e; f ; g; hg then jTjD8.

In mathematical terms, the transition matrix is a function f W T�T ! N0 which
gives the number of times that each possible transition between a pair of activities



2.3 Implementation in Python 17

Algorithm 1 Control-flow algorithm
1: Let F be a square matrix of size jTj2
2: Initialize Fij 0 for every position .i; j/
3: for each case id in the event log do
4: for each consecutive task transition ai!aj in that case id do
5: Fij  FijC1

6: end for
7: end for

in T has been observed. The objective of the control-flow algorithm is to find all the
values for this function.

This can be done by initializing a transition matrix of size jTj2 with zeros. As we
go through the event log, every time a transition ai ! aj is observed, we increment
the value at position .i; j/ in the matrix. Algorithm 1 describes this procedure.

Since the values in matrix F are obtained through a counting procedure, we will
refer to those values as the transition counts.

2.3 Implementation in Python

There are several ways to implement the above algorithm in Python. The main
decision is which data structure should be used to store the transition matrix. The
matrix is bi-dimensional, so it makes sense to use a data structure that can be indexed
twice (for rows and columns). With the built-in data structures available in Python,
the natural choices are: a list of lists, or a dictionary of dictionaries.

Using a list of lists would involve indexing by position and it would require
having a value stored at each position, even if the corresponding transition never
occurs in the event log (those positions would remain with zero). This is what could
be called a dense representation of the transition matrix.

On the other hand, using a dictionary of dictionaries allows us to index by task
name and we have to introduce only the keys that correspond to the transitions that
actually occur in the event log. This is what could be called a sparse representation
of the transition matrix.

Given that the size of a full transition matrix is jTj2 but probably only a subset of
all possible transitions will be observed, it makes sense to use a sparse representation
which avoids having to store a relatively large amount of zeros. With these issues in
mind, here we will show how to implement the transition matrix as a dictionary of
dictionaries.

Also, we assume that the event log has been read into a dictionary as in Listing 8
on page 11. After that, we could write the code shown in Listing 11.

At the beginning of this code, the matrix F is initialized as a dictionary. Then the
script iterates through each case id in the log, and also through the list of events for
that case id. Here, ai and aj are two variables that hold a pair of consecutive tasks.



18 2 Control-Flow Perspective

Listing 11 Implementing the control-flow algorithm in Python
1 F = dict()
2 for caseid in log:
3 for i in range(0, len(log[caseid])-1):
4 ai = log[caseid][i][0]
5 aj = log[caseid][i+1][0]
6 if ai not in F:
7 F[ai] = dict()
8 if aj not in F[ai]:
9 F[ai][aj] = 0

10 F[ai][aj] += 1
11
12 for ai in sorted(F.keys()):
13 for aj in sorted(F[ai].keys()):
14 print ai, '->', aj, ':', F[ai][aj]

Listing 12 Output of the previous script
1 a -> b : 3
2 b -> c : 1
3 b -> d : 2
4 d -> e : 1
5 d -> g : 1
6 e -> f : 2
7 f -> g : 1
8 f -> h : 1
9 g -> e : 1

10 g -> h : 1

If ai is not present in the matrix (line 6), then that row is initialized as a
dictionary. If aj is not present in that row (line 8), then that position is initialized
with zero. Immediately after this, and regardless of any initialization that might have
been done before, the value at that position is incremented (line 10).

The rest of the script shows how to iterate through the matrix and print its
contents. For every row ai and column aj (with both being sorted in alphabetical
order), the script prints the value at position F[ai][aj]. The output of this code for
the event log in Listing 1 on page 7 is shown in Listing 12.

2.4 Introducing Graphviz

Graphviz1 is a wonderful piece of software. It can save enormous amounts of work
when creating graphs, since it takes care of the graph layout automatically. Graphviz
is very often used to visualize the results of process mining techniques.

To provide an idea of what Graphviz does, we will start with a simple example
in Listing 13. This is a text-based definition of a directed graph. Graphviz supports
both directed and undirected graphs, and this is a matter of specifying digraph or
graph at the beginning of the definition.

1http://www.graphviz.org/.

http://www.graphviz.org/


2.4 Introducing Graphviz 19

Listing 13 Definition of a directed graph in Graphviz’s DOT language
1 digraph G {
2 rankdir=LR;
3 node [shape=box];
4 a -> b [label="3"];
5 b -> c [label="1"];
6 b -> d [label="2"];
7 d -> e [label="1"];
8 d -> g [label="1"];
9 e -> f [label="2"];

10 f -> g [label="1"];
11 f -> h [label="1"];
12 g -> e [label="1"];
13 g -> h [label="1"];
14 }

The graph has a name (in this case, G) and its structure comprises a series of
statements enclosed in curly braces ({. . .}) and separated by semicolons (;). Each
statement adds a piece of information to the graph definition.

The first statement rankdir=LR establishes the graph orientation from left to
right (the default is TB, i.e. top to bottom). The second statement says something
about the nodes in this graph. In particular, it says that the shape of nodes is a
box (rectangle). Technically, shape is an attribute of node, and it can be specified
individually for each node (in order to have nodes with different shapes, for
example). However, here the shape is being specified globally for every node.

The remaining statements define the edges in the graph. It should be noted that in
this example the nodes being are defined implicitly by the edges, i.e. the statement
a->b defines an edge between nodes a and b and, implicitly, it also defines the nodes
a and b since they have not been defined before.

Nodes and edges can also be defined separately. A common practice is to first
define nodes and their attributes, and only then define the edges between those
nodes. In the example of Listing 13, the edges and their attributes are being defined.
In this simple example, only one edge attribute (label) is being used.

With the label attribute, we are attaching a label to each edge. A possible use
for that label is to annotate the edges with the transition counts provided by the
control-flow algorithm.

Generating a graph from the definition in Listing 13 is as simple as running a
command such as: dot -Tpng listing13.gv -o graph.png.2 In this command,
dot is the Graphviz tool that calculates the graph layout and produces an image.
Several image formats are supported, including both raster graphics (e.g. PNG,
JPEG) and vector graphics (e.g. SVG).

Figure 3 shows the output generated by Graphviz. Note how Graphviz has
automatically decided on the positioning of each node and has also carefully
rendered the edges and their labels without any crossings or overlaps.

2To be able to run this command, you may have to install Graphviz first. In Ubuntu, Graphviz can
be installed with: sudo apt-get install graphviz.



20 2 Control-Flow Perspective

a b3
c1

d

2

e

1

g

1

f

2

1

h

11
1

Fig. 3 Output generated by Graphviz from the definition in Listing 13

Finally, note how this graph depicts the behavior of the process show in Fig. 1 on
page 2. Naturally, this graph is not as expressive as a full-fledged process modeling
language, but it certainly captures the run-time behavior of the process from the
information recorded in the event log.

2.5 Using PyGraphviz

There are several ways in which one can use Python and Graphviz together. Python
is a good language to implement process mining algorithms, and Graphviz is a great
tool to visualize the results. The question now is how to plug these tools together in
order to generate the graph from the results of the control-flow algorithm.

The simplest solution would be to modify the Python code in Listing 11 on
page 18 to print the graph definition. After all, that Python script is already
generating the output in Listing 12. With a few tweaks, it could as well generate
the graph definition in Listing 13, which is not much different.

However, it can be a bit cumbersome to have complex graph definitions being
generated with print instructions in Python. In addition, this would still require
running dot manually in the command line in order to generate the graph.

A more elegant solution is to use a Python interface for Graphviz, such as pydot3

or PyGraphviz.4 Here, we use PyGraphviz which, at the time of this writing, has
been in active development in recent years.5

Listing 14 shows how to build and generate the graph, assuming that the
transition matrix has already been created by Listing 11 on page 18.

3https://pypi.python.org/pypi/pydot/.
4https://pypi.python.org/pypi/pygraphviz/.
5In order to use PyGraphviz, you may have to install it first. In Ubuntu, it can be installed with:
sudo apt-get install python-pygraphviz.

https://pypi.python.org/pypi/pydot/
https://pypi.python.org/pypi/pygraphviz/


2.6 Edge Thickness 21

Listing 14 Generating the output graph with PyGraphviz
1 import pygraphviz as pgv
2
3 G = pgv.AGraph(strict=False, directed=True)
4
5 G.graph_attr['rankdir'] = 'LR'
6 G.node_attr['shape'] = 'box'
7
8 for ai in F:
9 for aj in F[ai]:

10 G.add_edge(ai, aj, label=F[ai][aj])
11
12 G.draw('graph.png', prog='dot')

The script starts by importing PyGraphviz and then creates a directed graph,
as indicated by directed=True. The strict argument, if true, imposes certain
restrictions, such as not allowing self-loops and multiple edges between the same
pair of nodes. However, here we may have self-loops (i.e. transitions between the
same activity), so we do not impose such restrictions.

In lines 5–6, the script sets the graph attribute rankdir and the node attribute
shape in a similar way to what was done in Listing 13.

The most important part comes in lines 8–10 where the script iterates through the
rows and columns in the transition matrix F and adds an edge for each transition.
The edge is labeled with the transition count stored in the matrix.

Finally, in line 12 the script draws the graph by invoking the dot program, and
saves it into an image file.

Behind the scenes, PyGraphviz generates a graph definition that is very similar
to the one presented in Listing 13. The interested reader may want to try adding the
instruction print G.string() to the code in Listing 14 to see the graph definition
generated by PyGraphviz, and compare it to Listing 13.

2.6 Edge Thickness

It often happens in practice that the event log to be analyzed is quite large and
the resulting graph has a lot of edges with different transition counts, some being
relatively large and others being relatively small.

By labeling each edge with the corresponding transition count, as in Fig. 3, it
is possible to identify the most frequent transitions, but it still requires us to have
a look at every label in order to compare those transitions and to determine, for
example, which transition is the most frequent one.



22 2 Control-Flow Perspective

a b7549
c1866

d

5683
e2820

g2863

959 f

4724

2863

959

h1861
1861

3822

Fig. 4 Output graph generated from an event log with a large number of instances

a b7549
c1866

d

5683
e2820

g2863

959 f

4724

2863

959

h1861
1861

3822

Fig. 5 Adjusting the edge thickness according to the transition count

Consider what would happen if the event log had several thousand instances.
Figure 4 shows how the output graph could look like.

Here, it becomes a bit difficult to compare the transitions and determine which
one is the most frequent. Of course, if we have some prior knowledge about the
process, we could expect that a!b is the most frequent transition, but it would still
take us a moment to confirm that in Fig. 4.

Fortunately, there is a simple way to improve the graph in order to provide a
better idea of the relative frequency of transitions at first glance. This can be done
by adjusting the thickness of each edge according to the corresponding transition
count, as shown in Fig. 5.

A quick look at Fig. 5 suggests that a ! b is the most frequent transition based
on the thickness of that edge when compared to others. We can look at the transition
counts to confirm this, but in any case we need to compare the labels of only the
thickest edges, without having to worry about the thinner ones.

More importantly, an attentive look at Fig. 5 leads to the conclusion that the most
frequent path in this process is a!b!d!g! e! f !h. This is another type of
insight that can be gained by analyzing the event log.

By looking at the thickness of edges, it also becomes apparent that the number
of purchase requests that are not approved (i.e. the ones that follow through activity
c) is noticeably smaller than the ones which do get approved (i.e. the ones that go
through activity d). From the edge labels, one can estimate that about 25% of the
purchase requests do not get approved.

Edge thickness is therefore an important feature that can provide a better
perception of the results of process mining techniques.

In terms of implementation, edge thickness can be controlled with the penwidth

attribute provided by Graphviz. Basically, penwidth is an edge attribute just like
label, so both of these attributes can be applied to an edge, for example as follows:
a->b [label="3", penwidth=1.0].



2.6 Edge Thickness 23

Typically, label is a string (if it is a number, it will be converted to a string), but
penwidth is a numerical value. The default value for penwidth is 1:0. In Fig. 4, all
edges have this default value.

To produce a similar graph to that in Fig. 5, the edge thickness must be increased
for those transitions which have a higher transition count. However, we do not want
the edge thickness to become excessively large or excessively small. Therefore, a
good practice is to define minimum and maximum values for the edge thickness,
and associate them with the minimum and maximum transition counts.

Let x denote a transition count, and let y denote the corresponding edge thickness.
If we want to have a linear relationship between x and y, we can use the following
expression:

y D ymin C .ymax � ymin/
x � xmin

xmax � xmin

It is easy to verify that when xDxmin (minimum transition count), the expression
yields yD ymin (minimum edge thickness), and when xD xmax (maximum transition
count), the expression yields yDymax (maximum edge thickness).

Listing 15 shows how to set the edge thickness according to this expression.
The differences in comparison to Listing 14 are the following:

• Line 8 puts all the transition counts in a list. A Python technique known as list
comprehension is being used here to do this in a single line of code.

• Lines 9 and 10 compute the minimum and maximum values in that list (i.e. the
minimum and maximum transition counts found in the matrix).

Listing 15 Setting the edge thickness according to the transition count
1 import pygraphviz as pgv
2
3 G = pgv.AGraph(strict=False, directed=True)
4
5 G.graph_attr['rankdir'] = 'LR'
6 G.node_attr['shape'] = 'box'
7
8 values = [F[ai][aj] for ai in F for aj in F[ai]]
9 x_min = min(values)

10 x_max = max(values)
11
12 y_min = 1.0
13 y_max = 5.0
14
15 for ai in F:
16 for aj in F[ai]:
17 x = F[ai][aj]
18 y = y_min + (y_max-y_min) * float(x-x_min) / float(x_max-x_min)
19 G.add_edge(ai, aj, label=x, penwidth=y)
20
21 G.draw('graph.png', prog='dot')



24 2 Control-Flow Perspective

a b3
c1

d

2

e

1

g

1

f

2

1

h

11
1

Fig. 6 Output graph generated from the previous script

a
(7549)

b
(7549)

7549

c
(1866)1866

d
(5683)

5683
e

(5683)2820
g

(5683)2863

959 f
(5683)

4724

2863

959

h
(5683)

1861
1861

3822

Fig. 7 Including the activity counts in each node

• Lines 12 and 13 define the minimum and maximum edge thickness, respectively.
• Line 17 stores each transition count in a variable, to be used in subsequent lines.
• Line 18 calculates the edge thickness for the given transition count (x).
• Line 19 adds an edge to the graph, now with the extra attribute penwidth.

The output of this code for the event log in Listing 1 on page 7 is shown in Fig. 6.

2.7 Activity Counts

In addition to transition counts, sometimes it is useful to display also activity counts,
i.e. the number of times that each activity (same task name) appears in the event
log. Such activity counts are also useful to identify the most common paths in the
process, especially when there is a large number of transitions in the graph.

For example, consider the graph shown in Fig. 7. This is the same graph of Fig. 5,
with the difference that now it includes the activity count in each node.

A quick look at this graph reveals that there are actually two groups of instances:
those that end in c (1866 instances) and those that follow the other branch and end in
h (5683 instances). When the graph becomes more complex, this kind of conclusion
may be more difficult to reach by looking at the transition counts alone.

Therefore, it is useful to calculate the activity counts and include them in the
graph. We will show how to do this in two separate listings. First, Listing 16 shows
how to calculate the activity counts.



2.7 Activity Counts 25

Listing 16 Calculating the activity counts
1 A = dict()
2 for caseid in log:
3 for i in range(0, len(log[caseid])):
4 ai = log[caseid][i][0]
5 if ai not in A:
6 A[ai] = 0
7 A[ai] += 1

Listing 17 Including the activity counts in the graph
1 import pygraphviz as pgv
2
3 G = pgv.AGraph(strict=False, directed=True)
4
5 G.graph_attr['rankdir'] = 'LR'
6 G.node_attr['shape'] = 'box'
7
8 for ai in A:
9 text = ai + '\n(' + str(A[ai]) + ')'

10 G.add_node(ai, label=text)
11
12 values = [F[ai][aj] for ai in F for aj in F[ai]]
13 x_min = min(values)
14 x_max = max(values)
15
16 y_min = 1.0
17 y_max = 5.0
18
19 for ai in F:
20 for aj in F[ai]:
21 x = F[ai][aj]
22 y = y_min + (y_max-y_min) * float(x-x_min) / float(x_max-x_min)
23 G.add_edge(ai, aj, label=x, penwidth=y)
24
25 G.draw('graph.png', prog='dot')

After reading the event log (see Listing 8 on page 11), we create a dictionary A to
store the activity counts. A loop goes through each case id (line 2), and another loop
goes through every event in that case id (lines 3). For each event, the task is stored
in variable ai. If this task has not been seen before, it is inserted in the dictionary
with an count of zero. Then, its count is incremented by 1.

This is a simple way to count the number of occurrences of each task. Now let us
look at how to include this count in the graph. Listing 17 shows how to do this.

This is the same code as in Listing 15 except for lines 8–10. In these lines, we
go through each task in the dictionary A and add a node to the graph (line 10). The
node name is equal to the task name (ai). However, its label includes additional
information. Specifically, the label is the result of appending the task name with the
activity count inside parenthesis, and with a newline character in between (line 9).

For the event log of Listing 1 on page 7, the resulting graph is shown in Fig. 8.



26 2 Control-Flow Perspective

a
(3)

b
(3)

3

c
(1)1

d
(2)

2

e
(2)

1
g

(2)

1

f
(2)

2 1
h

(2)1

1
1

Fig. 8 Output graph generated from the previous script

It should be noted that in Listing 17 the graph is being built by first adding
the nodes and only then adding the edges. Naturally, the node names that are used
when adding the nodes must be the same that are used when adding the edges. The
additional information about the activity counts is being included in the node labels,
not in the node names.

2.8 Node Coloring

A further improvement that can be done to the graph is to color the nodes according
to their activity counts. Graphviz provides an extensive set of colors, including 100
different shades of gray. This is what we will be using here. A lighter shade of gray
will correspond to a lower activity count, and a darker shade of gray will correspond
to a higher activity count.

To get maximum contrast, we will make the minimum activity count correspond
to white, and the maximum activity count correspond to black. Any values in
between will correspond to some intermediate shade of gray. With this correspon-
dence, the graph for a large event log could look like the one in Fig. 9.

The fill color of each node now provides a visual cue of which nodes have similar
activity counts. In particular, the two groups of instances mentioned in the previous
section (i.e. the ones that go through activity c and the ones that go through activity
d) are now easily distinguishable by their color shading.

Activities a and b have maximum shading since they have the maximum activity
count. Also, note that the font color in these nodes has been changed to white in
order to be readable over a dark background.



2.8 Node Coloring 27

a
(7549)

b
(7549)

7549

c
(1866)1866

d
(5683)

5683
e

(5683)2820
g

(5683)2863

959 f
(5683)

4724

2863

959

h
(5683)

1861
1861

3822

Fig. 9 Adjusting the node color according to the activity count

Listing 18 Adding fill color and setting the font color of nodes
1 import pygraphviz as pgv
2
3 G = pgv.AGraph(strict=False, directed=True)
4
5 G.graph_attr['rankdir'] = 'LR'
6 G.node_attr['shape'] = 'box'
7
8 x_min = min(A.values())
9 x_max = max(A.values())

10
11 for ai in A:
12 text = ai + '\n(' + str(A[ai]) + ')'
13 gray = int(float(x_max - A[ai]) / float(x_max - x_min) * 100.)
14 fill = 'gray' + str(gray)
15 font = 'black'
16 if gray < 50:
17 font = 'white'
18 G.add_node(ai, label=text, style='filled', fillcolor=fill, fontcolor=font)
19
20 values = [F[ai][aj] for ai in F for aj in F[ai]]
21 x_min = min(values)
22 x_max = max(values)
23
24 y_min = 1.0
25 y_max = 5.0
26
27 for ai in F:
28 for aj in F[ai]:
29 x = F[ai][aj]
30 y = y_min + (y_max-y_min) * float(x-x_min) / float(x_max-x_min)
31 G.add_edge(ai, aj, label=x, penwidth=y)
32
33 G.draw('graph.png', prog='dot')

Listing 18 shows how the graph in Fig. 9 has been generated. The new block of
code is in lines 8–18.

As before, the node label includes the task name and the activity count in
parenthesis (line 12). Then, according to the activity count, a gray level is chosen
(line 13). In Graphviz, gray0 corresponds to black and gray100 corresponds to
white. Therefore, we must convert the activity count into a gray level between 0 and
100, where 0 (black) corresponds to the maximum activity count, and 100 (white)
corresponds to the minimum activity count.



28 2 Control-Flow Perspective

If the activity count is denoted as x and the gray level is denoted as y, then the
expression to convert an activity count to a gray level is:

y D xmax � x

xmax � xmin
� 100

It is easy to check that when the activity count is maximum (x D xmax), the
expression yields 0 (black), as desired. On the other hand, if the activity count is
minimum (xDxmin), the expression yields 100 (white).

The minimum and maximum activity counts have been computed before in lines
8–9. In line 13, the script applies the expression above and converts the result to an
integer between 0 and 100. In line 14, the script uses this result to pick the correct
shade of gray, as a Graphviz color between gray0 and gray100.

The choice of font color happens in lines 15–17. Line 15 sets the font color to the
default value of black but, if the gray level is below 50 (meaning that the fill color
is dark), the font color is switched to white in line 17.

Finally, the script adds the node to the graph in line 18. Several attributes are
being specified: the node label, the style (to ensure that the node is actually filled),
the fill color, and the font color.

2.9 Summary

Here is a brief recap of what we have learned in this chapter:

• The aim of the control-flow perspective is to extract a model of the sequence of
activities from the event log. This is done by counting the transitions between
successive tasks with the same case id.

• Such transition counts can be stored in a transition matrix, which is the basis for
generating an output graph.

• Graphviz is a tool for drawing graphs. It takes care of the layout of nodes and
edges automatically, so the minimum information required to draw a graph is a
list of edges between nodes.

• Graphviz has its own language to define graphs, but there is no need to write such
definitions by hand. PyGraphviz provides a convenient interface to generate such
definitions from Python code.

• Both nodes and edges have attributes that can be used to improve the graph.
For better visualization, edge thickness can be adjusted according to transition
counts, and node color can be adjusted according to activity counts.

• Both transition counts and activity counts can be used to discover the most
frequent paths (i.e. the typical behavior) in the process.

Listing 19 shows a complete script with what we have learned in this chapter.



2.9 Summary 29

Listing 19 Complete script for reading the event log and generating the control-flow graph
1 import pygraphviz as pgv
2
3 f = open('eventlog.csv', 'r')
4 log = dict()
5 for line in f:
6 line = line.strip()
7 if len(line) == 0:
8 continue
9 [caseid, task, user, timestamp] = line.split(';')

10 if caseid not in log:
11 log[caseid] = []
12 event = (task, user, timestamp)
13 log[caseid].append(event)
14 f.close()
15
16 F = dict()
17 for caseid in log:
18 for i in range(0, len(log[caseid])-1):
19 ai = log[caseid][i][0]
20 aj = log[caseid][i+1][0]
21 if ai not in F:
22 F[ai] = dict()
23 if aj not in F[ai]:
24 F[ai][aj] = 0
25 F[ai][aj] += 1
26
27 A = dict()
28 for caseid in log:
29 for i in range(0, len(log[caseid])):
30 ai = log[caseid][i][0]
31 if ai not in A:
32 A[ai] = 0
33 A[ai] += 1
34
35 G = pgv.AGraph(strict=False, directed=True)
36 G.graph_attr['rankdir'] = 'LR'
37 G.node_attr['shape'] = 'box'
38
39 x_min = min(A.values())
40 x_max = max(A.values())
41 for ai in A:
42 text = ai + '\n(' + str(A[ai]) + ')'
43 gray = int(float(x_max - A[ai]) / float(x_max - x_min) * 100.)
44 fill = 'gray' + str(gray)
45 font = 'black'
46 if gray < 50:
47 font = 'white'
48 G.add_node(ai, label=text, style='filled', fillcolor=fill, fontcolor=font)
49
50 values = [F[ai][aj] for ai in F for aj in F[ai]]
51 x_min = min(values)
52 x_max = max(values)
53 y_min = 1.0
54 y_max = 5.0
55 for ai in F:
56 for aj in F[ai]:
57 x = F[ai][aj]
58 y = y_min + (y_max-y_min) * float(x-x_min) / float(x_max-x_min)
59 G.add_edge(ai, aj, label=x, penwidth=y)
60
61 G.draw('graph.png', prog='dot')



Chapter 3
Organizational Perspective

The organizational perspective includes different kinds of analysis which are related
to the participants in a business process. The most common types of analysis in this
perspective focus on the discovery of interactions and collaborations between users.
For this purpose, the data to be analyzed are the case id and user columns in the
event log.

The organizational perspective also includes techniques that combine informa-
tion about users and the tasks they perform in order to derive a profile for each
participant, and to discover the hierarchical structure or functional division of an
organization [15]. However, here we will explore this topic only briefly. As in the
previous chapter, we will focus on the core ideas, rather than delving into the full
repertoire of existing techniques.

With some knowledge of the fundamental ideas and of how they can be
implemented in practice, the interested reader will find it easier to get acquainted
with several other variants and techniques that can be found in the literature.

3.1 Handover of Work

When people participate in a business process, they carry out their tasks and hand
over the case to the next person.

If the business process is well structured (e.g. as an administrative process), the
case will typically follow some predefined route across users or organizational units.
On the other hand, if the process is flexible or even ad-hoc (e.g. as a technical support
process), the next person to handle the case may be determined depending on the
outcome of previous tasks.

In practice, it is useful to analyze the handover of work between participants in
order to gain a better understanding of the business process. Such analysis provides
a view of the interactions between users, and from that view it is possible to draw

© The Author(s) 2017
D.R. Ferreira, A Primer on Process Mining, SpringerBriefs in Information Systems,
DOI 10.1007/978-3-319-56427-2_3

31



32 3 Organizational Perspective

Algorithm 2 Handover of work
1: Let H be a square matrix of size jUj2
2: Initialize Hij 0 for every position .i; j/
3: for each case id in the event log do
4: for each consecutive user transition ui!uj in that case id do
5: Hij  HijC1

6: end for
7: end for

conclusions about the most recurring interactions, the workload that is being placed
on each user, and the participants who play a central role in the process.

In the previous chapter, we have looked at a control-flow algorithm that goes
through the event log and calculates the transition counts between tasks (see
Algorithm 1 on page 17, and Listing 11 on page 18). For this purpose, the algorithm
considered every pair of consecutive tasks within the same case id.

The same algorithm can be applied to analyze the user column in the event log
(see Table 1 on page 6). By considering every pair of consecutive users with the
same case id, it is possible to count how many times a given user has handed over
work to another user.

Let U be the set of distinct users recorded in an event log, and let jUj be the size
of that set. For example, if U D fu1; u2; u3g then jUjD3.

Similarly to the control-flow algorithm, here we are looking for a matrix as a
function f WU�U!N0 which gives the number of times that each possible transition
between users in U has been observed in the event log.

The matrix is of size jUj2 and should be initialized with zeros. As we go through
the event log, every time a transition ui ! uj is observed in some case id, we
increment the value at the corresponding position .i; j/ in the matrix.

Algorithm 2 describes this procedure.

3.2 Implementing Handover of Work

As we did in the previous chapter, the handover-of-work matrix H can be stored as
a dictionary of dictionaries, which is indexed twice by user. The implementation of
Algorithm 2 is analogous to Listing 11 on page 18 where, instead of working with
matrix F and tasks ai and aj, we now work with matrix H and users ui and uj.

Listing 20 shows the implementation, where the main difference to Listing 11
is in lines 4–5. Here, ui and uj represent two users. Thus, when accessing the ith
event in the case id, we retrieve the user (which is at position 1 in each event tuple)
rather than the task (which is at position 0).

To generate an output graph, we can use the code in Listing 21, which is
essentially the same as Listing 15 on page 23, except that the node shape has been



3.2 Implementing Handover of Work 33

Listing 20 Implementing the handover-of-work algorithm in Python
1 H = dict()
2 for caseid in log:
3 for i in range(0, len(log[caseid])-1):
4 ui = log[caseid][i][1]
5 uj = log[caseid][i+1][1]
6 if ui not in H:
7 H[ui] = dict()
8 if uj not in H[ui]:
9 H[ui][uj] = 0

10 H[ui][uj] += 1

Listing 21 Generating the output graph with PyGraphviz
1 import pygraphviz as pgv
2
3 G = pgv.AGraph(strict=False, directed=True)
4
5 G.graph_attr['rankdir'] = 'LR'
6 G.node_attr['shape'] = 'circle'
7
8 values = [H[ui][uj] for ui in H for uj in H[ui]]
9 x_min = min(values)

10 x_max = max(values)
11
12 y_min = 1.0
13 y_max = 5.0
14
15 for ui in H:
16 for uj in H[ui]:
17 x = H[ui][uj]
18 y = y_min + (y_max-y_min) * float(x-x_min) / float(x_max-x_min)
19 G.add_edge(ui, uj, label=x, penwidth=y)
20
21 G.draw('graph.png', prog='dot')

u8

u6

1

u1

1

u7

2
u2

1
u3

1

2

1

u4

1

1
u5

1

1

1

Fig. 10 Handover of work for a small event log

changed to circle instead of box (line 6). This is a useful convention to distinguish
between nodes that represent users and nodes that represent tasks.

From the simple event log in Listing 1 on page 7, the generated graph is shown in
Fig. 10. There is not much insight to be gained from here since the transition counts
are too small.



34 3 Organizational Perspective

u8

934

u5

364

u7

942

u6

981

u1

1151

u2

754

1407

758

2039

1515

297

222

1454

414

1394
1061

1170

747

1331

179

1865

411

806

536

u4

890

u3

2113

1378

3168

1368

338

285

277

3155

822

642

662

Fig. 11 Handover of work for a large event log

However, for a large event log, the graph can become significantly more complex,
as shown in Fig. 11. From here, it is possible to draw some conclusions, such as the
fact that a significant amount of work is being routed through user u3.

Indeed, u3 is one of the two managers who approve purchase requests (the other
being u4), so it is natural that this user plays a key role in the process.

3.3 Working Together

With handover of work, we can analyze the direct interactions between users as they
transfer cases between them. Another interesting view is to analyze the users who
participate in each case, regardless of whether they have direct interactions or not.
This is useful, for example, to discover groups of users who often work together as
a team in order to handle certain cases.



3.4 Implementing Working Together 35

In particular, we want to determine, for each pair of users, how many cases those
users have worked together in. For example, in the event log of Table 1 on page 6,
we can see that u1 and u2 have worked together in all three cases.

Determining the users who have worked together (and in how many cases they
have worked together) is slightly more complicated than computing the handover
of work, because we must take into account both the direct and indirect interactions
between users within the same case id.

As with handover of work, the goal is to arrive at a matrix that has a count for
each pair of users. The difference is that here the count is the number of shared cases
between those users. The matrix will have the following general form:

u1 u2 u3 : : :

u1
u2
u3
: : :

To fill in the counts in this matrix, it is useful to consider the set of distinct users
who appear in each case id. Let S denote the set of distinct users within a given case
id. Then we need to go through each pair of users in S (e.g. ui and uj) and increment
the corresponding position in the matrix.

However, in the matrix above there are actually two positions where we can store
the count. There is one position that corresponds to .ui; uj/ and there is another
position that corresponds to .uj; ui/. Since both of these positions refer to the same
pair of users, we can use just one of them to store the count.

In practice, for a given set of users, it is possible to consider only those pairs in
the form .ui; uj/ where j> i. This results in an upper triangular matrix.

Algorithm 3 shows how the working together matrix W is computed. For each
case id, the algorithm builds the set S (lines 4–7), and then a double loop goes
through each pair of users in that set and increments the corresponding position in
the matrix (lines 8–12).

It is interesting to compare this algorithm with Algorithm 2 on page 32. Whereas
Algorithm 2 considers only direct transitions between users in a case id, Algorithm 3
considers all pairs of users from the set of users in a case id.

3.4 Implementing Working Together

The working together algorithm can be implemented in Python almost exactly as
described in Algorithm 3. For this purpose, we note that Python has a built-in set

data structure which can be used to build the set S. Listing 22 shows how to do this.



36 3 Organizational Perspective

Algorithm 3 Working together
1: Let W be a square matrix of size jUj2
2: Initialize Wij 0 for every position .i; j/
3: for each case id in the event log do
4: Let S be a set of users, initialize S ;
5: for each user ui in the case id do
6: S S [ fuig
7: end for
8: for each user ui2S do
9: for each user uj2S such that j> i do

10: Wij WijC1

11: end for
12: end for
13: end for

Listing 22 Implementing the working together algorithm
1 W = dict()
2 for caseid in log:
3 S = set()
4 for i in range(0, len(log[caseid])):
5 ui = log[caseid][i][1]
6 S.add(ui)
7 S = sorted(list(S))
8 for i in range(0, len(S)-1):
9 for j in range(i+1, len(S)):

10 ui = S[i]
11 uj = S[j]
12 if ui not in W:
13 W[ui] = dict()
14 if uj not in W[ui]:
15 W[ui][uj] = 0
16 W[ui][uj] += 1
17
18 for ui in sorted(W.keys()):
19 for uj in sorted(W[ui].keys()):
20 print ui, '--', uj, ':', W[ui][uj]

Again, we assume that the event log has been read into a dictionary as in Listing 8
on page 11. The script goes through each case id in the event log (line 2) and builds
the set S with all users that participate in that case id (lines 3–6).

Python guarantees that a set has no repeated elements, so we end up with the set
of distinct users for each case id, which is exactly what we need for this algorithm.

In line 7, the script converts the set S to a list and then sorts its elements. This
is being done to ensure that, regardless of the actual users in S, they are always
considered in the same relative order (i.e. if j> i then uj appears after ui).

In lines 8–9, the script has a double loop to go through each pair of users. Note
that the second loop starts from iC1. This ensures that j > i and therefore we are
iterating through all pairs of users .ui; uj/ with j> i, as desired.

The rest of the code (lines 10–16) should be self explanatory. If there is no row
for ui in the matrix, then that row is initialized as a dictionary (lines 12–13). If uj is
not present in that row, then that position is initialized with zero (lines 14–15). After
this, the value at that position is incremented (line 16).



3.5 Undirected Graphs 37

Listing 23 Output of the previous script
1 u1 -- u2 : 3
2 u1 -- u3 : 2
3 u1 -- u4 : 1
4 u1 -- u5 : 1
5 u1 -- u6 : 2
6 u1 -- u7 : 2
7 u1 -- u8 : 2
8 u2 -- u3 : 2
9 u2 -- u4 : 1

10 u2 -- u5 : 1
11 u2 -- u6 : 2
12 u2 -- u7 : 2
13 u2 -- u8 : 2
14 u3 -- u5 : 1
15 u3 -- u6 : 2
16 u3 -- u7 : 2
17 u3 -- u8 : 2
18 u5 -- u6 : 1
19 u5 -- u7 : 1
20 u5 -- u8 : 1
21 u6 -- u7 : 2
22 u6 -- u8 : 2
23 u7 -- u8 : 2

Finally, lines 18–20 iterate through the matrix (in sorted order of rows and
columns) and print the count (i.e. the number of shared cases) for each pair of users.
Listing 23 shows the output of this script for the simple event log of Listing 1 on
page 7. The output confirms that u1 and u2 have worked together in all three cases.

3.5 Undirected Graphs

In the control-flow algorithm described in the previous chapter, and in the handover-
of-work algorithm described at the beginning of this chapter, the end result was
presented in the form of a directed graph (see Fig. 3 on page 20, and Fig. 10 on
page 33). Those graphs depict the sequential behavior of the process that can be
derived from the transitions between consecutive tasks or users in each case id.

On the other hand, the working together algorithm considers the set of users who
participate in each case id, regardless of the actual order in which they appear in that
case id. For this purpose, it does not matter if we say that u1 has worked together
with u2 in three cases, or that u2 has worked together with u1 in three cases.

Therefore, the count of shared cases in which a pair of users have worked together
can be seen as an undirected relationship between ui and uj, and the proper way to
represent these relationships is with an undirected graph.

In Graphviz, an undirected graph is defined with the keyword graph instead of
digraph (see Listing 13 on page 19). In addition, the edges in an undirected graph
are defined with a double dash (--) rather than with an arrow (->).

When using PyGraphviz, changing from a directed graph to an undirected graph
is a matter of changing directed=True to directed=False when creating the



38 3 Organizational Perspective

Listing 24 Generating an undirected graph with PyGraphviz
1 import pygraphviz as pgv
2
3 G = pgv.AGraph(strict=False, directed=False)
4
5 G.graph_attr['rankdir'] = 'LR'
6 G.node_attr['shape'] = 'circle'
7
8 for ui in W:
9 for uj in W[ui]:

10 G.add_edge(ui, uj, label=W[ui][uj])
11
12 G.draw('graph.png', prog='dot')

u5

u7

1

u6

1

u8

1

2
2

2

u1

1

2

2

2

u4

1

u3
2

u23

1

2

2

2

1

2

2

2

1

2

Fig. 12 Output graph generated from the previous script

graph, as shown in Listing 24 (line 3). Edges can then be added as before, with
add_edge() (line 10). PyGraphviz will know whether to create directed edges or
undirected edges depending on the kind of graph that is being used.

Figure 12 shows the graph that is generated by the working together algorithm
from the simple event log in Listing 1 on page 7.



3.6 Edge Thickness 39

3.6 Edge Thickness

Even for a simple event log such as the one in Listing 1 on page 7, the output graph
generated by the working together algorithm can become quite complex and difficult
to understand, as shown in Fig. 12.

One way to make the graph more readable is to make use of edge thickness, as
we did in the previous chapter. However, rather than using a linear expression, in
this kind of undirected graph the strongest relationships can be easier to visualize if
we use a quadratic or even cubic expression such as:

y D ymin C .ymax � ymin/

�
x � xmin

xmax � xmin

�3

where x is the edge count and y is the corresponding edge thickness for that count.
The quantities xmax and xmin refer to the maximum and minimum values found

in the matrix W, and the quantities ymax and ymin correspond to the desired limits
(maximum and minimum) for the edge thickness.

Listing 25 shows how to implement this expression with the exponentiation
operator (**) in Python (line 18).

Figure 13 shows the end result for a large event log, where it is easy to spot the
strong relationships between .u1; u3), .u2; u3/, and .u5; u7/, for example.

These relationships are the basis for identifying clusters of users who often work
together as a team. For this purpose, it is possible to use classical data mining
techniques, such as hierarchical clustering [5], which consists in merging the nodes
with the strongest links. This can be done iteratively until a desired number of
clusters is reached, or until the network achieves an optimal structure according
to some metric, such as modularity [11]. An example of the use of hierarchical

Listing 25 Setting the edge thickness according to the count of shared cases
1 import pygraphviz as pgv
2
3 G = pgv.AGraph(strict=False, directed=False)
4
5 G.graph_attr['rankdir'] = 'LR'
6 G.node_attr['shape'] = 'circle'
7
8 values = [W[ui][uj] for ui in W for uj in W[ui]]
9 x_min = min(values)

10 x_max = max(values)
11
12 y_min = 1.0
13 y_max = 5.0
14
15 for ui in W:
16 for uj in W[ui]:
17 x = W[ui][uj]
18 y = y_min + (y_max-y_min) * (float(x-x_min) / float(x_max-x_min))**3
19 G.add_edge(ui, uj, label=x, penwidth=y)
20
21 G.draw('graph.png', prog='dot')



40 3 Organizational Perspective

u5
u73916

u6

3494

u8

3412

2870

3452
3042

u4

1463

1362
1285

1212

u1 3702

3470

3268

3021

1655

u33938

u2
3832

3403

3193

3026

2786

3669

3447

3230

3050

1749

4039

Fig. 13 Output graph generated from the previous script on a large event log

clustering to discover an organizational model can be found in [15]. An example of
the use of modularity to determine the ideal number of clusters can be found in [2].

The same kind of graph can also be used to compute several metrics that are
common in the field of social network analysis [13, 24]. Examples of such metrics
are node degree (based on the links to other nodes), centrality (based on the distance
to all other nodes), and cliques (subsets of fully connected nodes). Some of these
metrics have already been used in the field of process mining [20].

3.7 Users and Activities

In the graph of Fig. 13, the links between nodes represent the number of shared cases
between users. Another measure that could be used to analyze the relationships
between users is the number of shared activities.

Specifically, we want to determine, for each pair of users, how many activities
in common they are able to perform. For example, in the event log of Table 1 on
page 6, we can see that the approval activity (task b) can be performed either by
u3 or u4. This counts as one shared activity between those users (regardless of how



3.7 Users and Activities 41

Listing 26 Collecting the set of activities performed by each user
1 UA = dict()
2 for caseid in log:
3 for i in range(0, len(log[caseid])):
4 ai = log[caseid][i][0]
5 ui = log[caseid][i][1]
6 if ui not in UA:
7 UA[ui] = set()
8 UA[ui].add(ai)

Listing 27 Creating a graph with the number of shared activities between users
1 import pygraphviz as pgv
2
3 G = pgv.AGraph(strict=False, directed=False)
4
5 G.graph_attr['rankdir'] = 'LR'
6 G.node_attr['shape'] = 'circle'
7
8 U = sorted(UA.keys())
9 for i in range(0, len(U)-1):

10 for j in range(i+1, len(U)):
11 ui = U[i]
12 uj = U[j]
13 x = len(UA[ui] & UA[uj])
14 if x > 0:
15 G.add_edge(ui, uj, label=x)
16
17 G.draw('graph.png', prog='dot')

many times the activity appears in the event log). The fact that either u3 or u4 can
approve a purchase suggests that they may have similar responsibilities.

This kind of relationship between users can be gathered by going through the
event log and collecting the set of activities performed by each user. We can then
compare the sets of activities performed by different users. In Python, it is possible
to store these sets of activities in a dictionary that is indexed by user.

Listing 26 shows how to do this. After reading the event log as in Listing 8 on
page 11, we create a dictionary UA that will store the set of activities performed by
each user. For each event in the event log, we collect the task and user from the
event (lines 4–5). If the user is not present in the dictionary, we add it and initialize
that position as an empty set (line 7). Afterwards, we add the task to that set.

After this, we can create an undirected graph as shown in Listing 27. Here, U is
the set of users that can be obtained from the keys of dictionary UA (line 8). We then
iterate through all pairs .ui; uj/ with j> i (lines 9–10). The shared activities between
ui and uj are found by intersecting the sets of activities for those users, using the
Python intersection operator & (line 13).

Here we are interested in the number of shared activities, so we retrieve the size
(i.e. length) of that intersection. An edge is added to the graph if the number of
shared activities is greater than zero (lines 14–15).

The output graph is shown in Fig. 14. This is, in fact, the output graph for a large
event log, and yet it is a relatively simple graph with four separate components.
This is due to the fact that each activity in the process of Fig. 1 on page 2 is always



42 3 Organizational Perspective

Fig. 14 Output graph
generated from the previous
script

u1 u23

u3 u41

u5 u62

u7 u82

performed by one of two possible users, and the set of users who perform each
activity is disjoint from other activities.

For example, activity b (approve request) is performed either by u3 or u4 and this
is the single activity shared by these users in Fig. 14. On the other hand, u7 and u8
share two activities. It is not shown in the graph, but the two activities are e (receive
product) and f (update stock). Similarly, users u5 and u6 share activities d (order
product) and g (handle payment). Finally, users u1 and u2 share three activities: a
(fill out request), c (archive request) and h (close request).

From a graph such as the one in Fig. 14, it is possible to conclude that these
groups of users have clearly separate responsibilities, and therefore they probably
belong to different departments or organizational units.

In practice, such divisions may not be so clear-cut. If users share activities in a
flexible way, then the graph will be more interconnected and it will be necessary to
use some form of clustering in order to discover the organizational structure. For a
more in-depth look at this topic, the reader is referred to [15].

3.8 Work Distribution

Rather than simply gathering the set of activities that each user has performed, it
is possible to actually count how many instances of each activity (i.e. how many
similar tasks) were performed by each user.

This can be done with some changes to Listing 26. Basically, rather than
initializing each position of the dictionary UA as a set, we initialize it as a dictionary
and then use this dictionary to store a count for each activity.

Listing 28 shows how to do this. In line 7, we initialize a new dictionary for each
user and, in lines 8–9, we add the activity to that dictionary if it is not already there,
with an initial count of zero. Line 10 then increments the count per user and activity.

From the dictionary UA, we can now draw a graph to depict the distribution of
work (i.e. the assignment activities to users) that has actually taken place during the
execution of the process. Listing 29 shows how to do this.



3.8 Work Distribution 43

Listing 28 Counting the number of times that each user performed each task
1 UA = dict()
2 for caseid in log:
3 for i in range(0, len(log[caseid])):
4 ai = log[caseid][i][0]
5 ui = log[caseid][i][1]
6 if ui not in UA:
7 UA[ui] = dict()
8 if ai not in UA[ui]:
9 UA[ui][ai] = 0

10 UA[ui][ai] += 1

Listing 29 Creating a graph with the counts per user and activity
1 import pygraphviz as pgv
2
3 G = pgv.AGraph(strict=False, directed=False)
4
5 G.graph_attr['rankdir'] = 'LR'
6 G.node_attr['shape'] = 'circle'
7
8 values = [UA[ui][ai] for ui in UA for ai in UA[ui]]
9 x_min = min(values)

10 x_max = max(values)
11
12 y_min = 1.0
13 y_max = 5.0
14
15 for ui in UA:
16 for ai in UA[ui]:
17 x = UA[ui][ai]
18 y = y_min + (y_max-y_min) * float(x-x_min) / float(x_max-x_min)
19 G.add_edge(ui, ai, label=x, penwidth=y)
20
21 G.draw('graph.png', prog='dot')

Basically, the code is very similar to what we have seen before. The difference
is that, in this graph, each edge is a connection between a certain user and a certain
activity. The edges are labeled with the count stored in dictionary UA, and the edge
thickness is being set according to that count as well (lines 17–19).

As a result, this graph will have users on one side, and activities on the other
side, with the correspondence between users and activities being based on the counts
stored in dictionary UA. The graph for a large event log is shown in Fig. 15.

In this graph, we have four separate components as before, but now we can see
the actual activities that are shared by these users, as well as the number of times that
each user has performed each activity. Besides the edge label, the edge thickness is
also proportional to that count.

Reading the graph in Fig. 15 from left to right shows the distribution of activities
per user, which provides an idea of the proportion of effort that each user has placed
on different activities.

On the other hand, reading the graph from right to left shows the distribution of
users per activity, which provides an idea of how each user has contributed to the
execution of each activity.



44 3 Organizational Perspective

Fig. 15 Distribution of work
across users and activities

u8 e
2271

f

2855

u5 d
4523

g

1715

u4

b

2268

u7

3412

2828

u6

1160

3968

u1

a

3003 h

3424

c

927

u3
5281

u2
4546

2259

939

3.9 Summary

In this chapter, we have seen a series of techniques that are associated with the
organizational perspective of process mining. In particular:

• The handover-of-work algorithm is similar to the control-flow algorithm, but
focuses instead on the sequence of users in the event log. This algorithm can
be used to analyze the behavior of users as they transfer work between them.

• The working together algorithm focuses on the shared cases between users. It
produces an undirected graph where the relative strength of each link provides
an idea of how often two users have worked together on the same case.

• The graph produced by the working together algorithm can be subject to further
analysis with hierarchical clustering and social network metrics. We have not
delved into these possibilities, but provided pointers to the literature.



3.9 Summary 45

• In a similar way to what we did with control-flow graphs, the graphs produced
by handover of work and working together can be enhanced with adjustable edge
thickness for better visualization.

• The organizational perspective can also focus on the relationship between users
and activities in order to discover different responsibilities and organizational
roles among the users who participate in a process.

• The workload placed on each user and the distribution of work across a number
of activities can also be analyzed within the organizational perspective.



Chapter 4
Performance Perspective

The performance perspective is concerned mainly with time. Examples of inter-
esting time measurements are the average time it takes to perform an activity, the
maximum time it takes for the process to reach a certain point, or the average end-
to-end duration of each process instance.

Usually, the performance perspective is closely related to the control-flow
perspective, in the sense that certain time measurements can be regarded as being
associated with particular edges or paths in the control-flow graph. For this reason,
it is common to start with a control-flow analysis of the event log, and only then
proceed to a performance analysis. The results of the performance analysis can then
be displayed over the control-flow graph.

Another approach to the performance perspective is to look at the timeline of
events that occurred in each process instance. Here, the individual events are plotted
in a chart along a horizontal axis that represents time. When the events from several
process instances are plotted side by side, it becomes possible to compare the time
at which certain activities have been performed and the relative duration of those
activities or even of the entire process instances.

In this chapter, we will explore these possibilities, with the focus being placed
on the main ideas. The interested reader will be able to build upon these ideas to
perform more elaborate performance analysis in practice.

4.1 Dates and Times in Python

The event log in Table 1 on page 6 has a specific timestamp format. Up to now, we
have been reading those timestamps simply as strings (see e.g. Listing 8 on page 11),
and we have not done any special processing with them.

In the performance perspective, it is often necessary to calculate differences
between timestamps. Python makes it easy to do this, provided that the timestamps

© The Author(s) 2017
D.R. Ferreira, A Primer on Process Mining, SpringerBriefs in Information Systems,
DOI 10.1007/978-3-319-56427-2_4

47



48 4 Performance Perspective

Listing 30 A Python interactive session with dates and times
1 >>> import datetime
2 >>> ts1 = '2016-04-09 17:36:47'
3 >>> dt1 = datetime.datetime.strptime(ts1, '%Y-%m-%d %H:%M:%S')
4 >>> dt1
5 datetime.datetime(2016, 4, 9, 17, 36, 47)
6 >>> ts2 = '2016-04-11 09:11:13'
7 >>> dt2 = datetime.datetime.strptime(ts2, '%Y-%m-%d %H:%M:%S')
8 >>> dt2
9 datetime.datetime(2016, 4, 11, 9, 11, 13)

10 >>> td = dt2-dt1
11 >>> td
12 datetime.timedelta(1, 56066)
13 >>> print td
14 1 day, 15:34:26

are represented as datetime objects. Therefore, the first step is to parse the
timestamps and convert them into that kind of object. For this purpose, we will
be using the strptime() method that is available in the datetime class.

Listing 30 shows a Python interactive session that illustrates how to parse two
timestamps and calculate their difference.

The script starts by importing the datetime module from the Python standard
library, which contains the datetime class. The fact that the module and the class
defined inside the module have the same name leads to the possibly confusing syntax
of referring to the class as datetime.datetime.

Apart from this detail, working with the datetime class is relatively simple.
In Listing 30, two timestamps (ts1 and ts2) are being defined as strings. Then
two datetime objects (dt1 and dt2, respectively) are being created from those
timestamps, with a call to the strptime() method of the datetime class.

This strptime() method takes two arguments: a string containing the times-
tamp, and another string specifying its format (lines 3 and 7).

The format is specified by means of directives, namely %Y for year, %m for month,
%d for day, %H for hour, %M for minute, and %S for second.1 There are additional
directives for other details (such as time zone, week day, etc.), which may be useful
in practice. The interested reader is referred to the documentation of the datetime

module in the Python standard library.2

Trying to access the datetime objects directly reveals that these objects (dt1
and dt2) are indeed instances of the datetime.datetime class, with multiple parts
that define a certain date and time (lines 5 and 9).

Now, an interesting operation is being done in line 10, where we simply subtract
the two timestamps to calculate their difference. The result is a timedelta object
that is also defined in the datetime module.

Internally, the timedelta object is storing a duration in terms of a number of
days and a number of seconds (line 12). If we print the timedelta object (line 13),

1Note the use of uppercase %M for minute and lowercase %m for month.
2https://docs.python.org/2/library/datetime.html.

https://docs.python.org/2/library/datetime.html


4.2 Parsing the Timestamps 49

the duration is converted to a human-readable string. Indeed, it is possible to verify
that 56066 s correspond to 15 h, 34 min, and 26 s.

Using Python, it is possible to calculate the difference between timestamps in a
simple and accurate way, without having to worry about details such as how many
days has each month, or whether it is a leap year or not. This becomes very useful
in the performance perspective, as we will see below.

4.2 Parsing the Timestamps

Since a timestamp can be parsed with strptime(), we will revise Listing 8 on
page 11 to convert all timestamps in the event log to datetime objects. Listing 31
shows how to do this.

The differences to Listing 8 on page 11 are in line 1, where the datetime module
is imported, and in line 15, where we convert the timestamp into a datetime object.
The rest of the code is exactly the same, and even the double loop at the end (to
print the events) needs no change because, when printing a datetime object, it is
automatically converted into a string representation.

Coincidentally, this string representation happens to be in the same format as the
original timestamp (i.e. %Y-%m-%d %H:%M:%S), so the output of this script is exactly
the same as in Listing 9 on page 12. The difference is that, internally, the timestamps
are now being stored as datetime objects rather than strings.

Listing 31 Parsing the timestamps when reading the event log
1 import datetime
2
3 f = open('eventlog.csv', 'r')
4
5 log = dict()
6
7 for line in f:
8 line = line.strip()
9 if len(line) == 0:

10 continue
11 parts = line.split(';')
12 caseid = parts[0]
13 task = parts[1]
14 user = parts[2]
15 timestamp = datetime.datetime.strptime(parts[3], '%Y-%m-%d %H:%M:%S')
16 if caseid not in log:
17 log[caseid] = []
18 event = (task, user, timestamp)
19 log[caseid].append(event)
20
21 f.close()
22
23 for caseid in log:
24 for (task, user, timestamp) in log[caseid]:
25 print caseid, task, user, timestamp



50 4 Performance Perspective

4.3 Average Timestamp Difference

In Fig. 6 on page 24, we have decorated each edge in the control-flow graph with
a transition count between activities. In the performance perspective, something
similar can be done by decorating each edge with the average timestamp difference
for that particular transition.

For example, if the transition a ! b appears in the event log, we can subtract
the timestamps of the two events in order to get their timestamp difference. Now,
if the transition a! b occurs multiple times in the event log, we can collect all the
timestamp differences from those occurrences and then compute their average. This
will give the average timestamp difference for that particular transition.

The same can be done for every other transition. In fact, the timestamps
differences for every transition can be collected with a single pass through the
event log. In the end, it is just a matter of computing the average of the timestamp
differences that have been collected for each transition.

For convenience, the timestamp differences for each transition can be stored in a
dictionary D which, in a similar way to dictionary F in the control-flow perspective,
will be indexed twice by activity. Each position in dictionary D will store a list
of timestamp differences. In the end, the average timestamp difference can be
calculated from that list. Listing 32 shows how to do this.

The script begins by creating the dictionary D, and then iterates through each case
id in the event log. For each pair of consecutive events, it retrieves the task and the
timestamp, while ignoring the user (through the use of an underscore in lines 4–5).

If the two activities are not present in the dictionary, the script initializes
the corresponding position with an empty list (lines 6–9). Regardless of such
initialization, the script then appends the timestamp difference to the list (line 10).

Listing 32 Calculating the average timestamp difference for each transition
1 D = dict()
2 for caseid in log:
3 for i in range(0, len(log[caseid])-1):
4 (ai, _, ti) = log[caseid][i]
5 (aj, _, tj) = log[caseid][i+1]
6 if ai not in D:
7 D[ai] = dict()
8 if aj not in D[ai]:
9 D[ai][aj] = []

10 D[ai][aj].append(tj-ti)
11
12 for ai in sorted(D.keys()):
13 for aj in sorted(D[ai].keys()):
14 sum_td = sum(D[ai][aj], datetime.timedelta(0))
15 count_td = len(D[ai][aj])
16 avg_td = sum_td/count_td
17 avg_td -= datetime.timedelta(microseconds=avg_td.microseconds)
18 D[ai][aj] = avg_td
19 print ai, '->', aj, ':', D[ai][aj]



4.3 Average Timestamp Difference 51

Listing 33 Output of the previous script
1 a -> b : 1 day, 22:10:23
2 b -> c : 1 day, 4:45:08
3 b -> d : 1 day, 0:44:48
4 d -> e : 8:21:20
5 d -> g : 4 days, 5:22:35
6 e -> f : 1 day, 6:51:20
7 f -> g : 5 days, 5:46:33
8 f -> h : 4 days, 3:03:30
9 g -> e : 23:00:30

10 g -> h : 21:34:02

In a second part (lines 12–19), the script calculates the average timestamp
difference for each transition. Basically, this average is being calculated by summing
the timestamp differences and dividing by their count.

When summing the timestamp differences (line 14), it is important to start with
an initial value of zero, and this value should be in the form of a timedelta object.
Otherwise, Python may try to add a timedelta with an integer, which does not
work. Hence, we use datetime.timedelta(0) as an initial value for the sum.

The count of timestamp differences can be obtained by simply taking the length
of the list (line 15). The average timestamp difference can then be calculated by
dividing the sum (a timedelta object) by that count (line 16).3

As a result of this division, the average timestamp difference may have a
number of seconds with some decimal places. In fact, a timedelta object can
store a duration down to the microseconds, which can be useful in some practical
applications, but here we do not need such resolution.

Therefore, we remove those decimal places by subtracting the microseconds
from the result. For this purpose, we use a timedelta object whose duration is
just the microseconds that we intend to subtract (line 17).

The script then stores the average timestamp difference at the same position in
dictionary D, effectively overwriting the contents at that position, which previously
contained the list of timestamp differences (line 18).

Finally, the script prints the transition together with its average timestamp
difference (line 19). The output can be seen in Listing 33. The result appears as
a nicely formatted string with a number of days, hours, minutes, and seconds.

In practice, it may be interesting to calculate also the minimum, maximum,
and even the standard deviation of the timestamp differences. We leave this as an
exercise to the interested reader. As a hint, we note that dictionary D may end up
storing multiple metrics calculated from the list of timestamp differences.

3The attentive reader will have noticed that while adding a timedelta with an integer does not
work, dividing a timedelta by an integer does indeed work.



52 4 Performance Perspective

4.4 Drawing the Graph

After the code in Listing 32, we have a dictionary D that contains the average
timestamp difference for each transition. Now it becomes possible to draw a graph
with those average timestamp differences.

In principle, such graph can be drawn in a very similar way to what has been done
before, for example in Listing 15 on page 23. However, since we are now working
with average timestamp differences stored in the form of timedelta objects, some
details must be handled with care.

Namely, if edge thickness is to be adjusted proportionally to the average
timestamp difference, then it will be necessary to convert that timedelta object into
a single number x that can be used for calculating the edge thickness y according to
the following expression:

y D ymin C .ymax � ymin/
x � xmin

xmax � xmin

Since a timedelta object contains a certain number of days and seconds, the
easiest way to convert it into a single number is to calculate the total number of
seconds as follows: .number of days/ � 24 � 3600 C .number of seconds/.

In fact, the timedelta class already includes a method called total_seconds()

to perform precisely this kind of calculation. The advantage of using this method is
that it takes into account also the microseconds part, if present.

Using the total_seconds() method, we can draw the graph and adjust the edge
thickness according to what is shown in Listing 34.

In line 8, the list values contains all the average timestamp differences converted
into a total number of seconds. From these, we extract the minimum and maximum

Listing 34 Drawing the graph with average timestamp differences
1 import pygraphviz as pgv
2
3 G = pgv.AGraph(strict=False, directed=True)
4
5 G.graph_attr['rankdir'] = 'TB'
6 G.node_attr['shape'] = 'box'
7
8 values = [D[ai][aj].total_seconds() for ai in D for aj in D[ai]]
9 x_min = min(values)

10 x_max = max(values)
11
12 y_min = 1.0
13 y_max = 5.0
14
15 for ai in D:
16 for aj in D[ai]:
17 x = D[ai][aj].total_seconds()
18 y = y_min + (y_max-y_min) * float(x-x_min) / float(x_max-x_min)
19 G.add_edge(ai, aj, label=D[ai][aj], penwidth=y)
20
21 G.draw('graph.png', prog='dot')



4.4 Drawing the Graph 53

values in lines 9–10. On the other hand, the minimum and maximum values for the
edge thickness are being defined in lines 12–13.

Then lines 15–16 iterate through each transition in dictionary D, and line 17 uses
total_seconds() again to get a number x that can be used to calculate the edge
thickness y according to the expression in line 18.

Line 19 adds an edge to the graph. Note that while penwidth is being set to
y, the label is being assigned the original timedelta object. This object will be
converted into a string representation, in the same way as it happened before when
we printed it in Listing 32 and it appeared as a string in Listing 33.

The resulting graph is shown in Fig. 16. For convenience, this graph has been
drawn from top to bottom (TB), as specified in line 5 of Listing 34.

Since this graph is based on only a very few cases (the ones shown in Table 1 on
page 6), it is not advisable to draw too many conclusions. Nevertheless, the graph
does seem to suggest that activity g (handle payment) might be one of the longest

a

b

1 day, 22:10:23

c

1 day, 4:45:08

d

1 day, 0:44:48

e

8:21:20

g

4 days, 5:22:35

f

1 day, 6:51:20

23:00:30

h

21:34:02

5 days, 5:46:33

4 days, 3:03:30

Fig. 16 Output graph generated from the previous script



54 4 Performance Perspective

in this process. This fact can be confirmed by carrying out the same analysis on a
larger event log.

4.5 Analyzing the Timeline of Events

In the previous section, we have been working with average timestamp differences,
which is as way to produce aggregate results from many process instances. However,
in the performance perspective it is often useful to have a look at the individual
events in order to analyze the timeline of events in each process instance.

Figure 17 shows a dot plot of events, also referred to as a dotted chart in the
process mining literature [14]. In this plot, the horizontal axis represents time, and
the vertical axis separates the different case ids that appear in the event log.

Within a case id, the events are usually represented with different colors,
depending on the particular activity that has been performed. The same colors are
reused in other case ids to denote the same activities. This way it becomes possible
to pinpoint every occurrence of some particular activity across the chart.

When some of these occurrences are vertically aligned, this means that the same
activity has been performed across multiple process instances at the same time, or
on the same date. This is usually indicative that there may have been some fixed
deadline in the process, or some batch processing on multiple cases at once.

Looking at the sequence of colors in the dotted chart can also provide interesting
insights. The same sequence of colors in different case ids suggests that those

Fig. 17 Timeline of events for the first 20 instances of a large event log



4.6 Plotting the Dotted Chart 55

instances have similar behavior, while sequences of colors that are visually distinct
point to different behaviors.

Sometimes, just by looking at the number of dots in each case id it is possible
to distinguish between different behaviors. For example, in Fig. 17 some instances
have just three dots, while most other instances have seven events.

Depending on the dot size and the time frame being displayed, some dots may
overlap and even hide other events. This is why we have used some transparency
in Fig. 17 to make such overlaps more visible. However, this transparency has the
disadvantage of apparently creating new colors when those overlaps occur.

More importantly, the dotted chart can be very useful to identify process
instances which have suffered significant delays. The spacing between two dots
gives an idea of how long it took to perform some activity. An excessive space
between dots may point to inefficiencies or unexpected delays.

In general, any efficiency improvement should focus on the activities which are
the most time-consuming. The dotted chart provides a convenient way to identify
those activities, and also some patterns of behavior as described in [8].

4.6 Plotting the Dotted Chart

The dotted chart in Fig. 17 was created with Matplotlib,4 a plotting library for
Python. Matplotlib is the basis for much of the scientific visualization that is done
with Python, and is often used together with libraries such as NumPy5 and SciPy.6

Matplotlib is a generic plotting library. While it does have built-in support for
some special kinds of plots (e.g. histograms, bar charts, contour plots, etc.), it does
not have any particular support for dotted charts. However, these can be generated
using the generic plotting routines of Matplotlib.

The approach that we describe here is meant for illustrative purposes only. It will
work on small event logs with tens or a few hundred instances, but perhaps not on
larger event logs with thousands of instances. In any case, it will serve to illustrate
that it is not very difficult to generate a dotted chart in Matplotlib or, for that matter,
any other plotting library. It just happens that Matplotlib fits well with the Python
scripts that we have been looking at so far.

Listing 35 shows how the dotted chart can be plotted with Matplotlib. The main
idea is to build the dotted chart as a combination of multiple plots in the same figure.
Each call to the plot() function (lines 19–20) will draw the dots for a particular
activity, and these dots will all be drawn with the same color.

The actual data points are stored in dictionaries X and Y. These dictionaries are
indexed by task. For a given task a, dictionary X will contain the timestamps of every

4http://matplotlib.org/.
5http://www.numpy.org/.
6https://www.scipy.org/.

http://matplotlib.org/
http://www.numpy.org/
https://www.scipy.org/


56 4 Performance Perspective

Listing 35 Plotting a dotted chart with Matplotlib
1 import matplotlib.pyplot as plt
2
3 X = dict()
4 Y = dict()
5
6 caseids = sorted(log.keys(),
7 key=lambda caseid: log[caseid][0][-1])
8
9 for (y, caseid) in enumerate(caseids):

10 for i in range(0, len(log[caseid])):
11 (a, _, x) = log[caseid][i]
12 if a not in X:
13 X[a] = []
14 Y[a] = []
15 X[a].append(x)
16 Y[a].append(y)
17
18 for a in sorted(X.keys()):
19 plt.plot(X[a], Y[a], 'o', label=a,
20 markersize=20, markeredgewidth=0., alpha=0.5)
21
22 axes = plt.gca()
23
24 axes.set_yticks(range(len(caseids)))
25 axes.set_ylim(-1, len(caseids))
26 axes.set_yticklabels(caseids)
27 axes.set_ylabel('case id')
28 axes.invert_yaxis()
29
30 axes.set_xlabel('timestamp')
31 axes.xaxis.tick_top()
32 axes.xaxis.set_label_position('top')
33
34 plt.grid(True)
35 plt.legend(numpoints=1)
36 plt.tight_layout()
37 plt.show()

occurrence of a, and dictionary Y will contain the case ids that correspond to those
occurrences. Plotting X[a] versus Y[a] will then draw all the dots for a.

In more detail, lines 3–4 create the dictionaries X and Y. Then lines 6–7 get the
list of case ids sorted by the timestamp of their first event. Sorting the case ids in
this way is important so that, as we move down in the dotted chart, we always see
case ids that begin later than the previous ones.

Recall that, according to Listing 31 on page 49, the event log is stored as a
dictionary that is indexed by case id. The lambda function in line 7 of Listing 35
gets, for each case id, the first event in that case id (log[caseid][0]) and then the
last field in that event tuple (log[caseid][0][-1]), which is the timestamp.

In line 9, we go through each case id in the sorted list of case ids. However, these
case ids may be any kind of identifier, possibly strings. Therefore, we enumerate
them, i.e. besides the case id we also get y as the position of that case id in the
sorted list. This position y goes from 0 to n�1, where n is the length of the list.

Lines 10–16 then go through each event in the case id, retrieving the task (a) and
the timestamp (x). The timestamp is appended to X[a], and the case id (actually, its
position y in the sorted list of case ids) is appended to Y[a].



4.7 Using Relative Time 57

Lines 18–20 just go through each task a (in sorted order) and plot the dots for
each task. The line style 'o' specifies that the marker for each data point should
be a dot. The property markersize sets the size of the marker, and the property
markeredgewith is set to zero so that the marker has no border.

The alpha property sets the color transparency. The actual color is chosen
automatically by Matplotlib with each new call to the plot() function.7

The label property in line 19 sets the text to be used in the legend, as shown in
the top-right corner of Fig. 17. Each plot is being labeled with the task name.

The rest of the script (lines 22–37) is basically concerned with configuring the
axes and displaying the figure. In line 22, the function gca() gets a reference to the
current axes (an Axes object in Matplotlib). Lines 24–28 set the properties of the
y-axis, and lines 30–32 set the properties of the x-axis. Specifically:

• Line 24 sets a tick in the y-axis for each value of y. Line 25 sets the axis limits so
that there is some space before the first value of y and also after the last value of
y. Line 26 replaces the y-axis labels, so that we have the actual case ids instead
of the values of y. Line 27 gives a title to the y-axis, and line 28 inverts the y-axis
so that the case ids are displayed from top to bottom.

• Line 30 gives a title to the x-axis. Line 31 moves the x-axis to the top of the
figure, and line 32 moves the axis title to that position as well.

• Line 34 turns on the grid, which draws vertical and horizontal lines for each tick
in the x-axis and y-axis, respectively. Line 35 makes the legend appear, with a
single marker for each label. Line 36 rearranges the plot so that it occupies most
of the figure and reduces the unused margins as much as possible. Finally, line
37 shows (i.e. it opens) the figure with the plot.

It is interesting to note that the x-axis in the plot (Fig. 17) is a date/time axis.
Indeed, in Listing 35, x is a datetime object (it corresponds to the timestamp

variable in Listing 31 on page 49), and X[a] is a list of datetime objects. Yet, this
required no special processing, because Matplotlib handles datetime objects by
converting them to floating point numbers behind the scenes.

4.7 Using Relative Time

For the purpose of comparing the duration of process instances and to identify those
which may have suffered significant delays, it is useful to plot all case ids from the
same starting point rather than from their actual start time.

In other words, instead of using absolute time as in Fig. 17, it is often useful to
draw the dotted chart using relative time, where dots are placed according to the

7For the interested reader, these colors can be customized by defining the color cycle to be used by
the plot() function. See: http://matplotlib.org/examples/color/color_cycle_demo.html.

http://matplotlib.org/examples/color/color_cycle_demo.html


58 4 Performance Perspective

Fig. 18 Timeline of events for the first 20 instances of a large event log, using relative time

elapsed time since the first timestamp of the respective case id (i.e. time is relative
to the first timestamp of the case id).

Figure 18 shows how the dotted chart would look like if plotted using relative
time. The starting point (at the origin of the x-axis) corresponds to the first
timestamp of each case id. The remaining dots are placed according to the time
elapsed after that first timestamp. Here, the elapsed time is being measured in days.

For better visualization, the case ids have been sorted according to their end-to-
end duration. The shorter instances are displayed at the top, and the longer instances
are displayed at the bottom of the chart. As before, the y-axis labels display the
actual case ids, but these are now in a different order than in Fig. 17.

In Fig. 18, it is possible to see that the case ids with fewer events tend to be the
shortest ones. However, this is not always the case. For example, case 18 has just
three events, but it is longer than case 3 with seven events. Comparing case 18 to
case 20, it appears that activity c took a long time to execute in the former.

Also, the fact that some activities are carried out very quickly does not mean that
the process instance, as a whole, will end much earlier. An example can be seen in
case 13, where activity b is carried out almost instantaneously, but nevertheless this
instance is one of the longest in the chart. This particular case id seems to have a
very long time between activities d and e.

This kind of analysis is easier to perform using relative time rather than absolute
time. Changing the dotted chart to relative time is not very difficult, but it requires
working with timestamp differences rather than the actual timestamps.

Previously, we have seen that the difference between two datetime objects is a
timedelta object with a certain number of days and seconds. We have also seen



4.7 Using Relative Time 59

that a timedelta object can be converted into a single number with a call to the
total_seconds() method. The idea is to use this method to compute the relative
time that will be plotted in the dotted chart.

The dotted chart in Fig. 18 can be created with a few but important changes to
Listing 35. First, the case ids need to be sorted according to their duration. Then,
we need to keep track of the first timestamp of each case id in order to calculate
the elapsed time for each event. Finally, we need convert that elapsed time into the
desired units for display in the dotted chart.

Listing 36 shows how these changes can be implemented.
In line 7, the lambda function has been changed to calculate the difference

between the timestamp of the last event and the timestamp of the first event in a
case id. Therefore, case ids will be sorted based on this difference.

In line 10, the variable x0 holds the first timestamp of the case id. This is then
used to calculate the timestamp difference (x-x0) in line 16.

Listing 36 Plotting a dotted chart with relative time
1 import matplotlib.pyplot as plt
2
3 X = dict()
4 Y = dict()
5
6 caseids = sorted(log.keys(),
7 key=lambda caseid: log[caseid][-1][-1]-log[caseid][0][-1])
8
9 for (y, caseid) in enumerate(caseids):

10 x0 = log[caseid][0][-1]
11 for i in range(0, len(log[caseid])):
12 (a, _, x) = log[caseid][i]
13 if a not in X:
14 X[a] = []
15 Y[a] = []
16 X[a].append((x-x0).total_seconds()/(24*3600))
17 Y[a].append(y)
18
19 for a in sorted(X.keys()):
20 plt.plot(X[a], Y[a], 'o', label=a,
21 markersize=20, markeredgewidth=0., alpha=0.5)
22
23 axes = plt.gca()
24
25 axes.set_yticks(range(len(caseids)))
26 axes.set_ylim(-1, len(caseids))
27 axes.set_yticklabels(caseids)
28 axes.set_ylabel('case id')
29 axes.invert_yaxis()
30
31 axes.set_xlabel('days')
32 axes.xaxis.tick_top()
33 axes.xaxis.set_label_position('top')
34
35 plt.grid(True)
36 plt.legend(numpoints=1)
37 plt.tight_layout()
38 plt.show()



60 4 Performance Perspective

This timestamp difference is a timedelta object which is converted into a total
number of seconds with a call to the total_seconds() method. This total number
of seconds is then divided by 24�3600 to give a number of days.

Finally, in line 31 we set the title of the x-axis accordingly.

4.8 Activity Duration

A natural question in the performance perspective is to ask how long it takes to
perform each activity. Despite being a simple question, it may be difficult to provide
an accurate answer based on the information contained in the event log.

For example, in the event log of Table 1 on page 6, each event records the moment
when a certain task has completed, but we do not know exactly when each task has
started. If we suppose that each task has started after the previous one has completed,
we are assuming a sequential flow of activities. This is not always the case, as can
be seen from the parallel branches in Fig. 1 on page 2.

In that process, if activity g completes between e and f , it may appear that g was
performed after e when in fact it was performed d. If we take the timestamp differ-
ence between e and g to measure the duration of g, we are actually underestimating
it, because we should take the timestamp difference between d and g.

This is another reason for carrying out a control-flow analysis before turning
to the performance perspective. Nevertheless, it may be useful to provisionally
assume that all tasks took place in a linear, sequential flow, and to use the timestamp
difference between consecutive events as a rough indicator of task duration.

Under this assumption, the duration of each task can be measured as the elapsed
time since the previous event in the same case id.

In general, for a given activity, there will be multiple measurements for its
duration, one for each occurrence of the activity in the event log. In the end, it is
possible to calculate the average of those measurements. Here, we will be looking
at the distribution of those measurements in order to get a sense of how long an
activity typically lasts, and also how much variability we can find in such duration.

Figure 19 shows a histogram of the measurements of activity duration collected
from a large event log. For some activities, the histogram is strikingly similar to a
normal distribution with a certain mean and standard deviation.

For example, the duration of activity b has a mean of about 2 days and a standard
deviation of about 1 day, which is roughly the same as activity h.8

Activities c, d and f are somewhat shorter, but even for those activities there is
a long tail in the distribution, meaning that there are some instances where these
activities take a long time (i.e. several days) to complete.

8Recall that the standard deviation is the distance from the mean which spans (on both sides of the
mean) about 68% of data.



4.8 Activity Duration 61

Fig. 19 Histograms of activity duration for a large event log

The histogram for e and g is more spread out, but it is still possible to calculate a
mean of about 3 days, and a standard deviation of about 2 days, for both activities.

The effect of parallel activities is especially noticeable in the histogram of g,
where the shape no longer resembles a bell curve. This is due to the fact that the
duration of g is being measured both as the timestamp difference from d and the
timestamp difference from e (or even f ). The latter is contributing with many short
measurements that accumulate towards the left side of the mean.

As for activity a, this is always the first task in the process, so there is no way to
estimate its duration, since there is no previous event. Its duration is being shown
as zero in the histogram. From the height of that column in the histogram, one can
conclude that this event log had somewhere from 7000 to 8000 instances. Indeed,
these data have been collected from an event log with 7549 instances.



62 4 Performance Perspective

Listing 37 Plotting the histograms of activity execution time
1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 D = dict()
5
6 for caseid in log:
7 for i in range(0, len(log[caseid])):
8 (a, _, t) = log[caseid][i]
9 if i > 0:

10 (_, _, t0) = log[caseid][i-1]
11 d = (t-t0).total_seconds()/(24*3600)
12 else:
13 d = 0.
14 if a not in D:
15 D[a] = []
16 D[a].append(d)
17
18 nrows = 4
19 ncols = 2
20
21 fig, ax = plt.subplots(nrows, ncols)
22
23 i = 0
24 j = 0
25 for a in sorted(D.keys()):
26 print '%s: mean=%.2f std=%.2f days' % (a, np.mean(D[a]), np.std(D[a]))
27 ax[i,j].hist(D[a], bins=[0.1*k for k in range(100)])
28 ax[i,j].set_title(a)
29 ax[i,j].set_xticks(range(10))
30 ax[i,j].grid(True)
31 if i == nrows-1:
32 ax[i,j].set_xlabel('days')
33 j += 1
34 if j == ncols:
35 i += 1
36 j = 0
37
38 plt.tight_layout()
39 plt.show()

Listing 37 shows how Fig. 19 has been generated with Matplotlib. After reading
the event log as in Listing 31 on page 49, Listing 37 goes through the event log,
calculates all timestamp differences, and plots the histograms as a series of subplots.

In more detail, line 4 creates a dictionary D which will store the list of timestamp
differences collected for each activity. Lines 6–7 go through each case id, and then
through each event in the case id, as usual.

Line 8 retrieves the task and timestamp from the current event. If this is not the
first event in the case id (line 9) then we get the timestamp from the previous event
(line 10) and we calculate the timestamp difference as a number of days. If it is the
first event (line 12) then the duration is set to zero (line 13).

Lines 14–15 initialize the list of timestamp differences, if the activity is not yet in
dictionary D. Regardless of this initialization, the timestamp difference is appended
to the list in line 16.

Lines 18–19 set the number of subplots in the figure. These subplots are arranged
into rows and columns. With the specified number of rows and columns, we will



4.9 Summary 63

have 4�2D8 subplots. (Alternatively, the number of rows and columns could have
been set dynamically according to the number of activities in dictionary D.)

The figure is created in line 21 with a call to the subplots() function. This
function returns a Figure object and an array of Axes objects that can be used to
configure each subplot.

In lines 23–24, we initialize two variables that will be used as row and column
indexes to configure each subplot in the figure.

Line 25 iterates through the activities in sorted order. In line 26, we use the
NumPy library (imported in line 1) to calculate the mean and standard deviation
of the activity execution time. These results are being printed as a formatted string
with two decimal places for each value.

Then line 27 computes and draws the histogram of timestamp differences for
each activity. In the hist() method, the parameter bins defines the bins for the
histogram. Here, each bin will have a width of 0:1 days, and the bins will range
from zero up to 0:1�100D10 days, as can be seen in Fig. 19.

Line 28 puts the activity name as the title at the top of the subplot. Line 29 sets
the ticks in the x-axis, and line 30 turns on the grid. Furthermore, if we are at the
last row of subplots, we give a title to the x-axis (lines 31–32).

Lines 38–39 display the plot that is shown in Fig. 19. The output of this script (as
produced by line 26) is shown in Listing 38.

From this output, it is possible to confirm that the duration of activity a is not
being measured, and that the longest activities are e and g. In fact, activity g has a
duration that, on average, is actually higher than what is being reported in Listing 38.
However, due to the effect of the parallel activities in the process, and the way the
duration is being calculated, it appears to have a slightly lower mean.

Listing 38 Output of the previous script
1 a: mean=0.00 std=0.00 days
2 b: mean=2.13 std=1.10 days
3 c: mean=1.29 std=0.89 days
4 d: mean=1.54 std=1.49 days
5 e: mean=2.99 std=2.08 days
6 f: mean=1.74 std=1.96 days
7 g: mean=2.65 std=1.97 days
8 h: mean=2.26 std=1.21 days

4.9 Summary

Here is a brief summary of what we have learned in this chapter:

• The performance perspective can be analyzed on top of the control-flow per-
spective by calculating, for example, the average timestamp difference for each
transition in control-flow graph.



64 4 Performance Perspective

• To calculate timestamp differences in Python, it is more convenient to represent
the timestamps as datetime objects. The difference between two datetime

objects is a timedelta object.
• In the performance perspective, it is often useful to plot individual events on a

timeline in order to discover certain patterns and identify potential sources of
delay or inefficiencies in the process.

• The timeline of individual events, which is usually called a dotted chart, can
be displayed using absolute time or relative time, with the later being the time
elapsed since the first event in the same case id.

• Matplotlib is a versatile plotting library for Python, which can be used to generate
dotted charts and histograms, among several other kinds of plots. It is often used
together with NumPy to perform numerical computations.

• The timestamp difference between consecutive events can provide only a rough
estimate of the duration of each activity in the process. It is important to take into
account the control-flow perspective in order to assess the results.



Chapter 5
Process Mining in Practice

Over the years, the process mining community has placed several real-world event
logs in the public domain. Most of these event logs have been released in the scope
of process mining competitions, where contestants could use any of the available
techniques, or even develop new techniques, to discover the business process.

Once these event logs have been released, they can be used for a number of
different purposes, such as testing existing tools, trying out new ideas, comparing
different approaches, etc. In this chapter, we will use one of those event logs to
illustrate how process mining techniques can be applied in practice.

Among the challenges of dealing with real-world data is that each event log
usually has some specific characteristics. These are related either to the process
which generated the event log, or to the system from which the event log was
collected. Therefore, it may be necessary to use some form of preprocessing before
process mining techniques can actually be applied.

In this respect, the case study presented in this chapter is no exception. To start
with, the event log is stored in an XML-based format, so the first step is to parse
the XML document in order to retrieve the event data. In addition, the event log
contains different kinds of events, so it will be necessary to filter them in order to
focus on the events of interest. While doing this, we will learn a few additional skills
that turn out to be very useful in practice.

5.1 The BPI Challenge 2012

The International Conference on Business Process Management (BPM)1 is the
premier forum where researchers in the field of process mining (and also in the
wider community of business process management) usually meet.

1http://bpm-conference.org/.

© The Author(s) 2017
D.R. Ferreira, A Primer on Process Mining, SpringerBriefs in Information Systems,
DOI 10.1007/978-3-319-56427-2_5

65

http://bpm-conference.org/


66 5 Process Mining in Practice

Within the conference, there is usually a main track, and there are also several
workshops focusing on specific topics of interest. One of these workshops is
the International Workshop on Business Process Intelligence (BPI),2 which has
been running together with the conference since 2005. The BPI workshop focuses
essentially on the development of new process mining techniques for the analysis of
business processes from event data.

Since 2011, the workshop includes the BPI Challenge, a process mining compe-
tition where a real-world event log is made publicly available, and the community is
encouraged to use any techniques, including but not limited to process mining tools,
to derive meaningful business information.

In 2012, the BPI Challenge involved an event log from a Dutch financial
institution.3 The event log concerned an application process for personal loans. The
process can be briefly described as follows:

The customer submits a loan application (with a requested amount of money) through a Web
page. The loan application goes through a series of checks and, if it passes, the customer is
contacted by phone to provide additional information. Then, an offer is sent to the customer
by mail. When the customer replies to the offer, the loan application is reassessed and,
if it is incomplete, additional information is gathered by contacting the customer again.
Eventually, there is a final assessment, and the loan is either approved or declined. If it is
approved, the loan is also activated.

This is basically all that was known about the process. Anything else would have
to be inferred from the provided event log.4 This particular event log includes several
different kinds of events, namely:

• The changes in the state of the loan application throughout the process. These
events are labeled with prefix ‘A_’.

• The changes in the state of the offer that is sent to the customer. These events are
labeled with prefix ‘O_’.

• The events associated with the scheduling, start, and completion of work items
(i.e. tasks) that are performed by the employees in the organization. These events
are labeled with prefix ‘W_’.

Table 2 shows the first process instance recorded in the event log. Each entry
in the task column has one of the prefixes ‘A_’, ‘O_’ or ‘W_’, as described above.
Furthermore, the work items (with prefix ‘W_’) have a designation in Dutch. The
meaning of these events is as follows:

• W_Completeren aanvraag – filling in the information for the loan application;
• W_Nabellen offertes – calling after an offer has been sent to the customer;
• W_Valideren aanvraag – assessing the loan application.

2https://www.win.tue.nl/bpi/.
3http://www.win.tue.nl/bpi/doku.php?id=2012:challenge.
4http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.

https://www.win.tue.nl/bpi/
http://www.win.tue.nl/bpi/doku.php?id=2012:challenge
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f


5.1 The BPI Challenge 2012 67

Table 2 Event log of the BPI Challenge 2012 (excerpt)

Case id Task Event type User Timestamp

173688 A_SUBMITTED COMPLETE 112 2011-10-01 00:38:44

173688 A_PARTLYSUBMITTED COMPLETE 112 2011-10-01 00:38:44

173688 A_PREACCEPTED COMPLETE 112 2011-10-01 00:39:37

173688 W_Completeren aanvraag SCHEDULE 112 2011-10-01 00:39:38

173688 W_Completeren aanvraag START – 2011-10-01 11:36:46

173688 A_ACCEPTED COMPLETE 10862 2011-10-01 11:42:43

173688 O_SELECTED COMPLETE 10862 2011-10-01 11:45:09

173688 A_FINALIZED COMPLETE 10862 2011-10-01 11:45:09

173688 O_CREATED COMPLETE 10862 2011-10-01 11:45:11

173688 O_SENT COMPLETE 10862 2011-10-01 11:45:11

173688 W_Nabellen offertes SCHEDULE – 2011-10-01 11:45:11

173688 W_Completeren aanvraag COMPLETE – 2011-10-01 11:45:13

173688 W_Nabellen offertes START – 2011-10-01 12:15:41

173688 W_Nabellen offertes COMPLETE – 2011-10-01 12:17:08

173688 W_Nabellen offertes START 10913 2011-10-08 16:26:57

173688 W_Nabellen offertes COMPLETE 10913 2011-10-08 16:32:00

173688 W_Nabellen offertes START 11049 2011-10-10 11:32:22

173688 O_SENT_BACK COMPLETE 11049 2011-10-10 11:33:03

173688 W_Valideren aanvraag SCHEDULE 11049 2011-10-10 11:33:04

173688 W_Nabellen offertes COMPLETE 11049 2011-10-10 11:33:05

173688 W_Valideren aanvraag START 10629 2011-10-13 10:05:26

173688 A_REGISTERED COMPLETE 10629 2011-10-13 10:37:29

173688 A_APPROVED COMPLETE 10629 2011-10-13 10:37:29

173688 O_ACCEPTED COMPLETE 10629 2011-10-13 10:37:29

173688 A_ACTIVATED COMPLETE 10629 2011-10-13 10:37:29

173688 W_Valideren aanvraag COMPLETE 10629 2011-10-13 10:37:37

Besides the case id, task, user, and timestamp columns, Table 2 includes an
additional column that we designate here by event type. For the tasks with prefix
‘A_’ and ‘O_’ (states of the application and states of the offer, respectively) the event
type is always COMPLETE and it might as well have been omitted. It is for the tasks
with prefix ‘W_’ (work items) that the event type is meaningful.

The SCHEDULE event type means that the work item has been enqueued for
execution (much like the assignment of tasks to users as depicted in Fig. 2 on
page 4). The START event type means that someone has started working on the task,
and the COMPLETE event type means that the task has been completed.

Usually, in practice, only events of type COMPLETE are available. However, in this
particular event log, the scheduling, start and completion of each task have also been
recorded. We will make use of this information when analyzing the performance
perspective. For the control-flow perspective and for the organizational perspective,
we will focus mainly on COMPLETE events.



68 5 Process Mining in Practice

5.2 Understanding the XES Format

The event log for the BPI Challenge 2012 is provided in two alternative formats:
XES (Extensible Event Stream) [23] and MXML (Mining XML) [21]. Both are
XML-based formats for storing and exchanging event logs. XES is the newer format
that has been approved as a standard by IEEE.5 MXML (Mining XML) [21] is the
older format that has been long supported by the ProM framework [22].

While XES is expected to completely replace MXML, there are still some event
logs in MXML format, particularly from the times that predate XES. It is possible
to convert an event log in MXML to the newer format by importing it in ProM6 and
then exporting it to XES. Another option is to use the OpenXES7 library, which is a
reference implementation of the XES standard in Java.

Here we will be working with the event log in XES format, which is also the
original format in which the data have been published for the BPI Challenge 2012.
In fact, the MXML version of the event log was produced by backward conversion
from XES to MXML using the OpenXES library. This has been done for the
convenience of users who, at the time of the BPI Challenge 2012, were using process
mining tools that did not yet support XES.

Listing 39 shows the first few events of the event log in XES format.
This is an XML document where the root element is <log>. It contains a series

of traces (i.e. cases or process instances), with each trace being delimited by the
opening tag <trace> and the closing tag </trace>. Listing 39 shows a single trace,
but in general there will be multiple traces, one for each process instance. Each trace
has a list of events, and each event is enclosed by an <event> element.

Both <trace> and <event> elements may have several children, in the form of
<string> or <date> elements. Of special interest is the <string> element with the
attribute key="concept:name". In a trace, such element provides the case id. For
example, in Listing 39 the case id of the trace being presented is 173688 (line 6).
This is the same process instance that has been listed earlier in Table 2.

In an event, the <string> element with the attribute key="concept:name"

provides the task name. For example, in Listing 39 the three events being presented
correspond to the tasks A_SUBMITTED, A_PARTLYSUBMITTED, and A_PREACCEPTED

(lines 11, 17 and 23, respectively).
The other child elements in an event also contain important information regarding

the task. The <string> element with the attribute key="org:resource" contains
the user who is associated with the task, and the <date> element with the attribute
key="time:timestamp" contains the timestamp of the event.

The <string> element with the attribute key="lifecycle:transition" is a
standard XES extension that can be used to denote the event type. When a task goes

5http://www.xes-standard.org/.
6http://www.promtools.org/.
7http://www.xes-standard.org/openxes/.

http://www.xes-standard.org/
http://www.promtools.org/
http://www.xes-standard.org/openxes/


5.2 Understanding the XES Format 69

Listing 39 Event log in XES format (excerpt)
1 <?xml version="1.0" encoding="UTF-8"?>
2 <log xes.version="1.0" ... xmlns="http://www.xes-standard.org/">
3 ...
4 <trace>
5 <date key="REG_DATE" value="2011-10-01T00:38:44.546+02:00"/>
6 <string key="concept:name" value="173688"/>
7 <string key="AMOUNT_REQ" value="20000"/>
8 <event>
9 <string key="org:resource" value="112"/>

10 <string key="lifecycle:transition" value="COMPLETE"/>
11 <string key="concept:name" value="A_SUBMITTED"/>
12 <date key="time:timestamp" value="2011-10-01T00:38:44.546+02:00"/>
13 </event>
14 <event>
15 <string key="org:resource" value="112"/>
16 <string key="lifecycle:transition" value="COMPLETE"/>
17 <string key="concept:name" value="A_PARTLYSUBMITTED"/>
18 <date key="time:timestamp" value="2011-10-01T00:38:44.880+02:00"/>
19 </event>
20 <event>
21 <string key="org:resource" value="112"/>
22 <string key="lifecycle:transition" value="COMPLETE"/>
23 <string key="concept:name" value="A_PREACCEPTED"/>
24 <date key="time:timestamp" value="2011-10-01T00:39:37.906+02:00"/>
25 </event>
26 ...
27 </trace>
28 ...
29 </log>

through multiple states (such as SCHEDULE, START and COMPLETE in this event log),
then this extension is used to denote such state. Listing 40 shows an example.

Here, the same task (W_Completeren aanvraag) has resulted in three different
events being recorded in the trace. The first event was recorded when the task was
scheduled (SCHEDULE in line 11), a second event when the task was started (START
in line 17) and a third event when the task was completed (COMPLETE in line 23).

As described in the previous section, this only happens for the tasks with prefix
‘W_’ (work items). In addition, for the analysis of the control-flow and organizational
perspectives, it usually suffices to consider only COMPLETE events. However, the
interested reader may refer to [10, 26] for other approaches that take into account
both START and COMPLETE event types.

Finally, both in Listing 39 and in Listing 40 one can observe that there are
some additional child elements within a <trace> that are outside events (lines 5–7).
Besides the <string> element with key="concept:name" that provides the case
id, the <string> element with key="AMOUNT_REQ" contains the amount of money
requested for the loan, and the <date> element with key="REG_DATE" contains the
date and time when the loan application was first registered.

These extra elements will not be used in our analysis, but it is worth noting
that possibility of having these extensions to traces and events was one of the
main reasons for the development of XES. Whereas MXML was a rather strict and
restricted format, XES offers the possibility of including custom data in an event



70 5 Process Mining in Practice

Listing 40 Use of the lifecycle extension in XES
1 <?xml version="1.0" encoding="UTF-8"?>
2 <log xes.version="1.0" ... xmlns="http://www.xes-standard.org/">
3 ...
4 <trace>
5 <date key="REG_DATE" value="2011-10-01T00:38:44.546+02:00"/>
6 <string key="concept:name" value="173688"/>
7 <string key="AMOUNT_REQ" value="20000"/>
8 ...
9 <event>

10 <string key="org:resource" value="112"/>
11 <string key="lifecycle:transition" value="SCHEDULE"/>
12 <string key="concept:name" value="W_Completeren aanvraag"/>
13 <date key="time:timestamp" value="2011-10-01T00:39:38.875+02:00"/>
14 </event>
15 <event>
16 <string key="concept:name" value="W_Completeren aanvraag"/>
17 <string key="lifecycle:transition" value="START"/>
18 <date key="time:timestamp" value="2011-10-01T11:36:46.437+02:00"/>
19 </event>
20 ...
21 <event>
22 <string key="concept:name" value="W_Completeren aanvraag"/>
23 <string key="lifecycle:transition" value="COMPLETE"/>
24 <date key="time:timestamp" value="2011-10-01T11:45:13.917+02:00"/>
25 </event>
26 ...
27 </trace>
28 ...
29 </log>

log. These custom data can be used for other kinds of analysis such as, for example,
classifying loan applications according to the requested amount.

5.3 Reading XES with Python

Reading a XES event log with Python is essentially an exercise in XML parsing. The
Python standard library already includes an XML parser known as ElementTree.8

Since this parser is readily available in every Python distribution, it is the simplest
option to use for our purposes.

Listing 41 shows how to parse the XES event log with ElementTree. The first
thing to do is to load the XML document into an element tree, and then get the root
element of that tree (lines 4–5). From the root element, it is possible to search for
specific elements in the tree.

If the XML document contains namespaces, it will be necessary to prepend each
element with its corresponding namespace. In general, XES event logs make use of
the namespace http://www.xes-standard.org/, as shown both in Listing 39 and
in Listing 40 (line 2).

8https://docs.python.org/2/library/xml.etree.elementtree.html.

https://docs.python.org/2/library/xml.etree.elementtree.html


5.3 Reading XES with Python 71

Listing 41 Parsing a XES event log with ElementTree
1 import datetime
2 import xml.etree.ElementTree as ET
3
4 tree = ET.parse('financial_log.xes')
5 root = tree.getroot()
6
7 ns = {'xes': 'http://www.xes-standard.org/'}
8
9 for trace in root.findall('xes:trace', ns):

10 caseid = ''
11 for string in trace.findall('xes:string', ns):
12 if string.attrib['key'] == 'concept:name':
13 caseid = string.attrib['value']
14 for event in trace.findall('xes:event', ns):
15 task = ''
16 user = ''
17 event_type = ''
18 for string in event.findall('xes:string', ns):
19 if string.attrib['key'] == 'concept:name':
20 task = string.attrib['value']
21 if string.attrib['key'] == 'org:resource':
22 user = string.attrib['value']
23 if string.attrib['key'] == 'lifecycle:transition':
24 event_type = string.attrib['value']
25 timestamp = ''
26 for date in event.findall('xes:date', ns):
27 if date.attrib['key'] == 'time:timestamp':
28 timestamp = date.attrib['value']
29 timestamp = datetime.datetime.strptime(timestamp[:-10],
30 '%Y-%m-%dT%H:%M:%S')
31 print ';'.join([caseid, task, event_type, user, str(timestamp)])

Therefore, when searching for elements in the XML tree, we must provide this
namespace, and this is the reason why such namespace is being defined in Listing 41
(line 7). The namespaces are defined in a dictionary where each key is a prefix that
stands for a given namespace. In Listing 40 there is only one namespace, but there
could be more, if several namespaces were being used.

The first search for elements occurs in line 9, where we iterate through all
<trace> elements in the event log. The element name must be prepended with the
prefix ‘xes:’ to specify that it is within the XES namespace.

For each trace, the case id is in a <string> element with a key attribute with the
value concept:name. Line 11 finds all <string> elements in a trace, and line 12
checks the key attribute in each of them. (As shown in line 12, the list of attributes
can be accessed as a dictionary.) When the desired <string> element is found, the
case id can be obtained from its value attribute (line 13).

A very similar approach is being used to iterate through all events in a trace (line
14) and retrieve the task, user, and event type (lines 18–24). As for the timestamp,
this can be found in a date element instead (lines 26–28).

In lines 29–30, the timestamp is converted into to a datetime object. For
simplicity, the milliseconds and the time zone information are discarded by ignoring
the last 10 characters in the timestamp. However, if desired, it would be possible to
parse the milliseconds with the %f directive and, with some extra work, the time
zone too (with the %z directive, if available).



72 5 Process Mining in Practice

Listing 42 Output of the previous script (excerpt)
1 173688;A_SUBMITTED;COMPLETE;112;2011-10-01 00:38:44
2 173688;A_PARTLYSUBMITTED;COMPLETE;112;2011-10-01 00:38:44
3 173688;A_PREACCEPTED;COMPLETE;112;2011-10-01 00:39:37
4 173688;W_Completeren aanvraag;SCHEDULE;112;2011-10-01 00:39:38
5 173688;W_Completeren aanvraag;START;;2011-10-01 11:36:46
6 173688;A_ACCEPTED;COMPLETE;10862;2011-10-01 11:42:43
7 173688;O_SELECTED;COMPLETE;10862;2011-10-01 11:45:09
8 173688;A_FINALIZED;COMPLETE;10862;2011-10-01 11:45:09
9 173688;O_CREATED;COMPLETE;10862;2011-10-01 11:45:11

10 173688;O_SENT;COMPLETE;10862;2011-10-01 11:45:11
11 173688;W_Nabellen offertes;SCHEDULE;;2011-10-01 11:45:11
12 173688;W_Completeren aanvraag;COMPLETE;;2011-10-01 11:45:13
13 173688;W_Nabellen offertes;START;;2011-10-01 12:15:41
14 173688;W_Nabellen offertes;COMPLETE;;2011-10-01 12:17:08
15 173688;W_Nabellen offertes;START;10913;2011-10-08 16:26:57
16 173688;W_Nabellen offertes;COMPLETE;10913;2011-10-08 16:32:00
17 173688;W_Nabellen offertes;START;11049;2011-10-10 11:32:22
18 173688;O_SENT_BACK;COMPLETE;11049;2011-10-10 11:33:03
19 173688;W_Valideren aanvraag;SCHEDULE;11049;2011-10-10 11:33:04
20 173688;W_Nabellen offertes;COMPLETE;11049;2011-10-10 11:33:05
21 173688;W_Valideren aanvraag;START;10629;2011-10-13 10:05:26
22 173688;A_REGISTERED;COMPLETE;10629;2011-10-13 10:37:29
23 173688;A_APPROVED;COMPLETE;10629;2011-10-13 10:37:29
24 173688;O_ACCEPTED;COMPLETE;10629;2011-10-13 10:37:29
25 173688;A_ACTIVATED;COMPLETE;10629;2011-10-13 10:37:29
26 173688;W_Valideren aanvraag;COMPLETE;10629;2011-10-13 10:37:37

Finally, in line 31, the script joins all the fields into a single line, using the
semicolon as separator. The end result is shown in Listing 42. This output can be
redirected to a file, in order to store the event log in CSV format.

5.4 Analyzing the Control-Flow Perspective

With the script in Listing 41, the event log from the BPI Challenge 2012 has been
converted from XES to CSV. We can now apply to this event log the same code and
techniques developed in the previous chapters.

For example, it is possible to use the code in Listing 19 on page 29 to analyze the
event log from the control-flow perspective. However, this particular event log can
be seen as comprising three different sub-processes:

• the changes in the state of the loan application, i.e. the events with prefix ‘A_’;
• the changes in the state of the offer that is sent to the customer, with prefix ‘O_’;
• the changes in the state of work items, i.e. the events with prefix ‘W_’;

For this particular event log, it is more convenient to conduct a separate
analysis of these different kinds of events, which provides a more compact and
understandable view of the behavior in the business process.

Figure 20 shows the control-flow graph for the events with prefix ‘A_’. From this
graph, it becomes apparent that the loan application starts in a submitted state, and
ends with one of three outcomes: declined, canceled, or approved.



5.4 Analyzing the Control-Flow Perspective 73

A_PARTLYSUBMITTED
(13087)

A_PREACCEPTED
(7367)

7367

A_DECLINED
(7635)

5719

A_CANCELLED
(2807)

1

1085 1100

A_ACCEPTED
(5113)

5113

A_FINALIZED
(5015)

802 1640

A_ACTIVATED
(2246)

476

A_APPROVED
(2246)

1055

A_REGISTERED
(2246)

715505

619

997

912

773

686

29 66

5015

A_SUBMITTED
(13087)

13087

Fig. 20 Control-flow graph for the states of the loan application

In fact, the loan application can be declined or canceled at different stages in the
process. Of those applications that end up being declined, most are declined at an
early stage, when some preliminary checks are being performed. In contrast, only
one application was ever canceled at such an early stage; most applications end up
being canceled at later states in the process.

When the loan application is approved, it must also be registered and activated.
From the reciprocal edges between these states in Fig. 20, one can suspect that these
three events can happen in any order. Indeed, an inspection of Listing 42 shows that



74 5 Process Mining in Practice

Fig. 21 Control-flow graph
for the states of the offer

O_CANCELLED
(3655)

O_SELECTED
(7030)

1041

O_CREATED
(7030)

974

974

6056

O_SENT
(7030)

7030

2373

778

O_ACCEPTED
(2243)

130

O_DECLINED
(802)

54 O_SENT_BACK
(3454)

3454

308

196

2113 748

these three events have been recorded at the same time, so their order is probably
interchangeable.

The analysis of the events with prefix ‘O_’ (offers) is shown in Fig. 21. Here it is
not immediately clear in which state the offer begins, because Graphviz has placed
the canceled state at the top. Anyway, the color shading of nodes and their activity
counts point us to the conclusion that the offer starts in the selected state, goes to
the created stated, and then to the sent state.

After the offer has been set to the customer, it may end up being canceled if the
customer does not reply. If the customer sends back the offer, it can still be canceled,
but only a minority of cases end up going that way. The most common scenario is
for the sent back offer to be either accepted or declined.

From the graph in Fig. 21, it appears that even a canceled offer can sometimes be
recovered and re-enter the negotiation phase with the customer.

Moving on to the events with prefix ‘W_’ (work items), Fig. 22 shows the
sequence of tasks, where only COMPLETE events have been considered. Even so,
there are still a number of transitions between the same task (i.e. self-loops in the
graph). This suggests that those tasks are being performed in several steps rather
than all-at-once.

Again, it is not immediately obvious where the flow begins, but the node shading
and activity counts are helpful in this respect. Most instances start in a stage where



5.5 Analyzing the Organizational Perspective 75

W_Afhandelen leads
(5898) 1127

W_Beoordelen fraude
(270)

21

W_Completeren aanvraag
(23967)

2515

32

146

2

W_Valideren aanvraag
(7895)

33

3

16594

W_Nabellen offertes
(22976)

5015

W_Nabellen incomplete dossiers
(11407) 9219

1731

33

2188

2922

1

4

3209

17960

Fig. 22 Control-flow graph for the completion of work items

the information for the loan application is being filled in and an offer is being
prepared for the customer (W_Completeren aanvraag). Some loan applications
may come as a result of a previous business lead (W_Afhandelen leads). A few
applications are also checked for possible fraud (W_Beoordelen fraude).

The next stage is to contact the customer about the offer (W_Nabellen offertes)
and then, if there is a follow-up, the application is assessed (W_Valideren aanvraag).
During assessment it may be necessary to contact the customer again to gather some
missing information (W_Nabellen incomplete dossiers).

5.5 Analyzing the Organizational Perspective

In the organizational perspective, our analysis of the BPI Challenge 2012 event log
will be focusing mainly on working together, since an analysis of handover of work
leads to essentially the same conclusions.

As in the control-flow perspective, we will analyze each subprocess separately
by looking at the events with a certain prefix (i.e. ‘A_’, ‘O_’ or ‘W_’). An analysis of
the events with prefix ‘A_’ yields a graph similar to the one in Fig. 23.

From this graph, it appears that everyone works together with user 112. In fact,
there are reasons to believe that user 112 represents an automated system rather than
a human resource. The reasons are the following:



76 5 Process Mining in Practice

112 11201326

11200

328

11203

381

11202

450

11119

438

10972

628

10629

516

10913

463

10910

569

10609

550

10932

39311180

349

11181 348

11189

541

10138

843

11122

385

10881

320

10889

324

11169

743

11009

309

10982

495

10809

360

10861

477
10909

404

Fig. 23 Working together graph of application states, with a minimum edge count of 300

• user 112 is associated with many events that are either simultaneous or happen
very close in time (see Table 2 on page 67);

• user 112 is associated with the first few events of every process instance, which
correspond to the submission of a loan application by a customer, and to the
automatic checks that are performed on that application;

• user 112 does not appear associated with changes in the state of an offer, nor
with the completion of any work item (although it does appear associated with
the scheduling of some work items).

These facts lead to the conclusion that user 112 is a system account that performs
some automated tasks related to the state of the loan application in an initial stage
of the process. This initial stage ends with the loan application being either pre-
accepted or automatically declined. If the application is pre-accepted, then user 112
also schedules the first task to be performed by an employee.

To generate the graph in Fig. 23, it is important to note that the graph is being
drawn only with those nodes and edges for which the edge count (i.e. the number of
shared cases) is at least 300. In other words, an edge is added to the graph only if
the corresponding value in the working together matrix is above that threshold.



5.5 Analyzing the Organizational Perspective 77

This is an effective way of simplifying what would otherwise be an unnecessarily
complex graph. Without such threshold, many other interactions between users
would appear, but they would not be as strong as their connections to user 112,
which is the main feature that Fig. 23 intends to illustrate.

Another important detail is that the graph is being generated with the circo

program rather than dot. The circo program is a Graphviz utility that creates
graphs with circular layouts. That is why the graph in Fig. 23 has a circular
appearance. This is often a more convenient layout for the kind of graphs that are
generated in the organizational perspective.

As a rule of thumb, dot is usually better for models where there is some kind of
sequence flow, as in the control-flow perspective. When models become similar to
networks, with a lot of interactions between a large number of nodes, then circo

may provide a more readable graph layout.
Another graph with a circular layout is shown in Fig. 24. This is the working

together graph that is obtained when considering the events with prefix ‘W_’.
The graph is densely connected, and it will become even more so if we lower the

threshold on the edge count, which was kept at 300. This suggests that, apparently,
there are no structured teams to handle a loan application. Each employee can

11201

11203

456

11119436

466

11180

492

11181

489

11169

392

11189

334

519

471

567

381

473

481

425

11259

312

357

333

390

414

338

327

10972

11049

346

357

11179

309

312

10913

422

427

451

462

512

411

316

319

326

11000
308

10982

350

317

318

337

333
366

352

342

10609

302

334

10138

343

390

10899

312

10809

305

10861

451

448

499
545

550

476

396

302

309

476

366

11121 305

10909

460

396

448

429
455

474

321

315

436

317

Fig. 24 Working together graph of work items, with a minimum edge count of 300



78 5 Process Mining in Practice

11201

W_Completeren aanvraag

1206

11203

1191

W_Nabellen offertes

1040

11119

1158

10972

W_Valideren aanvraag

1413

10609

1679

11180

1100 1228

11181

1201 1192

10138

1708

11169

1080

10861

1287

10909

1040

Fig. 25 Distribution of work items across users, with a minimum edge count of 1000

work with many other employees, and their collaboration seems to be mainly
circumstantial, probably based on availability.

Nevertheless, it is still possible to identify groups of users who appear to have
different roles. If we analyze the distribution of work items across users, then we
can obtain the graph shown in Fig. 25.

From this graph, we can see that there is a group of users who complete the loan
application (W_Completeren aanvraag) and another group of users who take care
of contacting the customer about an offer (W_Nabellen offertes), and that there is
some overlap between these two groups.

On the other hand, the group of users who are responsible for assessing
the loan application (W_Valideren aanvraag) seems to be completely separate,
at least with the relatively high threshold that has been used to generate this
graph.

Since there are multiple possible users for each activity, it is not surprising
to find that, at run-time, any of those users may be called in to perform the
task. This may explain why it is hard to identify any concrete collaboration
teams.

To generate the graphs in Figs. 24 and 25, it is important to check if the user
is a non-empty string. As illustrated in Table 2 on page 67, some events have
no associated user. This could create some problems if we were analyzing the
handover of work. However, for working together this is not much of a problem,
since we are analyzing the set (not the sequence) of users who participate in each
case id.

5.6 Analyzing the Performance Perspective

In this event log, the tasks (with prefix ‘W_’) that are carried out by employees are
recorded with SCHEDULE, START and COMPLETE events. This makes it possible to
perform several different time measurements related to those tasks.



5.6 Analyzing the Performance Perspective 79

For example, by calculating the timestamp difference between the START and
COMPLETE events for a given work item, we can determine exactly how much time
was spent on that work item.

Consider, for example, the task W_Completeren aanvraag that is highlighted in
Table 3. The START and COMPLETE events for this task are separated by a series of
changes in the state of the loan application, and in the state of the offer that is sent
to the customer (the ‘A_’ and ‘O_’ events, respectively).

Table 3 Measuring the time between START and COMPLETE events

Case id Task Event type User Timestamp

173688 A_SUBMITTED COMPLETE 112 2011-10-01 00:38:44

173688 A_PARTLYSUBMITTED COMPLETE 112 2011-10-01 00:38:44

173688 A_PREACCEPTED COMPLETE 112 2011-10-01 00:39:37

173688 W_Completeren aanvraag SCHEDULE 112 2011-10-01 00:39:38

173688 W_Completeren aanvraag START – 2011-10-01 11:36:46

173688 A_ACCEPTED COMPLETE 10862 2011-10-01 11:42:43

173688 O_SELECTED COMPLETE 10862 2011-10-01 11:45:09

173688 A_FINALIZED COMPLETE 10862 2011-10-01 11:45:09

173688 O_CREATED COMPLETE 10862 2011-10-01 11:45:11

173688 O_SENT COMPLETE 10862 2011-10-01 11:45:11

173688 W_Nabellen offertes SCHEDULE – 2011-10-01 11:45:11

173688 W_Completeren aanvraag COMPLETE – 2011-10-01 11:45:13

173688 W_Nabellen offertes START – 2011-10-01 12:15:41

173688 W_Nabellen offertes COMPLETE – 2011-10-01 12:17:08

173688 W_Nabellen offertes START 10913 2011-10-08 16:26:57

173688 W_Nabellen offertes COMPLETE 10913 2011-10-08 16:32:00

173688 W_Nabellen offertes START 11049 2011-10-10 11:32:22

173688 O_SENT_BACK COMPLETE 11049 2011-10-10 11:33:03

173688 W_Valideren aanvraag SCHEDULE 11049 2011-10-10 11:33:04

173688 W_Nabellen offertes COMPLETE 11049 2011-10-10 11:33:05

173688 W_Valideren aanvraag START 10629 2011-10-13 10:05:26

173688 A_REGISTERED COMPLETE 10629 2011-10-13 10:37:29

173688 A_APPROVED COMPLETE 10629 2011-10-13 10:37:29

173688 O_ACCEPTED COMPLETE 10629 2011-10-13 10:37:29

173688 A_ACTIVATED COMPLETE 10629 2011-10-13 10:37:29

173688 W_Valideren aanvraag COMPLETE 10629 2011-10-13 10:37:37



80 5 Process Mining in Practice

Looking at the timestamps of these events, it is very likely that these changes
in state are being produced while the task (W_Completeren aanvraag) is being per-
formed. Eventually, W_Completeren aanvraag finishes, but not before scheduling
the next task (W_Nabellen offertes).

By taking the timestamp difference between the START and COMPLETE

events for W_Completeren aanvraag, we can determine exactly how much
time was spent on this task. If we carry out the same analysis throughout the
entire event log, we find that, on average, each work item takes somewhere
between 10 and 20 min to complete, with W_Valideren aanvraag being the
longest.

However, Table 3 also shows that there may be several START and COMPLETE

events for the same work item. Consider, for example, W_Nabellen offertes. After
this task has been scheduled, it appears that multiple people have been working on
it at different points in time.

Therefore, to calculate the effective working time that was spent on each
work item, we could sum all the timestamp differences between the START and
COMPLETE events for that work item. If we carry out this analysis, we find
that, on average, the effective time spent on each work item is somewhere
between 20 and 60 min, with W_Nabellen incomplete dossiers being the longest
one.

Another analysis that can be conducted is to measure the entire life span of a
work item by considering the timestamp difference between the first START event
and the last COMPLETE event, or even the timestamp difference between the initial
SCHEDULE event and the final COMPLETE event for that work item.

Table 4 illustrates the measurement between the initial SCHEDULE event and the
final COMPLETE event for each work item. If we carry out this analysis for the whole
event log, we find that the average life span of each work item is somewhere between
2 and 12 days, with W_Nabellen offertes being the longest one.

On the other hand, Table 5 illustrates the measurement of the waiting time
between the initial SCHEDULE event and the first START event for each work item. If
we carry out this analysis for the whole event log, we find that the average waiting
time for each work item is somewhere between 1 and 3 days, with W_Nabellen
offertes being the longest one again.

From these results, we conclude that the waiting time may account for some, but
not all of the entire life span of each work item. This life span can be quite long
(several days) despite the fact that the effective working time is relatively short (up
to 1 h). This happens because each activity is being carried out in several short steps
over a relatively long period of time.



5.6 Analyzing the Performance Perspective 81

Table 4 Measuring the time between SCHEDULE and COMPLETE events

Case id Task Event type User Timestamp

173688 A_SUBMITTED COMPLETE 112 2011-10-01 00:38:44

173688 A_PARTLYSUBMITTED COMPLETE 112 2011-10-01 00:38:44

173688 A_PREACCEPTED COMPLETE 112 2011-10-01 00:39:37
173688 W_Completeren aanvraag SCHEDULE 112 2011-10-01 00:39:38

173688 W_Completeren aanvraag START – 2011-10-01 11:36:46

173688 A_ACCEPTED COMPLETE 10862 2011-10-01 11:42:43

173688 O_SELECTED COMPLETE 10862 2011-10-01 11:45:09

173688 A_FINALIZED COMPLETE 10862 2011-10-01 11:45:09

173688 O_CREATED COMPLETE 10862 2011-10-01 11:45:11

173688 O_SENT COMPLETE 10862 2011-10-01 11:45:11

173688 W_Nabellen offertes SCHEDULE – 2011-10-01 11:45:11

173688 W_Completeren aanvraag COMPLETE – 2011-10-01 11:45:13

173688 W_Nabellen offertes START – 2011-10-01 12:15:41

173688 W_Nabellen offertes COMPLETE – 2011-10-01 12:17:08

173688 W_Nabellen offertes START 10913 2011-10-08 16:26:57

173688 W_Nabellen offertes COMPLETE 10913 2011-10-08 16:32:00

173688 W_Nabellen offertes START 11049 2011-10-10 11:32:22

173688 O_SENT_BACK COMPLETE 11049 2011-10-10 11:33:03

173688 W_Valideren aanvraag SCHEDULE 11049 2011-10-10 11:33:04

173688 W_Nabellen offertes COMPLETE 11049 2011-10-10 11:33:05

173688 W_Valideren aanvraag START 10629 2011-10-13 10:05:26

173688 A_REGISTERED COMPLETE 10629 2011-10-13 10:37:29

173688 A_APPROVED COMPLETE 10629 2011-10-13 10:37:29

173688 O_ACCEPTED COMPLETE 10629 2011-10-13 10:37:29

173688 A_ACTIVATED COMPLETE 10629 2011-10-13 10:37:29

173688 W_Valideren aanvraag COMPLETE 10629 2011-10-13 10:37:37

The most dramatic example is W_Nabellen offertes with, on average, 35 min
of working time for a total life span of 12 days. However, this is not too
worrisome because it concerns the negotiation of an offer through several contacts
with a customer over a possibly long period of time. The performance of this
activity depends on factors that are beyond the internal resources of the organi-
zation.

A more interesting example is W_Valideren aanvraag with 33 min of
working time for a total life span of 2.1 days, of which 1.8 days are
spent on just waiting for someone to pick up the task. This waiting time
seems to be due to the fact that there are relatively few employees with the
responsibility of assessing loan applications, as we have seen in the analysis
of the organizational perspective. It could be that these resources are somewhat
overloaded.



82 5 Process Mining in Practice

Table 5 Measuring the time between SCHEDULE and START events

Case id Task Event type User Timestamp

173688 A_SUBMITTED COMPLETE 112 2011-10-01 00:38:44

173688 A_PARTLYSUBMITTED COMPLETE 112 2011-10-01 00:38:44

173688 A_PREACCEPTED COMPLETE 112 2011-10-01 00:39:37

173688 W_Completeren aanvraag SCHEDULE 112 2011-10-01 00:39:38

173688 W_Completeren aanvraag START – 2011-10-01 11:36:46

173688 A_ACCEPTED COMPLETE 10862 2011-10-01 11:42:43

173688 O_SELECTED COMPLETE 10862 2011-10-01 11:45:09

173688 A_FINALIZED COMPLETE 10862 2011-10-01 11:45:09

173688 O_CREATED COMPLETE 10862 2011-10-01 11:45:11

173688 O_SENT COMPLETE 10862 2011-10-01 11:45:11

173688 W_Nabellen offertes SCHEDULE – 2011-10-01 11:45:11

173688 W_Completeren aanvraag COMPLETE – 2011-10-01 11:45:13

173688 W_Nabellen offertes START – 2011-10-01 12:15:41

173688 W_Nabellen offertes COMPLETE – 2011-10-01 12:17:08

173688 W_Nabellen offertes START 10913 2011-10-08 16:26:57

173688 W_Nabellen offertes COMPLETE 10913 2011-10-08 16:32:00

173688 W_Nabellen offertes START 11049 2011-10-10 11:32:22

173688 O_SENT_BACK COMPLETE 11049 2011-10-10 11:33:03

173688 W_Valideren aanvraag SCHEDULE 11049 2011-10-10 11:33:04

173688 W_Nabellen offertes COMPLETE 11049 2011-10-10 11:33:05

173688 W_Valideren aanvraag START 10629 2011-10-13 10:05:26

173688 A_REGISTERED COMPLETE 10629 2011-10-13 10:37:29

173688 A_APPROVED COMPLETE 10629 2011-10-13 10:37:29

173688 O_ACCEPTED COMPLETE 10629 2011-10-13 10:37:29

173688 A_ACTIVATED COMPLETE 10629 2011-10-13 10:37:29

173688 W_Valideren aanvraag COMPLETE 10629 2011-10-13 10:37:37

5.7 Process Mining with Disco

Disco9 is a process mining tool created by Fluxicon, a start-up company founded by
two PhD graduates from the Eindhoven University of Technology. Disco is quite a
user-friendly tool, where one will find his or her way around quite easily, at least for
someone who is already familiar with process mining.

The starting point for using the tool is to open a log file, which can be either in
CSV or in XES format. If the log file is a CSV, it will be necessary to choose which
columns will be used as case id, task, user, and timestamp. In Disco, the task and
user columns are referred to as activity and resource, respectively.

9https://fluxicon.com/disco/.

https://fluxicon.com/disco/


5.7 Process Mining with Disco 83

Fig. 26 Opening a log file in Disco

Figure 26 shows the screen where the user can click on a column and select one
of the icons on top in order to indicate the purpose of that column. In Fig. 26, column
1 is highlighted, and the selected icon (case) means that this column will be used
as case id. The remaining columns can be configured in a similar way: column 2 as
activity, column 4 as resource, and column 5 as timestamp.

Column 3 is the event type, but there is no predefined role for it in Disco.
However, if we would like to filter events based on event type, then we should
definitely keep this column, by marking it as Other. Any column that is left
unmarked at this stage will be unavailable in subsequent stages.

By marking column 3 as Other, it is possible to define a filter based on the values
that appear in this column. In Fig. 27, we have defined a filter to select the events of
type COMPLETE and ignore the START and SCHEDULE events.

A similar filter can be used to select the events with a certain task prefix (‘A_’,
‘O_’ or ‘W_’). In Fig. 28, we have defined a second filter to keep the tasks with prefix
‘W_’ and ignore the tasks with prefixes ‘A_’ and ‘O_’.

After applying both filters to the event log, Disco generates the control-flow
graph shown in Fig. 29. In Disco, this graph is called a process map, and it has
an implicit start node to denote where the control flow begins, and an implicit end
node to denote where the control flow ends.



84 5 Process Mining in Practice

Fig. 27 Applying a filter on event type

Fig. 28 Applying a filter on task name



5.7 Process Mining with Disco 85

Fig. 29 Control-flow perspective in Disco

With the sliders shown on the right-hand side of Fig. 29, it is possible to do
some post-processing on this graph, from showing only the most common nodes
and edges to showing the control-flow graph in full detail.

In Fig. 29, the slider for activities (nodes) is at 100% and the slider for paths
(edges) is at 0%. This means that, in principle, Disco should show every node but no
edges. However, Disco does not leave nodes or process fragments dangling around
without connections to other nodes. Therefore, despite having the Paths slider at
0%, Disco still shows the edges required to connect those nodes.

By moving the Paths slider to 100%, Disco will show the control-flow graph in
full detail, with the same transition counts as in Fig. 22 on page 75.

Disco has also a performance perspective where it shows the time between events
plotted over the same control-flow graph, as shown in Fig. 30. Disco is able to show
the mean, median, minimum, maximum, and total time between events.

Note, however, that the results shown in Fig. 30 have been computed over the
events coming from the application of the two filters in Figs. 27 and 28. This
means that Disco is calculating the average timestamp difference between COMPLETE

events. In particular, Disco is showing the mean time between the (last) COMPLETE

event of one activity and the (first) COMPLETE event of the next activity. As we have
seen before, in this event log each activity may comprise several COMPLETE events,
so the results should be interpreted with care.



86 5 Process Mining in Practice

Fig. 30 Performance perspective in Disco

Disco includes several other functionalities, such as plotting the length of cases
(both in terms of number of events and duration), and the number of occurrences of
each task and user in the event log.

In addition, Disco includes an impressive log replay visualization, referred to as
animation, where events are highlighted in the graph as they occurred over time (but
in accelerated time, so that the whole event log can be replayed in a few minutes).

Finally, Disco can display the handover of work by an appropriate choice of
columns (i.e. by choosing the user column as activity column). However, it does not
support the working together perspective. For this and other advanced techniques,
one can resort to a more sophisticated tool, namely ProM.

5.8 Process Mining with ProM

ProM10 is the ultimate process mining toolbox. It was originally developed by the
group of Prof. Wil van der Aalst at the Eindhoven University of Technology. Today,
ProM includes several techniques developed by other research groups as well.

10http://www.promtools.org/.

http://www.promtools.org/


5.8 Process Mining with ProM 87

In fact, ProM was devised with an extensible architecture in mind, allowing other
people to contribute with the implementation of their own techniques, in the form
of plug-ins. Hence, ProM is usually referred to as a framework [22].

At its core, the ProM framework is able to load event logs, run plug-ins, and
display the results. When loading an event log, the preferred format is XES. Once
an event log has been loaded, there are several different types of plug-ins that can
be applied over it. For example:

• there are plug-ins to sort, convert, filter, and add information the event log;
• there are plug-ins to extract control-flow models, social networks, and other kinds

of models from an event log;
• there are plug-ins to convert between different types of models and to analyze the

properties of those models;
• there are plug-ins to check the conformance between a control-flow model and a

given event log;
• etc.

The list of plug-ins available in ProM keeps growing, and ProM provides the
framework to invoke any of these plug-ins on a given set of inputs, which typically
consist in an event log, a model, or both.

A key feature of ProM is that the output of a plug-in (e.g. a filtered event log, or
a control-flow model) can be used as input to other plug-ins. This way it becomes
possible to carry out an analysis by applying a sequence of plug-ins.

For example, one could use a preprocessing plug-in to filter the input event log,
then a mining plug-in to generate a control-flow model, and finally an analysis plug-
in to analyze the structural properties of the generated model.

Traditionally, ProM is very geared towards the use of Petri nets as control-flow
models. This is due both to historical and practical reasons. In the late 1990s,
Wil van der Aalst wrote a seminal paper [17], which established Petri nets as the
preferred language for modeling and analyzing workflows.

In fact, Petri nets provide a number of distinct advantages, the most important
being that they have a mathematical foundation that enables formal analysis of
structure and behavior. For example, it is possible to formally prove whether a Petri
net has deadlocks or non-executable paths, among other properties.

This is the reason why many plug-ins in ProM work with Petri nets. There are
mining plug-ins to generate Petri nets, and there are analysis plug-ins to check the
properties of those Petri nets. There are also conversion plug-ins to convert Petri
nets to and from other kinds of models.

Petri nets have also precise execution semantics (meaning that there is no doubt
or ambiguity in how a given Petri net will execute). For this reason, Petri nets are
the preferred model for conformance checking plug-ins based on log replay.

Figure 31 shows the workspace environment in ProM 6, after loading the event
log from the BPI Challenge 2012. This workspace keeps the event logs, models, and
other items that have been either imported or generated during the current session.
Any of these items can be selected for further processing.



88 5 Process Mining in Practice

Fig. 31 The workspace environment in ProM

At the top of Fig. 31, there are three distinct tabs. Besides the Workspace tab,
there is also the Actions tab and the Views tab. The Actions tab is where the user can
select and run plug-ins. Figure 32 shows an example.

In Fig. 32, we have selected a filter to be applied to the event log. The selected
plug-in (Filter Log on Event Attribute Values) allows filtering the events by task,
user, timestamp, and event type.

As shown in Fig. 33, the filter configuration dialog has several tabs which cor-
respond to the event attributes that are present in the XES log file (concept:name,
lifecycle:transition, org:resource, and time:timestamp). In each of these
tabs, it is possible to select the admissible values for each of those attributes.

For illustrative purposes, we will be selecting the events with prefix ‘A_’ in order
to analyze the control flow of loan application states.

Back in Fig. 32, we can see that this filter plug-in will produce a new event log
as output (as shown in the right-hand side of the figure). This new event log will be
added to the workspace in Fig. 31, and from there it is possible to select it and use it
as input to other plug-ins.

Here, the filtered event log will be used as input to a mining plug-in that will
generate a Petri net. The specific plug-in that we will use (Mine Petri net with
Inductive Miner) contains an implementation of a process discovery technique
described in [6, 7]. In general, the details about each plug-in can be found in the
literature. A link for more information is usually provided in the plug-in itself.



5.8 Process Mining with ProM 89

Fig. 32 Selecting a filter plug-in in ProM 6

Fig. 33 Configuring a filter plug-in in ProM 6



90 5 Process Mining in Practice

Fig. 34 Selecting a mining plug-in in ProM 6

As shown in Fig. 34, this plug-in receives an event log as input (left-hand
side) and produces a Petri net as output (right-hand side), together with an initial
marking and a final marking for the Petri net. These markings are relevant for some
conformance checking plug-ins that are also available in ProM.

Figure 35 shows the Petri net that is generated by this mining plug-in, when
using the default configuration parameters. It is interesting to note how this Petri net
captures the behavior of A_REGISTERED, A_APPROVED, and A_ACTIVATED.

Earlier, from Fig. 20 on page 73, we had already concluded that these events can
happen in any order, due to the mutual edges that exist between them. However,
Fig. 35 shows this behavior in a much clearer way.

In Fig. 35, the circles represent places and the rectangles represent transitions.
Places can have tokens, and in fact the first place in this Petri net is marked as
having one token. When a transition fires, it removes one token from each of its
input places, and it adds one token to each of its output places.

In general, each transition represents an activity in the process, and the firing of a
transition corresponds to an event that has been recorded in the event log. In Fig. 35
there are also dark, filled rectangles which represent silent transitions.

Silent transitions do not correspond to actual activities, nor to events in the event
log. They are introduced for the purpose of capturing the behavior of the process.
For example, if one or more activities can be skipped, it is common to introduce a
silent transition to be able to “jump over” those activities.



5.8 Process Mining with ProM 91

Fig. 35 Petri net generated by a mining plug-in in ProM 6

Silent transitions can also be used for the purpose of spawning and synchronizing
multiple parallel paths, and this is precisely what is happening in the Petri net of
Fig. 35 with A_REGISTERED, A_APPROVED, and A_ACTIVATED.

There is a silent transition that, when fired, adds tokens to the input places of
those three activities. Afterwards, there is another silent transition that can only fire
when there is a token in every output place of those activities.

In other words, those three activities run in parallel and can fire in any order. This
is much more evident in Fig. 35 than in Fig. 20, and it serves to highlight one of the
advantages of using Petri nets as control-flow models, which is their natural ability
to capture parallel behavior.

Regarding the organizational perspective, Fig. 36 shows a visualization of the
working together network, highlighting the fact that user 112 plays a central role, as
we have already seen in Fig. 23 on page 76.

The social network in Fig. 36 is being displayed according to a ranking view,
where the ranking is the degree (number of connections) of each node. Nodes in the
periphery have a low degree, whereas nodes towards the center have an increasingly
larger degree. Node 112 is positioned right at the center with the highest degree of
all, since it connects to every other node.

Finally, Fig. 37 shows a dotted chart that can be used to carry out an analysis in
the performance perspective. This chart was generated from the same filtered event
log as before, so it contains only events with prefix ‘A_’.



92 5 Process Mining in Practice

Fig. 36 Working together network generated by ProM 6

Fig. 37 Dotted chart generated by ProM 6



5.9 Conclusion 93

It is interesting to note that there seems to be a parallel trend in the behavior of
A_CANCELLED with respect to the beginning of the process. This suggests that the
cancellation of a loan application might be taking place automatically, after a certain
period of time has elapsed (timeout).

It is also interesting to note that, from the vertical stripes in the chart, one can
clearly distinguish between working days and weekends, including a period of
slightly lower activity around Christmas and the New Year.

5.9 Conclusion

In this chapter, we picked up a real-world event log from a BPI Challenge, and we
analyzed this event log with the techniques described in the previous chapters. We
have also looked at two process mining tools: Disco and ProM. While doing this,
we learned the following:

• There is a standard format for event logs (XES), which is an XML-based and
extensible format that should be able to cater for present and future needs. ProM
uses XES, and is able to filter an event log based on the attributes and extensions
defined in that standard format.

• Real-world event logs have complex behaviors that are often difficult to under-
stand. One way to deal with this complexity is to analyze separately certain
subsets of events. These subsets can be obtained by applying filters over the event
log. Both Disco and ProM support filters.

• ProM is the reference tool in the area of process mining. However, to take full
advantage of ProM, one must be familiar with the underlying techniques behind
a series of different plug-ins. Some of these plug-ins come from cutting-edge
research. As an alternative, Disco is a more user-friendly tool.

• By analyzing a single perspective it can be difficult to explain the behavior
observed in the event log. An integrated analysis of the three perspectives—
control-flow, organizational, and performance—can provide better insights into
the behavior of business processes.

Congratulations on having finished this book! If you got a good grasp of the
techniques described herein, you can move on to more advanced literature, such
as [18]. Also, have a look at http://processmining.org/, where you can find a lot of
materials and can keep up with the latest developments in this field.

http://processmining.org/


References

1. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process
Management. Springer, Berlin (2013)

2. Ferreira, D.R., Alves, C.: Discovering user communities in large event logs. In: BPM 2011
Workshops, Part I. LNBIP, vol. 99, pp. 123–134. Springer, Berlin (2012)

3. Ferreira, D.R., Vasilyev, E.: Using logical decision trees to discover the cause of process delays
from event logs. Comput. Ind. 70, 194–207 (2015)

4. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based
on multi-perspective metrics. In: Business Process Management. Lecture Notes in Computer
Science, vol. 4714, pp. 328–343. Springer, Berlin (2007)

5. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan
Kaufmann, San Francisco (2012)

6. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs – a constructive approach. In: Application and Theory of Petri Nets
and Concurrency. Lecture Notes in Computer Science, vol. 7927, pp. 311–329. Springer, Berlin
(2013)

7. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs containing infrequent behaviour. In: Business Process Management
Workshops. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014)

8. Mans, R.S., Schonenberg, M.H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.: Application
of process mining in healthcare – a case study in a dutch hospital. In: Biomedical Engineering
Systems and Technologies. CCIS, vol. 25, pp. 425–438. Springer, Berlin (2009)

9. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process mining: an
experimental evaluation. Data Min. Knowl. Disc. 14(2), 245–304 (2007)

10. Nakatumba, J., van der Aalst, W.M.P.: Analyzing resource behavior using process mining. In:
Business Process Management Workshops. LNBIP, vol. 43, pp. 69–80 (2010)

11. Newman, M.E.J.: Modularity and community structure in networks. PNAS 103(23), 8577–
8582 (2006)

12. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on monitoring real
behavior. Inf. Syst. 33(1), 64–95 (2008)

13. Scott, J.: Social Network Analysis. SAGE, Thousand Oaks (2013)
14. Song, M., van der Aalst, W.: Supporting process mining by showing events at a glance. In:

Proceedings of 17th Annual Workshop on Information Technologies and Systems (WITS
2007). pp. 139–145. Montreal, Canada (December 2007)

15. Song, M., van der Aalst, W.M.: Towards comprehensive support for organizational mining.
Decis. Support. Syst. 46(1), 300–317 (2008)

© The Author(s) 2017
D.R. Ferreira, A Primer on Process Mining, SpringerBriefs in Information Systems,
DOI 10.1007/978-3-319-56427-2

95



96 References

16. Vaisman, A., Zimányi, E.: Data Warehouse Systems: Design and Implementation. Springer,
Berlin (2014)

17. van der Aalst, W.M.P.: The application of petri nets to workflow management. J. Circ. Syst.
Comput. 8(1), 21–66 (1998)

18. van der Aalst, W.: Process Mining: Data Science in Action, 2nd edn. Springer, Berlin (2016)
19. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: discovering

process models from event logs. IEEE Trans. Knowl. Data Eng. 16, 1128–1142 (2004)
20. van der Aalst, W.M.P., Reijers, H.A., Song, M.: Discovering social networks from event logs.

Comput. Supported Coop. Work 14(6), 549–593 (2005)
21. van Dongen, B.F., van der Aalst, W.M.P.: A meta model for process mining data. In: EMOI-

INTEROP’05: Enterprise Modelling and Ontologies for Interoperability. CEUR Workshop
Proceedings, vol. 160 (2005)

22. van Dongen, B.F., de Medeiros, A.A., Verbeek, H., Weijters, A., van der Aalst, W.: The ProM
framework: a new era in process mining tool support. In: Applications and Theory of Petri Nets
2005. Lecture Notes in Computer Science, vol. 3536, pp. 444–454. Springer, Berlin (2005)

23. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame,
and ProM 6. In: Information Systems Evolution. LNBIP, vol. 72, pp. 60–75. Springer,
Heidelberg (2011)

24. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge
University Press, Cambridge (1994)

25. Weijters, A.J.M.M., van der Aalst, W.M.P., de Medeiros, A.K.A.: Process mining with the
HeuristicsMiner algorithm. Tech. Rep. WP 166, Eindhoven University of Technology (2006)

26. Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: A novel approach for process
mining based on event types. J. Intell. Inf. Syst. 32(2), 163–190 (2009)

27. Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn.
Springer, Berlin (2012)


	Preface
	Contents
	1 Event Logs
	1.1 Process Model vs. Process Instances
	1.2 Task Allocation
	1.3 Identifying the Process Instances
	1.4 Recording Events in an Event Log
	1.5 Event Logs in CSV Format
	1.6 Reading an Event Log with Python
	1.7 Sorting an Event Log with Python
	1.8 Reading the Event Log as a Dictionary
	1.9 Summary

	2 Control-Flow Perspective
	2.1 The Transition Matrix
	2.2 The Control-Flow Algorithm
	2.3 Implementation in Python
	2.4 Introducing Graphviz
	2.5 Using PyGraphviz
	2.6 Edge Thickness
	2.7 Activity Counts
	2.8 Node Coloring
	2.9 Summary

	3 Organizational Perspective
	3.1 Handover of Work
	3.2 Implementing Handover of Work
	3.3 Working Together
	3.4 Implementing Working Together
	3.5 Undirected Graphs
	3.6 Edge Thickness
	3.7 Users and Activities
	3.8 Work Distribution
	3.9 Summary

	4 Performance Perspective
	4.1 Dates and Times in Python
	4.2 Parsing the Timestamps
	4.3 Average Timestamp Difference
	4.4 Drawing the Graph
	4.5 Analyzing the Timeline of Events
	4.6 Plotting the Dotted Chart
	4.7 Using Relative Time
	4.8 Activity Duration
	4.9 Summary

	5 Process Mining in Practice
	5.1 The BPI Challenge 2012
	5.2 Understanding the XES Format
	5.3 Reading XES with Python
	5.4 Analyzing the Control-Flow Perspective
	5.5 Analyzing the Organizational Perspective
	5.6 Analyzing the Performance Perspective
	5.7 Process Mining with Disco
	5.8 Process Mining with ProM
	5.9 Conclusion

	References

