

XPathTM 2.0 Programmer’s Reference

Michael Kay

Wiley Publishing, Inc.

XPathTM 2.0 Programmer’s Reference

Michael Kay

Wiley Publishing, Inc.

XPathTM 2.0 Programmer’s Reference
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright C© 2004 by Wiley Publishing, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, e-mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WAR-
RANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR
PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE
FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUB-
LISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR
SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEB SITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL
SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUB-
LISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEB SITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTER-
NET WEB SITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN
WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or
fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates. All other trademarks are the property of their respective owners. XSLT Copyright C©
1994–2003 (Massachusetts Institute of Technology, European Research Consortium for Informatics and
Mathematics, Keio University), All Rights Reserved. XPath is a trademark of Brocade Communication
Systems, Inc. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this
book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

eISBN: 0-764-57756-5

Credits
Vice President and Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Senior Acquisitions Editor
Jim Minatel

Editorial Manager
Kathryn A. Malm

Senior Production Editor
Gerry Fahey

Senior Development Editor
Emilie Herman

Production Editor
Felicia Robinson

Copy Editor
Techbooks

Media Development Specialist
Travis Silvers

Technical Editor
Wiley-Dreamtech India Pvt Ltd

Layout, Proofreading and Indexing
TECHBOOKS

To the Peacemakers

Contents

Acknowledgments xiv
Introduction xvi

Chapter 1: XPath 2.0 in Context 1

What Is XPath? 1
Path Expressions 3
Composability 4
What’s New in XPath 2.0? 4
XPath 2.0 Processors 9

Where XPath fits in the XML Family 15
XPath and XSLT 15
XPath and the InfoSet 16
XML Namespaces 17
XPath and XPointer 18
XPath and XQuery 19
XPath and XML Schemas 20
XPath, the DOM, and Java 21

XPath 2.0 as a Language 22
The Syntax of XPath 22
An Embedded Language 23
A Language for Processing Sequences 24
Types Based on XML Schema 25

Summary 26

Chapter 2: The Data Model 27

Changes in 2.0 27
Sequences 28
Atomic Values 30
Nodes and Trees 33

XML as a Tree 33
Completing the UML Class Diagram 45
Names and Namespaces 45
IDs 50

Contents

Characters in the Data Model 52
What Does the Tree Leave Out? 53
From Textual XML to a Data Model 56
Controlling Serialization 57
Document Order 59

Summary 60

Chapter 3: The Type System 61

What Is a Type System? 61
XML Schema: An Overview 63

Simple Type Definitions 63
Elements with Attributes and Simple Content 65
Elements with Mixed Content 66
Elements with Element-Only Content 67
Defining a Type Hierarchy 69
Substitution Groups 73

Atomic Types 76
The Major Atomic Types 78
The Minor Atomic Types 93
Derived Numeric Types 97
Derived String Types 100
Untyped Atomic Values 103
NMTOKENS, IDREFS, and ENTITIES 104

Schema Types and XPath Types 105
The Type Matching Rules 107
Static and Dynamic Type Checking 109
Summary 113

Chapter 4: The Evaluation Context 115

The Static Context 115
XPath 1.0 Compatibility Mode 116
In-Scope Namespaces 117
Default Namespaces 118
In-Scope Schema Definitions 119
In-Scope Variables 121
In-Scope Functions 122
Collations 123
Base URI 125
Statically Known Documents and Collections 125

vi

Contents

The Dynamic Context 126
The Focus 126
Dynamic Variables 129
Function Implementations 129
Current Date and Time 129
Implicit Timezone 130
Available Documents and Collections 131

Summary 132

Chapter 5: Basic Constructs 133

Notation 134
Where to Start 136
Expressions 136

Examples 139
Lexical Constructs 140

Comments 141
Numeric Literals 142
String Literals 144
Names 146
Operators 150

Primary Expressions 152
Examples 153

Variable References 153
Usage 153
Examples 155

Parenthesized Expressions 155
Changes in XPath 2.0 156

Context Item Expressions 156
Changes in XPath 2.0 157
Usage 157

Function Calls 158
Identifying the Function to be Called 159
Converting the Arguments and the Result 160
Changes in XPath 2.0 162
Side Effects 163
Examples 164

Conditional Expressions 165
Changes in XPath 2.0 166
Examples 167

Summary 167

vii

Contents

Chapter 6: Operators on Items 169

Arithmetic Operators 169
Syntax 170
Type Promotion 170
Changes in XPath 2.0 171
Effect 172
Arithmetic Using Numbers 173
Examples of Numeric Arithmetic 175
Arithmetic Using Durations 176

Value Comparisons 181
Permitted Operand Types 182
Type Checking for Value Comparisons 186
Examples of Value Comparisons 188

General Comparisons 188
Changes in XPath 2.0 189
Rules for General Comparisons 190
Comparing Sequences 191
Examples of General Comparisons 195

Node Comparisons 196
The «is» Operator 196
The operators «<<» and «>>» 197
Changes in XPath 2.0 198

Boolean Expressions 198
Examples 199

Summary 200

Chapter 7: Path Expressions 201

Examples of Path Expressions 201
Changes in XPath 2.0 203
Full Path Expressions 204

Syntax 204
The Root Expression «/» 205
Absolute Paths 206
Relative Paths 208

Steps 211
Syntax of Steps 212
Axes 215
Node Tests 220
Name Tests 221
Kind Tests 224

viii

Contents

Abbreviations 226
Defaulting the Axis Name in a Step 226
The «@» Abbreviation 227
The «..» Abbreviation 227
The «//» Abbreviation 228

Predicates 230
Combining Sets of Nodes 234

Syntax 235
Examples 236
Usage 236
Set Intersection and Difference in XPath 1.0 237

Summary 237

Chapter 8: Sequence Expressions 239

The Comma Operator 240
Examples 242

Numeric Ranges: The «to» Operator 242
Examples 243

Filter Expressions 244
Examples 246

The «for» Expression 247
Mapping a Sequence 248
Examples 249
For Expressions and Path Expressions 249
Combining Multiple Sequences 250
Example 251
Examples in XMLSpy 252

The «some» and «every» Expressions 254
Examples 257
Quantification and the «=» Operator 257
Errors in «some» and «every» Expressions 258

Summary 259

Chapter 9: Type Expressions 261

Converting Atomic Values 262
Converting between Primitive Types 264
Converting between Derived Types 276

Sequence Type Descriptors 277
Atomic Types 278

ix

Contents

Matching Nodes 279
Matching Elements and Attributes 281

The «instance of» operator 287
The «treat as» Operator 288
Summary 290

Chapter 10: XPath Functions 291

A Word about Naming 292
Functions by Category 292

Boolean Functions 292
Numeric Functions 292
String Functions 292
Date and Time Functions 293
Duration Functions 293
Aggregation Functions 293
Functions on URIs 293
Functions on QNames 293
Functions on Sequences 293
Functions that Return Properties of Nodes 293
Functions that Find Nodes 294
Functions that Return Context Information 294
Diagnostic Functions 294
Functions that Assert a Static Type 294

Notation 294
Function Definitions 296

abs 296
adjust-date-to-timezone, adjust-dateTime-to-timezone, adjust-time-to-timezone 297
avg 301
base-uri 302
boolean 304
ceiling 306
codepoints-to-string 308
collection 309
compare 310
concat 312
contains 314
count 316
current-date, current-dateTime, current-time 318
data 320
day-from-date, day-from-dateTime 322
days-from-duration 323

x

Contents

deep-equal 323
default-collation 326
distinct-values 327
doc 329
document-uri 332
empty 333
ends-with 334
error 336
escape-uri 337
exactly-one 340
exists 341
expanded-QName 342
false 343
floor 344
hours-from-dateTime, hours-from-time 346
hours-from-duration 347
id 347
idref 350
implicit-timezone 352
index-of 353
in-scope-prefixes 354
insert-before 356
lang 357
last 359
local-name 363
local-name-from-QName 365
lower-case 366
matches 368
max 370
min 371
minutes-from-dateTime, minutes-from-time 373
minutes-from-duration 374
month-from-date, month-from-dateTime 374
months-from-duration 375
name 376
namespace-uri 379
namespace-uri-for-prefix 381
namespace-uri-from-QName 382
nilled 383
node-name 384
normalize-space 386
normalize-unicode 388

xi

Contents

not 391
number 393
one-or-more 395
position 396
remove 399
replace 400
resolve-QName 403
resolve-uri 405
reverse 408
root 408
round 409
round-half-to-even 411
seconds-from-dateTime, seconds-from-time 413
seconds-from-duration 414
starts-with 415
string 416
string-join 418
string-length 419
string-to-codepoints 421
subsequence 422
substring 423
substring-after 425
substring-before 427
subtract-dates, subtract-dateTimes 429
sum 431
timezone-from-date, timezone-from-dateTime, timezone-from-time 433
tokenize 434
trace 436
translate 437
true 439
unordered 440
upper-case 442
year-from-date, year-from-dateTime 443
years-from-duration 443
zero-or-one 444

Summary 445

Chapter 11: Regular Expressions 447

Branches and Pieces 448
Quantifiers 448
Atoms 449

xii

Contents

Character Groups 450
Character Ranges 450
Character Class Escapes 451
Character Blocks 453
Character Categories 455
Disallowed Constructs 457
Summary 457

Appendix A: XPath 2.0 Syntax Summary 459
Appendix B: Operator Precedence 467
Appendix C: Compatibility with XPath 1.0 469
Appendix D: Error Codes 475
Glossary 487
Index 505

xiii

Acknowledgments

Firstly, I’d like to acknowledge the work of my colleagues on the W3C XSL and XQuery Working
Groups, who worked together to create the XPath 2.0 language, and the many other experts
inside and outside W3C who provided ideas and feedback. As a joint editor of the XSLT 2.0
specification I have to take responsibility not only for the imperfections in this book but also for
some of the defects in the design of the language it describes. But although the specification lists
a number of people as editors, most of the drafting was actually done by Don Chamberlin, and
he therefore deserves the lion’s share of the credit. Other individuals who played a key role in
the creation of the language were James Clark, who laid the foundations with XPath 1.0, and
Mary Fernandez, who chaired the task force that brought the two working groups together, and
who frequently found a way to a solution when the groups appeared deadlocked. Ashok
Malhotra managed the daunting task of defining the function library with commendable
patience and persistence, and Scott Boag looked after the definition of the grammar. Many
others, of course, contributed in many different ways.

I would like to thank the many readers of previous editions of XSLT Programmer’s Reference who
have provided feedback, criticism, and encouragement. Users of my Saxon implementation
(a community that overlaps with the readers of the book) have also provided a great deal of
stimulus. Without the knowledge that the book has been so widely appreciated, I would not
have embarked on the daunting task of producing a new edition. Please keep the feedback
coming, whether positive or negative.

The xsl-list at http://www.mulberrytech.com/ has been a source of much inspiration. At
first sight it might appear that the many novices who ask elementary questions are the main
beneficiaries of this forum. In fact, however, the experienced users who answer the questions also
gain a great deal: they learn from each other, and they learn from the beginners, who provide a
constant insight into what users actually want to do with the language. There have been many
occasions when I have used this knowledge in deciding what explanations to include in this
book, and for that matter, in arguing for or against new language features in W3C meetings.

The bulk of this book was written while I was an employee of Software AG. I’d like to thank the
company for allowing me to take this project on.

I must thank Wiley, who rescued this project when the old Wrox Press collapsed, and whose
editor has applied a delicate touch both to reminding me of imminent deadlines and to
correcting my prose.

And once again, I have to thank Penny and Pippa, who have sustained me through another
winter in which I rarely left my desk.

About the Author

Michael Kay has been working in the XML field since 1997; he became a member of the XSL Working
Group soon after the publication of XSLT 1.0, and took over as editor of the XSLT 2.0 specification in early
2001. He is also a member of the XQuery Working Group, and is a joint editor of the XPath 2.0
specification. He is well known not only through previous editions of this book, but also as the developer
of the open-source Saxon product, a pioneering implementation of XSLT 2.0, XPath 2.0, and XQuery 1.0.

The author has recently formed his own company, Saxonica, to provide commercial software and services
building on the success of the Saxon technology. Previously, he spent three years with Software AG,
working with the developers of the Tamino XML server, a leading XQuery implementation. His
background is in database technology: after leaving the University of Cambridge with a Ph.D., he worked
for many years with the (then) computer manufacturer ICL, developing network, relational, and
object-oriented database software products as well as a text search engine, and held the position of ICL
Fellow.

Michael lives in Reading, England, with his wife and daughter. His hobbies include genealogy and choral
singing (and once included chess). He has a croquet handicap of 9.

Introduction

Since XPath 1.0 was completed in November 1999, it has undoubtedly become one of the most important
pieces of the XML jigsaw. From its origins as a sublanguage of XSLT, it has blossomed on its own merits
as a freestanding language used wherever there is a need to select and reference nodes within XML
documents. XPath 2.0 provides a substantial and long-awaited boost to the power of the language, and
the significance of XPath as a component used by many other XML technologies is recognized by the fact
that it now has a book all to itself.

This book is one of a pair: it is published together with a separate volume XSLT 2.0 Programmer’s
Reference. The two books together are derived from my earlier book XSLT Programmer’s Reference, which
covered XSLT 1.0 and XPath 1.0 in a single volume. There are two reasons for splitting the material into
two volumes: one is that the languages have doubled in size, the other is that XPath is often used
independently of XSLT. So this book is designed to be read either as a companion to XSLT 2.0
Programmer’s Reference, or on its own.

The first edition of this book was published in the Spring of 2000, at the same time as the first complete
XSLT implementations were appearing from companies such as Oracle, Microsoft, and IBM. The book
quickly became recognized as the definitive reference on the XSLT and XPath languages, second only to
the formal specifications from the World Wide Web Consortium (W3C). On the strength of the book, as
well as my open-source XSLT implementation Saxon, I was invited to join the W3C Working Group
developing the next version of the language, and I later became the editor of the XSLT 2.0 specification. I
am also listed as one of the editors of the XPath 2.0 specification, though that is somewhat unfair to Don
Chamberlin who does most of the hard work (the main reason I am on the list is that I prepared one of the
early drafts of the specification). As a result of this history, I am writing with two hats. The general style of
the book was set when I was writing as an outsider, a user of the W3C specifications with little idea how
the decisions were made. I have tried to retain the objectivity of this perspective even though I am now
only too aware of the tortuous debates and compromises that precede decisions on each language feature.

In the development of XPath 2.0, these debates were particularly vigorous because the language was
developed not by a single working group, but by a joint task force of two working groups, each with
different priorities and perspectives. The XSL Working Group came to the task with a natural tendency
to defend the design decisions that had been made in XPath 1.0, and with expertise primarily in the area
of document processing. The XQuery Working Group, on the other hand, consisted mainly of people with
a background (in some cases a very distinguished background) in the design of database query
languages, and with a natural tendency to criticize the features of XPath 1.0 that didn’t fit the
conventional wisdom as to what a database query language should look like.

The fact that the two groups decided to work together to produce a single XPath language, rather than
two languages that were similar but different, is a credit to all the individuals concerned, and to the
management of the World Wide Web Consortium (W3C) who believe strongly in consensus-building. The
fact that it took four or five years to complete the process should come as no surprise; in fact, for some of
us it is quite surprising that the process should have been completed at all.

Introduction

You can guess at some of the debates that took place by reading between the lines of Chapter 1, where I
discuss the technical characteristics of XPath as a language, and its relationships to other specifications in
the XML family. Arguably the language that emerged at the end of the process is something of a hybrid,
particularly in its approach to the vexed question of strong typing versus weak typing. However, I
believe firmly that much of the success of XML is due to the fact that it is the first technology to cover the
full range of information management requirements from free-form narrative documents to structured
tabular data representation (with most things in practice falling somewhere in between these extremes).
The Web created the requirement to handle all this information in a seamless way—think about a sports
information site, or a holiday booking site—and XML arrived to meet this need. XPath, if it is to be useful
across this wide spectrum, also needs to have a number of different personalities. I don’t think this could
have been achieved without bringing together people from different computing traditions whose ideas
on language design principles sometimes differed widely.

One of the pleasures of XPath 1.0 (like XML itself) was the brevity of the specification: a mere 30 pages. I
haven’t tried to print the XPath 2.0 specification, but it is certainly vastly longer. What’s more, it is split
between multiple documents. The main language specification at http://www.w3.org/TR/xpath20
points to subsidiary documents describing the data model, the function library, and the formal semantics,
all at considerable length. As with a comparison between the US Constitution and the proposed EU
Constitution, the length of the document tells us more about the number of people involved in defining it
than about the benefits it offers. I would estimate that in reality the 2.0 language is about twice the size of
XPath 1.0. Most of the new features are useful, though there is some redundancy to accommodate
personal tastes (for example, some functions, such as empty() and exists(), can easily be expressed in
terms of other functions). But whether the increased word count in the spec adds precision and clarity, or
merely creates opportunities for errors and inconsistencies to creep in, is anyone’s guess.

At the time of writing, the ink is not yet dry on the XPath 2.0 specification. The language went into its
formal public consultation period on 12 November 2003, along with XSLT 2.0 and XQuery 1.0 (which is a
superset of XPath 2.0). This three-month consultation generated over a thousand comments (over the
family of specifications as a whole), which the working groups are still trawling through as I write in May
2004. These range from simple typos that are easily corrected, to offbeat ideas that have no chance of
acceptance. In between these extremes are some tricky bugs and usability problems that need to be fixed.
Many of these, however, are corner cases where the final decision is unlikely to affect many everyday
applications (an example is the detail of how arithmetic overflow should be handled). There will certainly
be a few changes to the language as a result of the public consultation, and as a result of implementation
experience gathered during the Candidate Recommendation phase that still lies ahead, but my prediction
is that these will be minor. Some changes already agreed have made it into this book. Where possible, we
will draw attention to any further changes in the errata published at http://www.wrox.com/.

XPath 2.0 implementations have started to appear in products such as XMLSpy and Stylus Studio, as well
as in XSLT 2.0 processors (where my own Saxon product currently has the field to itself). There are also
surprisingly many early implementations of the XQuery 1.0 specification, which includes XPath 2.0 as a
subset. Users, of course, have to make their own decisions about when to start moving forward.

Who This Book Is For
This book, as the title implies, is primarily a practical reference book for professional XPath developers. It
assumes no previous knowledge of the language; however, it is not structured as a tutorial, and there will
eventually be books on XPath 2.0 that provide a gentler approach for beginners. The difference with this
book is that it doesn’t just introduce you to the language, it takes you into all its hidden corners.

xvii

Introduction

The book does assume a basic knowledge of XML and the architecture of the Web, and it is written for
experienced programmers. There’s no assumption that you know any particular language such as Java,
Visual Basic or SQL, just that you recognize the concepts that all programming languages have in
common. I know that many of my readers will be using XSLT, so there are many examples and notes that
discuss the use of XPath in an XSLT context; however, you don’t need to know XSLT in order to use XPath
or to use this book.

I have tried to make the book suitable both for XPath 1.0 users upgrading to XPath 2.0, and for
newcomers to XPath 2.0. This is easier to do in a reference book, of course, than in a tutorial. I have also
tried to make the book equally suitable whether you work in the Java or .NET world.

As befits a reference book, a key aim is that the coverage should be comprehensive and authoritative. It is
designed to give you all the detail, not just an overview of the 20% of the language that most people use
80% of the time. It’s designed so that you will keep coming back to the book whenever you encounter
new and challenging programming tasks, not as a book that you skim quickly and then leave on the shelf.
If you like detail, you will enjoy this book; if not, you probably won’t.

But as well as giving the detail, this book aims to explain the concepts, in some depth. It’s therefore a
book for people who not only want to use the language, but who also want to understand it at a deep
level. Many readers of the earlier XSLT Programmer’s Reference have written to me saying that they
particularly appreciate these insights, and I have tried to retain this approach in the present volume.

What This Book Covers
This book aims to tell you everything you need to know about the XPath 2.0 language. It gives equal
weight to the things that are new in XPath 2.0, and the things that were already present in version 1.0.

The book is about the language, not about specific products or APIs. The experience of XPath 1.0 is that
there has been a very high level of interoperability between different XPath implementations, and if you
can use one of them, then you can use them all.

If you are using XSLT 2.0, then you will want to use this book alongside the companion volume XSLT 2.0
Programmer’s Reference. Since XSLT 2.0 has such a strong dependence on XPath 2.0, you really need both
books. However, if you’re using XPath 2.0 on its own, perhaps in conjunction with the DOM, then you
can also use this book on its own.

XPath 2.0 is designed to work in conjunction with XML Schema. You don’t have to use XML Schemas to
use XPath 2.0, but there are some features in the language that aren’t available unless you do. Chapter 3
gives a lightning tour of XML Schema from an XPath perspective, and if your job is to understand
schemas written by other people rather than to write them yourself then this may be sufficient. But if you
need to design and develop schemas yourself, there are other books that do the language justice.

How This Book Is Structured
The material in this book falls into two parts.

The first part, in Chapters 1 to 4, is concerned with explaining concepts. Chapter 1 is about the
background to the language, about its relationship to other languages, and about its role and purpose.

xviii

Introduction

Chapter 2 describes the data model—I’m a great believer in the idea that before you can understand how
to manipulate data, you need to understand the structure of the data, which is what the data model tries
to define. Chapter 3 examines the type system of the language, which defines which operations are
applicable to which kinds of data. In the case of XPath 2.0, this is closely tied in with XML Schema, so the
chapter starts with a survey of the key features of XML Schema. Chapter 4 then examines the XPath
evaluation context. XPath is designed to operate as a sublanguage called from another language such as
XSLT or Java, and the evaluation context is a formal way of describing the interface between XPath and
its host language.

The second part of the book, in Chapters 5 to 11, contains reference information.

❑ Chapter 5 provides an introduction to the top-level constructs of the language, to its basic
building blocks such as literals and function calls, and to the lexical rules for using whitespace
and comments. The following chapters then each address one functional area.

❑ Chapter 6 covers the basic operators in the language for writing arithmetic and boolean
expressions.

❑ The core of the XPath language, for version 2.0 as much as version 1.0, is the path expression, and
these expressions are described in Chapter 7, along with three operators for combining the results
of path expressions: union, intersect, and except.

❑ The main innovation in the XPath 2.0 data model is support for sequences, and Chapter 8 is
devoted to a discussion of the operators that manipulate sequences, notably the «for»
expression.

❑ When XPath is used in conjunction with XML Schemas, the type system plays an increasing role
in the way XPath expressions are written. Expressions involving types are described in Chapter 9.

❑ Chapter 10 is the longest chapter in the book. It contains an alphabetical listing of all the functions
in the core function library, which has expanded greatly since XPath 1.0

❑ Finally, Chapter 11 defines the syntax of XPath regular expressions as used in the three new
functions matches(), replace(), and tokenize(). These facilities greatly boost the power of
XPath to handle text matching and manipulation.

The appendices provide summary information for quick reference. Appendix A gives a summary of the
language syntax (you can also use this as an index to locate the detailed description of each construct in
the main body of the book). Appendix B is a table of operator precedences. Appendix C catalogs the areas
of incompatibility between XPath 2.0 and XPath 1.0, and Appendix D lists error codes defined in the
language specifications (which may or may not correspond to those produced by actual implementations).

What You Need to Use This Book
Because of the nature of XPath, and its role as a sublanguage, most of the examples found in this book are
snippets of code rather than complete applications. They are there to show you what can be done, not
really for you to try out for yourself (in particular, they are often shown without reference to any
particular source document).

However, it’s a good idea to try things for real as you meet them on the printed page, and I would
encourage you to do this, either using the code as written, or making up your own variations that work
with your own data files. There are XPath 2.0 processors in the latest versions of both XML Spy and

xix

Introduction

Stylus Studio. I personally found the one in Stylus Studio easier to work with, especially when you use it
to select a few nodes in a large source document. Another good way of become familiar with XPath 2.0 is
to use an XQuery processor such as Saxon or IPSI-XQ: there are a number of XQuery processors listed on
the W3C XQuery home page at http://www.w3.org/XML/Query.

It’s likely that you will find two kinds of XPath processor: a basic processor, and a schema-aware processor.
However, the XPath specification doesn’t itself define any conformance levels or subsets, it leaves this to
the definitions of the host languages. XSLT 2.0 has defined this separation into two levels, and I think it’s
likely that XQuery will do the same. Other host specifications (for example, DOM) might define a
different layering, but the distinction between facilities that require use of a schema and those that don’t
is likely to be a common theme. If you are particularly interested in the use of XPath with a schema, you
will need to select a processor that supports this combination. One product that does so is the commercial
version of Saxon, available from http://www.saxonica.com/.

Of course, it is likely that during the months after this book is published, XPath 2.0 processors will
become available from other vendors. Most of the examples should run with any processor that conforms
to the standards.

Other XPath Resources
Some of the sites that you might find useful for additional XPath information are:

❑ http://www.w3.org/TR/xpath20
The latest version of the XPath 2.0 specification from the W3C, including references to the other
specifications (such as the data model) on which it depends.

❑ http://www.w3.org/Style/XSL/
Home page of the XSL Working Group

❑ http://www.w3.org/XML/Query
Home page of the XQuery Working Group, including links to many XQuery implementations

❑ http://www.mulberrytech.com/xsl/xsl-list
The home page of the xsl-list, a remarkably effective forum for all XSLT and XPath matters, from
beginner’s questions to advanced theoretical debates

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

xx

Introduction

As for styles in the text:

❑ We highlight important words when we introduce them

❑ We show keyboard strokes like this: Ctrl+A

❑ We show code within the text as follows. Element names are written as <html> or
<xsl:stylesheet> . Function names are written as concat() or current-date(). Other
names (for example, of attributes or types) are written simply as version or xs:string.
Fragments of code other than simple names are offset from the surrounding text by chevrons, for
example, «substring($a,1,1) = ’X’». Chevrons are also used around individual characters
or string values: as a general rule, if a string is enclosed in quotation marks, then the quotes are
part of the code example, whereas if it is enclosed in chevrons, the chevrons are there only to
separate the code from the surrounding text.

❑ Blocks of code are shown as follows:

In examples we highlight code with a gray background.

There are special conventions used for defining function signatures, but as these are used only in
Chapter 10, they are described at the start of that chapter.

Source Code
Most of the examples in this book are in the form of small code fragments. In general, these fragments are
incomplete, and are not intended to anything very useful on their own. You can build them into your
own stylesheets or applications if you find them useful, but the idea is that you should use them as a
source of ideas for writing your own code.

All of these examples are available for download at http://www.wrox.com. Once at the site, simply
locate the book’s title (either by using the Search box or by using one of the title lists) and click the
Download Code link on the book’s detail page to obtain all the source code for the book. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the ISBN is
0-764-56910-4.

Once you download the code, just unzip it with your favorite compression tool. Because most of the
examples are very small, they have been collected together into a single XML document organized by
chapter. (One way of using the collection of examples is to run them through an XPath 2.0 parser to see
how many of the expressions it can handle correctly.)

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another

xxi

Introduction

reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete book
list including links to each’s book’s errata is also available at www.wrox.com/misc-pages/booklist
.shtml.

On the errata page for this book you may also find information about any significant changes that have
been made to the XPath 2.0 language after we went to press.

If you don’t spot your error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and complete
the joining process.

You can read messages in the forums without joining P2P but in order to post your own
messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxii

XPath 2.0 in Context
This chapter explains what kind of language XPath is, and some of the design thinking behind
it. It explains how XPath relates to the other specifications in the growing XML family, and to
describe what’s new in XPath 2.0 compared with XPath 1.0.

The chapter starts with an introduction to the basic concepts behind the language, its data model
and the different kinds of expression it supports. This is followed by a survey of new features,
since I think it’s likely that many readers of this book will already have some familiarity with
XPath 1.0. I also introduce a few software products that you can use to try out these new features.

The central part of the chapter is concerned with the relationships between XPath and other
languages and specifications: with XSLT, with XML itself and XML namespaces, with XPointer,
with XQuery, and with XML Schema. It also takes a look at the way XPath interacts with Java and
with the various document object models (DOM and its variations).

The final section of the chapter tries to draw out the distinctive features of the language, the
things that make XPath different. The aim is to understand what lies behind the peculiarities of
the language, to get an appreciation for the reasons (sometimes good reasons and sometimes bad)
why the language is the way it is. Hopefully, with this insight, you will be able to draw on the
strengths of the language and learn to skirt round its weaker points.

What Is XPath?
This is how the XPath 2.0 specification describes the language:

XPath 2.0 is an expression language that allows the processing of values conforming to the [XPath]
data model. . .The data model provides a tree representation of XML documents, as well as atomic
values such as integers, strings, and booleans, and sequences that may contain both references to
nodes in an XML document and atomic values. The result of an XPath expression may be a selection
of nodes from the input documents, or an atomic value, or more generally, any sequence allowed by
the data model. The name of the language derives from its most distinctive feature, the path
expression, which provides a means of hierarchic addressing of the nodes in an XML tree.

So what is this trying to say?

Chapter 1

Firstly, XPath is an expression language. It isn’t described as a programming language or a query
language, and by implication, it has less functionality than you would expect to find in a programming
language or a query language. The most common kind of expression in XPath is one that takes an XML
document as input, and produces a list of selected nodes as output: that is, an expression that selects
some of the nodes in a document. XPath specializes in making it easy to access data in XML documents.
However, XPath expressions are rather more general than this. «2+2» is a valid XPath expression, as is
«matches($input, "[a-z]*[0-9]")».

The language is described in this summary primarily by reference to the kinds of data that it manipulates,
that is, its data model. The question of what you are actually allowed to do with these data values is
secondary. The data model for XPath 2.0 (which is shared also by the closely-related languages XSLT 2.0
and XQuery 1.0) provides essentially three building blocks, all mentioned in this summary:

❑ Atomic values of various types including strings, integers, booleans, dates, times, and other more
specialized types such as QNames and URIs

❑ Trees consisting of nodes, which are used to represent the content of an XML document

❑ Sequences (or lists), whose items are either atomic values, or references to nodes in a tree.
Sequences can’t be nested.

We will be discussing this data model in considerable detail in Chapter 2. It’s worth spending time on
this, because understanding the data model is the key to understanding the language.

The expressions that you can write in XPath perform operations on these data values. XPath is a
read-only language: it cannot create new nodes or modify existing nodes (except by calling functions
written in a different language). It can however create new atomic values and new sequences. There’s an
important difference, which is that nodes (like objects in Java) have identity, whereas atomic values and
sequences don’t. There is only one number «2», and there is only one sequence «1,2,3» (or if you prefer,
there is no way of distinguishing two sequences that both contain the values «1,2,3»), but there can be
any number of distinct <a/> nodes.

Given that there are three broad categories of data values, there are similarly three broad categories of
operations that can be performed:

❑ Operations on atomic values: These include a range of operators and functions for adding numbers,
comparing strings, and the like. Example expressions in this category are «price * 1.1» and
«discount > 3.0». Many of these operations are likely to be familiar from other more
conventional languages, though there are a few surprises in store. Chapter 6 of this book
describes these operations in detail.

❑ Operations that select nodes in a tree: The most powerful expression here, which forms the heart of
XPath, is the path expression. An example of a path expression is «book[author="Kay"]/
@isbn» which selects the «isbn» attributes of all the <book> elements that have a child
<author> element with the value «Kay». Path expressions are analyzed in detail in Chapter 7,
but I will have a few introductory words to say about them in this chapter.

❑ Operations on sequences: Here, the most important construct is the «for» expression. This applies
an expression to every item in a sequence, forming a new sequence from the results. As an
example, the result of the expression «for $i in 1 to 5 return $i*$i» is the sequence
«1, 4, 9, 16, 25». (XPath variables are prefixed with a «$» sign to distinguish them from XML
element names.) In practice, the items in the input sequence are more likely to be nodes: the

2

XPath 2.0 in Context

expression «for $n in child::* return name($n)» returns a list containing the names of
the child elements of the current node in the document. The «for» expression is referred to as a
mapping expression, because it performs an item-by-item mapping from an input sequence to an
output sequence. The «for» expression, and other operations on sequences, are described in
Chapter 8 of this book.

We will now take a closer look at path expressions, which give XPath its distinctive flavor.

Path Expressions
A typical path expression consists of a sequence of steps, separated by the «/» operator. Each step works
by following a relationship between nodes in the document. This is in general a one-to-many
relationship. The different relationships are called axes. The most commonly used axes are:

❑ The child axis selects the children of the starting node, that is, the elements and text nodes (and
perhaps comments and processing instructions) that are found between the begin and end tags of
an element, assuming the starting node is an element.

❑ The attribute axis selects the attributes of an element.

❑ The ancestor axis selects all the elements that enclose the starting node in the XML document.
The last ancestor is generally a node that represents the document itself: this is called the
document node, and it is distinct from the node that represents the outermost element.

❑ The descendant axis selects the children of a node, the children of the children, and so on
recursively, down to the leaves of the tree.

In the full form of a step, the axis name is followed by a construct called a NodeTest that indicates
which nodes are to be selected. Often this consists simply of a node name, or it might be «*» to select
all elements or attributes. So «child::title» selects the <title> elements that are children of the
current node (there may be more than one), «ancestor::*» selects all the ancestor elements, and
so on.

The «/» operator strings together a sequence of steps into a path. So, for example, «child::book/
child::chapter/attribute::status» selects the «status» attributes of all the chapters of all the
books that are children of the starting node.

In practice, steps are usually written using a shorthand syntax. Because the «child» axis is the one that’s
used most often, the prefix «child::» can be omitted. Attributes are also used frequently, so the prefix
«attribute::» can be shortened to the mnemonic «@» sign. This means the path given in full above can
be abbreviated to «book/chapter/@status».

The other common abbreviation is «//», which you can think of as searching the entire subtree below the
starting node. For example, «//figure» selects all the <figure> elements in the current document. A
more precise definition of this construct (and the others) is given in Chapter 7.

Any step in a path expression can also be qualified by a predicate, which filters the selected nodes. For
example, «book/chapter[@ed="John"]/@status» returns the «status» attribute of all the chapters
of all the books provided that the chapter has an attribute named «ed» whose value is «John».

3

Chapter 1

Path expressions thus provide a very powerful mechanism for selecting nodes within an XML document,
and this power lies at the heart of the XPath language.

Composability
As we’ve seen, the introduction to the XPath specification describes the language as an expression
language, and this has some implications that are worth drawing out.

Expressions can be nested. In principle, any expression can be used in a position where a value is
allowed. This theoretical freedom is slightly restricted by two factors: at a trivial level, you might have to
enclose the expression in parentheses; more seriously, you can only use an expression that returns the
right type of value. For example, you can’t use an expression that returns an integer in a place where a
sequence of nodes is expected. XPath values have a type, and the language has rules about the types of
expressions. The type system of the language is unusual, because it is closely integrated with XML
Schema. I shall have more to say about the type system in Chapter 3, and I will describe the language
constructs that relate specifically to types in Chapter 9.

A language in which you can nest expressions in arbitrary ways is often referred to as being composable.
Composability is regarded as a good principle of modern language design. Most languages have some
restrictions on composability, for example in Java you can use an array initializer (a construct of the form
«{1,2,3}») on the right-hand side of the «=» in a variable declaration, but you can’t use it as an arbitrary
expression. XPath has tried hard to avoid including any such restrictions—even to the extent of allowing
you to do things that no one would ever want to do, like writing «--1», whose value is +1.

Closely allied with the idea of composability is the principle of closure. This term comes from mathematics.
A closed group consists of a set of possible values (for example, the positive integers) and a set of possible
operations, in such a way that every operation when applied to these values produces a new value that is
also within the same space of possible values. If you take the positive integers together with the operators
of addition and multiplication you have a (not very useful) closed group, but if you also allow
subtraction and division the group is no longer closed, because the results are not always positive
integers. In XPath the set of possible values is defined by the data model: as we have already seen, this
allows nodes, atomic values, and sequences. The set of possible operations is defined by the expressions
in the language, and the whole system is closed, because the result of every expression is also a value
within the scope of the data model. Closure is a necessary property to achieve composability, because you
can’t use the result of one expression as the input to another unless the result is in the same value space.

What’s New in XPath 2.0?
XPath 2.0 represents a major advance on version 1.0: the number of operators has doubled, and the
number of functions in the standard function library has grown by a factor of four or five depending on
how you do the counting. The changes to the core syntax are not so dramatic, but the introduction of a
new type system based on XML Schema represents a pretty radical overhaul of the language semantics.
The W3C working groups have also tried to define the language much more rigorously than XPath 1.0
was defined, with the result that the number of trees used when you print the spec has grown
astronomically.

It’s easy to list the new features in version 2.0 as a simple catalog of goodies. What’s harder to do is to
stand back and make sense of the total picture: Where is the language going? I’ll try to answer the

4

XPath 2.0 in Context

question posed in the section heading in both ways, first by listing the features, and then by trying to see
if we can understand what it all means.

New Features in Version 2.0
Firstly, the XPath 2.0 data model offers new data types:

❑ XPath 1.0 had a single numeric data type (double precision floating point), XPath 2.0 offers in
addition integers, decimals, and single precision

❑ There are new data types for dates, times, durations, and more

❑ It is also possible to exploit user-defined data types that are defined using XML Schema

❑ XPath 2.0 supports sequences as a data type. Sequences can contain nodes and/or atomic values.
An important peculiarity of the XPath data model is that a singleton item such as an integer is
indistinguishable from a sequence of length one containing that item.

The data model for representing XML documents has not actually changed very much, despite the fact
that the description has grown from five pages to about 60. It still has the same seven kinds of node,
namely document nodes (which were called root nodes in XPath 1.0), elements, attributes, text nodes,
comments, processing instructions, and namespace nodes, and the relationship between them has not
changed significantly. The main change is that element and attribute nodes can now have a type
annotation. This is a label identifying the data type of the content of the element or attribute, which is
determined by the definition of the element or attribute in the XML Schema that was used to validate the
document. If the document has not been validated (which is still considered a perfectly respectable state
of affairs) then the type annotation is set to one of the special values «xdt:untyped» for elements, or
«xdt:untypedAtomic» for attributes.

Going hand-in-hand with the type annotation is the idea that an element or attribute node has a typed
value: for example if the type annotation is «xs:integer», then the typed value will be an integer, while
if the type annotation is «xs:NMTOKENS», then the typed value will be a sequence of «xs:NMTOKEN»
values. Because the typed value is always a sequence of atomic values, the process of extracting the typed
value of a node (which is performed implicitly by many XPath operations, for example equality
comparison) is referred to as atomization.

Path expressions too have not changed very much since XPath 1.0. The biggest change is that the
NodeTest (the part that follows the «axis::» if you write a step in full) can now test the type of the
node as well as its name. For example, you can select all elements of type Person, regardless of the name
of the element. This is very useful if you are using a schema with a rich type hierarchy in which many
elements can be derived from the same type definition: many of the bigger and more complex XML
vocabularies have this characteristic. It corresponds to the ability to use a generic supertype in an object
programming language such as Java or C#, rather than having to list all the possible subtypes you are
interested in.

Another significant change in path expressions is that you can use a function call in place of a step. This
means that you can follow logical relationships in the XML document structure, not just physical
relationships based on the element hierarchy. For example, if someone writes a function that finds all the
orders for a customer, you can invoke this function in the middle of a path expression by writing
«customer[@id="123"]/find-orders(.)/order-value». This means that the person writing this
path expression doesn’t necessarily need to know how the orders for a customer are found, and it means
that the way that they are found can change without invalidating the expression. XPath itself does not

5

Chapter 1

allow you to write the find-orders() function—you can do this in either XQuery or XSLT, or perhaps
in other languages in the future. Functions written in XQuery or XSLT can be invoked from anywhere
within an XPath expression.

Outside the realm of path expressions, there’s a raft of new operators in the language. These include:

❑ Operators «is», «<<», «>>» to test whether two expressions return the same node, or to test
which of the two nodes is first in document order

❑ Operators «intersect» and «except» to find the intersection or difference between two sets of
nodes

❑ Operators «eq», «ne», «lt», «le», «gt», «ge» to compare atomic values. These are provided
alongside the XPath 1.0 operators «=», «!=», «<», «<=», «>», «>=» which allow sequences of
values to be compared

❑ An integer division operator «idiv»

❑ An operator «to» which allows you to construct a range of integers, for example, «1 to 10».

The most important new syntactic constructs are:

❑ The «for» expression, which as we have already seen on page 8 is used to apply the same
expression to every item in a sequence.

❑ The «if» conditional expression. For example, the expression «if (@price > 10) then
"high" else "low"» returns one of the two strings "high" or "low" depending on the value
of the «price» attribute.

❑ The «some» and «every» expressions. The expression «some $p in $products satisfies
(every $o in $p/orders satisfies $o/value > 100)» returns true if there is at least
one product all of whose orders are worth more than $100.

The function library has grown so much that it’s hard to know where to begin. A full specification of all
the functions is included in Chapter 10. The main highlights are:

❑ There are many new functions for handling strings, for example, to perform case conversion, to
join a sequence of strings, and an ends-with() function to complement the XPath 1.0
starts-with().

❑ In particular, there are three functions matches(), replace(), and tokenize()that bring the
power of regular expressions into the XPath language, greatly increasing its string-manipulation
capabilities.

❑ All functions that perform comparison of strings can now use a user-specified collation to do the
string comparison. This allows more intelligent localization of string matching to the conventions
of different languages.

❑ There are new functions for aggregating sequences; specifically, max(), min(), and avg() are
now available, alongside sum() and count() from XPath 1.0.

❑ There’s a large collection of functions for manipulating dates and times.

❑ There are new functions for manipulating QNames and URIs.

Now let’s try to stand back from the trees and examine the wood.

6

XPath 2.0 in Context

A Strategic View of the Changes
Is there any kind of unifying theme to these new features?

To find out, it helps to look back at the original requirements specification for XPath 2.0, which can be
found at http://www.w3.org/TR/2001/WD-xpath20req-20010214 (there is also a later version,
which describes how the requirements were met in the actual language design). It starts, very briefly,
with a summary of the goals of the new version:

❑ Simplify manipulation of XML Schema-typed content

❑ Simplify manipulation of string content

❑ Support related XML standards

❑ Improve ease of use

❑ Improve interoperability

❑ Improve i18n support

❑ Maintain backward compatibility

❑ Enable improved processor efficiency

After this disappointingly brief introduction, it then launches into what is, frankly, a catalog of desired
features rather than a true requirements statement (it never attempts to answer the question Why is this
needed?). But the goals, and the way the detailed requirements are written, do give some clues as to what
the working groups were collectively thinking about.

We’ll talk more about the process by which XPath 2.0 was defined later in the chapter. For the moment,
it’s enough to note that it was produced jointly by two working groups: the XSL Working Group, who
were responsible for XSLT and had produced the XPath 1.0 specification, and the XQuery Working Group
who were interested in extending XPath to make it suitable as a query language for XML databases. This
requirements statement, produced on St. Valentine’s Day 2001, was the first fruit of the collaboration
between the two groups. The thinking of the two groups at this stage had not converged, and if you read
the document carefully, you can detect some of the tensions.

Let’s try and read between the lines of the eight goals listed above. The ordering of the goals, incidentally,
was probably not debated at length, but I think it is important psychologically as an indication of the
relative priorities which some members at least attached to the various goals.

❑ Simplify manipulation of XML Schema-typed content. We’ve already seen that the introduction of a
type system based on XML Schema is probably the most radical change in XPath 2.0. At this time,
early in 2001, XML Schema was seen as absolutely central to W3C’s future architectural direction.
It was also central to the plans of many of W3C’s member companies, such as Microsoft, Oracle,
and IBM. Although James Clark (the designer of XSLT and XPath 1.0) was starting to make
discontented noises about the technical qualities of the XML Schema specification, no one in the
establishment really wanted to know. Everyone wanted XML Schema to be a success and was
confident that it would indeed be a success, and it was self-evident that languages such as XPath
for manipulating XML documents should take advantage of it.

A great deal of the requirements document is given over to outline ideas of how the language
might integrate with XML Schema. Looking at it now, it reads much more like a design sketch
than a true requirements list.

7

Chapter 1

❑ Simplify manipulation of string content. It was generally agreed that the facilities in XPath 1.0 for
manipulating strings were too weak. Facilities were needed for matching strings using regular
expressions, for changing strings to upper and lower case, and so on.

❑ Support related XML standards. This appears as a catch-all in the list of goals, but it reflects the fact
that W3C specifications are not produced in isolation from each other. The different working
groups spend a lot of time trying to ensure that their efforts are coordinated and that all the
specifications work well together.

The actual requirements listed in the body of the document under the heading Must support the
XML Family of Standards actually form a very motley collection, and some of them bear no
relationship to this heading at all. The requirements that do make some sense in this category
relate to the need to support common underlying semantics for XSLT 2.0 and XQuery 1.0, the
need for a data model based on the InfoSet published by the XML Core Working Group (more on
this on page 16), and the need for backward compatibility with XPath 1.0. Interestingly, this last
requirement is classified as a should rather than as a must, which meant that backward
compatibility could be sacrificed to meet other objectives.

❑ Improve ease of use. This heading was clearly seen as an open invitation for everyone to add their
favorite features. So in this category we see things such as the need to add a conditional
expression, the need to generalize path expressions, and the need for new string functions and
aggregation functions. More fundamentally, there is also a subsection calling for consistent
implicit semantics for operations that handle collections, and criticizing some of the design
choices made in XPath 1.0 such as the way the «=» operator was defined over sets of nodes.
Although these were described as must requirements, there was clearly no way of satisfying them
without radical change to the language semantics, which would have had a devastating effect on
backward compatibility. In the end, much of the debate of the next two years was spent finding
an acceptable compromise to this problem.

One might imagine that a gathering of some of the brightest minds in the computer industry
would not write “improve ease of use” as a goal without defining some way of measuring the
ease of use of the language before and after the addition of these features. Sadly, one would be
disappointed. A committee can do mindless things, regardless how bright the minds are that
make it up.

❑ Improve interoperability. The word interoperability in W3C circles means the ability for different
implementations of a specification to produce the same result.

I can’t actually find any detailed requirements that support this goal, so it should be no surprise
that XPath 2.0 actually allows a lot more freedom to implementers to introduce differences than
XPath 1.0 did.

❑ Improve i18n support. Here i18n is shorthand for internationalization, the ability of the
specification to support the needs of different languages and cultures worldwide. This is
something the W3C takes fairly seriously (despite requiring editors of its specifications to write in
English, with American spelling).

Again there is actually nothing concrete in the requirements to support this goal. The main new
feature in XPath 2.0 that affects internationalization is the introduction of user-selected collations
to support string comparison and sorting, but this feature does not actually appear explicitly in
the requirements (instead, it found its way into XPath via the XSLT and XQuery requirements).

Two features that are notably lacking from XPath 2.0 are support for localized formatting of
numbers and dates. For this, you need to turn to the additional function library provided by XSLT
2.0, which is available only when you use XPath expressions within an XSLT stylesheet.

8

XPath 2.0 in Context

❑ Maintain backward compatibility. As I’ve already mentioned, this appears as a should rather than a
must. This has been a tension throughout the development of the language, as some XQuery
people felt they wanted to be unconstrained by the past, whereas XSLT representatives felt a
strong responsibility to their existing user base.

In the end, each decision was made on its merits. Incompatible changes were introduced only
when the group as a whole felt that the gain was worth the pain. Some incompatibilities were
inevitable, given the change in the data model and type system, but by and large gratuitous
incompatibilities were avoided. Some of the worst conflicts were resolved by the introduction of
the ability to run in backward compatibility mode (the infamous “mode bit”, for those who have
read Tracy Kidder’s Soul of a New Machine). In many cases, the XPath 1.0 way of doing things was
eventually retained because people came to see that it wasn’t such a bad design after all.

❑ Enable improved processor efficiency. Once again, there is nothing in any of the requirements that
explains how it is intended to contribute to this goal (and of course, there is again no measure of
success). I think one could go through the requirements and explain how some of them might
improve the performance of applications, but whether anyone actually was thinking this through
at the time, I don’t know.

Efficiency has frequently come up during the design discussions on language features, sometimes
for good reasons and sometimes for bad. For example, designs were often rejected if they
inhibited pipelining, that is, the ability to process a sequence of values without retaining all the
values in memory. An example of such a rule that was present at one time was that the max() of a
sequence should be the numeric maximum if all items in the sequence were numbers, or the
string maximum otherwise. This means you need to read the whole sequence before you can
compare the first two values, so this rule was rightly rejected. Quite often, however, vendors
would come to the working group and ask for a feature to be changed simply because it looked
difficult to implement (I’ve been guilty of this myself). Usually other implementors would squash
such arguments, pointing out that alternative techniques were available. In general, a language
design that is clean and simple from a user perspective turns out to be a better choice than one
that developers find easy to implement.

One design decision that doesn’t emerge clearly from this study of the requirements is the question of
how big the language should be. There were (and are) differing views on this, and there is no obvious
right answer that suits everyone. Some people wanted the language to be much smaller than it is, others
to accommodate some of the XQuery features that have been left out, such as full FLWOR expressions.
The final outcome is a compromise, but it is a compromise that has some rationale: in particular, the
language includes sufficient power to make it relationally complete, as defined by E. F. Codd in the theory
of the relational model. There is a mathematical definition of this term, and achieving this property gives
reasonable confidence that the language will be powerful enough for most data retrieval tasks. However,
this doesn’t provide an absolute criterion for what should be included: for example, the decision not to
include any sorting capability in XPath 2.0 could have gone either way.

I hope this summary gives a little bit of a feel of what the working groups were trying to achieve with the
design of XPath 2.0. If it seems like something half-way between a carefully-thought out strategy and an
ad hoc ragbag, then that’s probably because it is. That’s the way committees work.

XPath 2.0 Processors
At the time of writing there are three ways you can actually use XPath 2.0.

9

Chapter 1

Firstly, you can use an XQuery 1.0 processor. There are quite a few XQuery processors available, and you
can find them listed on the W3C home page for XQuery at http://www.w3.org/XML/Query. Since
XPath 2.0 is a subset of XQuery 1.0, you can use any XQuery processor to execute XPath expressions.
They vary considerably in the extent to which they implement the full specifications, and in how
up-to-date they are with the latest drafts of the specifications. I haven’t tried them all, and the situation
changes from month to month, so I won’t recommend any implementation in particular. One of the
processors listed on the XQuery home page is my own Saxon implementation—Saxon is both an XSLT
and an XQuery processor, with a common runtime engine supporting both languages, and this runtime
also, of course, supports XPath 2.0.

Broadly speaking, the suppliers of these XQuery processors have either concentrated on building an
industrial-strength XML database product, or they have concentrated on tracking the latest language
standards. The more advanced a product is in terms of the language specification that it supports, the less
advanced it is likely to be in terms of other database features such as updates, recovery, transactions, fast
database loading capabilities, and so on.

One product that I have found very easy to install and use is IPSI-XQ, developed by the Fraunhofer
Institut in Germany. An advantage that it has over Saxon is that it has a graphical user interface (Saxon
can only be driven from the command line or from a Java API, which isn’t very appealing when you’re
showing it off in a conference). You can get IPSI-XQ from http://www.ipsi.fraunhofer.de/
oasys/projects/ipsi-xq/index_e.html. Figure 1-1 shows a simple query.

Figure 1-1

Usually when you use XPath 2.0, the program will be launched to process some particular source
document. XQuery processors, however, are designed primarily to process multiple documents, so there
is often no initial context for your expression. In this example the doc() function (which is described in
Chapter 10 of this book) is used to select the document that you want to process, and everything else is

10

XPath 2.0 in Context

selected within that document. The document selected in this query is found in the examples subfolder
of the directory where IPSI-XQ is installed.

By comparison, there are relatively few pure XPath 2.0 products. The reason for this is that XPath isn’t
usually used on its own: it has always been designed as a specialized sublanguage that’s intended for use
in some kind of host environment.

One product that does include an XPath 2.0 processor is XML Spy. This is a commercial product, but you
can get a free evaluation license for a limited period. You can download the code from http://www
.altova.com/. Altova offers many different product configurations, so check that the one you are using
includes the XPath 2.0 support.

To use the XPath 2.0 Analyzer within XML Spy, first load the document that you want to analyze. Then
open up the XPath window, which you can do by selecting XML, then Evaluate XPath, from the menu.
The default is to execute XPath 1.0: select the radio button labeled XPath 2.0 beta (by the time you read
this, it may no longer be a beta release, of course).

You can then enter an XPath expression to run against the loaded document. The document I loaded was
the text of Shakespeare’s Macbeth in macbeth.xml, and my first attempt was the query «distinct-
values(//SPEAKER)», which returned a somewhat alarming error message: “unexpected argument
type, found First Witch”. It turned out that this was because the distinct-values() function in the
version of XML Spy I was using wasn’t quite up-to-date with the latest version of the specs: this is a
recurrent problem with all these products and will remain so until the final versions of the specifications
are released. It appears that in XML Spy this query has to be written as shown in Figure 1-2.

Figure 1-2

11

Chapter 1

This expression uses the distinct-values() function, one of the many new functions available in
XPath 2.0, to return a sequence that contains all the values appearing in a <SPEAKER> element anywhere
in the document, with duplicate values removed. XML Spy appears to sort the results in alphabetical
order, but the specification says that the order of the results is up to the implementation to decide.

Figure 1-3 shows another example using XML Spy. This one finds all the lines in the play containing the
word “spot”.

Figure 1-3

Since the result of every XPath expression is a sequence, it’s not easy to get any formatted results out of
this tool: you can’t produce tabular output, for example, and you can’t generate XML. If you select an
element, XML Spy shows you the text that’s directly contained in that element, even if there isn’t any. No
doubt the tool will improve a lot in the months to come: this is a very early beta.

Another product that includes an XPath 2.0 processor in its latest release is Stylus Studio (http://www
.StylusStudio.com). I ran the same expression «distinct-values(//SPEAKER)» using Stylus
Studio 5.1, with the results shown in Figure 1-4. Note that to enable XPath 2.0 support you need to click
the button labeled v.2: by default, the product uses XPath 1.0. This version of Stylus Studio claims to
support the XPath 2.0 working draft of November 2003.

This product shows the results of the distinct-values() function in order of first appearance: which
works well for the speakers in a play, but might not always be the most appropriate choice.

In this particular example the results of the queries are strings. But if you enter an expression whose
results are nodes in the source document, for example, the expression «//SPEAKER[.="HECATE"]»,

12

XPath 2.0 in Context

Figure 1-4

then the results will be shown in the right-hand pane as links, allowing you to click any node in the query
results to locate the relevant element in the main editing window.

A tool that gives a much more graphic impression of how XPath works is the XPath Visualizer obtainable
from http://www.vbxml.com/xpathvisualizer/. Unfortunately, however, this only supports
XPath 1.0 at the time of writing. The tool works directly with Internet Explorer and its inbuilt XPath
engine. To use it, unzip the download file into a suitable directory, and open the file XPathMain.htm.
Then, browse to the source document you want to analyze, and click Process File. You can now enter
XPath expressions, and see the nodes you have selected highlighted on the screen (use the arrow buttons
to scroll to the next highlighted node). Figure 1-5 shows the same XPath expression as shown by XPath
Visualizer.

One further XPath 2.0 implementation I have come across is Pathan 2: see http://software
.decisionsoft.com/pathanIntro.html. This currently describes itself as an alpha release. It is a
no-frills open-source implementation, that offers XPath only, and is designed as a component for
integration into applications and tools.

The other way to use XPath 2.0 is from within XSLT 2.0. Currently, there are few XSLT 2.0 processors
available: there is my own Saxon product (look for the latest release at http://saxon.sf.net/), and

13

Chapter 1

Figure 1-5

there is a beta release from Oracle, which has not been updated for some time (no doubt Oracle are
waiting for the specifications to stabilize before they make their next shipment). Other processors are
known to be under development, so keep an eye open for news. My companion book XSLT 2.0
Programmer’s Reference explains the use of XSLT 2.0 in great detail, and XPath 2.0 plays a significant role in
this.

Here’s an example of a complete XSLT 2.0 stylesheet that uses XPath 2.0 features to get a count of all the
words appearing in a document (perhaps the text of Macbeth), together with the frequency of each word:

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet

version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
<wordcount>

14

XPath 2.0 in Context

<xsl:for-each-group group-by="." select="
for $w in tokenize(string(.), ’\W+’) return lower-case($w)">

<xsl:sort select="count(current-group())" order="descending"/>
<word word="{current-grouping-key()}"

frequency="{count(current-group())}"/>
</xsl:for-each-group>

</wordcount>
</xsl:template>

</xsl:stylesheet>

You can run this using the Saxon XSLT processor with a command such as:

java -jar c:\saxon\saxon8.jar macbeth.xml wordcount.xsl

to produce output which starts like this:

<?xml version="1.0" encoding="UTF-8"?>
<wordcount>

<word word="the" frequency="735"/>
<word word="and" frequency="567"/>
<word word="to" frequency="405"/>
<word word="i" frequency="373"/>
<word word="of" frequency="348"/>
<word word="macbeth" frequency="291"/>
<word word="a" frequency="255"/>
<word word="that" frequency="237"/>
<word word="in" frequency="208"/>
<word word="you" frequency="207"/>
<word word="s" frequency="199"/>
<word word="is" frequency="192"/>
<word word="my" frequency="192"/>

This stylesheet uses a number of new XSLT 2.0 features, notably the <xsl:for-each-group>
instruction which provides a long-awaited grouping facility for XSLT. It also makes heavy use of new
constructs in XPath 2.0: the tokenize() function, which splits a string using a regular expression, the
lower-case() function which converts text to lower case, and a «for» expression which applies the
lower-case() function to every string in a sequence of strings.

Where XPath fits in the XML Family
XPath 2.0 is published by the World Wide Web Consortium (W3C) and fits into the XML family of
standards, most of which are also developed by W3C. In this section, I will try to explain the relationship
of XPath 2.0 to other standards and specifications in the XML family.

XPath and XSLT
XSLT started life as part of a bigger language called XSL (Extensible Stylesheet Language). As the name
implies, XSL was (and is) intended to define the formatting and presentation of XML documents for
display on screen, on paper, or in the spoken word. As the development of XSL proceeded, it became clear

15

Chapter 1

that this was usually a two-stage process; first a structural transformation, in which elements are selected,
grouped and reordered, and then a formatting process in which the resulting elements are rendered as ink
on paper, or pixels on the screen. It was recognized that these two stages were quite independent, so XSL
was split into two parts, XSLT for defining transformations, and “the rest”—which is still officially called
XSL, though most people prefer to call it XSL-FO (XSL Formatting Objects)—for the formatting stage.

Halfway through the development of XSLT 1.0, it was recognized that there was a significant overlap
between the expression syntax in XSLT for selecting parts of a document, and the XPointer language
being developed for linking from one document to another. To avoid having two separate but
overlapping expression languages, the two committees decided to join forces and define a single
language, XPath, which would serve both purposes. XPath 1.0 was published on the same day as XSLT
1.0, November 16, 1999.

XPath acts as a sublanguage within an XSLT stylesheet. An XPath expression may be used for numerical
calculations or string manipulations, or for testing boolean conditions, but its most characteristic use is to
identify parts of the input document to be processed. For example, the following instruction outputs the
average price of all the books in the input document:

<xsl:value-of select="avg(//book/@price)"/>

Here the <xsl:value-of> element is an instruction defined in the XSLT standard, which causes a value
to be written to the output document. The select attribute contains an XPath expression, which
calculates the value to be written: specifically, the average value of the price attributes on all the
<book> elements. (The avg() function is new in XPath 2.0.)

As this example shows, the XSLT and XPath languages are very intimately related.

In previous editions of this book I covered both languages together, but this time I have given each
language its own volume, mainly because the amount of material had become too large for one book, but
also because there are an increasing number of people who use XPath without also using XSLT. For the
XSLT user, though, I’m afraid that at times you may have to keep both books open on your desk at once.

XPath and the InfoSet
XPath is primarily a language for extracting information from XML documents. However, the effect of an
XPath expression isn’t defined directly in terms of the lexical XML structure. XPath uses an abstraction of
an XML document that consists, as we have seen, of a tree containing seven different kinds of nodes. This
model itself is defined in terms of the XML Information Set, usually called the InfoSet, for short. In this
section we’ll take a quick look at the relationship of XPath to the InfoSet: we will return to this in more
detail in Chapter 2.

XPath is designed to work on the information carried by an XML document, not on the raw document
itself. The tree model is an abstraction of the original lexical XML, in which information that’s deemed
significant is retained, and other information is discarded. For example, you can see the attribute names
and values, but you can’t see whether the attribute was written in single or double quotes, you can’t see
what order the attributes were in, and you can’t tell whether or not they were written on the same line.

One messy detail is that there have been many attempts to define exactly what constitutes the essential
information content of a well-formed XML document, as distinct from its accidental punctuation. All

16

XPath 2.0 in Context

attempts so far have come up with slightly different answers. The XML Information Set definition (or
InfoSet), which may be found at http://www.w3.org/TR/xml-infoset, is the most definitive
attempt to provide a common vocabulary for the content of XML documents.

Unfortunately, the InfoSet came too late to make all the standards consistent. For example, some treat
comments as significant, others not; some treat the choice of namespace prefixes as significant, others take
them as irrelevant. I shall describe in Chapter 2 exactly how XPath defines the tree model of XML, and
how it differs in finer points of detail from some of the other definitions such as the Document Object
Model or DOM.

Another more elaborate model of the information content of an XML document is the post schema
validation infoset or PSVI. This contains the significant information from the source document, augmented
with information taken from its XML Schema. It identifies which types in the schema were used to
validate each element and attribute, and as such it underpins the notion of nodes having a type
annotation and a typed value, which as we saw earlier are the two most important changes in the data
model for XML documents introduced in version 2.0.

XML Namespaces
As far as XPath is concerned XML namespaces are an essential part of the XML standard. If a document
doesn’t conform with the XML Namespaces Recommendation, then you can’t use it with XPath. This
doesn’t mean that the document actually has to use namespaces, but it does mean that it can’t misuse
them.

Here’s a quick reminder of how namespaces work:

❑ Namespaces are identified by a Uniform Resource Identifier (URI). This can take a number of
forms. The most common form is the familiar URL, for example http://www.wrox.com/
namespace. The detailed form of the URI doesn’t matter, but it is a good idea to choose one that
will be unique. One good way of achieving this is to use the URL of your own Web site. But don’t
let this confuse you into thinking that there must be something on the Web site for the URL to
point to. The namespace URI is simply a string that you have chosen to be different from other
people’s namespace URIs; it doesn’t need to point to anything.

❑ The latest version of the spec, XML Namespaces 1.1, allows you to use an International Resource
Identifier (IRI) rather than a URI. The main difference is that an IRI permits characters from any
alphabet, whereas a URI is confined to ASCII. In practice, most XML parsers have always allowed
you to use any characters you like in a namespace URI.

❑ Since namespace URIs are often rather long and use special characters such as «/», they are not
used in full as part of the element and attribute names. Instead, each namespace used in a
document can be given a short nickname, and this nickname is used as a prefix of the element and
attribute names. It doesn’t matter what prefix you choose, because the real name of the element or
attribute is determined only by its namespace URI and its local name (the part of the name after
the prefix). For example, all my examples use the prefix xsl to refer to the namespace URI
http://www.w3.org/1999/XSL/Transform, but you could equally well use the prefix xslt,
so long as you use it consistently.

❑ For element names, you can also declare a default namespace URI, which is to be associated with
unprefixed element names. The default namespace URI, however, does not apply to unprefixed
attribute names.

17

Chapter 1

A namespace prefix is declared using a special pseudo.attribute within any element tag, with the form:

xmlns:prefix = "namespace-URI"

This namespace prefix can be used for the name of that element, for its attributes, and for any element or
attribute name contained in that element. The default namespace, which is used for elements having no
prefix (but not for attributes), is similarly declared using a pseudo-attribute:

xmlns = "namespace-URI"

It’s important to remember when using XPath that the true name of an element is the combination of its
local name (the part after any prefix) and the namespace URI. For example the name of the element
 is the combination of the local name «a» and the
namespace «http://ns.example.com/». A step in a path expression will only match this element if
both the local name and the namespace URI match. The XPath expression doesn’t have to use the same
prefix as the element that’s being matched, but the prefixes do have to refer to the same URI.

XML Namespaces 1.1 became a Recommendation on February 4, 2004, and XPath 2.0 can in principle
work with either 1.0 or 1.1. Apart from the largely cosmetic change from URIs to IRIs mentioned earlier,
the main innovation is the ability to undeclare a namespace, using a namespace undeclaration of the form
«xmlns:prefix=""». This new feature doesn’t have a great deal of effect on XPath itself, though it does
create complications for XSLT and XQuery, which unlike XPath have instructions to create new nodes.

XPath and XPointer
One of the original reasons that XPath was defined in its own W3C specification, rather than as part of
XSLT, was so that it could be used independently by the XPointer specification. Subsequently, XPointer
has had a checkered history.

The intended role of XPointer is to define the syntax of fragment identifiers in URIs (that is, the part of the
URI after the «#» sign) when referencing into the detail of an XML document. The theory is that the
syntax of a URI fragment identifier depends on the media type of the resource identified by the URI. With
the familiar HTML URIs, the fragment identifier is the value of an «id» or «name» attribute of an HTML
element within the document. For XML, people wanted something more powerful. In particular, the
hyperlinking community wanted to be able to reference into an XML document without requiring the
document author to do anything special (like creating uniquely named anchors) to make this possible.
XLink, the hyperlinking standard, and XPointer, which it used for defining cross-references, were closely
coupled in everyone’s minds. Hence the use of XPath as a general-purpose, powerful addressing
mechanism.

XPointer remained work-in-progress for a long time. I don’t know all the reasons for this, but I suspect
that the main underlying cause was that it was too ambitious. In addition, I think that the success of the
XSLT model for publishing content on the Web rather took the wind out of the sails of XLink. XSLT allows
you to model your information in XML in any way that you like, and then convert it to HTML for
presentation on the Web. If you are going to end up generating HTML as your presentation format, then it
doesn’t make much difference whether your XML represents inter-document relationships using XLink or
in some other way. In fact, there’s a strong argument for modeling relationships using tags that represent
the meaning of the relationship, just as you do when modeling business objects and their properties. If an
employee is represented by an <employee> element, and a department by a <department> element,

18

XPath 2.0 in Context

then most people will choose to represent the relationship from an employee to a department using an
element or attribute called «department», not by one called «xlink:href».

XLink managed to decouple itself from XPointer, and became a Recommendation on June 27, 2001. At
that time, XPointer was a Last Call Working Draft, published six months earlier. The spec had retreated
from Candidate Recommendation status because of technical problems with namespaces. An XPath
expression contains element and attribute names such as «mf:product» that use namespace prefixes.
The question is, where are these prefixes defined? Does it use the prefixes defined in the source document,
or those defined in the target document? What happens if the XPointer is used in a free-standing URI
reference, that isn’t itself part of an XML document? This problem was discovered late in the day, and the
language designers responded to this problem by going back to the drawing board, and devising an
extension to XPointer that allowed the namespace prefixes to be defined within the XPointer itself.

Perhaps more importantly, XPointer hit a serious political problem in that it appeared to use a technique
that Sun had patented. Sun proposed terms and conditions under which they agreed to license this
patent, but the terms and conditions were not acceptable to everyone and this led to a fierce debate on
patent policy in the W3C which overshadowed the original technical issues.

In the end, the XPointer specification was refactored into a number of separate modules. There is a
framework specification which allows the definition of an extensible number of referencing schemes. The
most basic scheme is to identify an element by its ID value, just as with an HTML fragment identifier. The
next refinement is the element() scheme, which adds the ability to use hierarchic references: for
example «element(/1/3)» refers to the third child of the first child of the root node. The full
xpointer() scheme, which contains the original XPath-based syntax, has been languishing at Working
Draft status since 2002 (see http://www.w3.org/TR/xptr-xpointer/) and since there is no longer
an active Linking Working Group, it seems unlikely to progress further.

XPath and XQuery
XPath 2.0 is defined as a subset of XQuery 1.0; or to put it another way, XQuery has been designed as an
extension of XPath 2.0. Unlike the embedding of XPath in XSLT, where there are two distinct languages
with one invoking the other, XQuery is designed as a single integrated language that incorporates XPath
as a subset. What this means in practice is that in XQuery (unlike XSLT), you can freely nest XQuery
expressions and XPath expressions. For example, you can use an element constructor inside a path
expression, like this:

<lookup><data/><data/></lookup>//data[code=$value]

XQuery is therefore more composable than XSLT (composability is the ability to construct any expression
by combining simpler expressions), but the price it pays for this is that the syntax is not pure XML.

Although XQuery uses XPath as a subset, the XQuery specification doesn’t actually refer to the XPath
specification; rather it bodily copies the text of the XPath specification as part of the XQuery specification
(this is all done, of course, by maintaining a single XML master document, with XSLT stylesheets used to
generate the XPath and XQuery versions of the specification). The reason XQuery copies the XPath
specification rather than referencing it is because XQuery doesn’t simply allow you to use legal XPath
expressions as subexpressions in your query, it also allows you to use XQuery expressions as operands to
XPath constructs, thus changing the scope of the XPath language.

19

Chapter 1

XPath and XML Schemas
As we have already seen, integration with XML Schema was listed as the first of the goals in the XPath 2.0
requirements document. Achieving this integration has created an enormous upheaval in the language
semantics, and although this is something that will be a hidden change below the surface for many users,
it does actually have a profound impact.

XPath 1.0 was a weakly typed language. It had types, but it had very few of them, and very few rules
about what operations were applicable to what types of data. The general model was that if you supplied
an integer where (say) a string was expected, the integer would be quietly converted to a string. Another
example of a weakly typed language is JavaScript.

The conventional wisdom for database query languages is that they should be strongly typed. A strongly
typed language has lots of rules about how you can use values, depending on their type. Many
programming languages, such as Java, for example, are also strongly typed.

Although weak typing appears to be more user-friendly, it has many disadvantages. One of the main
disadvantages is that the processor isn’t able to do so much work at compile time, instead it has to make
most of the decisions at runtime. One of the key roles of a database query language is to identify, while
compiling the query, which indexes can be used to execute the query efficiently. Unlike optimization in a
conventional language such as C or Java which might give you code that runs three or four times faster,
optimization in a database query language can produce a thousand-fold improvement in speed, or more.
Therefore, anything that can be done in the language design to give a query optimizer a better chance is
considered a Good Thing.

Another difference is that in the weak typing world, the philosophy is generally to avoid runtime errors.
XPath 1.0 works on the principle that if you ask a silly question, you get a silly answer. Ask it whether the
string “apple” equals the boolean true, and the answer is yes. (If you ask whether the string “false” equals
the boolean false, the answer, more surprisingly, is no). By contrast the philosophy in the strong typing
world is that if you ask a silly question you get an error message. There are a number of reasons why this
might be considered preferable, but one of the reasons is that if you ask a silly question against a
multi-gigabyte database, it can take many hours to come up with the silly answer.

So the influence of database query language thinking led to pressure for XPath to become more strongly
typed. This was one of the factors driving the adoption of XML Schema. The XSLT group were also
pushing in this direction, however, for rather different reasons. It was recognized that when document
types are managed for a large community of users, managing the schema (or DTDs) for the documents
and managing the stylesheets are two activities that need to be closely coordinated. When the schema
changes (as it does, frequently) then the stylesheet needs to change too. There is a clear correspondence
between declarations in the schema and rules in the stylesheet. Therefore, it was argued, there ought to be
some linkage between the schema and the stylesheet to make it easier to keep the two in sync, and to
report errors if they were out of sync.

A move towards stronger typing didn’t have to mean support for XML Schema, but given the way
working groups in W3C review each others’ work and meet to reconcile their differences, it was almost
inevitable.

One of the big challenges was to introduce schema-derived types in such a way that they were an
optional feature, so that users who had no schema (and perhaps no wish for one) could carry on as they
were. The result is a language that is in some ways a strange hybrid between strong typing and weak

20

XPath 2.0 in Context

typing. If this seems odd, it is worth reflecting that XML handles a vast spectrum from very highly
structured data to very loosely structured documents, and that this ability to span the full range of
information management requirements is one of its greatest strengths. So it shouldn’t be surprising that
XPath too is designed to handle a wide spectrum.

XPath, the DOM, and Java
The Document Object Model or DOM has origins that predate XML: it was originally the programming
interface used to navigate your way around the objects on an HTML page, and was only later adapted so
that it could handle XML as well. Later still, support for namespaces was bolted on. The DOM is a W3C
specification that has grown considerably over the years. It is defined in a language-neutral way, but
there are specific language bindings for a number of languages. Most users will be familiar either with the
Microsoft implementation of the DOM, or with the Java language bindings.

Microsoft’s MSXML product was probably the first to integrate an XPath processor into a DOM
implementation. In fact, they did this before XPath was fully standardized, and in MSXML3 the default
processor is still a non-standard variant of XPath (if you want real XPath, you have to ask for it specially,
by setting the selectionLanguage property of the Document object to «XPath»).

The idea behind this interface is that instead of navigating your way laboriously to the required nodes
in a DOM document using low-level methods such as getFirstChild(), getNextSibling(),
getAttribute(), and so on, you should be able to select the set of nodes you want using a single call
that supplies an XPath expression as an argument. In the Microsoft version of the interface, there are two
methods that do this: selectNode() is used when you know that the XPath expression will select a
single node in the tree, and selectNodes() is used when you want to select multiple nodes. The
result is a Node or a NodeList respectively, which you can then manipulate using the normal DOM
methods.

One of the drawbacks of this is that it doesn’t allow you to use the full capability of XPath. If you want
to count how many nodes satisfy a certain condition, for example, the only way to find out is to
retrieve them all and then count them in the application. There is no way in this interface of invoking
an XPath expression that returns a number, a string, or a boolean, as distinct from a node or a set of
nodes.

Another limitation of the original Microsoft interface is that it doesn’t allow you much control over the
context of the XPath expression. For example, there is no way of supplying values of variables used in the
expression. But set against these limitations, the API is delightfully simple to use.

Various Java implementations of the DOM also tried to provide XPath capabilities, many of them
modeled directly on the Microsoft API, but some much more sophisticated. The Xalan XSLT processor, for
example, provides an XPath API that works with the Xerces implementation of the DOM. This actually
has two layers. The XPathAPI class provides a number of simple static methods such as
selectSingleNode() and selectNodeList() which can be seen as parallels to the methods in
Microsoft’s API, though they are actually rather more complex (and therefore powerful). Underneath this
is a much richer API that provides anything you could possibly want to control the execution of XPath
statements, including, for example, the ability to compile expressions that can be evaluated later multiple
times, with different settings for variables in the expression. This underlying API looks as if it was
designed to provide the interface between the XSLT and XPath components of the Xalan product, so as
you might expect it is a very rich and complex interface.

21

Chapter 1

In the Java world there have been two serious attempts to provide alternatives to the DOM that are
simpler, better integrated with Java, and more up-to-date in terms of XML specifications. One of these is
JDOM (www.jdom.org), the other is called DOM4J (www.dom4j.org). Both have their merits and their
band of enthusiastic followers. JDOM is pleasantly easy to use but has the major drawback that it uses
concrete Java classes rather than interfaces, which means there is no scope for multiple implementations
to coexist. DOM4J is a much richer API, which also means it is more complex. Both share the objective of
being well integrated with the Java way of doing things, and both include XPath support as a standard
part of the API.

A standard binding for XPath in the DOM came only with DOM level 3 (http://www.w3.org/TR/
DOM-Level-3-XPath/), which became a W3C Candidate Recommendation in March 2003. (A
Candidate Recommendation is rather like a beta release of software, which means that the specification is
considered finished enough to ship, but might still have bugs that need fixing.) This is, of course, an
interface to XPath 1.0 rather than XPath 2.0. Like the other DOM specifications, it includes an abstract
interface defined in the CORBA IDL language, together with concrete interfaces for Java and JavaScript
(or ECMAScript, to use its its official name). The Java interface treads a reasonable middle ground
between simplicity and functionality: perhaps its most complex area is the way it delivers expression
results of different types.

At the time of writing, there is an activity underway in the Java Community Process to define a standard
Java API for XPath that will form part of JAXP 1.3 (JAXP is the Java API for XML Processing). Although
this is not yet finalized, public previews have been made available (http://jcp.org/aboutJava/
communityprocess/review/jsr206/index.html). This API does not simply endorse the DOM
level 3 API. The main reasons for this decision appear to be that the designers wanted an API that was
more Java-like (not just a Java binding of a CORBA IDL interface), that could be used with object models
other than DOM, and that was easily extensible to handle XPath 2.0 in the future.

The net result of this is that there are quite a few different XPath APIs to choose from in Java. Hopefully,
the JAXP 1.3 initiative will unify this, and will also succeed in its goal of being extensible to XPath 2.0, so
that we end up with a single way of invoking XPath expressions from Java, that is independent of the
choice of object model.

So much for the background and positioning of XPath 2.0. Let’s look now at the essential characteristics
of XPath 2.0 as a language.

XPath 2.0 as a Language
This section attempts to draw out some of the key features of the design of the XPath language.

The Syntax of XPath
The XPath syntax has some unusual features, which reflect the fact that it amalgamates ideas from a
number of different sources.

One can identify three different syntactic styles within XPath expressions:

❑ Conventional programming expressions: This allows the same kind of expressions, infix operators,
and function calls as many other programming languages; an example is an expression such as

22

XPath 2.0 in Context

«$x + 1 = round($y) mod 3». Such expressions trace their roots via programming
languages such as Algol and Fortran back to the notations of elementary mathematics.

❑ Path expressions: These perform hierarchic selection of a node within a tree, an example is
«/a/b//c». These expressions can be seen as a generalization of the syntax used by operating
systems to identify files within a hierarchic filestore.

❑ Predicate logic: This includes the «for», «some» and «every» expressions, for example «for $i
in //item[@price > 30] return $i/@code». These expressions, which are new in XPath
2.0, derive from the tradition of database query languages (SQL, the object database language
OQL, and precursors to XQuery) which can be seen as adaptations of the notation of
mathematical symbolic logic.

Some other factors that have influenced the design of the XPath syntax include:

❑ A decision that XPath should have no reserved words. This means that any name that is legal as
an XML element name (which includes names such as «and» and «for») should be legal in a
path expression, without any need for escaping. As a result, all names used with some other role,
for example function names, variable names, operator names, and keywords such as «for» have
to be recognizable by their context.

❑ In both the original applications for XPath (that is, XSLT and XPointer) the language was
designed to be embedded within the attributes of an XML document. It therefore has no
mechanisms of its own for character escaping, relying instead on the mechanisms available at the
XML level (such as numeric character references and entity references). This also made the
designers reluctant to use symbols such as «&&» which would require heavy escaping. This
principle has been abandoned in XPath 2.0 with the introduction of the operators «<<» and «>>»;
however, these operators are not likely to be used very often.

❑ There was originally an expectation that XPath expressions (especially in an XPointer
environment) would often be used as fragment identifiers in a URI. As we have seen, this usage
of XPointer never really took off—though there are XML database engines such as Software AG’s
Tamino that allow queries in the form of XPath expressions to be submitted in this way. This
factor meant there was a reluctance to use special characters such as «#», «%», and «?» that have
special significance in URIs.

Despite its disparate syntactic roots and its lexical quirks, XPath has managed to integrate these different
kinds of expression surprisingly well. In particular, it has retained full composability, so any kind of
expression can be nested inside any other.

An Embedded Language
XPath is designed as an embedded language, not as a stand-alone language in its own right. It is designed
to provide a language module that can be incorporated into other languages.

This design assumption has two specific consequences:

❑ Firstly, the language does not need to have every conceivable piece of functionality. In the
language of computer science, it does not need to be computationally complete. In more practical
terms, it can be restricted to being able to access variables but not to declare them, to call
functions but not to define them, to navigate around nodes in a tree but not to create new nodes.

23

Chapter 1

❑ Secondly, the language can depend on a context established by the host language in which it is
embedded. If an embedded language is to be well integrated with a host language, then they
should share information so that the user does not need to declare things twice, once for each
language. The information that XPath shares with its host language is called the context. This can
be divided into information that’s available at compile time (the static context), and information
that’s not available until runtime (the dynamic context). Both aspects of the XPath context are
described in Chapter 4 of this book.

A Language for Processing Sequences
The striking feature of the XML data model is that the information is hierarchic. The relationship from an
element to its children is intrinsically a one-to-many relationship. Moreover, the relationship is inherently
ordered. Sometimes you don’t care about the order, but it’s part of the nature of XML that the order of
elements is deemed to be significant.

This means that when you write an expression such as «author» (which is short for «child::author»,
and selects all the <author> elements that are children of the context node) then, in principle, the result
is a sequence of elements. Very often you know that there will be exactly one author, or that there will be
at most one, but in general, the result is a sequence of zero or more elements. The XPath language
therefore has to make it convenient to manipulate sequences.

One of the notable consequences of this is the decision that the «=» operator should work on sequences.
Suppose a book can have multiple authors. When you write an expression such as
«book[author="Kay"]», you are selecting all the <book> elements that have «Kay» as one of their
authors: the expression is a shorthand for «book[some $a in child::author satisfies
$a="Kay"]». It would be very tedious if users had to write this extended expression every time, even in
cases where they know there will only be one author, so the language builds this functionality into the
semantics of the «=» operator. This feature is known by the rather grand name of implicit existential
quantification. It’s very convenient in many simple cases, though it can trip you up with more complex
expressions, especially those involving negation.

When you apply this construct to an element that can only have zero or one occurrences, or to an attribute
(which can never have more than one occurrence), the same definition comes into play. A test such as
«book[discount>10]» will always be false when applied to a book that has no discount. This works in
a very similar way to null values in SQL, except that it does not use three-valued logic. In SQL, the
corresponding query is «select book where discount > 10». In this query, a book that has no
discount (that is, where the discount is null) will not be returned. However, because of the way SQL
defines three-valued logic, the query «select book where not(discount > 10)» will also fail to
select any book whose discount is null. By contrast, XPath uses conventional two-valued logic, so the
expression «book[not(discount>10)]» will return such books.

Some of the people on the XQuery working group whose background was in the design of database
query languages were never very happy with the implicit semantics of the «=» operator in XPath, nor
with the absence of three-valued logic. However, after much debate, these features of the XPath 1.0
semantics survived intact. The reason, I think, is that for SQL a cell in a table always contains either zero
or one values, and “null” represents the zero case. For XML, a child element can have zero, one, or more
occurrences within its parent, and (despite the invention of xsi:nil by the XML Schema people) the
normal way of representing absent data in XML is by the absence of a child element or attribute, which
means that selecting that element will return an empty sequence. The empty sequence in XPath therefore

24

XPath 2.0 in Context

fulfils the same kind of role as the null value in the relational model, but in the context of a model that
allows zero to many values, where SQL only allows zero or one.

XPath 1.0 only supported one kind of sequence, namely a set of nodes. Some people liked to think of this
as an unordered collection, others as a sequence of nodes in document order, but this doesn’t really make
any real difference: it wasn’t possible to represent a collection in an arbitrary user-defined order, such as
employees in order of date of birth. XPath 2.0 has generalized this in two directions: firstly, sequences can
now be in any order you like (and can contain duplicates), and secondly, you can have sequences of
values (such as strings, numbers, or dates) as well as sequences of nodes.

Many of the operators in XPath 1.0 generalize quite nicely to support arbitrary sequences. For example,
the «=» operator still matches if any item in the sequence matches, so you can write for example «@color
= ("red", "green")» which will be true if the value of the color attribute is either red or green. Other
operators, notably the «/» operator used in path expressions and the «|» operator used to combine two
sets of nodes, only really make sense in the context of sets containing no duplicates, and these have not
been generalized to work on arbitrary sequences.

Types Based on XML Schema
I’ve already discussed the relationship of XPath 2.0 to XML Schema, so I won’t labor it again. But the type
system of XPath is something that is highly distinctive, so it deserves a place as one of the key
characteristics that gives the language its flavor.

I’ll be exploring the type system in depth in Chapter 3. Here, I’ll just give a few highlights, as a taste of
things to come.

❑ We need to distinguish the types of the values that XPath can manipulate from the types that can
appear as annotations on nodes.

❑ Atomic types can appear in both roles: You can declare an XPath variable of type integer, and you
can also validate the content of an element or attribute as an integer, following which the element
or attribute will be annotated with this type.

❑ Node kinds, such as element, attribute, and comment, appear as types of XPath values (I call
these item types) but never as type annotations. You can’t annotate an attribute as a comment, or
even as an attribute, you can only annotate it with a simple type defined in XML Schema.

❑ Schema types divide into two groups: complex types, and simple types. Simple types divide
further into atomic types, list types, and union types. All of these are either built-in types defined
in the XML Schema specification, or user-defined types defined in a user-written schema. All of
these can be used as type annotations on nodes, if the node has been validated against the
appropriate type definition in the schema. But the only schema types that can be used for
freestanding values, that is, for values that don’t exist as the content of a node, are the atomic
types.

❑ It’s possible to have nodes that haven’t been validated against any schema. These nodes are
labeled as untyped in the case of elements, or untypedAtomic in the case of attributes.

❑ Whenever you use a node in an XPath expression in a context where an atomic value (or a
sequence of atomic values) is expected, the typed value of the node is extracted. For example, if
you write «@a + 1», the typed value of the attribute «a» is used. If this is a number, all is well.

25

Chapter 1

If it’s some other type such as string or date, the expression fails with a type error. But if the value
is untyped, that is, if there is no schema, then weak typing comes into play: the value is
automatically converted to the required type, in this case, to a number.

This is just a foretaste: the full explanations will appear in Chapter 3.

Summary

This introductory chapter offers an overview of XPath in general, and XPath 2.0 in particular. It tried to
answer questions such as:

❑ What kind of language is it?

❑ Where does it fit into the XML family?

❑ Where does it come from and why was it designed the way it is?

We established that XPath is an expression language, and we looked at some of the implications of this in
terms of the properties of the language and its relationship to other languages such as XSLT and XQuery.
We tried to find some rationale for the large collection of new features that have been added to the
language, and for the more fundamental changes to its underlying semantics.

Now it’s time to start taking an in-depth look inside XPath 2.0 to see how it works. The next three
chapters are about important concepts: the data model, the type system, and the evaluation context. Once
you understand these concepts, you should have little difficulty using the language constructs that are
introduced later in the book.

26

The Data Model
This chapter looks in some detail at the XPath data model, in particular the structure of the tree
representation of XML documents. An important message here is that XPath expressions do not
operate on XML documents as text, they operate on the abstract tree-like information structure
represented by the text.

XPath is an expression language. Every expression takes one or more values as its inputs, and produces
a value as its output. The purpose of this chapter is to explain exactly what these values can be.

One of the things an expression language tries to achieve is that wherever you can use a value, you
can replace it with an expression that is evaluated to produce that value. So if «2+2» is a valid
expression, then «(6-4)+(1+1)» should also be a valid expression. This property is called
composability: expressions can be used anywhere that values are permitted. One of the important
features that make a language composable is that the possible results of an expression are the same
as the possible inputs. This feature is called closure: every expression produces a result that is in the
same space of possible values as the space from which the inputs are drawn.

The role of the data model is to describe this space of possible values.

Changes in 2.0
The way in which an XML document is modeled as a tree has changed relatively little since XPath
1.0: the main change is that nodes can now be annotated with a type that is derived from validation
against an XML Schema, and as a result, the content of a node can now be viewed as a typed value
(which might be, for example, an integer, a string, or a sequence of dates, depending on the type
annotation).

XPath 1.0 only supported three atomic types: boolean, double-precision floating point, and string.
This has been generalized to allow all the types defined in XML Schema, though the host language
may restrict this to a subset of these types.

XPath 1.0 supported node-sets (unordered collections of nodes, with no duplicates). XPath 2.0
generalizes this to support sequences, which are ordered and may contain duplicates, and which
may contain atomic values as well as nodes.

Chapter 2

Sequences
Sometimes object programming languages introduce their data model with the phrase “everything is an
object”. In the XPath 2.0 data model, the equivalent statement is that every value is a sequence.

By value, we mean anything that can be the result of an expression or an operand of an expression. In
XPath 2.0, the value of every expression is a sequence of zero or more items. Of course XPath, like other
languages, can use atomic values such as integers and booleans. But in XPath, an atomic value is just a
special case of a sequence: it is a sequence of length one.

The items in a sequence are ordered. This means that the sequence (1, 2, 3) is different from the sequence
(2, 3, 1). The XPath 2.0 data model does not have any direct means of representing unordered collections.
Instead, where ordering is unimportant, it makes this part of the definition of an operator on sequences:
for example, the distinct-values()function returns a number of values with no defined ordering,
and with duplicates disallowed, but the result is still presented as a sequence. The ordering might
sometimes be arbitrary and left to the implementation to determine, but there is always an ordering.

The items in a sequence are always numbered starting at 1. The number of items in a sequence (and
therefore, the number assigned to the last item in the sequence) can be obtained using the
count()function. (The functions available in XPath 2.0, such as count()and distinct-values(),
are listed in Chapter 10.)

Sequences have no properties other than the items they contain. Two sequences that contain the same items
are indistinguishable, so there is no concept of a sequence having an identity separate from its contents.

A sequence can be empty. Because two sequences that contain the same items are indistinguishable, there
is no difference between one empty sequence and another, and so we often refer to the empty sequence
rather than to an empty sequence. Empty sequences, as we shall see, are often used to represent absent
data in a similar way to nulls in SQL.

The items in a sequence are either atomic values, or nodes. An atomic value is a value such as an
integer, a string, a boolean, or a date. A node is a structural part of a tree; trees are used to represent the
information in XML documents. We will examine atomic values and nodes in much greater detail later in
the chapter. Most sequences either consist entirely of nodes, or entirely of atomic values, but this isn’t
always the case; it’s quite legitimate (and occasionally useful) to have a sequence that consists, say, of two
strings, an integer, and three element nodes.

The relationships between sequences, items, atomic values and nodes are summarized in the simple UML
diagram in Figure 2-1.

UML (the Unified Modeling Language) provides a set of diagrammatic conventions for object-oriented
analysis and design. For information about UML, see http://www.omg.org/technology/uml/
index.htm

This shows that:

❑ A sequence contains zero or more items

❑ An item is itself a sequence

28

The Data Model

Sequence

Item

Atomic Value Node

contains

Figure 2-1

❑ An atomic value is an item

❑ A node is an item

Although we talk about a sequence containing nodes, this doesn’t mean that a node can only be in one
sequence. Far from it. It might be less confusing if we spoke of the sequence containing references to
nodes rather than containing the nodes themselves, or if we used a verb other than “contains”—but sadly,
we don’t.

A sequence cannot contain or reference other sequences. This is an aspect of the data model that some
people find surprising, but there are good reasons for it. The usual explanations given are:

❑ Sequences in the XPath data model are designed primarily to represent lists as defined in XML
Schema. For example, XML Schema allows the value of an attribute to be a list of integers. These
lists cannot be nested, so it wouldn’t make sense to allow nested lists in the XPath model either.

❑ Sequences that contain sequences would allow trees and graphs to be constructed. But these
would bear no relationship to the trees used to represent XML documents. In the XPath data
model we need a representation of trees that is faithful to XML; we don’t need another kind of
tree that bears no relationship to the XML model.

The effect of this rule is that if you need a data structure to hold something more complicated than a
simple list of items, it’s best to represent it as an XML document. (This is easy when you are using XSLT
or XQuery, which allow you to construct nodes in new trees at any time. It’s less easy in XPath itself,
which is a read-only language.)

29

Chapter 2

The simplest way of writing an XPath expression whose value is a sequence is by using a
comma-separated list: for example «1, 2, 3» represents a list containing three integers. In fact, as we will
see in Chapter 8, the comma is a binary operator that concatenates two sequences. Remember that a
single integer is a sequence. So «1, 2» concatenates the single-item sequence «1» and the single-item
sequence «2» to create the two-item sequence «1, 2». The expression «1, 2, 3» is evaluated as
«(1, 2), 3», and it concatenates the two-item sequence «1, 2» with the one-item sequence «3» to
produce the three-item sequence «1, 2, 3». This definition of comma as an operator means that it is also
possible to write sequences such as «$a, $b», which concatenates two arbitrary sequences represented
by the variables $a and $b.

Sometimes a list of values separated by commas needs to be enclosed in parentheses to prevent ambiguity,
for example when it is used as an argument in a function call. For details, see Chapter 8, page 240.

Some of the important XPath operations defined on sequences are:

❑ «count($S)» counts the items in a sequence

❑ «$S, $T» concatenates two sequences

❑ «$S[predicate]» selects those items in a sequence that satisfy some condition

❑ «$S[number]» selects the Nth item in a sequence

❑ «for $item in $SEQ return f($item)» applies the function «f» (which can actually be any
expression) to every item in the sequence $SEQ, and returns the results as a new sequence. (In list
processing languages, this is known as a mapping expression).

We will study these operators in much greater depth later in the book.

Sequences also play an important role in navigating trees, as we shall see. The result of a path expression
such as «/book/chapter/section» is a sequence of nodes. All operators that apply to sequences in
general (including those listed above) can therefore be used to manipulate sequences of nodes selected
using path expressions.

In the next two sections, we’ll look at the two kinds of item that can be found in a sequence, namely
atomic values and nodes. We’ll take atomic values first, because they are simpler.

Atomic Values
It’s easiest to explain what an atomic value is by example: they are things like integers, floating-point
numbers, booleans, and strings.

Every atomic value has a type (it is either an integer, or a string, or a boolean . . .). Broadly speaking, the
types that are available are the 19 primitive types defined in XML Schema, such as xs:double,
xs:string, or xs:date, which we will examine in the next chapter, and types derived from these.

An atomic value either belongs directly to one of these primitive types, or to a type that is defined by
restricting one of these primitive types: this may be a built-in type such as xs:NMTOKEN, which is defined
in the XML Schema specification itself as a restriction of xs:string, or a type defined in a user-written

30

The Data Model

schema. For example, if you have a schema that defines mf:part-number as a restriction of
xs:string, then you can have atomic values whose type is mf:part-number.

A type definition determines the set of possible values allowed for items of that type. For example, the
type xs:boolean says that there are two possible values, called true and false. For a restricted type, the
set of possible values is always a subset of the values allowed for its base type. For example, a type that is
defined by restricting «xs:integer» might allow only the values 1 to 20.

An atomic value carries its type with it as a kind of label. If «PY03672» is an mf:part-number, then
because of the way the type is defined, it is also an xs:string. This means it can be used anywhere that
an xs:string can be used. However, its label still identifies it as an mf:part-number. Conversely, if
you write the string literal «"PY03672"» in an XPath expression, the value will be labeled as an
xs:string, and even though it meets all the rules that would make it a valid mf:part-number, you
cannot use it in places where an mf:part-number is required, because it has the wrong label. To create a
value labeled as an mf:part-number, you need to use the constructor function «mf:part-number
("PY03672")».

So the two properties of an atomic value are the value itself, and the type label. If two atomic values are
the same in these two respects, then they are indistinguishable. Atomic values do not have any kind of
identity separate from their value and their type; there is only one number 42, and only one string
“Venice”.

In particular, this means that atomic values are not in any way attached to a particular XML document.
Atomic values can be extracted from nodes in an XML document, through a process called atomization,
described on page 108; but once extracted, they have no residual connection with the document where
they originated. Atomic values can also be derived quite independently of any document, for example as
the result of an arithmetic expression.

The full set of primitive atomic types that are available in XPath (that is, types that are not derived by
restriction from another type) has been left slightly open-ended. There is an assumption that by default,
the 19 primitive types defined in XML Schema will be available. These are:

xs:boolean xs:date

xs:decimal xs:dateTime

xs:float xs:time

xs:double xs:duration

xs:string xs:gYear

xs:QName xs:gYearMonth

xs:anyURI xs:gMonth

xs:hexBinary xs:gMonthDay

xs:base64Binary xs:gDay

xs:NOTATION

31

Chapter 2

Throughout this book we will use the namespace prefix xs to refer to the namespace http://www.w3
.org/2001/XMLSchema, which is the namespace in which these types are defined.

However, XPath is designed to be used in a wide variety of different environments, and host languages
(that is, specifications that incorporate XPath as a sublanguage) are allowed to tailor this list, both by
omitting types from the list and by adding to it. The actual list of atomic types that are available is
determined as part of the environment in which XPath expressions are compiled and executed, which we
will study in Chapter 4. XSLT 2.0, for example, defines a conformance level for a “basic XSLT processor”,
which is designed to meet the needs of users who are not using XML schemas. This conformance level
restricts the set of primitive types supported to xs:boolean, xs:decimal, xs:double, xs:string,
xs:QName, xs:anyURI, xs:date, xs:dateTime, and xs:time.

The type xs:integer is unusual. On the one hand it has a special status in the XPath language (it is one
of the few types for which values can be written directly as literals). On the other hand, it is actually not a
primitive type, but a type that is derived as a restriction of xs:decimal. This is because the set of all
possible xs:integer values is a subset of the set of all possible xs:decimal values.

In fact there are four types for which XPath provides a syntax for defining literal constants:

Type Example literals

xs:string "New York", ’Moscow’, ""

xs:integer 3, 42, 0

xs:decimal 93.7, 1.0, 0.0

xs:double 17.5e6, 1.0e-3, 0e0

A number can always be preceded by a plus or minus sign when it appears in an XPath expression, but
technically the sign is not part of the numeric literal, it is an arithmetic operator.

Values of type xs:boolean can be represented using the function calls false()and true(), listed in
the library of functions described in Chapter 10. Values of any other type can be written using constructor
functions, where the name of the function is the same as the name of the type. For example, a constant
date can be written as «xs:date("2004-07-31")».

There is one other type we need to mention in this section: the type xdt:untypedAtomic. The
namespace prefix «xdt» refers to the namespace http://www.w3.org/2003/11/xpath -
datatypes, which is defined not by XML Schema, but in the XPath specifications (the actual URI is
likely to change in successive drafts until the XPath specification is finalized). This type is used to label
values that have not been validated using any schema, and which therefore do not belong to any
schema-defined type. It is also, somewhat controversially, used to label values that have been validated
against a schema, in cases where the schema imposes no constraints. The set of possible values for this
type is exactly the same as the value space for the xs:string type. The values are not strictly strings,
because they have a different label (xdt:untypedAtomic is not derived by restricting xs:string).
Nevertheless, an xdt:untypedAtomic value can be used anywhere that an xs:string can be used. In

32

The Data Model

fact, it can be used anywhere that a value of any atomic type can be used, for example, it can be used
where an integer or a boolean or a date is expected. In effect, xdt:untypedAtomic is a label applied to
values whose type has not been established.

If an xdt:untypedAtomic value is used where an integer is expected, then the system tries to convert it
to an integer at the time of use. If the actual value is not valid for an integer then a runtime failure will
occur. In this respect xdt:untypedAtomic is quite different from xs:string, because if you try to use
a string where an integer is expected, you will get a type error regardless whether it could be converted or
not.

Nodes and Trees
We don’t always want the input for an XPath expression to be XML in its textual form. We might
want to access a document that has been constructed by an application in memory, or one that is stored in
an XML database: in such cases, we don’t necessarily want to put the document through an XML parser
each time it is used. We might also want to access an XML view of data that isn’t really an XML document
at all: it might be rows in a relational database or (say) an LDAP directory, or an EDI message, or a data
file using comma-separated values syntax. We don’t want to spend a lot of time converting these into
textual XML documents and then parsing them if we can avoid it, nor do we want another raft of
converters to install.

XPath therefore defines its operations in terms of a representation of an XML document called the tree.
The tree is an abstract data type. There is no defined API and no defined data representation, only a
conceptual model that defines the objects in the tree, their properties and their relationships. The tree is
similar in concept to the W3C Document Object Model (DOM), except that the DOM does have a defined
API. Some implementers do indeed use the DOM as their internal tree structure. Others use a data
structure that corresponds more closely to the XPath tree model, while some use internal data structures
that are only distantly related to this model. It’s a conceptual model we are describing, not something that
necessarily exists in an implementation.

The objects in the tree are called nodes, and as we saw earlier, nodes are one of the two kinds of item
found in an XPath sequence. Trees themselves technically are not values in the data model, in the sense
that the value of an expression is never a tree as such. If you want to pass a tree as an argument to a
function, what you actually do is to pass the root node of the tree. XPath expressions always manipulate
nodes or sequences of nodes, and nodes always belong to trees, but the trees are really just abstract data
structures made up of nodes.

As I mentioned, the XPath tree model is similar in many ways to the XML Document Object Model
(DOM). However, there are a number of differences of terminology and some subtle differences of detail.
I’ll point some of these out as we go along.

XML as a Tree
In this section, I will describe the XPath tree model of an XML document, and show how it relates to
textual XML files containing angle brackets.

33

Chapter 2

This isn’t actually how the XPath Data Model specification does it: it adopts a more indirect approach,
showing how the data model relates to the XML InfoSet (an abstract description of the information content
of an XML document), and the Post Schema Validation Infoset (PSVI), which is defined in the XML
Schema specifications to define the information that becomes available as a result of schema processing. The
InfoSet is described in a W3C specification at http://www.w3.org/TR/xml-infoset/. The PSVI
is described in the W3C Schema recommendations at http://www.w3.org/TR/xmlschema-1/.

At a simple level, the equivalence of the textual representation of an XML document with a tree
representation is very straightforward.

Example: An XML Tree

Consider a document like this:

<definition>
<word>export</word>
<part-of-speech>vt</part-of-speech>
<meaning>Send out (goods) to another country.</meaning>
<etymology>

<language>Latin</language>
<parts>
<part>

<prefix>ex</prefix>
<meaning>out (of)</meaning>

</part>
<part>

<word>portare</word>
<meaning>to carry</meaning>

</part>
</parts>

</etymology>
</definition>

We can consider each piece of text as a leaf node, and each element as a containing node, and
build an equivalent tree structure, which looks like the Figure 2-2. I show the tree after the
stripping of all whitespace nodes (in XSLT this can be achieved using the <xsl:strip-
space> declaration; in other environments, it may be something you can control from the
processor’s API). In this diagram each node is shown with potentially three pieces of
information:

❑ In the top cell, the kind of node

❑ In the middle cell, the name of the node

❑ In the bottom one, its string-value

For the document node and for elements, I showed the string-value simply as an asterisk: in
fact, the string-value of these nodes is defined as the concatenation of the string-values of all
the element and text nodes at the next level of the tree.

34

The Data Model

document

element

element element

etymology

element element

element element

element element element element

elementelement

definition

word part-of-speech meaning

language

text

text text text

text text text text

Latin
part parts

trainingprefix meaningword

out(of) to carry

parts
export vt Send out

(goods) to
another
country

+

+

+

+ +

+

+ + + +

+

+++

ex portare

Figure 2-2

It is easy to see how other aspects of the XML document, for example, attributes and processing
instructions, can be similarly represented in this tree view by means of additional kinds of node.

At the top of every tree there is a root node (trees in computer science always grow upside down). Usually
the root will be a document node, but we will look at other cases later on.

The terminology here has changed since XPath 1.0. What was the root node in XPath 1.0 is now called a
document node. In XPath 2.0, it is possible to have element nodes, or indeed any kind of node, that have no
parent. Any node that has no parent, whatever kind of node it is, can be considered to be the root of a tree.
So the term “root” no longer refers to a particular kind of node, but rather to any node that has no parent,
and is therefore at the top of a tree, even if it is a tree containing just one node.

The document node performs the same function as the document node in the DOM model, in that it
doesn’t correspond to any particular part of the textual XML document, but you can regard it as

35

Chapter 2

representing the XML document as a whole. The children of the document node are the top-level
elements, comments, processing instructions and so on.

In the XML specification the outermost element is described as the “root or document element”. In the
XPath model this element is not the root of the tree (because it has a parent, the document node), and the
term “document element” is not normally used, because it is too easily confused with “document node”.
I prefer to call it the “outermost element”, because that seems to cause least confusion.

The XPath tree model can represent every well-formed XML document, but it can also represent
structures that are not well-formed according to the XML definition. Specifically, in well-formed XML,
there must be a single outermost element containing all the other elements and text nodes. This element
can be preceded and followed by comments and processing instructions, but it cannot be preceded or
followed by other elements or text nodes.

The XPath tree model does not enforce this constraint—the document node can have any children that an
element might have, including multiple elements and text nodes in any order. The document node might
also have no children at all. This corresponds to the XML rules for the content of an external general parsed
entity, which is a freestanding fragment of XML that can be incorporated into a well-formed document by
means of an entity reference. I shall sometimes use the term well balanced to refer to such an entity. This term
is not used in the XPath specification; rather I have borrowed it from the rarely mentioned XML fragment
interchange proposal (http://www.w3.org/TR/xml-fragment.html). The essential feature of a
well-balanced XML fragment is that every element start tag is balanced by a corresponding element end tag.

Example: Well-balanced XML Fragment

Following is an example of an XML fragment that is well balanced but not well formed, as
there is no enclosing element:

The <noun>cat</noun> <verb>sat</verb> on the <noun>mat</noun>.

The corresponding XPath tree is shown in Figure 2-3. In this case it is important to retain
whitespace, so spaces are shown using the symbol ♦.

document

text textelement element text text

texttexttext

element

cat sat mat

the
definition definition definition

on the

*

♦♦ ♦ ♦ ♦ .* * *

Figure 2-3

The string-value of the document node in this example is simply:

The cat sat on the mat.

36

The Data Model

In practice the input and output of an XSLT transformation will usually be well-formed documents, but it
is very common for temporary trees constructed in the course of processing to have more than one
element as a child of the document node.

Nodes in the Tree Model
An XPath tree is made up of nodes. There are seven kinds of node. The different kinds of node
correspond fairly directly to the components of the source XML document:

Node Type Description

Document node The document node is a singular node; there is one for each
document. Do not confuse the document node with the
document element, which in a well-formed document is the
outermost element that contains all others. A document
node never has a parent, so it is always the root of a tree

Element node An element is a part of a document bounded by start and
end tags, or represented by a single empty-element tag such
as <TAG/>. Try to avoid referring to elements as tags:
elements generally have two tags, a start tag and an end tag

Text node A text node is a sequence of consecutive characters in a
PCDATA part of an element. Text nodes are always made as
big as possible: there will never be two adjacent text nodes
in the tree, because they will always be merged into one.
(This is the theory. Microsoft’s MSXML implementation,
notoriously, doesn’t always follow this rule)

Attribute node An attribute node includes the name and value of an
attribute written within an element start tag (or empty
element tag). An attribute that was not present in the tag,
but which has a default value defined in the DTD or
Schema, is also represented as an attribute node on each
separate element instance. A namespace declaration (an
attribute whose name is «xmlns» or whose name begins
with «xmlns:») is, however, not represented by an attribute
node in the tree

Comment node A comment node represents a comment written in the XML
source document between the delimiters «<!--» and «-->»

Processing instruction node A processing instruction node represents a processing
instruction written in the XML source document between
the delimiters «<?» and «?>». The PITarget from the XML
source is taken as the node’s name and the rest of the
content as its value. Note that the XML declaration <?xml
version="1.0"?> is not a processing instruction, even
though it looks like one, and it is not represented by a node
in the tree

Continues

37

Chapter 2

Node Type Description

Namespace node A namespace node represents a namespace declaration, except
that it is copied to each element that it applies to. So each
element node has one namespace node for every namespace
declaration that is in scope for the element. The namespace
nodes belonging to one element are distinct from those
belonging to another element, even when they are derived
from the same namespace declaration in the source document

There are several possible ways of classifying these nodes. We could distinguish those that can have
children (element and document nodes), those that can have a parent (everything except the document
node), those that have a name (elements, attributes, namespaces, and processing instructions) or those
that have their own textual content (attributes, text, comments, processing instructions, and namespace
nodes). Since each of these criteria gives a different possible class hierarchy, the XPath data model instead
leaves the hierarchy completely flat, and defines all these characteristics for all nodes. Where a
characteristic isn’t applicable to a particular kind of node, the data model generally defines its value as an
empty sequence; though sometimes when you access the property from a real XPath expression what you
actually get back is a zero-length string.

So if we show the class hierarchy in UML notation, we get the simple diagram shown in Figure 2-4.

Node

Document Element Attribute Text

Comment Processing Instruction Namespace

Figure 2-4

This diagram looks superficially similar to the tree we saw earlier, but this time I’m not showing a specific
tree, I’m showing a class hierarchy: the boxes represent classes or types, and the arrow represents an
is-a-kind-of relationship: for example a comment is-a-kind-of node. The earlier diagram was just one
example of a particular tree, whereas now we are considering the structure of all possible trees.

I’ve already hinted at some of the properties and relationships of these nodes. Let’s look at the properties
and relationships in more detail, and then add them to the diagram.

38

The Data Model

The Name of a Node
In general, a node has a name. Nodes can (and often do) have simple names, but in the general case, node
names are qualified by the namespace they are in.

An element or attribute name as written in a textual XML document is a lexical QName. (QName stands
for Qualified Name.) A lexical QName has two parts: the prefix, which is the part of the QName before
the «:» as written in the source XML, and the local part, which is the part of the QName after the «:». If
there is no colon, the prefix is the zero-length string. For example, «xsl:stylesheet» is a lexical
QName, with prefix «xsl» and local-name «stylesheet».

In the tree model, however, a name is represented by an expanded QName. This is represented by an
atomic value whose type is xs:QName. The expanded QName also has two parts, though there is no
explicit syntax for displaying it. The two parts are the namespace URI, and the local part. The namespace
URI is derived from the prefix used in the source document, by finding the namespace declarations that
are in scope where it is used, while the local name is again the part of the lexical QName after the «:». So
the expanded QName corresponding to the lexical QName «xsl:stylesheet» has namespace URI
http://www.w3.org/1999/XSL/Transform (assuming the standard namespace declarations are
used), and local part «stylesheet».

The prefix itself is not officially part of the node name as represented in the tree model. When you look
for a node with a particular name, it is only the namespace URI and the local name that the system is
interested in, not the prefix.

The name of a node is accessible, as an xs:QName value, using the node-name()function defined in
Chapter 10. The namespace URI and local-name parts of the name are also separately accessible
(as strings) using the functions namespace-uri()and local-name().

Document nodes, comments, and text nodes have no name, and for these, the node-name()function
returns the empty sequence. (Note that this differs from the DOM, where names such as «#comment» are
used.)

For elements and attributes the node-name()function returns the name that appears in the source XML,
after converting any namespace prefixes into namespace URIs.

The name of a processing instruction is the PITarget from the source XML: this contains a local name but
no namespace URI, as processing instruction names are not subject to namespace rules.

The name of a namespace node is, by convention, the namespace prefix from the original namespace
declaration (without the «xmlns:» part). For example, the namespace declaration «xmlns:acme=
"http://acme.com/xml"» generates a namespace node with name «acme», while the default
namespace declaration «xmlns="http://acme.com/xml"» generates a namespace node whose name
is the zero-length string. The name of a namespace node, like the name of any other node, is an
xs:QName; the namespace URI part of this xs:QName is always null, while the local-name part holds the
namespace prefix.

There are occasions when the system has to generate a namespace prefix from the expanded name,
specifically when you use the name()function described in Chapter 10, and when you serialize a tree to
produce an XML document. On these occasions the system will allocate a prefix by looking at the
namespace nodes on the tree. Usually, it will keep the same prefix as the one you used in the source

39

Chapter 2

document, but there are occasions when it may choose a different one. For example, this may happen if
the tree contains two different prefixes representing the same namespace. However, the processor will
always output a prefix that refers to the correct namespace URI.

The String Value of a Node
Every node has a string value, which is a sequence of Unicode characters. You can get the string value of
a node using the string() function described in Chapter 10.

For a text node the string value is the text as it appears in the source XML document, except that the XML
parser will have replaced every end-of-line sequence (for example, CRLF as used on Windows platforms)
by a single new line (#xA) character.

For a comment, the string value is the text of the comment, minus the delimiters.

For a processing instruction, it is the data part of the source processing instruction, not including the
white space that separates it from the PITarget. For example, given the processing instruction
<?ignore this?>, the string value is «this».

For an attribute, the string value is the value of the attribute as written, modified by any whitespace
normalization done by the XML parser and schema processor. The detailed rules for whitespace
normalization of attributes depend on the attribute type.

For a document or element node, the string value is defined as the concatenation of the string values of all
the element and text children of this node. Or, to look at it another way: the concatenation of all the
PCDATA contained in the element (or for the document node, the entire document) after stripping out all
markup. (This again differs from the DOM, where the nodeValue property in these cases is null.)

For a namespace node the string value is, by convention, the URI of the namespace being declared.

The string value of a node can be obtained by using the string()function described in Chapter 10. This
should not be confused with the xs:string()constructor, which works differently when applied to a
node: it extracts the typed value of the node, as described in the next section, and then converts the typed
value to a string. This might not give precisely the same result. For example, if an attribute is declared in
the schema as being of type xs:decimal, and the actual attribute is written as «a="146.50"», then the
result of the string()function will be «146.50», while the result of the xs:string() constructor will
be «146.5». This is because the xs:string()constructor takes the typed value (a decimal number) and
converts it to a string using the standard rules for converting decimals to strings, which take no account
of how the value was originally written in the source document. For the same reasons, if the attribute is
declared as an xs:boolean, and the actual attribute is written as «ok="1"», then the result of
«string(@ok)» will be the string «1», while the result of «xs:string(@ok)» will be the string
«true».

In XPath 1.0, the string value of a node was used whenever a node was supplied as an argument to a
function that expected a string. In XPath 2.0 in this situation, the atomization procedure is invoked, which
gives the same result as the xs:string()constructor described above. If there’s no schema, then the
result is the same, because the typed value of the node will be the same as its string value (but labeled as
xdt:untypedAtomic). In XPath 2.0, the only time the string value is used directly is when you
explicitly call the string()function, and the result differs from the typed value only if the node has
been validated using a schema.

40

The Data Model

The Typed Value of a Node
The typed value of a node reflects the content of the node as it appears after schema validation. The typed
value is available using the data()function described in Chapter 10; it is also obtained implicitly as the
result of the process of atomization, described on page 108.

Schema validation only really applies to element and attribute nodes, so let’s get the other kinds of nodes
out of the way first. For document nodes, text nodes, comment nodes, processing instruction nodes, and
namespace nodes, the typed value is the same as the string value, which is defined in the previous
section. However, for document nodes, namespace nodes, and text nodes, the value is labeled as
xdt:untypedAtomic, while for comments and processing instructions it is labeled as xs:string.
There is, as one might expect, some tortuous logic behind this apparently arbitrary distinction: labeling a
value as xdt:untypedAtomic enables the value to be used in contexts where a value other than a string
is required, whereas a value labeled as xs:string can only be used where that is the type expected.
There are plausible scenarios where one might want to use the content of document nodes, namespace
nodes, and text nodes in non-string contexts, but it’s hard to think of similar justifications for comments
and processing instructions.

Let’s return to elements and attributes, which are the cases where the typed value comes into its own.

First of all, if you’re working on a document that has no schema, or that has not been validated against a
schema, or if you’re using an XPath processor that doesn’t support schema processing, then the typed
value of an element or attribute is the same as the string value, and is labeled with the type xdt:
untypedAtomic. This is very close to the situation with XPath 1.0, which didn’t support schema
processing at all. It means that when you use an expression that returns an element or attribute node
(for example, path expressions like «title» or «@price»), then they take on the type expected by the
context where you use them. For example, you can use «@price» as a number by writing «@price *
0.8», or you can use it as a string by writing «substring-after(@price, ’$’)». The typed value of
the attribute, which is simply the string value as written in the source document, will be converted to a
number or to a string as required by the context. If the conversion fails, for example, if you try to use the
value as an integer when it isn’t a valid integer, then you get a runtime error.

If you have processed the document using a schema, things get more interesting. The situation where the
typed value is most useful is where the schema defines a simple type for the element or attribute (or in
the case of elements, a complex type with simple content—which means that the element can have
attributes, but it cannot have child elements). Simple types in XML Schema allow atomic values or lists of
atomic values, but they don’t allow child elements.

❑ The simple type may be an atomic type, such as xs:integer or xs:date, in which case the
typed value will be the result of converting the string value to an xs:integer or xs:date value
according to the rules defined by XML Schema. The value must be a valid xs:integer or
xs:date, or it wouldn’t have passed schema validation.

❑ The schema may also define the type as being a list, for example, a list of xs:integer or
xs:date values. In this case the typed value is a sequence of zero or more atomic values, again
following the rules defined in XML Schema.

❑ Another possibility is that the schema defines a union type, for example, it may allow either an
xs:integer or an xs:date. The schema validator tries to interpret the value as an
xs:integer (if that is the first possibility listed), and if that fails, it tries to validate it as an
xs:date. The typed value returned by the data()function may then be either an xs:integer
or an xs:date value.

41

Chapter 2

❑ Lists of a union type are also allowed, so you can get back a sequence containing (say) a mixture
of integers and dates.

For attributes, all types are simple types, so the above rules cover all the possibilities. For elements,
however, there are additional rules to cover non-simple types:

❑ If the schema defines the element as having mixed content, then the typed value is the same as
the string value, labeled as xdt:untypedAtomic. Note that the deciding factor is that the
schema allows mixed content (a mixture of element and text node children), not that the element
in question actually has mixed content: in reality it might have element children, or text children,
or both or neither. This is identical to the rule for processing without a schema, which means that
in many cases, narrative or document-oriented XML (as opposed to data-oriented XML) will be
processed in exactly the same way whether there is a schema or not. Narrative XML is
characterized by heavy use of mixed content models.

❑ If the schema defines the element as having empty content (that is, the element is not allowed to
have either element node or text nodes as children, though it can have attributes) then the typed
value is an empty sequence.

❑ If the schema defines the element as having an element-only content model (that is, it can contain
element nodes as children but not text nodes), then there is no typed value defined, and
attempting to retrieve the typed value causes an error. This error is classified as a type error,
which means it may be detected and reported either at compile time or at evaluation time. The
reason that this is an error is that the typed value must always be a sequence of atomic values,
and there is really no way of doing justice to the content of a structured element by representing it
as such a sequence. The content is not atomic, because it only makes sense when considered in
conjunction with the names of the child elements. Element-only content models tend to feature
strongly in “data-oriented” XML applications.

The specification includes some special rules concerning the handling of values of types xs:date,
xs:time, and xs:dateTime. Essentially, these provide an exception to the rule that values are
processed as defined in XML Schema. It was decided that XSLT and XQuery users would get upset if the
timezone part of the original string value was simply discarded, causing two values like
«15:00:00-05:00» and «14:00:00-06:00» to be treated as identical. Instead, the XPath data model
provides that the timezone is retained as part of the typed value. Even though it plays no part in
subsequent operations such comparisons or sorting, the original timezone is then available when the
value is converted back to a string in a result document. The XSLT functions format-date(),
format-time(), and format-dateTime()(described in XSLT 2.0 Programmer’s Reference) also retain
the original timezone in the displayed value.

The Type Annotation of a Node
As well as having a typed value, a node also has a type annotation. This is a reference to the type
definition that was used to validate the node during schema processing. It is not available directly to
applications, but it affects the outcome of a number of type-sensitive operations. For example, when you
select all attributes of type xs:date by writing the path expression «//attribute(*, xs:date)»
(this is described in Chapter 9), the system looks at the type annotations of the attributes to see which
nodes qualify.

In the W3C specifications for the data model, the type annotation is modeled as an xs:QName holding
the name of the type in the case where the type is a globally declared schema type, or an invented name

42

The Data Model

in the case where it is locally declared (not all types defined in a schema need to be named). It’s
reasonable to treat this as polite fiction, designed to tie up loose ends in the specification in an area where
the practical details will inevitably vary from one implementation to another. Any real schema-aware
XPath processor will need to have some kind of access to schema information both at compile time and at
runtime, but the W3C specifications have not tried to model exactly what this should look like. In
practice, the type annotation on a node is likely to be implemented as some kind of pointer into the
metadata representing the cached schema information. But for defining the semantics of constructs like
«//attribute(*, xs:date)», it’s enough to assume that the node contains just the type name.

The type annotation defines the type of the content of the node, not the type of the node itself. This is an
important distinction, and we’ll have more to say about it when we discuss the XPath type system in the
next chapter.

You might imagine that the type annotation is redundant, because the typed value is itself an atomic
value, and the atomic value itself has a label identifying its type. Very often, the type annotation of the
node will be the same as the label on its typed value. However, this only works for nodes whose typed
value is a single atomic value. In cases where the schema type is a list type, or a union type, the type
annotation on the node is the name of the list or union type, which is not the same as the type of the
individual atomic values making up the typed value. For example, if the schema type of an attribute is
xs:IDREFS (which is defined as a list of xs:IDREF values), then the type annotation on the attribute
node will be xs:IDREFS, but the items in the typed value will be labeled xs:IDREF. If the typed value is
an empty sequence, there will be no items to carry a label, but the containing node can still be annotated
as being of type xs:IDREFS.

There is, however, a strong relationship between the string value, the typed value, and the type
annotation. In fact, with knowledge of the schema and access to a schema validator, the typed value can
always be reconstructed from the string value and the type annotation.

If an element or attribute node has not been validated using a schema processor, then the type annotation
will be xdt:untypedAtomic in the case of an attribute node, or xdt:untyped in the case of an element
node.

For document, comment, processing-instruction, and namespace nodes, there is no type annotation
(the value of the type annotation is an empty sequence). For text nodes, the type annotation is
xdt:untypedAtomic (but I haven’t been able to find anything in the language that makes use of this
fact).

The Base URI of a Node
A node has a base URI. This should not be confused with its namespace URI. The base URI of a node
depends on the URI of the source XML document it was loaded from, or more accurately, the URI of the
external entity it was loaded from, since different parts of the same document might come from different
XML entities. The base URI is used when evaluating a relative URI that occurs as part of the value of this
node, for example an href attribute: this is always interpreted relative to the base URI of the node it
came from.

It is possible to override this by specifying an explicit base URI using the xml:base attribute. For
example, if an element has the attribute «xml:base="../index.xml"», then the base URI for this
element, and for all its descendants provided they are in the same XML external entity, is the index.xml
file in the parent directory of the file that would otherwise have provided the base URI.

43

Chapter 2

The base URI is maintained explicitly only for document nodes, element nodes and processing
instruction nodes. For attributes, text nodes, and comments, and for elements and processing instructions
without an explicit base URI of their own, the base URI is the same as the URI of its parent node.

For a namespace node the base URI is «()», the empty sequence. The system doesn’t attempt to go to the
parent node to find its base URI. This is rather a curiosity. The only time you might be interested in the
base URI of a namespace node is if you are using the namespace URI as the URI of a real resource, for
example a schema. But even then, the base URI will only be needed if this is a relative URI. W3C, after
fierce debate, decided that a relative namespace URI was deprecated and implementation defined, so the
working groups steered clear of defining an interpretation for it.

The fact that text nodes don’t have their own base URI is a little ad hoc, since a text node need not come
from the same external entity as its parent element, but it reflects the decision that text nodes should be
joined up irrespective of entity boundaries.

The base URI of a node in a source document is used almost exclusively for one purpose: to resolve
relative URI references when loading additional input documents using the doc()function, described in
Chapter 10 (or in XSLT, the similar document()function, described in XSLT 2.0 Programmer’s Reference).
The base URI is accessible using the base-uri()function, which is also described in Chapter 10.

The Children of a Node
A node has a sequence of child nodes. This one-to-many relationship is defined for all nodes, but the list
will be empty for all nodes other than document nodes and element nodes. So you can ask for the
children of an attribute, and you will get an empty sequence returned.

The children of an element are the elements, text nodes, processing instructions, and comments contained
textually between its start and end tags, provided that they are not also children of some lower-level
element.

The children of the document node are all the elements, text nodes, comments, and processing
instructions that aren’t contained in another element. For a well-formed document the children of the root
node will be the document element plus any comments or processing instructions that come before or
after the document element.

The attributes of an element are not regarded as children of the element; neither are its namespace nodes.

The Parent of a Node
Every node, except a node at the root of a tree, has a parent. A document node never has a parent. Other
kinds of node usually have a parent, but they may also be parentless. The parent relationship is not the
exact inverse of the child relationship: specifically, attribute nodes and namespace nodes have an element
node as their parent, but they are not considered to be children of that element. In other cases, however, the
relationship is symmetric: elements, text nodes, processing instructions, and comments are always
children of their parent node, which will always be either an element or the document node.

Two nodes that are both children of the same parent are referred to as being siblings of each other.

The Attributes of a Node
This relationship only exists in a real sense between element nodes and attribute nodes, and this is how it
is shown on the diagram at the end of this section. It is a one-to-many relationship: one element has zero

44

The Data Model

or more attributes. In fact, the relationship has-attribute is defined for all nodes, but if you ask for the
attributes of any node other than an element, the result will be an empty sequence.

The Namespaces of a Node
This relationship only really exists between element nodes and namespace nodes, and this is how it is
shown on the diagram. It is a one-to-many relationship: one element has zero or more namespace nodes.
Like the attributes relationship, the relationship namespaces is defined for all nodes, so if you ask
for the namespaces of any node other than an element, the result will be an empty sequence.

Note that each namespace node is owned uniquely by one element. If a namespace declaration in the
source document has a scope that includes many elements, then a corresponding namespace node will be
generated for each one of these elements. These nodes will all have the same name and string-value, but
they will be distinct nodes for the purposes of counting and using the «is» operator (which tests whether
its two operands are references to the same node: see Chapter 6).

Completing the UML Class Diagram
It’s now possible to draw a more complete UML class diagram, as shown in Figure 2-5. In this version:

❑ I brought out PotentialParent and PotentialChild as separate (abstract) classes, to group
those nodes that can be parents (document and element nodes) and those nodes that can be
children (elements, text nodes, comments, and processing instructions). Note that elements fall
into both categories. This grouping is for illustration only, and in reality the relationships
hasChildren, hasAttributes, and hasNamespaces are available for all kinds of node, they
just return an empty sequence when the node is not a document or element node.

❑ I identified the hasChildren relationship between an element or document node and its
children.

❑ I identified the separate relationships between an element and its attributes, and between an
element and its namespace nodes.

❑ I identified the additional class UnparsedEntity. This is not itself a node on the tree. It
corresponds to an unparsed entity declaration within the document’s DTD. Although unparsed
entities are defined as part of the XPath data model, they are not accessible by any standard
function in XPath itself; but they are exposed by the functions unparsed-entity-uri()and
unparsed-entity-public-id()available in XSLT (see Chapter 7 of XSLT 2.0 Programmer’s
Reference).

It’s worth mentioning that the XPath tree model never uses null values in the sense that SQL or Java use
null values. If a node has no string-value, then the value returned is the zero-length string. If a node has
no children, then the value returned is the empty sequence, a sequence containing no items.

Let’s look briefly at some of the features of this model.

Names and Namespaces
XSLT and XPath are designed very much with the use of XML Namespaces in mind, and although many
source documents may make little or no use of namespaces, an understanding of the XML Namespaces
Recommendation (found in http://www.w3.org/TR/REC-xml-names) is essential.

45

Chapter 2

Node

-Name : QName?
-StringValue : String
-TypedValue : AtomicValue*
-BaseURI : anyURI?
-TypeAnnotation : QName?

Document

-DocumentURI : anyURI?

Element

Attribute

Text

Comment

Processing Instruction

Namespace

PossibleParent PossibleChild

hasAttributes

UnparsedEntity

-SystemID : anyURI
-PublicID : String?

UnparsedEntities

hasNamespaces

hasChildren

Figure 2-5

I’ll start with an overview of how namespaces work, and then get into more detail of how they are
represented in the XPath 2.0 data model.

Namespaces: An Overview
Expanding on the description in Chapter 1 (page 17), here’s a summary of how namespaces work:

❑ A namespace declaration defines a namespace prefix and a namespace URI. The namespace
prefix needs to be unique only within a local scope, but the namespace URI is supposed to be
unique globally. Globally here really does mean globally—not just unique in the document, but
unique across all documents around the planet. To achieve that, the advice is to use a URI based
on a domain name that you control, for example, «http://www.mega-utility.com/
namespace/billing». XPath doesn’t impose any particular rules on the URI syntax, though
it’s a good idea to stick to a standard URI scheme in case this ever changes: in most of our

46

The Data Model

examples we’ll use URIs beginning with «http://». To avoid any ambiguity, it’s also best to
avoid relative URIs such as «billing.dtd». After a fierce debate on the issue, W3C issued an
edict deprecating the use of relative namespace URIs in XML documents, and stating that the
effect of using them is implementation-defined. What this actually means is that they couldn’t get
everyone to agree. However, as far as most XPath processors are concerned, the namespace URI
does not have to conform to any particular syntax. For example, «abc», «42», and «?!*» are all
likely to be acceptable as namespace URIs. It is just a character string, and two namespace URIs
are considered equal if they contain the same sequence of Unicode characters.

❑ The namespace URI does not have to identify any particular resource, and although it is
recommended to use a URL based on a domain name that you own, there is no implication that
there is anything of interest to be found at that address. The two strings «file:///c:/this
. dtd» and «file:///c:/THIS.DTD» are both acceptable as namespace URIs, whether or not
there is actually a file of this name; and they represent different namespaces even though when
read as filenames they might identify the same file.

❑ The fact that every XSLT stylesheet uses the namespace URI http://www.w3.org/1999/
XSL/Transform doesn’t mean that you can only run a transformation if your machine has an
internet connection. The name is just an elaborate constant, it’s not the address of something that
the processor has to go and fetch.

❑ A namespace declaration for a non-null prefix is written as follows. This associates the namespace
prefix my-prefix with the namespace URI http://my.com/namespace:

<a xmlns:my-prefix="http://my.com/namespace">

❑ A namespace declaration may also be present for the null prefix. This is known as the default
namespace. The following declaration makes http://your.com/namespace the default
namespace URI:

❑ In the absence of such a declaration, an unprefixed element name is not in any namespace. I will
often describe such a name as being in the null namespace, though this is not the officially correct
terminology.

❑ The default namespace applies only to element names, not to attribute names; an unprefixed
attribute name is always in the null namespace.

❑ You can undeclare the default namespace like this:

This puts you back in the position you were in at the outermost level of the document: an element
name with no prefix is in the null namespace.

❑ The latest version of the XML Namespaces Recommendation, version 1.1, also allows you to
undeclare other namespaces, like this:

<a xmlns:my-prefix="">

This has the effect that the prefix becomes unavailable for use within this element. This feature is
not yet widely implemented or used, but the XPath 2.0 data model allows for it.

47

Chapter 2

❑ The scope of a namespace declaration is the element on which it appears and all its children and
descendants, excluding any subtree where the same prefix is undeclared or redeclared to associate
it with a different URI. This scope defines where the prefix is available for use. Within this scope,
any name with the given prefix is automatically associated with the given namespace URI.

Namespaces in the Data Model
A namespace-qualified name is referred to as a QName. When a QName appears in a textual XML
document, it is written in the form prefix:local-part. For example, in the name xsl:template, the prefix
is «xsl» and the local part is «template». I refer to this form as a lexical QName. The real underlying
name, however, is the combination of the namespace URI and the local part. When two names are
compared, they are considered equivalent if they have the same namespace URI and the same local part;
it is irrelevant whether or not they were written with the same prefix. The combination of a namespace
URI and a local name is referred to as an expanded QName.

An expanded QName is never written directly in XPath, it is purely an internal value manipulated by the
system. However, in some APIs and in error messages you might sometimes see expanded QNames
written out in the form «{http://my.com/namespace}local-name». This format is sometimes
called Clark notation, after James Clark, the editor of the XSLT 1.0 and XPath 1.0 specifications.

The job of converting element and attribute names from lexical QNames into expanded QNames is done
by the XML parser. The namespace URI of the name is found from the innermost element that carries a
namespace declaration of the relevant prefix. If a name has no prefix, then its namespace URI is
considered to be the default namespace URI in the case of an element name, or a null URI in the case of an
attribute name.

In the XPath data model, element and attribute nodes contain an expanded QName to represent the name
of the element or attribute. In theory at least, no information is retained about the original prefix. (This
doesn’t stop an implementation keeping the prefix for use in diagnostics, just as it might also keep the
line number of the element in the original XML file, but it’s not part of the data model, and therefore the
results of an XPath expression never depend on it.)

However, although prefixes are not present in element and attribute nodes, they are present elsewhere in
the data model, namely in namespace nodes. A namespace node represents the binding of a namespace
prefix to a namespace URI: it uses the node name to hold the prefix, and the string value of the node to
represent the URI.

For any element, it is possible to determine all the namespace declarations in force for that element, by
retrieving the associated namespace nodes. These are all made available as if the namespace declarations
were repeated on that specific element. The application cannot determine where the namespace
declaration actually occurred in the original document, but if there is a namespace node present for a
particular element, then it follows that there was a namespace declaration either on that element or on
some containing element.

Namespace undeclarations, for example «xmlns=""», or in XML Namespaces 1.1 «xmlns: ppp=""»,
are not represented as namespace nodes; rather they have the effect that the parser won’t create a
namespace node for the namespace that has been undeclared. Without the undeclaration, the parser
would create a namespace node for that namespace for every element within its scope, whether the
element uses it or not; the namespace undeclaration stops this happening.

48

The Data Model

Although the namespace declarations are originally written in the source document in the form of XML
attributes, they are not retained as attribute nodes on the tree, and cannot be processed by looking for all
the attribute nodes. Similarly, it is not possible to generate a namespace node on the result tree by creating
an attribute with a name such as «xmlns:p»: such names are reserved for namespace declarations. In the
data model, namespaces and attributes are quite distinct animals. XSLT 2.0 has a special instruction,
<xsl:namespace>, for creating namespace nodes on the rare occasions that you need to do so.

Namespace Sensitive Content
Namespace nodes are needed because of the possibility that elements or attributes will contain
namespace-sensitive content. If namespace prefixes were only ever used in element and attribute names,
it would be quite enough to convert these into expanded QNames and discard the namespace prefixes,
inventing new prefixes if necessary when the tree is turned back into textual XML.

Unfortunately, it is quite common for XML documents to contain references to element or attribute names
within the content of the document. The obvious examples of XML documents that use this technique are
XSLT stylesheets and XML schemas. When you see a stylesheet containing an attribute such as
«select="html:table"», or a schema containing the attribute «type="xs:date"», you are looking
at namespace-sensitive content. Similarly, the attribute «xsi:type="xs:short"» appearing in an
instance document is using namespaces both in the attribute name and in the attribute content.
Stylesheets and schemas are not the only XML documents to use this technique, but they are probably the
ones you will encounter most frequently.

In general, the XML parser can’t convert these values from lexical QNames to expanded QNames because
it doesn’t know that they are special. XML Schema has tried to address the problem by defining a data
type «xs:QName» that declares the content of an element or attribute to be a QName, but this doesn’t
solve the whole problem, for a number of reasons:

❑ There can be namespace-sensitive content other than simple QNames; for example an attribute
might contain an XPath expression, which is also namespace sensitive, but there is no
schema-defined type for it.

❑ There are documents that have no schema.

❑ Although knowing the data type means that a schema processor can convert the lexical QName
used in the string value of these attributes to the expanded QName used as the typed value, this
only works if the schema processor knows the mapping of prefixes to namespace URIs. So if you
want to be able to construct a tree and then pass it to a schema processor for validation, you need
some way of representing the namespace information on the tree before this can work.

❑ The definition of the xs:QName data type says that an unprefixed QName is assumed (like an
unprefixed element name) to be in the default namespace. (You need to read the errata of the
XML Schema 1.0 specification to discover this.) Unfortunately, at least one heavy user of
QName-valued attributes, namely the XSLT specification, had already decided that an unprefixed
QName (like an unprefixed attribute name) should be in the null namespace. This means that if
the attribute were defined as an xs:QName, a schema processor would allocate the wrong
namespace URI. So you will find that in the schema for XSLT 2.0 (the schema that can be used to
validate XSLT stylesheets), the xs:QName data type isn’t actually used.

So, namespace nodes exist primarily so that namespace prefixes appearing in namespace-sensitive content
can be handled. Although this might seem a minor requirement, they cause significant complications.

49

Chapter 2

The way namespace nodes are represented in the data model hasn’t changed significantly between XPath
1.0 and XPath 2.0. What has changed, though, is that namespace nodes are now semi-hidden from the
application. To be precise, the only way that you could actually get your hands on a namespace node in
XPath 1.0 was by using the namespace axis; and in XPath 2.0, the namespace axis has been deprecated,
which means that some implementations may continue to support it for backward compatibility reasons,
but they aren’t required to. Instead, two functions have been provided, in-scope-prefixes()and
namespace-uri-for-prefix(), that provide access to information about the namespaces that are in
scope for any element. These functions are described in Chapter 10. The significance of this change is that
it gives implementations the freedom to maintain namespace information internally in a form that is
much more efficient than the formal description of namespace nodes in the data model would imply:
remember that the data model is just a model, not a description of a real implementation.

The other use for namespace nodes is that they allow namespace prefixes on element and attribute names
to be reconstituted when required. Strictly speaking, this is a luxury because the choice of prefix is
arbitrary. In practice, however, we are all accustomed to seeing standard prefixes used for well-known
namespaces, and we would find it much more difficult to read XML documents if randomly generated
prefixes were used. There are two occasions on which namespace prefixes need to be reconstituted:

❑ When the name()function is used: this returns the name of a node as a lexical QName. The
name()function, like all others in the standard library, is described in Chapter 10.

❑ When a tree representing an XML document is serialized, to create textual XML. Serialization
can’t be invoked directly from XPath, but is offered by host environments such as XSLT and
XQuery.

In both cases the original prefix for an element or attribute can usually be reconstituted by examining the
namespace nodes on the tree. There are exceptions, typically when the document maps two prefixes to
the same namespace URI, but they are relatively rare in practice.

As far as XPath itself is concerned, don’t worry too much about namespace nodes—all you need to know
is that there are functions you can call to resolve namespace prefixes found in element or attribute
content. When you construct new trees using XSLT or XQuery, however, understanding what namespace
nodes are present on the new tree becomes rather more important.

IDs
An ID is a string value that identifies an element node uniquely within a document. If an element has an
ID, it becomes easy and (one hopes) efficient to access that element if the ID value is known. Before XML
Schemas came along, the ID always appeared as the value of an attribute declared in the DTD as being of
type ID. XML Schema has retained this capability, but also allows the content of an element to be used as
an ID value. This is done by declaring its type as xs:ID, which is a type derived by restriction from
xs:string.

In the data model, every element has at most one ID value and (if the document is valid, which is not
necessarily the case) every ID value identifies at most one element.

For example, in an XML dataset containing details of employees, each <employee> element might have
a unique ssn attribute giving the employee’s Social Security number. For example:

50

The Data Model

<personnel>
<employee ssn="SSN-123-45-6789">

<name>John Doe</name>
...

</employee>
<employee ssn="SSN-123-45-6890">

<name>Jane Stagg</name>
...

</employee>
</personnel>

As the ssn attribute is unique, it can be declared in the DTD as an ID attribute using the following
declaration:

<!ATTLIST employee ssn ID #REQUIRED>

Alternatively, an ID attribute can be declared in a schema:

<xs:element name="employee">
<xs:complexType>

<xs:sequence>
<xs:attribute name="ssn" type="xs:ID"/>
...

</xs:sequence>
</xs:complexType>

</xs:element>

Attributes of type ID are often given the name ID as a reminder of their role; unfortunately, this
sometimes leads people to believe that the attribute name ID is somehow special. It isn’t; an ID attribute
is any attribute defined in the DTD or schema as having type ID, regardless of the attribute name.

An ID value is constrained to take the form of an XML NCName. This means, for example, that it must
start with a letter, and that it must not contain characters such as «/», «:», or space.

Attributes can also be defined as being of type IDREF or IDREFS if they contain ID values used to point
to other elements in the document (an IDREF attribute contains one ID value, an IDREFS attribute
contains a whitespace-separated list of ID values). XPath provides a function, id()(see page 347), which
can be used to locate an element given its ID value. This function is designed so that an IDREF or
IDREFS attribute can be used as input to the function, but equally, so can any other string that happens to
contain an ID. However, IDREF and IDREFS attributes are treated specially by the idref()function (see
page 349), which follows IDREF links in the opposite direction—given an ID value, it finds all the nodes
of type IDREF or IDREFS that refer to it.

There is a slight complication with the use of ID values, in that XPath is not constrained to process only
valid XML documents. If an XML document is well formed (or merely well-balanced) but not valid, then
values that are supposed to be IDs may be duplicated, and they might not obey the syntactic rules for an
XML NCName. Similarly, attributes might be marked as IDREF attributes, but actually contain broken
links (values that don’t match the ID of any element in the document). The XPath specification says that if
an ID value appears more than once, all occurrences except the first are ignored. If the ID value contains
invalid characters such as spaces, the id()function will fail to find the element but will otherwise appear
to work correctly. If you use ID values, it’s probably a good idea to use a validating XML parser to
prevent this situation occurring.

51

Chapter 2

In XSLT there is a more flexible approach to finding elements (or other nodes) by content, namely keys.
With keys you can do anything that IDs achieve, other than enforcing uniqueness. Keys are declared in
the stylesheet using the <xsl:key> element, and they can be used to find a node by means of the
key()function. For more details, see XSLT 2.0 Programmer’s Reference.

Characters in the Data Model
In the XML Information Set definition (http://www.w3.org/TR/xml-infoset) each individual
character is distinguished as an object (or information item). This is a useful model conceptually, because it
allows one to talk about the properties of a character and the position of a character relative to other
characters, but it would be very expensive to represent each character as a separate object in a real tree
implementation.

The XPath model has chosen not to represent characters as nodes. It would be nice if it did, because the
XPath syntax could then be extended naturally to do character manipulation within strings, but the
designers chose instead to provide a separate set of string-manipulation functions. These functions are
described in Chapter 10.

A string (and therefore the string-value of a node) is a sequence of zero or more characters. Each character
is a Char as defined in the XML standard. Loosely, this is a Unicode character. More precisely, it is one of
the following:

❑ One of the four whitespace characters tab #x9, linefeed #xA, carriage return #xD, or space #x20.

❑ An ordinary 16-bit Unicode character in the range #x21 to #xD7FF or #xE000 to #xFFFD.

❑ An extended Unicode character in the range #x10000 to #x10FFFF. In programming languages
such as Java, and in files using UTF-8 or UTF-16 encoding, such a character is represented as a
surrogate pair, using two 16-bit codes in the range #xD800 to #xDFFF. But as far as XPath is
concerned, it is one character rather than two. This affects functions that count characters in a
string or that make use of the position of a character in a string, for example the functions
string-length(), substring(), and translate(). Here XPath differs from Java, which
counts a surrogate pair as two characters.

Unicode surrogate pairs are starting to be increasingly used for specialist applications. For example, there
is a full range of musical symbols in the range #x1D100 to #x1D1FF. Although these are unlikely to be
used when typesetting printed sheet music, they are very important in texts containing musical criticism.
They also have some of the most delightful names in the whole Unicode repertoire: Who can resist a
character called Tempus Perfectum cum Prolatione Perfecta? If you’re interested, it looks like a circle
with a dot in the middle.

Note that line endings are normalized to a single newline #xA character, regardless of how they appear in
the original XML source file.

It is not possible in a stylesheet to determine how a character was written in the original XML file. For
example, the following strings are all identical as far as the XPath data model is concerned:

❑ >

❑ >

52

The Data Model

❑ >

❑ >

❑ >

❑ <![CDATA[>]]>

The XML parser handles these different character representations. In most implementations, the XPath
processor couldn’t treat these representations differently even if it wanted to, because they all look the
same once the XML parser has dealt with them.

What Does the Tree Leave Out?
The debate in defining a tree model is about what to leave out. What information from the source XML
document is significant, and what is an insignificant detail? For example, is it significant whether the
CDATA notation was used for text? Are entity boundaries significant? What about comments?

Many newcomers to XSLT ask questions like “How can I get the processor to use single quotes around
attribute values rather than double quotes?” or “How can I get it to output « » instead of
« »?” The answer is that you can’t, because these distinctions are considered to be things that
the recipient of the document shouldn’t care about, and they were therefore left out of the XPath tree
model.

Generally, the features of an XML document fall into one of three categories: definitely significant,
definitely insignificant, and debatable. For example, the order of elements is definitely significant: the
order of attributes within a start element tag is definitely insignificant; but the significance of comments is
debatable.

The XML standard itself doesn’t define these distinctions particularly clearly. It defines certain things that
must be reported to the application, and these are certainly significant. There are other things that are
obviously significant (such as the order of elements) about which it says nothing. Equally, there are some
things that it clearly states are insignificant, such as the choice of CR-LF or LF for line endings, but many
others about which it stays silent, such as choice of «"» versus «’» to delimit attribute values.

One result of this is that different standards in the XML family have each made their own decisions on
these matters, and the XPath data model is no exception.

The debate arises partly because there are two kinds of application. Applications that want only to extract
the information content of the document are usually interested only in the core information content.
Applications such as XML editing tools tend also to be interested in details of how the XML was written,
because when the user makes no change to a section of the document, they want the corresponding
output document to be as close to the original as possible.

To resolve these questions and get some commonality across the different standards, the W3C defined a
common model of the information in an XML document: the so-called XML Information Set (or InfoSet, as
it is often referred to). This is available at http://www.w3.org/TR/xml-infoset.

The XML information set as finally defined includes 17 different information items, listed below. In
earlier drafts of the Infoset specification, some of these were classified as core information items, and

53

Chapter 2

others, by implication, as non-core. This classification obviously proved too controversial, because it
disappeared in the final version of the specification. However, it’s interesting to look back at the drafts to
see how they classified different features.

The 17 kinds of information item are as follows:

❑ Originally classified as core: Document, Element, Attribute, Processing Instruction, Unexpanded
Entity, Character, Notation, Namespace Declaration.

❑ Originally classified as non-core: Comment, Document Type Declaration, Internal Entity, External
Entity, Unparsed Entity, Entity Start Marker, Entity End Marker, CDATA Start Marker, CDATA
End Marker.

Even after removing the distinction between core and non-core information, the Infoset specification is
not written in a prescriptive style. The only conformance rules it imposes are that other specifications
must explain which information items are made available to the application and which aren’t.

Another attempt to define the core information content of an XML document appears in the specification
of Canonical XML (http://www.w3.org/TR/xml-c14n). This specification approaches the question
from a different angle: it tries to define rules for deciding when two lexically different XML documents
have the same information content. To do this, it defines a transformation that can be applied to any XML
document to turn it into canonical form; and if two documents have the same canonical form, they are
considered equivalent.

The process of turning a document into canonical form is summarized as follows:

1. The document is encoded in UTF-8

2. Line breaks are normalized to #xA

3. Attribute values are normalized, depending on the attribute type

4. Character references and parsed entity references are expanded

5. CDATA sections are replaced with their character content

6. The XML declaration and document type declaration (DTD) are removed

7. Empty element tags (<a/>) are converted to tag pairs (<a>)

8. Whitespace outside the document element and within tags is normalized

9. Attribute value delimiters are set to double quotes

10. Special characters in attribute values and character content are replaced by character references

11. Redundant namespace declarations are removed

12. Default attribute values defined in the DTD are added to each element

13. Attributes and namespace declarations are sorted into alphabetical order

This specification has a gray area too: canonical form may or may not retain comments from the original
document. So in place of the Infoset definition, we have an alternative definition of core XML
information: namely, information that is retained when a document is turned into canonical form.

54

The Data Model

Figure 2-6 illustrates the resulting classification: the central core is information that is retained in canonical
form; the “peripheral” ring is information that is present in the Infoset but not in canonical XML; while
the outer ring represents features of an XML document that are excluded from the information set entirely.

Excluded

XML
version Choice of

line terminator

Choice of
quotes for
attributes

Character
Encoding

Order of
Attributes

Peripheral

Core

CDATA
Sections

Unparsed
entities

Parsed
Entities

Notions

Attributes Comments

Text Document

Skipped
entities

Document
Type

Declaration

Redundant
Namespaces

ELEMENT and
ATTLIST declarations

Order of
declarations

in DTD

Whitespace
within tags

Processing
Instructions

Elements

Namespaces

Unnormalized
Attributes

Conditional
Sections
in DTD

Character
references

<a>
versus
<a/>

Figure 2-6

The choice of information items that are present in the XPath tree model, and which therefore are
accessible to an XPath expression, follows the core as shown in the above diagram fairly closely, but there
are some very small differences of detail:

❑ The XPath model includes comments, which are optional information items in Canonical XML.

❑ Canonical XML retains namespace prefixes as originally defined in the source document. In
practice most XSLT and XPath processors will also retain namespace prefixes, but in theory,
according to the specification, the name()function in XPath can return any namespace prefix so
long as it maps to the correct namespace URI.

❑ The XPath model retains the base URI as a property of a node: this property is not retained in
Canonical XML.

55

Chapter 2

The way in which the textual content of an item is modeled differs between XPath and the Infoset: the
Infoset describes each character as an individual information item, whereas the XPath model
concatenates adjacent characters into a property called the string-value of a node. In the case of character
content within elements this also requires the inclusion of text nodes in the model. However, this is
purely a difference in the way the data is described: the information content of both models is the same.
The reason the Infoset makes each character a separate information item is that it allows CDATA section
boundaries and entity reference boundaries to be placed between the characters. These information items
are not retained in Canonical XML, nor are they visible in the XPath model.

From Textual XML to a Data Model
I’ve explained the data model so far in this chapter by relating the constructs in the data model (such as
element nodes and text nodes) to constructs in a textual XML document.

This isn’t actually how the W3C specs define it. There are two important differences:

❑ The W3C specifications don’t describe the model in terms of textual XML, they describe it in
terms of the XML Infoset, which we examined in the previous section, together with the PSVI
(Post Schema Validation Infoset), which describes an augmented Infoset containing not only the
information in the raw XML, but also the additional information that becomes available as a
result of schema validation.

❑ Although the W3C specifications describe a mapping from the Infoset and PSVI to the XPath data
model, this mapping is non-normative (which is standards-speak for saying that it’s not officially
part of the standard). Products aren’t required to provide any particular way of constructing an
XPath data model from raw XML. This was also true in XSLT 1.0, and it is an issue that has caused
some controversy, because it means there is no guarantee that two XPath processors will give the
same answer when applied to the same source document.

The main reason for putting this mapping outside the conformance boundary of the specification
is to allow XPath to be used in as wide a variety of contexts as possible, for example in
environments where the data model is not constructed from textual XML at all, but is rather a
view of non-XML information. Unfortunately, this also means that where the data model is
constructed in the conventional way by parsing textual XML files, different processors are
allowed to do it in different ways.

Examples of the variations that have arisen in this area between different 1.0 processors are:

❑ The standard way of building a data model using Microsoft’s MSXML processor, if all options are
set to their default values, causes whitespace-only text nodes to be removed from the model. The
standard mapping keeps these nodes present. Microsoft’s decision has some rationale: in many
cases the extra whitespace nodes simply get in the way, they make the XPath user’s life more
difficult, and they take up space for no useful reason. Unfortunately, there are some cases where
the whitespace is actually significant, and more importantly, this decision means that it’s not
uncommon for an XSLT stylesheet to produce a different result under MSXML than the result
produced under every other processor.

❑ One XSLT vendor (Fourthought: see www.fourthought.com) decided that it would be a good
idea to expand any XInclude directives in the source XML as part of the process of building the
data model. There is nothing in the spec to say whether XInclude should be expanded or not, and

56

The Data Model

it’s something that some users might want to happen and other users might not want to happen.
So they were entirely within their rights to make this decision. But again, it creates a problem
because different processors are no longer compatible.

With the XPath 2.0 data model, there is additional scope for variations between processors. Because the
model is designed to support XQuery as well as XSLT, the range of possible usage scenarios is greatly
increased. Many XQuery vendors aim to offer implementations capable of searching databases
containing hundreds of gigabytes of data, and in such environments performance optimization becomes
a paramount requirement. In fact, database products have traditionally treated performance as a more
important requirement than standards conformance, and there are indications that this culture is present
among some of the XQuery vendors. Examples of the kind of variations that may be encountered include
the following:

❑ Dropping of whitespace text nodes.

❑ Storing only the typed value of elements and attributes, and not the string value. This means that
the string()function would reconstitute a string value from the typed value, rather than
returning the value that was present in the original textual XML. Such products will not always
be able to return the value as originally written: for example an integer value «+0100» will be
returned as «100», and a boolean value written as «0» will be returned as «false».

❑ Dropping comments and processing instructions, especially when they are contained within
simple-valued elements. Vendors storing the data in “shredded” form in a relational database
have particular difficulty coping with values such as:

<birth>1914-09<!-- or 06? -->-28</birth>

or a list of values such as:

<readings>23.6 18.2 12.5 <!--rest added by MHK--> 18.6 19.3</readings>

❑ Dropping unused namespace declarations.

It remains to be seen how most vendors will handle these problems. Hopefully, vendors will offer any
optimizations as an option that the user can choose, rather than as the default way that source XML is
processed when loading the data.

Controlling Serialization
XPath itself does not produce new trees, and so it is not concerned with how trees in the data model get
converted back into textual XML—a process generally referred to as serialization (though it must not be
confused with serialization as defined in programming languages such as Java). This is a matter for the
XSLT and XQuery specifications, which do produce new trees. The suite of W3C specifications includes
one devoted to serialization. This was originally part of the XSLT specification, but it was extracted into a
separate spec to make it reusable; it allows any language that uses the XPath data model to invoke the
same serializer. I have covered this material in the companion book XSLT 2.0 Programmer’s Reference. But
in this chapter, it’s worth taking a look at how serialization tackles the information that I have classified
as peripheral or excluded.

A tree constructed using XSLT or XQuery contains only the core information present in the XPath data
model. The serializer, however, gives a little bit of extra control over how the result tree is converted into

57

Chapter 2

a textual XML document. Specifically, it allows control over:

❑ Use of CDATA sections

❑ XML version

❑ Character encoding

❑ The standalone property in the XML declaration

❑ DOCTYPE declaration

Some of these things are considered peripheral in our classification above, and some are in the excluded
category. The features that can be controlled during serialization do not include all the peripheral
information items (for example, it is not possible to generate entity references, except by using a rather
low-level facility called character mapping), and they certainly do not include all the excluded features.
There is no way of controlling the order in which attributes are written, or the choice of <a/> versus
<a> to represent empty elements, the disposition of whitespace within a start tag, or the presence of
a newline character at the end of the document.

In short, the set of things that you can control in the serialization stage of processing bears some
resemblance to the classification of features in the Information Set and in Canonical XML, but not as
much resemblance as one might expect. Perhaps if the Information Set had been defined earlier, there
would be greater consistency between the different W3C specifications.

To underline all this, let’s list some of the things you can’t see in the input tree, and some of the things
you can’t control in a textual XML output file.

Invisible Distinctions
In the table below, the constructs in the two columns are considered equivalent, and in each case you
can’t tell as a stylesheet writer which one was used in the source document. If one of them doesn’t seem
to have the required effect, don’t bother trying the other because it won’t make any difference:

Construct Equivalent

<item/> <item></item>

> >

<e>"</e> <e>"</e>

<![CDATA[a < b]]> a < b

 <b xmlns="one.uri"/>

<rectangle x="2" y="4"/> <rectangle y=’4’
x=’2’

/>

In all these cases, except CDATA, it’s equally true that you have no control over the format of the output.
Because the alternatives are equivalent, you aren’t supposed to care which is used.

58

The Data Model

Why make a distinction for CDATA on output? Perhaps because where a passage of text contains a large
number of special characters, for example in a book where you want to show examples of XML, the use of
character references can become very unreadable. It is after all one of the strengths of XML, and one of the
reasons for its success, that XML documents are easy to read and edit by hand. Also, perhaps, because
there is actually some controversy about the meaning of CDATA: there have been disputes, for example,
about whether «<![CDATA[]]>» is allowed in circumstances where XML only permits whitespace.

DTD Information
The XPath 1.0 designers decided not to include all the DTD information in the tree. Perhaps they were
already anticipating the introduction of XML Schemas, but in any case, support for DTDs is certainly no
better in XPath 2.0 than it was in 1.0.

The XPath processor (but not the application) needs to know which attributes are of type ID or
IDREF/IDREFS, so that the relevant elements can be retrieved when the id()or idref()function is
used (these functions are described in Chapter 10). In the case of a schema-aware processor, XPath 2.0
determines this information as a result of schema validation: the information is implicit in the type
annotation of element and attribute nodes. For processors that are not schema-aware, or in the case of
documents that have a DTD but no schema, the question is somewhat fudged in the specifications. XSLT
2.0, for example, says that with a non-schema-aware processor, all attributes are annotated as being of
type xdt:untypedAtomic; but at the same time, it encourages implementations to support the
id()and idref()functions based on information obtained from the DTD, when available.

For XSLT users, the best advice is probably to steer clear of id()and idref(), and define keys instead
using the <xsl:key> declaration. The result is more likely to be portable, and in any case, keys offer
much more flexibility.

Document Order
Nodes within a tree have an ordering, called document order. Where two nodes come from the same tree,
their relative position in document order is based on their position in the tree, which in turn is based on
the ordering of the underlying constructs in the original textual XML document. For example an element
precedes its children in document order, and sibling nodes are listed in the same order as they appear in
the original source document. By convention an element node is followed by its namespace nodes, then
its attributes, and then its children, but the ordering of the namespace nodes among themselves, and of
the attribute nodes among themselves, is unpredictable.

Where two nodes come from different trees, they still have a document order, but it is not predictable
what it will be. In fact, any sequence of nodes can be sorted into document order, whether the nodes come
from the same document or different documents, and if you sort the same sequence into document order
more than once you will always get the same result, but in the case of nodes from different documents,
you can’t predict which one will come first. The spec does say, however, that nodes from different
documents will not be interleaved: a node from document A will never come after one node from
document B and before another node from document B.

There are a number of XPath expressions that always return nodes in document order. These include all
path expressions (any expression using the «/» operator), step expressions such as «ancestor::*», and
expressions using the operators union (or «|»), intersect, and except. If you want to sort a sequence

59

Chapter 2

$seq into document order, you can do this with the trivial path expression «$seq/.», or by forming a
union with the empty sequence: «$seq|()».

XPath 2.0 also includes an operator to test whether one node is before or after another in document order:
the expression «$a << $b» returns true if node $a is before $b in document order.

When a node is copied, for example using the XSLT instruction <xsl:copy-of>, the new node has a
new position in document order that is quite unrelated to the position of the old node.

Summary

This chapter explained the data model that underpins the XPath 2.0 language, as well as XSLT 2.0 and
XQuery 1.0. All values that form the inputs and outputs of XPath expressions can be described using this
data model.

The key features of the model are:

❑ Every value is a sequence (even if it is a sequence of length one). There are two kinds of item in a
sequence, atomic values and nodes.

❑ Atomic values belong to one of the primitive types defined in XML Schema, or to a subtype of
one of these primitive types.

❑ Nodes are the building blocks of the tree model used in XPath, and relate to concepts defined in
the XML standards: they are similar, but not completely identical, to nodes in the DOM model.

In the next chapter we will look at the XPath 2.0 type system in more detail.

60

The Type System
The XPath data model (which we studied in the previous chapter) and the type system, which forms
the subject of this chapter, are very closely related topics. In fact, one could say that the data model
provides the top-level types in the type system (sequences, nodes, atomic values), and the rest of it
is just filling in the detail. However, in order to understand the detail of the XPath type system
(which is shared with XSLT and XQuery) we need to understand something about XML Schema, on
which it is based.

This chapter starts with a quick tour of XML Schema. This won’t be a tutorial on how to write a
schema—there are other books devoted to that subject. Rather, we’ll concentrate on understanding
XML Schema from an XPath perspective.

After the introduction to XML Schema, we look at how this ties together with the XPath data model
presented in the previous chapter to form the type system for the XPath language.

Finally, we look at the role that the type system plays in the XPath language: how does it affect the
expressions that you can write, and the results that they produce?

What Is a Type System?
Before beginning our tour of XML Schema, let’s make sure that when we talk about a type system,
we’re talking the same language.

Every programming language has some kind of type system. A language manipulates values, and
the values are of different types. At the simple level, they might be integers, booleans, and strings.
Then the language might support various kinds of composite types, for example, arrays or records
or lists. Most modern languages also allow users to define their own types, on top of the basic types
provided “out of the box”.

So at the first level, types are used to classify the values that can be manipulated by expressions in
the language, and the type system defines the basic types provided by the language and the
facilities for defining new types built by combining and refining existing types.

Chapter 3

Types serve two main purposes. Firstly, they define a set of permissible values. For example, if you say
that a function expects a positive integer as its first argument, then the phrase “positive integer” tells you
what the valid values for the first argument are.

Secondly, a type defines a set of possible operations. Integers can be added, lists can be concatenated,
booleans can be manipulated using the operators «and», «or», and «not».

Not only does the type tell you whether a particular operation is permitted on a value of that type, it
determines how that operation will be performed. So integers, strings, dates, and high school grades can
all be sorted into order, but the way they are sorted depends on their type. Operations that are performed
in different ways depending on the type of their operands are called polymorphic operations (from Greek
words meaning many shapes).

Types are useful in programming languages for a number of reasons:

❑ Types allow errors to be detected, including programming logic errors and data errors. Because a
type defines a set of permissible values, the system can give you an error message when you try
to use a value that is not permissible. And because a type defines a set of allowed operations, the
system can also give you an error message if you try to apply an operation to the wrong kind of
value.

❑ Types allow polymorphic operations to be defined. At a simple level, this allows «A < B» to
mean different things depending on whether A and B are numbers or dates or strings. At a more
sophisticated level, it allows the kind of inheritance and method overriding which is such a
powerful tool in object-oriented programming.

❑ Types allow optimization. To make expressions in a language such as XPath run as fast as
possible, the system does as much work as it can in advance, using information that is available at
compile time from analysis of the expression itself and its context. A lot of the reasoning that can
be done at this stage is based on analysis of the types of values that the expression will process.
For example, XPath has a very powerful «=» operator, in which the operands can not only be any
type of value (such as integers or strings) but can also be sequences. Handling the general case,
where both operands are arbitrary sequences containing items of mixed types, can be very
expensive. In most cases the operands are much simpler, for example two integers or two strings.
If the system can work out in advance that the operands will be simple (and it often can) then it
can generate much more efficient code and save a lot of work at runtime.

The thinking on types has changed quite considerably between XPath 1.0 and XPath 2.0. In 1.0, there were
very few types, and very little type checking. Almost all operations were permitted, and runtime errors
were very rare. That sounds good on the surface, but what it actually means is that if you make a mistake,
you don’t get an error message, you just get the wrong answer back (or no answer at all, which can be
even more bewildering). This approach to language design generally goes under the name dynamic typing
or weak typing and it is found most often in scripting languages such as JavaScript and Perl. XPath 2.0 has
made a significant shift toward the other approach to language design, based on static typing or strong
typing, which is more characteristic of compiled languages such as C or Java. It has to be said that not
everyone is happy with the change, though there are good reasons for it, essentially the fact that XPath
(and its big sister, XQuery) are starting to be used to tackle much bigger problems where a more robust
engineering approach is needed.

Actually, the really innovative thing about XPath 2.0 is that it tries to accommodate multiple approaches
to typing within a single language. Because XML itself is used to handle a very wide spectrum of

62

The Type System

different kinds of document, from the very rigidly structured to the very flexible, XPath 2.0 has been
designed to accommodate both very flexible and dynamic approaches, where you have no idea what the
data is going to look like in advance, to highly structured queries where the structure of the data is
regular and predictable and the expression can be optimized to take advantage of the fact. That’s the
theory, anyway; in practice, as one might expect, there are a few wrinkles.

Enough of this introduction to type systems in programming languages; let’s take a look at XML Schema,
which provides the underlying foundation for the XPath type system.

XML Schema: An Overview
The primary purpose of XML Schema is to enable documents to be validated: a schema defines a set of
rules that XML documents must conform to, and enables documents to be checked against those rules.
This means that organizations using XML to exchange invoices and purchase orders can agree on a
schema defining the rules for these messages, and both parties can validate the messages against the
schema to ensure that they are okay. So the schema, in effect, defines a type of document, and this is
why schemas are central to the type system of XPath.

In fact, the designers of XML Schema were more ambitious than this. They realized that rather than
simply giving a yes or no answer, processing a document against a schema could make the application’s
life easier by attaching labels to the validated document indicating, for each element and attribute in the
document, which schema definitions it was validated against. In the language of XML Schema, this
document with validation labels is called a Post Schema Validation Infoset or PSVI. The XPath data model is
based on the PSVI, but it only retains a subset of the information in the PSVI: specifically, the type
annotations attached to element and attribute nodes, which we described in the previous chapter.

We’ll start by looking at the kinds of types that can be defined in XML Schema, starting with simple types
and moving on to progressively more complex types.

Simple Type Definitions
Let’s suppose that many of our messages refer to part numbers, and that part numbers have a particular
format such as ABC12345. We can start by defining this as a type in the schema:

<xs:simple-type name="part-number">
<xs:restriction base="xs:token">

<xs:pattern value="[A-Z]{3}[0-9]{5}"/>
</xs:retriction>

</xs:simple-type>

Part number is a simple type because it doesn’t have any internal node structure (it doesn’t contain any
elements or attributes). I have defined it by restriction from xs:token, which is one of the built-in types
that come for free with XML Schema. I could have chosen to base the type on xs:string, but xs:token
is probably better because with xs:string, leading and trailing whitespace is considered significant,
whereas with xs:token, it gets stripped automatically before the validation takes place. The particular
restriction in this case is that the value must match the regular expression given in the <xs:pattern>
element. The syntax of regular expressions in XML Schema is a subset of the syntax allowed in XPath
expressions, which is given in Chapter 11. This particular regular expression says that the value must

63

Chapter 3

consist of exactly three letters in the range A–Z, followed by exactly five digits. (For COBOL diehards,
that means «PIC A(3)9(5)»).

Having defined this type, I can now refer to it in definitions of elements and attributes. For example, I can
define the element:

<xs:element name="part" type="part-number"/>

This allows documents to contain <part> elements whose content conforms to the rules for the type
called part-number. Of course, I can also define other elements that have the same type, for example:

<xs:element name="subpart" type="part-number"/>

Note the distinction between the name of an element and its type. Many element declarations in a schema
(declarations that define elements with different names) can refer to the same type definition, if the rules
for validating their content are the same. It’s also permitted, though we won’t go into the detail just yet,
to use the same element name in different places within a document with different type definitions.

We can also use the same type definition in an attribute, for example:

<xs:attribute name="part-nr" type="part-number"/>

As we will see later in the book, we can use path expressions in XPath that select elements or attributes
of a particular type. Once a document has been validated using this schema, elements that have been
validated against the declarations of part and subpart given above, and attributes that have been
validated against the declaration named part-nr, will carry the type annotation part-number, and
they can be selected using a path expression such as

//element(*, part-number)

This selects all elements in a document that have the type annotation part-number. If further types have
been defined as restricted subtypes of part-number (for example, Boeing-part-number) those will
be selected too. The «*» indicates that we don’t care what the name of the element is, only what its type is.

XPath also allows you to test whether a variable contains an element or attribute of a particular type:

if ($param instance of attribute(*, part-number)) ...

This tests whether the value supplied in $param is an attribute node annotated as a part-number. We’ll
study these XPath expressions in detail in Chapter 9.

One final point before we move on to look at complex types. Simple types in XML Schema are not the
same thing as atomic types in the XPath data model. This is because in the schema, a simple type allows a
sequence of values. For example, it is possible to define the following simple type:

<xs:simpleType name="colors">
<xs:list>

<xs:simpleType>
<xs:restriction base="xs:NCName">
<xs:enumeration value="red"/>
<xs:enumeration value="orange"/>

64

The Type System

<xs:enumeration value="yellow"/>
<xs:enumeration value="green"/>
<xs:enumeration value="blue"/>
<xs:enumeration value="indigo"/>
<xs:enumeration value="violet"/>

</xs:restriction>
</xs:simpleType>

</xs:list>
</xs:simpleType>

There are actually two type definitions here. The inner type is anonymous, because the
<xs:simpleType> element has no name attribute. It defines an atomic value, which must be an
xs:NCName, and more specifically, must be one of the values «red», «orange», «yellow», «green»,
«blue», «indigo», or «violet». The outer type is a named type (which means it can be referenced from
elsewhere in the schema), and it defines a list type whose individual items must conform to the inner type.

This type therefore allows values such as «red green blue» or «violet yellow» or even «red red
red». The values are written in textual XML as a list of color names separated by spaces, but once the
document has been through schema validation, the typed value of an element with this type will be a
sequence of xs:NCName values.

The term simple type in XML Schema rules out types involving multiple attribute or element nodes, but it
does allow composite values consisting of a sequence of atomic values.

Elements with Attributes and Simple Content
One thing that might occur quite frequently in an invoice or purchase order is an amount in money: there
might be elements such as:

❑ <unit-price currency="USD">50.00</unit-price>

❑ <amount-due currency="EUR">1890.00</amount-due>

What these two elements have in common is that they have a currency attribute (with a particular
range of allowed values), and content that is a decimal number. This is an example of a complex type. We
defined part-number as a simple type because it didn’t involve any nodes. The money-amount type is
a complex type, because it involves both a decimal number and an attribute value. We can define this by
declaring two elements in the schema with the same type:

<xs:simpleType name="currency-type">
<xs:restriction base="xs:token">

<xs:enumeration value="USD"/>
<xs:enumeration value="EUR"/>
<xs:enumeration value="GBP"/>
<xs:enumeration value="CAD"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name="money-amount">
<xs:simpleContent>

<xs:extension base="xs:decimal">

65

Chapter 3

<xs:attribute name="currency" type="currency-type"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

Here we have defined two new types in the schema, both of them named. The first defines the type
of thecurrencyattribute. We could have used the same name for the attribute and its type, but many people
prefer to keep the names of types distinct from those of elements and attributes, to avoid confusing the
two. In this case I’ve chosen to define it (again) as a subtype of xs:token, but this time restricting
the value to be one of four particular world currencies. In practice, of course, the list might be much
longer. The currency-type is again a simple type, because it’s just a value, it doesn’t define any nodes.

The second definition is a complex type, because it defines two things. It’s the type of an element that has
a currency attribute which conforms to the definition of the currency-type, and which has content
(the text between the element start and end tags) that is a decimal number, indicated by the reference to
the built-in type xs:decimal. This particular kind of complex type is called a complex type with simple
content, which means that elements of this type can have attributes, but they cannot have child elements.

Again, the name of the type is quite distinct from the names of the elements that conform to this type. We
can declare the two example elements above in the schema as follows:

<xs:element name="unit-price" type="money-amount"/>

<xs:element name="amount-due" type="money-amount"/>

But although the type definition doesn’t constrain the element name, it does constrain the name of the
attribute, which must be «currency». If the type definition defined child elements, it would also
constrain those child elements to have particular names.

Again, we can use an XPath expression to select all the elements that have been annotated by a schema
processor as conforming to this type:

//element(*, money-amount)

In an XSLT 2.0 stylesheet, this also means we can write a template rule for processing elements of this
type, which means that all the logic for formatting money amounts can go in one place. For example, we
could write:

<xsl:template match="element(*, money-amount)">
<xsl:value-of select="@currency, format-number(., ’#,##0.00’)"/>

</xsl:template>

This would output the example <amount-due> element as «EUR 1,890.00». (The format-
number() function is available only in XSLT, and is described in Chapter 7 of XSLT 2.0 Programmer’s
Reference).

Elements with Mixed Content
The type of an element that can contain child elements is called a complex type with complex content. These
essentially fall into two categories, called mixed content and element-only content. Mixed content allows

66

The Type System

intermingled text and child elements, and is often found in narrative XML documents, allowing markup
such as:

<para>The population of <city>London</city> reached
<number>5,572,000</number> in <year>1891</year>, and had risen
further to <number>7,160,000</number> by <year>1911</year>.</para>

The type of this element can be declared in a schema as:

<xs:complex-type name="para-type" mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element ref="city"/>
<xs:element ref="number"/>
<xs:element ref="year"/>

</xs:choice>
</xs:complex-type>

In practice, the list of permitted child elements is often much longer than this, and a common technique is
to define substitution groups that allow a list of such elements to be referred to by a single name. We look
more closely at substitution groups on page 73.

Narrative documents tend to be less constrained than documents holding structured data such as
purchase orders and invoices, and while schema validation is still very useful, the type annotations
generated as a result of validation aren’t generally so important when the time comes to process the data
using XPath expressions: the names of the elements are usually more significant than their types.
However, there is plenty of potential for using the types, especially if the schema is designed with this in
mind.

When schemas are used primarily for validation, the tendency is to think of types in terms of the form
that values take. For example, it is natural to define the element <city> (as used in the example above)
as a type derived by restriction from xs:token, because the names of cities are strings, perhaps
consisting of multiple words, in which spaces are not significant. Once types start to be used for
processing information (which is what you are doing when you use XPath), it’s useful also to think about
what the value actually means. The content of the <city> element is not just a string of characters, it is
the name of a geographical place, a place that has a location on the earth’s surface, that is in a particular
country, and that may figure in postal addresses. If you have other similar elements such as <county>,
<country>, and <state>, it might be a good idea to define a single type for all of them. Even if this
type doesn’t have any particular purpose for validation, because it doesn’t define any extra constraints on
the content, it can potentially be useful when writing XPath expressions because it groups a number of
elements that belong together semantically.

Elements with Element-Only Content
This category covers most of the “wrapper” elements that are found in data-oriented XML. A typical
example is the outer <person> element in a structure:

<person id="P517541">
<name>

<given>Michael</given>
<given>Howard</given>
<family>Kay</family>

67

Chapter 3

</name>
<date-of-birth>1951-10-11</date-of-birth>
<place-of-birth>Hannover</place-of-birth>

</person>

The schema for this might be:

<xs:element name="person" type="person-type"/>

<xs:complexType name="person-type">
<xs:sequence>

<xs:element name="name" type="personal-name-type"/>
<xs:element name="date-of-birth" type="xs:date"/>
<xs:element name="place-of-birth" type="xs:token"/>

</xs:sequence>
<xs:attribute name="id" type="id-number"/>

</xs:complexType>

<xs:complexType name="personal-name-type">
<xs:sequence>

<xs:element name="given" maxOccurs="unbounded" type="xs:token"/>
<xs:element name="family" type="xs:token"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="id-number">
<xs:restriction base="xs:ID">

<xs:pattern value="[A-Z][0-9]{6}"/>
</xs:restriction>

</xs:simpleType>

There are a number of ways these definitions could have been written. In a so-called Russian Doll schema,
the types would be defined inline within the element declarations, rather than being given separate
names of their own. The schema could have been written using more top-level element declarations, for
example the <name> element could have been described at a top level. When you use a schema for
validation, these design decisions mainly affect your ability to reuse definitions later on when the schema
changes. When you are using a schema to describe types that can be referenced in XPath expressions,
however, they also affect the ease of writing these queries.

In choosing the representation of the schema shown above, I made a number of implicit assumptions:

❑ It’s quite likely that there will be other elements with the same structure as <person>, or with an
extension of this structure: perhaps not at the moment, but at some time in the future. Examples
of such elements might be <employee> or <pensioner>. Therefore, it’s worth describing the
element and its type separately.

❑ Similarly, personal names are likely to appear in a number of different places. Elements with this
type won’t always be called <name>, so it’s a good idea to create a type definition that can be
referenced from any element.

❑ Not every element called <name> will be a personal name, the same tag might also be used (even
in the same namespace) for other purposes. If I was confident that the tag would always be used

68

The Type System

for personal names, then I would probably have made it the subject of a top-level element
declaration, rather than defining it inline within the <person> element.

❑ The elements at the leaves of the tree (those with simple types) such as <date-of-birth>,
<place-of-birth>, <given>, and <family> are probably best defined using local element
declarations rather than top-level declarations. Even if they are used in more than one container
element, there is relatively little to be gained by pulling the element declarations out to the top
level. The important thing is that if any of them have a user-defined type (which isn’t the case in
this example) then the user-defined types are defined using top-level <xs:simpleType>
declarations. That’s what I have done for the id attribute (which is defined as a subtype of
xs:ID, forcing values to be unique within any XML document), but I chose not to do the same for
the leaf elements.

Defining a Type Hierarchy
Using top-level type definitions in this way becomes very handy in XPath when you have many different
elements using the same type definitions. I’ve come across an example of this in action when handling
files containing genealogical data. A lot of this data is concerned with recording events: events such as
births, baptisms, marriages, deaths, and burials, but also many other miscellaneous events such as a
mention in a newspaper, enrollment at a school or university, starting a new job, receiving a military
honor, and so on. Traditionally, this data is recorded using a file format called GEDCOM, which predates
XML by many years, but has a similar hierarchic structure in which different kinds of information are
represented by tagged records that can contain other tagged records in a very extensible way. As a result,
this structure can very easily be translated directly into XML and manipulated using XML tools such as
XPath and XSLT.

The GEDCOM specification defines about thirty kinds of event such as BIRTH, DEATH, and MARRIAGE,
and then provides a general catch-all EVENT record for anything else you might want to keep information
about. All these records have a common structure: they allow information about the date and place of the
event, the sources of information about the event, the participants and witnesses, and so on. In other
words, they are all different elements with the same type.

In XPath 1.0, the only way of referring to elements was by name. This meant that if you wanted to select
all the events for a person in order of date, you had to know all the element names representing events,
and write a union expression of the form «BIRTH|DEATH|MARRIAGE|...» to select them. This is
tedious to say the least, and it is also inextensible: when new kinds of event are introduced, the XPath
expression stops working.

XPath 2.0 introduces the ability to refer to elements by type: you can now write an expression of the form
«element(*, EVENT)» which selects all elements of type EVENT. The «*» indicates that you don’t care
what the name of the element is, you are interested only in its type. This is both more convenient and
more flexible than listing all the different kinds of event by name.

You can go beyond this, and define a type hierarchy. In a genealogical database, in addition to recording
events in a person’s life, you can also record properties of a person such as their occupation, religion, state
of health, or (if you want) their height or eye color. GEDCOM hasn’t modeled these particularly well: it
treats them as events, which isn’t a particularly good fit. They have a lot in common with events, in that
you want to record the evidence for the information, but they tend to be independent of place and to be
applicable over some extended period of a person’s life. So in an ideal world we would probably model

69

Chapter 3

these using a separate type called, say, ATTRIBUTE (not to be confused with XML attributes, of course).
The things that EVENT and ATTRIBUTE have in common could be defined in a third type from which
both of these inherit: let’s call this DETAIL. Then in an XPath expression I can find all the events and all
the attributes for a person with the single expression «element(*, DETAIL)».

This same technique can also be used with narrative XML structures. For example, in the DTD for
XHTML you find the following definitions:

<!ELEMENT h1 %Inline;>
<!ATTLIST h1

%attrs;
>

<!ELEMENT h2 %Inline;>
<!ATTLIST h2

%attrs;
>

<!ELEMENT h3 %Inline;>
<!ATTLIST h3

%attrs;
>

<!ELEMENT h4 %Inline;>
<!ATTLIST h4

%attrs;
>

This immediately tells you that the four elements <h1>, <h2>, <h3>, and <h4> have the same type (we
don’t know from this fragment what the permitted contents and attributes of the elements are, but they
are clearly all the same). If these elements are defined with a common type in a schema, then you can start
to write generic XPath code to handle all of them in the same way.

You also find type hierarchies in the structure of narrative documents. Looking again at the DTD for
XHTML, we find:

<!ELEMENT q %Inline;>
<!ATTLIST q

%attrs;
cite %URI; #IMPLIED
>

This tells us that a <q> element has the same structure as the elements such as <h1> and <h2> shown
above (and many others that we didn’t show) with the difference that an extra optional attribute, cite, is
allowed. The only slightly tricky question here is, which one is a subtype of the other?

The W3C has published a (non-normative) schema for XHTML at http://www.w3.org/TR/xhtml1-
schema/. It’s instructive to look at its design.

The schema defines the <h1> and <h2> elements (and many others) as follows:

<xs:element name="h1">
<xs:complexType mixed="true">

<xs:complexContent>

70

The Type System

<xs:extension base="Inline">
<xs:attributeGroup ref="attrs"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>

<xs:element name="h2">
<xs:complexType mixed="true">

<xs:complexContent>
<xs:extension base="Inline">

<xs:attributeGroup ref="attrs"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:element>

Note that both elements have been defined with anonymous type definitions, rather than by reference to
a named type definition. From the point of view of XPath, this is unfortunate: it means that the types are
unnamed (so you can’t refer to them in an XPath expression), and also the two elements technically have
different types, which means you can’t get as much value as you might out of type checking. For
example, you can’t define a variable in XSLT or XQuery whose declared type allows it to take either of
these two elements, or others with the same structure, but nothing else. It would have been much better if
this schema had been written as:

<xs:element name="h1" type="gen-inline">
<xs:element name="h2" type="gen-inline">

<xs:complexType name="gen-inline" mixed="true">
<xs:complexContent>

<xs:extension base="Inline">
<xs:attributeGroup ref="attrs"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

It would also have made the schema quite a bit shorter!

However, all is not lost. Although the two elements have different types, they are both derived by
extension from a common type named Inline. This type is defined like this:

<xs:complexType name="Inline" mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:group ref="inline"/>
<xs:group ref="misc.inline"/>

</xs:choice>
</xs:complexType>

The two <xs:group> elements identify long lists of element names that can appear in the content of any
element using this type definition.

71

Chapter 3

When we look for the <q> element, we find this definition:

<xs:element name="q">
<xs:complexType mixed="true">

<xs:complexContent>
<xs:extension base="Inline">
<xs:attributeGroup ref="attrs"/>
<xs:attribute name="cite" type="URI"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>

This is exactly the same as the definitions of the <h1> and <h2> elements seen earlier, with the addition
of the extra cite attribute.

So in this particular schema, we find that <h1>, <h2>, and <q> are all defined as subtypes of a common
supertype, Inline. This means that the XPath expression «element(*, Inline)» will find all three of
them (and many others). But there is no named type that distinguishes <h1> and <h2> on the one hand,
and <q> on the other, although their types are clearly different.

You will often find yourself working with XML Schemas that were designed, like this one, primarily for
validation. If you get the chance to design the schema with XPath processing in mind, you can often do a
little better. I’ve already shown you how I would have defined <h1> and <h2> with a common type
named gen-inline.

The <q> element could then be defined by extending the gen-inline type:

<xs:element name="q">
<xs:complexType mixed="true">

<xs:complexContent>
<xs:extension base="gen-inline">
<xs:attribute name="cite" type="URI"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>

I could have defined this as another top-level named type, but in this case, the extra attribute is very
specific to this element, so it doesn’t seem worth the trouble.

So the main difference in this structure is that I’ve introduced one extra type, gen-inline, which
extends the existing Inline type by adding the standard attributes in the attribute group named attrs.
(These attributes include id, class, style, title and quite a few others).

This extra type is likely to prove very useful in a system that does strict static type checking, which I will
be discussing later in the chapter. In a system with strict static type checking, the expression
«element(*, Inline)/@title» (which is trying to select the title attribute of every element
whose type is Inline) will give you an error, because the type Inline doesn’t define this attribute; but

72

The Type System

the expression «element(*, gen-inline)/@title» would succeed, because my gen-inline type
does include this attribute. Strict static typing is potentially very useful to detect the kind of spelling
mistakes which otherwise simply lead to an XPath expression producing wrong answers. But if you want
to use this feature, you will probably need to pay much more careful attention to your schema design to
make it usable.

I raised the question earlier whether the type of the <q> element should be a subtype or a supertype of
the type used for elements such as <h1> and <h2>. As we saw, in the published XHTML schema they are
actually sibling types (they are both subtypes of Inline). In my own schema, I defined <q> using an
unnamed subtype of the gen-inline type used for the <h1> and <h2> elements.

Logically, one could argue that the possible content of an <h1> or <h2> element is a strict subset of the
possible content of a <q> element (it can include anything a <q> can contain except for the extra cite
attribute), and that therefore the type of <h1> and <h2> should be a subtype of the type used for <q>.
On that basis, instead of defining the type for <q> as an extension of the type for <h1> and <h2>, we
would define the type for <h1> and <h2> as a restriction of the type for <q>. It’s possible to do this in
XML Schema, especially where the only difference is to prohibit an attribute from appearing (there is
special syntax <xs:attribute name="cite" use="prohibited"> that makes it possible).
Usually, though, this isn’t the way schemas grow. We tend to refine existing structures by adding
elements and attributes to them, and in XML Schema, refining complex types by extension is
generally a lot simpler than refining them by restriction. So that’s what you will tend to find has been
done.

Building a type hierarchy by looking at the elements and seeing what child elements and attributes they
have in common isn’t really the right way to do it. This is a bottom-up approach to classification. One
reason it doesn’t work well is that it can give many possible answers: for example, should you group A
with B because they have the same attributes, or group A with C because they have the same child
elements? It’s much better to create the type hierarchy as a result of top-down analysis, the kind of object
modeling that’s commonly used when designing databases. If you take this approach, then <employee>
becomes a subtype of <person> not because they have similar content models but rather because every
employee is a person : you appeal to your knowledge of the classification of things in the real world. It’s
much harder to do this when looking at the kind of markup you find in XHTML, but it can still give you
useful answers. This approach tells you, for example, that <sub> and <sup> go together because they are
both concerned with character-level formatting, and and go together because they both
define lists.

This leads on to another classification tool available in XML Schema, namely substitution groups, which
forms the subject of the next section.

Substitution Groups
The type of an element or attribute tells you what can appear inside the content of the element or attribute.
Substitution groups, by contrast, classify elements according to where they can appear.

As we’ve already seen, there is a schema for XSLT 2.0 stylesheets published as part of the XSLT
Recommendation. Let’s look at how this schema uses substitution groups. I’m not concerned here
with the actual effect of any specific XSLT elements, it just makes an interesting case study of a
schema.

73

Chapter 3

Firstly, the schema defines a type that is applicable to any XSLT-defined element, and which simply
declares the standard attributes that can appear on any element:

<xs:complexType name="generic-element-type">
<xs:attribute name="extension-element-prefixes" type="xsl:prefixes"/>
<xs:attribute name="exclude-result-prefixes" type="xsl:prefixes"/>
<xs:attribute name="xpath-default-namespace" type="xs:anyURI"/>
<xs:attribute ref="xml:space"/>
<xs:attribute ref="xml:lang"/>
<xs:anyAttribute namespace="##other" processContents="skip"/>

</xs:complexType>

There’s a good mix of features used to define these attributes. Some of them use built-in types
(xs:anyURI), some use user-defined types defined elsewhere in the schema (xsl:prefixes), two of
them (xml:space and xml:lang) are defined in a schema for a different namespace. The
<xs:anyAttribute> at the end says that XSLT elements can contain attributes from a different
namespace, which are not validated. (Perhaps it would be better to specify lax validation, which would
validate the attribute if and only if a schema is available for it).

Every XSLT element except the <xsl:output> element allows a standard version attribute (the
<xsl:output> element is different because its version attribute is defined for a different purpose and
has a different type). So the schema defines another type that adds this attribute:

<xs:complexType name="versioned-element-type">
<xs:complexContent>

<xs:extension base="xsl:generic-element-type">
<xs:attribute name="version" type="xs:decimal" use="optional"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

The XSLT specification classifies many XSLT elements as instructions. This is not a structural distinction
based on the attributes or content model of these elements (which in fact varies widely), it is a distinction
based on the way they are used. In particular, instruction elements are interchangeable in terms of where
they may appear in a stylesheet: if you can use one instruction in a particular context, you can use any
instruction. This calls for defining a substitution group:

<xs:element name="instruction"
type="xsl:versioned-element-type"
abstract="true"/>

Note that although the substitution group is defined using an element declaration, it is not defining a real
element, because it specifies «abstract="true"». This means that an actual XSLT stylesheet will never
contain an element called <xsl:instruction>. It is a fictional element that exists only so that others
can be substituted for it.

What this declaration does say is that every element in the substitution group for <xsl:instruction>
must be defined with a type that is derived from xsl:versioned-element-type. That is, every XSLT
instruction allows the attributes extension-element-prefixes, exclude-result-prefixes,
xpath-default-namespace, xml:space, xml:lang, and version. This is, in fact, the only thing
that XSLT instructions have in common with each other, as far as their permitted content is concerned.

74

The Type System

Individual instructions are now defined as members of this substitution group. Here is a simple example,
the declaration of the <xsl:if> element:

<xs:element name="if" substitutionGroup="xsl:instruction">
<xs:complexType>

<xs:complexContent mixed="true">
<xs:extension base="xsl:sequence-constructor">

<xs:attribute name="test" type="xsl:expression" use="required"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:element>

This shows that the <xsl:if> element is a member of the substitution group whose head is the abstract
<xsl:instruction> element. It also tells us that the content model of the element (that is, its type) is
defined as an extension of the type xsl:sequence-constructor, the extension being to allow a test
attribute whose value is of type xsl:expression—this is a simple type defined later on in the same
schema, representing an XPath expression that may appear as the content of this attribute.

The type xsl:sequence-constructor is used for all XSLT elements whose permitted content is a
sequence constructor. A sequence constructor is simply a sequence of zero or more XSLT instructions,
defined like this:

<xs:complexType name="sequence-constructor">
<xs:complexContent mixed="true">

<xs:extension base="xsl:versioned-element-type">
<xs:group ref="xsl:sequence-constructor-group"

minOccurs="0" maxOccurs="unbounded"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

<xs:group name="sequence-constructor-group">
<xs:choice>

<xs:element ref="xsl:variable"/>
<xs:element ref="xsl:instruction"/>
<xs:group ref="xsl:result-elements"/>

</xs:choice>
</xs:group>

The first definition says that the xsl:sequence-constructor type extends xsl:versioned-
element-type, whose definition we saw earlier. If it didn’t extend this type, we wouldn’t be allowed to
put <xsl:if> in the substitution group of <xsl:instruction>. It also says that the content of a
sequence constructor consists of zero or more elements, each of which must be chosen from the
sequence-contructor-group. The second definition says that every element in the
sequence-contructor-group is either an <xsl:instruction> (which implicitly allows any
element in the substitution group for <xsl:instruction>, including of course <xsl:if>), or an
<xsl:variable>.

The <xsl:variable> element is not defined as a member of the substitution group because it can be
used in two different contexts, either as an instruction or as a top-level declaration in a stylesheet. This is
one of the drawbacks of substitution groups: they can’t overlap. The schema defines all the elements that

75

Chapter 3

can act as declarations in a very similar way, using a substitution group headed by an abstract
<xsl:declaration> element. It’s not possible for the same element, <xsl:variable>, to appear in
more than one substitution group, so it has been defined in neither, and needs to be treated as a special
case.

If you need to use XPath 2.0 to access an XSLT stylesheet (which isn’t as obscure a requirement as it may
seem, there are many applications for this) then the classification of elements as instructions or
declarations can be very useful. For example, you can find all the instructions that have an attribute in the
Saxon namespace with the expression:

//schema-element(xsl:instruction)[@saxon:*]

assuming that the namespace prefix «saxon» has been declared appropriately. Here the leading «//»
indicates a search of the whole document, the expression «schema-element(xsl: instruction)»
selects elements that are either named <xsl:instruction>, or are in the substitution group with
<xsl:instruction> as its head element, and the expression «[@saxon:*]» is a filter that selects only
those elements that have an attribute in the «saxon» namespace.

The penalty of choosing a real schema for our example is that we have to live with its complications. As
we saw earlier, the <xsl:variable> element isn’t part of this substitution group. So we might have to
extend the query to handle <xsl:variable> elements as well. We can do this by writing:

/*/(schema-element(xsl:instruction)|xsl:variable)[@saxon:*]

A detailed explanation of this expression has to wait until much later in the book: the «/» and «|»
operators, and the predicate in square brackets, are all described in Chapter 7, while the construct
«schema-element(xsl:instruction)» is explained in Chapter 9.

To sum up this section: substitution groups not only are a very convenient mechanism for referring to a
number of elements that are substitutable for each other in the schema, but also provide a handy way of
referring to a group of elements in XPath expressions. This is particularly true where the elements don’t
have much in common with each as far as their internal structure is concerned. But they do have one
limitation, which is that elements can only belong directly to one substitution group (or to put it another
way, substitution groups must be properly nested, they cannot overlap).

This completes our tour of XML Schema which was conducted very much from an XPath perspective.
The rest of the chapter builds on this understanding to show how the XPath type system works, and how
it is related to the types of XML Schema.

Atomic Types
The place where the XPath and XML Schema type systems come together most closely is in the definition
of the atomic types, and that’s the area we will look at next.

Notice that we’re talking here about atomic types rather than simple types. In XML Schema, we use an
<xs:simpleType> declaration to define any type other than a complex type, that is, any type that
doesn’t permit attributes or child elements. Attributes always have simple types, and elements may have

76

The Type System

simple types if they don’t allow child elements or attributes. But simple types are not necessarily atomic
types, because they allow lists. For example, consider the type definition (again taken from the schema
for XSLT 2.0):

<xs:simpleType name="prefixes">
<xs:list itemType="xs:NCName" />

</xs:simpleType>

This defines a simple type whose value allows a list of names (the type xs:NCName defines a name that
follows the XML rules: NCName means no-colon-name). An example of an attribute conforming to this
type might be «a="h1 h2 h3"». This is a simple type, but it is not an atomic type. Atomic types do not
allow lists.

XML Schema also allows simple types to be defined as a choice; for example, a simple type might allow
either a decimal number, or the string «N/A». This is referred to as a union type. Like list types, union
types are simple types but they are not atomic types.

Atomic types come from a number of sources.

XML Schema defines 19 primitive types and 25 derived types that can be used in any schema: these are
referred to as the XML Schema built-in types. They include commonly used types such as xs:boolean
and xs:string, and some that are decidedly obscure like xs:gYearMonth and xs:NOTATION. These
types are all in the XML Schema namespace http://www.w3.org/2001/XMLSchema.

There is also a second namespace for schema-defined datatypes, called http://www.w3.org/2001/
XMLSchema-datatypes. Frankly, this namespace is best forgotten. It doesn’t provide anything that you
don’t get by using the ordinary XML Schema namespace, and it creates some technical problems because
the types in this namespace are not exact synonyms of the types in the ordinary namespace. My advice is,
don’t go anywhere near it.

XPath 2.0 adds four more atomic types: xdt:dayTimeDuration, xdt:yearMonthDuration,
xdt:anyAtomicType, and xdt:untypedAtomic. The last two are rather special, so I shall cover them
separately.

You can define your own atomic types in a schema. A type becomes available for use in XPath
expressions through a piece of magic called the XPath Static Context, which we will examine in more
detail in Chapter 4. This really means that the binding between an XPath expression and a schema is
something outside the control of the XPath specification itself. In XSLT, for example, it is controlled using
an <xsl:import-schema> declaration in the stylesheet, but in other XPath environments, it may be
controlled in a different way.

Implementors can also add their own atomic types. There are a number of reasons they might want to do
this. The most likely reason is to make it easier for XPath expressions to make calls on external functions,
for example, functions written in C# or Java. The XPath specification doesn’t say how this is done, and
leaves it to implementors to define. Another reason implementors might want to add extra data types is
to support XPath access to some specialized database, for example, an LDAP directory. XPath is defined
in terms of a data model with an obvious relationship to XML, but there is no reason why other sources of
data cannot be mapped to the data model equally well, and doing this effectively might involve defining
some custom types. (I mentioned LDAP because it is a hierarchic database, which provides a particularly

77

Chapter 3

good fit to the XPath data model.) Generally, any extra types added by the implementor will have names
that are in some implementation-controlled namespace.

In the sections that follow, I will describe the built-in atomic datatypes in a number of groups. These are
my own categories, not anything that comes from the specifications themselves:

❑ The major atomic datatypes: xs:anyURI, xs:boolean, xs:date, xs:dateTime, xs:decimal,
xs:double, xs:integer, xs:QName, xs:string, xs:time, xdt:dayTimeDuration, and
xdt:yearMonthDuration. These are the only atomic data types that are directly supported in
the XPath library of functions and operators for anything but the most trivial of operations. They
are therefore the ones you are most likely to be using most of the time. In XSLT 2.0, these are the
only ordinary types that every XSLT processor is required to support.

❑ The minor atomic datatypes: These are defined as primitive types in XML Schema, but they are not
well supported by XPath, and you are unlikely to use them very often. These are xs:gYear,
xs:gYearMonth, xs:gMonth, xs:gMonthDay, xs:gDay, xs:duration, xs:float,
xs:hexBinary, xs:base64Binary, and xs:NOTATION.

❑ The derived numeric datatypes: These are defined by restriction from the xs:integer type. They
all define integers with a limited range of values, for example, xs:positiveInteger,
xs:short, xs:unsignedByte.

❑ The derived string datatypes: These are defined by restriction from xs:string. They include types
like xs:token and xs:NCName that restrict the syntax of the string and define the treatment of
whitespace.

❑ The type xdt:untypedAtomic: This represents values whose type is unknown, because the
value has not been validated by a schema processor. This is a chameleon type, whose values can
be used freely in any context, provided that the value can be converted at runtime to the type
that’s expected.

There are two ways to use these atomic types in XPath.

❑ You can use them in a schema to define the types of elements and attributes. When you do this,
the result of validating an XML document against this schema will be that the elements and
attributes acquire a type annotation of the appropriate atomic type, and the typed value of the
nodes (which is what you typically get when you use the node as input to an operation such as
addition) will be the atomic value of the relevant type.

❑ You can manipulate atomic values of these types in your XPath expressions. For example, if you
compare two strings, the result is a boolean, that is, a value of type xs:boolean. This value has
never been anywhere near an XML document, let alone an XML Schema validator, but it is an
xs:boolean all the same.

The Major Atomic Types
This section describes the most important atomic types used in XPath expressions, in alphabetical order.
These types are chosen because they are the ones that are supported in the standard library of functions
and operators defined in XPath, in particular the functions listed in Chapter 10. If you are using an
XSLT 2.0 processor with no schema support, these will be the only data types available, and even if you
are using XML Schemas, they are probably the types you will use 95% of the time.

78

The Type System

xs:anyURI
This type is intended to hold URIs, in the widest sense of the term. This includes:

❑ Absolute URIs such as «http://www.w3.org/»

❑ Relative URIs such as «../index.html»

❑ URI References, that is URIs with a fragment identifier at the end, separated by a «#» character: for
example «http://www.w3.org/TR/xpath20#Introduction» or simply«#Introduction»

❑ Unescaped URIs such as «file:///My Documents/biog.doc». Technically, this is not a URI
because it contains a space character. To make it into a URI, the space must be escaped so it
appears as «file:///My%20Documents/biog.doc». A number of specifications such as XML
Linking explicitly allow a URI to be held in its unescaped form (because it isn’t a real URI until it
is escaped, I sometimes refer to it as a wannabe-URI). And although these aren’t real URIs, XML
Schema explicitly allows them to appear in an xs:anyURI value.

Most data types in XML Schema are rather specific about exactly what is allowed in the value space of the
data type (for example, xs:boolean has two values, true and false), and how these values may be
written in a source document (the lexical representation: with xs:boolean the values «0», «1», «true»,
and «false» are permitted). Most types also define a canonical lexical representation for each value in the
value space, which is the representation that will be chosen when a typed value is converted to a string.

For the xs:anyURI type, these definitions have been fudged. Though the wording makes it clear that the
intention is for xs:anyURI items to hold a URI as defined in the relevant internet RFCs (see for example
http://www.ietf.org/rfc/rfc2396), they stop short of saying that a schema validator is expected
to check that the contents actually conform with these rules. There is good reason for this reticence: many
commonly used URIs don’t actually conform with the rules in the RFC, and in any case, the rules in the
RFC are not always clear.

I have read some books on XML Schema that suggest that in the value space of xs:anyURI, the value is
always escaped (as in the example «file:///My%20Documents/biog.doc») and that conversion
from the lexical form used in a source document to the value space should therefore cause this escaping
to happen. This would mean that when you compare two xs:anyURI values, differences caused by one
of them being escaped and the other not don’t matter. This is one interpretation of the spec, but I think it
is an imaginative one, and in practice schema processors appear to allow any string to be used as an
xs:anyURI value, and to leave the string unchanged when converting it to its internal representation.

The functions described in Chapter 10 that use URIs actually model URIs as strings rather than as
xs:anyURI values. The W3C working groups made this decision for two reasons:

❑ As we have seen, XML Schema is less than clear about the precise rules for the xs:anyURI
data type

❑ Because an xs:anyURI is not a string, it is very inconvenient to manipulate, as none of the
string-handling functions such as substring-before(), concat(), and matches() are
available. You can’t even legally compare an xs:anyURI value to a string literal. You end up
having to do frequent conversions between an xs:anyURI value and an equivalent xs:string,
and this starts to get tedious.

79

Chapter 3

My advice would be don’t use this data type in XPath expressions. By all means use it when writing a
schema, to document the fact that a particular element or attribute is designed to hold a URI, but as soon
as you read such an element or attribute into your XPath expression, convert it to a string and then
manipulate it as a string. Conversions between data types are described in Chapter 9.

xs:boolean
This is the simplest data type defined in XML Schema. It has two values in the value space, referred to as
true and false, and each of these has two permitted lexical representations: «1» and «true», «0» and
«false».

Although it’s so simple there are some interesting quirks in the way XML Schema and XPath handle this
data type.

❑ As far as XML Schema is concerned, the xs:boolean data type has no ordering. But in XPath,
there is an ordering: false is considered to be less than true. XPath 2.0 has taken this position
largely for backward compatibility with XPath 1.0, and also because it can actually be useful: for
example a stylesheet might use the expression «age < 18» as a sort key, which will output the
adults first, then the children.

❑ There are two ways of converting a string to a boolean. An XML Schema processor interprets «1»
and «true» as true, «0» and «false» as false. This behavior also occurs when you use a «cast
as xs:boolean» expression (described in Chapter 9), or the xs:boolean() constructor, which
is shorthand for the cast expression.

But if you use the boolean() function (or fn:boolean() if you want to write it with a
namespace prefix), as described in Chapter 10, then a zero-length string translates to false, and
everything else to true. This is also the result you get if you do an implicit conversion of a string
to a boolean by using a string in a context such as «if (S) then A else B», where S is a
string.

Again, the difference is partly historic: the XPath 1.0 rules were invented before XML Schema
came along. But the convention of equating a zero-length string to false also has a long history
in weakly typed programming languages, and is very convenient in some recursive algorithms
that need to terminate when the argument is a zero-length string.

xs:date
The xs:date type represents a date. The lexical representation of the date (that is, the way it appears in a
textual XML document) is always the representation defined in the ISO 8601 standard, that is
YYYY-MM-DD (for example, «1999-11-16» for November 16, 1999). This format is chosen because it is
unambiguous; the theory is that XML documents should represent information in a neutral form that is
independent of how different users might want to see the information formatted.

XPath 2.0, in fact, does not provide any direct capability for formatting dates and times in a user-friendly
way. This functionality is present only in XSLT, through the format-date() function. The
format-date() function is described in XSLT 2.0 Programmer’s Reference, in Chapter 7.

A rather quirky feature of the xs:date data type is that as well as holding the date itself, it can also hold
a timezone. This is something that ISO 8601 itself doesn’t allow. The idea is that a date actually represents
a period of 24 hours starting at midnight in a particular timezone, and ending at the following midnight
in the same timezone. The date November 16, 1999 represents a different period of 24 hours in New York

80

The Type System

from the period it represents in London, Tokyo, or Los Angeles, so the schema designers came up with
the idea of adding a timezone to the date to indicate exactly when the date begins and ends. In the lexical
representation, the timezone is added after the date part, for example «1999-11-16-05:00» represents
a date in the timezone that is five hours behind UTC (the timezone used in the Eastern United States
during the winter months). The timezone is optional; it is also possible to have a date value with no
timezone, in which case the precise beginning and end of the 24-hour period represented by the value are
considered to be unknown.

XML Schema doesn’t define how dates are represented internally in the system, but it does define a value
space for every data type. If two different lexical values translate into the same value in the value space,
then they are completely equivalent (to the extent that when you copy an element or attribute, the
original lexical representation won’t necessarily be retained). For dates (as distinct from times) the XML
Schema and XPath specifications agree that the timezone is part of the value space: that is,
«1999-11-16-05:00» represents a different xs:date value from «1999-11-16+01:00».

This gives the problem of deciding whether a date that specifies a timezone (for example
«1999-11-16-12:00») comes before or after a date that doesn’t specify a timezone (for example
«1999-11-16») when you want to perform comparison operations or sorting. If both dates have
timezones, the answer is clear enough: the dates are sorted in order of their starting instants. And if
neither have timezones, you can assume that they relate to the same timezone. But if one has a timezone
and the other doesn’t, it’s not obvious what the answer should be. XML Schema took a rather purist view,
saying that dates are partially ordered, which means that for some pairs of dates you don’t know which
one comes first. For an expression language like XPath, partial ordering is a nightmare: the system has to
come up with some kind of answer. The answer chosen was that the system environment contains an
implicit timezone that can be used as a default, and when dates with no timezone have to be compared or
sorted, the system will assume that they refer to this implicit timezone. We look more closely at the
implicit timezone when we examine the XPath evaluation context in the next chapter.

The operations you can perform on a date include:

❑ Comparing and sorting dates

❑ Converting dates to and from strings

❑ Extracting the component parts of a date (year, month, day, timezone)

❑ Adding a duration to a date (or subtracting a duration) to get another date

❑ Determining the difference between two dates, as a duration

❑ Converting the value to an xs:dateTime (the result is the starting instant of the date)

❑ In XSLT only, formatting a date for human consumption (for example, as «Wednesday 16th
November»)

Dates held using this data type are always supposed to be Gregorian dates, even if they predate the
introduction of the Gregorian calendar (which happened at different times in different countries). In
principle, historic events are supposed to have their dates adjusted to represent them using the modern
calendar.

Negative dates (BC dates) are supported, but they are a minor disaster area in XML Schema. According to
XML Schema, the year zero is not allowed, and the year before 0001 is represented as −0001. However,
shortly before XML Schema was published, a new edition of ISO 8601 came out that stated that the year

81

Chapter 3

before 0001 should be represented as 0000. The Schema specification hasn’t changed to match this, but it
includes a note saying that it might change in the future. It’s hard to see how such a change can be made,
however, as it would affect the meaning of data in existing documents, and the results of queries. In
practice, I would advise against using this data type for historical dates. For most applications it’s
probably better to represent them using their original calendar.

xs:dateTime
The xs:dateTime type represents the combination of a date and time, that is, it represents an instant in
time. The lexical representation is again based on ISO 8601, for example it might be
«2004-04-12T13:05:00Z» to represent five minutes past one in the afternoon of 12th April 2004, in the
timezone Z (Z represents Coordinated Universal Time, abbreviated to UTC, and often still referred to by
its older name of Greenwich Mean Time or GMT).

The seconds part of an xs:dateTime can contain a fractional part. The number of significant digits that
are retained is implementation-defined, but must be at least three.

As with xs:date, the complications with dates and times are all to do with timezones (if only the world
could agree to synchronize its clocks, the problem would disappear). XML Schema takes the view that the
value space of xs:dateTime represents instants in time, and that «2004-04-12T13:05:00Z» and
«2004-04-12T08:05:00-05:00» are the same instant in time (five past one in London is five past
eight in New York), and are therefore indistinguishable.

The XSLT and XQuery working groups didn’t feel it was acceptable that the original timezone
information written in the source XML document should be simply thrown away. It didn’t seem right, for
example, that a transformation that copies a source document containing the value «2004-04-12
T08:05:00-05:00» should produce the value «2004-04-12T13:05:00Z» in the result document.
Although it’s right to consider the two values as being equal (in the same way that 1 and 01 are equal) it
seems that there is some information content in the timezone that the user probably wants to hold on to.
So, after much agonizing and debate between the working groups, the XPath data model defines a value
space that retains the original timezone as well as the “instant in time”. This doesn’t
affect the test whether two xs:dateTime values are equal, but it does affect other operations, for
example the operation of converting an xs:dateTime value to a string (which will reconstitute the
original timezone).

Like xs:date values, xs:dateTime values don’t need to specify a timezone, and XPath adopts the
same solution: they are assumed to apply to an implicit timezone taken from the evaluation context.

The operations you can perform on an xs:dateTime include:

❑ Comparing and sorting dateTimes

❑ Converting dateTimes to and from strings

❑ Extracting the component parts of a dateTime (year, month, day, hour, minutes, seconds,
timezone)

❑ Adding a duration to a dateTime (or subtracting a duration) to get another dateTime

❑ Determining the difference between two dateTimes, as a duration

❑ Extracting the date or time part separately

82

The Type System

❑ Adjusting the timezone: that is, creating an equivalent dateTime with or without a timezone, or
with a different timezone (see the adjust-dateTime-to-timezone() function on page 297)

❑ In XSLT only, formatting a dateTime for human consumption (for example, as «Wednesday
16th November, 1.30p.m.»)

xs:decimal
The xs:decimal data type represents numbers that can be accurately expressed in decimal notation.
This type is useful for values such as amounts of money, where the actual value space is discrete rather
than continuous, and where the rounding errors that arise with binary formats such as xs:double and
xs:float are undesirable.

In a user-defined subtype of xs:decimal, the values can be restricted in terms of the total number of
allowed digits, and the number of digits allowed after the decimal point. If the built-in type xs:decimal
is used without restriction, the number of digits allowed must be at least 18, though it can be greater than
this if the implementation chooses. Some implementations may use an unlimited-precision
representation (Saxon does, for example).

Any numeric literal written with a decimal point in XPath 2.0 (but without using exponential notation)
represents an xs:decimal value, for example the literal «3.50». Note that this represents exactly the
same xs:decimal value as the literal «3.5»: in general, trailing zeros after the decimal point will be lost
when xs:decimal values are manipulated, which can be a bit awkward when you are handling
amounts of money. For example, the result of «2.44 + 2.56» is displayed as «5». XSLT has a function
format-number() that allows you to control the way values are formatted, for example you can use a
picture of «0.00» to ensure that there are always two digits after the decimal point. But there is no
equivalent to this in XPath or XQuery.

XPath 2.0 offers a full range of arithmetic operators and functions on xs:decimal values. These are
summarized in the entry for xs:double which follows this entry. The arithmetic operators are described
in more detail in Chapter 6, and the functions are listed in Chapter 10. When you apply these operators
and functions to xs:decimal operands, the result is generally also an xs:decimal. In the case of
operators with two operands you can mix xs:decimal with other numeric types; if the other operand is
an xs:float or xs:double then the xs:decimal is converted to an xs:float or xs:double as
appropriate, and the result will also be an xs:float or xs:double.

The main operation that can cause problems is division. The division operator in XPath is div, because
«/» is reserved for use in path expressions. Division by zero is a fatal error. When you perform a division
that does not have an exact decimal result, for example «10 div 3.0», the precision of the result is
implementation-defined. One implementation might give you 3.333333, another might give you
3.333333333333. An implementation could even claim to be conformant if it gave you the answer 3,
though it might not prove popular in the marketplace if it did that.

When a decimal number is displayed as a string, it is shown as an integer if there are no significant digits
after the decimal point. So the result of «2.5+2.5» is displayed as «5».

xs:double
The xs:double type represents double-precision floating point numbers. This was the only numeric
data type supported in XPath 1.0, and it is therefore the default for some operations where backward

83

Chapter 3

compatibility is important: in particular, if you apply numeric operations to the value of a node in a
schemaless document, the system will try to convert the contents of that node to an xs:double value.

An xs:double is a double-precision (64-bit) floating-point number, and its behavior is defined to follow
the IEEE 754 standard. This standard (IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std.
754-1985) has been widely implemented by many microprocessors for some years, but it is only through
its adoption in the Java language that it has become familiar to high-level language programmers. If you
understand how floating point behaves in Java, the contents of this section will be quite familiar; if not,
they may be rather strange.

XPath 2.0 introduces the ability to use scientific notation for floating-point numbers, either on input or on
output. If you want to enter the number one trillion, you can now write 1.0E12. In fact, if you want to
write an xs:double as a literal in an XPath expression, you must write it in scientific notation, otherwise
it will be treated as an xs:decimal (if it has a decimal point) or as an xs:integer (if not).

On output, that is when you convert an xs:double to a string, scientific notation is used only if the
absolute value is smaller than 0.000001, or greater than 1,000,000. This means that most everyday
numbers will be formatted in ordinary decimal notation on output. In XSLT, you can control the format of
numeric output more precisely by using the format-number() function, which is defined in XSLT 2.0
Programmer’s Reference.

In general, I recommend using xs:double for numbers that are on a continuous scale (for example,
distances, weights, or temperatures), and using xs:decimal for numbers that represent discrete
quantities, such as sums of money. But this is only rough guidance.

IEEE 754 defines the following range of values for a double-precision number:

Value Description

Finite nonzero values These are values of the form s × m × 2x, where s (the sign) is +1 or –1, m
(the mantissa) is a positive integer less than 253, and x (the exponent) is an
integer between –1075 and 970, inclusive

Positive zero This is the result of subtracting a number from itself. It can also result from
dividing any positive number by infinity, or from dividing a very small
number by a very large number of the same sign

Negative zero This is the result of dividing any negative number by infinity. It can also
result from dividing a positive number by minus infinity, or from dividing
a very small negative number by a very large positive number, or vice versa

Positive infinity This is the result of dividing any positive number by zero. It can also result
from multiplying two very large numbers with the same sign. Note that
division by zero is not an error: it has a well-defined result

Negative infinity This is the result of dividing any negative number by zero. It can also result
from multiplying two very large numbers with different signs

NaN Not a Number. This is the result of attempting to convert a non-numeric
string value to a number. It can also be used to mean “unknown” or “not
applicable”, like the SQL null value

84

The Type System

These values cannot all be written directly as XPath constants. However, they can be expressed as the
result of expressions, for example:

Value XPath expression

Negative zero –0e0

Positive Infinity 1 div 0e0

Negative Infinity –1 div 0e0

NaN number(“NaN”)

Technically, negative numbers cannot be written directly as constants: «-10» is an expression rather than
a number, but in practice it can be used anywhere that a numeric constant can be used. The only thing
you need to be careful of is that a space may be needed before the unary minus operator if you write an
expression such as «$x div -1».

Except for NaN, number values are ordered. Arranged from smallest to largest, they are:

❑ Negative infinity

❑ Negative finite non-zero values

❑ Negative zero

❑ Positive zero

❑ Positive finite non-zero values

❑ Positive infinity

This ordering determines the result of less-than and greater-than comparisons, and in XSLT it determines
the result of sorting using <xsl:apply-templates> or <xsl:for-each> with a sort key specified
using <xsl:sort data-type="number">.

NaN is unordered, so the operators «<», «<=», «>», and «>=» return false if either or both operands are
NaN. However, when <xsl:sort> is used to sort a sequence of numeric values that includes one or
more NaN values, NaN values are collated at the start of the sequence (or at the end if you choose
descending order).

Positive zero and negative zero compare equal. This means that the operators «=», «<=», and «>=» return
true, while «!=», «<», and «>» return false. However, other operations can distinguish positive and
negative zero; for example, «1.0 div $x» has the value positive infinity if $x is positive zero, and
negative infinity if $x is negative zero.

The equals operator «=» returns false if either or both operands are NaN, and the not-equals operator
«!=» returns true if either or both operands are NaN. Watch out for the apparent contradictions this leads
to; for example, «$x=$x» can be false, and «$x<$y» doesn’t necessarily give the same answer as «$y>$x».

The simplest way to test whether a value $x is NaN is:

if ($x!=$x) then ...

85

Chapter 3

If this seems too obscure for your taste, then provided you know that $x is numeric you can write:

if (string($x)=’NaN’) then

If you are familiar with null values in SQL, some of this logic might seem familiar, but there are some
subtle differences. For example, in SQL the condition «null=null» has the value null, so that
«not(null=null)» is also null; while in XPath «NaN=NaN» is false, so that «not(NaN=NaN)» is true.

XPath provides a number of operators and functions that act on numeric values:

❑ The numerical comparison operators «<», «<=», «>», and «>=». Note that within a stylesheet,
you may need to use XML escape conventions to write these, for example, «<» in place of
«<».

❑ The numerical equality operators «=» and «!=».

❑ The unary minus operator «-».

❑ The multiplicative operators «*», «div», and «mod».

❑ The additive operators «+» and «-».

❑ The number() function, which can convert from any value to a number.

❑ The string() function, which convert a number to a string.

❑ The boolean() function, which converts a number to a Boolean.

❑ The abs() function returns the absolute value of a number.

❑ The functions round(), ceiling(), floor(), and round-half-to-even(), which convert a
number to an integer.

❑ The aggregate functions sum(), avg(), max(), and min() which produce a single xs:double
value when applied to a sequence of xs:double values.

Operators on numbers behave exactly as specified by IEEE 754. XPath is not as strict as Java in defining
exactly what rounding algorithms should be used for inexact results, and in what sequence operations
should be performed. In fact XPath 2.0 is more liberal than XPath 1.0, in that it allows any of the options
permitted by IEEE 754 to be chosen. These include, for example, producing an error on overflow rather
than returning positive or negative infinity.

Many implementations, however, are likely to follow the Java rules. In this case, numeric operators and
functions never produce an error. An operation that overflows produces positive or negative infinity, an
operation that underflows produces positive or negative zero, and an operation that has no other sensible
result produces NaN. All numeric operations and functions with NaN as an operand produce NaN as a
result. For example, if you apply the sum() function to a sequence, then if the sequence contains a NaN
value, the result of the sum() function will be NaN.

xs:integer
The xs:integer data type supports the positive and negative natural numbers. Neither XML Schema
nor XPath 2.0 dictate what the maximum value of an integer is. XML Schema has a rule that

86

The Type System

implementations must support at least 18 decimal digits. But one of the subtypes of xs:integer,
namely xs:unsignedLong, supports values in the range 0 to 18,446,744,073,709,551,615. This requires
20 digits, so an implementation that stops at 18 is going to struggle to pass some of the conformance
tests.

Unlike all the other types that I classify as major types, xs:integer is not a primitive type but a derived
type. It is derived by restriction from xs:decimal. This means that every valid xs:integer is also a
valid xs:decimal, and anywhere that an xs:decimal can be used, an xs:integer can be substituted.
The actual nature of the restriction is that the xs:integer type contains all xs:decimal values that
have no significant digits after the decimal point.

The xs:integer type follows the pattern of the other numeric types, in that all the arithmetic operators
and functions, when applied to an xs:integer argument (or to two xs:integer operands) produce
an xs:integer as their result.

The main exception to this is division. XPath 2.0 provides two division operators. The div operator treats
integer operands as xs:decimals, and produces an xs:decimal result (so «5 div 2» is 2.5). The
idiv operator (for integer division) produces an xs:integer result, so «5 idiv 2» is 2. Closely
related to this is the avg() function: the average of a sequence of xs:integer values is an
xs:decimal.

xs:QName
The xs:QName type is a rather specialized type whose values hold XML qualified names.

An xs:QName has two forms. In its lexical form, it consists of either a simple local name (such as
«product»), or a local name qualified by a namespace prefix (such as «mfg:product». In its expanded
form, it consists of two components: a namespace URI (possibly null) and a local name.

There is no direct string representation of the expanded value, though in some interfaces (for example in
the Java JAXP interface) expanded QNames are represented in a notation devised by James Clark, of the
form «{namespace-uri}local-name», for example «{http://www.mfg.org/ns}product».

This type is unusual (and, one might add, a great nuisance) because it is not possible to translate between
the lexical form and the internal value space without having additional context information. A schema
validator gets this context information from the namespace declarations that surround the element or
attribute where the QName appears. For XPath (and XSLT and XQuery) processors, which have the job of
extracting parts of a document and copying them into different places, this dependency on context
information causes no end of hassle: it isn’t safe to copy a QName to a new location unless you also copy
its context information. This is why the spec devotes so much attention to the arcane matter of namespace
nodes. It’s also for this reason that there are restrictions on what you can do with an xs:QName—for
example, it is the only type (apart from xs:NOTATION, which is another oddity) that you cannot convert
to a string.

One of the ideas behind defining xs:QName as a primitive type in XML Schema was so that the XML
infrastructure would know which parts of the document have dependencies on namespace declarations,
and would therefore be able to ensure that the relevant namespace declarations are kept around when
data is copied. Unfortunately this doesn’t work, because you can have namespace-sensitive data in a
document without declaring it as an xs:QName. For example, if your document contains XPath

87

Chapter 3

expressions (which it will do if it happens to be a stylesheet, but it’s not uncommon to find them in other
kinds of document as well) then it will necessarily contain namespace-sensitive content that isn’t flagged
as such, because an XPath expression is more complex than a simple xs:QName.

In fact, one of the paradoxes is that although the presence of the xs:QName type in XML Schema is often
attributed to the fact that XSLT stylesheets use QNames in the content of attributes, the schema for
XSLT 2.0 stylesheets doesn’t actually use the xs:QName type. This is because there’s a small but
important difference in the rules. XML Schema specifies (you have to read the errata to find this out) that
when an xs:QName is written with no namespace prefix, it uses the default namespace, in the same way
as element names with no prefix. But XSLT specifes that when its QNames are unprefixed, they have a
null namespace URI, in the same way as unprefixed attribute names—the default namespace is not used.
Although an XML Schema processor would get the right answer in testing the validity of the attributes if
they were declared with the xs:QName type, it would give the wrong answer to an application that asked
for the typed value of the attribute. I labor this point for two reasons: firstly, because it shows one of the
pitfalls of the xs:QName data type, and more importantly, because it shows how types in XML Schema,
once you start using them in XPath (or XSLT or XQuery) are about much more than validity checking,
they also define the conversion from the lexical values appearing in the input to the typed values seen by
the application.

What operations does XPath support on xs:QName values?

❑ You can compare two QNames for equality. This sounds trivial, but it is probably the most
important reason for using them. The comparison checks both the namespace URI and the local
name, and it ignores the prefix. Moreover, the proper rules are used for this comparison; it’s not
subject to the uncertainties that arise when comparing strings, for example whether accents are
significant and whether lower-case compares equal to upper-case. For example, the test:

node-name(.) = expanded-QName("http://www.mfg.org/ns", "product")

is comparing two xs:QName values. This is much more reliable than the test:

name(.) = "mfg:product"

which could go wrong for two reasons: it’s dependent on the choice of namespace prefix, which
shouldn’t make any difference, and it’s doing a string comparison using the default collation,
which might compare strings such as «product» and «Product» as equal if that’s the way it’s
been set up. There’s more detail on collations in the next section, which discusses the xs:string
data type.

❑ You can construct an expanded QName from the namespace URI and local-name using the
expanded-QName() function shown above, and you can extract these two components using
the rather clumsily-named functions local-name-from-QName() and namespace-uri-
from-QName().

Although you cannot convert a QName directly to a string, you can convert a string to a QName.
For example, you can write «xs:QName("mfg:product")», which will produce the expanded
QName whose local-name is «product», and whose namespace URI is the namespace URI
corresponding to the «mfg» prefix. The way this correspondence is established is outside the
control of XPath itself: it is part of the static context of an XPath expression. In XSLT stylesheets,
for example, it is established by the namespace declarations in the stylesheet surrounding the
place where the XPath expression appears.

88

The Type System

❑ Note that this construct allows the lexical QName to be constructed at runtime (if that weren’t
true, there wouldn’t be much point in it), for example it allows you to write something like:

xs:QName(concat("mfg:", local-name($e)))

For this to work, the system has to know the original namespace context at runtime, not only at
compile time. It’s therefore a rather expensive feature of the language that some implementors
complain about a great deal.

Watch out for changes in the rules here: this part of the XPath specification is still
being hotly debated.

xs:string
A string value in XPath is any sequence of zero or more characters, where the alphabet of possible
characters is the same as in XML: essentially the characters defined in Unicode.

String values can be written in XPath expressions in the form of a literal, using either single quotes or
double quotes, for example «’John’» or «"Mary"». In theory, the string literal can contain the opposite
quote character as part of the value, for example «"John’s"». In practice, certainly in XSLT, XPath
expressions are written within XML attributes, so the opposite quote character will generally already be
in use for the attribute delimiters. For more details, see the section StringLiteral in Chapter 5, page 144.

There is no special null value, as there is in SQL. Where no other value is appropriate, a zero-length string
or an empty sequence is used. These are not the same thing: an empty sequence is a sequence containing
no items («count($x)» returns 0), while a zero-length string is a sequence containing a single item,
whose type is xs:string and whose value has a string-length of zero («count($x)» returns 1,
«string-length($x)» returns 0). However, although zero-length strings and empty sequences aren’t
the same thing, most of the functions in the standard library (see Chapter 10) give the same answer when
an empty sequence is supplied as the input as when a zero-length string is supplied.

The specifications try always to use the term zero-length string for the value «""», to avoid any possible
confusion, but occasionally the terms null string and empty string slip in by mistake.

The actual set of Unicode characters permitted in XML changes between XML 1.0 and XML 1.1. At the
time of writing, the XPath 2.0 specifications leave it to the implementor to decide which version of XML
to align with.

In XML 1.0, the only ASCII control characters permitted (codes below x20) are the whitespace characters
x09, x0A, and x0D (tab, newline, and carriage return). In XML 1.1, all control characters other than x00
are allowed, though you have to write them using XML character references rather than in their native
encoding. For example, the BELL character, which in former times was used to ring the bell on a teletype
machine, but nowadays is more likely to result in an irritating electronic beep, is represented as «&x07;».
The requirement to use this form is because some of these control characters have special meaning in
communications protocols that may be used to carry XML documents. The exclusion of the x00 character
(sometimes called NUL) is probably a concession to programmers writing XML parsers and related

89

Chapter 3

software in C, where this character is treated as a string delimiter. It also has the effect—probably
deliberate—that you still can’t use XML directly to convey binary data, you have to encode it as
characters. As we will see (on page 94), XML Schema provides two data types to help with this,
xs:hexBinary and xs:base64Binary.

Unicode was originally defined so that all characters would fit in two bytes (the highest code point was
65,535), but it has since outgrown that limit, and now defines characters using code points up to 1,114,111.
In programming languages such as Java, there is poor support for Unicode characters above 65,535, and
they appear in the application as a surrogate pair: two char values that have to be processed as a pair.
(There are plans to provide library support for higher codepoints in JDK 1.5, but the basic data types
char and String won’t be changed). In XPath, you don’t have to worry about surrogate pairs. Each
character, even those above 65,535, is counted as a single character. This affects functions such as
string-length(), which count the number of characters in a string, and substring(), which
extracts the characters at particular positions in the string.

Strings may be compared using the «=» and «!=» operators, as well as «<», «>», «<=», and «>=». The
exact way in which these work is context-dependent. Strings are always compared using a collation, and
it is up to the collation to decide, for example, whether the two strings «naive» and «naı̈ve» are equal
or not (spot the difference). XPath itself doesn’t define what the default collation is (and neither does
XSLT), it leaves the choice to the user, and the way you select it is going to depend on the configuration
options for your particular XPath processor. If you want more control over the choice of a collation, you
can use the compare() function, which is described in detail in Chapter 10 (see page 310).

The handling of the «<» and «>» operators is not backward compatible with XPath 1.0. In
XPath 1.0, these operators, when applied to two strings, attempted to convert both strings to numbers,
and compared them numerically. This meant, for example, that «"4"="4.0"» was false (because
they were compared as strings), while «"4">="4.0"» was true (because they were compared as
numbers). In XPath 2.0, if you want to compare strings as numbers, you must convert them to numbers
explicitly, for example, by using the number() function.

The library of functions available for handling strings is considerably expanded from XPath 1.0. It
includes:

❑ concat() and string-join() to concatenate strings with or without separators

❑ contains(), starts-with(), and ends-with() to test whether a string contains a particular
substring

❑ substring(), substring-before(), and substring-after() to extract part of a string

❑ upper-case() and lower-case() to change the case of characters in a string

❑ string-length() to find the length of a string

❑ normalize-space() to remove unwanted leading, trailing, and inner white space characters

❑ normalize-unicode() to remove differences in the way equivalent Unicode characters are
represented (for example, the letter «ç» with a cedilla can be represented as either one Unicode
character or two)

Perhaps the most powerful addition to the string-handling capability in XPath 2.0 is the introduction of
support for regular expressions, familiar to programmers using languages such as Perl. Regular

90

The Type System

expressions provide a powerful way of matching and manipulating the contents of a string. They are
used in three functions:

❑ matches() tests whether a string matches a particular regular expression. For example
«matches("W151TBH", "ˆ[A-Z][0-9]+[A-Z]+$")» returns true. (This regular expression
matches any string consisting of one uppercase letter, then one or more digits, and then one or
more letters.)

❑ replace() replaces the parts of a string that match a given regular expression with a
replacement string. For example, «replace("W151TBH", "ˆ[A-Z]([0-9]+)[A-Z]+$",
"$1")» returns «151». The «$1» in the replacement string supplied as the third argument picks
up the characters that were matched by the part of the regular expression written in parentheses.

❑ tokenize() splits a string into a sequence of strings, by treating any character sequence that
matches the regular expression as a separator. For example, «tokenize("abc/123/x", "/")»
returns the sequence «"abc", "123", "x"».

All these functions are described in detail in Chapter 10. The syntax of regular expressions is described in
Chapter 11.

xs:time
The xs:time data type represents a time of day, for example, 12:15:00. Like an xs:dateTime, it can
represent the fractional number of seconds to an arbitrary precision determined by the implementation
(at least three decimal digits are required), and it can optionally incude a timezone. A time with a
timezone is written, for example, as «12:15:00+01:00» to indicate a timezone one hour ahead of UTC
(as used in much of continental Europe during the winter months, and in Britain during the summer).

Like xs:date and xs:dateTime values, xs:time values without an explicit timezone are assumed to
apply to an implicit timezone taken from the evaluation context.

Operations you can perform on an xs:time include:

❑ Comparing and sorting times

❑ Converting times to and from strings

❑ Extracting the component parts of a time (hour, minutes, seconds, timezone)

❑ Adding a duration to a time (or subtracting a duration) to get another time

❑ Determining the difference between two times, as a duration

❑ Combining the time with a date to create an xs:dateTime (there is actually no direct way of
achieving this, but it can be done by combining the other functions available)

❑ Adjusting the timezone: that is, creating an equivalent time with or without a timezone, or with a
different timezone (see the adjust-time-to-timezone() function on page 297)

Although timezones are complex enough already, one problem that the XPath
model doesn’t tackle is daylight savings time (also known as summer time). If you want to use xs:time
values to represent, say, a schedule of flights departing from Logan airport in Boston, then you probably
want to use the value «13:15:00» to mean “a quarter past one, in Boston’s time zone”. Specifying this as

91

Chapter 3

«13:15:00-05:00» would be incorrect, because for half the year Boston is five hours behind UTC, and
for the other half it is only four hours behind. My recommendation in this situation would be not to store
a timezone with the value itself, but to use some other way of representing the information (for example, a
timezone attribute on the containing element). Alternatively, it might be better to hold all times internally
in UTC (sometimes called Zulu time) and only convert them to a local timezone for display purposes.

A particular problem that is unique to xs:time values is comparison and sorting, because the natural
ordering is cyclic. For example, most people would agree that 18:00:00 is before 23:59:00, but is it
before 00:00:00? And is 20:00:00-05:00 (8 p.m. in New York) before or after 00:30:00+00:00
(half past midnight in London)?

There is no correct answer to this question, but the rule that XPath has adopted is at least reasonably
simple. The answer is: if the value has no timezone, assume it is in the implicit timezone defined by the
evaluation context; then adjust both values to UTC, and compare them according to the number of
seconds that have elapsed since midnight. The effect of this rule is that 18:00:00-05:00 (6 p.m. in New
York) is after 22:00:00-05:00 (10 p.m. in New York), which might not be what you expected. This
arises because the corresponding UTC values are 23:00:00Z and 03:00:00Z, respectively. For an
answer that makes more sense to the residents of New York, the pragmatic solution is to convert both
values to strings, and compare them as strings.

xdt:dayTimeDuration and xdt:yearMonthDuration
XML Schema provides a primitive data type xs:duration, which we will discuss briefly on page 95. A
duration represents a period of time, expressed in years, months, days, hours, minutes, seconds, and
fractions of a second.

Durations that mix these different units are difficult to handle because the length of a month is variable.
For example, what should be the result of comparing a duration of one month with a duration of 30 days?
XML Schema addressed this problem by defining a partial ordering for durations, which means that
some durations are clearly longer than others, but for some pairs of durations (like the example just
cited), the relative magnitude is undefined.

The idea of a partial ordering makes life rather difficult for a language like XPath. Operations like «=»
and «<» need to produce a yes-or-no answer, introducing a “maybe” would complicate the language
immensely. For this reason, XPath decided to introduce two new duration types, which are defined as
subtypes of xs:duration. The xdt:dayTimeDuration handles durations expressed in days, hours,
minutes, seconds, and fractions of a second, while xdt:yearMonthDuration handles durations in
years and months. These behave much more cleanly: an xdt:dayTimeDuration is just a decimal
number of seconds, and an xdt:yearMonthDuration is just an integer number of months.

You can manipulate these two duration subtypes using arithmetic operators and functions: for example
you can add and subtract two durations to give another duration, you can multiply or divide a duration
by a number to get another duration, and you can divide one duration by another to get the ratio between
the two durations as a number (more specifically, as an xs:double). You can also use functions such as
sum() and avg() to get the total or average of a sequence of durations.

I personally prefer to use numbers for most of these operations. There’s no reason why you can’t use an
xs:double to represent a duration in seconds, just as you would use one to represent a distance, a
weight, a temperature or a voltage. Many calculations in fact become easier when you represent
durations as numbers: for example, there is no way to divide a distance by a duration to obtain an

92

The Type System

average speed, except by converting the duration to a number. Similarly, if you want to work out how
much to pay someone who has worked for five hours at $10/hour, it’s no use multiplying the duration
five hours by 10: the answer will be 2 days and 2 hours, not $50.

Where the duration types do prove useful is when they are used in conjunction with dates and times. You
can add a duration to a date or time to get another date or time, and you can subtract one date or time
from another to get a duration.

Durations are written lexically in the notation defined by the ISO 8601 standard. The general form is the
letter «P», followed by one or more of the components nY for the years, nM for the months, nD for days,
nH for hours, nM for minutes, and nS for seconds. A «T» is used as a separator between the days and the
hours. All the values are integers except for the seconds, which may be fractional. Zero components may
be omitted (though at least one component must be present), and a negative duration may be written
with a leading minus sign. So «P10Y6M» is 10 years 6 months, while «PT10H30M» is 10 hours, 30 minutes.
XML Schema treats the values «P12M» and «P1Y» as distinct (an enumeration facet that permits one of
these forms will not permit the other), but XPath treats them as equal, and will not retain any distinction
between the two forms when converting the typed value back to a string value.

XPath provides no functions to format durations in a user-friendly output representation. Instead there
are six functions years-from-duration(), months-from-duration(), days-from-duration(),
hours-from-duration(), minutes-from-duration(), and seconds-from-duration() which
allow the components to be extracted. These will be the components after normalizing the value: for
example if the duration is supplied as «P18M», then extracting the components will give you one year and
six months. If the duration is negative, then all the components will be supplied as negative numbers.

The Minor Atomic Types
The previous section covered the major data types of XPath 2.0, the ones that are well supported by
functions and operators in the language: specifically, xs:anyURI, xs:boolean, xs:date,
xs:dateTime, xs:decimal, xs:double, xs:integer, xs:QName, xs:string, xs:time,
xdt:dayTimeDuration, and xdt:yearMonthDuration.

In this section I will briefly survey what I call the minor atomic datatypes. These are defined as primitive
types in XML Schema, but they are not well supported by XPath, and you are unlikely to use them very
often. These are xs:gYear, xs:gYearMonth, xs:gMonth, xs:gMonthDay, xs:gDay, xs:duration,
xs:float, xs:hexBinary, xs:base64Binary, and xs:NOTATION.

The Partial Date Types
This category refers to the five types xs:gYear, xs:gYearMonth, xs:gMonth, xs:gMonthDay, and
xs:gDay. They essentially represent dates in which one or two of the components are missing.

It has to be said that these types have been treated with a certain amount of derision by commentators. I
have heard them referred to as the gHorribleKludge data types, or (after the pronunciation of “gDay”), the
Strine data types. I have yet to see them used in a real application, and it does seem fairly extraordinary
that these types, even if someone finds them useful, should be considered as primitive types on the same
level as string, boolean, and double. For my part, if I want to design an XML database that includes
information about the vintage years of my favorite wines, I think I can do it without using the xs:gYear
data type, let alone an xs:gYear with a timezone.

93

Chapter 3

But for better or worse, they are there—so we might as well describe them and move on.

The lexical representation of these values follows ISO 8601 conventions, using hyphens to represent
missing components. ISO 8601 does not allow timezones on these values, this is an extra addition by the
XML Schema working group. The allowed formats are shown using examples in the table below.

Type Without timezone With timezone

xs:gYear 2004 2004+08:00

xs:gYearMonth 2004-07 2004-07+08:00

xs:gMonth -07 -07+08:00

xs:gMonthDay -07-31 -07-31+08:00

xs:gDay -31 -31+08:00

For the xs:gYear and xs:gYearMonth types, an optional leading minus sign is allowed to indicate BC
dates.

The format of xs:gMonth values was shown incorrectly in the published XML Schema Recommendation
as «-MM-». The error was corrected in a subsequent erratum, but in the meantime it has found its way
into many books on XML Schema and a number of software products.

XPath 2.0 allows conversion of these values to and from strings. It allows them to be compared with each
other using the «=» and «!=» operators, but they cannot be sorted or compared using «<» and «>».
Comparison uses the implicit timezone if the value itself has no timezone. This means that two
xs:gYear values are not equal to each other if they are in different timezones. (If you ever come across
an application that relies on this, let me know.)

XPath 2.0 also allows casting from an xs:dateTime or xs:date to any of these five types: the relevant
components (including the timezone) are extracted, and the other components are discarded. The full
rules for casting between different data types are given in Chapter 9.

Binary Data Types
XML Schema supports two data types for holding binary data (for example, images or sound clips). These
are xs:base64Binary and xs:hexBinary. Binary data cannot be held in an XML document directly,
so it is always encoded as characters, and these two data types support the two most popular encodings.

Base 64 encoding is defined by reference to Internet mail standards in RFC 2045 (http://www.ietf
.org/rfc/rfc2045.txt), though the format was originally described in RFC 1421. The basic idea is
that the binary stream is split into 24-bit chunks (three bytes), and each chunk is then considered as four
groups of 6 bits. Each 6-bit group is then considered to be the code representing a character in an alphabet
of 64 characters, and this character is used to represent the value in the lexical representation. The
64-character alphabet consists of A–Z, a–z, 0–9, «+», and «/». One or more «=» characters may occur at
the end to indicate padding to a whole number of 8-bit bytes, and newlines may appear to break up the
total sequence (according to the RFC, the maximum line length is 76 characters).

The hexBinary encoding is simpler but less compact: it simply takes each octet of the binary stream, and
represents it as two hexadecimal digits.

94

The Type System

XPath 2.0 doesn’t offer any very useful functionality for these two data types. In particular, it doesn’t
provide you with any way to convert the values to or from an actual stream of octets. What you can do is
to compare the values for equality, convert them to and from strings, and convert between the two data
types, in either direction.

Single-Precision Floating Point
Unlike the other data types that I’ve classified as minor, xs:float is well supported by functions and
operators in XPath 2.0; in fact any operator or function that can be applied to an xs:double can also be
applied to an xs:float.

There is no numeric literal for xs:float values, you have to create them using a constructor function,
for example «xs:float(3.14159)».

The real reason I have classified xs:float as a minor data type is that I can’t see any reason why anyone
should want to use it. Compressing a floating point number into 32 bits made sense in the 1960s, but it
makes little sense nowadays, and the loss of precision when performing numeric calculations is far too
severe for most applications to justify the space saving. The only justification I have heard for including
this type in XML Schema is for compatibility with other (older) type systems such as SQL.

In XML Schema, xs:float is not defined as a subtype of xs:double. Its value space is a strict subset of
xs:double, but the working group decided to make it a primitive type apparently because of the
difficulty of defining the nature of the restriction, which would have required the invention of new facets.
In XPath, however, xs:float can be considered for most practical purposes to be a subtype of
xs:double. It won’t pass explicit tests such as «$F instance of xs:double» that it would pass if it
were a true subtype, but you can pass an xs:float value to any function or operator that expects an
xs:double, and it will be converted automatically (this particular kind of conversion is referred to as
numeric promotion).

When you mix xs:float and xs:double in a calculation, the result is xs:double. If you mix
xs:float and xs:decimal, however, the result is xs:float.

The xs:duration Data Type
The xs:duration type is one of the primitive data types in XML Schema, but as we’ve already seen,
XPath decided to avoid the difficulties it posed by introducing the two subtypes xdt:yearMonth
Duration and xdt:dayTimeDuration. You can still use the xs:duration type in your schema and
in your documents, but there is very little support for it in XPath. In fact, you can’t even compare one
xs:duration to test whether it is equal to another. The only operations that are allowed are a few
conversions: you can convert a string to an xs:duration, and convert an xs:duration to a string. You
can also convert an xs:duration to an xdt:yearMonthDuration or xdt:dayTimeDuration,
which is done by removing the components that aren’t applicable to the target type.

The xs:NOTATION Data Type
The xs:NOTATION data type is perhaps the weirdest primitive type in the whole armoury. It’s provided
to give backward compatibility with a rarely used feature in DTDs.

In a DTD you can define an unparsed entity like this:

<!ENTITY weather-map SYSTEM "weather.jpeg"
PUBLIC "-//MEGACORP//WEATHER/" NDATA JPEG>

95

Chapter 3

This example refers to a binary file weather.jpeg, and the NDATA part tells you that its format is JPEG.
The keyword NDATA can be read as “Non-XML Data”.

This declaration is only valid if JPEG is the name of a notation defined somewhere in the DTD, for
example:

<!NOTATION JPEG SYSTEM "image/jpeg" >
<!NOTATION GIF SYSTEM "image/gif" >

The theory is that the system identifier tells the application what the name JPEG actually means.
Unfortunately, there is no standardization of the URIs you can use here, so this doesn’t work all that well
in practice. I’ve used the registered media type (or MIME type) for JPEG as if it were a URI, but this isn’t
universal practice.

Elsewhere in the DTD you can define an attribute whose value is required to be one of a number of
specified notations, for example:

<!ELEMENT map EMPTY>
<!ATTLIST map

format NOTATION (JPEG|GIF) "JPEG"
src ENTITY #REQUIRED

>

This defines an element, <map>, whose content is empty, and which has two attributes: a format
attribute of type NOTATION, whose value must be JPEG or GIF, with the default being JPEG, and a src
attribute, whose value must be the name of an unparsed entity defined in the DTD.

You can’t actually declare unparsed entities in a schema (for that, you need to continue using a DTD), but
you can declare attributes whose values must be entity names or notation names. The schema equivalent
to the DTD declarations above would be:

<xs:notation name="JPEG" system="image/jpeg"/>
<xs:notation name="GIF" system="image/gif"/>

<xs:element name="map">
<xs:complexType>

<xs:attribute name="format" type="image-notation" default="JPEG"/>
<xs:attribute name="src" type="xs:ENTITY"/>

</xs:complexType>

<xs:simpleType name="image-format">
<xs:restriction base="xs:NOTATION">

<xs:enumeration value="JPEG"/>
<xs:enumeration value="GIF"/>

</xs:restriction>
</xs:simpleType>

Note that you can’t declare an attribute whose type is xs:NOTATION, it must be a subtype of
xs:NOTATION that is restricted to a specific list of allowed values. This all mirrors the rules for use in
DTDs, and is all designed to ensure that users whose document types make use of unparsed entities and
notations aren’t prevented from taking advantage of XML Schema.

96

The Type System

Although notations were added to XML Schema for backward compatibility reasons, the schema
working group added an extra feature: they made notation names namespace-aware. In the schema
above, the notation name «JPEG» is interpreted as a local name defined within the target namespace of
the containing schema. If the target namespace is anything other than the null namespace, then the
notation name actually used in the source document (and in the <xs:enumeration> elements) will
need to be qualified with a namespace prefix.

So, how is xs:NOTATION supported in XPath 2.0? The answer is, minimally. There are two things that are
allowed:

❑ You can compare two xs:NOTATION values to see if they are equal, or not equal

❑ You can cast an xs:NOTATION value to a string.

Casting a string to an xs:NOTATION is not allowed. This means that there is actually no way of
constructing an xs:NOTATION value from scratch within an XPath expression: the only way you can get
one is by reading the content of an attribute whose type annotation is xs:NOTATION.

This completes our survey of the “minor” types: that is, the types that are defined in XML Schema as
primitive types, but which have fairly specialized applications (to put it politely). The next two sections
deal with the two families of derived types that are predefined in XML Schema: the derived numeric
types, and the derived string types.

Derived Numeric Types
XML Schema defines a range of types defined by restriction from xs:integer. They differ in the range
of values permitted. The following table summarizes these types, giving the permitted value range for
each one.

Type Minimum Maximum

xs:byte -128 127

xs:int -2147483648 2147483647

xs:long -263 263-1

xs:negativeInteger no minimum -1

xs:nonNegativeInteger 0 no maximum

xs:nonPositiveInteger no minimum 0

xs:positiveInteger 1 no maximum

xs:short -32768 32767

xs:unsignedByte 0 255

xs:unsignedInt 0 4294967295

xs:unsignedLong 0 264-1

xs:unsignedShort 0 65535

97

Chapter 3

The type hierarchy for these types is shown in Figure 3-1.

xs:integer

xs:nonPositiveInteger

xs:nonPositiveInteger

xs:positiveInteger

xs:unsignedLong

xs:unsignedShort

xs:unsignedByte

xs:unsignedInt

xs:nonNegativeInteger

xs:long

xs:Int

xs:short

xs:byte

Figure 3-1

The range of values permitted in an xs:integer is unspecified. The specification says that at least
18 digits must be supported, but since the maximum value of an xs:unsignedLong is
18,446,744,073,709,551,615 it is clear that 18 digits is not actually sufficient. Some implementations may
allow arbitrary precision integers.

I’m not a great enthusiast for these types. Their ranges are matched to the capacity of bits and bytes in the
hardware, rather than to value ranges that actually occur in the real world. If you want to hold a
percentage, and its value is an integer in the range 0 to 100, I would recommend defining a data type with
that specific range, rather than using an off-the-shelf data type such as unsignedByte. This then leaves
the question of which type to derive it from. There are 10 types in the above list that you could choose
from. My own choice would be to derive it directly from xs:integer, on the grounds that any other
choice is arbitrary.

98

The Type System

As far as schema validation is concerned, it really doesn’t matter very much what the type hierarchy is: if
you define your percentage data type with a minInclusive value of 0 and a maxInclusive value of
100, then the validator will do its work without needing to know what type it is derived from. When it
comes to XPath processing, however, the type hierarchy starts to become more significant. For example, if
a function is defined that accepts arguments of type xs:positiveInteger, then a value of type
my:percentage will be accepted if my:percentage is derived by restriction from
xs:positiveInteger, but not if my:percentage is derived from xs:int. The fact that every valid
percentage is also a valid xs:int doesn’t come into it: the value is substitutable only if the type is
defined as a subtype of the required type in the type hierarchy.

In the standard function library, there are a number of functions that return integers, for example
count(), position(), and month-from-Date(). There are also a few functions that require an
integer as one of the arguments, for example, insert-before(), remove(), and round-half-
to-even(). All these functions are described in Chapter 10. In all cases the type that appears in the
function signature is xs:integer, rather than one of its subtypes. In many cases a subtype could have
been used, for example count() could have been defined to return an xs:nonNegativeInteger,
position() could have been defined to return xs:positiveInteger. But this wasn’t done, and it’s
interesting to see why.

Firstly, consider functions that accept an integer as an argument, such as remove(). Here the integer
represents the position of the item to be removed. This could have been defined as an xs:
positiveInteger, since the only values that make sense are greater than zero (positions in a sequence
are always numbered from one). But if this was done then the function call «remove($seq, 1)» would
give a type error, on the curious grounds that 1 is not an xs:positiveInteger. This is because, when
you supply a value in a context where a particular type is required, the type checking rules rely on the
label attached to the value, they don’t consider the value itself. The type label attached to the integer
literal «1» is xs:integer, and xs:integer is not a subtype of xs:positiveInteger, so the call
fails.

Secondly, consider functions that return an integer, such as month-from-date(). Here the result is
always in the range 1 to 12. So the result could have been defined as an xs:byte, or an xs:integer, or
an xs:positiveInteger, or several other types. Alternatively, a new type xdt:month-value could
have been defined with the specific range 1 to 12. Defining it as xs:byte would have been helpful to
people who want to use the returned value in a call to a function that expects an xs:byte, while defining
it as an xs:positiveInteger would have helped people who want to call functions that expect that
type. Defining a custom type just for this purpose would have been overkill. It’s not possible to please
everyone, so the plain vanilla type xs:integer was chosen to stay neutral.

The fact of the matter is that numeric ranges don’t naturally fall into a hierarchy, and type checking by
looking at the labels rather than the actual value doesn’t work particularly well in this situation.
Choosing a type such as xs:int may give performance advantages on some systems compared with
xs:long, but they are likely to be miniscule. My advice would be either to define a type that reflects
the actual semantics of the value, for example percentage or class-size or grade, or just use the
generic type xs:integer. If you write general-purpose functions (which is strictly speaking outside the
scope of XPath, and takes you into XSLT or XQuery territory), then declare the expected type as
xs:integer, and check the validity of the actual value within the code of your function.

Some people advocate defining numeric types for different units of measure, for example inches or
centimeters. If you find this useful to document the intended usage, then that’s fine, but don’t expect the
type system to do anything clever with the values as a result. It won’t stop you adding an inches value to a

99

Chapter 3

centimeters value, for example. My personal preference is to model units of measure as complex types,
typically using an element whose content is the numeric value, and with a fixed, defaulted attribute to
denote the unit of measure. Subtypes are designed to be used where values of the subtype are substitutable
for values of the parent type, which means they aren’t appropriate if you want to restrict the operations that
are permissible.

Derived String Types
As well as types derived from xs:integer, the standard repertoire of types that come as standard with
XML Schema include a family of types derived from xs:string. The type hierarchy is shown in
Figure 3-2.

xs:string

xs:normalizedString

xs:token

xs:language

xs:NMTOKEN

xs:Name

xs:NCName

xs:ID

xs:IDREF

xs:ENTITY

Figure 3-2

Most of these types restrict the set of characters that are allowed to appear in the string, but they also
have other purposes:

❑ Some affect the way that whitespace within the value is normalized

❑ Some such as xs:ID and xs:IDREF trigger special validation rules that apply to the document
as a whole

The processing of whitespace within an element or attribute value is controlled in XML Schema using the
xs:whiteSpace facet on the data type. There are three possible values: preserve, replace, and

100

The Type System

collapse. These work as follows:

❑ preserve leaves the value intact.

❑ replace replaces each tab, carriage return, or newline character with a single space.

❑ collapse removes leading and trailing whitespace, and replaces any sequence of internal
whitespace characters by a single space character. (Whitespace here means any of the characters
x09, x0A, x0D, and x20, while space means the character x20.)

Validation of a source document against a schema only happens after XML parsing is complete, so this
level of whitespace processing only comes into play after the XML parser has already done its work. The
XML parser replaces any end-of-line sequence (for example, x0Dx0A) by a single newline character
(x0A), unless it is written using character references such as «», and it also normalizes attribute
values using the replace rule above. Specifying preserve in the schema won’t stop the XML parser
replacing tabs in an attribute value by spaces, unless you write them as «	».

In practice, you choose the whitespace processing you want not by specifying an explicit
xs:whiteSpace facet, but by deriving your type definition from xs:string if you want preserve,
xs:normalizedString if you want replace, and xs:token if you want collapse. (The type
xs:token is a notorious misnomer, it actually represents a sequence of tokens separated by whitespace,
and the assumption is that it makes no difference which whitespace characters are used as separators.)

You can restrict the allowed values for a string using the xs:pattern facet, which provides a regular
expression that the value must match. The pattern is applied to the value after whitespace processing has
been carried out.

Patterns can also be used for data types other than strings, but they are rather blunt
instruments. For example, if you try to define a subtype of xs:decimal with the
pattern «[0-9]+\.[0-9]{2}», which states that there must be two digits after the
decimal point, then any attempt to cast a value to this type is likely to fail—
the system isn’t clever enough to add trailing zeros to the value just because the
pattern requires them.

Oddly, XML Schema doesn’t define a data type for strings in which spaces are not allowed, such as part
numbers. It’s often handy to define such a type as a user-defined type, from which many other
application-oriented types can be derived. You can define it like this:

<xs:simpleType name="my:singleToken">
<xs:restriction base="xs:token">

<xs:pattern value="[ˆ\s]+"/>
</xs:restriction>

</xs:simpleType>

This pattern also restricts the value to contain at least one non-space character (a zero-length string is not
allowed).

The meaning of each of the data types is summarized in the table below.

101

Chapter 3

Type Usage

xs:string Any sequence of characters, in which whitespace is significant

xs:normalizedString Any sequence of characters, in which whitespace acts as a
separator, but no distinction is made between different whitespace
characters

xs:token A sequence of tokens separated by whitespace

xs:language A value that follows the rules for the xml:lang attribute in XML

xs:NMTOKEN A sequence of characters classified as name characters in the XML
specification. This includes letters, digits, «.», «-», «_», and «:»,
and a few other special characters

xs:Name An NMTOKEN that starts with a character classified as an initial
name character in the XML specification. These include letters,
«_», and «:»

xs:NCName A Name that does not include a «:» (a no-colon-name)

xs:ID The value of an ID can be any valid NCName, but it is constrained
to be unique among all the ID values in a document

xs:IDREF The value of an IDREF can be any valid NCName, but it is
constrained to be the same as some ID value somewhere in the
same document

xs:ENTITY The value of an ENTITY can be any valid NCName, but it is
constrained to the same as the name of an unparsed entity defined
in the DTD

XPath 2.0 doesn’t handle any of these types specially, it just treats them as strings. If you try to cast a
value to one of these types, it will first apply the whitespace rules for that type, and it will then check that
the value conforms to the rules for the type. (This means for example, that calling «xs:token($s)» has
pretty well the same effect as calling «normalize-space($s)»; the only difference is that in the first
case, you end up with a value labeled as an xs:token, and in the second case, it is labeled
xs:string.)

Confusingly, the normalize-space() function (which is carried forward from
XPath 1.0 and is described in Chapter 10 of this book), collapses whitespace, while
the xs:normalizedString data type in XML Schema replaces whitespace.

The special validation rules for xs:ID, xs:IDREF, and xs:ENTITY are not invoked when you create
atomic values of these types, they only make sense in the context of validating an entire document. Since
XPath only reads documents (it never writes them or validates them) this means they have very little
value in a pure XPath context.

102

The Type System

This concludes our tour of the built-in atomic data types defined in XML Schema. Before finishing, we
need to look at the special data type xdt:untypedAtomic, and at the three list data types
xs:NMTOKENS, xs:IDREFS, and xs:ENTITIES.

Untyped Atomic Values
It might seem perverse to have a type called xdt:untypedAtomic, but that’s the way it is. This isn’t a
type defined by XML Schema, it is a type used to label data that hasn’t been validated against an XML
Schema.

XML is a technology whose unique strength is its ability to handle everything from completely
unstructured data, through semi-structured data, to data that has a completely rigid and formal structure.
XPath needs to work with XML documents that fit anywhere in this spectrum. Indeed, it’s not unusual to
find documents where one part is rigidly structured, and another is completely free form.

One way of handling this would be to say that everything that isn’t known to have a specific data type is
simply labeled as a string. But to enable more accurate type checking of expressions and queries, the
language designers wanted to be more precise than this, and to distinguish data that’s known to be a
string because it has been validated against a schema, from data that’s handled as a string because we
don’t know any better.

The value space of xdt:untypedAtomic is the same as that of xs:string; in other words, any
sequence of Unicode characters permitted in XML can be held as an xdt:untypedAtomic value. So in
terms of the values they can represent, there’s no difference between xdt:untypedAtomic and
xs:string. The difference is in how the values can be used.

xdt:untypedAtomic is a chameleon type: it takes its behavior from the context in which it is used. If
you use it where a number is expected, it behaves like a number; if you use it where a date is expected, it
behaves like a date, and so on. This can cause errors, of course. If the actual value held in the
xdt:untypedAtomic value isn’t a valid date, then using it as a date will fail.

In XPath 1.0, all data extracted from a source document was untyped in this sense. In some ways this
makes life easy for the programmer, it means that you can do things like «@value + 2» without worrying
about whether @value is a number or a string. But occasionally, this freedom can lead to confusion. For
example, in XPath 1.0, «boolean(@value)» tests whether the value attribute exists;
«boolean(string(@value))» tests whether it exists and is not an empty string, while
«boolean(number(@value))» tests whether it exists and has a numeric value that is not zero. To make
these kind of distinctions, you need to understand the differences between data types.

With XPath 2.0, if your source documents have gone through schema validation, the elements and
attributes will be annotated with a data type. This label tells the system what operations are legitimate on
the data type, and may also be used to select different ways of implementing the same operation. For
example, testing «@A < @B» will give different results depending on whether the attributes A and B have
been defined in the schema as strings, numbers, or durations.

Data labeled as xdt:untypedAtomic continues to behave as all data did in XPath 1.0, it has no intrinsic
type of its own, and is converted to whatever the default type is for the context in which it is used. If you
supply an xdt:untypedAtomic value as an argument to a function call, it is converted (cast) to the type
defined in the function signature. If you use it as an operand of an arithmetic operator such as «+» then

103

Chapter 3

the system tries to convert it to a number (actually, an xs:double). If you use it as an operand of «=» or
«<» then it first tries to convert it to the type of the other operand, which means that
«@A > 4» and «@A >’4’» may give you different answers (if the attribute value is «10», for example,
the first test will return true, the second false). If both operands are of type xdt:untypedAtomic,
then they will be compared using the rules for strings.

One thing that can trip you up if you aren’t using schemas, and are therefore used to most of your data
being untyped, is that the result of an operation is never untyped. This means, for example, that you can
write «concat("Chapter", @chap-num)», and the value of @chap-num will be treated as an
xs:string, which is what the concat() function requires. You can also write «@chap-num + 1», and
«@chap-num» will be treated as a number, which is what the «+» operator requires. But you can’t write
«concat("Chapter", @chap-num + 1)», because the result of «@chap-num + 1» is not untyped, it is
an xs:double, and the concat() function requires an xs:string. You have to do the conversion
explicitly, like this: «concat("Chapter, string(@chap-num + 1))».

Values can be labeled as xdt:untypedAtomic even when they come from a document that has been
validated against a schema, if the validation rules in the schema caused that part of the document to be
skipped. This situation can arise with documents that are part rigid structure, part free form.

Although untyped values arise most commonly when you extract the value of an unvalidated node in a
source document, you can also construct an untyped value explicitly, in the same way as any other atomic
value, by using a constructor function or cast. For example, the function call «xdt:untypedAtomic
(@date)» extracts the value of the @date attribute, and returns an untyped value regardless whether the
original attribute was labeled as a date, as a string, or as something else. This technique can be useful if
you need to process data that might or might not have been validated, or if you want to exploit the
chameleon nature of xdt:untypedAtomic data by using the value both as a string and as a date.

NMTOKENS, IDREFS, and ENTITIES
This section of the chapter is about atomic types, but it would not be complete without mentioning the
three built-in types defined in XML Schema that are not atomic, namely xs:NMTOKENS, xs:IDREFS, and
xs:ENTITIES. These all reflect attribute types that were defined in DTDs, and are carried forward into
XML Schema to make transition from DTDs to schemas as painless as possible.

In the sense of XML Schema, these are simple types, but they are not atomic types. XML Schema
distinguishes complex types, which can contain elements and attributes, from simple types which can’t.
Simple types can be defined in three ways: directly by restricting an existing simple type, by list, which
allows a list of values drawn from a simple type, or by union, which allows a choice of values from two or
more different simple types. But when it comes down to actual values, an instance of a simple type is
either a single atomic value, or a list of atomic values. Single atomic values correspond directly to atomic
values in the XPath data model, as described in the previous chapter, while lists of atomic values
correspond to sequences.

If an element or attribute is defined in the schema to have a list data type such as xs:NMTOKENS, then
after validation the element or attribute node will have a type annotation of xs:NMTOKENS. But when an
XPath expression reads the content of the element or attribute node (a process called atomization), the
result is not a single value of type xs:NMTOKENS, but a sequence of values, each of which is an atomic
value labeled as an xs:NMTOKEN.

104

The Type System

For example, you can test an attribute to see whether it is of type xs:NMTOKENS like this:

if (@A instance of attribute(*, xs:NMTOKENS)) ...

or you can test its value to see if it is a sequence of xs:NMTOKEN values like this:

if (data(@A) instance of xs:NMTOKEN *) ...

What you cannot do is to test the attribute node against the sequence type «xs:NMTOKEN*», or the value
contained in the attribute against the list type «xs:NMTOKENS». Both will give you syntax errors if you
attempt them. For more information on using the «instance of» operator to test the type of a value,
see Chapter 9.

Schema Types and XPath Types
The preceding discussion about list types demonstrates that while the XPath type system is based on
XML Schema, the types defined in XML Schema are not exactly the same thing as the types that XPath
values can take. This is best illustrated by looking at the two type hierarchies and seeing how they
compare. The type hierarchy in XML Schema is shown in Figure 3-3.

schema types
(xs:anyType)

simple types
(xs:anySimpleType)

complex types

union types list types atomic types
(xdt:anyAtomicType)

boolean

string

double

anyURI

NMTOKENS

IDREFS

ENTITIES

user-defined
complex types

user-defined
and built-in derived

atomic types
user-defined

list types

user-defined
union types

Figure 3-3

105

Chapter 3

This type hierarchy contains all the types that can be used as type annotations on nodes. The boxes that
are shown shaded are concrete types, so they can be used directly; the unshaded boxes are abstract types,
which can only be used via their subtypes. Some of the abstract types are named, which means you can
refer to them in an XPath expression (for example, you can write «element(*,xs:anySimpleType)»
which will match any element whose type annotation shows that its type is a simple type). Others are
unnamed, which means you cannot refer to them directly.

There is another type hierarchy, which represents the types of XPath items. This type hierarchy is shown
in Figure 3-4.

item()

node()

document-node()

element()

attribute()

text()

comment()

processing-instruction()

namespace

atomic types
(xdt:anyAtomicType)

xdt:untypedAtomic

boolean

double

user-defined
and built-in derived

atomic types

string

anyURI

Figure 3-4

This reflects the structure we described in the previous chapter: every item in an XPath sequence is either
a node or an atomic value; there are seven kinds of node, and the atomic types are either the built-in
atomic types defined in the XML Schema specification, or user-defined atomic types.

Comparing these two diagrams:

❑ Atomic types appear in both. Atomic types can be used either as annotations on nodes, or as the
type of a free-standing XPath item.

❑ Complex types, list types, and union types appear on the first diagram, but not the second. These
types can be used as node annotations, but you can never have a free-standing XPath item that
belongs directly to one of these types.

106

The Type System

❑ Node kinds appear on the second diagram only. You can have an item in an XPath sequence that
is an element or a comment or a processing instruction, but these types never appear as type
annotations on element or attribute nodes.

It’s a little unfortunate that the boxes on both these diagrams are all referred to as types, when we are
actually dealing with two different (but overlapping) categories: I call the first category schema types, and
the second category item types. The W3C specification for functions and operators attempts to depict both
of these categories on a single type hierarchy diagram, but in my view this is likely to confuse more
people than it enlightens. Apart from anything else, when you do this you find that xdt:anyAtomic
Type, which appears on both diagrams, has two different supertypes.

Item types and schema types are used in different ways in XPath:

❑ You can test whether an item $V belongs to a particular item type T by writing «$V instance
of T».

❑ You can test whether a node $N has a type annotation that is a particular schema type S by
writing «$N instance of attribute(*, S)» or «$N instance of element(*, S)».

Because atomic types such as xs:integer belong to both categories, they can be used in either of these
two ways. But item types such as «comment()» can only be used in the first of these roles, while
non-atomic schema types such as xs:IDREFS can only be used in the second role.

The Type Matching Rules
The purpose of a type system in a language, as we saw, is to define which operations are legitimate for
which types of value. In this section we will examine the way that XPath defines these rules.

It’s easiest to start with the rules for function calling. You can’t define your own functions in XPath itself,
but you can call functions written in other languages such as XSLT and XQuery, as well as the functions
provided in the core function library that comes with the language. Each of these functions has a
signature, which defines the types of each of the arguments expected by the function. The rules described
in this section define whether or not a particular value can be used in a function call, given a particular
type used in the function signature.

For example, the signature of the function remove() is given in Chapter 10 as follows:

Argument Data type Meaning

sequence item()* The input sequence

position xs:integer The position of the item to be removed

Result item()* A sequence containing all the items in the input sequence
except the item at the specified position

This shows that the function expects two arguments. The names of the arguments are irrelevant: these
names are purely for reference within the documentation, they are not used in an actual function call. The
important thing here is the data type expected for each argument.

107

Chapter 3

The first argument has a type of «item()*». There are two parts to this: the item type, and the
cardinality. The item type in this case is «item()», which is the most general item type of all, and accepts
any node or atomic value. The cardinality is «*», which means that the argument can be a sequence
containing zero, one or more items. Taken together, this means that the first argument of remove() can
be any sequence whatsoever.

The second argument has a type of xs:integer. There is no cardinality specified, which means that the
default cardinality is used: the effect of this is that the sequence supplied as the argument value must
contain exactly one item. The item type for this argument is xs:integer, which means that the supplied
value must be an atomic value labeled as an xs:integer, or as a subtype of xs:integer (for example,
it might be labeled as an xs:positiveInteger). Supplying any other value would lead to a type error,
which might be reported either when the expression is compiled, or when it is subsequently evaluated.

Actually, the type system is not quite as rigid as this. Instead of supplying an xs:integer for the second
argument, you can also supply:

❑ An untyped atomic value, provided that it takes a form that can be converted to an integer.

❑ A node, provided that the typed value of the node is either an xs:integer, or an untyped
atomic value.

However, you cannot supply a string (even a string that obviously contains an integer, such as «"17"»),
and you cannot supply a value of a different numeric type, such as xs:decimal or xs:double. You can
use an xs:integer where an xs:double is expected, but not the other way around.

When the function call expects an atomic value and the supplied value is a node, the system goes through
a process called atomization to extract the typed value of the node. Atomization is applied to the supplied
value (a sequence) to produce a derived value (the atomized sequence). The rules are:

❑ Any atomic value in the supplied sequence is added to the atomized sequence unchanged.

❑ For any node in the supplied sequence, the typed value is extracted, as described in Chapter 2
(see page 41). The typed value is in general a sequence of zero or more atomic values, and the
values in this sequence are added to the atomized sequence. If the node has not been validated
against a schema, these atomic values will be untyped (they will have the type label
xdt:untypedAtomic); if they have been validated, they are likely to have some other type such
as xs:integer or xs:date.

❑ For some kinds of node, extracting a typed value is not possible: specifically, this is true for
elements that are labeled with a type that has complex element-only content. Supplying such a
node where the function expects an atomic value is an error, and the XPath evaluation will fail.

The atomized sequence is then checked against the type given in the function signature. The cardinality
of the sequence as a whole must match the cardinality constraints given in the function signature, and
each item in the sequence must match the item type given.

The detailed syntax for describing the allowed type of each function argument is given in Chapter 9,
where it is referred to as a sequence type descriptor. The detailed rules for deciding whether a particular
value is allowed as an argument to a function call, and the way it is converted to the required type when
necessary, are given in Chapter 5, in the section describing function calls on page 160.

108

The Type System

Function calls are not the only place in XPath where a value needs to be checked against a required type.
Many of the operators in the language, such as «+», «-», and «|», also have rules saying what type of
operands are acceptable. These rules are based on the rules for function calls, but they are slightly
different because XPath allows operators to be polymorphic: that is, the same operator can mean different
things depending on the types of the arguments supplied. This is not currently allowed for function calls.
For each operator, the rules are therefore slightly different, and they are described in this book in the
section dealing with each operator. The non-trivial examples are the «=» family of operators and the
arithmetic operators, which are all described in Chapter 6.

In XSLT 2.0, the function calling rules are also used to describe what happens when you assign a value to
a variable, or to a parameter of a template. For example, suppose a template is declared like this:

<xsl:template name="do-something">
<xsl:param name="input" as="xs:integer *"/>
<xsl:sequence select="sum($input)"/>

</xsl:template>

This template has a signature in exactly the same way that a function has a signature, and the «as»
attribute of the <xsl:param> element defines the required type of the parameter value, which in this
case must be a sequence of integers. The same rules are used as in XPath function calls, for example, it is
okay to supply a node whose type annotation indicates that it contains a sequence of integers, but it is not
okay to supply a string.

The same is true of XSLT variable declarations. If you write:

<xsl:variable name="input" as="xs:integer *" select="my:function(12)"/>

then the system checks that the result of the expression in the «select» attribute is a sequence of
integers, or that it can be converted to a sequence of integers by atomization and/or casting of untyped
atomic values, and fails with a type error if not.

XQuery chose not to use the function calling rules for variable assignment, but instead applies a stricter
criterion. When you write in XQuery «let $x as xs:integer* := my:function(12)» then the
result of «my:function(12)» must actually be a sequence of integers; no conversions such as
atomization, or casting of untyped atomic values, are permitted in this context.

Static and Dynamic Type Checking
As I said in the introduction to this chapter, one of the major purposes of the type system in a
programming language is to enable programming errors to be detected and corrected. The best time to do
this, where possible, is at compile time.

Very often, you will compile and execute an XSLT stylesheet, or an individual XPath expression, as a
single indivisible operation. You may therefore feel that there isn’t much difference between detecting an
error at compile time and detecting it at runtime. Indeed, if you use XPath expressions from a
programming language such as Java, it’s likely that the XPath expressions won’t be compiled until the
Java program is executed, so in a sense all errors become runtime errors. However, there is still a big
difference, because an error that’s detected at compile time doesn’t depend on the input data. This means
that it will be reported every time you process the XPath expression, which means it can’t remain lurking
in the code until some chance condition in the data reveals a latent bug that got through all your tests.

109

Chapter 3

I had a real-life example of this recently. In Chapter 12 of the companion book, XSLT 2.0 Programmer’s
Reference, there is a stylesheet whose task is to perform a knight’s tour of the chessboard: a tour, starting
from a user-specified square, in which the knight visits every square on the chessboard exactly once. I
published an XSLT 1.0 version of this stylesheet in the previous edition of the book, and I have also
written an XQuery 1.0 version which is published with the Saxon software distribution. Part of the
algorithm involves backtracking when the knight gets stuck in a blind alley; however, I never found a
way of testing the backtracking, because in every case I tried, the knight got all the way around the board
without ever getting stuck. In fact, I said in the book that although I couldn’t prove it, I believed that the
backtracking code would never be invoked.

Three years after I first wrote the code, one of my readers discovered that if the knight starts on square
f1, it gets stuck on move 58 and has to retrace its steps. (The same user has since reported that this is the
only starting square where this happens.) The way he made the discovery was that in the XQuery version
of the algorithm, the backtracking code was wrong. I had coded two arguments to a function call the
wrong way around, and when the function call was executed, this was detected, because one of the
values had the wrong type. So type checking detected the error, but static type checking (that is, compile
time checking) would have detected it three years earlier.

But static type checking also has a downside: it makes it much harder to cope with unpredictable data.
With strict static type checking, every expression must satisfy the compiler that it can never fail at
runtime with a type error. Let’s see what happens if, for example, you have a price attribute whose
value is either a decimal number, or the string «N/A». You can define this in XML Schema as follows:

<xs:attribute name="price">
<xs:simpleType>

<xs:union memberTypes="xs:string price-NA/>
</xs:simpleType>

</xs:attribute>

<xs:simpleType name="price-NA">
<xs:restriction base="xs:string">

<xs:enumeration value="N/A"/>
</xs:restriction>

</xs:simpleType>

Now let’s suppose that you want to find the average price of those products where the price is known.
Your first attempt might look like this:

avg(product/@price[. != "N/A"])

This looks sensible, but under strict static type checking, it will fail to compile. There are two reasons.
Firstly, you can’t compare a number with a string, so the expression «. = "N/A"» isn’t allowed, on the
grounds that the value of «.» (that is, the typed value of the price attribute) might be a number.
Secondly, although you and I can tell that all the attributes that get through the filter in square brackets
will be numeric, the compiler isn’t so clever, and will report an error on the grounds that some of the
items in the sequence being averaged might be strings rather than numbers.

The first of these two errors will be reported even if type checking is delayed until runtime, so in this case
the static type checker has done us a service by reporting the error before it happened. The second error is
a false alarm. At runtime, all the attribute values being averaged will actually be numeric, so the error of
including a string in the sequence will never occur.

110

The Type System

This example is designed to illustrate that static type checking is a mixed blessing. It will detect some
errors early, but it will also report many false alarms. The more you are dealing with unpredictable or
semi-structured data, the more frequent the false alarms will become. With highly structured data, static
type checking can be a great help in enabling you to write error-free code; but with loosely structured
data, it can become a pain in the neck. Because XML is designed to handle such a wide spectrum of
different kinds of data, the language designers therefore decided that static type checking should be
optional.

Whether you use static or dynamic type checking, the first error in our example above will need to be
corrected. The simplest way to do this is to force the value of the attribute to be converted to a string
before the comparison, like this:

avg(product/@price[string(.) != "N/A"])

For the other error (the false alarm) we don’t need to take any further action in the case of a system that
only does dynamic type checking. However, if we want the expression also to work with systems that do
static type checking, we will need to change it. We don’t need to invoke any data conversion in this case,
because the values are already numbers; instead, we need to tell the system to delay its type checking
until runtime. This can be done using the «treat as» expression, which is described in detail in
Chapter 9. The code then looks like this:

avg(data(product/@price[string(.) != "N/A"]) treat as xs:decimal*)

The phrase «treat as xs:decimal*» can be read as an assertion about the value of the expression.
The programmer is asserting that the value of the preceding expression will be a sequence of
xs:decimal values. To make this assertion work, we have to call the data() function to extract the
values of the price attributes; without this, the value of the expression would be a sequence of attribute
nodes, not a sequence of xs:decimal values, so the assertion would fail.

There’s another way of correcting the expression that will satisfy both the static and the dynamic type
checkers. The actual intent of the expression is to select all the values of the price attribute that are
numeric, and we can do this directly, and much more elegantly, by writing:

avg(product/attribute(price, xs:decimal))

The construct «attribute(price, xs:decimal)» is a sequence type descriptor that is satisfied only
by an attribute node whose name is price and whose type annotation is xs:decimal. Selecting the
attributes this way kills both the type errors with one stone. It avoids comparing the numeric values to a
string, and it tells the static type checker that all the selected attributes will be of type xs:decimal,
which means it is safe to average them. This kind of expression is described in detail in Chapter 9.

I don’t know how many XPath 2.0 implementations will offer static type checking. Most of the
enthusiasm for the feature comes from XQuery vendors, because stronger type checking can make a real
difference when optimizing queries over very large databases. I suspect that most XPath 2.0 vendors will
leave this feature out; but time alone will tell.

Looking back at the example:

avg(product/@price[. != "N/A"])

111

Chapter 3

it might have occurred to you that under XPath 1.0, apart from the fact that the avg() function was not
available, this would have worked quite happily, with neither static or dynamic errors. That’s because
XPath 1.0 treated all data in source documents as being untyped. You could compare the value of an
attribute to a string, and it would treat it as a string, and you could then take an average, and it would
treat the same value as a number. You can do the same thing in XPath 2.0, simply by switching off schema
processing: if there is no schema, or if you switch off schema processing, then the attributes are going to
be treated as xdt:untypedAtomic values, and will adapt themselves to whatever operation you want
to perform, just as with XPath 1.0. If you like this way of working, there is nothing to stop you carrying
on this way. However, you should be aware of the consequences: many programming errors in XPath 1.0
go undetected, or are very difficult to debug, because the system in effect tries to guess what you meant,
and sometimes guesses wrong. For example, if you compare a string to a number using the «=» operator,
XPath 1.0 guesses that you wanted a string comparison (so «4 = "04"» is false), while if you compare a
string to a number using the «<=» operator, XPath 1.0 guesses that a numeric comparison was intended
(so «4 <= "04"» is true). Sooner or later, this is going to trip you up. With a schema-aware XPath 2.0
processor you have to be explicit about whether you want a string comparison or a numeric comparison,
by explicitly converting one of the operands to the type of the other.

The XPath 2.0 Recommendation distinguishes static type checking from dynamic type checking. A
product that offers static type checking is pessimistic: it assumes that if things can go wrong, they will go
wrong. For example, if the operand of «+» is known at compile time to be either a string or an integer, the
compiler will report a failure, because the pessimistic assumption is that sooner or later, the actual value
of the operand will turn out to be a string.

Another kind of static type checking is permitted, but is not described explicitly in the specification,
which I will call optimistic static type checking. Here, you will only get an error message at compile time
if the system knows that an expression cannot possibly succeed. An example of such an expression is:

current-date() = "2004-01-01"

Here the operand on the left will always be an xs:date, and the operand on the right will always be an
xs:string. Comparison of a date to a string can never succeed, so even an optimistic type checker can
report the error at compile time. To correct the error, you need to write:

current-date() = xs:date("2004-01-01")

It’s worth pointing out that neither static nor dynamic type checking can catch all errors. Going back to
my knight’s tour where two parameters to a function call were coded in the wrong order, the error was
only caught because the two arguments had different types. If both arguments had had a type of
xs:integer, say, the function call would have succeeded, and the query would have gone on to
produce garbage output.

A great deal depends in practice on how carefully you specify your types. Specifying the types of
function parameters and of variables is done at the XSLT or XQuery level rather than within XPath itself,
but it is this type information that forms the basis of the type checking performed by the XPath processor.
If you choose not to specify any types at all, this is rather like declaring every Java variable or function
with the generic type Object: you will get no compile time errors, but an awful lot of runtime errors. I
find that it’s good programming discipline always to declare the types of variables and of function
arguments. However, it’s generally best to avoid over-constraining them. It can be tempting to declare
types such as xs:positiveInteger rather than xs:integer if the value will always be positive; but
as we’ve seen, this doesn’t just constrain the value to be positive, it means that it actually has to be labeled

112

The Type System

as an xs:positiveInteger. The value represented by the XPath numeric literal «3» is an
xs:integer, but it is not an xs:positiveInteger, because it has the wrong type label. So I tend to
steer clear of using such types, because they create too much inconvenience.

Summary

The type system is probably the most innovative and the most controversial aspect of XPath 2.0, and is
very different in concept from the type system of XPath 1.0. We started this chapter with a brief rationale
for introducing a type system based on XML Schema, and we ended the chapter with a discussion of the
different forms of type checking that XPath 2.0 processor can apply, and some hints and tips to enable
you to choose the right options.

In between, we took a lightning tour of the facilities of XML Schema from an XPath perspective, and
looked in detail at each of the built-in atomic types defined in the XML Schema specification. We then
saw how the type hierarchy in XML Schema relates to the type hierarchy in the XPath data model: they
are strongly related, but they are not the same thing.

We also outlined how the type checking rules operate when calling an XPath function.

We’re now moving towards the section of the book that provides detailed reference information for each
construct in the XPath language. The reference section occupies Chapters 5 through 10. Before we get
there, however, there is one more preliminary to be covered, which is the XPath context. The XPath
context defines the environment in which an XPath expression is evaluated, and formalizes the interface
between XPath and the outside world. This will be the subject of the next chapter.

113

The Evaluation Context
XPath was designed as an expression language that could be embedded in other languages. The first
such language was XSLT, but it was always envisaged that this would only be one of many host
languages. Subsequent experience has shown that this did indeed happen: XPath (sometimes in the
form of a restricted subset) has been used not only within XSLT and XPointer, but within a variety of
programming languages such as Java and Perl, and also as a sublanguage for expressing constraints
within XML Schema.

To make XPath suitable for this role as a sublanguage, there needs to be a clear interface between
XPath and the host language. This interface specifies what information is provided by the host
environment to the XPath environment, and the sum total of this information is referred to as the
evaluation context.

The evaluation context can be split into two halves: information that is available at compile time
(while the XPath expression is being parsed and checked for static errors), and information that is
available only at runtime. These two parts are called the static context and the dynamic context, and
they are described in the two sections of this chapter.

An XPath host language such as XSLT will always contain a section describing how the static and
dynamic context for XPath expressions are set up. Some aspects of the context may be under user
control, some may have fixed values, and other parts may be completely implementation defined.
This will vary from one host language to another. As far as XPath is concerned, it doesn’t matter
whether the information is fixed in the host language specification or whether it is provided by the
vendor or by the user: the information is there somehow, and is available for use.

As I describe each part of the evaluation context in this chapter, I will also explain how it is
initialized when the host language is XSLT. This serves two purposes. If you are using XSLT (as
many XPath users are) then the information is directly useful. If you are using some other host
language, then it serves as a concrete example of how the facility can be used.

The Static Context
The static context contains information that’s needed while performing the analysis or compilation
phase on an XPath expression.

Chapter 4

In many environments, XPath is a “load and go” technology: you submit an expression as a string, and it
is compiled and executed straight away. In this case, the distinction between the static context and the
dynamic context isn’t all that important. In other environments, however, there is a distinction. XSLT
stylesheets are often compiled once and then executed many times, and the XPath expressions within the
stylesheet will typically be compiled when the stylesheet is compiled (usually not into machine code, but
into some intermediate form that a runtime interpreter can later process). So it’s worth making the
distinction between the two phases even if they are often combined.

The various parts of the static context are described in the sections that follow.

XPath 1.0 Compatibility Mode
This value is a boolean: compatibility mode is either on or off. Compatibility mode will be switched on
when users want the effect of an XPath expression to be as close as possible to the effect that the same
expression would have had under XPath 1.0.

In XSLT, compatibility mode for XPath expressions in a stylesheet is switched on by setting the
«version» attribute to «1.0», either on the <xsl:stylesheet> element, or on an inner element in the
stylesheet if it is required only for certain expressions and not for others. If the stylesheet specifies
«version="2.0"», the 1.0 compatibility mode will be off.

XPath processors (and XSLT processors) are not obliged to offer XPath 1.0 compatibility mode. This is
because there may be new XPath 2.0 host languages that never supported XPath 1.0, and users of such
host languages would have no need for backward compatibility. Also, the language is designed for
longevity, and there might come a time in the future when vendors find that their customers no longer
need the backward compatibility option; it would make little sense to deprive such vendors of their
conformance badge.

Setting XPath 1.0 compatibility mode does not mean that everything in the language is 100% backward
compatible. Because the type system in XPath 2.0 has changed so much, this would be very difficult to
achieve. Appendix C contains a list of the incompatibilities that remain: most of them are corner cases
that few users are likely to encounter, but one or two are more significant.

So what exactly changes if you set 1.0 compatibility mode? The following rules are applied only when in
this mode:

❑ In a function call, if the expected type of an argument is «xs:string» or «xs:string?», then
the supplied value of the argument is converted to a string by calling the string() function. If
the supplied value is a sequence then this atomizes the sequence and discards all items after the
first. It then casts the remaining value to a string (the casting rules are given in Chapter 9).

❑ In a function call, if the expected type of an argument is «xs:double» or «xs:double?», then
the supplied value of the argument is converted to a number by calling the number() function. If
the supplied value is a sequence then this atomizes the sequence and discards all items after the
first. It then casts the remaining value to an xs:double (the casting rules are given in Chapter 9).

The current draft of the specification is a little unclear as to exactly when this rule applies. The
intent is that it should apply to functions like round(), floor(), and ceiling(), whose
signature describes the argument as numeric, with either no occurrence indicator or an
occurrence indicator of «?».

116

The Evaluation Context

❑ In a function call, if the expected type of an argument is one of «node()», «node()?»,
«item()», or «item()?», and if the supplied value is a sequence containing more than one item,
then all items after the first are discarded.

❑ In an arithmetic expression using an operator such as «+», «*», or «mod», if either of the operands
(after atomization) is a sequence containing more than one item, then all items after the first are
discarded. If the operands are of the wrong type for the operator (which means they are not
numbers, and they are not one of the combinations of date, time, and duration that can be
handled by the arithmetic operator in question), then the operands are converted to xs:double
values by applying the number() function. This may mean that the result of the arithmetic
expression is returned as NaN (not-a-number) rather than raising an error.

❑ In a general comparison, that is, an expression using one of the operators «=», «!=», «<», «<=»,
«>», «>=», if one of the operands is numeric then the other operand is converted to an
xs:double value by applying the number() function.

What lies behind these rules is that XPath 1.0 was a weakly typed language, in which the arguments of
function calls and operators were implicitly converted to the required type. XPath 2.0 has a much richer
type system, in which such implicit conversion would often give unexpected results. So with XPath 2.0,
you have to do the conversions you want explicitly. But this creates a backward compatibility problem.
The rules given above are designed to minimize this problem, by catering for all the cases that could
actually arise with a 1.0 expression. The reason that strings and numbers are treated differently from
other types is that they are the only atomic types that were supported in XPath 1.0—except for booleans.
And in the case of booleans, weak typing continues to apply in XPath 2.0: every value can be converted to
a boolean when it is used in a context such as the condition of an «if» expression, by taking its effective
boolean value. The rules for this are described on page 165.

The following table illustrates some expressions whose results differ when running in backward
compatibility mode.

Expression Compatibility Mode
On Off

contains(3.14, ".") true type error

"apple" + "pear" NaN type error

"apple" < 3 false type error

@a < "42" where @a has the
untyped value "7"

true (numeric comparison) false (string comparison)

In-Scope Namespaces
Many XPath expressions contain prefixed QNames. The names of elements and attributes can be
prefixed, as can the names of variables, functions, and types. A prefix in such a name means nothing by
itself: to know what type the name «xs:integer» refers to, you have to know what namespace URI is
bound to the prefix «xs». It isn’t possible to define the binding of a prefix to a namespace URI within the
XPath expression itself, so instead it has to be part of the context. It’s part of the static context so that the
XPath processor can work out at compile time what all names appearing in the expression are actually
referring to.

117

Chapter 4

This part of the static context is modeled as a set of (prefix, URI) pairs. No prefix may appear more than
once. It’s an error if the XPath expression contains a QName whose prefix isn’t present in this list.

In XSLT, because a stylesheet is an XML document, the in-scope namespaces for an XPath expression are
defined by writing namespace declarations such as «xmlns:xs="http://www.w3.org/2001/XML
Schema"» in a containing element (often, but not necessarily, the <xsl:stylesheet> element). The
namespace prefixes you can use within an XPath expression are precisely those that you could use in an
element name or attribute name appearing in the same place in the stylesheet.

Each stylesheet module has its own static context, so a global variable declared in one module as:

<xsl:variable name="this:color" select="’red’" xmlns:this="http://module1/ns"/>

might be referenced in another module as:

<xsl:attribute name="bgcolor" select="$that:color"
xmlns:that="http://module1/ns"/>

For other host languages, a different way of establishing the namespace context might be used. XQuery,
for example has its own syntax for declaring namespaces, as does XPointer. In XQuery some namespaces
(such as the XML Schema namespace) are hardwired, and others can be declared in the query prolog
using syntax such as:

declare namespace saxon = "http://saxon.sf.net/";

In XPointer the syntax is:

xmlns(xs=http://www.w3.org/2001/XMLSchema)

When XPath is used from a programming language such as Java, there will generally be some method in
the API that allows a namespace to be declared. In some APIs it is possible to declare namespaces
implicitly by nominating a node in a source document, indicating that all the namespaces that are in
scope for that node should be considered to be in scope for the XPath expression.

Default Namespaces
When a QName that has no namespace prefix is used, default namespaces come into play.

In XPath 1.0, the rule was simple: no prefix means no namespace. That is, unprefixed names always
referred to objects whose namespace URI was null. In XPath 2.0 there is more flexibility. The static context
potentially contains two defaults, for use with different kinds of name:

❑ The default namespace for elements and types, as the name implies, is used to qualify any name
within the XPath expression that is recognized as an element name or a type name. In path
expressions, it is always possible to distinguish element names by means of the axis on which
they appear: if the axis is the attribute or namespace axis, then unprefixed names are considered
to be in no namespace, whereas on any other axis, the namespace URI for an unprefixed name is
taken from this default. The default is also used for element names appearing in a test such as

118

The Evaluation Context

«element(invoice, *)», and for the names of types, in constructs such as «attribute
(*, part-number)».

Note that if a default namespace is set, then it becomes impossible to refer to names that are in the
null namespace. If you need to refer to such names, you will need to ensure that this item in the
context is not set.

❑ The default namespace for functions is used to qualify unprefixed names used in function calls,
for example «f()». Most XPath users will probably want to follow the convention that calls to
functions in the standard library are unprefixed, while calls to user-defined, vendor-defined, or
third-party functions carry a namespace prefix that defines their origin. However, if you prefer to
prefix calls on the standard functions and leave calls to user functions unprefixed, the choice is up
to you (as far as XPath is concerned, anyway).

❑ For other kinds of name, for example attribute names and variable names, there is no default
namespace. For these names, no prefix always means no namespace.

In XSLT, the default namespace for elements and functions does not come from the default namespace
declaration in the stylesheet. Setting a default namespace using «xmlns="http://www.example
.com/"» does not affect the meaning of unprefixed names within path expressions (or in XSLT match
patterns, which follow the same rules). Instead, in XSLT 2.0 only, you can use the special attribute
«xpath-default-namespace» to define this part of the static context.

As for the default namespace for functions, XSLT doesn’t allow you to set this at all. When XPath is used
within XSLT stylesheets, the default namespace for functions is always the namespace containing the core
function library.

The rules for other host languages may well be different. XQuery, for, example, sets the default namespace
for elements and types using the XML-like syntax «xmlns="http://www.example.com/"», and
allows you to choose any namespace you like as the default namespace for functions.

In-Scope Schema Definitions
This part of the static context represents the schema information that is available at the time an XPath
expression is compiled. Technically, it consists of:

❑ A set of named top-level type definitions (simple and complex types)

❑ A set of named top-level element declarations

❑ A set of named top-level attribute declarations

Type definitions, element declarations, and attribute declarations are referred to collectively as schema
components (there is apparently a good reason why types are “defined” whereas elements and attributes
are “declared”, but the explanation I was given was pretty tortuous).

The specifications don’t say exactly what information can be extracted from these definitions, this is left
to the implementation to sort out. In theory XPath itself, because it doesn’t actually validate elements
against the schema, doesn’t need to know very much about them at all. All it needs to be able to do is to
look at the type annotation on a node and decide whether the node is or is not an instance of a given type

119

Chapter 4

in the schema, which it can do by knowing the names of the types and the type hierarchy. In practice of
course, XPath implementations can use a lot more information than this for optimization purposes.

XPath itself isn’t concerned with where these definitions come from. It’s the job of the host language to
decide which types are made available in the context. In practice there’s a minimum set of types that
must be available, because the XPath functions and operators need them: this set corresponds roughly to
the set of types that a basic XSLT processor will make available, but it’s XSLT that defines this set, not
XPath itself.

In XSLT, the schema components provided in the static context include:

❑ Some or all of the built-in types of XML Schema. In the case of a schema-aware processor this
includes all the built-in types, but in the case of a basic (non-schema-aware) processor it is a much
smaller subset.

❑ Schema components from schemas imported using the <xsl:import-schema> declaration in
the stylesheet. This declaration can only be used if the processor is schema-aware.

❑ Other implementation-defined types needed to support vendor extensions, for example, the
ability to call external Java methods.

For example, if you want to reference components from the OpenGIS schema for geographical coordinate
systems, you might write in your stylesheet:

<xsl:import-schema namespace="http://www.opengis.net/gml" schema-location=
"http://schemas.opengis.net/gml/3.0.1/base/coordinateSystems.xsd"/>

You would then be able to use XPath expressions that reference components in this schema, for example:

<xsl:if test=". instance of element(*, gml:CoordinateSystemAxisType)">

A different host language, however, could make schema components available in a different way entirely.
There is no obligation on the host language to put this under user control.

An XPath expression cannot make explicit reference to types (for example, in an «instance of»
expression, described in Chapter 9) unless those types are present in the static context. This also applies to
element declarations named in a «schema-element(N)» test, and to attribute declarations named in a
«schema-attribute(N)» test. (These constructs are all defined in Chapter 9.) Elements and attributes
that are named in the ordinary way within a path expression, however, do not need to have a declaration
present in the static context.

The set of schema components that are present in the static context may be a subset of those available at
runtime. This is an issue that caused the working groups a great deal of grief: what happens if the XPath
expression calls the doc() function to load a document, and that document is validated using a schema
(perhaps the schema named in its xsi:schemaLocation attribute) that wasn’t supplied as part of the
static context for the XPath expression? The problem arises when you write an XPath expression such as
«doc(’abc.xml’)/a/b instance of xs:integer». To evaluate this, the XPath processor needs to
look at the type annotation on the element and determine whether this type is a subtype of
xs:integer. How is it supposed to know?

120

The Evaluation Context

In fact, it’s not just expressions like this that need the type information. A simple comparison such as
«if (doc(’abc.xml’)/a/b = $x) then ...» uses the typed value of the element, and to
determine how to do the comparison, the processor needs to know the type.

The answer the working group came up with is to invoke magic (or, in the phrase that was used at the
time, a “winged horse”). The practical reality is that in many cases the XPath processor will have a fairly
intimate relationship with the XML parser and/or the XML schema validator. In such cases, the XPath
processor probably has access to all the schema information that was used when validating the
document. It would be very difficult to formalize all this information as part of the evaluation context, so
all that the specification says is that if such information is available, the XPath processor can use it to
evaluate expressions like this. If the information isn’t available, then the document must be rejected.

There are very many different scenarios for how documents are parsed, validated, and queried. In a
typical XSLT environment, the parsing and validation usually happen just before the transformation
starts. In an XML database, however, parsing and validation happen when the document is loaded into
the database, which may be months or years before the query is executed. The XPath specification tries to
cope with this variety of different usage scenarios, but in doing so, it inevitably introduces some aspects
of the language that are implementation-defined.

You can avoid these problems by explicitly importing all the schemas that are used to validate documents
used by your XPath expressions.

In-Scope Variables
The static context for an XPath expression includes a list of the variables that can be referenced. The
information available at this time includes the name of the variable and its type, but not the actual value.
It’s up to the host language how these variables are declared: in XSLT, for example, they are declared
using <xsl:variable> and <xsl:param> elements in the stylesheet. The scoping rules are also
defined by the host language: for example, XSLT specifies that global variables are available to any XPath
expression anywhere in the stylesheet (in any module), while local variables are available only within
XPath expressions contained in an attribute of an element that is a following-sibling of the variable
declaration, or a descendant of a following-sibling. So the stylesheet parameter:

<xsl:param name="start" as="xs:integer?" required="no"/>

adds a variable with name «start» and type «xs:integer?» to the static context of every XPath
expression in the stylesheet.

The name of a variable is a QName: that is, it contains a namespace URI and a local name. In practice, it’s
quite unusual to put variables in a namespace, but it is permitted. It’s more common to see this with
XQuery, which associates namespaces with modules, so that variables exported by a module will carry
the namespace of that module.

It is an error for the XPath expression to refer to variables that aren’t present in the static context. In a
system that does static type checking, it’s also a static error to use a variable in a way that is inconsistent
with its type. In systems that do dynamic type checking, such errors are reported only if they occur when
the XPath expression is evaluated.

This aspect of the static context differs from all the other aspects in that it can vary for different parts of a
single XPath expression. The static context for a nested subexpression may include variables declared in

121

Chapter 4

containing «for», «some», or «every» expressions, as well as the variables made available by the host
language. The XPath expressions that declare new variables are all listed in Chapter 8.

In-Scope Functions
The static context for an XPath expression also includes a list of the functions that can be called from
within the expression. Each function is identified uniquely by its name (a QName, containing a
namespace URI and local name) together with its arity, which is an integer indicating how many
parameters the function has. Two functions with the same name but different numbers of parameters are
regarded as being completely distinct functions.

The information that’s needed about each function at compile time, apart from the name and arity, is the
function signature. The function signature defines the type of each of the function’s parameters, as well as
the type of its result. This information enables the XPath processor to decide at compile time whether a
function call is legitimate: it can check firstly that a function with the right name and number of
arguments actually exists, and secondly, (if the processor does static type checking) that the arguments
are each of the correct type. Even when the processor doesn’t do static type checking, the signature is
useful for optimization, because it enables the processor to generate code to convert the supplied values
to the required type.

Like other aspects of the static context, the way in which the in-scope functions are populated is defined
by the host language. In most host languages, the function library is likely to include at least:

❑ The functions defined in the core library: that is, the functions listed in Chapter 10 of this book.

❑ A constructor function corresponding to each atomic type in the in-scope schema definitions.
These functions are used to construct an instance of the corresponding atomic type, for example,
the function «xs:date(’2004-06-01’)» can be used to construct a date.

However, if a host language wanted to restrict the function library, it could choose to do so. For example,
a host language might choose to support the whole function library with the exception of the doc() and
collection() functions.

In XSLT, the in-scope functions include the two categories above, together with:

❑ A number of standard functions defined within the XSLT specification, for example
format-number(), format-date(), and generate-id(). These are described in Chapter 7
of XSLT 2.0 Programmer’s Reference.

❑ User-defined functions written in the stylesheet using the <xsl:function> declaration.

❑ Extension functions, for example, functions written as Java methods. The way in which extension
functions are made available in the static context depends on the implementation. For example,
XSLT processors written in Java generally provide an implicit binding to Java methods, in which
the namespace URI of the function identifies a Java class name, and the local name identifies the
method name within a class. In such cases the set of in-scope functions for the XPath processor
effectively includes every public method in every class on the Java classpath. Other XSLT
processors require an explicit binding of extension functions in the stylesheet, for example
through a vendor-defined declaration such as <msxsl:script>. In these cases, the functions
added to the static context are those that are explicitly declared. (Extension functions are fully
described in Chapter 8 of XSLT 2.0 Programmer’s Reference).

122

The Evaluation Context

In principle, it’s a static error if the XPath expression contains a call on a function that isn’t present in the
static context. However, XSLT fudges this slightly by masking the error in certain circumstances. This is to
allow you to write conditional code that calls different extension functions depending on which XSLT
processor you are using. Under these circumstances, the error won’t actually be reported until the
function call is executed at runtime.

As we saw above, function names contain a namespace URI and a local name. In an actual function call,
the function name is written using an optional namespace prefix and a local name. If the prefix is absent,
then the function is assumed to belong to the default namespace for functions, which we described earlier
in this chapter on page 119. Usually, (and always in XSLT) the default namespace for functions will be the
namespace for the core function library. In the current (November 2003) drafts this is http://www.w3
.org/2003/11/xpath-functions, but the final namespace URI will be known only when the
specifications reach Candidate Recommendation status. The XPath specification allows any namespace
URI to be chosen as the default, but the host language doesn’t have to pass this flexibility on to the user.

If there is a default namespace for functions (and as we’ve seen, there usually will be), then it becomes
impossible to refer to functions that aren’t in any namespace, because there is no way of associating a
namespace prefix with names in the null namespace. The practical consequence of this is that if you
import a schema with no target namespace, you will not be able to call constructor functions for the
atomic types defined in that schema. Instead you will have to use the more verbose «cast as» syntax,
which is described in Chapter 9. For example, if you have an atomic type called «percentage», you will
have to write «98 cast as percentage» rather than «percentage(98)».

Although constructor functions are named after atomic types, they use the default namespace for
functions, not the default namespace for elements and types. For example if the default namespace for
elements and types is «http://ns.acme.com/», and there is an atomic type «part-number» defined
in the schema for this namespace, then you will be able to refer to the type without using a prefix: for
example «"AXZ98532" cast as part-number». But when you use the constructor function, the default
namespace for functions applies, so you will typically need to use a namespace prefix in this case:
«acme:part-number("AXZ98532")».

Collations
The static context for XPath expressions includes a set of collations, one of which is marked as the default
collation. A collation is essentially a set of rules for comparing and sorting strings. One collation might
decide that «pass» and «Paß» are equal, another that they are distinct.

As far as XPath is concerned, collations are defined outside the system, and a collation is treated as a
black box. The XPath processor knows which collations exist (because they are listed in the static context)
but it doesn’t know anything about their characteristics, beyond the fact that it can use the collation to
compare two strings.

Collations are identified by URIs. These are like namespace URIs, in that they don’t necessarily identify
real resources on the Web: they are just globally unique names, ensuring that collations defined by one
vendor can’t be confused with those defined by a different vendor. There is only one collation whose
name has been standardized, namely:

http://www.w3.org/2003/11/xpath-functions/collation/codepoint

123

Chapter 4

Like other URIs defined in the draft specifications, this name will only be finalized when the specs
become Candidate Recommendations. This collation compares strings character by character, using the
numeric values assigned to each character in the Unicode standard. So, for example, «"Z" < "a"» is true
when using this collation, because the numeric code for «Z» is 90, and the code for «a» is 97.

As with other aspects of the static context, it’s up to the host language to say what collations are available
and how they are defined. In this area, however, XSLT as a host language has nothing to say: it leaves it
entirely up to the implementation. Many implementations are likely to devise a scheme whereby URIs
identify collations provided by the programming language environment, by a database system, or by the
operating system.

In Java, for example, you can define a collator by creating an object of class java.text.Collator. You
can obtain a collator for a particular Locale, which will give you the basic rules for a language (for
example «ä» collates after «z» in Swedish, but not in German). You can then parameterize the collator: for
example you can set its strength, which determines whether or not it ignores accents and case, and you
can control whether it applies Unicode normalization to the characters before comparison: this process
recognizes that there are alternative ways of coding the same character in Unicode, either as combined
characters (one codepoint representing lower-case-c-with-cedilla) or as separate characters (separate
codepoints for the «c» and the cedilla). Saxon allows you to specify a collation URI that specifies these
parameters explicitly, for example the URI

http://saxon.sf.net/collation?lang=de;strength=secondary;

requests a collation suitable for German («lang=de») in which secondary differences between characters
(in practice this means case) are considered significant, but tertiary differences (in practice, accents) are
not. So «"A"="a"» is false but «"a"="ä"» is true. However, this way of constructing a collation URI is
peculiar to Saxon, and other products will have their own conventions.

If you want to write XPath expressions that are portable between products, it’s a good idea to assign your
chosen collation URI to a variable in the host language, and to reference it using the variable within the
XPath expression itself.

The default collation is the one that’s used in simple comparisons such as «@a = "potato"». It’s worth
thinking carefully about your choice of default collation. Generally speaking, if you’re searching for text
then you want to cast the net wide, which means you want a weak collation (one that treats «A» and «ä»
as equal). But if you’re sorting, you want to make fine distinctions, which means you need a strong
collation. Sorting algorithms look first for primary differences between words («a» versus «b»), then for
secondary differences («a» versus «A»), and then for tertiary differences («a» versus «ä»). So you will
usually want the sort algorithm to take all these differences into account.

Having said this, it’s worth noting that XPath doesn’t actually do sorting. If you want to sort data, you
need XSLT or XQuery. XPath provides many functions for comparing strings, including comparing
whether one string is less than another, but it can’t actually sort a collection of strings into order.

It’s also interesting to note that although XPath defines the set of collations as part of the static context,
there’s nothing in the XPath language definition that uses this information at compile time. Collations are
used only at runtime, and requesting a collation that doesn’t exist is defined as a dynamic error rather
than a static error. The reason collations are in the static context is a carry-over from XQuery. XQuery
defines sorting of sequences using an «order by» clause in which the collation must be known at
compile time. The reason for this restriction is that XQuery systems running on large databases need to

124

The Evaluation Context

make compile-time decisions about which indexes can be used to access the data, and this can only be
done by comparing the sort order requested in the query against the collation that was used when
constructing the index.

Base URI
When an XPath expression calls the doc() function to load a document, the argument is a URI
identifying the document. This may either be an absolute URI (for example, «http://www.w3.org/
TR/doc.xml») or a relative URI such as «index.xml». If it is a relative URI, the question arises, what is
it relative to? And the answer is: it is relative to the base URI defined in the static context.

Where XPath expressions are contained within an XML document, as happens with XSLT, it’s fairly
obvious what the base URI should be: it’s essentially the URI of the document containing the XPath
expression. (This isn’t a completely clear-cut concept, because a document might be reachable by more
than one URI. The thinking comes from the way URLs are used in a Web browser, where any relative
URL in an HTML page is interpreted relative to the URL that was used to fetch the page that it contains.
Generalizing this model has proved a fairly tortuous business.)

Where XPath expressions arise in other contexts, for example, if they are generated on the fly within a
C++ program, it’s far less clear what the base URI should be. So XPath delegates the problem: the base
URI is whatever the host language says it is. The context dependency is made explicit by identifying the
base URI as part of the static context, and as far as XPath is concerned, the problem disappears.

It’s again worth noting that there is nothing in the XPath language semantics that causes the base URI to
have any effect at compile time. It is used only at runtime, and then only when certain functions are used
(including not only doc(), but also collection() and base-uri()). The reason it’s defined as part of
the static context is the expectation that it will be a property of the document containing the text of the
XPath expression.

Statically Known Documents and Collections
Later in the chapter (see page 131) we’ll be looking at how the available documents and collections form
part of the dynamic context of an XPath expression. Normally, one might expect that nothing is known at
compile time about the documents that the query might access when the time comes to execute it.
However, this isn’t always the case, especially in a database environment. This information in the static
context acknowledges that in some environments, an XPath expression might be compiled specifically to
execute against a particular source document or collection of source documents, and that the system
might be able to use this knowledge at the time it compiles the expression.

This is especially the case in a system that does static type checking. One of the difficulties with static type
checking arises when the XPath expression contains a construct such as:

doc("invoice.xml")/invoice/line-item[value > 10.00]

To perform strict static type checking on this expression, the system needs to know what the data
type of «value» is. If «value» were a date, for example, then the expression would be in error (you can’t
compare a date with a number) and the type checker would have to report this. But how can we know
what the type of «value» is, if we don’t know in advance what type of document «invoice.xml» is?

125

Chapter 4

The specification makes provision for some documents and/or collections to be recognized by the system
at compile time. For example, you might compile an XPath expression against a particular database, and
you might know that all the documents in that database, or in some part of that database, have been
validated against a particular schema. This knowledge might allow the system to know that the example
expression above is type-safe. Without this knowledge, to get this query past a system that does static
type checking you would need to change it to:

doc("invoice.xml")/invoice/line-item
[(value treat as xs:decimal) > 10.00]

This is obviously very inconvenient. It’s no surprise that most of the vendors who are planning to
implement static type checking in their products are generally running in a database environment where
the schemas are all known in advance.

This discussion probably affects XQuery much more than it does XPath. Most vendors of XML databases
will be using XQuery rather than XPath as the query language (though some are offering XPath as a
stop-gap). There’s nothing intrinsic to the argument, however, that makes it only relevant to XQuery, and
that’s why this information is also part of the static context in XPath.

The Dynamic Context
We’ve now finished our tour of the static context, which contains all the information available at compile
time about the environment in which an XPath expression will run. We’ll now look at the information
that’s available at execution time.

In principle, all the information that was available in the static context remains available to the XPath
processor when evaluating the query. The dynamic context supplements this with additional
information. In practice, however, the XPath processor is free to discard information that it will not need
at runtime. For example, it may not need to know the names of variables at runtime, it only needs to
know where the values of the variables will be held.

The following sections look at the different parts of the dynamic context in turn.

The Focus
The focus is a collective term used to describe three important pieces of information in the dynamic
context: the context item, the context position, and the context size.

The most important of these is the context item. Consider the simple path expression «@code». This
selects an attribute named «code». But an attribute of what? This expression only makes sense if the
context item identifies an element node. The expression then selects the «code» attribute of that element.
When an XPath expression like this is embedded in some host language, it is the job of the host language
to define how the context item is initialized.

The term context node is often used to mean “the context item, assuming it is a node”. Very often the
context item will be a node, but it can also be an atomic value such as a string or a number.

126

The Evaluation Context

In an XSLT template rule, for example, the context node is the node that was matched by the template
rule. So if you write:

<xsl:template match="product">
<xsl:value-of select="@code"/>

</xsl:template>

then the XPath expression «@code» is evaluated with the matched <product> element as the context
node.

To see the effect of the context position and size, it’s probably easiest to look at an <xsl:for-each>
instruction in XSLT, for example:

<xsl:for-each select="author">
<xsl:value-of select="."/>
<xsl:if test="position() != last()">, </xsl:if>

</xsl:for-each>

The XPath expression «.», used in the <xsl:value-of> instruction, simply selects the context item.
(The <xsl:value-of> instruction then writes a text node containing the value of this item converted to
a string.)

The function position() returns the value of the context position, and the function last() returns the
value of the context size. In an <xsl:for-each> instruction, each item in the selected sequence (here,
each <author> element) is processed in turn. While each item is being processed, it becomes the context
item, and its position in the sequence of items being processed becomes the context position. Positions are
always numbered starting at one. The context size is the number of items in the sequence, which of course
is the same for each of the items. So the test <xsl:if test="position() != last()">, </xsl:if>
outputs a comma after every item except the last.

XSLT also initializes the context position and size when a sequence of nodes is processed using <xsl:
apply-templates>.

In other host languages, for example, in APIs for invoking XPath, it’s quite common that there is no
provision for setting the context position and size, only the context item. There is no obligation on the
host language to provide this capability. It can choose always to set the context position and size to one,
or to leave them undefined (in which case it’s an error to use the functions position() or last()).

The context item will very often be a node, but in principle it can be any kind of item, that is, a node or an
atomic value. In XSLT 2.0, for example, you can use the <xsl:for-each> instruction to process a
sequence of strings, and within such an instruction the context item will be a string. If you then use a path
expression that relies on the context item being a node (for example, a path expression such as «@code»),
it will fail with an error.

The focus is initialized by the host language on entry to an XPath expression, but the focus can change
when evaluating a subexpression. There are two constructs in XPath that change the focus: the path
expression «A/B», and the filter expression «S[P]». Path expressions are described in full detail in
Chapter 7 of this book, and filter expressions in Chapter 8. Let’s take the filter expressions first.

127

Chapter 4

In fact there are two very similar constructs of the form S[P] that use predicates in square brackets, and
we’ll explain the difference between them in Chapters 7 and 8. For the purpose of this discussion, there is
no distinction—they both handle the focus in the same way.

In this construct, «S» is a sequence (that is, it’s some expression whose value is a sequence—and as every
expression evaluates to a sequence, this actually means it can be any expression whatsoever). «P» is a
predicate, which filters the sequence by selecting only those items that match a given condition. So if we
write «author[@surname="Smith"]» we are selecting those <author> elements that have a
«surname» attribute whose value is «Smith».

Within the predicate, just as within an <xsl:for-each> instruction in XSLT, the context item is the item
from the sequence that’s being tested; the context position is the position of that item in the sequence
being filtered (counting from one); and the context size is the number of items in the sequence. This
means, for example, that you can select the first half of the sequence by writing:

$sequence[position() * 2 <= last()]

There is a special rule for predicates, namely that if the value of the predicate is a number N, then it is treated
as a shorthand for the condition «[position() = N]», which selects the Nth item in the sequence.

For path expressions of the form «A/B», the rules are the same as the rules for predicates. The expression
B is evaluated once for each node in the sequence produced by evaluating A, and while B is being
evaluated, that node is the context item, the position of that node in the sequence is the context position,
and the number of items in the sequence is the context size. However, it’s very hard to construct a useful
path expression that actually uses position() or size() on the right-hand side of the «/» operator,
because both the operands of «/» have to be sequences of nodes. Using them inside a predicate such as
«A/B[last()]» doesn’t count, of course, because the focus changes again once you’re inside the
predicate.

It’s also important to be aware that certain expressions don’t change the focus. Specifically, the focus is not
changed within a «for», «some», or «every» expression (these expressions are described in Chapter 8).
So the expression

«sum(for $i in //item return @price * @quantity)»

is incorrect (at any rate, it doesn’t do what you probably intended), because the context item doesn’t
change within this expression, which means that relative path expressions «@price» and «@quantity»
are not evaluated relative to each item in turn. The way you should write this is:

«sum(for $i in //item return $i/@price * $i/@quantity)»

A path expression such as «//item» is often referred to as an absolute path expression, which can easily
give the impression that its value doesn’t depend on the context item. This isn’t entirely true. Such an
expression selects nodes starting from a document node, but this document node is selected as the node
at the root of the tree containing the context node. So when the context item changes, if it selects a node in
a different document, then the result of «//item» changes too. This also means (which can come as a
surprise) that when the context item isn’t a node, an expression such as «//item» gives you an error. For
example, this means you can’t write:

«tokenize(sentence, "\s+")[not(. = //stopword)]»

128

The Evaluation Context

because by the time you’re in the predicate, the context item is one of the strings produced by the
tokenize() function, which means there is no context node, and therefore no root for «//stopword»
to select from. The solution to this problem is to assign the result of the expression «//stopword» (or
perhaps the root node from which it navigates) to a variable.

Dynamic Variables
The dynamic context of an XPath expression also holds the values of all the variables that are defined in
the static context. The name dynamic variables is not a very happy choice, since it would appear to suggest
that some variables are static and others are dynamic. In fact, the set of variables that are available to the
expression is known statically; the names and types of these variables are part of the static context, and
the values of the variables are part of the dynamic context. Each of these variables must have a value by
the time the expression is evaluated, it is not possible for a variable to be “null” or “uninitialized”. The
closest thing to a null value is the value «()», the empty sequence.

The value of each variable will always conform to its type. If the static type of the variable is
«xs:decimal», for example, the value can be an instance of «xs:decimal» or an instance of
«xs:integer» (which is a subtype of «xs:decimal») but it cannot be an «xs:string» or an
«xs:float».

The way that the variable acquires its value is up to the host language. In many languages there will not
be a meaningful distinction between declaring a variable (in the static context) and giving it a value (in
the dynamic context). In XSLT there is no distinction in the case of <xsl:variable>, but there is in the
case of <xsl:param>. In the example on page 121 we showed a stylesheet parameter declared as:

<xsl:param name="start" as="xs:integer?" required="no"/>

The value supplied to this parameter when the stylesheet is invoked becomes part of the dynamic context
for every XPath expression in the stylesheet. If no value is supplied, the dynamic context contains the
default value, which in this case is the empty sequence, «()».

Function Implementations
For every function defined in the static context of the expression, there must be an implementation
available so that the function can be called and can return a result.

I don’t think this is saying anything very profound, so I will move on. It does make the point that
although the signatures of the in-scope functions must be known when the XPath expression is compiled,
there is scope for substituting different implementations of the function at runtime.

Current Date and Time
The specification tries to ensure that all the information that an XPath expression can depend on is
included formally as part of the context. An XPath expression that uses the functions current-date(),
current-time(), or current-dateTime() depends on the current date and time, so this is modeled
as part of the dynamic context.

129

Chapter 4

XPath is designed on the basis that functions are always pure functions, and a characteristic feature of a
pure function is that when you call it repeatedly, it returns the same result each time. The current date
and time in the dynamic context are therefore defined not to change during the execution of an XPath
expression. In fact, in XSLT, they are defined not to change during the execution of an entire stylesheet.
This means that the functions are not useful for applications such as performance instrumentation; they
are intended rather for recording the approximate time at which a stylesheet or query was executed, and
for use in business logic calculations such as displaying a date three days from today.

Implicit Timezone
The handling of timezones caused a great deal of trouble in the design of the XPath functions and
operators.

In XML Schema, it’s defined that a value of type xs:dateTime represents an instant in time. The value
written as «2004-01-31T22:00:00-05:00» represents 10 p.m. on 31st January in the US East Coast
timezone; this is the same instant in time as 3 a.m. on 1st February in the UK, which is written as
«2004-02-01T03:00:00Z». So as far as XML Schema is concerned, these two values are identical and
indistinguishable.

If XSLT and XQuery had taken the same view, the result would be that copying a document (a null
transformation) would change the value «2004-01-31T22:00:00-05:00» in the input document so it
appeared as «2004-02-01T03:00:00Z» in the result document. The working groups felt that users
would not be happy with this: they felt that the timezone conveys meaningful information, and should be
retained.

XML Schema also allows values to be specified without a timezone, for example, as «2004-01-31
T22:00:00». This can be interpreted as meaning that the timezone is unknown, but this interpretation
makes life very complicated when dates and times are compared with each other: it means, for example
that «2004-01-31» is definitely earlier than «2004-02-05», but it’s uncertain whether «2004-01-31»
is earlier than «2004-02-01», because if the first date is used in a part of the world whose timezone is
«-12:00», it refers to the same period of 24 hours as the second date in a place whose timezone is
«+12:00». Such uncertainty causes havoc with query languages, and so XPath took a different approach.
Instead of interpreting the absence of a timezone as meaning that the timezone is unknown, it interprets it
as meaning that an implicit timezone should be assumed. Typically, where possible, this will be the
timezone in the place where the user is located, or failing that, the timezone in the place where the
computer is located. However, XPath doesn’t worry itself with how the implicit timezone is set up: it
simply says that there is one, leaves it to the host environment to initialize it, and goes on to specify how
it is used when performing operations on dates and times.

Some host languages might choose to specify how the implicit timezone is initialized: in Java, for
example, it could have a defined relationship to the current locale. XSLT however chooses to pass the
buck on to the implementation. It’s likely that many implementations will use the timezone setting
from the computer on which the XSLT processor is running, which may or may not give useful
results.

The implicit timezone is used behind the scenes by a number of operators that manipulate dates and
times, but it is also available explicitly to the XPath user through the function implicit-timezone(),
which is included in Chapter 10.

130

The Evaluation Context

Available Documents and Collections
One of the aims in defining the evaluation context for XPath is to list all the things in the environment
that can affect the result of an XPath expression. Two of the most environment-dependent constructs in
the language are the doc() function, which loads a document using a URI, and the collection()
function, which similarly identifies a collection of documents using a URI (this function is primarily
intended for use with XML databases).

In the XSLT 1.0 specification there was a fairly detailed description of how the document() function (the
precursor to the doc() function in XPath 2.0) was supposed to work. It described in some detail the
process of URI resolution, the way in which the URI was dereferenced to fetch a resource from the Web,
the requirement for this resource to contain well-formed XML, and the way that the media type of the
resource affected the interpretation of any fragment identifier in the URI.

But at the same time, the specification said that the input to the XSLT processor was a tree, following the
rules in the data model, and that nothing in the specification should constrain the way in which the tree
was constructed.

There’s clearly a tension between these two definitions, and this revealed itself, during the life of the
specification, in some practical problems. Notoriously, the Microsoft XSLT processor took the second
statement at face value, and stripped spaces from the source document by default, which meant that it
often produced different results from other XSLT processors. Another XSLT processor decided to expand
XInclude directives in the source document by default. Both of these decisions were entirely conformant
according to the specification, and yet they led to practical interoperability problems.

Even more extreme effects can be achieved by exploiting the URIResolver interface in the Java JAXP
API (which Microsoft has emulated in the System.Xml.Xsl framework classes under the name
XmlResolver). This allows the user to nominate a routine that will intercept all requests for a URI from
the doc() function, and take over the job of delivering a document in response to the request. This
means, for example, that you can call the doc() function with the URI «special://prime/100» and
return a document containing the first 100 prime numbers, constructed algorithmically. This mechanism
is undoubtedly useful, but it rather makes a mockery of any detailed description in the language
specification of how the doc() function is supposed to work.

There was a great deal of debate in the working groups about whether the specification should be
tightened up to ensure that the results of the new doc() function were interoperable across all
processors, or whether they should be relaxed completely to acknowledge that the process of getting
from a URI to a tree is entirely under the control of the implementation (and possibly the user). In the
end, the latter approach was chosen, recognizing the reality that since the specification couldn’t stop
people from inventing things like Java’s URIResolver, it might as well acknowledge the fact.

The way that this idea has actually been expressed in the spec may seem a little confusing. It simply says
that the dynamic context of an XPath expression provides a mapping from URIs onto document nodes.
The easiest way to read this is by thinking of the mapping as being an external function rather like the
Java URIResolver: if you give it a URI, it comes back with a document node. This function might go out
to the Web, retrieve an XML document, parse it, validate it, and turn it into a tree in the data model. Or, it
might return a document node that represents a virtual document, which is actually a collection of data in
a relational database. Or, it might construct an XML document containing the first 100 prime numbers.
Quite simply, anything goes.

131

Chapter 4

This approach maximizes flexibility at the expense of interoperability. You simply can’t be sure any more
that the same call on the doc() function will produce the same results on two different implementations.
The hope is, however, that market forces will ensure that most products support the obvious mappings
from URIs to documents, even though these mappings are no longer mandatory, and might not be
provided by XPath processors designed to operate in specialized environments. To encourage this, the
data model specification describes a mapping from the XML InfoSet to the XPath data model.
Implementations aren’t constrained to use this mapping, but if they choose to use it, then a reasonable
degree of interoperability should follow.

As well as the doc() function which returns a document node corresponding to a URI, XPath 2.0 also
provides the collection() function which returns a collection of documents (actually, a sequence).
While there is a great deal of precedent and user expectation for the way in which URIs will map to
individual documents, there is very little precedent for the concept of a document collection identified by
URI, and it’s likely therefore that different processors will interpret this concept in very different ways.
There is a tendency, however, for good ideas to be copied from one implementation to another, so perhaps
conventions will start to appear. However, the concept of collections is really intended as an abstraction
of an XML database, or part of an XML database, and since the system architecture of different XML
databases is highly variable, there might well remain radical differences in the way that the concept of a
collection is realized.

As with other aspects of the context, the host language gets a say in the matter. For example, a host
language could say that the set of available documents and collections is always empty, and thus
constrain XPath expressions to operate on a single document, or on documents accessible through
variables. But in the case of XSLT, little more is said on the subject. The only thing that XSLT adds is a
specification of the document() function, which continues to be available in XSLT and is now defined in
terms of the simpler XPath 2.0 doc() function.

Summary

In this chapter we described all the contents of the XPath evaluation context, including both the static and
the dynamic context. The context is important because it establishes the interface between XPath and a
host language such as XSLT, and it identifies all the external information that may affect the result of an
XPath expression.

This concludes the introductory part of this book, which explained all of the important concepts behind
the specification of the XPath language. The next chapter starts the reference section of the book, which
contains detailed specifications of every language feature.

132

Basic Constructs
This chapter defines the basic constructs of the XPath language. The complete grammar of the
language is summarized in Appendix A, and for convenience I have split the constructs of the
language across five chapters, as follows:

Chapter Scope

5 Notation used for describing the grammar
Overall structure of the language
Lexical rules (including comments and whitespace handling)
Literals
Variable references
Parenthesized sub-expressions
Context item expression «.»
Function calls
Conditional expressions: «if»

6 Arithmetic operators: «+», «-», . . .
Value comparison operators: «eq», «lt», . . .
General comparison operators: «=», «<», . . .
Node identity and ordering operators: «is», «<<», «>>»
Boolean operators: «and», «or»

7 Path expressions: «/», «//»
Steps and axes
Union, intersect, and except operators

8 Sequence concatenation operator: «,»
Numeric range operator: «to»
Filter expressions «a[b]»
Mapping expressions: «for»
Quantified expressions: «some» and «every»

Continues

Chapter 5

Chapter Scope

9 SequenceType production
«instance of»
«castable as»
«cast as»
«treat as»

As with other programming languages, the syntax is defined in a set of production rules. Each rule defines
the structure of a particular construct as a set of choices, sequences, or repetitions.

I took the formal production rules directly from the XPath specification document (http://www.w3
.org/TR/xpath20), but reordered them for ease of explanation, and I made minor changes to the
typography and to some of the production names for ease of reading. I also pulled in those rules from the
XML and XML Namespaces standards that the XPath syntax references. I’ve tried to do this in a way that
leaves the original rule clearly recognizable, so you can relate it to the original specification if you need to.
However, I tried to include in this book all the information you need from the XPath specification, so this
should only be necessary if you need to see the precise wording of the standard.

Notation
The XPath specification, by and large, uses the same syntax notation as the rest of the family of XML
specifications. This is often referred to as extended BNF, though the number of variations you find
on the BNF theme can be a little bewildering. I have stuck fairly closely to the notation used in the
XPath 2.0 specification, though I have allowed myself a little typographic license in the hope that this
adds clarity.

As in the rest of the book, I used French quotation marks «thus» (also known as chevrons or guillemets)
to surround pieces of XPath text that you write: I chose this convention partly because these marks stand
out more clearly, but more importantly to distinguish these quotation marks unambiguously from
quotation marks that are actually part of the expression. So if I say, for example, that literals can be
enclosed either in «"» or «’» marks, then it’s clear that you don’t actually write the chevrons. XPath
syntax doesn’t use chevrons with any special meaning (though like any other Unicode character, you can
use them in string literals and comments), so you can be sure that any chevron you see is not to be
included in the expression.

An unusual feature of the XPath 2.0 grammar is the way certain symbols are grouped together. For
example, the syntax of a cast expression is given in the XPath Recommendation as:

CastExpr ::= UnaryExpr (<"cast" "as"> SingleType)?

This indicates that a cast expression consists of a UnaryExpr optionally followed by the compound
symbol «cast as» and a SingleType. These compound symbols behave in some ways like one lexical
token, and in some ways like two. You can think of XPath 2.0 either as having a rather unusually
powerful lexical analyzer, in which compound symbols such as «cast as» are recognized as single
tokens, or you can think of it as having a grammar that requires lookahead; the purpose of the angle
brackets in the production rule is to show that the parser can only go down this path in the grammar if

134

Basic Constructs

both words «cast» and «as» are present, which means that if it finds «cast» followed by something
other than «as», it has to do some backtracking. This really doesn’t affect users of the language very
much at all, it’s mainly a complication that implementors of an XPath parser need to be aware of. I’ve
therefore used a notation for these compound symbols which I hope is less distracting: I write this
example as «cast as», where the space between the two parts of the symbol indicates that whitespace
characters (and comments, if you really want) is allowed between the two words. So in Chapter 9, you
will find that the above production rule appears as:

CastExpr ::= UnaryExpr («cast as» SingleType)?

In this example the whitespace is necessary to avoid the two words being read as a single token. In other
cases such as «for $» and «if(», the whitespace is optional.

The whitespace characters allowed as separators in XPath expressions are the same as in XML: space
(x20), tab (x09), newline (x0A), and carriage return (x0D).

The notations used in production rules are as follows:

Construct Meaning

«abc» The literal characters abc

xyz A construct that matches the production rule named xyz

P|Q A choice of P or Q

P? Either P, or nothing

P* Zero or more repetitions of P

P+ One or more repetitions of P

[i-n] One of the characters in the range «i» to «n» inclusive

«abc xyz» A compound symbol consisting of the token «abc» followed by
the token «xyz»

(P) A sub-expression

The production rules in XPath implicitly define the precedence of the different operators. For example the
rule for OrExpr defines it as a sequence of AndExpr operands separated by «or» operators. This is a
convenient way of defining that the «and» operator binds more tightly than «or». The precedence order
of all the operators is summarized in Appendix B.

One consequence of this style of definition is that the simplest OrExpr consists
of a single AndExpr with no «or» operator present at all. This leads to all sorts of surprises. For example
because of the way the grammar is written, «3» is not just an IntegerLiteral, it is also a FilterExpr,
a RelativePathExpr, a MultiplicativeExpr, a TreatExpr, and quite a few other things besides.
This means that I can’t use the term OrExpr when I want to refer specifically to an expression that uses an
«or» operator. Instead, I’ll refer to this as “an «or» expression.” This distinction works quite well in most
cases, and if there’s any risk of confusion then I’ll try to spell out exactly what construct I’m talking about.

135

Chapter 5

Although the production rules in XPath define the operator precedence, they do not impose any type
checking. This follows the practice of most modern language specifications, where rules for type checking
are regarded as being enforced in a second phase of processing, after the raw parsing of the syntax. It
would be hard to define all the type checking rules in the grammar, because many of them operate at a
distance. Since the type-checking rules can’t all be defined in the grammar, the language designers
decided to go to the other extreme, and define none of them in the grammar.

This means that the grammar allows many kinds of expression that are completely nonsensical, such as
«3|’bread’» (where «|» is the set union operator). It’s left to the type-checking rules to throw this out:
the rules for the «|» operator say that its operands must be of type «node()*», that is, sequences of
nodes. Think of an analogy with English—there are sentences that are perfectly correct grammatically,
but still nonsense: “An easy apple only trumpets yesterday.”

Where to Start
Some people prefer to present the syntax of a language bottom-up, starting with the simplest
constructs such as numbers and names, while others prefer to start at the top, with a construct likeProgram
or Expression. In the previous edition of this book I presented the rules alphabetically, which works
for a reasonably small language, but would require rather a lot of jumping around now that the
language has grown to occupy a whole book of its own, rather than a single chapter in an XSLT book.

So what I’ve chosen to do this time around is to start at the top, with the section Expressions, which is
really just an opportunity to provide an overview of the grammar, and then work bottom-up, starting
with the basic building blocks of the language in this chapter, and progressing through the other
operators in the next four chapters. Each of these chapters describes a reasonably self-contained set of
expressions that you can write in XPath. There’s no obviously logical order to these, but I decided to
present the simpler operators and expressions first, to make life as easy as possible if you decide to read
the chapters sequentially. This also corresponds broadly with the order in which material is presented in
the XPath specification itself.

If you want to find where in the book a particular construct is described, you might find the syntax
summary in Appendix A helpful.

Many languages distinguish the lexical rules, which define the format of basic tokens such as names,
numbers, and operators, from the syntactic rules, which define how these tokens are combined to form
expressions and other higher-level constructs.

The XPath specification includes both syntactic and lexical production rules, but they are not quite
as cleanly separated as in some languages. The main distinction between the two kinds of rule is that
whitespace can be freely used between lexical tokens but not within a lexical token. I will try to identify
clearly which constructs are considered to be lexical tokens as we come across them in the grammar.

Expressions
The top-level construct in XPath (the entry point to the list of productions) is called Expr. This is
described with the following syntax:

136

Basic Constructs

Expression Syntax

Expr ExprSingle («,» ExprSingle)*

ExprSingle ForExpr
| QuantifiedExpr
| IfExpr
| OrExpr

These rules indicate that an Expr is a list of ExprSingle expressions separated by commas, and an
ExprSingle is either a ForExpr, a QuantifiedExpr, an IfExpr, or an OrExpr.

Here are some examples of the constructs mentioned in these rules:

Construct Example

Expr 1 to 3, 5, 7, 11, 13

ExprSingle any of the examples below

ForExpr for $i in 1 to 10 return $i*$i

QuantifiedExpr some $i in //item satisfies exists($i/*)

IfExpr if (exists(@price)) then @price else 0

OrExpr @price > 3 or @cost < 2

I’ll cover the «,» operator (which concatenates two sequences), together with the ForExpr and the
QuantifiedExpr in Chapter 8, which is all about expressions on sequences. The IfExpr (which allows
you to write conditional «if..then..else» expressions) is covered in this chapter, on page 165, and
the OrExpr, which allows you to use the boolean «or» operator, and provides the entry point to most of
the rest of the XPath syntax, is described in Chapter 5.

The ExprSingle construct has a special role in the grammar. Because the «,» symbol is overloaded (it’s
used both as an operator for concatenating two lists, and also as a syntactic delimiter in constructs such as
a function call) there are places where you might expect the grammar to allow any Expr to appear, but
where in fact only an ExprSingle is allowed. This means that if you want to use a «,» operator in such
contexts, you have to enclose the expression in parentheses.

The constructs IfExpr, ForExpr, and QuantifiedExpr are syntactically unusual in the XPath
grammar because they start with keywords and contain multiple sub-expressions. In a conventional
language, they would probably be called statements rather than expressions. Nevertheless, they are true
expressions, in the sense that they can be evaluated to produce a result, and they can appear anywhere in
the grammar where an expression is required.

137

Chapter 5

The OrExpr starts a list of productions that contains all the conventional expressions of the language, as
follows:

Expression Syntax

OrExpr AndExpr
(«or» AndExpr)*

AndExpr ComparisonExpr
(«and» ComparisonExpr)*

ComparisonExpr RangeExpr
((ValueComp | GeneralComp | NodeComp)
RangeExpr)?

RangeExpr AdditiveExpr
(«to» AdditiveExpr)?

AdditiveExpr MultiplicativeExpr
((«+» | «-») MultiplicativeExpr)*

MultiplicativeExpr UnionExpr
((«*» | «div» | «idiv» | «mod»)
UnionExpr)*

UnionExpr IntersectExceptExpr
((«union» | «|») IntersectExceptExpr)*

IntersectExceptExpr InstanceOfExpr
((«intersect» | «except»)
InstanceOfExpr)*

InstanceofExpr TreatExpr
(«instance of» SequenceType)?

TreatExpr CastableExpr
(«treat as» SequenceType)?

CastableExpr CastExpr
(«castable as» SingleType)?

CastExpr UnaryExpr
(«cast as» SingleType)?

UnaryExpr («-» | «+»)* PathExpr

These expressions all have a similar form: each defines an expression in terms of expression in the row
below combined with particular infix or prefix operators. These operators are all described in the
following chapters, according to the role that they play.

At the level of PathExpr, the syntax starts to become rather more specialized again, which shouldn’t be
surprising because path expressions are the characteristic feature of the XPath language that gives it its
special flavor. Chapter 7 is devoted to path expressions, where you will find the full syntax.

138

Basic Constructs

Below the level of path expressions, the most primitive expressions in the language are referred to as
primary expressions. At that level we will pick up the story again in this chapter, on page 000.

As explained in Chapter 1, XPath is a read-only expression language. It’s a general principle of XPath
that expression evaluation is free of side effects: evaluating an expression isn’t going to change the
values of any variables, write information to log files, or prompt the user for their credit card number.
Therefore evaluating the same expression more than once, in the same context, shouldn’t make any
difference to the answer or to the final output, and equally it shouldn’t make any difference in which
order expressions are evaluated. As a result, the XSLT and XPath specifications generally say nothing
about order of evaluation.

The only way side effects can occur from evaluating an expression is if the expression calls user-written
(or vendor-written) extension functions, because the XPath specification doesn’t constrain what an
extension function can do. Equally, it makes no guarantees about when, and in what order, extension
functions are called.

Examples
Examples of expressions occur throughout this book. Here is a selection, brought together to indicate the
variety of constructs that fall under this heading:

Expression Description

$x + ($y * 2) Returns the result of multiplying $y by two and
adding the value of $x

//book | //magazine Returns a sequence of nodes containing all of
the <book> and <magazine> elements in the
same document as the context node. (This could
also be written, perhaps more efficiently, as
«//(book|magazine)»)

substring-before(author, ’ ’) Finds the value of the first <author> child of
the context node, and returns that part of the
value that precedes the first space character

chapter and verse Returns the xs:boolean value true if the
context node has a child <chapter> element
and also a child <verse> element

93.7 Returns the decimal value 93.7

sum(for $i in // product
return $i/price * $i/qty)

Returns the result of multiplying the values of
price and qty for every <product> element
in the document, and summing the results

avg(
// (product)[position()<=5])
/price)

Returns the average <price> of the first five
<product> elements in the document

139

Chapter 5

Lexical Constructs
An XPath 2.0 expression is written as a sequence of Unicode characters. Every character that’s available in
XML 1.0 can be used in an XPath expression, and possibly characters that are available in XML 1.1 as
well, though that’s been left up to the implementation to decide.

XPath itself isn’t concerned with how these characters are encoded. XPath expressions will often be
embedded in other languages such as XSLT, or they may be constructed as runtime character strings using
a programming language such as Java or JavaScript. Any escape conventions local to the host language
will be applied before the XPath parser gets to see the expression, and the syntax described in the XPath
Recommendation (and in this book) is the syntax after such escapes have been expanded. For example:

❑ When XPath expressions are written in an XSLT stylesheet, the escaping conventions of XML
apply. This means, for example, that a «<» character must be escaped as «<» and an
ampersand as «&». Since XPath expressions are invariably written inside an attribute value
in the stylesheet, the delimiting quotation marks of the attribute value (usually «"», but you can
choose «’» if you prefer) must also be escaped, typically as «"» or «'», respectively.
It’s also worth remembering that the XML parser normalizes whitespace in an attribute value, so
if you want to write an expression that tests whether some element in your source document
contains a tab character, you should write this as <xsl:if test="contains(x,
’	’)">. As far as XPath is concerned, an XPath expression can contain a tab character
inside a string literal (and indeed, that’s what it sees in this example), but to get the tab character
past the XML parser, you need to escape it.

❑ Similarly, when XPath expressions are written within character strings in a host language such as
Java, you will need to use the escaping conventions of that language: for example a backslash
needs to be written as «\\» and a quotation mark as «\"».

XPath is an unusual language in that it has no reserved words. Unembellished names in an XPath
expression, such as «table» and «author», refer to elements or attributes in the source document that
have these names. Since there are no restrictions on what you can call the elements in your source
document (other than the characters that can be used), XPath has been designed so there are no
restrictions on the names that can appear in the XPath expression. The result is that other names (for
example, the names of variables and functions, as well as language keywords) have to be either
embellished in some way, or recognized by the context in which they appear. There are several ways the
grammar achieves this:

❑ Names of variables are always preceded by a «$» sign, for example «$x» (whitespace is allowed
between the «$» and the «x», though it is rarely used in practice).

❑ Names of functions are always followed by a left parenthesis, for example, «not(». Again,
whitespace is allowed before the «(». Some syntactic keywords use the same convention. For
example «if» in a conditional expression is always followed by «(», and node tests such as
«element()» are also written with parentheses. (This node test matches any element node; if
you leave out the parentheses, then it matches only elements that have the name «element».)

❑ Some operators, such as «and», «or», and «div», are written as keywords, but they are
recognized as keywords only if they appear in a context where an operator is expected. The
language is carefully arranged so that there is no ambiguity, and you can happily write constructs
such as «and or or» to test whether there is an element called «and» or an element called «or» in
your source document.

140

Basic Constructs

❑ Some operator names consist of doubled keywords, such as «instance of» or «castable as».
These are recognized only if they appear as a pair.

❑ The keywords «for», «some», and «every», which introduce expressions described in Chapter
8, are recognized by virtue of the fact that they are always followed by a «$» sign (which in turn
introduces the name of a variable).

As with most languages, the first stage in processing an XPath expression is lexical analysis, also known
as tokenizing. The first stage of identifying the tokens is done fairly mechanically, and does not depend in
any way on the context. At each stage, the longest sequence of characters that could comprise a single
token is read. There are a few places where this can lead to surprises, for example «x+1» is read as three
tokens, whereas «x-1» is read as a single token. This is because XML names can contain a «-» character
but not a «+» character. To ensure that «x-1» is read as a subtraction rather than as a single name, you
need a space before the «-» for example «x - 1». You also need to be careful with the humble «.»
character, which can appear in several different roles in XPath: as a decimal point within a number, as a
separator character within a name, and as a symbol in its own right, representing the context item. So, for
example if you write «$a is .» (which tests whether variable $a refers to the context node) then you
need a space between the «is» and the «.».

Once the text has been split into tokens, the tokens are classified. It is at this stage that the decision is
made whether a name such as «div» is being used as an element name in a path expression, as a function
name, as a variable name, or as an operator or keyword. As we have seen, the decision on how to classify
a token may depend on the tokens that precede and follow it. It’s likely that many parsers will also group
together compound tokens such as «cast as» at this stage, though the details of how this is done are left
entirely to the implementation.

The following sections present the basic lexical constructs found within an XPath expression.

Comments
Comments may appear in an XPath expression anywhere that whitespace may appear. Comments begin
with «(:» and end with «:)», which feels slightly comical until you get used to it. But it means that
comments are quite distinctive visually, and they read well because they look parenthetical.

Here is an example of a comment within an XPath expression:

if (string(@x))
then (: attribute x exists and is non-empty :) @x
else "none"

Was it really necessary for XPath to invent a completely new syntax for comments? Well, none of the
obvious candidates would work. The C/Java convention is heavily reliant on symbols such as «/» and «*»
which are already overloaded in XPath. The SQL convention of «--» doesn’t work because it’s perfectly
legal to have two adjacent hyphens in an XML name. The XML syntax of <!--x--> doesn’t work in an
expression that’s embedded in an XML attribute in a stylesheet. Because of XML attribute normalization,
anything that attaches significance to line endings is ruled out. Curly braces were tried at one stage, but
they are easily confused with the delimiters for attribute value templates in XSLT, or the equivalent
embedded expressions in XQuery (and they were a new invention anyway). So smileys it is . . .

141

Chapter 5

XPath 2.0 comments can be nested. This allows you to comment-out a section of code even if it already
contains comments. So for example the following expression is legal, and evaluates to 3:

3 (: +
if (number(@x))
then (: attribute x exists and is non-zero :) @x
else 0

:)

To achieve this, the production rules for comments are given as follows:

Symbol Syntax

ExprComment «(:»
(ExprCommentContent | ExprComment)*
«:)»

ExprCommentContent Char

The way this rule works is that within a comment, you can have a sequence of things, each of which is
either a character or a comment. Since the system always looks for the longest matching construct, if it
sees «(:» within a comment then it will interpret this as the start of a nested comment, rather than as two
ordinary characters.

Changes in XPath 2.0
XPath 1.0 provided no way of writing comments within an expression. The facility has become necessary
because with the introduction of conditional expressions, «for» expressions, and the like, XPath 2.0
expressions can be much longer and more complex.

Numeric Literals
Numeric literals represent constant numbers. There are three types of number that can be written as
constants within an XPath 2.0 expression: these correspond to the types xs:integer, xs:decimal, and
xs:double. The type of the value is inferred from the way it is written. The rules are shown in the table
below:

Symbol Syntax

IntegerLiteral Digit+

DecimalLiteral («.» Digit+) | (Digit+ «.» Digit*)

DoubleLiteral ((«.» Digit+) | (Digit+ («.» Digit*)?))
(«e» | «E») («+» | «-»)? Digit+

Digit [0-9]

142

Basic Constructs

That is to say:

❑ A sequence of one or more digits, with no decimal point or «e» or «E», is interpreted as an integer
literal. For example «0», «23» and «0034» are all integer literals.

❑ A sequence of one or more digits, with a decimal point among the digits or at the beginning or
end, is interpreted as a decimal literal. Examples are «1.50», «.001», and «3.».

❑ A literal in scientific notation (or to be pedantic, in Fortran notation) is interpreted as an
xs:double value. It starts with the mantissa, which may take the same form as either an integer
or a decimal literal, followed by the letter «E» in upper or lower case (there is no distinction
between the two, though upper case «E» is always used on output), followed by an exponent
expressed as an integer, optionally preceded by a plus or minus sign. Examples are «0e0»,
«0.314159e+001», and «1.E-6».

The production rule for Digit is written as a regular expression and means that Digit is a sequence of
one or more characters, each in the range 0 to 9. The square brackets do not mean that the construct is
optional, as in some other syntax notations; rather they indicate a range of characters.

You may be wondering why a leading minus sign is not allowed at the front of a numeric literal. The
answer is that it is allowed, but it’s not part of the literal, so it’s not included in these rules. You can write
«-1», but this is technically not a numeric literal, it is an arithmetic expression using a unary minus
operator. This operator is described in Chapter 6.

The actual value of the literal is defined in a way that guarantees consistency with the interpretation of
values of type xs:integer, xs:decimal, or xs:double by XML Schema. These rules aren’t as
clear-cut as you might imagine; for example, if you specify a decimal value with more decimal places
than are supported by your implementation, it’s not obvious whether the processor is supposed to reject
the value or to round it. The XML Schema working group is still debating this point nearly three years
after the specification was published.

There’s a significant change in this area from XPath 1.0, where all numeric values were treated as
double-precision floating point. In XPath 1.0, the literal «1.5» represented an xs:double, in XPath 2.0, it
is an xs:decimal. This can affect the precision of numerical calculations. The chances are that the only
applications that will notice the change are those that are numerically fairly sophisticated (for example,
an XSLT stylesheet that does trigonometrical calculations to produce SVG output). If you have such an
application, it may be worth replacing any literals of the form «1.5» by «1.5e0» when you migrate to
XPath 2.0.

It’s worth mentioning here that the rules for output of numbers are not the same as the rules for input.
When a number is converted to a string, the results are determined by the casting rules given in
Chapter 9. To summarize these:

❑ An xs:integer value is output as an integer, for example, «42» or «-315»

❑ An xs:decimal value with no fractional part is output as if it were an integer, with no decimal
point. If it has a fractional part, it is output with at least one digit before and after the decimal
point, and no other insignificant leading or trailing zeros. Examples of xs:decimal output are
«42», «-315», «18.6», «0.0015».

❑ An xs:double or xs:float value that’s within the range 1e-6 to 1e+6 (one millionth to one
million, positive or negative) is output in the same way as a decimal. Outside this range,

143

Chapter 5

exponential notation is used, with one significant digit before the decimal point. Examples of
xs:double output are «42», «315», «18.6», «0.0015», «1.003e12», «8.752943e13».

These rules have the effect that you often don’t need to know whether the numbers you are dealing with
are integers, decimals, or doubles. For example, if @width is an attribute in a schema-less document
whose value is «width="17"», then the value of «string(@width + 1)» is «18»; you never need to
know that the result of the addition was actually an xs:double (the rules for arithmetic involving mixed
types are in Chapter 6).

If you want more control over the formatting of numeric output, XSLT has a function format-number()
which offers detailed control. There’s nothing comparable in XPath itself, but you can get rid of surplus
decimal digits by using the round-to-half-even() function described in Chapter 10.

Examples

Expression Description

86 The xs:integer value eighty-six

3.14159 An xs:decimal value representing π to five decimal places

1.0E-6 The xs:double value one-millionth

Changes in XPath 2.0
XPath 1.0 supported the lexical forms now used for integer literals and decimal literals, but interpreted
the values as double-precision floating point. There was no support in XPath 1.0 for scientific notation.

String Literals
A StringLiteral represents a constant string.

Symbol Syntax

StringLiteral («"» ([ˆ"])* «"»)+ |
(«’» ([ˆ’])* «’»)+

Unless you are familiar with regular expressions you may find this production rule difficult to read. The
original in the XPath Recommendation is even more cryptic, and I have replaced it with a form that I find
simpler to explain.

What it is saying is actually quite simple; a StringLiteral is either a sequence of any characters other
than double-quotes, enclosed between double-quotes, or a sequence of any characters other than
single-quotes, enclosed between single-quotes. For example, «"John"», or «’Jane’», or «"don’t"» or
«’I said "go"!’».

144

Basic Constructs

In both cases you can put several of these sequences together end-to-end (the «+» sign indicates
repetition). This has the effect of doubling the delimiting quote character, which provides an escaping
mechanism allowing you to use the delimiter within the string. For example you can write
«’O’’Connor’» to represent the string «O’Connor».

A StringLiteral is a lexical token. Whitespace within a StringLiteral is allowed, and is significant
(whitespace characters are part of the value). If you are using XPath expressions within an XML
document, then some care is needed when using tab, carriage-return, and newline characters within a
literal, because the XML parser is required to replace these by space characters before the XPath
expression parser ever gets to see them, as part of the process of attribute value normalization. You can use
character references such as «	», «
», and «» to prevent this happening. However,
character references such as this are recognized only if the XPath expression is preprocessed by an XML
parser. They are not recognized when the expression is written as a string in a Java or C# program.

Examples
The following examples assume XPath is being used in a free-standing environment with no need to
escape special characters:

Expression Description

"John’s" The string «John’s»

’"’ A string consisting of a single character, the double quotation
mark

’O’’Reilly’ The string «O’Reilly»

The following examples assume XPath expressions are contained in an attribute within an XML
document, for example an XSLT stylesheet:

XSLT Attribute Description

select="’John’’s’" The string «John’s». The character used as the string
delimiter can be escaped by doubling it

select="’"’" A string consisting of a single character, the double quotation
mark. The character used as the XML attribute delimiter can be
escaped by using an XML entity or character reference

select="’Don’’t say
"yes"’"

The string «Don’t say "yes"». This combines the two
escaping techniques from the previous examples

Changes in XPath 2.0
The ability to include the string-delimiter character within the string by doubling it is new in XPath 2.0.
The convention has been adopted from SQL, and has the advantage of being backward-compatible with
XPath 1.0.

145

Chapter 5

XSLT Usage
Handling the two kinds of quotation mark in XPath expressions written within stylesheets can be tricky,
even with the new escape convention introduced in XPath 2.0. You can often circumvent the problems
(and produce clearer code) by using variables. For example, instead of writing:

<xsl:if test="@input = ’Don’’t say "yes"’">
...

</xsl:if>

write instead:

<xsl:variable name="s" as="xs:string">
<xsl:text>Don’t say "yes"</xsl:text>

</xsl:variable>
<xsl:if test="@input = $s">

...
</xsl:if>

Within XML text nodes, apostrophes and quotation marks can be written literally without
escaping—there is no need to use the entity references «'» and «"».

I find it quite useful to have two global variables available in a stylesheet, as follows:

<xsl:variable name="apos" as="xs:string">’</xsl:variable>
<xsl:variable name="quot" as="xs:string">"</xsl:variable>

This makes it possible to use the variables «$apos» and «$quot» to construct strings using the
concat() function, for example:

<xsl:value-of select="concat($quot, @input, $quot)"/>

Names
Names are used within an XPath expression to refer to elements and attributes in a source document, and
to refer to objects such as variables, functions, and types.

Expression Syntax

QName (Prefix «:»)? LocalPart

Prefix NCName

LocalPart NCName

NCName (Letter | «_») (NCNameChar) *

NCNameChar Letter | Digit | «.» | «-» | «_» | CombiningChar |
Extender

146

Basic Constructs

The productions QName and NCName are actually defined in the XML Namespaces Recommendation, not
in XPath itself. This ensures that any name that can be used for an element or attribute in a source
document can also be used in an XPath expression.

Informally, an NCName starts with a letter or underscore, and continues with zero or more NCNameChars,
which may be letters, digits, or the three punctuation characters dot, hyphen, and underscore. The
«Letter» and «Digit» categories include a wide variety of characters and ideographs in non-Latin
scripts as well as accented Latin letters, while the «CombiningChar» and «Extender» categories cover
accents and diacritics in many different languages.

The rules for Letter, Digit, CombiningChar, and Extender are given in the XML specification. The
definitions are in the form of long lists of Unicode characters, and little would be gained by repeating
them here. The basic principle is that if a name is valid in XML, then it is also valid in XPath.

In nearly all contexts, the kind of name that is allowed in XPath is a QName. This means a lexical QName as
defined in the XML Namespaces Recommendation, which either takes the form «prefix:local-
name» where both the prefix and the local-name are NCNames (no-colon names), or the simpler form
«local-name» in which the prefix is omitted. If a prefix is present then it must always be one that has
been declared in the static namespace context for the XPath expression, as described in Chapter 4. If no
prefix is present, then the interpretation depends on what kind of name it is. If it is used where an
element name is expected, then it is taken to refer to the default namespace for elements, which is also
defined in the static context of the expression. If it is used where an attribute name is expected, then the
local-name is assumed to be a name that is not in any namespace.

As in XML, names are case-sensitive, and names are only considered to match when they consist of
exactly the same sequence of characters (or more strictly, the same Unicode code-points). This is true even
when the Unicode standards describe characters as equivalent, for example different ways of writing
accented letters.

Examples
The following are examples of valid NCNames:

A

alpha

π

ℵ
_system-id

iso-8859-1

billing.address

Straßenüberführung

E��A�

...---_..._

147

Chapter 5

I did see an example recently of an XML document that used «_» on its own as an element name, but it is
not something I would recommend.

XSLT Usage
QNames are also used in XSLT stylesheets in a number of other contexts, outside the scope of XPath
expressions. They are used both to refer to elements in the source document (for example, in
<xsl:preserve-space> and <xsl:strip-space>) and to name and refer to objects within the
stylesheet itself, including variables, templates, modes, and attribute sets.

There are also some situations where QNames can be constructed dynamically as a result of evaluating an
expression. They are used, for example, in <xsl:element> and <xsl:attribute> to generate names
in the result document, and in the key() and format-number() functions to refer to objects (keys and
decimal-formats, respectively) defined in the stylesheet. QNames constructed at runtime are never used
to match names in the source document, and they are never used to match template names, variable
names, mode names, or attribute set names in the stylesheet; these references must all be fixed names.

A QName is used in XPath for matching the names of nodes in the source document.

Whether the QName is written statically in the stylesheet, or whether it is constructed dynamically, if the
name has a prefix then the prefix must be declared by a namespace declaration on some surrounding
element in the stylesheet module.

For example:

<xsl:apply-templates select="math:formula" xmlns:math="http://math.org/"/>

Here the namespace is declared on the actual element that uses the prefix, but it could equally be any
ancestor element.

The actual element in the source document does not need to have the tag «math:formula», it can use
any prefix it likes (or even the default namespace) provided that in the source document the element
name is in the namespace URI «http://math.org/».

If the QName does not have a prefix, then the rules are more complicated, and there are three possibilities:

❑ In the case of a name used as the name of a literal result element in the stylesheet, or the name
passed as an argument to the XSLT element-available() function, the namespace that’s used
is the one declared using a default namespace declaration in the stylesheet, in the form
«xmlns="some.uri"». If there is no such declaration, the name is assumed to be in no
namespace.

❑ In the case of a name used as an element name or type name in an XPath expression, or in certain
other contexts such as:

❑ an XSLT pattern

❑ the elements attribute of <xsl:strip-space> or <xsl:preserve-space>

❑ the as attribute of elements such as <xsl:function> and <xsl:variable>

❑ the type attribute of instructions such as <xsl:element>

148

Basic Constructs

the name is assumed to be in the namespace declared using the xpath-default-namespace
attribute on the <xsl:stylesheet> element. This can also be overridden on any other element
in the stylesheet. If there’s no such declaration, the name is assumed to be in no namespace.

A name is being “used as an element name” if it appears in an axis step (see Chapter 7) whose
axis is anything other than the attribute or namespace axis. Some names appearing in the
SequenceType production used to describe types also fall into this category.

❑ Names used to refer to attribute and namespace nodes, as well as the names of variables,
functions, and stylesheet objects such as modes, keys, and named templates, are always
considered to be in no namespace when they are unprefixed.

The reasoning behind these rules is that names of elements in the stylesheet use the standard XML
default namespace «xmlns=""»; names of elements in the source document use the special default
xpath-default-namespace, and names of objects other than elements never use a default namespace.

A QName with no prefix appearing in an XPath expression never uses the default
namespace defined in the source document.

It’s a common mistake to forget this. Your source document starts as follows:

<html xmlns="http://www.w3.org/1999/xhtml">

and your stylesheet starts:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns="http://www.w3.org/1999/xhtml"
version="2.0">

<xsl:template match="html">

Why doesn’t the template rule for «match="html"» fire when the <html> element is encountered? The
answer is that the default namespace (declared with «xmlns="..."») applies to unprefixed QNames in
the source document, but it doesn’t apply to unprefixed QNames appearing in expressions and match
patterns in the stylesheet. You either need to write:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xhtml="http://www.w3.org/1999/xhtml"
version="1.0">

<xsl:template match="xhtml:html">

or you need to define an xpath-default-namespace:

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

149

Chapter 5

xpath-default-namespace="http://www.w3.org/1999/xhtml"
version="2.0">

<xsl:template match="html">

What’s worse, your source document might actually not start with:

<html xmlns="http://www.w3.org/1999/xhtml">

but rather with:

<!DOCTYPE html SYSTEM "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>

Here it’s not obvious that the <html> element is actually in a namespace. But it is, because hidden away
inside the DTD is the sneaky little definition:

<!ELEMENT html (head, body)>
<!ATTLIST html

%i18n;
id ID #IMPLIED
xmlns %URI; #FIXED ’http://www.w3.org/1999/xhtml’

>

which has the effect of adding the namespace declaration «xmlns="http://www.w3.org/1999/
xhtml"» to the <html> element whether you asked for it or not. This means that a bare «match=
"html"» in your stylesheet won’t match this element; you need to match the namespace as well.

Operators
There is no hard-and-fast rule about exactly what constitutes an operator in the XPath language; but this
is a good place to provide a general overview of the different kinds of operator.

We can classify as first-order operators all the operators that take one or more expressions as their
operands, and produce a result that is obtained by evaluating the operands, and combining the values of
the operands in some way. The first-order operators are listed in the table below, in precedence order.
Operators listed on the same row of the table have the same precedence.

Operator Effect

, sequence concatenation

or boolean disjunction (A or B)

and boolean conjunction (A and B)

eq ne lt le gt ge ordering comparison between single values
= != < <= > >= ordering comparison between sequences
<< is >> ordering/identity comparison between nodes

150

Basic Constructs

Operator Effect

to constructs a sequence of consecutive integers

+ - addition, subtraction

* div idiv mod multiplication, division, modulus

| union union of two sequences considered as sets of nodes

intersect except intersection and difference of sequences considered as sets of nodes

Some of these operators are written as symbols, some as words. Where words are used, they are not
reserved words: they are recognized as operators by virtue of where they appear in an expression. This
means that it is quite legitimate to write an expression such as «div div div» in which the first and
final words represent names of elements in the source document, and the middle word is a «div»
operator.

The symbols «*» and «/» double as operators and as expressions in their own right. In an operator
context, «*» means multiplication, but in an expression context, it selects all the child elements of the
context node. If the context node is the element <a>2, then the expression «***» evaluates
to «4». In fact «*» also has a third role, as an occurrence indicator after a type name, as in
«xs:integer*».

As operators are tokens, they may always be preceded and followed by whitespace, and must not
include any embedded whitespace. In some cases it is necessary to precede or follow an operator by
whitespace to ensure it is recognized. This applies not only to the named operators (such as «and» and
«or»), but also to the minus sign «--» which could be mistaken for a hyphen if written with no preceding
space.

The numeric comparison operators are written here as XPath sees them; when they appear in an XSLT
stylesheet the special characters «<» and «>» should be written «<» and «>», respectively.

The second group of operators can be classified as type operators. These take two operands, one of which
is a value, the other a type. The operators in this category are:

❑ «instance of»

❑ «cast as»

❑ «castable as»

❑ «treat as»

The fact that they are all written as compound symbols helps to make the grammar unambiguous. Again,
none of these words are reserved in any way. All these operators, together with the syntax for describing
a type, are fully described in Chapter 9.

The final group of operators are best described as higher-order operators. These are characterized by the
fact that they don’t simply evaluate their operands and combine the resulting values: each has its own
rules for how the different subexpressions contribute to the final result. These operators have custom
syntax that doesn’t always look like a conventional operator at all. They are shown in the table below:

151

Chapter 5

Expression Meaning

for $x in E1 return E2 Evaluates E2 once for every value in E1, concatenating the
resulting sequences

some $x in E1 satisfies E2 Returns true if E2 is true for any item in E1

every $x in E1 satisifes E2 Returns true if E2 is true for every item in E1

if (E1) then E2 else E3 Evaluates E2 or E3 depending on the value of E1

E1 / E2 Evaluates E2 once for every value in E1, returning a
sequence of nodes in document order

E1 [E2] Returns those items in the sequence E1 for which E2
evaluates to true

This concludes our survey of the lexical constructs in an XPath expression. We will now look at the basic
syntactic building blocks, which are referred to as primary expressions.

Primary Expressions
Primary expressions are the most basic kinds of expression in XPath, and ultimately, all XPath
expressions are constructed by combining primary expressions using various operators. The following
sections in this chapter describe each kind of primary expression. These are described by the syntax:

Expression Syntax

PrimaryExpr Literal |
VariableReference |
ParenthesizedExpr |
ContextItemExpr |
FunctionCall

Literal NumericLiteral |
StringLiteral

NumericLiteratal IntegerLiteral |
DecimalLiteral |
DoubleLiteral

We have already covered numeric and string literals earlier in the chapter. The rest of the chapter
therefore concentrates on the four other kinds of primary expression: variable references, parenthesized
expressions, the context item expression, and function calls.

The only real thing that these different kinds of PrimaryExpr have in common is the context in which
they can be used.

According to the syntax rules, any PrimaryExpr can be followed by a predicate to form a FilterExpr,
so for example «17[1]» and «’Berlin’[3]» are both legal. And in fact, in XPath 2.0 these expressions

152

Basic Constructs

are not only syntactically legal, they also make sense semantically: a single item such as «17» or
«’Berlin’» is a sequence of length one, and applying a predicate to it can either return that item, or an
empty sequence. Filter expressions are described in Chapter 8.

Examples
Expression Description

23.5 A NumericLiteral is a PrimaryExpr

’Columbus’ A StringLiteral is a PrimaryExpr

$var A VariableReference is a PrimaryExpr

contains(@name, ’#’) A FunctionCall is a PrimaryExpr

(position() + 1) A parenthesized expression is a PrimaryExpr

The notable omission from the list of primary expressions is AxisStep: an axis step such as
«child::node()» is not a PrimaryExpr, even though it contains no other expressions. This ensures
that an expression such as «para[1]» is unambiguously a PathExpr, with the predicate «[1]» taken as
part of the Step, rather than it being a FilterExpr consisting of a PrimaryExpr «para» followed by a
Predicate «[1]». It is possible to turn an AxisStep into a PrimaryExpr by putting it in parentheses,
so «(para)[1]» is a FilterExpr. In this case the meaning is the same, but this will not always be the
case.

Variable References
A VariableReference is a reference to a variable. The variable may be declared in an enclosing «for»,
«some», or «every» expression, as described in Chapter 8; or it may be defined in the evaluation context
for the XPath expression. In XSLT this means that it may be declared in an <xsl:variable> or
<xsl:param> element in the stylesheet.

Expression Syntax

VariableReference «$» QName

The use of a «$» sign is necessary to distinguish a variable reference from a reference to an element in the
source document: «para» selects a child <para> element in the source, while «$para» is a reference to a
variable.

Whitespace is allowed between the $ sign and the QName, though it is rarely used (it was not permitted in
XPath 1.0).

Usage
The QName must match the name of a variable that is in scope at the point where the expression
containing the variable name appears. A variable can be declared either within a containing «for»,

153

Chapter 5

«some», or «every» expression, or by the context in which the XPath expression appears. In XSLT this
means the name will be exactly the same as the name attribute of the relevant <xsl:variable> or
<xsl:param> element; note however that if the name contains a namespace prefix, it is the namespace
URI that must match, not necessarily the prefix.

The value of the variable reference is whatever value has been assigned to it by the matching «for»,
«some», or «every» expression, or (in the case of XSLT stylesheets) the matching <xsl:variable> or
<xsl:param> declaration. The value may be of any type: any sequence containing nodes, atomic values,
or a mixture of both.

A variable reference can be used anywhere in an XPath expression where a value is required. It cannot be
used to represent concepts of the language other than values, for example you can’t use a variable in
place of a name, a node type, or an axis. Nor can you use a variable to hold an entire expression.

A common misunderstanding about variables is to write a path expression such as:

/booklist/book/$property

thinking that if the value of $property is the string “title”, then this is equivalent to
writing

/booklist/book/title

That’s not the way variables in XPath work. You can do this sort of thing in a shell
scripting language, where variables work by textual substitution: in that kind of
language the content of the variable can hold any part of an expression.

In XPath, variables hold values, not pieces of an expression. The actual meaning of
the above expression is

/booklist/book/"title"

which isn’t very meaningful, and will give you a type error saying that the
expression on the right-hand side of the «/» operator must return a sequence of
nodes, not a string.

The way to achieve the desired effect is to write:

/booklist/book/*[local-name() eq $property]

Some processors (including Saxon and Xalan) offer an evaluate() extension
function, which allows you to construct an XPath expression at runtime, from a string
which might be held in a variable. But this capability is not present in the standard.

It’s relatively unusual to see variables whose name includes a namespace prefix. It can be useful, though,
if you want to write a general-purpose reusable library module in XSLT or XQuery; you can then define
global variables to hold constants visible to users of the library, and putting these in a specific namespace

154

Basic Constructs

will help to ensure that there are no naming conflicts. In fact, XQuery requires that global variables
exported from a module are declared in the namespace associated with that module.

Examples

$x

$lowest-common-denominator

$ALPHA

$my-ns-prefix:param1

$π

Parenthesized Expressions
A ParenthesizedExpr either consists of an expression enclosed in parentheses, or it consists of an
empty pair of parentheses, used to represent the empty sequence.

Expression Syntax

ParenthesizedExpr «(» Expr? «)»

When the contained Expr is present, parentheses have the same effect in XPath as in most other
languages; they change the order of evaluation, so that the enclosed expression is evaluated first,
regardless of the normal operator precedence.

Parentheses are sometimes needed around an expression that uses the «,» operator (which denotes list
concatenation), to avoid the «,» being interpreted as a separator between the arguments in a function call
or the clauses of a «for» expression. For example, to find the maximum of two numbers $i and $j, you
need to write «max(($i,$j))», to make it clear that the function is being called with one argument
(a sequence) and not with two. The «,» operator is described in detail in Chapter 8. Because «,» has the
lowest precedence of any operator, it is generally necessary to use parentheses with it. However, if it is
used at the top level of an XPath expression, the parentheses are not needed. For example, one can write
in XSLT:

<xsl:apply-templates select="title, author, abstract, body"/>

to process the four selected elements in the order indicated.

If there is no contained expression, that is, if the ParenthesizedExpr is written as «()», then its value
is the empty sequence. For example, the expression «$a union ()» returns the union of the sequence
$a and the empty sequence; this has the effect of returning all the nodes in $a, in document order and
with duplicates removed. The «union» operator (which can also be written «|») is described in
Chapter 6.

155

Chapter 5

One special case where the meaning of parentheses may not be immediately apparent is in conjunction
with predicates. Predicates are used to filter the items in a sequence, for example, «$seq[. >= 0]»
selects all the items in the sequence $seq whose value is greater than zero. As explained in Chapter 7, the
meaning of a predicate is subtly different when it appears as part of an axis step. The result of this
distinction is that:

❑ «ancestor::node()[1]» selects the innermost ancestor of the context node (that is, its parent)

❑ «(ancestor::node())[1]» selects the outermost ancestor of the context node (that is, the root
of the tree).

For a more complete explanation of this distinction see the sections on Axis Steps in Chapter 7, and Filter
Expressions in Chapter 8.

Another rather specialized use for parentheses is to remove syntactic ambiguities when using the «/»
symbol as an expression referring to the document node at the root of the current tree. When «/» is
followed by a name, or by the symbol «*», then it is assumed to be the start of an absolute path
expression. This means that if you want to follow «/» with a named operator, you need to enclose it in
parentheses, for example:

if ((/) instance of document(schema-element(mf:invoice))) then ...

or

if ((/) intersect $nodes) then ...

Another way of disambiguating «/» in such expressions is to write it as «/.».

Changes in XPath 2.0
The syntax «()» to represent an empty sequence, and the use of the «,» operator to perform sequence
concatenation, are new in XPath 2.0.

Because a Step in a path expression is now a general expression (see Chapter 7), it becomes possible in
XPath 2.0 to use parentheses in a path expression such as «book/(chapter|appendix)/title».

Context Item Expressions
The ContextItemExpr is simply the expression «.»:

Expression Syntax

ContextItemExpr «.»

The context item may either be a node or an atomic value, or its value may be undefined. If the value is
undefined, then evaluating the expression «.» causes an error.

156

Basic Constructs

At the outermost level of an XPath expression, the value of the context item is established by the calling
environment. For example, in XSLT it is determined by the innermost <xsl:for-each> or
<xsl:apply-templates> iteration. Where XPath expressions are evaluated from a host language such
as Java or C#, the calling API often provides the application with a way to set the initial context item.

Internally within an XPath expression, there are two constructs that change the context item. Within a
predicate P of an expression such as «$SEQ[P]», the predicate is evaluated for each item in $SEQ in turn,
with that item as the context item; and on the right-hand side of the «/» operator, in a path expression
such as «E1/E2», the context item for evaluating E2 is set to each item in E1 in turn.

The value of the context item is not changed in the body of a «for» expression
(described in Chapter 8). It is therefore wrong to write something like:

sum(for $x in //item return ./@price * ./@qty)

Instead, you need to write:

sum(for $x in //item return $x/@price * $x/@qty)

Changes in XPath 2.0
In XPath 1.0, the «.» symbol was an abbreviation for the Step «self::node()». This restricted its
value to being a reference to a node (never an atomic value), and it also imposed certain other restrictions,
for example it was not possible to apply a predicate to «.». In XPath 2.0 you can use constructs such as
«.[*]» which returns the context item only if it is a node that has a child element.

In XPath 1.0, «.» was never undefined—it always had a value, and the value was always a single node. In
XPath 2.0, there are many situations in which it can be undefined, for example it is undefined on entry to
a function body written in XSLT or XQuery.

Usage
The two places where «.» is commonly used are:

❑ With the operator «//» in a relative path expression such as «.//A», which (loosely speaking)
selects all the descendant <A> elements of the context node. The «.» is necessary here because if
the expression started with «//» it would select all descendants of the root node.

❑ On its own, to perform operations on the value of the context item. This usually arises in
expressions such as «.=3» or «string-length(.)» where we want to test the value of the
context node, or in the XSLT instruction <xsl:value-of select="."/>, which outputs the
atomized value of the context item to the result tree.

Some people also like to use the «.» operator for clarity at the start of a relative path expression such as
«./TITLE», but in fact this is precisely equivalent to «TITLE» on its own.

157

Chapter 5

In XPath 2.0, if you want to remove duplicates from a sequence of nodes $seq, and sort them into
document order, you can write «$seq/.», or equivalently, «./$seq». The sorting and deduplication is
part of the defined behavior of the «/» operator.

Function Calls
A FunctionCall invokes a function. This may be one of the system-defined functions described in
Chapter 10, or it may be a vendor- or user-supplied function.

Each built-in or user-defined atomic type also has a corresponding constructor function available for
constructing values of that type (for example, «xs:date(’2004-02-29’)» constructs a date).

There may also be additional functions described in a host language in which XPath is embedded—for
example, XSLT defines further functions available for use from XPath expressions contained in XSLT
stylesheets (for details, see Chapter 7 of XSLT 2.0 Programmer’s Reference).

Expression Syntax

FunctionCall FunctionName «(»
(Argument («,» Argument)*)?
«)»

FunctionName QName

Argument ExprSingle

ExprSingle ForExpr |
QuantifiedExpr |
IfExpr |
OrExpr |

The syntax of a function call consists of the function name, which is in general a QName, followed by the
list of zero or more supplied arguments, in the usual way.

Each argument must be an ExprSingle. This basically means any XPath expression, so long as it does
not contain a top-level «,» operator. If you want to supply a list of values separated by commas as a
single argument, you must enclose it in parentheses. Note the difference between:

concat("A", " nice", " cup", " of", " tea")

which calls the concat() function with five separate arguments, each one a single string, and:

string-join(("A", "nice", "cup", "of", "tea"), " ")

which calls the string-join() function with two arguments, the first one being a sequence of five
strings, and the second a string containing a single space character. These two function calls are both
legal, and as it happens they both have the same effect. Both the functions are described in Chapter 10.
The concat() function is exceptional in that it allows an arbitrary number of arguments to be supplied.

158

Basic Constructs

The arguments themselves can be expressions such as «/», «.» or «@*», which may look a bit strange at
first encounter. For example, the function call «exists(/*)» returns true if the context node is in a tree
whose root is a document node that has an element node as a child.

Identifying the Function to be Called
The set of functions that is available for calling is defined in the static context for the XPath expression, as
described in Chapter 4. This means that it is known at compile time whether a particular function name is
valid or not. Normally, you can therefore expect a compile time error if you call a function that does not exist.

The function name is a QName. Like other QNames, it is written as a lexical QName (with an optional
prefix and a local name, separated by a colon), and this lexical QName is expanded using the namespace
declarations that are in scope for the XPath expression. So the expanded name of the function consists of a
namespace URI and a local-name. The XPath static context includes a default namespace URI for function
names, which will usually be quite separate from the default namespace URI for other kinds of name.
Throughout this book I have assumed that the default namespace URI for functions will normally be the
namespace containing the standard library of functions listed in Chapter 10, and that functions such as
count() and exists() may therefore be called with unprefixed names. This namespace URI, in the
current draft of the specifications, is http://www.w3.org/2003/11/xpath-functions. It is
possible to use a different default namespace for your functions, but in this case you will need to use an
explicit prefix (conventionally «fn:», but this is up to you) in all calls on the standard functions.

XSLT 2.0 doesn’t allow you to select any namespace other than the standard http://www.w3.org/
2003/11/xpath-functions namespace as the default namespace for functions; it does, however,
allow you to use a specific prefix bound to this namespace if you wish.

The function name is recognized in the XPath syntax by virtue of the fact that it is followed by a left
parenthesis. This means that certain unprefixed names used as keywords in the language are not
available for use as function names, specifically attribute(), comment(), document-node(),
element(), empty(), if(), item(), node(), processing-instruction(), schema-
attribute(), schema-element(), text(), type(), and typeswitch(). This list includes one
name, typeswitch(), which is not actually used as a keyword in XPath, but is reserved to retain
compatibility with XQuery.

The set of functions that is available for calling will generally include the following:

❑ The core library of XPath functions described in Chapter 10 of this book.

❑ Additional functions defined by the host language in which XPath is embedded, for example, the
XSLT functions described in Chapter 7 of XSLT 2.0 Programmer’s Reference.

❑ Constructor functions corresponding to the built-in atomic types in XML Schema, for example,
xs:date() and xs:float(). For details of these functions, see Chapter 9.

❑ Constructor functions corresponding to user-defined atomic types in any imported schema.
These are also described in Chapter 9.

❑ Additional functions made available by the vendor of the XPath processor. These should be in a
namespace controlled by that vendor. An example is the function saxon:evaluate() offered
by the Saxon product. For details, see the documentation supplied by the vendor.

159

Chapter 5

❑ User-written functions, written in XSLT or XQuery. The XPath language itself does not provide
any mechanism for defining functions (only for calling them) but XPath processors may well
provide a way of linking to a library of XSLT or XQuery functions even when XPath expressions
are being executed outside that environment.

❑ User-written functions (known as extension functions in XSLT, external functions in XQuery)
written in an unrelated programming language, such as Java, C#, or JavaScript. The mechanisms
for linking to such functions, and for converting values between the XPath data types and those
of the target language, have been left to implementors to define.

It is not possible to write functions in XPath itself. For this, you need XSLT 2.0, XQuery 1.0, or potentially
some other language that supports the capability. XPath only provides the ability to call such functions,
not to define them.

A number of useful third-party function libraries have become available for XSLT 1.0 processors (see for
example http://www.exslt.org and http://fxsl.sf.net/) and this process can be expected to
accelerate now that functions can be written in both XSLT 2.0 and XQuery 1.0.

Functions, at least in theory, are uniquely identified by their expanded QName (that is, namespace URI and
local name) and their arity—that is, the number of arguments. The idea is that the static context contains a
list of functions that are available to be called, and it cannot contain two functions with the same name and
the same arity. There is no overloading of functions, in the sense that you can’t have two functions with
the same name and the same number of arguments, distinguished only by the types of the arguments.

Products that allow you to call Java methods are quite likely to provide some kind of overloading in
practice, if one can extrapolate from what XSLT 1.0 processors do. The specification leaves enough latitude
to allow this: all aspects of external calls are essentially implementation-defined. Conceptually, a product
can satisfy the letter of the law by claiming that for each possible Java method name and number of
arguments, there is a single function in the static context, and it is this notional function that decides
which of several Java methods to call, based on the types of the arguments supplied.

Converting the Arguments and the Result
At compile time, every function in the static context has a known signature defining the types of the
arguments and the type of the result. It’s probably best to put this in concrete terms by showing example
functions written in XSLT or XQuery. For example, consider a function that calculates the total sales of a
product (the actual logic isn’t important).

Here is the XSLT 2.0 implementation:

<xsl:function name="mf:product-sales" as="xs:decimal">
<xsl:param name="product" as="schema-element(mf:product)"/>
<xsl:sequence select="sum($product//sale[@product-code eq $product/code])"/>

</xsl:function>

And here is the equivalent in XQuery 1.0:

declare function mf:product-sales ($product as schema-element(mf:product))
as xs:decimal {

sum($product//sale[@product-code eq $product/code])
};

160

Basic Constructs

In both cases, we have defined the function name as mf:product-sales (we’ll assume that the
namespaces have been declared properly), and we have defined it to take a single argument, which is an
element conforming to the schema-defined element declaration mf:product. This means the element
will either be a valid mf:product, or will be a member of its substitution group; the detailed meaning of
the syntax «schema-element(mf:product)» is given in Chapter 9. The return type of the function is
declared to be an xs:decimal.

There’s no formal link between the namespaces used for functions and the namespaces used for elements,
attributes, and schema-defined types. But with functions which, like this one, are very specific to a
particular element type, I think it’s a useful convention to put the function in the same namespace as the
element type.

An XPath expression that invokes this function might look like this:

//mf:product[mf:product-sales(.) gt 100000]

This expression returns a sequence containing all the <mf:product> elements that have total sales in
excess of 100,000.

In this example, the required type of the argument was a single node, and the result type of the function
was a single atomic value. It is also possible, of course, for functions to take sequences as their arguments,
or to return sequences as their result. In general, the required type of an argument has two parts: the
required cardinality, and the required item type. The required cardinality is shown by an occurrence
indicator after the type, and may be one of:

Occurrence Indicator Meaning

(none) Exactly one item

* Any number of items

+ One or more items

? Either one item, or none

The required item type defines a type that each item in the supplied value must conform to. This may be a
very generic type, such as «node()», or a very specific type, such as «element(mf:product)» or
«xs:unsignedByte». If no required type is specified for an argument, the implicit default is
«item()*». This allows any sequence of items, in other words any value at all.

The XPath processor is required to check that the arguments supplied in the function call are of the right
type. The rules it applies are as follows.

1. First, the name of the function and the number of arguments are used to locate the signature of
the function to be called. An error occurs if no suitable function can be located. Once the
signature has been located, each argument in the function call is checked against the declared
type of the corresponding parameter in the signature, using the rules below.

2. Each supplied argument is evaluated, to produce a value, which in general is a sequence that
may contain atomic values, nodes, or a mixture of the two. (Note, however, that the processor
isn’t obliged to evaluate an argument that isn’t used—this means that errors may go undetected.)

161

Chapter 5

3. If the required item type is xdt:anyAtomicType or a subtype of this (that is, if the function
expects atomic values for this argument, rather than nodes), then the following steps are carried
out:

❑ The supplied sequence is atomized. Atomization replaces each node in the supplied
sequence by its typed value (which may itself be a sequence), and leaves any atomic values
in the sequence unchanged.

❑ If any of the values in the atomized sequence are of type xdt:untypedAtomic (which will
normally be the case when the values are extracted from elements and attributes that have
not been validated against any schema), then the system attempts to convert them to the
required type by casting. The rules showing what casts are possible are given in Chapter 9,
but they essentially follow the rules defined in XML Schema—if the required type is
xs:date, for example, then the xdt:untypedAtomic value must have the form of a valid
lexical xs:date value. If the cast isn’t possible, the error is fatal.

❑ If the required type is a numeric type (xs:double, xs:float, xs:decimal, or a type
derived from any of these by restricting the allowed set of values), and if the supplied value
is also numeric, then type promotion is attempted. For example, it is acceptable to supply
an xs:integer value where an xs:double is expected. Numeric type promotion is
described in detail in Chapter 6, because it plays an important role for arithmetic operators.

4. At this stage, a final check is made that the argument value is now a valid instance of the
required type. For this to be true, each item in the sequence must be an instance of the required
item type, and the number of items in the sequence must match the required cardinality. The
detailed rules are the same as those for the «instance of» operator, which is described in
Chapter 9. If the value doesn’t conform as required, a type error is reported.

5. If all is well, the function is called, and the result of the function call expression (as you would
expect) is the value returned by the function, which will always conform to the type given in the
function signature.

Changes in XPath 2.0
The rules given in the previous section impose much stricter type checking than XPath 1.0, which always
attempted to convert the supplied arguments to the required type. XPath 2.0 effectively retains this
behavior only when the value you supply is a node in a document that has not been schema-validated.
This might be because you are using a processor that isn’t schema-aware, or because you chose not to
validate the document, or because the node in question is defined by a schema to be in part of a
document that is skip-validated (which for practical purposes means that any content is allowed).

There are other cases where function calls would have succeeded in XPath 1.0, but will fail under these
stricter rules. An example is a function call such as «contains(position(), "o"». The arguments to
the contains() function must be of type xs:string, but the result returned by the position()
function is of type xs:integer. XPath 1.0 would cheerfully convert the integer to a string, but XPath 2.0
is stricter—if you intend a conversion to take place, you must invoke it explicitly, for example, by calling
the string() function.

To ensure that most XPath 1.0 expressions can be carried forward to XPath 2.0 without breaking under
these stricter rules, XPath 2.0 defines a backward compatibility mode that relaxes the rules. If you are
running in XSLT, the backward compatibility mode is invoked whenever the stylesheet (or some element

162

Basic Constructs

in the stylesheet surrounding the XPath expression in question) specifies the attribute «version=
"1.0"». When XPath is invoked in other ways, the mechanism for switching on backward compatibility
mode is defined by the design of the API you are using (it’s not mandatory for every implementation to
offer this feature).

Backward compatibility mode changes the function calling rules by adding an extra rule before rule 3 in
the list above. This rule is essentially in two parts:

❑ If the required cardinality of the parameter is zero or one (that is, if the parameter doesn’t permit a
sequence of more than one item), then all items in the supplied value after the first are discarded.

❑ If the required item type is a string or number type, then the supplied value is converted to a
string or number using the string() or number() function as appropriate.

These rules apply only where the required type of the parameter fits into the XPath 1.0 type system. For
example, if the required type is xs:date, no extra conversions are performed. More specifically, the first
rule (which discards all but the first item in a sequence) applies only where the required item type is
«item()», «node()», xs:string, or a numeric type such as xs:double. The second rule applies only
if the required item type is xs:string or a numeric type.

Although the XPath 1.0 type system also included a boolean data type, there is no special treatment of
xs:boolean in the backward compatibility rules. That’s because the only XPath 1.0 function that
actually expected a boolean argument was the not() function, and this function in XPath 2.0 has been
defined in a way that is fully backward compatible.

XPath 1.0 never defined any rules for calling external user-defined functions, so backward compatibility
in that area is entirely a matter for implementors.

Side Effects
None of the standard functions have side effects; they don’t change the values of variables, they don’t
produce any output, and they don’t change any settings in the browser or the operating system. They
don’t even create any new nodes, though both XSLT and XQuery allow you to write functions that can be
called from XPath to create new nodes.

There is nothing to stop an extension function from having side-effects; for example, an extension
function could print a message or increment a counter, or even do something more radical such as modify
the source document or the stylesheet itself. However, extension functions with side effects are likely to
be rather unpredictable, since there is nothing to say in which order things happen. For example, you
can’t assume that global variables are evaluated in any particular order or that they are evaluated only
once; and a global variable that is never accessed might never be evaluated at all.

Functions can have side-effects even it you think of them as read-only. You might imagine that if you
write an extension function ext:read() that reads a line of input from the console, then the expression
«(ext:read(), ext:read())» will read two lines, and return them in order. You could be in for a
surprise. The system might read two lines, and return them out of order; or it might read a single line,
and return two copies of it. This is because calling the ext:read() function has the side-effect of
changing the current reading position in a file connection. Implementations might try to be more helpful
than this, but you can’t rely on it.

163

Chapter 5

The closest that the standard library comes to a function with side-effects is the trace() function, which
is supposed to produce diagnostic output. Like other functions in the standard library, this is described in
Chapter 10. However, the specification gives so much latitude in terms of the way this is implemented
that it would be quite legitimate for an implementation to do nothing when it encounters this function
call. You might well find that with an optimizing processor, the output produced by multiple calls on the
trace() function bears very little relationship to the expected order of execution.

Functions that create new nodes are something that the formal semantics of the language does try to handle
in a sanitary way. XPath itself, when confined to the standard function library, is a read-only language,
but both XSLT and XQuery do allow functions that create and return new nodes. For example, in XSLT:

<xsl:function name="f:make" as="element()">
<e/>

</xsl:function

or in XQuery:

declare function f:make() as element() {
<e/>

};

These functions create all sorts of complexities in the language semantics, for example it is no longer
possible to take a function call out of a loop and execute it once only. It also means that the expression
«f:make() is f:make()» is false. Frankly, in XSLT stylesheets I would advise against writing such
functions—generally, I think it’s good coding practice in XSLT to use XSLT instructions and templates
when creating nodes in the result tree, and to use XPath expressions and functions when reading
information from the source tree. XQuery doesn’t have this distinction between instructions and
expressions, so the same function mechanism has to serve both purposes. But you need to use it with care.

Examples

Expression Description

true() A call on a standard function that always returns the xs:boolean value
true

string-length($x) A call on a standard function that expects a string, and returns the
number of characters it contains. The actual value supplied can be a
node, provided its type is either xs:string or xdt:untypedAtomic.
If $x is a non-string value, such as an xs:anyURI, a type error occurs,
unless you are running in backward compatibility mode

count(*) A call on a standard function that evaluates the path expression «*»
(which returns all element children of the context node) and returns a
number indicating how many nodes there are in this sequence

xt:intersection
($x, $y)

A call on an extension function. It is identified as an extension function
by the presence of a prefix «xt:» which must correspond to a
namespace declaration that is in scope. The rules for locating an
implementation of this extension function are implementor-defined

164

Basic Constructs

Conditional Expressions
A conditional expression corresponds to the «if..then..else» construct found in some form in
almost every programming language. A condition is evaluated, and based on the result, the expression
returns the result of evaluating either the «then» or the «else» branch.

Expression Syntax

IfExpr «if (» Expr «)»
«then»ExprSingle
«else»ExprSingle

The «else» branch is constrained to be an ExprSingle (an expression containing no top-level comma)
because a trailing comma would be ambiguous when the expression appears, for example, as an
argument in a function call. The «then» branch is constrained to be an ExprSingle purely for
symmetry. Any expression can be used as the condition, and although it would be unusual for this
expression to use the «,» operator, there is no reason to disallow it.

Note that both branches (the «then» and the «else») must be present. It’s quite common to write «else
()» to return nothing (an empty sequence) when the condition is false, but you have to write this
explicitly.

The expression used as the condition to be tested (inside the parentheses) is evaluated to give its effective
boolean value. Unusually, XPath 2.0 doesn’t apply strict type checking to this expression, rather it defines a
set of rules allowing any value to be converted to the xs:boolean values true or false. The rules are
that every value is treated as true, except the following:

❑ The empty sequence

❑ A singleton xs:boolean value false

❑ A singleton zero-length xs:string or xdt:untypedAtomic value

❑ A singleton xs:double, xs:float, or xs:decimal that is numerically equal to zero

❑ A singleton xs:double or xs:float NaN (not-a-number) value.

There is no atomization applied to any nodes in the sequence. This means that if the value includes one or
more nodes, the result is true, regardless of the contents of the node. Even if «@married» is an attribute
whose typed value is the xs:boolean value false, the result of the expression «if(@married) then
"yes" else "no"» is the string «yes». If you want to test the contents of the node, rather than testing for
its existence, use the data() function to atomize it explicitly, or write the test in the form «if
(@married = true()) then ..».

Note that the effective boolean value of a sequence doesn’t simply test whether the sequence is empty,
because of the special cases for a singleton sequence. If you want to test whether a sequence is empty, use
the empty() or exists() functions described in Chapter 10.

These rules for forming the effective boolean value are consistent with the rules used in other XPath
contexts where a true/false value is required. These include:

❑ The operands of «and» and «or» (see Chapter 6)

165

Chapter 5

❑ The argument of the functions boolean() and not() (see Chapter 10)

❑ The expression used as a predicate within square brackets in an axis step or filter expression, so
long as the value is not numeric (see Chapters 7 and 8)

❑ The expression in the «satisfies» clause of «some» and «every» expressions (see Chapter 8)

The same rules are also used in XSLT 2.0, in evaluating the <xsl:if> and <xsl:choose> instructions.

A significant feature of these rules is that the processor can determine the effective boolean value of any
sequence without looking further than the second item in the sequence. This makes the algorithm very
efficient.

However, the rules are not the same as the rules in XML Schema for converting a string to an
xs:boolean value. In XML Schema, the valid lexical representations of the xs:boolean value false
are «0» and «false», while the valid lexical representations of true are «1» and «true». The XML
Schema rules are used in XPath 2.0 in the following circumstances:

❑ By the expression «$S cast as xs:boolean»

❑ By the xs:boolean() constructor function (note the difference from the boolean() function in
the core library, sometimes written as fn:boolean() to emphasize the difference)

❑ When an xdt:untypedAtomic value is implicitly converted to an xs:boolean value in the
course of a function call, where one of the function arguments has a required type of
xs:boolean.

Conditional expressions are one of the few places in the XPath language where you get a guarantee that
an expression will or will not be evaluated. Specifically, if the condition is true then the «else» branch
will not be evaluated, while if it is false, the «then» branch will not be evaluated. This means you can
safely use expressions that could otherwise cause errors, for example:

if ($cols ne 0) then (count($items) idiv $cols) else ()

I personally prefer putting in the explicit test «$cols ne 0» rather than writing «if ($cols)..»
and relying on the fact that zero is treated as false.

Changes in XPath 2.0
Conditional expressions are new in XPath 2.0. In the context of an XSLT stylesheet, they often make it
possible to replace a cumbersome <xsl:choose> instruction. For example, the following:

<xsl:variable name="color">
<xsl:choose>

<xsl:when test="$day=’Sunday’">white</xsl:when>
<xsl:otherwise>red</xsl:otherwise>

</xsl:choose>
</xsl:variable>

can now be replaced with:

<xsl:variable name="color"
select="if ($day eq ’Sunday’) then ’white’ else ’red’"/>

166

Basic Constructs

The rules for calculating the effective boolean value of an expression have been carefully chosen to be
compatible with the rules for converting strings, numbers, or node-sets to booleans in XPath 1.0, while at
the same time generalizing them to handle an arbitrary sequence. If they seem arbitrary, blame history.

Examples
Expression Description

if (@x)
then @x
else 0

Returns the attribute node @x if it exists, or the
xs:integer value zero otherwise. (This can also be
expressed as «(@x,0)[1]»)

if ($area/sales)
then avg($area/sales/@value)
else number(’NaN’)

Returns the average sales value for the selected area if
there were any sales, or the not-a-number value NaN
otherwise

if (normalize-space(.))
then string(.)
else ()

Returns the context item converted to a string if it
contains any non-whitespace characters, otherwise
returns the empty sequence. This relies on the fact that
normalize-space() returns a zero-length string
(which is treated as false) if all the characters in the
string are whitespace

Summary

XPath expressions are used in XSLT to select data from the source document and to manipulate it to
generate data to place in the result document. XPath expressions play the same role for XML as the SQL
SELECT statement plays for relational databases—they allow us to select specific parts of the document
for transformation, so that we can achieve the required output. Their use is not restricted to XSLT
stylesheets—they can also be used with XPointers to define hyperlinks between documents, and many
DOM implementations allow XPath expressions to be used to find nodes within the DOM.

This chapter provided an introduction to the basic constructs in XPath expression: an overview of the
grammar and the lexical rules, and explanation of some of the basic constructs such as literals, variable
references, function calls, and conditional expressions.

The next four chapters explore the language in more depth. Chapter 6 looks at the basic operators for
aruthmetic, boolean comparisons, and testing identity and ordering of nodes. Chapter 7 describes path
expressions and the operations for combining sets of nodes to form their union, intersection, or
difference. Chapter 8 examines expressions on sequences, notably the «for» expression, which provides
a general mapping capability to construct one sequence by applying an expression to each item of an
input sequence. Then, Chapter 9 discusses operations on types.

Finally, Chapter 10 is a catalog of all the functions in the core library, and Chapter 11 gives the syntax for
regular expressions, which are used in three of these functions.

167

Operators on Items
This chapter defines the simple operators available for use in XPath expressions. This is inevitably
a rather arbitrary definition, but these operators seem to have enough in common to justify putting
them together in one chapter. All these operators return single items (as distinct from sequences)—
in fact, all of them except the arithmetic operators in the first section return a boolean result.

More specifically, this chapter describes the following families of operators:

❑ Arithmetic operators, «+», «-», «*», «div», and «mod»

❑ Value comparison operators «eq», «ne», «lt», «le», «gt», «ge»

❑ General comparison operators «=», «!=», «<», «<=», «>», «>=»

❑ Node comparison operators «<<», «is», and «>>»

❑ Boolean operators «and» and «or»

Many of these operators behave in much the same way as similar operators in other languages.
There are some surprises, though, because of the way XPath handles sequences, and because of
the way it mixes typed and untyped data. So don’t skip this chapter just because you imagine that
everything about these operators can be guessed.

Path expressions, which are used to select nodes within an XML document and which can be
considered the defining feature of the XPath language, will be described in Chapter 7, while
Chapter 8 is devoted to operations used to process sequences. The tour of the language syntax
finishes in Chapter 9, which describes operations on types. Chapter 10 contains a full description
of all the functions available in the standard function library.

Arithmetic Operators
These operators are normally used to perform numeric calculations on numbers, which may be of
any of the numeric types: xs:integer, xs:decimal, xs:float, or xs:double. They are also
overloaded to perform calculations on dates and durations.

Chapter 6

Note that this section only describes arithmetic operators built in to the XPath syntax. These operators are
complemented by a range of arithmetic functions in the standard function library, described in Chapter 10.
The functions in this library include abs(), ceiling(), floor(), round(), round-to-half-
even(), sum(), max(), min(), and avg().

Syntax
The syntax of expressions using the arithmetic operators is defined by the following syntax productions
in the XPath grammar.

Expression Syntax

AdditiveExpr MultiplicativeExpr
((«+» | «-») MultiplicativeExpr)*

MultiplicativeExpr UnionExpr
((«*» | «div» | «idiv» | «mod»)
UnionExpr)*

UnaryExpr («-» | «+»)* PathExpr

The priority of operators is indicated by the grammar. Unary «+» and «-» have a higher priority
(bind more tightly) that the multiplicative operators «*», «div», «idiv», and «mod», which in turn
have higher priority than the binary forms of «+» and «-». In between union operators and unary
operators, there is a long list of operators with intermediate priority, such as «intersect» and
«cast as». A full list of operator priorities, showing how these operators relate to others, is given in
Appendix B.

There are two division operators: «div» for exact division, and «idiv» for integer division. The precise
rules for these are described below. The «mod» operator gives the remainder when one number is divided
by another. The reason that the «/» symbol isn’t used for division is that this would conflict with its use in
path expressions, which are described in Chapter 7.

When using the minus operator, take care that it does not get confused with a hyphen within a name. If it
immediately follows a name, use a space to separate it. Note that «price-discount» (without spaces)
is a single hyphenated name, whereas «price - discount» (with spaces) performs a subtraction. If in
doubt, use spaces to separate an operator from the surrounding tokens: it never does any harm.

If there are several operators with the same priority, they are evaluated from left to right. For example
«5-2-2» means «(5-2)-2», which evaluates to «1».

Type Promotion
There are special rules for arithmetic operators to determine the type of the result of the expression, based
on the types of the operands.

170

Operators on Items

If the operands have the same type, then in general the result is the same type as the operands. So, for
example, the sum of two xs:integer values is an xs:integer, while the result of multiplying two
xs:double values is an xs:double. The exception to this rule is the «div» operator, when the
operands are xs:integer values: in this case, the result is an xs:decimal. For example, the result of
«5 div 2» is the xs:decimal value «2.5».

The phrase “the same type” in this rule means the underlying numeric type: one of xs:integer,
xs:decimal, xs:float, or xs:double. If you add two xs:short values, the result will be an
xs:integer, not an xs:short. (At any rate, it’s not guaranteed to be an xs:short; the only
requirement on the implementation is that the result must be an xs:integer, and of course returning an
xs:short would satisfy that requirement, so long as the result of the operation is in the range of values
that xs:short can handle.)

If you use these operators to combine two values that are of different types, type promotion kicks in.
This defines a pecking order among the four numeric types: xs:double wins over xs:float,
xs:float over xs:decimal, and xs:decimal over xs:integer. If you mix two types, then the
loser in this pecking order is first converted to the type of the winner, and the result has the same type as
the winner. So, for example, the result of the expression «2.5 + 1» is the xs:decimal value «3.5»,
because «2.5» is an xs:decimal and «1» is an xs:integer, and xs:decimal is higher in the pecking
order.

Changes in XPath 2.0
The main change affecting these operators is the increased range of data types they can handle. In XPath
1.0, all numbers were handled as double-precision floating point, and the operators were not overloaded
to handle any other data types.

In XPath 1.0, the arguments supplied to the function were automatically converted to numbers, using
the rules for the number() function (which is described in Chapter 10). This means, for example, that
the result of «1+true()» would be 2 (true() converts to 1), and the result of «"apple"+"pear"»
would be NaN (any non-numeric string converts to the special not-a-number value NaN, and adding two
NaNs gives NaN). These conversions are still carried out in XPath 2.0 if you run with backward
compatibility enabled. This will happen, for example, in the case of XPath expressions contained in an
XSLT stylesheet that specifies «version="1.0"». The main advantage of this behavior is that you
never get a runtime error (only NaN results), and if this is important to you, you can achieve the same
effect in XPath 2.0 by using the number() function explicitly, even without backward compatibility
enabled.

The «idiv» operator is new in XPath 2.0. It does integer division, and is particularly useful when
calculating how many rows and columns you need for a table: for example if you have $N items to
arrange in 3 columns, then the number of rows needed is «($N+2) idiv 3». Although the result is
always an integer, the operands don’t have to be integers: for example, the result of «3.6 idiv 1.5»
is «2». In fact, a handy use of this operator is to convert any number $x to an integer by writing
«$x idiv 1».

Despite the availability of a backward compatibility mode, not everything is 100% guaranteed to give the
same answer as with XPath 1.0. Firstly, many calculations will use decimal rather than floating-point

171

Chapter 6

arithmetic, so the precision of the result may be different. This also means that you may get failures where
previously you got NaN or Infinity as a result. Trying to add things that aren’t numbers might also
give you different results. But these are edge cases, and most common-or-garden XPath expressions
should continue to work unchanged.

Unary plus has been added to the language largely so that any value accepted as the lexical value of a
number by XML Schema is also accepted as a valid constant value in an XPath expression. XML Schema
accepts «+1.0» as a legal representation of a number, so XPath 2.0 accepts it too.

The relative precedence of the union operator «|» and unary minus has changed since XPath 1.0. In 1.0,
the expression «-@price|@cost» was interpreted as «-(@price|@cost)», whereas it now means
«-@price | -@cost», which will give a type error on the grounds that the operands of «|» must be
nodes.

Effect
The detailed rules for these operators are as follows. The rules are given here on the assumption that the
special rules for XPath 1.0 backward compatibility are not in force; the changes that apply under
backward compatibility mode are described later.

1. The operands are atomized, as described on page 108 in Chapter 3. This means that nodes are
replaced by their typed values: for example, if one of the operands is the attribute node
«@price», then the typed value of this attribute is extracted.

2. If, after atomization, either operand is an empty sequence, then the result of the operation is also
an empty sequence. For example, if the context node has no price attribute, then the result of
«@price * 0.8» is the empty sequence, «()».

3. If either operand after atomization is a sequence of more than one item, a type error is raised. For
example, if you write the expression «price * 0.8» and the context node has more than one
child element called <price>, a type error ensues. The significance of it being a type error is that
it may be reported either at compile time or at runtime, as discussed in the section on Static and
Dynamic Type Checking in Chapter 3 (Page 109).

4. If either operand is an xdt:untypedAtomic value, then it is converted (using the casting rules)
to an xs:double. This situation will normally occur when the operand as written is a node in a
schema-less document. For example, suppose the expression is «@price * 0.8», and there is
no schema, and the price attribute in the source document is written as «price=
"129.99"». Then the attribute value will be converted to the xs:double value 1.2999e2, and
the result of the multiplication will also be an xs:double. Note the difference with numeric
literals, described on page 142 in Chapter 5—in the case of a value contained in an untyped node,
it is always converted to an xs:double when used as an operand of «*», regardless of whether
it is written in exponential notation or not.

The conversion to an xs:double uses the casting rules (described in Chapter 9), not
the rules of the number()function. This means that if the value isn’t a valid number,
the expression will fail with a runtime error, rather than returning the value NaN

172

Operators on Items

5. If the operands are now of an acceptable type for the operator, the calculation is carried out. In
the case of numeric operands, all combinations of numeric values are acceptable, and the values
are first promoted to a common type as described in the section Type Promotion above. The only
other kinds of operands that are acceptable are certain combinations of dates, times, and
durations, which are described in the section Arithmetic using Durations below. The calculation
may succeed or fail (the most obvious example of a failure is division by zero); if it fails, a
runtime error is reported.

6. If the operands are of the wrong type, then a type error is raised. For example, this will happen if
one of the operands is an xs:boolean or xs:string value.

There are two differences to these rules when backward compatibility is in force. Firstly, in step 3, instead
of reporting an error when there is more than one item in the sequence, all items except the first are
discarded. Secondly, after step 4, if the operands aren’t of acceptable types for the operator (for example,
if one of them is an xs:string or an xs:boolean), then both operands are converted to xs:double
values using the number() function. This means that the result will also be of type xs:double. If the
value of an operand isn’t numeric, the answer comes out as NaN rather than an error. This conversion
isn’t done for the «idiv» operator, because this operator is new in XPath 2.0, so backward compatibility
problems don’t arise.

Arithmetic Using Numbers
This section describes some of the corner cases that can arise when doing numeric arithmetic.

Integer Arithmetic
With integer operands, there are few surprises.

❑ Division by zero is a fatal error, whether you use the «div» or «idiv» operator.

❑ The language spec doesn’t define the maximum size of an integer, though it does say it must be at
least 18 decimal digits, which should be enough for most purposes. Every conforming
implementation is required to provide an option to detect integer overflow and report it as a fatal
error. It’s also permissible to provide a mode where arithmetic wraps around (as it does in many
programming languages like Java and C). If both options are available, the spec doesn’t say
which should be the default. The thinking is that some users will want to pay the cost of the
runtime error detection, whereas others will prefer raw speed.

The result of dividing two integers using the «div» operator is an xs:decimal value, but the spec
doesn’t say what the precision of the result should be. For example, if you write «10 div 3» then one
system might produce the answer «3.333» while another produces «3.3333333333333333».

The «mod» operator, which gives the remainder from an integer division, can be confusing when negative
numbers are involved. I find the following rules of thumb helpful:

❑ The result is positive if the first operand is positive, negative if it is negative.

❑ The result depends only on the absolute value of the second operand, not on its sign.

173

Chapter 6

It’s also useful to think of the «mod» operator in conjunction with «idiv». Thus:

Expression Result Expression Result

20 mod 3 2 20 idiv 3 6

20 mod –3 2 20 idiv –3 –6

–20 mod 3 –2 –20 idiv 3 –6

–20 mod –3 –2 –20 idiv –3 6

In all cases (except where $y is zero) the result of «($x idiv $y) * $y + ($x mod $y)» is $x.

Decimal Arithmetic
Decimal arithmetic is useful because it avoids the rounding errors that arise with floating point
calculations. This is particularly true when handling values that are discrete rather than continuous, of
which the most obvious example is money.

Again, the language spec doesn’t define the maximum precision that can be held in an xs:decimal
value. This is more likely to be a problem with xs:decimal than with xs:integer, and it means that
different products are likely to give different answers to the same calculation (though hopefully, only a
little bit different!).

The main problem is with division. Even systems that support indefinite-precision xs:decimal values
(as Saxon does, for example) have to make a decision as to how many digits to record in the result of
«10 div 3», and the spec offers no clues.

As with integer arithmetic, division by zero is a fatal error.

The rules for handling overflow are subtly different from the rules for integers. In the case of
xs:decimal, overflow (that is, calculation of a result that is too big for the system to handle, whatever
this limit might be) must be reported as an error. So unlike the situation with integers, there is no prospect
of the system giving you a spurious result by wrapping around.

Another situation that can arise with xs:decimal values is underflow. This happens when the result of
a computation is smaller than the smallest value that can be recorded, but greater than zero. Equally, of
course, it could be a very small negative number. For example, if you multiply 0.00000001 by itself, and
the system can only handle 10 decimal places after the decimal point, you will get an underflow. The rule
in this case is that the result returned must be the xs:decimal value 0.0.

Floating-Point Arithmetic
Floating-point arithmetic (whether using single precision xs:float, or double-precision xs:double) is
defined by the rules of the IEEE 754 specification. These rules are summarized in Chapter 3.

The XPath 1.0 specification tied the definition of floating-point arithmetic pretty closely to the same rules
as were adopted in Java. But in fact, the IEEE 754 specification offers a number of options, and XPath 2.0
gives implementors a bit more freedom to select which options to provide. In particular, the specification

174

Operators on Items

allows for errors to be raised on overflow or underflow conditions, whereas the XPath 1.0 profile always
returned positive or negative infinity in the overflow case, and positive or negative zero for underflow. So
in corner cases, the behavior may not be exactly the same as with XPath 1.0, and not quite so consistent
across different processors.

The unary minus operator is defined to change the sign of the operand. This is subtly different from
subtracting the operand from zero, because it means that «-0e0» represents negative zero rather than
positive zero. There’s very little difference between the two: about the only way of telling them apart is by
a test such as «1 div $x > 0», which returns true if $x is positive zero (the division gives positive
infinity), but false if $x is negative zero. There has been a certain amount of confusion over the fact that
XML Schema does not recognize the value negative zero. You can write «-0e0» in a source document,
but it means exactly the same as writing «+0e0». This is because XML Schema doesn’t recognize the
concept of two values being equal but distinguishable. For practical purposes the distinction between the
two values is rarely important, and it doesn’t really matter that it is lost once you write the results away
to an XML document. Its only significance is that it preserves a useful difference in the intermediate
results of complex calculations.

Floating point arithmetic can always give you rounding errors, because there are values that can be
written accurately in decimal notation that can’t be expressed accurately in binary. So, for example, the
result of the expression «1.0E-3 * 1.0E-4» might not be displayed as «1.0E-7» as you would expect,
but as «1.0000000000000001E-7». You can round it to the number of decimal places required using
the round-half-to-even() function described in Chapter 10, or in XSLT, by using the
format-number() function described in XSLT 2.0 Programmer’s Reference, Chapter 7.

Examples of Numeric Arithmetic

Expression Description

$X + 1 The result of adding 1 to the value of the variable $X

last()-1 One less than the position of the last node in the
context list

@margin*2 Twice the value of the margin attribute of the context
node. This will work only if the margin attribute either
has a numeric type, or is untyped and has a value that can
be interpreted as a number

ceiling(count(item) div 3) One-third of the number of child <item> elements of the
context node, rounded upwards. (Useful if you are
arranging the items in three columns)

$seq[position()
<= last() idiv 2]

Selects the first half of the items in the sequence $seq,
rounded down. For example, if there are 11 items in the
sequence, it selects the first five

item[position() mod 2 = 0] Selects the even-numbered child <item> elements of the
context node. (Again, this can be useful if you are
arranging items in a table)

Continues

175

Chapter 6

Expression Description

count($list) mod 5 + 1 The number of items in the sequence $list modulo 5, plus one.
The result will be a number in the range 1 to 5.

- @credit The negated numeric value of the credit attribute of the context
element node. If the context node has no credit attribute, or if
its value is not numeric, the result of the expression is «()» (the
empty sequence), unless backward compatibility mode is set, in
which case it is NaN (not a number)

1---1 A not very useful but perfectly legal way of writing the value
zero. The first minus sign is a binary subtraction operator; the
next two are unary minus signs

Arithmetic Using Durations
As well as being used for conventional arithmetic using numbers, the arithmetic operators are also used
to perform certain operations on dates, times, and durations. Not all combinations make sense; for
example, it’s sensible to add 3 days to a date, but it isn’t sensible to add two dates.

There’s a table in the XPath 2.0 specification that lists all the combinations of operators and operands that
are permitted, and the number that involve dates, times, and durations is alarmingly large. But
appearances are deceptive: on closer examination, it turns out that these are all permutations on a small
number of themes. The number of permutations is large because it involves:

❑ Three date/time types: xs:date, xs:dateTime, and xs:time

❑ Two duration types: xdt:yearMonthDuration and xdt:dayTimeDuration

❑ Symmetric operations, e.g. duration + date as well as date + duration

In fact, all the options boil down to five basic categories:

Expression Meaning

date/time
+|-
duration

Returns a date/time that is a given duration after or before the
supplied date/time. For example, 2004-12-31 plus three days is
2005-01-03

duration
+|-
duration

Adds or subtracts two durations to give another duration. For
example, one hour plus two hours is three hours

duration
*|div
number

Multiplies a duration by a numeric factor, or divides it by a numeric
factor, to give another duration. For example, one month times 3 is
three months

date/time
-
date/time

Determines the interval between two dates/times, as a duration.
For example, 2005-01-03 minus 2004-12-31 is three days

176

Operators on Items

Expression Meaning

duration
div
duration

Determines the ratio between two durations, as a number. For
example PT12H divided by PT10M is 72

In each of these cases the following rules hold:

❑ If the operator is «+» or «*» (but not if it is «-» or «div») then the operands may be written in
either order.

❑ Subtracting a positive duration is the same as adding a negative duration (a negative duration is
written, for example, as «-P3D» to represent minus three days).

❑ The duration must be either an xdt:dayTimeDuration or an xdt:yearMonthDuration. The
first kind is equivalent to an exact number of seconds, the second to an exact number of months.
The primitive type xs:duration can’t be used for arithmetic, because the variation in the length
of a month creates too many uncertainties.

❑ Multiplying a duration by a number such as 0.5 is the same as dividing it by 2.0.

The following sections examine each of the four cases in a bit more detail.

Date/Time plus Duration
This section covers the following combinations of operands:

Operand 1 Operand 2 Result

xs:date xdt:yearMonthDuration xs:date

xs:date xdt:dayTimeDuration xs:date

xs:dateTime xdt:yearMonthDuration xs:dateTime

xs:dateTime xdt:dayTimeDuration xs:dateTime

xs:time xdt:dayTimeDuration xs:time

The allowed operators are «+» and «-». If the operator is «+», then the operands may appear in either
order; if it is «-», then the date/time must be the first operand and the duration the second. Subtracting a
positive duration has the same effect as adding a negative duration, and vice versa.

The decision to allow arithmetic using the two subtypes xdt:yearMonthDuration and
xdt:dayTimeDuration, while not allowing it using the parent type xs:duration, is slightly
perverse, since any xs:duration value can be decomposed into an xdt:yearMonthDuration and an
xdt:dayTimeDuration. But by now, you should be used to the idea that the handling of durations in
XML Schema and XPath has a few rough edges.

Let’s start by seeing how to add an xdt:dayTimeDuration to an xs:dateTime. This is reasonably
straightforward. An xdt:dayTimeDuration represents an exact number of seconds. When you add

177

Chapter 6

this to an xdt:dateTime you get the value that represents the instant in time that is this number of
seconds later (or earlier, if the duration is negative) than the original, in the same timezone. (The
specification, which is done by reference to an algorithm given in an appendix of the XML Schema
Recommendation, is careful to ignore the leap seconds that can be inserted arbitrarily into the calendar to
handle variations in the earth’s speed of rotation.)

If you’re adding an xdt:dayTimeDuration to an xs:date, rather than to an xs:dateTime, you can
get the right answer by considering the xs:dateTime at 00:00:00 on the date in question, and then
ignoring the time part of the result.

If you’re adding the duration to an xs:time, the result is taken modulo 24 hours. For example,
03:00:00 plus P1D is 03:00:00, and 03:00:00 plus PT36H is 15:00:00.

If you’re adding an xdt:yearMonthDuration to an xs:date, the rules are slightly more complicated.
What is 31st January plus one month? The answer given by the specification is that it is 28th February, or
29th February if it’s a leap year.

Adding an xdt:yearMonthDuration to an xs:dateTime is the same as adding it to the date part of
the xs:dateTime, and returning the time portion unchanged. Adding an xdt:yearMonthDuration
to an xs:time is not allowed, because it would always return the value unchanged.

Duration plus Duration
You can only add or subtract two durations of the same type. The allowed combinations of operands are:

Operand 1 Operand 2 Result

xdt:yearMonthDuration xdt:yearMonthDuration xdt:yearMonthDuration

xdt:dayTimeDuration xdt:dayTimeDuration xdt:dayTimeDuration

The operator can be either «+» or «-».

The rules are reasonably obvious (at any rate, they appear to be obvious to the writer of the specification,
which simply says that the result is the sum or difference of the two durations). Remember that an
xdt:yearMonthDuration is equivalent to an xs:integer number of months, and an
xdt:dayTimeDuration is equivalent to an xs:decimal number of seconds. The addition and
subtraction of two durations, whether they are positive or negative in sign, thus reduces to simple
arithmetic on numbers.

For example, subtracting PT6H (6 hours) from P1D (one day) gives PT18H (18 hours).

Only binary «+» and «-» can be used with durations: the unary «+» and «-» operators, for no particularly
good reason, are constrained to work only with numbers. The easiest way to turn a positive duration into
an equivalent negative duration is to multiply it by «-1», as described in the next section.

Duration times Number
An xdt:dayTimeDuration or xdt:yearMonthDuration can be multiplied or divided by a number,
to give another duration of the same type. The operand combinations are:

178

Operators on Items

Operand 1 Operand 2 Result

xdt:yearMonthDuration xs:double
xs:float
xs:decimal

xdt:yearMonthDuration

xdt:dayTimeDuration xs:double
xs:float
xs:decimal

xdt:dayTimeDuration

The operator can be «*» (multiply) or «div» (divide). If the operator is «*», the operands can appear in
either order; if it is «div», then the numeric operand must be the second operand.

The effect of the operation is equivalent to converting the duration to a number of months or
seconds, performing a numeric multiplication or division, and then converting the result back to a
duration.

At the time of writing the specification actually requires the numeric operand to be a double, other numeric
types cause a type error. I’m assuming this bug will be fixed.

Date/Time minus Date/Time
There are a number of operators that subtract date/time values to give a duration. These don’t cover all
possible cases, so they are supplemented by additional functions.

The cases covered by the subtraction operator «-» are:

Operand 1 Operand 2 Result

xs:date xs:date xdt:dayTimeDuration

xs:dateTime xs:dateTime xdt:dayTimeDuration

xs:time xs:time xdt:dayTimeDuration

If the first operand represents an instant in time later than the second operand, then the result will be a
positive duration; if it represents an earlier instant in time, then the result will be a negative duration.

The operation works by taking the normalized value of each date/time operand, that is, the time
converted to UTC timezone. If the date/time was supplied without a timezone, then it is assumed to
represent a date/time in the implicit timezone defined by the evaluation context (see Chapter 4).

For operands of type xs:dateTime, the result is the duration corresponding to the number of seconds
that separate the two instants in time.

For operands of type xs:date, the result is the difference between the starting instants of the two
dates. Since the dates can be in different timezones, the result is not necessarily an integer number of
days.

179

Chapter 6

For operands of type xs:time, the values, after normalization to UTC, are assumed to represent two
times occurring on the same date. The value will therefore be positive if the UTC-normalized value of the
first time is greater than the UTC-normalized value of the second time. This can lead to surprises; for
example, the value of «xs:time("23:00:00 - 05:00") – xs:time("18:00:00-05:00")» is the
negative duration «-PT19H». This is because after normalization to UTC, the expression is equivalent to
«xs:time("04:00:00Z") – xs:time("23:00:00Z")».

The function subtract-dateTimes-yielding-dayTimeDuration(), which is described in
Chapter 10, has exactly the same effect as the subtraction operator «-».

The function subtract-dateTimes-yielding-yearMonthDuration() is used to find the interval
between two xs:dateTime values in months, and the function subtract-dates-yielding-
yearMonthDuration() finds the interval between two xs:date values in months. The result is the
largest number of whole months that can be added to the second xs:date value to give an xs:date that
is on or before the first xs:date value. If the first xs:date is earlier than the second, it is the largest
number of months that can be subtracted from the second xs:date to give an xs:date that is on or
after the first xs:date.

Duration divided by Duration
It is possible to divide an xdt:dayTimeDuration by another xdt:dayTimeDuration, or an
xdt:yearMonthDuration by another xdt:yearMonthDuration, to obtain a double. The division
operator must be «div» («idiv» is not supported). The result is equivalent to converting both the
durations into a number of months or seconds and performing a numeric division.

Here are some examples:

Expression Result

xdt:dayTimeDuration("P10D") div
xdt:dayTimeDuration("PT6H")

40

xdt:dayTimeDuration("-P1D") div
xdt:dayTimeDuration("PT1S")

−86400

xdt:yearMonthDuration("P1M") div
xdt:yearMonthDuration("P1Y")

0.083333333 . . .

This operation actually provides the easiest way to convert a duration into a number of months, days, or
seconds. To convert an xdt:dayTimeDuration to seconds, for example, just divide it by
xdt:dayTimeDuration("PT1S"). This is useful when you need to perform calculations that are not
directly supported by the operations available on durations. Examples include:

❑ Dividing a distance by a duration to obtain an average speed.

❑ Multiplying the number of hours worked by the hourly rate to obtain the amount of money due.

❑ Determining the day of the week for a given date.

180

Operators on Items

The following code illustrates how to display the day of the week, supplied in the variable $date:

("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")
[1 + (($date - xs:date("1901-01-06")) div xdt:dayTimeDuration("P1D") mod 7)]

The ability to divide one duration by another is a late addition to the XPath specification, so to run this
example with Saxon you will need version 8.0 or later. In XSLT 2.0 you can display the day of the week
using the format-date() function, described in Chapter 7 of XSLT Programmer’s Reference.

Value Comparisons
XPath 2.0 has introduced a completely new set of operators for comparing single atomic values. These are
shown in the table below:

Operator Meaning

eq equals

ne not equals

lt less than

le less than or equal to

gt greater than

ge greater than or equal to

These were introduced primarily because they have much cleaner and more predictable behavior than
the XPath 1.0 operators «=», «!=», «<», «<=», «>», and «>=». The XPath 1.0 operators are still available,
and are described later in this chapter under the heading General Comparisons on page 188.

The real driver for introducing these new operators was not really the requirements of XPath users, but
the needs of XQuery, which is a superset of XPath 2.0. XQuery needs to be able to search large databases,
and if you want to search a terabyte of data then you need to take advantages of indexes. This means you
need to be able to rearrange the query as written by the user into a form that can take advantage of the
indexes known to be available, and this rewriting of an expression into a different form is only possible if
the operators have very clean mathematical properties. For example, a very useful property that makes
rearranging expressions possible is called transitivity, which means that if «A=B» and «B=C» are both true,
then you know that «A=C» will also be true. Unfortunately, this isn’t the case for the «=» operator in
XPath 1.0. For example, in XPath 1.0, «1=true()» and «true()="true"» are both true, but
«1="true"» is false.

But although these operators were introduced specifically to enable XQuery optimization, I think it’s a
good idea to get into the habit of using them for most routine comparisons. You probably won’t see any
very visible performance benefit for the average XSLT stylesheet, but you may find that you make fewer
errors because the behavior of the operators is simpler and more predictable.

181

Chapter 6

In the XPath syntax, the two kinds of comparison operator, as well as the three operators «is», «<<», and
«>>» which we will meet later in this chapter (see page 196), are presented like this:

Expression Syntax

ComparisonExpr RangeExpr (
(ValueComp | GeneralComp | NodeComp)
RangeExpr)?

ValueComp «eq» | «ne» | «lt» | «le» | «gt» | «ge»

GeneralComp «=» | «!=» | «<» | «<=» | «>» | «>=»

NodeComp «is» | «<<» | «>>»

This means that all 15 operators listed here have the same priority. For all these operators the result of the
expression is always an xs:boolean value. The reference to RangeExpr in the syntax can be ignored for
now: it just refers to the next kind of expression in operator precedence order, which happens to be the
range expression (of the form «1 to 10») described in Chapter 8.

The biggest difference between the value comparison operators and the general comparison operators
described on page 188 is that the value comparison operators always compare two atomic values with
each other, whereas the general comparison operators can be used to compare sequences.

Permitted Operand Types
The detailed effect of the comparison depends on the types of the two operands. These must be
compatible with each other. There are some data types that can be compared using the «eq» and «ne»
operators, but not the «lt», «le», «gt», or «ge» operators. An example is xs:QName—you can test
whether two xs:QName values are equal to each other, but not whether one is less than the other.

The permitted operand types for value comparisons are summarized in the two tables that follow. Both
operands must have the same type (as defined by a row in the table). Comparing two values whose
types don’t match (for example comparing an integer to a string) doesn’t give you a result of false, it is
a type error. This means the error may be reported either at compile time or at runtime, as discussed in
Chapter 3.

The first table is for «eq» and «ne», and shows for each data type how the comparison is done.

Data type Definition of «eq»

xs:string The two strings are compared using the default collation established in
the static context for the expression. Collations are described in detail on
page 123. In consequence, the results may be quite different in different
environments, for example in one context the strings «Strasse» and
«Straße» may be equal, in another context they may be unequal

182

Operators on Items

Data type Definition of «eq»

Numeric Any two numeric values can be compared (xs:integer, xs:decimal,
xs:float, or xs:double). If they are of different types, one value is
first promoted to the type of the other in the same way as for arithmetic
operators (see page 170). They are then tested for numeric equality (this
means, for example, that «1.00» and «01» will compare equal). There
are a couple of special cases with floating point numbers: positive and
negative zero are considered equal to each other, but NaN (not a number)
is not equal to any other number, in fact it is not even equal to itself

xs:boolean Two xs:boolean values are equal if they are both true, or both false

xs:dateTime Two xs:dateTime values are equal if they represent the same instant in
time. This means that if both include a timezone, they are adjusted so
that they are in the same timezone (conventionally UTC, but any
timezone would do). Although the XPath data model retains the original
timezone attached to the value, it plays no part in the comparison: the
two xs:dateTime values «2004-01-01T02:00:00Z» and
«2003-12-31T21:00:00-05:00» (2 a.m. in London and 9 p.m. in
New York) are considered equal.

If either or both of the values has no timezone, it is considered to
represent a time in the implicit timezone defined by the XPath evaluation
context, as described in Chapter 4. If implicit timezones are set
depending on the locale or preferences of the individual user, this means
that two xs:dateTime values that appear equal for one user might
appear not equal for another—but this can only happen in the situation
where one of the values has an explicit timezone and the other does not

xs:date In most cases it is likely that xs:date values will be stored without a
timezone, in which case the test whether two dates are equal is
straightforward. If a date does have a timezone, then it is a significant
part of the value, and dates will only be considered equal if they have the
same timezone; though if one of them has a timezone and the other does
not, the implicit timezone is used in the comparison in the same way as
for xs:dateTime values

xs:time Values of type xs:time are compared in the same way as
xs:dateTime values. That is, the values are compared after adjusting to
UTC, using the implicit timezone from the context in the case of an
xs:time value with no explicit timezone. For example, «02:00: 00Z»
and «21:00:00-05:00» (2 a.m. in London and 9 p.m. in New York) are
considered equal

xs:gYear
xs:gYearMonth
xs:gMonth
xs:gMonthDay
xs:gDay

Values of these types are comparable only with other values of the same
type. Since all of these types allow an optional timezone, they follow the
same rules as xs:date. In fact, one way of defining equality is by
converting the values to xs:date values by supplying arbitrary values
for the missing components, and then comparing the resulting dates

Continues

183

Chapter 6

Data type Definition of «eq»

xs:QName Two xs:QName values are equal if they have the same namespace URI
(or if both have no namespace URI) and if they have the same local
name. Both the URI and the local name are compared in terms of
Unicode codepoints, no collation is used

xs:anyURI Two xs:anyURI values are equal if they are identical, character for
character. A working group in W3C spent a great deal of time trying to
come up with a more sophisticated definition of URI equality (for
example, one that recognized which parts of the URI are case-sensitive
and which are not) but the task proved too difficult, so XPath uses the
simplest possible definition

xs:base64Binary
xs:hexBinary

Although these two types share the same value space, it is not possible to
compare one with the other directly: you have to cast the value first. For
each of the types, values are equal if they consist of the same sequence of
octets

xs:NOTATION The value space of xs:NOTATION is the same as the value space of
xs:QName, and xs:NOTATION values are compared in the same way as
xs:QName values

xs:duration The xs:duration type in XML Schema is the only type for which no
equality operator has been defined in XPath. If you try to compare two
xs:duration values (or even to compare an xs:duration with itself)
you will get an error. The reason for this is essentially a lack of consensus
as to whether two xs:duration values such as «P1Y» (one year) and
«P12M» are equal or not: according to the XML Schema specification,
they are distinct. It’s expected that there will be revised definitions of the
duration data types in the next version of XML Schema, and in the
meantime, the XSLT and XQuery groups decided that the safest thing
was to wait and see what emerged, rather than risk creating legacy that
would be regretted later. The signal that this is sending is
that XPath 2.0, for all practical purposes, does not support the
xs:duration data type.

However, as described in Chapter 3, XPath 2.0 has defined two subtypes
of xs:duration called xdt:yearMonthDuration and
xdt:dayTimeDuration. These basically handle the durations that are
well-behaved, in that they consist either of an exact number of months,
or an exact number (not necessarily an integer number) of seconds. These
types do away with the problems caused by the variable length of a
month, and equality on these types is defined in terms of the length of
the duration rather than its representation: so «P1Y» equals «P12M», and
«PT1800S» equals «PT12H»

The «ne» operator is the exact inverse of «eq»: if an «eq» comparison raises an error, then «ne» also
raises an error; if «eq» returns true, then «ne» returns false, and if «eq» returns false, then «ne» returns
true. This is true even for peculiar cases like NaN: if the value of $x is NaN, then «$x eq $x» is false,
while «$x ne $x» is true. Another reassuring feature of these operators is that if «$a eq $b» is true,

184

Operators on Items

then «$b eq $a» is also true. (It’s worth mentioning these things because as we’ll see later in the
chapter, when it comes to the «=» and «!=» operators it’s best not to make any assumptions).

The other four operators in this group, «lt», «le», «gt», and «ge», work only for data types that are
ordered. The data types that have an ordering, and the way the ordering works, are defined in the table
below.

Data type Definition of ordering

xs:string The ordering of strings is determined by a collation, in the same way
as equality comparison. These operators use the default collation
established in the XPath evaluation context, as described in Chapter
3. There’s actually a tension between equality comparison and
ordering comparisons: for testing equality, you often want a weak
collation, for example one that compares «yes» and «YES» as equal.
But for ordering, you often want to put the strings in some kind of
order, even if it’s fairly arbitrary, so you want «yes» either to be less
than «YES», or greater than it (that is, you want a strong collation). If
you want to use different collations for different operations, you can
achieve this by using the compare() function described in Chapter
10, but for the «eq» and «lt» family of operators, you have to choose
a single collation that may be a compromise

Numeric Any two numeric values can be compared (xs:integer,
xs:decimal, xs:float, or xs:double). If they are of different
types, one value is first promoted to the type of the other in the same
way as for arithmetic operators (see page 170). They are then tested for
numeric order (this means, for example, that «10» is greater than «2»)

xs:boolean The value false is considered, quite arbitrarily, to be less than true

xs:dateTime One xs:dateTime value is considered less than another if it
represents an earlier instant in time. As with equality testing, the two
values are adjusted to a common timezone, using the implicit
timezone from the evaluation context if the value does not have its
own timezone. The effect is, for example, that «2004-01-01
T01:00:00Z» is less than «2003-12-31T23:00:00-05:00»

xs:date In XML Schema, xs:date values are described as being partially
ordered. This means that for some pairs of dates, one of them is
clearly earlier than the other, but for other pairs (in particular, a pair
of dates in which one has a timezone and the other does not) it’s
impossible to decide. Putting such a rule into a query language would
have been impossibly complex, so instead the decision is made by
interpreting all dates without a timezone as being in the implicit
timezone defined by the evaluation context. The rule is that one date
is less than another if it starts earlier than the other one starts, even if
the two dates overlap: for example, «2004-01-01+10:00» is less
than «2004-01-01Z» because the New Year starts earlier in Sydney
than it does in London

Continues

185

Chapter 6

Data type Definition of ordering

xs:time Values of type xs:time present a particular problem for
ordering, because the values are actually cyclic. Converting both
values to the UTC timezone produces some strange results, for
example, it means that «18:00:00-05:00» is greater than
«20:00:00-05:00», because the equivalent UTC times are
«23:00:00Z» and «01:00:00Z», respectively. But for want of a
better way of defining it, this is what XPath does. There are
various strategies you can use to avoid this problem: if the times
being compared are in the same timezone, then a simple approach
is just to convert them to strings and compare the strings

xs:gYear
xs:gYearMonth
xs:gMonth
xs:gMonthDay
xs:gDay
xs:QName
xs:anyURI
xs:base64Binary
xs:hexBinary
xs:NOTATION

These types have no ordering defined. Using any of the operators
«lt», «le», «gt», «ge» with values of these types is a type error

xs:duration As with equality comparisons, xs:duration values themselves
are not considered to be ordered, so the operators «lt», «le»,
«gt», and «ge» are not available. This removes the problem of
deciding whether 30 days is less than, equal to, or greater than
one month.

The two XPath subtypes of xs:duration, namely
xdt:yearMonthDuration and xdt:dayTimeDuration, are
much more well behaved. The effect of comparing them is the
same as converting the value to a number of months, or a number
of seconds, and comparing the two numbers. This means, for
example, that «PT36H» (36 hours) is greater than «P1D» (one day)

In nearly all cases the four operators have the obvious relationship to each other: for example, if «$a lt
$b» is true, then «$a le $b» is also true, as is «$b gt $a». The one exception is the xs:double (and
xs:float) value NaN. If NaN appears as either operand of any of these four operators, or as both
operands, then the result is always false.

Type Checking for Value Comparisons
The operands in a value comparison are processed according to the following rules. These rules apply to
all six operators. Note that there are no special backward-compatibility rules here, because these
operators were not available in XPath 1.0.

186

Operators on Items

1. Each of the operands is atomized, as described on page 108 in Chapter 3. This means that when
you supply a node as the argument, the typed value of the node is extracted.

2. If either operand (after atomizing) is a sequence containing more than one value, then a type
error occurs.

3. If either operand (after atomizing) is an empty sequence, the result is an empty sequence.

4. If either of the values, after atomizing, is of type xdt:untypedAtomic (which will generally be
the case if the value has been extracted from an element or attribute in a schema-less document),
then it is converted to a string (a value of type xs:string). This is true even if the other
operand is a number.

5. If the two values are not comparable then a type error occurs. This can happen because their
types are incompatible with each other (for example one is an xs:string and the other an
xs:decimal), or it can happen because both values belong to a type for which equality or
ordering is not defined, such as xs:QName.

6. Otherwise, the values are compared according to the ordering rules for their data type, as
described in the table in the previous section.

There are a couple of controversial decisions reflected in these rules.

The first is that either operand is allowed to be an empty sequence. The specification has vacillated on
this question in successive drafts.

The main argument in favor of allowing an empty sequence is that the empty sequence should
behave like null values in SQL: any operator or function that has «()» as an argument should return
«()» as a result. This also makes it easier to handle optional elements and attributes. This principle has
not been followed systematically throughout the language, but it is followed by most of the operators.
At one stage the language design also included SQL-like three-valued logic, but this was dropped, largely
because it was incompatible with XPath 1.0. In most cases, XPath 1.0 and now also XPath 2.0 treats absent
data in almost exactly the same way as SQL, but without relying on three-valued logic. For example, in
an expression such as «//item[@code eq 3]», items that have no code attribute will not be selected.
Equally, if you write «//item[@code ne 3]», items that have no code attribute will not be selected. (In
both cases, the value of the predicate is an empty sequence, and the effective boolean value of an empty
sequence is false). But unlike SQL, the XPath expression «//item[not(@code = 3)]» does select
items with no code attribute. The SQL rule that «not(null)» returns «null» has no parallel in XPath.

The argument in favor of disallowing an empty sequence was to maximize the freedom of the optimizer
to rearrange predicates, so as to make use of indexes. Although the current rules do not compromise
transitivity, they do make other rewrites impossible, for example, the expressions «A ne B» and «not(A
eq B)» are no longer equivalent.

The other controversial decision is that xdt:untypedAtomic values are converted to strings regardless
of the type of the other operand. Taking again the example «@code eq 3», this means you will get a
type error if the source document has no schema, because you can’t compare a string to a number. This
rule was introduced in order to make equality transitive. For example, suppose @code is an untyped
attribute whose string value is «4.00». Then «@code eq "4.0"» and «@code eq 4.0e0» would both
be true (one is a string comparison and the other a numeric comparison), and since «4.0 eq 4.0e0» is
true, transitivity would then require that the string comparison «"4.0" eq "4.0e0"» is also true. This
clearly isn’t feasible; as strings, these values are not the same thing.

187

Chapter 6

Examples of Value Comparisons

Expression Description

$x eq 2 This is true if $x is a sequence of exactly one item, and that
item is an instance of xs:double, xs:float, or xs:decimal
(or a type derived from these by restriction) that is numerically
equal to 2. It is also true if the single item in $x is a node
whose typed value is one of these numeric types, and is
numerically equal to 2. The result is false if the item in $x is a
different numeric value, and it is effectively false if $x is
empty. If $x contains more than one item, or contains a
non-numeric value, the result is an error

count($x) gt 2 This is true if the number of items in the sequence $x is 3 or
more, and is false otherwise. No type error can occur in this
case, because the value returned by the count() function will
always be an integer, and count() accepts any type of value
as its argument

@x eq "yes" This is true if the context node has an attribute named x, and
the type of that attribute is either xs:string or
xs:untypedAtomic or a type derived from xs:string by
restriction, and the value of the attribute compares equal to the
string «yes» under the rules of the default collation (which is
context-dependent). If the attribute doesn’t exist then the
effective value is false. If the attribute has a different type, the
result is a type error

@retirement-date ge
current-date()

This is true if the context node has an attribute named
retirement-date, and the type of that attribute is xs:date
or a user-defined type defined as a restriction of xs:date, and
the value of the attribute is the same as or after the current date.
In the unlikely event that the retirement-date attribute has
a timezone associated with it, this will be taken into account in
the comparison; if not, the implicit timezone is used, which
will always be the same as the timezone used in the result of
the current-date() function. If the retirement-date
attribute does not exist the effective result is false. If the
attribute has any type other than xs:date, including the case
where it has type xdt:untypedAtomic, a type error occurs

General Comparisons
The term general comparisons is used for expressions involving the six operators «=», «!=», «<», «<=», «>»,
and «>=». These operators are retained and generalized from XPath 1.0. As we shall see, they are
considerably more powerful than their counterparts used in value comparisons, but this also means that
they may be rather more expensive, and they can also lead to a few surprises—they don’t always give the
answer you expect.

188

Operators on Items

The syntax for these operators has already been given, because they are combined into the same
production rules as the simpler operators «eq», «ne», «lt», «le», «gt», and «ge», which are given on
page 181.

General comparisons are more powerful than value comparisons in two ways:

❑ General comparisons allow either or both operands to be sequences (of zero, one, or many items),
whereas value comparisons require the operands to be single items.

❑ General comparisons are more flexible in the way they handle untyped atomic values (that is,
data from schema-less documents). In particular, the way an untyped value is handled depends
on the type of the value that it is being compared with.

In addition, general comparisons have special rules for use when backward compatibility mode is
selected (in XSLT, this depends on whether the version attribute is set to «1.0» or «2.0»).

Remember that if you are embedding your XPath expressions in an XML
document—for example an XSLT stylesheet—then the «<» character must be escaped
as «<». Many people also like to escape «>» as «>», though this is not strictly
necessary.

Changes in XPath 2.0
Despite the special rules for handling backward compatibility mode, the general comparison operators
are probably the area where incompatibilities between XPath 1.0 and XPath 2.0 are most likely to be
encountered. This is mainly because of the generalization of the data model to handle sequences, and also
because of the increased range of data types. XPath 1.0 only supported four data types (string, number,
boolean, and node-set). Given two operands, and allowing for symmetry, there were therefore 10 possible
combinations of operand types, and each of these was described separately. Because there was little
consistency to the XPath 1.0 rules, generalizing them to handle a much richer set of data types proved
difficult.

The incompatibility that you are most likely to hit is when comparing strings, or untyped nodes. In XPath
1.0, an equality comparison («=») between two nodes (all nodes were untyped in those days) treated both
values as strings, while an ordering comparison («<») treated them as numbers. This led to oddities such
as the fact that «"2"="2.0"» was false, while «"2"<="2.0"» and «"2">="2.0"» were both true. This
has been swept away in XPath 2.0; if you compare two strings, or untyped values, using any of these
operators, then they are compared as strings, using the default collation defined in the XPath evaluation
context. So if you have an expression such as «@discount < @max-discount», and the element in
question is <e discount="5" max-discount="10"/>, then XPath 1.0 would return true, while
XPath 2.0 returns false. The solution is to make sure that if you want a numeric comparison, you force it
by converting the values explicitly to numbers, for example, by using the number() function (which is
described in Chapter 10).

(Note that this problem only occurs if both values are strings. It’s much more common to see expressions
in which one value is a string and the other is a number, for example, «@price > 10.00», and these
continue to work as before.)

189

Chapter 6

Another incompatibility occurs when comparing a sequence of nodes to a boolean value. In XPath 1.0,
«$node-set = true()» was true if the node-set was non-empty. In XPath 2.0, a sequence compares
equal to true if, after atomization, it contains an item that is equal to true. This is a pretty radical
change in meaning, but fortunately this kind of expression occurs very rarely in practice.

Rules for General Comparisons
I will present the rules first, and then discuss their consequences.

1. Each of the operands is atomized. This means that if the operand starts out as a sequence of
nodes, the process turns it into a sequence of atomic values. There may be more atomic values
than nodes (if some of the nodes are defined in the schema to contain a list), or fewer (if some of
them contain empty lists). The original operand may contain atomic values as well as nodes, and
the atomization process leaves these atomic values alone.

2. The remaining rules are applied to compare each pair of items from the two sequences, taking
one value in the pair from the first sequence, and the other value from the second sequence. This
means that if one sequence contains four items, and the other contains five, then each item in the
first sequence must be compared with each item in the second, giving 20 comparisons to be done
in total. If any of these comparisons is true, the result of the general comparison is true. If they
are all false, the result is false. If any of the comparisons fails with an error, the general
comparison as a whole fails. However, it’s not defined in what order the comparisons are done,
so if there’s a pair of items for which the comparison is true, and another pair for which it raises
an error, then the final result might be either true or an error.

3. Considering each pair of items from the two sequences in turn, if one item of the pair is an
xdt:untypedAtomic value (typically, a value extracted from a node in a schema-less
document), then it is converted to a more specific type. If both items in the pair are
xdt:untypedAtomic values, then they are both converted to xs:string values. If only one
item is an xdt:untypedAtomic value, then it is converted to the type of the other item. There is
a special rule when the second item is numeric: in this situation the xdt:untypedAtomic value
is always converted to an xs:double value. This caters for a situation such as comparing the
untyped value «2.1» with the xs:integer value «2»; it would be unreasonable to convert the
value «2.1» to an integer before doing the comparison.

4. There is now a further rule that comes into play only when backward compatibility mode is
enabled. This is that if one of the items in the pair is numeric, and the other is not, then the
non-numeric item is converted to an xs:double using the casting rules. This can only succeed if
the value is a string or a boolean, in all other cases, the conversion will raise an error. In
consequence, a comparison such as «"23"=23» is allowed, and can succeed, under the
backward compatibility rules. In pure XPath 2.0 mode, comparison of a string to a number is not
allowed; you have to convert one of the operands explicitly to the type of the other, to make it
clear whether a string comparison or a numeric comparison is intended.

5. Finally, after any conversions defined in steps 3 and 4, the two items are compared using the
rules for the corresponding value comparison operator: that is, one of «eq», «ne», «lt», «le»,
«gt», and «ge», depending on whether the original operator was «=», «!=», «<», «<=», «>», or
«>=». If the result of this comparison is true, then no further work is needed, and the result of the
whole general comparison expression is true. If the result is false, however, the process moves on
to the next pair of values.

190

Operators on Items

In rule 4, the use of the casting rules rather than the number() function is a bug, and will hopefully be
fixed. The difference is that casting raises an error if the value is not numeric, whereas the number()
function returns NaN (not-a-number). Since this rule is only there for backward compatibility, it should
use the number() function.

Fortunately, it’s quite rare in practice for both operands to be sequences of more than one item. This case
can get very expensive, though there are plenty of ways an XPath processor can avoid actually doing
M×N comparisons. It’s made more complicated by the fact that the conversion rules apply separately to
each pair of items. This means that if you have the comparison «@a = (12, "pineapple")», where the
node «@a» is untyped, then the untyped value has to be converted to a number to be compared with the
number 12, and to a string to be compared with the string “pineapple”. In the general case, it isn’t
possible to do all the conversions upfront, before starting the pairwise comparison.

The more type information you can supply at compile time, the more likely it is that the XPath processor
will actually know in advance that it doesn’t have to deal with these complications, because they can’t
actually arise. For example, if you are writing a function in XSLT or XQuery that has a parameter $p, and
the function contains the test «if ($p=3) then ...», then declaring the parameter as an xs:integer
(if that’s what it is) can make a world of difference—if you don’t declare its type, then the processor is
going to have to assume the worst, which is that it might be an arbitrary mixture of typed nodes, untyped
nodes, integers, strings, dates, and anything else the caller of the function cares to throw at it. But if you
declare it as an xs:integer then the compiler can quietly replace the complex «=» operator with the
much simpler and presumably faster «eq» operator. Alternatively, if you know that $p will be an integer,
you can write the expression using the «eq» operator directly.

A much more common case in practice is where either or both operands can be empty sequences. These
can hold some surprises, so it is well worth studying the rules carefully, even if they seem complicated.
Just to warn you of the dangers that lie in wait for the unwary, here are some particular elephant traps:

❑ You can’t assume that «$X=$X» is true. It usually will be, but if «$X» is an empty sequence, it will
be false.

❑ You can’t assume that «$X!=3» means the same as «not($X=3)». When «$X» is a sequence, the
first expression is true if any item in the sequence is not equal to 3, while the second is true if no
item in the sequence is equal to 3.

❑ You can’t assume that if «$X=$Y and $Y=$Z», then «$X=$Z». Again, sequences are the culprit.
Two sequences are considered equal if there is a value that both have in common, so
«(2,3)=(3,4)» is true, and «(3,4)=(4,5)» is true, but «(2,3)=(4,5)» is false.

In this strange Orwellian world where some values seem to be more equal than others, the one
consolation is that «$X=$Y» always means the same as «$Y=$X».

Comparing Sequences
Where a sequence $N is compared with a string ’mary’, the test «$N=’mary’» is effectively a shorthand
for “if there is an item $n in $N such that $n eq ’mary’”. Similarly, the test «$N!=’mary’» is effectively
a shorthand for “if there is an item $n in $N such that $n ne ’mary’”. If $N contains two items, whose
values are “mary” and “john”, then «$N=’mary’» and «$N!=’mary’» will both be true, because there
is a node that is equal to ’mary’ and another that is not. If $N is an empty sequence, then «$N=’mary’»

191

Chapter 6

and «$N!=’mary’» will both be false, because there is no item that is equal to ’mary’, but there is also
no item that is not equal to ’mary’.

Note that when the operand is a sequence of nodes, we are only concerned with the nodes that are
members of the sequence in their own right. The children of these nodes are not members of the sequence.

XSLT Example: Node-Set Comparisons

Consider the following piece of XML:

<booklist>
<book><author>Adam</author><title>Penguins</title></book>
<book><author>Betty</author><title>Giraffes</title></book>

</booklist>

Suppose we create a variable whose value is a node sequence containing all <book>
elements, as follows:

<xsl:variable name="all-books" select="//book"/>

And now suppose we do the following test:

<xsl:if test="$all-books = ’Adam’"/>

If there is no schema, then the result is false, because the sequence $all-books contains two
<book> nodes, and neither has a value of "Adam". The first <book> element has the value
“AdamPenguins”, and the second has the value “BettyGiraffes”. The fact that one of
them has a child whose value is "Adam" is of no consequence, the child is not a member of
the sequence $all-books.

If there is a schema, and the schema defines the type of the <book> elements as being a
complex type with element-only content, then this expression will raise an error. This is
because the equality comparison tries to atomize the nodes supplied in its operands, and
atomizing an element defined to have element-only content is an error.

An interesting consequence of the rules for comparing sequences is that if $N is an empty sequence, the
result of the test «$N=$N» is false, because there is no item in the first sequence whose value is equal to
that of an item in the second sequence.

It is very easy to trip up on these rules, by assuming for example that <xsl:if test="@name!=
’James’"> means the same as <xsl:if test="not(@name = ’James’)">. It doesn’t; if there is no
name attribute, the first test is false, while the second is true.

Generally speaking, it is best to steer clear of the «!=» operator unless you know exactly what you are
doing. Use «not(x=y)» instead; it is more likely to match the intuitive meaning.

One situation where «!=» can be useful with sequences, however, is to test whether all items in a
sequence have the same value. For example, writing <xsl:if test="not($documents//

192

Operators on Items

version!=1.0)"> tests whether there is any node in the sequence «$documents//version» whose
numeric value is not 1.0.

XPath 2.0 provides two constructs, the «some» and «every» expressions that make such conditions on
sequences easier to express. For example, you could also write the above test as:

<xsl:if test="every $d in $documents//version
satisfies $d eq 1.0">

The «some» and «every» expressions are described in Chapter 8.

It is important to remember that an equality test compares the typed values of the nodes, not their identity.
For example, «..=/» might seem to be a natural way of testing whether the parent of the context node is
the root of the tree. In fact this test will also return true if the parent node is the outermost element, because
in a well-formed (and schema-less) tree the value of the outermost element is the same as the value
of the document node. Not only is the test wrong, it could also be very expensive: the value of the root
contains all the text in the document, so you might be constructing two strings each a million characters
long and then comparing them. XPath 2.0 provides an operator for comparing nodes by identity:
you can write this test as «.. is /». The «is» operator is described under Node Comparisons on page 196.

The rules for comparing two sequences using «=» apply equally when comparing two sequences using
an operator such as «<»: the comparison in this case is true if there is some value in the first sequence that
is less than some value in the second sequence, under the rules for the «lt» operator. If all the values in
the two sequences have the same data type, then the result actually follows the rules the following table,
where max() and min() represent the maximum and minimum numeric values of items in the sequence.

Expression Result

M < N True when min(M) < max(N)

M <= N True when min(M) <= max(N)

M > N True when max(M) > min(N)

M >= N True when max(M) >= min(N)

Comparisons Involving Document Nodes
When one of the operands of an EqualityExpr is the document node at the root of a tree, it follows the
rules described above for sequences. However, such a sequence will always contain exactly one node, so
in many ways the actual behavior is much more like that described for strings, where the string in
question is the string value of the document node—that is, the concatenation of all the text nodes in the
document.

Trees can arise in various ways. The root expression «/» refers to a tree; so does the result of the doc()
function.

In XSLT you can construct a temporary tree using an <xsl:variable> or <xsl:param> element with
no select attribute. For example, the value of the variable <xsl:variable name="pi">3.14159
</xsl:variable> is the root node of a temporary tree.

193

Chapter 6

One difference from the source document tree is that the source tree usually represents a well-formed
XML document, whose root node has a single element child and no text node children, whereas a
temporary tree only has to be well-balanced: the root may have any number of element nodes and text
nodes as its children. The pi example is a tree consisting of a document node that has a single text node
as a child.

If you compare a tree-valued variable with a string, the result will be true if the string-value of the root of
the tree is equal to the string. So a simple tree valued variable declared as

<xsl:variable name="city">Osaka</xsl:variable>

behaves just like a string declared as

<xsl:variable name="city" select="’Osaka’"/>

In both cases «$city=’Osaka’» will be true and «$city=’Tokyo’» will be false.

A tree-valued variable can also be more complex, for example:

<xsl:variable name="tree">A <emph>very</emph> important person</xsl:variable>

The tree in this example is a root node with three child nodes: a text node for “A♦” (where ♦ represents a
space character), an <emph> element node, and a text node for “♦important♦person”. The string
value of this variable is the string «A♦very♦important♦person». An «=» or «!=» comparison with
$tree will give the same result as a comparison with this string.

When a document has been validated using a schema, XPath 2.0 doesn’t allow atomization of an element
node defined with element-only content. If you want to achieve the effect of concatenating all the text
within such an element, you have to use the string() function explicitly. However, the same rule
doesn’t apply to document nodes. Document nodes can always be atomized, whether or not the
document has a schema, and the result is always a string (technically, an xdt:untypedAtomic value)
containing all the textual content of the document.

To summarize, where one of the operands of the «=» or «!=» comparison is the document node at the
root of a tree, the result of the comparison will be the same as comparing an xdt:untypedAtomic value
containing all the text of the document.

These rules actually mean that for most purposes, an XSLT variable defined as:

<xsl:variable name="city">Johannesburg</xsl:variable>

behaves in exactly the same way as the string variable:

<xsl:variable name="city" select="’Johannesburg’"/>

However, because the value is actually untyped, it can also be compared with (say) a number or a date.
So an XSLT variable declared as:

<xsl:variable name="pi">3.14159</xsl:variable>

194

Operators on Items

can be used in a comparison «[$x > $pi]», which will be interpreted as a numeric comparison if $x is
numeric. If $pi were a string it would be an error under XPath 2.0 (except when in backward
compatibility mode) to compare it with a number.

Examples of General Comparisons
Expression Description

@width = 3 Tests whether the width attribute of the context node, after
converting to a number, has the numeric value 3. If there is no width
attribute, the result will be false. If the width attribute exists and is
typed as numeric, the result will be true if and only if the numeric
value is equal to three. If the width attribute exists and is untyped,
the result will be true if the width attribute can be converted to a
number equal to 3, for example if it is «3» or «3.00».

If the width attribute is defined in the schema as a list-valued
attribute, then the result is true if any of the values in this list is
equal to 3

@width = @height Tests whether the width attribute and the height attribute of the
context node have the same typed value. If both are untyped, they
are compared as strings: this means that if width is «3» and
height is «3.00», the result will be false. It will also be false if
either or both attributes are absent. If you want a numeric
comparison, use the number() function (described in Chapter 10,
page 393) to force a conversion.

If either or both of the attributes are defined in the schema as being
list-valued, then the comparison is true if the two lists have any
value in common

@width !=$x If there is no width attribute the result will be false.

If the attribute width is untyped, then if the variable $x holds a
numeric value, a numeric comparison is performed; if it holds a
string value, a string comparison is performed. The result will be
true if the values are different.

If the attribute width is typed, then an error will occur if the type is
incompatible with the type of $x.

If $x holds a sequence, the result will be true if there is any item in
the sequence whose typed value is not equal to the width attribute,
using string comparison; it will be false if the sequence is empty.

If the schema-defined type of the width attribute is a list type, then
the comparison is performed with each item in that list considered
individually

count(*) > 10 True if the context node has more than ten element children

Continues

195

Chapter 6

Expression Description

sum(SALES) < 10000 True if the sum of the numeric values of the <SALES> children of
the context node is less than 10,000

position() <
last() div 2

True if the context position is less than half the context size, that is,
if the position of this node is less than half way down the list of
nodes being processed

not(//@temp <= 0.0) True if all values of the temp attribute in the document are
numeric, and greater than zero

Node Comparisons
This section describes the three operators «<<», «is», and «>>», which are used to compare nodes. The
«is» operator tests whether the two operands evaluate to the same node; the operators «<<» and «>>»
test whether one node is before or after another in document order.

The syntax has already been covered under Value Comparisons on page 181: these operators are defined by
the same production rule that defines the value comparison operators (the «eq» family) and the general
comparison operators («=» and friends).

For all three operators, each operand must be either a single node or an empty sequence. If either operand
is an empty sequence, the result is an empty sequence (which will be treated as false if it is used in a
boolean test such as a predicate). If either operand is a sequence containing more than one item, or an
item other than a node, then a type error is reported.

The «is»Operator
The «is» operator tests whether both operands evaluate to the same node. The nodes must be identical;
it’s not enough to have the same name or the same value, they must actually be the same node.

The Data Model specification struggles when it tries to define the concept of node identity. There are good
reasons for this: it doesn’t fit well into a language that in most other respects is purely functional. For
example, if you write a function f() in XSLT or XQuery that creates and returns a new element node,
then the expression «f() is f()» returns false, because each time f() is called, it creates a node with
distinct identity. This breaks the rule that applies to all other XPath function calls, namely that calling the
same function repeatedly with the same arguments and the same evaluation context always returns the
same result.

Here’s an example of how the «is» operator can be used. Sometimes you have a sequence of elements
such as:

<H1/><p/><p/><p/><H1/><p/><p/><H1/><p/><p/>

and you need to select all the <p/> elements that follow a particular <H1> element, up to the next <H1>
element. (I have shown all the elements as empty because we’re not interested in their content for this
example.) Let’s suppose that the variable $H identifies the <H1> element where you want to start. The

196

Operators on Items

expression «$H/following-sibling::p» selects all the <p> elements after the start element, but it
doesn’t stop when it reaches the next <H1>. You want to select only the <p> elements whose immediately
preceding <H1> element is $H. Here is the expression to do this:

$H/following-sibling::p[preceding-sibling::H1[1] is $H]

Another way of solving this problem would be to write:

$H/following-sibling::p except $H/following-sibling::H1/following-sibling::p

but I think the solution using the «is» operator is likely to be more efficient. (The «except» operator is
described in Chapter 7, on page 234.)

In XSLT 2.0, problems like this can also be tackled using the construct <xsl:for-each-group
group-starting-with="H1">. See Chapter 5 of XSLT 2.0 Programmer’s Reference for details.

The operators «<<»and «>>»
The operators «<<» and «>>» test whether one node is before or after another in document order. For
example, «$A « $B» is true if and only if $A precedes $B in document order. The concept of document
order is described in Chapter 2, on page 59.

There is no requirement that the two nodes should be in the same document. Document order is defined
as an ordering of all the nodes encountered, across all documents. If nodes are in different documents,
then you can’t predict which one will be first in document order, but although the answer is arbitrary, it
will be consistent within a single run.

These two operators can be particularly useful in XQuery, since some XQuery implementations do not
provide axes such as preceding-sibling, following-sibling, preceding, or following. If you
are using an XQuery implementation that doesn’t offer the following-sibling axis, then you can find
the following siblings of a node $N using the expression «$N/../node()[. >> $N]».

Consider again the problem given in the previous section, where the input has the form:

<H1/><p/><p/><p/><H1/><p/><p/><H1/><p/><p/>

Another way of finding all the <p> elements that follow an <H1> element identified by the variable $H is:

$H/following-sibling::p[not($H/following-sibling::H1[1] << .)]

This selects those <p> elements provided that they are before the next <H1> element. Note the careful
construction of the predicate, which is designed to work even when $H does not have a «following-
sibling::H1». It works because when one of the operands of «<<» is an empty sequence, the result of
the comparison is an empty sequence, which is treated as false. If the expression were written:

$H/following-sibling::p[$H/following-sibling::H1[1] >> .]

then it would not select any <p> elements after the last <H1> element.

197

Chapter 6

Changes in XPath 2.0
These three operators are new in XPath 2.0.

In XPath 1.0 the only way to test whether two variables $A and $B referred to the same node was to write
something like «count($A|$B) = 1». This relies on the fact that the union operator «|» removes duplicate
nodes. If you see this construct when upgrading existing code to XPath 2.0, using the «is» operator will
almost certainly be more efficient.

In an XSLT 1.0 stylesheet, nodes could also be compared for identity using the expression «generate-
id($A) = generate-id($B)». Again the «is» operator is more direct and more likely to be efficient.

Boolean Expressions
This section concludes the chapter with a description of the operators «and» and «or».

There is no «not» operator in XPath, it’s provided as a function instead, and is described in Chapter 10,
on page 391.

Expression Syntax

OrExpr AndExpr («or»AndExpr)*

AndExpr ComparisonExpr («and»ComparisonExpr)*

The syntax shows that the «and» operator binds more tightly than «or», so that «A and B or C and D»
means «(A and B) or (C and D)». Personally, I prefer to use parentheses to avoid any
doubt.

The fact that an AndExpr is defined in terms of a ComparisonExpr just means that the family of
operators including «=» and «eq» are next in precedence order after «and». These operators were
described earlier in this chapter.

An «or» expression returns true if either of its operands is true, while an «and» expression returns
true if both of its operands are true.

The operands of «and» and «or» are converted to xs:boolean values by taking their effective boolean
value. This applies the same rules as for the conditional («if») expression described in Chapter 5, and the
boolean() function, described in Chapter 10. For example, a string is false if it is zero-length, and a
sequence is false if it is empty.

XPath 1.0 defined that the right-hand operand of «and» or «or» wasn’t evaluated if the result could be
established by evaluating the first operand (that is, if the first operand was false in the case of «and», or
true in the case of «or»). The reason for this rule was to give clearly defined behavior in the event of
errors occurring. In XPath 2.0, the language designers have decided to sacrifice some of this predictability
in favor of giving the implementation maximum freedom to rearrange expressions so that indexes can be

198

Operators on Items

used. For example, suppose you write an expression like this, to select all the male employees who are
retiring today:

//employee[@sex=’M’ and @retirement-date=current-date()]

The XPath 1.0 rules say that you can’t look at the retirement date until you’ve established that the
employee is male. But if you have a hundred thousand employees, and they are indexed on their date of
retirement, then the most efficient strategy would be to use the index, find the employees who are retiring
today, and then select those among them who are male. The reason the rules were changed in XPath 2.0 is
to allow systems to use this more efficient strategy.

Suppose you know that for female employees only (for some reason) the value of the retirement-date
attribute might not be a date at all, but the string value «standard». A schema can be defined using a
union type that allows the value to hold either a date, or this special value. The XPath 1.0 rules
guaranteed that you would never look at the retirement-date attribute of female employees while
evaluating the expression, which would mean that you can never get the error that occurs when
comparing the string «standard» to a date. The XPath 2.0 rules don’t give you this guarantee. To protect
yourself against the failure, you could write:

//employee[if (@sex=’M’)
then @retirement-date = current-date()
else false()]

Unlike the «and» and «or» operators, the «if» expression does give you a guarantee: if the condition is
false, the «then» branch will not be executed. Similarly, if the condition is true, the «else» branch will
not be executed.

Another situation where these rules matter is if one branch contains a call on an external function that has
side effects. Writing such functions is something that’s been left very much implementation-defined, but
many XPath implementations will allow calls to external routines, and once they allow that, it’s
impossible to prevent such functions having arbitrary side-effects. If you want to prevent a subexpression
being evaluated because it has side-effects, the only reliable way to ensure this is with an «if»
expression: don’t rely on «and» and «or».

Note that there are no null values in XPath, as there are for example in SQL, and there is therefore no need
for three-valued logic to handle unknown or absent data. Instead, you may need to test explicitly for
absent values, as shown in some of the examples below.

Examples
Expression Description

$x > 3 and $x < 8 True if the value of variable $x is greater than 3 and less than 8

@name and @address True if the context node has both a name and an address
attribute. (Both the operands are sequences of nodes, which are
converted to the xs:boolean true if they contain at least one
node, and to false if they are empty)

Continues

199

Chapter 6

Expression Description

string(@name) and
string(@address)

True if the context node has both a name and an address
attribute and if neither is a zero-length string. (Both the operands
are strings, which are converted to the xs:boolean true if
their length is non-zero. If an attribute is absent, the sequence
will be empty, and its string value will therefore be the empty
string)

true() A trivial AndExpr consisting of a single function call

$x = 5 or $x = 10 True if the variable $x has the value 5 or 10. This could also be
written as «$x = (5, 10)».

@name or @id True if the context node has a name attribute, an id attribute,
or both

not(@id) or @id="" True if the context node has no id attribute or if it has an id
attribute and the value is an empty string

//para[position()=1 or
position()=last()]

Selects the <para> elements that are either the first or the last
(or the only) <para> children of their parent node

Summary

This chapter described the following groups of XPath operators:

❑ Arithmetic operators, «+», «-», «*», «div», and «mod»

❑ Value comparison operators «eq», «ne», «lt», «le», «gt», «ge»

❑ General comparison operators «=», «!=», «<», «<=», «>», «>=»

❑ Node comparison operators «<<», «is», and «>>»

❑ Boolean operators «and» and «or».

Many of these operators behave in a way that is likely to be familiar from other languages, though there
are differences because of the different data model, in particular, the fact that everything in XPath is a
sequence.

The next chapter describes the most distinctive feature of the XPath language, namely path expressions.
Unlike the operators in this chapter, these are quite unique to XPath.

200

Path Expressions
This chapter defines the syntax and meaning of path expressions. Path expressions are the
most distinctive feature of the XPath language, the construct that gives the language its name.
The chapter also describes other constructs in the language that are closely associated with
path expressions, in particular steps and axes, and the «union», «intersect», and
«except» operators.

Path expressions are used to select nodes in a tree, by means of a series of steps. Each step takes as
its starting point a node, and from this starting point, selects other nodes.

Each step is defined in terms of:

❑ An axis, which defines the relationship to be followed in the tree (for example, it can select
child nodes, ancestor nodes, or attributes)

❑ A node test, which defines what kind of nodes are required, and can also specify the name
or schema-defined type of the nodes

❑ Zero or more predicates, which provide the ability to filter the nodes according to arbitrary
selection criteria.

Path expressions, because they are so commonly used, allow many useful syntactic abbreviations.
In order to get the concepts across clearly, I will start by using only the full, verbose syntax for
path expressions (I will call these full path expressions), and will then go on to introduce the
abbreviations later in the chapter.

Because they are closely associated with processing the results of path expressions, this chapter
also describes the operators used to combine two sets of nodes by taking their union, intersection,
or difference.

Examples of Path Expressions
Before describing the different kinds of path expression in more detail, it may be helpful to look at
some examples.

Chapter 7

Expression Description

para This PathExpr consists of a single AxisStep, which
selects all the <para> element children of the context node

@title This RelativePathExpr selects all the title attributes of
the context node. The result will either be empty or contain a
single attribute node

book/author/first-name This RelativePathExpr selects the <first-name>
elements that are children of the <author> elements that
are children of the <book> elements that are children of the
context node

para[@id] This PathExpr consists of a single AxisStep that contains
a Predicate. It selects all the <para> element children of
the context node that have an id attribute

para/@id This is a RelativePathExpr consisting of two
AxisSteps separated by the «/» operator. It selects the id
attributes of all the <para> element children of the context
node. This differs from the previous example in that the
result is a sequence of attribute nodes rather than a sequence
of element nodes

/*/para This absolute path expression selects all the <para> element
children of the containing document element (that is, of the
outermost element of the document containing the context
node). The «*» is a wildcard that selects all elements on the
chosen axis

$paragraphs This expression, like every other primary expression (for
example, «2+2»), is technically a PathExpr. But that’s a
technicality; we’ll reserve the term path expression for a
PathExpr that either contains either a «/» operator, or an
AxisStep, or both

$sections/body This PathExpr selects all <body> element children of nodes
in the sequence identified by the variable $sections. A
type error occurs if $sections contains an item that isn’t a
node. The results will be in document order even if the
original sequence $sections isn’t in document order

$sections[3]/body This PathExpr selects all <body> element children of the
third node in the sequence identified by the variable
$sections

$sections/. This PathExpr selects all the nodes that are present in the
value of the variable $sections, but with duplicates
removed, and sorted into document order. The only effect of
the «/.» in this case is to force the reordering and
deduplication

202

Path Expressions

Expression Description

/contract/
clause[3]/ subclause[2]

This absolute path selects the second <subclause> of the
third <clause> of the <contract> that is the document
element. If the document element is not a <contract>, or if
any of the other components are missing, it produces an
empty sequence

//figure The absolute path selects all the <figure> elements in the
document. (See page 229 for advice about the possible poor
performance of this construct)

city[not(@name=
preceding-sibling::city/
@name)]

This RelativeExprPath selects all the child <city>
elements of the context node that do not have a name
attribute that is the same as the name attribute of a
preceding <city> element with the same parent. It thus
selects a set of child <city> elements with unique names

The PathExpr construct is without doubt the most complex construct in the XPath language. The actual
production rules are quite complicated and hard to follow, but they are there to make path expressions
easy to write, especially if you are familiar with UNIX-style path names for directories and files. Most of
the syntactic complications arise from the range of abbreviations that are permitted, so we will first cover
the full, regular syntax, and then introduce the abbreviations later.

Changes in XPath 2.0
In XPath 2.0, the syntax of path expressions has been generalized so that any expression can be used as a
step in a path, so long as it returns a sequence of nodes. For example, «doc(’a.xml’)/id(’Z123’)» is
now a valid path expression. This makes «/» behave in a similar way to other binary operators.

In XPath 1.0, path expressions were defined to return a node-set, that is, a set of nodes with no duplicates,
in no particular order. XSLT 1.0, however, always processed the resulting nodes in document order. The
XPath 2.0 data model does not support node-sets as such, but by redefining path expressions to return a
sequence of nodes in document order with no duplicates, the result is effectively the same.

There are new facilities in XPath 2.0 to select nodes according to their schema-defined type, rather than
selecting them only by name. These facilities are described in detail in Chapter 9.

The constructs «.» and «..» can now be followed by predicates.

The axes are unchanged from XPath 1.0, with one exception: the namespace axis has been deprecated.
This means that XPath 2.0 implementations may or may not make this axis available. All the information
that was available by using the namespace axis in XPath 1.0 (that is, the ability to find all the namespaces
declared for any given element) can now be obtained through two new functions: in-scope-
prefixes () and namespace-uri-for-prefix(). These functions are described in Chapter 10. The
reason for replacing the namespace axis with these functions is to allow implementations more flexibility
to implement namespaces efficiently. Modeling the information using namespace nodes imposed
burdens on the implementation that offered no real benefit to users, for example, the ability to do union

203

Chapter 7

and intersection operations on sets of namespace nodes, and the ability to get back from a namespace
node to its parent element.

It is now possible to select nodes with a given local-name, regardless of their namespace. This is done
using the syntax «*:local-name», which mirrors the syntax «prefix:*» that is used to select all nodes
in a given namespace, regardless of their local-name.

The operators «except» and «intersect» are new in XPath 2.0, and the keyword «union» has been
introduced as a synonym for «|». The alternative spelling «union» has been added because it is familiar
from SQL, and because the operator «|» can get rather lost visually when it used to combine the results of
two complex «for» expressions. This applies especially to XQuery, where the operator may often be used
to combine the results of two FLWOR expressions that might each be a dozen lines long (FLWOR
expressions are XQuery’s equivalent to the SELECT statement of SQL).

Full Path Expressions
A PathExpr is an expression for selecting a set of nodes by following a path (a sequence of one or more
steps) from a given starting point. The starting point may be either the context node, or the root node of
the tree containing the context node. You can also use path expression to select nodes starting from an
arbitrary sequence of nodes given, say, by the value of a variable or the result of a function call.

The result of a path expression is always a sequence (possibly an empty sequence) of nodes, and the
nodes are always returned with no duplicates, and in document order. The concept of document order is
explained in Chapter 2, on page 59.

Syntax
Expression Syntax

PathExpr («/» RelativePathExpr?) |
(«//» RelativePathExpr) |
RelativePathExpr

RelativePathExpr StepExpr ((«/» | «//») StepExpr)*

This production indicates that there are four forms a path expression can take, namely:

❑ «/» (a root expression)

❑ «/» RelativePathExpr (an absolute path)

❑ «//» RelativePathExpr (an abbreviated absolute path)

❑ RelativePathExpr (a relative path)

However, the one starting with «//» is simply an abbreviation, so we’ll leave it until later in the chapter
(see The «//» Abbreviation, on page 228). This leaves three, which I will cover in the following sections:
root expressions on page 205, absolute paths on page 206, and relative paths on page 208. The names are

204

Path Expressions

my own: I had to invent some section headings as there are no suitable names in the XPath specification
itself.

If we were strict about it, we could also classify «/» as an abbreviation for the expression «root()
treat as document-node()», and expressions of the form «/A» as abbreviations
for «(/)/A». We won’t do that, but the exercise does reveal that all path expressions really boil down to
expressions of the form «A/B» where A and B are arbitrary expressions. So most of the discussion about
the meaning of path expressions is actually a discussion about the meaning of the binary «/» operator.

An arithmetic expression such as «A+B+C» can be decomposed into the form «(A+B)+C)», and defined
in terms of a binary «+» operator that takes two operands. Similarly, a path expression of the form
«A/B/C» can be decomposed into «(A/B)/C)», which means that the result of a path expression is
defined entirely in terms of the meaning of the binary «/» operator. There is a difference, however: The
«/» operator is a higher-order operator, because the expression used as its right-hand operand is
evaluated repeatedly, once for every item in the sequence selected by the first operand.

The Root Expression «/»
I’ve invented the term root expression to refer to the expression «/», when used on its own. This doesn’t
actually have a name in the XPath syntax, and I feel it’s important enough to give it one.

The meaning of this expression is: the node that is the root of the tree containing the context node,
provided that this is a document node.

It’s defined in the language specification as being equivalent to the expression:

«root(.) treat as document-node()»

This means that it selects the same node as the root() function described in Chapter 10, when given the
context node «.» as an argument, but raises an error if this node isn’t a document node (the «treat as»
expression is covered in Chapter 9).

Various errors can arise if you use the «/» expression inappropriately:

❑ It’s an error if there is no context item. This happens, for example, at the outer level of a function
body in XSLT or XQuery.

❑ It’s an error if there is a context item but the context item isn’t a node. This happens if you are in a
predicate that’s being used to filter a sequence of atomic values (see Filter Expressions in
Chapter 8), or it can happen in XSLT if you are using the <xsl:for-each> instruction to process
a sequence of atomic values.

❑ It’s an error if the context item is in a tree whose root is something other than a document node. In
XPath 1.0, every tree had a document node at its root, in fact, it was called a root node rather than
a document node because there was no distinction. But the XPath 2.0 data model allows you to
have orphaned trees with no document node. Commonly these will have an element as their root.
They can also have other kinds of node as the root, for example an attribute or text node, but in
this case the tree can only contain one node.

❑ The language could have been designed so that «/» was a synonym of the function call
«root(.)», which selects the root of the tree whatever kind of node it is. The designers decided

205

Chapter 7

not to do this, to avoid the surprises that can otherwise occur if you find yourself at a different
kind of node from the one you were expecting. This decision also has the advantage that the type
of the expression «/» is known more precisely: it always returns a document node, which means
that it is always safe to use it in contexts (such as a call to a user-defined function) where a
document node is the required type.

The symbol «/» is unusual because it is used both as an operator and as an expression in its own right.
This can lead to some syntactic ambiguities; for example, the expression «/ union /*» looks as if it is
trying to find the union of the two node sequences «/» and «/*», but actually it is an absolute path
expression whose first step is «child::union» («union» is a legitimate element name) and whose
second step is «child::*». If «/» is followed by something that could be a legitimate step in a path
expression, then that’s the interpretation that’s chosen. Adding whitespace after the «/» doesn’t make
any difference. What you need to do if you want the other interpretation is to put the «/» in parentheses,
thus: «(/) union /*».

This ambiguity was actually present, and unremarked-upon, in XPath 1.0, though it arose less frequently
because there weren’t many operators in XPath 1.0 that could sensibly be applied to «/» as an operand.
The «|» operator does not cause any ambiguities because it cannot be confused with an element name.

Absolute Paths
An absolute path represents a path starting at the root node of the tree that contains the context node.

This syntax is familiar to anyone who has used UNIX filenames, though it is not actually very logical. I
find it helpful to think of the «/» at the start of an absolute path expression as being a unary version of the
binary «/» operator. This means that an absolute path «/X» can be considered as an abbreviation for the
expression «(/)/X», in the same way as «-3» is an abbreviation for «(0)-3». That is, the «/» is really
just a binary operator with a defaulted first operand. The implicit first operand in this case is the node
selected by the root expression «/». After this expansion, an absolute path behaves in exactly the same
way as a relative path, which is described in the next section.

A consequence of these rules is that an absolute path such as «/X» will throw an error in all the cases
where the root expression «/» throws an error. Specifically:

❑ It’s an error if there is no context item.

❑ It’s an error if there is a context item but the context item isn’t a node.

❑ It’s an error if the context item is in a tree whose root is something other than a document node.

Abbreviated absolute paths, which take the form «//X», are discussed in the section The «//» Abbreviation,
on page 228.

The term absolute is rather a misnomer, since absolute paths always select nodes starting at the root of the
document containing the context node. In fact, XPath 2.0 no longer uses the term. But it’s handy to have a
name for the things, and the idea is not that different from an absolute URI like file:///c:/temp.xml,
which although it’s called an absolute URI, always selects files on your local machine. Absolute, like
global, is a relative term.

206

Path Expressions

There’s a good reason for the restriction that an absolute path expression can only be used to select within
a tree that’s rooted at a document node. If it were allowed to start from any kind of node, there would be
some strange surprises. For example, if the root of the tree were an element node named <A>, then the
expression «/A» would not select that element. This expression is an abbreviation for «(/)/child::A»,
so it would select all elements named A that are children of the root element, but not the root element
itself. Rather than allow such surprises to occur, the working group decided to make this an error. If you
want to select relative to the root of a non-document tree, you can always do this with a relative path
expression whose first step is a call to the root() function, described in Chapter 10. For example, you
can select all the A elements in a tree, even an A element that is the root of the tree, with the expression
«root(.)/descendant-or-self::A».

If you want to start from the root of a different document than the one containing the context node, the
simplest approach is to write a path expression whose first component is a variable reference identifying
the root of the tree you want to make your selection from. This happens frequently in XSLT. If you are
writing a stylesheet that loads several source documents using the doc() function, there is no direct way
of selecting the root of the principal source document when the context node is in a different one. To solve
this problem it is useful to include in your stylesheet a global variable declaration of the form
<xsl:variable name="input" select="/"/>. You can then refer to the root of the principal
document at any time as «$input», and you can select other nodes in this tree with relative path
expressions of the form «$input/A/B».

Examples of Absolute Paths

Expression Description

/ Selects the root node of the document containing the context node,
provided it is a document node

/price-list Selects the document element within the current document, provided its
name is <price-list>. (Current document here and in the other
examples means the tree containing the context node, assuming that the
tree is rooted at a document node)

/* Selects the document element within the current document, whatever its
name

/child::node() Selects all nodes that are immediate children of the document root, that
is, the document element plus any comments or processing instructions
that come before or after the document element. (However, note that the
<?xml version="1.0"?> at the start of a document is not a processing
instruction; in fact it is not a node at all, and is not accessible using
XPath)

/*/xsl:* Selects all element nodes with names in the namespace associated with
the « xsl:» namespace prefix that are immediate children of the
document element. (If applied to an XSLT stylesheet, this would select
all the top-level XSLT declarations)

//figure This abbreviated absolute path expression selects all the <figure>
elements in the current document

207

Chapter 7

Relative Paths
A relative path expression is used to select nodes relative to the context node, using one or more steps. We
have already seen the syntax:

Expression Syntax

RelativePathExpr StepExpr (
(«/» | «//»)
StepExpr)*

StepExpr AxisStep | FilterExpr

Effect
The syntax rule above tells you that a RelativePathExpr consists of one or more steps separated by
the path operator «/» or the shorthand path operator «//». We’ll look at the «//» operator later, on
page 228, and concentrate for now on «/».

In XPath 2.0, many of the syntactic restrictions on path expressions were removed. The «/» symbol is now
a genuine binary operator, that takes arbitrary expressions as its operands. There is a restriction that the
expressions must evaluate to sequences of nodes, but that’s enforced in the same way that any operator
restricts the types of its operands—through the type rules, not by restricting the language syntax.

So although we tend to think of a path expression as a sequence of steps, for example, «A/B/C/D», we
can actually understand the meaning of path expressions simply by defining the meaning of the operator
«/», just as we can understand expressions like «A+B-C+D» by defining the meaning of the operators «+»
and «-». As with other operators, the expression «A/B/C/D» can be evaluated from left to right, as
«((A/B)/C)/D)», and in fact it is entirely legitimate to use parentheses in this way. In the vast majority
of cases the «/» operator is associative, which means that «(A/B)/C» gives you the same answer as
«A/(B/C)», and this explains why you don’t often see parentheses being used in this way. However,
there are a few exceptional cases where «/» is not associative, as we shall see.

So what exactly does the «/» operator do?

I will explain this in terms of an expression «E1/E2», where E1 and E2 are arbitrary expressions but
constrained by the type rules to return sequences of nodes. This expression is evaluated as follows:

❑ E1 is evaluated to produce a sequence of nodes; let’s call this S1.

❑ For each node in S1, the expression E2 is evaluated. The context for evaluating E2 has this node
from S1 as the context node. It also has the position of this node in the sequence S1 as the context
position, and the number of nodes in S1 as the context size, but in practice it’s very rare to write
an expression on the right-hand side of «/» that depends on the context position or size.

❑ Each time E2 is evaluated, it produces a sequence of nodes (if it doesn’t, a type error is reported).
All the nodes produced when E2 has been evaluated once for every node in S1 are bundled
together into a single sequence. Duplicate nodes are then removed, and the remaining nodes are
sorted into document order.

❑ The resulting sequence of nodes forms the result of the path expression «E1/E2».

208

Path Expressions

The most common kind of expression to use as an operand of «/» is a step. Let’s look at a simple example
where both operands are steps: the expression «child::book/attribute::isbn». (I’m deliberately
using the verbose syntax here, the abbreviated form is «book/@isbn».) So E1 in this example is the
expression «child::book», which selects all the elements that are children of the context node and have
the name «book». It’s possible that the context node doesn’t have any <book> children, of course, in
which case this will give you an empty sequence, and when that happens, the result of «E1/E2» is also an
empty sequence. But let’s suppose it selects three books. For each one of these <book> elements, the E2
expression (in our case «attribute::isbn») is evaluated, with that <book> as the context node. The
step expression «attribute::isbn» selects the attribute node whose name is isbn and whose parent
node is the context node. So assuming that each <book> element actually has an isbn attribute, the final
result contains three attribute nodes, one for each of the three books. In this case there won’t be any
duplicate nodes to get rid of, and the final result will be the sequence of three attribute nodes in
document order.

It’s worth noting that although «/» is now a regular operator in the sense that there are no syntactic
restrictions on its operands, it does have some slightly unusual properties. Most operators work by
evaluating both their operands, and then combining the results in some way. This operator evaluates the
expression on the right repeatedly. Operators and functions that work like this are often called
higher-order operators, and if you’ve used functional programming languages before, you will recognize
«/» as behaving like a map or apply operator in such languages; it maps the sequence that’s the result of
the first expression by applying the second expression to each item in that sequence.

Another interesting thing about the «/» operator is that there’s very little point using an expression on
the right-hand side if its result doesn’t depend in some way on the context node. However, there is no
rule that enforces this as a constraint. You can write an expression such as «$N/$M» if you like, so long as
both the variables $N and $M are sequences of nodes. If you follow through the rules given above, you’ll
see that the result contains all the nodes in $M, in document order, except in the case where $N is empty, in
which case the final result is empty. During the design stage, some people in the working group wanted
to disallow such expressions. But on the whole, it’s not a good principle in language design to disallow
things just because they don’t seem useful. On that basis, you would stop people writing «$X+0», or
«$X*1».

Examples of Relative Paths

Expression Description

ancestor::CHAPTER This is a RelativePathExpr consisting of a single Step. It
selects the ancestors of the context node that are elements with
the name <CHAPTER>

TITLE This is a RelativePathExpr consisting of a single Step: this
time the Step is an AbbreviatedStep. It selects the children
of the context node that are elements with the name <TITLE>

descendant::PARA/@style This is a RelativePathExpr consisting of two Steps. The
first Step selects the descendants of the context node that are
<PARA> elements; the second Step is an AbbreviatedStep
that selects the style attributes of these elements

Continues

209

Chapter 7

Expression Description

section[1]/clause[3] This is a RelativePathExpr consisting of two Steps,
each of which includes a positional predicate. The first
Step selects the first <section> element that is a child
of the context node, the second Step selects the third
<clause> element that is a child of the selected
<section>

chapter/section/para/sentence This RelativePathExpr selects every <sentence>
element that is a child of a <para> element that is a child
of a <section> element that is a child of a <chapter>
element that is a child of the context node

doc(’a.xml’)/id(’Z123’) This example illustrates that the operands of the «/»
operator do not have to be AxisStep expressions. This
example selects the document with a particular relative
URI, and using the resulting document node as the
context node, then selects the element with a particular
ID value

book/(chapter|appendix) This is another example that uses an operand that is not
an AxisStep. For each selected <book> element, it
evaluates the expression «(chapter|appendix)»,
which selects all the child <chapter> and <appendix>
elements of the book, in document order

Associativity of the «/»Operator
I mentioned that in the vast majority of cases the «/» operator is associative, which means that
«(A/B)/C» returns the same result as «A/(B/C)». For those with insatiable curiosity, there are only two
examples that I know of where this is not the case:

❑ The expression is not associative if one of the steps creates new nodes. There is no expression in
XPath itself that creates new nodes, but an XPath expression can contain a function call to a
function written say in XSLT or XQuery that creates such nodes. And in XQuery, steps in a path
expression can construct nodes directly, for example, you can write «<p q="2"/>/@q». If we use
the XQuery syntax for illustration, we can see that «$A/../» eliminates duplicate nodes in
the result of «$A/..», and therefore the number of elements in the result is equal to the
number of distinct nodes that are parents of nodes in $A. But the expression «$A/(../)»
creates one element for every node in $A that has a parent. So the number of elements
returned in the two cases is different.

❑ The expression is not associative if one of the steps uses the position() or last() functions.
For example, consider the expression «A/remove($S, position())». The remove()
function, described in Chapter 10, returns the sequence of items supplied in its first argument,
except for the item whose position is given in the second argument. This means that if A contains
exactly one node, then the result is all the nodes in $S except the first. But if A contains two
nodes, then the result is the union of «remove($S, 1)» and «remove($S, 2)», which (think
about it carefully) contains all the nodes in $S. Now if we extend this to the expression
«A/B/remove($S, position())» we can see that the result should contain all the nodes in

210

Path Expressions

$S except when «A/B» contains exactly one node, because the expression should be evaluated as
«(A/B)/remove($S, position())». But if it were written the other way, as
«A/(B/remove($S, position))», the first node in $S would be dropped only if every A has
exactly one B child.

These examples are fairly pathological, but you might like to try them out on your chosen XPath
processor to see how well it handles them (I can tell you that at the time of writing, Saxon sometimes gets
these wrong). There may well be much simpler path expressions in which «/» is not associative, but I
haven’t discovered them yet!

Document Order and Duplicates
There are three kinds of expression in XPath 2.0 whose result is always guaranteed to be a sequence of
nodes in document order, with no duplicates. They are all covered in this chapter. Specifically, they are:

❑ Any expression using the unary or binary path operator «/»

❑ Any axis step (even an axis step like «preceding-sibling::*» that uses a reverse axis
delivers its results in forwards document order)

❑ Any expression using one of the binary operators «union», «intersect», and «except».

The elimination of duplicates is always based on node identity, not value.

Many simple path expressions would always return results in document order anyway, and would never
select duplicates. In these cases, the system doesn’t have to do any extra work to satisfy this rule. For
example, any path expression that does downward selection using the child axis will naturally retrieve
the nodes in document order. But it’s easy to come up with path expressions that don’t have this property,
for example, «following-sibling::*/..» selects the parents of all the following siblings; and of
course they all have the same parent, so after eliminating duplicates this expression returns at most a
single node.

Generally, the automatic sort into document order is a choice that avoids surprises, especially when
processing loosely structured text: if an expression selects a number of text nodes in a document, then
document order is the order that is most likely to retain the meaning. The only situation that can
sometimes be confusing is when you write an expression such as «$sorted-employees/name» where
the sequence in $sorted-employees has been carefully sorted into some logical order (for example,
sorting employees by length of service). You can’t do this kind of sorting in XPath alone, but it’s easily
done in XSLT or XQuery. In this situation, the «/» operator destroys the ordering, and gives you the
names of the employees in document order. The solution in this case is to use a «for» expression instead
of a path expression, as described in Chapter 8.

There is no specific function in XPath to take an existing sequence and reorder it in document order, but
you can achieve this easily by writing the dummy path expression «$seq/.», or if you prefer, by taking
the union with the empty sequence, «$seq|()».

Steps
This section discusses the expressions called steps. Steps are often used as operands of the «/» operator in
a path expression, which is how they got their name (a path consists of many steps). But in fact, a step is

211

Chapter 7

an expression in its own right, and it can be used on its own without any need for a «/» operator. We’ve
also seen that XPath 2.0 allows the operands of «/» to be any kind of expression, they are no longer
constrained to be steps. So the «/» operator and steps have become quite decoupled in the semantics of
the language. However, they are so often used together that it makes sense to retain the term path
expression to describe any expression that uses either a «/» operator or a step or both.

A step selects a set of nodes that are related in some way to the context node: for example, the children,
the parent, or the following siblings of the context node. The relationship in question is called an axis. An
axis is essentially a one-to-many relationship between nodes. If you prefer, you can think of it as a
function which takes a single node as input, and produces a sequence of related nodes (for example, the
children, the attributes, or the ancestors of that node) as output. Because axes are used so frequently and
could be said to be the core feature of the XPath language, we don’t use the standard function call syntax,
but the underlying theory can be expressed in purely functional terms.

A step has three parts: the axis, the node test, and the predicates. The axis and the predicates can be
defaulted, but the node test is always present. The three parts of a step are discussed in more detail in the
sections that follow: axes on page 215, node tests on page 220, and predicates on page 230. In this section,
we’ll start with an overview.

A step is based on a particular axis, and it can also choose to filter the nodes that are present on the axis.
There are two kinds of filter that can be used, alone or in combination:

❑ A node test allows nodes to be selected according to the kind of node, the name and namespace of
the node, and (as we shall see in Chapter 9) the type annotation of the node, as determined by
schema validation.

❑ The step can also include general-purpose predicates, which can specify an arbitrary boolean
condition that a node must satisfy, or can select nodes at particular positions in the sequence
returned by the axis.

The next section gives the syntax of steps.

Syntax of Steps

Expression Syntax

AxisStep (ForwardStep | ReverseStep)
PredicateList

PredicateList Predicate *

Predicate «[» Expr «]»

ForwardStep (ForwardAxis NodeTest) |
AbbrevForwardStep

ReverseStep (ReverseAxis NodeTest) |
AbbrevReverseStep

212

Path Expressions

Expression Syntax

ForwardAxis «child ::» |
«descendant ::» |
«attribute ::» |
«self ::» |
«descendant-or-self ::» |
«following-sibling ::» |
«following ::» |
«namespace ::»

ReverseAxis «parent ::» |
«ancestor ::» |
«preceding-sibling ::» |
«preceding ::» |
«ancestor-or-self ::» |

The split between forward and reverse axes in this grammar is cosmetic. It’s presented this way because
there are semantic distinctions in the way predicates are evaluated in the two cases, and it’s nice when
semantic distinctions can be related clearly to syntactic distinctions.

The abbreviations for steps will be covered later (see page 226). For the moment, we’ll concentrate on the
unabbreviated syntax in which the axis names are spelt out in full.

Effect
A step can be used to follow any axis and to find any kind of node.

The step itself is defined in terms of a simpler concept, the axis. Each axis returns a set of nodes relative to
a specific origin node, for example, its previous siblings or its ancestors. The step returns a subset of the
nodes on this axis, selected by the kind of node, the name of the node, the schema-defined type of the
node, and the predicate expressions.

The NodeTest supplies any restrictions on the node kind, name, and type of the selected nodes, while
the predicate expressions provide arbitrary boolean conditions that the nodes must satisfy, or positional
filters that constrain their relative position.

The result of a step is always a sequence of nodes (possibly an empty sequence) with no duplicates, in
document order. This is true even if the axis is one of the reverse axes, such as preceding-sibling,
that selects nodes that are before the context node in document order.

For example, the step «ancestor::node()», given any starting node, finds all the ancestors of that
node. When the step is used in a path expression such as «$n/ancestor::node()», it returns a
sequence containing all the ancestors of all the nodes in $n. The sequence will be in document order,
which means that the outermost ancestor (the root of the tree) will appear first in the result.

To understand the meaning of positional predicates in the step it is often useful to think of an axis as
retrieving nodes in a particular order, but the formal definition doesn’t require this. Instead these

213

Chapter 7

predicates are defined in terms of a number assigned to each node. For a forward axis (as shown in the
syntax above), the nodes are numbered to show their relative position in document order, while for a
reverse axis, they are numbered in reverse document order. The effect of positional predicates (such as
«booklist/book[3]») is to select those nodes whose number matches the value of the predicate. This
means that if the axis is a forward axis, the positional predicate «[3]» will return the node that is third in
document order; if it is a reverse axis, the same predicate will return the node that is third in reverse
document order.

So the evaluation of the step function, for a given context node, proceeds as follows:

1. All the nodes on the selected axis are found, starting at the context node.

2. Those that satisfy the node test (that is, those of the required node kind, name, and type) are
selected.

3. The remaining nodes are numbered from 1 to n in document order if the axis is a forward axis, or
in reverse document order if it is a reverse axis.

4. The first (leftmost) predicate is applied to each node in turn. When evaluating the predicate,
the context node (that is, the result of the «.» expression) is that node, the context position (the
result of the position() function) is the number assigned to the node in stage 3, and the
context size (the result of the last() function) is the largest number allocated in stage 3. A
numeric predicate such as «[2]» or «[last()-1]» is interpreted as a shorthand for
«[position()=2]» or «[position()=last()-1]», respectively. The node is selected if the
predicate is true, and is discarded if the predicate is false.

5. Stages 3 and 4 are repeated for any further predicates.

Examples of Steps

Expression Description

child::title Selects child elements of the context node named <title>

title Short form of «child::title»

attribute::title Selects attributes of the context node named title

@title Short form of «attribute::title»

ancestor::xyz:* Selects ancestor elements of the context node whose names are
in the namespace with prefix «xyz»

*[@width] Selects all child elements of the context node that have a width
attribute

text()[starts-
with(.,’The’)]

Selects every text node that is a child of the context node and
whose text content starts with the characters «The»

*[@code][position()<10] Selects the first nine child elements of the context node that
have a code attribute

*[position()<10][@code] Selects from the first nine child elements of the context node
those that have a code attribute

214

Path Expressions

Expression Description

self::*[not(@code =
preceding-sibling::*
/@code)]

Selects the current element node provided that it does not have a
code attribute with the same value as the code attribute of any
preceding sibling element

namespace::* Selects all the namespace nodes that are in scope for the context
node. If the context node is not an element, the result will be empty

self::item Selects the context node if it is an <item> element, or an empty
sequence otherwise. This is usually used in a predicate, for
example «*[not(self::item)]» selects all the children of the
context node except those that are <item> elements. This relies on
the rules for effective boolean value, whereby an empty sequence is
treated as false

comment() Selects all comment nodes that are children of the context node

@comment() Short for «attribute::comment()», this selects all comment
nodes on the attribute axis. The attribute axis can only contain
attribute nodes, so this will always return an empty sequence;
nevertheless it is a legal step

Axes
An axis is a path through the document tree, starting at a particular node (which I’ll call the origin) and
following a particular relationship between nodes. There are 13 axes defined in XPath, as follows:

ancestor
ancestor-or-self
attribute
child
descendant
descendant-or-self
following
following-sibling
namespace
parent
preceding
preceding-sibling
self

This section explains the meaning of each of the axes, first with a textual definition, and then with a diagram.

Axis Description

ancestor Selects all the nodes that are ancestors of the starting node. The first
node on the axis is the parent of the origin node, the second is its
grandparent, and so on; the last node on the axis is the root of the tree

Continues

215

Chapter 7

Axis Description

ancestor-or-self Selects the same nodes as the ancestor axis, but starting with the
origin node rather than with its parent

attribute If the origin node is an element, this axis selects all its attribute
nodes, in some arbitrary order. Otherwise, it selects nothing

child Selects all the children of the origin node, in document order. For
any node except a document node or element node, this selects
nothing. Note that the children of an element node do not include
its attributes or namespace nodes, only the text nodes, element
nodes, processing instructions and comments that make up its
content

descendant Selects all the children of the origin node, and their children, and
so on recursively. The resulting nodes are in document order. If the
origin is an element, this effectively means that the descendant
axis contains all the text nodes, element nodes, comments and
processing instructions that appear in the original source
document between that element’s start and end tags, in their
original sequence

descendant-or-self This is the same as the descendant axis, except that the first node
selected is the origin node itself

following This selects all the nodes that appear after the origin node in
document order, excluding the descendants of the origin node. If
the origin is an element node, for example, this effectively means
that it contains all the text nodes, element nodes, comments and
processing instructions in the document that start after the end tag
of the origin element. The following axis will never contain
attribute or namespace nodes

following-sibling This selects all the nodes that follow the origin node in document
order, and that are children of the same parent node. If the origin
is a document node, an attribute node, or a namespace node, then
the following-sibling axis will always be empty

namespace If the origin node is an element, this axis selects all the namespace
nodes that are in scope for that element; otherwise it is empty. The
order of the namespace nodes is undefined. The namespace nodes
correspond to namespace declarations (xmlns="x" or
xmlns:y="z") on the element itself or on one of its ancestor
elements, but excluding any namespace declaration that cannot be
used on this element because it is masked by another declaration
of the same namespace prefix. For more information about
namespace nodes see Chapter 2

parent This axis selects a single node, the parent of the origin node. If the
origin node is a document node, or any other node that happens to
be the root of a tree, then the parent axis is empty

216

Path Expressions

Axis Description

preceding This selects all the nodes that appear before the origin node,
excluding the ancestors of the origin node. If the origin is an
element node, this effectively means that it contains all the text
nodes, element nodes, comments and processing instructions in
the document that finish before the start tag of the origin element.
The preceding axis will never contain attribute or namespace
nodes

preceding-sibling This selects all the nodes that precede the origin node, and that are
children of the same parent node. If the origin is a document node,
an attribute node, or a namespace node, then the preceding-sibling
axis will always be empty

self This selects a single node, the origin node itself. This axis will
never be empty

The various axes can also be shown diagrammatically. In each case in the table below the diagram shows
the origin node in dark shading, while the nodes on the axis are numbered in the sequence they appear
on the axis. The diagram does not show attribute and namespace nodes, and the attribute and namespace
axes are therefore excluded from the table.

Axis Diagram

ancestor

1

2

ancestor-or-self

2

3

1

Continues

217

Chapter 7

Axis Diagram

child

21

descendant

3

2 4 5 6

1

descendant-or-self

4

3 5 6 7

2

1

following

2 3

1 4

218

Path Expressions

Axis Diagram

following-sibling

1 2

parent
1

preceding

2

3

1

preceding-sibling

1

Continues

219

Chapter 7

Axis Diagram

self

1

For details of how axes are used in a path expression, and examples, see Step on page 211.

Node Tests
A NodeTest tests whether a node satisfies specified constraints on the type of node or the name of the
node.

Expression Syntax

NodeTest NameTest | KindTest

A NodeTest is either a NameTest or a KindTest. A NameTest selects nodes by name, while a
KindTest allows selection based on the kind of node and also (in the case of elements and attributes) its
schema-defined type.

Specifying a NameTest implicitly causes selection of a particular kind of node: attributes for the attribute
axis, namespaces for the namespace axis, and elements in all other cases.

Usage
A NodeTest is used in an AxisStep to specify the name and/or kind of the nodes to be selected by the
Step.

In general you specify either the name of the nodes, or their kind. If you specify a NameTest, this
implicitly selects nodes of the principal node kind for the axis used in the Step. For the attribute axis, this
selects attribute nodes; for the namespace axis, it selects namespace nodes, and for all other axes, it selects
element nodes.

Specifying node() as the KindTest selects all nodes on the axis. You must specify node() if you want
the AxisStep to select nodes of more than one kind.

Specifying processing-instruction() or comment() or text() as the KindTest selects nodes of
the specified type. It doesn’t make sense to specify any of these on the attribute or namespace axes,

220

Path Expressions

because they can’t occur there. These nodes are unnamed, except for processing instructions, which is
why there is an option in this single case to specify both the node kind and the node name required.

Examples of Node Tests

Expression Description

TITLE This NameTest selects all <TITLE> elements, unless it is used
with the attribute axis (in the form «attribute::TITLE» or
«@TITLE»), when it selects the TITLE attribute, or with the
namespace axis (as «namespace::TITLE»), when it selects the
namespace node whose prefix is TITLE

news:article This NameTest selects all nodes with local name «article»
within the «news» namespace. These may be attribute nodes or
element nodes, depending on the axis. There must be an enclosing
element in the stylesheet that declares the «news» prefix, by
having an attribute of the form
«xmlns:news="urn:newsml:iptc.org:20001006:
NewsMLv1.0:1"».
The node in the source document must have a name that uses this
namespace URI, but it does not need to use the same prefix

MathML:* This NameTest selects all nodes whose names are in the MathML
namespace. These may be attribute nodes or element nodes,
depending on the axis. There must be an enclosing element in the
stylesheet that declares this prefix, by having an attribute of the
form «xmlns:MathML="http://www.w3.org/1998
/Math/MathML"»

* This NameTest selects all elements, unless it is used with the
attribute axis (in the form «attribute::*» or «@*») when it
selects all attributes, or with the namespace axis (as
«namespace::*»), when it selects all namespaces

text() This NodeTest selects all text nodes on the relevant axis

processing-
instruction()

This NodeTest selects all processing instructions on the relevant
axis. Note that the XML declaration at the start of the document is
not a processing instruction, even though it looks like one

processing-
instruction
(’ckpt’)

This NodeTest selects all processing instructions with the name
(or PITarget as the XML specification calls it) «ckpt»: for
example the processing instruction <?ckpt frequency=daily?>

node() This NodeTest selects all nodes on the relevant axis

Name Tests
As we have seen, a NodeTest is either a NameTest or a KindTest. This section describes NameTests.
A NameTest is either a name, or a generic name specified using wild cards.

221

Chapter 7

Syntax

Expression Syntax

NameTest QName | Wildcard

Wildcard «*» |
NCName«:*» |
«*:»NCName

Note that a NameTest cannot contain embedded whitespace.

Usage
In general, a NameTest will match some names and will not match others.

The NameTest «*» matches any name. (But when used as an expression on its own, «*» is short for
«child::*», which selects all child elements of the context node. The fact that the result is restricted to
element nodes only is because «*», when used in an AxisStep, selects only nodes of the principal node
kind for the axis, and for all axes except the attribute and namespace axes, the principal node kind is
element nodes.)

A surprising effect of this rule is that in XSLT you can’t write:

<xsl:copy-of select="@*[not(self::title)]"/>

to copy all attributes of an element except the title attribute. Why? Because the
principal node kind for the self axis is element nodes, so if the context node is an
attribute named title, «self::title» won’t select it. Instead, write:

<xsl:copy-of select="@* except @title"/>

The «except» operator is described in the section Combining Sets of Nodes, on
page 234.

The NameTest «xyz:*» matches any name whose namespace is the one currently bound to the
namespace prefix «xyz». It is not necessary that the name being tested should use the same prefix, only
that the prefix should refer to the same namespace URI.

A NameTest of the form «*:code» matches any node whose local-name is code, regardless of its
namespace (it will match names in any namespace, as well as names that are in no namespace).

The NameTest «xyz:code» matches any name whose namespace is the one currently bound to the
namespace prefix «xyz», and whose local part is «code». It is not necessary that the name being tested
should use the same prefix, only that the prefix should refer to the same namespace URI.

222

Path Expressions

The interpretation of a NameTest such as «code» (with no namespace prefix) depends on the context.

❑ If it is used with any axis other than the attribute or namespace axes, then it selects elements
whose name is in the namespace identified in the XPath context (see Chapter 4) as the default
namespace for elements. (Note that in XSLT, this is established using the xpath-default-
namespace attribute, typically on the <xsl:stylesheet> element. It is not established by
writing a default namespace declaration of the form «xmlns="some.uri"».)

❑ If it is used with the attribute or namespace axis, then it selects nodes whose namespace URI is
null.

If your source document uses a default namespace declaration such as «xmlns=
"some.uri"» , then a <code> element in the source document will not be selected
by an XPath expression such as «//code», even if the stylesheet contains the same
namespace declaration «xmlns="some.uri"». This is because in the XPath
expression, the default namespace is ignored. You will either need to specify an
explicit namespace declaration such as «xmlns:x="some.uri"» and refer to the
element as «//x:item», or to declare an xpath-default-namespace in the
stylesheet.

Note that if a default namespace for elements has been set up, then the only way to select those elements
whose namespace URI is null is to include a predicate that tests the result of the namespace-uri()
function.

Examples of Name Tests

Expression Description

* Matches any name. If «*» is used on its own, it represents the step
«child::*», which selects all child elements of the context node, regardless
of their name

xt:* Matches any name in the namespace bound to the prefix «xt». If «xt:*» is
used on its own, it represents the step «child::xt:*», which selects all child
elements of the context node that are in the namespace bound to the prefix
«xt»

title Matches a node whose local name is name «title» and whose namespace
URI is null, unless a default namespace for elements has been established in the
context (and then, only when the axis is not the attribute or namespace axis)

wrox:title Matches the name that has local part «title» and whose namespace is the
namespace currently bound to the prefix «wrox»

*:title Matches any name whose local part is «title», whether or not it is in a
namespace

223

Chapter 7

Kind Tests
As we have seen, a NodeTest is either a NameTest or a KindTest. NameTests were described in the
previous section; this section describes KindTests. A KindTest represents a constraint on the kind of
nodes that are selected by an AxisStep.

Expression Syntax

KindTest DocumentTest |
ElementTest |
AttributeTest |
PITest |
CommentTest |
TextTest |
AnyKindTest

PITest «processing-instruction (»
(NCName | StringLiteral)?
«)»

DocumentTest «document-node (»
ElementTest?
«)»

CommentTest «comment (» «)»

TextTest «text (» «)»

AnyKindTest «node (» «)»

The constructs ElementTest and AttributeTest are used primarily to test the schema-defined type
of a node. These constructs are explained together with other type-related constructs on page 281 in
Chapter 9.

Note that the names «comment», «text», and so on cannot be used as function names, but apart from
this, they are not reserved words. It is quite possible to have elements or attributes called «text» or
«node» in your source XML document, and therefore you can use «text» or «node» as ordinary names
in XPath. This is why the names are flagged in a KindTest by the following parentheses, for example,
«text()». The syntax rules are written so that the keyword and the following left parenthesis are treated
as a compound symbol by the XPath parser, which in effect means that the parser does a look-ahead for
the «(» before deciding whether the keyword such as «text» is to be interpreted as a NameTest or as a
KindTest.

There are three ways you can select processing instructions. The simple test is «processing-
instruction()», which selects any processing instruction node regardless of its name. If you want to
select processing instructions named «xml-stylesheet», say, then you can write either
«processing-instruction("xml-stylesheet")» or «processing-instruction(xml-
stylesheet)». The two are equivalent: the syntax with quotes is retained for compatibility with

224

Path Expressions

XPath 1.0, while the syntax without quotes is introduced for symmetry with the «element(...)» and
«attribute(...)» tests described in Chapter 9.

Usage
A KindTest can be used within an AxisStep to restrict the Step to return nodes of a particular kind.
The keywords «comment», «text», and «processing-instruction» are self-explanatory: they
restrict the selection to nodes of that particular kind. The keyword «node» selects nodes of any type, and
is useful because a Step has to include some kind of NodeTest, so if you want all the nodes on the axis,
you can specify node(). For example, if you want all child nodes, specify «child::
node() ». Remember that although «node()» as a NodeTest selects any kind of node, «node()» as a
Step means «child::node()» and therefore selects only children of the context node. If you want to
select attributes as well, write «@*|node()».

If you want to select all elements, you can use the KindTest element(), and if you want to select all
attributes, you can use attribute(). However, it is more usual in these cases simply to use the
NodeTest «*». Specifying «*» selects the nodes of the principal node kind for the selected axis, which
will always be elements in the case of an axis that can contain elements, and attributes in the case of an
axis that can contain attributes. The KindTests element() and attribute() are generally used with
parameters that specify the schema-defined type of the required elements or attributes, as described in
Chapter 9.

Similarly, the KindTest document-node() can be used without parameters to select all document
nodes. But you won’t see this used much in practice, because the document node can be selected using
the simpler syntax «/», discussed earlier in this chapter on page 205. With parameters, the
document-node() KindTest can be used to test for the document node containing an element of a
particular schema-defined type—again, this is described in Chapter 9.

There is no specific way of selecting namespace nodes. But all the nodes on the namespace axis are
namespace nodes, so the expressions «namespace::*» and «namespace::node()» both work fine,
provided that your implementation supports use of the namespace axis.

Examples of Kind Tests
These examples show some different KindTests, used in the context of a containing path expression.

Expression Description

parent::node() Selects the parent of the context node, whether this is an element node or the
root node. This differs from «parent::*», which selects the parent node only
if it is an element. The expression «parent::node()» is usually abbreviated
to «..»

//comment() Selects all comment nodes in the document

child::text() Selects all text node children of the context node. This is usually abbreviated to
«text()»

@comment() A strange but legal way of getting an empty node-set: it looks for all comment
nodes on the attribute axis, and of course finds none

225

Chapter 7

Abbreviations
Until now we have been looking at the full syntax for path expressions, though some of the examples
actually used abbreviations. This section describes the various abbreviations that make path expressions
easier to write. The abbreviations that are available are:

❑ The ability to omit the axis name (and the following «::») when using the child axis (or, in one
specific case, when using the attribute axis)

❑ The use of «@» as an abbreviation for the attribute axis

❑ The ability to select the parent of a node using the shortcut «..»

❑ The use of the operator «//» to select descendant nodes.

In XPath 1.0, the expression «.» was considered to be an abbreviation for the step «self::node()». In
XPath 2.0 this is no longer the case, because «.» can also be used when the context item is an atomic value
rather than a node. For this reason, «.» is now classified as a primary expression in its own right, and is
covered with the other kinds of primary expression in Chapter 5.

Defaulting the Axis Name in a Step
A full step is written in the form:

axis-name «::» NodeTest Predicates?

Since the most common axis is the child axis, it is possible to omit the «child::» part and write the step
in the abbreviated form:

NodeTest Predicates?

For example, the path expression «employee/name/first-name» consists of three steps, each of
which has been abbreviated in this way. It is short for «child::employee/child::name/
child::first-name».

Most people writing XPath expressions use this abbreviation all the time without really thinking about it.
In fact, it’s rare to see «child::» spelled out explicitly. But I do sometimes like to write the full form to
alert the reader to what’s going on. For example, the expression «record[*]» selects all <record>
elements that have one or more child elements. I sometimes write this as «record[child::*]» so that
anyone reading the code can see more clearly what it means. The full syntax for the expression, of course,
is «child::record[child::*]», and you could spell it out even more explicitly by writing
«child::record[exists(child::*)]». (The exists() function is in Chapter 10).

There’s one exception to the general rule that if you don’t specify an axis, you get the child axis. This is
when you use a NodeTest of the form «attribute(...)» or «schema-attribute(...)». This kind
of NodeTest is used when testing the schema-defined type of an attribute node; it is described in detail
in Chapter 9. Because the NodeTest makes it clear that you are looking for attributes rather than child
elements, the system in this case chooses the attribute axis as the default. This avoids you having to write
«attribute::attribute(*)» or «@attribute(X)», both of which read rather oddly, though they
are both legal and logical.

226

Path Expressions

The «@»Abbreviation
When the «@» sign appears in front of a NodeTest, it indicates that you are selecting nodes using the
attribute axis. It is short for «attribute::».

What this means in practice is that in a path expression «A/@B», B is referring to an attribute of A, while in
the path expression «A/B», B is referring to a child element of A.

Again, this abbreviation is ubiquitous among XPath developers, and it’s rare to see «attribute::»
written out in full. In fact, the «@» in front of an attribute name has become so familiar that people often
think of it as being almost part of the name. I’m probably not the only one who has found myself
typing <person @id="B123"> in an XML document (which, of course, will be thrown out by an
XML parser).

Take care when using the «self::» axis. You can write «self::title» to test
whether the context node is a <title> element, but you can’t write
«self::@title» to test whether it is a title attribute. This is because «@» is short
for «attribute::», and «self::attribute::title» doesn’t make sense: you
can either look on the self axis, or the attribute axis, but not both at once.

Examples

Expression Description

@category The full form of the expression would be «attribute::category»

title The full form of the expression would be «child::title»

The «..»Abbreviation
The construct «..» appearing as an abbreviated step is short for «parent::node()». As such, it selects
the parent of the context node. If the context node has no parent (that is, if it is the root of a tree), then it
selects an empty sequence.

This notation is found most commonly at the start of a relative path expression. For example «../@name»
selects the name attribute of the parent of the context node. It is possible to use «..» anywhere in a path
expression, though the need rarely arises. For example, «//title/..» selects all elements in the
document that have a child element called <title>. The same result could be achieved, perhaps
more naturally, by writing «//*[title]».

Note that every node except a root node has a parent.

This means that «/..» is always an empty sequence. In XPath 1.0, there was no direct way of representing
an empty sequence, and so you may see this notation used when an empty sequence is needed, perhaps
as the default value of a parameter in an XSLT template rule. In XPath 2.0 it’s more natural to write this as

227

Chapter 7

«()». Indeed, an XPath 2.0 processor that implements the static typing feature (see Chapter 3) may well
give you an error if you write «/..», kindly pointing out to you that it will never select anything.

Writing «not(..)» is a simple way of testing whether the context node is the root.

As explained in Chapter 2, the element containing an attribute is considered to be the parent of the
attribute, even though the attribute is not a child of the element. So you can select all elements containing
an attribute named ID with an expression such as «//@ID/..» (though «//*[@ID]» achieves the same
thing and might be more efficient). Unlike biological relationships, in XPath the “parent” and “child”
relationships are not the inverse of each other. The same applies to namespace nodes.

In XPath 1.0 the expression «..» could not be followed by a predicate: you could not write <xsl:if
test="..[@color=’black’]">. This was probably an oversight by the language designers, and the
restriction has been lifted in XPath 2.0. As you would expect, this expression tests whether the parent
element node has a color attribute whose value is «black».

Examples in Context

Expression Effect

exists(..) Tests whether the context node has a parent (in other words, whether it is the
root of a tree)

../@name Selects the name attribute of the parent of the context node

The «//»Abbreviation
Colloquially, «//» in a path expression means “find all descendants”. More formally, whether it appears
at the start of a path expression or as a binary operator, it is equivalent to writing
«/descendant-or-self::node()/».

The expression «//A» is often used to select all <A> elements in the document.

How does this work? The expression «//A» means «/descendant-or-self::node()/ child::A»,
which selects all <A> elements whose parent is either the document node or a descendant of the
document node, looking as always within the tree that contains the context node. Since every element has
a parent that meets these criteria, it selects all <A> elements. Similarly, «//@B» means
«/descendant-or-self::node()/attribute::B», which selects all B attributes in the current
document.

The significance of the abbreviation becomes apparent when predicates are involved. The expression
«//para[1]» expands to «/descendant-or-self::node()/child::para[1]», which selects
every <para> element that is the first child of its parent. If you only want the first <para> element in the
entire document, you can get this by writing «(//para)[1]».

The «//» abbreviation can also be used as an operator anywhere that «/» can appear. Another useful
form of expression is «.//A», which selects all <A> elements that are descendants of the context node.
Again, the official meaning is «./descendant-or-self::node()/child::A». The «./» in this
expanded expression is redundant: people often write path expressions such as «./A/B», but the

228

Path Expressions

«./» is pure noise. At any rate, it’s pure noise when the expression after the «./» is an AxisStep
(in other cases, it may trigger reordering and deduplication, in the same way as adding «/.»). But with
«//», the leading «.» becomes necessary to indicate that you want to start the selection at the context
node, not at the root.

Expressions using «//» can be expensive to evaluate, because the XPath processor will often have to
search the whole document to find the selected nodes. If you can specify a more restricted search it is
generally a good idea to do so—for example, if you know that all the <book> elements are children of the
document element, then specifying «/*/book» will generally be much more efficient than writing
«//book». Of course, actual performance characteristics of different products may vary.

Examples in Context

Expression Description

//figure Selects all <figure> elements in the document

//book[@category= ’fiction’] Selects all <book> elements in the document that have
a category attribute with the value « fiction»

//*/* Selects all element nodes that have an element as a
parent, in other words all elements except those that
are immediate children of the root node. Here «*» is a
NameTest that matches any element

//book/title Selects all <title> elements that have a <book>
element as their parent

chapter//footnote Selects all <footnote> elements that are descendants
of a <chapter> element that itself is a child of the
context node

.//footnote Selects all <footnote> elements that are descendants
of the context node

doc(’lookup.xml’) //entry Selects all <entry> elements within the document
identified by the relative URI lookup.xml. The
doc() function is described in Chapter 10, page 329

$winners//*/@name Selects the name attribute of all elements that are
descendants of a node that belongs to the node-set
identified by the variable $winners

.//.. This strange but perfectly legal expression combines
«//» which finds the descendants of a node, and «..»
which finds its parent. The effect is to find all nodes
that are the parent of a descendant of the context
node, plus the parent of the context node itself

chapter//footnote Selects all <footnote> elements that are descendants
of a <chapter> element that itself is a child of the
context node

229

Chapter 7

Comparing the «//»Operator with «/descendant::»
Consider the two expressions «$chapters//diagram[1]» and «$chapters/descendant::
diagram[1]»:

«$chapters//diagram[1]» means «$chapters/descendant-or-self::node()/child::
diagram[1]», that is, every <diagram> element that is the first <diagram> child of its parent element
and that is a descendant of a node in $chapters.

«$chapters/descendant::diagram[1]» means the first <diagram> element (taking them in
document order) that is a descendant of a node in $chapters. Another way of writing this is
«($chapters//diagram)[1]».

To see the difference, consider the following source document:

<chapter>
<section>

<diagram nr="12"/>
<diagram nr="13"/>

</section>
<diagram nr="14"/>
<section>

<diagram nr="15"/>
<diagram nr="16"/>

</section>
</chapter>

With this document, if the variable $chapters contains only the outer <chapter> element,
«$chapters//diagram[1]» will select diagrams 12, 14, and 15, while both «$chapters/
descendant::diagram[1]» and «($chapters//diagram)[1]» will select diagram 12 only.

Predicates
We saw earlier that a step has three parts: an axis, a NodeTest, and optionally a list of predicates. A
predicate is a qualifying expression used to select a subset of the nodes in a sequence. The predicate may
be any XPath expression, and it is written in square brackets.

Expression Syntax

PredicateList Predicate *

Predicate «[»Expr «]»

There are two very similar constructs in XPath that use predicates. They can be used in an AxisStep, to
qualify the nodes selected by the axis, and they can be used in a FilterExpr, to filter any sequence. We
will talk about the more general filter expressions in Chapter 8, and concentrate here on the use of
predicates with an AxisStep. The meaning of the two cases is very similar, and it’s easy to use them
without always being aware of the difference.

230

Path Expressions

For example:

Expression Description

para[position()>1] Here the predicate «[position()>1]» is being applied to
the Step «para», which is short for «./child::para». It
selects all the <para> element children of the context node
except the first. Because the expression is an AxisStep, the
results are guaranteed to be in document order and to
contain no duplicates

$para[position()>1] Here the predicate «[position()>1]» is being applied to
the value of the variable-reference «$para». The expression
selects all items in the sequence except the first. The result
does not have to be in document order (it can contain atomic
value as well as nodes, so document order would not make
sense) and it can contain duplicates. The items in the result
are returned in their original order

In both cases the effect of a predicate is to select a subset of the items in a sequence. There’s a significant
difference when a predicate is used with a path expression of more than one step. For example:

Expression Description

chapter/para[1] Here the predicate «[1]» is being applied to the Step
«para», which is short for «./child::para». It selects the
first child <para> element of each child <chapter>
element of the context node

(chapter/para)[1] This is a FilterStep where the predicate «[1]» is being
applied to the sequence of nodes selected by the path
expression «chapter/para». The expression selects a
single <para> element, the first child <para> of a
<chapter> that is a child of the context node

In effect, the predicate operator «[]» has higher precedence (it binds more tightly) than the path
operator «/».

Another distinction between the two cases is that in the case of a FilterExpr, the items are always
considered in their original order when evaluating the predicate. In the case of an AxisStep, the nodes
are considered in the order of the relevant axis. This is explained in more detail below.

A predicate may be either a boolean expression or a numeric expression. These are not distinguishable
syntactically; for example the predicate «[$p]» could be either. The distinction is only made at runtime.
(That’s the official rule, anyway. If an optimizer can work out in advance whether the value is numeric or
boolean, then it will. It’s a good idea to declare the types of your variables and parameters, which will
make the optimizer’s job easier.)

231

Chapter 7

The following table shows some examples of boolean predicates:

Expression Description

section
[@title=’Introduction’]

Here the predicate is a conventional boolean expression.
This example selects every child <section> element that
has a title attribute with the value «Introduction»

section[title] The predicate is true if the relevant section has at least one
child <title> element

title[substring-
before(.,’:’)]

The PredicateExpr evaluates to true if the string-value of
the title has one or more characters before its first colon: that
is, if the substring-before() function returns a
non-empty string

book[not(author=
preceding-
sibling::author)]

The PredicateExpr here is true if the author of the book is
not the same as the author of some preceding book within
the same parent element. The effect of this expression is to
select the first book by each author

If the value of the predicate is a number (that is, if its type label is xs:decimal, xs:integer,
xs:float, or xs:double, or some subtype of these), it is treated as a numeric predicate. If it is of any
other type, it is converted to an xs:boolean value using the effective boolean value rules described in
Chapter 5 (these are the same as the rules for the boolean() function). So for example, the predicate
«[@sequence-number]» is true if the context node has a sequence-number attribute, and is false
otherwise. The actual numeric value of the attribute sequence-number is immaterial: the value of
«@sequence-number» is a sequence of nodes, so it is treated as «[boolean(@sequence-
number)]». If you want to use the sequence number attribute as a numeric predicate, write
«[number(@sequence-number)]».

A numeric predicate «[P]» is simply a shorthand for the boolean predicate «[position()=P]», so you
could also achieve the required effect by writing «[position()=@sequence-number]».

Note that the rules for recognizing a predicate as a number are very strict. For example, a string written as
«"20"» is not considered to be a number: it’s the type label on the value that matters, not the format of
the value itself. Equally, the XSLT variable declared in the example below is not a number, it is the
document node at the root of a temporary tree (see the <xsl:variable> topic in Chapter 5 of XSLT 2.0
Programmers Reference for further explanation):

<xsl:variable name="index">3</xsl:variable>

If you want to use this value as a predicate, either write it so the value of the variable is a number:

<xsl:variable name="index" select="3"/>

(but don’t write «select="’3’"», because that would make it a string); or force it to a number in the
predicate:

<xsl:value-of select="item[number($index)]"/>

232

Path Expressions

or write the boolean predicate in full:

<xsl:value-of select="item[position()=$index]"/>

As explained in Chapter 4, every expression is evaluated in a particular context. The context in which the
predicate is evaluated is not the same as the context for the expression that it forms part of. The predicate
is applied separately to each node selected by the axis, and each time it is evaluated:

❑ The context node (the node selected by «.») is the node to which the predicate is being
applied.

❑ The context position (the result of the position() function) is the number assigned to that node
within the sequence of nodes.

❑ The context size (the result of the last() function) is the number of nodes in the sequence.

As we saw earlier the number assigned to a node selected by an AxisStep depends on the direction of
the axis used in that AxisStep. Some axes (child, descendant, descendant-or-self, following,
following-sibling) are forward axes, so the position() function numbers the nodes in document order.
Other axes (ancestor, ancestor-or-self, preceding, preceding-sibling) are reverse axes, so position()
numbers them in reverse document order. The self and parent axes return a single node, so the order is
irrelevant. The ordering of nodes on the attribute and namespace axes is undefined, so positional
predicates on these axes don’t make much sense, though they are permitted.

The following table shows some examples of positional predicates.

Expression Description

para[1] The first <para> child element of the context node

para[last()] Selects the last <para> child element of the context node

para[position()!=1] Selects all <para> child elements of the context node, other than
the first

para[position()=1 to 5] Selects the first five <para> elements. This works because the «=»
operator returns true if the left-hand operand (position())
contains a value that is equal to one of the items in the right hand
operand (1 to 5), which is true if position() is in the range
1 to 5

para[last()-1] Returns the last but one <para> child of the context node

para[3.2] Returns an empty sequence. The value 3.2 is treated as a numeric
predicate. The value of position() will never be equal to 3.2, so
no elements are selected

para[position()] Selects all child <para> elements. The predicate expands to
«[position()=position()]», which is always true

para[position()-1] Returns an empty sequence. The predicate expands to
«[position()=position()-1]», which is always false

Continues

233

Chapter 7

Expression Description

para[number(@nr)] Returns every child <para> element that has a nr attribute whose
numeric value is equal to the position of the <para> element in the
sequence. This rather perverse example illustrates that specifying a
numeric predicate gives no guarantee that at most one node will be
selected

An AxisStep can contain a sequence of zero or more predicates. Specifying two separate predicates is
not the same thing as combining the two predicates into one with an «and» operator. The reason is that
the context for the second predicate is different from the context for the first. Specifically, in the second
predicate, the context position (the value of the position() function) and the context size (the value of
the last() function) consider only those nodes that successfully passed through the previous predicate.
What this means in practice is shown in the examples below:

Expression Description

book[author="P. D. James"][1] The first book that was written by
P. D. James

book[1][author="P. D. James"] The first book, provided that it was
written by P. D. James

book[position()=1 and
author="P. D. James"]

The first book, provided that it was
written by P. D. James. This is the
same as the previous example,
because in that example the second
predicate is not dependant on the
context position

Combining Sets of Nodes
Until now this chapter has been all about path expressions. This section describes operators that combine
two sets of nodes. Although these aren’t technically path expressions, they are invariably used in
conjunction with path expressions, so it’s useful to deal with them at the same time. The operators are:

❑ Union, written «union» or «|», which includes a node in the result if it is present in either of the
two supplied sets, eliminating any duplicates

❑ Intersection, written «intersect», which includes a node in the result if it is in both the two
sets

❑ Difference, written «except», which includes a node in the result if it is in the first set and is not
in the second.

234

Path Expressions

XPath 2.0 does not actually support sets (that is, collections with no intrinsic order and with duplicates
disallowed) in its data model. Instead, sets of nodes are simulated using sequences. The actual type of the
operands for the union, intersect and except operators is «node()*», which allows any sequence
of nodes. This is also the type of the result. But semantically, these operators ignore any duplicates in the
input sequence, and they ignore the order of the nodes in the input sequence. The result sequence will
never contain any duplicates, and the results will always be in document order.

As with path expressions, when we talk about duplicate nodes in this section, we are always talking
about multiple references to the same node, that is, we are concerned with node identity, not with the
values contained in the nodes. Unfortunately the XPath 2.0 data model talks about sequences containing
nodes, when it really means that sequences contain references to nodes. I personally feel uncomfortable
talking about a sequence containing two nodes that have the same identity, which is the language used in
the specification: I find it much more natural to talk about a sequence containing two references to the
same node, because there aren’t two nodes, there is only one.

There have been many debates about whether the node-sets of XPath 1.0 were true sets or not, given that
(in XSLT at any rate) the nodes were always processed in document order. The answer is that they were
indeed true sets, because it was not possible to have distinct collections such as (A, B), (B, A), and (A, B, B,
A). There was only one collection in the XPath 1.0 model that could contain the nodes A and B, and the
fact that the nodes were always processed in a canonical order doesn’t change this.

In XPath 2.0, it is possible to have distinct sequences such as (A, B), (B, A), and (A, B, B, A). However, the
operators described in this section treat these sequences as if they were identical. So these operators are
using sequences to simulate node-sets, and I shall therefore use the term node-sets to describe these values.

Syntax

Expression Syntex

UnionExpr IntersectExceptExpr (
(«union» | «|») IntersectExceptExpr)*

IntersectExceptExpr PathExpr (
(«intersect» | «except»)
PathExpr)*

This syntax shows that the «union» operator (which has «|» as a synonym) binds less tightly than the
«intersect» and «except» operators. So the expression «A union B intersect C» means
«A union (B intersect C)». As always, there is no shame in adding extra parentheses if you’re not
sure about the rules (or even if you are).

Both operands to the union, intersect, and except operators must be sequences of zero or more nodes. A
type error will occur if this isn’t the case. The input sequences don’t have to be in any particular order,
and they are allowed to contain duplicates; the original order and the duplicates will have no effect on the
result.

235

Chapter 7

Examples

Expression Description

*/figure | */table Returns a node-set containing all the grandchildren of
the context node that are <figure> or <table>
elements. This can also be written
«*/(figure|table)»

book[not(@publisher)] |
book[@publisher=’Wrox’]

Returns all the <book> children of the context node
that either have no publisher attribute, or that have
a publisher attribute equal to “Wrox”. Note that the
same result could be achieved, perhaps more
efficiently, by using the «or» operator in the predicate

(.|..)/title Returns all the <title> elements that are immediate
children of either the context node or the parent of the
context node

sum(
(book|magazine)/@sales)

Returns the total of the sales attribute values for all
the <book> and <magazine> children of the context
node

(//* | //@*)
[.=’nimbus2000’]

Returns a node-set containing all the element and
attribute nodes in the document whose string value is
«nimbus2000»

following::para intersect
$chap//*

Returns all <para> nodes that are after the context
node in document order, provided that they are
descendants of the node in variable $chap

key(’a’, ’Gilbert’)
intersect
key(’a’, ’Sullivan’)

The key() function is defined in XSLT to select nodes
using a defined index. This expression selects nodes
that are indexed both under «Gilbert» and under
«Sullivan»

exists(. intersect $arg) Returns true if the context node is included in the
sequence $arg

@* except @note Selects all the attributes of the context node except the
note attribute

Usage
The «intersect» operator is also useful for testing whether one node is a member of a given set of
nodes. For example, the following expression tests whether node $N is a descendant of node $A:

if ($N intersect $A/descendant::node()) then ...

This works because if $N is among the descendants of $A, the intersection will contain $N, and the
effective boolean value of a sequence containing one node is true. If $N is not among the descendants of
$A, the intersection will be empty, and the effective boolean value of an empty sequence is false.

236

Path Expressions

The «except» operator is useful when there is a need to process all the child elements of a node, or all its
attributes, except for certain specific exclusions. For example, the XSLT instruction

<xsl:copy-of select="@* except @last-changed"/>

copies all the attributes of the context node to the result document except for the last-changed
attribute (if there is one).

Set Intersection and Difference in XPath 1.0
XPath 1.0 provided no equivalent to the «intersect» and «except» operators. In XPath 1.0, if you
want to form the intersection between two node-sets $p and $q, the following rather tortuous expression
achieves it:

$p [count(. | $q) = count($q)]

This selects the nodes in $p that are also in $q. They must be in $q, because their union with $q has the
same number of nodes as $q itself.

Similarly, the following XPath 1.0 expression finds the nodes that are in $p and not in $q:

$p [count(. | $q) != count($q)]

If you see these constructs when you are upgrading XPath 1.0 code, you can confidently replace them
with the XPath 2.0 constructs:

$p intersect $q
$p except $q

which are not only a lot easier to understand, but will probably be much more efficient as well.

Some XSLT 1.0 processors also provided extension functions to implement set intersection and difference,
for example, the functions defined in the EXSLT library (http://www.exslt.org). These have been
superseded by the new operators.

Summary

XPath expressions are used to select data from the source document and to manipulate it to generate data
to place in the result document. Path expressions play the same role for XML as the SQL SELECT
statement plays for relational databases—they allow us to select specific parts of the document for
transformation, so that we can achieve the required output.

This chapter has provided a full description of the meaning of path expressions, the «/» operator, steps,
axes, node tests, and predicates, and it also covered the other operations defined on sequences of nodes,
namely the union, intersect, and except operators.

The next chapter will describe constructs in the XPath language that operate on any kind of sequence,
whether it contains nodes, atomic values, or a mixture of the two.

237

Sequence Expressions
One of the most notable innovations in XPath 2.0 is the ability to construct and manipulate
sequences. This chapter is devoted to an explanation of the constructs in the language that help
achieve this.

Sequences can consist either of nodes, or of atomic values, or of a mixture of the two. Sequences
containing nodes only are a generalization of the node-sets offered by XPath 1.0. In the previous
chapter we looked at the operators for manipulating node-sets, in particular, path expressions, and
the operators «union», «intersect», and «except».

In this chapter we look at constructs that can manipulate any sequence, whether it contains nodes,
atomic values, or both. Specifically, the chapter covers the following constructs:

❑ Sequence concatenation operator: «,»

❑ Numeric range operator: «to»

❑ Filter expressions: «a[b]»

❑ Mapping expressions: «for»

❑ Quantified expressions: «some» and «every»

First, some general remarks about sequences.

Sequences (unlike nodes) do not have any concept of identity. Given two values that are both
sequences, you can ask (in various ways) whether they have the same contents, but you cannot ask
whether they are the same sequence.

Sequences are immutable. This is part of what it means for a language to be free of side effects. You
can write expressions that take sequences as input and produce new sequences as output, but you
can never modify an existing sequence in place.

Sequences cannot be nested. If you want to construct trees, build them as XML trees using nodes
rather than atomic values.

A single item is a sequence of length one, so any operation that applies to sequences also applies to
single items.

Chapter 8

Sequences do not have any kind of type label that is separate from the type labels attached to the items in
the sequence. As we will see in Chapter 9, you can ask whether a sequence is an instance of a particular
sequence type, but the question can be answered simply by looking at the number of items in the
sequence, and at the type labels attached to each item. It follows that there is no such thing as (for
example) an “empty sequence of integers” as distinct from an “empty sequence of strings”. If the
sequence has no items in it, then it also carries no type label. This has some real practical consequences,
for example, the sum() function, when applied to an expression that can only ever return a sequence of
xs:duration values, will return the integer 0 (not the zero-length duration) when the sequence is
empty, because there is no way at runtime of knowing that if the sequence hadn’t been empty, its items
would have been durations.

Functions and operators that attach position numbers to the items in a sequence always identify the first
item as number 1 (one), not zero. (Although programming with a base of zero tends to be more
convenient, Joe Public has not yet been educated into thinking of the first paragraph in a chapter as
paragraph zero, and the numbering convention was chosen with this in mind.)

This chapter covers the language constructs that handle general sequences, but there are also a number
of useful functions available for manipulating sequences, and these are described in Chapter 10.
Relevant functions include: count(), deep-equal(), distinct-values(), empty(), exists(),
index-of(), insert-before(), remove(), subsequence(), and unordered().

The Comma Operator
The comma operator can be used to construct a sequence by concatenating items or sequences. We
already saw the syntax in Chapter 5, because it appears right at the top level of the XPath grammar:

Expression Syntax

Expr ExprSingle («,»ExprSingle)*

ExprSingle ForExpr
| QuantifiedExpr
| IfExpr
| OrExpr

Although the production rule ExprSingle lists four specific kinds of expression that can appear as an
operand of the «,» operator, these actually cover any XPath expression whatsoever, provided it does not
contain a top-level «,».

Because the «,» symbol also has other uses in XPath (for example, it is used to separate the arguments in
a function call, and also to separate clauses in «for», «some», and «every» expressions, which we will
meet later in this chapter), there are many places in the grammar where use of a general Expr is
restricted, and only an ExprSingle is allowed. In fact, the only places where a general Expr (one that
contains a top-level comma) is allowed are:

❑ As the top-level XPath expression

❑ Within a parenthesized expression

240

Sequence Expressions

❑ Within the parentheses of an «if» expression

❑ Within square brackets as a predicate

Neither of the last two is particularly useful, so in practice the rule is: if you want to use the comma
operator to construct a list, then it must either be at the outermost level of the XPath expression, or it must
be written in parentheses.

For example, the max() function expects a single argument, which is a sequence. If you want to find the
maximum of three values $a, $b, and $c, you can write:

max(($a, $b, $c))

The outer parentheses are part of the function call syntax; the inner parentheses are needed because the
expression «max($a, $b, $c)» would be a function call with three parameters rather than one, which
would be an error.

XPath does not use the JavaScript convention whereby a function call with three separate parameters is the
same as a function call whose single parameter is a sequence containing three items.

The operands of the «,» operator can be any two sequences. Of course, a single item is itself a sequence,
so the operands can also be single items. Either of the sequences can be empty, in which case the result of
the expression is the value of the other operand.

The comma operator is often used to construct a list, as in:

if ($status = (’current’, ’pending’, ’deleted’, ’closed’)) then ...

which tests whether the variable $status has one of the given four values (recall from Chapter 6 that the
«=» operator compares each item in the sequence on the left with each item in the sequence on the right,
and returns true if any of these pairs match). In this construct, you probably aren’t thinking of «,» as
being a binary operator that combines two operands to produce a result, but that’s technically what it is.
The expression «A,B,C,D» technically means «(((A,B),C),D)», but since list concatenation is
associative, you don’t need to think of it this way.

The order of the items in the two sequences is retained in the result. This is true even if the operands are
nodes: there is no sorting into document order. This means that in XSLT, for example, you can use a
construct such as:

<xsl:apply-templates select="title, author, abstract"/>

to process the selected elements in a specified order, regardless of the order in which they appear in the
source document. This example is not necessarily processing exactly three elements: there might, for
example, be five authors and no abstract. Since the path expression «author» selects the five authors in
document order, they will be processed in this order, but they will be processed after the <title>
element whether they precede or follow the title in the source document.

241

Chapter 8

Examples
Here are some examples of expressions that make use of the «,» operator to construct sequences.

Expression Effect

max(($net, $gross)) Selects whichever of $net and $gross is larger,
comparing them according to their actual data type (and
using the default collation if they are strings)

for $i in (1 to 4, 8, 13)
return $seq[$i]

Selects the items at positions 1, 2, 3, 4, 8, and 13 of the
sequence $seq. For the meaning of the «to» operator, see
the next section

string-join((@a, @b,
@c), "-")

Creates a string containing the values of the attributes @a,
@b, and @c of the context node (in that order), separated
by hyphens

(@code, "N/A")[1] Returns the code attribute of the context node if it has
such an attribute, or the string "N/A" otherwise. This
expression makes use of the fact that when the code
attribute is absent, the value of @code is an empty
sequence, and concatenating an empty sequence with
another sequence returns the other sequence (in this case
the singleton string "N/A") unchanged. The predicate in
square brackets makes this a filter expression: filter
expressions are described later in this chapter, on page 244

book/(author, title,
isbn)

Returns a sequence containing the <author>, <title>,
and <isbn> children of a <book> element, in document
order. Although the «,» operator retains the order as
specified, the «/» operator causes the nodes to be sorted
into document order. So in this case the «,» operator is
exactly equivalent to the union operator «|»

Numeric Ranges: The «to» Operator
A range expression has the syntax:

Expression Syntax

RangeExpr AdditiveExpr («to»AdditiveExpr)?

The effect is to return a sequence of consecutive integers in ascending order. For example, the expression
«1 to 5» returns the sequence «1,2,3,4,5».

The operands do not have to be constants, of course. A common idiom is to use an expression such as
«1 to count($seq)» to return the position number of each item in the sequence $seq. If the second
operand is less than the first (which it will be in this example if $seq is an empty sequence), then the

242

Sequence Expressions

range expression returns an empty sequence. If the second operand is equal to the first, the expression
returns a single integer, equal to the value of the first operand.

The two operands must both evaluate to single integers. You can use an untyped value provided it is
capable of being converted to an integer: for example you can write «1 to @width» if width is an
attribute in a schema-less document containing the value «34». However, you can’t use a decimal or a
double value without converting it explicitly to an integer. If you write «1 to @width+1», you will get a
type error, because the value of «@width+1» is the double value 35.0e0. Instead, write «1 to
xs:integer(@width)+1». or «1 to 1 + @width idiv 1».

It’s an error if either operand is an empty sequence. For example, this would happen if you ran any of the
examples above when the context node did not have a width attribute. Supplying a sequence that
contains more than one item is also an error.

If you want a sequence of integers in reverse order, you can use the reverse() function described
in Chapter 10. For example, «reverse(1 to 5)» gives you the sequence «5,4,3,2,1». In an earlier
draft of the specification you could achieve this by writing «5 to 1», but the rules were changed because
this caused anomalies for the common usage «1 to count($seq)» in the case where $seq is empty.

Although the semantics of this operator are expressed in terms of constructing a sequence, a respectable
implementation will evaluate the sequence lazily, which means that when you write «1 to 1000000» it
won’t actually allocate space in memory to hold a million integers. Depending how you actually use the
range expression, in most cases an implementation will be able to iterate over the values one to a million
without actually laying them out end-to-end as a list in memory.

Examples
Here are some examples of expressions that make use of the «to» operator to construct sequences.

Expression Effect

for $n in 1 to 10 return
$seq[n]

Returns the first 10 items of the sequence $seq. The «for»
expression is described later in this chapter, on page 247

$seq[position() = 1 to 10] Returns the first 10 items of the sequence $seq. This achieves
the same effect as the previous example, but this time using a
filter expression alone. It works because the «=» operator
compares each item in the first operand (there is only one, the
value of position()), with each item in the second operand
(that is, each of the integers 1 to 10), and returns true if any of
them matches. It’s reasonable to expect that XPath processors
will optimize this construct so that this doesn’t actually
involve 10 separate comparisons for each item in the sequence.

Note that you can’t simply write «$seq[1 to 10]». If the
predicate isn’t a single number, it is evaluated as a boolean,
and the effective boolean value of the sequence «1 to 10» is
true, so all the items will be selected

Continues

243

Chapter 8

Expression Effect

string-join(
for $i in 1 to $N
return " ", "")

Returns a string containing $N space characters

for $i in 1 to
count($S) return
($S[$i], $T[$i])

Returns a sequence that contains pairs of corresponding values
from the two input sequences $S and $T. For example, if $S is
the sequence ("a","b","c") and $T is the sequence
("x","y","z"), the result will be the sequence
("a","x","b","y","c","z")

Filter Expressions
A filter expression is used to apply one or more Predicates to a sequence, selecting those items in the
sequence that satisfy some condition.

Expression Syntax

FilterExpr PrimaryExpr Predicate*

Predicate «[»Expr «]»

A FilterExpr consists of a PrimaryExpr whose value is a sequence, followed by zero or more
Predicates that select a subset of the items in the sequence. Each predicate consists of an expression
enclosed in square brackets, for example «[@name=’London’]» or «[position()=1]».

The way the syntax is defined, every PrimaryExpr is also a trivial FilterExpr, including simple
expressions such as «23», «’Washington’», and «true()».

Since in XPath 2.0 every value is a sequence, it is possible to apply predicates to any value whatsoever.
For example, it is legitimate to write «1[$param]». This returns the value «1» if $param is true, or an
empty sequence if $param is false.

Each predicate is applied to the sequence in turn; only those items in the sequence for which the predicate
is true pass through to the next stage. The final result consists of those items in the original sequence that
satisfy each of the predicates, retaining their original order.

A predicate may be either a numeric predicate (for example «[1]» or «[last()-1]»), or a boolean
predicate (for example «[count(*) gt 5]» or «[@name and @address]»). If the value of the
expression is a single number, it is treated as a numeric predicate; otherwise it is converted, if necessary,
to an xs:boolean, and is treated as a boolean predicate. The conversion is done using the rules for
computing the effective boolean value, which are the same rules as are used for the condition in an «if»
expression (described in Chapter 5 on page 117) or for the operand of the boolean() function
(described in Chapter 10 on page 304), except that if the value is a single number—which might be an

244

Sequence Expressions

integer, decimal, float, or double—then the predicate is treated as a numeric predicate rather than a
boolean predicate.

If the value of the predicate contains nodes, there is no automatic atomization of the nodes (that is, the
values of the nodes are not extracted). In fact, if the value of the predicate contains one or more nodes,
then its effective boolean value is always true. This means, for example, that «person[@isMarried]»
selects any <person> element that has an isMarried attribute, irrespective of the value of that
attribute. If you want to test the value of the attribute, you can atomize it explicity using the data()
function, or you can use a comparison such as «person[@isMarried=true()]».

A numeric predicate whose value is N is equivalent to the boolean predicate «[position() eq N]». So,
for example, the numeric predicate «[1]» means «[position() eq 1]», and the numeric predicate
«[last()]» means «[position() eq last()]».

It’s important to remember that this implicit testing of position() happens only when the predicate
expression actually evaluates to a single number. For example, «$paras[1 or last()]» does not mean
«$paras[position()=1 or position()=last()]», because the result of evaluating «1 or last()»
is a boolean, not a number (and as it happens, it will always be true). Similarly, «book[../@book-nr]»
does not mean «book[position()=../@book-nr]», because the result of «../@book-nr» is a node,
not a number.

A neat way to force the node to be atomized in such cases is to use the unary «+» operator: write
«book[+../@book-nr]».

A consequence of the rule is that if the predicate is a number that is not equal to an integer, the result will
be an empty sequence. For example, «$S[last() div 2]» will select nothing when the value of last()
is an odd number. If you want to select a single item close to the middle of the sequence, use
«$S[last() idiv 2]», because the idiv operator always returns an integer.

In nearly all practical cases, a numeric predicate selects either a single item from the sequence, or no items
at all. But this is not part of the definition. To give a counter-example, «$x[count(*)]» selects every
node whose position is the same as the number of children it has.

As discussed in Chapter 4, every XPath expression is evaluated in some context. For an expression used
as a predicate, the context is different from the context of the containing expression. While evaluating
each predicate, the context is established as follows:

❑ The context item (the item referenced as «.») is the item being tested

❑ The context position (the value of the position() function) is the position of that item within the
sequence of items surviving from the previous stage

❑ The context size (the value of the last() function) is the number of items surviving from the
previous stage.

To see how this works, consider the filter expression «$headings [self::h1] [last()]». This
starts with the sequence of nodes that is the value of the variable «$headings» (if this sequence
contains items that are not nodes, then evaluating the predicate «self::h1» will raise an error). The
first predicate is «[self::h1]». This is applied to each node in «$headings» in turn. While it is

245

Chapter 8

being applied, the context node is that particular node. The expression «self::h1» is a path expression
consisting of a single AxisStep: it selects a sequence of nodes. If the context node is an
<h1> element this sequence will contain a single node—the context node. Otherwise, the sequence will
be empty. When this value is converted to a boolean, it will be true if it contains a node, and false if it
is empty. So the first predicate is actually filtering through those nodes in «$headings» that are <h1>
elements.

The second predicate is now applied to each node in this sequence of <h1> elements. In each case the
predicate «[last()]» returns the same value: a number indicating how many <h1> elements there are
in the sequence. As this is a numeric predicate, a node passes the test when «[position()=
last()]», that is, when the position of the node in the sequence (taken in its original order) is equal to
the number of nodes in the sequence. So the meaning of «$headings [self::h1] [last()]» is “the
last <h1> element in the sequence $headings.”

Note that this isn’t the same as «$headings [last()] [self::h1]», which means “the last item in
$headings, provided it is an <h1> element.”

The operation of a Predicate in a FilterExpr is very similar to the application of a Predicate in an
AxisStep (which we studied in Chapter 7, on page 230), and although they are not directly related in the
XPath grammar rules, you can often use Predicates without being fully aware which of these two
constructs you are using. For example, «$para[1]» is a FilterExpr, while «para[1]» is an
AxisStep. The main differences to watch out for are firstly, that in a path expression the predicates apply
only to the most recent Step (for example, in «book/author[1]» the «[1]» means the first author
within each book), and secondly, that in a filter expression the items are always considered in the order of
the supplied sequence (whereas in an AxisStep they can be in forward or reverse document order
depending on the direction of the axis).

Examples
Expression Description

$paragraphs[23] This FilterExpr consists of a VariableReference
filtered by a Predicate. It selects the 23rd item in the
sequence that is the value of variable $paragraphs,
taking them in the order of that sequence. If there is no
23rd item, the expression returns an empty sequence

key(’empname’, ’John
Smith’)[@loc=’Sydney’]

This FilterExpr comprises a FunctionCall filtered
by a Predicate. The key() function is available only
in XSLT. Assuming that the key «empname» has been
defined in the containing stylesheet to select employees
by name, it selects all employees named John Smith
who are located in Sydney

(//section|//subsection)
[title=’Introduction’]

This FilterExpr consists of a parenthesized
UnionExpr filtered by a Predicate. It selects all
<section> and <subsection> elements that have a
child <title> element with the content
«Introduction»

246

Sequence Expressions

Expression Description

(//@href/doc(.))
[pricelist][1]

This FilterExpr first selects all documents referenced
by URLs contained in href attributes anywhere in the
source document, by applying the doc() function to the
value of each of these attributes. The «/» operator causes
any duplicates to be removed, as described in Chapter 7.
From this set of documents it selects those whose
outermost element is named <pricelist>, and from
these it selects the first. The order of nodes that are in
different documents is not defined, so if there are several
price lists referenced, it is unpredictable which will be
selected

Where a predicate is used as part of a FilterExpr (as distinct from an AxisStep), the items are
considered in their original sequence for the purpose of evaluating the position() function within the
predicate. There are some cases where the order of the sequence is not predictable, but it is still possible to
use positional predicates. For example the result of the distinct-values() function is in an
undefined order, but you can still write «distinct-values($in)[1]» to obtain one item in the
sequence, chosen arbitrarily.

The «for» Expression
The «for» expression is one of the most powerful new features in XPath 2.0, and is closely related to the
extension to the data model to handle sequences. Its effect is to apply an expression to every item in an
input sequence, and to return the concatenated results of these expressions.

The syntax also allows several sequences to be provided as input, in which case the effect is to apply an
expression to every combination of values taken one from each sequence.

The syntax as given in the XPath 2.0 Recommendation is rather clumsy, because the grammar is designed
to share as many production rules as possible with XQuery, and the «for» expression in XPath can be
regarded as a cut-down version of XQuery’s much richer FLWOR expressions. For this book, I’ve
rewritten the syntax in the way it would probably have been presented if XQuery didn’t exist.

Expression Syntax

ForExpr «for $» VarName «in» ExprSingle
(«,» «$» VarName «in» ExprSingle)*
«return» ExprSingle

VarName QName

An ExprSingle is any XPath expression that does not contain a top-level «,» operator. If you want to
use an expression containing a «,» operator, write it in parentheses. For example the expression «for $i
in (1,5,10) return $i+1» returns the sequence «2,6,11».

247

Chapter 8

The notation «for $» indicates that for the purposes of parsing, the word «for» must be followed by a
«$» sign to be recognized as a keyword. The two parts of this compound symbol can be separated by
whitespace and comments.

We’ll look first at «for» expressions that operate on a single sequence, and then move on to the more
general case where there are multiple input sequences.

Mapping a Sequence
When used with a single sequence, the «for» expression applies the expression in the «return» clause
to each item in the input sequence. The relevant item in the input sequence is accessed not as the context
item, but as the value of the variable declared in the «for» clause.

These variables are referred to as range variables, to distinguish them from variables supplied from outside
the XPath expression, such as variables declared in an XSLT stylesheet. The term comes originally from the
branch of mathematical logic called predicate calculus, and has been adopted in a number of programming
languages based on this underlying theory.

In most cases the expression in the «return» clause will depend in some way on the range variable. In
other words, the «return» value is a function of the range variable, which means we can rewrite the
«for» expression in the abstract form:

for $x in $SEQ return F($x)

where «F($x)» represents any expression that depends on $x (it doesn’t have to depend on $x, but it
usually will).

What this expression does is to evaluate the expression «F($x)» once for each item in the input sequence
$SEQ, and then to concatenate the results, respecting the original order of the items in $SEQ.

In the simplest case, the return expression «F($x)» returns one item each time it is called. This is
illustrated in Figure 8-1, where the function «F($x)» in this example is actually the expression
«string-length($x)».

red blue green

3 4 5

Figure 8-1

We say that the expression «for $x in $SEQ return string-length($x)» maps the sequence
«"red","blue","green"» to the sequence «3,4,5».

In this case, the number of items in the result will be the same as the number of items in the input sequence.

However, the return expression isn’t constrained to return a single item, it can return any sequence of
zero or more items. For example, you could write:

for $s in ("red", "blue", "green") return string-to-codepoints($s)

248

Sequence Expressions

The function string-to-codepoints(), which is part of the standard library defined in Chapter 10,
returns for a given string, the Unicode code values of the characters that make up the string. For example,
«string-to-unicode("red")» returns the sequence «114,101,100». The result of the above
expression is a sequence of 12 integers, as illustrated in Figure 8-2.

114 101 100 98 108 117 101 103 114 101 101 110

blue greenred

Figure 8-2

The integers are returned in the order shown, because unlike a path expression, there is nothing in the
rules for a «for» expression that causes the result sequence to be sorted into document order. Indeed,
document order is not a meaningful concept when we are dealing with atomic values rather than nodes.

Examples
Expression Description

for $i in 1 to 5
return $i*$i

Returns the sequence «1,4,9,16,25». This example is a
one-to-one mapping

for $i in 0 to 4
return 1 to $i

Returns the sequence «1,1,2,1,2,3,1,2,3,4». This
example is a one-to-many mapping. Note that for the first
item in the input sequence (0), the mapping function
returns an empty sequence, so this item contributes
nothing to the result

For Expressions and Path Expressions
The items in the input sequence of a «for» expression can be atomic values or nodes, or any mixture of
the two. When applied to a sequence of nodes, «for» expressions actually behave in a very similar way
to path expressions. The expression:

for $c in chapter return $c/section

returns exactly the same result as the path expression:

chapter/section

However, there are some significant differences between «for» expressions and path expressions:

❑ In a path expression, both the input sequence and the step expression are required to return
nodes exclusively. A «for» expression can work on any sequence, whether it contains nodes or
atomic values or both, and it can also return any sequence.

249

Chapter 8

❑ Path expressions always sort the resulting nodes into document order, and eliminate duplicates. A
«for» expression returns the result sequence in the order that reflects the order of the input items.

❑ In a path expression, the context item for evaluating a step is set to each item in the input
sequence in turn. In a «for» expression, the range variable fulfils this function. The context item
is not changed. Nor are the context position and size (position() and last()) available to test
the position of the item in the input sequence.

A common mistake is to forget that «for» expressions don’t set the context node. The following example
is wrong (it’s not an error, but it doesn’t do what the writer probably intended):

(:wrong:) sum(for $i in item return @price * @qty)

The correct way of writing this is:

(:correct:) sum(for $i in item return $i/@price * $i/@qty)

Generally speaking, there is usually something amiss if the range variable is not used in the «return»
expression. However, there are exceptions to this rule. For example, it’s quite reasonable to write:

string-join(for $i in 1 to $n return "-", "")

which returns a string containing $n hyphens.

It’s also often (but not invariably) a sign of trouble if the value of the return expression depends on the
context item. But it’s not actually an error: the context item inside the return expression is exactly the
same as the context item for the «for» expression as a whole. So it’s legal to write an expression such as:

chapter/(for $i in 1 to 10 return section[$i])

which returns the first 10 sections of each chapter.

Combining Multiple Sequences
The «for» expression allows multiple input sequences to be defined, each with its own range variable.
For example, you can write:

for $c in //customer,
$o in $c/orders,
$ol in $o/line

return $ol/cost

The simplest way to think about this is as a nested loop. You can regard the «,» as a shorthand for writing
the keywords «return for», so the above expression is equivalent to:

for $c in //customer
return

for $o in $c/orders

250

Sequence Expressions

return
for $ol in $o/line
return $ol/cost

Note that each of the range variables can be referenced in the expression that defines the input sequence
for the next range variable.

In the example above, each iteration is rather like a step in a path expression; it selects nodes starting from
the node selected in the containing loop. But it doesn’t have to be this way. For example, you could
equally write an expression such as:

for $c in doc(’customers.xml’)//customer,
$p in doc(’products.xml’)//product

[$c/orders/product-code = $p/code]
return $c/line/cost

It’s still true that this is equivalent to a nested-loop expression:

for $c in doc(’customers.xml’)//customer
return

for $p in doc(’products.xml’)//product
[$c/orders/product-code = $p/code]

return $c/line/cost

The other way to think about this, particularly if you are familiar with SQL, is as a relational join. The
system isn’t actually obliged to evaluate the «for» expression using nested loops (this applies whether
you write it in the abbreviated form using multiple range variables separated with commas, or whether
you use the expanded form shown above). Instead, the optimizer can use any of the mechanisms
developed over the years in relational database technology to evaluate the join more rapidly. There’s no
guarantee that it will do so (in practice, I think XQuery implementations are likely to put a lot of effort
into join optimization, while XPath implementations might be less ambitious), so you need to use
potentially expensive constructs like this with some care.

Saxon, at the time of writing, will try to move sub-expressions out of a loop if they don’t depend on the
range variable. So the expression «doc(’products.xml’)//product» will probably only be
evaluated once, and the expression «$c/orders/product-code» will only be evaluated once for each
customer. But after this, every product code in the customer file will be compared with every product code
in the product file. In XSLT, you can avoid this overhead by using keys: see the description of the
<xsl:key> declaration and the key() function in XSLT 2.0 Programmer’s Reference.

Example
Expression Description

count(
for $i in 1 to 8,

$j in 1 to 8
return f:square($i, $j))

Assuming that «f:square(row, column)» returns an integer
identifying the piece that occupies a square on a chessboard, or
an empty sequence if the square is unoccupied, this expression
returns all the pieces on the board

251

Chapter 8

Examples in XMLSpy
The XMLSpy 2004 product (see http://www.altova.com/) includes a beta release of an XPath 2.0
processor that shows the results of an expression using a graphical user interface. In this section I will
provide a couple of examples that illustrate the results of «for» expressions using that product.

I’m using the sample document ipo.xml that comes with the product: look in the Purchase Order folder.
This consists of an outer element <ipo:purchase-order> with various namespace declarations, then
addresses for shipping and billing:

<shipTo export-code="1" xsi:type="ipo:EU-Address">
<name>Helen Zoe</name>
<street>47 Eden Street</street>
<city>Cambridge</city>
<postcode>126</postcode>

</shipTo>
<billTo xsi:type="ipo:US-Address">

<name>Robert Smith</name>
<street>8 Oak Avenue</street>
<city>Old Town</city>
<state>AK</state>
<zip>95819</zip>

</billTo>

This is followed by an <items> element containing a number of items with the general format:

<item partNum="833-AA">
<productName>Lapis necklace</productName>
<quantity>2</quantity>
<price>99.95</price>
<ipo:comment>Need this for the holidays!</ipo:comment>
<shipDate>1999-12-05</shipDate>

</item>

(Altova took this example from the XML Schema primer published by W3C, but apparently failed to
realize the subtlety that UK postcodes are alphanumeric.)

Let’s look first at the classic problem of getting the total value of the order. In this expression (Figure 8-3)
I’ll first list all the individual price and quantity elements, and then their sum.

The total is shown in the bottom line.

XMLSpy takes the namespace context for the XPath expression from the namespaces declared in the
source document, so to get this to work, I had to add the namespace declaration «xmlns:xs="http://
www.w3.org/2001/XMLSchema"» to the <ipo:purchaseOrder> element.

The second example from XMLSpy uses a join, and just to show that joins don’t arise only from
data-oriented XML, I’ve chosen an example that uses narrative XML as its source. Specifically, it uses the
XML source of the XPath 1.0 specification, which happens to be included in XMLSpy as a sample
document.

252

Sequence Expressions

Figure 8-3

The DTD for this document type allows term definitions to be marked up using a <termdef> element
such as:

<termdef id="dt-document-order" term="Document Order">There is an
ordering, <term>document order</term>, defined on all the nodes in the
document corresponding to the order in which the first character of
the XML representation of each node occurs in the XML representation
of the document after expansion of general entities.</termdef>

References to a defined term can be marked up using a <termref> element. This example shows a
<termref> that happens to be nested inside another <termdef>:

<termdef id="dt-reverse-document-order" term="Reverse Document
Order"> <term>Reverse document order</term> is the reverse of
<termref def="dt-document-order">document order</termref>.</termdef>

There is a relationship between the <termref> element and the <termdef> element, by virtue of the
fact that the def attribute of a <termref> must match the id attribute of a <termdef>. The stylesheet
used to construct the published XPath specification turns this relationship into a hyperlink. Where there
is a relationship, there is potential for performing a join, as Figure 8-4 shows.

The output here is not particularly visual. It shows a sequence of pairs, each pair containing first, a
defined term (the term attribute of a <termdef> element), and secondly, the heading (<head> element)
of the innermost <div1>, <div2>, or <div3> section that contains a reference to that term. The reason
that this is shown as a one-dimensional list rather than as a table is of course that it is a list: the XPath 2.0

253

Chapter 8

Figure 8-4

data model does not allow construction of trees, or of nested sequences, that would allow a table to be
represented more directly. In practice, you would either use a custom application to present the data, or
you would embed this XPath expression in an XSLT stylesheet or XQuery query that allows you to
construct the output as XML or (say) HTML. The resulting display would probably look something like
this:

Term Section containing Reference

Context Position Node Set Functions

Context Size Node Set Functions

Proximity Position Predicates

String Value Introduction

String Value Location Paths

String Value Abbreviated Syntax

The «some» and «every» Expressions
These expressions are used to test whether some item in a sequence satisfies a condition, or whether all
values in a sequence satisfy a condition.

254

Sequence Expressions

The syntax is like this:

Expression Syntax

QuantifiedExpr «some $» | «every $»
VarName «in»ExprSingle
(«,» «$»VarName «in»ExprSingle)*
«satisfies»ExprSingle

VarName QName

The name quantified expression comes from the mathematical notations on which these expressions are
based: the «some» expression is known in formal logic as an existential quantifier, while the «every»
expression is known as a universal quantifier.

As with the «for» expression, these two expressions bind a range variable to every item in a sequence in
turn, and evaluate an expression (the «satisfies» expression) for each of these items. Instead of
returning the results, however, a quanitified expression evaluates the effective boolean value of the
«satisfies» expression. In the case of «some», it returns true if at least one of these values is true,
while in the case of «every», it returns true if all of the values are true. The range variables can be
referenced anywhere in the expression following the «satisfies» keyword, and the expression
following the «in» keyword can use all variables declared in previous clauses of the expression (but not
the variable ranging over that expression itself).

For example:

some $p in //price satisfies $p > 10000

is true if there is a <price> element in the document whose typed value is a number greater than 10,000,
while:

every $p in //price satisfies $p > 10000

is true if every <price> element in the document has a typed value greater than 10,000.

The result of the expression (unless some error occurs) is always a single xs:boolean value.

The «satisfies» expression is evaluated to return a boolean value. This evaluation returns the effective
boolean value of the expression, using the same rules as for the boolean() function and the condition in
an «if» expression. For example, if the result of the expression is a string, the effective boolean value is
true if the string is not zero-length. The expression will almost invariably reference each one of the range
variables, although the results are still well defined if it doesn’t.

As with «for» expressions, «some» and «every» expressions do not change the
context item. This means that the following is wrong (it’s not an error, but it doesn’t
produce the intended answer):

(:wrong:) some $i in //item satisfies price > 200

It should be written instead:

(:correct:) some $i in //item satisfies $i/price > 200

255

Chapter 8

Note that if the input sequence is empty, the «some» expression will always be false, while the «every»
expression will always be true. This may not be intuitive to everyone, but it is logical—the «every»
expression is true if there are no counter-examples, for example, it’s true that every unicorn has one horn,
because there are no Unicorns that don’t have one horn. Equally, and this is where the surprise comes, it
is also true that every Unicorn has two horns.

In fact these two expressions are interchangeable: you can always rewrite

every $s in $S satisfies not(C)

as:

not(some $s in $S satisfies C)

If there is only a single range variable, you can usually rewrite the expression

some $s in $S satisfies $s/C

as

exists($S[C])

which some people prefer, as it is more concise. If the sequence $S consists of nodes, you can also leave
out the call on the exists() function, for example, you can rewrite:

if (some $i in //item satisfies $i/price * $i/quantity > 1000) ...

as:

if (//item[price*quantity > 1000]) ...

The difference is a matter of taste. The «some» expression, however, is more powerful than a simple
predicate because (like the «for» expression) it can handle joins, using multiple range variables.

The XPath 2.0 specification describes the semantics of the «some» and «every» expressions in a rather
complicated way, using a concept of “tuples of variable bindings”. This happened because the XPath 2.0
specification is generated by subsetting XQuery 1.0, whose core construct, the FLWOR expression, makes
use of this concept already. It would have been possible to specify «some» and «every» in a much
simpler way for XPath users. In fact, the expression:

some $s in $S, $t in $T, $u in $U satisfies CONDITION

has exactly the same effect as the expression:

exists(for $s in $S, $t in $T, $u in $U return boolean(CONDITION))[.]

while the expression:

every $s in $S, $t in $T, $u in $U satisfies CONDITION

256

Sequence Expressions

has exactly the same effect as the expression:

empty(for $s in $S, $t in $T, $u in $U return not(CONDITION))[.]

The rather unusual predicate «[.]» selects all the items in a sequence whose effective boolean value is
true. In the first case, the result is true if the result of the «for» expression contains at least one value
that is true, while in the second case, the result is true if the result of the «for» expression contains no
value that is false.

(The functions exists() and empty() are described in Chapter 10. The exists() function returns
true if the supplied sequence contains one or more items, while empty() returns true if the sequence
contains no items.)

Examples
Expression Description

some $i in //item
satisfies $i/price gt 200

Returns true if the current document
contains an <item> element with a <price>
child whose typed value exceeds 200

some $n in 1 to count($S)-1
satisfies $S[$n] eq S[$n+1]

Returns true if there are two adjacent values in
the input sequence $S that are equal

every $p in //person
satisfies
$p/@dob castable as xs:date

Returns true if every <person> element in the
current document has a dob attribute that
represents a valid date, according to the XML
Schema format YYYY-MM-DD

some $k in //keyword,
$p in //para
satisfies contains($p, $k)

Returns true if there is at least one <keyword>
in the document that is present in at least one
<para> element of the document

every $d in //termdef/@id
satisfies
some $r in //termref
satisfies $d eq $r/@def

Returns true if every <termdef> element with
an id attribute is referenced by at least one
<termref> element with a matching def
attribute

Quantification and the «=»Operator
An alternative to using the «some» expression (and sometimes also the «every» expression) is to rely on
the implicit semantics of the «=» operator, and other operators in the same family, when they are used to
compare sequences. As we saw in Chapter 6, these operators can be used to compare two sequences, and
return true if any pair of items (one from each sequence) satisfies the equality condition.

For example, the expression:

//book[author="Kay"]

257

Chapter 8

means the same as

//book[some $a in author satisfies $a eq "Kay"]

Similarly, the expression:

//book[author=("Kay", "Tennison", "Carlisle")]

means the same as:

//book[some $a in author,
$s in ("Kay", "Tennison", "Carlisle")

satisfies $a eq $s]

It’s a matter of personal style which one you choose in these cases. However, if the operator is something
more complex than straight equality—for example, if you are comparing the two values using the
compare() function with a non-default collation—then the only way to achieve the effect within XPath
is to use a «some» or «every» expression.

Errors in «some»and «every»Expressions
Dynamic (runtime) errors can occur in «some» and «every» expressions just as in any other kind of
XPath expression, and the rules are the same. But for these expressions the rules have some interesting
consequences that are worth exploring.

Let’s summarize the rules here:

❑ If a dynamic error occurs when evaluating the «satisfies» expression, then the «some» or
«every» expression as a whole fails.

❑ As soon as the system finds an item in the sequence for which the «satisfies» expression is
true (in the case of «some») or false (in the case of «every») then it can stop the evaluation. It
doesn’t need to look any further. This means that it might not notice errors that would be found if
it carried on to the bitter end.

❑ The system can process the input sequence in any order that it likes. This means that if there is
one item for which evaluating the «satisfies» expression returns true, and another for which
it raises an error, then you can’t tell whether the «some» expression will return true or raise the
error.

Some systems might deliberately choose to exploit these rules by evaluating the error cases last (or
pretending to do so) so as to minimize the chance of the expression failing, but you can’t rely on this.

What does this mean in practice? Suppose you have an attribute defined in the schema as follows:

<xs:attribute name="readings">
<xs:simpleType>

<xs:list>
<xs:simpleType>
<xs:union>

258

Sequence Expressions

<xs:simpleType base="xs:decimal"/>
<xs:simpleType base="xs:string"/>

<xs:enumeration value="n/a"/>
</xs:simpleType>

</xs:union>
</xs:simpleType>

</xs:list>
</xs:simpleType>

</xs:attribute>

Or to put it more simply, the attribute’s typed value is a list of atomic values, each of which is either a
decimal number or the string value «n/a». For example, the attribute might be written
«readings="12.2 -8.4 5.6 n/a 13.1"».

Now suppose you want to test whether the set of readings includes a negative value. You could write:

if (some $a in data(@readings) satisfies $a lt 0) then ...

The chances are you will get away with this. Most processors will probably evaluate the condition
«$a lt 0» against each value in turn, find that the condition is true for the second item in the list, and
return true. However, a processor that decided to evaluate the items in reverse order would encounter
the value «n/a», compare this with zero, and hit a type error: you can’t compare a string with a number.
So one processor will give you the answer true, while another gives you an error.

You can protect yourself against this error by writing the expression as:

if (some $a in data(@readings)[. instance of xs:decimal]
satisfies $a lt 0)

then ...

Or in this case, you can mask the error by writing:

if (some $a in data(@readings) satisfies number($a) lt 0) then ...

This works because «number(’n/a’)» returns NaN (not-a-number), and «NaN lt 0» returns false.

Summary

This chapter covered all the various kinds of expressions in the XPath language that are designed to
manipulate general sequences, specifically:

❑ The «,» operator, which appends two sequences

❑ The «to» operator, which forms a sequence of ascending integers

❑ Filter expressions, which are used to find those items in a sequence that satisfy some predicate

❑ The «for» expression, which applies an expression to every item in a sequence and returns the
results, as a new sequence

❑ The «some» and «every» expressions, which test whether a condition is true for some value (or
every value) in an input sequence, returning a boolean result.

259

Chapter 8

Don’t forget that these are not the only constructs available for manipulating sequences. For sequences of
nodes, path expressions can be used, as well as the «union», «intersect», and «except» operators, as
discussed in Chapter 7. And in Chapter 10 you will find descriptions of all the functions in the standard
XPath library, including many functions that are useful for operating on sequences, for example,
count(), deep-equal(), distinct-values(), empty(), exists(), index-of(),
insert-before(), remove(), subsequence(), and unordered().

The next chapter deals with operations involving types: operations that convert a value of one type into a
value of another type, and operations that test the type of a value.

260

Type Expressions
This chapter is concerned with XPath expressions that involve types. This includes operations to
convert a value of one type to a value of another type (which is called casting), and operations to
test whether a value belongs to a particular type.

The type system for XPath was fully explained in Chapter 3. Recall in particular that there are two
separate but related sets of types we are concerned with:

❑ Every value in XPath (that is, the result of every expression) is an instance of a sequence
type. This reflects the fact that every XPath value is a sequence. A sequence type in general
defines an item type that each of the items in the sequence must conform to, and a cardinality
that constrains the number of items in the sequence. The items may be either nodes or
atomic values, so item types divide into those that permit nodes and those that permit
atomic values. There are also two special item types, the type item(), which permits
anything, and the type empty(), which permits nothing.

❑ Every element and attribute node conforms to a type definition contained in a schema,
or a built-in type definition that is implicit in every schema. To distinguish these clearly
from sequence types (something that the spec does not always do) I will refer to these
types as schema types. A schema type may be either a simple type or (for elements only)
a complex type. A simple type may be either a list type, a union type, or an atomic type.
A type definition constrains the contents of a node (that is, the value of an attribute,
or the attributes and children of an element); it does not constrain the name of the
node.

We need to use careful language to avoid confusing these two views of the type system. When we
have an XPath value that is a node, we will speak of the node being an instance of a sequence
type—for example, every element is an instance of the sequence type element(). At the same time,
the node is annotated with a schema type—for example, an element node may be annotated as an
mf:invoice (which will be the name of a complex type defined in some schema).

These two sets of types (sequence types and schema types) overlap: in particular, atomic types such
as xs:integer belong to both sets. However, list types, union types, and complex types are never
used as item types or sequence types, they are used only to annotate nodes. Equally, item types such
as comment()are only used in sequence types, they are never used to annotate nodes.

Chapter 9

The first part of this chapter is concerned with conversion of values from one type to another. These
types are always atomic types; no conversions are defined for any types other than atomic types.
The process of atomization, which extracts the typed value of a node, could be regarded as a
conversion, but we won’t treat it as such for our present purposes.

Atomic types can be referred to by the name given to them in the schema. A schema can define
anonymous atomic types, but because these have no name, they can’t be referenced in an XPath
expression. Named atomic types are always defined by a top-level <xs:simpleType> element in a
schema (more specifically, by an <xs:simpleType> element that is a child of either an <xs:schema>
element or an <xs:redefine> element), and these elements always have a name attribute.

The final part of this chapter deals with two operators («instance of» and «treat as») that take as
their “operands” an arbitrary XPath value (that is, a sequence), and a sequence type. (I’ve written
“operands” in quotes, because a true operand is always a value, and in the XPath view of the world,
types are not values). These two constructs require a special syntax for describing sequence types. For
example, «attribute(*, xs:date)?» describes a sequence type whose item type matches any
attribute node annotated as an xs:date, and whose cardinality allows the sequence to contain zero or
one values. I will refer to such a construct as a sequence type descriptor, because the construct seems to need
a name, and the XPath specification doesn’t give it one.

Converting Atomic Values
The operation of converting an atomic value of one type into an atomic value of another type is called casting.

The word casting is used with the meaning that it has in the SQL language, which is subtly different from
the usage in many other programming languages. In Java, the casting operation is more like the «treat
as» operator described later in this chapter, which doesn’t actually change the value from one type to
another. But casts in Java perform a dual role, they are also used for conversions among the primitive types.

As well as an operator to perform a cast, XPath also provides a second operator to test whether a cast is
possible. This has been provided because there is no way of recovering from the error that occurs when a
cast fails (if, for example, you convert a string to a date and the string does not contain a valid date).
Instead of attempting the cast and then dealing with the error when it fails, XPath encourages you first to
test whether it will succeed, and then to perform the conversion only if this is the case. So if $p is a
user-supplied parameter that is supposed to contain a valid date, you can write:

if ($p castable as xs:date) then xs:date($p) else ()

The syntax for the «cast as» and «castable as» operators is shown below. Both operators are written
as compound tokens.

Expression Syntax

CastableExpr CastExpr («castable as»SingleType)?

CastExpr UnaryExpr («cast as»SingleType)?

SingleType AtomicType «?»?

AtomicType QName

262

Type Expressions

The rule for SingleType is confusing at first sight. It means that the AtomicType may optionally be
followed by a question mark.

In all these cases, the AtomicType must correspond to the name of an atomic type (that is, a simple
type that is not a list type or a union type) in the static context for the XPath expression. Most
commonly, this will be one of the built-in types such as xs:integer or xs:date, but it can also be a
user-defined type. The type name is written as a QName, and its namespace prefix must therefore have
been declared to reference the targetNamespace of the schema in which the type is defined. If the
name has no prefix, the default namespace for elements is used; in XSLT, this will be the null
namespace, unless the xpath-default-namespace attribute has been set to identify a different
namespace.

The concept of the static context was described in Chapter 4. An atomic type will be present in the static
context either if it is a built-in type such as xs:date, or if it is defined in a schema that has been explicitly
imported using a host-language construct such as <xsl:import-schema>in XSLT.

A question mark after the type name means that an empty sequence is allowed as the value. For example,
the expression «@A cast as xs:integer» will fail if the attribute A does not exist, but the expression
«@A cast as xs:integer?» will succeed, returning an empty sequence.

The «castable as» expression returns true if the corresponding «cast as» expression would succeed,
and false if the corresponding «cast as» expression would fail. For example, the string «2003-02-29»
is not a valid date, so the expression «"2003-02-29" castable as xs:date» returns false.

Both the «cast as» and «castable as» operators perform atomization on the supplied value. This
means that if the supplied value is a node, its typed value is first extracted. If the operand (after
atomization) is a sequence of more than one item, then a type error occurs in the case of «cast as», or the
value false is returned in the case of «castable as».

There is a shorthand for a «cast as» expression, which is to use a constructor function. For example, the
expression «@A cast as xs:integer» can be rewritten as a function call «xs:integer(@A)». There is
a constructor function available for every built-in atomic type, and for every named atomic type in an
imported schema, and its effect is identical to using the «cast as» expression. The only cases where you
need to use the full «cast as» expression are:

❑ When you want to use the «?» after the atomic type name to indicate that an empty sequence is
allowed.

❑ When the type name is defined in a schema with no target namespace, and the default function
namespace is not the null namespace. In XSLT, the default function namespace is always the
namespace holding the core library functions such as string(), contains(), and number().
This means that if you import a schema that has no target namespace, you will have no way of
calling constructor functions for the atomic types defined in this schema, which might well clash
with the names of functions in the core library. So in this situation, you have to use the more
verbose «cast as» syntax.

The sections that follow describe all the rules for converting a supplied value to a target type. We’ll start
by considering the rules for converting from a primitive type to another primitive type, and then go on to
consider how derived types are handled.

263

Chapter 9

Converting between Primitive Types
The type conversions described in this section start with an atomic value that is labeled with a primitive
type. For these purposes we consider the primitive types to be not only the primitive types defined in
Part 2 of the XML Schema specification, but also the additional XPath-defined atomic types:
xdt:untypedAtomic, xdt:dayTimeDuration, and xdt:yearMonthDuration.

The following table lists for each source type, the permitted destination types. The detailed rules for these
conversions are then given in the subsequent sections, which for ease of reference are arranged
alphabetically according to the type of the source value for the conversion.

Source Type Permitted Result Types

anyURI anyURI, string, untypedAtomic

base64Binary base64Binary, hexBinary, string, untypedAtomic

boolean boolean, decimal, double, float, string, untypedAtomic

date date, dateTime, gDay, gMonth, gMonthDay, gYear,
gYearMonth, string, untypedAtomic

dateTime date, dateTime, gDay, gMonth, gMonthDay, gYear,
gYearMonth, string, time, untypedAtomic

dayTimeDuration dayTimeDuration, duration, string, untypedAtomic

decimal boolean, decimal, double, float, string, untypedAtomic

double boolean, decimal, double, float, string, untypedAtomic

duration dayTimeDuration, duration, string, untypedAtomic,
yearMonthDuration

float boolean, decimal, double, float, string, untypedAtomic

gDay gDay, string, untypedAtomic

gMonth gMonth, string, untypedAtomic

gMonthDay gMonthDay, string, untypedAtomic

gYear gYear, string, untypedAtomic

gYearMonth GYearMonth, string, untypedAtomic

hexBinary base64Binary, hexBinary, string, untypedAtomic

NOTATION NOTATION, string, untypedAtomic

QName QName

string anyURI, base64Binary, boolean, date, dateTime,
dayTimeDuration, decimal, double, duration, float,
gDay, gMonth, gMonthDay, gYear, gYearMonth, hexBinary,
QName, string, time, untypedAtomic, yearMonthDuration

time dateTime, time, string, untypedAtomic

264

Type Expressions

Source Type Permitted Result Types

untypedAtomic anyURI, base64Binary, boolean, date, dateTime,
dayTimeDuration, decimal, double, duration, float,
gDay, gMonth, gMonthDay, gYear, gYearMonth, hexBinary,
QName, string, time, untypedAtomic, yearMonthDuration

yearMonthDuration duration, string, untypedAtomic, yearMonthDuration

At the time of writing there is some inconsistency in the specifications over casting between QNames and
strings. The specs currently allow casting from a NOTATION to a string, but not from a QName to a
string; and they allow casting from a string to a QName, but not from a string to a NOTATION.
Since the value space of QName and NOTATION is the same, this doesn’t make much sense. The difficulty
with these types is that the value space includes information (the namespace URI) that can’t be obtained
directly from the lexical representation, and the lexical representation contains information (the namespace
prefix) that can’t be obtained directly from the internal value. Even if these conversions are allowed, the
results may not always be useful.

Converting from anyURI

Destination Type Rules

anyURI The value is returned unchanged

string The value is returned as a string containing exactly the same
characters as the supplied anyURI value. No escaping or
unescaping of special characters is performed

untypedAtomic Returns the same result as converting to a string, but the
result is labeled as untypedAtomic

Converting from base64Binary

Destination Type Rules

base64Binary The value is returned unchanged

hexBinary A hexBinary value is constructed containing the same
octets as the original base64Binary value

string The canonical lexical representation of the base64Binary
value is returned, as a string. This representation is defined
in erratum E2-9 of the XML Schema specification. It arranges
the value in multiple lines, with each line other than the last
containing exactly 76 base-64 characters

untypedAtomic Returns the same result as converting to a string, but the
result is labeled as untypedAtomic

265

Chapter 9

Converting from boolean

Destination Type Rules

boolean The value is returned unchanged

decimal true is converted to 1.0, false to 0.0

double true is converted to 1.0e0, false to 0.0e0

float true is converted to xs:float(1.0e0), false to
xs:float(0.0e0)

string Returns the string "true" or "false"

untypedAtomic Returns the same result as converting to a string, but the
result is labeled as untypedAtomic

Converting from date

Destination Type Rules

date The value is returned unchanged

dateTime Returns the dateTime representing the instant in time at which
the relevant date starts. The timezone (or the absence of a
timezone) is retained unchanged. For example, the date
2004-04-04 becomes the dateTime 2004-04-04T00:00:00

gDay Returns a gDay value containing the same day component and
timezone (or absence of a timezone) as the original date

gMonth Returns a gMonth value containing the same month component
and timezone (or absence of a timezone) as the original date

gMonthDay Returns a gMonthDay value containing the same month and
day components and timezone (or absence of a timezone) as the
original date

gYear Returns a gYear value containing the same year component
and timezone (or absence of a timezone) as the original date

gYearMonth Returns a gYearMonth value containing the same year and
month components and timezone (or absence of a timezone) as
the original date

string Returns the canonical lexical representation of the date,
retaining the original timezone. For example, a date with no
timezone might be converted to the string «2004-06-19»,
while a date in the Pacific timezone might become
«2004-06-19-08:00»

untypedAtomic Returns the same result as converting to a string, but the result
is labeled as untypedAtomic

266

Type Expressions

Converting from dateTime

Destination Type Rules

date The date component of the localized dateTime value
is returned, including the original timezone. The
localized value is the value in the timezone contained
with the value, for example the date component of
the dateTime 2003-12-31T20:00:00-08:00 is
2003-12-31-08:00. (This means you can extract
the date part of two dateTime values that are equal
to each other, and get different dates, because the two
dateTime values represent the same instant in
different timezones)

dateTime The value is returned unchanged. Note that the
original timezone is retained, even though it is not
officially part of the value space according to the
XML Schema specification

gDay Returns a gDay value containing the same day
component and timezone (or absence of a timezone)
as the original localized dateTime

gMonth Returns a gMonth value containing the same month
component and timezone (or absence of a timezone)
as the original localized dateTime

gMonthDay Returns a gMonthDay value containing the same
month and day components and timezone (or
absence of a timezone) as the original localized
dateTime

gYear Returns a gYear value containing the same year
component and timezone (or absence of a timezone)
as the original localized dateTime

gYearMonth Returns a gYearMonth value containing the same
year and month components and timezone (or
absence of a timezone) as the original localized
dateTime

string Returns the lexical representation of the dateTime,
retaining the original timezone. This is not the same
as the canonical lexical representation defined in
XML Schema, which always normalizes the timezone
to UTC

time Returns the time component of the original localized
dateTime, retaining its timezone

untypedAtomic Returns the same result as converting to a string, but
the result is labeled as untypedAtomic

267

Chapter 9

Converting from dayTimeDuration

Destination Type Rules

dayTimeDuration The value is returned unchanged

duration Returns a duration value whose day, hour, minute, and
second components are the same as the supplied
dayTimeDuration, and whose year and month
components are zero

string Returns the canonical lexical representation of the supplied
dayTimeDuration. This normalizes the value so that the
number of seconds is always less than 60, the number of
minutes is less than 60, and the number of hours is less than
24. There is no limit on the number of days. Any component
that is zero is omitted, except that the zero-length duration
is represented as «PT0S». For example, a duration of 29.5
hours is represented as «P1DT5H30M»

untypedAtomic Returns the same result as converting to a string, but the
result is labeled as untypedAtomic

Converting from decimal

Destination Type Rules

boolean The value 0.0 is converted to false, and any other value is
converted to true

decimal The value is returned unchanged

double The result is the closest double value to the supplied
decimal. This may involve some loss of precision, because
decimal values cannot usually be represented exactly in
binary. The detailed rules are defined by saying that the
result is equivalent to converting the decimal to a string and
then converting the string to a double; this invokes rules
given in XML Schema Part 2, that specify for example that if
the decimal is midway between two double values, the even
value is chosen. It is theoretically possible for a decimal to
exceed the largest possible double value, but this is highly
unlikely in practice and the specification doesn’t say what
should happen if it occurs: the most likely result is probably
to return the special value Infinity

float As with conversion from decimal to double, the rules are
defined by saying that the decimal is converted to a
string, and the string is then converted to a float. The
same considerations apply

268

Type Expressions

Destination Type Rules

string If the decimal represents a whole number
(whether or not it is actually an instance of
xs:integer) then it is represented on output
as a string of decimal digits with no trailing zero
and no decimal point. There is no truncation or
rounding of significant digits, but insignificant
leading or trailing zeroes are omitted. However,
if the absolute value is less than one, a zero
digit is included before the decimal point. The
string starts with a «-» sign if the value is
negative, but it never contains a «+» sign

untypedAtomic Returns the same result as converting to a
string, but the result is labeled as
untypedAtomic

Converting from double

Destination Type Rules

boolean The values positive zero, negative zero, and NaN are
converted to false, and any other value is converted to
true

decimal The result is the decimal value, within the range of
decimal values that the implementation can handle,
whose value is numerically closest to the value of the
supplied double; if two values are equally close, the
value is rounded towards zero. The range and precision
of the decimal type is left to the implementor’s
discretion, so results may vary from one system to
another. If the double is too large to be represented as a
decimal, an error occurs

double The value is returned unchanged

float Digits are removed from the least significant end of the
value to make the value fit within the precision supported
by the float type. If the exponent is larger than the
largest exponent allowed by a float, the result is
positive or negative infinity. If the exponent is smaller
than the smallest exponent allowed by a float, the result
is positive or negative zero

Continues

269

Chapter 9

Destination Type Rules

string If the value is NaN (not-a-number), it is output as the string «NaN».
Positive and negative infinity are represented as «INF» and
«-INF». Numbers whose absolute value is greater than or equal to
1.0e−6, and less than 1.0e+6, are represented in conventional
decimal notation, for example «17.523», using the same rules as
for decimal-to-string conversion. This means that if the value is a
whole number, it is output without a decimal point. Numbers
outside this range are output in “scientific” notation, in a form
such as «1.56003E-5». There are strict rules on the precise form
of this value, for example it includes no insignificant leading or
trailing zeros except adjacent to the decimal point, and the «E»
must be a capital «E». The value is output with as many digits
(and only as many) as are needed to represent the value accurately
so that the original value is recovered if the string is converted
back to a double.

If you want a more user-friendly representation of the number,
XSLT allows you to control the formatting using the
format-number()function. Outside the XSLT environment, you
can trim unwanted digits using the function
round-half-to-even(), which is described in Chapter 10

untypedAtomic Returns the same result as converting to a string, but the result is
labeled as untypedAtomic

Converting from duration

Destination Type Rules

dayTimeDuration Returns a dayTimeDuration that represents the value of
the days, hours, minutes, and seconds components of the
duration, ignoring the years and months. The idea is that it
should be possible to convert a duration into a pair of
values, a yearMonthDuration and a dayTimeDuration,
which together retain the full value of the original duration

duration The value is returned unchanged

string The duration is output in a lexical form permitted by the
XML Schema specification. There is no canonical lexical
form defined, so it is not predictable whether, for example,
zero-valued components will be included in the result or
not. The XML Schema specification for durations regards a
value such as «PT1H» (one hour) as being a distinct value
from «PT60M» (60 minutes), so it is likely that the value will
not be normalized in the way that yearMonthDuration
and dayTimeDuration are normalized

270

Type Expressions

Destination Type Rules

untypedAtomic Returns the same result as converting to a string, but
the result is labeled as untypedAtomic.

yearMonthDuration Returns a yearMonthDuration that represents the
value of the years and months components of the
duration, ignoring the days, hours, minutes, and
seconds. The idea is that it should be possible to
convert a duration into a pair of values, a
yearMonthDuration and a dayTimeDuration,
which together retain the full value of the original
duration

Converting from float

Destination Type Rules

boolean The values positive zero, negative zero, and NaN
are converted to false, and any other value is
converted to true

decimal The result is the decimal value, within the range
of decimal values that the implementation can
handle, whose value is numerically closest to the
value of the supplied float; if two values are
equally close, the value is rounded towards zero.
The range and precision of the decimal type is
left to the implementor’s discretion, so results
may vary from one system to another. If the
float is too large to be represented as a
decimal, an error occurs

double The value space for float is a strict subset of that
for double, so it is possible to convert every float
value to a double without loss. The specification
achieves this by stating that the conversion is
equivalent to converting the float to a string,
and then converting the string to a double

float The value is returned unchanged

string The rules are the same as those for
double-to-string conversion: see page 270

untypedAtomic Returns the same result as converting to a string,
but the result is labeled as untypedAtomic

271

Chapter 9

Converting from gDay

Destination Type Rules

gDay The value is returned unchanged

string The output will be in the form ---DD, followed by a
timezone if the value includes one

untypedAtomic Returns the same result as converting to a string, but the
result is labeled as untypedAtomic

Converting from gMonth

Destination Type Rules

gMonth The value is returned unchanged

string The output will be in the form --MM, followed by a timezone
if the value includes one. (There is an error in the XML
Schema Recommendation, corrected in a published erratum,
which gives the format as --MM--)

untypedAtomic Returns the same result as converting to a string, but the
result is labeled as untypedAtomic

Converting from gMonthDay

Destination Type Rules

gMonthDay The value is returned unchanged

string The output will be in the form --MM-DD, followed by a
timezone if the value includes one

untypedAtomic Returns the same result as converting to a string, but the
result is labeled as untypedAtomic

Converting from gYear

Destination Type Rules

gYear The value is returned unchanged

string The output will be in the form YYYY, followed by a timezone
if the value includes one

untypedAtomic Returns the same result as converting to a string, but the
result is labeled as untypedAtomic

272

Type Expressions

Converting from gYearMonth

Destination Type Rules

gYearMonth The value is returned unchanged

string The output will be in the form YYYY-MM, followed
by a timezone if the value includes one

untypedAtomic Returns the same result as converting to a string,
but the result is labeled as untypedAtomic

Converting from hexBinary

Destination Type Rules

base64Binary A base64Binary value is constructed containing
the same octets (bytes) as the original hexBinary
value

hexBinary The value is returned unchanged

string The canonical lexical representation of the
hexBinary value is returned, as a string. This
representation uses two hexadecimal digits to
represent each octet in the value. The digits used
are 0–9 and A–F (uppercase)

untypedAtomic Returns the same result as converting to a string,
but the result is labeled as untypedAtomic

Converting from NOTATION

Destination Type Rules

NOTATION The value is returned unchanged

string This conversion is currently allowed in the specifications,
but it isn’t entirely clear how it is supposed to work

untypedAtomic Returns the same result as converting to a string, but the
result is labeled as untypedAtomic

Converting from QName

Destination Type Rules

QName The value is returned unchanged

273

Chapter 9

Note that casting from QName to string is not allowed. This is because it would require the generation of a
namespace declaration to represent the binding of a prefix to the namespace URI contained in the expanded
QName, and in general there is nowhere for this namespace declaration to go.

Converting from string

Destination Type Rules

anyURI
base64Binary
boolean
date
dateTime
dayTimeDuration
decimal
double
duration
float
gDay
gMonth
gMonthDay
gYear
gYearMonth
hexBinary
string
time
yearMonthDuration

The string is converted to the destination
type using the same rules as are applied
during schema validation of an element or
attribute declared with this type.

Firstly, whitespace is normalized or
collapsed as determined by the
whiteSpace facet of the target type.
(In most cases this means that leading and
trailing whitespace is removed). Then the
resulting value is tested to check that it is a
valid lexical representation for the specified
atomic type, and the corresponding value of
that type is returned.

The rules are refined in the case of the date
and time data types to allow the timezone
information to be retained (in XML Schema,
these are lost during the process of
validation)

QName The lexical QName is converted to an
expanded QName in the usual way, taking
the namespace context from the static
context of the XPath expression (if the value
is not known at compile time, it may be
necessary to retain a copy of this namespace
context so that the prefix can be resolved at
runtime). If the QName contains no prefix,
then the default namespace for elements
and types is used (in XSLT, this is the
namespace declared using the
xpath-default-namespace attribute)

untypedAtomic The returned value contains the same
characters as the original string, but labeled
as untypedAtomic

274

Type Expressions

Converting from time

Destination Type Rules

dateTime The result is formed by combining the supplied
time value with the value of the current date.
The current date is the date in the implicit
timezone, which is not necessarily the same
as the timezone of the supplied time value. The
timezone used in the result comes from the
supplied time value. This is the only example of
a cast whose result depends on the dynamic
context, and whose value is therefore likely to
vary on different occasions

string Returns the canonical lexical representation of
the time, retaining the original timezone. For
example, the value might be output as
«13:20:05.012+01:00»

time The value is returned unchanged

untypedAtomic Returns the same result as converting to a
string, but the result is labeled as
untypedAtomic

Converting from untypedAtomic
The rules for conversion from an untypedAtomic value to any other type are exactly the same as the
rules for converting from an equivalent string. See page 274.

Converting from yearMonthDuration

Destination Type Rules

duration Returns a duration value whose year and month
components are the same as the supplied
yearMonthDuration, and whose day, hour, minute, and
second components are zero

string Returns the canonical lexical representation of the supplied
yearMonthDuration. This normalizes the value so that
the number of months is always less than 12. Any
component that is zero is omitted, except that the
zero-length duration is represented as «P0M». For example,
a duration of 18 months is represented as «P1Y6M»

untypedAtomic Returns the same result as converting to a string, but the
result is labeled as untypedAtomic

yearMonthDuration The value is returned unchanged

275

Chapter 9

Converting between Derived Types
The previous section listed all the permitted conversions between primitive atomic types. Now we need
to consider what happens if the supplied value belongs to a derived type, or if the destination type is a
derived type. Note that we are still only concerned with atomic types. It is not allowed for the destination
type of a cast to be a list or union type. It may however be a type that is derived by restriction. This
includes both built-in derived types such as xs:integer, xs:short, and xs:Name, and also
user-defined derived types, provided that they are named types in a schema that has been imported in
the static context of the XPath expression.

The first case, where the supplied value belongs to a derived type, is easy. As always, the principle of
substitutability holds: a value of a subtype may always be used as input to an operation that accepts
values belonging to its supertype. This means that conversion from a derived type to its base type is
always successful. However, there is one minor caveat. In the tables in the previous section, conversion of
a value to its own primitive type is always described with the rule “The value is returned unchanged.”
However, if the source value belongs to a subtype of the primitive type (that is, a type derived by
restriction from the primitive type), this rule should be amended to read “The value is returned
unchanged, but with the type label set to the destination type”. For example, if you cast an xs:short
value xs:short(2) to the type xs:decimal, the type label on the result will be xs:decimal. In fact, it
is always a rule for casting operations that the type label on the result value is the type that you were
casting to.

If the destination type of the cast is a derived type, then the general rule is “go up, then across, then
down”. For example, if you are converting from a subtype of xs:decimal to a subtype of xs:string,
you first convert the supplied value up to an xs:decimal, then you convert the xs:decimal across to
an xs:string, and then you convert the xs:string down to the final destination type. Of course, any
of the three stages in this journey may be omitted where it isn’t needed.

The last leg of this journey, the down part, now needs to be explained.

The rule here is (in general) that the value is not changed, but it is validated against the restrictions that
apply to the subtype. These restrictions are defined by facets in the schema definition of the type. If the
value satisfies the facets, then the cast succeeds and the result has the same value as the source, but with a
new type label. If the value does not satisfy the facets, then the cast fails. For example, the expression
«xs:positiveInteger(-5)» will cause an error, because the value -5 does not satisfy the
minInclusive facet for the type (which says that the lowest permitted value is zero).

There is a slight complication with the pattern facet. This facet defines a regular expression that the
value must conform to. The pattern facet, unlike all the others, is applied to the lexical value rather than
the internal value. To check whether a value conforms to the pattern facet, the system must first convert it
to a string. This is bad news if the pattern facet has been used to constrain input XML documents to use a
form other than the canonical representation, for example to constrain an xs:boolean attribute to the
values «0» and «1». The conversion to a string will produce the value «true» or «false», and will
therefore fail the pattern validation. Generally speaking, using the pattern facet with data types other
than string (or string-like types such as xs:anyURI) is best avoided.

There are three built-in types that are technically derived types, but that are treated almost like primitive
types for the purpose of the casting rules. I have included two of these, xdt:dayTimeDuration and
xdt:yearMonthDuration, in the tables in the previous section for primitive types. The other one that’s
special is xs:integer. I didn’t include that in the previous section because there are no special rules for

276

Type Expressions

converting from an xs:integer to other types (it behaves just like an xs:decimal), only special rules
for converting to an xs:integer. These rules are given in the next section.

Converting to an xs:integer
Generally, casting to a derived type fails if the facets of the derived type are not satisfied. The type
xs:integer is derived by restriction from xs:decimal, with a facet indicating that there must not be a
fractional part. Normally, this would mean that casting 12.3 to an xs:integer would fail.

However, there is a special rule for casting numeric values to integers, or to subtypes derived from
xs:integer. The value is first cast to the primitive type, xs:decimal, in the usual way, and then the
value is truncated towards zero. This means that «xs:integer(10 div 3)» is 3, and
«xs:integer(3.5 - 8.7)» is -5.

This special rule does not apply when casting from a string to an integer. In this case xs:integer is
treated like any other derived type, which means that a cast such as «xs:integer("2.5")» will fail.

Sequence Type Descriptors
The operators described in the previous section work only on atomic types, which can always be
referenced by a simple QName (unless they are anonymous types, in which case they can’t be referenced
at all). Later in this chapter, we will be defining two important operators «instance of» and «treat
as». These can be applied to any sequence type (that is, any type in the XPath type system). Sequence
types cannot always be represented by a simple name; instead, XPath defines a syntactic construct for
describing these types. The production rule for this is called SequenceType. I find it useful to have a
name for the actual description of a type written according to this syntax, so I’ve coined the name sequence
type descriptor for this.

Sequence type descriptors are used in XPath itself only in expressions involving these two operators
«instance of» and «treat as». However, they are used much more widely in XSLT and XQuery, for
example they can be used whenever the type of a variable or of a function parameter needs to be declared.

The syntax is quite complicated, so we’ll take it in stages, explaining the semantics as we go along.

Expression Syntax

SequenceType (ItemType OccurrenceIndicator?)
| «empty ()»

OccurrenceIndicator «?» | «*» | «+»

ItemType AtomicType | KindTest | «item ()»

AtomicType QName

KindTest DocumentTest |
ElementTest |
AttributeTest |
PITest |
CommentTest |
TextTest |
AnyKindTest

277

Chapter 9

The first rule tells us that a sequence type descriptor is either an ItemType followed optionally by an
OccurrenceIndicator, or it is the compound symbol «empty()».

The «empty()» construct is used very rarely in practice. The only sequence that conforms to this type is
the empty sequence. This is why no occurrence indicator is allowed in this case. The only practical
example I have seen where «empty()» is useful is in an XQuery «typeswitch» expression. You can use
it in XPath, for example, «$x instance of empty()» means the same as «empty($x)». But it’s really
there only for completeness, so that every type used in expressing the formal semantics of the language is
also accessible to users of the language.

Apart from «empty()», every other sequence type descriptor consists of an ItemType followed
optionally by an OccurrenceIndicator. The ItemType defines what kind of items can appear in a
sequence, and the OccurrenceIndicator says how many of them are allowed. The three occurrence
indicators (which in computer science theory are often called Kleene operators) will be familiar from their
use in regular expressions and DTDs. They are:

Occurrence Indicator Meaning

* Zero or more occurrences allowed

+ One or more occurrences allowed

? Zero or one occurrence allowed

If no OccurrenceIndicator is present, then a sequence will only conform to the type if it contains
exactly one item.

The rest of the syntax provides different ways of expressing an ItemType.

First of all, the compound symbol «item()» allows any kind of item, that is, any atomic value, or any
node. (As with other compound symbols, you can use spaces before, between, or after the parentheses,
but it’s usually written without spaces so that’s how I shall do it here.) You can combine «item()» with
an occurrence indicator, so «item()» matches a single item, «item()?» matches a sequence that is
either empty or contains a single item, «item()+» matches any non-empty sequence, and «item()*»
matches any sequence whatsoever.

Every other way of writing the ItemType matches either atomic values, or nodes, but not both.

Atomic Types
Matching atomic values is easy, because atomic types have names. (You can have anonymous atomic
types in a schema, but there is no way to refer to them in a sequence type descriptor). If you use a QName
as the ItemType, then it must be the name of a type that is known in the static context of the XPath
expression, as described in Chapter 4, and this type must be an atomic type. The way that the static
context is set up depends on the host language and the API you are using to execute XPath expressions,
so the set of types that are available may vary. XSLT 2.0, for example, defines a minimum set of atomic
types that every processor (even one that does not support schema import) must provide, namely:

278

Type Expressions

xs:string
xs:boolean
xs:decimal
xs:integer
xs:double
xs:date
xs:time
xs:dateTime
xdt:dayTimeDuration
xdt:yearMonthDuration
xs:QName
xs:anyURI
xdt:untypedAtomic
xdt:anyAtomicType

This set was chosen because it is sufficient to allow all the functions in the core function library (that is,
the functions listed in Chapter 10) to be used. Many processors, however, will support the full set of
built-in types defined in XML Schema as well as user-defined types declared using <xs:simpleType>
declarations in an imported schema.

Most of these types were described fully in Chapter 3, but the last two are worth a special mention.

❑ xdt:untypedAtomic is the type of the atomic value that results from atomizing a node that has
not been annotated (as a result of schema validation) with any more specific type. It is possible to
create an xdt:untypedAtomic value by casting (and it is sometimes convenient to do so), but
the most common way of getting these values is by atomizing an unvalidated node.

❑ xdt:anyAtomicType is a supertype for all atomic types. Used as an item type, this will match
any atomic value (for example, a string, an integer, or a boolean), and will not match a node. It’s
an abstract type, in that something that is an instance of xdt:anyAtomicType will always be an
instance of some other more specific type in addition. (The name is rather poorly chosen, I feel.
One might expect that the instances of this type are types, just as in Java the instances of Class
are classes. But the name was chosen in the tradition of xs:anyType and xs:anySimpleType,
and it seems to have stuck.)

Note that the QName must be the name of an atomic type, not merely a simple type. Simple types, in the
XML schema classification, also include list types and union types. Atomic values contained in an XPath
sequence always belong to an atomic type, not a list or union type, and a sequence type descriptor is
therefore constrained to use atomic types. This rules out types such as xs:NMTOKENS, xs:IDREFS, and
xs:ENTITIES, which are list types, as well as xs:anyType, which is a complex type.

Matching Nodes
All other sorts of ItemType are used to match nodes. These all come under the umbrella of the
KindTest construct.

I’ll dispose of the simple kinds of node first, and then move on to elements and attributes, which is where
the real complexity comes.

279

Chapter 9

Expression Syntax

KindTest AnyKindTest |
DocumentTest |
ElementTest |
AttributeTest |
CommentTest |
TextTest |
PITest

AnyKindTest «node ()»

DocumentTest «document-node (» ElementTest? «)»

CommentTest «comment ()»

TextTest «text ()»

PITest «processing-instruction (»
(NCName | StringLiteral)?
«)»

If you’re reading the book sequentially, you may have a sense of déjà vu about these rules. We met them
before in Chapter 7, on page 224, where they appear as part of the syntax for a NodeTest in a path
expression. Conveniently, the syntax for testing the type of a node in an «instance of» or
«treat as» expression is exactly the same as the syntax for saying what kinds of node you are interested
in within a step of a path expression. What’s more, because the syntax of XSLT match patterns is
defined in terms of path expressions, you can use the same constructs when defining an XSLT template
rule.

The construct «node()» is the most general item type here: it matches any item that is a node.

Note, however, that if you use «node()» on its own as a step in a path expression (as described in Chapter
7), it is short for «child::node()», and will only match nodes that are found on the child axis. The only
nodes that can be found on the child axis are elements, text nodes, comments, and processing instructions.

The constructs «comment()» and «text()» are straightforward: they match comment nodes and text
nodes, respectively.

For matching document nodes, you can write the test «document-node()», which matches any
document node, or you can be more specific. If you include an ElementTest within the parentheses,
then this ItemType will only match a document node that satisfies the following two conditions:

❑ The document node must be the root of a tree that corresponds to a well-formed XML document.
Specifically this means that the document node must have exactly one element node, and no text
nodes, among its children. It is allowed to have comments and processing instructions before or
after the element node.

❑ The element node that is a child of this document node must match the ElementTest given
within the parentheses. The syntax for ElementTest is given in the next section.

280

Type Expressions

This construct allows you to test what can be loosely called the “document type”, for example, you can
test whether an input document returned by the doc()function is an invoice, by writing:

if (doc("inv.xml") instance of document-node(schema-element(mf:invoice))) ...

This construct tests whether the document node is labeled as an invoice, as the result of previous validation.
If the document has not been validated, the result will be false, whether or not validation would succeed if
attempted.

The «processing-instruction()» construct can also be written with empty parentheses, in which
case it will match any processing instruction. As an alternative, you can provide a name within the
parentheses, in which case it will only match processing instructions with that name. For compatibility
with XPath 1.0, the name can optionally be written in quotes, as a string literal. This means you can match
an <?xml-stylesheet?> processing instruction using either of the constructs:

processing-instruction(xml-stylesheet)
processing-instruction("xml-stylesheet")

The two forms are precisely equivalent, except that using an invalid name is an error in the first case but
not the second (you just won’t select anything).

Here’s the basic syntax for element and attribute tests:

Matching Elements and Attributes
The syntax for matching elements and attributes is more complex, because it allows you to take
advantage of the type information attached to these nodes as a result of schema validation. The type
annotation of an element or attribute node may be any type defined in an XML Schema, or a built-in type.
These can be simple types or complex types, and all simple types are allowed including list types and
union types. However, although any type defined in a schema can appear as a node annotation, the only
types you can refer to directly are those that:

❑ have a name (that is, they are not anonymous types, which means they must be defined in
top-level type definitions in the schema), and

❑ are declared in a schema that has been imported in the static context of the XPath expression. The
way this is done depends on the host language you are using, and perhaps on the API of the
XPath processor. In XSLT, for example, you can import schemas using the <xsl:import-
schema> declaration.

Here’s the basic syntax for element and attribute tests:

Expression Syntax

ElementTest BasicElementTest |
SchemaElementTest

AttributeTest BasicAttributeTest |
SchemaAttributeTest

Continues

281

Chapter 9

Expression Syntax

BasicElementTest «element (»
(ElementNameOrWildCard
(«,» TypeName «?»?)?
)? «)»

BasicAttributeTest «attribute (»
(AttribNameOrWildcard
(«,» TypeName)?
)? «)»

ElementNameOrWildcard ElementName | «*»

AttribNameOrWildcard AttributeName | «*»

ElementName QName

AttributeName QName

TypeName QName

We will come back to the SchemaElementTest and SchemaAttributeTest later. The meaning of this
syntax doesn’t leap out from the page, so it’s best to explain it by listing all the possible cases. The general
form is «element(NAME, TYPE)», where NAME defines conditions on the name of the element, and
TYPE defines conditions on its type annotation.

Here are the rules for matching elements:

Test Matches

element() Any element node

element(*) Any element node

element(N) Any element node whose name is N. In a path
expression this is equivalent to just writing the element
name N on its own: but in contexts where a type is
required, it provides a way of saying that a value must
be an element with a particular name, whether or not
this name is defined in any schema

element(*,T) Any element node whose type annotation shows it to be
valid according to the rules of schema type T. The type T
can be a simple type or a complex type, but it must be a
named type that is defined in an imported schema (this
allows a built-in type, of course).

If the element has the attribute «xsi:nil="true"»,
then it matches only if the type name T in the sequence
type descriptor is followed by a question mark

282

Type Expressions

Test Matches

element(N,T) Any element node whose name is N and that is annotated
as an instance of schema type T. This combines the
previous two options into a single condition

The rules for matching attributes are very similar, but they are simpler because attributes cannot be
marked as nillable:

Test Matches

attribute() Any attribute node

attribute(*) Any attribute node

attribute(N) Any attribute node whose name is N

attribute(*,T) Any attribute node whose type annotation shows it to be valid
according to the rules of schema type T. The type T must always
be a named simple type that is defined in an imported schema
(this allows a built-in type, of course)

attribute(N,T) Any attribute node whose name is N and that is annotated as an
instance of the schema type T

Using Global Element and Attribute Declarations
The basic element and attribute tests described in the previous section allow you to test an element or
attribute node according to its name and its type annotation, provided that the type annotation is a
named simple or complex type in the schema. It’s very common, however, to find that elements are
declared in a schema using global element declarations and with an anonymous type: to take an example
from the schema for XSLT 2.0 stylesheets:

<xs:element name="apply-imports" substitutionGroup="xsl:instruction">
<xs:complexType>

<xs:complexContent>
<xs:extension base="xsl:versioned-element-type">

<xs:sequence>
<xs:element ref="xsl:with-param" minOccurs="0"

maxOccurs= "unbounded"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>

The syntax «element(E, T)» doesn’t work in this case, because the type is anonymous. Instead, the
construct «schema-element(S)» can be used. This matches any element that has been validated
against the global element declaration named «S» in the schema. It’s not necessary that the name of the
element should be «S», it can also be an element in the substitution group of «S».

It’s much less common to encounter global attribute declarations, but they are also supported in the same
way, for symmetry.

283

Chapter 9

The full syntax for this form of ElementTest and AttributeTest is shown below.

Expression Syntax

SchemaElementTest «schema-element (»
ElementName
«)»

SchemaAttributeTest «schema-attribute (»
AttributeName
«)»

Examples
Let’s try to put these different forms into context by seeing how they can be used with a real schema. I’ll
use as my example the schema for XSLT 2.0 stylesheets, which is published in an appendix of the
XSLT 2.0 specification at http://www.w3.org/TR/xslt20. This example is therefore relevant if you
are using XPath expressions to access an XSLT 2.0 stylesheet (which is not as esoteric a requirement as
you might think), and it also assumes that the XSLT 2.0 stylesheet has been validated against this schema.

The schema starts with a couple of complex type definitions like this:

<xs:complexType name="generic-element-type">
<xs:attribute name="extension-element-prefixes" type="xsl:prefixes"/>
<xs:attribute name="exclude-result-prefixes" type="xsl:prefixes"/>
<xs:attribute name="xpath-default-namespace" type="xs:anyURI"/>
<attribute ref="xml:space">
<attribute ref="xml:lang">
<xs:anyAttribute namespace="##other" processContents="skip"/>

</xs:complexType>

<xs:complexType name="versioned-element-type">
<xs:complexContent>

<xs:extension base="xsl:generic-element-type">
<xs:attribute name="version" type="xs:decimal" use="optional"/>

</xs:extension>
</xs:complexContent>

</xs:complexType>

Every element in the XSLT namespace has a type that is derived ultimately from «generic-element-
type», and most of them are also derived from «versioned-element-type». If we want to use a
sequence type descriptor (perhaps to declare a variable or a function argument in XSLT or XQuery) that
accepts any element in the XSLT namespace that is valid against this schema, we could declare this as:

element(*, xsl:generic-element-type)

If we wanted to exclude those elements that don’t allow a version attribute (there is only one,
<xsl:output>, which in fact does allow a version attribute, but defines it differently) then we could
write the sequence type descriptor as:

element(*, xsl:versioned-element-type)

284

Type Expressions

The schema goes on to provide two abstract element declarations, like this:

<xs:element name="declaration" type="xsl:generic-element-type"
abstract="true"/>

<xs:element name="instruction" type="xsl:versioned-element-type"
abstract="true"/>

These are declared as abstract because you can’t actually include an element in a stylesheet whose name
is <xsl:declaration> or <xsl:instruction>. The reason these two element declarations exist is so
that they can act as the heads of substitution groups. This greatly simplifies the definition of other types.
For example, there are many places in XSLT where you can use a construct called a sequence constructor. A
sequence constructor is a sequence of elements in the stylesheet that may include variable definitions,
instructions, and literal result elements, and its format is defined in the schema like this:

<xs:group name="sequence-constructor-group">
<xs:choice>

<xs:element ref="xsl:variable"/>
<xs:element ref="xsl:instruction"/>
<xs:group ref="xsl:result-elements"/>

</xs:choice>
</xs:group>

Elements that allow a sequence constructor as their content, such as <xsl:if> and <xsl:sequence>,
make use of a complex type definition that refers to this structure:

<xs:complexType name="sequence-constructor">
<xs:complexContent mixed="true">

<xs:extension base="xsl:versioned-element-type">
<xs:group ref="xsl:sequence-constructor-group"

minOccurs="0" maxOccurs="unbounded"/>
</xs:extension>

</xs:complexContent>
</xs:complexType>

The abstract element <xsl:instruction> was introduced for convenience in defining the schema, but
it is equally convenient for describing types in XPath, because we can now write:

schema-element(xsl:instruction)

to match any element that is an XSLT instruction: that is, an element that is in the substitution group of
<xsl:instruction>. An example of such an element is <xsl:apply-imports>, which as we have
already seen is defined like this:

<xs:element name="apply-imports" substitutionGroup="xsl:instruction">
<xs:complexType>

<xs:complexContent>
<xs:extension base="xsl:versioned-element-type">

<xs:sequence>

285

Chapter 9

<xs:element ref="xsl:with-param" minOccurs="0"
maxOccurs= "unbounded"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

</xs:element>

The schema for XSLT 2.0 stylesheets does not include any global attribute declarations, so you will never
see a sequence type descriptor of the form «schema-attribute(xsl:xxxx)». This is fairly typical:
attributes are most commonly declared either as part of the element declaration to which they belong, or
in constructs such as xs:attributeGroup. For example, the set of «xsl:» prefixed attributes that can
appear on literal result elements is defined in the schema for XSLT 2.0 in an attribute group:

<xs:attributeGroup name="literal-result-element-attributes">
<xs:attribute name="extension-element-prefixes" form="qualified"

type="xsl:prefixes"/>
<xs:attribute name="exclude-result-prefixes" form="qualified"

type="xsl:prefixes"/>
<xs:attribute name="xpath-default-namespace" form="qualified"

type="xs:anyURI"/>
<xs:attribute name="use-attribute-sets" form="qualified"

type="xsl:QNames" default=""/>
<xs:attribute name="version" form="qualified"

type="xs:decimal"/>
<xs:attribute name="type" form="qualified"

type="xsl:QName"/>
<xs:attribute name="validation" form="qualified"

type="xsl:validation-type"/>
</xs:attributeGroup>

This means that even these attributes (which are unusual because their names are in the target namespace
of the schema) are not declared globally, and therefore not available for use in sequence type descriptors.
It would be possible to change the schema to the following form (selecting just three of the attributes for
brevity):

<xs:attribute name="version" form="qualified" type="xs:decimal"/>
<xs:attribute name="type" form="qualified" type="xsl:QName"/>
<xs:attribute name="validation" form="qualified" type="xsl:validation-type"/>

<xs:attributeGroup name="literal-result-element-attributes">
<xs:attribute ref="version" form="qualified" type="xs:decimal"/>
<xs:attribute ref="type" form="qualified" type="xsl:QName"/>
<xs:attribute ref="validation" form="qualified" type="xsl:validation-type"/>

</xs:attributeGroup>

and you could then use «schema-attribute(xsl:version)» as a sequence type descriptor.

Much more common, I think, will be to use the form «attribute(*, T)» which matches attributes that
have a particular type annotation. For example, many attributes in XSLT have the type xsl:QName. An
example is the name attribute of <xsl:function>, allowing you to write, for example,
<xsl:function name="math:sqrt">. This type is a variant of the built-in type xs:QName. It has the

286

Type Expressions

same lexical form as an xs:QName but is not derived from it because the validation rules are subtly
different: in XML Schema, an xs:QName with no prefix is assumed to be in the default namespace, but in
XSLT, an xsl:QName with no prefix is assumed to be in no namespace.

If you wanted to process a stylesheet to process all the attributes of type xsl:QName, perhaps to
standardize the namespace prefixes that are used, you could write an XSLT template rule of the form:

<xsl:template match="attribute(*, xsl:QName)">
...

</xsl:template>

There is no way of writing a sequence type descriptor that matches a local element or attribute definition
in a schema. Earlier working drafts defined a syntax that allowed such definitions to be referenced by
means of a hierarchic name rather like a path expression, but the syntax was pulled from the final draft
because of difficulties in defining its precise meaning. In many cases local element and attributes in a
schema are defined by reference to a global type, and in this case you can use the syntax «element(E,
T)» or «attribute(A, T)».

The «instance of» operator
The «instance of» operator is used to test whether a given value conforms to a particular type. This
operator is a compound symbol; the two words must be separated by whitespace.

Expression Syntax

InstanceOfExpr TreatExpr («instance of» SequenceType)?

As usual, the fact that the first operand is listed as a TreatExpr is simply a way of indicating the
operator priorities: these are summarized in Appendix A.

The «instance of» expression always returns a boolean result. The first operand is evaluated, and if it
conforms to the specified sequence type (as defined by the rules in the previous section) the answer is
true, otherwise it is false.

It’s important to remember, whether you are testing atomic values or nodes, that the «instance of»
operator is testing whether the value has a label that identifies it as a member of the specified type. It isn’t
testing whether the value would be a valid member of that type if the label were changed. For example:

5 instance of xs:positiveInteger

return false (surprisingly), because although 5 satisfies all the conditions for a positive integer, it is not
labeled as such: the type label for a numeric literal of this kind is simply xs:integer. Similarly, given an
element <price>13.50</price> as the context item, the expression

. instance of element(*, xs:decimal)

will return false unless the element has actually been validated and given a type annotation of
xs:decimal, or some type derived from xs:decimal. The fact that validation against this type would
succeed is not enough; the validation must actually have been done, so that the required type annotation
is present on the node.

287

Chapter 9

The «instance of» operator does not atomize its operand, so an expression such as «@code
instance of xs:decimal» is always going to return false. You either need to atomize the value
explicitly, by writing «data(@code) instance of xs:decimal», or you need to test the type
annotation of the node, by writing «@code instance of attribute(*, xs:decimal)».

Note also that if an element or attribute is list-valued, then the type annotation on the node may be a list
type, for example, «attribute(*, xs:IDREFS)». But when you extract the typed value of this node
using the data()function, the result is a sequence of xs:IDREF values, which you can test using the
sequence type descriptor «xs:IDREF*». You cannot write «data(@x) instance of xs:IDREFS»,
because xs:IDREFS is not an atomic type.

The «instance of» expression tests the dynamic type of a value, that is, the actual type of the value
after the operand expression has been evaluated. This may or may not be the same as the static type of the
operand expression. The static type of an expression (which is only of interest to users in the case of
processors that implement the static typing option, as explained in Chapter 3) will always be a supertype
of the dynamic type of any possible value of the expression (or the same type, of course).

Here are some examples of «instance of» expressions used in context:

Expression Effect

$seq[. instance of
node()]

Selects the items in $seq that are nodes, discarding any that
are atomic values

if (some $s in $seq
satisfies $s
instance of node())
then ...

Tests whether the sequence $seq contains at least one node

if (not($seq
instance of
xdt:anyAtomicType*))
then ...

This has exactly the same effect as the previous example. If a
sequence is not an instance of «xdt:anyAtomicType*»,
then it must contain at least one node

$p instance of
item()+

This tests whether $p is a non-empty sequence. The result is
the same as calling «exists($p)»

The «treat as» Operator
The «treat as» operator can be regarded as an assertion; the programmer is asserting that at runtime,
the value of an expression will conform to a given type. If the assertion turns out to be wrong, evaluation
of the expression will fail with a runtime error.

This is the syntax:

Expression Syntax

TreatExpr CastableExpr («treat as» SequenceType)?

288

Type Expressions

The «treat as» operator is extremely important if you are using an XPath processor that does strict
static type checking (or if you want to write code that is portable between processors that do such
checking and those that don’t). However, if you want to write robust code, there is no harm in using
«treat as» to make explicit any assumptions you are making about data types even in a system that
does all its type checking dynamically.

For example, suppose that you are using a schema that defines a union type, an attribute quantity, say,
whose value can be either an integer or one of the two strings «out-of-stock» or «unknown». It might
look reasonable to write

if (@quantity = "out-of-stock")
then -2

else if (@quantity = "unknown")
then -1

else @quantity + 2

Unfortunately, it’s not as easy as that. The three places where @quantity is used all do atomization,
which will produce either a string or an integer, but at compile time it’s not known whether the value
will be a string or an integer. The «=» comparison in the condition of the «if» will fail if the value turns
out to be an integer, because you can’t compare an integer to a string. The «+» operator would similarly
fail if the value turned out to be a string. You and I can see that this will never happen, but the XPath
processor is not so clever. All it knows at compile time is that the value might be either an integer or a
string.

A processor that does strict static typing will throw this out with compile time errors, because it detects
that the code is unsafe (meaning, it could try to do illegal things at runtime). How do you get round this?

Firstly, you could try rewriting the expression like this:

if (data(@quantity) instance of xs:string)
then

if (@quantity = "out-of-stock")
then -2

else if (@quantity = "unknown")
then -1

else error()
else @quantity + 2

For a system that does dynamic type checking, this is good enough. It avoids the error that would
otherwise occur (at runtime) when you try to compare an integer to a string.

But unfortunately this still won’t persuade a static type checker that all is well, because it can’t follow
through the logic of this code to work out that when you take one path, the value of @quantity must be
a string, and when you take a different path, it must be an integer. So you need to use «treat as», like
this:

if (data(@quantity) instance of xs:string)
then

289

Chapter 9

if ((data(@quantity) treat as xs:string) = "out-of-stock")
then -2

else if ((data(@quantity) treat as xs:string) = "unknown"))
then -1

else error()
else (data(@quantity) treat as xs:integer) + 2

This code will work both on systems that do strict static typing, and on those that don’t. The «treat as»
operator is essentially telling the system that you know what the runtime type is going to be, and you
want any checking to be deferred until runtime, because you’re confident that your code is correct.

I rather suspect that few XPath 2.0 implementations will decide to implement strict static typing, so this
might all turn out to be slightly irrelevant. The enthusiasm among implementors for strict static typing is
far stronger in XQuery circles, where the need for optimization is so much greater. XQuery has an
additional construct, the «typeswitch» expression, to make code like that shown above much less
painful to write.

There is another workaround to this problem, which is to exploit the fact that XPath also offers the
chameleon xdt:untypedAtomic type, which defeats the static type checker because it takes on
whatever type is required by the context. So you could write the above expression instead as:

for $q in xdt:untypedAtomic(@quantity) return
if ($q = "out-of-stock")

then -2
else if ($q = "unknown")

then -1
else $q + 2

This approach is basically discarding the type information added as a result of schema processing, and
treating the data as if it were schema-less. Some would regard it as dirty programming, but it works.

Summary

This chapter provided details of all the type-related constructs and expressions in the XPath 2.0 language.

At the beginning of the chapter we described the «cast» and «castable» operators, and constructor
functions, which are used to convert an atomic value of one type to an atomic value of a different type.
We provided detailed tables showing all the type conversions that are allowed by the language.

Then, moving beyond atomic types, we examined the syntax for describing sequence types. This syntax is
used only in two places in XPath, the «instance of» and «treat as» expressions, but XQuery and
XSLT users will use the same syntax much more widely, for example, whenever the types of variables or
functions are declared.

Finally, we explained how these two expressions, «instance of» and «treat as», actually work.

We’ve now finished our tour of the language syntax, but an equally important part of any language is the
built-in function library. The next chapter provides an alphabetical listing of all the functions in this
library, which will all be available with any conformant XPath 2.0 processor.

290

XPath Functions
This chapter describes all the standard functions included in the XPath 2.0 specifications for use
in expressions. They are all defined in the W3C specification XPath and XQuery Functions and
Operators, and they should be available in all XPath 2.0 implementations.

For each function, I give its name, a brief description of its purpose, a list of the arguments it
expects and the value it returns, the formal rules defining what the function does, and finally usage
advice and examples.

These are not the only functions you can call from an XPath expression:

❑ XSLT 2.0 defines additional functions for use in XPath expressions invoked from XSLT
stylesheets. These are listed in Chapter 7 of XSLT 2.0 Programmer’s Reference.

❑ So-called constructor functions are available corresponding to built-in and user-defined
atomic types. For example, there is a function called xs:float() to create values of type
xs:float, xs:date() to create values of type xs:date, and so on. These functions are
also available for user-defined atomic types. They are described in Chapter 9.

❑ User-defined functions may be available. The way these are set up depends on the host
language. In XSLT 2.0, user-defined functions can be created using an <xsl:function>
declaration; in XQuery 1.0, they can be declared using a «declare function»
statement in the Query Prolog.

❑ Vendor-defined functions may be available. These will be in a namespace controlled by
the vendor of the particular product.

The syntax of a function call is described in Chapter 5. This defines where a function call can be
used in an expression, and where it can’t. You can use a function call anywhere that an expression
or value can be used, provided that the type of value it returns is appropriate to the context where
it used. (Unlike XPath 1.0, this includes the ability to use a function call as a step in a path
expression.) Within a function call, the values supplied as arguments can be any XPath expression,
subject only to the rules on data types (for example, some functions require an argument that is a
sequence of nodes). So a function call such as «count(..)», though it looks strange, is
perfectly legal: «..» is a valid XPath expression that returns the parent of the context node
(it’s described in Chapter 7, on page 227).

Chapter 10

I’ve arranged the functions in alphabetical order so you can find them quickly if you know what you’re
looking for. However, in case you only know the general area you are interested in, you may find the
classification that follows in the section Functions by Category useful. This is followed by a section called
Notation that describes the notation used for function specifications in this chapter. The rest of the chapter
is taken up with the functions themselves, in alphabetical order.

A Word about Naming
Function names such as current-dateTime() seem very strange when you first come across them.
Why the mixture of camelCasing and hyphenation? The reason they arise is that XPath 1.0 decided to use
hyphenated lower-case names for all functions, while XML Schema decided to use camelCase for the
names of built-in data types. Wherever the XPath 2.0 function library uses a schema-defined type name as
part of a function name, it therefore uses the camelCase type name as a single word within the
hyphenated function name.

So it may be madness, but there is method in it!

Throughout this book, I write these function names without a namespace prefix. In fact the functions are
defined to be within a namespace such as http://www.w3.org/2003/11/xpath-functions, which
is generally referred to using the namespace prefix «fn». The year and month within the namespace URI
change each time a new version of the specification is published, but will stabilize when the spec reaches
Candidate Recommendation status. However, in most host languages (certainly in XSLT) this is likely to
be the default namespace for function names. You will therefore usually be able to write these function
names without a prefix (and without declaring the namespace URI), and I have therefore omitted the
prefix when referring to the names in this book. In the W3C specifications, however, you will often see the
functions referred to by names such as fn:position() or fn:count().

Functions by Category
Any attempt to classify functions is bound to be arbitrary; but I’ll attempt it anyway. A few functions
appear in more than one category. The number after each function is a page reference to the entry where
the function is described.

Boolean Functions
boolean() 304, false() 343, not() 391, true() 439.

Numeric Functions
abs() 296, avg() 301, ceiling() 306, floor() 344, max() 370, min() 371, number() 393, round()
409, round-half-to-even() 411, sum() 431.

String Functions
codepoints-to-string() 308, compare() 310, concat() 312, contains() 314, ends-with()
334, lower-case() 366, matches() 368, normalize-space() 386, normalize-unicode() 388,
replace() 400, starts-with() 415, string() 416, string-join() 418, string-length() 419,

292

XPath Functions

string-to-codepoints() 421, substring() 423, substring-after() 425, substring-
before() 427, tokenize() 434, upper-case() 442.

Date and Time Functions
adjust-date-to-timezone() 297, adjust-dateTime-to-timezone() 297, adjust-time-to-
timezone() 297, current-date() 318, current-dateTime() 318, current-time() 318,
day-from-date() 322, day-from-dateTime() 322, hours-from-dateTime() 345,
hours-from-time() 345, implicit-timezone() 352, minutes-from-dateTime() 373,
minutes-from-time() 373, month-from-date() 374, month-from-dateTime() 374,
seconds-from-dateTime() 413, seconds-from-time() 413, timezone-from-date() 433,
timezone-from-dateTime() 433, timezone-from-time() 433, year-from-date() 443,
year-from-dateTime() 443.

Duration Functions
days-from-dayTimeDuration() 323, hours-from-dayTimeDuration() 347,
minutes-from-dayTimeDuration() 374, months-from-yearMonthDuration() 375,
seconds-from-dayTimeDuration() 414, subtract-dates-yielding-yearMonthDuration()
429, subtract-dates-yielding-dayTimeDuration() 429, subtract-dateTimes-yielding-
yearMonthDuration() 429, subtract-dateTimes-yielding-dayTimeDuration() 429,
years-from-yearMonthDuration() 443

Aggregation Functions
avg() 301, count() 316, max() 370, min() 371, sum() 431.

Functions on URIs
base-uri() 302, collection() 309, doc() 329, document-uri() 332, escape-uri()
337, resolve-uri() 405.

Functions on QNames
expanded-QName() 342, local-name-from-QName(), namespace-uri-from-QName(),
node-name() 384, resolve-QName() 403.

Functions on Sequences
count() 316, deep-equal() 323, distinct-values() 327, empty() 333, exists() 341,
index-of() 353, insert-before() 356, remove() 399, subsequence() 422, unordered() 440.

Functions that Return Properties of Nodes
base-uri() 302, data() 319, document-uri() 332, in-scope-prefixes() 354, lang() 357,
local-name() 363, name() 376, namespace-uri() 379, namespace-uri-for-prefix() 381,
nilled() 383, node-name() 384, root() 408, string() 416.

293

Chapter 10

Functions that Find Nodes
collection() 309, doc() 329, id() 347, idref() 349, root() 408.

Functions that Return Context Information
base-uri() 302, collection() 309, current-date() 318, current-dateTime() 318, current-
time() 318, default-collation() 326, doc() 329, implicit-timezone() 352, last() 359,
position() 396.

Diagnostic Functions
error() 336, trace() 436.

Functions that Assert a Static Type
exactly-one() 339, one-or-more() 395, zero-or-one() 444.

Notation
Technically, a function in XPath is identified by its name and arity (number of arguments). This means
that there is no formal relationship between the function substring() with two arguments and the
function substring() with three arguments. However, the standard function library has been designed
so that in cases like this where there are two functions with different arity, the functions in practice have a
close relationship, and it is generally easier to think of them as representing one function with one or
more of the arguments being optional. So this is how I have presented them.

The signatures of functions are defined with a table like the one that follows:

Argument Data type Meaning

input xs:string? The containing string

start xs:double The position in the containing string of . . .

length (optional) xs:double The number of characters to be included . . .

Result xs:string The required substring . . .

The first column here gives a conventional name for the argument (or Result to label the row that
describes the result of the function). Arguments to XPath functions are supplied by position, not by name,
so the name given here is arbitrary; it is provided only to allow the argument to be referred to within the
descriptive text. The text (optional) after the name of an argument indicates that this argument does not
need to be supplied: in this case, this means that there is one version of the function with two arguments,
and another version with three.

The second column gives the required type of the argument. The notation is that of the SequenceType
syntax in XPath, introduced in Chapter 9. This consists of an item type followed optionally by an

294

XPath Functions

occurrence indicator («?», «*», or «+»). The item type is either the name of a built-in atomic type such as
xs:integer or xs:string, or one of the following:

Item type Meaning

item() Any item (either a node or an atomic value)

node() Any node

element() Any element node

xdt:anyAtomicType Any atomic value

Numeric An xs:double, xs:float, xs:decimal, or
xs:integer

The occurrence indicator, if it is present, is either «?» to indicate that the supplied argument can contain
zero or one items of the specified item type, or «*» to indicate that it can be a sequence of zero or more
items of the specified item type. (The occurrence indicator «+», meaning one or more, is not used in any
of the standard functions.)

Note the difference between an argument that is optional, and an argument that has an occurrence
indicator of «?». When the argument is optional, it can be omitted from the function call. When the
occurrence indicator is «?», the value must be supplied, but the empty sequence «()» is an acceptable
value for the argument.

Many functions follow the convention of allowing an empty sequence for the first argument, or for
subsequent arguments that play a similar role to the first argument, and returning an empty sequence if
any of these arguments is an empty sequence. This is designed to make these functions easier to use in
predicates. However, this is only a convention, and is not followed universally. Most of the string
functions instead treat an empty sequence the same way as a zero-length string.

When these functions are called, the supplied arguments are converted to the required type in the
standard way defined by the XPath 2.0 function calling mechanism. The details of this depend on
whether XPath 1.0 backward compatibility is activated or not. This is determined by the host language: in
XSLT it depends on the value of the [xsl:]version attribute in the stylesheet.

❑ In 2.0 mode, the standard conversion rules apply. These rules appear in Chapter 5 on page 160,
under the heading Converting the Arguments and the Result. They permit only the following kinds
of conversion:

❑ Atomization of nodes to extract their numeric values

❑ Promotion of numeric values to a different numeric type, e.g., xs:integer to xs:double

❑ Casting of a value of type xdt:untypedAtomic to the required type. Such values
generally arise by extracting the content of a node that has not been schema-validated. The
rules for casting from xdt:untypedAtomic values to values of other types are essentially
the rules defined in XML Schema for conversion from the lexical space of the data type to
the value space: more details are given in Chapter 9 (see Converting from string on page 274).

❑ In 1.0 mode, two additional conversions are allowed:

❑ If the required type is xs:string or xs:double (perhaps with an occurrence indicator of
«?»), then the first value in the supplied sequence is converted to the required type using

295

Chapter 10

the string() or number() function as appropriate, and other values in the sequence are
discarded.

❑ If the required type is node() or item() (perhaps with an occurrence indicator of «?»),
then if the supplied value contains more than one item, all items except the first are ignored.

The effect of these rules is that even though the function signature might give the expected type of an
argument as xs:string, say, the value you supply can be a node containing a string, or a node whose
value is untyped (because it has not been validated using a schema). With 1.0 compatibility mode on, you
can also supply values of other types, for example an xs:integer or an xs:anyURI, but when
compatibility mode is off, you will need to convert such values to an xs:string yourself, which you can
achieve most simply by calling the string() function.

Function Definitions
The remainder of this chapter gives the definitions of all the functions, in alphabetical order.

abs
The abs() function returns the absolute value of a number. For example, «abs(-3)» returns 3.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

input Numeric? The supplied number

Result Numeric? The absolute value of the supplied number.
The result has the same type as the input

Effect
If the supplied number is positive, then it is returned unchanged. If it is negative, then the result is
«- $input».

Negative zero and negative infinity become positive zero and positive infinity. Positive zero, positive
infinity, and NaN are returned unchanged. If the argument is an empty sequence, the result is an empty
sequence.

The result has the same basic numeric type as the input. For example, if the input value is an
xs:integer, the result will be an xs:integer, and if the input is an xs:double, the result will be an
xs:double.

Basic here means one of the four types xs:double, xs:float, xs:decimal, and xs:integer.
Clearly, if the input is an xs:negativeInteger, the result cannot also be an xs:
negativeInteger—it will actually be an xs:integer. If the input is an xs:positiveInteger,

296

XPath Functions

you have a guarantee that the result will be an xs:integer, but this doesn’t prevent the system
returning something that is actually a subtype of xs:integer—for example, it would be legitimate to
return the original xs:positiveInteger unchanged.

Examples
Expression Result

abs(2) 2

abs(-2) -2

abs(-3.7) 3.7

abs(-1.0e-7) 1.0e-7

abs(number(’NaN’)) NaN

adjust-date-to-timezone, adjust-dateTime-to-timezone,
adjust-time-to-timezone

This entry describes a collection of three closely related functions. These functions have the effect of
returning a date, time, or dateTime based on a supplied date, time, or dateTime, modified by adding,
removing, or altering the timezone component of the value.

Changes in 2.0
These functions are new in XPath 2.0.

Signature

Argument Data type Meaning

input xs:date?,
xs:dateTime?, or
xs:time?

The date, time, or dateTime value whose
timezone is to be adjusted. The type of this
value must correspond to the name of the
function invoked. For example in the case of
adjust-time-to-timezone() it must be
an xs:time value

timezone
(optional)

xdt:dayTimeDuration? Specifies the new timezone value. If this
argument is omitted, the effect is the same as
setting it to the result of the function
implicit-timezone()

Result xs:date?,
xs:dateTime?, or
xs:time?

The adjusted date, dateTime, or time value

Effect
If the input is an empty sequence, the result is an empty sequence.

297

Chapter 10

If there is no timezone argument (that is, if the function is called with a single argument), the effect is
the same as calling the function with a second argument of «implicit-timezone()». This adjusts the
value to the timezone supplied in the dynamic context, which ideally will be the timezone where the user
is located.

If the timezone argument is supplied, and is not an empty sequence, then it must be a duration between
-50400 seconds and +50400 seconds, that is ±14 hours. To specify a timezone one hour ahead of UTC,
write «xdt:dayTimeDuration("PT1H")».

These functions can be used to remove a timezone from a value that has a timezone, to add a timezone to
a value that lacks a timezone, or to return the value that is equivalent to the supplied value, but in a
different timezone. These effects are summarized in the table below:

Existing
timezone timezone argument is () Timezone argument is not ()

Absent returns the input value unchanged result has the same components as input,
with the addition of the specified timezone

Present result is the localized value of the
input, with the timezone removed

result represents the same instant as the
input value, but in a different timezone

The only complex case here is the one in the bottom-right cell of the table, where the supplied value
already has a timezone and this is to be replaced with a new timezone. The effect varies slightly
depending on which if the three functions is used:

❑ For an xs:dateTime, the result is an xs:dateTime that represents the same instant in time as
the input value, but in the new timezone.

❑ For an xs:time, the result is an xs:time that represents the time in the new timezone that is
simultaneous with the time provided as the input value.

❑ For an xs:date, the date is converted to an xs:dateTime representing 00:00:00 on the specified
date; the requested adjustment is applied to this xs:dateTime value, and the result is the date
part of the adjusted xs:dateTime.

Examples
Assume that $CET is set to the timezone value +01:00, represented by the xdt:dayTimeDuration
PT1H. Assume that $EST is set to the timezone value -05:00, represented by the
xdt:dayTimeDuration -PT5H. Assume also that the implicit timezone is the timezone value -08:00,
represented by the xdt:dayTimeDuration -PT8H.

Here are some examples using xs:time values:

Expression Result

adjust-time-to-timezone(
xs:time("15:00:00+01:00"), $EST)

09:00:00-05:00

298

XPath Functions

Expression Result

adjust-time-to-timezone(
xs:time("15:00:00"), $EST)

15:00:00-05:00

adjust-time-to-timezone(
xs:time("15:00:00+01:00"))

06:00:00-08:00

adjust-time-to-timezone(
xs:time("15:00:00+01:00"), ())

15:00:00

adjust-time-to-timezone(
xs:time("15:00:00"), ())

15:00:00

The corresponding examples using xs:dateTime values are:

Expression Result

adjust-dateTime-to-timezone
(xs:dateTime("2004-03-01T15:00:00+01:00"),
$EST)

2004-03-01T09:00:00-05:00

adjust-dateTime-to-timezone(
xs: dateTime("2004-03-01T15:00:00"),
$EST)

2004-03-01T15:00:00-05:00

adjust-dateTime-to-timezone (
xs: dateTime("2004-03-01T15:00:00+01:00"))

2004-03-01T06:00:00-08:00

adjust-dateTime-to-timezone(
xs:dateTime("2004-03-01T15:00:00+01:00"),
())

2004-03-01T15:00:00

adjust-dateTime-to-timezone (
xs: dateTime("2004-03-01T15:00:00"), ())

2004-03-01T15:00:00

Adjusting the timezone component of a date is a less intuitive operation, but is still well defined:

Expression Result

adjust-date-to-timezone(
xs:date("2004-03-01+01:00"), $EST)

2004-02-29-05:00

adjust-date-to-timezone(
xs:date("2004-03-01"), $EST)

2004-03-01-05:00

adjust-date-to-timezone(
xs:date("2004-03-01+01:00"))

2004-02-29-08:00

Continues

299

Chapter 10

Expression Result

adjust-date-to-timezone(
xs:date("2004-03-01+01:00"), ())

2004-03-01

adjust-date-to-timezone(
xs:date("2004-03-01"), ())

2004-03-01

Usage
Values of types xs:dateTime, xs:time, and xs:date() either have a timezone component, or have
no timezone. If they have a timezone component, it is useful to think in terms of two properties of the
value, which we can call the local value and the absolute value. For example suppose you call
current-time() and the implicit timezone is the timezone for Germany, +01:00. The value returned
might be 14:54:06+01:00. The absolute value of this is the equivalent time in UTC (or “Zulu time”,
popularly Greenwich Mean Time or GMT). This is 13:54:06. The local value is the time in its original
timezone, 14:54:06.

Converting the value to a string always gives you the local value: 14:54:06+01:00. Getting the components
of the value also returns a component of the local value: hours-from-time() applied to this value
returns 14. But comparisons between two values, or calculations such as adding a duration, use the
absolute value.

You can in effect freeze a value in its current timezone by calling adjust-X-to-timezone() with an
empty sequence «()» as the second argument. Applied to this value, the result will be the time 14:54:06,
with no timezone component. Calling hours-from-time() on this value will still return 14.

You can also determine the equivalent time in a different timezone by calling adjust-X-to-
timezone() specifying the new timezone. If the input value is 14:54:06+01:00, and the new timezone is
+00:00, the result will be a time value whose absolute value and local value are both 13:54:06. When you
convert this to a string, the value is «13:54:06Z», and when you call hours-from-time(), the result
is «13». Similarly, if you adjust this value to the timezone –05:00 (New York time), the absolute value will
still be 13:54:06 but the local value will be 08:54:06.

If you have a value with no timezone component, you can set a timezone, either by supplying the
required timezone in the second argument, or by omitting the second argument, which sets the timezone
to the implicit timezone taken from the evaluation context. When you do this, the local value of the new
timezone will be the same as the timezone-less input value. For example, if the input is 14:54:06, and you
set the timezone to –08:00, then the local value of the result will be 14:54:06, which means that its absolute
value will be 22:54:06. When you convert the result to a string, the result will be «14:54:06-08:00»,
and when you extract the hours component, the result will be «14».

The functions work slightly differently for the three data types:

❑ For xs:dateTime, an adjustment to the time may also cause the date to change. For example, if
the input time is 2004:02:29T22:00:00Z, then adjusting the timezone to +10:00 will produce the
local value 2004:03:01T08:00:00+10:00.

❑ For xs:time, all adjustments are made modulo 24 hours.

❑ For xs:date, the value is treated as if it were an xs:dateTime representing 00:00:00 on the
specified date. The adjustment is made to this xs:dateTime, and the time component is then

300

XPath Functions

removed. For example, if the input date is 2004:03:31+00:00, then adjusting the timezone to –05:00
will return the date 2004:02:29-05:00. This involves an inevitable loss of information. You can read
the semantics of the function as being “tell me what the date is in a place in timezone X, at the
time when the day represented by a given date has just started in timezone Y”.

See also
implicit-timezone() on page 352

avg
The avg() function returns the average of a sequence of numbers or durations.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

sequence xdt:anyAtomicType* The input sequence. Any untyped atomic values in the
input are converted to xs:double values. The resulting
sequence must consist entirely of numbers, or entirely of
durations of the same kind

Result xdt:anyAtomicType? The average of the values in the input sequence. This will be a
value of the same primitive type as the values in the input
sequence. If the input values are xs:integer values, the
result will be an xs:decimal

Effect
If the input sequence is empty, the result is an empty sequence. This is not an error, even though a literal
interpretation of the rules would involve dividing by zero.

In all other cases the result is the same as «sum($sequence) div count($sequence)». Note that
$sequence here is the atomized sequence generated by the function calling mechanism. If the sequence
supplied in the call was a sequence of nodes, the number of atomic values is not necessarily the same as
the number of nodes. For example, if «avg(@a)» is called to process a single attribute that is defined in
the schema to contain a list of integers, then it will return the average of these integers.

The sequence of operations is as follows:

❑ The sequence supplied in the argument is atomized (this is a standard action of the function
calling rules when the required type only allows atomic values).

❑ Any untyped atomic values in the resulting sequence (typically, values extracted from nodes in a
schemaless document) are converted to xs:double values. If this conversion fails, a runtime
error is reported.

301

Chapter 10

❑ If the sequence now contains any NaN (not-a-number) values, the result of the avg() function is
NaN.

❑ If the values are all numeric, they are summed according to the rules for the numeric «+»
operator, which means that the result will depend on the types that are present in the sequence. If
there is at least one xs:double, the sum will be an xs:double; otherwise, if there is an
xs:float it will be an xs:float, otherwise xs:decimal or xs:integer.

❑ If the values are all durations, they are similarly summed according to the rules of the «+»
operator. In consequence, it is not possible to mix the two duration types,
xdt:dayTimeDuration and xdt:yearMonthDuration.

❑ Finally, the total is divided by the number of items using the «div» operator. In the case of a
numeric total, this means that the average will be the same numeric type as the sum, unless the
sum is an xs:integer in which case the average will be an xs:decimal. If the items are
durations, the result will be a duration of the same type as the items.

Examples

Expression Result

avg((1.0, 2.6, 3.0)) xs:decimal(’2.2’)

avg(()) ()

avg((1, xs:float(’3.5’), 5.5)) xs:float(’3.0’)

avg((1, 2, 3)) xs:decimal(’2.0’)

avg((xdt:dayTimeDuration("P1D"),
xdt:dayTimeDuration("PT12H")))

PT18H

See also
count() on page 316
max() on page 370
min() on page 371
sum() on page 431

base-uri
The base-uri() function returns either the base URI from the static context of the XPath expression, or
the base URI of a specific node in a document.

Changes in 2.0
This function is new in XPath 2.0.

302

XPath Functions

Signature
Argument Data type Meaning

input-node
(optional)

node()? The node whose base URI is required

Result xs:string If the function has no arguments, it returns the base URI from the
static context of the XPath expression. If an input-node is
supplied, the function returns the base URI of that node

Effect
The effect depends on whether an input-node is supplied.

When there is no input-node
When the first argument is omitted the function returns the base URI from the static context. This is
determined by the host language in which the expression appears. For an XPath expression used in an XSLT
stylesheet, the base URI is the URI of the stylesheet module, unless this is modified with an xml:base
attribute. In XQuery, the base URI of an expression can be specified by a declaration in the module prolog.

The base URI is used when resolving a relative URI contained in the expression, for example as an
argument of the doc() function (or document() in XSLT).

It is possible that the base URI is unknown. This can happen in XSLT, for example, if the stylesheet is
supplied as a DOM, or as a character string in memory with no associated URI. In this case this function
returns an empty sequence.

When there is an input-node
When the first argument is present, the function returns the base URI of the input node supplied. This is a
property of the node, defined in the data model. If the node was created by parsing raw XML, then the
base URI is typically the URI of the resource containing the raw XML used to create the node. If the
original XML used external entities, then it will be the URI of the external entity in question. The base URI
of a node may also be altered by using the xml:base attribute in the XML. This attribute is defined in the
W3C Recommendation XML Base (http://www.w3.org/TR/XMLBase/).

The base URI of a node is typically used when resolving a relative URI contained in the value of that
node. By definition, relative URIs refer to files (or to be more general, resources) relative to the base URI
of the file containing the relative URI.

When nodes are not created directly by parsing raw XML, the concept of base URI is not so clear-cut.
XSLT defines that a node in a temporary tree derives its base URI from the base URI of the stylesheet.

If the first argument is supplied but its value is an empty sequence, the function returns an empty sequence.

Usage and Examples
The base-uri() function is useful mainly in conjunction with resolve-uri(): it gives you a base URI
against which a relative URI can be resolved. For example, if you want to locate the document identified
by a relative URI held in an href attribute in a source document, the following code should be used:

doc(resolve-uri(@href, base-uri(.)))

303

Chapter 10

It is rarely necessary to call base-uri() explicitly without an argument, since functions like doc() will
resolve a relative URI against the base URI from the static context implicitly. With a complex application
containing many XPath expressions, base-uri() can sometimes be useful in diagnostic messages (for
example, in the output of the trace() function, or the XSLT <xsl:message> instruction) to indicate
where the message is coming from—assuming that the base URI differs from one module of the
application to another.

In XSLT 2.0 and XQuery 1.0 it is well defined how the base URI in the static context is established. If you
invoke XPath expressions via an API from a programming language (for example, a Java or .NET API)
then there may be no explicit way of setting the base URI, especially if the API was originally designed
for XPath 1.0. In this case the base-uri() function is defined to return an empty sequence.

See also
doc() on page 329
resolve-uri() on page 405

boolean
The boolean() function calculates the effective boolean value of the supplied argument. Every XPath
value, of any data type, has an effective boolean value which is either true or false.

Changes in 2.0
The function has been generalized in XPath 2.0 so it accommodates a much wider range of possible
arguments.

Signature

Argument Data type Meaning

value item()* The value whose effective boolean value is required

Result xs:boolean The effective boolean value of the argument

Effect
Every XPath 2.0 value has an effective boolean value. The boolean() function is used to calculate the
effective boolean value explicitly, but it is also calculated implicitly in a number of contexts where a
boolean value is required: see the Usage section below.

If the argument is an empty sequence, then the effective boolean value is false.

If the argument is a sequence containing two or more items, then the effective boolean value is true.

If the argument contains a node, then the effective boolean value is true.

If the argument contains a singleton atomic value, then the effective boolean value is false if this singleton
value is one of:

304

XPath Functions

❑ The boolean value false

❑ A zero-length string (or zero-length untyped atomic value)

❑ A number equal to zero (this covers all numeric data types, and includes positive and negative
zero)

❑ The xs:double or xs:float value NaN (not-a-number).

In all other cases the effective boolean value is true.

Examples
Assume the source document:

<doc>
<emp name="John" age="53"/>
<emp name="Mary"/>

</doc>

with the variable $John bound to the first <emp> element, and $Mary bound to the second.

Expression Result

boolean(//emp[@age=21]) false

boolean(//emp[@age=53]) true

boolean(number($John/@age)) true

boolean(number($Mary/@age)) false

boolean(count($John/*)) false

boolean(string($John/@surname)) false

boolean(string($John/@name)) true

boolean("true") true

boolean("false") true

Usage
In most cases conversion to an xs:boolean occurs automatically when the context requires it; it is only
necessary to call the boolean() function explicitly in order to force a conversion. For example, these
rules are invoked automatically when an expression is used as the condition in an «if» expression, in the
«satisfies» clause of the «some» and «every» expressions, and for the operands of «and» and «or».
They are also invoked in XSLT stylesheets for expressions used in <xsl:if> and <xsl:when>
instructions.

The detailed rules for establishing the effective boolean value may appear somewhat arbitrary. They were
defined this way in large measure for backward compatibility with XPath 1.0, which allowed sequences
of nodes but did not allow sequences of strings, booleans, or numbers. The rules will probably come
naturally if you are familiar with weakly-typed languages such as Perl or Python, but there are a few
traps to beware of. For example, if you convert the boolean value false to a string, you get the string
"false", but the effective boolean value of this string is true.

305

Chapter 10

The boolean() function does not always return the same result as the xs:boolean() constructor.
xs:boolean() (like «cast as xs:boolean») follows the rules in XML Schema that define the lexical
representations of the xs:boolean data type. This treats the strings "1" and "true" as true, and "0"
and "false" as false.

XSLT Examples
The following example prints a message if the source document contains a <header> element and no
<footer>, or if it contains a <footer> and no <header>.

<xsl:if test="boolean(//header) != boolean(//footer)">
<xsl:message>Document must contain headers and footers,

or neither</xsl:message>
</xsl:if>

The conversion of the two node sequences «//header» (true if there are any <header> elements in the
document) and «//footer» (true if there are any <footer> elements) needs to be explicit here, because
we want to do a boolean comparison, not a comparison of two node sequences.

The following example sets a variable to the xs:boolean value true or false depending on whether
the document contains footnotes. In this case the explicit conversion is probably not necessary, since it
could be done later when the variable is used, but it is probably more efficient to retain only an
xs:boolean value in the variable rather than retaining the full set of footnote nodes. An intelligent XSLT
processor will recognize that the expression «//footnote» occurs in a context where a boolean is
required, and scan the document only until the first footnote is found, rather than retrieving all of them.

<xsl:variable name="uses-footnotes" select="boolean(//footnote)"/>

See also
true() on page 439
false() on page 343

ceiling
The ceiling() function rounds a supplied number up to the nearest whole number. For example, the
expression «ceiling(33.9)» returns 34.

Changes in 2.0
The function has been generalized to work on all numeric data types.

Signature

Argument Data type Meaning

value Numeric The supplied value

Result Numeric The result of rounding $value up to the
next highest integer. The result has the same
primitive data type as the supplied value

306

XPath Functions

Effect
If the number is an xs:integer, it is returned unchanged.

Otherwise, it is rounded up to the next highest whole number. If the supplied value is an xs:decimal,
the result will be an xs:decimal, if it is an xs:double, the result will be an xs:double, and if it is an
xs:float, the result will be an xs:float.

The xs:double and xs:float data types in XPath support special values such as infinity, negative zero
and NaN (not-a-number), which are described on page 84 in Chapter 3. If the argument is NaN, the result
will be NaN. Similarly, when the argument is positive or negative infinity, the function will return the
value of the argument unchanged.

If the argument value is an xs:double or xs:float greater than –1.0 but less than zero it will be
rounded up to negative zero. For most practical purposes, negative zero and positive zero are
indistinguishable; but dividing a number by negative zero produces negative infinity, while dividing by
positive zero produces positive infinity.

Examples

Expression Result

ceiling(1.0) 1.0

ceiling(1.6) 2.0

ceiling(17 div 3) 6.0

ceiling(-3.0) -3.0

ceiling(-8.2e0) -8.0e0

ceiling(number(’xxx’)) NaN

ceiling(-0.5e0) -0.0e0

Usage
One situation where this function is useful is when calculating the size of a table. If you have a sequence
$ns and you want to arrange the values in three columns, then the number of rows needed is:
«ceiling(count($ns) div 3)».

Although the result is numerically equal to an integer, it does not necessarily have the type xs:integer.
You can force it to an integer by using the xs:integer() constructor function, for example,
«xs:integer(count($ns) div 3)».

See also
floor() on page 344
round() on page 409
«idiv» operator on page 173 in Chapter 6

307

Chapter 10

codepoints-to-string
The codepoints-to-string() function takes as input a sequence of integers representing the
Unicode codepoint values of the characters in a string, and returns the corresponding string. For
example, «codepoints-to-string((65,66,67))» returns the string “ABC”.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

codepoints xs:integer* The sequence of codepoints. These must represent
characters that are valid in XML 1.0 or XML 1.1, depending
on the version that the processor supports

Result xs:string The string consisting of characters with the given codepoint values

Effect
The function returns a string made of the characters corresponding to the Unicode codepoints in the
supplied sequence.

A character whose codepoint is above xFFFF must be supplied as a single integer value, not as two code
values forming a surrogate pair.

If the supplied sequence is empty, the result will be a zero-length string.

A common case, of course, is where the sequence of codepoints contains a single integer, in which case
the resulting string will be of length one.

Integers that do not represent valid codepoints cause a runtime error. This includes the case of codepoints
that are valid in Unicode, but not in XML (for example the integer zero).

Examples

Expression Result

codepoints-to-string(
(65, 83, 67, 73, 73))

"ASCII"

codepoints-to-string(48 to 57) "0123456789"

codepoints-to-string(()) ""

codepoints-to-string(64+$n) The n’th letter of the English alphabet

Usage
There are two main ways of using this function: as a way of constructing a string algorithmically, and as a
complement to the function string-to-codepoints().

308

XPath Functions

As an example of the first kind of application, suppose you need to construct the hexadecimal
representation of an integer. This might make use of an expression to return a single hex digit
representing a value in the range 0–15. Here is a possible way of writing this expression:

codepoints-to-string(if ($d<10) then (48+$d) else (87+$d))

Personally, I prefer to code this as:

substring("0123456789abcdef", $d+1, 1)

As an example of the second kind of application, suppose that you want to reverse the order of the
characters in a string. One way of doing this is:

codepoints-to-string(reverse(string-to-codepoints($s)))

In this example, the two functions string-to-codepoints() and codepoints-to-string() are
being used simply as a way of breaking the string into a sequence of characters, and reassembling the
characters into a string; the fact that the characters are represented by Unicode codepoints is an
irrelevance.

See also
string-to-codepoints() on page 421

collection
The collection() function returns a sequence of documents, or more generally a sequence of nodes,
identified by a URI. The way in which a URI can be used to locate a collection of documents is entirely
implementation-defined.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

uri xs:string? A URI that identifies a collection of documents, or
nodes within documents. If the argument is an empty
sequence, the function returns an empty sequence

Result node()* The sequence of documents, or nodes within documents,
identified by the URI

Effect
This function is specified in very abstract terms, and it’s likely that its detailed behavior will vary
considerably from one implementation to the next.

Many XML databases have the concept of a collection as a container for documents, and the containers
generally have a name, which can be mapped into some kind of URI. Beyond that, there are many
variations: for example, some systems might allow collections to be nested hierarchically, some systems

309

Chapter 10

might use a collection to store all the documents that are validated against one particular schema, and so
on. One can also imagine mapping the concept of a collection onto a simple directory containing the
documents (perhaps with a filter applied to the document names), or onto an XML catalog file that holds
a list of the documents within the collection.

All that the spec really says about this function is that the supplied URI argument is resolved against the
base URI from the static context, and the resulting absolute URI is used to identify a collection of
documents; the result is a sequence containing the document nodes of these documents. In fact it isn’t
constrained to return document nodes, there might be collections that return other kinds of nodes.

The specification also says that the function is stable, which means that if you call it twice in the same
expression (or, in the case of XSLT, in the same transformation) then you get the same answer back each
time. In other words, a collection at least gives the appearance of being immutable for the duration of a
query or transformation.

Once XQuery defines an update capability, it will have to come up with a more sophisticated definition of
transactions and isolation levels, but this one is adequate for now.

Beyond this, it’s not really possible to say what the collection() function does, or what the URI that
you supply to it actually means. We’ll have to wait and see what implementations do. Saxon’s initial
implementation of the function uses a very simple XML catalog file to define a list of documents, but this
certainly isn’t the last word on the matter.

See also
doc() on page 329

compare
The compare() function is used to compare two strings, and to decide whether they are equal, or if not,
which one sorts before the other.

For example, under most collations «compare("ALPHA", "BETA")» returns -1.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

value-1 xs:string? The first string to be compared

value-2 xs:string? The second string to be compared

collation
(optional)

xs:string A URI identifying the collation to be used to perform
the comparison

Result xs:integer? –1 if value-1 is considered less than value-2 , zero if
they are considered equal, +1 if value-1 is considered
greater than value-2

310

XPath Functions

Effect
If either value-1 or value-2 is an empty sequence, the result is an empty sequence.

If value-1 is less than value-2, the function returns -1; if they are equal, it returns 0; and if value-1
is greater than value-2, it returns +1. The string comparison is done using the supplied collation if
specified; if the collation argument is omitted, the comparison is done using the default collation. For
more information on collations, see the section Collations in Chapter 4, page 123.

Examples
These examples assume the availability of two collation URIs: $strong, which considers first the
character value, then accents, then case (with upper case first); and $weak, which considers only the
character value.

Expression Result

compare("espace", "espacer") -1

compare("espace", "espacé", $strong) -1

compare("espace", "espacé", $weak) 0

compare("espacer", "espacé", $strong) +1

compare("espacer", "espacé", $weak) +1

Usage
Often compare() is followed by a three-way branch. Because XPath has no switch or case expression, it
is best to assign the result of the function to a variable to avoid doing the comparison twice. For example,
in XSLT:

<xsl:variable name="c" select="compare(A, B)"/>
<xsl:choose>

<xsl:when test="$c = -1"> ... </xsl:when>
<xsl:when test="$c = 0"> ... </xsl:when>
<xsl:when test="$c = +1"> ... </xsl:when>

</xsl:choose>

Or, in XQuery 1.0:

let $c := compare(A, B) return
if ($c = -1) then ...
else if ($c = 0) then ...
else ...

In pure XPath 2.0, you can do this rather awkwardly with a «for» expression:

for $c in compare(A, B) return
if ($c = -1) then ...
else if ($c = 0) then ...
else ...

311

Chapter 10

Another coding technique you could consider is to use a positional predicate:

("less", "equal", "greater")[compare($A,$B) + 2]

But I would avoid doing this if the sequence on the left contains complex expressions, because it’s quite
likely that more than one of the expressions will be evaluated.

See also
Collations on page 123 in Chapter 4
Value Comparisons on page 181 in Chapter 6

concat
The concat() function takes two or more arguments. Each of the arguments is converted to a string, and
the resulting strings are joined together end-to-end.

For example, the expression «concat(’Jane’, ’ ’, ’Brown’)» returns the string «Jane Brown».

Changes in 2.0
None.

Signature
This function is unique in that it can take any number of arguments (two or more).

Argument Data type Meaning

value
(repeated)

xat:anyAtomicType A string to be included in the result

Result xs:string The result of concatenating each of the
arguments in turn

Effect
Each of the supplied strings is appended to the result string, in the order they appear.

Any argument that is an empty sequence is ignored. If all the arguments are empty sequences, the result
is a zero-length string.

Note that all the arguments will automatically be cast to strings.

312

XPath Functions

Examples

Expression Result

concat("a", "b", "c") The string «abc»

concat("chap", 3) The string «chap3»

concat("a", (),
(), "b")

The string «ab»

concat("a", ("b", "c")) In 1.0 mode: the string «ab» (when a sequence is converted to a string
in backward compatibility mode, all items after the first are discarded)
In 2.0 mode: error. The argument must be a single string, not a
sequence of strings. Use the string-join() function instead

Usage in XSLT
The concat() function is often a convenient alternative to using multiple <xsl:value-of> elements
to construct an output string. For example:

<xsl:value-of select="concat(first-name, ’ ’, last-name)"/>

is equivalent to:

<xsl:value-of select="first-name"/>
<xsl:text> </xsl:text>
<xsl:value-of select="last-name"/>

However, with XSLT 2.0 it is even simpler to write:

<xsl:value-of select="first-name, last-name" separator=" "/>

Another situation where concat() is useful is in defining a key, including lookup keys (<xsl:key>),
sort keys (<xsl:sort>), and grouping keys (<xsl:for-each-group>). XSLT keys cannot be
multipart values, but you can get round this restriction by concatenating the parts of the key with an
appropriate separator. For example:

<xsl:key name="full-name" match="person"
use="concat(first-name, ’ ’, last-name)"/>

This key can then be used to retrieve the person (or persons) with a given name using an expression such
as:

<xsl:for-each select="key(’full-name’, ’Peter Jones’)"/>

See also
contains() in the section immediately below.
string-join() on page 418.
substring() on page 423.

313

Chapter 10

contains
The contains() function tests whether one string contains another as a substring. For example, the
expression «contains(’Santorini’, ’ant’)» returns true.

Changes in 2.0
An optional collation argument has been added.

Signature

Argument Data type Meaning

value xs:string? The containing string

substring xs:string? The test string

collation
(optional)

xs:string The collation to be used

Result xs:boolean true if the containing string has a substring
that is equal to the test string, otherwise false

Effect
If no collation is specified, then the result is true if the first string contains a consecutive sequence of
characters where each character has the same Unicode value as the corresponding character of the second
string.

If the second string is zero-length, the result is always true.

If the first string is zero-length, the result is false except when the second string is also zero-length.

If either of the first two arguments is an empty sequence, the effect is the same as if it were a zero-length
string.

When a collation is specified, it is used to break both of the strings into a sequence of collation units, and
the function returns true if the collation units generated for the test string form a subsequence of the
collation units generated for the containing string.

Because this function compares substrings, rather than just performing an equality match or ordering on
two strings as a whole, it imposes particular constraints on the way the collation works—it only makes
sense to use a collation that considers the string character-by-character. For a function such as
compare(), it would be quite viable to use a collation that sorts «January» before «February», or
«5 Oak Street» before «10 Maple Drive». But a collation that does this isn’t also going to be able to
look for substrings of characters in a meaningful way.

This doesn’t mean that each character must be considered in isolation. The collation can still consider
characters in groups, as with the traditional rule in Spanish that «ch» collates as if it were a single
character following «c», and «ll» as a single letter after «l». But where characters are grouped in this
way, it is likely to affect the way substrings are matched, as we will see.

314

XPath Functions

The XPath specification isn’t completely prescriptive about how substring matching using a collation
should work, and there are several possible approaches that an implementation could use. I’ll describe
the way the Saxon processor does it, which makes heavy use of the collation support in Java: other
Java-based processors are therefore quite likely to be similar.

Firstly, let’s look at a case where Java treats one character as two collation units. With a primary strength
collation for German, the string «Straße» generates a sequence of seven collation units, which are
exactly the same as the collation units generated for the string «strasse». This means that
«contains("Straße", $t)» returns true when $t is any one of «ß», «aß», «ße», «ss», «as», «ass»,
or «se» (among others). Few surprises here.

Java also allows a collation to perform decomposition of combined characters. For example, the character
«ç» can be decomposed into two characters, the letter «c» and a non-spacing cedilla. The advantage of
doing this is that Unicode allows two ways of representing a word such as «garçon», using either six
codepoints or seven, and normalizing the text so it only uses one of these forms gives better results when
matching strings. For collating, Java chooses to use the decomposed form in which the accents are
represented separately. (For more information on normalization, see the entry for the
normalize-unicode() function on page 388.)

Under such a collation, the string «garçon» is represented as seven collation units, the same as the
collation units for the string «garç on», in which the cedilla is represented by a separate non-spacing
character. The effect of this is that the result of «contains("garçon", $t)» is true when $t is
any of «ç», «rç», or «ço», and also when it is «c» or «rc», but not (and here’s the surprise) when it is
«co».

I’ve written«garç on» to illustrate that the «c» and the «ç » are two separate Unicode codepoints. But of
course the cedilla is actually a non-spacing character, so in real life this string of seven codepoints would
appear on the page as «garçon».

Java could instead have standardized on the composed form of the character, but the accent-blind
matching would then not work: «contains("garçon", "c")» would be false.

Now let’s look at a case where a pair of characters represents a single collation unit. Here we turn back
to Spanish, where «ch» traditionally collates after «c» and «ll» collates after «l». We can set this up in
Java by defining a RuleBaseCollator using a rule that defines «c < ch < d» and «l < ll < m». (In
my tests, the default collation provided for Spanish didn’t have this property. I had to set up the rules
myself.)

When you do this, you find that «contains("chello", $t)» returns true if $t is «ch» or «che» or
«ello», but is false if it is «c» or «h» or «l» or «hello». What is happening is that because «ch» and
«ll» are being treated as single characters for collation purposes, they are also treated as single
characters for the purpose of substring matching.

These rules for substring matching using a collation apply not only to the contains() function, but also
to ends-with(), starts-with(), substring-before(), and substring-after(). Because
collations can cause unexpected effects with these functions (as well as incurring a significant
performance cost), the default collation does not apply to them: if the collation argument is not explicitly
supplied, these functions match by comparing Unicode codepoints. If you want to use the default
collation, you can request it explicitly. For example, «contains("ABC", "b", default-
collation())» returns true if the default collation is one that ignores differences of case.

315

Chapter 10

Examples
These examples use codepoint comparison, because there is no collation argument.

Expression Result

contains("Shakespeare", "spear") true

contains("", "a") false

contains("Shakespeare", "") true

contains("", "") true

contains((), "a") false

Usage
The contains() function is useful mainly for very simple matching, for example, testing whether a
string contains a space. For more complex matching of strings, the matches() function is available in
XPath 2.0 with full support for regular expressions.

See also
ends-with() on page 334
matches() on page 368
starts-with() on page 415
substring() on page 423
substring-after() on page 425
substring-before() on page 427

count
The count() function takes a sequence as its argument, and returns the number of items in the sequence.
For example, the expression «count((4,5,6))» returns 3.

Changes in 2.0
The function is generalized in XPath 2.0 so it can return the number of items in any sequence.

Signature
Argument Data type Meaning

sequence item()* The sequence whose items are to be counted

Result xs:integer The number of items in the supplied sequence

Effect
The count() function takes any sequence as its argument, and returns the number of items present in
the sequence.

316

XPath Functions

If the sequence contains nodes, each node counts as one item. The function does not count the number of
atomic values contained in the node’s typed value, and it does not count the children or descendants of
the node.

Examples
Consider the source document:

<doc>
<obs at="10:42:06" colors="red green"/>
<obs at="11:43:12" colors="green blue orange"/>

</doc>

and assume that this has been validated using a schema that defines the colors attribute as a sequence
of strings.

Expression Result

count(//obs) 2

count(//obs/@colors) 2

count(data(//obs/@colors)) 5

count(//@*) 4

count(//obs/@date) 0

count((5 to 10)) 6

Usage
Avoid using count() to test whether a sequence of nodes is empty, for example, by writing:

if (count(book[author=’Hemingway’]) != 0) then . . .

This can be better expressed as:

if (book[author=’Hemingway’]) then . . .

or, if you prefer:

if (exists(book[author=’Hemingway’])) then . . .

A good processor will optimize the first expression so as to avoid counting all the books (it can stop
counting books and take the then path as soon as it finds the first one that matches), but it’s always best
to avoid relying on such optimizations if you can.

The count() function is a useful way of finding the position of a node within a source document. In
XSLT it can provide an effective alternative to using <xsl:number>, and in non-XSLT environments, it
may be the only way of doing numbering. For example, if the context node is a <bullet> element, then
«count(preceding-sibling::bullet)+1» returns the number of this <bullet> within the
sequence of <bullet> elements. The advantages of using count() over <xsl:number>, apart from

317

Chapter 10

the fact that it’s available in non-XSLT environments, are that it is rather more flexible in defining what
you want to count, and it can be used directly in expressions. However, <xsl:number> gives a simple
way of obtaining the sequence number, formatting it, and inserting it in the result tree in a single
operation; it may also in some cases be easier for the processor to optimize.

Avoid using count() where last() would do the job just as well. This situation arises in XSLT when
you are processing a sequence of nodes using <xsl:apply-templates> or <xsl:for-each>; the
number of nodes in that sequence is then available from the last() function. For example, it is probably
inefficient to write:

<xsl:for-each select="book[author=’Hemingway’]">
<h2>Book <xsl:value-of select="position()"/> of

<xsl:value-of select="count(../book[author=’Hemingway’])"/>
</h2>
. . .

</xsl:for-each>

because—unless the XSLT processor is rather clever—it will have to re-evaluate the expression
«../book[author=’Hemingway’]» each time round the loop.

Instead, write:

<xsl:for-each select="book[author=’Hemingway’]">
<h2>Book <xsl:value-of select="position()"/> of

<xsl:value-of select="last()"/>
</h2>

. . .
</xsl:for-each>

An alternative is to assign the sequence of nodes to a variable, so it is only evaluated once.

See also
sum() on page 431
last() on page 359

current-date, current-dateTime, current-time
These three functions are used to obtain the current date, the current time, or both.

Changes in 2.0
These functions are new in XPath 2.0.

Signature
These functions take no arguments.

318

XPath Functions

Data type Meaning

Result xs:date,
xs:dateTime, or
xs:time

The current date, dateTime, or time

Effect
The current date and time forms part of the runtime context of an XPath expression. It will normally be
taken from the system clock.

The resulting value will always have an explicit timezone component. The timezone will be taken from
the implicit timezone provided by the evaluation context. In practice, this means it will probably be
derived from the system default timezone for the machine on which the XSLT processor is running, or
from the profile of the particular user.

In XSLT 2.0 it is defined that multiple calls on current-dateTime() and the other two functions will
return the same result every time they are called within a single transformation. This means you can’t call
the function at the beginning and the end of the transformation to measure the elapsed time. The reason
for this rule is that XSLT is rather purist about being a strictly functional language, and in a strictly
functional language, calling the same function twice with the same arguments always returns the same
result. This property makes life much simpler for optimizers.

In XQuery 1.0, the same rule applies to multiple calls within a single query.

Examples
Expression Possible Result

current-date() An xs:date, say 2004-06-02Z

current-dateTime() An xs:dateTime, say 2004-06-02T12:35:02Z

current-time() An xs:time, say 12:35:02Z

Usage
XPath 2.0 does not provide any facilities for formatting the date and time for display. You can do this
yourself by extracting the components of the value using functions such as day-from-date() and
hours-from-dateTime(), or you can convert the value to a string in ISO 8601 format using the
string() function.

In XSLT 2.0 the returned date and time can be formatted for display using the functions
format-date(), format-dateTime(), and format-time(). These functions are described in
Chapter 7 of XSLT 2.0 Programmer’s Reference.

See also
adjust-date/time-to-timezone() functions described on page 297.

X-from-date/time() functions described in their alphabetical position in this chapter, where X is one
of year, month, day, hours, minutes, seconds, or timezone.

319

Chapter 10

data
The data() function returns the atomized value of a sequence. This means that any nodes in the input
sequence are replaced by their typed values.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

sequence item()* The input sequence

Result xdt:anyAtomicType* A sequence based on the input sequence, in which
all nodes have been replaced by their typed values

Effect
Atomization is a process that is invoked implicitly when a sequence containing nodes is used in a context
where atomic values are expected. For example, if you write «@a+42», the attribute node represented by
the expression «@a» is atomized to obtain a number, which is then added to 42. The data() function
invokes atomization explicitly, and is used either in a context where implicit atomization does not occur
(for example, the argument to the count() function is not atomized), or in cases where you want to
make it clear to the reader what is going on.

Atomization applies the following process to each item in the input sequence. The results are
concatenated together retaining the original sequence order:

❑ If the input sequence contains an atomic value, the atomic value is added to the result sequence
unchanged.

❑ If the input sequence contains a node, the typed value of the node is added to the result sequence.

The typed value of a node depends on its type annotation. In the absence of a schema, or when the type
annotation is xdt:untypedAtomic or xdt:untyped, the typed value is the same as the string value,
but the resulting atomic value remains an xdt:untypedAtomic value rather than a string, which allows
it to be used in contexts (for example, as an operand of «+») where a string would not be allowed.

If the node is annotated with some other type annotation, which generally will happen only as a result of
schema validation, the typed value reflects the type definition in the schema:

❑ If the schema type is a simple type, the result is, in general, a sequence of zero or more atomic
values. For example, if the type is xs:NMTOKENS, the result is a sequence of atomic values of type
xs:NMTOKEN. If the type is a user-defined type defined as a list of xs:unsignedInteger
values, then the typed value is a sequence of atomic values of type xs:unsignedInteger. If the
schema type is a union type allowing a choice of xs:integer or xs:string, then the typed
value will be either an xs:integer or an xs:string.

❑ If the schema type is a complex type (which implies that the node is an element), there are four
cases to consider:

320

XPath Functions

❑ The type may be a complex type with simple content. This means that the type allows
attributes, but does not allow child elements. In this case the element content is processed
exactly as for a simple type, as described above. The attributes are ignored.

❑ The type may allow mixed content (defined using «mixed="true"» on the type definition
in the schema). In this case the typed value is the same as the string value, which is the
concatenation of all the text node descendants of the element. For example, the typed value
of the element <chem>H₂O</chem> is the string «H2O». The result is labeled
as an untyped atomic value.

❑ The type may define that the element is always empty. In this case, the typed value is an
empty sequence.

❑ If the type allows element content only, then atomizing the element is an error. A system
that does static type checking may report this as a compile-time error, otherwise it will be
reported at runtime. You can always avoid this error by selecting the children of the
complex element directly, for example by writing «$emp/*» instead of «$emp».

Examples
Suppose that the variable $x is bound to the following element, which has been validated using a schema
that defines the content model of <rows> as zero or more <row> elements, and the content model of the
<row> element to contain a number attribute of type xs:integer and a colors attribute whose type is
xs:NMTOKENS.

<rows>
<row number="1" colors="red green"/>
<row number="2" colors="yellow purple"/>

</rows>

Expression Result

data($x/row/@number) (1, 2)

data($x/row/@colors) ("red", "green", "yellow", "purple")

data($x) Error. An element with element-only content does not have
a typed value

data($x/row) ()

Usage
Atomization is normally carried out automatically when an operation that expects atomic values is
applied to a sequence. For example, if the argument to the sum() function is a set of nodes, then the
typed values of those nodes will be extracted and totaled.

The data() function is provided so that atomization can be done explicitly in situations where it is not
automatic. For example, the count() function does not automatically atomize its argument: it counts the
nodes in the sequence, not the atomic values that result from atomization. The result is not the same,
because if an element or attribute is declared in the schema to have a type such as list-of-integers, then
atomizing the element or attribute may produce zero, one, or more atomic values.

321

Chapter 10

Similarly, when testing the value of an element or attribute whose type is xs:boolean, be careful to
make sure that the value is atomized: write «if (data(@married))...» rather than
«if(@married)...». This is because the value of «@married» is a sequence of zero or one attribute
nodes, and the effective boolean value of a sequence of nodes (which is what the «if» expression tests) is
true if there is at least one node in the sequence, regardless of its contents. If the attribute exists and has
the value «married="false"», the test «if(@married)...» will return true. Another way of forcing
atomization is to write this as «if (@married = true())... ».

See also
The Type Matching Rules on page 107 in Chapter 3

day-from-date, day-from-dateTime
These two functions extract the day-of-the-month component from an xs:date or xs:dateTime value.
For example, on Christmas Day «day-from-date(current-date())» returns 25.

Changes in 2.0
These functions are new in XPath 2.0.

Signature

Argument Data type Meaning

input xs:date? or xs:dateTime? The value from which a component is to be
extracted. The data type of the supplied
argument must correspond to the data type
implied by the function name

Result xs:integer? The day, in the range 1-31

Effect
The function returns the day component of the supplied xs:date or xs:dateTime. The value is used in
its local timezone (not normalized to UTC). If the argument is an empty sequence, the result is an empty
sequence.

Examples

Expression Result

day-from-date(xs:date("2004-02-28")) 28

day-from-dateTime(xs:dateTime("2004-02-28T13:00:00")) 28

day-from-date(xs:date("2004-07-31+01:00")) 31

day-from-dateTime(xs:dateTime("2004-07-31T23:00:00-05:00")) 31

322

XPath Functions

See also
current-date(), -dateTime(), -time() on page 318.
format-date(), -dateTime(), -time() in Chapter 7 ofXSLT 2.0 Programmer’s Reference.
month-from-date(), -dateTime() on page 374
year-from-date(), -dateTime() on page 443

days-from-duration
This function extracts the value of the days component from a normalized xdt:dayTimeDuration value.

Changes in 2.0
This function is new in XPath 2.0.

Signature
Argument Data type Meaning

input xdt:dayTimeDuration? The duration whose days component is to be
extracted. If an empty sequence is supplied, an
empty sequence is returned

Result xs:integer? The days component

Effect
The function returns the days component of the supplied xdt:dayTimeDuration. The duration value
is first normalized so that the number of hours is less than 24, the number of minutes is less than 60, and
so on. The result will be negative if the duration is negative.

Examples
Expression Result

days-from-duration(xdt:dayTimeDuration("P5DT12H")) 5

days-from-duration(xdt:dayTimeDuration("PT72H")) 3

days-from-duration(xdt:dayTimeDuration("-P1D")) -1

See also
hours-from-duration on page 347
minutes-from-duration on page 374
seconds-from-duration on page 414

deep-equal
The deep-equal() function performs a deep comparison between two sequences:

❑ The items in corresponding positions in each sequence must be deep-equal to each other

❑ If the items are nodes, they are compared by examining their children and attributes recursively

323

Chapter 10

Changes in 2.0
This function is new in XPath 2.0.

Signature
Argument Data type Meaning

sequence-1 item()* The first operand of the comparison

sequence-2 item()* The second operand of the comparison

collation (optional) xs:string The collation to be used for comparing strings (at
any depth)

Result xs:boolean True if the sequences are deep-equal, otherwise false

Effect
This function may be used to compare:

❑ Two nodes, to see whether the subtrees rooted at those nodes have identical content at every
level

❑ Two sequences, to see whether the items they contain are pairwise deep-equal

The function is therefore defined to operate on sequences, though in many cases it will be used to
compare two singleton element or document nodes.

At the top level, two sequences are deep-equal if they have the same number of items, and if each item in
the first sequence is deep-equal to the item in the corresponding position of the other sequence. A
consequence of this rule is that an empty sequence is deep-equal to another empty sequence.

Where the item in a sequence is an atomic value, then the corresponding item in the other sequence must
also be an atomic value, and they must compare equal using the «eq» operator, using the specified
collation if they are strings or untyped atomic values. If two items in corresponding positions are not
comparable (for example, if one is an integer and the other is a string, or if one is a date and the other is an
element node) then the function returns false; it does not report an error. Nodes are not atomized.

If two items in corresponding positions are nodes, then to be deep-equal they must satisfy a number of
conditions:

❑ They must be the same kind of node (for example, both elements or both text nodes)

❑ They must have the same name, that is, the same namespace URI and the same local name, or
they must both be unnamed nodes such as text nodes

❑ In the case of document nodes, and element nodes whose type allows one or more element
children, the sequences of children for the two nodes must be deep-equal to each other, after
discarding any comments and processing-instructions.

❑ In the case of element nodes, there must be a one-to-one correspondence between the attributes of
the two elements (same attribute name, and same typed value).

324

XPath Functions

❑ In the case of attribute nodes and element nodes whose type does not allow element children, the
typed values must be deep-equal to each other.

❑ In the case of text nodes, comments, processing instructions, and namespace nodes they must
have the same string value, compared using the selected collation. (But for namespace nodes, the
values—that is, the namespace URIs—are always compared using codepoint-by-codepoint
comparison.) Note however that comments, processing instructions, and namespace nodes are
only taken into account if they occur directly as items in the sequences supplied as arguments to
the deep-equal() function. When they occur within the content of an element node, they are
not considered.

Nodes can be deep-equal even if they differ in certain respects:

❑ When comparing elements, the namespace nodes of the elements do not need to be the same, and
contained comments and processing instructions are not taken into consideration. (The fact that
the namespace nodes can be different also means that one element can pass validation while the
other fails validation, if they happen to contain xs:QName values in their content.)

❑ Type annotations are not taken into account: for example two attributes can be equal if one is
annotated as an xs:decimal with value 3.0 and the other is annotated as xs:integer with
value 3.

❑ The order of attributes within an element can vary. (But the order of attribute nodes in the
top-level sequence is significant.)

❑ The base URI can vary.

❑ When comparing document nodes, the document URI and unparsed entities are ignored.

Surprisingly, however, whitespace text nodes are taken into account even within an element that has an
element-only content model.

Examples

Expression Result

deep-equal((1,2,3), (1,2,3)) true

deep-equal((1,2,3), (3,2,1)) false

deep-equal((1,2), (1.0, 2.0)) true

deep-equal((), ()) true

In the following examples, assume that $doc refers to the following document:

<doc>
<e att1="a" att2="b" att3="c"><f/><g/></e>
<e att3="C" att1="a" att2="b"><f/></e>
<e att3="C" att1="a" att2="b"><f/><g/></e>

</doc>

325

Chapter 10

and assume that $weak refers to a collation under which «c» and «C» compare equal. Then:

Expression Result

deep-equal($doc/e[1], $doc/e[2]) false

deep-equal($doc/e[1], $doc/e[3],
$weak)

true

deep-equal($doc/e[1]/@*,
$doc/e[2]/@*, $weak)

undefined (the result depends on the order of
attribute nodes, which is unpredictable)

Usage
The deep-equal() function represents one particular way of deciding whether two nodes or sequences
are equal to each other. In practice there are probably two common ways it is likely to be used:

❑ To compare two sequences of atomic values: the result is true if the two sequences are the same
length, and the sequences are pairwise equal to each other.

❑ To compare two element or document nodes to see if they have the same content at every level of
the hierarchy.

Note that comparing two element nodes using the «=» or «eq» operators fails if the elements are defined
in the schema to have a complex type, unless this is a complex type allowing mixed content, in which
case the elements are compared by comparing their string values.

The definition of deep equality for nodes is one that will suit some tastes and not others. For example, it
treats comments and processing instructions within an element as insignificant, but whitespace between
elements as significant. It also treats the order of child elements (but not attributes) as significant. If you
don’t like this definition, the answer is simple: define your own function, and use that instead.

default-collation
The default-collation() function returns the URI of the default collation, that is, the collation that is
used when no collation is explicitly specified in a function such as compare().

Changes in 2.0
This function is new in XPath 2.0.

Signature
This function takes no arguments.

Data type Meaning

Result xs:string The URI of the default collation from the runtime context

326

XPath Functions

Usage
The default-collation() function is useful when you want to assign a collation conditionally, for
example:

compare($x, $y, if ($param-uri) then $param-uri else default-collation())

When you call a function that expects a collation, you can always omit the argument to request the
default collation, but you cannot supply a value such as an empty sequence or a zero-length string: if the
argument is present, then it must be a valid collation.

Remember that for the five functions contains(), ends-with(), starts-with(),
substring-before(), and substring-after(), the default when you don’t supply the collation
argument is not the default collation from the runtime context, but the Unicode codepoint collation.

See also
compare() on page 310
deep-equal() on page 323
distinct-values() on page 327
index-of() on page 353
max() on page 370
min() on page 371
Value Comparisons on page 181 in Chapter 6

distinct-values
The distinct-values() function eliminates duplicate values from a sequence.

For example, «distinct-values((3, 5, 3, 6))» might return «(5, 6, 3)».

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

sequence xdt:anyAtomicType* The input sequence

collation (optional) xs:string The collation to be used when comparing
values that are strings

Result xdt:anyAtomicType* The input sequence, with duplicate values
removed

Effect
If a sequence containing nodes is supplied as the argument, the nodes are first atomized as part of the
standard function calling rules.

327

Chapter 10

An untyped atomic value in the sequence is treated as a string.

If two or more values in the sequence are equal to each other (according to the rules of the «eq» operator,
using the specified collation when comparing strings) then only one of them is included in the result
sequence. It is not defined which of them will be retained (for example, if the input sequence contains the
xs:integer 3 and the xs:decimal 3.0 then it is unpredictable which of these two values will be
present in the result). In addition, the order of the values in the result sequence is undefined.

If the sequence contains two values that are not comparable using the «eq» operator (for example, an
integer and a string) then these values are treated as distinct; no error is reported.

For the purpose of this function, NaN is considered equal to itself, and distinct from any other value.

Examples
Assume that the default collation is case-blind, that is, that it treats the strings «A» and «a» as equal. The
table below gives one possible result for each expression; a particular XPath processor might return some
permutation of this result, or might include different items from a set that are equal to each other (such as
«A» and «a»).

Expression Possible Result

distinct-values((1, 2, 3, 3.5, 2.0, 1.0)) 3.5, 2.0, 1, 3

distinct-values(("A", "B", "C", "a",
"b", "c"))

"B", "c", "a"

distinct-values((xs:time("12:20:02Z"),
xs:time("13:20:02+01:00")))

xs:time("13:20:02+01:00")

distinct-values((1, "a", current-date())) "a", 1, 2004-05-08Z

Usage
The distinct-values() function is the only way provided for eliminating duplicate values in XPath
2.0 and in XQuery 1.0. In XSLT 2.0, however, richer functionality is available in the form of the
<xsl:for-each-group> instruction.

If you apply the function to a sequence of nodes, the result will be the distinct values present in those
nodes, not the nodes themselves. To process the nodes, you will have to find the nodes having each value.
The typical logic is the following, which returns a sequence of integers representing the number of
employees in each department:

for $x in distinct-values(//employee/@dept)
return count(//employee[@dept = $x])

In practice the processing of the result will probably be done in XSLT, XQuery, or some other host
language, because it will usually involve generating nodes in the output, which XPath cannot do on its
own.

328

XPath Functions

Having found the distinct values that appear in a sequence, it is possible to determine the positions of
each of these values using the index-of() function. For example, if you are using XQuery then you can
sort the distinct values in order of their first appearance in the sequence by writing:

(: XQUERY 1.0 EXAMPLE :)
for $d in distinct-values($sequence)
order by index-of($sequence, $d)[1]
return $d

Alternatively, you could sort them in order of their frequency of occurrence by writing:

(: XQUERY 1.0 EXAMPLE :)
for $d in distinct-values($sequence)
order by count(index-of($sequence, $d))
return $d

XPath 2.0 has no sorting capability, so this operation can only be done in the host language. In XSLT, it is
usually more convenient to use the <xsl:for-each-group> instruction.

See also
index-of() on page 353.
<xsl:for-each-group> in Chapter 5 of XSLT 2.0 Programmer’s Reference.

doc
The doc() function retrieves an external XML document by means of a URI, and returns the document
node at the root of the tree representation of that XML document.

Changes in 2.0
This function is new in XPath 2.0. It is a simplified version of the document() function that was
provided in XSLT 1.0 and which remains available in XSLT 2.0. When combined with functions such as
resolve-uri() and base-uri(), the doc() function provides most of the capability of the XSLT 2.0
document() function, but with a much simpler interface.

Signature

Argument Data type Meaning

uri xs:string? The URI of the document to be loaded

Result document-node()? The document node of the document identified
by this URI

Effect
The doc() function gives XPath a window on the outside world, by allowing it to retrieve documents
identified by a URI. Potentially this makes any XML document anywhere on the Web available for
processing.

329

Chapter 10

However, because the doc() function is an interface between the XPath processor and the world outside,
many aspects of its behavior depend on the implementation, or on the way that the implementation is
configured. XPath 2.0 is expected to be used in a great variety of environments (for example, some XPath
processors might only work with XML documents that have been preloaded into a purpose-designed
database) and the spec therefore gives a great deal of freedom to implementors. In fact, the formal
specification of this function simply says that the evaluation context for processing an XPath expression
provides a mapping of URIs to document nodes; if you specify a URI for which a mapping exists, then
you get back the corresponding document node, and if you specify a URI for which no mapping exists,
you get back an empty sequence.

The term mapping here is deliberately abstract. It actually allows the implementation to do anything it
likes to get from the URI you specify to the tree that comes back. Many implementations will allow users
to control the process, either by implementing user hooks like the URIResolver in Java’s JAXP interface
and the XmlResolver in .NET, or by setting options in configuration files or command line parameters.

Before the URI is used, it is first resolved into an absolute URI. You can resolve the URI yourself using the
resolve-uri() function, in which case you have a free choice of the base URI to use, but if you pass a
relative URI to the doc() function then it will always be resolved against the base URI from the static
context of the XPath expression. In XSLT 2.0 this generally means the URI of the containing stylesheet
module; in XQuery it means the base URI given in the query prolog. If the relative URI was read from a
source document, then it should normally be resolved against the base URI of the document from where
it was read, but this is left to the application to do.

One rule that the implementation must enforce is that if you call doc() twice with the same absolute
URI, you get the same document node back each time. In XSLT, this rule applies for the duration of a
transformation, not just for a single XPath expression evaluation.

Another rule is that the URI must not contain a fragment identifier (the part after the «#» sign). (This rule
is currently under review by the Working Groups.)

What is likely to happen in a typical implementation is this:

❑ The URI (once resolved into an absolute URI) is checked against a list of documents that are
already loaded. If the URI is in the list, the same document node is returned again.

❑ Otherwise, the absolute URI is used to identify and fetch an XML document, for example, by
using the file or http URI schemes.

❑ The XML document is parsed, and optionally validated using a DTD validator or schema
processor.

❑ A tree representation of the document is built in memory, and the document node at the root of
this tree is returned as the result of the function.

Many processors are likely to allow users to control aspects of this process, including:

❑ Locating the physical resource containing the source XML (if indeed it is source XML).
Mechanisms such as catalogs or user hooks (like the JAXP URIResolver) might be used to
provide an indirection between the URI and the location of the resource.

❑ Selecting an XML parser, and setting options to determine whether it performs DTD and/or
schema validation.

330

XPath Functions

❑ Setting options that define whether XInclude directives in the source document are expanded,
and whether any information in the source document (such as insignificant whitespace,
comments, processing-instructions, or unused namespaces) is to be excluded from the tree
representation.

❑ Setting tuning options, for example, parameters that control space/time tradeoffs in the way the
tree is built.

❑ Setting error handling options, for example, whether a parsing error is to be treated as fatal, or
whether an empty sequence (or perhaps a fallback document) should be returned in such cases.

If a schema is used to validate the document, then it must be compatible with any schema that was used
when compiling the XPath expression. Here again, the detailed rules have been left to the
implementation. The processor may require that the input document is validated against a schema that
was known at compile time; or it may allow validation using a different schema, provided that the tree
that comes back contains enough information to allow the type definitions to be located at runtime. The
processor is supposed to ensure that there is no version incompatibility between the compile time and
runtime schemas, but it wouldn’t be surprising to come across a processor that simply passes this
responsibility back to the user.

Usage and Examples
There are three main ways an XPath expression can access nodes in input documents.

❑ The input document (or a node within it) can be supplied as the context node.

❑ A node can be included in the value of a variable available in the context.

❑ The XPath expression can invoke the doc() function (or the collection() function) to access
the document by URI.

Which of these three approaches is used is a matter of application convenience, and may be influenced by
the facilities available in the host language or the processor API for configuring the behavior of the
different options.

The following example shows an expression that uses a lookup table in an external document. The
lookup table might have the form shown below, and be held in a document called «countries.xml»:

<countries>
<country name="Andorra" code="ad"/>
<country name="United Arab Emirates" code="ae"/>
<country name="Afghanistan" code="af"/>
<country name="Antigua and Barbuda" code="ag"/>
...

</countries>

A query that uses this table to display the number of employees located in each country might look like
this:

string-join(
for $c in doc("countries.xml")/country return
concat($c/@name, ": ",

count(//employee[location/country = $c/@code]))
"
")

331

Chapter 10

This will return a string of the form:

Andorra: 0
United Arab Emirates: 12
Afghanistan: 1
Antigua and Barbuda: 25
...

See also
base-uri() on page 302
collection() on page 309
document-uri() on page 332
resolve-uri() on page 405
document() in Chapter 7 of XSLT 2.0 Programmer’s Reference.

document-uri
The document-uri() function returns a URI associated with a document node.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

input node()? The document node whose URI is required. If the node is not a
document node, or if an empty sequence is supplied, the empty
sequence is returned

Result xs:string? The URI of the document node

Effect
The URI that is returned is always an absolute URI, and it has the property that if you passed it as an
argument to the doc() function, you would get the input node back.

If no absolute URI is known for the supplied document node, the empty sequence is returned.

Usage
This function is provided to allow a reference to a particular document to be constructed, either in the
result document of an XSLT transformation or XQuery function, or simply in error messages. It is
particularly useful where the transformation or query is processing a large batch of similar input
documents, accessed perhaps using the collection() function, or perhaps supplied as a parameter to
the transformation or query in a global variable.

To take an XSLT example, you might be producing a result document that acts as an index to a collection
of input documents. This might include code such as:

332

XPath Functions

<xsl:for-each select="collection(’dataset.xml’)">
<xsl:sort select="/doc/title"/>
<p>

<xsl:value-of select="/doc/title"/>

</p>
</xsl:for-each>

See also
base-uri()on page 302
collection()on page 309
doc()on page 329

empty
The empty() function returns true if and only if the argument is an empty sequence.

For example, the expression «empty(//a)» returns true if the context document contains no <a>
elements.

Changes in 2.0
This function is new in XPath 2.0.

Signature
Argument Data type Meaning

sequence item()* The input sequence

Result xs:boolean true if the input sequence is empty, otherwise false

Effect
The function returns true if and only if the supplied sequence is empty.

Examples
Assume the source document:

<para>See also .</para>

Expression Result

empty(/para) false

empty(/para/a) false

empty(/para/a/@style) false

empty(/para/b) true

empty(/para/a[2]) true

333

Chapter 10

Usage
Note that empty() is used only to test whether the number of items in a sequence is zero. As the
examples above illustrate, it is not used to test whether a node is empty, in the sense of an element that
has no children, or an attribute whose string value is a zero-length string.

To test whether an element $E has no element or text node children (or comments or processing
instructions), you can write «if (empty($E/node()) ...».

To test whether the string value of a node $N is the zero-length string, you can write «if
(string($N) eq "") ...».

Remember also that a test on any value in the condition of an «if» expression is done by taking
the effective boolean value of the expression, as defined under the boolean() function on page 304.
For example, if the expression is a path expression then the condition is true if the path expression
selects one or more nodes; if it is a string, then the condition is true if the string is not zero-length. So, for
example:

if (not(*)) then X else Y

has the same effect as:

if (empty(*)) then X else Y

and similarly, if @a refers to a list-valued attribute, then:

if (string(@a)) then X else Y

is equivalent to:

if (empty(data(@a))) then Y else X

See also
boolean() on page 304
exists() on page 341
not() on page 391

ends-with
The ends-with() function tests whether one string ends with another string. For example, the
expression «ends-with(’17cm’, ’cm’)» returns true.

Changes in 2.0
This function is new in XPath 2.0.

334

XPath Functions

Signature

Argument Data type Meaning

input xs:string? The containing string

test xs:string? The test string

collation (optional) xs:string A collation URI

Result xs:string? True if the input string ends with
the test string, otherwise false

Effect
If there is no collation argument, then the system tests to see whether the last N characters of the
input string match the characters in the test string (where N is the length of the test string). If so, the
result is true; otherwise it is false. Characters match if they have the same Unicode value.

If the test string is zero-length, the result is always true. If the input string is zero-length, the result is
true only if the test string is also zero-length. If the test string is longer than the input, the result is
always false.

If either the input or the test argument is an empty sequence, it is treated in the same way as a
zero-length string.

If a collation is specified, this collation is used to test whether the strings match. See the description of
the contains() function on page 314 for an account of how substring matching works with a collation.
If the collation argument is omitted, the function matches characters according to their Unicode
codepoint values.

Examples

Expression Result

ends-with("a.xml", ".xml") true

ends-with("a.xml", ".xsl") false

ends-with("a.xml", "") true

ends-with("", "") true

ends-with((), ()) true

Usage
The ends-with() function is useful when the content of text values, or attributes, has some internal
structure. For example, the following code can be used to strip an unwanted «/» at the end of an href
attribute:

doc(if (ends-with(@href, ’/’)
then substring(@href, 1, string-length(@href)-1)
else @href)

335

Chapter 10

Many string manipulations that can be done using ends-with() (but not those that rely on collations)
can also be achieved using the matches() function, which allows regular expressions to be used.

See also
contains() on page 314
matches() on page 368
starts-with() on page 415
string-length() on page 419
substring() on page 423

error
The error() function can be called when the application detects an error condition; it causes evaluation
of the XPath expression as a whole to fail. (In XSLT, this will cause the entire transformation to fail.)

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

value (optional) item()? The value can be used to identify the error, in an
implementation-defined way. If the value is a string, it will
probably be used as an error message

Result None This function does not return a result; it always raises an error

Effect
The error() function always reports an error, it never returns a result.

Calling the error() function causes the XPath expression as a whole to fail, since XPath provides no
try/catch mechanism for catching errors.

Under XSLT, calling the error function causes the whole transformation to fail: the effect is the same as
<xsl:message terminate="yes"/>.

The optional value argument can be used to identify the error. The exact way in which this is used
depends on the implementation.

Examples

Expression Result

error() causes termination, with no explanation

error(xs:QName
("docbook:invalid-page-ref"))

causes termination, with an error code
«invalid-page-ref» in the namespace
associated with the «docbook» prefix

336

XPath Functions

Usage
The error() function is useful when the application encounters a condition that it is not designed to
handle, for example, invalid arguments passed to a function.

Every runtime error defined by the XPath specification itself has a short code, such as XP0120. The
specification suggests that this code might be made available to applications via the API of the XPath
processor, though there is nothing prescriptive about this. It also suggests that these codes could be
regarded as being xs:QName values with no namespace, and that it makes sense for vendor-defined and
user-defined error codes to fit into the same scheme of things by using xs:QName values as error values,
with an explicit namespace. An implementation that allows error messages to be localized will typically
provide some way of using the xs:QName as a code to look up a message in a file of message texts
appropriate to the user’s language.

This error-handling scheme is fine for product-quality applications that need to be delivered to a large
number of users, localized to different languages, and so on. If you’re just writing a simple stylesheet
that’s going to be used once and thrown away, it’s all rather over the top. In this case, you can just pass a
message that says what’s gone wrong in the form of a string.

See also
trace() on page 436
<xsl:message> in Chapter 5 of XSLT 2.0 Programmer’s Reference

escape-uri
The escape-uri() function applies the URI escaping conventions defined in RFC 2396 to an input
string.

For example, «escape-uri("my doc.xml", true())» returns the string «my%20doc.xml».

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

value xs:string The input string, to which URI escaping is to be applied

escape-reserved xs:boolean Set to true if characters with a reserved meaning in URIs
(for example «/» and «#») are to be escaped

Result xs:string The URI in its escaped form, as a string

Effect
The result string is formed from the input string by escaping special characters according to the rules
defined in RFC 2396, (http://www.ietf.org/ref/rfc2396.txt). It also takes into account changes
defined in RFC 2732 (http://www.ietf.org/ref/rfc2732.txt), which introduces the use of

337

Chapter 10

square brackets to support Internet Protocol version 6 (IPv6). Special characters are escaped by first
encoding them in UTF-8, then representing each byte of the UTF-8 encoding in the form %HH where HH
represents the byte as two hexadecimal digits. The digits A–F are always in upper case.

The characters that are escaped depend on the setting of the escape-reserved argument. If this is set
to true, then all characters except A-Z, a-z, 0-9 and «-», «_», «.», «!», «∼», «*», «’», «(», and «)»
are escaped. If it is set to false, then the characters «;», «/», «?», «:», «@», «&», «=», «+», «$», «,», «[»,
«]», and «#» are not escaped.

A «%» character is never escaped: it is assumed that «%» characters already form part of an escape
sequence.

Examples
Expression Result

escape-uri("simple.xml", true()) "simple.xml"

escape-uri("simple.xml", false()) "simple.xml"

escape-uri("my doc.xml", true()) "my%20doc.xml"

escape-uri("my doc.xml", false()) "my%20doc.xml"

escape-uri("f+o.pdf", true()) "f%2Bo.pdf"

escape-uri("f+o.pdf", false()) "f+o.pdf"

escape-uri("Grüße.html", true()) "Gr%C3%BC%C3%9Fe.html"

escape-uri("Grüße.html", false()) "Gr%C3%BC%C3%9Fe.html"

Usage
This function is designed for use by applications that need to construct URIs.

The name escape-uri() is slightly misleading, in that it suggests that the input is a URI. In fact, the
rules for URIs (given in RFC2396, http://www.ietf.org/ref/rfc2396.txt) make it clear that a
string in which special characters have not been escaped is not a valid URI. In many contexts where URIs
are required, both in XPath functions such as the doc() function and in places such as the href attribute
of the <a> element in HTML, the URI must be fully escaped according to these rules. In practice, software
is very often tolerant and accepts unescaped URIs, but applications shouldn’t rely on this.

The rules for escaping special characters are rather peculiar. To escape a character, it is first encoded in
UTF-8, which in general represents a character as one or more octets (bytes). Each of these bytes is then
substituted into the string using the notation «%HH» where HH is the value of the byte in hexadecimal. For
example, the space character is represented as «%20», and the euro symbol as «%E2%82%AC». Although
RFC 2396 allows the hexadecimal digits «A-F» to be in either upper or lower case, the
escape-uri() function mandates upper case, to ensure that escaped URIs can be compared as strings.

Historically, the same algorithm has been used to escape URLs and URIs using character encodings other
than UTF-8. However, in most environments where XPath is used UTF-8 is the recommended encoding
for URIs, and this is therefore the only encoding that the escape-uri() function supports.

338

XPath Functions

Which characters need to be escaped? The answer to this depends on context. Essentially, characters fall
into three categories: those that can be used freely anywhere in a URI, those that cannot be used
anywhere and must always be escaped, and those that have a special meaning in a URI and must be
escaped if they are to be used without this special meaning. The characters in this last category are
referred to as reserved characters.

The table below shows the characters in each category:

Category Characters

allowed anywhere A-Z, a-z, 0-9 «-» «_» «.» «!» «∼» «*» «’» «(» «)»

reserved «;» «/» «?» «:» «@» «&» «=» «+» «$» «,» «[» «]» «#»

disallowed everywhere all other characters, including all non-ASCII characters

One or two characters deserve special mention:

❑ The «#» character is not listed in RFC 2396 as a reserved character. This is because (technically
speaking) it cannot appear within a URI. However, it is allowed within a URI Reference, to
separate the URI part from the fragment part. The escape-uri() function is actually concerned
with escaping a URI Reference rather than a URI proper, so «#» is added to the reserved category.

❑ The «%» character is a disallowed character, so it should always be escaped as «%25». However,
RFC 2396 says that implementations should be careful not to apply escaping to a URI that is
already escaped, which would result in a single space being represented not as «%20» but as
«%2520». The specification for escape-uri() therefore stipulates that «%» should be left alone.
If you do need to replace «%» characters by «%25», you can always call the replace() function
to do this, before calling escape-uri().

❑ The characters «[» and «]» were defined in RFC 2396 as disallowed characters, but their status
was changed to reserved by RFC 2732, which extended the URI syntax to support IPv6 addresses.

In theory, the right way to construct a URI is to apply escaping to each of its components individually (for
example, the URI scheme, the authority, the path components, the query parameters, and the fragment
identifier), and then to assemble the components by adding the appropriate delimiters. This is the only
way of ensuring, for example, that an «=» sign is escaped if it appears as an ordinary character in a path
component, but not if it appears between a keyword and a value in the query part. When a URI is
constructed this way, the escape-reserved argument should be set to true(), so that reserved
characters appearing within a component are properly escaped.

But often in practice the unescaped URI (so called—as we have seen, if it isn’t escaped then technically it
isn’t a URI) arrives in one piece and escaping needs to be applied to the whole string. In this case it’s a
reasonable assumption that characters such as «/» and «:» appearing within the string have their special
meanings, and should not be escaped. In this situation, the escape-reserved argument should be set
to false().

See also
escape-uri-attributes option in <xsl:output>: XSLT 2.0 Programmer’s Reference, Chapter 5.

339

Chapter 10

exactly-one
The exactly-one() function returns its argument unchanged, provided that it is a sequence containing
exactly one item. In other cases, it reports an error.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

value item()* The input value. Although the function signature says
that any sequence of items is allowed, a runtime error
will occur if the number of items is not exactly one

Result item() The same as the supplied value, after checking to ensure that
it contains a single item

Effect
The exactly-one() function returns its argument unchanged, provided that it is a sequence containing
exactly one item. In other cases, it reports an error.

This function is useful with XPath processors that perform static type-checking, as described in Chapter 3.
Calling this function acts as a promise by the programmer that the argument will be a sequence
containing exactly one item. This allows the expression to be used in contexts that require a single value
(for example, the operands of the «is» operator) when the processor might otherwise have reported a
static type error. The XPath expression is still type-safe, because the check that the sequence does indeed
contain a single item will be done at runtime, just as it would with a processor that does not enforce static
type checking.

Examples
Assume the source document

<list separator=";"/>

with a schema that defines the separator attribute to be optional.

Expression Result

string-join(("a", "b", "c"),
/list/@separator)

Succeeds unless the processor is doing static type checking,
in which case it gives a compile time error because the second
argument of string-join() must not be an empty
sequence

string-join(("a", "b", "c"),
exactly-one(/list/@separator))

Succeeds whether the processor is doing static type checking
or not, because the check that the typed value of
@separator contains a single item is deferred until
runtime

340

XPath Functions

Usage
This function is never needed unless you are using a processor that does static type checking.

However, you may still find it useful as a way of inserting runtime checks into your XPath expressions,
and documenting the assumptions you are making about the input data.

See also
one-or-more()on page 395
zero-or-one() on page 444
«treat as» expression on page 288 in Chapter 9.

exists
The exists() function returns true if and only if a supplied sequence contains at least one item.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

sequence item()* The input sequence

Result xs:boolean true if the input sequence is non-empty, otherwise false

Effect
The function returns true if and only if the supplied sequence contains at least one item.

Examples
Assume the source document:

<para>See also .</para>

Expression Result

exists(/para) true

exists(/para/a) true

exists(/para/a/@style) true

exists(/para/b) false

exists(/para/a[2]) false

341

Chapter 10

Usage
This function is largely cosmetic: when testing to see if nodes exist, some people prefer to write an
expression such as «author[exists(child::element())]» over the more cryptic «author[*]».
But they have the same meaning.

Writing exists() explicitly is good practice when you are testing to see whether a sequence of atomic
values (rather than nodes) is non-empty. This is because the effective boolean value of an atomic sequence
is false not only when the sequence is empty, but also when it contains a single numeric zero, zero-length
string, or boolean false value.

Writing «exists(X)» is precisely equivalent to writing «not(empty(X))».

See also
boolean() on page 304
empty() on page 333
not() on page 391

expanded-QName
The expanded-QName() function returns a value of type xs:QName, given a namespace URI and a local
name.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

namespace xs:string? The namespace URI part of the xs:QName. To construct a
QName that is in no namespace, supply either a zero-length
string or an empty sequence

local-name xs:string The local part of the xs:QName. This must conform to the
XML rules for an NCName

Result xs:QName The newly constructed xs:Qname

Effect
A value of type xs:QName has two parts: a namespace URI, and a local name. This function constructs an
xs:QName value from these two components.

XPath uses the term lexical QName to refer to a QName in the form prefix:local-name, and expanded
QName to refer to the underlying value of the QName, in which the prefix has been resolved to a
namespace URI. This function creates an expanded QName directly, without going through the stage of
writing a prefix and then converting this to a namespace URI.

342

XPath Functions

Examples

Expression Result

expanded-QName("http://www.w3.org/
XML/1998/namespace", "space")

The xs:QName usually written as
«xml:space»

expanded-QName("http://www.w3.org/
2001/XMLSchema-instance", "type")

The xs:QName usually written as
«xsi:type»

Usage
The expanded-QName() is useful when you want to compare node names against a specified name,
especially one determined at runtime. This is done by using it in conjunction with the node-name()
function.

For example, suppose that you are dealing with source documents for which several variants of the
schema exist, all using different namespace URIs; and suppose that the actual namespace URI to be used
in a particular run is passed in as a parameter. This makes it difficult to use path expressions in the
natural way, because path expressions can only refer to names that are fully known (that is, both the
namespace URI and local name are known) at compile time.

Suppose you are using XSLT and define a set of global variables like this:

<xsl:variable name="address" select="expanded-QName($ns, ’address’)"/>
<xsl:variable name="postalcode"

select="expanded-QName($ns, ’postalcode’) "/>

and so on.

It is then possible to use path expressions such as:

select="*[node-name()=$address]/*[node-name()=$postalcode]"

to locate nodes.

See also
local-name-from-QName()on page 365
namespace-uri-from-QName()on page 382
node-name()on page 384

false
This function returns the boolean value false.

Changes in 2.0
None.

343

Chapter 10

Signature
There are no arguments.

Data type Meaning

Result xs:boolean The xs:boolean value false

Usage
There are no boolean constants available in XPath expressions, so the functions true() and false()
can be used where a constant boolean value is required.

The most common usage is when passing an argument to a function that expects a boolean value.

XSLT Example
The following code calls a named template, setting the parameter «verbose» to false:

<xsl:call-template name="do-the-work">
<xsl:with-param name="verbose" select="false()"/>

</xsl:call-template>

See also
true() on page 439

floor
The floor() function returns the largest integer value that is less than or equal to the numeric value of
the argument. The result has the same data type as the supplied value. For example if the supplied value
is an xs:double then the result is returned as an xs:double.

For example, the expression «floor(11.3)» returns 11.0 (this is displayed as “11”, but it is actually a
decimal value).

Changes in 2.0
The function has been generalized to work with all numeric data types.

Signature

Argument Data type Meaning

value Numeric? The supplied number. If an empty sequence is supplied,
an empty sequence is returned

Result Numeric? The result of rounding down the supplied number to the integer
below. The result has the same data type as the supplied value

344

XPath Functions

Effect
If the number is an xs:integer, it is returned unchanged.

Otherwise, it is rounded down to the next lowest whole number. If the supplied value is an xs:decimal,
the result will be an xs:decimal, if it is an xs:double, the result will be an xs:double, and if it is an
xs:float, the result will be an xs:float. In the case of negative numbers, the rounding is away from
zero.

The xs:double and xs:float data types in XPath support special values such as infinity, negative zero
and NaN (not-a-number), which are described on page 84 in Chapter 3.

If the argument is NaN (not-a-number), the result will be NaN. Similarly, when the argument is positive
or negative infinity, the function will return the value of the argument unchanged.

Examples

Expression Result

floor(1.0) 1.0

floor(1.6e0) 1.0e0

floor(17 div 3) 5.0

floor(-3.0) -3.0

floor(-8.2e0) -9.0e0

floor(number(’NaN’)) NaN

Usage
Like round() and ceiling(), this function is useful when calculating sizes of HTML tables.

Two alternatives you may want to consider are:

❑ Using the xs:integer() constructor function. This differs from floor() in that it always
truncates (rounds towards zero); also, it returns an actual integer, rather than returning a value of
the same type as the argument

❑ Using the expression «$x idiv 1». This produces the same result as the xs:integer()
constructor function, but saves you having to declare the XML Schema namespace.

See also
ceiling() on page 306
round() on page 409
Converting to an xs:integer in Chapter 9, page 277
The «idiv» operator, under Arithmetic Operators in Chapter 6, page 173.

345

Chapter 10

hours-from-dateTime, hours-from-time
These two functions extract the hour component from an xs:date or xs:dateTime value. For example,
at noon local time both these functions return 12.

Changes in 2.0
These functions are new in XPath 2.0.

Signature

Argument Data type Meaning

input xs:time? or xs:dateTime? The value from which the hour component is
to be extracted. The data type of the supplied
argument must correspond to the data type
implied by the function name

Result xs:integer The hour, in the range 0 to 23 (midnight is
represented as 0)

Effect
The function returns the hour component of the supplied xs:time or xs:dateTime. The value is from
the time as expressed in its local timezone (not normalized to UTC). This means that if the time (or
dateTime) has a timezone, the value is the time in that timezone; if it has no timezone, it is the value as
written.

If an empty sequence is supplied, an empty sequence is returned.

Examples

Expression Result

hours-from-time(xs:time("12:35:03.142")) 12

hours-from-dateTime(xs:dateTime("2004-02-28T13:55:30")) 13

hours-from-time(xs:time("23:59:59+01:00")) 23

hours-from-dateTime(xs:dateTime("2004-07-31T22:10:00-05:00")) 22

See also
current-date(), -dateTime(), -time() on page 318.
format-date(), -dateTime(), -time() in Chapter 7 of XSLT 2.0 Programmer’s Reference.
day-from-date(), -dateTime() on page 322
year-from-date(), -dateTime() on page 443

346

XPath Functions

hours-from-duration
This function extracts the value of the hours component from a normalized xdt:dayTimeDuration
value.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

input xdt:dayTimeDuration? The value from which the component is to be
extracted. If an empty sequence is supplied, an
empty sequence is returned

Result xs:integer? The hours component

Effect
The function returns the hours component of the supplied xdt:dayTimeDuration. The duration value
is first normalized so that the number of hours is less than 24, the number of minutes is less than 60, and
so on. The result will be negative if the duration is negative. The result will therefore be in the range
–23 to +23.

Examples

Expression Result

hours-from-duration(xdt:dayTimeDuration("P5DT12H30M")) 12

hours-from-duration(xdt:dayTimeDuration("PT72H")) 0

hours-from-duration(xdt:dayTimeDuration("-PT36H15M")) -12

See also
days-from-duration on page 323
minutes-from-duration on page 374
seconds-from-duration on page 414

id
The id() function returns a sequence containing all the elements in a given document with given ID
attribute values.

For example, if the code attribute is defined as an ID attribute, then the expression «id(’A321-780’)»
might return the single element <product code="A321-780">.

347

Chapter 10

Changes in 2.0
A second optional argument has been added, to define which document is to be searched. The semantics
of the function have been redefined in terms of the XPath 2.0 type system.

Signature

Argument Data type Meaning

values xs:string* Specifies the required ID values

node (optional) node() Identifies the document to be searched

Result element()* A sequence of nodes, in document order, containing
the nodes with the required ID values

Effect
The function is designed to make it easy to find all the elements referenced in an element or attribute of
type xs:IDREF or xs:IDREFS, but there is no requirement that it should be used this way. The rules are
defined so that the supplied argument can be any of the following:

❑ A string containing an ID value

❑ A string containing a space-separated sequence of ID values

❑ A node containing an ID value

❑ A node containing a space-separated sequence of ID values

❑ A sequence of any of the above

Any nodes in the sequence are atomized as part of the function calling mechanism. The resulting strings
are then tokenized by splitting their contents on whitespace boundaries. Each token is used as a
candidate ID value, if there is a node in the selected document that has an ID attribute or ID content
equal to this candidate ID value: this node is included in the result of the function.

The rules for this function are strict about the type annotation of the nodes that are selected: the
identifying attribute or element content must be annotated as being of type xs:ID. The specification is a
little open-ended about how this works in a non-schema-aware processor, but it’s likely that most
processors will recognize attributes declared in a DTD as ID attributes.

By contrast, it is not necessary for the candidate IDs to be declared as type IDREF or IDREFS, though the
function is designed to produce the expected result when they are, that is, it finds the nodes referenced by
the IDREF or IDREFS values in the argument sequence.

It is not an error if there is no element with an ID equal to one of the candidate ID values. In this
situation, there will simply be no node in the resulting sequence corresponding to this value. In the
simplest case, where there is only one candidate ID value supplied, the resulting sequence will be empty
if the ID is not present.

The second argument, if supplied, identifies the document to be searched. This does not have to be the
document node, it can be any node within the target document. This argument defaults to the context

348

XPath Functions

node. Whether the argument is explicit or implicit, it must be a node in a tree whose root is a document
node. If the argument is omitted, then a runtime error is reported if the context item is undefined, or if it
is not a node. The nodes in the supplied values argument will often come from the same document, but
this is not required.

IDs and Validation
ID values only really work properly if the source document is valid (in the XML sense: meaning, loosely,
that it obeys the rules in its own DTD or Schema). However, XPath is designed to allow invalid
documents as well as valid ones to be processed. One possible kind of validity error is that ID values are
not unique within the document. This is explicitly covered in the specification: the first node with that ID
value is located. Other validity errors may also be present, for example an ID attribute may contain
embedded spaces. In this case it will not be retrieved.

When no schema is used, a non-validating XML parser isn’t required to read attribute definitions from an
external DTD. In this situation the XSLT processor will assume there are no ID attributes present, and the
id() function will always return an empty result. If this appears to be happening, try a different XML
parser. Most good parsers will report the attribute type, even though it isn’t absolutely required by the
XML standard.

Usage and Examples
The id() function provides an efficient means of locating nodes given the value of an ID attribute.

In a sense it is a convenience function, because if the attribute named id is always an ID attribute, then
the expression:

id(’B1234’)

is equivalent to the path expression:

//*[@id=’B1234’]

However, the chances are that in most implementations, the id() function will be much more efficient
than the straightforward path expression with a predicate, because the processor is likely to build an
index rather than doing a sequential search.

In XSLT it is also possible to use key() in place of id(). The main advantage of the id() function over
using key() is that it handles a whitespace-separated list of IDs in one go. The key() function cannot do
this, because there is nothing to stop a key value containing a space.

The id() function when used with a single argument locates elements in the same document as the
context node. XPath 2.0 provides two ways to locate elements in a different document. You can either use
the id() function on the right-hand side of the «/» operator, for example «doc("lookup.xml")
/id($param)», or you can supply a second argument, like this: «id($param, doc("lookup
.xml"))».

Where the source document includes an IDREFS attribute, it is possible to locate all the referenced
elements at once. For example, if the <book> element has an attribute authors which is an IDREFS
attribute containing a whitespace-separated list of author ids, the relevant <author> elements can be
retrieved and processed using a construct such as:

string-join(id(@authors)/surname), ’, ’)

349

Chapter 10

See also
key() in XSLT 2.0 Programmer’s Reference, Chapter 7
idref() in the following section

idref
The idref() function performs the inverse operation to the id() function: it locates all the nodes in a
document that contain IDREF or IDREFS values referencing a given ID value.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

target xs:string* A sequence of ID values. The function finds all element and
attribute nodes of type IDREF or IDREFS that contain a
reference to at least one of the ID values in this argument

node (optional) node() Identifies the document to be searched

Result node()* The element and attribute nodes that were found, in document
order, without duplicates

Effect
If the idrefs argument is supplied as a node, or a sequence of nodes, then the values of the nodes are
automatically atomized by the function calling mechanism. The argument can thus be supplied as any of
the following:

❑ A string containing an ID value

❑ A node containing an ID value

❑ A sequence of either of the above

The function locates element and attribute nodes of type xs:IDREF or xs:IDREFS that contain an ID
value equal to one of the supplied strings. Note that when an attribute node is matched, it is the attribute
node that is returned by the function, not the containing element.

In a schema-aware processor, both elements and attributes can be marked as xs:IDREF or xs:IDREFS
values. In a non-schema-aware processor, only attribute values can be recognized as IDREF or IDREFS
attributes, and they are recognized as a consequence of validation using a DTD.

It is not an error if there is no node that references one of the target ID values (or even if there is no node
that has this ID value). In this situation, there will simply be no node in the resulting sequence
corresponding to this value. In the simplest case, where there is only one candidate ID value supplied,
the resulting sequence will be empty if the document contains no reference to this ID value.

350

XPath Functions

If the second argument is supplied, the nodes that are returned will come from the same document as the
node supplied in this argument. This must be a node in a tree whose root is not a document node. The
default for this argument is the context node: a runtime error is then reported if the context item is
undefined, or if it is not a node. The nodes in the supplied target argument will often come from the
same document, but this is not required.

IDs and Validation
ID and IDREF values only really work properly if the source document is valid (in the XML sense:
meaning, loosely, that it obeys the rules in its own DTD or Schema). However, XPath is designed to allow
invalid documents as well as valid ones to be processed. One possible kind of validity error is that an
attribute of type IDREF or IDREFS may contain a value that is not a legal ID value. This situation is not
an error as far as XPath is concerned; it just means that this function will never retrieve that node.

When no schema is used, a non-validating XML parser isn’t required to read attribute definitions from an
external DTD. In this situation the XSLT processor will assume there are no IDREF or IDREFS attributes
present, and the idref() function will always return an empty result. If this appears to be happening,
try a different XML parser. Most good parsers will report the attribute type, even though it isn’t
absolutely required by the XML standard.

Example
Consider the following data, representing part of a family tree:

<person id="I001">
<name="Queen Elizabeth II"/>
<spouse ref="I002"/>

</person>
<person id="I003">
<name="Prince Charles"/>
<mother ref="I001"/>
<father ref="I002"/>

</person>

Given a <person> element as the context node, and assuming that the ref attributes have type
xs:IDREF, it is possible to find the children of a person as:

idref(@id)/(parent::father|parent::mother)/parent::person

Note the need to check the names of the parent and grandparent elements. Without this check, one would
find relatives other than the children, for example the spouse. This is because an IDREF in XML doesn’t
capture any information about which relationship is being modeled; that is implicit in the context in
which the IDREF appears.

Sorry about the confusion here between family trees and XML trees. A family tree is of course not a tree at
all in the computer science sense, because people (unlike nodes) have two parents. This means that the
parent-child relationship in the family tree cannot be represented by a parent-child relationship in the XML
tree; instead, it is represented here by an ID/IDREF relationship. Of course, it could have been modeled in
either direction, or redundantly in both directions, but the representation chosen above works well because
it is in relational third normal form.

351

Chapter 10

See also
id() on page 347

implicit-timezone
The implicit-timezone() function returns the value of the implicit timezone from the runtime
context. The implicit timezone is used when comparing dates, times, and dateTimes that have no explicit
timezone.

Changes in 2.0
This function is new in XPath 2.0.

Signature
This function takes no arguments.

Data type Meaning

Result xdt:dayTimeDuration? The value of the implicit timezone

Effect
Timezones are represented as values of type xdt:dayTimeDuration, in the range PT14H to +PT14H.
This function simply returns the value of the implicit timezone from the runtime XPath context. The way
that the value is initialized is determined by the implementation; it might be set using an API, or it might
simply be taken from the system clock. The idea is that the implicit timezone should be the timezone in
which the user is located; but of course, when users are scattered around the world, it is not always
possible to achieve this.

There are a number of operators and functions that make use of the implicit timezone. The most obvious
is when comparing an xs:dateTime that has a timezone to one that does not; in this case, the
xs:dateTime without an explicit timezone is assumed to represent a time in the implicit timezone. This
means that an expression such as:

if (current-time() gt xs:time(’12:00:00’)) then . . .

can be read as “if the current time in the user’s timezone is after midday. . . ”. (The result of the
current-time() function will always be in the implicit timezone.)

The specification allows for implicit-timezone() to return an empty sequence if the implicit
timezone is undefined. However, it’s not clear that it really makes sense for the implicit timezone to be
undefined: many other operations that use the implicit timezone do not allow for this possibility.

Example
If the system is correctly configured for a user situated in New York, with no daylight savings time in
operation, the function implicit-timezone() will return «PT05:00».

352

XPath Functions

See also
adjust-date/time/dateTime-to-timezone() family of functions on page 297
current-date/time/dateTime() family of functions on page 318
timezone-from-date/time/dateTime() family of functions on page 433

index-of
The index-of() function returns a sequence of integers indicating the positions within a particular
sequence where items equal to a specified value occur.

For example, «index-of(("a","b","c"), "b")» returns 2.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

sequence xdt:anyAtomicType* The sequence to be searched

value xdt:anyAtomicType The value to be found

collation (optional) xs:string The collation to be used when comparing strings

Result xs:integer* A list containing the positions within the supplied
sequence where items that are equal to the
specified value have been found

Effect
If either the sequence or the value is supplied as a node, the nodes are atomized (to extract their
values) as part of the function calling rules. This function therefore operates on a sequence of atomic
values. It finds all the items in the atomized sequence that compare equal to the supplied value under the
rules of the «eq» operator, using the specified collation when comparing strings, or the default collation if
none is specified. It then returns the positions of these items in ascending numeric order, using the usual
convention of numbering positions starting at 1.

This means that if a sequence of nodes is supplied, and the nodes are list-valued (for example, a node
whose type is xs:NMTOKENS) then the positions returned are the positions in the atomized sequence,
which may not be the same as the positions of the nodes in the original sequence.

If no matching items are found, the result is an empty sequence.

Another way of writing this function, assuming that the default collation is used and that the values have
already been atomized, would be:

for $i in 1 to count($sequence) return
if ($sequence[$i] eq $value) then $i else ()

353

Chapter 10

Examples
Consider the source document:

<doc>
<obs at="10:42:06" colors="red green"/>
<obs at="11:43:12" colors="green blue orange"/>

</doc>

and assume that this has been validated using a schema that defines the colors attribute as a sequence
of strings.

Expression Result

index-of(//@colors, "red") 1

index-of(//@colors, "green") (2, 3)

index-of(//@colors, "pink") ()

in-scope-prefixes
The in-scope-prefixes() function returns a sequence of strings, representing all the namespace
prefixes that are in scope for a given element.

Changes in 2.0
This function is new in XPath 2.0. It is provided as a replacement for the namespace axis, which is now
deprecated.

Signature

Argument Data type Meaning

element element() The element whose in-scope namespaces are to
be returned

Result xs:string* The prefixes of the in-scope namespaces

Effect
In the XPath data model, the namespaces that apply to a particular element are modeled as a set of
namespace nodes: the name of the namespace node represents a namespace prefix, and the string value of
the namespace node represents the namespace URI.

In XPath 1.0 it was possible to find the namespace nodes for a given element using the namespace axis. In
XPath 2.0 the namespace axis has become deprecated. This was done because many implementations did
not physically represent namespaces as nodes in memory, for efficiency reasons, and presenting the
information as “virtual nodes” could be expensive, because of the overhead that nodes carry to maintain
information about their identity, their parentage, their base URI, and so on. XPath 2.0 has therefore
provided a new mechanism to allow applications to obtain the namespace information when it is needed.

354

XPath Functions

The in-scope-prefixes() function returns all the prefixes of the in-scope namespaces for an element,
or to express it in terms of the data model, the names of all the namespace nodes for that element. The
order in which the names appear is unpredictable. The list will always include the name «xml», since the
XML namespace is in scope for every element. If there is a default namespace in force for the element, the
list will also include the zero-length string to represent the default namespace.

The namespace URIs corresponding to each of these prefixes can be determined using the function
namespace-uri-for-prefix().

Examples
Consider the source document below. Note that this includes a namespace undeclaration for the «soap»
namespace, as permitted by XML Namespaces 1.1:

<?xml version="1.1"?>
<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
xmlns:xs="http://www.w3.org/2001/XMLSchema"

<soap:Body>
<echoString xmlns="http://example.com/soapdemo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soap="">

<inputString xsi:type="xs:string">Hello</inputString>
</echoString>
</soap:Body>

</soap:Envelope>

Expression Result

in-scope-prefixes(/soap:Envelope) ("xs", "soap", "xml") (in any order)

in-scope-prefixes(//*:inputString) ("xs", "", "xsi", "xml") (in any order)

Usage
Like the namespace axis that it replaces, this function is unlikely to be needed every day of the week. It is
generally needed only when dealing with documents that use namespace prefixes as part of the content
of elements and attributes (and not only in forming the names of elements and attributes). I have also
seen situations where it is necessary simply to detect whether a particular namespace is declared,
regardless whether or not it is actually used. For example, you might want to find all your stylesheets that
declare the namespace http://icl.com/saxon because you have decided to migrate from Saxon 6.5
(which uses this namespace) to Saxon 7.x (which does not).You could find these using the query:

collection("stylesheets")//*["http://icl.com/saxon" =
for $p in in-scope-prefixes(.)
return namespace-uri-for-prefix($p, .)]

See also
namespace-uri-for-prefix on page 381

355

Chapter 10

insert-before
The insert-before() function returns a sequence constructed by inserting an item, or a sequence of
items, at a given position within another sequence.

For example, «insert-before(("a","b","c"), 2, "X")» returns «("a", "X", "b", "c")».

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

sequence-1 item()* The original sequence

position xs:integer The position in the original sequence where the new items are
to be inserted

sequence-2 item()* The items that are to be inserted

Result item()* The constructed sequence

Effect
The returned sequence consists of all items in sequence-1 whose position is less than the specified
position, followed by all items in sequence-2, followed by all remaining items in sequence-1.
Positions, as always, are numbered starting at one. It’s not an error if position is outside the actual
range of positions in the sequence.

In other words, the result is the same as the value of the expression:

$sequence-1[position() lt $position],
$sequence-2,
$sequence-1[position() ge $position]

Examples

Expression Result

insert-before(1 to 5, 4, (99, 100)) (1, 2, 3, 99, 100, 4, 5)

insert-before(1 to 5, 0, 99) (99, 1, 2, 3, 4, 5)

insert-before(1 to 5, 10, 99) (1, 2, 3, 4, 5, 99)

356

XPath Functions

Usage
Although functions are provided to insert and remove items into a sequence, there is no function to
replace the item at a given position $p. To achieve this, you can write:

insert-before(remove($seq, $p), $p, $new-item)

or perhaps more simply,

$seq[position() lt $position],
$new-item,
$seq[position() gt $position]

See also
remove() on page 399
«,» operator on page 240 in Chapter 8

lang
The lang() function tests whether the language of a given node, as defined by the xml:lang attribute,
corresponds to the language supplied as an argument.

For example, if the context node is the element <para lang="fr-CA"> (indicating Canadian French),
then the expression «lang(’fr’)» would return true.

Changes in 2.0
An optional second argument has been added to allow nodes other than the context node to be tested.

Signature

Argument Data type Meaning

language xs:string The language being tested

node (optional) node() The node being tested. If omitted, the context node is tested

Result xs:boolean true if the language of the selected node is the same as, or a
sublanguage of, the language being tested

Effect
The function tests the node identified by the second argument if present, or the context node if it is
omitted. When the second argument is absent, a runtime error occurs if there is no context item, or if the
context item is not a node.

The language of the selected node is determined by the value of its xml:lang attribute, or if it has no
such attribute, by the value of the xml:lang attribute on its nearest ancestor node that does have such an
attribute. If there is no xml:lang attribute on any of these nodes, the lang() function returns false.

The xml:lang attribute is one of the small number of attributes that are given a predefined meaning in
the XML specification (in fact, you could argue that it is the only thing in the XML specification that has
anything to say about what the contents of the document might mean to its readers). The value of the

357

Chapter 10

attribute can take one of the following four forms:

❑ A two-letter language code defined in the international standard ISO 639. For example, English is
«en» and French is «fr». This can be given in either upper-case or lower-case, though lower-case
is usual. The second edition of the XML specification also anticipates the introduction of
three-letter language codes in a revision of Internet RFC 1766.

❑ A two letter language code as above, followed by one or more subcodes: each subcode is
preceded by a hyphen «-». For example, US English is “en-US”; Canadian French is “fr-CA”. The
first subcode, if present, must be either a two-letter country code from the international standard
ISO 3166, or a subcode for the language registered with IANA (Internet Assigned Numbers
Authority). The ISO 3166 country codes are generally the same as Internet top-level domains, for
example “DE” for Germany, “CZ” for the Czech Republic, but with the notable exception of the
United Kingdom, whose ISO 3166 code (for some reason) is “GB” rather than “UK”. These codes
are generally written in upper case. The meaning of any subcodes after the first is generally not
defined (though a few have been registered with IANA), but they must contain ASCII letters (a–z,
A–Z) only.

❑ A language code registered with the IANA (see http://www.isi.edu/in-notes/iana/
assignments/languages/), prefixed “i-”, for example, “i-Navajo”.

❑ A user-defined language code, prefixed “x-”, for example, “x-Java” if the element contains a Java
program.

The xml:lang attribute defines the language of all text contained within the element it appears on,
unless it is overridden by another xml:lang attribute in an inner element. So if a document is written in
English but contains quotations in German, the xml:lang language code on the document element
might say «xml:lang="en"», while an element containing a quotation specifies «xml:lang="de"».

The lang() function allows you to test whether the language for the context node is the one you are
expecting. For example «lang(’en’)» returns true if the language is English, while «lang (’jp’)»
returns true if it is Japanese.

Specifically, the rules are as follows:

❑ If the value of xml:lang for the context node is equal to the string supplied in the argument,
ignoring differences of case, the function returns true.

❑ If the value of xml:lang for the context node, ignoring any suffix starting with a hyphen «-», is
equal to the string supplied in the argument, again ignoring differences of case, the function
returns true.

❑ Otherwise, the function returns false.

Examples

Expression Result

boolean(//*[lang(’de’)]) true() if the document contains any elements marked as
being in German

/*/msg[@code="$p"][lang(’fr’)] the <msg> element with a required code value that is
marked as being in French

358

XPath Functions

Usage
This function provides a convenient way of testing the language used in a source document. Assuming
that the source document has been properly marked up using the xml:lang attribute as defined in the
XML specification, the lang() function allows you to do language-dependent processing of the data.

The lang() function only allows you to test whether the language is one of the languages you are
expecting; if you want to find out the actual language, you will need to read the xml:lang attribute
directly. You can find the relevant attribute using the expression «(ancestor-or-self::*/
@xml:lang)[last()]».

last
The last() function returns the value of the context size. When processing a sequence of items, if the
items are numbered from one, last() gives the number assigned to the last item in the sequence.

Changes in 2.0
None.

Signature
This function takes no arguments.

Data type Meaning

Result xs:integer A number, the value of the context size. As the name implies, this is context
dependent

Effect
The XPath specification defines the value of the last() function in terms of the context size.

The context size is part of the focus, which is described in the spec as having three components: the
context item, the context position, and the context size. However, it may be easier to think of the focus as
being a bit like an Iterator object in a language such as Java. Behind the iterator is a list of items that
are processed individually (though not necessarily in any particular order). The context item, position,
and size can be thought of as three methods provided by this iterator object: the context position is a
number than ranges from 1 to the size of the list, the context item is the item found at the context position,
and the context size is the number of items in the list.

When a top-level XPath expression is evaluated (that is, an XPath expression that is not part of another
expression), the context size is set by the host language. In XSLT, it is set from the XSLT context. For
example:

❑ When a global <xsl:variable> declaration is being evaluated, or in certain other contexts such
as evaluating the use expression in <xsl:key>, or evaluating the initial template that matches
the root node, it is normally set to 1 (one).

❑ When <xsl:apply-templates> is called to process a sequence of nodes, the context size is the
number of nodes selected in the call of <xsl:apply-templates>.

359

Chapter 10

❑ When <xsl:for-each> is called to process a sequence of items, the context size is the number
of items selected in the call of <xsl:for-each>.

This means that within an <xsl:for-each> iteration, the test <xsl:if test="position()=
last()"> succeeds when the last item in the sequence is being processed.

Many APIs that enable XPath expressions to be executed from languages like Java or JavaScript allow the
caller to set the context item, but not the context position or size. In such cases, the context position and
size on entry to the XPath expression will normally both be one.

Within an XPath expression, the context size changes within a predicate and on the right-hand-side of the
«/» operator.

❑ In a predicate, last() refers to the number of items in the sequence that is being filtered
using the predicate. For example, «$seq[last()]» selects the last item in a sequence (this is
short for «$seq[position()=last()]»), while «$seq[ceiling(last() div 2)]» selects
the item at the midway position of the list (the fourth item in a list of eight, the fifth item in a list
of nine).

❑ It’s less common to find last() being used on the right-hand-side of a «/» operator. It refers to
the number of items in the sequence selected by the left-hand operand of the «/». I can’t find a
very plausible way of using this, but it can be done. For example, «$a/remove($b, last())»
returns all items from $b except the one at position P, where P is the number of items in $a. But
there are simpler ways of writing this!

Usage
When last() is used within a predicate in a filter expression, the focus refers to the sequence of items
being filtered. If the filter is used within a step of a path expression, then the context size is the number of
nodes selected by the current step of the expression, after applying any previous filters. For example,
suppose the source document is as follows:

<countries>
<country name="France" capital="Paris" continent="Europe"/>
<country name="Germany" capital="Berlin" continent="Europe"/>
<country name="Spain" capital="Madrid" continent="Europe"/>
<country name="Italy" capital="Rome" continent="Europe"/>
<country name="Poland" capital="Warsaw" continent="Europe"/>
<country name="Egypt" capital="Cairo" continent="Africa"/>
<country name="Libya" capital="Tripoli" continent="Africa"/>
<country name="Nigeria" capital="Lagos" continent="Africa"/>

</countries>

Then:

❑ The expression «countries/country[last()]» returns the <country> element for Nigeria

❑ The expression «countries/country[@continent=’Europe’][last()]» returns the
<country> element for Poland

360

XPath Functions

❑ The expression «countries/country[@continent=’Europe’][last()-1]» returns the
<country> element for Italy

❑ The expression «countries/country[@continent=’Africa’] [position() !=
last()]» returns the <country> elements for Egypt and Libya.

An easy mistake is to think that last() returns a boolean value. You can use
last() in a predicate to match the last node, for example «para[last()]». This is
a shorthand for the predicate «[position()=last()]» , because in a predicate, a
numeric value X is equivalent to a test for the condition « position()=X».
However, this doesn’t extend to other contexts, for example if you write:

if (last()) then ...

then the numeric value of the last() function is simply converted to a boolean as if
the boolean() function were used. The result will always be true, because last()
can never be zero.

Usage in XSLT
The last() function can be called in XSLT as a free-standing XPath expression, or in simple tests such as
<xsl:if test="position() = last()">. This kind of usage is frequent in XSLT, because XSLT
makes heavy use of the focus. To understand the effect of calling last(), you need to know how
different XSLT instructions set the focus.

When last() is used as a top-level expression within an <xsl:template> (and not within <xsl:
for -each>), it returns the number of nodes selected by the relevant <xsl:apply-templates> select
expression. This is because <xsl:apply-templates> sets the focus to refer to the sequence of nodes
selected by the select expression, after sorting them into the order in which they are processed.

For example, the following code can be used to number all the figures in a document. The last()
function prints the number of figure elements in the document.

<xsl:apply-templates select="//figure"/>
. . .
<xsl:template match="figure" version="2.0">

<div align="center">

<p>Figure <xsl:value-of select="position(), ’of’, last()"/></p>
</div>

</xsl:template>

(The «version="2.0"» setting is used to ensure that <xsl:value-of> displays the whole sequence in
its select attribute, not just the first item.)

Similarly, when last() is used as a top-level expression within <xsl:for-each>, it returns the
number of items selected by the relevant <xsl:for-each> select expression. Again, this is because

361

Chapter 10

<xsl:for-each> sets the focus to refer to the sequence of items selected by the select expression,
after sorting into the correct order.

If the last() function is used within the select expression of an <xsl:sort> element, then it refers to
the number of items being sorted. For example, specifying the following sort key:

<xsl:sort select="position() mod (ceiling(last() div 3))"/>

will sort the nodes A, B, C, D, E, F, G, H into the sequence A, D, G, B, E, H, C, F, which might be useful if
you want to arrange them in a table with three columns.

The last() function can be used as a qualifier in a pattern when the last child of a given element is to be
treated differently from the others. For example:

<xsl:template name="normal-p" match="p">
<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>

</xsl:template>

<xsl:template match="p[last()]">
<xsl:call-template name="normal-p"/>
<hr/>

</xsl:template>

However, this may not perform well on all processors, because in principle each <p> element needs to be
tested to see if it is the last one, which may involve looking at all the children of the parent of the <p>
element. Some processors may optimize this construct, but it’s best not to assume it will (in Saxon, as it
happens, «match="p[last()]"» is quite efficient, but «match="p[last()-1]"» is rather expensive).

Using <xsl:if> will often achieve the same effect more economically:

<xsl:template match="p">
<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>
<xsl:if test="position()=last()">

<hr/>
</xsl:if>

</xsl:template>

However, note that these two examples are not strictly equivalent. If the <p> elements are processed by a
call on <xsl:apply-templates> with no <xsl:sort> specification, they will have the same effect;
but if a sort key is specified, then the second template will output an <hr/> element after the last <p>
element in the order of the output, whereas the first will output the <hr/> element after the last <p>
element in document order.

See also
count() on page 316
position() on page 396
<xsl:number> in Chapter 5 of XSLT Programmer’s Reference

362

XPath Functions

local-name
The local-name() function returns the local part of the name of a node, that is, the part of the name
after the colon if there is one, or the full name otherwise.

For example, if the context node is an element named <title> the expression «local-name()» returns
«title»; for an element named <ms:schema> it returns «schema».

Changes in 2.0
Under XPath 2.0 it is an error to supply a sequence containing more than one node, unless running in
backward compatibility mode.

Signature

Argument Data type Meaning

node
(optional)

node()? Identifies the node whose local name is
required. If the argument is an empty
sequence, the function returns a zero-length
string.

If the argument is omitted, the target node is
the context node. It is then an error if there is
no context item, or if the context item is not a
node

Result xs:string A string value: the local part of the name of the
target node

Effect
The local name of a node depends on the kind of node, as follows:

Node kind Local name

document None, a zero-length string is returned

element The element name, after any colon

attribute The attribute name, after any colon

text None, a zero-length string is returned

processing instruction The target used in the processing instruction to
identify the application for which it is intended

comment None, a zero-length string is returned

namespace The namespace prefix; or the zero-length string if this
is the default namespace

363

Chapter 10

Examples
Consider the source document:

<my:doc xmlns:my="some.uri" security="high"/>

Expression Result

local-name(/) ""

local-name(/*) "doc"

local-name(/*/@*) "security"

Usage
This function can be useful if you need to test the local name without also testing the namespace URI. For
example, if you want to select both <title> and <html:title> elements, you could do this by writing:

*[local-name()=’title’]

However, XPath 2.0 allows you to achieve this more directly by writing:

*:title

In some ways this can be seen as a misuse of the XML Namespaces facility. The names in one namespace
are supposed to bear no relation to the names in another, so any similarity between the names <title>
and <html:title> is a pure coincidence.

In practice, this isn’t always true. What often happens is that one namespace is adapted from another. For
example, the US Post Office might devise a schema (and associated namespace) for representing US
names and addresses, and the Canadian Post Office might then create a variant of this, with a different
namespace URI, for Canadian names and addresses. The two schemas will have many elements in
common, and it’s quite reasonable to try to write a stylesheet that can handle either. If you want to write
template rules that match on both a <us:address> and a <canada:address>, there are two ways of
doing it:

Either list both possibilities:

<xsl:template match="us:address | canada:address">

or match on the local name only:

<xsl:template match="*[local-name()=’address’]">

or equivalently:

<xsl:template match="*:address">

364

XPath Functions

It’s not a good idea to use this construct simply to avoid the hassle of declaring the namespace prefix.
Your code will almost certainly be less efficient, and it runs the risk of producing incorrect results because
it can match elements in namespaces you weren’t expecting.

XSLT Example
The following stylesheet fragment outputs an HTML table listing the attributes of the current element,
sorted first by namespace and then by local name:

<xsl:template match="*" mode="tabulate">
<table>

<xsl:for-each select="attribute::node()">
<xsl:sort select="namespace-uri()"/>
<xsl:sort select="local-name()"/>

<tr>
<td><xsl:value-of select="namespace-uri()"/></td>
<td><xsl:value-of select="local-name()"/></td>
<td><xsl:value-of select="."/></td>
</tr>

</xsl:for-each>
</table>

</xsl:template>

See also
name() on page 376
namespace-uri() on page 379

local-name-from-QName
The function local-name-from-QName() returns the local-name part of an xs:QName value.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

value xs:QName? The xs:QName value whose local-name part is
required. If the supplied value is an empty
sequence, an empty sequence is returned

Result xs:string? The local-name part of the xs:QName

Effect
Given an expanded QName (that is, an instance of type xs:QName), this function returns the local-name
part of the value.

365

Chapter 10

Examples

Expression Result

local-name-from-QName(expanded-QName(’some.uri’, invoice)) invoice

local-name-from-QName(node-name(@xml:space)) space

The second example assumes that the context node has an attribute called xml:space.

See also
expanded-QName() on page 342
namespace-uri-from-QName() on page 382

lower-case
The lower-case() function converts upper-case characters in a string to lower-case.

For example, «lower-case("McAndrew")» returns "mcandrew".

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

value xs:string? The string to be converted

Result xs:string? The string with upper case letters converted to lower
case

Effect
For those whose only language is English, the matter of converting characters between upper case and
lower case is straightforward: there is a direct one-to-one mapping between the 26 upper-case letters A--Z
and the 26 lower-case letters a--z. In other languages, the relationship is not always so simple. In many
Oriental scripts there is no concept of case at all. Even with Western languages there are many
complications. To take a few examples:

❑ The upper-case equivalent of the German «ß» character is the character pair «SS».

❑ In most languages, the lower-case equivalent of «I» is «i», but in Turkish, it is «ı» (known as
“dotless I”).

❑ Some characters have multiple lower-case forms, depending on context: for example the
lower-case version of the Greek «�» (sigma) is «σ» or «ς» depending on where in the word it
appears.

366

XPath Functions

❑ Some accented characters exist in both upper-case and lower-case forms, but the upper-case form
is usually written without accents when it appears in running text.

Fortunately, the Unicode consortium has defined a mapping from upper-case to lower-case characters,
and the XPath specification refers to this mapping. An outline of the principles can be found in Unicode
Technical Report #21 (http://www.unicode.org/unicode/reports/tr21/). This material has
been merged into Unicode 4.0, but in my view the original technical report is easier to read. The actual
character mappings can be extracted from the database of Unicode characters found on the Unicode Web
site.

The effect of the function is as follows:

❑ If the input is an empty sequence, the result is the zero-length string.

❑ Otherwise, every character in the input string is replaced by its corresponding lower-case
character (or sequence of characters) if there is one, or it is included unchanged in the result string
if it does not.

The function does not implement case mappings that Unicode defines as being locale-sensitive (such as
the Turkish dotless I). A good implementation will support the mappings that are context-sensitive (such
as the choice between the two lower-case sigma characters) but it would be unwise to rely on it.

Examples

Expression Result

lower-case("Sunday") sunday

lower-case("2+2") 2+2

lower-case("CÉSAR") césar

lower-case("E��A�") ελλας

Usage
With simple ASCII keywords, it’s safe to use the lower-case() or upper-case() functions to do a
case-blind comparison, for example:

if (lower-case($param) = "yes") then ...

With a more extensive alphabet, it’s better to use a specific collation for this purpose. The reason is that
converting two strings to lower-case for comparison doesn’t always work («STRASSE» will be mapped to
«strasse», while «Straße» will be mapped to «straße»). Converting both to upper-case is better,
though there are still a few problems that can crop up.

So it’s best to use this function only if you genuinely need to convert a string to lower case, not just in
order to perform comparisons.

Note also that the «i» flag can be used to achieve case-blind matching in regular expressions used by the
matches(), replace(), and tokenize() functions.

367

Chapter 10

See also
translate() on page 437
upper-case() on page 442

matches
The matches() function tests whether a supplied string matches a regular expression.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

input xs:string? The string to be tested against the regular
expression. If an empty sequence is supplied, an
empty sequence is returned

regex xs:string The regular expression

flags
(optional)

xs:string One or more letters indicating options on how
the matching is to be performed. If this
argument is omitted, the effect is the same as
supplying a zero-length string, which defaults
all the option settings

Result xs:boolean? True if the input string matches the regular
expression, false if not

Effect
Regular expressions provide a powerful pattern-matching capability for strings.

The syntax of regular expressions supported by this function is described in Chapter 11. The syntax is
based on the regular expression syntax defined for the pattern facet in XML Schema, which, in turn, is
based on the established conventions used in languages such as Perl.

Note that whereas the pattern facet in XML Schema uses a match that is implicitly anchored to the ends of
the string, this function does not. A pattern specified in XML Schema must match the entire string to be
successful; the regex specified in this function only needs to match some substring. For example,
«#[0-9]+» will match a string if it contains as a substring a «#» character followed by one or more digits.
If you want to test whether the entire string takes the form of a «#» character followed by one or more
digits, use the regex «ˆ#[0-9]+$».

The options that may be specified in the flags argument are:

368

XPath Functions

Option Effect

i Use case-insensitive mode. In this mode, a letter used in the regular expression matches
characters in the input string regardless of their case, for example, the regex «Monday»
matches the strings «Monday» or «monday» or «MONDAY». Without this flag, characters
must match exactly. Note that collations are not used for regex comparisons

m Use multiline mode. In the default mode (called string mode) the meta-characters «ˆ» and
«$» match the beginning and end of the input string. In multiline mode, the input string is
treated as a sequence of individual lines separated by a newline (x0A) character. The
meta-characters «ˆ» and «$» then match the beginning and end of any line

s Use dot-all mode. By default, the meta-character «.» in a regular expression matches any
character in the input except a newline (x0A) character. In dot-all mode, «.» matches any
character, including a newline

x Ignore whitespace. By default, whitespace characters in a regular expression represent
themselves, for example, the regex « *» matches a sequence of zero or more spaces. If the
«x» flag is set, whitespace in the regex is ignored, and can be used to make the layout more
readable. Whitespace characters can always be matched using character escapes such as
«\s» and «\n»

Multiple flags can be specified in any order, for example «mx» and «xm» are both allowed.

If the regular expression does not conform to the specified syntax, a fatal error is reported at runtime.

Examples
Assume that $e is the following element:

<verse>A grand little lad was young Albert
All dressed in his best, quite a swell
With a stick with an horse’s head handle
The finest that Woolworth’s could sell.</verse>

Expression Result

matches($e, "grand") true

matches($e, "∧The finest", "m") true

matches($e, "(∧.*$){4}", "m") true

matches($e, "Albert.*Woolworth’s", "s") true

matches($e, "with", "i") true

matches("banana", "∧(.a)+$") true

matches("23 May 2003",
"∧[0-9]+\s[A-Z][a-z]+\s[0-9]+$")

true

matches("", "a*") true

369

Chapter 10

Usage
The matches() function provides a much more powerful alternative to the contains(),
starts-with(), and ends-with() functions. It might be more expensive, but this is only likely to
make a difference if searching a large amount of text.

See also
contains() on page 314
ends-with() on page 334
replace() on page 400
starts-with() on page 415
tokenize() on page 434

max
The max() function returns the maximum value in a sequence. The input sequence may contain any
items that can be compared using the «lt» and «gt» operators.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

sequence xdt:anyAtomicType* The input sequence

collation
(optional)

xs:string Collation used for comparing strings

Result xdt:anyAtomicType? The maximum value found in the input sequence

Effect
If the sequence supplied in the function call contains nodes, then the nodes will automatically be
atomized (to extract their typed values) as part of the function call mechanism.

Any untyped atomic values in the atomized sequence (which will typically result from atomizing a node
in a schema-less document) are converted to xs:double values. A runtime error is reported if there are
values that cannot be converted. If there are NaN (not-a-number) values in the sequence, which might
happen if you do the conversion to numbers yourself using the number() function, then the result of the
max() function is NaN.

If the input sequence is empty, the result is an empty sequence. If the input sequence contains a single
value, that value is returned.

If the input sequence contains two or more values, then the values must be comparable using the «lt»
operator. This rules out values of types such as xs:QName and xs:anyURI for which no ordering is

370

XPath Functions

defined, and it rules out sequences that mix values such as integers and strings. The function then returns
a value that is greater than or equal to every other value in the sequence.

If there are two values that both satisfy this condition (for example the xs:integer 10 and the
xs:double 10e0, or two xs:dateTime values in different timezones) then it is not predictable which of
them will be returned.

If the collation argument is supplied, then it is used when comparing strings. If the sequence contains
strings and no collation is supplied, then the default collation is used.

Examples
Expression Result

max((10, 20, -5, 13)) 20

max(("a", "x", "b")) "x"

max(2) 2

max(()) ()

Usage
Note that max() returns an atomic value. If you supply a sequence of nodes, the nodes are atomized, and
the highest atomic value is returned. If you actually want to know which node contained the highest
value, you will have to search for it, using a predicate. For example:

for $n in max($nodes/size) return $nodes[size=$n]

Because of this limitation, it may sometimes be better to use the technique of sorting the nodes and
selecting the last. For example, in XQuery:

(for $n in $nodes order by $n/size return $n)[last()]

or in XSLT 2.0:

<xsl:for-each select="$nodes">
<xsl:sort select="size"/>
<xsl:if test="position() = last()">

<xsl:sequence select="."/>
</xsl:if>

</xsl:for-each>

See also
min() in the following section.

min
The min() function returns the minimum value in a sequence. The input sequence can contain any items
that can be compared using the «lt» and «gt» operators.

371

Chapter 10

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

sequence xdt:anyAtomicType* The input sequence

collation
(optional)

xs:string Collation used for comparing strings

Result xdt:anyAtomicType? The minimum value found in the input sequence

Effect
If the sequence supplied in the function call contains nodes, then the nodes will automatically be
atomized (to extract their typed values) as part of the function call mechanism.

Any untyped atomic values in the atomized sequence (which will typically result from atomizing a node
in a schemaless document) are converted to xs:double values. A runtime error is reported if there are
values that cannot be converted. If there are NaN (not-a-number) values in the sequence, which might
happen if you do the conversion to numbers yourself using the number() function, then the result of the
min() function is NaN.

If the input sequence is empty, the result is an empty sequence. If the input sequence contains a single
value, that value is returned.

If the input sequence contains two or more values, then the values must be comparable using the «lt»
operator. This rules out values of types such as xs:QName and xs:anyURI for which no ordering is
defined, and it rules out sequences that mix values such as integers and strings. The function then returns
a value that is less than or equal to every other value in the sequence.

If two values both satisfy this condition (for example the xs:integer 10 and the xs:double 10e0, or
two xs:dateTime values in different timezones), then it is not predictable which of them will be
returned.

If the collation argument is supplied, then it is used when comparing strings. If the sequence contains
strings and no collation is supplied, then the default collation is used.

Examples

Expression Result

min((10, 20, -5, 13)) -5

min(("a", "x", "b")) "a"

min(2) 2

min(()) ()

372

XPath Functions

See also
max() on page 370

minutes-from-dateTime, minutes-from-time
The two functions minutes-from-dateTime() and minutes-from-time() extract the minutes
component from an xs:date or xs:dateTime value. For example, at 16:30 local time both these
functions return 30.

Changes in 2.0
These functions are new in XPath 2.0.

Signature

Argument Data type Meaning

input xs:time or
xs:dateTime?

The value from which the minutes component is
to be extracted. The data type of the supplied
argument must correspond to the data type
implied by the function name

Result xs:integer The minutes component, in the range 0 to 59

Effect
The function returns the minutes component of the supplied xs:time or xs:dateTime. The value is
from the time as expressed in its local timezone (which will be the same as the minutes component of the
time in UTC except in the rare case where the timezone offset is not a multiple of one hour).

Examples

Expression Result

minutes-from-time(xs:time("12:35:03.142")) 35

minutes-from-dateTime(xs:dateTime("2004-02-28T13:55:30")) 55

minutes-from-time(xs:time("00:30:02+01:00")) 30

minutes-from-dateTime(xs:dateTime("2004-07-31T03:10:00+08:30")) 10

See also
current-date(), -dateTime(), -time() on page 318.
format-date(), -dateTime(), -time() in Chapter 7 of XSLT 2.0 Programmer’s Reference.
day-from-date(), -dateTime() on page 322
year-from-date(), -dateTime() on page 443

373

Chapter 10

minutes-from-duration
This function extracts the value of the minutes component from a normalized xdt:dayTimeDuration
value.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

input xdt:dayTimeDuration? The value from which the component is to
be extracted. If an empty sequence is
supplied, an empty sequence is returned

Result xs:integer? The minutes component

Effect
The function returns the minutes component of the supplied xdt:dayTimeDuration. The duration
value is first normalized so that the number of hours is less than 24, the number of minutes is less than 60,
and so on. The result will be negative if the duration is negative.

Examples

Expression Result

minutes-from-duration(xdt:dayTimeDuration("PT12H20M")) 20

minutes-from-duration(xdt:dayTimeDuration("PT210S")) 3

minutes-from-duration(xdt:dayTimeDuration("-PT75M")) -15

See also
days-from-dayTimeDuration on page 323
hours-from-dayTimeDuration on page 347
seconds-from-dayTimeDuration on page 414

month-from-date, month-from-dateTime
These two functions extract the month component from an xs:date or xs:dateTime value. For
example, on Christmas Day «month-from-date(current-date())» returns 12.

Changes in 2.0
These functions are new in XPath 2.0.

374

XPath Functions

Signature

Argument Data type Meaning

input xs:date? or
xs:dateTime?

The value whose month component is to be extracted. The
data type of the supplied argument must correspond to
the data type implied by the function name. If an empty
sequence is supplied, an empty sequence is returned

Result xs:integer? The month, in the range 1 (January) to 12 (December)

Effect
The function returns the month component of the supplied xs:date or xs:dateTime. The value is used
in its local timezone (not normalized to UTC).

Examples

Expression Result

month-from-date(xs:date("2004-02-28")) 2

month-from-dateTime(xs:dateTime("2004-02-28T13:00:00")) 2

month-from-date(xs:date("2004-07-31+01:00")) 7

month-from-dateTime(xs:dateTime("2004-07-31T23:00:00-05:00")) 7

See also
current-date(), -dateTime(), -time() on page 318.
format-date(), -dateTime(), -time() in Chapter 7 of XSLT 2.0 Programmer’s Reference.
day-from-date(), -dateTime() on page 322
year-from-date(), -dateTime() on page 443

months-from-duration
This function extracts the value of the months component from a normalized
xdt:yearMonthDuration value.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

input xdt:yearMonthDuration? The value from which the component is to be
extracted. If an empty sequence is supplied, an
empty sequence is returned

Result xs:integer? The months component, in the range –11 to +11

375

Chapter 10

Effect
The function returns the months component of the supplied xdt:yearMonthDuration. The duration
value is first normalized so that the number of months is less than 12. The result will be negative if the
duration is negative.

Examples

Expression Result

months-from-duration(xdt:
yearMonthDuration("P1Y3M"))

3

months-from-duration(xdt:
yearMonthDuration("P15M"))

3

months-from-duration(xdt:
yearMonthDuration("-P1Y3M"))

-3

See also
years-from-duration on page 443

name
The name() function returns a string in the form of a lexical QName that represents the name of a node.
Typically, this will be the name of the node as written in the original XML source document, but the
namespace prefix may differ.

For example, if the context node is an element named <ms:schema>, then the expression «name()» will
normally return the string «ms:schema».

Changes in 2.0
Under XPath 2.0 it is an error to supply a sequence containing more than one node, unless running in
backward compatibility mode.

There has been some clarification of the rules for choosing a namespace prefix.

Signature

Argument Data type Meaning

node
(optional)

node()? Identifies the node whose name is required. If the argument is
an empty sequence, the function returns a zero-length string.

If the argument is omitted, the target node is the context node.
It is then an error if there is no context item, or if the context
item is not a node

Result xs:string A string value: a QName representing the name of the target node

376

XPath Functions

Effect
The name of a node depends on the kind of node, as follows:

Node kind Name

document None, a zero-length string is returned

element The element name (a lexical QName), normally as it appears in the
source XML, though a different prefix that maps to the same
namespace URI may be substituted

attribute The attribute name (a lexical QName), normally as it appears in the
source XML, though a different prefix that maps to the same
namespace URI may be substituted

text None, a zero-length string is returned

processing instruction The target used in the processing instruction to identify the
application for which it is intended

comment None, a zero-length string is returned

namespace The namespace prefix; or the zero-length string if this is the default
namespace. (This is not prefixed with «xmlns:»)

Except for element and attribute nodes, name() returns the same value as local-name().

The QName returned will normally use the same prefix as appeared in the original XML source. However,
this is not guaranteed: the only guarantee is that it will use a prefix that maps to the same namespace URI.
If the source document contains multiple prefixes that map to the same namespace URI the
implementation can choose which one to use.

With XSLT 2.0 and XQuery 1.0, it becomes possible to apply the name() function to a node in a
temporary tree constructed by the stylesheet or query, rather than a node obtained by parsing a source
XML document. The same considerations apply; the processor is free to choose any prefix that maps to
the right namespace URI, including if necessary a prefix that it has invented itself. To find a suitable
prefix, it searches the namespace nodes associated with the element (when the name of an element is
requested), or the element containing the attribute (when the name of an attribute is requested).

If you apply the name() function to a parentless attribute node then there are no namespace nodes that
can be used to locate a suitable namespace prefix. In this case, if the attribute is in a non-null namespace
then the system is required to invent an arbitrary prefix.

Usage
The name() function is useful when you want to display the element name, perhaps in an error message,
because the form it takes is the same as the way in which users will generally write the element name.

So, for example, you could use name() in the output of the diagnostic trace() function:

for $e in child::* return
trace(string(.), concat("contents of element ", name()))

377

Chapter 10

You can also use the name() function to test the name of a node against a string, for example,
«doc:title[name(..)=’doc:section’]». However, it’s best to avoid this if you can:

❑ Firstly, this fails if the document uses a different prefix to refer to the namespace. There’s nothing
here to tell the system to treat «doc:section» as a QName, so if the writer of a particular
document chose to use the prefix «DOC» instead of «doc» for this namespace, the test would fail,
even though the names are equivalent.

❑ Secondly, there is usually a better way of doing it: this particular example can be written as
«doc:title[parent::doc:section]». In fact, in most cases where you want to test whether
a node has a particular name, you can do it using a predicate of this form. The «self» axis is
particularly useful. For example, to test whether the current node is a <figure> element, write
«if (self::figure) then ...». This doesn’t work for attribute nodes (because the
principal node kind of the self axis is element nodes; see Name Tests in Chapter 7, page 221), but
for attributes you can write «if (. is ../@figure) then...».

One common requirement, in both XSLT and XQuery, is to sort data on the value of a sort key that is
supplied as a runtime parameter (this might be because the user has asked interactively for a table to be
sorted on a particular column). Neither XSLT nor XQuery allows the expression that defines the sort
criteria to be completely dynamic. But very often the possible sort keys are all element children of the
elements that represent the rows being sorted. In this situation it is possible to define the sort key like this
(in XSLT):

<xsl:for-each select="row">
<xsl:sort select="*[name()=$sortkey]"/>

or like this (in XQuery):

for $r in row
order by *[name()=$sortkey]

If you are using namespaces it is safer to do such tests using the node-name() function, which gives you
an xs:QName as its result: an xs:QName represents an expanded name (namespace URI plus local name)
and is not sensitive to the choice of prefix. Alternatively, use the namespace-uri() and local -
name() functions to test the two components of the expanded name separately.

If you want to select all attributes except the description attribute, you can write:

@*[name() != ’description’

This is namespace-safe, because an unprefixed attribute name always represents a name in no
namespace. But in XPath 2.0, I prefer:

@* except @description

In XSLT, avoid using name() to generate a name in the result document, for example, by writing
<xsl:element name="{name()}">. The problem is that any prefix in name() is interpreted in the
light of namespace declarations appearing in the stylesheet, not namespace declarations in the original
source document. The correct tool for this job is <xsl:copy>. There are cases where <xsl:copy> won’t
do the job, for example, you may want to use the name of an attribute in the input document to generate

378

XPath Functions

the name of an element in the output document. In this case use local-name() and namespace-
uri() separately, for example:

<xsl:element name="{local-name()}" namespace="{namespace-uri()}">

Examples
Consider the source document:

<my:doc xmlns:my="some.uri" security="high"/>

Expression Result

name(/) ""

name(/*) "my:doc"

name(/*/@*) "security"

See also
local-name() on page 363
namespace-uri() on page 379
node-name() on page 384

namespace-uri
The namespace-uri() function returns a string that represents the URI of the namespace in the
expanded name of a node. Typically, this will be a URI used in a namespace declaration, that is, the value
of an xmlns or xmlns:* attribute in the source XML.

For example, if you apply this function to the outermost element of an XSLT stylesheet by writing the
expression «namespace-uri(doc(’’)/*)», the result will be the string «http://www.w3
.org/1999/XSL/Transform».

Changes in 2.0
None.

Signature
Argument Data type Meaning

node
(optional)

node()? Identifies the node whose namespace URI is required. If
the argument is an empty sequence, the function returns
a zero-length string.

If the argument is omitted, the target node is the context
node. It is then an error if there is no context item, or if
the context item is not a node

Result xs:string The namespace URI of the expanded name of the target node

379

Chapter 10

Effect
The namespace URI of a node depends on the kind of node, as follows:

Node kind Namespace URI

document None, a zero-length string is returned

element If the element name as given in the source XML contained a
colon, the value will be the URI from the namespace
declaration corresponding to the element’s prefix.
Otherwise, the value will be the URI of the default
namespace. If this is null, the result will be a zero-length
string

attribute If the attribute name as given in the source XML contained a
colon, the value will be the URI from the namespace
declaration corresponding to the attribute’s prefix.
Otherwise, the namespace URI will be a zero-length string

text None, a zero-length string is returned

processing instruction None, a zero-length string is returned

comment None, a zero-length string is returned

namespace None, a zero-length string is returned

Except for element and attribute nodes, namespace-uri() returns an empty string.

Examples
Consider the source document:

<my:doc xmlns:my="some.uri" security="high"/>

Expression Result

namespace-uri(/) ""

namespace-uri(/*) "some.uri"

namespace-uri(/*/@security) ""

namespace-uri(/*/namespace::my) ""

Usage
Let’s start with some situations where you don’t need this function.

If you want to test whether the context node belongs to a particular namespace, the best way to achieve
this is using a NameTest of the form «prefix:*». For example, to test (in XSLT) whether the current

380

XPath Functions

element belongs to the «http://ibm.com/ebiz» namespace, write:

<xsl:if test="self::ebiz:*" xmlns:ebiz="http://ibm.com/ebiz">

If you want to find the namespace URI corresponding to a given prefix the best solution is to use
namespace nodes. You might need to do this if namespace prefixes are used in attribute values: the XSLT
standard itself uses this technique in attributes such as extension-element-prefixes, and there is
no reason why other XML document types should not do the same. If you have an attribute «@value»
which you know takes the form of a namespace-qualified name (a QName), you can get the associated
namespace URI using the expression:

namespace-uri-for-prefix(substring-before(@value, ’:’), .)

The namespace-uri() function, by contrast, is useful in display contexts, where you just want to
display the namespace URI of the current node, and also if you want to do more elaborate tests. For
example, you may know that there is a whole family of namespaces whose URIs all begin with
urn:schemas.biztalk, and you may want to test whether a particular element is in any one of these.
You can achieve this by writing:

if (starts-with(namespace-uri(), ’urn:schemas.biztalk’)) then ...

See also
local-name() on page 363
name() on page 376

namespace-uri-for-prefix
The function namespace-uri-for-prefix() returns the namespace URI corresponding to a given
namespace prefix, in the in-scope namespaces of a particular element node.

Changes in 2.0
This function is new in XPath 2.0. Together with in-scope-prefixes(), it provides a replacement for
the namespace axis, which is deprecated in XPath 2.0.

Signature

Argument Data type Meaning

prefix xs:string The namespace prefix whose corresponding namespace
URI is required, or the zero-length string to get the
default namespace URI

element element() The element node to be examined to find an in-scope
namespace declaration for this prefix

Result xs:string? The namespace URI corresponding to the given prefix

381

Chapter 10

Effect
The in-scope namespaces for an element are represented in the data model as namespace nodes, and the
behavior of this function is therefore described in terms of a search of the namespace nodes.

This function searches the namespace nodes of the given element. If it finds a namespace node whose
name matches the given prefix, then it returns the string value of this namespace node. If it doesn’t find
one, then it returns the empty sequence.

Examples
Consider thesource document below. Note that this includes a namespace undeclaration for the «soap»
namespace, as permitted by XML Namespaces 1.1:

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
xmlns:xs="http://www.w3.org/2001/XMLSchema"

<soap:Body>
<echoString xmlns="http://example.com/soapdemo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soap="">

<inputString xsi:type="xs:string">Hello</inputString>
</echoString>

</soap:Body>
</soap:Envelope>

Expression Result

for $n in
in-scope-prefixes(
//demo:inputString)
return
namespace-uri-for-prefix(
$n,
//demo:inputString)

("http://www.w3.org/2001/XMLSchema",
"http://example.com/soapdemo",
"http://www.w3.org/2001/XMLSchema-instance",
"http://www.w3.org/XML/1998/namespace")

(in any order)

Usage
This function is often used in conjunction with in-scope-prefixes(), which finds the prefixes of all
the in-scope namespaces for an element as a sequence of strings.

See also
in-scope-prefixes on page 354.

namespace-uri-from-QName
The function namespace-uri-from-QName() returns the namespace URI part of an xs:QName value.

Changes in 2.0
This function is new in XPath 2.0.

382

XPath Functions

Signature
Argument Data type Meaning

value xs:QName? The xs:QName value whose namespace URI part is
required. If the supplied value is an empty sequence, an
empty sequence is returned. An empty sequence is also
returned if the namespace URI part of the value is null,
that is, if the QName is in no namespace

Result xs:string? The namespace URI part of the xs:QName

Effect
Given an expanded QName (that is, an instance of type xs:QName), this function returns the namespace
URI part of the value. If the xs:QName is in no namespace, it returns the empty sequence.

Examples
Expression Result

namespace-uri-from-QName(
expanded-QName(’some.uri’,
invoice))

«some.uri»

namespace-uri-from-QName(
node-name(@xml:space))

«http://www.w3.org/XML/1998/namespace»

The second example assumes that the context node has an attribute called xml:space.

See also
expanded-QName() on page 342
local-name-from-QName()on page 365

nilled
The nilled() function returns true if applied to an element that (a) specifies «xsi:nil="true"», and
(b) has been successfully validated against a schema.

Changes in 2.0
This function is new in XPath 2.0.

Signature
Argument Data type Meaning

input node() The node being tested

Result xs:boolean? True for an element that has the nilled property

383

Chapter 10

Effect
If the input is an element node that has the attribute «xsi:nil="true"» and that has been subjected to
schema validation, the function returns true.

If the input is an element node that does not have an «xsl:nil» attribute, or that has the value
«xsi:nil="false"», or if it is an element node that has not been assessed against a schema, the
function returns false.

If the function is applied to a node other than an element, it returns the empty sequence.

Examples
Assume the context node is the element:

<person>
<title xsi:nil="true"/>
<first>Samuel</first>
<middle xsi:nil="false"/>
<last>Johnson</last>

</person>

Expression Result

nilled(title) True

nilled(first) False

nilled(middle) False

nilled(last) False

Usage
The xsi:nil attribute is an explicit way of saying that a value is absent. Although its meaning is entirely
up to the application, the intended purpose is to distinguish unknown data (a person’s title is unknown)
from data known to be empty (a person is known to have no middle name). When an element that has
xsi:nil set to true is validated, it is given the nilled property in the data model, and this function allows
this property to be tested. For most practical purposes, using the nilled() function achieves the same as
testing the xsl:nil attribute directly, so long as you are sure that the element has been validated.

The nilled property is present in the data model primarily to support the rules for type matching: a
nilled element will not match a type of the form «element(N, T)», but it will match «element
(N, T?)». These rules are given in Chapter 9, in the section Matching Elements and Attributes on
page 281. This function is provided to allow direct access to this property.

node-name
The node-name() function returns a value of type xs:QName containing the expanded name of a node,
that is, the namespace URI and local name.

384

XPath Functions

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

input node()? The node whose name is required

Result xs:QName? The name of the node if it has a name, or an empty
sequence if it has no name

Effect
If the node is an element or attribute, then the function returns an xs:QName whose components are the
namespace URI and local name of this node. If the node is not in a namespace, then the namespace URI
component of the xs:QName will be absent (the function namespace-uri-from-QName() will return
the empty sequence).

If the node is a processing instruction, the function returns an xs:QName whose local name is the name of
the processing instruction, and whose namespace URI is absent.

If the node is a text node, comment, or document node, or if an empty sequence is supplied, then the
function returns an empty sequence.

If the node is a namespace node, then the function returns an xs:QName whose local name represents the
namespace prefix and whose namespace URI part is null; except when the namespace node represents
the default namespace, in which case the function returns an empty sequence.

Examples
It’s difficult to illustrate function calls that return xs:QName values, because there’s no way to display an
xs:QName conveniently as a string. In these examples I’ll display the value in so-called Clark notation
(after James Clark, the editor of the XSLT 1.0 and XPath 1.0 specifications), which uses the format
«{uri}local-name».

Assume the following source document:

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
xmlns:xs="http://www.w3.org/2001/XMLSchema"

<soap:Body>
<echoString xmlns="http://example.com/soapdemo"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soap="">

<inputString xsi:type="xs:string">Hello</inputString>
</echoString>

</soap:Body>
</soap:Envelope>

385

Chapter 10

Expression Result

node-name(/*) {http://schemas.xmlsoap.org/soap/envelope/}Envelope

node-name(/*/*/*) {http://example.com/soapdemo}echoString

node-name
(//@*:type)

{http://www.w3.org/2001/XMLSchema-instance}type

Usage
To access the components of the xs:QName returned by the node-name() function, you can use the
functions local-name-from-QName() and namespace-uri-from-QName(). Alternatively, if you
don’t like long function names, you can use the local-name() and namespace-uri() functions to get
these two components directly from the node itself.

See also
local-name-from-QName() on page 365
namespace-uri-from-QName() on page 382
local-name() on page 363
name() on page 376
namespace-uri() on page 379

normalize-space
The normalize-space() function removes leading and trailing whitespace from a string, and replaces
internal sequences of whitespace with a single space character.

For example, the expression «normalize-space(’ x	 y ’)» returns the string «x y».

Changes in 2.0
None.

Signature

Argument Data type Meaning

value
(optional)

xs:string? The input string. If the argument is omitted, it defaults to
the string value of the context item. If an empty sequence is
supplied, the function returns a zero-length string

Result xs:string A string obtained by removing leading and trailing whitespace
from the input string, and replacing internal sequences of
whitespace by a single space character

Effect
Whitespace is defined, as in the XML specification, as a sequence of space, tab, newline, and carriage
return characters (#x9, #xA, #xD, and #x20).

386

XPath Functions

Examples

Expression Result

normalize-space(" the
quick 	 brown fox ")

"the quick brown fox"

normalize-space(" ") ""

normalize-space("piano") "piano"

normalize-space(()) ""

Usage
It is often a good idea to apply the normalize-space() function to any string read from the source
document before testing its contents, as many users will assume that leading and trailing whitespace has
no significance and that within the string, multiple spaces or tabs are equivalent to a single space.

Don’t imagine that the XSLT <xsl:strip-space> declaration does this for you. The only thing it does
is to remove text nodes that contain whitespace only.

Using normalize-space() shouldn’t be necessary when accessing structured information in a
schema-validated document. The schema should specify for each data type (in the xs:whiteSpace facet)
how whitespace is to be treated, and this will normally ensure that redundant whitespace is removed
automatically when nodes are atomized. Note that the action of the normalize-space() function is
equivalent to the option <xs:whiteSpace value="collapse"/> in XML Schema. This removes
whitespace more vigorously than the schema data type xs:normalizedString, which uses the option
<xs:whiteSpace value="replace"/> (this doesn’t replace runs of spaces with a single space, it
only replaces individual newlines, carriage returns or tabs with single space characters.)

However, if you access the string value of an element with a mixed content type (typically by calling the
string() function explicitly, or by accessing the text nodes of an element explicitly) then schema-defined
whitespace normalization will not be applied, so using normalize-space() is a good idea.

The normalize-space() function can be particularly useful when processing a whitespace-separated
list of values. Such lists are used in some document designs. With a schema processor, the system can
deliver the value as a sequence of strings, but in the absence of a schema you have to tokenize the
sequence yourself. You can call normalize-space() to ensure that there is a single space between each
string, and it is then possible to use substring-before() to get the next token. To make this easier
still, I usually add a space at the end of the string after normalization, so that every token is followed by a
single space.

One situation where it isn’t safe to use normalize-space() is where you are processing mixed element
content containing character-level formatting attributes. For example, if you process the nodes that result
from the element:

<p>Some <i>very</i> traditional HTML</p>

then the spaces after «Some» and before «traditional» are significant, even though they appear
respectively at the end and the beginning of a text node.

387

Chapter 10

XSLT Example
The following key declaration indexes the titles of books with whitespace normalized:

<xsl:key name="book-title" match="book" use="normalize-space(title)"/>

This may then be used to locate books by title as follows:

<xsl:for-each select="key(’book-title’, normalize-space($title))">

The effect is that it will be possible, without knowing how many spaces and newlines there are, to
retrieve a book appearing in the source document as:

<book>
<title>Object Oriented Languages -

Basic Principles and Programming Techniques</title>
</book>

See also
concat() on page 312
substring-after() on page 425
substring-before() on page 427

normalize-unicode
The normalize-unicode() function returns a canonical representation of a string in which different
ways of representing the same Unicode character have been reduced to a common representation. This
makes it possible to compare two strings accurately.

Changes in 2.0
This function is new in XPath 2.0.

Signature
Argument Data type Meaning

input xs:string? The string to be normalized. If an empty
sequence is supplied, the function returns a
zero-length string

normalization-form
(optional)

xs:string The normalization algorithm to be used

Result xs:string The result of normalizing the string

Effect
The function applies a Unicode normalization algorithm to the input string, and returns the normalized
string as its result. If the normalization-form argument is omitted, the default is NFC. The only

388

XPath Functions

normalization form that all implementations must support is NFC. Other normalization forms can be
requested (including but not limited to «NFC», «NFD», «NFKC», «NFKD», «fully-
normalized») using the normalization-form argument; a runtime error is reported if the requested
normalization form is not supported by the implementation. For the meanings of these normalization
forms, see the Usage section below.

The value supplied for the normalization-form argument is converted to upper case, and leading
and trailing spaces are removed.

Examples
In these examples I have used the two separate characters «c» and «¸» to indicate the Unicode
codepoints x0063 x0327. In practice, when you actually use these two codepoints together the character
you will see displayed looks like «ç».

Expression Result

normalize-unicode("garç on") garçon

normalize-unicode("garçon",
"NFD")

garç on

Usage
The subject of character normalization has a long, tortured history. There have always been two interest
groups concerned with character encoding: those primarily interested in data processing have favored
fixed-length encodings of each character, with composite characters treated as a single unit, while those
more concerned with publishing and printing have favored variable-length encodings in which the
separate parts of a composite character (for example, a base letter and a diacritical mark) were encoded
separately. Inevitably, the only way both communities could be satisfied was by a standard that allowed
both, and that is exactly what Unicode does. The letter «Å» for example (which is widely used in
Swedish) can be encoded either using the single codepoint x00C5 (called LATIN CAPITAL A WITH
RING ABOVE) or by the two codepoints x0041 (LATIN CAPITAL LETTER A) followed by x030A
(COMBINING RING ABOVE). To make matters even worse, there is also a separate code x212B
(ANGSTROM SIGN), which is visually indistinguishable from the letter «Å» but has a separate code
because it is considered to have its own meaning.

This means that unless special precautions are taken, when you search for text containing the character
«Å», you will not find it unless you choose the same representation as is used in the text you are
searching. This applies not only to the textual content, but also to the markup: both representations of this
character are acceptable in XML names, and if you use one representation in the source XML, and a
different representation in a path expression, then they won’t match.

Unicode normalization is an algorithm that can be applied to Unicode strings to remove these arbitrary
differences.

The Character Model for the World Wide Web, a W3C Working Draft, specifies that documents on the Web
should be subject to “early normalization”: that is, they should be normalized at the time they are created;
and it advocates the use of a particular normalization algorithm called NFC (further details below). If
everyone followed this advice, there would be no need for a normalize-unicode() function in XPath.
But unfortunately, there is little chance of this happening.

389

Chapter 10

The normalization algorithms have been published in Unicode Technical Report #15 (http://www
.unicode.org/unicode/reports/tr15). There are several, notably normalization forms C, D, KC,
and KD, and “fully normalized”. (Why have one standard when you can have five?) The default used by
the normalize-unicode() function is NFC (normalization form C), but the other forms can be
requested using the second parameter to the function, provided that the implementation supports
them—they aren’t mandatory.

Normalization forms C and KC replace decomposed characters by composed characters; in our example
using «Å», they choose the single-codepoint representation x00C5 in preference to the two-codepoint
representation x0041x030A. Normalization forms D and KD prefer the decomposed representation, that
is x0041x030A.

As a general rule, most software that produces Unicode text (for example, text editors) will produce NFC
output most of the time. This is useful, and explains why you don’t hear of many people having
real-world XPath expressions that fail because of normalization issues. But it’s certainly a possibility, and
one of the concerns is that it is also a security risk—using the “wrong” representation of characters could
be a way of getting round validation software.

The K variants (NFKC and NFKD) differ from NFC and NFD in that they normalize further, specifically,
they normalize away distinctions between “compatibility variants” of characters. These compatibility
variants exist because Unicode was created as the union of many different pre-existing character sets. The
designers had to make the decision whether two characters in different character sets were really
representations of the same character. The problem in merging two characters into one is that it would
lose information when data is converted into Unicode and then back again—the original data stream
could not necessarily be reconstituted. So Unicode adopted the approach of allowing multiple
representations of a character as compatibility variants. The distinction between the letter «Å» and the
Ångstrom symbol is an example of this phenomenon; normalization forms NFKC and NFKD eliminate
the distinction between these two characters. Another example is the distinction between the two
characters «f» «i» and the single character «fi» (really just a graphical visualization of the two separate
characters, but recognized as a single character for the benefit of typesetting applications). Another one
(and here the “loss of information” argument starts to become significant) is the distinction between the
superscript digits «2» and «3» and the ordinary digits «2»
and «3».

When you take a substring of a normalized string, the substring will always be normalized, and this is
true for all the normalization forms discussed here. Splitting a string between a letter «c» and a
non-spacing cedilla that follows it may not produce a very meaningful result, but the result is
normalized, in the sense that the normalization algorithm will not change it. However, concatenating two
normalized strings is not guaranteed to produce a normalized string. This is true whether you choose a
composed form (NFC) or a decomposed form (NFD):

❑ With NFC, concatenating a string that ends with letter «c» and a string that starts with a
non-spacing cedilla produces a string that is not in normalized form NFC.

❑ With NFD, concatenating a string that ends with a non-spacing modifier and a string that starts
with a non-spacing modifier may produce a string that is not in normalized form NFD, because
this normalization form requires multiple non-spacing modifiers applying to the same letter to be
in a standard order.

390

XPath Functions

This means that the concat() function, and other XPath functions that concatenate strings such as
string-join(), as well as node construction instructions in XSLT and XQuery, are not guaranteed to
produce normalized output even if they are given normalized input. Another place where string
concatenation occurs implicitly is in forming the string value of an element with mixed content. The W3C
policy of early normalization means that this problem should be corrected as soon as possible. One way
of doing this is to call the normalize-unicode() function on the results of the string concatenation;
another is to do the normalization at the time the result of a transformation or query is serialized
(see the normaliation-form option of <xsl:output>, described in XSLT 2.0 Programmer’s
Reference).

The term fully-normalized refers to an additional normalization format defined by W3C (see
Character Model for the World Wide Web: Normalization, http://www.w3.org/TR/charmod-norm/). A
string is defined to be fully normalized if it is in NFC and if it doesn’t start with a combining character.
The significance of this is that if you concatenate two fully normalized strings the result is guaranteed to
be fully normalized as well. The specification isn’t very explicit about how you get a string into
fully-normalized form, but the idea is apparently that if it starts with a combining character, you add a
space in front of it.

See also
<xsl:output> in Chapter 5 of XSLT 2.0 Programmer’s Reference.

not
The not() function returns true if the effective boolean value of the argument is false, and vice versa.

For example, the expression «not(2+2=4)» returns false.

Changes in 2.0
This function has been generalized to accept a wider range of data types.

Signature

Argument Data type Meaning

value item()* The input value

Result xs:boolean true if the effective boolean value of the argument is false, otherwise
false

Effect
In effect, the argument is converted to a boolean using the rules of the boolean() function, and the
return value is then true if this is false, false if it is true.

The rules for determining the effective boolean value are described under the boolean() function on
page 304.

391

Chapter 10

Examples

Expression Result

not(*) true if the context node has no child elements

not(normalize-space(@a)) true if attribute @a is absent, is zero-length, or consists entirely of
whitespace

not(author="Kay") true if the context node does not have an author child element whose
typed value is "Kay"

Usage
Note that writing «not($A=2)» is not the same thing as writing «$A!=2». The difference arises when $A
is a sequence: «not($A=2)» will be true if $A does not contain an item that is equal to 2, while «$A!=2»
is true only if A does contain an item that is not equal to 2. For example, if $A is an empty sequence,
«not($A=2)» will be true, while «$A!=2» will be false.

It is easy to forget this when testing attribute values, for example, the following two examples behave the
same way if the attribute go is present (they output «go» if the value is anything other than «no»), but
they behave differently if the attribute is absent the second one outputs «go», but the first one outputs
nothing.

1: if (@go!=’no’) then "go" else ""
2: if (not(@go=’no’)) then "go" else ""

When used with sequences, the comparison operators such as «=» and «!=» are subject to an implicit if
there exists qualifier: «$X=$Y» is true if there exists an item x in $X and an item y in $Y such that x eq y. If
you want to achieve an if all qualifier, for example, if all nodes in $N have a size attribute equal to 0, then
you can achieve this by negating both the condition and the expression as a whole:
«not($N/@size!=0)». But it XPath 2.0, it is probably clearer to write this out explicitly:

if (every $s in $N/@size satisfies $s eq 0) . . .

XSLT Examples
The following test succeeds if the context node has no children:

<xsl:if test="not(node())">

The following test succeeds if the context node has no parent (that is, if it is a root node):

<xsl:if test="not(parent::node())">

The following <xsl:for-each> statement processes all the child elements of the context node except
the <notes> elements:

<xsl:for-each select="*[not(self::notes)]">

392

XPath Functions

The following test succeeds if the string-value of the context node is zero-length:

<xsl:if test="not(.)">

The following test succeeds if the name attribute of the context node is absent or is a zero-length string:

<xsl:if test="not(string(@name))">

The following test succeeds if the name attribute of the first node in node-set $ns is different from the
name attribute of each subsequent node in the node-set (we assume that this attribute is present on all
nodes in the node-set):

<xsl:if test="not($ns[1]/@name = $ns[position()!=1]/@name)">

See also
boolean() on page 304
false() on page 343
true() on page 439

number
The number() function converts its argument to a value of type xs:double.

For example, the expression «number(’ -17.3’)» returns the xs:double value –17.3e0.

Changes in 2.0
A leading «+» sign is allowed in the number, and exponential notation is permitted, to align the rules
with XML Schema.

Signature

Argument Data type Meaning

value
(optional)

item()? The value to be converted. If the argument is omitted, the
context item is used

Result xs:double A double-precision floating point number: the result of converting
the given value. If the argument cannot be converted to a
number, the function returns NaN (not-a-number)

Effect
The conversion rules used are the same as the rules for casting to an xs:double (and therefore, the same
as the xs:double() constructor function), with the exception that if the value is not convertible to a
number, the result is NaN (not-a-number) rather than an error.

If the value supplied is a node, then the node is first atomized in the usual way.

393

Chapter 10

The only atomic types that can be converted to a number are booleans, strings, and other numbers. The
conversion is as follows:

Supplied data type Conversion rules

xs:boolean false becomes zero; true becomes one

xs:string The rules are the same as the rules for
writing an xs:double value in XML
Schema

xs:integer, xs:decimal, xs:float The result is the same as converting the
value to a string, and then converting the
resulting string back to an xs:double

Examples
Expression Result

number(12.3) 12.3e0

number("12.3") 12.3e0

number(true()) 1.0e0

number("xyz") NaN

number("") NaN

Usage
In XPath 1.0, conversion to a number was generally implicit so it was rarely necessary to use the
number() function explicitly. This remains the case if XPath 1.0 backward compatibility mode is used.
When this mode is not enabled, however, type errors will be reported when strings or booleans are
supplied in contexts where a number is expected, for example as operands to numeric operators such as
«+». You still get implicit conversion when you supply an untyped node as the operand (for example,
«@code + 1» is okay), but not when the value is explicitly typed. For example, if the date-of-birth
attribute is an untyped string in the format of an ISO 8601 date, the following is an error under XPath 2.0
rules:

substring(@date-of-birth, 1, 4) < 1970

This is because substring() returns a string, and you cannot compare a string to a number. Instead,
write:

number(substring(@date-of-birth, 1, 4)) < 1970

There is one important situation where conversion needs to be explicit: this is in a predicate. The
meaning of a predicate depends on the data type of the value, in particular, a numeric predicate is
interpreted as a comparison with the context position. If the value is not numeric, it is converted to a
boolean.

394

XPath Functions

So for example, if a value held in an attribute or in a temporary tree is to be used as a numeric predicate,
you should convert it explicitly to a number, thus:

$sales-figures[number(@month)]

To test whether a value (for example, in an attribute) is numeric, use number() to convert it to a number
and test the result against NaN (not-a-number). The most direct way to do this is:

if (string(number(@value))=’NaN’) then ...

Alternatively, use the «castable as» operator described in on page 262 in Chapter 9.

See also
boolean() on page 304
string() on page 416
cast expression in Chapter 9 on page 262

one-or-more
The one-or-more() function returns its argument unchanged, provided that it is a sequence containing
one or more items. If the input is an empty sequence, it reports an error.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

value item()* The input value. Although the function signature says that
any sequence of items is allowed, a runtime error will occur
if the number of items is zero

Result item() The same as the supplied value, after checking to ensure that it is
not an empty sequence

Effect
The one-or-more() function returns its argument unchanged, provided that it is a sequence containing
at least one item. If an empty sequence is supplied, it reports an error.

This function is useful with XPath processors that perform static type-checking, as described in
Chapter 3. Calling this function acts as a promise by the programmer that the argument will be a
sequence containing at least one item. This allows the expression to be used in contexts that require a
single value (for example, a call to a function that has a parameter with the required type «item()+»)
when the processor might otherwise have reported a static type error. The XPath expression is still
type-safe, because the check that the sequence does indeed contain at least one item will be done at
runtime, just as it would with a processor that does not enforce static type checking.

395

Chapter 10

Examples

Expression Result

one-or-more(1) 1

one-or-more((1,2,3)) 1,2,3

one-or-more(()) Error

Usage
As it happens, functions in the core library do not generally have a required type such as «item()+»,
even in cases like min(), max() and avg() where there is no meaningful result that can be returned for
an empty sequence. This is because the designers decided that rather than reporting an error for these
functions when the argument is an empty sequence, it made more sense to return an empty sequence as
the result. However, if you do want to make a runtime check that a sequence is not empty before calling a
function such as avg(), then calling one-or-more() is a simple way to do the check.

See also
exactly-one() on page 339
zero-or-one() on page 444
«treat as» expression on page 288 in Chapter 9.

position
The position() function returns the value of the context position. When processing a list of items,
position() gives the number assigned to the current item in the list, with the first item being
numbered as 1.

Changes in 2.0
None.

Signature
This function takes no arguments.

Data type Meaning

Result xs:integer A number, the value of the context position. As the name implies, this is
context-dependent

Effect
The XPath specification defines the value of the position() function in terms of the context
position.

396

XPath Functions

The context position is part of the focus, which is described in the spec as having three components: the
context item, the context position, and the context size. However, it may be easier to think of the focus as
being a bit like an Iterator object in a language such as Java. Behind the iterator is a list of items that
are processed individually (though not necessarily in any particular order). The context item, position,
and size can be thought of as three methods provided by this iterator object: the context position is a
number that ranges from 1 to the size of the list, the context item is the item found at the context position,
and the context size is the number of items in the list.

When a top-level XPath expression is evaluated (that is, an XPath expression that is not part of another
expression), the context position is set by the host language. In XSLT, it is set from the XSLT context. For
example:

❑ When a global <xsl:variable> declaration is being evaluated, or in certain other contexts such
as evaluating the use expression in <xsl:key>, or evaluating the initial template that matches
the root node, it is normally set to 1 (one).

❑ When <xsl:apply-templates> or <xsl:for-each> is called to process a sequence of nodes,
the nodes are numbered 1 to N in their sorted order, and while each node is being processed the
context position is the number assigned to that node. (There is no implication that node 1 is
processed before node 2, incidentally.)

This means that within an <xsl:for-each> iteration, the test <xsl:if test="position()
=last()"> succeeds when the last item in the sequence is being processed.

Many APIs that enable XPath expressions to be executed from languages like Java or JavaScript allow the
caller to set the context item, but not the context position or size. In such cases, the context position and
size on entry to the XPath expression will both be one.

Within an XPath expression, the context size changes within a predicate and on the right-hand-side of the
«/» operator.

❑ In a predicate, position() refers to the position of the item that is being filtered using the
predicate within the sequence of items being filtered. For example, «$seq[position()!=1]»
selects all items except the first in a sequence, because the first item is the only one for which the
predicate is false.

❑ It’s less common to find position() being used on the right-hand-side of a «/» operator. It
refers to the position of the context item in the sequence selected by the left-hand operand of the
«/». For example, you could write «./(para, subsequence($notes, position(), 1))»
to select the <para> element children of the context node, with each <para> pulling in the item
at the corresponding position in the $notes sequence. (But the final results will be sorted in
document order.)

Remember that the focus is not changed within a «for» expression. If you need to know within the body
of a «for» expression what the position of the item being processed is, you need to rewrite it. Instead of
doing:

for $s in $sequence
return EXPR

397

Chapter 10

write:

for $i in 1 to count($sequence),
$s in $sequence[$i]

return EXPR

You can then use $i within EXPR to refer to the position of $s within the sequence.

Usage in XSLT
The position() function is often used as a complete XPath expression within an XSLT stylesheet. The
function has particular significance in XSLT because it gives the position of the item currently being
processed by an <xsl:for-each> instruction (as well as other instructions such as
<xsl:apply-templates> and <xsl:for-each-group>). The two main uses of the
position() function in XSLT are to display the current position, and to test the current position.

Displaying the Current Position
In this role the position() function can be used for simple numbering of paragraphs, sections, or
figures.

In XSLT this provides an alternative to the use of <xsl:number>. There is much less flexibility to control
how the numbering is done than when using <xsl:number>, but the position() function has two
important advantages:

❑ It is generally faster.

❑ It numbers items in the order they are output, whereas <xsl:number> can only allocate a
number based on the position of a node in the source document. This means <xsl:number> is of
little use when a list has been sorted using <xsl:sort>.

If you use position(), you can still exploit the formatting capabilities of <xsl:number> by writing,
for example:

<xsl:number value="position()" format="(a)"/>

This determines the position of the node and formats the result according to the given format pattern; the
resulting sequence will be «(a)», «(b)», «(c)», and so on.

Testing the Current Position
It is possible to test the position of the current item either in a boolean expression in an <xsl:if> or
<xsl:when> element, or in a predicate within a filter expression or pattern.

A common requirement is to treat the first or last item in a list differently from the rest. For example, to
insert a horizontal rule after every item except the last, the following logic might be used:

<xsl:for-each select="item">
<xsl:sort select="@name"/>

<p><xsl:value-of select="@name"/>:
<xsl:value-of select="description"/></p>

<xsl:if test="position() != last()">
<hr/>

</xsl:if>
</xsl:for-each>

398

XPath Functions

Within a predicate in an expression or pattern, a numeric value represents an implicit test against the
result of position(), for example, «item[1]» is equivalent to «item[position()=1]», and
«item[last()]» is equivalent to «item[position()=last()]».

You can only use this shorthand in a predicate; that is, within square brackets. If you
use a numeric value in other contexts where a Boolean is expected, the number is
converted to a boolean on the basis that 0 is false; everything else is true. So
<xsl:if test="1"> does not mean <xsl:if test="position()=1">; it means
the same as <xsl:if test="true()">.

See also
last() on page 359
<xsl:number> in Chapter 5 of XSLT 2.0 Programmer’s Reference

remove
The remove() function returns a sequence that contains all the items in an input sequence except the one
at a specified position.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

sequence item()* The input sequence

position xs:integer The position of the item to be removed

Result item()* A sequence containing all the items in the input sequence except the item
at the specified position

Effect
The effect is the same as the expression:

$sequence[position() ne $position]

This means that if the position parameter is less than one or greater than the number of items in the
input sequence, the input sequence is returned unchanged.

399

Chapter 10

Examples

Expression Result

remove((1 to 5), 4) 1, 2, 3, 5

remove((1 to 5), 10) 1, 2, 3, 4, 5

remove((), 1) ()

Usage
A common requirement, especially in recursive functions, is to get the tail of a sequence, that is, all items
except the first. There are several ways of doing this in XPath 2.0, all equivalent. Take your pick:

❑ $sequence[position() ne 1]

❑ subsequence($sequence, 2)

❑ remove($sequence, 1)

See also
insert-before() on page 356
subsequence() on page 422

replace
The replace() function constructs an output string from an input string by replacing all occurrences of
substrings that match a supplied regular expression with a given replacement string. The replacement
string may include references to captured groups within the input string.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

input xs:string? The input string. If an empty sequence is supplied, an empty
sequence is returned

regex xs:string The regular expression, written according to the rules given
in Chapter 11

replacement xs:string The replacement string

400

XPath Functions

Argument Data type Meaning

flags (optional) xs:string One or more letters indicating options on how the matching
is to be performed. If this argument is omitted, the effect is
the same as supplying a zero-length string, which defaults
all the option settings

Result xs:string? The string produced by replacing substrings of the input string
that match the regular expression

Effect
The rules for the syntax of regular expressions are given in Chapter 11, and the rules for the flags
attribute under the entry for the matches() function on page 368.

The input string is processed from left to right, looking for substrings that match the regular expression
supplied in the regex argument. Characters that don’t participate in a match are copied unchanged to the
output string. When a substring is found that does match the regex, the substring is not copied to the
output, but the replacement string is copied instead. The search then resumes at the character position
following the matched substring. For example, the result of «replace("banana", "a", "A")» is
«bAnAnA».

It can happen that two substrings starting at the same position both match the regex. There are two ways
this situation can arise.

Firstly, it happens when part of the regex is looking for repeated occurrences of a substring. For example,
if the regex is «(an)*a» then immediately after the «b» of «banana», there are three possible matches,
the matched substrings being «a», «ana», and «anana». The rule here is that «*» is a greedy quantifier: it
matches as long a substring as it can. So the result of the expression «replace("banana", "(an)*a",
"#")» is «b#». If you want to match the shortest possible substring, add a «?» after the quantifier to
make it non-greedy: «replace("banana", "(an)+?a", "#")» is «b#na». Note that the final three
characters of «banana» don’t result in a replacement, because two matches never overlap: the middle «a»
cannot participate in two different matching substrings.

Another situation that can cause two different substrings to match at the same position is where the regex
contains two alternatives that both match. For example, the regex «a|ana» could match the second
character of «banana», or it could match characters 2 to 4. The rule here is that the first (leftmost)
alternative wins. So the result of «replace("banana", "a|ana", "#")» is «b#n#n#», whereas the
result of «replace("banana", "ana|a", "#")» is «b#n#».

The replacement string supplied in the replace argument can contain the variables «$1» to «$9» to
refer to parts of the input string that were matched by parts of the regular expression. If you want to
include a «$» sign in the replacement string, you must write it as «\$», and if you want to include a «\»
character, you must write it as «\\». (These rules might seem bizarre. But it was done this way for
compatibility with other languages, and to allow other features to be added in the future.)

The variable $N refers to the substring of the input that was matched by the Nth parenthesized
sub-expression of the regex. You can find out which the Nth subexpression is by simply counting «(»

401

Chapter 10

characters from the first character of the regex. For example, in the regex «([0-9]+)([A-Z]+)
([0-9]+)», $1 refers to the digits at the start of the string, $2 to the group of letters in the middle, and
$3 to the digits at the end. So if you want to insert a hyphen between the groups of letters and digits, you
can write:

replace($input, "ˆ([0-9]+)([A-Z]+)([0-9]+)$", "$1-$2-$3")

If you run this with the input string «23MAR2004», the result will be «23-MAR-2004». (Note the use of
an anchored regex here to match and replace the entire string.)

If the replacement string contains a variable that hasn’t been matched, perhaps because the relevant
parenthesized subexpression was in a branch that wasn’t used, then a zero-length string is substituted for
the variable. If the subexpression was matched more than once, then it’s the last one that is used.

If the regex does not match the input string, the replace() function will return the input string
unchanged. If this is not the effect you are looking for, use the matches() function first to see if there is a
match.

If the regex is one that matches a zero-length string, that is, if «matches("", $regex)» is true, the
system reports an error. An example of such a regex is «a*». Although various interpretations of such a
construct are possible, the Working Group decided that the results were too confusing and decided not to
allow it.

Examples

Expression Result

replace("banana", "a", "o") bonono

replace("banana", "(ana|na)", "[$1]") b[ana][na]

replace("banana", "(an)+", "**") b**a

replace("banana", "(an)+?", "**") b****a

Usage
The replace() function provides a much-needed string replacement capability for XPath. In XPath 1.0
it was possible to do simple one-for-one character replacement using the translate() function, but
anything more complex required the use of cumbersome recursive templates in XSLT.

One limitation of the replace() function, however, is that the result is always a string: this function
cannot be used directly for so-called up-conversion applications where the aim is to generate markup
within the string (a typical example of such a conversion is the requirement to replace newlines in a
string by empty
 elements). For such applications, the XSLT <xsl:analyze-string> instruction
is more powerful. In a non-XSLT application, an alternative might be to use tokenize() to split the
string into a sequence of substrings, leaving the calling application to insert the element tags at the
boundaries.

402

XPath Functions

See also
<xsl:analyze-string> in XSLT 2.0 Programmer’s Reference, Chapter 5.

matches() on page 368
tokenize() on page 434
translate() on page 437

resolve-QName
The resolve-QName() function returns a value of type xs:QName (that is, an expanded QName
consisting of a namespace URI and a local name), taking as input a lexical QName (a string in the form
«prefix:local-name» or simply «local-name»), by resolving the prefix used in the lexical QName
against the in-scope namespaces of a given element node.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

lexical-qname xs:string? The lexical QName whose prefix is to be resolved. It must
conform to the syntax of a QName as defined in the XML
Namespaces specification (which is the same as the lexical
space for an xs:QName defined in XML Schema)

element element() An element node whose in-scope namespaces are to be used
to resolve the namespace prefix used in the lexical QName

Result xs:QName? The expanded xs:QName, containing the namespace URI
corresponding to the prefix supplied in the lexical QName

Effect
If the first argument is an empty sequence, the function returns an empty sequence.

The local-name part of the resulting xs:QName value will always be the same as the local-name part of the
supplied lexical QName: that is, the part after the colon, if there is a colon, or the whole string otherwise.

If the lexical QName has no prefix, then the system looks for an unnamed namespace node of the given
element (representing the default namespace for that element). If it finds one, then the namespace URI
component of the result is taken from the string value of this namespace node. If there is no unnamed
namespace node, then the namespace URI component of the resulting xs:QName value will be null.

If the lexical QName does have a prefix, then the system looks for a namespace node of the given element
whose name matches this prefix. If it finds one, then the namespace URI component of the result is taken
from the string value of this namespace node. If there is no matching namespace node, then the function
reports an error.

403

Chapter 10

Examples
Consider the source document:

<doc xmlns:one="one.uri" xmlns="default.uri">
<chap xmlns="" att-one="text">
<data-one>one:value</data-one>
<data-two>value</data-two>

</chap>
</doc>

And suppose that the following variables are bound:

$chap /doc/chap
$data1 /doc/chap/data-one
$data2 /doc/chap/data-two

Expression Result

resolve-QName($chap/@att-one, $chap) {default.uri}text

resolve-QName(string($data1), $data1) {one.uri}value

resolve-QName(string($data2), $data2) {}value

In these examples I have shown the resulting URI in Clark notation, named after James Clark, the lead
designer of XSLT 1.0 and XPath 1.0. This notation represents an expanded QName in the form
«{namespace-uri}local-name».

Note that all these examples resolve a lexical QName found in the content of the document against the
element node that contains the value. This is the normal and probably the only sensible way to use this
function, since the prefix of a QName only has meaning in the context of the element where it is used.

Usage
The purpose of this function, as the examples show, is to resolve QName values found in the content of
elements or attributes within a document.

It’s never necessary to use this function to resolve QNames used as element and attribute names, because
the system does that for you.

It’s also unnecessary to use this function if you have a schema-aware processor, and a schema that
declares the relevant elements and attributes as having type xs:QName. In this case the schema processor
will do the work for you, and you can access the expanded QName as the typed value of the element or
attribute, using the data() function.

The function is needed when you have lexical QNames in the document content and they aren’t declared
as such in the schema. This can happen for a number of reasons:

❑ You are using a processor that isn’t schema-aware, or a source document for which no schema has
been written.

404

XPath Functions

❑ The lexical QName doesn’t make up the whole of the element or attribute value, for example, it
might be buried inside an XPath expression.

❑ The value of the attribute isn’t always a QName (an example is the default attribute of the
<xs:element> element in XML Schema itself, whose type depends on the type of the element
being defined).

❑ You don’t want to use the rules that XML Schema uses for handling the default namespace (an
example is the name attribute of the <xsl:variable> element in XSLT, where an unprefixed
name uses the null namespace rather than the default namespace).

Let’s look at this last example more closely. If your source documents are XSLT stylesheets (it is actually
quite common to process stylesheets using XSLT) then there are many lexical QNames used within the
content of the document (for example, in the name attribute of templates, keys, and functions, the mode
attribute of <xsl:apply-templates>, and myriad other places. These aren’t declared as xs:QName
values in the schema for XSLT, however. The reason is subtle: although an XML Schema would do the
correct validation if these attributes had type xs:QName, it would not do the conversion from the lexical
space to the value space correctly. This is because XSLT specifies that when there is no prefix, these names
are in the null namespace, regardless of any default namespace declaration, while XML Schema when it
processes xs:QName values decides that the absence of a prefix implies use of the default namespace (if
you want to find this rule, look in the second edition of XML Schema Part 2, or in the errata to the first
edition).

This means that you can only use this function for names found in XSLT stylesheets if you handle the
unprefixed case yourself. Fortunately, this is easy enough:

if (contains(@name, ’:’))
then resolve-QName(@name, .)
else expanded-QName("", @name)

Rather surprisingly, it’s also possible to come across QNames that aren’t declared as such when you run
XPath expressions against an XML Schema document. This is because values of any data type can appear
in places such as the xs:enumeration facet of a simple type, or the default attribute of an element or
attribute declaration. Because these constructs might contain values of any data type, their declared type
in the schema for schemas is simply xs:string. The only way you can work out that one of these
strings needs to be treated as a QName is by rather complex analysis of the schema.

See also
expanded-QName() on page 342
in-scope-prefixes() on page 354

resolve-uri
The resolve-uri() function converts a relative URI into an absolute URI by resolving it against a
specified base URI.

Changes in 2.0
This function is new in XPath 2.0.

405

Chapter 10

Signature

Argument Data type Meaning

relative xs:string The URI to be resolved. If this is an absolute URI, it is
returned unchanged; otherwise, it is resolved against the
specified base URI

base-uri (optional) xs:string The base URI against which the relative URI is to be
resolved. If this argument is omitted, the base URI from the
static context is used. This must be an absolute URI

Result xs:string The resulting absolute URI

Effect
The process of URI resolution takes a relative URI such as «details.html» and resolves it against an
absolute URI such as «http://example.com/index.html» to produce an absolute URI such as
«http://example.com/details.html». Note that this process is done purely by analyzing the two
character strings, it doesn’t require any access to the network to find out whether these files actually exist.
This means that it is quite legitimate to apply the operation to things like collation URIs that don’t
necessarily represent real resources on the Web.

The actual algorithm for URI resolution is described in section 5.2 of Internet RFC 2396
(http://www.ietf.org/rfc/rfc2396.txt). In essence, the relative URI is appended after the last
«/» in the path component of the base URI, and some tidying-up is then done to remove redundant
«/./» and «/../» components.

The rules in the RFC allow the base URI to be itself a relative URI, in which case the result will also be a
relative URI. The resolve-uri() function, however, does not allow this; it requires the base URI to be
absolute. The RFC is fairly permissive in defining how implementations should handle edge cases, or
cases that are strictly speaking invalid, and it’s likely that different implementations of the
resolve-uri() function will also show some variability in these situations.

If the second argument of resolve-uri() is omitted, the effect is the same as using the function call
«resolve-uri($relative, base-uri())»: this means that the base URI is taken from the static
context of the XPath expression. The way this is set up is (as the name implies) very context-dependent.

❑ In the case of XPath expressions within an XSLT stylesheet the base URI is reasonably
well-defined: the base URI of the stylesheet module is used, unless the stylesheet contains
xml:base attributes, or is split into multiple XML external entities. But the base URI of the
stylesheet module may be unknown, for example, if the XSLT code was read from a string
constructed in memory rather than from a file.

❑ In the case of XPath expressions constructed programmatically, for example, by a Java or
JavaScript application, all bets are off. Your XPath API may provide a way of setting the base URI,
but it’s more likely in my experience that it won’t. In this situation relative URIs are rather
meaningless, and it’s best to avoid them.

406

XPath Functions

Examples
Most of these examples are taken from Appendix C of RFC 2396, and assume a base URI of
«http://a/b/c/d;p?q». The RFC includes other more complex examples that are worth consulting.

Expression Result

resolve-uri("g") http://a/b/c/g

resolve-uri("./g") http://a/b/c/g

resolve-uri("g/") http://a/b/c/g/

resolve-uri("/g") http://a/g

resolve-uri("?y") http://a/b/c/?y

resolve-uri("g?y") http://a/b/c/g?y

resolve-uri("") http://a/b/c/d (but see Note)

resolve-uri("#s") http://a/b/c/d#s (but see Note)

resolve-uri("../g") http://a/b/g

The RFC is rather coy in its description of how a relative URI of ”” (the zero-length string) is supposed to
behave. For a start, its BNF rules don’t actually allow ”” as a relative URI, though the accompanying text
makes it clear that it has a meaning. But where it discusses zero-length relative URIs, it always speaks of
resolving them relative to “the current document”rather than relative to the base URI. It doesn’t actually
define the term “current document”, but I think it is trying to make a careful distinction that makes sense
in a browser, but not elsewhere. Certainly in XPath and XSLT, there is no concept of a current document as
something distinct from the base URI, and the only sensible way to interpret a zero-length relative URI is
as a reference to the base URI itself, which is what I have done in the examples above. The only exception to
this might arise when the XSLT or XPath processor is running client-side, in the browser.

Usage
The most likely place you will need to use the resolve-uri() function is in conjunction with the
doc() function, described on page 329. By default, a relative URI passed to the doc() function is
resolved relative to the base URI from the static context of the XPath expression. If the relative URI was
read from a source document, it makes much more sense to resolve it against the base URI of the node
that contained it. The code usually looks something like this:

doc(resolve-uri(@href, base-uri(.)))

See also
base-uri() on page 302
doc() on page 329
escape-uri() on page 337

407

Chapter 10

reverse
The reverse() function returns a sequence in reverse order. For example, «reverse(1 to 5)»
returns the sequence «5, 4, 3, 2, 1».

Changes in 2.0
This function is new in XPath 2.0.

Signature
Argument Data type Meaning

sequence item()* The input sequence

Result item()* A sequence containing the same items as the input sequence, but in
reverse order

Effect
The result of the function contains exactly the same items as the input sequence, but the order is reversed.
The effect is the same as the expression:

for $i in 1 to count($sequence) return
$sequence[count($sequence) - $i + 1]

Examples
Expression Result

reverse(1 to 5) 5, 4, 3, 2, 1

reverse(1) 1

reverse(()) ()

reverse(ancestor::*) A list of ancestor elements, in reverse document order (that is,
innermost first)

See also
unordered() on page 440

root
The root() function returns the root node of the tree containing a specified start node, or the root of the
tree containing the context node.

Changes in 2.0
This function is new in XPath 2.0.

408

XPath Functions

Signature
Argument Data type Meaning

start-node (optional) node()? A node in the tree whose root is required. If the argument
is omitted, it defaults to the context node. It is then an
error if the context item is not a node (for example, if it is
an atomic value, or if it is undefined)

Result node()? The root of the tree containing the start node

Effect
If the start-node argument is supplied and its value is an empty sequence, then the result of the
function is an empty sequence.

In other cases, the function returns the root node of the tree containing the start-node. The result is the
same as the path expression «(ancestor-or-self::node())[1]». This node is not necessarily a
document node, since it is possible in the XPath 2.0 data model to have elements or other nodes that are
parentless. The system follows the parent axis until it finds a node that has no parent, and then it returns
that node. If the start node has no parent, then the start node itself is returned as the result of the function.

Examples
Expression Result

root() The root node of the tree containing the context node

root($x) The root node of the tree containing the node $x

$seq/root() A sequence containing the root nodes of all the trees containing nodes in
$seq, in document order with duplicates removed

Usage
The effect of the root() function, when called with no argument, is very similar to the effect of the
expression «/». However, «/» will return the root node of the tree containing the context node only if the
root is a document node; in other cases, it reports a runtime error.

See also
The Root Expression «/» on page 205 in Chapter 7.

round
The round() function returns the closest integer to the numeric value of the argument, as an instance of
the same data type as the argument

For example, the expression «round(4.6)» returns the xs:decimal value 5.0.

409

Chapter 10

Changes in 2.0
The function has been generalized to accept arguments of any numeric type.

Signature

Argument Data type Meaning

value Numeric? The input value. If an empty sequence is supplied, an empty
sequence is returned

Result Numeric? The result of rounding the first argument to the nearest integer, but
expressed as a value of the same data type as the input value

Effect
The XPath specification is very precise about the results of round(). The rules are given in the tables
below. The first table applies regardless of the data type:

If the argument is. . . Then the result is. . .

Equal to an integer N N

Between N and N + 0.5 N

Exactly N + 0.5 N + 1

Between N + 0.5 and N + 1 N + 1

Note that this rounds +3.5 to +4.0, but -3.5 to -3.0.

For values of type xs:float and xs:double, there are additional rules to cover the special IEEE values.
The concepts of positive and negative zero, positive and negative infinity, and NaN are explained in the
section on the xs:double data type in Chapter 3, page 83.

If the argument is. . . Then the result is. . .

Between –0.5 and zero Negative zero

Positive zero Positive zero

Negative zero Negative zero

Positive infinity Positive infinity

Negative infinity Negative infinity

NaN (not-a-number) NaN

410

XPath Functions

Examples

Expression Result

round(3.2) 3.2

round(4.6e0) 5.0e0

round(7.5) 8.0

round(-7.5) -7.0

round(-0.0e0) -0.0e0

Usage
The round() function is useful when you want the nearest integer, for example, when calculating an
average, or when deciding the geometric coordinates for an object to be displayed. If you want to convert
the result to a value of type xs:integer, use the xs:integer() constructor function, or the construct
«round($x) idiv 1».

See also
ceiling() on page 306
floor() on page 344
round-half-to-even() in the next entry
«idiv» operator on page 173 in Chapter 6

round-half-to-even
The round-half-to-even() function performs rounding to a specified number of decimal places. The
rounding algorithm used is to round to the nearest value that has the required precision, choosing an
even value if two values are equally close.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

input Numeric? The number to be rounded. If an empty sequence is
supplied, an empty sequence is returned

precision (optional) xs:integer If positive, the number of significant digits required after
the decimal point. If negative, the number of zeroes
required at the end of the integer part of the result. The
default is zero

Result Numeric? The rounded number. This will have the same data type as the
supplied number

411

Chapter 10

Effect
The precision argument indicates the number of decimal digits required after the decimal point. More
generally, the function rounds the supplied number to a multiple of 10−p where p is the requested
precision. So if the requested precision is 2, the value is rounded to a multiple of 0.01; if it is zero, the
value is rounded to a multiple of 1 (in other words, to an integer), and if it is –2, the value is rounded to a
multiple of 100.

If the precision argument is not supplied, the effect is the same as supplying the value zero, which means
the value is rounded to an integer.

The value is rounded up or down to whichever value is closest: for example, if the required precision is 2,
then 0.123 is rounded to 0.12 and 0.567 is rounded to 0.57. If two values are equally close then the
round-to-even rule comes into play: 0.125 is rounded to 0.12, while 0.875 is rounded to 0.88.

This function is designed primarily for rounding of xs:decimal values, but it is also available for other
numeric types. For xs:integer, the behavior is exactly the same as if the value were an xs:decimal
(which, in fact, it is). For xs:double and xs:float it may be less obvious that this works. The
specification states that the floating-point value should first be adjusted so that it has an exponent of zero
(for example, 1.5e-3 is rewritten as 0.0015e0) and the rounding is then applied to the mantissa as if it were
a decimal number. This works well for most numbers in a reasonable range, though there may be
rounding errors when you use it with numbers that are extremely small or extremely large.

Examples

Expression Result

round-half-to-even(1.1742, 2) 1.17

round-half-to-even(1.175, 2) 1.18

round-half-to-even(2.5, 0) 2.0

round-half-to-even(273, -1) 270

round-half-to-even(-8500, -3) -8000

Usage
Most of us were probably taught at school that when numbers are rounded, 0.5 should be rounded
upwards. Professional accountants and statisticians, however, often prefer the “half-to-even” rule
because it avoids creating bias: it means that on average, the total of a large set of numbers will remain
roughly the same when all the numbers are rounded.

This function is useful when you want to display the results of a numerical calculation to a certain
number of decimal places. Floating point arithmetic often produces rounding errors because decimal
values cannot be represented exactly in binary: for example, the result of «0.3e0 div 3» is
«0.09999999999999999» rather than «0.1». Rounding the result say to six decimal places by writing
«round-half-to-even(0.3e0 div 3,6)» corrects this error, and produces the result «0.1».

412

XPath Functions

In XSLT, you can also achieve this rounding by using the format-number() function, described in
Chapter 7 of XSLT 2.0 Programmer’s Reference.

See also
ceiling() on page 306
floor() on page 344
round() on page 409

seconds-from-dateTime, seconds-from-time
The two functions seconds-from-dateTime() and seconds-from-time() extract the seconds
component (including fractional seconds) from an xs:dateTime or xs:time value.

Changes in 2.0
These functions are new in XPath 2.0.

Signature
Argument Data type Meaning

input xs:time? or
xs:dateTime?

The value from which the seconds component is to be extracted.
The data type of the supplied argument must correspond to the
data type implied by the function name. If an empty sequence is
supplied, an empty sequence is returned

Result xs:decimal? The seconds component, normally in the range 0 to
59.999. . .Exceptionally, a value greater than 60 can be returned because
some days include a leap second to compensate for variations in the
earth’s rotation

Effect
The function returns the seconds component of the supplied xs:time or xs:dateTime. The value is
from the time as expressed in its local timezone (not normalized to UTC).

Examples
Expression Result

seconds-from-time(xs:time("12:35:03.142")) 3.142

seconds-from-dateTime(xs:dateTime 30.0
("2004-02-28T13:55:30-01:00"))

See also
current-date(), -dateTime(), -time() on page 318.
format-date(), -dateTime(), -time() in Chapter 7 of XSLT 2.0 Programmer’s Reference.

413

Chapter 10

hours-from-dateTime(), -time() on page 345
minutes-from-dateTime(), -time() on page 372
timezone-from-dateTime(), -time() on page 433

seconds-from-dayTimeDuration
This function extracts the value of the seconds component (including fractional seconds) from a
normalized xdt:dayTimeDuration value.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

input xdt:dayTimeDuration? The value whose seconds component is to be
extracted. If an empty sequence is supplied, an
empty sequence is returned

Result xs:decimal? The seconds component, including any fractional
seconds

Effect
The function returns the seconds component of the supplied xdt:dayTimeDuration. The duration
value is first normalized so that the number of hours is less than 24, the number of minutes is less than 60,
and so on. The result will be negative if the duration is negative. The result is therefore a decimal number
in the range – 60.0 to +60.0, exclusive.

XPath processors are required to maintain duration values to a precision of three decimal places (one
millisecond). Some processors may maintain a finer precision than this, but it is optional.

Examples

Expression Result

seconds-from-duration(xdt:dayTimeDuration("PT1M30.5S")) 30.5

seconds-from-duration(xdt:dayTimeDuration("PT150S")) 30

seconds-from-duration(xdt:dayTimeDuration("-P0.0055S")) -0.0055

See also
days-from-dayTimeDuration on page 323
hours-from-dayTimeDuration on page 347
minutes-from-dayTimeDuration on page 374

414

XPath Functions

starts-with
The starts-with() function tests whether one string starts with another string.

For example, the expression «starts-with(’$17.30’, ’$’)» returns true.

Changes in 2.0
An optional collation argument has been added.

Signature

Argument Data type Meaning

input xs:string? The containing string

test xs:string? The test string

collation (optional) xs:string A collation URI

Result xs:boolean True if the containing string starts with the test string,
otherwise false

Effect
If there is no collation argument, then the system tests to see whether the first N characters of the
input string match the characters in the test string (where N is the length of the test string). If so, the
result is true; otherwise it is false. Characters match if they have the same Unicode value.

If the test string is empty, the result is always true. If the input string is empty, the result is true only
if the test string is also empty. If the test string is longer than the input, the result is always false.

If either the input or the test argument is an empty sequence, it is treated in the same way as a
zero-length string.

If a collation is specified, this collation is used to test whether the strings match. See the description of
the contains() function on page 314 for an account of how substring matching works with a collation.
If the collation argument is omitted, the function matches characters according to their Unicode
codepoint values.

Examples

Expression Result

starts-with(’#note’, ’#’) true

starts-with(’yes’, ’yes’) true

starts-with(’YES’, ’yes’) false

starts-with(’yes’, ’’) true

415

Chapter 10

Usage
For more sophisticated string matching, use the matches() function, which provides the ability to
match against a regular expression. However, the matches() function does not give the ability to use a
collation.

See also
contains() on page 314
ends-with() on page 334
matches() on page 368
string-length() on page 419

string
The string() function converts its argument to a string. When the argument is a node, it extracts the
string value of the node; when the argument is an atomic value, it converts the atomic value to a string in
a similar way to the xs:string() constructor function.

For example, the expression «string(4.00)» returns the string "4".

Changes in 2.0
The function has been generalized to take a wider range of data types as its input.

In XPath 1.0, when a sequence containing several nodes was supplied, the string() function returned
the string value of the first node, and ignored the rest. This behavior is retained in XPath 2.0 when
running in 1.0 backward compatibility mode; but in 2.0 mode, supplying more than one item in the
argument is an error.

Signature

Argument Data type Meaning

value (optional) item()? The value to be converted. If the argument is omitted, it
defaults to the context item

Result xs:string The result of converting the argument to a string

Effect
Values of most data types can be converted to a string.

If the function is called with no arguments, the effect is the same as supplying «.» (the context item) as
the first argument.

If the supplied value is an empty sequence, the result is a zero-length string. (Don’t confuse supplying an
argument whose value is «()» with not supplying an argument—the effect is different.)

If the supplied value is a single node, the result is the string value of that node. The string value of a node
is defined as follows:

416

XPath Functions

❑ For a document node or element node, the string value is the concatenation of all the descendant
text nodes.

❑ For an attribute, the string value is the attribute value.

❑ For a text node, the string value is the textual content.

❑ For a comment, the string value is the text of the comment.

❑ For a processing instruction, the string value is the data part of the processing instruction, that is,
the part after the name that forms the target of the processing instruction.

❑ For a namespace node, the string value is the namespace URI.

If the supplied value is a single atomic value the result is the same as the result of casting the atomic value
to a string. The casting rules are given in Chapter 9. There are two cases where casting is not well defined
in the current specifications, namely when the value is an xs:QName or an xs:NOTATION. In these two
cases there is not enough information available to construct a lexical representation of the value, because
there is no context information available to provide a namespace prefix.

Note that taking the string value of a node is not the same as taking the typed value and converting it to
a string. For example, the typed value might be a sequence of integers, but no conversion is defined from
a sequence of integers to a string. In some cases a node has no typed value, notably in the case where the
schema defines it as having element-only content (as distinct from mixed or empty content). Such an element
has no typed value, but it still has a string value that is the concatenation of the desendant text nodes.

The type signature does not allow a sequence of more than one item to be supplied. However, if XPath 1.0
compatibility mode is enabled, any items in the sequence after the first are ignored.

Examples
Assume that the context node is the element:

<e example="yes"><first>17</first><second>blue</second></e>

Expression Result

string() "17blue"

string(first) "17"

string(second) "blue"

string(@example) "yes"

string(+47.20) "47.2"

string(2=2) "true"

string(*) In 1.0 mode: "17"In 2.0 mode: error

Usage
When converting atomic values to strings, there isn’t really anything to choose between using the
string() function and using the xs:string() constructor function.

417

Chapter 10

When the argument is a node, the two functions behave differently. The string() function extracts the
string value of the node, while xs:string() extracts the typed value and converts it to a string. In the
absence of a schema, they do exactly the same thing. But with a schema, here are two cases where they
can give different results:

❑ Where the node has a list-valued simple type (for example, a list of integers), string() will give
the textual content of the node (a space-separated list of numbers), whereas xs:string() will
fail if the list contains more than one item, or is empty.

❑ Where the node is an element with an element-only content model, string() will give the
concatenation of the descendant text nodes of the element, while xs:string() will fail.

See also
boolean() on page 304
number() on page 393
Converting Atomic Values on page 262 in Chapter 9

string-join
The string-join() function returns a string constructed by concatenating all the strings in a supplied
sequence, with an optional separator between adjacent strings.

For example, «string-join(("a","b","c"), "|")» returns «a|b|c».

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

sequence xs:string* The supplied sequence of strings

separator xs:string The separator to be used between adjacent strings. If no
separator is required, supply a zero-length string for this
argument

Result xs:string The result of concatenating the supplied strings and inserting
separators

Effect
Each of the strings in the supplied sequence is appended to the result string, retaining the order in which
the strings appear in the sequence. Each string except the last is followed by the requested separator
string.

If the supplied sequence is empty, the result is always a zero-length string.

418

XPath Functions

Examples

Expression Result

string-join(("a", "b", "c"), ", ") a, b, c

string-join(("A", "B", "C"), "") ABC

string-join("Z", "+") Z

string-join((), "∼") ()

Usage
The expression:

string-join(for $a in ancestor-or-self::* return name($a), "/")

will return a path such as:

book/chapter/section/title

Note that there is no implicit conversion of the items in the sequence to strings, even in XPath 1.0
compatibility mode. If the items are not strings, you need to convert them explicitly. For example, given a
sequence of numbers, you can write:

string-join(for $i in $seq return string($i), ", ")

The string-join() function is often a handy alternative to concat(), because you can in effect give it
a sequence of sequences to output. For example:

string-join(("debits:", $debits, "credits:", $credits), " ")

might produce the string:

debits: 23.40 18.50 67.00 credits: 17.00 5.00 4.32

See also
concat()on page 312

string-length
The string-length() function returns the number of characters in a string value.

For example, the expression «string-length(’Beethoven’)» returns 9.

Changes in 2.0
None.

419

Chapter 10

Signature
Argument Data type Meaning

value (optional) xs:string? The string whose length is required.

If the argument is omitted, the string-value of the context item is
used. If the argument is an empty sequence, the result of the
function is 0 (zero)

Result xs:integer A number: the number of characters in the value of the argument

Effect
Characters are counted as instances of the XML Char production. This means that a Unicode surrogate
pair (a pair of 16-bit values used to represent a Unicode character in the range #x10000 to #x10FFFF) is
treated as a single character.

It is the number of characters in the string that matters, not the way they are written in the source
document. A character written using a character reference such as «ÿ» or an entity reference such
as «&» is still one character.

Unicode combining and non-spacing characters are counted individually, unless the implementation has
normalized them. The implementation is allowed to turn strings into normalized form, but is not
required to do so. In normalized form, accents and diacriticals will typically be merged with the letter
that they modify into a single character. To assure yourself of consistent answers in such cases, the
normalize-unicode() function should be called to force the string into normalized form.

Examples
These examples assume that the XPath expression is used in a host language that expands XML entity
references and numeric character references, for example, XSLT or XQuery.

Expression Result

string-length("abc") 3

string-length("<>") 2

string-length("""") 1

string-length("") 0

string-length(’�’) 1

string-length(’𠀀’) 1

Usage
The string-length() function can be useful when deciding how to allocate space on the output
medium. For example, if a list is displayed in multiple columns then the number of columns may be
determined by some algorithm based on the maximum length of the strings to be displayed.

420

XPath Functions

It is not necessary to call string-length() to determine whether a string is zero-length, because
converting the string to an xs:boolean, either explicitly using the boolean() function, or implicitly by
using it in a boolean context, returns true only if the string has a length of one or more. For the same
reason, it is not usually necessary to call string-length() when processing the characters in a string
using a recursive iteration, since the terminating condition when the string is empty can be tested by
converting it to a boolean.

See also
normalize-unicode() on page 388
substring() on page 423.

string-to-codepoints
The string-to-codepoints() function returns a sequence of integers representing the Unicode
codepoints of the characters in a string.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

input xs:string? The input string

Result xs:integer* The codepoints of the characters in the input string

Effect
If an empty sequence or a zero-length string is supplied as the input, the result is an empty sequence.

In other cases, the result contains a sequence of integers, one for each character in the input string.
Characters here are as defined in Unicode and XML: a character above xFFFF that is represented as a
surrogate pair counts as one character, not two. The integers that are returned will therefore be in the
range 1 to x10FFFF (decimal 1114111).

Examples

Expression Result

string-to-codepoints("ASCII") 65, 83, 67, 73, 73

string-to-codepoints("𘚠") 100000

string-to-codepoints("") ()

See also
codepoints-to-string() on page 308

421

Chapter 10

subsequence
The subsequence() function returns part of an input sequence, identified by the start position and
length of the sub-sequence required.

For example the expression «subsequence(("a", "b", "c", "d"), 2, 2)» returns «("b",
"c")».

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

sequence item()* The input sequence

start xs:double The position of the first item to be included in the result

length
(optional)

xs:double The number of items to be included in the result. If this
argument is omitted, all items after the start position are
included

Result xs:string The sequence of items starting at the start position

Effect
The two-argument version of the function is equivalent to:

$sequence[position() >= round($start)]

The three-argument version is equivalent to:

$sequence[position() >= round($start)
and position() < (round($start) + round($length))]

A consequence of these rules is that there is no error if the start or length arguments are out of range.
Another consequence is that if the start or length arguments are NaN, the result is an empty sequence.

The arguments are defined with type xs:double for symmetry with the substring() function, which
itself uses xs:double arguments for backward compatibility with XPath 1.0, which did not support any
numeric type other than double. If you supply an integer, it will automatically be converted to a double.
The fact that they are doubles rather than integers is occasionally convenient because the result of a
calculation involving untyped values is a double. For example:

subsequence($seq, 1, @limit + 1)

works even when the limit attribute is untyped, in which case the value of «@limit + 1» is an
xs:double.

422

XPath Functions

Examples
Expression Result

subsequence(3 to 10, 2) 4, 5, 6, 7, 8, 9, 10

subsequence(3 to 10, 5, 2) 7, 8

subsequence(1 to 5, 10) ()

subsequence(1 to 10, 2.3, 4.6) 2, 3, 4, 5, 6

See also
insert-before() on page 356
remove() on page 399
Filter Expressions on page 244 in Chapter 8

substring
The substring() function returns part of a string value, determined by character positions within the
string. Character positions are counted from one.

For example, the expression «substring(’Goldfarb’, 5, 3)» returns the string «far».

Changes in 2.0
None.

Signature
Argument Data type Meaning

input xs:string? The containing string. If an empty sequence is supplied,
the result is a zero-length string

start xs:double The position in the containing string of the first character
to be included in the result string

length
(optional)

xs:double The number of characters to be included in the result
string.

If the argument is omitted, characters are taken from the
start position up to the end of the containing string

Result xs:string The required substring of the containing string

Effect
Informally, the function returns a string consisting of the characters in the input string starting at
position start; if a length is given, the returned string contains this many characters, otherwise, it
contains all characters up to the end of the value.

423

Chapter 10

Characters within a string are numbered 1, 2, 3 . . . n. This will be familiar to Visual Basic programmers
but not to those accustomed to C or Java, where numbering starts at zero.

Characters are counted as instances of the XML Char production. This means that a Unicode surrogate
pair (a pair of 16-bit values used to represent a Unicode character in the range #x 10000 to #x 10FFFF) is
treated as a single character.

Combining and non-spacing characters are counted individually, unless the implementation has
normalized them into a single combined character. The implementation is allowed to turn strings into
Unicode normalized form, but is not required to do so. In normalized form, accents and diacritics will
typically be merged with the letter that they modify into a single character.

It is possible to define this function in terms of the subsequence() function. With two arguments, the
function has the same result as:

codepoints-to-string(
subsequence(string-to-codepoints($input), $start)))

With three arguments, the definition becomes:

codepoints-to-string(
subsequence(string-to-codepoints($input), $start, $length)))

These rules cover conditions such as the start or length being negative, NaN, fractional, or infinite. The
comparisons and arithmetic are done using IEEE 754 arithmetic, which has some interesting
consequences if values such as infinity and NaN, or indeed any non-integer values are used. The rules for
IEEE 754 arithmetic are summarized in Chapter 2.

The equivalence tells us that if the start argument is less than one, the result always starts at the first
character of the supplied string, while if it is greater than the length of the string, the result will always be
an empty string. If the length argument is less than zero, it is treated as zero, and again an empty string
is returned. If the length argument is greater than the number of available characters, and the start
position is within the string, then characters will be returned up to the end of the containing string.

Examples

Expression Result

substring("abcde", 2) "bcde"

substring("abcde", 2, 2) "bc"

substring("abcde", 10, 2) ""

substring("abcde", 1, 20) "abcde"

Usage
The substring() function is useful when processing a string character-by-character. One common
usage is to determine the first character of a string:

substring($filename, 1, 1)

424

XPath Functions

Or when manipulating personal names in the conventional American format of first name, middle initial,
last name:

string-join((first-name, substring(middle-name, 1, 1), last-name), " ")

The following example extracts the last four characters in a string:

substring($s, string-length($s)-3)

Using substring() as a Conditional Expression
The technique outlined in this section is thankfully obsolete, now that XPath 2.0 offers «if» expressions,
as described in Chapter 5. But you may encounter it in XSLT 1.0 stylesheets, and you may still have to use
it if you write code that has to run under both XPath 1.0 and XPath 2.0, so it’s worth a mention here.

Suppose that $b is an xs:boolean value, and consider the following expression:

substring("xyz", 1, $b * string-length("xyz"))

Under XPath 1.0 rules, the xs:boolean $b when used in an arithmetic expression is converted to a
number: 0 for false, 1 for true. So the value of the third argument is 0 if $b is false, 3 if $b is true. The final
result of the substring() function is therefore a zero-length string if $b is false, or the string "xyz" if
$b is true. The expression is equivalent to «if ($b) then "xyz" else ""» in XPath 2.0.

In fact the third argument doesn’t need to be exactly equal to the string length for this to work, it can be
any value greater than the string length. So you could equally well write:

substring("xyz", 1, $b * (1 div 0))

exploiting the fact that «1 div 0» under XPath 1.0 is infinity, and zero times infinity is NaN. This
obscure construct provided XPath 1.0 programmers with a substitute for a conditional expression.

In fact if you try to run this code under XPath 2.0, it will fail: «1 div 0» is an xs:decimal division
rather than an xs:double division, and the xs:decimal data type has no infinity value. If you need to
rewrite this so that it works under both XPath 1.0 and XPath 2.0, the simplest way is to replace the «1
div 0» by a very large but finite number. In XSLT, you can define this as a global variable. Remember,
though, that exponential notation for numbers is not available in XPath 1.0.

See also
substring-after() in the section immediately below
substring-before()on page 427
string-length() on page 419
contains()on page 314

substring-after
The substring-after() function returns that part of a string value that occurs after the first
occurrence of some specified substring.

For example, the expression «substring-after(’print=yes’, ’=’)» returns «yes».

425

Chapter 10

Changes in 2.0
An optional collation argument has been added.

Signature

Argument Data type Meaning

value xs:string? The containing string

substring xs:string? The test string

collation (optional) xs:string Identifies the collation to be used for comparing strings

Result xs:string A string containing those characters that follow the first
occurrence of the test substring within the containing string

Effect
If the containing string does not contain the test substring, the function returns a zero-length string. Note
that this could also mean that the containing string ends with the test substring; the two cases can be
distinguished by calling the ends-with() function.

If the containing string does contain the test substring, the function returns a string made up of all the
characters that appear in the containing string after the first occurrence of the test substring.

If either of the first two arguments is an empty sequence, it is treated as if it were a zero-length string.

If the test substring is zero-length, the function returns the containing string.

If the containing string is zero-length, the function returns a zero-length string.

If a collation is specified, this collation is used to test whether the strings match. See the description of the
contains() function on page 314 for an account of how substring matching works with a collation. If
the collation argument is omitted, the function matches characters according to their Unicode codepoint
values.

Examples

Expression Result

substring-after("my.xml", ".") "xml"

substring-after("my.xml", "m") "y.xml"

substring-after("my.xml", "xml") ""

substring-after("my.xml", "#") ""

substring-after("", "#") ""

substring-after("my.xml", "") "my.xml"

426

XPath Functions

Usage
The substring-after() function was often used in XPath 1.0 to analyze a string that contains
delimiter characters. For example, when the string is a whitespace-separated list of tokens, the first token
can be obtained using

substring-before($s, ’ ’)

and the rest of the string using

substring-after($s, ’ ’)

With XPath 2.0, this can be done more robustly using the tokenize() function. However, there are still
many cases where it is more convenient to use substring-after(). For example, to extract the local
part of a lexical QName, you can write:

substring-after($qname, ’:’)

XSLT Example
The following example shows a recursive template that takes a whitespace-separated list as input, and
outputs each token separated by an empty
 element.

<xsl:template name="output-tokens">
<xsl:param name="list" as="xs:string" required="yes"/>
<xsl:variable name="nlist"

select="concat(normalize-space($list),’ ’)"/>
<xsl:variable name="first" select="substring-before($nlist, ’ ’)"/>
<xsl:variable name="rest" select="substring-after($nlist, ’ ’)"/>
<xsl:value-of select="$first"/>
<xsl:if test="$rest">

<xsl:call-template name="output-tokens">

<xsl:with-param name="list" select="$rest"/>
</xsl:call-template>

</xsl:if>
</xsl:template>

See also
contains() on page 314
substring() on page 423
substring-before() in the next section

substring-before
The substring-before() function returns that part of a string value that occurs before the first
occurrence of some specified substring.

For example, the value of «substring-before(’print=yes’, ’=’)» is the string «print».

Changes in 2.0
An optional collation argument has been added.

427

Chapter 10

Signature

Argument Data type Meaning

value xs:string? The containing string

substring xs:string? The test string

collation (optional) xs:string Identifies the collation to be used for comparing strings

Result xs:string A string containing those characters that precede the first
occurrence of the test substring within the containing string

Effect
If the containing string does not contain the test substring, the function returns a zero-length string. Note
that this could also mean that the containing string starts with the test string; the two cases can be
distinguished by calling the starts-with() function.

If the containing string does contain the test substring, the function returns a string made up of all the
characters that appear in the containing string before the first occurrence of the test substring.

If either the test substring or the containing string is an empty sequence or a zero-length string, the
function returns a zero-length string.

If a collation is specified, this collation is used to test whether the strings match. See the description of the
contains() function on page 314 for an account of how substring matching works with a collation. If
the collation argument is omitted, the function matches characters according to their Unicode codepoint
values.

Examples

Expression Result

substring-before("my.xml", ".") "my"

substring-before("my-xml.xml", "xml") "my-"

substring-before("my.xml", "") ""

substring-before("my.xml", "#") ""

Usage and Examples
An example of the use of substring-after() and substring-before() to process a
whitespace-separated list of tokens is given under substring-after() on page 427.

If the only reason for using substring-before() is to test whether the string has a given prefix, use
starts-with() instead. You could write:

if (substring-before($url, ’:’)=’https’) then ...

428

XPath Functions

but the following is simpler:

if (starts-with($url, ’https:’)) then ...

In XPath 1.0, the substring-before() and substring-after() functions were often used in
conjunction to find and replace portions of a string. In XPath 2.0, this kind of string manipulation is much
easier using regular expressions, as offered by the replace() function.

See also
contains() on page 314
replace() on page 400
starts-with() on page 415
substring() on page 423
substring-after() on page 425

subtract-dates, subtract-dateTimes
This entry describes four related functions:

subtract-dates-yielding-dayTimeDuration()
subtract-dateTimes-yielding-dayTimeDuration()
subtract-dates-yielding-yearMonthDuration()
subtract-dateTimes-yielding-yearMonthDuration()

The first two determine the interval between two dates (or dateTimes) in days, hours, minutes, and
seconds. The result of these two functions is exactly the same as the result of using the subtraction
operator «-». The effect of the subtraction operator when applied to dates and times is described in the
section Date/Time minus Date/Time on page 179 in Chapter 6.

The other two functions determine the interval between two dates (or dateTimes) in years and months.

Changes in 2.0
These functions are new in XPath 2.0.

Signature

Argument Data type Meaning

value-1 xs:date? or xs:dateTime? The first operand: generally the later of the two dates
or dateTimes

value-2 xs:date? or xs:dateTime? The second operand: generally the earlier of the two
dates or dateTimes

Result xdt:dayTimeDuration?
or
xdt:yearMonthDuration?

A duration representing the elapsed time between value–2
and value-1. If value–1 is earlier than value–2, the result
will be a negative duration

Effect
If either of the arguments is an empty sequence, the result is an empty sequence.

429

Chapter 10

The effect of the two forms that return a dayTimeDuration is described in Chapter 6 under the heading
Date/Time minus Date/Time on page 179.

The rules for the two forms that return a yearMonthDuration are as follows.

If value-1 is the later of the two dates or dateTimes, the result is the largest yearMonthDuration that can
be added to value-2 to produce a date or dateTime that is not greater than value-1. This definition
relies on the rules for adding a duration to a date, which are given in Chapter 6 under the heading
Date/Time plus Duration on page 177.

If value-2 is the later of the two dates or dateTimes, the result can be obtained by subtracting value-1
from value-2 and making the resulting duration negative.

Actually, the specification at the time of writing is vague on the details, especially for the second case. There
are other ways of defining it, and they don’t all give the same answer. On this rule 31 March minus 30
April is minus one month. But it’s also possible to justify the answer zero months, on the grounds that
adding the negative duration –P1M to 30 April gives you 30 March. It depends whether you start with the
earlier date and walk forward, or whether you start with the later date and walk backward. At the time of
writing, the W3C specification doesn’t say which is right.

Simple cases give reasonably intuitive results, for example, subtracting 2004-09-30 from 2005-03-31
gives a duration of six months, as does subtracting 2005-03-31 from 2005-09-30. However, the
variable length of the month can still give surprises: if you add six months to the date 2004-03-31, you
get 2004-09-30; if you add another six months you get 2005-03-30, and if you then subtract the
starting date 2004-03-31, the answer is 11 months.

Examples

Expression Result

subtract-dates-yielding-dayTimeDuration(
xs:date("2005-01-01"), xs:date("2004-07-01"))

P184D

subtract-dates-yielding-dayTimeDuration(
xs:date("2004-02-28"), xs:date("2004-03-01"))

-P2D

subtract-dates-yielding-yearMonthDuration(
xs:date("2005-01-01"), xs:date("2004-07-01"))

P6M

subtract-dates-yielding-yearMonthDuration(
xs:date("2005-12-31"), xs:date("2004-06-30"))

P1Y6M

subtract-dates-yielding-yearMonthDuration(
xs:date("2005-03-31"), xs:date("2004-02-29"))

P1Y1M

subtract-dates-yielding-yearMonthDuration(
xs:date("2004-11-01"), xs:date("2004-12-15"))

-P1M

subtract-dateTimes-yielding-yearMonthDuration(
xs:dateTime("2005-01-01T12:00:00Z"),
xs:dateTime("2004-01-01T18:00:00Z"))

-P11M

430

XPath Functions

Usage
Note that if you want to manipulate the resulting duration as a numeric value, for example, as an integer
number of months, you can convert it to an integer by dividing by a unit duration, such as the
yearMonthDuration P1M.

For example, if you want to calculate the compound interest due on an account since a given date, when
interest is calculated on a monthly basis, you will first need to know the number of complete months that
the account has been open, as an integer value. You can get this as the result of the expression:

subtract-dates-yielding-yearMonthDuration(current-date(), @date-opened)
div xdt:yearMonthDuration("P1M") idiv 1

The purpose of the final «idiv 1» is to convert the xs:double that results from dividing the two
durations to an integer.

See also
Arithmetic using Durations in Chapter 6, page 176

sum
The sum() function calculates the total of a sequence of numeric values or durations.

For example, if the context node is the element <rect x="20" y="30"/>, then the expression
«sum(@*)» returns 50. (The expression «@*» is a sequence containing all the attributes of the context
node.)

Changes in 2.0
This function is generalized in XPath 2.0 so that it can sum over all the numeric data types, and also over
durations.

In XPath 1.0 the function returned NaN if the sequence contained a value that could not be converted to a
number. In XPath 2.0 (even under backward compatibility mode) this situation causes a failure.

Signature

Argument Data type Meaning

sequence xdt:anyAtomicType* The set of items to be totaled

zero-value
(optional)

xdt:anyAtomicType The value to be returned when the sequence is
empty

Result xdt:anyAtomicType The total of the values in the sequence

Effect
Although the function signature states that the input sequence must consist of atomic values, the function
calling rules ensure that the actual argument can be a sequence of nodes—the nodes in this sequence will
be atomized, which extracts their typed values. If the source document has been validated using a

431

Chapter 10

schema, then the type of the resulting values depends on the schema, while if it has not been validated,
the result of atomization will be untyped atomic values.

Any untyped atomic values in the sequence are converted to xs:double values. A runtime error is
reported if this conversion fails. If the sequence contains any NaN (not-a-number) values, which might
happen if you do the conversion yourself by calling the number() function, then the result of the
function is NaN.

The values in the sequence are added using the «+» operator. An error is reported if there are values that
cannot be added using the «+» operator. This will happen if the sequence contains values of types other
than the numeric types, the duration types, and xdt:untypedAtomic, or if it contains a mixture of
durations and other types. If you are totaling durations, all the durations must either be of type
xdt:dayTimeDuration or they must all be of type xdt:yearMonthDuration—you cannot mix the
two, and you cannot use duration values that don’t match one of these subtypes.

If the input sequence is empty, then the value returned is the value specified in the zero-value
argument. If this argument is omitted, the return value for an empty sequence is the xs:integer value
0. The purpose of this argument is to allow a return value to be specified that has the appropriate type, for
example, an xs:double 0.0e0 for use when totaling doubles, or the value PT0S when totaling
xdt:dayTimeDuration values. This is needed because there is no runtime type information associated
with an empty sequence—an empty sequence of xs:double values does not look any different from an
empty sequence of xdt:dayTimeDuration values.

Examples

Expression Result

sum((1, 2, 3, 4)) 10 (xs:integer)

sum((1, 2, 3, 4.5)) 10.5 (xs:decimal)

sum((1, 2, 3.5e0, 4.5)) 11.0e0 (xs:double)

sum(()) 0 (xs:integer)

sum((), 0.0e0) 0.0e0 (xs:double)

sum((xdt:dayTimeDuration("P3D"),
xdt:dayTimeDuration("PT36H")))

P4DT12H

sum((), xdt:dayTimeDuration("PT0S")) PT0S

Usage
The sum() function can be used to create totals and subtotals in a report. It is also useful for calculating
geometric dimensions on the output page.

A problem that sometimes arises is how to get a total over a set of values that aren’t present directly in the
source file, but are calculated from it. For example, if the source document contains <book> elements
with attributes price and sales, how would you calculate the total sales revenue, which is obtained by
multiplying price by sales for each book, and totaling the result over all books? Or, how would you

432

XPath Functions

total a set of numbers if each one has a leading «$» sign which you need to strip off first? In XPath 1.0 this
was difficult to achieve, but the solution in XPath 2.0 is simple:

In the first case:

sum(for $b in //book return ($b/price * $b/sales))

In the second case:

sum(for $p in //price return number(substring-after($p, ’$’))

See also
avg() on page 301
count() on page 316

timezone-from-date, timezone-from-dateTime, timezone-
from-time

These three functions extract the timezone component from an xs:date, xs:time, or xs:dateTime
value. For example, for a user in California, «timezone-from-dateTime(current-dateTime ())»
typically returns the dayTimeDuration «-PT8H».

Changes in 2.0
These functions are new in XPath 2.0.

Signature
Argument Data type Meaning

input xs:date?,
xs:time?, or
xs:dateTime?

The value from which the timezone component
is to be extracted. The data type of the supplied
argument must correspond to the data type
implied by the function name

Result xdt:dayTimeDuration? The timezone, expressed as a duration

Effect
The function returns the timezone component of the supplied xs:date, xs:time, or xs:dateTime.

If the argument is an empty sequence, or if it is a date, time, or dateTime containing no timezone, then the
result is an empty sequence. Otherwise, the function returns the timezone from the specified value. The
timezone is returned in the form of an xdt:dayTimeDuration value giving the offset from UTC (or
Greenwich Mean Time, in common language).

If you want the timezone as a numeric value in hours, divide it by «xdt:dayTimeDuration
("PT1H")».

433

Chapter 10

Examples

Expression Result

timezone-from-date(xs:date("2004-02-28")) ()

timezone-from-dateTime(xs:dateTime("2004-02-
28T13:00:00-06:00"))

-PT6H

timezone-from-time(xs:time("13:00:00+01:00")) PT1H

timezone-from-dateTime(xs:dateTime("2004-07-
31T23:00:00Z"))

PT0S

See also
adjust-date/time-to-timezone on page 297
current-date(), -dateTime(), -time() on page 318.
format-date(), -dateTime(), -time() in Chapter 7 of XSLT 2.0 Programmer’s Reference.
implicit-timezone() on page 352

tokenize
The tokenize() function splits a string into a sequence of substrings, by looking for separators that
match a given regular expression.

For example, «tokenize("12, 16, 2", ",\s*")» returns the sequence «("12", "16", "2")».

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

input xs:string? The input string. If an empty sequence or zero-length string is
supplied, the function returns an empty sequence

regex xs:string The regular expression used to match separators, written according
to the rules given in Chapter 11

flags
(optional)

xs:string One or more letters indicating options on how the matching is to be
performed. If this argument is omitted, the effect is the same as
supplying a zero-length string, which defaults all the option settings

Result xs:string* A sequence whose items are substrings of the input string

Effect
The rules for the syntax of regular expressions are given in Chapter 11, and the rules for the flags
attribute under the entry for the matches() function on page 368.

434

XPath Functions

The input string is processed from left to right, looking for substrings that match the regular expression
supplied in the regex argument. A consecutive sequence of characters that don’t participate in a match
is copied as a string to form one item in the output sequence. A sequence of characters that does match
the regex is deemed to be a separator and is discarded. The search then resumes at the character position
following the matched substring.

It can happen that two substrings starting at the same position both match the regex. There are two ways
this situation can arise.

Firstly, it happens when part of the regex is looking for repeated occurrences of a substring. For example,
suppose the regex is «\n+», indicating that any sequence of one or more consecutive newlines acts as a
separator. Then clearly, if two adjacent newline characters are found, the regex could match on the first
one alone, or on the pair. The rule here is that «+» is a greedy quantifier: it matches as long a substring as
it can, in this case, both newline characters. In this case this is what you want to happen. But if you were
trying to remove comments in square brackets by using a regex such as «\[.*\]», this would have the
wrong effect—given the input «Doolittle [1] and Dalley [2]», the first separator identified would
be «[1] and Dalley [2]». If you want to match the shortest possible substring, add a «?» after the
quantifier to make it non-greedy, thus: «\[.*?\]».

Another situation that can cause two different substrings to match at the same position is where the regex
contains two alternatives that both match. For example, when the regex «#|##» is applied to a string that
contains two consecutive «#» characters, both branches will match. The rule here is that the first
(leftmost) alternative wins. In this case this is almost certainly not what was intended: rewrite the
expression as «##|#», or as «##?».

If the input string starts with a separator, then the output sequence will start with a zero-length
string representing what was found before the first separator. If the input string ends with a separator,
there will similarly be a zero-length string at the end of the sequence. If there are two adjacent
separators in the middle of the string, you will get a zero-length string in the middle of the result
sequence. In all cases the number of items in the result sequence is the number of separators in the input
string plus one.

If the regex does not match the input string, the tokenize() function will return the input string
unchanged, as a singleton sequence. If this is not the effect you are looking for, use the matches()
function first to see if there is a match.

If the regex is one that matches a zero-length string, that is, if «matches("", $regex)» is true, the
system reports an error. An example of such a regex is «\s*». Although various interpretations of such a
construct are possible, the Working Group decided that the results were too confusing and decided not to
allow it.

Examples

Expression Result

tokenize("Go home, Jack!", "\W+") ("Go", "home", "Jack", "")

tokenize("abc[NL]def[XY]", "\[.*?\]") ("abc", "def", "")

435

Chapter 10

Usage
A limitation of this function is that it is not possible to do anything with the separator substrings. This
means, for example, that you can’t treat a number differently depending on whether it was separated
from the next number by a comma or a semicolon. The solution to this problem is to process the string in
two passes: first, do a replace() call in which the separators «,» and «;» are replaced by (say) «,#»
and «;#»; then use tokenize() to split the string at the «#» characters, and the original «,» or «;» will
be retained as the last character of each substring in the tokenized sequence. Another alternative, if you
are using XSLT, is to use the <xsl:analyze-string> instruction.

A similar technique is possible when there are no separators available. For example, suppose that the
input is alphanumeric, and you want to break it into a sequence of alternating alphabetic and numeric
tokens, for example, the input «W151TBH» needs to be split into the three strings «("W", "151",
"TBH")». Here’s how to do this:

tokenize(replace($input, "([0-9]+|[A-Za-z]+)", "$1#"), "#")[.]

The predicate «[.]» at the end of this expression causes zero-length strings in the result to be filtered out
(there will be a zero-length string at the end of the sequence).

See also
<xsl:analyze-string> in XSLT 2.0 Programmer’s Reference, Chapter 5
matches() on page 368.
replace() on page 400
Regular Expressions: Chapter 11

trace
The trace() function is used to produce diagnostic output. The format and destination of the output is
implementation-defined.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

value item()* A value that is to be displayed in the diagnostic output

message xs:string A message that is to be output along with the displayed value

Result item()* The function returns the displayed value, unchanged

Effect
The detailed effect of this instruction depends on the implementation; some implementations might
ignore it entirely. The idea of the function is that when it is evaluated, a message should be produced to
some diagnostic output stream (perhaps a log file, or perhaps an interactive console) showing the

436

XPath Functions

message string and the contents of the supplied value. The function then returns this value, and
execution continues normally.

Note that since the order of execution of different expressions is undefined, the trace output will not
necessarily be strictly sequential, and it may be difficult to see what is going on when the same trace()
expression is evaluated repeatedly. This problem can be reduced if the message, rather than being a
simple literal string, is constructed from variables that provide some context.

The specification doesn’t say whether the presence of the trace() function should or should not affect
the optimizer’s evaluation strategy. Some implementors may decide that to make the trace output
intelligible, certain optimizations should be suppressed; others may decide that the execution strategy
with tracing should be as close as possible to the execution strategy without tracing, to reduce the risk of
so-called Heisenbugs, in which the behavior of the expression changes when debugging is switched on.

Usage and Examples
Suppose you are having problems understanding why the function call «sum(//@price)» is returning
NaN. Try changing it to

«sum(//trace(@price, "price value"))»

to see the price values that are being used in the computation.

In the current Saxon implementation, when you trace a sequence, you get one message for each item in the
sequence. Saxon pipelines the evaluation of sequences, and tracing doesn’t change the pipeline, so you
might find that the evaluation of different sequences is interleaved. This can be confusing, but it gives you a
faithful picture of what is happening internally. Other implementations might give you one message for the
entire sequence, and might break the evaluation pipeline in order to output the message.

Sometimes you might just want to output a value that is not actually used in the computation. In this case
you can usually use an empty sequence as the value, and put the required value into the message—just
remember that the trace() function will then return an empty sequence. For example, you could write:

«sum(//(trace((),concat("reading price for ", string(@code)), @price)»

See also
error() on page 336.
<xsl:message> in Chapter 5 of XSLT 2.0 Programmer’s Reference.

translate
The translate() function substitutes characters in a supplied string with nominated replacement
characters. It can also be used to remove nominated characters from a string.

For example, the result of «translate(’ABC-123’, ’-’, ’/’)» is the string «ABC/123».

Changes in 2.0
An empty sequence is not accepted for the second and third arguments.

437

Chapter 10

Signature

Argument Data type Meaning

value xs:string? The supplied string

from xs:string The list of characters to be replaced, written as a string

to xs:string The list of replacement characters, written as a string

Result xs:string? A string derived from the supplied string, but with those characters that
appear in the second argument replaced by the corresponding characters
from the third argument, or removed if there is no corresponding
character

Effect
For each character in the supplied string, one of three possible actions is taken:

❑ If the character is not present in the list of characters to be replaced, the character is copied to the
result string unchanged

❑ If the character is present at position P in the list of characters to be replaced, and the list of
replacement characters is of length P or greater, then the character at position P in the list of
replacement characters is copied to the result string

❑ If the character is present at position P in the list of characters to be replaced, and the list of
replacement characters is shorter than P, then no character is copied to the result string

Note that the third argument must be present, but it can be a zero-length string. In this case any character
present in the second argument is removed from the supplied string.

If a character appears more than once in the list of characters to be replaced, the second and subsequent
occurrences are ignored, as are the characters in the corresponding position in the third argument.

If the third argument is longer than the second, excess characters are ignored.

In these rules a character means an XML character, not a 16-bit Unicode code. This means that a Unicode
surrogate pair (a pair of 16-bit values used to represent a Unicode character in the range #x10000 to
#x10FFFF) is treated as a single character, whichever of the three strings it appears in.

Examples

Expression Result

translate("aba12", "abcd", "ABCD") "ABA12"

translate("aba121", "12", "") "aba"

translate("a\b\c.xml", "\", "/") "a/b/c.xml"

translate("5,000.00", ".,", ",.") "5.000,00"

438

XPath Functions

Usage and Examples
Many of the XPath 1.0 use cases for the translate() function can now be achieved more conveniently
in XPath 2.0 by other more powerful functions, such as matches() and replace().

In an XSLT stylesheet you might see the translate() function being used to perform simple case
conversion, for example:

translate($X,
’abcdefghijklmnopqrstuvwxyz’,
’ABCDEFGHIJKLMNOPQRSTUVWXYZ’)

This can now be done much better using the upper-case() and lower-case() functions.

The translate() function is useful to remove extraneous punctuation or whitespace: for example to
remove all whitespace, hyphens, and parentheses from a telephone number, write:

translate($X, ’ 	
()-’, ’’)

Another use for translate() is to test for the presence of a particular character or range of characters.
For example, to test whether a string contains a sequence of three or more ASCII digits, write:

contains(translate($X, ’0123456789’, ’9999999999’), ’999’)

Of course, you could do this equally well using «matches($X, ’[0-9]{3}’)».

The translate() function can be surprisingly powerful. For example, to remove all characters other
than digits from a string, you can write:

translate($X, translate($X, ’0123456789’, ’’), ’’)

The inner call on translate() strips the digits from $X, thus building a list of characters that appear in
$X and are not digits. The outer call processes $X again, this time removing the non-digit characters.

See also
contains() on page 314
matches() on page 368
replace() on page 400
substring() on page 423
substring-after() on page 425
substring-before() on page 427

true
This function returns the boolean value true.

Changes in 2.0
None.

Signature
This function takes no arguments.

439

Chapter 10

Data type Meaning

Result xs:boolean The xs:boolean value true.

Effect
There are no boolean constants available in XPath expressions, so the functions true() and false()
can be used where a constant boolean value is required.

Usage
The most common occasion where constant boolean values are required is when supplying an argument
to a function or to an XSLT template. See the example below.

XSLT Example
The following code calls a named template, setting the parameter «verbose» to true:

<xsl:call-template name="do-the-work">
<xsl:with-param name="verbose" select="true()"/>

</xsl:call-template>

See also
false() on page 343

unordered
The formal definition of the unordered() function is that it returns a sequence that is an arbitrary
re-ordering of the sequence provided as its argument. In practice, this is really a pseudo-function:
wrapping an expression in a call of unordered() tells the XPath processor that you don’t care what
order the results of that expression are in, which means that the processor might be able to avoid the cost
of sorting them into the right order.

For example, «unordered(ancestor::*)» returns the ancestor elements in whatever order the system
finds most convenient. (In Saxon, it currently returns them in reverse document order, that is, innermost
ancestor first.)

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

sequence item()* The supplied sequence

Result item()* A sequence that contains the same items as the supplied sequence, but
in an arbitrary order

440

XPath Functions

Effect
The ordering of the items in the result is arbitrary, which means the processor can choose any order it
likes. This doesn’t mean it has to be a randomized order; on the contrary, the system might well choose to
return the original order unchanged. In fact, it would be completely conformant with the specification for
this function to be implemented as a no-operation. It’s really best to think of it as an optimization hint.

Note that although the unordered() function allows the system to return the results of the argument
expression in any order, it doesn’t absolve it from the need to eliminate duplicates. In practice this
reduces the possibilities available to an optimizer considerably: for example in forming a union between
two sequences of nodes «$A|$B», the system is required both to sort the result in document order and to
remove duplicates. Writing it as «unordered($A|$B)» removes the requirement to sort the results, but
not the requirement to eliminate duplicates. Since the system is very likely to eliminate duplicates as a
by-product of sorting, this might not result in any changes to the execution strategy chosen by the
optimizer.

Usage and Examples
Because the XPath data model is defined in terms of sequences rather than sets, the ordering of the results
of an expression is usually well-defined. For example, the results of a path expression are always in
document order, and the results of the index-of() function are defined to be in ascending numeric
order. By enclosing such expressions in a call of unordered(), you can tell the system that you don’t
care about the order. For example, «unordered(preceding-sibling::*)» returns the preceding
siblings of the context node in an arbitrary order, rather than in document order as usual. In the current
version of Saxon, the preceding siblings will be returned in reverse document order, because that is the
fastest way of finding them, but you should not rely on this behavior as it may vary from one product to
another and might depend on other circumstances.

Some functions take a sequence as an argument, and produce a result that doesn’t depend on the order of
the items in the sequence. Obvious examples are count() and sum(). In such cases, it’s reasonable to
assume that the optimizer will insert a call on unordered() automatically, and that you don’t need to
do it yourself: «count(unordered(X))» gives the same result as «count(X)», and removes the need
to sort the items in X into the right order.

The place where the unordered() function really comes into its own is in handling joins, for example:

//customer/order[@prod-code = //product[supplier=$s]/@code]

or equivalently,

for $o in //customer/order,
$p in //product[supplier=$s][@code=$o/@prod-code]

return
$o

There are many different ways of writing join expressions in XPath, just as there are in SQL, and it’s often
the case that you are only interested in knowing which elements are selected, not in getting them back in
a particular order. If you make it clear that you don’t care about the order, by wrapping the join
expression in a call on the unordered() function, then the system can select from a wider choice of
possible access paths to retrieve the data. This is particularly true if there are indexes to the data, which is
likely if it is stored in an XML database.

441

Chapter 10

upper-case
The upper-case() function converts lower-case characters in a string to upper case.

Changes in 2.0
This function is new in XPath 2.0.

Signature
Argument Data type Meaning

value xs:string? The string to be converted

Result xs:string? The string with lower case letters converted to upper case

Effect
See the entry for lower-case() on page 366 for a description of how this function is defined in terms of
Unicode case mappings.

The effect of the function is as follows:

❑ If the input is an empty sequence, the result is the zero-length string.

❑ Otherwise, every character in the input string is replaced by its corresponding upper-case
character (or sequence of characters) if there is one, or is included unchanged in the result string if
not.

The function does not implement case mappings that Unicode defines as being locale-sensitive (such as
the Turkish dotless I).

Examples
Expression Result

upper-case("Sunday") SUNDAY

upper-case("2+2") 2+2

upper-case("césar") CÉSAR

upper-case("ελλας") E��A�

Usage
See lower-case() on page 366.

See also
lower-case() on page 366
translate() on page 437

442

XPath Functions

year-from-date, year-from-dateTime
These two functions extract the year component from an xs:date or xs:dateTime value. For example,
«year-from-date(current-date())» might return 2004.

Changes in 2.0
These functions are new in XPath 2.0.

Signature
Argument Data type Meaning

input xs:date? or xs:dateTime? The value from which the year component is to be
extracted. The data type of the supplied argument
must correspond to the data type implied by the
function name. If an empty sequence is supplied,
an empty sequence is returned

Result xs:integer The year. The range of values is implementation-defined;
negative years (representing BC dates) are allowed

Effect
The function returns the year component of the supplied xs:date or xs:dateTime. The value is used
in its local timezone (not normalized to UTC).

Examples
Expression Result

year-from-date(xs:date("2004-02-28")) 2004

year-from-dateTime(xs:dateTime("1969-07-20T16:17:00-04:00")) 1969

See also
current-date(), -dateTime(), -time() on page 318
format-date(), -dateTime(), -time() in Chapter 7 of XSLT 2.0 Programmer’s Reference
day-from-date(), -dateTime() on page 322
month-from-date(), -dateTime() on page 374

years-from-duration
This function extracts the value of the years component from a normalized xdt:yearMonthDuration
value.

Changes in 2.0
This function is new in XPath 2.0.

443

Chapter 10

Signature

Argument Data type Meaning

input xdt:yearMonthDuration The value from which the
component is to be extracted

Result xs:integer The years component

Effect
The function returns the years component of the supplied xdt:yearMonthDuration. The duration
value is first normalized so that the number of months is less than 12. The result will be negative if the
duration is negative.

Examples

Expression Result

years-from-duration(xdt:yearMonthDuration("P1200Y")) 1200

years-from-duration(xdt: yearMonthDuration("P18M")) 1

years-from-duration(xdt: yearMonthDuration("-P1M")) 0

See also
months-from-duration on page 375

zero-or-one
The zero-or-one() function returns its argument unchanged, provided that it is a sequence containing
no more than one item. In other cases, it reports an error.

Changes in 2.0
This function is new in XPath 2.0.

Signature

Argument Data type Meaning

value item()* The input value. Although the function signature says that any
sequence of items is allowed, a runtime error will occur if the
number of items is not zero or one

Result item() The same as the supplied value, after checking to ensure that it is either
an empty sequence or contains a single item

444

XPath Functions

Effect
The zero-or-one() function returns its argument unchanged, provided that it is a sequence containing
no more than one item. In other cases, it reports an error.

This function is useful with XPath processors that perform static type-checking, as described in
Chapter 3. Calling this function acts as a promise by the programmer that the argument will be a
sequence that is either empty, or contains exactly one item. This allows the expression to be used in
contexts that require an optional single value (for example, the argument of a function such as root())
when the processor might otherwise have reported a static type error. The XPath expression is still
type-safe, because the check that the sequence does indeed contain a single item will be done at runtime,
just as it would with a processor that does not enforce static type checking.

Examples
Assume the source document

<paint colors="red"/>

with a schema that defines the colors attribute with type xs:NMTOKENS (that is, it allows a list of colors to
be specified, but our sample document only specifies one).

Expression Result

string(@colors) Succeeds unless the processor is doing static type checking, in
which case it gives a compile-time error because the argument
to string()must be a sequence of zero or one items

string(zero-or-one(@colors)) Succeeds whether the processor is doing static type checking or
not, because the check that the typed value of @colors
contains at most one item is deferred until runtime

Usage
This function is never needed unless you are using a processor that does static type-checking.

However, you may still find it useful as a way of inserting runtime checks into your XPath expressions,
and documenting the assumptions you are making about the input data.

See also
exactly-one()on page 339
one-or-more()on page 395

Summary

Much of the power of any programming language comes from its function library, which is why this
chapter explaining the function library is the longest one in the book. The size of the function library has
grown greatly since XPath 1.0, largely because of the richer set of data types supported.

One chapter remains. Chapter 11 defines the syntax of the regular expressions accepted by the three
functions matches(), replace(), and tokenize().

445

Regular Expressions
This chapter defines the regular expression syntax accepted by the XPath functions matches(),
replace(), and tokenize() which were described in the previous chapter.

This regular expression syntax is based on the definition in XML Schema, which in turn is based
on the definition in the Perl language, which is generally taken as the definitive reference for
regular expressions. However, all dialects of regular expression syntax have minor variations.
Within Perl itself there are features that are deprecated, there are features that differ between Perl
versions, and there are features that don’t apply when all characters are Unicode.

XML Schema defines a subset of the Perl regular expression syntax; it chose this subset based
on the requirements of a language that only does validation (that is, testing whether or not a
string matches the pattern) and that only deals with Unicode strings. The requirements of the
matches() function in XPath are similar; but XPath also uses regular expressions for tokenizing
strings and for replacing substrings. These are more complex requirements, so some of Perl’s
regular expression constructs that XML Schema left out have been added back in for XPath.

The XPath regular expression syntax explained in this chapter is also used (without any further
modifications!) by the XSLT <analyze-string> instruction, which is described in Chapter 5 of
XSLT 2.0 Programmer’s Reference.

In the grammar productions in this chapter, as elsewhere in the book, I generally enclose
characters of the target language (that is, the regex language) in chevrons, for example «|». I
have avoided using the more consise notation «[abcd]» because I think it is confusing to use
regular expressions when defining regular expressions. If a character is not enclosed in chevrons,
then it is either the name of another non-terminal symbol in the grammar, or a symbol that has a
special meaning in the grammar.

The description of the syntax of regular expressions closely follows the description given in the
XML Schema Recommendation. (You can find this in Appendix F of Schema Part 2. A second
edition is in preparation, which corrects numerous errors in the original. At the time of writing
the current draft of the second edition is at http://www.w3.org/TR/2004/PER-xmlschema-
2-20040318/).

Chapter 11

Remember that the syntax rules given here apply to the regular expression after it has been preprocessed
by the host language. If a regular expression is used within an XML document (for example, an XSLT
stylesheet), then special characters such as «&» must be escaped using XML entity or character references
such as «&». If it appears within an XSLT attribute value template, then curly braces must be
doubled. If it appears within an XPath string literal, then any apostrophe or quotation mark that matches
the string delimiters must be doubled. And if your XPath expression is written as a string literal within a
host language such as Java or C#, then a backslash will need to be written as «\\» (which means that a
regular expression to match a single backslash character becomes «\\\\»).

Branches and Pieces
Construct Syntax

regex branch («|» branch)*

branch piece*

piece atom quantifier?

A regular expression consists of one or more branches, separated by «|» characters. For example,
«abc|def» matches either of the strings «abc» or «def». A regex matches a string if any of the branches
matches the string. If more than one branch leads to a match, then the one that is chosen is the first one
that matches.

A branch consists of one or more pieces, concatenated together. A branch consisting of two pieces A and B
matches a string if the string can be split into two substrings, with the first substring matching A and the
second matching B. For example, «def» is the concatenation of three pieces, «d», «e», and «f», and it
matches a string consisting of a «d» followed by an «e» followed by an «f». The regex «[a-z][0-9]»
consists of two pieces, «[a-z]» and «[0-9]», and it matches any string that consists of a letter in the
range «[a-z]» followed by a digit in the range «[0-9]».

A piece is an atom, optionally followed by an optional quantifier. Quantifiers are described in the next
section.

Unlike content models in XML Schema, there are no rules preventing ambiguities or backtracking in a
regular expression. It is perfectly legal to have a regex with two branches that both match the same string,
or to have two branches that start with the same characters, for example «abc|abd».

Quantifiers
Construct Syntax

quantifier indicator «?»?

indicator «?» | «*» | «+» | («{» quantity «}»)

quantity quantRange | quantMin | quantExact

quantRange quantExact «,» quantExact

448

Regular Expressions

Construct Syntax

quantMin quantExact «,»

quantExact Digit+

Digit «0»|«1»|«2»|«3»|«4»|«5»|
«6»|«7»|«8»|«9»

A quantifier is either one of the symbols «?», «*», or «+», or a quantity enclosed between curly
braces. A quantifier may be followed by «?» to indicate that it is a non-greedy quantifier.

A quantity is either a number, or a number followed by a comma, or two numbers separated by a
comma: number here means a sequence of one or more digits.

The piece «A?» matches a single «A» or a zero-length string; «A*» matches a sequence of zero or more
«A»s, while «A+» matches a sequence of one or more «A»s.

The piece «A{3}» matches a sequence of exactly three «A»s; «A{3,}» matches a sequence of three or
more «A»s, and «A{3,5}» matches a sequence of at least three and at most five «A»s.

By default, quantifiers are greedy: they match as many occurrences of the relevant characters as they can,
subject to the regex as a whole succeeding. For example, given the input string «17(c)(ii)», the regular
expression «\(.*\)» will match the substring «(c)(ii)». Adding a «?» after the quantifier makes it
non-greedy, so the regex «\(.*?\)» will match the substring «(c)». This doesn’t affect the matches()
function, which is only concerned with knowing whether or not there is a match, but it does affect
replace() and tokenize(), and XSLT’s <xsl:analyze-string>, which also need to know which
characters matched the regex.

Atoms
Construct Syntax

atom Char | charClass | («(» regex «)»)

Char Any XML character except . \ ? * + () | < > ˆ $ []

charClass charClassEsc | charClassExpr | «.» | «ˆ» | «$»

charClassExpr «[» charGroup «]»

An atom is either a normal character, a character class, or a regex enclosed in parentheses.

A normal character (Char) is any character except «.», «\», «?», «*», «+», «|», «<», «»>, «ˆ», «$», «[» and
«]». A normal character matches itself, and if the «i» flag is used, it also matches upper- and lower-case
variants of itself.

A character class (charClass) is either a character class escape or a character class expression, or one of the
metacharacters «.», «ˆ» or «$». We will see what a character class escape is later, on page 45.

449

Chapter 11

The metacharacter «.» in a regex matches any single character except a newline character (x0A), except
when the «s» (dot-all) flag is set, in which case it matches any character including a newline.

The metacharacters «ˆ» and «$» match the beginning and end of the input string, respectively, except
when the «m» (multiline) flag is set, in which case they match the beginning and end of each line. The
beginning of a line is either the start of the entire string, or the position immediately after a newline (x0A)
character; the end of a line is either the end of the entire string, or the position immediately before a
newline character. So (with multiline mode off) the regex «ˆThe» matches a string that begins with the
characters «The», while the regex «\.xml$» matches a string that ends with the characters «.xml».

A character class expression is a character group enclosed in square brackets. Character groups are described
in the next section. A character group matches a single character.

Character Groups
Construct Syntax

charGroup posCharGroup | negCharGroup | charClassSub

posCharGroup (charRange | charClassEsc)+

negCharGroup «ˆ» posCharGroup

charClassSub (posCharGroup | negCharGroup) «-» charClassExpr

Character groups always appear within square brackets. A character group is either a positive group, a
negative group, or a subtraction. Examples of the three kinds are «[a-z]», «[ˆ0-9]», and
«[a-z-[pqr]]».

A positive group (posCharGroup) consists of a sequence of one or more parts,
each of which is either a character range or a character class escape. A positive group matches a character
if any one of its parts matches the character. For example, «[a-zA-Z0-9%#]» matches any character
that falls in one of the ranges «a» to «z», «A» to «Z», or «0» to «9», as well as the «%» and «#» characters.

A negative group (negCharGroup) consists of a circumflex «ˆ» followed by a positive group. A negative
group matches any character that is not matched by the corresponding positive group. For example, the
negative group «[ˆabc]» matches any character except «a», «b», or «c».

A subtraction (charClassSub) consists of either a positive group or a negative group, followed by the
«-» symbol, followed by a character class expression (which, as we saw earlier, is a character group
enclosed in square brackets). A subtraction matches any character that matches the group preceding the
«-» operator, provided it does not also match the character class expression following the «-» operator.
For example, «[0-9-[5]]» matches any digit except the digit «5».

Character Ranges
If you are comparing these rules with the ones in XML Schema Part 2, be sure to look at the second edition;
the original XML Schema Recommendation got this syntax badly wrong. I have changed the names of the
productions slightly.

450

Regular Expressions

Construct Syntax

charRange codepointRange | SingleChar

codepointRange charOrEsc «-» charOrEsc

charOrEsc SingleChar | SingleCharEsc

SingleChar Any XML character except «-» «[» «]» «\»

A character range is either a codepoint range or a single character.

A codepoint range, for example, «a-z», consists of two characters, or single character escapes, separated by a
«-» character. The Unicode codepoint for the second character must be greater than or equal to the
codepoint for the first. Specifying a codepoint range is equivalent to listing all the Unicode characters
with codepoints in that range, for example «[0-9]» is equivalent to «[0123456789]».

A single character is any character permitted by the XML specification, other than the four characters
listed: «-», «[», «]», and «\». There is an additional rule not shown in the grammar: if «ˆ» appears at the
start of a character group, then it is taken to indicate that the group is a negative character group. This
means that it can’t appear at the start of a positive character group, except in the case where the positive
character group is part of a negative character group. (You can’t have a double negative: «[ˆˆ]» matches
any character except a circumflex.)

The original XML Schema Recommendation allowed a character range such as «[+-]», and in fact this
construct is used in the published schema for XHTML. According to the revised syntax published in the
XML Schema Errata, this is not valid. This has caused a certain amount of friction, to put it politely.

Single character escapes are described in the following section.

Character Class Escapes
Construct Syntax

charClassEsc SingleCharEsc | MultiCharEsc | backReference |
catEsc | complEsc

SingleCharEsc «\»(«n»|«r»|«t»|«\»|«|»|«.»|«?»|
«*»|«+»|«(»|«)»|«{»|«}»|«-»|«[»|
«]»|«∼»|«ˆ»|«$»)

MultiCharEsc «\» («s»|«S»|«i»|«I»|«c»|«C»|«d»|
«D»|«w»|«W»)

backReference «\»Digit+

catEsc «\p{»charProp «}»

complEsc «\P{»charProp «}»

Continues

451

Chapter 11

Construct Syntax

charProp Category | IsBlock
Category One of the two-character codes listed in the section Character Categories on

page 455

IsBlock «Is» BlockName
where BlockName is the name of one of the Unicode code blocks listed in the
section Character Blocks on page 453

A character class escape can appear at the top level of a regular expression (as an atom); a single character
escape (which is one kind of character class escape) can also appear at either end of a codepoint range, as
we saw in the previous section.

There are five kinds of character class escapes: single character escapes, multicharacter escapes, back references,
category escapes, and complementary escapes.

A single character escape (SingleCharEsc) consists of a backslash followed by one of the characters
shown below. The single character escape matches a single character, as shown in the table.

Single character escape Matches

«\n» newline (x0A)

«\r» carriage return (x0D)

«\t» tab (x09)

«\\» «\|» «\.» «\?» «*» «\+»
«\(» «\)» «\{» «\}» «\-» «\[»
«\]» «\ ∼» «ˆ» «$»

The character following the backslash, for example,
«\?» matches a question mark

A multicharacter escape (MultiCharEsc) is a «\» followed by one of the characters shown below. Each
multicharacter escape matches one of a number of different characters (but it only matches one character
at a time).

Multi character escape Matches

«\s» space (x20), tab (x09), newline (x0A), or carriage
return (x0D)

«\i» an initial name character: specifically, a character that
matches «\p{L}» or «:» or «_»

«\c» a name character, as defined by the NameChar
production in the XML specification

«\d» a decimal digit: anything that matches «\p{Nd}»

452

Regular Expressions

Multi character escape Matches

«\w» a character considered to form part of a word, as
distinct from a separator between words: specifically a
character that does not match «\p{P}» or «\p{Z}» or
«\p{C}»

«\S» Any character that does not match «\s»

«\I» Any character that does not match «\i»

«\C» Any character that does not match «\c»

«\D» Any character that does not match «\d»

«\W» Any character that does not match «\w»

A backReference consisting of «\» followed by one or more digits is a reference to the substring that
matched the n’th parenthesized subexpression within the regex. Thus, the regex «([’"])[ˆ’"]*\1»
matches a string consisting of a single or double quote, then an arbitrary sequence of non-quote
characters, then a reappearance of the same quote character that started the string. A single digit
following a «\» is always recognized as part of the backReference; subsequent digits are recognized as part
of the backreference only if there are sufficiently many parenthesized subexpressions earlier in the regex.
For example, «\15» is recognized as a backReference only if there are at least fifteen parenthesized
subexpressions preceding it in the regular expression; if this is not the case, then it is interpreted as a
backReference «\1» followed by the digit «5».

A category escape «\p{prop}» matches any character with the property prop, as defined in the Unicode
character database. A complementary escape «\P{prop}» matches any character that does not have the
property prop. The prop may either represent the block of characters being matched, or a character
category. The next two sections define the character blocks and categories.

Character Blocks
Character blocks are simply names for ranges of characters in Unicode. For example, «\p{IsHebrew}»
matches any character in the range x0590 to x05FF, while «\P{IsHebrew}» matches any character that is
not in this range.

The names of the blocks are listed in the table below. The name of the block is preceded by «Is» in the
regular expression, which then matches any character in the block. Note that some of the blocks (such as
PrivateUse) map to several ranges of codes.

Range Name

x0000-x007F BasicLatin

x0080-x00FF Latin-1Supplement

x0100-x017F LatinExtended-A

Range Name

x2460-x24FF EnclosedAlphanumerics

x2500-x257F BoxDrawing

x2580-x259F BlockElements

Continues

453

Chapter 11

Range Name

x0180-x024F LatinExtended-B

x0250-x02AF IPAExtensions

x02B0-x02FF SpacingModifierLetters

x0300-x036F CombiningDiacriticalMarks

x0370-x03FF Greek

x0400-x04FF Cyrillic

x0530-x058F Armenian

x0590-x05FF Hebrew

x0600-x06FF Arabic

x0700-x074F Syriac

x0780-x07BF Thaana

x0900-x097F Devanagari

x0980-x09FF Bengali

x0A00-x0A7F Gurmukhi

x0A80-x0AFF Gujarati

x0B00-x0B7F Oriya

x0B80-x0BFF Tamil

x0C00-x0C7F Telugu

x0C80-x0CFF Kannada

x0D00-x0D7F Malayalam

x0D80-x0DFF Sinhala

x0E00-x0E7F Thai

x0E80-x0EFF Lao

x0F00-x0FFF Tibetan

x1000-x109F Myanmar

x10A0-x10FF Georgian

x1100-x11FF HangulJamo

x1200-x137F Ethiopic

x13A0-x13FF Cherokee

x1400-x167F UnifiedCanadianAboriginalSyllabics

x1680-x169F Ogham

Range Name

x25A0-x25FF GeometricShapes

x2600-x26FF MiscellaneousSymbols

x2700-x27BF Dingbats

x2800-x28FF BraillePatterns

x2E80-x2EFF CJKRadicalsSupplement

x2F00-x2FDF KangxiRadicals

x2FF0-x2FFF IdeographicDescriptionCharacters

x3000-x303F CJKSymbolsandPunctuation

x3040-x309F Hiragana

x30A0-x30FF Katakana

x3100-x312F Bopomofo

x3130-x318F HangulCompatibilityJamo

x3190-x319F Kanbun

x31A0-x31BF BopomofoExtended

x3200-x32FF EnclosedCJKLettersandMonths

x3300-x33FF CJKCompatibility

x3400-x4DB5 CJKUnifiedIdeographsExtensionA

x4E00-x9FFF CJKUnifiedIdeographs

xA000-xA48F YiSyllables

xA490-xA4CF YiRadicals

xAC00-xD7A3 HangulSyllables

xD800-xDB7F HighSurrogates

xDB80-xDBFF HighPrivateUseSurrogates

xDC00-xDFFF LowSurrogates

xE000-xF8FF PrivateUse

xF900-xFAFF CJKCompatibilityIdeographs

xFB00-xFB4F AlphabeticPresentationForms

xFB50-xFDFF ArabicPresentationForms-A

xFE20-xFE2F CombiningHalfMarks

xFE30-xFE4F CJKCompatibilityForms

xFE50-xFE6F SmallFormVariants

454

Regular Expressions

Range Name

x16A0-x16FF Runic

x1780-x17FF Khmer

x1800-x18AF Mongolian

x1E00-x1EFF LatinExtendedAdditional

x1F00-x1FFF GreekExtended

x2000-x206F GeneralPunctuation

x2070-x209F SuperscriptsandSubscripts

x20A0-x20CF CurrencySymbols

x20D0-x20FF CombiningMarksforSymbols

x2100-x214F LetterlikeSymbols

x2150-x218F NumberForms

x2190-x21FF Arrows

x2200-x22FF MathematicalOperators

x2300-x23FF MiscellaneousTechnical

x2400-x243F ControlPictures

x2440-x245F OpticalCharacterRecognition

Range Name

xFE70-xFEFE ArabicPresentationForms-B

xFEFF-xFEFF Specials

xFF00-xFFEF HalfwidthandFullwidthForms

xFFF0-xFFFD Specials

x10300-x1032F OldItalic

x10330-x1034F Gothic

x10400-x1044F Deseret

x1D000-x1D0FF ByzantineMusicalSymbols

x1D100-x1D1FF MusicalSymbols

x1D400-x1D7FF MathematicalAlphanumeric
Symbols

x20000-x2A6D6 CJKUnifiedIdeographs
ExtensionB

x2F800-x2FA1F CJKCompatibilityIdeographs
Supplement

xE0000-xE007F Tags

xF0000-xFFFFD PrivateUse

x100000-x10FFFD PrivateUse

Character Categories
Characters in the Unicode character database are assigned to a category and sub-category. For example,
category «L» denotes letters, and within this «Lu» denotes upper-case letters. Within a regular
expression, «\p{L}» matches any letter, and «\p{Lu}» matches any upper-case letter. The
complementary sets can also be selected: «\P{L}» matches any character that is not a letter, and
«\P{Lu}» matches any character that is not an upper-case letter.

The list of categories, with a few examples of characters found in each, is listed in the table below.

Category Description Examples

L Letters

Lu Uppercase A, B, Ø, φ

Ll Lowercase a, b, ö, λ

Lt Titlecase Dz (x01C5)

Continues

455

Chapter 11

Category Description Examples

Lm Modifier

Lo Other Hebrew ALEF (x05D0)

M Marks

Mn Nonspacing Combining acute accent (x0301)

Mc Spacing Gujarati vowel sign AA (x0ABE)

Me Enclosing Combining enclosing circle (x20DD)

N Numbers

Nd decimal digits 1, 2, 3, 4, , , ,

Nl numeric letters Roman numeral ten thousand (x2182)

No Other 2 3(x00B2, x00B3)

P Punctuation

Pc Connector _ (x005F)

Pd Dash em dash (x2014)

Ps Open ([{

Pe Close)] }

Pi initial quote « (x00AB)

Pf final quote » (x00BB)

Po Other ! ? ¿ (x00BF)

Z Separators

Zs Space space (x0020), non-breaking space (x00A0)

Zl Line line separator (x2028)

Zp Paragraph paragraph separator (x2029)

S Symbols

Sm Mathematical + < = > | ∼ ¬±
Sc Currency $ ¢ £ ¥ €

Sk Modifier acute accent «’», cedilla «¸»

So Other
⎢
⎢§ c© o ¶

C Others

Cc Control tab (x0009), newline (X000A)

Cf Format soft hyphen (x00AD)

456

Regular Expressions

Category Description Examples

Co private use

Cn not assigned

Disallowed Constructs
Finally, here are some examples of constructs that might be familiar from other regular expression
dialects that have not been included in the XPath 2.0 definition. A conformant XPath 2.0 processor is
expected to reject any attempt to use these constructs.

Disallowed Construct Meaning in other languages

[a-z&&[ˆoi]] intersection: any character in the range «a» to «z», except for «o»
and «i»

[a-z[A-Z]] union: same as «[a-zA-Z]»

\0nn, \xnn, \u nnnn character identified by Unicode codepoint in octal or hexadecimal

\a, \e, \f, \cN various control characters not allowed in XML 1.0

\p{Alpha}, \P{Alpha} character classes defined in POSIX

\b, \B word boundary

\A, \Z, \z beginning and end of input string

\g, \G end of the previous match

X*+ non-backtracking or possessive quantifiers (in Java, these force the
matching engine down this path even if this results in the match as
a whole failing)

(?...) expressions that set various special options; non-capturing
sub-expressions; comments

Summary

This chapter provided a rather technical definition of the regular expression syntax provided for use in
the XPath functions matches(), replace(), and tokenize(), and in the XSLT <analyze-string>
instruction.

This regular expression syntax is not very different from the regular expressions supported in languages
such as Perl and Java. In practice, you may find that some implementations cut corners by exposing a
regular expression library that does not conform exactly to these rules. Caveat emptor!

457

XPath 2.0 Syntax Summary
This appendix summarizes the entire XPath 2.0 grammar. The tables in this appendix also act as an
index: they identify the page where each construct is defined.

The grammar is presented in this book in a slightly less formal style than is used in the W3C
specifications. The W3C specification goes to some effort to write the grammar rules in such a way
that the syntax can be parsed without backtracking. This is important if you are developing a parser
for the language, but my intended audience is users of the language, not implementors. There are
therefore a few differences both in the way the rules are organized, and in the notation used for
individual rules.

The way that the XPath grammar is presented in the W3C specification is also influenced by the
need to support the much richer grammar of XQuery. In this book, I have tried to avoid these
complications.

An interesting feature of the XPath grammar is that there are no reserved words. Words that have a
special meaning in the language, because they are used as keywords («if», «for»), as operators
(«and», «except») or as function names («not», «count») can also be used as the name of an
element in a path expression. This means that the interpretation of a name depends on its
context. The language uses several techniques to distinguish different roles for the same name:

❑ Operators such as «and» are distinguished from names used as element names or
function names in a path expression by virtue of the token that precedes the name. In
essence, if a word follows a token that can appear at the end of an expression then the
word must be an operator; if it follows a token that cannot appear at the end of an
expression then it must be another kind of name. Some operators such as «instance
of» use a pair of keywords. There are some cases in XQuery where this is essential to
disambiguate the grammar, but it’s not needed for parsing XPath.

❑ Function names, together with the «if» keyword, are recognized by virtue of the
following «(» token.

❑ Axis names are recognized by the following «::» token.

❑ The keywords «for», «some», and «every» are recognized by the following «$» token.

Appendix A

❑ If a name follows «/» or «//», it is taken as an element name, not as an operator. To write «/
union /*», if you want the keyword treated as an operator, you must write the first operand in
parentheses: «(/) union /*».

Whitespace
I have organized the rules in the appendix to make a clear distinction between tokens, which cannot
contain internal whitespace, and non-terminals, which can contain whitespace between their
individual tokens. This separation is not quite so clear in the W3C specification, which is another result
of the complications caused by XQuery. Because XQuery uses element constructors that mimic XML
syntax, it does not have such a clear separation between the lexical level of the language and the syntactic
level.

Whitespace is defined here as any sequence of space, tab, linefeed, and carriage return characters, and
comments.

A comment in XPath starts with «(:» and ends with «:)». Comments may be nested, so any «(:» within
a comment must be matched by a closing «:)».

Tokens
The definition of a token that I am using here is a symbol that cannot contain separating whitespace. This
means that my classification of which symbols are tokens is slightly different from the classification that
appears in the W3C specification.

Simple tokens such as «+» and «and» are not included in this table; they simply appear anonymously in
the syntax productions.

Symbol Syntax Page

IntegerLiteral Digit+ page 142

DecimalLiteral («.»Digit+) |
(Digit+ «.»Digit*)

page 142

DoubleLiteral ((«.»Digit+) |
(Digit+ («.»Digit*)?))
(«e» | «E») («+» | «-»)?
Digit+

page 142

Digit [0-9] page 142

StringLiteral («"»([ˆ"])* «"»)+ |
(«’»([ˆ’])* «’»)+

page 144

460

XPath 2.0 Syntax Summary

Symbol Syntax Page

Wildcard «*» |
NCName «:*» |
«*:»NCName

page 222

NCName See XML Namespaces Recommendation page 146

QName See XML Namespaces Recommendation page 146

Char See XML Recommendation page 146

Syntax Productions
These rules mainly use familiar notations: «*» for repetition, parentheses for grouping, «?» to indicate
that the preceding construct is optional, «|» to separate alternatives.

Simple tokens are represented using chevrons, for example «,» in the first rule represents a literal comma.

Sometimes multiple tokens are grouped inside a pair of chevrons, for example «for $» in the third rule.
This notation indicates that there are two tokens (whitespace may appear between them) but that the
parser needs to recognize both tokens together in order to proceed. The keyword «for» on its own is not
enough to recognize a ForExpr, because it might equally well be an element name appearing as a step in
a path expression: the parser is therefore looking for the composite symbol consisting of the token «for»
followed by the token «$».

Whitespace is always allowed between two tokens, whether these are grouped using chevrons or not.
Whitespace is required between two tokens in cases where the second token could otherwise be taken as
a continuation of the first token. For example, in the expression «$a - $b» whitespace is required before
the «-» (but not after it). But whitespace is optional before the «::» that follows an axis name, because
«child::» would not be a legal as part of a QName.

Symbol Syntax Page

Expr ExprSingle
(«,»ExprSingle)*

page 137

ExprSingle ForExpr
| QuantifiedExpr
| IfExpr
| OrExpr

page 137

ForExpr «for $»VarName «in»ExprSingle
(«,» «$»VarName «in»ExprSingle)*
«return»ExprSingle

page 247

Continues

461

Appendix A

Symbol Syntax Page

QuantifiedExpr («some $» | «every $»)
VarName «in»ExprSingle
(«,» «$»VarName «in»ExprSingle)*
«satisfies»ExprSingle

page 255

IfExpr «if (»Expr «)»
«then»ExprSingle
«else»ExprSingle

page 165

OrExpr AndExpr
(«or»AndExpr)*

page 198

AndExpr ComparisonExpr
(«and»ComparisonExpr)*

page 198

ComparisonExpr RangeExpr (
(ValueComp | GeneralComp | NodeComp)
RangeExpr)?

page 182

ValueComp «eq» | «ne» | «lt» | «le» | «gt» | «ge» page 182

GeneralComp «=» | «!=» | «<» | «<=» | «»> | «>=» page 182

NodeComp «is» | ««» | «»» page 182

RangeExpr AdditiveExpr
(«to»AdditiveExpr)?

page 242

AdditiveExpr MultiplicativeExpr
((«+» | «-»)
MultiplicativeExpr)*

page 170

Multiplicative
Expr

UnionExpr
((«*» | «div» | «idiv» | «mod»)
UnionExpr)*

page 170

UnionExpr IntersectExceptExpr
((«union» | «|»)
IntersectExceptExpr)*

page 235

IntersectExcept
Expr

InstanceOfExpr
((«intersect» | «except»)
InstanceOfExpr)*

page 235

InstanceofExpr TreatExpr
(«instance of»SequenceType)?

page 287

TreatExpr CastableExpr
(«treat as»SequenceType)?

page 282

CastableExpr CastExpr
(«castable as»SingleType)?

page 262

CastExpr UnaryExpr
(«cast as»SingleType)?

page 262

462

XPath 2.0 Syntax Summary

Symbol Syntax Page

UnaryExpr («+» | «-»)* PathExpr page 170

PathExpr («/»RelativePathExpr?) |
(«//»RelativePathExpr) |
RelativePathExpr

page 204

RelativePathExpr StepExpr ((«/» | «//») StepExpr)* page 208

StepExpr AxisStep | FilterExpr page 208

AxisStep (ForwardStep | ReverseStep) PredicateList page 212

FilterExpr PrimaryExpr PredicateList page 244

PredicateList Predicate* page 231

Predicate «[»Expr «]» page 231

PrimaryExpr Literal |
VarRef |
ParenthesizedExpr |
ContextItemExpr |
FunctionCall

page 152

Literal NumericLiteral |
StringLiteral

page 152

NumericLiteral IntegerLiteral |
DecimalLiteral |
DoubleLiteral

page 152

VarRef «$»VarName page 153

Parenthesized
Expr

«(»Expr? «)» page 155

ContextItemExpr «.» page 156

FunctionCall FunctionName «(»
(ExprSingle («,»ExprSingle)*)?
«)»

page 158

FunctionName QName page 158

ForwardStep (ForwardAxis NodeTest) | AbbrevForwardStep page 212

ReverseStep (ReverseAxis NodeTest) | AbbrevReverseStep page 212

Abbrev
ForwardStep

«@»? NodeTest page 227

Abbrev
ReverseStep

«..» page 227

Continues

463

Appendix A

Symbol Syntax Page

ForwardAxis «child ::» |
«descendant ::» |
«attribute ::» |
«self ::» |
«descendant-or-self ::» |
«following-sibling ::» |
«following ::» |
«namespace ::»

page 213

ReverseAxis «parent ::» |
«ancestor ::» |
«preceding-sibling ::» |
«preceding ::» |
«ancestor-or-self ::» |

page 213

NodeTest KindTest | NameTest page 220

NameTest QName | Wildcard page 222

SingleType AtomicType «?»? page 262

SequenceType (ItemType OccurrenceIndicator?)
| «empty ()»

page 277

AtomicType QName page 262

ItemType AtomicType | KindTest | «item ()» page 277

Occurrence
Indicator

«?» | «*» | «+» page 277

KindTest DocumentTest
| ElementTest
| AttributeTest
| PITest
| CommentTest
| TextTest
| AnyKindTest

page 224

ElementTest BasicElementTest |
SchemaElementTest

page 281

AttributeTest BasicAttributeTest |
SchemaAttributeTest

page 281

Basic
ElementTest

«element (»
(ElementNameOrWildCard
(«,»TypeName «?»?)?
)? «)»

page 282

Basic
AttributeTest

«attribute (»
(AttributeNameOrWildcard
(«,»TypeName)?
)? «)»

page 282

464

XPath 2.0 Syntax Summary

Symbol Syntax Page

ElementName
OrWildcard

ElementName | «*» page 282

AttributeName
OrWildcard

AttributeName | «*» page 282

ElementName QName page 282

AttributeName QName page 282

TypeName QName page 282

Schema
ElementTest

«schema-element (»
ElementName
«)»

page 284

Schema
AttributeTest

«schema-attribute (»
AttributeName
«)»

page 284

PITest «processing-instruction (»
(NCName | StringLiteral)?
«)»

page 224

DocumentTest «document-node (»ElementTest? «)» page 224

CommentTest «comment ()» page 224

TextTest «text ()» page 224

AnyKindTest «node ()» page 224

465

Operator Precedence
The following table lists the precedence of the XPath operators.

Precedence Operator

1 «,»

2 «for», «some», «every», «if»

3 «or»

4 «and»

5 «eq», «ne», «lt», «le», «gt», «ge»,
«=», «!=», «<», «<=», «>», «>=»,
«is», «<», «>>»

6 «to»

7 infix «+», infix «-»

8 «*», «div», «idiv», «mod»

9 «union», «|»
10 «intersect», «except»

11 «instance of»

12 «treat as»

13 «castable as»

14 «cast as»

15 unary «+», unary «-»

16 «/», «//»

17 «[]»

Appendix B

Operators lower down the table bind more tightly than operators further up the table. So «A or B and
C» means «A or (B and C)».

It two operators appear in the same row, then they are evaluated from left to right. So «A -- B + C» means
«(A -- B) + C».

468

Compatibility with XPath 1.0
This appendix describes the main areas where XPath 2.0 is incompatible with XPath 1.0, that is,
constructs that gave a result under XPath 1.0 and that either fail, or give a different result, under
XPath 2.0.

The level of incompatibility depends on exactly how you run XPath 2.0. The best compatibility is
achieved if you run without validating your source documents against a schema, and with the
XPath 1.0 compatibility mode enabled. Additional incompatibilities arise if XPath 1.0 compatibility
mode is switched off, and further problems can occur if at the same time as you switch to XPath 2.0
you also start validating your source documents. These three scenarios are discussed in the three
sections of this appendix.

With Compatibility Mode Enabled
Even with the XPath 1.0 compatibility mode in the static context enabled, there are some constructs
that were permitted in XPath 1.0 that either fail in XPath 2.0, or produce a different result. These are
described in the following sections, with examples.

Syntax Changes
The only known syntactic incompatibility between XPath 2.0 and XPath 1.0 is that constructs such
as «A = B = C», or «A < B < C» were allowed in XPath 1.0, but are disallowed in XPath 2.0.

If you have written such an expression in XPath 1.0, the chances are that it doesn’t mean what you
intended. The interpretation is «(A = B) = C», or «(A < B) < C». So, for example, «1 = 2 = 0» is true,
because «(1 = 2)» is false, and «false() = 0» is true.

These expressions are disallowed in XPath 2.0 because their actual meaning is so wildly different
from their intuitive meaning, making them a probable cause of errors.

There is one other change that may give a syntax error under some XPath 2.0 implementations.
Support for the namespace axis is now optional: XPath 2.0 processors can choose whether or not to
support it. The chances are that vendors enhancing their 1.0 products to support XPath 2.0 will

Appendix C

continue to support the namespace axis, while vendors developing new products from scratch are more
likely to leave it out.

Comparing Strings
This is probably the most likely source of incompatibility in real applications.

In XPath 1.0, any expression involving the operators «<», «<=», «>», and «>=» was handled by converting
both operands to numbers, and comparing them numerically. If the operands were non-numeric strings,
the conversion produced the value NaN (not a number), and the comparison then always produced false,
regardless of the other operand. But a comparison such as «"10" > "2"» was treated as a numeric
comparison and produced the answer true.

In XPath 2.0, these operators can be used to compare values of any data type for which an ordering is
defined, including strings. If at least one of the operands is a number, then the other operand is converted
to a number and the result will generally be the same as with XPath 1.0. But if both operands are strings,
or if they are untyped values (which will happen with a comparison such as «@discount < @rebate»),
then they are compared as strings, using the default collation. This means that the comparison «"10" >
"2"» will now return false.

To get round this problem, if you want a numeric comparison, you should explicitly convert either or
both of the operands to numbers, which you can do by calling the number() function.

When two strings are compared for equality, XPath 1.0 always compared them codepoint-for-codepoint,
so, for example «"a" = "A"» would be false. If you want this to be the result under XPath 2.0, take care to
select the Unicode codepoint collation as your default collation.

Formatting of Numbers
When very small or very large numbers are converted to strings, XPath 1.0 always used conventional
decimal notation, never scientific notation. For example, the value one billion would be output as
«1000000000». If the number is an xs:double rather than an xs:decimal or xs:integer, XPath 2.0
will output this value in scientific notation as «1.0E9». If you want the old format, use the
xs:decimal() constructor function to convert the value to a decimal before converting it to a string. In
XSLT you can get more precise control over the format by using the format-number() function.

There have also been some minor changes in the rules for converting strings to numbers, to align the
rules with XML Schema. The representations of positive and negative infinity are now «INF» and «-INF»
rather than «Infinity» and «-Infinity». Converting a string containing a leading plus sign to a
number with XPath 1.0 produced NaN (not a number); with XPath 2.0 this format is recognized.

Numeric Precision
XPath 1.0 supported only one numeric data type, namely double-precision floating point. XPath 2.0 also
supports xs:decimal, xs:integer, and xs:float. Numeric literals that were interpreted as double
values under XPath 1.0 will be interpreted as decimal or integer values under XPath 2.0.

470

Compatibility with XPath 1.0

One effect of this is that division by zero is likely to produce an error under XPath 2.0, whereas with
XPath 1.0 it produced the result positive or negative infinity.

The other effect is that the precision of the result of a numeric computation may be different. For example,
every conformant XPath 1.0 processor would produce as the result of the division «1 div 7» the answer
«0.14285714285714285», as a double. With XPath 2.0, the result of this division is an xs:decimal,
and the precision of the result is implementation-defined. Saxon 7.9 produces the result
«0.142857142857142857», but a different processor might legitimately produce more digits or fewer
digits in the answer.

Comparisons with a Boolean
The rules for comparing a boolean to a boolean are unchanged; but comparing a boolean to any other
type can create problems.

In XPath 1.0, when a node-set was compared to a boolean, the node-set was first converted to a boolean
(false if the node-set was empty, otherwise, true), and the two booleans were then compared. In XPath 2.0,
when you compare a sequence of nodes to a boolean, the nodes are first atomized. In the absence of a
schema, the resulting atomic values will all be of type xdt:untypedAtomic. These untyped values are
converted to booleans for the purposes of comparison. The conversion uses the casting rules, so «0» and
«false» are treated as false, «1» and «true» are treated as true, and any other value causes an error. If
any of these booleans is equal to the other operand, the result is true, otherwise, the result is false.

The most likely outcomes are:

❑ If the node-set is empty, XPath 2.0 will always return false (regardless of the boolean operand)

❑ If the node-set is non-empty, the comparison is likely to fail, unless all the nodes happen to
contain one of the string values «0», «1», «true», or «false».

When comparing a number to a boolean, XPath 1.0 converted the number to a boolean and then
performed a boolean comparison. XPath 2.0 converts the boolean to a number and performs a numeric
comparison. If the number is «0» or «1», this produces the same result. In other cases the result may be
different, as the following examples illustrate.

Expression XPath 1.0 Result XPath 2.0 Result

1 = true() true true

1 = false() false false

2 = true() true false

2 = false() false false

When comparing a string to a boolean, XPath 1.0 converted the string to a boolean and then performed a
boolean comparison. XPath 2.0 always rejects this comparison as a type error.

471

Appendix C

The Empty Sequence
In XPath 1.0, if an empty node-set was used as an operand to a function or operator that expected a string,
it was automatically converted to the zero-length string. Similarly, if the operator or function expected a
number, it was automatically converted to NaN (not-a-number).

In XPath 2.0 the functions in the core library that expect a string argument reproduce this behavior (this
was a late change to the specification before the November 2003 draft was issued). This is not a built-in
feature of the language, it is simply part of the way these particular functions are specified, but this is
sufficient to prevent compatibility problems.

However, the corresponding change for numeric operators and functions has not been made. For
example, if the attribute A does not exist, then the expression «@A+1» returned NaN under XPath 1.0, but
returns an empty sequence under XPath 2.0. If you output this value by converting it to a string, the result
will be a zero-length string instead of the string “NaN”.

Although the empty sequence plays a significant role as a null value in XPath 2.0, most practical
expressions are unaffected by the change.

Error Semantics
In XPath 1.0 it was defined, in the case of an expression such as «A and B», that B would not be evaluated
if A was false. Similarly, with «A or B», B would not be evaluated if A was true.

This meant that you could safely write an expression such as:

($cols = 0) or ($n div $cols > 100)

XPath 2.0 no longer gives this guarantee. The operands of «and» and «or» can now be evaluated in either
order, or in parallel. In the example above, this means that the division might be evaluated, and cause an
error, in the case where $cols is zero.

To be sure of avoiding this failure, you need to rewrite the expression as:

if ($cols = 0)
then true
else ($n div $cols > 100)

The reason this change was made is that changing the order of evaluation of expressions within a
predicate is a common technique used by database optimizers to take maximum advantage of indexes
present in a database. The existing rule in XPath 1.0 prevented many such optimizations. This of course is
more likely to affect XQuery than XPath implementations, but the rule was changed in both languages to
keep them consistent. A vendor who wishes to offer the maximum level of backward compatibility can of
course continue to implement boolean expressions in the same way as XPath 1.0.

I think it’s unlikely that many existing stylesheets or freestanding XPath expressions will be affected by
this change, if only because runtime errors in XPath 1.0 are extremely rare: most programming mistakes
in XPath 1.0 produce either a syntax error, or wrong answers, but not a runtime failure.

472

Compatibility with XPath 1.0

With Compatibility Mode Disabled
The provision of XPath 1.0 compatibility mode is best regarded as a transition aid to help you make the
move to XPath 2.0, rather than as a feature you will want to keep switched on for ever. This section
therefore looks at what further changes you may need to make to your XPath expressions when you
decide that the time has come to switch compatibility mode off.

(In XSLT 2.0, you can do this by using the version attribute in the stylesheet. Remember that you can set
this on any element in the stylesheet, so if you really need to, you can keep compatibility mode on in some
parts of the stylesheet, but switch it off in others. However, my own experience is that moving the whole
stylesheet over to 2.0 is rarely difficult, so you might just as well bite the bullet and do it all at once.)

There’s a description of the effect of 1.0 compatibility mode in Chapter 4, on page 116. In summary, this is
what happens when you switch compatibility mode off:

❑ Sequences are no longer truncated to their first item when you call a function or operator that
requires a single value.

❑ Values are no longer automatically cast to xs:string or xs:double when you call a function or
operator that requires a string or number.

For both these changes, something that worked with compatibility mode switched on will stop working
when you switch compatibility mode off. If your code relies on this feature, it will fail with an error
message, rather than producing different results. So it’s easy to find out where you need to make the
changes.

What”s more, the changes are very easy to make, and they won’t stop your code continuing to work with
an XPath 1.0 processor if that’s something you need to do. If your code is relying on sequences being
truncated to their first item, simply add the predicate «[1]». If your code is relying on implicit
conversion of values to a number or string, simply wrap the expression in the number() or string()
function to make the conversion explicit.

Compatibility when using a Schema
XPath 1.0 was not schema-aware. You could validate your source documents if you wanted to, but this
would make no difference to the result of any XPath expression (other than the fact that schema
validation expands defaulted elements and attributes, which would therefore become visible to your
XPath expressions).

With XPath 2.0, there can be considerable differences in the behavior of an XPath expession depending on
whether the source document is validated against a schema or not.

The first difference you are likely to notice is that untyped data (specifically, atomic values of type
xdt:untypedAtomic, which most often arise as a result of atomizing a node that has not been subjected
to schema validation) can be implicitly cast to the type required by the expression in which it is used,
whereas typed data cannot. For example if the attribute value @chapterNr holds an untyped value, then
it is perfectly okay to write «string-join(11 @chapter Nr, ",")». But if the attribute is validated as
an integer, then this expression will fail, because the string-join() function expects its arguments to
be strings. You will have to convert the integer to a string explicitly, by calling the string() function.

473

Appendix C

Some operations are likely to lose the original lexical form of the data once you apply schema validation.
For example, if an attribute is defined in the schema to be numeric, then copying the attribute may cause
the numeric value to be normalized, which means that insignificant leading or trailing zeroes and spaces
may be lost. With some processors you may be able to avoid this effect by applying the string()
function to the attribute node, which means that the string value of the node will be used rather than its
typed value. However, processors are not required to retain the original lexical form of the value, so this
won’t always work. If the distinction between «5» and «5.00» is important to you, then it’s best not to
describe the value in the schema as an «xs:decimal», because the definition of the «xs:decimal» data
type says that these are two different representations of the same value.

If the schema declares the type of an element or attribute as a list type, then comparisons applied to that
node will behave completely differently. For example given the attribute «colors="red green blue"»,
in the absence of a schema the predicate «@colors="green"» will return false, but if the schema defines
the value as a list, this predicate will return true.

Atomizing an element with element-only content is an error. This error can only arise when you have a
schema, because without a schema, all elements are considered to have mixed content. An example of an
expression that does this is «contains(invoice, "overdue")» which checks for the presence of the
string «overdue» anywhere in the text of an invoice. To make this work after applying a schema, you
need to extract the string value of the invoice explicitly, by writing «string(invoice)».

As this book went to press, the XSL working group was finalizing a new XSLT feature that allows
stylesheets to discard the type information added to input documents by a schema processor. This feature
is designed to improve compatibility between schema-aware and non-schema-aware XSLT processors.
For details of this feature, see the latest WC3 language specifications.

474

Error Codes
The XPath specification associates error codes with each error condition. There is an implicit
assumption here that although the W3C specification defines no API for invoking XPath
expressions, there will be such APIs defined elsewhere, and they will need some way of notifying
the application what kind of error has occurred. The error codes may also appear in error messages
output by an XPath processor, though there is no guarantee of this.

Technically, these error codes are QNames with no namespace prefix. This is to allow additional
error codes defined by a vendor to be allocated in a different namespace.

The text of the messages associated with each error code is not intended to be normative: hopefully
real products will give error messages that are much more helpful than those in the specification,
including an indication of where the error occurred.

The errors listed here include those defined in the XPath language specification, and those defined
in the definitions of functions in the core function library.

It’s likely that there will be last-minute changes in the detailed list of error conditions after this book
goes to press, since it’s exactly this sort of detail that tends to be subject to change in the final stages
before a specification becomes a Recommendation. It’s also likely, I think, that many products will
not trouble themselves too much with matching their error codes exactly to the ones specified. Time
will tell. But despite these caveats, I thought that it would be useful to summarize the codes
currently listed in the specifications, and to explain their meaning.

These codes fall into two groups: codes defined in the XPath language specification itself, and codes
defined in the Functions and Operators specification for the core function library.

XPath Language Errors
For each error, the heading gives the error code. This is followed by the error description from the
XPath language specification, and an explanation of the meaning.

Appendix D

XP0001
It is a static error if analysis of an expression relies on some component of the static context that has not been
assigned a value.

For example, using an unprefixed function name is an error if there is no default namespace for functions,
and using the «=» operator is an error if there is no default collation.

The initialization of the static context depends on the host language or the XPath API, and it’s entirely
possible that the host language will define default values for all components of the static context, in
which case this error can never occur.

XP0002
It is a dynamic error if evaluation of an expression relies on some part of the dynamic context that has not been
assigned a value.

For example, it’s an error to perform operations on a time that has no timezone if no implicit timezone
has been defined.

This error might also be used if the evaluation of an expression depends on some part of the static context
that has not been assigned a value, for example, the base URI.

As with the static context, it’s up to the host language to define whether the various parts of the dynamic
context are given default values.

XP0003
It is a static error if an expression is not a valid instance of the XPath grammar.

This is an umbrella code that covers all XPath syntax errors.

XP0004
During the analysis phase, it is a type error if the static typing feature is in effect and an expression is found to have
a static type that is not appropriate for the context in which the expression occurs.

For example, a processor that supports the static typing feature will raise a static error when
you write:

@price * 1.1

if the price attribute is defined in the schema to have a union type that allows either numbers or strings.
A system that does dynamic type checking will raise an error only if the expression is actually applied to
a non-numeric value.

XP0005
During the analysis phase, it is a type error if the static typing feature is in effect and the static type assigned to an
expression other than the expression () is the empty type.

476

Error Codes

This error is designed primarily to catch incorrect path expressions. For example, if the schema definition
for element «para» does not allow it to contain element «head», then a processor that does static typing
will reject the path expression «para/head» as an error.

It’s possible that this error may catch things that you actually consider reasonable expressions to write.
For example, you may want to write an expression that anticipates an extension to the schema which
would allow new elements to appear. Unlike most errors raised when doing static typing, there is no easy
way round this one.

XP0006
During the evaluation phase, it is a type error if a value does not match a required type as specified by the matching
rules in SequenceType Matching.

This generally means that the argument to a function call is not the type required by the signature of that
function; it might also apply to operands of operators such as «is» and «to».

For example, this error will occur if you call «ends-with($n,"00"», when $n is numeric. You need to
convert the number to a string before you can use it as an argument to theends-with($n,"00") function.

XP0007
It is a type error if the data() function is applied to a node whose type annotation denotes a complex type with
non-mixed complex content.

Although this error is expressed in terms of the data() function, it doesn’t necessarily require an explicit
call on this function, because the data() function is called implicitly whenever nodes are atomized. So
you will get this error, for example, if you write «contains(invoice, "overdue")», if the «invoice»
element is defined in the schema to have element-only content.

The remedy is to call the string() function to take the string value of the node explicitly, write
«contains(string(invoice), "overdue")».

XP0008
It is a static error if an expression refers to a type name, function name, namespace prefix, or variable name that is
not defined in the static context.

This error means that you haven’t declared the object that is referenced in the expression. This might be
because you misspelt the name, or it might be because you got the namespace prefix wrong—if the name
has a prefix, check that it refers to the correct namespace URI, and if it doesn’t, check what the default
namespace for that kind of name is.

This error might also be used if the expression refers to an element name or attribute name in a
NodeTest, in a context where the element or attribute name is required to be present in the static context.

In the case of undeclared functions, the error XP0017 (defined below) will probably be used in preference.

477

Appendix D

XP0017
It is an error (the host language environment may define this error as either a static or a dynamic error) if the
expanded QName and number of arguments in a function call do not match the name and arity of an in-scope
function in the static context.

This error either means that the function you are calling has not been declared, or that you are calling it
with the wrong number of arguments. Normally, this will be reported as a static error, but the phrase in
parentheses is a let-out clause for XSLT, which (under some circumstances) makes this a dynamic error,
allowing a stylesheet to contain conditional logic to run under different XSLT processors that provide
different vendor extensions.

XP0018
It is a static error for an expression to depend on the focus when the focus is undefined.

The focus here means the context item, context position, or context size. In XPath 1.0 these always had a
value, but in 2.0 they may be undefined. For example, in XSLT the focus is undefined when evaluating a
global variable if no source document has been supplied, and it is always undefined on entry to a
stylesheet function.

XP0019
It is a type error if the result of a step expression is not a (possibly empty) sequence of nodes.

This error description is not quite accurate: the context in the specification makes it clear that by step
expression it is actually referring to the operands of the «/» operator in a path expression. This is really just
a special case of the rule that the operands of any operator must have the correct type for that operator.

The error probably means that you’ve attempted something like «item/name()» to get the names of all
the «item» elements. To do this, you need a «for» expression: «for $i in item return name($i)».

XP0020
It is a type error if in an axis expression, the context item is not a node.

When you use an expression such as «title» or «@code» or «..» or «ancestor::chap», you are
selecting nodes relative to the context node. If the context item is an atomic value then these expressions
can’t be evaluated.

An example of how this situation can occur is if you write in XSLT:

<xsl:analyze-string select="text" regex="[ˆ,]*">
<xsl:matching-substring>

<xsl:value-of select="name"/>
<xsl:matching-substring>

</xsl:analyze-string>

478

Error Codes

Within the <xsl:matching-substring> instruction, the context item is a string (the string that was
matched). This means that there is no context node, so any path expression will fail with this error.

Note that even absolute path expressions (those starting with «/») require a context node, because they
always select nodes within the same document that contains the context node.

XP0021
It is a dynamic error if a value in a cast expression cannot be cast to the required type.

Not all casts are allowed. For example, you cannot cast from an integer to a date. This error message
means that you have attempted one of these disallowed casts. The casts that are allowed are described in
Chapter 9 of this book.

XP0029
It is a dynamic error in a cast expression if the input value does not satisfy the facets of the target type.

This error means that the cast you are attempting is allowed in principle, but that it doesn’t work with
the specific value supplied. For example, you can cast a string to a date, but you can’t cast the string
«2003-02-29» to a date because it isn’t a valid date.

XP0050
It is a dynamic error if the dynamic type of the operand of a treat expression does not match the type specified by the
treat expression.

The «treat as» expression is an assertion: when you say «$x treat as xs:integer», you are
asserting that at runtime, the variable «$x» will contain an xs:integer. If you get it wrong, and the
variable contains some other value, this is the error that will be reported.

XP0051
It is a static error if a QName that is used as an AtomicType in a SequenceType is not defined in the in-scope type
definitions as an atomic type.

This means you have used an expression such as «$x instance of mf:invoice» where the type
«mf:invoice» is either not defined at all, or is a complex type, a list type, or a union type. (The case
where it is not defined at all is also covered by error XP0008).

If the type is a complex type, then what you probably meant to write was «$x instance of element(*,
mf:invoice)». The type used here is an item type rather than a schema type: the distinction is
explained in Chapter 3.

If the type is a list type, for example, xs:IDREFS, then you should instead write «$x instance of
xs:IDREF*»: that is, you should test whether all the items are instances of the item type of the list type.

479

Appendix D

Errors in Functions and Operators
FOAR0001

Division by zero

This error is raised whenever an attempt is made to divide by zero using integer or decimal arithmetic. It
may also occur when dividing durations. The error can occur when using any of the operators «div»,
«idiv», or «mod». With floating point arithmetic, division by zero results in positive or negative infinity.

FOAR0002
Numeric operation overflow/underflow

This error is raised whenever numeric operations result in an overflow or underflow. With floating
point arithmetic, overflow and underflow conditions generally produce infinity or zero, but the
implementation has the option of raising this error instead. With integer and decimal arithmetic, an
implementation must produce this error if the result is out of the range of values that can be represented.
The capacity of a decimal or integer value is implementation-defined, so an operation that succeeds with
one implementation might raise this error with another.

FOCA0001
Error in casting to decimal

Despite its rather general description, this error has a very specific meaning: it is used when casting to a
decimal value from a float or double that is outside the implementation-defined limits supported by the
xs:decimal data type.

FOCA0002
Invalid lexical value

This error, although it is described very broadly, is used specifically for a small number of situations:
specifically, when the first argument to resolve-QName() is not a valid lexical QName; and when the
second argument to expanded-QName() is not a valid NCName.

FOCA0003
Input value too large for integer

This error is raised when casting from an xs:decimal, xs:float, or xs:double to an xs:integer, if
the value is outside the implementation-defined limits for the xs:integer data type.

FOCA0004
Error in casting to integer

480

Error Codes

This error is raised when casting from one of the xs:float or xs:double values NaN, positive infinity,
and negative infinity, to the type xs:integer.

FOCA0005
NaN supplied as float/double value

This error is raised when multiplying or dividing a duration by a number, if the number supplied is NaN.

FOCH0001
Codepoint not valid

This error is raised by the codepoints-to-string() function if the sequence of integers supplied
includes a value that does not represent a legal XML character.

FOCH0002
Unsupported collation

This error is raised if a collation specified in the collation argument of any function that allows such an
argument is not one of the collations defined in the static context. It is also raised if a collation defined in
the static context (including the default collation) is not one that is supported by the implementation.

FOCH0003
Unsupported normalization form

This error means that the normalization form requested in a call to the normalize-unicode() function
is one that the implementation does not support.

FOCH0004
Collation unsuitable for this function

Some collations can be used for comparing strings, but not for extracting substrings. This error is
reported if you use a collation with one of the functions contains(), starts-with(), ends-with(),
substring-before(), or substring-after(), when the collation is not able to split a string into
substrings.

FODC0001
No context document

481

Appendix D

The functions id() and idrefs() operate within the document containing the context node. If there is
no context item, or if the context item is not a node, or if the tree containing the context node is not rooted
at a document node, then this error is raised.

FODC0004
Resource cannot be retrieved by collection()

This error means that the URI passed to the collection() function is not a valid URI, or does not correspond
to the URI of any collection available in the dynamic context.

FODC0005
Invalid URI argument

This error is raised if the string passed as an argument to the doc() function is not a valid URI, according
to the rules for the xs:anyURI type. (Actually, it is far from clear what these rules are, and many
products simply accept any string as a legitimate URI.) The same error is raised if (in the formal language
of the specification) there is no mapping in the dynamic context from this URI to a document node. In
practice, this may mean that no document can be located with the specified URI, or that the resource
found at that URI cannot be parsed as an XML document.

FODT0001
Overflow in date/time arithmetic

This error occurs when adding a duration to an xs:date or xs:dateTime value (or when subtracting),
if the result of the operation is outside the implementation-defined range supported for dates. The error
does not occur with xs:time values because arithmetic with xs:time values is always modulo one day.

FODT0002
Overflow in duration arithmetic

This error occurs when multiplying or dividing a duration by a number, if the resulting duration is
outside the implementation-defined limits for the relevant duration data type.

FONC0001
Undefined context item

This error is raised by functions that depend on the context item, or that take the context item as an
implicit argument (for example number()) if the context item is undefined. It is also raised by the
functions position() and last() if the context position or size are undefined.

482

Error Codes

FONS0003
No prefix defined for namespace

This error is raised when casting from a string to a QName if there is no namespace binding in the static
context for the prefix used in the lexical QName.

FONS0004
No namespace found for prefix

This error is raised by the resolve-QName() function if the element node used to resolve the lexical
QName has no namespace node that binds a namespace URI to the namespace prefix used in the lexical
QName.

FONS0005
Base URI not defined in the static context

This error is raised by the single-argument form of the resolve-URI() function if no base URI has been
established in the static context. Such a base URI is needed to resolve relative URIs appearing in the XPath
expression. The way in which you set a base URI in the static context depends on the host language; in
XSLT, for example, it is taken from the base URI of the stylesheet module containing the XPath expression.

FORG0001
Invalid value for cast/constructor

This error means that the value passed to a constructor function or «cast as» expression is not a legal
value (and cannot be converted to a legal value) for the target data type.

FORG0002
Invalid argument to resolve-uri()

This error occurs when either the base URI or the relative URI passed to the resolve-URI() function is
not a valid URI.

FORG0003
zero-or-one() called with a sequence containing more than one item

When you call the zero-or-one() function, you are asserting that the value of the argument is a
sequence containing at most one item. If the assertion proves to be wrong, this error is raised.

483

Appendix D

FORG0004
one-or-more() called with a sequence containing no items

When you call the one-or-more() function, you are asserting that the value of the argument is a
sequence containing at least one item. If the assertion proves to be wrong, this error is raised.

FORG0005
exactly-one() called with a sequence containing zero or more than one item

When you call the exactly-one function, you are asserting that the value of the argument is a sequence
containing exactly one item. If the assertion proves to be wrong, this error is raised.

FORG0007
Invalid argument to aggregate function

This error means that the sequence supplied to one of the functions avg(), min(), max(), or sum()
contains inappropriate values. For example, it might contain values that are not numbers or durations, or
it might contain both numbers and durations within the same sequence.

FORG0009
Base URI argument to resolve-uri() is not an absolute uri

The specification of the resolve-uri() function requires that the second argument, if supplied, should
be an absolute URI.

FORX0001
Invalid regular expression flags

The relevant argument of the functions matches(), replace(), and tokenize() must contain zero or
more of the letters «s», «m», «i», and «x», in any order.

FORX0002
Invalid regular expression

This error message indicates that the regular expression passed to the function matches(), replace(),
or tokenize() is not valid according to the rules given in Chapter 11.

FORX0003
Regular expression matches zero-length string

484

Error Codes

The functions replace() and tokenize() disallow use of a regular expression that would match a
zero-length string. This rule exists because there are various interpretations of what such a regular
expression would mean, none of which is obviously correct, and users will have different expectations of
the results depending on other programming languages that they are familiar with.

FORX0004
Invalid replacement string

This message means that there is an error in the string supplied as the third argument of the replace()
function. Check firstly that if the string contains a «\» character, this is followed by either another «\» or a
«$», and secondly, that if the string contains a «$» that is not preceded by a «\», then it is followed by a
digit.

FOTY0011
Context item is not a node

The root() function raises this error if it is called when there is no context item, or when the context
item is not a node.

FOTY0012
Items not comparable

This error is raised by the function index-of() if the sequence being searched contains an item that
cannot be compared with the item used as the search key. For example, this will happen if you search a
sequence of strings when looking for an integer. The items are said to be comparable if you could use the
«eq» operator to compare them without getting a type error.

485

Glossary

This glossary gathers together some of the more common technical terms used in this book. Most of
these terms are defined in the XPath specifications, but some of them are borrowed from XML or
other standards in the XML family, and one or two have been invented for the purposes of this
book. So for each definition, I also tell you where the term comes from.

The definitions in all cases are my own; in some cases the original specifications have a much more
formal definition, but in other cases they are surprisingly vague.

Where a definition contains references to other terms defined in the glossary, these terms are written
in italic.

ANCESTOR AXIS (XPATH)
The ancestor axis selects the parent of the context node, its parent, and so on up to and including the
root node. This axis is a reverse axis.

ANCESTOR-OR-SELF AXIS (XPATH)
The ancestor-or-self axis selects the context node followed by all the nodes on the ancestor axis. This
axis is a reverse axis.

ARITY (XPATH)
The arity of a function is the number of parameters defined in the function signature: for example,
the arity of the function true() is zero, while the two versions of the contains() function have
arity two and three respectively.

ATOMIC VALUE (XPATH)
An atomic value is an item such as an integer, a string, a date, or a boolean. Specifically, it is an
instance of the class xdt:anyAtomicType, which includes all simple types (as defined in XML
Schema) that are not list types or union types.

ATOMIZATION (XPATH)
Atomization is a process that takes an arbitrary sequence, containing a mixture of nodes and atomic
values, and creates a new sequence in which each of the nodes is replaced by its typed value. The
resulting sequence consists entirely of atomic values.

Glossary

ATTRIBUTE (XML)
A name=value pair appearing in an element’s start tag, for example «category="grocery"».

ATTRIBUTE AXIS (XPATH)
The attribute axis selects all the attributes of the context node. If the context node is not an element, the axis
will be empty.

ATTRIBUTE DECLARATION (SCHEMA)
An attribute declaration is a schema component corresponding to an <xs:attribute> element in a
schema: it defines constraints on the values of attributes having a particular name. It may be a global
attribute declaration (if it is defined at the top level of a schema) or a local attribute declaration (if defined
within the structure of a complex type).

ATTRIBUTE NODE (XPATH)
A node in a tree that represents an attribute in an XML document. There will be an attribute node attached
to an element node for each attribute defined in the start tag of the corresponding element in the original
XML document, other than an attribute acting as a namespace declaration. There will also be attribute
nodes for attributes given a default value in the document type definition. The string value of the node is the
value of the attribute; its typed value is the result of validating the string value against the relevant type
definition in a schema.

AXIS (XPATH)
An axis is a direction of travel through the tree. Starting from a particular context node, an axis defines a list
of nodes reached from that origin. For example, the ancestor axis returns the parent, grandparent, and so on
up to the root of the tree, while the following-sibling axis returns all the nodes that appear after the context
node and share the same parent.

BASE URI (XML BASE)
Every node has an associated base URI. For an element node this is the absolute URI of the XML external
entity containing the element’s start and end tags (most often, of course, this will be the document entity).
For other node kinds, it is defined by reference to an associated element node, typically its parent. The base
URI of an element can also be set explicitly by using the xml:base attribute. The base URI of a node is
used when expanding a relative URI defined in that node; for example, a relative URI in an href
attribute is considered to be relative to the base URI of the parent element.

Every XPath expression also has a base URI defined as part of its static context. For an XPath expression
contained in a stylesheet, this is the base URI of the stylesheet element containing the XPath expression.
In non-XSLT contexts, it’s up to the host environment to specify a base URI for the expression.

488

Glossary

BOOLEAN (XPATH)
One of the allowed data types for the value of an XPath expression. It takes the value true or false.

BUILT-IN TYPE (SCHEMA)
The XML Schema specification defines a number of built-in simple types that are available for use without
any need to declare them in a schema. These include 19 primitive types (such as xs:string and
xs:date), 20 built-in derived atomic types (including xs:integer and xs:ID), and 3 built-in list types
(xs:NMTOKENS, xs:IDREFS, and xs:ENTITIES).

CAST (XPATH)
An expression that converts an atomic value of one type to an atomic value of a different type.

CDATA SECTION (XML)
A sequence of characters in an XML document enclosed between the delimiters «<![CDATA[» and
«]]»>; within a CDATA section all characters represent text content rather than markup, except for the
sequence «]]»>. CDATA sections don’t appear in the XPath data model: they are purely a conventional
way of entering text that avoids the need to escape special characters such as «&» and «<».

CHARACTER REFERENCE (XML)
A representation of a character using its decimal or hexadecimal Unicode value, for example «
» or
«↤». Normally used for characters that are difficult or impossible to enter directly at the
keyboard. Character references appear in lexical XML documents, but in the XPath data model they are
replaced by the characters that they represent.

CHILD AXIS (XPATH)
The child axis selects all the immediate children of the context node. These can include element nodes, text
nodes, comments, and processing instructions, but not attributes or namespace nodes. This is a forwards axis.

CODEPOINT (UNICODE)
A numeric value identifying a Unicode character.

CODEPOINT COLLATION (XPATH)
A collation that compares and sorts strings strictly according to the numeric values of the codepoints
making up the characters of the string.

489

Glossary

COLLATION (XPATH)
A set of rules for comparing strings. A collation can be used to decide whether two strings are equal, to
decide how they should be ordered, and to decide whether one string is a substring of another. Different
collations are needed to satisfy the needs of different languages or different applications. In XPath and
XSLT a collation is identified by a URI. Except for the codepoint collation, the URIs used to identify
collations are defined by the implementation.

COMMENT (XML)
Markup in an XML document that is conventionally used to carry extraneous information that is not part
of the document proper. Written between the delimiters «<!--» and «--»>.

COMMENT NODE (XPATH)
A node in a tree representing an XML comment. The string value of the node is the text of the comment.

COMPLEX TYPE (SCHEMA)
A schema type that describes the structure of elements that may have child elements or attributes. If the
type permits attributes but no child elements, it is referred to as a complex type with simple content.

CONSTRUCTOR FUNCTION (XPATH)
A function that constructs an atomic value of a particular type. The function has the same name as the
target atomic type, and always takes a single argument. A constructor function is created automatically
for every atomic type, including user-defined atomic types. An example of a call on a constructor function
is «xs:date("2004-02-29")». The semantics of constructor functions are defined by reference to the
rules for cast expressions.

CONTEXT ITEM (XPATH)
The item currently being processed, part of the dynamic context. Certain XSLT instructions and XPath
expressions place a new context item on the stack, and revert to the previous context item when the
instruction or expression has been evaluated. The XSLT instructions <xsl:apply-templates> and
<xsl:for-each> change the context item, as do the XPath expressions «E1/E2» and «E1[E2]». The
context item can be referenced using the expression «.».

CONTEXT NODE (XPATH)
If the context item is a node, then the context node is the same thing as the context item. If the context item
is not a node, then the context node is undefined.

490

Glossary

CONTEXT POSITION (XPATH)
When a sequence of items is processed in an expression of the form «E1/E2» or «E1[E2]», or by an
<xsl:for-each> or <xsl:apply-templates> instruction in XSLT, each item in the sequence in turn
becomes the context item, and the context position identifies the position of the context item in the
sequence being processed. The context position determines the value of the position() function, and is
also used in evaluating a numeric predicate such as «[1]».

CONTEXT SIZE (XPATH)
When a sequence of items is processed in an expression of the form «E1/E2» or «E1[E2]», or by an
<xsl:for-each> or <xsl:apply-templates> instruction in XSLT, each item in the sequence in turn
becomes the context item, and the context size identifies the number of items in the sequence being
processed. The context size determines the value of the last() function.

DATA MODEL (XPATH)
The data model is a description of the kinds of object that can be manipulated by XPath expressions, and
their properties and relationships. Examples of such objects are sequences, items, atomic values, nodes, and
trees. (Sometimes the phrase a data model is used incorrectly to refer to a specific object, such as a tree
representing a particular document).

DEFAULT Namespace Declaration (XML)
This takes the form of an XML attribute xmlns="uri". It declares that within its scope, an element name
with no explicit prefix will be associated with a particular namespace URI. The default namespace is used
only for element names; other objects with no prefix (for example, attributes) have a null namespace URI.

DESCENDANT AXIS (XPATH)
The descendant axis selects all the children of the context node, their children, and so on, in document order.
This is a forwards axis.

DESCENDANT-OR-SELF AXIS (XPATH)
The descendant-or-self axis selects the context node followed by all the nodes on the descendant axis. This is
a forwards axis.

DOCUMENT ELEMENT (XML)
The outermost element of a document, the one that contains all other elements. The XML standard also
refers to this as the root element, but it must not be confused with the root node in the XPath tree model:
the root node is usually the document node that is the parent of the document element, which represents the
document itself.

491

Glossary

DOCUMENT ORDER (XPATH)
The nodes in a sequence can always be sorted into document order. For elements from the same document,
document order is the same as the order of the start tags in the original source. In terms of the tree structure,
a node is ordered after its preceding siblings, and these are ordered after their parent node. The ordering of
attribute and namespace nodes, and of nodes from different source documents, is only partially defined.

DOCUMENT TYPE DEFINITION (XML)
The definition of the structure of an XML document, or a collection of XML documents. May be split into
an external subset, held in a separate file, and an internal subset, embedded within the document itself.

DOCUMENT (XML)
A parsed entity that conforms to the XML syntax for a document is said to be a well-formed document; a
document that also obeys the rules in its document type definition is said to be valid. In XSLT and XPath the
term document is often used to refer to the tree representation of a document: that is, a document node
together with all the nodes that have this document node as an ancestor.

DOCUMENT NODE (XPATH)
If the tree represents a well-formed XML document the root node will be a document node with exactly one
element node as a child, representing the document element, and no text nodes as children. In other cases it
may have zero or more element node children, and zero or more text node children: I refer to such a
document as being well-balanced. In both cases the root node may also have comment nodes and processing
instruction nodes as children.

DOCUMENT ORDER (XPATH)
An ordering of nodes. Within a single document, this order reflects the order of the markup in the original
source XML: the document node comes first, elements precede their attributes, which in turn precede the
children of the element. Across multiple documents, document order is unpredictable but stable.

DYNAMIC CONTEXT (XPATH)
The dynamic context of an XPath expression is the total collection of information available to the XPath
engine at evaluation time. This includes the context item, context position, and context size, the values of all
variables, and the contents of all documents that can be accessed by their URI using functions such as
doc() and document().

DYNAMIC ERROR (XPATH)
A dynamic error is an error detected during the evaluation phase, as distinct from a static error which is
detected at compile time. Technically, type errors (which may be detected either at compile time or at
runtime) form a separate third category.

492

Glossary

EFFECTIVE BOOLEAN VALUE (XPATH)
The effective boolean value of an expression is used when the expression is used in a context where a
choice needs to be made: for example the condition in an XPath conditional expression or an XSLT
<xsl:if> instruction. The effective boolean value of a sequence is false if the sequence is empty, or if it
contains a singleton atomic value that is the boolean false, a zero-length string, a number equal to zero,
or NaN; in all other cases, the effective boolean value is true.

ELEMENT (XML)
A logical unit within an XML document, delimited by start and end tags, for example <publisher>Wrox
Press</publisher>; an empty element may also be written in abbreviated form, for example
<publisher name="Wrox"/>.

ELEMENT DECLARATION (SCHEMA)
An element declaration is a schema component that corresponds to an <xs:element> element in a
schema: it defines the structure of elements having a particular name. It may be a global element
declaration (if it is defined at the top level of a schema) or a local element declaration (if defined within
the structure of a complex type).

ELEMENT NODE (XPATH)
A node in a tree that represents an element in an XML document. The parent of the element node is either the
containing element or the document node of the tree; its children are the element nodes, text nodes, comment
nodes, and processing instruction nodes derived from the immediate content of the XML element.

EMPTY SEQUENCE (XPATH)
An empty sequence is a sequence containing no items.

ENTITY REFERENCE (XML)
A reference to an internal or external entity, generally in the form «&name;». Note that numeric references
of the form « » are correctly referred to as character references rather than entity references.

ENTITY (XML)
A physical unit of information that may be referenced within an XML document. Internal entities are
embedded within the document in its Document Type Definition; external entities are generally held as a
separate file. A parsed entity contains text with XML markup; an unparsed entity contains binary data. A
general entity contains material for inclusion in the document; a parameter entity contains material for
inclusion in the Document Type Definition.

493

Glossary

EXPANDED QNAME (XPATH)
The term QName is sometimes used to mean a QName as written in source XML documents, that is, a
construct of the form «prefix:local-name», and it is sometimes used to mean the (namespace-uri,
local-name) pair that this represents. Within the XSLT 2.0 and XPath 2.0 specifications the preferred usage
is lexical QName for the first construct, and expanded QName for the second. These terms are not consistent
across the full range of XML specifications.

There is no standard convention for displaying an expanded QName, though in some interfaces such as
JAXP, expanded QNames are written in the form «{namespace-uri}local-name». This is sometimes
referred to as Clark notation.

EXPRESSION (XPATH)
An XPath construct that can be evaluated to yield a value, which will always be a sequence (of nodes
and/or atomic values). In XSLT, expressions are used in many contexts such as the select attribute of
<xsl:for-each>, <xsl:value-of>, and <xsl:variable>, and the test attribute of <xsl:if>
and <xsl:when>. Expressions are also used between curly braces in attribute value templates.

FACET (SCHEMA)
A facet is a constraint placed on the values of a simple type in the schema. For example, the pattern facet
(not to be confused with XSLT patterns) constrains the value to match a given regular expression, while
the maxInclusive facet defines the largest permitted value.

FOLLOWING AXIS (XPATH)
The following axis selects all the nodes that follow the context node in document order with the exception of
attribute and namespace nodes, and the node’s own descendants. This is a forwards axis.

FOLLOWING-SIBLING AXIS (XPATH)
The following-sibling axis selects all the nodes that follow the context node and that share the same parent
node. This is a forwards axis.

FORWARDS AXIS (XPATH)
An axis containing a sequence of nodes that follow the context node in document order. Within a predicate of
an axis step that uses a forwards axis (for example, «following-sibling::x[3]»), position numbers
count the nodes in document order.

FUNCTION (XPATH)
A procedure that can be called from within an XPath expression; it takes arguments and returns a result.
Functions cannot be defined using XPath, only invoked from XPath. A function is either a core function

494

Glossary

defined in the XPath or XSLT recommendations, or a stylesheet function defined using an
<xsl:function> declaration in XSLT, or an extension function provided by the vendor or the user.
Functions may also be defined using XQuery. A function has a name (which is a QName), a signature
defining the types expected for its arguments and the return type, and an implementation.

ID (XML)
An attribute of type ID has a value which is unique within the document (that is, different from any other
ID attribute). It is an ID by virtue of being declared as such in the DTD or Schema. It is only guaranteed
unique if the document is valid (XPath is not constrained to operate only on valid documents). Elements
can be accessed using their ID by means of the id() function.

IN-SCOPE NAMESPACES (XPATH)
Any element node has a set of namespace declarations that are in scope for the element: these are represented
by the namespace nodes for that element. An XPath expression also has a set of in-scope namespaces in its
static context. For XPath expressions in an XSLT stylesheet, the in-scope namespaces for the expression are
the namespaces that are in-scope for the element in the stylesheet that contains the XPath expression,
augmented with the namespace defined in the [xsl:]xpath-default-namespace attribute if
present. In non-XSLT contexts, it is up to the host environment to define how the static context for an
XPath expression is established.

ITEM (XPATH)
An item is either an atomic value or a node.

ITEM TYPE (THIS BOOK)
An item type describes the type allowed for items within a sequence. This is either item(), which allows
any item, empty(), which allows nothing, an atomic type, or a node type. Node types define the kind of
node (for example element, attribute, or comment) plus optionally, constraints on the name of the node
and on its type annotation, which will always be a schema type.

LEXICAL QNAME (XPATH)
A QName written in its lexical form: either a simple unprefixed name, or a construct of the form
«prefix:local-name». See also expanded QName.

LIST TYPE (SCHEMA)
A simple type that allows a space-separated sequence of values to be written. For example, the type
xs:NMTOKENS permits the value "red green blue". When an element or attribute is annotated with a
list type, its typed value in XPath is a sequence containing the individual items.

495

Glossary

NAMESPACE (XML NAMESPACES)
A named collection of names. The namespace is named using a URI (or in the 1.1 specification, an IRI),
which is intended to be formed in such a way as to ensure global uniqueness, but which, in practice, may
be any string. Within a particular region of a document, a namespace is also identified by a local name
called a prefix; different prefixes can be used to refer to the same namespace in different documents or
even within the same document. A name (of an element or attribute in XML, and of a variable, template,
function, mode etc. in XSLT) belongs to a specific namespace, and two names can be considered
equivalent only if they belong to the same namespace.

NAMESPACE AXIS (XPATH)
The namespace axis selects all the namespace nodes belonging to the context node. If the context node is not
an element node, the axis will be empty. For element nodes, there is one namespace node for every namespace
that is in scope for the element, whether it relates to a namespace declaration that was defined on this
element or on a containing element. This is a forwards axis. The namespace axis is retained in XPath 2.0,
but is deprecated: applications requiring namespace information should instead use the functions
in-scope-prefixes() and namespace-uri-for-prefix().

NAMESPACE DECLARATION (XML NAMESPACES)
A construct in an XML document that declares that within a particular region of the document, a given
namespace prefix will be used to refer to the namespace with a particular URI. There are two forms of
namespace declaration: xmlns="uri" to declare the default namespace (the one with a null prefix), and
xmlns:prefix="uri" to declare a namespace with a non-null prefix. Both are written in the form of
XML attributes and apply to the element they are on and all descendant elements, unless overridden.

NAMESPACE NODE (XPATH)
A node in a tree that represents the binding of a namespace prefix to a namespace URI. A namespace node
belongs to an element called its parent: it applies only to that element and not to any descendant elements.

NAMESPACE PREFIX (XML NAMESPACES)
A short name used to identify a namespace within a particular region of a stylesheet, so called because it
is most often used as the prefix of a lexical QName (the part before the colon). Different prefixes can be
used to identify the same namespace, and in different contexts the same prefix can be used to identify
different namespaces.

NAMESPACE URI (XML NAMESPACES)
A URI used to identify a namespace. Namespace URIs are unusual in that there is no actual resource that
can be obtained using the URI; the URI is simply a unique identifier. In practice, any string can be used as
a namespace URI, though «http://» URLs are often used to give some prospect of uniqueness.
Technically, the XML Namespaces specification refers to this concept as a namespace name, and in

496

Glossary

version 1.1 the namespace name can be an IRI, which unlike a URI allows non-ASCII characters.
However, the term namespace URI is in widespread use despite the fact that practical products allow any
string to be used.

NAN (XPATH)
Not-a-Number. This is one of the possible values of a variable whose data type is float or double. It results
from an operation whose result is not numeric, for example, «number(’apple’)».

NODE (XPATH)
An object forming part of a tree. There are seven kinds of node: attribute nodes, comment nodes, document
nodes, element nodes, namespace nodes, processing instruction nodes, and text nodes. Nodes have properties
including a name, a string value, a typed value, and a base URI. Every kind of node except a document node
may have a parent node; document nodes and element nodes may have children; element nodes may
have attributes and namespaces.

NODE KIND (XPATH)
Nodes are classified into seven kinds: attribute nodes, comment nodes, document nodes, element nodes,
namespace nodes, processing instruction nodes, and text nodes.

NUMBER (XPATH)
In XPath 2.0, the term number is used as a generic term for the three primitive types decimal, double,
and float, and their subtypes (including integer).

PARENT AXIS (XPATH)
The parent axis selects the node that is the parent of the context node, assuming it has a parent. Since this
axis selects at most one node, it doesn’t matter whether it is considered as a forwards axis or as a reverse axis.

PARTICLE (SCHEMA)
In the language of XML Schema, a particle is a component part of the definition of the structure of a
complex type. A particle may be an element declaration, or a wildcard that allows elements from defined
namespaces, or a sequence or choice compositor with a defined substructure.

PATH EXPRESSION (XPATH)
A path expression is an expression that selects a sequence of nodes in a tree. It defines a sequence of steps
which define navigation paths from the context node to further nodes. The final result is the sequence of
nodes reached by following each of the steps in turn. For example, the path expression «../@code» has

497

Glossary

two steps: the first step selects the parent of the context node, and the second step selects the «code»
attribute of the selected parent. The nodes in the result of a path expression are always returned in
document order, with duplicates removed.

PRECEDING AXIS (XPATH)
The preceding axis selects all the nodes that precede the context node within the same tree, with the
exception of attribute and namespace nodes, and the node’s own ancestors. This is a reverse axis.

PRECEDING-SIBLING AXIS (XPATH)
The preceding-sibling axis selects all the nodes that precede the context node and that share the same parent
node. This is a reverse axis.

PREDICATE (XPATH)
An expression used to filter which nodes are selected by a particular step in a path expression, or to select a
subset of the items in a sequence. A boolean expression selects the items for which the predicate is true; a
numeric expression selects the item at the position given by the value of the expression, for example,
«[1]» selects the first item.

PREFIX (XML NAMESPACES)
See Namespace Prefix.

PRIMITIVE TYPE (SCHEMA)
The XML Schema specification defines 19 primitive types. In the XPath model these are defined as
subtypes of the abstract type xdt:anyAtomicType, which contains all atomic values. The 19 primitive
types are boolean, string, decimal, double, float, QName, anyURI, hexBinary, base64Binary,
date, time, dateTime, gYear, gYearMonth, gMonth, gMonthDay, gDay, duration, and NOTATION.
XPath in effect adds untypedAtomic to this list, representing values that have not been validated
against any schema.

PRINCIPAL NODE KIND (XPATH)
Every axis has a principal node kind. For most axes, the principal nodes are elements. For the attribute axis,
the principal node kind is attribute, and for the namespace axis, it is namespace. The principal node kind
determines the kind of nodes selected by the node test «*»: for example, «following-
siblings::*» selects elements, while «namespace::*» selects namespace nodes.

PROCESSING INSTRUCTION (XML)
An item in an XML document that is conventionally used to carry instructions to the software that receives
the document and processes it. Written between the delimiters «<?» and «?»>. Note that the XML

498

Glossary

declaration at the start of a document, and the text declaration at the start of an external parsed entity, are
not processing instructions even though they use the same delimiters.

PROCESSING INSTRUCTION NODE (XPATH)
A node in a tree representing an XML processing instruction.

PROMOTION (XPATH)
The type-checking rules for function calling in XPath, and also for arithmetic operators and comparison
operators, allow numeric values to be used where a different numeric type is expected. The operation of
converting the supplied number to the required type (for example, integer to double) is known as
promotion.

QNAME (XML NAMESPACES)
A qualified name. It is either a simple name (an NCName) or a name preceded by a namespace prefix and
a colon. See also lexical QName and expanded QName.

RANGE VARIABLE (XPATH)
A variable declared in a «for», «some», or «every» expression, which is bound to each item in a
sequence in turn, for example the variable $i in «for $i in 1 to 5 return $i*$i».

REGULAR EXPRESSION (XPATH)
A regular expression is a pattern that strings may or may not match. Regular expressions can be used in
the three functions matches(), replace(), and tokenize() defined in XPath, and in the
<xsl:analyze-string> instruction in XSLT.

REVERSE AXIS (XPATH)
An axis containing a sequence of nodes that precede the context node in document order. Within a predicate
of an axis step that uses a reverse axis (for example, «preceding-sibling::x[position() = 1 to
3]»), position numbers count the nodes in reverse document order. However, as with any other axis step,
the result of the expression is in forwards document order. So this expression returns the last three «x»
nodes before the context node, in document order.

ROOT NODE (XPATH)
The top-most node in a tree; any node that has no parent. In XPath 2.0, any kind of node may be a root
node. A root node that represents a complete XML document is now referred to as a document node.

499

Glossary

SCHEMA (SCHEMA)
In this book the term schema always means a schema defined using the W3C XML Schema language. A
schema can be regarded as a collection of element declarations, attribute declarations, and type definitions. A
schema document, by contrast, is the XML document rooted at an <xs:schema> element (which one might
regard as containing one module of a schema).

SCHEMA COMPONENT (SCHEMA)
A generic term for element declarations, attribute declarations, and type definitions.

SCHEMA TYPE (THIS BOOK)
A type as defined in XML Schema: either a complex type or a simple type. The type may be named, or it may
be anonymous. The term includes both built-in types (such as xs:integer) and user-defined types.

SELF AXIS (XPATH)
The self axis contains a single node, the context node. It makes no difference whether it is regarded as a
forwards axis or a reverse axis. The principal node kind of the self axis is elements, which means that when the
context node is an attribute, an axis step of the form «self::*» or «self::xyz» will not select that
attribute.

SEQUENCE (XPATH)
A sequence in the XPath data model is an ordered collection of items. The items may be atomic values or
references to nodes in a tree. A sequence containing no items is referred to as the empty sequence. Sequences
have no identity of their own; two sequences containing the same items cannot be distinguished.

SEQUENCE TYPE (XPATH)
A sequence type is a definition that constrains the permitted values of a sequence. It has two parts: an item
type, which constrains the type of the items in the sequence, and a cardinality, which constrains the number
of items in the sequence. The cardinality may be zero-or-one, exactly-one, zero-or-more, or one-or-more.

SERIALIZATION (XSLT)
Serialization is the reverse of parsing: it takes a document represented as a tree in the XPath data model, and
converts it into a lexical XML document.

SIMPLE TYPE (SCHEMA)
A simple type in XML Schema describes values that can be written as text, with no embedded markup.
Simple types divide into atomic types, list types, and union types. Attributes always have a simple type;

500

Glossary

the content of an element may be either a simple or a complex type. XML Schema defines a number of
built-in simple types, but further simple types can be defined in a user-written schema.

STATIC CONTEXT (XPATH)
The static context of an XPath expression is the total collection of information available to the XPath engine
at compile time. This includes the namespace declarations that are in scope, the names and types of declared
variables, the base URI of the expression, and the collations that are available.

STATIC ERROR (XPATH)
A static error is an error detected during the analysis phase, that is, at compile time.

STATIC TYPE (XPATH)
Every expression (and subexpression) has a static type. This is a sequence type, representing the best
possible inference that can be made about the dynamic type of the value that will be returned when the
expression is evaluated. For example, the static type of the expression «@*» might be «attribute()*».
In an XPath processor that implements strict static typing, a type error will be reported if the
static type of an expression is not a subtype of the type required by the context in which the expression
is used.

STEP (XPATH)
A step is used within a path expression to navigate from one node to a sequence of related nodes. The most
common kind of step is an axis step, which is defined by an axis, giving the direction of navigation, a
node test, which defines constraints on the type of and names of the target nodes, and zero or more
predicates, which define arbitrary constraints that the target nodes must satisfy.

STRING (XPATH)
One of the allowed data types for the value of an XPath expression. It is a sequence of zero or more
Unicode characters (the same character set as is used in XML).

STRING VALUE (XPATH)
Every node has a string value. For a text node the string value is the textual content; for an element it
is the concatenation of the string values of its descendant text nodes (that is, the textual content of the
element after stripping all markup). The string value of a node can be obtained using the string()
function.

501

Glossary

TEXT NODE (XPATH)
A node in a tree representing character data (called PCDATA in XML) within an XML document. Adjacent
text nodes will always be merged into a single node. Character references and entity references occurring
within the original text will have been replaced by their expansions.

TREE (XPATH)
An abstract data structure representing the information content of an XML document. The tree always has
a single root node (which contrary to the botanical analogy, is always depicted at the top). The structure of
nodes in the tree need not follow the rules for a well-formed document in XML, for example, there may be
several element nodes as children of the root. In XPath 2.0 the root of a tree need not be a document node. It is
possible to have an element node as the root. It is also possible for any other kind of node (for example, an
attribute node) to be parentless, in which case it acts as the root of a tree in which it is the only node.

TYPE (XPATH)
In the context of XPath values, the term type means sequence type. In the context of nodes validated
against a schema, it means schema type.

TYPE ANNOTATION (XPATH)
Every element node and attribute node has a type annotation. The type annotation identifies a schema type,
which may be a simple type or a complex type. Type annotations are added to nodes as a consequence of
validation against a schema. An element node that has not been validated against any schema is annotated
with the special type xdt:untyped, while an attribute node that has not been validated is annotated as
xdt:untypedAtomic.

TYPE DEFINITION (SCHEMA)
A type definition is a schema component that defines a simple type or a complex type.

TYPED VALUE (XPATH)
The typed value of a node is in general a sequence of atomic values. It represents the result of analyzing the
textual content of the node against the schema definition for that node, during the process of validation.

TYPE ERROR (XPATH)
A type error occurs when the value used as input to some operation is not of the type required by that
operation: for example, when a string is used as an argument to an arithmetic operator. Type errors may
be detected either at compile time or at runtime. A system that implements strict static type checking will
report type errors at compile time pessimistically: that is, it will report an error if there is any possibility
that the runtime value will have the wrong type.

502

Glossary

UNPARSED ENTITY (XML)
An unparsed entity is an entity declared in the document type definition with an associated notation. Such
entities are unparsed because they generally contain binary data such as images, rather than XML. Two
functions, unparsed-entity-uri() and unparsed-entity-public-id() are available in XSLT to
access the unparsed entities associated with a source document. However, it is not possible to create
unparsed entities in a result document.

UNION TYPE (SCHEMA)
A union type is a simple type that allows a choice of alternatives. For example a union type might allow an
attribute to contain either a decimal value, or the string "N/A".

URI (RFC 2396)
Uniform Resource Identifier: a generalization of the URLs (Uniform Resource Locators) used to uniquely
address resources such as Web pages on the Internet.

VARIABLE (XPATH)
A named value. Variables in XPath and XSLT differ from variables in procedural programming language
in that there is no assignment statement.

VARIABLE REFERENCE (XPATH)
A reference to a variable within an expression, in the form $name.

WELL-BALANCED (XML FRAGMENT INTERCHANGE)
An XML fragment is well-balanced if there is an end tag that matches every start tag. This is a less strict
constraint than being well-formed: a well-balanced fragment does not have to have a single element that
encloses all the others. XSLT and XPath are defined so they will work on any trees representing a
well-balanced XML fragment. The XML and XSLT standards don’t use this terminology; instead they
refer to the rules for an external general parsed entity.

WELL-FORMED (XML)
A document is well-formed if it follows the syntax rules in the XML specification. These include the rule
that there must be a single outermost element that encloses all others. The XML output of an XSLT
stylesheet is not required to be well-formed, only to be well-balanced.

WHITESPACE (XML)
Whitespace is any contiguous sequence of tab, carriage return, newline, and space characters. A
whitespace node is a text node whose string value consists solely of whitespace. (The XML specification

503

Glossary

spells this as two words, white space, but I prefer a single word, because using white as an adjective
suggests that white space is to be contrasted with red space and green space, which of course is not the
case.)

XPATH 1.0 COMPATIBILITY MODE (XPATH)
A mode of executing XPath 2.0 expressions that attempts to provide the maximum possible level of
backwards compatibility with XPath 1.0. In XSLT, this mode is selected by specifying «version="1.0"»
in the stylesheet.

504

In
de

x

Index

SYMBOLS
«!=» operator precedence, 467
«#» character, 339
«$» token, 460
«%» character, 339
«*» notation for repetition, 461
«*» operator

as multiplicative operator, 170
effect, 151
precedence, 467

«,» operator
effect, 150
for sequence construction, examples of, 242
for sequence manipulation, 239, 240
in XPath expressions, 240
precedence, 467
sequence concatenation operator, 239, 240

«..»
abbreviation, 227
in path expressions, 226

«.» character in regular expressions
as metacharacter, 449, 450
as normal character, 449

«.» expression, 226
«//» abbreviation, 226, 228
«//» operator

precedence, 468
with «/descendant::», 230

«/» operator
as path operator, 208, 210
as root expression, 204, 205
associativity in path expressions, 210
in relative path expressions, 208
precedence, 468

«::»
in path expressions, 226
token, 459

«?» in BNF notation, 461
«@» abbreviation, 226, 227
«[]» operator precedence, 468
«[» character, 339, 451
«\» character, 451
«]» character, 339, 451
«|» operator

for combining sets of nodes, 234
precedence, 467

«+»
operator (binary), 467
operator effect, 151
operator (unary) precedence, 468
token, 460

«<<» operator for node comparison, 197
«<=» operator, 188, 467
«<» operator

handling, 90, 188
precedence, 467

«=» operator
for sequence processing, 24
precedence, 467
quantification and, 257

«>=» operator, 188, 467
«-» operator (unary) precedence, 468
«>» operator

handling, 90, 188
precedence, 467

«>>» operator
for node comparison, 197
precedence, 467

delimiters
«<!--», 37
«-->», 37

general comparison operators
«!=», 188
«<=», 188
«<», 188
«=», 188
«>=», 188
«>», 188

metacharacters
«$», 449, 450
«.», 449, 450
«ˆ», 449, 450

multicharacter escape
«\c», 452
«\C», 453
«\d», 452
«\D», 453
«\i», 452
«\I», 453
«\s», 452
«\S», 453
«\w», 453
«\W», 453

«*»

«*»
as multiplication operator, 151, 170, 461
as occurrence indicator, 278
as regex quantifier, 449
as wildcard, 222, 223, 461
in syntax rules, 461

«+»
as binary addition operator, 151, 171, 467
as occurrence indicator, 278
as regex quantifier, 449
as unary addition operator, 151, 171, 468

«?»
as occurrence indicator, 278
as regex quantifier, 449
in syntax rules, 461
to match nillable elements, 282

«-»
as binary minus operator, 151, 171, 467
as unary minus operator, 151, 171, 468
in regular expressions, 450, 451
distinguishing minus from hyphen, 170,

461
operators in XPath 2.0

«!=», 188
«<<», 197
«<=», 188
«<», 188
«=», 188
«>=», 188
«>», 188
«>>», 197

quantifier symbols
«*», 449
«?», 449
«+», 449

single character escape
«\\», 452
«\n», 452
«\r», 452
«\t», 452

A
abbreviations

«..», 227
«//», 228
«@», 227

AbbrevReverseStep syntax,
463

abs() function
argument, 296
changes in XPath, 296
effect, 296
examples, 297

absolute paths
errors in, 206
examples, 207

AdditiveExpr syntax, 462
adjust-dateTime-to-timezone() function

defined, 297
effect, 297
examples, 298, 299
usage, 300

adjust-date-to-timezone() function
defined, 297
effect, 297
examples, 298, 299
usage, 300

adjust-time-to-timezone() function
argument, 297
data type, 297
effect, 297
examples, 298, 299
usage, 300

ancestor axis
defined, 215
diagram, 217

ancestor-or-self axis
defined, 216
diagram, 217

«and» operator
precedence, 467
XPath 2.0 syntax, 198, 459

«and» token, 460
AndExpr syntax, 198, 462
annotated node, 261
AnyKindTest

expression, 280
syntax , 465

anyURI, type casting rules, 79, 265
API, DOM level 3, 22
API, XPath, 21, 22
argument

and occurrence indicator, 161,
295

changes in XPath 2.0, 162
name, 294
notation, 294
types, 160

arguments conversion
in 1.0 mode, 295
in 2.0 mode, 295

arithmetic operators
cast as, 170
changes in XPath 2.0, 171
division, 170
multiplicative, 170
numeric types

506

attributes matching. See also elements matching

In
de

x

xs:decimal, 169, 171
xs:double, 169, 171
xs:float, 169, 171
xs:integer, 169, 171

rules for, 172
type promotion, 170
unary, 170

arithmetic using durations
date/time minus date/time, 179
date/time plus duration, 177
date/time types, 176, 177
duration divided by duration, 180
duration plus duration, 178
duration times number, 178
duration types, 176, 177

arithmetic using numbers. See numeric
arithmetic

associativity of «/» operator, 210
atom constructs (regular expressions)

Char, 449
charClass, 449
charClassExpr, 449

atom, defined (regular expressions), 449
atomic types

built-in, 77, 78
in XML Schema type hierarchy, 105
in XPath type hierarchy, 106
in XPath, use of, 78
primitive, 31, 77
xdt:anyAtomicType, 279
xdt:untypedAtomic, 279

atomic types, built-in
derived numeric, 78, 97
derived string, 78, 100
major, 78
minor, 78, 93
xdt:untypedAtomic, 78, 103

atomic types, primitive
xs:anyURI, 31, 93, 265
xs:base64Binary, 31, 93, 94, 265
xs:hexBinary, 31
xs:boolean, 31, 93, 266
xs:date, 31, 93, 266
xs:dateTime, 31, 93, 267
xs:decimal, 31, 93, 268
xs:double, 31, 93, 269
xs:duration, 31, 93, 95, 270
xs:float, 31, 93, 95, 271
xs:gDay, 31, 93, 272
xs:gMonth, 31, 93, 272
xs:gMonthDay, 31, 93, 272
xs:gYear, 31, 93, 272
xs:gYearMonth, 31, 93, 273
xs:NOTATION, 31, 93, 95, 273

xs:QName, 31, 93, 273
xs:string, 31, 93, 274
xs:time, 31, 93, 275

atomic values
atomization process, 31
built-in types, 30
matching of, 278
primitive types, 30
simple types, 41
XPath operations on, 2

atomic values, type casting
between derived types, 276
between primitive types, 264
overview, 262

atomic values, properties of
type label, 31
value, 31

atomic values, types of
boolean, 2, 31
dates, 2
integer, 2, 31
string, 2, 31
times, 2

AtomicType
syntax, 464
type casting in, 263

atomization
and data() function, 320, 321
defined, 108, 262
performing «cast as» operator, 263
performing «castable as» operator, 263

atomized operands, 187, 190
attribute declarations, 119
attribute declarations, global, 283
attribute node

defined, 37
matching rules, 283
name, 39
simple types of, 42
string value for, 40
typed value of, 41

AttributeName syntax, 465
AttributeNameOrWildcard syntax, 465
attributes matching. See also elements

matching
attribute tests, 283
examples, 284, 285
for AttribNameOrWildcard expression, 282
for AttributeName expression, 282
for BasicAttributeTest expression, 282
for SchemaAttributeTest expression, 284
rules, 283
syntax for, 281
using global attribute declarations, 283

507

AttributeTest syntax

AttributeTest syntax, 464
avg() function

argument, 301
data type, 301
effect, 301
examples, 302

axis
defined, 215
in step expressions, 213
name in step, 226
names, 459

axis diagram
ancestor, 217
ancestor-or-self, 217
child, 218
descendant, 218
descendant-or-self, 218
following, 218
following-sibling, 219
parent, 219
preceding, 219
preceding-sibling, 219
self, 220

axis types
ancestor, 3, 215
ancestor-or-self, 215, 216
attribute, 3, 215, 216
child, 3, 215, 216
descendant, 3, 215, 216
descendant-or-self, 215, 216
following, 215, 216
following-sibling, 215, 216
namespace, 215, 216
parent, 215, 216
preceding, 215, 217
preceding-sibling, 215, 217
self, 215, 217

AxisStep expression
syntax, 463
with positional predicates, 233

B
backReference, defined, 453
backward compatibility, maintainability of, 9,

Appendix C
base URI

for document node, 44
for element node, 44
for namespace node, 44
for processing instruction node, 44
for text node, 44
for XPath data model, 43

overview, 125
using base-uri() function, 44

base64Binary data type, casting rules for,
265

base-uri() function
argument, 303
changes in 2.0, 302
data type, 303
effect with input-node, 303
effect without input-node, 303
examples, 303
usage, 303

BasicAttributeTest syntax, 464
BasicElementTest syntax, 464
binary data types, XML Schema

xs:base64Binary, 94
xs:hexBinary, 94

boolean data type, type casting rules for, 266
boolean expressions

AndExpr, 198
examples, 199
OrExpr, 198
syntax for, 198

boolean functions
boolean(), 292, 304
false(), 292, 343
not(), 292, 391
true(), 292, 439

boolean operators
«and», 198
conjunction operator, 150
disjunction operator, 150
«or», 198

boolean predicates, 232, 245
boolean() function

argument, 304
changes in 2.0, 304
data type, 304
effect, 304
examples, 305
expressions, 305
usage, 305
XSLT examples, 306

branch construct. See also piece construct
(regular expressions)

defined, 448
syntax, 448

built-in atomic datatypes. See atomic types,
built-in

C
Canonical XML, 54, 55
cardinality, 261

508

CommentTest

In
de

x

«cast as» operator
as type operator, 151
precedence, 468
syntax, 262

«castable as» operator
as type operator, 151
precedence, 467
syntax, 262

CastableExpr syntax, 262, 462
CastExpr syntax, 262, 462
casting. See type casting
casts. See type casts
category escape, defined, 453
CDATA section, 56
ceiling() function

argument, 306
changes in 2.0, 306
data type, 306
effect, 307
examples, 307
usage, 307

character blocks
name, 453, 454
range, 453, 454

character categories
c (others), 456
L (letters), 455
M (marks), 456
N (numbers), 456
P (punctuation), 456
S (symbols), 456
Z (separators), 456

character class, 449, 450
character class escape constructs

backReference, 451
Category, 452
catEsc, 451
charClassEsc, 451
charProp, 452
complEsc, 451
IsBlock, 452
MultiCharEsc, 451
SingleCharEsc, 451

character class escapes
back references, 452, 453
category, 452, 453
complementary, 452, 453
multicharacter, 452, 453
single character, 452

character groups
negative group, 450
positive group, 450
subtraction group, 450
syntax for, 450

character groups constructs
charClassSub, 450
charGroup, 450
negCharGroup, 450
posCharGroup, 450

character mapping, 58
character range

defined, 450, 451
syntax for, 450

character range constructs
charOrEsc, 451
charRange, 451
codepointRange, 451
SingleChar, 451

characters in data model, 52
child axis

defined, 216
diagram, 218

child nodes, 44
closure principle, 4, 27
codepoint range, defined, 451
codepoints-to-string() function

argument, 308
changes in 2.0, 308
data type, 308
effect, 308
examples, 308
usage, 308

collations
default, 124, 326
overview, 123

collection() function
argument, 309
changes in 2.0, 309
data type, 309
effect, 309
working of, 131, 132

comma operator, 240, 241
comment node

defined, 37
matching, 280
name, 39
string value for, 40
typed value of, 41

comments construct
changes in XPath 2.0, 142
«comment()», 280
ExprComment expression, 142
ExprCommentContent expression,

142
comments syntax, 141
CommentTest

expression, 280
syntax for, 465

509

compare() function

compare() function
argument, 310
changes in 2.0, 310
data type, 310
effect, 311
examples, 311
usage, 311

comparison operator types
general comparison, 188
value comparison, 181

ComparisonExpr syntax, 462
compatibility mode

in arithmetic expression, 117
in function call, 116, 117
in general comparison, 117
XPath 1.0, 116, 469
XSLT processors, 116

compatibility, schema-aware, 473
complementary escape, defined, 453
complex type. See also simple type

elements, 65
with complex content, 66
with simple content, 66

composability
closure principle, 27
feature of XPath expression, 27
integration with XML Schema, 4
principle of closure, 4
XQuery, 19
XSLT, 19

concat() function
argument, 312
changes in 2.0, 312
data type, 312
effect, 312
examples, 313
for string handling, 90
usage in XSLT, 313

concatenation operator
for sequence manipulation, 239, 250
sequence concatenation operator, 239, 240

conditional expressions
changes in XPath 2.0, 166
construct, 165
examples, 167
if..then..else, 165
IfExpr expression, 165, 462
syntax, 165

constructs for sequence manipulation. See also
XPath constructs

«every» expression, 239, 254
filter expressions, 239, 244
«for» expression, 247
numeric range operator («to»), 239, 242

sequence concatenation operator («,»), 239,
240

«some» expression, 239, 254
constructs, disallowed, 457
contains() function

argument, 314
changes in 2.0, 314
data type, 314
effect, 314
examples, 316
usage, 316

context information returning functions
base-uri(), 294
collection(), 294
current-date(), 294
current-dateTime(), 294
current-time(), 294
default-collation(), 294
doc(), 294
implicit-timezone(), 294
last(), 294
position(), 294

context item expressions
changes in XPath 2.0, 157
ContextItemExpr, 156, 463
syntax, 156
usage, 157

context item, defined, 245
context node, 126, 127
context position, 245
context size, 245
ContextItemExpr expression syntax, 156, 463
CORBA IDL interface, 22
count() function

argument, 316
changes in 2.0, 316
data type, 316
effect, 316
examples, 317
usage, 317

current date and time functions
current-date(), 129, 318
current-dateTime(), 129, 318
current-time(), 129, 318

current-date() function
changes in 2.0, 318
data type, 319
effect, 319
examples, 319
usage, 319

current-dateTime() function
changes in 2.0, 318
data type, 319
effect, 319

510

derived numeric types

In
de

x

examples, 319
usage, 319

current-time() function
changes in 2.0, 318
data type, 319
effect, 319
examples, 319
usage, 319

D
data model for representing XML documents

attributes, 5
comments, 5
document nodes, 5
elements, 5
namespace nodes, 5
processing instructions, 5
text nodes, 5
type annotation, 5

data model of XPath 2.0
atomic values, 2, 30
nodes and trees, 33
sequences, 2, 28
trees, 2

data() function
argument, 320
atomization process, 320, 321
changes in 2.0, 320
data type, 320
effect, 320
examples, 321
for obtaining typed node value, 41
usage, 321

database query language
optimization aspects, 20
strongly typed language concerns, 20

datatypes in XML Schema. See XML Schema
datatypes

date and time functions
adjust-dateTime-to-timezone(), 293, 297
adjust-date-to-timezone(), 293, 297
adjust-time-totimezone(), 293, 297
adjust-time-to-timezone(), 297
current-date(), 293
current-dateTime(), 293
current-time(), 293
implicit-timezone(), 293

date/time data types
arithmetic operations on, 177, 179
casting rules for, 266, 267
xs:date, 177
xs:dateTime, 176, 177
xs:time, 176, 177

day-from-date() function
argument, 322
changes in 2.0, 322
data type, 322
effect, 322
examples, 322

day-from-dateTime() function
argument, 322
changes in 2.0, 322
data type, 322
effect, 322
examples, 322

days-from-dayTimeDuration() function
argument, 323
changes in 2.0, 323
data type, 323
effect, 323
examples, 323

dayTimeDuration data type, casting rules for,
268

decimal casting error, 480
decimal data type, casting rules for,

268
deep-equal() function

changes in 2.0, 324
defined, 323
effect, 324
examples, 325
usage, 326

default collation, 124
default namespace

for elements and functions,
119

for elements and types, 118
for functions, 119, 123
in XPath 1.0, 118
in XPath 2.0, 118
in XSLT, 119

default-collation() function
defined, 326
usage, 327

derived numeric types
xs:byte, 97
xs:int, 97
xs:long, 97
xs:negativeInteger, 97
xs:nonNegativeInteger, 97
xs:nonPositiveInteger, 97
xs:positiveInteger, 97
xs:short, 97
xs:unsignedByte, 97
xs:unsignedInt, 97
xs:unsignedLong, 97
xs:unsignedShort, 97

511

derived string types

derived string types
xs:ENTITY, 100, 102
xs:ID, 100, 102
xs:IDREF, 100, 102
xs:language, 100, 102
xs:Name, 100, 102
xs:NCName, 100, 102
xs:NMTOKEN, 100, 102
xs:normalizedString, 100, 102
xs:string, 100, 102
xs:token, 100, 102

descendant axis
defined, 216
diagram, 218

descendant-or-self axis
defined, 216
diagram, 218

diagnostic functions
error(), 294
trace(), 294

disallowed constructs, 457
distinct-values() function

defined, 327
effect, 327
examples, 328
usage, 328

«div» operator, 170, 467
division by zero error, 480
doc() function

defined, 329
examples, 331
in the evaluation context, 131,

132
usage, 331

document node
base-URI for, 44
defined, 37
matching, 280
name, 39
string value for, 40
typed value of, 41

Document Object Model. See DOM
document order, 59, 211
document() function, 131, 132
DocumentTest

expression, 280
syntax, 465

document-uri() function
defined, 332
usage, 332

DOM. See also Java; XML DOM
DOM level 3, 22
DOM4J, 22
interaction with XPath, 22

JDOM, 22
methods, 21

DOM4J, 22
double data type, casting rules for, 269
DTD for XHTML, 70
duplicates, 211
duration functions

days-from-duration(), 293
hours-from-duration(), 293
minutes-from-duration(), 293
seconds-from-duration(), 293
subtract-dates-yielding-dayTimeDuration(), 293
subtract-dates-yielding-yearMonthDuration(),

293
years-from-duration(), 293

durations data types
arithmetic operations on, 178, 180
type casting rules for, 270
xdt:dayTimeDuration, 176
xdt:yearMonthDuration, 176, 177

dynamic error, 258, 476, 479
dynamic evaluation context

documents and collections, 131
dynamic variables, 129
focus, 126
function implementations, 129

dynamic type checking, 110, 111
dynamic typing, 62
dynamic variables, 129

E
effective boolean value, 117, 243, 255, 257,

304
element declarations in schema

as schema component, 119
for elements with attributes, 65
for elements with element-only content, 67
for elements with mixed content, 66
for elements with simple content, 65
global, 283

element names, 459
element node

base-URI for, 44
defined, 37
in tree model, 35
matching, 280, 282
name, 39
non-simple types of, 42
string value for, 40
typed value of, 41

ElementName syntax, 465
ElementNameOrWildcard syntax, 465
element-only content, elements with, 66, 67

512

evaluation context, XPath

In
de

x

elements matching. See also attributes
matching

examples, 284, 285
for BasicElementTest expression, 282
for ElementName expression, 282
for ElementNameOrWildcard expression,

282
for SchemaElementTest expression,

284
for TypeName expression, 282
rules, 282
syntax for, 281
using global element declarations, 283

ElementTest syntax, 464
embedded language feature of XPath,

23
«empty()» construct, 278
empty() function

defined, 333
effect, 333
examples, 333
usage, 334

empty-element tag, 37
ends-with() function

defined, 334
effect, 335
examples, 335
usage, 335

ENTITIES as non atomic data types,
104

«eq» operator
in XPath 2.0, 6
precedence, 467

«eq» operator definition for data types
numeric, 183
xs:anyURI, 184
xs:base64Binary, 184
xs:boolean, 183
xs:date, 183
xs:dateTime, 183
xs:duration, 184
xs:gDay, 183
xs:gMonth, 183
xs:gMonthDay, 183
xs:gYear, 183
xs:gYearMonth, 183
xs:hexBinary, 184
xs:NOTATION, 184
xs:QName, 184
xs:string, 182
xs:time, 183

error() function
defined, 336
effect, 336

examples, 336
usage, 337

errors
dynamic, 258
in «every» expression, 258
in «some» expression, 258
runtime, 258

errors in functions and operators
FOAR0001, 480
FOAR0002, 480
FOCA0001, 480
FOCA0002, 480
FOCA0003, 481
FOCA0004, 481
FOCA0005, 481
FOCH0001, 481
FOCH0002, 481
FOCH0003, 481
FOCH0004, 481
FODC0001, 482
FODC0004, 482
FODC0005, 482
FODT0001, 482
FODT0002, 482
FONC0001, 483
FONS0003, 483
FONS0004, 483
FONS0005, 483
FORG0001, 483
FORG0002, 483
FORG0003, 484
FORG0004, 484
FORG0005, 484
FORG0007, 484
FORG0009, 484
FORX0001, 484
FORX0002, 484
FORX0003, 485
FORX0004, 485
FOTY0011, 485
FOTY0012, 485

escapes (regular expressions)
backReference, 453
category, 453
complementary, 453
multicharacter, 452
single character, 452

escape-uri() function
defined, 337
examples, 338
usage, 338

evaluation context, XPath
dynamic, 126
static, 115

513

«every»

«every»
keyword, 460
operator precedence, 467

«every» expression
as quantified expression, 239
as universal quantifier, 255
errors in, 258
examples, 257
for sequence manipulation, 254
with «for» expression, 255

exactly-one() function
defined, 340
examples, 340
usage, 341

«except» operator
for nodes combining, 234
in XPath 1.0, 237
in XPath 2.0, 6
precedence, 467

existential quantifier. See «some» expression
exists() function

defined, 341
examples, 341
usage, 342

expanded QName, 39, 48. See also lexical
QName

expanded QName, parts of
local, 39
namespace URI, 39

expanded-QName() function
defined, 342
examples, 343
usage, 343

Expr expression, 136, 240, 461
expression compatibility mode, 117
expression contruct

AdditiveExpr, 138
AndExpr, 138
CastableExpr, 138
CastExpr, 138
ComparisonExpr, 138
example, 137, 139
Expr, 137
ExprSingle, 137
ForExpr, 137
IfExpr, 137
InstanceOfExpr, 138
IntersectExceptExpr, 138
MultiplicativeExpr, 138
OrExpr, 137, 138
PathExpr, 138
QuantifiedExpr, 137
RangeExpr, 138
syntax for, 136, 137

TreatExpr, 138
UnaryExpr, 138
UnionExpr, 138

expression language, 1, 2
expressions using arithmetic operators

AdditiveExpr, 170
MultiplicativeExpr, 170
UnaryExpr, 170

ExprSingle expression, 240, 461
Extensible Stylesheet Language. See XSL

F
false() function

defined, 343
usage, 344
XSLT example, 344

filter expressions
defined, 244
examples, 246
FilterExpr, 244
for sequence manipulation, 239, 244
predicate, 244
rules for, 244, 245

filter expressions, predicates evaluation in
context item, 245
context position, 245
context size, 245

FilterExpr expression, 244, 246, 247, 463
float data type, casting rules for, 271
floor() function

defined, 344
examples, 345
usage, 345

focus, 126, 127
following axis

defined, 216
diagram, 218

following-sibling axis
defined, 216
diagram, 219

«for»
keyword, 460
operator precedence, 467

«for» expression
as mapping expression, 239
for combining multiple sequences, 250
for sequence manipulation, 239, 247
for sequence mapping, 248
ForExpr, 247
syntax, 247
usage in XMLSpy, 252
VarName, 247

514

hours-from-duration() function

In
de

x

ForExpr syntax, 461
ForwardAxis syntax, 464
ForwardStep syntax, 463
fragment identifiers

HTML, 19
in URIs, 18

full path expressions
«/», 204, 205
absolute paths, 206
RelativePathExpr, 204
syntax, 204

function call expression
Argument, 158
ExprSingle, 158
FunctionCall, 158
FunctionName, 158
syntax, 158

function implementations in dynamic context
current date and time, 129
timezones, 130

function names, 292, 459
FunctionCall syntax, 158, 463
FunctionName syntax, 463
functions argument. See argument
functions definitions, 296
functions for aggregating sequences

avg (), 6, 293
count (), 6, 293
max (), 6, 293
min(), 6, 293
sum (), 6, 293

functions for handling strings
concat(), 90, 292
contains(), 90, 292
ends-with(), 6, 90, 292
lower-case(), 90, 292
matches(), 91, 292
normalize-space(), 90, 292
normalize-unicode(), 90, 292
replace(), 91, 292
starts-with(), 90, 292
string-join(), 90, 292
string-length(), 90, 292
substring(), 90, 293
substring-after(), 90, 293
substring-before(), 90, 293
tokenize(), 91, 293
upper-case(), 90, 293

function name
default namespace, 123
local name, 123
namespace URI, 123

functions on
QNames, 293

sequences, 293
URIs, 293

functions, side effects, 163
functions, types of

aggregation, 293
asserting static type, 294
boolean, 292
date and time, 293
diagnostic, 294
duration, 293
for finding nodes, 294
numeric, 292
returning context information, 294
returning properties of nodes, 293
string, 292

G
gDay data type, casting rules for, 272
GEDCOM specification, 69
«ge» operator

in XPath 2.0, 6
precedence, 467

general comparisons. See also value
comparisons

changes in XPath 2.0, 189
comparison with value comparisons,

189
compatibility concerns, 189
examples of, 195
rules for, 190

GeneralComp expression syntax, 462
global element declarations, 283
gMonth data type, casting rules for,

272
gMonthDay data type, casting rules for,

272
«gt» operator, 6
gYear data type, casting rules for, 272
gYearMonth data type, casting rules for,

273

H
hexBinary data type

encoding, 94
type casting rules for, 273

host language, 115, 118, 120
hours-from-dateTime() function

defined, 346
examples, 346

hours-from-duration() function
defined, 347
examples, 347

515

hours-from-time() function

hours-from-time() function
defined, 346
examples, 346

HTML
and XPointer, 18
fragment identifier, 19
URI, 18

hyperlinking standard. See XLink

I
i18n specification, 8
id() function

and validation, 349
defined, 347
effect, 348
examples, 349
usage, 349

ID value, 50
«idiv» operator

in XPath 2.0, 6, 170
precedence, 467

IDREF attribute, 51
idref() function

and validation, 351
defined, 350
example, 351

IDREFS
as non atomic data types, 104
attributes, 51

«if»
as conditional expression, 6, 165
keyword, 459
operator precedence, 467

«if..then..else» construct, 165
IfExpr syntax, 165, 462
implicit-timezone() function

defined, 352
example, 352

index-of() function
defined, 353
examples, 354

InfoSet
canonical XML, 55
interaction with XPath, 16
PSVI, 17

InfoSet information items classification
core, 54
non-core, 54

in-scope
functions, 122
namespaces, 117
schema definitions, 119
variables, 121

in-scope-prefixes() function
defined, 354
examples, 355
usage, 355

insert-before() function
defined, 356
examples, 356
usage, 357

instance of a sequence, 261
«instance of» expressions

examples of, 288
syntax for, 280
use of, 288

«instance of» operator
as type operator, 151
in type casting, 287, 288
precedence, 467
sequence type descriptors and, 277

InstanceOfExpr
expression, 287
syntax, 462

integer casting error, 481
integer division operator, 6
International Resource Identifier. See IRI
internationalization specification, 8
interoperability, 8
«intersect» operator

for nodes combining, 234, 236, 237
in XPath 2.0, 6
precedence, 467

IntersectExceptExpr syntax, 462
IRI, 17. See also URI
«is» operator

for node comparison, 196
in XPath 2.0, 6

«item()» symbol, 278
item type, defined, 261
ItemType expression

for atomic types matching, 278
for nodes matching, 279
syntax for, 464

J
Java

API standards, 22
interaction with XPath, 21, 22
interface, 22
optimization concerns, 20
strongly typed language, 20

Java API for XML processing. See JAXP 1.3, 22
Java Community Process, 22
JAXP 1.3, 22
JDOM, 22

516

month-from-dateTime() function

In
de

x

K
kind tests

construct for node matching, 279
examples, 225
overview, 224
usage, 225

KindTest expression, syntax for
AnyKindTest, 224
CommentTest, 224
DocumentTest, 224
PITest, 224
TextTest, 224

L
lang() function

defined, 357
examples, 358
usage, 359

language errors. See XPath language errors
last() function

defined, 359
usage, 360, 361

«le» operator
in XPath 2.0, 6, 181
precedence, 467

lexical constructs
comments, 141
overview, 140
whitespace handling, 141

lexical QName, 39, 48, 49. See also expanded
QName

lexical QName expression, parts of
local, 39
prefix, 39

lists of union type, 42
literal syntax, 463
local-name() function

defined, 363
examples, 364
usage, 364
xslt example, 365

local-name-from-QName() function
defined, 365
examples, 366

logic, predicate, 23
lower-case() function

defined, 366
examples, 367
usage, 367

«lt» operator
in XPath 2.0, 6, 181
precedence, 467

M
major atomic types

xdt:dayTimeDuration, 92
xdt:yearMonthDuration, 92
xs:anyURI, 79
xs:boolean, 80
xs:date, 80
xs:dateTime, 82
xs:decimal, 83
xs:double, 83
xs:integer, 86
xs:QName, 87
xs:string, 89
xs:time, 91

mapping
expression, 3, 30, 239
of sequence, 248

matches() function
defined, 368
examples, 369
option effect, 369
usage, 370

max() function
defined, 370
examples, 371
usage, 371

min() function
defined, 371
examples, 372

minor atomic types
binary, 94
partial, 93
single-precision floating point,

95
xs:duration, 95
xs:NOTATION, 95

minutes-from-dateTime() function
defined, 373
examples, 373

minutes-from-duration() function
defined, 374
examples, 374

minutes-from-time() function
defined, 373
examples, 373

mixed content, elements with, 66
«mod» operator, 170, 467
month-from-date() function

defined, 374
examples, 375

month-from-dateTime() function
defined, 374
examples, 375

517

months-from-duration() function

months-from-duration() function
defined, 375
examples, 376

multicharacter escape, defined, 452
MultiCharEsc expression, defined, 452
multiplicative operators

«*», 170
div, 170
idiv, 170
mod, 170

MultiplicativeExpr syntax, 462

N
name() function

defined, 376
effect, 377
examples, 379
usage, 377

names constructs
examples, 147
LocalPart, 146
NCName, 146
NCNameChar, 146
Prefix, 146
QName, 146
syntax for, 146
XSLT usage, 148

names of nodes
attributes, 39
comment, 39
document, 39
elements, 39
namespace, 39
processing instruction, 39
text, 39

namespace declaration
default, 39
for namespace prefix, 18, 46, 47
for namespace URI, 46, 47

namespace node
base-URI for, 44
defined, 38
typed value of, 41

namespace prefix
declaration, 18, 46, 47
xdt, 32
xs, 32

namespace sensitive content, 49
namespace URI, 39, 46, 47
namespaces

axis, 50
default, 118
in data model, 48

in-scope, 117
IRI, 17
of node, 45
URI, 17, 46, 47
XML Namespaces 1.1, 18

namespace-uri() function
defined, 379
examples, 380
usage, 380

namespace-uri-for-prefix() function
defined, 381
examples, 382

namespace-uri-from-QName() function
defined, 382
examples, 383

NameTest expression
defined, 221
examples, 223
syntax, 222, 464
usage, 222

«ne» operator
in XPath 2.0, 6, 181
precedence, 467

«ne» operator definition for data types
numeric, 183
xs:anyURI, 184
xs:base64Binary, 184
xs:boolean, 183
xs:date, 183
xs:dateTime, 183
xs:duration, 184
xs:gDay, 183
xs:gMonth, 183
xs:gMonthDay, 183
xs:gYear, 183
xs:gYearMonth, 183
xs:hexBinary, 184
xs:NOTATION, 184
xs:QName, 184
xs:string, 182
xs:time, 183

negative group, defined, 450
nilled() function

defined, 383
examples, 384
usage, 384

NMTOKENS data type, 104
node

attributes, 44
comparison operators, 196, 197
namespaces, 45
tests, 212
type annotation, 42

«node()» construct, 280

518

numeric functions

In
de

x

node names
expanded QName, 39
lexical QName, 39

node types
attribute, 37
comment, 37
document, 37
element, 37
namespace, 38
processing instruction node, 37
text, 37

NodeComp expression syntax, 462
node-name() function

defined, 384
examples, 385
usage, 386

nodes combining expressions
examples of, 236
IntersectExceptExpr, 235
UnionExpr, 235

nodes combining operators
«except», 234, 237
«intersect», 234, 236
syntax for, 235
«union», 234
usage, 236

nodes, finding
collection(), 294
doc(), 294
id(), 294
idref(), 294
root(), 294

nodes, matching
of comment node, 280
of document node, 280
of element node, 280
of processing instruction node, 281
of text node, 280
using ItemType construct, 279
using KindTest construct, 279

nodes, matching expressions
AnyKindTest, 280
CommentTest, 280
DocumentTest, 280
KindTest, 280
PITest, 280
syntax for, 280
TextTest, 280

nodes, properties
base-uri (), 293
data(), 293
document-uri(), 293
in-scope-prefixes(), 293
lang(), 293

local-name(), 293
name(), 293
namespace-uri(), 293
namespace-uri-for-prefix(), 293
nilled(), 293
node-name(), 293
root(), 293
string(), 293

node-sets
combining, 234
comparisons, 192
difference, 237
intersection, 237
operators, 234

NodeTest
construct, 3, 220
syntax, 220, 464

NodeTest construct
examples, 221
KindTest, 220, 224
NameTest, 220, 221
overview, 3, 220
syntax, 220, 464
usage, 220

normal character, defined, 449
normalize-space() function

defined, 386
examples, 387
usage, 387, 388

normalize-unicode() function
defined, 388
examples, 389
usage, 389

not() function
defined, 391
usage, 392
XSLT Examples, 392

NOTATION data type, casting rules for, 273
number() function

defined, 393
examples, 394
usage, 394

numeric arithmetic
decimal, 174
floating-point, 174
integer, 173

numeric functions
abs(), 292, 296
avg(), 292, 301
ceiling(), 292, 306
floor(), 292, 344–345
max(), 292, 370–371
min(), 292, 371–372
number(), 292, 393–395

519

numeric functions (continued)

numeric functions (continued)
round(), 292, 409–411
sum(), 292, 431–432

numeric literal constructs
DecimalLiteral, 142
Digit, 142
DoubleLiteral, 142
IntegerLiteral, 142

numeric literals
changes in XPath 2.0, 144
examples, 144
syntax for, 142, 463

numeric overflow/underflow error, 480
numeric predicate, 232
numeric range operator, 239, 242
NumericLiteral syntax, 142, 463

O
OccurrenceIndicator

expression, 278
syntax, 464

one-or-more() function
defined, 395
examples, 396
usage, 396

operator precedence, 150, 467
operators families

arithmetic, 169
boolean, 169, 198
general comparison, 169
node comparison, 169, 196
sequences comparing, 191
value comparison, 169, 181

operators ordering comparison. See ordering
comparison

optimization concerns of XPath type system, 62
«or» operator precedence, 467
ordering comparison

between nodes, 150
between sequences, 150
between single values, 150

ordering definition for data types
numeric, 185
xdt:dayTimeDuration, 186
xdt:yearMonthDuration, 186
xs:anyURI, 186
xs:base64Binary, 186
xs:boolean, 185
xs:date, 185
xs:dateTime, 185
xs:duration, 186
xs:gDay, 186
xs:gMonth, 186

xs:gMonthDay, 186
xs:gYear, 186
xs:gYearMonth, 186
xs:hexBinary, 186
xs:NOTATION, 186
xs:QName, 186
xs:string, 185
xs:time, 186

ordering of tree nodes, 59
OrExpr syntax, 462

P
parent axis

defined, 216
diagram, 219

parenthesized expressions
ParenthesizedExpr, 155
syntax, 155, 463

path expression forms
«//» RelativePathExpr, 204
«/» (root expression), 204, 205
«/» RelativePathExpr, 204
RelativePathExpr, 204

path expressions
absolute path, 206-207
examples of, 201
for expressions and, 249
full path, 204
relative path, 208

path expressions features
«//» operator with «/descendant::»,

230
«/» operator, 3
«/» operator associativity, 210
abbreviations, 226
axes, 3, 215
of XPath 2.0, 5
node tests, 220
nodes combining, 234
predicates, 230
steps, 211

path operator «/», 208, 210, 211
PathExpr expression, 202, 463
piece construct. See also branch construct

defined, 448
syntax, 448

PITest expression, 280, 465
polymorphic operations, 62
position() function

current position displaying, 398
current position testing, 398
defined, 396
usage in XSLT, 398

520

regular expression syntax for

In
de

x

positional predicates, 233
positive group, defined, 450
post schema validation infoset. See PSVI
preceding axis

defined, 217
diagram, 219

preceding-sibling axis
defined, 217
diagram, 219

Predicate expression, 230
predicate logic, 23
PredicateList expression, 230
predicates

and filter expressions, 244
boolean, 232
defined, 230
example, 231
in filter expressions, 245, 246
numeric, 232
positional, 233
syntax for, 230
with AxisStep, 230, 231, 233, 234

prefix
as lexical QName part, 39
namespace, 49

prefixed QNames, 117
primary expressions

examples of, 153
Literal, 152
NumericLiteral, 152
PrimaryExpr, 152
syntax for, 152

PrimaryExpr expression, 152, 244, 463
primitive atomic types. See atomic types,

primitive
primitive types, XML Schema

xs:base64Binary, 93, 94
xs:duration, 93, 95
xs:float, 93, 95
xs:gDay, 93
xs:gMonth, 93
xs:gMonthDay, 93
xs:gYear, 93
xs:gYearMonth, 93
xs:hexBinary, 93, 94
xs:NOTATION, 93, 95

principle of closure, 4
processing instruction node

base-URI for, 44
defined, 37
matching, 281
name, 39
string value for, 40
typed value of, 41

processors
XPath 2.0, 9
XQuery 1.0, 10
XSLT 2.0, 13

PSVI, 17, 63

Q
QName

expanded, 39, 48
lexical, 39, 48, 49
prefixed, 117
type casting rules for, 273

QNames, functions on
expanded-QName(), 293
local-name-from-QName(), 293
namespace-uri-from-QName(), 293
node-name(), 293

Qualified Name. See QName
quantified expressions

and «=» operator, 257
«every» expression, 239, 255
examples of, 257
QuantifiedExpr, 255
«some» expression, 239, 255
syntax for, 255
VarName, 255

QuantifiedExpr syntax, 462
quantifiers (in XPath)

existential, 255
universal, 255

quantifiers (in regular expressions)
indicator, 448
quantExact, 449
quantifier, 448
quantity, 448
quantMin, 449
quantRange, 448

quantity, defined, 449

R
range expressions

examples, 243
RangeExpr, 242
syntax for, 242, 462

regex construct, 448
regular expression syntax for

atoms, 449
branches and pieces, 448
character blocks, 453
character class escapes, 451
character groups, 450

521

regular expression syntax for (continued)

regular expression syntax for (continued)
character ranges, 450
quantifiers, 448

regular expressions
character categories, 455
disallowed constructs, 457
for matches() function, 368, 447
for replace() function, 400, 447
for tokenize(), function, 434, 447
for XSLT <analyze-string> instruction, 447
special characters placement in, 448
syntax rules for, 447

relative path expression
«/» operator, 208
examples, 209
RelativePathExpr, 208
ReverseAxis, 213
syntax for, 208

RelativePathExpr expression, 202, 204
RelativePathExpr syntax, 463
remove() function

defined, 399
examples, 400
usage, 400

replace() function
defined, 400
effect, 401
examples, 402
for string manipulation, 6, 91
usage, 402

reserved characters (URIs), 339
resolve-QName() function

defined, 403
examples, 404
usage, 404

resolve-uri() function
defined, 405
effect, 406
examples, 407
usage, 407

«return» keyword, 248
reverse() function

defined, 408
effect, 408
examples, 408

ReverseAxis syntax, 464
ReverseStep syntax, 463
root expression

«/», 204
errors in, 205
overview, 205
use of, 205

root() function
defined, 408

examples, 409
usage, 409

root node in tree model, 35
round() function

defined, 409
effect, 410
examples, 411
usage, 411

round-half-to-even() function
defined, 411
effect, 412
examples, 412
usage, 412

runtime errors, 20, 258

S
Saxon processor (XSLT), 15
schema components

attribute declarations, 119
element declarations, 119
in XSLT, 120
type declarations, 119

schema definitions, in-scope
top-level attribute declarations, 119
top-level element declarations, 119
top-level type definitions, 119

schema types, 261
SchemaAttributeTest

expression, 284
syntax, 465

schema-aware compatibility, 473
SchemaElementTest

expression, 284
syntax, 465

seconds-from-dateTime() function, 413
seconds-from-duration() function, 414
seconds-from-time() function, 413
self axis

defined, 217
diagram, 220

sequence concatenation operator, 150, 239, 240
sequence construction

using «to» operator, 242
using comma operator, 240

sequence constructor, 75, 285
sequence expressions, 239
sequence manipulation constructs

concatenation operator («,»), 239, 240
«every» expression, 254
filter expressions, 239, 244
«for» expression, 239, 247
numeric range operator («to»), 239, 242
«some» expression, 239, 254

522

steps

In
de

x

sequence mapping
examples, 249
«for» expression, use of, 248
«return» expression, use of, 248

sequence type
cardinality, 261
item type, 261

sequence type descriptors
«empty()» construct, use of, 278
for AtomicType expression, 277
for elements and attributes matching,

281
for ItemType expression, 277, 278, 279
for KindTest expression, 277
for OccurrenceIndicator expression, 277
for SequenceType expression, 277
«instance of» operator, use of, 277, 287
«item()» symbol, use of, 278
«treat as» operator, use of, 277, 288
syntax for, 277, 464

sequences
as data type, 5
containing nodes, 29
containing references, 29
in XPath data model, 28
nesting concerns, 239
relationships with item values, 28
type labels, 240
writing, 30
XPath operations on, 2, 30

sequences, combining multiple
example, 251
use of «for» expression, 250

sequences, comparisons
Involving Document Nodes, 193
Node-Set Comparisons, 192

sequences, items
atomic values, 28
nodes, 28

sequences, processing
«=» operator semantics, 24
implicit existential quantification, 24
XPath features, 24

sequences, functions on
count(), 293, 316-318
distinct-values(), 293, 327, 328
empty(), 293, 333-334
exists(), 293, 341
index-of(), 293, 353
insert-before(), 293, 356
remove(), 293, 399
subsequence(), 293, 422
unordered(), 293, 440

SequenceType syntax, 277, 464

serialization
controlling, 57
defined, 57

serializer, control over
CDATA sections, use of, 58
character encoding, 58
DOCTYPE declaration, 58
XML version, 58

set difference. See node-sets, difference
set intersection. See node-sets, intersection
simple type. See also complex type

definitions, 63
for attribute nodes, 42
in XML Schema, 65
typed value of, 41

single character escape, defined, 452
single character range, defined, 451
SingleCharEsc, defined, 452
SingleType

syntax, 464
type casting in, 263

«some»
keywords, 460
operator precedence, 467

«some» expression
«=» operator semantics, 257
as existential quantifier, 255
as quantified expression, 239
errors in, 258
examples, 257
for sequence manipulation, 239, 254
with «for» expression, 255

starts-with() function
defined, 415
examples, 415
usage, 416

static error, 476, 479, 480
static evaluation context

base URI, 125
collations, 123
default namespaces, 118
documents and collections, 125
in-scope functions, 122
in-scope namespaces, 117
in-scope schema definitions, 119
in-scope variables, 121
overview, 115
XPath 1.0 compatibility mode, 116

static type checking, 110, 111, 125
static typing, 62
StepExpr syntax, 463
steps

«/» operator, 212
axis name, 226

523

steps (continued)

steps (continued)
axis, 201, 212, 213
examples, 214
in relative paths, 209
node test, 201, 212, 220
overview, 211
predicates, 201, 212, 214, 230
syntax, 212

steps expressions
AxisStep, 212
ForwardAxis, 213
ForwardStep, 212
Predicate, 212
PredicateList, 212
ReverseStep, 212

string data type, casting rules for, 274
string functions

codepoints-to-string(), 292, 308
compare(), 292
concat(), 292
contains(), 292
ends-with(), 292
lower-case(), 292
matches(), 292
normalize-space(), 292
normalize-unicode(), 292
replace(), 292
starts-with(), 292
string(), 292
string-join(), 292
string-length(), 292
tokenize(), 293
upper-case(), 293

string literals
examples, 145
StringLiteral symbol, 144, 460
syntax, 144
XSLT usage, 146

string value
for attribute node, 40
for comment node, 40
for document node, 40
for element node, 40
for processing instruction node, 40
for text node, 40
in XPath 1.0, 40
in XPath 2.0, 40
using string() function, 40, 416

string() function
defined, 416
examples, 417
usage, 417, 418

string-join() function
defined, 418

examples, 419
usage, 419

string-length() function
defined, 419
examples, 420
usage, 420

string-to-codepoints() function
defined, 421
examples, 421

strong typing, 62
strongly typed language. See also weakly typed

language
database query languages, 20
Java, 20

Stylus Studio, 12
subsequence() function

defined, 422
examples, 423

substitution groups
defined, 73
Schema definition, 73
sequence constructor, 75
XSLT elements and, 74

substring() function
as conditional expression, 425
defined, 423
examples, 424
usage, 424

substring-after() function
defined, 425
examples, 426
usage, 427
XSLT example, 427

substring-before() function
defined, 427
examples, 428

subtract-dates() function
defined, 429
examples, 430
usage, 431

subtract-dateTimes() function
defined, 429
examples, 430
usage, 431

subtraction group, defined, 450
sum() function

defined, 431
examples, 432
usage, 432

syntactic constructs
«every», 6
«for», 6
«if», 6
«some», 6

524

type casting between primitive types

In
de

x

syntactic incompatibility between XPath 2.0
and 1.0

boolean comparisons, 471
empty sequence, 472
error semantics, 472
numbers formatting, 470
numeric precision, 470
string comparison, 469

syntax of expressions using arithmetic
operators, 170

T
tag, empty-element, 37
«text()» construct, 280
text node

base URI of, 44
defined, 37
matching, 280
name, 39
string value for, 40
typed value of, 41

TextTest
expression, 280
syntax, 465

textual XML, 48, 49, 56
time data type, casting rules for, 275
timezone-from-date() function

defined, 433
examples, 434

timezone-from-dateTime() function
defined, 433
examples, 434

timezone-from-time() function
defined, 433
examples, 434

timezones handling functions, 130
«to» operator

as numeric range operator, 239, 242
for sequence manipulation, 239, 242
in XPath 2.0, 6
precedence, 467
to construct sequences, 243

tokenize() function
defined, 434
examples, 435
for string manipulation, 6, 91
usage, 436

tokens symbol
Char, 461
DecimalLiteral, 460
Digit, 460
DoubleLiteral, 460
IntegerLiteral, 460

NCName, 461
QName, 461
StringLiteral, 460
Wildcard, 461

trace() function
defined, 436
examples, 437
usage, 437

translate() function
defined, 437
examples, 438, 439
usage, 439

«treat as» expression, 280, 288
«treat as» operator

application to sequence type descriptors, 277
as type operator, 151
for dynamic type checking, 289
for strict static typing, 290
in type casting, 288, 289
precedence, 467

TreatExpr expression, 288
TreatExpr syntax, 462
tree

defined, 33
nodes ordering, 59
nodes, 33
XPath operations on, 2

tree model. See XPath tree model
true() function

defined, 439
usage, 440
XSLT example, 440

type annotation, 42, 283
type casting

converting atomic values, 262
defined, 262
«instance of» operator, use of, 287, 288
sequence type descriptors for, 277
«treat as» operator, use of, 288, 289

type casting between derived types
coverting to xs:integer, 277
rules for, 276

type casting between primitive types
converting from

anyURI data type, 265
base64Binary data type, 265
boolean data type, 266
date data type, 266
dateTime data type, 267
dayTimeDuration data type, 268
decimal data type, 268
double data type, 269
duration data type, 270
float data type, 271

525

type casting between primitive types (continued)

type casting between primitive types
(continued)

gDay data type, 272
gMonth data type, 272
gMonthDay data type, 272
gYear data type, 272
gYearMonth data type, 273
hexBinary data type, 273
NOTATION data type, 273
QName data type, 273
string data type, 274
time data type, 275
untypedAtomic data type, 275
yearMonthDuration data type, 275

permitted result types, 264
source types, 264

type casting of atomic values
«cast as» operators, 262
«castable as» operators, 262
for AtomicType expression, 262
for CastableExpr expression, 262
for SingleType expression, 262
syntax, 262
use of «?» symbol, 263

type casts
in Java, 262
in XPath, 262

type checking
dynamics, 109
for value comparisons, 186
static, 109

type definitions, 119
type descriptors, 277
type error, 478
type expressions, 261
type hierarchy

defined, 69
GEDCOM specification, 69
in XPath 1.0, 69
in XPath 2.0, 69

type hierarchy, XML Schema
complex, 105
simple

atomic, 105
list, 105
union, 105

type hierarchy, XPath items
atomic, 106
node, 106

type matching rules, 107, 108
type system, XPath. See also XML Schema type

system
atomic types, 76
defined, 61

dynamic typing features, 62
in version 1.0, 62
in version 2.0, 62
purpose of, 62
static typing features, 62
strong typing features, 62
type checking concerns, 109
type hierarchy, 106
type matching rules, 107, 108
usefulness of, 62
weak typing features, 62

typed value of
attribute node, 41
comment node, 41
data() function, use of, 41
document node, 41
element node, 41
namespace node, 41
processing instruction node, 41
text node, 41

typed value types
lists, 41
simple, 41
union, 41

TypeName syntax, 465
types based on XML Schema

atomic, 25
node kinds, 25

U
UML class diagram for XPath data model, 45
unary operators precedence, 468
UnaryExpr syntax, 463
unicode character, 455
Uniform Resource Identifier. See URI
«union» operator

for nodes combining, 234
precedence, 467

union type typed vlaue, 41
UnionExpr syntax, 462
universal quantifier. See «every» expression
unordered() function

defined, 440
examples, 441
usage, 441

untyped atomic values, 103
untypedAtomic data type, casting rules for, 275
upper-case() function

defined, 442
examples, 442
usage, 442

URI. See also IRI
base URI, 125

526

XML Schema type system

In
de

x

for namespaces, 17
fragment identifiers in, 18
HTML, 18
XML, 17

URIResolver interface, 131

V
value comparison expressions

ComparisonExpr, 182
GeneralComp, 182
NodeComp, 182
ValueComp, 182

value comparison operators
eq, 181
ge, 181
gt, 181
le, 181
lt, 181
ne, 181

value comparisons. See also general
comparisons

examples, 188
permitted operand types, 182
type Checking for, 186

ValueComp syntax, 462
variable references

examples, 155
syntax, 153
usage, 153

VariableReference expression, 153
variables

dynamic, 129
in-scope, 121

VarRef syntax, 463

W
W3C

InfoSet, 53, 56
specifications for data model, 42
XML family of standards, 15
XPointer specification, 18

weak typing, 62
weakly typed language. See also strongly typed

language
disadvantages, 20
JavaScript, 20
XPath 1.0, 20

well-balanced XML Fragment,
36

whitespace
and tokens, 460

normalization, 40
text nodes, 57

World Wide Web Consortium. See W3C

X
Xalan XSLT processor, 21
xdt, namespace prefix, 32, 33. See also xs,

namespace prefix
xdt:anyAtomicType datatype, 279
xdt:dayTimeDuration datatype, 92, 177
xdt:untypedAtomic datatype, 78, 103,

279
xdt:untypedAtomic value, 32
xdt:yearMonthDuration datatype, 92,

177
XLink, 18, 19
XML data model, 24
XML document categories

debatable, 53
definitely insignificant, 53
definitely significant, 53

XML document conversion into canonical form,
54

XML DOM, 33
XML fragment, well-balanced, 36
XML Information Set. See InfoSet
XML Infoset. See InfoSet
XML namespaces, 17, 18
XML Namespaces Recommendation, 17,

45
XML Schema

built-in types, 77
closure principle, 4
composibility concerns, 4
interaction with XPath, 20
overview, 63
PSVI, 63
stylesheet rules, 20
type hierarchy in, 69, 105
type system, 61

XML Schema datatypes
atomic, 76
ENTITIES, 104
IDREFS, 104
NMTOKENS, 104

XML Schema type system
atomic types, 76
elements with attributes, 65
elements with element-only content, 67
elements with mixed content, 66
elements with simple content, 65
simple type definitions, 63
substitution groups, 73

527

XML Schema, primitive types in

XML Schema, primitive types in
xs:base64Binary, 93, 94
xs:duration, 93, 95
xs:float, 93, 95
xs:gDay, 93
xs:gMonth, 93
xs:gMonthDay, 93
xs:gYear, 93
xs:gYearMonth, 93
xs:hexBinary, 93, 94
xs:NOTATION, 93, 95

XML Schema-typed content, 7
XML standards, support for, 8
XML tree

example of, 34
model, 33

XMLSpy, 11, 252
XPath

evaluation context, 115
host language, 115
role as sublanguage, 115
type casting concept, 262

XPath 1.0
compatibility mode, 116
compatibility with XPath 2.0, 469
type system, 62

XPath 1.0 syntactic incompatibility
boolean comparisons, 471
empty sequence, 472
error semantics, 472
numbers formatting, 470
numeric precision, 470
string comparison, 470

XPath 2.0
and XPath 1.0, 4
as XQuery 1.0 subset, 19
compatibility concerns, 469, 473
overview, 1
processors, 9
type system, 62

XPath 2.0 Analyzer, 11
XPath 2.0 as language

embedded language, 23
for processing sequences, 24
syntax, 22
XML Schema-based types, 25

XPath 2.0 compatibility with 1.0
schema-aware compatibility, 473
syntactic incompatibility, 469
with disabled compatibility mode, 473
with enabled compatibility mode, 469

XPath 2.0 data model
atomic values, 2, 30
nodes and trees, 33

sequences, 2, 28
trees, 2

XPath 2.0 data model, data types in
date, 5
decimals, 5
durations, 5
integer, 5
sequences as data types, 5
single precision, 5
times, 5
user-defined, 5

XPath 2.0 features
data model, 5
date and time data types, 5
new functions, 6
new operators, 6
path expressions, 5
sequences as data types, 5
syntactic constructs, 6
user-defined data types, 5

XPath 2.0 version, goals of
backward compatibility, maintainability of,

9
ease of use, 8
i18n support, 8
interoperability improvement, 8
processor efficiency, 9
string content manipulation, simplifying of,

8
XML Schema-typed content manipulation,

simplifying of, 7
XML standards, support for, 8

XPath 2.0, syntactic incompatibility in
boolean comparisons, 471
empty sequence, 472
error semantics, 472
numbers formatting, 470
numeric precision, 470
string comparison, 470

XPath API, 21
XPath constructs

comments, 141
conditional expressions, 165
context item expressions, 156
expressions, 136
function calls, 158
lexical, 140
names, 146
numeric literals, 142
operators, 150
parenthesized, 155
primary expressions, 152
string literals, 144
variable references, 153

528

XPath type system. See also XML Schema type system

In
de

x

XPath data model. See also XPath tree model
atomic values, 30
canonical XML, 55
changes in 2.0, 27
characters, 52
document order, 59
DTD information, 59
from textual XML to, 56
ID value in, 50
names and namespaces, 45, 48
nodes and trees, 33
sequence processing feature, 24
sequences, 28
serialization controlling, 57
specification, 34
UML class diagram, 45

XPath expressions
arguments conversion in, 160
comments, 141
conditional, 165
containing prefixed QNames, 117
context item, 156
Expr, 136
function calls, 158
lexical constructs, 140
names, 146
numeric literals, 142
operator, 150
parenthesized expressions, 155
path expressions, 3, 201
primary, 152
sequence expressions, 239
string literals, 144
syntactic styles for, 22
type expressions, 261
variable references, 153
with value as sequence, 30

XPath grammar, 459
XPath in XML family

InfoSet, 16
XML Namespaces, 17
XML Schemas, 20
XPointer, 18
XQuery, 19
XSLT, 15

XPath interaction with
DOM, 21, 22
Java, 21, 22

XPath language
composability, 4
description of, 2

XPath language errors
XP0001, 475
XP0002, 476

XP0003, 476
XP0004, 476
XP0005, 476
XP0006, 477
XP0007, 477
XP0008, 477
XP0017, 478
XP0018, 478
XP0019, 478
XP0020, 478
XP0021, 479
XP0029, 479
XP0050, 479
XP0051, 479
XP0055, 480

XPath operations on data values
atomic, 2
sequences, 2
tree nodes, 2

XPath operations on sequences, 30
XPath processors, 116
XPath regular expressions. See regular

expressions
XPath specification

error codes, 475
namespace URI, 123
syntax notation, 134

XPath syntax features
path expressions, 23
predicate logic, 23
programming expressions, conventional, 22

XPath tree model. See also XPath data model
base URI of node, 43
child nodes, 44
element nodes, 35
external general parsed entity, 36
node attributes, 44
node names, 39
node namespaces, 45
node types, 37
parent nodes, 44
root node, 35
string value of node, 40
type annotation of node, 42
typed value of node, 41
well-formed XML document, 36
XML as tree, 33
XML fragment, well balanced, 36
XML specification, 36

XPath type system. See also XML Schema type
system

atomic types, 76
defined, 61
dynamic typing features, 62

529

XPath type system. See also XML Schema type system (continued)

XPath type system. See also XML Schema type
system (continued)

in version 1.0, 62
in version 2.0, 62
purpose of, 62
schema types, 261
sequence types, 261
static typing features, 62
strong typing features, 62
type checking concerns, 109
type hierarchy in, 106
type matching rules, 107, 108
usefulness, 62
weak typing features, 62

XPath versions
XPath 1.0, 4
XPath 2.0, 4

XPath Visualizer, 13
XPointer

overview, 18
specification, 19
using XLink, 18

XQuery 1.0
defined, 19
processor, 10

XQuery. See also XSLT
composability, 19
interaction with XPath, 19

xs, namespace prefix, 32. See also xdt,
namespace prefix

xs:anyURI, 79
xs:boolean datatype, 80, 93, 266
xs:date datatype, 31, 80, 93, 266
xs:dateTime datatype, 31, 82, 93, 267
xs:decimal

data type, 31, 83, 93, 268
value, 143

xs:double
datatype, 31, 83, 93, 269
value, 143

xs:duration datatype, 31, 93, 95, 177,
270

xs:ENTITIES datatype, 104
xs:float 31, 93, 95, 143, 271
xs:IDREFS datatype, 104
xs:integer

data type, 86
type casting rules for, 276
value, 143

xs:Name, type casting rules for, 276
xs:NMTOKEN datatype, 104
xs:NMTOKENS datatype, 104
xs:QName datatype, 31, 87, 93, 273

xs:short, type casting rules for, 276
xs:string datatype, 31, 89, 93, 274
xs:time data type, 31, 91, 93, 275
XSL

development of, 15
XSLT, 15

XSL Formatting Objects. See XSL-FO
XSL-FO, 16
XSLT

composability, 19
interaction with XPath, 15

XSLT 2.0 processors, 14, 15
XSLT element

as instructions, 74
declaration, 74
sequence constructor, 75
substitution group for, 74

XSLT in-scope functions
extension, 122
standard, 122
user-defined, 122

XSLT processors
compatibility mode, 116
Saxon, 15
using XPath 2.0 features, 14
Xalan, 21

XSLT specification
elements as instructions, 74
sequence constructor, 75
substitution groups, 74

XSLT stylesheet using XPath expression, 16

Y
year-from-date() function

defined, 443
examples, 443

year-from-dateTime() function
defined, 443
examples, 443

yearMonthDuration data type, casting rules for,
275

years-from-duration() function
defined, 443
examples, 444

Z
zero-or-one() function

defined, 444
examples, 445
usage, 445

530

