

Taming Text

Taming Text
HOW TO FIND, ORGANIZE, AND MANIPULATE IT

GRANT S. INGERSOLL
THOMAS S. MORTON

ANDREW L. FARRIS

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Jeff Bleiel
20 Baldwin Road Technical proofreader: Steven Rowe
PO Box 261 Copyeditor: Benjamin Berg
Shelter Island, NY 11964 Proofreader: Katie Tennant

Typesetter: Dottie Marsico
 Cover designer: Marija Tudor

ISBN 9781933988382
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

brief contents

1 ■ Getting started taming text 1

2 ■ Foundations of taming text 16

3 ■ Searching 37

4 ■ Fuzzy string matching 84

5 ■ Identifying people, places, and things 115

6 ■ Clustering text 140

7 ■ Classification, categorization, and tagging 175

8 ■ Building an example question answering system 240

9 ■ Untamed text: exploring the next frontier 260
v

contents
foreword xiii
preface xiv
acknowledgments xvii
about this book xix
about the cover illustration xxii

1 Getting started taming text 1
1.1 Why taming text is important 2
1.2 Preview: A fact-based question answering system 4

Hello, Dr. Frankenstein 5

1.3 Understanding text is hard 8
1.4 Text, tamed 10
1.5 Text and the intelligent app: search and beyond 11

Searching and matching 12 ■ Extracting information 13
Grouping information 13 ■ An intelligent application 14

1.6 Summary 14
1.7 Resources 14

2 Foundations of taming text 16
2.1 Foundations of language 17

Words and their categories 18 ■ Phrases and clauses 19
Morphology 20
vii

CONTENTSviii
2.2 Common tools for text processing 21
String manipulation tools 21 ■ Tokens and tokenization 22
Part of speech assignment 24 ■ Stemming 25 ■ Sentence
detection 27 ■ Parsing and grammar 28 ■ Sequence
modeling 30

2.3 Preprocessing and extracting content from common file
formats 31
The importance of preprocessing 31 ■ Extracting content using
Apache Tika 33

2.4 Summary 36
2.5 Resources 36

3 Searching 37
3.1 Search and faceting example: Amazon.com 38
3.2 Introduction to search concepts 40

Indexing content 41 ■ User input 43 ■ Ranking documents
with the vector space model 46 ■ Results display 49

3.3 Introducing the Apache Solr search server 52
Running Solr for the first time 52 ■ Understanding Solr
concepts 54

3.4 Indexing content with Apache Solr 57
Indexing using XML 58 ■ Extracting and indexing content
using Solr and Apache Tika 59

3.5 Searching content with Apache Solr 63
Solr query input parameters 64 ■ Faceting on extracted
content 67

3.6 Understanding search performance factors 69
Judging quality 69 ■ Judging quantity 73

3.7 Improving search performance 74
Hardware improvements 74 ■ Analysis improvements 75
Query performance improvements 76 ■ Alternative scoring
models 79 ■ Techniques for improving Solr performance 80

3.8 Search alternatives 82
3.9 Summary 83

3.10 Resources 83

CONTENTS ix
4 Fuzzy string matching 84
4.1 Approaches to fuzzy string matching 86

Character overlap measures 86 ■ Edit distance measures 89
N-gram edit distance 92

4.2 Finding fuzzy string matches 94
Using prefixes for matching with Solr 94 ■ Using a trie for
prefix matching 95 ■ Using n-grams for matching 99

4.3 Building fuzzy string matching applications 100
Adding type-ahead to search 101 ■ Query spell-checking for
search 105 ■ Record matching 109

4.4 Summary 114

4.5 Resources 114

5 Identifying people, places, and things 115
5.1 Approaches to named-entity recognition 117

Using rules to identify names 117 ■ Using statistical
classifiers to identify names 118

5.2 Basic entity identification with OpenNLP 119
Finding names with OpenNLP 120 ■ Interpreting names
identified by OpenNLP 121 ■ Filtering names based on
probability 122

5.3 In-depth entity identification with OpenNLP 123
Identifying multiple entity types with OpenNLP 123
Under the hood: how OpenNLP identifies names 126

5.4 Performance of OpenNLP 128
Quality of results 129 ■ Runtime performance 130
Memory usage in OpenNLP 131

5.5 Customizing OpenNLP entity identification
for a new domain 132
The whys and hows of training a model 132 ■ Training
an OpenNLP model 133 ■ Altering modeling inputs 134
A new way to model names 136

5.6 Summary 138

5.7 Further reading 139

CONTENTSx
6 Clustering text 140
6.1 Google News document clustering 141
6.2 Clustering foundations 142

Three types of text to cluster 142 ■ Choosing a clustering
algorithm 144 ■ Determining similarity 145 ■ Labeling the
results 146 ■ How to evaluate clustering results 147

6.3 Setting up a simple clustering application 149
6.4 Clustering search results using Carrot2 149

Using the Carrot2 API 150 ■ Clustering Solr search results
using Carrot2 151

6.5 Clustering document collections with Apache
Mahout 154
Preparing the data for clustering 155 ■ K-Means
clustering 158

6.6 Topic modeling using Apache Mahout 162
6.7 Examining clustering performance 164

Feature selection and reduction 164 ■ Carrot2 performance
and quality 167 ■ Mahout clustering benchmarks 168

6.8 Acknowledgments 172
6.9 Summary 173

6.10 References 173

7 Classification, categorization, and tagging 175
7.1 Introduction to classification and categorization 177
7.2 The classification process 180

Choosing a classification scheme 181 ■ Identifying features
for text categorization 182 ■ The importance of training
data 183 ■ Evaluating classifier performance 186
Deploying a classifier into production 188

7.3 Building document categorizers using Apache
Lucene 189
Categorizing text with Lucene 189 ■ Preparing the training
data for the MoreLikeThis categorizer 191 ■ Training the
MoreLikeThis categorizer 193 ■ Categorizing documents
with the MoreLikeThis categorizer 197 ■ Testing the
MoreLikeThis categorizer 199 ■ MoreLikeThis in
production 201

CONTENTS xi
7.4 Training a naive Bayes classifier using Apache
Mahout 202
Categorizing text using naive Bayes classification 202
Preparing the training data 204 ■ Withholding test data 207
Training the classifier 208 ■ Testing the classifier 209
Improving the bootstrapping process 210 ■ Integrating the
Mahout Bayes classifier with Solr 212

7.5 Categorizing documents with OpenNLP 215
Regression models and maximum entropy ■ document
categorization 216 ■ Preparing training data for the maximum
entropy document categorizer 219 ■ Training the maximum
entropy document categorizer 220 ■ Testing the maximum entropy
document classifier 224 ■ Maximum entropy document
categorization in production 225

7.6 Building a tag recommender using Apache Solr 227
Collecting training data for tag recommendations 229
Preparing the training data 231 ■ Training the Solr tag
recommender 232 ■ Creating tag recommendations 234
Evaluating the tag recommender 236

7.7 Summary 238
7.8 References 239

8 Building an example question answering system 240
8.1 Basics of a question answering system 242
8.2 Installing and running the QA code 243
8.3 A sample question answering architecture 245
8.4 Understanding questions and producing answers 248

Training the answer type classifier 248 ■ Chunking the
query 251 ■ Computing the answer type 252 ■ Generating the
query 255 ■ Ranking candidate passages 256

8.5 Steps to improve the system 258
8.6 Summary 259
8.7 Resources 259

9 Untamed text: exploring the next frontier 260
9.1 Semantics, discourse, and pragmatics:

exploring higher levels of NLP 261
Semantics 262 ■ Discourse 263 ■ Pragmatics 264

CONTENTSxii
9.2 Document and collection summarization 266
9.3 Relationship extraction 268

Overview of approaches 270 ■ Evaluation 272 ■ Tools for
relationship extraction 273

9.4 Identifying important content and people 273
Global importance and authoritativeness 274 ■ Personal
importance 275 ■ Resources and pointers on importance 275

9.5 Detecting emotions via sentiment analysis 276
History and review 276 ■ Tools and data needs 278 ■ A basic
polarity algorithm 279 ■ Advanced topics 280 ■ Open source
libraries for sentiment analysis 281

9.6 Cross-language information retrieval 282
9.7 Summary 284
9.8 References 284

index 287

foreword
At a time when the demand for high-quality text processing capabilities continues to
grow at an exponential rate, it’s difficult to think of any sector or business that doesn’t
rely on some type of textual information. The burgeoning web-based economy has
dramatically and swiftly increased this reliance. Simultaneously, the need for talented
technical experts is increasing at a fast pace. Into this environment comes an excel-
lent, very pragmatic book, Taming Text, offering substantive, real-world, tested guid-
ance and instruction.

 Grant Ingersoll and Drew Farris, two excellent and highly experienced software
engineers with whom I’ve worked for many years, and Tom Morton, a well-respected
contributor to the natural language processing field, provide a realistic course for
guiding other technical folks who have an interest in joining the highly recruited cote-
rie of text processors, a.k.a. natural language processing (NLP) engineers.

 In an approach that equates with what I think of as “learning for the world, in the
world,” Grant, Drew, and Tom take the mystery out of what are, in truth, very complex
processes. They do this by focusing on existing tools, implemented examples, and
well-tested code, versus taking you through the longer path followed in semester-long
NLP courses.

 As software engineers, you have the basics that will enable you to latch onto the
examples, the code bases, and the open source tools here referenced, and become true
experts, ready for real-world opportunites, more quickly than you might expect.

LIZ LIDDY

DEAN, ISCHOOL

SYRACUSE UNIVERSITY
xiii

preface
Life is full of serendipitous moments, few of which stand out for me (Grant) like the
one that now defines my career. It was the late 90s, and I was a young software devel-
oper working on distributed electromagnetics simulations when I happened on an ad
for a developer position at a small company in Syracuse, New York, called TextWise.
Reading the description, I barely thought I was qualified for the job, but decided to
take a chance anyway and sent in my resume. Somehow, I landed the job, and thus
began my career in search and natural language processing. Little did I know that, all
these years later, I would still be doing search and NLP, never mind writing a book on
those subjects.

 My first task back then was to work on a cross-language information retrieval
(CLIR) system that allowed users to enter queries in English and find and automati-
cally translate documents in French, Spanish, and Japanese. In retrospect, that first
system I worked on touched on all the hard problems I’ve come to love about working
with text: search, classification, information extraction, machine translation, and all
those peculiar rules about languages that drive every grammar student crazy. After
that first project, I’ve worked on a variety of search and NLP systems, ranging from
rule-based classifiers to question answering (QA) systems. Then, in 2004, a new job at
the Center for Natural Language Processing led me to the use of Apache Lucene, the
de facto open source search library (these days, anyway). I once again found myself
writing a CLIR system, this time to work with English and Arabic. Needing some
Lucene features to complete my task, I started putting up patches for features and bug
fixes. Sometime thereafter, I became a committer. From there, the floodgates opened.
I got more involved in open source, starting the Apache Mahout machine learning
xiv

PREFACE xv
project with Isabel Drost and Karl Wettin, as well as cofounding Lucid Imagination, a
company built around search and text analytics with Apache Lucene and Solr.

 Coming full circle, I think search and NLP are among the defining areas of com-
puter science, requiring a sophisticated approach to both the data structures and
algorithms necessary to solve problems. Add to that the scaling requirements of pro-
cessing large volumes of user-generated web and social content, and you have a devel-
oper’s dream. This book addresses my view that the marketplace was missing (at the
time) a book written for engineers by engineers and specifically geared toward using
existing, proven, open source libraries to solve hard problems in text processing. I
hope this book helps you solve everyday problems in your current job as well as
inspires you to see the world of text as a rich opportunity for learning.

GRANT INGERSOLL

I (Tom) became fascinated with artificial intelligence as a sophomore in high school
and as an undergraduate chose to go to graduate school and focus on natural lan-
guage processing. At the University of Pennsylvania, I learned an incredible amount
about text processing, machine learning, and algorithms and data structures in gen-
eral. I also had the opportunity to work with some of the best minds in natural lan-
guage processing and learn from them.

 In the course of my graduate studies, I worked on a number of NLP systems and
participated in numerous DARPA-funded evaluations on coreference, summarization,
and question answering. In the course of this work, I became familiar with Lucene
and the larger open source movement. I also noticed that there was a gap in open
source text processing software that could provide efficient end-to-end processing.
Using my thesis work as a basis, I contributed extensively to the OpenNLP project and
also continued to learn about NLP systems while working on automated essay and
short-answer scoring at Educational Testing Services.

 Working in the open source community taught me a lot about working with others
and made me a much better software engineer. Today, I work for Comcast Corpora-
tion with teams of software engineers that use many of the tools and techniques
described in this book. It is my hope that this book will help bridge the gap between
the hard work of researchers like the ones I learned from in graduate school and soft-
ware engineers everywhere whose aim is to use text processing to solve real problems
for real people.

THOMAS MORTON

Like Grant, I (Drew) was first introduced to the field of information retrieval and nat-
ural language processing by Dr. Elizabeth Liddy, Woojin Paik, and all of the others
doing research at TextWise in the mid 90s. I started working with the group as I was fin-
ishing my master’s at the School of Information Studies (iSchool) at Syracuse Univer-
sity. At that time, TextWise was transitioning from a research group to a startup business

PREFACExvi
developing applications based on the results of our text processing research. I stayed
with the company for many years, constantly learning, discovering new things, and
working with many outstanding people who came to tackle the challenges of teaching
machines to understand language from many different perspectives.

 Personally, I approach the subject of text analytics first from the perspective of a
software developer. I’ve had the privilege of working with brilliant researchers and
transforming their ideas from experiments to functioning prototypes to massively scal-
able systems. In the process, I’ve had the opportunity to do a great deal of what has
recently become known as data science and discovered a deep love of exploring and
understanding massive datasets and the tools and techniques for learning from them.

 I cannot overstate the impact that open source software has had on my career.
Readily available source code as a companion to research is an immensely effective
way to learn new techniques and approaches to text analytics and software develop-
ment in general. I salute everyone who has made the effort to share their knowledge
and experience with others who have the passion to collaborate and learn. I specifi-
cally want to acknowledge the good folks at the Apache Software Foundation who con-
tinue to grow a vibrant ecosystem dedicated to the development of open source
software and the people, process, and community that support it.

 The tools and techniques presented in this book have strong roots in the open
source software community. Lucene, Solr, Mahout, and OpenNLP all fall under the
Apache umbrella. In this book, we only scratch the surface of what can be done with
these tools. Our goal is to provide an understanding of the core concepts surrounding
text processing and provide a solid foundation for future explorations of this domain.

 Happy coding!

DREW FARRIS

acknowledgments
A long time coming, this book represents the labor of many people whom we would
like to gratefully acknowledge. Thanks to all the following:

■ The users and developers of Apache Solr, Lucene, Mahout, OpenNLP, and
other tools used throughout this book

■ Manning Publications, for sticking with us, especially Douglas Pundick, Karen
Tegtmeyer, and Marjan Bace

■ Jeff Bleiel, our development editor, for nudging us along despite our crazy
schedules, for always having good feedback, and for turning developers into
authors

■ Our reviewers, for the questions, comments, and criticisms that make this book
better: Adam Tacy, Amos Bannister, Clint Howarth, Costantino Cerbo, Dawid
Weiss, Denis Kurilenko, Doug Warren, Frank Jania, Gann Bierner, James Hathe-
way, James Warren, Jason Rennie, Jeffrey Copeland, Josh Reed, Julien Nioche,
Keith Kim, Manish Katyal, Margriet Bruggeman, Massimo Perga, Nikander
Bruggeman, Philipp K. Janert, Rick Wagner, Robi Sen, Sanchet Dighe, Szymon
Chojnacki, Tim Potter, Vaijanath Rao, and Jeff Goldschrafe

■ Our contributors who lent their expertise to certain sections of this book:
J. Neal Richter, Manish Katyal, Rob Zinkov, Szymon Chojnacki, Tim Potter, and
Vaijanath Rao

■ Steven Rowe, for a thorough technical review as well as for all the shared hours
developing text applications at TextWise, CNLP, and as part of Lucene
xvii

ACKNOWLEDGMENTSxviii
■ Dr. Liz Liddy, for introducing Drew and Grant to the world of text analytics and
all the fun and opportunity therein, and for contributing the foreword

■ All of our MEAP readers, for their patience and feedback
■ Most of all, our family, friends, and coworkers, for their encouragement, moral

support, and understanding as we took time from our normal lives to work on
the book

Grant Ingersoll

Thanks to all my coworkers at TextWise and CNLP who taught me so much about text
analytics; to Mr. Urdahl for making math interesting and Ms. Raymond for making me
a better student and person; to my parents, Floyd and Delores, and kids, Jackie and
William (love you always); to my wife, Robin, who put up with all the late nights and
lost weekends—thanks for being there through it all!

Tom Morton

Thanks to my coauthors for their hard work and partnership; to my wife, Thuy, and
daughter, Chloe, for their patience, support, and time freely given; to my family, Mor-
tons and Trans, for all your encouragement; to my colleagues from the University of
Pennsylvania and Comcast for their support and collaboration, especially Na-Rae
Han, Jason Baldridge, Gann Bierner, and Martha Palmer; to Jörn Kottmann for his
tireless work on OpenNLP.

Drew Farris

Thanks to Grant for getting me involved with this and many other interesting projects;
to my coworkers, past and present, from whom I’ve learned incredible things and with
whom I’ve shared a passion for text analytics, machine learning, and developing amaz-
ing software; to my wife, Kristin, and children, Phoebe, Audrey, and Owen, for their
patience and support as I stole time to work on this and other technological endeav-
ors; to my extended family for their interest and encouragement, especially my Mom,
who will never see this book in its completed form.

about this book
Taming Text is about building software applications that derive their core value from
using and manipulating content that primarily consists of the written word. This book
is not a theoretical treatise on the subjects of search, natural language processing, and
machine learning, although we cover all of those topics in a fair amount of detail
throughout the book. We strive to avoid jargon and complex math and instead focus
on providing the concepts and examples that today’s software engineers, architects,
and practitioners need in order to implement intelligent, next-generation, text-driven
applications. Taming Text is also firmly grounded in providing real-world examples of
the concepts described in the book using freely available, highly popular, open source
tools like Apache Solr, Mahout, and OpenNLP.

Who should read this book

Is this book for you? Perhaps. Our target audience is software practitioners who don’t
have (much of) a background in search, natural language processing, and machine
learning. In fact, our book is aimed at practitioners in a work environment much like
what we’ve seen in many companies: a development team is tasked with adding search
and other features to a new or existing application and few, if any, of the developers
have any experience working with text. They need a good primer on understanding
the concepts without being bogged down by the unnecessary.

 In many cases, we provide references to easily accessible sources like Wikipedia
and seminal academic papers, thus providing a launching pad for the reader to
explore an area in greater detail if desired. Additionally, while most of our open
source tools and examples are in Java, the concepts and ideas are portable to many
xix

ABOUT THIS BOOKxx
other programming languages, so Rubyists, Pythonistas, and others should feel quite
comfortable as well with the book.

 This book is clearly not for those looking for explanations of the math involved in
these systems or for academic rigor on the subject, although we do think students will
find the book helpful when they need to implement the concepts described in the
classroom and more academically-oriented books.

 This book doesn’t target experienced field practitioners who have built many text-
based applications in their careers, although they may find some interesting nuggets
here and there on using the open source packages described in the book. More than
one experienced practitioner has told us that the book is a great way to get team mem-
bers who are new to the field up to speed on the ideas and code involved in writing a
text-based application.

 Ultimately, we hope this book is an up-to-date guide for the modern programmer,
a guide that we all wish we had when we first started down our career paths in pro-
gramming text-based applications.

Roadmap
Chapter 1 explains why processing text is important, and what makes it so challeng-
ing. We preview a fact-based question answering (QA) system, setting the stage for uti-
lizing open source libraries to tame text.

 Chapter 2 introduces the building blocks of text processing: tokenizing, chunking,
parsing, and part of speech tagging. We follow up with a look at how to extract text
from some common file formats using the Apache Tika open source project.

 Chapter 3 explores search theory and the basics of the vector space model. We
introduce the Apache Solr search server and show how to index content with it. You’ll
learn how to evaluate the search performance factors of quantity and quality.

 Chapter 4 examines fuzzy string matching with prefixes and n-grams. We look at
two character overlap measures—the Jaccard measure and the Jaro-Winkler dis-
tance—and explain how to find candidate matches with Solr and rank them.

 Chapter 5 presents the basic concepts behind named-entity recognition. We show
how to use OpenNLP to find named entities, and discuss some OpenNLP perfor-
mance considerations. We also cover how to customize OpenNLP entity identification
for a new domain.

 Chapter 6 is devoted to clustering text. Here you’ll learn the basic concepts behind
common text clustering algorithms, and see examples of how clustering can help
improve text applications. We also explain how to cluster whole document collections
using Apache Mahout, and how to cluster search results using Carrot2.

 Chapter 7 discusses the basic concepts behind classification, categorization, and
tagging. We show how categorization is used in text applications, and how to build,
train, and evaluate classifiers using open source tools. We also use the Mahout imple-
mentation of the naive Bayes algorithm to build a document categorizer.

ABOUT THIS BOOK xxi
 Chapter 8 is where we bring together all the things learned in the previous chap-
ters to build an example QA system. This simple application uses Wikipedia as its
knowledge base, and Solr as a baseline system.

 Chapter 9 explores what’s next in search and NLP, and the roles of semantics, dis-
course, and pragmatics. We discuss searching across multiple languages and detecting
emotions in content, as well as emerging tools, applications, and ideas.

Code conventions and downloads

This book contains numerous code examples. All the code is in a fixed-width font
like this to separate it from ordinary text. Code members such as method names,
class names, and so on are also in a fixed-width font.

 In many listings, the code is annotated to point out key concepts, and numbered
bullets are sometimes used in the text to provide additional information about the
code.

 Source code examples in this book are fairly close to the samples that you’ll find
online. But for brevity’s sake, we may have removed material such as comments from
the code to fit it well within the text.

 The source code for the examples in the book is available for download from the
publisher’s website at www.manning.com/TamingText.

Author Online

The purchase of Taming Text includes free access to a private web forum run by Man-
ning Publications, where you can make comments about the book, ask technical ques-
tions, and receive help from the authors and from other users. To access the forum
and subscribe to it, point your web browser at www.manning.com/TamingText. This
page provides information on how to get on the forum once you are registered, what
kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It’s not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions, lest their interest stray!

 The Author Online forum and archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

about the cover illustration
The figure on the cover of Taming Text is captioned “Le Marchand,” which means mer-
chant or storekeeper. The illustration is taken from a 19th-century edition of Sylvain
Maréchal’s four-volume compendium of regional dress customs published in France.
Each illustration is finely drawn and colored by hand. The rich variety of Maréchal’s
collection reminds us vividly of how culturally apart the world’s towns and regions
were just 200 years ago. Isolated from each other, people spoke different dialects and
languages. In the streets or in the countryside, it was easy to identify where they lived
and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxii

Getting started
taming text
If you’re reading this book, chances are you’re a programmer, or at least in the
information technology field. You operate with relative ease when it comes to
email, instant messaging, Google, YouTube, Facebook, Twitter, blogs, and most of
the other technologies that define our digital age. After you’re done congratulat-
ing yourself on your technical prowess, take a moment to imagine your users. They
often feel imprisoned by the sheer volume of email they receive. They struggle to
organize all the data that inundates their lives. And they probably don’t know or
even care about RSS or JSON, much less search engines, Bayesian classifiers, or neu-
ral networks. They want to get answers to their questions without sifting through
pages of results. They want email to be organized and prioritized, but spend little
time actually doing it themselves. Ultimately, your users want tools that enable

In this chapter
 Understanding why processing text is important

 Learning what makes taming text hard

 Setting the stage for leveraging open source libraries to
tame text
1

2 CHAPTER 1 Getting started taming text
them to focus on their lives and their work, not just their technology. They want to
control—or tame—the uncontrolled beast that is text. But what does it mean to tame
text? We’ll talk more about it later in this chapter, but for now taming text involves
three primary things:

 The ability to find relevant answers and supporting content given an informa-
tion need

 The ability to organize (label, extract, summarize) and manipulate text with
little-to-no user intervention

 The ability to do both of these things with ever-increasing amounts of input

This leads us to the primary goal of this book: to give you, the programmer, the tools
and hands-on advice to build applications that help people better manage the tidal
wave of communication that swamps their lives. The secondary goal of Taming Text is
to show how to do this using existing, freely available, high quality, open source librar-
ies and tools.

 Before we get to those broader goals later in the book, let’s step back and examine
some of the factors involved in text processing and why it’s hard, and also look at
some use cases as motivation for the chapters to follow. Specifically, this chapter aims
to provide some background on why processing text effectively is both important and
challenging. We’ll also lay some groundwork with a simple working example of our
first two primary tasks as well as get a preview of the application you’ll build at the end
of this book: a fact-based question answering system. With that, let’s look at some of
the motivation for taming text by scoping out the size and shape of the information
world we live in.

1.1 Why taming text is important
Just for fun, try to imagine going a whole day without reading a single word. That’s
right, one whole day without reading any news, signs, websites, or even watching tele-
vision. Think you could do it? Not likely, unless you sleep the whole day. Now spend a
moment thinking about all the things that go into reading all that content: years of
schooling and hands-on feedback from parents, teachers, and peers; and countless
spelling tests, grammar lessons, and book reports, not to mention the hundreds of
thousands of dollars it takes to educate a person through college. Next, step back
another level and think about how much content you do read in a day.

 To get started, take a moment to consider the following questions:

 How many email messages did you get today (both work and personal, includ-
ing spam)?

 How many of those did you read?
 How many did you respond to right away? Within the hour? Day? Week?
 How do you find old email?
 How many blogs did you read today?
 How many online news sites did you visit?

3Why taming text is important
 Did you use instant messaging (IM), Twitter, or Facebook with friends or col-
leagues?

 How many searches did you do on Google, Yahoo!, or Bing?
 What documents on your computer did you read? What format were they in

(Word, PDF, text)?
 How often do you search for something locally (either on your machine or your

corporate intranet)?
 How much content did you produce in the form of emails, reports, and so on?

Finally, the big question: how much time did you spend doing this?
 If you’re anything like the typical information worker, then you can most likely

relate to IDC’s (International Data Corporation) findings from their 2009 study
(Feldman 2009):

Email consumes an average of 13 hours per week per worker... But email is no
longer the only communication vehicle. Social networks, instant messaging,
Yammer, Twitter, Facebook, and LinkedIn have added new communication
channels that can sap concentrated productivity time from the information
worker’s day. The time spent searching for information this year averaged 8.8
hours per week, for a cost of $14,209 per worker per year. Analyzing information
soaked up an additional 8.1 hours, costing the organization $13,078 annually,
making these two tasks relatively straightforward candidates for better automa-
tion. It makes sense that if workers are spending over a third of their time
searching for information and another quarter analyzing it, this time must be as
productive as possible.

Furthermore, this survey doesn’t even account for how much time these same employ-
ees spend creating content during their personal time. In fact, eMarketer estimates
that internet users average 18 hours a week online (eMarketer) and compares this to
other leisure activities like watching television, which is still king at 30 hours per week.

 Whether it’s reading email, searching Google, reading a book, or logging into
Facebook, the written word is everywhere in our lives.

 We’ve seen the individual part of the content picture, but what about the collective
picture? According to IDC (2011), the world generated 1.8 zettabytes of digital informa-
tion in 2011 and “by 2020 the world will generate 50 times [that amount].” Naturally,
such prognostications often prove to be low given we can’t predict the next big trend
that will produce more content than expected.

 Even if a good-size chunk of this data is due to signal data, images, audio, and
video, the current best approach to making all this data findable is to write analysis
reports, add keyword tags and text descriptions, or transcribe the audio using speech
recognition or a manual closed-captioning approach so that it can be treated as text.
In other words, no matter how much structure we add, it still comes back to text for us
to share and comprehend our content. As you can see, the sheer volume of content
can be daunting, never mind that text processing is also a hard problem on a small
scale, as you’ll see in a later section. In the meantime, it’s worthwhile to think about
what the ideal applications or tools would do to help stem the tide of text that’s

4 CHAPTER 1 Getting started taming text
engulfing us. For many, the answer lies in the ability to quickly and efficiently hone in
on the answer to our questions, not just a list of possible answers that we need to then
sift through. Moreover, we wouldn’t need to jump through hoops to ask our ques-
tions; we’d just be able to use our own words or voice to express them with no need
for things like quotations, AND/OR operators, or other things that make it easier on
the machine but harder on the person.

 Though we all know we don’t live in an ideal world, one of the promising
approaches for taming text, popularized by IBM’s Jeopardy!-playing Watson program
and Apple’s Siri application, is a question answering system that can process natural
languages such as English and return actual answers, not just pages of possible answers.
In Taming Text, we aim to lay some of the groundwork for building such a system. To
do this, let’s consider what such a system might look like; then, let’s take a look at
some simple code that can find and extract key bits of information out of text that will
later prove to be useful in our QA system. We’ll finish off this chapter by delving
deeper into why building such a system as well as other language-based applications is
so hard, along with a look at how the chapters to follow in this book will lay the foun-
dation for a fact-based QA system along with other text-based systems.

1.2 Preview: A fact-based question answering system
For the purposes of this book, a QA system should be capable of ingesting a collection
of documents suspected to have answers to questions that users might ask. For
instance, Wikipedia or a collection of research papers might be used as a source for
finding answers. In other words, the QA system we propose is based on identifying and
analyzing text that has a chance of providing the answer based on patterns it has seen
in the past. It won’t be capable of inferring an answer from a variety of sources. For
instance, if the system is asked “Who is Bob’s uncle?” and there’s a document in the
collection with the sentences “Bob’s father is Ola. Ola’s brother is Paul,” the system
wouldn’t be able to infer that Bob’s uncle is Paul. But if there’s a sentence that directly
states “Bob’s uncle is Paul,” you’d expect the system to be able to answer the question.
This isn’t to say that the former example can’t be attempted; it’s just beyond the scope
of this book.

 A simple workflow for building the QA system described earlier is outlined in
figure 1.1.

Parse question and
determine what's

being asked

Identify candidate
answers

Score candidate
answers

Return top scoring
answers

Figure 1.1 A simple workflow for answering questions posed to a QA system

5Preview: A fact-based question answering system
Naturally, such a simple workflow hides a lot of details, and it also doesn’t cover the
ingestion of the documents, but it does allow us to highlight some of the key compo-
nents needed to process users’ questions. First, the ability to parse a user’s question
and determine what’s being asked typically requires basic functionality like identifying
words, as well as the ability to understand what kind of answer is appropriate for a
question. For instance, the answer to “Who is Bob’s uncle?” should likely be a person,
whereas the answer to “Where is Buffalo?” probably requires a place-name to be
returned. Second, the need to identify candidate answers typically involves the ability
to quickly look up phrases, sentences, or passages that contain potential answers with-
out having to force the system to parse large quantities of text.

 Scoring implies many of the basic things again, such as parsing words, as well as a
deeper understanding of whether a candidate actually contains the necessary compo-
nents to answer a question, such as mentioning a person or a place. As easy as some of
these things sound given the ease with which most humans think they do these things,
they’re not to be taken for granted. With this in mind, let’s take a look at an example
of processing a chunk of text to find passages and identify interesting things like
names.

1.2.1 Hello, Dr. Frankenstein

In light of our discussion of a question answering system as well as our three primary
tasks for working with text, let’s take a look at some basic text processing. Naturally, we
need some sample text to process in this simple system. For that, we chose Mary Shel-
ley’s classic Frankenstein. Why Frankenstein? Besides the authors’ liking the book from a
literary standpoint, it also happens to be the first book we came across on the Guten-
berg Project site (http://www.gutenberg.org/), it’s plain text and nicely formatted
(which you’ll find is a rarity in your day-to-day life with text), and there’s the added
bonus that it’s out of copyright and freely distributable. We’ve included a full copy in
our source tree, but you can also download a copy of the book at http://www.gutenberg
.org/cache/epub/84/pg84.txt.

 Now that we have some text to work with, let’s do a few tasks that come up time
and time again in text applications:

 Search the text based on user input and return the relevant passage (a para-
graph in this example)

 Split the passage into sentences
 Extract “interesting” things from the text, like the names of people

To accomplish these tasks, we’ll use two Java libraries, Apache Lucene and Apache
OpenNLP, along with the code in the com.tamingtext.frankenstein.Frankenstein Java
file that’s included with the book and also available on GitHub at http://
www.github.com/tamingtext/book. See https://github.com/tamingtext/book/blob
/master/README for instructions on building the source.

 The high-level code that drives this process can be seen in the following listing.

6 CHAPTER 1 Getting started taming text

Frankenstein frankenstein = new Frankenstein();
frankenstein.init();
frankenstein.index();
String query = null;
while (true) {

query = getQuery();
if (query != null) {

Results results = frankenstein.search(query);
frankenstein.examineResults(results);
displayResults(results);

} else {
break;

}
}

In the driver example, you first index the content. Indexing is the process of making
the content searchable using Lucene. We’ll explain this in more detail in the chapter
on search later in the book. For now, you can think of it as a quick way of looking up
where words occur in a piece of text. Next you enter a loop where you ask the user to
enter a query, execute the search, and then process the discovered results. For the
purposes of this example, you treat each paragraph as a searchable unit. This means
that when you execute a search, you’ll be able to know exactly which paragraph in the
book matched the query.

 After you have your paragraphs, you switch over to using OpenNLP, which will take
each paragraph, split it into sentences, and then try to identify the names of people in
a sentence. We’ll forgo examining the details of how each of the methods are imple-
mented, as various sections in the remainder of the book cover the concepts. Instead,
let’s run the program and try a query and look at the results.

 To run the code, open a terminal window (command prompt and change into the
directory containing the unpacked source code) and type bin/frankenstein.sh on
UNIX/Mac or bin/frankenstein.cmd on Windows. You should see the following:

Initializing Frankenstein
Indexing Frankenstein
Processed 7254 lines. Paragraphs: 722

Type your query. Hit Enter to process the query \
(the empty string will exit the program):
>

At this point, you can enter a query, such as "three months". A partial listing of
the results follows. Note that we’ve inserted [...] in numerous places for formatting
purposes.

>"three months"
Searching for: "three months"
Found 4 total hits.

Match: [0] Paragraph: 418
Lines: 4249-4255

Listing 1.1 Frankenstein driver program

Make content
searchable.

Prompt user
for query.

Perform search.

Parse results
and show
interesting items.

7Preview: A fact-based question answering system
"'Do you consider,' said his companion to him, ...
----- Sentences ----

[0] "'Do you consider,' said his companion to him, ...
[1] I do not wish to take any unfair advantage, ...

Match: [1] Paragraph: 583
Lines: 5796-5807

The season of the assizes approached. ...
----- Sentences ----

... [2] Mr. Kirwin charged himself with every care ...
>>>> Names

Kirwin
... [4] ... that I was on the Orkney Islands ...

>>>> Locations
Orkney Islands

Match: [2] Paragraph: 203
Lines: 2167-2186

Six years had elapsed, passed in a dream but for one indelible trac
e, ...

----- Sentences ----
... [4] ... and represented Caroline Beaufort in an ...

>>>> Names
Caroline Beaufort

... [7] While I was thus engaged, Ernest entered: ... "Welcome
, my dearest Victor," said he. "Ah!

>>>> Names
Ah

[8] I wish you had come three months ago, and then you would ha
ve found us all joyous and delighted.

>>>> Dates
three months ago

[9] ... who seems sinking under his misfortune; and your pers
uasions will induce poor Elizabeth to cease her ...

>>>> Names
Elizabeth

...

This output shows the results of fetching the top paragraphs that mention “three
months” as a phrase (four paragraphs in all) along with a few examples of the sen-
tences in the paragraph, as well as lists of any names, dates, or locations in that text. In
this example, you can see samples of the sentence detection as well as the extraction
of names, locations, and dates. A keen eye will also notice a few places where the sim-
ple system is clearly wrong. For instance, the system thinks Ah is a name, but that Ernest
isn’t. It also failed to split the text ending in “... said he. “Ah!” into separate sentences.
Perhaps our system doesn’t know how to properly handle exclamation points or there
was some odd formatting in the text.

 For now, we’ll wave our hands as to why these failed. If you explore further with
other queries, you’ll likely find plenty of the good, bad, and even the ugly in process-
ing text. This example makes for a nice segue into our next section, which will touch

8 CHAPTER 1 Getting started taming text
on some of these difficulties in processing text as well as serve as motivation for many
of the approaches we take in the book.

1.3 Understanding text is hard
Suppose Robin and Joe are talking, and Joe states, “The bank on the left is solid, but
the one on the right is crumbling.” What are Robin and Joe talking about? Are they
on Wall Street looking at the offices of two financial institutions, or are they floating
down the Mississippi River looking for a place to land their canoe? If you assume the
former, the words solid and crumbling probably refer to the state of the banks’ finances,
whereas the latter case is an assessment of the quality of the ground on the side of a
river. Now, what if you replaced the characters’ names with the names Huck and Tom
from The Adventures of Tom Sawyer? You’d likely feel pretty confident in stating it’s a
river bank and not a financial institution, right? As you can see, context is also impor-
tant. It’s often the case that only with more information from the surrounding context
combined with your own experiences can you truly know what some piece of content
is about. The ambiguity in Joe’s statement only touches on the surface of the complex-
ity involved in understanding text.

 Given well-written, coherent sentences and paragraphs, knowledgeable people
seamlessly look up the meanings of words and incorporate their experiences and
knowledge of their surroundings to arrive at an understanding of content and conver-
sations. Literate adults can (more or less) effortlessly dissect sentences, identify rela-
tionships, and infer meaning nearly instantaneously. And, as in the Robin and Joe
example, people are almost always aware when something is significantly out of place
or lacking from a sentence, paragraph, or document as a whole. Human beings also
feed off others in conversation, instantly adapting tone and emotions to convey
thoughts on subjects ranging from the weather to politics to the role of the designated
hitter. Though we often take these skills for granted, we should remember that they
have been fine-tuned through many years of conversation, education, and feedback
from others, not to mention all the knowledge passed down from our ancestors.

 At the same time, computers and the fields of information retrieval (IR) and natu-
ral language processing (NLP) are still relatively young. Computers need to be capable
of processing language on many different levels in order to come close to “under-
standing” content like people do. (For an in-depth discussion of the many factors that
go into NLP, see Liddy [2001].) Though full understanding is a tall order for a com-
puter, even doing basic tasks can be overwhelming given the sheer volume of text
available and the variety with which it occurs.

 There’s a reason the saying goes “the numbers don’t lie” and not “the text doesn’t
lie”; text comes in all shapes and meanings and trips up even the smartest people on a
regular basis. Writing applications to process text can mean facing a number of tech-
nical and nontechnical challenges. Table 1.2 outlines some of the challenges text
applications face, each row increasing in difficulty from the previous.

9Understanding text is hard

Table 1.1 Processing text presents challenges at many levels, from handling character encodings to
inferring meaning in the context of the world around us.

Level Challenges

Character – Character encodings, such as ASCII, Shift-JIS, Big 5, Latin-1, UTF-8,
UTF-16.

– Case (upper and lower), punctuation, accents, and numbers all
require different treatments in different applications.

Words and morphemesa – Word segmentation: dividing text into words. Fairly easy for English
and other languages that use whitespace; much harder for languages
like Chinese and Japanese.

– Assigning part of speech.
– Identifying synonyms; synonyms are useful for searching.
– Stemming: the process of shortening a word to its base or root form.

For example, a simple stemming of words is word.
– Abbreviations, acronyms, and spelling also play important roles in

understanding words.

Multiword and sentence – Phrase detection: quick red fox, hockey legend Bobby Orr, and big
brown shoe are all examples of phrases.

– Parsing: breaking sentences down into subject-verb and other relation-
ships often yields useful information about words and their relation-
ships to each other.

– Sentence boundary detection is a well-understood problem in English,
but is still not perfect.

– Coreference resolution: “Jason likes dogs, but he would never buy
one.” In this example, he is a coreference to Jason. The need for
coreference resolution can also span sentences.

– Words often have multiple meanings; using the context of a sentence
or more may help choose the correct word. This process is called
word sense disambiguation and is difficult to do well.

– Combining the definitions of words and their relationships to each
other to determine the meaning of a sentence.

Multisentence and para-
graph

At this level, processing becomes more difficult in an effort to find
deeper understanding of an author’s intent. Algorithms for summariza-
tion often require being able to identify which sentences are more impor-
tant than others.

Document Similar to the paragraph level, understanding the meaning of a docu-
ment often requires knowledge that goes beyond what’s contained in the
actual document. Authors often expect readers to have a certain back-
ground or possess certain reading skills. For example, most of this book
won’t make much sense if you’ve never used a computer and done some
programming, whereas most newspapers assume at least a sixth-grade
reading level.

Multidocument and corpus At this level, people want to quickly find items of interest as well as
group related documents and read summaries of those documents.
Applications that can aggregate and organize facts and opinions and find
relationships are particularly useful.

a. A morpheme is a small linguistic unit that still has meaning. Prefixes and suffixes are examples of morphemes.

10 CHAPTER 1 Getting started taming text
Beyond these challenges, human factors also play a role in working with text. Differ-
ent cultures, different languages, and different interpretations of the same writing can
leave even the best engineer wondering what to implement. Merely looking at some
sample files and trying to extrapolate an approach for a whole collection of docu-
ments is often problematic. On the other side of the coin, manually analyzing and
annotating large sets of documents can be expensive and time consuming. But rest
assured that help is available and text can be tamed.

1.4 Text, tamed
Now that you’ve seen some of the challenges you’re about to face, take heart knowing
that many tools exist both commercially and in the open source community (see
http://www.opensource.org) to tackle these topics and many more. One of the great
things about the journey you’re embarking on is its ever-changing and ever-improving
nature. Problems that were intractable 10 years ago due to resource limits are now
yielding positive results thanks to better algorithms, faster CPUs, cheaper memory,
cheaper disk space, and tools for easily harnessing many computers into a single vir-
tual CPU. Now, more than ever, quality open source tools exist that can form the foun-
dation for new ideas and new applications.

 This book is written to bring real-world experience to these open source tools and
introduce you to the fields of natural language processing and information retrieval.
We can’t possibly cover all aspects of NLP and IR nor are we going to discuss bleeding-
edge research, at least not until the end of the book; instead we’ll focus on areas that
are likely to have the biggest impact in taming your text.

 By focusing on topics like search, entity identification (finding people, places, and
things), grouping and labeling, clustering, and summarization, we can build practical
applications that help users find and understand the important parts of their text
quickly and easily.

 Though we hate to be a buzzkill on all the excitement of taming text, it’s impor-
tant to note that there are no perfect approaches in working with text. Many times,
two people reviewing the same output won’t agree on the correctness of the results,
nor will it be obvious what to fix to satisfy them. Furthermore, fixing one problem may
expose other problems. Testing and analysis are as important as ever to achieving
quality results. Ultimately, the best systems take a human-in-the-loop approach and
learn from user feedback where possible, just as smart people learn from their mis-
takes and from their peers. The user feedback need not be explicit, either. Capturing
clicks, and analyzing logs and other user behaviors can provide valuable feedback on
how your users are utilizing your application. With that in mind, here are some gen-
eral tips for improving your application and keeping your sanity:

 Get to know your users. Do they care about certain structures like tables and
lists, or is it enough to collect all the words in a document? Are they willing to
give you more information in return for better results, or is simplicity the rule?
Are they willing to wait longer for better results, or do they need a best guess
immediately?

11Text and the intelligent app: search and beyond
 Get to know your content. What file formats (HTML, Microsoft Word, PDF, text)
are used? What structures and features are important? Does the text contain a
lot of jargon, abbreviations, or different ways of saying the same thing? Is the
content focused on a single area of interest or does it cover a number of topics?

 Test, test, and test some more. Take the time (but not too much time) to mea-
sure the quality of your results and the cost of obtaining them. Become prac-
ticed in the art of arbitration. Every nontrivial text-based application will need
to make trade-offs in regards to quality and scalability. By combining your
knowledge of your users and your content, you can often find the sweet spot of
quality and performance that satisfies most people most of the time.

 Sometimes, a best guess is as good as it gets. Look for ways to provide confi-
dence levels to your users so they can make an informed decision about your
response.

 All else being equal, favor the simpler approach. Moreover, you’ll be amazed at
how good simple solutions can be at getting decent results.

Also, though working in non-native languages is an interesting problem in itself, we’ll
stick to English for this book. Rest assured that many of the approaches can be
applied to other languages given the right resources.

 It should also be pointed out that the kinds of problems you might wish to solve
range in difficulty from relatively straightforward to so hard you might as well flip a
coin. For instance, in English and other European languages, tokenization and part of
speech tagging algorithms perform well, whereas tools like machine translation of for-
eign languages, sentiment analysis, and reasoning from text are much more difficult
and often don’t perform well in unconstrained environments.

 Finally, text processing is much like riding a roller coaster. There will be highs
when your application can do no wrong and lows when your application can do no
right. The fact is that none of the approaches discussed in this book or in the broader
field of NLP are the final solution to the problem. Therein lies the ultimate opportu-
nity for you to dig in and add your signature. So let’s get started and lay the founda-
tion for the ideas to come in later chapters by setting the context that takes us beyond
search into the wonderful world of natural language processing.

1.5 Text and the intelligent app: search and beyond
For many years now, search has been king. Without the likes of Google and Yahoo!,
there’s no doubt that the internet wouldn’t be anywhere near what it is today. Yet, with
the rise of good open source search tools like Apache Solr and Apache Lucene, along
with a myriad of crawlers and distributed processing techniques, search is a commod-
ity, at least on the smaller scale of personal and corporate search where huge data cen-
ters aren’t required. At the same time, people’s expectations of search engines are
increasing. We want better results in less time while entering only one or two key-
words. We also want our own content easily searched and organized.

12 CHAPTER 1 Getting started taming text
 Furthermore, corporations are under huge pressure to constantly add value. Every
time some big player like Google or Amazon makes a move to better access informa-
tion, the bar is raised for the rest of us. Five, ten, or fifteen years ago, it was enough to
add search capabilities to be able to find data; now search is a prerequisite and the
game-changing players use complex algorithms utilizing machine learning and deep
statistical analysis to work with volumes of data that would take people years to under-
stand. This is the evolution of the intelligent application. More and more companies
are adopting machine learning and deep text analysis in well-defined areas to bring
more intelligence to their applications.

 The adoption of machine learning and NLP techniques is grounded in the reality
of practical applications dealing with large volumes of data, and not the grandiose,
albeit worthwhile, notion of machines “understanding” people or somehow passing
the Turing Test (see http://en.wikipedia.org/wiki/Turing_Test). These companies
are focused on finding and extracting important text features; aggregating informa-
tion like user clicks, ratings, and reviews; grouping and summarizing similar content;
and, finally, displaying all of these features in ways that allow end users to better find
and use the content, which should ultimately lead to more purchases or traffic or
whatever is the objective. After all, you can’t buy something if you can’t find it, right?

 So, how do you get started doing all of these great things? You start by establishing
the baseline with search (covered in chapter 3) and then examine ways of automati-
cally organizing content using concepts that you employ in your daily life. Instead of
doing it manually, you let the machine do it for you (with a little help when needed).
With that in mind, the next few sections break down the ideas of search and organiz-
ing content into three distinct areas and propose an example that ties many of the
concepts together, which will be explored more completely in the ensuing chapters.

1.5.1 Searching and matching

Search provides the starting point for most of your text taming activities, including
our proposed QA system, where you’ll rely on it both for indexing the input data as
well as for identifying candidate passages that match a user’s question. Even when you
need to apply techniques that go beyond search, you’ll likely use search to find the
subset of text or documents on which to apply more advanced techniques.

 In chapter 3, “Searching,” we’ll explore how to make documents available for
searching, indexing, and how to retrieve documents based on a query. We’ll also
explore how documents are ranked by a search engine and use this information to
improve the returned results. Finally, we’ll examine faceted search, which allows
searches to be refined by limiting results to a predefined category. The coverage of
these topics will be grounded in examples using Apache Solr and Apache Lucene.

 After you’re familiar with the techniques of search, you’ll quickly realize that
search is only as good as the content backing that search. If the words and phrases
that your users are looking for aren’t in your index, then you won’t be able to return a
relevant result. In chapter 4, “Fuzzy string matching,” we’ll look at techniques for

13Text and the intelligent app: search and beyond
enabling query recommendations based on the content that’s available via query spell-
checking as well as how these same techniques can be applied to database- or record-
linking tasks that go beyond simple database joins. These techniques are often used
not only as part of search, but also for more complex things like identifying whether
two user profiles are the same person, as might happen when two companies merge
and their customer lists must be combined.

1.5.2 Extracting information

Though search will help you find documents that contain the information you need,
often you need to be able to identify smaller units of information. For instance, the
ability to identify proper names in a large collection of text can be immensely helpful
in tracking down criminal activity or finding relationships between people who might
not otherwise meet. To do this we’ll explore techniques for identifying and classifying
small selections of text, typically just a few words in length.

 In chapter 2, “Foundations of taming text,” we’ll introduce techniques for identify-
ing words that form a linguistic unit such as noun phrases, which can be used to iden-
tify words in a document or query which can be grouped together. In chapter 5,
“Identifying people, places, and things,” we’ll look at how to identify proper names
and numeric phrases and put them into semantic categories such as person, location,
and date, irrespective of their linguistic usage. This ability will be fundamental to your
ability to build a QA system in chapter 8. For both of these tasks we’ll use the capabili-
ties of OpenNLP and explore how to use its existing models as well as build new mod-
els that better fit the data. Unlike the problem of searching and matching, these
models will be built from examining manually annotated content and then using sta-
tistical machine learning approaches to produce a model.

1.5.3 Grouping information

The flip side to extracting information from text is adding supplemental information
to your text by grouping it together or adding labels. For example, think about how
much easier it would be to process your email if it were automatically tagged and pri-
oritized so that you could also find all emails that are similar to one another. This way,
you could focus in on just those emails that require your immediate attention as well
as find supporting content for emails you’re sending.

 One common approach to this is to group your text into categories. As it turns out,
the techniques used for extracting information can also be applied to grouping text
or documents into categories. These groups can often then be used as facets in your
search index, supplemental keywords, or as an alternate way for users to navigate
information. Even in cases where your users are providing the categories via tagging,
these techniques can recommend tags that have been used in the past. Chapter 7,
“Classification, categorization, and tagging,” shows how to build models to classify
documents and how to apply these models to new documents to improve user experi-
ence with text.

14 CHAPTER 1 Getting started taming text
 When you’ve tamed your text and are able to find what you’re looking for, and
you’ve extracted the information needed, you may find you have too much of a good
thing. In chapter 6, “Clustering text,” we’ll look at how to group similar information.
These techniques can be used to identify redundant information and, if necessary,
suppress it. They can also be used to group similar documents so that a user can
peruse entire topics at a time and access the relevancy of multiple documents at once
without having to read each document.

1.5.4 An intelligent application

In our penultimate chapter, “Building an example question answering system,” we’ll
bring a number of the approaches described in the early chapters together to build an
intelligent application. Specifically, you’ll build a fact-based question answering sys-
tem designed to find answers to trivia-like questions in text. For instance, given the
right content, you should be able to answer questions like, “Who is the President of
the United States?” This system uses the techniques of chapter 3, “Searching,” to iden-
tify text that might contain the answer to your question. The approaches presented in
chapter 5, “Identifying people, places, and things,” will be used to find these pieces of
text that are often the answers to fact-based questions. The material in chapter 2,
“Foundations of taming text,” and chapter 7, “Classification, categorization, and tag-
ging,” will be used to analyze the question being asked, and determine what type of
information the question is looking for. Finally, you’ll apply the techniques for docu-
ment ranking described in chapter 3 to rank your answers.

1.6 Summary
Taming text is a large and sometimes overwhelming task, further complicated by dif-
ferent languages, different dialects, and different interpretations. Text can appear as
elegant prose written by great authors or the ugliest of essays written without style or
substance. Whatever its form, text is everywhere and it must be dealt with by people
and programs. Luckily, many tools exist both commercially and in open source to
help try to make sense of it all. It won’t be perfect, but it’s getting better all the time.
So far, we’ve taken a look at some of the reasons why text is so important as well as
hard to process. We’ve also looked at what role text plays in the intelligent web, intro-
duced the topics we’ll cover, and gave a brief overview of some of the things needed to
build a simple question answering system. In the next chapter, we’ll kick things off by
laying down the foundations of text analysis along with some basics on extracting raw
text from the many file formats found in the wild today.

1.7 Resources
 “Americans Spend Half of Their Spare Time Online.” 2007. Media-Screen LLC.

http://www.media-screen.com/press050707.html.

 Feldman, Susan. 2009. “Hidden Costs of Information Work: A Progress Report.”
International Data Corporation.

15Resources
 Gantz, John F. and Reinsel, David. 2011. “Extracting Value from Chaos.” Interna-
tional Data Corporation. http://www.emc.com/collateral/analyst-reports/
idc-extracting-value-from-chaos-ar.pdf.

 Liddy, Elizabeth. 2001. “Natural Language Processing.” Encyclopedia of Library and
Information Science, 2nd Ed. NY. Marcel Decker, Inc.

 “Trends in Consumers’ Time Spent with Media.” 2010. eMarketer. http://www
.emarketer.com/Article.aspx?R=1008138.

Foundations of
taming text
Naturally, before we can get started with the hard-core text-taming processes, we
need a little warm-up first. We’ll start by laying the ground work with a short high
school English refresher where we’ll delve into topics such as tokenization, stem-
ming, parts of speech, and phrases and clauses. Each of these steps can play an
important role in the quality of results you’ll see when building applications utiliz-
ing text. For instance, the seemingly simple act of splitting up words, especially in
languages like Chinese, can be difficult. Even in English, dealing with punctuation
appropriately can make tokenization hard. Likewise, identifying parts of speech
and phrases in text can also be difficult due to the ambiguity inherent in language.

 We’ll follow up the discussion on language foundations by looking at how to
extract text from the many different file formats encountered in the wild. Though
many books and papers wave their hands at content extraction, assuming users

In this chapter
 Understanding text processing building blocks like

tokenizing, chunking, parsing, and part of speech tagging

 Extracting text from common file formats using the Apache
Tika open source project
16

17Foundations of language
have plain text ready to go, we feel it’s important to investigate some of the issues
involved with content extraction for several reasons:

 Text is often hard to extract from proprietary formats. Even commercial extrac-
tion tools often fail at extracting the proper content.

 In the real world, you’ll spend a fair amount of time looking at various file for-
mats and extraction tools and trying to figure out what’s right. Real-world data
rarely comes in simple string packages. It’ll have strange formatting, random
out-of-place characters, and other problems that will make you want to pull
your hair out.

 Your downstream processing will only be as good as your input data. The old
saying “garbage in, garbage out” is as true here as it is anywhere.

In the last part of this chapter, after you’ve refreshed your English knowledge and
extracted content, we’ll look at some foundational pieces that will make life easier for
your applications and libraries. Without further ado, let’s look at some language
basics like how to identify words and how to separate them into useful structures like
sentences, noun phrases, and possibly full parse trees.

2.1 Foundations of language
Are you pining for the good old days of grammar school? Perhaps you miss high
school English class and diagramming sentences, identifying subject-verb relation-
ships, and watching out for dangling modifiers. Well, you’re in luck, because part of
text analysis is recalling the basics of high school English and beyond. Kidding aside,
the next few sections build the foundation you need for the applications we’re discuss-
ing by taking a look at common issues that need to be addressed in order to analyze
text. By explicitly building this foundation, we can establish a shared vocabulary that
will make it easier to explain concepts later, as well as encourage thinking about the
features and function of language and how to harness them in an application. For
instance, when you build your QA system later in chapter 8, you’ll need the ability to
split raw strings up into individual words and then you’ll need to understand what role
each of those words plays in the sentence (part of speech) as well as how they relate to
each other via things like phrases and clauses. Given this kind of information, you’ll
then be able take in a question like “Who is Bob’s uncle?” and dissect it to know that
the question requires the answer to be a proper name (which consists of words that
have been tagged as nouns) and that it must occur in the same sentence as the words
Bob and uncle (and likely in that order). Though we take these things for granted, the
computer must be told to look for these attributes. And though some applications will
need all of these building blocks, many others will only need one or two. Some appli-
cations will explicitly state their usage, whereas others won’t. In the long run, the
more you know about how language works, the better off you’ll be in assessing the
trade-offs inherent in any text analysis system.

 In the first section, we’ll describe the various categories of words and word group-
ings, and look at how words are combined to form sentences. Our brief introduction

18 CHAPTER 2 Foundations of taming text
to the area known in linguistics as syntax will focus on the topics that we’ll refer to later
in the book. In the second section, we’ll look inside the words themselves, called mor-
phology. Though we won’t be using morphology explicitly in this book, our basic intro-
duction will help you understand some of the techniques we’ll present. Finally,
though syntax and morphology are studied as systems that can be applied to all spo-
ken or natural languages, we’ll limit our focus and examples to English.

2.1.1 Words and their categories

Words fall into a small number of lexical categories, or parts of speech. These catego-
ries include nouns, verbs, adjectives, determiners, prepositions, and conjunctions.
Though you’ve probably been exposed to these categories at various points, you may
not have seen them all at once or remember exactly what they mean. Basic familiarity
with these concepts will be useful in upcoming chapters as we explore techniques that
use these categories directly or at least are informed by them. Table 2.1 contains a
chart of the basic lexical categories, a definition, and an example, after which we’ll go
into some additional details about these high-level categories.

Table 2.1 Definitions and examples of commonly occurring lexical categories

Lexical
categories Definitiona

a. All definitions are taken from the New Oxford American Dictionary, 2nd Edition.

Example (in italics)

Adjective A word or phrase naming an attribute, added
to or grammatically related to a noun to mod-
ify or describe it.

The quick red fox jumped over the lazy
brown dogs.

Adverb A word or phrase that modifies or qualifies
an adjective, verb, or other adverb or a word
group, expressing a relation of place, time,
circumstance, manner, cause, degree, etc.

The dogs lazily ran down the field after
the fox.

Conjunction A word that joins together two words,
phrases, or clauses.

The quick red fox and the silver coyote
jumped over the lazy brown dogs.

Determiner A modifying word that determines the kind of
reference a noun or noun group has, for
example a, the, every.

The quick red fox jumped over the lazy
brown dogs.

Noun A word used to identify any of a class of peo-
ple, places, or things, or to name a particu-
lar one of these.

The quick red fox jumped over the lazy
brown dogs.

Preposition A word governing, and usually preceding, a
noun or pronoun and expressing a relation to
another word or element in the clause.

The quick red fox jumped over the lazy
brown dogs.

Verb A word used to describe an action, state, or
occurrence, and forming the main part of the
predicate of a sentence, such as hear,
become, and happen.

The quick red fox jumped over the lazy
brown dogs.

19Foundations of language
These lexical categories are based on their syntactic usage rather than their meaning,
but because some semantic concepts are more likely to be expressed with a particular
syntactic construction, they’re often defined based on these semantic associations. For
instance, a noun is often defined as a person, place, or thing, or a verb as an action, but
we use nouns such as destruction or usages of the verb be, as in “Judy is 12 years old,”
which don’t convey the typical semantic relationships associated with nouns and verbs.

 These high-level categories often have more specific subcategories, some of which
will be used later in this book. Nouns are further classified into common nouns, proper
nouns, and pronouns. Common nouns usually describe a class of entities such as town,
ocean, or person and are distinguished from proper nouns, which represent unique enti-
ties and are typically capitalized such as London, John, or Eiffel Tower. Pronouns are nouns
that reference other entities, usually mentioned previously, and include words such as
he, she, and it. Many of the other lexical categories also contain subcategories and there
are even additional subcategories of nouns, but these will be sufficient for the topics
covered here. Additional information on these topics can be found in the many good
references on grammar and language available by searching the web, and specifically
Wikipedia, or from reading references like The Chicago Manual of Style or listening to
podcasts like Grammar Girl (http://grammar.quickanddirtytips.com/).

2.1.2 Phrases and clauses

Most of the lexical categories for words listed in the previous section have correspond-
ing structures for phrases that can consist of multiple words. The phrases are rooted
by at least one word of a particular type, but can also consist of words and phrases of
other types. For example the noun phrase the happy girl consists of a determiner (the)
and an adjective (happy), and is rooted by the common noun girl. Examples of each
of these phrases is shown in table 2.2.

Table 2.2 Examples of commonly occurring phrasal categories

Phrasal types Example (in italics) Comment

Adjective The unusually red fox jumped over the
exceptionally lazy dogs.

The adverbs unusually and exceptionally
modify the adjectives red and lazy,
respectively, to create adjectival phrases.

Adverb The dogs almost always ran down the
field after the fox.

The adverb almost modifies the adverb
always to create an adverbial phrase.

Conjunction The quick red fox as well as the silver coy-
ote jumped over the lazy brown dogs.

Though this is somewhat of an excep-
tional case, you can see that the multi-
word phrase as well as performs the
same function as a conjunction such as
and.

Noun The quick red fox jumped over the lazy
brown dogs.

The noun fox and its modifiers the, quick,
and red create a noun phrase, as does
the noun dogs and its modifiers the, lazy,
and brown.

20 CHAPTER 2 Foundations of taming text
Phrases can be combined together to form clauses, which are the minimal unit
needed to construct a sentence. Clauses minimally consist of a noun phrase (the sub-
ject) and a verb phrase (the predicate), which often consists of a verb and another
noun phrase. The phrase The fox jumped the fence is a clause consisting of the noun
phrase, The fox (the subject), and the verb phrase, jumped the fence, which consists of
the noun phrase, the fence (the object), and the verb jumped. The other types of
phrases can optionally be added to the sentence to express other relationships. With
these components, you can see that any sentence could be decomposed into a set of
clauses, and those into sets of phrases, and those into sets of words with particular
parts of speech. The task of determining the parts of speech, phrases, clauses, and
their relationship to one another is called parsing. You may have performed this syn-
tactic analysis yourself if you ever diagrammed a sentence. Later in this chapter we’ll
examine software that performs these tasks.

2.1.3 Morphology

Morphology is the study of the internal structure of words. In most languages, words
consist of a lexeme, or root form, and various affixes (prefix, suffix) that mark the word
based on how it’s being used. In English, words are marked primarily with suffixes and
the rules for these are based on the word’s lexical category.

 Common and proper nouns in English are inflected for number, and have two dis-
tinct forms, singular and plural. Singular nouns consist of a root form and plural
nouns are usually marked with s at the end. Though common and proper nouns only
consist of two forms, pronouns vary based on number, person, case, and gender. Pro-
nouns, though, are a closed class of words, with only 34 distinct forms, so it’s typically
easier to enumerate them rather than modeling their morphological structure. Nouns
that are derived from other lexical categories also contain suffixes marking these
transformations. For nouns based on verbs or adjectives, these include the following
suffixes, as described in tables 2.3 and 2.4.

 Verbs have a more complex system of morphology consisting of eight possible
inflected forms, but all regular verbs only contain four distinct forms. A number of
irregular verbs can also be used with an en suffix when used as a past participle instead
of the regular ed ending for this form. These forms are shown in table 2.5. The

Preposition The quick red fox jumped over the lazy
brown dogs.

The preposition over and the noun
phrase the lazy brown dogs form a prepo-
sitional phrase that modifies the verb
jumped.

Verb The quick red fox jumped over the lazy
brown dogs.

The verb jumped and its modifier the
prepositional phrase over the lazy brown
dogs form a verb phrase.

Table 2.2 Examples of commonly occurring phrasal categories (continued)

Phrasal types Example (in italics) Comment

21Common tools for text processing
remaining three forms are only lexical-
ized distinctly for a few irregular verbs
and don’t use a common suffix.

 Adjectives and adverbs can be
marked for comparison and have a
comparative and superlative form. The
base form adjective tall can be inflected
as comparative with the -er suffix to pro-
duce taller or as superlative with the -est
suffix to produce tallest. Likewise, an
adverb such as near can also be
inflected as comparative with the -er suf-
fix to produce nearer or as superlative
with the -est suffix to produce nearest.

 With a basic understanding of the
relationships between words and the
structure of the words themselves, we
can get right to work on using software
that uses these distinctions to tame text.

2.2 Common tools for
text processing
Now that you have a basic understand-
ing of the syntax and semantics of lan-
guage, let’s take a look at some tools to
help you identify these and other
important things in digital text. Some
of these tools will be used all of the
time, whereas others will only be used
on occasion. The following sections
start off with basics like string manipu-
lation and then continue on to more
complicated items such as full sentence
parsing. Generally speaking, the basics will be used every day, whereas more compli-
cated tools like full language parsers may only be used in certain applications.

2.2.1 String manipulation tools

Libraries for working with strings, character arrays, and other text representations
form the basis of most text-based programs. Most programming languages contain
libraries for doing basic operations like concatenation, splitting, substring search, and
a variety of methods for comparing two strings. Learning a regular expression library
like Java’s java.util.regex package will further your capabilities (see Mastering

Table 2.3 Examples of noun morphology when the
noun is based on a verb

Suffix Example Verb

-ation nomination nominate

-ee appointee appoint

-ure closure close

-al refusal refuse

-er runner run

-ment advertisement advertise

Table 2.4 Examples of noun morphology
when the noun is based on an adjective

Suffix Example Adjective

-dom freedom free

-hood likelihood likely

-ist realist real

-th warmth warm

-ness happiness happy

Table 2.5 Examples of regular verb morphology and
common past participle ending for irregular verbs

Suffix Example Marked form

none look Base form

-ing looking Gerund form

-s looks Third person singular form

-ed looked Past tense form

-en taken Past participle form

22 CHAPTER 2 Foundations of taming text
Regular Expressions by Jeffrey Friedl for a full accounting of regular expressions). It’ll
also pay to be intimately familiar with the String, Character, and StringBuilder
classes, as well as the java.text package. With these tools, you can easily capture sur-
face-level distinctions in text such as whether a word is capitalized, the length of a
word, or whether it contains a number or non-alphanumeric character. Additionally,
being familiar with parsing dates and numbers is also useful. In chapter 4, we’ll look
in greater detail at algorithms designed for working with strings. For now, let’s con-
sider attributes of text that are more linguistically motivated.

2.2.2 Tokens and tokenization

The first step after extracting content from a file is almost always to break the content
up into small, usable chunks of text, called tokens. Tokens often represent single
words, but as you’ll soon see, what constitutes a small, usable chunk can be specific to
an application. The most common first approach to tokenizing English is to split up a
string based on the occurrence of whitespace such as spaces and line breaks, as in this
simple tokenizer: String[] result = input.split("\\s+");. In this simplistic exam-
ple, the input String is split into an array of Strings using the regular expression \s+
(note that Java requires the escaping of the backslash), which breaks on whitespace.
Though this approach mostly works, running this code on a sample sentence like

I can't believe that the Carolina Hurricanes won the 2005-2006 Stanley
Cup.

yields the tokens in table 2.6. You’d be correct in thinking the period at the end of the
word Cup could be problematic.

Though splitting on whitespace works in some instances, most applications will need
to handle punctuation, acronyms, email addresses, URLs, and numbers in order to
provide the most benefit. Additionally, different applications often will have different
tokenization requirements. For instance, in the Apache Solr/Lucene search library
(covered in chapter 3), the StandardTokenizer accounts for commonly occurring
items like punctuation and acronyms. In fact, running the preceding sentence about
the Hurricanes through the StandardTokenizer drops the ending period, giving you
the tokens shown in table 2.7.

Now you might be thinking, “I didn’t want to get rid of the period; I just didn’t want it
attached to Cup.” This is a valid point and one that underscores the importance of

Table 2.6 Sentence split by whitespace

I can't believe that the Carolina Hurricanes won the 2005-2006 Stanley Cup.

Table 2.7 Sentence split by Solr StandardTokenizer

I can't believe that the Carolina Hurricanes won the 2005 2006 Stanley Cup

23Common tools for text processing
thinking about what your tokenization needs are for your application. Since a search
application like Lucene doesn’t need sentence-ending periods in most cases, it’s fine
to drop them from the token results in this case.

 For other types of applications, different tokenizations may be required. Process-
ing the same sentence using OpenNLP’s english.Tokenizer produces table 2.8.

Note here that the punctuation is maintained and the contraction can’t has been split
up. In this case, OpenNLP is using tokenization as a precursor to performing gram-
matical processing. For this type of application, punctuation is useful for helping
identify clause boundaries and can and not have distinct grammatical roles.

 If you look at another type of processing available in OpenNLP and used for
named-entity identification (discussed in chapter 5), you see another type of tokeniza-
tion. Here the approach is to split strings up via token class: alphabetic, numeric,
whitespace, and other. The output of the SimpleTokenizer for the same sentence is
shown in table 2.9.

In this example, you see that the date range has been split up. This allows the named-
entity component to identify each of the dates in the date range individually as is
required by this application.

 As you saw earlier, tokenization decisions are influenced by what task is being per-
formed. The unit of text that’s appropriate for the task is influenced by the types of
processing that will be performed on the text. Luckily, most libraries will provide
tokenization capabilities that preserve what is needed for later processing or will pro-
vide a means for using your own tokenizer.

 Other common techniques applied at the token level include these:

 Case alterations—Lowercasing all tokens can be helpful in searching.
 Stopword removal—Filtering out common words like the, and, and a. Commonly

occurring words like these often add little value (note we didn’t say no value) to
applications that don’t rely on sentence structure.

 Expansion—Adding synonyms or expanding acronyms and abbreviations in a
token stream can allow applications to handle alternative inputs from users.

 Part of speech tagging—Assigning the part of speech to a token. Covered in more
detail in the following section.

 Stemming—Reducing a word to a root or base form, for example, dogs to dog.
Covered in more detail in section 2.2.4.

Table 2.8 Sentence split by OpenNLP english.Tokenizer

I ca n't believe that the Carolina Hurricanes won the 2005-2006 Stanley Cup .

Table 2.9 Sentence split by OpenNLP SimpleTokenizer

I can ' t believe that the Carolina Hurricanes won the 2005 - 2006 Stanley Cup .

24 CHAPTER 2 Foundations of taming text
We’ll skip over the simple cases of stopword removal, expansion, and case alterations
as these are basic operations, usually involving simple lookups in a Map or basic
method calls on a String object. In the next two sections, we’ll cover part of speech
tagging and stemming in more detail, before moving beyond the word to the sen-
tence level.

2.2.3 Part of speech assignment

Identifying a word’s part of speech (POS), such as whether it’s a noun, verb, or adjec-
tive, is commonly used to enhance the quality of results in downstream processing.
For instance, using part of speech can help determine what the important keywords
are in a document (see Mihalcea [2004], among other examples) or to assist in
searching for specific usages of a word (such as Will as a proper noun versus will the
modal verb, as in “you will regret that”). There are many readily available, trainable
part of speech taggers available in the open source community. One such tagger is the
OpenNLP Maximum Entropy Tagger, available at http://opennlp.apache.org/. Don’t
worry too much about the phrase maximum entropy; it’s just a way of saying it uses statis-
tics to figure out which part of speech is most likely for a word. The OpenNLP English
POS tagger uses part of speech tags from the Penn Treebank Project (http://
www.cis.upenn.edu/~treebank) to label words in sentences with their part of speech.
Table 2.10 has a sampling of the more common tags used in Penn Treebank. Many of
these tags have related tags to mark the many different forms of a word, such as past
and present tenses, and singular versus plural. For a complete listing, see http://
repository.upenn.edu/cgi/viewcontent.cgi?article=1603&context=cis_reports.

Table 2.10 Definitions and examples of commonly occurring parts of speech

Parts of speech Penn Treebank tag name Examples

Adjective, superlative adjective, com-
parative adjective

JJ, JJS, JJR nice, nicest, nicer

Adverb, superlative adverb, compara-
tive adverb

RB, RBR, RBS early, earliest, earlier

Determiner DT a/the

Noun, plural noun, proper noun, plural
proper noun

NN, NNS, NNP, NNPS house, houses, London,
Teamsters

Personal pronoun, possessive pronoun PRP, PRP$ he/she/it/himself, his/her/
its

Infinitive verb, past-tense verb, past-
participle verb, present-tense third per-
son singular verb, present-tense other
than third person verb, gerund or pres-
ent participle verb

VB, VBD, VBN, VBZ, VBP, VBG be, was, been, is, am, being

25Common tools for text processing
Now that you’re familiar with some of the POS tags we’ll encounter, let’s look at how
the OpenNLP POS tagger works. The POS tagger works using a statistical model built
by examining a corpus, or collection, of documents that have already been marked
with POS tags. This model contains data to calculate the probability that a word has a
certain part of speech. Luckily, you don’t have to create the model (although you
could); one has been provided for you. The next listing demonstrates how to load the
model and related information and run the POS tagger.

File posModelFile = new File(
getModelDir(), "en-pos-maxent.bin");

FileInputStream posModelStream = new FileInputStream(posModelFile);
POSModel model = new POSModel(posModelStream);

POSTaggerME tagger = new POSTaggerME(model);
String[] words = SimpleTokenizer.INSTANCE.tokenize(

"The quick, red fox jumped over the lazy, brown dogs.");
String[] result = tagger.tag(words);
for (int i=0 ; i < words.length; i++) {

System.err.print(words[i] + "/" + result[i] + " ");
}
System.err.println("n");

The output from running listing 2.1 is the following:

The/DT quick/JJ ,/, red/JJ fox/NN jumped/VBD over/IN the/DT lazy/JJ ,/,
brown/JJ dogs/NNS ./.

A quick check shows reasonable output: dogs and fox are nouns; quick, red, lazy, and
brown are adjectives; and jumped is a verb. For now, that’s all you need to know about
part of speech tagging, although we’ll revisit it in later sections and chapters.

2.2.4 Stemming

Imagine it’s your job to read all the newspapers in your country (hope you’ve got cof-
fee!) watching for articles on banks. So you get a search engine and you feed it all
your newspapers and then you begin to search for bank, banks, banking, banker,
banked, and so on. Being short on time, you think, “Gee, I wish I could just search for
bank and it would find all the variations,” and like that you realize the power of stem-
ming (and synonyms, but that’s a different topic). Stemming is the process of reducing
a word to a root, or simpler form, which isn’t necessarily a word on its own. Stemming
is often used in text processing applications like search because users usually expect to
find documents on banking when searching for the word bank. In most cases, users
don’t need an exact match for their keywords, unless they tell you otherwise.

 There are many different approaches to stemming, each with their own design
goals. Some are aggressive, reducing words to the smallest root possible, whereas oth-
ers are lighter, preferring to do basic things like removing s or ing from words. The
trade-off in search, for example, is almost always the classic match-up of quality versus

Listing 2.1 OpenNLP POS tagger example

Give path to POS model.

Tokenize sentence
into words.

Pass in tokenized
sentence to be
tagged.

26 CHAPTER 2 Foundations of taming text

exp
fo

T
wha
quantity. Aggressive stemming usually leads to more results but lower quality, whereas
light stemming can preserve some quality at the risk of missing some useful results.
Stemming can also cause problems where words with different meanings are reduced
to the same stem, thus losing the meaning, while other words that are related aren’t
reduced to the same stem (see Krovetz [1993]).

 How should you pick a stemmer and when should you use one? As with most NLP
applications, it depends. Running tests, making empirical judgments, and some trial
and error will ultimately lead to the best practical answers to those questions. In the end,
the best advice is to make it easy to change stemmers by coding to an interface. Then,
start with a light stemmer and try to gather feedback from your testers or users. If your
users think they’re missing out on the variations, then you can stem more aggressively.

 Now that you know some of the reasons to use stemming, let’s look at using the
Snowball stemmers (http://snowball.tartarus.org/) developed by Dr. Martin Porter
and colleagues. Besides the friendly licensing terms, the Snowball stemmers support a
variety of approaches and language coverage, including but not limited to these:

 Porter and Porter2 (named EnglishStemmer)
 Lovins
 Spanish
 French
 Russian
 Swedish

The following listing creates an English stemmer (sometimes called Porter2) and then
loops through an array of tokens.

EnglishStemmer english = new EnglishStemmer();

String[] test = {"bank", "banks", "banking", "banker", "banked",
"bankers"};

String[] gold = {"bank", "bank", "bank", "banker", "bank", "banker"};
for (int i = 0; i < test.length; i++) {

english.setCurrent(test[i]);
english.stem();
System.out.println("English: " + english.getCurrent());
assertTrue(english.getCurrent() + " is not equal to " + gold[i],

english.getCurrent().equals(gold[i]) == true);
}

As expected by the unit test, the result of stemming is "bank", "bank", "bank",
"banker", "bank", "banker". Note that banker (and bankers) didn’t get reduced to
bank according to the English stemmer rules. This isn’t a bug in the English stemmer,
just a matter of how the algorithm works. Not great for our newspaper reading job,
but still better than having to run all the variations of bank through a search engine.
Without a doubt, at some point when using stemming you’ll have a user or tester com-
plain that word X can’t be found, or was stemmed incorrectly. If you truly believe it

Listing 2.2 Using the Snowball English stemmer

Set up
tokens
to be
stemmed.

Define
ectations
r results.

ell english
t to stem. Do stemming.

27Common tools for text processing
should be fixed, then your best bet is to use a protected words list that prevents that
word from being stemmed instead of trying to correct the stemming algorithm itself
(unless you control the code).

2.2.5 Sentence detection

Suppose you wanted to identify all the places the phrase Super Bowl Champion Minne-
sota Vikings1 occurred in the news and you came across the following text:

Last week the National Football League crowned a new Super Bowl Cham-
pion. Minnesota Vikings fans will take little solace in the fact that they lost to
the eventual champion in the playoffs.

Tokenizing these sentences using the StandardTokenizer used in section 2.2.2 pro-
duces the following tokens:

..."a", "new", "Super", "Bowl", "Champion", "Minnesota", "Vikings", "fans",
"will", ...

If you were strictly looking for the occurrence of the tokens Super, Bowl, Champion,
Minnesota, and Vikings next to each other, this would be a phrase match. But we know
that this shouldn’t be a match thanks to the occurrence of the period between Cham-
pion and Minnesota.

 Computing sentence boundaries can help reduce erroneous phrase matches as
well as provide a means to identify structural relationships between words and phrases
and sentences to other sentences. With these relationships, you can then attempt to
find meaningful pieces of information in the text. Java comes with the BreakIterator
class that identifies sentences, but it often needs extra programming to handle special
cases. For instance, a simple approach to BreakIterator results in this:

BreakIterator sentIterator =
BreakIterator.getSentenceInstance(Locale.US);

String testString =
"This is a sentence. It has fruits, vegetables, etc. " +
"but does not have meat. Mr. Smith went to Washington.";

sentIterator.setText(testString);
int start = sentIterator.first();
int end = -1;
List<String> sentences = new ArrayList<String>();
while ((end = sentIterator.next()) != BreakIterator.DONE) {

String sentence = testString.substring(start, end);
start = end;
sentences.add(sentence);
System.out.println("Sentence: " + sentence);

}

The output from running the BreakIterator example is the following:

Sentence: This is a sentence.
Sentence: It has fruits, vegetables, etc. but does not have meat.
Sentence: Mr.
Sentence: Smith went to Washington.

1 Sigh. A guy can dream, can’t he?

28 CHAPTER 2 Foundations of taming text
Though the BreakIterator handled the inline etc., it didn’t properly handle Mr.. To fix
this, you need to add to the program to properly handle special cases like abbreviations,
quotes, and other sentence termination possibilities. A better option is to use a more
robust sentence detection program like the one in OpenNLP, demonstrated next.

//... Setup the models
File modelFile = new File(modelDir, "en-sent.bin");
InputStream modelStream = new FileInputStream(modelFile);
SentenceModel model = new SentenceModel(modelStream);
SentenceDetector detector =

new SentenceDetectorME(model);
String testString =

"This is a sentence. It has fruits, vegetables," +
" etc. but does not have meat. Mr. Smith went to Washington.";

String[] result = detector.sentDetect(testString);
for (int i = 0; i < result.length; i++) {

System.out.println("Sentence: " + result[i]);
}

Running listing 2.3 produces the correct output:

Sentence: This is a sentence.
Sentence: It has fruits, vegetables, etc. but does not have meat.
Sentence: Mr. Smith went to Washington.

2.2.6 Parsing and grammar

One of the more challenging aspects of our building blocks—parsing sentences into a
meaningful, structured set or tree of relationships—is also one of the most useful. For
example, identifying noun and verb phrases and their relationships to each other can
help you determine the subject of a sentence along with the associated action the sub-
ject is taking. Parsing a sentence into a useful structure is difficult due to the ambiguity
inherent in natural language. Parsing programs often have to decide between many dif-
ferent possible parses. For instance, figure 2.1 shows a parse of the following sentence:

The Minnesota Twins, the 1991 World Series Champions, are currently in
third place.

Listing 2.3 OpenNLP sentence detection

Create
SentenceDetector
with en-sent.bin
model.

Invoke
detection
process.

Figure 2.1 Sample parsing of a sentence using the OpenNLP parser

29Common tools for text processing
This parse tree was created using the OpenNLP Parser. The parser uses a syntax
designed by the Penn Treebank project we discussed in section 2.2.3. The following
code is used to perform the parse:

File parserFile = new File(modelDir, "en-parser-chunking.bin");
FileInputStream parserStream = new FileInputStream(parserFile);
ParserModel model = new ParserModel(parserStream);

Parser parser = ParserFactory.create(
model,
20, // beam size
0.95); // advance percentage

Parse[] results = ParserTool.parseLine(
"The Minnesota Twins , the 1991 World Series " +
"Champions , are currently in third place .",
parser, 3);

for (int i = 0; i < results.length; i++) {
results[i].show();

}

In this code example, the key step is the invocation of the parseLine() method,
which takes in the sentence to parse and the maximum number of possible parses to
return. Running this code produces the following output (truncated for display pur-
poses) where each line is a different parse:

(TOP (S (NP (NP (DT The) (NNP Minnesota) (NNS Twins)) (, ,) (NP (DT the)
...

(TOP (S (NP (NP (DT The) (NNP Minnesota) (NNPS Twins)) (, ,) (NP (DT the)
...

(TOP (S (NP (NP (DT The) (NNP Minnesota) (NNP Twins)) (, ,) (NP (DT the)
...

Close inspection of these results shows the subtlety of parsing, namely, in the tagging
of the word Twins. The first instance tags Twins as a plural noun (NNS), the second as
a plural proper noun, and the third as a singular proper noun. The outcome of this
result can often be the difference between getting a good outcome or not, since if the
word Twins is treated as a common noun (in the first case), then a tool that’s trying to
extract proper noun phrases (which are often very important in text) will miss the
Minnesota Twins altogether. Though this may not seem critical in the context of an
article on sports, imagine you’re writing an application that needs to find people
involved in crime by examining articles discussing key members of criminal groups.

 Though we showed a full parse here, full (or deep) parses aren’t always needed.
Many applications will perform well using shallow parsing. Shallow parsing identifies
the important pieces of a sentence, such as the noun and verb phrases, but doesn’t
necessarily relate them or define finer-grained structures. For example, in our earlier
example of the Minnesota Twins, a shallow parse might only return Minnesota Twins
and 1991 World Series Champions or some variation of clauses like that.

 Parsing is a rich and involved area of active research in the field, much of which is
beyond the scope of this book. For our purposes, parsing is used in places like question

30 CHAPTER 2 Foundations of taming text
answering to help identify the appropriate structure of a sentence so that we can extract
an answer. For the most part, we’ll treat parsing as a black box to be used when appro-
priate rather than delving into it more deeply.

2.2.7 Sequence modeling

The constructs presented thus far provide a means of identifying surface-level features
as well as linguistically motivated attributes of text. We now consider modeling text
based on the view of text as a sequence of words or characters. A common way to
model a sequence is to examine each element in a sequence as well as some of the ele-
ments that immediately precede and follow it. How much or little of the surrounding
context is considered varies by application, but in general you can think of this as a
window of context where the size of the window is set based on how much of the con-
text is to be considered. For instance, using sequences of characters can be useful for
finding matches in searching data that has gone through an OCR (optical character
recognition) process. It can also be useful when attempting to match phrases or for
working with languages that don’t have whitespace between words.

 For example, a window size of 5 where the middle element is the one being mod-
eled would examine the previous two elements in the sequence, as well as the subse-
quent two elements. Including the middle element, we’re considering at most five
elements in the sequence, which is the window size. As each element in the sequence
is processed, the window can be thought to slide across the input sequence. In order
to allow the entire window to be defined for all positions of the sentence, often
boundary words are affixed to the sentence (see table 2.11).

This type of modeling is often referred to as n-gram modeling. The idea is that the win-
dow is of size n, and the words within the window are n-grams. Table 2.12 shows some
examples of some of the n-grams of various sizes for our example sentence.

Table 2.11 An example n-gram window of size 5 at position 6 in a sentence

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

bos bos I ca n't believe that the Carolina Hurricanes won the 2005-2006 Stanley Cup . eos eos

<- - window - ->

Table 2.12 N-grams of various sizes

Unigrams believe Stanley the Carolina

Bigrams believe,that Stanley,Cup the,Carolina

Trigrams believe,that,the 2005-2006,Stanley,Cup

four-grams can't,believe,that,the 2005-2006,Stanley,Cup,.

five-grams that,the,Carolina,Hurricanes,won

31Preprocessing and extracting content from common file formats
The same idea can also be applied to modeling characters, where each character
serves as an element in an n-gram window. This approach of using n-grams with char-
acters will be used in chapter 4.

 N-grams are also easily decomposed and thus lend themselves well to statistical
modeling and estimation. In our example, we have a five-gram being used to model
the context around the word Carolina. It’s unlikely that we’ve seen that exact sequence
of words, and difficult to make any estimation about how likely this sequence of words
is. However, we’re able to estimate a probability based on the trigram the Carolina Hur-
ricanes or even the bigrams the,Carolina and Carolina,Hurricanes. This type of back-off
estimation where a large context is used in conjunction with smaller, easier-to-estimate
contexts is common in text processing approaches that use statistical methods to
model ambiguity in text.

 Most types of text processing use a combination of surface string characteristics,
linguistic units, and sequence or n-gram modeling. For example, a typical part of
speech tagger will use sentence and tokenization processing to determine what ele-
ments it’s tagging, model prefixes and suffixes using string manipulation, and
sequence modeling to capture the words that come before and after the word being
tagged. Even though these techniques don’t readily capture the meaning or semantics
of text, they’re surprisingly effective. This approach of combining these three types of
processing will be used in chapter 5.

 Now that you have a basic idea of the foundations of processing text, including
string manipulation, linguistic processing, and n-gram sequence modeling, we can
look at one of the most commonly asked and first-encountered questions for develop-
ers working with text: how to extract text from common file formats like HTML and
Adobe PDF.

2.3 Preprocessing and extracting content
from common file formats
In this section, we’ll demonstrate extracting text from many common file formats.
We’ll discuss the importance of preprocessing and introduce an open source frame-
work for extracting content and metadata from common file formats like HTML and
Adobe PDF.

2.3.1 The importance of preprocessing

Imagine you’re writing an application that allows a user to enter keywords to search all
the files on their computer. In order to create this application, you need to figure out
how to make these files available for searching. To get a better idea of what you need
to do, you start looking around your own hard drive, quickly realizing that you have
thousands, maybe even millions of files and they come in a variety of types. Some are
Microsoft Word; some are Adobe Portable Document Format (PDF). Others are text-
based like HTML and XML; still others are in some proprietary format that you don’t
have a clue about. Being the smart programmer that you are, you know that in order

32 CHAPTER 2 Foundations of taming text
to make sense of all these file types, you need to transform them into a common for-
mat so that you only have to worry about one format internally. This process of stan-
dardizing the many different file types to a common text-based representation is
called preprocessing. Preprocessing can also mean adding to or modifying the text to
make it more usable by a library. For instance, certain libraries may expect the input
to already have sentences identified. Ultimately, preprocessing includes any steps that
must be undertaken before inputting data into the library or application for its
intended use. As a primary example of preprocessing, we’ll look at extracting content
from common file formats.

 Though many open source tools are available for extracting text from various file
types (which will be covered shortly), this is one area where it may be worth the money
to purchase a library of file converters to plug in to your application. Commercial file
converters may pay licensing fees to companies like Microsoft and Adobe, allowing
them access to documentation and programming libraries that open source file con-
verters are unable to access. Additionally, they offer support and maintenance on a
fairly routine basis. It isn’t fair, but nobody said life is fair! But before paying for the
commercial tool, make sure you get an evaluation copy and test it on your documents.
We’ve tested at least one well-known commercial vendor head-to-head with an open
source library on Adobe PDF files (which are often the hardest to extract text from)
and the open source library was as good as, if not better than, the commercial vendor.
Given the price of the commercial version, using the open source library was a no-
brainer in this case. Your mileage may vary depending on your content.

 Since this is a book about open source text tools, we’d be remiss if we didn’t look
at what tools are available for preprocessing. Table 2.13 lists some of the file formats
you’re likely to come across as well as one or more built-in or open source libraries
for extracting text from that format. We can’t cover all file formats in a book of this
nature, so we’ll focus on those you’re most likely to encounter in your applications.
Whatever your file types and whether or not you use open source libraries or com-
mercial tools, most applications will want a simple, text-based representation to use
internally. This allows you to use basic string manipulation libraries like those that
come with Java, Perl, and most modern programming languages. Since there are
many different libraries and many different approaches to content extraction, it’s
also best to either develop a framework for mapping file formats to content or to use
an existing framework.

Table 2.13 Common file formats

File format MIME type Open source library Remarks

Text plain/text Built-in

Microsoft Office (Word,
PowerPoint, Excel)

application/msword,
application/vnd.ms-
excel, etc.

1. Apache POI
2. Open Office
3. textmining.org

textmining.org is for MS
Word only.

33Preprocessing and extracting content from common file formats
Thankfully, several projects provide a framework for preprocessing. These projects
wrap many of the libraries named in table 2.13. This approach lets you write your
application using a single, unified interface for all of these libraries. One such open
source project we use is called Apache Tika (http://tika.apache.org/), which will be
introduced next.

2.3.2 Extracting content using Apache Tika

Tika is a framework for extracting content from many different sources, including
Microsoft Word, Adobe PDF, text, and a host of other types. In addition to wrapping
the various extraction libraries, Tika also provides MIME detection capabilities such
that it’s possible to have Tika autodetect the type of content and then parse it with the
appropriate library.

 Additionally, if you don’t find your format in Tika, not to worry; a search of the
web will often yield a library or application to work with your format that can be
plugged in (and donated back to the project, we hope!) or handled separately. Even
with a framework like Tika, it’s recommended that you create interfaces to wrap the
extraction process, as you’ll most likely want to add a file format later that’s not cov-
ered by the framework and will need a clean way of bringing it into your codebase.

 At the architectural level, Tika works much like SAX (Simple API for XML; see
http://www.saxproject.org/) parsers work for processing XML. Tika extracts informa-
tion from the underlying content format (PDF, Word, and so on) and then provides

Adobe Portable Docu-
ment Format (PDF)

application/pdf PDFBox Text can’t be extracted
from image-based PDFs
without first using optical
character recognition.

Rich Text Format (RTF) application/rtf Built-in to Java using
RTFEditorKit

HTML text/html 1. JTidy
2. CyberNeko
3. Many others

XML text/xml Many XML libraries
available (Apache
Xerces is popular)

Most applications should
use SAX-based parsing
instead of DOM-based to
avoid creating duplicate
data structures.

Mail Not applicable (N/A) Java Mail API, export
mail to file, mstor

Your mileage may vary
depending on your mail
server and mail client.

Databases N/A JDBC, Hibernate, oth-
ers, database export

Table 2.13 Common file formats (continued)

File format MIME type Open source library Remarks

34 CHAPTER 2 Foundations of taming text

ContentH
that will e

between

ContentH
that knows

HTML

s

Where ex
metada
callback events that can then be processed by the application. This callback mecha-
nism is exactly the same as the SAX ContentHandler, and should be intuitive for any-
one who has worked with SAX on other projects. Interacting with Tika is as simple as
instantiating one of Tika’s Parser classes, which then provides a single method:

void parse(InputStream stream, ContentHandler handler,
Metadata metadata, ParseContext parseContext)

throws IOException, SAXException, TikaException;

Using the parse method, you need only pass in content as an InputStream, and con-
tent events will be processed by the application’s implementation of the Content-
Handler. Metadata about the content will be filled into the Metadata instance, which
is at its heart a hashtable.

 At the Parser level, Tika comes with several implementations out of the box,
including one for each of the specific MIME types supported by Tika, plus an Auto-
DetectParser that can identify the MIME type automatically. Tika also comes with sev-
eral ContentHandler implementations based on common extraction scenarios such as
only extracting the main body of a file.

 Now that you know the basic philosophy behind Tika and have seen its basic inter-
face, let’s look at how to use it to find and extract text from many different file for-
mats. Let’s start with a basic case of extracting HTML and then we’ll change things up
a bit to show parsing of PDF files.

 For starters, say you want to parse some rather simple HTML:

<html>
<head>

<title>Best Pizza Joints in America</title>
</head>
<body>

<p>The best pizza place in the US is
Antonio's Pizza.

</p>
<p>It is located in Amherst, MA.</p>

</body>
</html>

In looking at this example, you’d most likely want to extract the title, the body, and
possibly the links. Tika makes all of this simple, as can be seen in the following code.

InputStream input = new ByteArrayInputStream(
html.getBytes(Charset.forName("UTF-8")));

ContentHandler text = new BodyContentHandler();
LinkContentHandler links = new LinkContentHandler();
ContentHandler handler = new TeeContentHandler(links, text);
Metadata metadata = new Metadata();
Parser parser = new HtmlParser();
ParseContext context = new ParseContext();
parser.parse(input, handler, metadata, context);
System.out.println("Title: " + metadata.get(Metadata.TITLE));

Listing 2.4 Extracting text from HTML with Apache Tika
andler
xtract
 body
tags.

andler
 about
 links.

Wrap up
ContentHandler
into one.

tracted
ta gets
stored.

Input is HTML, so
construct Parser for it.

Do the parse.

35Preprocessing and extracting content from common file formats

ob

t
m

the
cally
now
’ve
System.out.println("Body: " + text.toString());
System.out.println("Links: " + links.getLinks());

The output from running the HTML given through the code results in the following
output:

Title: The Big Brown Shoe
Body: The best pizza place in the US is Antonio's Pizza.
It is located in Amherst, MA.

Links: [Antonio's Pizza]

The code used to parse the HTML involves two pieces: the construction of the
ContentHandlers and the Metadata storage, and the creation and execution of the
Parser, which, as the name implies, does the parsing. In the HTML example, you used
an HTMLParser to parse the contents, but in most situations you’d likely want to use
Tika’s built-in AutoDetectParser, as demonstrated in this example, which parses a
PDF file.

InputStream input = new FileInputStream(
new File("src/test/resources/pdfBox-sample.pdf"));

ContentHandler textHandler = new BodyContentHandler();

Metadata metadata = new Metadata();

Parser parser = new AutoDetectParser();

ParseContext context = new ParseContext();

parser.parse(input, textHandler, metadata, context);

System.out.println("Title: " + metadata.get(Metadata.TITLE));
System.out.println("Body: " + textHandler.toString());

In the PDF example, you input a PDF file as an InputStream, and construct one of
Tika’s included ContentHandlers and a Metadata object for storing ancillary informa-
tion like author and number of pages about the document in a convenient place for
use in the application. Finally, you create the Parser, parse the document, and then
print out some information about the document. As you can see, the process is simple.

 The fact that Tika can make working with all the different file formats easy is good
news, but there’s even better news: Tika is already integrated into Apache Solr
through a contribution called the Solr Content Extraction Library (a.k.a. Solr Cell). In
chapter 3, we’ll show how easy it is to send all types of documents into Solr and have
them indexed and searchable with little effort. Additionally, even if you don’t use Solr

Listing 2.5 Using the AutoDetectParser to identify and extract content

Create
InputStream
to read in
content.

The Metadata
ject will hold

metadata like
author and

itle about the
ap’s content.

AutoDetectParser will figure out
document’s MIME type automati
when parse is called. Since you k
the input is a PDF file, you could
used the PDFParser instead.

Execute parse.Get title
from

Metadata
instance.

Print out
body from
ContentHandler.

36 CHAPTER 2 Foundations of taming text
for search, you could use it as an extraction server, as it has an option to send back the
extracted form of a document without indexing it.

2.4 Summary
In this chapter, we looked at some of the basics of language like morphology, gram-
mar, syntax, and semantics, as well as some tools for working with these. After that, we
looked at the all-too-common task of preprocessing files to extract useful content
from them. Though these pieces of the text puzzle aren’t necessarily sexy, they’re
almost always necessary. For instance, many people gloss over the importance of con-
tent extraction from proprietary formats in order to get on to the text analysis, but
extracting content into usable text is often time consuming and difficult to get right.
Likewise, understanding the basics of how language works, as we introduced in this
chapter, will go a long way to understanding the rest of this book and also understand-
ing others in the field. With that in mind, it’s time to take your first steps into finding
and organizing your content by looking into what’s often the foundation of many text
analysis systems: search.

2.5 Resources
 Hull, David A. 1966. Stemming Algorithms: A Case Study for Detailed Evaluation.

Journal of the American Society of Information Science, volume 47, number 1.

 Krovetz, R. 1993 “Viewing Morphology as an Inference Process.” Proceedings of the
Sixteenth Annual International (ACM) (SIGIR) Conference on Research and
Development in Information Retrieval.

 Levenshtein, Vladimir I. 1996. “Binary codes capable of correcting deletions, inser-
tions, and reversals.” Doklady Akademii Nauk SSSR, 163(4):845-848, 1965 (Rus-
sian). English translation in Soviet Physics Doklady, 10(8):707-710, 1966.

 Mihalcea, Rada, and Tarau, Paul. 2004, July. “TextRank: Bringing Order into Texts.”
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP 2004), Barcelona, Spain.

 “Parsing.” Wikipedia. http://en.wikipedia.org/wiki/Parsing.

 Winkler, William E., and Thibaudeau, Yves. 1991. “An Application of the Fellegi-
Sunter Model of Record Linkage to the 1990 U.S. Decennial Census.” Statistical
Research Report Series RR91/09, U.S. Bureau of the Census, Washington, D.C.

Searching
Search, as a feature of an application or as an end application in itself, needs little
introduction. It’s part of the fabric of our lives, whether we’re searching for infor-
mation on the internet or our desktop, finding friends on Facebook, or finding a
keyword in a piece of text. For the developer, search is often a key feature of most
applications, but especially so in data-driven applications where the user needs to
sift through large volumes of text. Moreover, search often comes in prepackaged
solutions like Apple Spotlight on the desktop or via an appliance like the Google
Search Appliance.

 Given the ubiquity of search and the availability of prepacked solutions, a natu-
ral question to ask is, why build your own search tool using an open source solu-
tion? There are at least a few good reasons:

In this chapter
 Understanding search theory and the basics of

the vector space model

 Setting up Apache Solr

 Making content searchable

 Creating queries for Solr

 Understanding search performance
37

38 CHAPTER 3 Searching
 Flexibility—You can control most, if not all, aspects of the process.
 Cost of development—Even when buying a commercial solution, you need to inte-

grate it, which requires a lot of work.
 Who knows your content better than you?—Most shrink-wrap solutions make

assumptions about your content that may not be appropriate.
 Price—No license fees. ’Nuff said.

Beyond these reasons, the quality of open source search tools is staggering. More than
any other tool discussed in this book, open source search tools like Apache Lucene,
Apache Solr, and others are stable, scalable, and ready for prime time, as they’re used
in a large multitude of places. For this book, we’ll build on the Apache Solr search
project to enable fast search of content under your control. You’ll start by learning
some of the basic search concepts behind many search engines, including Lucene and
Solr. We’ll then explore how to set up and configure Solr, and then proceed to index
and search content we’ve added to Solr. We’ll finish up with some tips and techniques
for improving search performance, both in general and for Solr.

 First, let’s get started by taking a look at what’s fast becoming a standard search fea-
ture in online stores like Amazon.com and eBay: search and faceting. By grounding
the later sections in this easy-to-understand, real-world example, you can begin to for-
mulate how to leverage the capabilities of Amazon and others into your own applica-
tions. By the end of this chapter, you should understand not only the basic concepts of
search, but also how to set up and run a real search engine, and develop some insight
on how to make it fast.

3.1 Search and faceting example: Amazon.com
We’ve all been there. You’re searching some shopping site and can’t quite nail down
the exact keywords to find the thing you’re looking for without haphazardly wading
through hundreds of results. At least, you can’t on sites that don’t have faceted search
capabilities. As an example, assume you’re searching for a brand new, Energy Star,
well-reviewed, 50-inch LCD TV on Amazon.com, so you type in LCD TV and get back
something like what’s shown in figure 3.1. Naturally, the first page of results isn’t what
you want, nor should you expect it to be, since you put in such a generic query. So you
begin to narrow your search. On systems without faceted browsing, you’d do this by
adding keywords to your queries; for example your query could become 50 inch LCD
TV or Sony 50 inch LCD TV. But since you aren’t exactly sure what you want, and have
only an idea, you begin to explore the facets that Amazon provides. Facets are catego-
ries derived from the search results that are useful for narrowing a search. In Ama-
zon’s case, in figure 3.1, they’re displayed on the left side under the heading Category
and have values like Electronics (4,550) and Baby (3). Facets almost always come with
a count of how many items are in that category, to further enable users to decide what
might be interesting.

 Continuing with this sample query, you know that a TV is electronic, so you click
the Electronics facet and arrive at the facets shown in figure 3.2. Note how the facets

39Search and faceting example: Amazon.com
have changed to reflect your new selections. Once again, the categories listed are per-
tinent to both your search terms and previously chosen facets. Furthermore, every cat-
egory listed is guaranteed to return results because the actual data exists in the results.

 Finally, clicking some more facets, you can add Portable Audio & Video, 4 stars and
up, and a price range of $50 to $100 to arrive at a page that has results that are easily

Figure 3.1 Snippet of search results for the query “LCD TV” from Amazon.com. Image
captured 9/2/2012.

Figure 3.2 Facets for the search term “LCD TV” after choosing the Electronics
facet. Image captured 9/2/2012.

40 CHAPTER 3 Searching
managed, as seen in figure 3.3. From here, you can easily make your choice from
what’s available.

 The Amazon example demonstrates that search with faceting is a powerful device
for sites that have a combination of structured (metadata) and unstructured (raw
text) data like e-commerce sites, libraries, and scientific content, among others. Calcu-
lating facets requires looking at the metadata associated with a set of search results,
and then grouping it together and counting it. (Luckily, Solr does all this work for you
out of the box.) Beyond facets, it should be obvious that if your users can’t find some-
thing, they can’t buy it or fix it or learn what features it offers. So improving your
search capabilities isn’t some esoteric exercise in programming; it can be a real boost
to your bottom line. In order to understand how to add and improve your search, let’s
first take a step back and look at basic search concepts, after which we’ll get into the
workings of adding and enhancing search.

3.2 Introduction to search concepts
Before we get started with actual search concepts, wipe the slate clean and forget all
you know about web-based search (at least for a while). Forget about Google. Forget
about Yahoo! and Bing. Forget about PageRank (if you’re familiar with it), data cen-
ters, and thousands of CPUs scouring every corner of the internet, collecting every
available byte for inclusion in some online search engine. Peel back all those layers so
you can look at the core concepts of search. At its most basic, search can be described
in four parts:

1 Indexing—Files, websites, and database records are processed to make them
searchable. Indexed files are called documents from this point forward.

2 User input—Users enter their information need through some form of user
interface.

3 Ranking—The search engine compares the query to the documents in the
index and ranks documents according to how closely they match the query.

Figure 3.3 Search results for “LCD TV” narrowed down by several facets. Captured 9/2/12

41Introduction to search concepts
4 Results display—The big payoff for the user: the final results are displayed via a
user interface, whether it’s at the command prompt, in a browser, or on a
mobile phone.

The next four sections will further break down each of the indexing, query input, and
ranking processes.

3.2.1 Indexing content

Regardless of your user input mechanism and ranking algorithms, if you don’t have a
good understanding of the structure and type of content in your collection, no
amount of math is going to give better results than a search engine that understands
what’s important in a document. For instance, if all your documents have a title attri-
bute and you know that title matches are often the most informative, you may be able
to inform your search engine to give extra weight to documents that have title
matches, thus boosting them higher in the results. Likewise, if you deal a lot with
dates and numbers or people and phrases, you may need to do extra work to prop-
erly index your content. On the negative side, imagine how poor a search engine
would be if it indexed all the HTML tags present in an online news site and couldn’t
distinguish between the tags and the actual content. Obviously, this is a toy example,
but it underscores the need to develop an iterative approach to creating and improv-
ing applications to be more responsive to users’ needs. The first task of anyone imple-
menting search is to gain some knowledge of the content to be indexed. This
research should cover both the typical structure of the document as well as a look at
the actual contents.

 After a preliminary understanding of the content is obtained, the process of mak-
ing it searchable, called indexing, can begin. Indexing is the search engine process of
making one or more documents searchable. In order to make a document search-
able, the indexing process must analyze the content of the document. Document
analysis usually consists of splitting the document up into tokens and, optionally,
making one or more changes to each token to create a normalized token, called a
term. Changes applied to tokens to produce terms may include stemming, downcas-
ing, or complete removal. Applications are usually responsible for making the deci-
sion on what changes to apply. Some applications may not make any changes,
whereas others may make extensive changes. In some cases, the search engine won’t
offer much in the way of controlling analysis. Though this lack of control is easier to
work with at first, it’ll most likely come back to haunt you later when the results aren’t
up to standard. Table 3.1 describes some common approaches to transforming
tokens into terms for indexing.

 After terms have been extracted from the document, usually they’re stored in a
data structure, called an inverted index, that’s optimized to quickly find the documents
that contain a term. When a user enters a term to search, the search engine can quickly
look up all the documents that contain the term. In figure 3.4, a sample inverted index
shows the links between words in the index (sometimes called a vocabulary) and the

42 CHAPTER 3 Searching
documents that they occur in. Many search engines go beyond simple term-to-
document indexing and store the position of the terms in the document as well. This
makes it easier to do phrase and other more advanced queries where position informa-
tion is needed to calculate whether two or more terms are near each other.

 In addition to storing the term to document relationships, the indexing process
often calculates and stores information about the importance of the terms in relation
to other terms in the document. This calculation of importance plays a vital role in
the engine’s ability to make the leap from a simple Boolean matching model (does
the term exist in the document or not?) to a ranking model that can return docu-
ments deemed more relevant ahead of those that are less relevant. As you can guess,

Table 3.1 Common analysis techniques

Technique Description

Tokenization Process of breaking up a string into tokens to be indexed. Proper, consistent
handling of punctuation, numbers, and other symbols is important. For
instance, tokenizing microprocessor might mean outputting several tokens
(micro, processor, and microprocessor) so that user queries for variations are
more likely to succeed.

Downcasing All words are converted to lowercase, making it easy to do case-insensitive
search.

Stemming Strips words of suffixes, and so on. Described in chapter 1.

Stopword removal Remove commonly occurring words like the, and, and a that occur in most
documents. Originally done to save space in the index, but some newer
search engines no longer remove stopwords since they can help in more
advanced queries.

Synonym expansion For each token, synonyms are looked up in a thesaurus and added to the
index. This is often done on the query terms instead of the index terms, since
updates to the synonym list can be accounted for dynamically at query time
without the need to re-index.

DocumentsVocabulary

aardvark

...

hockey

...

life

...

red

riding

...

zoo

0: aardvark hockey

1: hockey life

2: red life

3: life zoo riding

0

0 1

2 3

2

3

3

1

Figure 3.4 The inverted index
data structure maps terms to
the documents they occur in,
enabling fast lookup of query
terms in a search engine. The
left side represents a sampling
of the vocabulary in the
documents and the right side
represents the documents. The
inverted index tracks where
terms occur in documents.

43Introduction to search concepts
the ability to rank documents by relevance is a huge leap forward when it comes to
dealing with large quantities of information, as it allows users to focus in on only
highly relevant content. Moreover, by calculating as much of this information as possi-
ble during indexing, the engine can enable fast lookup and ranking during search
time. We’ll cover more of how this is done later in the chapter. For now, that’s pretty
much all you need to know about the gory details of indexing. Now let’s take a look at
the types of things that searchers usually want to do with an index.

3.2.2 User input

Search systems generally capture the user’s information need through a user interface
(UI) that takes one or more inputs such as keywords, document types, language, and
date ranges, and returns a ranked list of documents that are deemed most relevant to
the user’s query. Many web-based search engines rely on a simple keyword-based
approach, as seen in figure 3.5, but they often also provide a more advanced query
input mechanism, as (partially) pictured in figure 3.6.

When deciding what type of input mechanisms to use, it’s important to keep in mind
who your users are and what their comfort level is with different input mechanisms. Web
searchers are more likely to be accustomed to simple keyword-based interfaces, whereas
sophisticated power users may expect more advanced tools that let them precisely
define their information need to obtain better results. In many cases, it’s wise to have
both a simple keyword-based interface and a more advanced interface for power users.

Figure 3.5 http://search.yahoo.com presents a simple user interface to search users.

Figure 3.6 http://search.yahoo.com has an advanced search entry screen (under the More link)
to allow users to fine-tune their results.

44 CHAPTER 3 Searching
Over the years, the query capabilities of search engines have steadily grown, allowing
users to input complex queries using phrases, wildcards, regular expressions, and
even natural language entries. Additionally, many general-purpose search engines uti-
lize a set of operators like AND, OR, NOT, quotes for phrases, and so forth that allow
for the creation of complex queries to narrow results. Proprietary implementations
may go even further and provide specific operators designed to deal directly with
internal data structures, file formats, and query needs. Table 3.2 contains a listing of
common query types and operators used in search engines. Search engines may
implicitly create any one of these query types without the user ever knowing such
actions are taking place. For example, natural language–based search engines (the
user enters full sentences, even paragraphs, as queries) often automatically identify
phrases during the query processing stage and go on to submit phrase queries to the
underlying engine. Likewise, Google Canada’s advanced search interface provides
simple text boxes that allow users to create complex phrase and Boolean queries, as
can be seen in figure 3.7, without ever entering a quote or special operator. Moreover,
many search engines will also perform multiple queries for every user query and then
collate the results for presentation back to the user. This approach allows the engine
to use multiple strategies to find the best results.

Table 3.2 Common query types and operators in search

Query types and
operators

Description Example

Keyword Each term is a separate lookup in the
index.

dog
programming
baseball

Phrase Terms must occur next to each other,
or at least within some user-specified
distance. Double quotes are usually
used to mark the beginning and end
of the phrase.

“President of the United States”
“Manning Publications”
“Minnesota Wild Hockey”
“big, brown, shoe”

Boolean operators AND, OR, and NOT are often used to
join two or more keywords together.
AND indicates both terms must be
present for a match; OR says at least
one must be present. NOT means the
following term can’t be present for a
match. Parentheses often can be
used to control scope and provide
nesting capabilities. Many search
engines implicitly use AND or OR if no
operator is specified in a multiterm
query.

franks AND beans
boxers OR briefs
((“Abraham Lincoln” AND “Civil War”)
NOT (“Gettysburg Address”))

45Introduction to search concepts

Wildcard and regular
expression

Search terms can contain wildcard
operators (? and *) or full-blown regu-
lar expressions. These query types
usually consume more CPU resources
than simpler queries.

bank?—Find any word starting with
bank and ending with any character:
banks.
bank*—Find any word starting with
bank and ending with any number of
characters: banks, banker.
aa.*k—Matches words starting with
aa containing any character in
between followed by a k: aardvark.

Structured Structured queries rely on the struc-
ture of the indexed document to be
searched. Common structures in doc-
uments include title, date published,
author, uniform resource locator
(URL), user ratings, and so on.

Date range—Find all documents
between two dates.
Find specific authors.
Restrict results to one or more inter-
net domains.

Similar documents Given one or more already found doc-
uments, find other documents that
are similar to the chosen documents.
Sometimes called relevance feed-
back or more like this.

Google used to provide a Similar
Pages link for most results. Clicking
automatically generated a query from
the chosen document and searched
the index with the new query.

Guided search Guided search, or faceted browsing,
is an increasingly popular mechanism
that provides users with suggestions
to refine their query through guaran-
teed valid categories.

Amazon.com uses faceted browsing
to allow searchers to restrict by price
range, manufacturer, and other que-
ries. Facet counts show how many
entries are in each category.

Table 3.2 Common query types and operators in search (continued)

Query types and
operators

Description Example

Figure 3.7 Google Canada’s Advanced
Search UI automatically builds complex
phrase and Boolean queries without
requiring the user to know specific
reserved words like AND, OR, NOT or
quoting phrases.

46 CHAPTER 3 Searching
Some engines will even go so far as to try to classify the kind of query used and then
choose different scoring parameters depending on the type of query used. For
instance, it’s common in e-commerce for searches to fall into one of two query types:
known item and category/keyword. A known item search happens when a user specifi-
cally knows the name of the item (or close to it) and just needs to know where that
item is in the store. For example, a search for Sony Bravia 53-inch LCD TV is a known
item search, as there are likely only one or two matches for that search. A category
search is much more general and often involves only a few keywords: televisions or
piano music. In the case of known item search, failing to return the specific item in the
top few results is considered a failure of the system. For category search, there’s more
wiggle room in what to return since the terms are often fairly general.

 After submission to the search engine, query tokens are normally processed using
the same analysis that index tokens go through in order to produce similar transfor-
mations from tokens to terms. For example, if tokens are stemmed in the index, then
query tokens should also be stemmed. Many search engines also choose to do syn-
onym expansion at query time. Synonym expansion is an analysis technique where each
token is looked up in a user-defined thesaurus. If a match occurs, then new tokens,
representing the synonyms, are added into the list of tokens. For instance, if the origi-
nal query term is bank, analysis might add additional tokens for financial institution and
credit union into the query, unbeknownst to the user. Synonym expansion can also be
done at index time, but it often results in large increases in index size and requires
the content be re-indexed whenever the synonym list is updated.

 Now that we’ve covered some of the basic user issues involved in search, let’s dis-
cuss the vector space model and learn the basics of what makes search work. Having
this understanding will help you better judge the trade-offs between the various
search approaches, allowing you to make informed decisions about which approach
will meet your needs.

3.2.3 Ranking documents with the vector space model

Though search (or information retrieval) is a relatively mature field compared to
some of the other topics we’ll discuss, this doesn’t mean the field has settled on one
perfect way of finding information. There are many different ways of modeling the
search task, each with its own merits. We’ll focus on the vector space model (VSM),
since it’s the model used in our search libraries of choice and one of the most popular
ways of ranking documents given user queries. If you want to read more on the other
models, including the probabilistic model, see section 3.7.4, Modern Information
Retrieval by Baeza-Yates and Ribeiro-Neto (Baeza-Yates 2011), or Information Retrieval:
Algorithms and Heuristics (2nd Edition) by Grossman and Frieder (Grossman 1998).

A QUICK LOOK INSIDE THE VECTOR SPACE MODEL

The vector space model, first introduced in 1975 (Salton 1975), is an algebraic model
that maps the terms in a document into an n-dimensional linear space. That was a
mouthful, so what does it mean? Imagine you have a set of documents with a
restricted language and thus can only contain the words hockey or cycling. Now imagine

47Introduction to search concepts
plotting these documents on a two-dimensional graph,
with hockey as the vertical axis and cycling as the horizon-
tal axis. Then, a document with both words present
could be represented by an arrow (a vector, or term-
vector) at a 45-degree angle between the two axes, as
illustrated in figure 3.8.

 Though visualizing a two-dimensional space is easy,
it isn’t that much harder to extrapolate the notion to
many dimensions. In this way, you can represent all doc-
uments as vectors in an n-dimensional linear space. In
this representation, each word in the collection of docu-
ments represents a dimension. For instance, suppose
you have two documents in your collection with the fol-
lowing content in each:

 Document 1: The Carolina Hurricanes won the Stanley Cup
 Document 2: The Minnesota Twins won the World Series

You could then represent these documents in your vector space by numbering each
unique word. For instance, the word the would be given an index of 1, carolina of 2,
hurricanes of 3, and so on through all words in all documents. These numbers corre-
spond to the dimensions in your vector space. You can see that when two documents
have the same word, they’ll overlap in that dimension. Figure 3.9 illustrates this con-
cept by mapping the two example documents into a 10-dimensional vector space
where the presence of a word in a document means that dimension of the vector has a
value of 1 stored in it.

 In the real world, search engines work with a very high number of dimensions (n is
often greater than 1 million) and so the simple model presented by the two-document
example must be altered both for storage and quality reasons. For storage, search
engines only store the presence of a term, not its absence—hence the inverted index
data structure. This saves you from storing a lot of zeros, as most documents don’t
contain most words. For quality, instead of simply storing a 1 indicating the presence

The Carolina Hurricanes won the Stanley Cup

1 2 3 4 1 5 6

The Minnesota Twins won the World Series

1 7 8 4 1 9 10

Index

Doc 1:

Index

Doc 2:

Doc 1 Vector: <1, 1, 1, 1, 1, 1, 0, 0, 0, 0>

Doc 2 Vector: <1, 0, 0, 1, 0, 0, 1, 1, 1, 1>

Legend: A “1” in the vector means the word for that index number is
present in the document; a “0” means it is not present in the document,
e.g., “The” is in both documents, while “Carolina” is only in the first.

Figure 3.9 Two documents
represented as vectors in a
10-dimensional vector space

<hockey, cycling>

hockey

cycling

Figure 3.8 An example of the
vector space model for a
document containing two
words: hockey and cycling

48 CHAPTER 3 Searching
of a word, most engines store some type of weight that’s intended to capture the
importance of that term relative to all the other terms. In math terms, you’re scaling
the vector. In this manner, you can start to see that if you compare the terms in a
query to the terms, and their weights, in the documents that contain the query terms,
you could produce a formula as to how relevant a document is to a query, which we’ll
come back to in a moment.

 Though many different weighting schemes are available, the most common is
often called the term frequency-inverse document frequency model, or TF-IDF for short. The
essential insight of the TF-IDF model is that terms that occur frequently in a document
(TF) relative to the number of times they occur in the overall collection (IDF) are
more important than terms that commonly occur in a large number of documents.
Think of TF and IDF as the yin and yang of search, each one balancing the other. For
instance, the is a common word in most English text, giving it a very high document
frequency (or small IDF), resulting in a very small contribution of any occurrence to
the overall weight when scoring documents. This isn’t to say that the and other com-
mon words, often referred to as stopwords, aren’t useful in search, as they can be useful
in phrase matching and other more advanced capabilities beyond the scope of the
current discussion. At the opposite end of the spectrum, a word that occurs multiple
times in a document (has a high TF value), while rarely occurring in the rest of the
collection, is a valuable word and will contribute significantly to the weight assigned
the document in question given a query with that term. Returning to the two-
document example, the word the occurs twice in the first document and twice in the
second document. Its total document frequency is four, which means the weight of
the word the in the first document would be 2/4 = 1/2 = 0.5. Similarly, Carolina only
occurs once in the first document and thus once overall in the collection, so it would
have a weight of 1/1 = 1. Applying this for all terms would then result in a complete
set of weighted vectors. Document 1 in the example would look like this:

<0.5, 1, 1, 0.5, 1, 1, 0, 0, 0, 0>

Given our representation of documents in the vector space, the next logical question
is, how does the VSM match queries to documents? To start, queries can be mapped
into the same vector space as the documents. Next, note that if you align the tail of
the query vector to the tail of the document vector, an angle is formed. Remember-
ing high school trigonometry, taking the cosine of this angle gives you a value
between -1 and 1, which you can use to rank the documents in comparison to the
query. It’s easy to see that if the angle between the two vectors is zero degrees, then
you have an exact match. Since the cosine of zero is one, your ranking measure con-
firms this understanding. Figure 3.10 visualizes this concept, with Θ as the angle
formed between the two vectors, one being the document vector (dj), and the other
being a query vector (q). The tuple associated with each vector at the bottom of the
figure represents the weights used in creating each vector, similar to the two-
document example described earlier. Finally, doing this for all documents in the col-
lection will yield a ranked list of results that can be returned to the user. In practice,

49Introduction to search concepts
search engines don’t normally score all documents, focus-
ing instead on only those documents that contain one or
more terms in common between the query and the docu-
ment. Additionally, most search engines supplement pure
VSM scoring with other features and capabilities, such as
document length, average document length of all docu-
ments in the collection, as well as algorithms that can give
more weight to one document over another, or even one
section of a document over another.

 Naturally, search engine writers have also figured out
efficient mechanisms for calculating these scores, such that
it’s possible, using the vector space model, to search mil-
lions (even billions) of documents in subsecond time on
commodity hardware. The trick is to make sure those docu-
ments that are returned are relevant to the user’s search. Both search speed and rele-
vance are the topics of section 3.6. For now, let’s assume these are a given and move
on to look at some ideas on displaying search results.

3.2.4 Results display

If you’re like us, results display is usually the last thing on your mind. After all, what’s
wrong with throwing up the top ten hits in order and providing a way to go to the next
results? Truth be told, nothing is wrong with this approach if your users are happy
with it; simplicity is a noble design goal and something more people should keep in
mind. But spending the extra time to determine the best ways to display your results
can greatly enhance the quality of your user interactions. But beware: cleverly engi-
neered results displays don’t always provide the most useful information even if they
look great, so make sure you spend some time thinking about usability and your target
user’s comfort level with such interfaces. Some additional questions to keep in mind
concerning results display are these:

 What parts of the document should be displayed? The title is usually a given, if
there is one. How about a summary or access to the original content?

 Should you highlight keywords from the query in the display?
 How do you handle duplicate, or near-duplicate, results?
 What navigation links or menus can you provide to enhance your user’s experi-

ence?
 What if the user doesn’t like the results or needs to expand or narrow the scope

of their search?

These questions can only be answered by you and will be specific to your application.
Our advice is to focus on what your target audience is most likely used to seeing and
make sure, at a minimum, you provide that display capability. Then, you can try out
alternate displays by sampling a subsection of your users and providing them with a
chance to use alternate displays to see how they respond.

q

dj

dj = <w1,j, w2,j, ..., wn,j>

q = <w1,q, w2,q, ..., wn,q>

w = weight assigned to term

Figure 3.10 Vector space–
based comparison between
a user’s query, q, and the jth
document in the collection

50 CHAPTER 3 Searching
 Through analysis of your most common queries and your users’ behavior, you can
make decisions on not only how to display your ranked list of results, but also what
information to supply so users can quickly find what they need. With this in mind, let’s
analyze some techniques that can help organize results.

 Figure 3.11 shows the results of a search on Google for Apple. Note that in the first
result Google adds links to common Apple destination pages, stock quotes, store loca-
tions (even a map), related people and more. Further down (not in the screenshot)
are links and related searches.

 Note also in figure 3.11 how none of the entries are actually about apple, the fruit,
as in Granny Smith and Gala? (There is one further down the page, but Google
chooses to devote most of its primary screen real estate to the company.) Obviously,
Apple Inc. should be the top-ranked site given its popularity, but what if you could sep-
arate your results into groups based on related items? This is the reasoning behind the
increasing popularity of faceted browsing and the closely related notion of clustering
(covered in chapter 6). With each of these techniques, the results of a search are
grouped into buckets based on document attributes. In the case of faceted browsing,
documents are usually preassigned categories, whereas clustering determines the sim-
ilarity of the documents dynamically based on the returned results. In both cases,
users can refine or restrict the results displayed based on guaranteed valid categories.
In other words, by choosing one of the buckets, the user knows that there are results
available related to that category.

Figure 3.11 Google search provides a number of options beyond a simple ranked list when displaying
search results.

51Introduction to search concepts
Search results clustering can also improve display results. For instance, Carrot Search
(http://www.carrotsearch.com) provides a mechanism (see the “Live Demo” off the
main page) for clustering the results of a large number of different search engines.
Figure 3.12 shows the results of running the same Apple search as in figure 3.11. On
the left side of the Carrot Search display are the clusters that the results have been
grouped into. With this type of display, it’s easy to narrow a search to specific clusters,
like apple pie instead of Apple Inc., as is shown in figure 3.12. We’ll look at how to use
Carrot clustering for your results later in chapter 6.

 Before we move on to Apache Solr, know that there are many excellent books on
information retrieval, as well as websites, special interest groups, whole communities,
and volumes of academic papers on how to do search. So if you’re looking for some
special type of search engine or just want to know more, start at your favorite web
search engine and search for information retrieval. Also, the Association for Computing
Machinery (ACM) has an excellent special interest group called SIGIR that holds an
annual conference where many of the best and brightest in the field go to share
knowledge.

 Enough of the high-level concepts, already, right? Let’s take a look at how to incor-
porate a real search engine into an application by taking a look at Apache Solr.

Figure 3.12 Clustering can be a useful way of showing the results from ambiguous search terms, in this case
Apple, which can mean, among other things, Apple Inc. or apple the fruit.

52 CHAPTER 3 Searching
3.3 Introducing the Apache Solr search server
Apache Solr (http://lucene.apache.org/solr) is an industrial-strength, high perfor-
mance, thread-safe search server based on Apache Lucene. Solr was first built at CNET
and was donated to the Apache Software Foundation in early 2006. Since that time, it
has grown to include many new capabilities and a large and active community commit-
ted to adding new features, fixing issues, and improving performance. Solr provides
many key features that make it a top-of-the-line search server, including these:

 Easy, HTTP-based protocols for indexing and searching, as well as clients for
Java, PHP, Ruby, and other languages

 Advanced caching and replication to increase performance
 Easy configuration
 Faceted browsing
 Hit highlighting
 Administration, logging, and debugging facilities designed to take the guess-

work out of using Solr
 Distributed search
 Spell-checking
 Content extraction using Apache Tika
 Quality documentation

One of Solr’s best features is its use of Apache Lucene. Like Solr, Lucene has an active
community and a reputation as a rock-solid search library (as opposed to Solr, which is
a search server) delivering quality results and performance. Originally written by
Doug Cutting, Apache Lucene has developed into a fast and powerful library for
enabling text-based search. If you’re looking for more details on Lucene, check out
Lucene In Action (Second Edition) by Erik Hatcher, Otis Gospodnetic,´ and Mike
McCandless. It’s an excellent resource on all the workings of Lucene, many of which
apply to Solr.

 Now that you know some of the great things Solr has to offer, let’s look at setting
up Solr and using it, since Solr turns many of the things that you have to program in
Lucene into configuration items.

3.3.1 Running Solr for the first time

The entire Apache Solr source and examples are included with the source distribu-
tion from this book. Otherwise, Solr can be downloaded from the Solr website at
http://lucene.apache.org/solr by clicking the Download link on the front page and
following the download instructions. Solr requires Java JDK 1.6 or greater. It comes
with the Jetty servlet container, but should work with most modern servlet containers
like Apache Tomcat. For this book, we’re using the version bundled with the Taming
Text source, but you may choose to use a later version if available, so the instructions
given here may be slightly different. See the Solr website for official instructions on

53Introducing the Apache Solr search server
usage. In the Taming Text source distribution (tamingText-src directory), give the
example application a try by following these steps on the command line:

1 cd apache-solr/example

2 java -jar start.jar—This command should start up Jetty with Solr deployed
as a web application within it on port 8983.

3 Point your browser at http://localhost:8983/solr/, where you should see the
window in figure 3.13. If the welcome screen doesn’t show up, refer to the Solr
website for troubleshooting help.

4 In a separate command-line window, change into the example directory as in
step 1.

5 In this new command-line window, type cd exampledocs.
6 Send the example documents contained in the directory to Solr by running the

post.jar Java application: java -jar post.jar *.xml.
7 Switching to your browser and the Solr welcome screen, click through to the

Solr Administration screen, as seen in figure 3.14.
8 In the query box, enter a query such as Solr and submit to see the results.

That’s all there is to getting Solr off the ground and running. But to configure Solr for
your particular application, you’ll need to set up the Solr Schema (schema.xml) and,
possibly, the Solr configuration (solrconfig.xml). For the purposes of this book, only

Figure 3.13 The Solr welcome screen
demonstrates that the Solr application
started up correctly.

Figure 3.14 Screenshot of the Solr administration screen

54 CHAPTER 3 Searching
certain parts of these files will be highlighted in the coming sections and chapters, but
the complete example files are located in the book source under the apache-solr
example configuration directory (apache-solr/example/solr/conf). Additionally,
the Solr website (http://lucene.apache.org/solr) has many resources, tutorials, and
articles on how to configure and use Solr for your particular needs.

3.3.2 Understanding Solr concepts

Since Solr is a web-based search service, most operations take place by sending HTTP
GET and POST requests from a client application to the Solr server. This flexibility
allows many different applications to work with Solr, not just Java-based ones. In fact,
Solr provides client code for Java, Ruby, Python, and PHP, as well as the standard XML
responses that can easily be handled by any application.

 When Solr receives a request from the client, it parses the URL and routes the
request to the appropriate SolrRequestHandler. The SolrRequestHandler is then
responsible for processing the request parameters, doing any necessary computation,
and assembling a SolrQueryResponse. After a response has been created, a Query-
ResponseWriter implementation serializes the response and it’s sent back to the cli-
ent. Solr supports many different response formats, including XML and JSON, as well
as formats that are easily used by languages like Ruby and PHP. Finally, custom Query-
ResponseWriters can be plugged in to provide alternate responses when needed.

 With regard to content processing, Solr shares much of its terminology and capa-
bilities for indexing and searching with Lucene. In Solr (and Lucene), an index is
built of one or more Documents. A Document consists of one or more Fields. A Field
consists of a name, content, and metadata telling Solr/Lucene how to handle the con-
tent. These metadata options are described in table 3.3.

Table 3.3 Solr Field options and attributes

Name Description

indexed Indexed Fields are searchable and sortable. You can also run Solr’s analysis
process on indexed Fields, which can alter the content to improve or change
results.

stored The contents of a stored Field are saved in the index. This is useful for retriev-
ing and highlighting the contents for display but isn’t necessary for the actual
search.

boost A Field can be given more weight than others by setting a boost factor. For
instance, it’s common to boost title Fields higher than regular content since
matches in titles often yield better results.

multiValued Allows for the same Field to be added multiple times to a document.

omitNorms Effectively disables the use of the length of a field (the number of tokens) as part
of the score. Used to save disk space when a Field doesn’t contribute to the
score of a search.

55Introducing the Apache Solr search server

ent
ex"
 to be
, then
 the

whit
ev

and
wrap

a

in
a

.txt
or

ixed
le,
Solr is slightly more restrictive than Lucene in that it imposes a schema definition
(written in XML, stored in a file called schema.xml) on top of the Field structure to
allow for much stronger typing of Fields through the declaration of FieldTypes. In
this manner, it’s possible to declare that certain fields are dates, integers, or plain
strings and what attributes the Fields contain. For example, the dateFieldType is
declared as

<fieldType name="date" class="solr_DateField"
sortMissingLast="true" omitNorms="true"/>

Solr also lets you require that each Document have a unique Field value associated
with it.

 If a Field is indexed, then Solr can apply an analysis process that can transform
the content of that Field. In this way, Solr provides a means to stem words, remove
stopwords, and otherwise alter the tokens to be indexed as we discussed earlier in sec-
tion 3.2.1. This process is controlled via the Lucene Analyzer class. An Analyzer con-
sists of an optional CharFilter, a required Tokenizer, and zero or more
TokenFilters. A CharFilter can be used to remove content while maintaining cor-
rect offset information (such as stripping HTML tags) for things like highlighting.
Note that in most cases, you won’t need a CharFilter. A Tokenizer produces Tokens,
which in most cases correspond to words to be indexed. The TokenFilter then takes
Tokens from the Tokenizer and optionally modifies or removes the Tokens before giv-
ing them back to Lucene for indexing. For instance, Solr’s WhitespaceTokenizer
breaks words on whitespace, and its StopFilter removes common words from search
results.

 As an example of a richer FieldType, the example Solr schema (apache-solr/
example/solr/conf/schema.xml) contains the following declaration of the text-
FieldType (note, this evolves over time, so it may not be exactly the same):

<fieldType name="text" class="solr.TextField"
positionIncrementGap="100">

<analyzer type="index">
<tokenizer

class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.StopFilterFactory" ignoreCase="true"

words="stopwords.txt"/>

<filter class="solr.WordDelimiterFilterFactory"
generateWordParts="1" generateNumberParts="1" catenateWords="1"

catenateNumbers="1" catenateAll="0"
splitOnCaseChange="1"/>

<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EnglishPorterFilterFactory"

protected="protwords.txt"/>

Short for
org.apache.solr.schema.DateField

This analyzer is used only during docum
indexing, as indicated by the type="ind
attribute. If the same exact approach is
used during both indexing and querying
only one analyzer need be declared and
type attribute can be dropped.

Create tokens
based on

espace. Note:
ery Tokenizer
TokenFilter is
ped inside of
 Factory that
produces the
appropriate

stance of the
nalysis class.

Remove commonly occurring
stopwords. See the stopwords
file in the Solr conf directory f
the default list.

Split up words that contain m
case, numbers, etc. For examp
iPod becomes iPod and i, Pod.

Stem words using Dr. Martin
Porter’s stemmer. See
http://snowball.tartarus.org.

56 CHAPTER 3 Searching

This ana
used for

indic
ty
at

sligh
fro

analyze
use of syn
otherwise

will loo
which i

fo

A d
inde

search
docu

The gen
S

ind
exactly a
<filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
</analyzer>
<analyzer type="query">

<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.SynonymFilterFactory"

synonyms="synonyms.txt" ignoreCase="true" expand="true"/>
<filter class="solr.StopFilterFactory" ignoreCase="true"

words="stopwords.txt"/>
<filter class="solr.WordDelimiterFilterFactory"

generateWordParts="1"
generateNumberParts="1" catenateWords="0"

catenateNumbers="0" catenateAll="0"
splitOnCaseChange="1"/>

<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EnglishPorterFilterFactory"

protected="protwords.txt"/>
<filter class="solr.RemoveDuplicatesTokenFilterFactory"/>

</analyzer>
</fieldType>

From this example, it should be clear that applications can mix and match their own
approach to analysis by simply declaring the type of Tokenizers and TokenFilters to
be used, and their ordering.

 With these two FieldType declarations, you could declare several Fields like this:

<field name="date" type="date" indexed="true" stored="true"
multiValued="true"/>

<field name="title" type="text" indexed="true"
stored="true"/>

<field name="generator" type="string" indexed="true"
stored="true" multiValued="true"/>

<field name="pageCount" type="sint"
indexed="true" stored="true"/>

DESIGNING A SOLR SCHEMA

As is true in the design of any text analysis system, careful attention needs to be paid
to how to enable search for users. The Solr schema syntax provides a rich set of capa-
bilities ranging from advanced analysis tools for tokenization and stemming, to spell-
checkers and custom sorting possibilities. All of these capabilities are specified in the
Solr schema (schema.xml) and Solr configuration. As a general rule, when starting a
new Solr project, start with the example schema and configuration from Solr and
examine it to see what to keep and what to remove. This approach works well because
the example schema is well documented, carefully explaining each concept in detail.

 The Solr schema can be broken down into three distinct sections:

lyzer is only
 queries, as
ated by the

pe="query"
tribute. It’s
tly different
m the index
r due to the
onyms, but
 the tokens
k the same,
s important
r matching.

Expand any query
term that appears in
the synonym file
named synonyms.txt
(in the Solr conf
directory).

ate Field that’s
xed and stored
can be used for
ing and sorting
ments by date.

The title Field is a TextField
that’s indexed and stored.
TextFields are tokenized and
analyzed using the
associated Analyzer
declared in the Solr schema.

erator Field is a
trField that Solr
exes and stores
s it’s passed in.

Stores the pageCount of a
document as a sortable
integer, meaning the value
isn’t human readable, but
is optimized for sorting.

57Indexing content with Apache Solr
 Field type declaration
 Field declaration
 Miscellaneous declaration

The field type declaration tells Solr how to interpret the content contained in a field.
Types defined in this declaration can then be used later in the field declaration sec-
tion. But just because a type is declared doesn’t mean it must be used. Currently, Solr
includes many types, most notably IntField, FloatField, StrField, DateField, and
TextField. Furthermore, applications can easily implement their own FieldType to
extend the typing capability of Solr.

 The Field declaration section is where the rubber meets the road. In this section
of the schema, applications declare exactly how documents are going to be indexed
and stored inside of Solr by declaring their name, type, and other metadata that lets
Solr know how to treat indexing and search requests.

 Lastly, the miscellaneous section comprises a grab-bag of declarations identifying
items like the name of the Field to use as a unique key for each document or the
default search field. Additional declarations tell Solr to copy the contents of one
Field to another Field. By copying from one Field to another, Solr can efficiently
analyze the same content in multiple ways, making for more options when searching.
For instance, it’s often beneficial to allow users to search in a case-sensitive manner. By
creating a <copyField> that copies the contents of one Field to another Field that’s
set up to preserve case, case-sensitive searching can be enabled.

 In designing a schema, the temptation is often to throw in everything, including
the kitchen sink, and then generate large queries that search all of these different
fields. Though this can be done in Solr, it’s better to think about which fields need to
be stored and indexed and which don’t because the information is already available
elsewhere. Often, most simple queries can be handled by creating an “all” Field that
contains the content of all the other searchable Fields. With this strategy, you can
quickly search the content without generating queries across multiple Fields. Then,
when more restrictive searching is needed, the individual Fields can be searched.

 In Solr, the analysis process is easily configured and often requires no programming
whatsoever. Only in special cases where the existing Lucene and Solr CharFilters,
Tokenizers, and TokenFilters aren’t sufficient (people have contributed many analy-
sis modules to Lucene and Solr) will there be a need to write new analysis code.

 Now that you have a basic understanding of how content needs to be structured
for Solr, we can delve into how to add the content to Solr to make it searchable. The
next section will cover how to formulate Documents and send them to Solr for index-
ing, and from there we’ll look into searching that content.

3.4 Indexing content with Apache Solr
Solr has several ways to index content, ranging from posting XML or JSON messages,
CSV files or common office MIME types, to pulling data from a database via SQL

58 CHAPTER 3 Searching
commands or RSS feeds. We’ll cover the basics of indexing using XML messages and
common office types here, but we’ll leave the others to the Solr documentation. Spe-
cifically, if you want more information on indexing CSV files, see http://
wiki.apache.org/solr/UpdateCSV. Finally, to learn more about indexing content from
a database and RSS feeds, see the Data Import Handler at http://wiki.apache.org/
solr/DataImportHandler.

 Before we cover XML indexing, we should note that there are four types of index-
ing activities you can perform with Solr:

 Add/update—Allows you to add or update a document to Solr. Additions and
updates aren’t available for searching until a commit takes place.

 Commit—Tells Solr that all changes made since the last commit should be made
available for searching.

 Delete—Allows you to remove documents either by ID or by query.
 Optimize—Restructures Lucene’s internal structures to improve performance

for searching. Optimization, if done at all, is best done when indexing has com-
pleted. In most cases, you need not worry about optimization.

3.4.1 Indexing using XML

One way of indexing in Solr involves constructing an XML message from preprocessed
content and sending it as an HTTP POST message. This XML message might look
something like this:

<add>
<doc>

<field name="id">solr</field>
<field name="name" boost="1.2">

Solr, the Enterprise Search Server
</field>
<field name="mimeType">text/xml</field>
<field name="creator">Apache Software Foundation</field>
<field name="creator">Yonik Seeley</field>

<field name="description">An enterprise-ready, Lucene-based search
server. Features include search, faceting, hit highlighting,
replication and much, much more</field>

</doc>
</add>

In the example XML, you can see a simple structure wherein you declare the <add>
command and then include it in one or more <doc> entries. Each document specifies
the Fields associated with it and an optional boost value. This message can then be
POSTed to Solr just as any web browser or HTTP client POSTs. For more information
on using XML commands for Solr see the Solr wiki at http://wiki.apache.org/solr/
UpdateXmlMessages.

 Luckily, Solr has an easy-to-use client-side library called SolrJ that handles all of the
work involved in creating Solr XML messages. The following listing demonstrates
using SolrJ to add documents to Solr.

59Indexing content with Apache Solr

Cr
HTT
Sol
con

for
lr

 to
and

tant

in
w

llows
of
o
 Solr
eated

ent
ing a
ge
ache

SolrServer solr = new CommonsHttpSolrServer(
new URL("http://localhost:" + port + "/solr"));

SolrInputDocument doc = new SolrInputDocument();

doc.addField("id", "http://tortoisehare5k.tamingtext.com");

doc.addField("mimeType", "text/plain");

doc.addField("title",
"Tortoise beats Hare! Hare wants rematch.", 5);

Date now = new Date();

doc.addField("date",
DateUtil.getThreadLocalDateFormat().format(now));

doc.addField("description", description);

doc.addField("categories_t", "Fairy Tale, Sports");

solr.add(doc);

solr.commit();

To index your content, you need to send Solr add commands for each SolrInput-
Document. Note that multiple SolrInputDocuments can be included in a single add;
just use the SolrServer add method that takes in a Collection. This is encouraged
for performance reasons. You might be thinking that the overhead of HTTP will be
costly to indexing performance, but in reality the amount of work needed for manag-
ing connections is small compared to the cost of indexing in most cases.

 There you have it, the basics of Solr indexing using XML. Now let’s look at index-
ing common file formats.

3.4.2 Extracting and indexing content using Solr and Apache Tika

In order to extract content from documents and index them in Solr, you have to lever-
age several concepts that you learned in this chapter and in chapter 1 that go beyond
putting a search box in the user interface. First and foremost, you have to design your
Solr schema to reflect the information that’s extracted from the content you’re mak-
ing searchable. Since you’re using Tika for extraction capabilities, the application
needs to map the metadata and content produced by Tika into your schema fields.

Listing 3.1 Example usage of the SolrJ client library
eate an
P-based
r Server
nection.

The schema used
this instance of So
requires a unique
field named id.

Add a Title field
the document
boost it to be 5
times as impor
as other fields.

Dates
must be

formatted
 a specific

ay for Solr.

A dynamic field a
for the addition
unknown fields t
Solr. The _t tells
this should be tr
as a text field.

Send the newly created docum
to Solr. Solr takes care of creat
correctly formatted XML messa
and sending it to Solr using Ap
Jakarta Commons HTTPClient.

After you’ve added all your
documents and wish to make
them available for searching,
send a commit message to Solr.

60 CHAPTER 3 Searching
 To view the full Solr schema, open the solr/conf/schema.xml file in your favorite
editor. There isn’t much to add to the design factors of the schema, other than that we
tried to make sure we were mapping the right types from Tika to the proper Field-
Types in Solr. For example, the page count is an integer, so we made it an integer in
the Solr schema. For this field and the other fields, we iteratively looked at a sampling
of documents and the information extracted from them. To do this, we took advan-
tage of the fact that the Solr Tika integration allows you to extract content without
indexing it. Using a tool called curl (available on most *NIX machines and for Win-
dows at http://curl.haxx.se/download.html), you can send files and other HTTP
requests to Solr. If Solr isn’t running already, use the commands in chapter 1 to start
it. Once Solr is up and running, you can index some content. In this case, we sent the
following command to Solr asking it to extract the content in a sample file:

curl "http://localhost:8983/solr/update/extract?&extractOnly=true" \
-F "myfile=@src/test/resources/sample-word.doc"

The input to this command is a sample Word document located under the src/test/
resources directory in the book’s source code, but you can try any Word or PDF file.
For curl to locate the sample document properly, you should run the curl command
from the top directory of the book’s code. The output will contain the extracted con-
tent along with the metadata and looks like this (some content has been removed for
brevity):

<?xml version="1.0" encoding="UTF-8"?>
<response>

<lst name="responseHeader">
<int name="status">0</int>
<int name="QTime">8</int>

</lst>
<str name="sample-word.doc"><?xml version="1.0"

encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>This is a sample word document</title>
</head>
<body>
<p>This is a sample word document.&#xd;
</p>
</body>
</html>

</str>
<lst name="sample-word.doc_metadata">

<arr name="Revision-Number">
<str>1</str>

</arr>
<arr name="stream_source_info">

<str>myfile</str>
</arr>
<arr name="Last-Author">

<str>Grant Ingersoll</str>
</arr>

61Indexing content with Apache Solr
<arr name="Page-Count">
<str>1</str>

</arr>
<arr name="Application-Name">

<str>Microsoft Word 11.3.5</str>
</arr>
<arr name="Author">

<str>Grant Ingersoll</str>
</arr>
<arr name="Edit-Time">

<str>600000000</str>
</arr>
<arr name="Creation-Date">

<str>Mon Jul 02 21:50:00 EDT 2007</str>
</arr>
<arr name="title">

<str>This is a sample word document</str>
</arr>
<arr name="Content-Type">

<str>application/msword</str>
</arr>
<arr name="Last-Save-Date">

<str>Mon Jul 02 21:51:00 EDT 2007</str>
</arr>

</lst>
</response>

From this output, you can see the kind of information that Tika returns and then plan
your schema accordingly.

 After the schema is defined, the indexing process is handled by sending docu-
ments to Solr’s ExtractingRequestHandler, which provides the necessary infrastruc-
ture for leveraging Tika to extract the content. In order to use the
ExtractingRequestHandler, you must set it up in the Solr configuration file. In this
case, your solrconfig.xml contains the following:

<requestHandler name="/update/extract"
class="org.apache.solr.handler.extraction.ExtractingRequestHandler">

<lst name="defaults">
<str name="fmap.Last-Modified">last_modified</str>
<str name="fmap.Page-Count">pageCount</str>
<str name="fmap.Author">creator</str>
<str name="fmap.Creation-Date">created</str>
<str name="fmap.Last-Save-Date">last_modified</str>
<str name="fmap.Word-Count">last_modified</str>
<str name="fmap.Application-Name">generator</str>
<str name="fmap.Content-Type">mimeType</str>
<!-- Map everything else to ignored -->
<bool name="uprefix">ignored_</bool>

</lst>
</requestHandler>

Since this is already packaged into the tamingText-src Solr setup, you’re all set to
index the content. At this point, all you need to do is send some documents to Solr.

62 CHAPTER 3 Searching
For our purposes, we’ll rely on curl again, but for real applications, a crawler or some
code to get documents from a storage repository (CMS, DB, and so on) and into Solr
via a Solr client like SolrJ will be more appropriate.

 To demonstrate via curl, you can modify the extract-only command by dropping
the extract.only parameter and adding in a few others, as in the following:

curl "http://localhost:8983/solr/update/extract?

literal.id=sample-word.doc&defaultField=fullText&commit=true" \
-F "myfile=@src/test/resources/sample-word.doc"

Besides the specification of the file to upload (-F parameter), there are two important
pieces to this command:

 You send the file to the /update/extract URL instead of just /update. This tells
Solr that you want to use the ExtractingRequestHandler you configured ear-
lier.

 The parameters you pass in, in this case:

– literal.id=sample-word.doc—This tells Solr to add the literal value sam-
ple-word.doc as a Field to the Document with the name id. In other words,
this is your unique ID.

– defaultField=fullText—Where possible, Solr will automatically match up
the extracted content names to Solr Field names. If no field name matches,
this value specifies the default field to use to index the content. In this case,
all unmapped and unmatched content will go into the fullText field.

– commit=true—This instructs Solr to immediately commit the new document
to its index so that it will be searchable.

That command covers the basics of using the ExtractingRequestHandler. To learn
about more advanced features, see http://wiki.apache.org/solr/ExtractingRequest-
Handler.

 Running the indexing commands against your set of files should produce similar
results—adjusted, naturally, to what’s located in your directories. Given this simple
index, you can now look into what kind of results can be obtained by querying the
index using Solr’s built-in administration tool.

TIP When working with Lucene and Solr indexes, Luke is your best friend
for understanding what’s in your index. Written by Andrzej Bialecki, Luke is
useful for discovering how terms were indexed and what documents are in
the index, as well as other metadata like the top 50 terms by frequency in a
field. Luke is freely available at http://code.google.com/p/luke/.

Now that you have some content in your index, we get to the big payoff by looking at
how search works in Solr. In the next section, you’ll use SolrJ to send search requests
to Solr and also look at the results.

63Searching content with Apache Solr
3.5 Searching content with Apache Solr
Much like indexing, search is accomplished by sending HTTP requests to Solr that
specify the user’s information needs. Solr contains a rich query language that enables
users to use terms, phrases, wildcards, and a number of other options. The options
seem to grow with every release. Not to worry: the Solr website (http://
lucene.apache.org/solr) does a good job of documenting any new features and so
should be consulted for the latest and greatest query capabilities.

 To understand how search works in Solr, let’s take a step back and look at how Solr
processes requests. If you remember from section 3.3.2, Solr examines incoming mes-
sages and routes the request to an instance of the SolrRequestHandler interface. For-
tunately, Solr comes with many useful SolrRequestHandlers so that you don’t have to
implement your own. Table 3.4 lists some of the more common SolrRequestHandlers
and their functionality.

Table 3.4 Common SolrRequestHandlers

Name Description Sample query

StandardRequestHandler As you might guess by the
name, the Standard-
RequestHandler is the
default SolrRequest-
Handler. It provides mecha-
nisms for specifying query
terms, fields to search against,
number of results to retrieve,
faceting, highlighting, and rele-
vance feedback.

&q=
description%3Awin+OR+
description%3Aall &rows=10—Queries
the description field for the terms all or win,
returning a maximum of 10 rows

MoreLikeThisHandler Returns documents that are
“More Like This”—similar to a
given document.

&q=lazy&rows=10&qt=%2Fmlt&qf=
title^3+des cription^10

LukeRequestHandler The LukeRequestHandler is
named in reference to the
handy Lucene/Solr index dis-
covery tool named Luke. Luke
is a simple yet powerful GUI
tool that provides insight into
the structure and contents of
an existing index. The Luke-
RequestHandler mimics
much of the functionality of
Luke by providing metadata
about the index in the form of
query responses that can be
used by applications to display
information about an index.

&show=schema—Returns information about
the schema of the current index (field names,
storage and indexing status, and so on)

64 CHAPTER 3 Searching
Though a RequestHandler can generically handle any request, a derivative class, the
SearchHandler, is responsible for actually handling the search requests. A Search-
Handler is composed of one more SearchComponents. SearchComponents plus a query
parser do the majority of heavy lifting when it comes to search. Solr has many Search-
Components as well as a few different query parsers available. These are also pluggable
if you wish to add your own components or query parser. To better understand this
issue and other Solr input parameters, let’s take a closer look at these capabilities.

3.5.1 Solr query input parameters

Solr provides a rich syntax for expressing input parameters and output processing.
Table 3.5 covers the seven different input categories, providing descriptions and com-
mon or useful parameters. Since Solr is almost always improving, consult the Solr web-
site for the authoritative list of parameters.

Table 3.5 Common Solr input parameters

Key Description Default Supported by Example

q The actual query. Syntax
varies depending on the
SolrRequestHandler
used. For the Standard-
RequestHandler, the
supported syntax is
described at http://
wiki.apache.org/solr/
SolrQuerySyntax.

N/A StandardRequestHandler,
DisMaxRequestHandler,
MoreLikeThisHandler,
SpellCheckerRequest-
Handler

q=title:rabbit AND
description:"Bugs
Bunny"
q=jobs:java OR
programmer

sort Specify the Field to sort
results by.

score Most
SolrRequestHandlers

q=ipod&sort=price
desc
q=ipod&sort=price
desc,date asc

start The offset into the results
set to return results from.

0 Most
SolrRequestHandlers

q=ipod&start=11
q=ipod&start=1001

rows The number of results to
return.

10 Most
SolrRequestHandlers

q=ipod&rows=25

fq Specify a FilterQuery
to restrict results by. A
FilterQuery is useful,
for instance, when restrict-
ing results to a given date
range or all documents
with an A in the title.
FilterQuerys are only
useful when performing
repeated queries against
the restricted set.

N/A Most
SolrRequestHandlers

q=title:ipod&fq=
manufacturer:apple

65Searching content with Apache Solr
Naturally, with all of the options outlined in table 3.5 and the many more described
online comes the difficult decision of what to make available in your application. The
key is to know your users and how they want to search. In general, things like high-
lighting and More Like This, though nice features, can slow searches down due to
extra processing (especially if using combinations of these). On the other hand, high-
lighting is useful when users want to quickly zero in on the context of the match.
Next, let’s look at how to access Solr programmatically, as that will be the main mech-
anism for integrating Solr into your application.

NOTE All this discussion of input parameters has no doubt left you
wondering about the reward from all of this work. Namely, what do the
results look like and how can you process them? To that end, Solr
provides a pluggable results handler based on derivations of the Query-
ResponseWriter class. Similar to the various implementations of the Solr-
RequestHandler, there are several implementations of QueryResponse-
Writer, one of which should satisfy your output needs. The most common
(and default) responder is the XMLResponseWriter, which is responsible
for serializing the search, faceting, and highlighting (and any other)
results as an XML response that can then be handled by a client. Other
implementations include the JSONResponseWriter, PHPResponseWriter,
PHPSerializedResponseWriter, PythonResponseWriter, RubyResponseWriter,
and the XSLTResponseWriter. Hopefully, the names of these are pretty self-
explanatory, but if not, have a look at the Solr website for more details. Addi-
tionally, if you need to interface with a legacy system or output your own
binary format, implementing a QueryResponseWriter is relatively straightfor-
ward with plenty of examples available in the Solr source code.

PROGRAMMATIC ACCESS TO SOLR

Up to now, you’ve seen a number of different inputs to Solr, but what about some real
code that does searching?

 Solr also provides some more advanced, though common, query capabilities. For
instance, the DismaxQParser query parser provides a simpler query syntax than the
LuceneQParser query parser and also gives preference to documents where clauses
occur in separate fields. The sample code in the next listing demonstrates how to call
a RequestHandler that uses the DismaxQParser for query parsing.

facet Request facet information
about a given query.

N/A Most
SolrRequestHandlers

q=ipod&facet=true

facet.field The Field to facet on.
This Field is examined
to build the set of facets.

N/A Most
SolrRequestHandlers

q=ipod&facet=
true&facet.field=price&
facet.field=
manufacturer

Table 3.5 Common Solr input parameters (continued)

Key Description Default Supported by Example

66 CHAPTER 3 Searching

Dis
sear

fields g
qf par

bo
a

Sp
docu

results sh
be simila

queryParams.setQuery("lazy");
queryParams.setParam("defType", "dismax");
queryParams.set("qf", "title^3 description^10");
System.out.println("Query: " + queryParams);
response = solr.query(queryParams);
assertTrue("response is null and it shouldn't be", response != null);
documentList = response.getResults();
assertTrue("documentList Size: " + documentList.size() +

" is not: " + 2, documentList.size() == 2);

Another common search technique is to allow the user a quick and easy way to find
documents that are similar to a document in the current search results. This process is
often called Find Similar or More Like This. Solr comes with More Like This capabili-
ties built-in; they just need to be configured. For example, in solrconfig.xml, you can
specify the /mlt request handler as

<requestHandler name="/mlt" class="solr_MoreLikeThisHandler">
<lst name="defaults">

<str name="mlt.fl">title,name,description,fullText</str>
</lst>

</requestHandler>

In this simple configuration, you’re specifying that the MoreLikeThisHandler should
use the title, name, description, and fullText fields as the source for generating a
new query. When a user requests a More Like This query, Solr will take the input doc-
ument, look up the terms in the specified Fields, figure out which are the most
important, and generate a new query. The new query will then be submitted to the
index and the results returned. To query your new request handler, you can use the
code shown next.

queryParams = new SolrQuery();
queryParams.setQueryType("/mlt");
queryParams.setQuery("description:number");
queryParams.set("mlt.match.offset", "0");
queryParams.setRows(1);
queryParams.set("mlt.fl", "description, title");
response = solr.query(queryParams);
assertTrue("response is null and it shouldn't be", response != null);
SolrDocumentList results =

(SolrDocumentList) response.getResponse().get("match");
assertTrue("results Size: " + results.size() + " is not: " + 1,

results.size() == 1);

Of course, one of Solr’s most popular features is its built-in support for faceting, which
is covered in the next section.

Listing 3.2 Example Solr query code

Listing 3.3 More Like This example code

Tell Solr to use the
DisMax Query Parser
(named dismax in
solrconfig.xml).

Max parser
ches across
iven by the
ameter and
osts terms
ccordingly.

Create search to find
similar documents.

ecify
ment
ould
r to. Specify field to

generate query.

67Searching content with Apache Solr
3.5.2 Faceting on extracted content

Earlier, in section 3.4.2, we indexed some sample MS Word files using Solr and Tika.
For this part, we added in some more of our own content, so your results may vary
based on your content. But now that you have a deeper understanding of how search-
ing works using the SolrRequestHandler, you can use Solr’s simple administrative
query interface to run a variety of searches. In our earlier example, we had Solr run-
ning on port 8983 of our local machine. Pointing a web browser at http://local-
host:8983/solr/admin/form.jsp should yield a web page that looks like figure 3.15.

 In this example, we’re using the dismax SolrRequestHandler, which is defined in
the solrconfig.xml configuration file and looks like this:

<requestHandler name="dismax" class="solr_DisMaxRequestHandler" >
<lst name="defaults">
<str name="echoParams">explicit</str>
<float name="tie">0.01</float>
<str name="qf">

name title^5.0 description keyword fullText all^0.1
</str>
<str name="fl">

name,title,description,keyword,fullText
</str>
<!-- Facets -->
<str name="facet">on</str>
<str name="facet.mincount">1</str>
<str name="facet.field">mimeType</str>
<str name="f.categories.facet.sort">true</str>
<str name="f.categories.facet.limit">20</str>
<str name="facet.field">creator</str>

<str name="q.alt">*:*</str>
<!-- example highlighter config, enable per-query with hl=true -->
<str name="hl.fl">name,title,fullText</str>
<!-- for this field, we want no fragmenting, just highlighting -->
<str name="f.name.hl.fragsize">0</str>
<!-- instructs Solr to return the field itself if no query terms are

found -->

Figure 3.15 Solr query interface

68 CHAPTER 3 Searching
<str name="f.name.hl.alternateField">name</str>
<str name="f.text.hl.fragmenter">regex</str> <!-- defined below -->

</lst>
</requestHandler>

To make querying simpler, we’ve put in many default values for the dismax query han-
dler to specify what fields to search and return, as well as the specification of what
fields to facet and highlight. Submitting our example query to Solr, we get back an
XML document containing the results, as well as the faceting information.

<response>

<lst name="responseHeader">
<int name="status">0</int>
<int name="QTime">4</int>
<lst name="params">
<str name="explainOther"/>
<str name="fl">*,score</str>

<str name="indent">on</str>
<str name="start">0</str>
<str name="q">search</str>
<str name="hl.fl"/>
<str name="wt">standard</str>
<str name="qt">dismax</str>

<str name="version">2.2</str>
<str name="rows">10</str>

</lst>
</lst>
<result name="response" numFound="2" start="0"

maxScore="0.12060823">
<doc>
<float name="score">0.12060823</float>
<arr name="creator">...</arr>

<arr name="creatorText">...</arr>
<str name="description">An enterprise-ready, Lucene-based

search server. Features include search,
faceting, hit highlighting, replication and much,
much more</str>

<str name="id">solr</str>
<str name="mimeType">text/xml</str>
<str name="name">Solr, the Enterprise Search Server</str>

</doc>

<doc>
<float name="score">0.034772884</float>
<arr name="creator">...</arr>
<arr name="creatorText">...</arr>
<str name="description">A Java-based search engine library

focused on high-performance, quality results.</str>
<str name="id">lucene</str>
<str name="mimeType">text/xml</str>

Listing 3.4 Example Solr search results

Response header
section returns
metadata about
input parameters and
the search.

<result> section gives
information about the
documents that matched
based on the query, the
configuration, and the
input parameters.

69Understanding search performance factors
<str name="name">Lucene</str>
</doc>

</result>
<lst name="facet_counts">
<lst name="facet_queries"/>
<lst name="facet_fields">
<lst name="mimeType">

<int name="text/xml">2</int>

</lst>
<lst name="creator">

<int name="Apache Software Foundation">2</int>
<int name="Doug Cutting">1</int>
<int name="Yonik Seeley">1</int>

</lst>
</lst>

<lst name="facet_dates"/>
</lst>
</response>

Listing 3.4 shows an abbreviated set of results (some field information was intention-
ally left out for display purposes) for the sample query, along with facet information.
Though we relied on the default values specified in the dismax configuration, you
could also pass in parameters via the URL that override the default parameters to
return more results, highlight information, or query different fields.

 That about covers the core of what you need to get started with Solr. Exploring the
Solr website will provide more detail on all of these topics and more advanced topics
like caching, replication, and administration. Next, let’s take a step back and look at
some general performance issues, along with some specific to Solr, and see how these
factors can influence your search implementation.

3.6 Understanding search performance factors
At a high level, search performance is a measure of how well a search system works at
producing results. It can be further broken down into two main categories: quantity
and quality. Quantity refers to how fast you can return results (how many results you
can return in a given amount of time), whereas quality refers to how relevant those
results are to the search. It’s often (but not always) the case that the two are opposing
forces, requiring practitioners to constantly evaluate making trade-offs between
greater speed and better results. In this section, we’ll examine many of the tips and
techniques that modern search engines employ to improve both quantity and quality.
After that, we’ll look at some Solr-specific tweaks to enable it to perform better. Before
either of these topics, let’s take a quick look at judging speed and relevancy since,
without either of them, you have no way of knowing if you’ve succeeded.

3.6.1 Judging quality

As a user of a search engine, nothing is more frustrating than entering a query and
getting back a list of results that are only vaguely relevant, if at all. What follows is

The facet_fields list section
provides details on the facets
found in the search results. In
this example, the mimeType
facet indicates four of the nine
results are image/tiff, another
four are text/plain, and one is
image/png.

70 CHAPTER 3 Searching
almost always a trial-and-error approach of adding or subtracting keywords followed
by a quick scan of the top 10 results. Often, it seems like you could find what you were
looking for if you could just get the right combination of keywords. Other times, it
feels like you should give up.

 On the other side of the equation, search engine creators are constantly struggling
with trade-offs between the quality of results, ease of use, and speed. Since by their
nature queries are incomplete expressions of a user’s information needs, search
engines often employ complex algorithms that attempt to fill the gap between the
user’s incomplete query and what they really want.

 In between the users and the creators is a fuzzy thing called relevance. Relevance is
the notion of how appropriate a set of results is for a user’s query. The reason it’s fuzzy
is because no two users will agree in all cases as to what’s appropriate. And though
judging relevance is a subjective task, many people have tried to come up with system-
atic approaches to determining relevance. Some have even gone so far as to organize
conferences, complete with standard document collections, queries, and evaluation
tools. Participants run the queries against the collection and submit their results to
the conference, which then gathers the results and evaluates and ranks the groups
according to how well they did. The granddaddy of these conferences, held annually,
is called TREC, or the Text REtrieval Conference, and is run by the US National Insti-
tute of Standards and Technology (NIST).

 Many of these conferences rely on two metrics of evaluation to determine which
engines provide the best results. The first metric, precision, measures the number of
relevant documents in the list of documents provided by the engine. As a refinement,
precision is often looked at in the context of number of results returned. For instance,
precision at 10 (often labeled P@10) measures how many relevant documents were
returned in the top 10 results. Since most users only look at the first 10 results or the
first page of results, it’s often most useful to only look at precision at 10. The second
metric, recall, measures the number of relevant documents found out of all the rele-
vant documents in the collection. Note that perfect recall is attainable by returning all
documents in the collection for every query, as dumb as that would be to do. In many
situations, trade-offs are made between precision and recall. For example, precision
can often be increased by requiring many, if not all, of the terms in a query to be pres-
ent in a document. But on smaller collections, this may mean some queries return no
results. Likewise, recall can often be increased by adding any and all synonyms for
every query term into the query. Unfortunately, due to the ambiguity of many words,
documents that rely on alternate meanings of a word might find their way into the
final results, thus lowering precision.

 So how should you evaluate the quality of your system? First and foremost, be
aware that every technique has its strengths and weaknesses. More than likely, you
should use more than one technique. Table 3.6 contains a list of some evaluation tech-
niques; undoubtedly others may also prove useful for specific systems.

71Understanding search performance factors

Table 3.6 Common evaluation techniques

Technique Description Cost Trade-offs

Ad hoc Developers, Quality Assur-
ance, and other interested
parties informally evaluate
the system and provide feed-
back on what works and what
doesn’t.

Low initially, but probably
much higher in the long run.

Not formally repeatable
unless logs are kept. Hard to
know how changes affect
other parts of system. Proba-
bly too narrow in focus to be
effective. Risks tuning for a
specific set of queries. At a
minimum, all testers should
try the same collection for the
test.

Focus group Groups of users are invited to
use the system. Logs are
kept of queries, documents
chosen, etc. Users can also
be asked to explicitly identify
relevant and nonrelevant doc-
uments. Statistics can then
be used to make decisions
about search quality.

Depends on number of partic-
ipants, cost of setting up
evaluation system.

Can be useful, depending on
number of participants. Can
also provide feedback on
usability. Logs can be saved
to create a repeatable test.

TREC and other
evaluation con-
ferences

TREC provides a number of
tracks for evaluating informa-
tion retrieval systems, includ-
ing those focused on web,
blogs, and legal documents.

Fee required to obtain data;
formal participation (submit-
ting results) in TREC can be
time consuming and costly.
Questions and judgments are
available for free and, with
the data, can be run offline
as needed.

Good for comparing to other
systems and getting a gen-
eral feel for quality, but data
may not be representative of
your collection, so results
may not be all that useful for
your system.

Query log
analysis

Logs are taken from the pro-
duction system and the top
50 queries are extracted, as
well as 10-20 random sam-
ples. Analysts then judge the
top 5 or 10 results from each
query as relevant, somewhat
relevant, not relevant, and
embarrassing. Results are
correlated and analyzed for
underperforming queries.
Over time, the goal is to maxi-
mize the relevant, minimize
the nonrelevant, and elimi-
nate the embarrassing. Addi-
tionally, searches returning
zero results are analyzed for
possible improvements. Fur-
ther analysis may involve
examining which results were

Depends on size of logs and
number of queries used.

Best suited for testing your
data with your users.
Requires effective planning
on what to log and when and
how to collect it. Best done
during beta testing and as an
ongoing task of a production
system. Risk of having lower-
quality results early in pro-
cess.

72 CHAPTER 3 Searching
Ad hoc, focus group, TREC, and, to a lesser extent, log analysis and A/B testing all run
the risk of producing a system optimized for the evaluation while not performing as
well in the wild. For instance, using the TREC documents, queries, and evaluations
(called relevance judgments) may mean your system does well on TREC-style queries
(which are of a specific nature), and doesn’t do well on queries that your users are
likely to ask.

 From a practical standpoint, most applications intended for a significantly sized
audience will want to, at a minimum, do ad hoc testing and query log analysis. If you
have sufficient funding, focus groups and TREC-style evaluations can give you more
data points to evaluate your system. Log analysis and A/B testing will produce the
most practical, usable results, and are the preferred methods of the authors.

 Naturally, relevance tuning should never be viewed as a do-it-once-and-forget-
about-it kind of task. Likewise, you shouldn’t obsess about the quality of any one result,
unless it’s one of the most frequently asked queries. Moreover, you should rarely worry

Query log
analysis
(continued)

chosen (click-through analy-
sis) and how long users
spent on each page. The
assumption is that the lon-
ger a person spends on a
given result, the more rele-
vant it is to their need.

A/B testing Similar to query log analysis
and focus group testing, a
live system is used, but dif-
ferent users may receive dif-
ferent results. For example,
80% of the users receive
results based on one
approach, whereas the other
20% of users receive results
from an alternate approach.
Logs are then analyzed and
compared to see whether
users with common queries
between the two groups pre-
ferred one approach to the
other. This can be applied
across any part of the sys-
tem, ranging from how index-
ing is done to how results are
displayed. Just make sure to
thoroughly document the dif-
ferences between the A and B
groups.

Requires deploying and sup-
porting two systems in pro-
duction. Also depends on the
number of queries and the
size of the logs.

Well suited for testing with
real users. Best done in non-
peak times for limited periods
of time. In other words, don’t
do it three weeks before
Christmas if you’re a shop-
ping site!

Table 3.6 Common evaluation techniques (continued)

Technique Description Cost Trade-offs

73Understanding search performance factors
about why one result is ranked at position 4 and another is ranked at position 5. The
only time, possibly, is when editorial decisions (someone paid money for a position)
require a document to be at a specific position. At the end of the day, if a certain result
should be the number-one hit for a query, then hardcode it as the number one hit for
the query. Trying to tweak your system’s various configuration parameters to make it
appear as the first result via the normal search process is asking for headaches and will
more than likely break other searches. Knowing when to use a hammer and when to
use a screwdriver is half the battle in keeping your customers happy.

3.6.2 Judging quantity

There are numerous metrics for judging how well a search system performs in terms
of quantity. Some of the more useful are listed here:

 Query throughput—The number of queries the system can process in a given
time unit. Usually measured in queries per second (QPS). Higher is better.

 Popularity versus time—Charts how long each query takes, on average, by the fre-
quency of the query. This is especially useful for showing where to spend time
in improving the system. For instance, if the most popular query is also the slow-
est, the system is in trouble, but if only rarely asked queries are slow, it may not
be worth the effort to investigate.

 Average query time—How long does the average query take to process? Related
statistics show the distribution of queries over time. Smaller is better.

 Cache statistics—Many systems cache query results and documents and it’s useful
to know how often the cache is hit or missed. If there are routinely few hits, it
may be faster to turn off caching.

 Index size—Measures how effective the indexing algorithm is at compressing the
index. Some indexes may be as small as 20% of the original. Smaller is better,
but disk is cheap so don’t obsess too much over it.

 Document throughput—The number of documents indexed per time unit. Usu-
ally measured as documents per second (DPS). Higher is better.

 Number of documents in index—When an index size becomes too large, it may
need to be distributed.

 Number of unique terms—Very high-level metric that provides a basic idea of the
size of the index.

Additionally, the usual suspects like CPU, RAM, disk space, and I/O should play a role
in judging how well a system is performing. The key to these metrics is that they
should be monitored over time. Many systems (including Solr) provide administrative
tools that make it easy for administrators to keep an eye on what’s going on.

 With a basis for understanding how your system is performing in place, the next
section will examine a variety of tips and techniques for actually improving perfor-
mance. This section will examine a wide variety of techniques ranging from hardware
considerations to the trade-offs between various search and indexing options.

74 CHAPTER 3 Searching
3.7 Improving search performance
From the early days of search engines, researchers and practitioners have been tuning
their systems with a number of different goals in mind. Some want better relevancy;
others want better compression; still others want better query throughput. Nowadays,
we want all of these things and then some, but how do we obtain them? The following
sections will hopefully provide a bevy of options to think about and try.

 Before we begin, a warning is in order: tuning a search engine can take up large
chunks of time and result in no measurable improvement. It’s best to double-check
that improvements are needed by monitoring both the quality and quantity aspects of
a system before undertaking any tuning. Also, the advice contained here won’t work
in all situations. Depending on the search engine, some or all of the tips contained
here may not even be applicable or may require a deep understanding of the engine
in order to implement. Finally, be sure the problem really is in the search engine, and
not the application, before spending too much time tuning.

 With our metrics in place and the warnings out of the way, let’s look at how we can
improve search performance. Some performance issues are indexing time issues,
whereas others are search time issues. Some issues relate only to the quantity or qual-
ity of results, whereas others will affect both. Let’s start by taking a look at some hard-
ware considerations, and then progress to software solutions like improving analysis
and writing better queries.

3.7.1 Hardware improvements

One of the easiest and most cost-effective tuning options available to all search
engines is to upgrade the hardware. Search engines usually like a lot of RAM, and they
like to have the CPU all to themselves. Furthermore, in large systems that don’t fit
completely in RAM, improvements in the I/O system will also reap rewards. Of particu-
lar interest on the query side are solid state drives (SSDs), which greatly reduce seek
times, but may be slower to write out data.

 Single machine improvements can take you only so far. At some point, depending
on the size of the data, machine, and number of users, there may come a time when
the workload must be distributed across two or more machines. This can generally be
handled in one of two ways:

1 Replication—A single index that fits on one machine is copied to one or more
machines that are load balanced. This is often the case for online stores that
don’t have a particularly large index, but have a very high query volume.

2 Distribution/sharding—A single index is distributed across several nodes or shards
based on a hash code or some other mechanism. A master node sends incom-
ing queries to each of the shards and then collates the results.

As an alternative to splitting an index based on a hash code, it’s often possible to logi-
cally separate an index and queries to separate nodes. For example, in multilingual
search it can be useful (but not always) to split the indexes by language such that one

75Improving search performance
node serves English queries and documents while another node serves Spanish que-
ries and documents.

 Naturally, hardware improvements can give you some nice gains, but only offer so
much in terms of speedups, and can’t offer anything in terms of relevance. It makes
sense to look at some time-tested tips and techniques for speeding up and improving
the quality of search, even if the gains may be harder to come by.

3.7.2 Analysis improvements

All search engines, whether closed or open source, must define a mechanism for con-
verting the input text into tokens that can be indexed. For example, Solr does this
through the Analyzer process where an InputStream is split into an initial set of
tokens, which are then (optionally) modified. It’s during this analysis process that the
stage is often set for how well indexing performs in terms of speed and relevancy.
Table 3.7 contains a repeat of some of the common analysis techniques offered earlier
in the chapter, plus some new ones, and adds notes on how they help, and sometimes
hurt, performance.

Table 3.7 Common performance-improving analysis techniques

Name Description Benefits Downsides

Stopword
removal

Commonly occurring words
like the, a, and an are
removed before indexing, sav-
ing on index size.

Faster indexing, smaller
index.

Lossy process. Better to index
stopwords and handle them at
query time. Stopwords are
often useful for better phrase
search.

Stemming Tokens are analyzed by a
stemmer and possibly trans-
formed to a root form. For
example, banks becomes
bank.

Improves recall. Lossy process that can limit
ability to do exact match
searches. Solution: keep two
fields, one stemmed and one
unstemmed.

Synonym
expansion

For each token, 0 or more syn-
onyms are added. Usually
done at query time.

Improves recall by retrieving
documents that don’t con-
tain the query keywords, but
are still related to the query.

Ambiguous synonyms can
retrieve unrelated documents.

Lowercasing
tokens

All tokens are put into lower-
case.

Users often don’t properly
case queries; lowercasing at
query and index time allows
for more matches.

Prevents case-sensitive
matches. Many systems will
keep two fields, one for exact
matches, and one for inexact.

External
knowledge as
payloads

Some external source is con-
sulted that provides additional
info about the importance of a
token, which is then encoded
as a payload with the token in
the index. Examples include
font weight, link analysis, and
part of speech.

Usually allows for more
meaning to be stored about
a particular token, which can
enhance search. For exam-
ple, link analysis is at the
heart of Google’s PageRank
algorithm (Brin 1998).

Can significantly slow down the
analysis process and increase
the index size.

76 CHAPTER 3 Searching
Another useful but less-common technique that can help produce results in difficult
situations is called n-gram analysis, which is a form of the sequence modeling we dis-
cussed earlier in the book. An n-gram is a subsequence of one or more characters or
tokens. For example, the character-based one-gram (unigram) of example is e, x, a, m,
p, l, e, whereas the bigrams are ex, xa, am, mp, pl, le. Likewise, token-based n-grams will
produce pseudo-phrases. For example, the bigrams for President of the United States are
President of, of the, the United, United States. Why are n-grams useful? They come in handy
in approximate matching situations, or when the data isn’t particularly clean such as
OCR’ed data. In Lucene, the spell-checker component uses n-grams to produce candi-
date suggestions, which are then scored. When searching languages like Chinese,
where it’s often difficult for algorithms to determine tokens, n-grams are used to cre-
ate multiple tokens. This approach doesn’t require any knowledge about the language
(Nie 2000). Word-based n-grams are useful when searching with stopwords. For exam-
ple, assume a document contains the two sentences:

 John Doe is the new Elbonian president.
 The United States has sent an ambassador to the country.

This document is then (possibly) transformed, after analysis using stopwords, to these
tokens: john, doe, new, elbonian, president, united, states, sent, ambassador, country. If the
input query is then President of the United States, after analysis, the query is transformed
to president united states, which would then match the Elbonian example since those
three tokens coincide in the analyzed document. But if stopwords are kept during
indexing, but only used to produce phrase-like n-grams on the query side, you can
reduce the chances of false matches by generating a query like President of the, and the
United States, or some other variation depending on the type of n-gram produced,
which is more likely to match only on a sentence containing that exact phrasing. In
some cases, it’s useful to produce multiple grams. Again, using our example, you
could produce bigrams up through five-grams and be more likely to exactly match
President of the United States. Of course, this technique isn’t perfect and can still cause
problems, but it can help take advantage of the information in stopwords that would
otherwise be lost.

 In addition to the techniques in table 3.7 and n-grams, each application will have
its own needs. This underscores one of the main advantages of open source
approaches: the source is available to extend. Remember that the more involved the
analysis is, the slower the indexing. Since indexing is often an offline task, it may be
worthwhile to do more complicated analysis if measurable gains are to be had, but the
general rule is to start simple and then add features if they solve a problem.

 With analysis out of the way, we can now look at improving query performance.

3.7.3 Query performance improvements

On the query side of the coin, there are many techniques for improving both the speed
and accuracy of search. In most situations, the difficulty in providing good results lies

77Improving search performance
in underspecification of the information need by the user. It’s the nature of the beast.
And Google’s simple interface that encourages one- or two-keyword queries has signif-
icantly raised the bar not only for other web-scale search engines, but for smaller
engines as well. Though the big internet engines have access to the same material as
Google, smaller systems generally don’t have access to massive query logs or document
structures such as HTML links and other user feedback mechanisms that can provide
valuable information about what’s important to a user. Before spending time building
anything complex, try to address two key items that can help improve results:

1 User training—Sometimes users need to be shown how much better their results
can be by learning a few key syntax tips, like phrases, and so forth.

2 External knowledge—Is there anything about one or more of the documents that
makes it more important than another? For example, maybe it’s written by the
CEO, or maybe 99 out of 100 people marked it as being useful, or maybe your
profit margin on the item described is five times that of another comparable
item. Whatever it is, figure out how to encode that knowledge into the system
and make it a factor during search. If the search system doesn’t allow that, it
may be time for a new system!

Beyond user training and the use of a priori knowledge about indexes, many things
can be done to improve the speed and accuracy of queries. First and foremost, in most
situations, query terms should be ANDed together, not ORed. For instance, if the user
input was Jumping Jack Flash, then the query, assuming you aren’t detecting phrases,
should be translated into the equivalent of Jumping AND Jack AND Flash and not Jump-
ing OR Jack OR Flash. By using AND, all query terms must match. This will almost cer-
tainly raise precision, but may lower recall. It will definitely be faster, as well, since
there will be fewer documents to score. Using AND may result in a zero-result query,
but it’s then possible to fall back to an OR query, if desired. About the only time AND
may not produce enough useful results for simple queries is if the collection is very
small (roughly speaking, less than 200,000 documents).

NOTE The use of AND here isn’t meant to signify that all search engines sup-
port that syntax, but it’s what Solr uses, so we kept it that way for simplicity of
explanation.

Another useful query technique that can produce big gains in precision is to either
detect phrases or automatically induce phrases using token n-grams. In the former
case, analysis of the query is done to determine whether the query contains any
phrases, and those are then translated into the system’s internal phrase query repre-
sentation. For example, if the user input is Wayne Gretzky career stats, a good
phrase detector should recognize Wayne Gretzky as a phrase and produce the query
"Wayne Gretzky" career stats, or even "Wayne Gretzky career stats". Many search
systems also offer a position-based slop factor when specifying phrases. This slop factor
specifies how many positions apart two or more words can be and still be considered a
phrase. Often it’s also the case that the closer the words are, the higher the score.

78 CHAPTER 3 Searching
 As for improving the speed of queries, fewer query terms usually result in faster
searches. Likewise, commonly occurring words are going to slow down queries since a
large number of documents must be scored in order to determine the relevant ones,
so it may be worthwhile to remove stopwords at query time. Obviously, encouraging
your users to avoid ambiguous or commonly occurring words will also help, but it isn’t
likely to be practical unless your audience is mostly expert users.

 Finally, a commonly used technique for improving quality, but not speed since it
involves submitting at least two queries per user input, is called relevance feedback. Rele-
vance feedback is the technique of marking one or more results, either manually or
automatically, as relevant, and then using the important terms to form a new query. In
the manual form of relevance feedback, users provide some indication (a check box or
by clicking a link) that one or more documents are relevant, and then the important
terms in those documents are used to create a new query which is then submitted to
the system automatically, and the new results are returned. In the automatic case, the
top 5 or 10 documents are automatically chosen as relevant, and the new query is
formed from those documents. In both cases, it’s also possible to identify documents
that aren’t relevant, and have those terms removed from the query or weighted less. In
many cases, the new query terms that are kept are weighted differently from the origi-
nal query and input parameters can be used to specify how much weight to give the
original query terms or the new query terms. For instance, you may decide that the new
terms are worth twice as much as the original terms, and multiply the new terms’
weights by two. Let’s look at a simple example of how this feedback process may look.
Let’s assume you have four documents in your collection, as described in table 3.8.

 Now, let’s assume the user was interested in what sports are played in Minnesota, so
they query minnesota AND sports. A perfectly reasonable query, yet against this
admittedly trivial example, without relevance feedback, only document 0 will be
returned. But if you employ automatic relevance feedback and use the top result for
query expansion, your system would create a new query, such as (minnesota AND
sports) OR (vikings OR dome OR football OR minneapolis OR st. paul)*2. This new
feedback query would bring back all the documents (how convenient!). It almost goes
without saying that relevance feedback rarely works this well, but it usually does help,
especially if the user is willing to
provide judgments. To learn more
about relevance feedback, see Mod-
ern Information Retrieval (Baeza-Yates
2011) or Information Retrieval: Algo-
rithms and Heuristics (Grossman
1998). Moving along, let’s take a
quick look at some alternative scor-
ing models to get an idea of some
other approaches to search.

Table 3.8 Example document collection

Document ID Terms

0 minnesota, vikings, dome, foot-
ball, sports, minneapolis, st. paul

1 dome, twins, baseball, sports

2 gophers, football, university

3 wild, st. paul, hockey, sports

79Improving search performance
3.7.4 Alternative scoring models

Earlier, we focused on the vector space model (VSM) for scoring, specifically Lucene’s
model, but we’d be remiss if we didn’t mention that there are many different ways of
scoring with the VSM, as well as many different models for scoring beyond the VSM,
some of which are listed in table 3.9. Most of these alternatives are implemented in
research-oriented systems or are covered by patents and are inaccessible or impracti-
cal for users of open source in production. But some are now implemented under-the-
hood in Lucene and are a configuration option away in Solr. In fact, much of
Lucene’s scoring capabilities are now pluggable in what will be (or is, depending on
when we go to print) Lucene and Solr 4.0. Because we’re using an earlier version, we
won’t cover using these models here. One way of improving query performance is by
switching out the underlying scoring model.

 Finally, note that much research on improving query performance is happening,
via different models and different query formulations. Many good and interesting
studies are published via the ACM Special Interest Group in Information Retrieval
(SIGIR) at the annual conference. Monitoring their publications is a great way to stay
current on new techniques for improving results. At any rate, the information here
should give you enough to get started. Now, let’s take a look at Solr performance tech-
niques for some concrete improvements you can make on your system.

Table 3.9 Alternative scoring methods and models

Name Description

Language modeling An alternative probabilistic model that turns the IR question on its head,
sort of like the TV show Jeopardy, where the answer is given and the
contestant must come up with the question. Instead of measuring
whether a given document matches the query, it measures the likeli-
hood that a given document would create the query.

Latent semantic indexing A matrix-based approach which attempts to model documents at the
conceptual level using singular value decomposition. Covered by patent,
so of little use to open source users.

Neural networks and other
machine learning
approaches

In these approaches, the retrieval function is learned, over time, through
a training set and feedback from the user.

Alternate weighting schemes Many researchers have proposed modifications to the weighting
schemes used in many of the models. Some of the modifications center
around the use of document length and average document length as a
scoring factor (Okapi BM25, pivoted document length normalization,
among others). The basic premise is that longer documents will likely
have higher TF values for a keyword than shorter, but the benefit of
these repeated terms diminishes as the document gets longer. Note
that this length normalization factor is usually not linear.

Probabilistic models and
related techniques

Use statistical analysis to determine the likelihood that a given docu-
ment is a match for the query. Related techniques include inference net-
works and language modeling.

80 CHAPTER 3 Searching

Us
compoun

descriptor
of slow

a

m
cont

buf
be

disk. L
require

and s
ing, w

nu

3.7.5 Techniques for improving Solr performance

Though Solr is highly capable out of the box, there are many best practices that you
should follow to give Solr the chance to really show what it’s made of in regard to per-
formance. To properly address performance, we can break the problem down into
two subsections, the first covering indexing performance and the second covering
search. Before we begin, often the simplest way to get more performance is to
upgrade to the latest released version. The community is active and new improve-
ments are coming in all the time.

IMPROVING INDEXING PERFORMANCE

Indexing performance considerations can be divided into three parts:

 Schema design
 Configuration
 Submission methods

Good schema design, as discussed earlier, comes down to figuring out what fields are
needed, how they’re analyzed, and whether or not they need to be stored. Searching
many Fields is going to be slower than searching one Field. Likewise, retrieving doc-
uments with a lot of stored Fields is going to be slower than documents without a lot
stored Fields. Furthermore, complex analysis processes will adversely affect indexing
performance due to time spent doing complex tokenization and token filtering pro-
cedures. Often, depending on your users, you may be able to sacrifice some quality for
more speed.

 The Solr configuration provides many levers for controlling performance; among
them are controls for telling Lucene (the underlying library powering search) how to
create and write the files for storing the index. These factors are specified in the solr-
config.xml<indexDefaults> section, which the following is an example of:

<useCompoundFile>false</useCompoundFile>

<mergeFactor>10</mergeFactor>

<maxBufferedDocs>1000</maxBufferedDocs>

<maxMergeDocs>2147483647</maxMergeDocs>

<maxFieldLength>10000</maxFieldLength>

ing Lucene’s
d file format
saves on file
s at the cost
er searching
nd indexing.

axBufferedDocs
rols how many
documents are
fered internally
fore flushing to
arger numbers
 more memory
peed up index-
hereas smaller
mbers use less

memory.

The mergeFactor controls how often
Lucene merges internal files.
Smaller numbers (< 10) use less
memory than the default at the cost
of slower indexing. In most cases,
the default is sufficient, but you may
wish to experiment.

maxMergeDocs specifies the largest
number of documents ever merged
by Lucene. Smaller numbers (<
10,000) are better for systems with
frequent updates; larger numbers
are better for batch indexing and
speed up searches.

maxFieldLength specifies the
maximum number of Tokens
from a single Field that will be
indexed. Increase this value (and
your Java heap size) if you expect
to have large documents with a
lot of tokens.

81Improving search performance
Finally, how an application sends documents to Solr can greatly affect indexing per-
formance. Best practices suggest sending multiple documents at a time when using
the HTTP POST mechanism. Further increases in performance can be gained by using
several threads to send multidocument requests, increasing throughput and minimiz-
ing HTTP costs. Solr will take care of all of the synchronization issues, so rest assured
your data will be properly indexed. The following section lists these categories and
describes the issues related to Solr performance.

SEARCH PERFORMANCE

Search performance can be broken down into a number of different categories, each
offering different levels of performance (see table 3.10).

In the end, as with most optimization strategies, what works for one application may
not work for another. The preceding guidelines provide general rules of thumb for
using Solr, but pragmatic testing and profiling on your data and servers is the only way
to know what works best for your situation. Next, let’s take a look at some alternatives
to Solr for both Java and other languages.

Table 3.10 Search performance categories

Category Description

Query type Solr supports a rich query language, allowing for anything from simple term queries to
wildcard and range queries. Complex queries using wildcards and searching ranges will
be slower than simpler queries.

Size Both query size (number of clauses) and index size play an important role in determin-
ing performance. The larger the index, the more terms to search (it’s usually sublinear
in the number of documents). More query terms usually means more documents and
Fields to check. More Fields, can also mean more content to check if the query
accesses all of those Fields.

Analysis Just as in indexing, complicated analysis processes will be slower than simpler pro-
cesses, but it’s usually negligible for all but really long queries or when doing extensive
synonym or query expansion.

Caching
and warming
strategies

Solr has advanced mechanisms for caching queries, documents, and other important
structures. Furthermore, it can automatically populate some of these structures before
making new index changes available for searching. See the solrconfig.xml for informa-
tion on caching. Query log analysis and the Solr administration interface can help
determine whether caching is helpful during search. If it’s not helpful (high cache
misses), it’s better to turn it off.

Replication High query volume can be addressed by replicating the Solr indexes out to several
load-balanced servers, thus spreading queries out across several machines. Solr pro-
vides a suite of tools for synchronizing indexes between servers.

Distributed
search

Large indexes can be split up (sharded) across several machines. A master node
broadcasts the incoming query to all the shards and then collates the results. In com-
bination with replication, large, fault-tolerant systems can be built.

82 CHAPTER 3 Searching
3.8 Search alternatives
One of the great things about open source is that anyone can cook up a project and
make it available for others to use (naturally, this is also a disadvantage, as it becomes
difficult to know what’s good and what isn’t). A number of open source search librar-
ies are available for use in your product, many of which have different design goals.
Some strive to be the fastest, whereas others are great for testing out new search theo-
ries and are more academic-oriented.

 Though all of the authors have used Solr and Lucene extensively and are biased
toward those solutions, table 3.11 provides alternative approaches or alternative lan-
guage implementations.

Table 3.11 Alternative search engines

Name URL Features License

Apache Lucene
and variants

http://lucene.apache.org/ Low-level search library, requiring
more engineering, but also provid-
ing more flexibility with more con-
trol over footprint, memory, etc.
Similarly, there are other imple-
mentations of Lucene’s APIs for
.NET, Python (PyLucene), and Ruby
(Ferret), each providing some level
of compatibility with Lucene Java.

Apache Software
License (ASL)

Apache Nutch http://lucene.apache.org/
nutch/

A full-service crawler, indexer, and
search engine built on Apache
Hadoop and Lucene Java.

Apache Software
License (ASL)

ElasticSearch http://elasticsearch.com A Lucene-based search server. Apache Software
License (ASL)

Minion https://minion.dev.java.net/ An open source search engine
from Sun Microsystems.

GPL v2.0

Sphinx http://www.sphinxsearch.com/ Search engine focused on
indexing content stored in SQL
database.

GNU Public License
v2 (GPL)

Lemur http://www.lemurproject.org/ Uses an alternate ranking for-
mula, called language modeling,
instead of the vector space
model.

BSD

MG4J—Managing
Gigabytes for
Java

http://mg4j.dsi.unimi.it/ Search engine based on the excel-
lent book Managing Gigabytes
(Witten 1999). Aims to be scal-
able and fast. Also provides alter-
nate ranking algorithms.

GPL

Zettair http://www.seg.rmit.edu.au/
zettair/

Designed to be compact and fast,
allowing you to index/search
HTML and TREC collections.

BSD

83Resources
Though plenty of other search engines are available, the list in table 3.11 provides a
nice sampling of tools across several languages and with several different licenses.

3.9 Summary
Searching your content is a rich and complex landscape. Providing better access to
your content is the first step in gaining control of all of the data inundating your life.
Furthermore, search is now one of those must-have components in almost any cus-
tomer-facing application. The likes of Amazon, Google, Yahoo!, and others have suc-
cessfully demonstrated the opportunities good search brings to users and companies
alike. It’s now up to you to leverage the ideas we examined in this chapter to make your
applications richer. Specifically, you should know the basics of indexing and searching
content, how to set up and use Apache Solr, and also some of the issues involved in
making search (and specifically Solr) perform in real-world applications. From this
launching pad, we’ll next examine techniques for working with text in situations where
the results aren’t always cut and dried, or as we call it, fuzzy string matching.

3.10 Resources
 Baeza-Yates, Ricardo and Ribiero-Neto, Berthier. 2011 Modern Information Retrieval:

The Concepts and Technology Behind Search, Second Edition. Addison-Wesley.

 Brin, Sergey, and Lawrence Page. 1998. “The Anatomy of a Large-Scale Hypertextual
Web Search Engine.” http://infolab.stanford.edu/~backrub/google.html.

 Grossman, David A. and Frieder, Ophir. 1998. Information Retrieval: Algorithms and
Heuristics. Springer.

 Nie, Jian-yun; Gao, Jiangfeng; Zhang, Jian; Zhou, Ming. 2000. “On the Use of Words
and N-grams for Chinese Information Retrieval.” Fifth International Workshop
on Information Retrieval with Asian Languages, IRAL2000, Hong Kong, pp 141-
148.

 Salton, G; Wong, A; Yang, C. S. 1975. “A Vector Space Model for Automatic Index-
ing.” Communications of the ACM, Vol 18, Number 11. Cornell University. http://
www.cs.uiuc.edu/class/fa05/cs511/Spring05/other_papers/p613-salton.pdf.

 “Vector space model.” Wikipedia. http://en.wikipedia.org/wiki/
Vector_space_model.

 Witten, Ian; Moffatt, Alistair; Bell, Timothy. 1999. Managing Gigabytes: Compressing and
Indexing Documents and Images, Morgan Kaufmann, New York.

Fuzzy string matching
One of the most difficult aspects of dealing with text is the approximate nature of
many of the tasks you’d like to perform. Whether this is the relevance of search
results or the clustering of similar items, what exactly is meant by relevance or simi-
larity is difficult to specify in a way that’s both intuitive and specific. In language, we
encounter this phenomenon all the time, typically with little consideration. For
example, you’ll hear a new band described as, “They’re like Radiohead, only differ-
ent.” Typically you just nod, taking whatever interpretation that comes to mind, not
considering the vast range of other potential and valid interpretations.

 We distinctly remember when the Did You Mean feature (see figure 4.1—since
replaced by Google with Showing Results For when Google has high confidence of
a misspelling) arrived on Google search. Though the target audience of such a fea-
ture was likely people whose queries had typos, for others who are (shall we say?)

In this chapter
 Finding fuzzy string matches with prefixes and n-grams

 Prefix matching used to perform query type-ahead

 N-gram matching and string matching applied in query
spell-checking

 String matching techniques applied in a record
matching task
84

85
challenged by spelling, this was a boon to productivity. Not only did it mean that you
could improve search productivity, but it also provided access to a means to look up
words that are either not found in dictionaries or for which an attempted spelling
wasn’t close enough to generate a reasonable suggestion. Today, you can quickly write
about the “joie de vivre of coding late into the evening” rather than just saying that
“coding is something to do” because the effort to look up a correct spelling of that
borrowed French phrase is now trivial.

 A feature like Did You Mean, or as it’s sometimes called, query spell-checking,
requires fuzzy matching. Specifically you need to generate multiple possible sugges-
tions for the query that was entered, rank these suggestions, and determine whether
you’re even going to show the suggestion to the user. Fuzzy string matching (which is
like regular string matching, only different), or just fuzzy matching, is the process of
finding strings that are similar, but not necessarily exactly alike. In contrast, string
matching is concerned with exact matches. Similarity is usually defined by a distance,
score, or a likelihood of similarity. For instance, using the edit distance (Levenshtein
distance), which we’ll describe later, the words there and here have an edit distance of
one. Though you can probably guess at the meaning of that particular score, we’ll
leave it for now knowing that we’ll return to it further into the chapter.

 Spell-checking is just one example of fuzzy string matching. Another common use
case occurs regularly when companies merge and must combine customer lists, or
governments and airlines check flight manifests for potential criminals. In these cases,
often called either record linkage or entity resolution, you must compare one list of names
against another list and try to determine whether two similarly spelled names actually
are the same people. Simply matching names doesn’t completely answer the question,
but it does help immensely. To explore these use cases, this chapter will describe vari-
ous approaches to fuzzy string matching, as well as look at several open source imple-
mentations of these approaches. You’ll learn how to take words, short phrases, and
names and compare them to one another in such a way as to identify other words and
phrases that are close matches and rank the closeness of those matches. We’ll also
look at how to apply these techniques to specific applications and leverage Solr and

Figure 4.1 Example of a Did You Mean suggestion from Google search. Image captured 2/1/2009.

86 CHAPTER 4 Fuzzy string matching
relatively small amounts of custom Java code to build these applications. Finally, we’ll
combine some of the techniques you’ve learned to build some common fuzzy string
matching applications.

4.1 Approaches to fuzzy string matching
How strings are compared is something that, as programmers, you rarely have to think
about. Most programming languages provide a means to compare strings for you.
Even when you do consider this question, it’s relatively straightforward to imagine an
implementation of a string comparison function that considers each letter of the two
strings and returns true only if each letter matches.

 Fuzzy string matching immediately opens up a number of questions for which the
answers aren’t so clear. For instance:

 How many characters need to match?
 What if the letters are the same but not in the same order?
 What if there are extra letters?
 Are some letters more important than others?

Different approaches to fuzzy matching answer these questions differently. Some
approaches focus on character overlap as their primary means of looking at string sim-
ilarity. Other approaches model the order in which the characters occur more
directly, whereas still others look at multiple letters simultaneously. We’ll break these
approaches down into three sections. In the first, titled “Character overlap measures,”
we’ll look at the Jaccard measure and some of its variations, as well as the Jaro-Winkler
distance as a way of addressing the character overlap approaches. Our next section,
titled “Edit distance measures,” will look at the character order approach and some of
its variations. Finally, we’ll consider the simultaneous approach in the section titled
“N-gram edit distance.”

 Before we begin to consider these differences, you must first come to terms with
the notion that, unlike in regular string matching, the output of a fuzzy matching
algorithm is almost never a Boolean value. Instead, these algorithms return a value
representing the degree to which strings match. A typical convention is to return a
real-valued number between 0 and 1, where 1 means the strings match exactly and
would be equal in traditional string matching, and numbers less than 1 indicate the
level of fuzzy matching. Let’s now consider how you might compute such values, first
by looking at the character overlap approach mentioned earlier.

4.1.1 Character overlap measures

One way to look at fuzzy string matching is in terms of character overlap. Intuitively,
strings that share many of the same characters are more similar to one another than
strings that share few or no characters. In this section we’ll look at two approaches
that rely primarily on character overlap. The first is the Jaccard measure. We’ll look at
it and some of its variations and then examine the Jaro-Winkler distance.

87Approaches to fuzzy string matching
JACCARD MEASURE

The Jaccard measure, or similarity coefficient, is one approach to capturing the intuition
that strings which share more of the same characters are more similar. In the context
of string comparisons, it’s computed as the percentage of unique characters that two
strings share when compared to the total number of unique characters in both strings.
More formally, where A is the set of characters in the first string, and B is the set of
characters in the second string, this can be expressed as follows:

The Jaccard measure treats all letters equally; it doesn’t discount letters that may over-
lap because they’re common or promote uncommon letters that match. The code to
calculate the Jaccard measure is shown next.

public float jaccard(char[] s, char[] t) {
int intersection = 0;
int union = s.length+t.length;
boolean[] sdup = new boolean[s.length];
union -= findDuplicates(s,sdup);
boolean[] tdup = new boolean[t.length];
union -= findDuplicates(t,tdup);
for (int si=0;si<s.length;si++) {

if (!sdup[si]) {
for (int ti=0;ti<t.length;ti++) {

if (!tdup[ti]) {
if (s[si] == t[ti]) {

intersection++;
break;

}
}

}
}

}
union-=intersection;
return (float) intersection/union;

}

private int findDuplicates(char[] s, boolean[] sdup) {
int ndup =0;
for (int si=0;si<s.length;si++) {

if (sdup[si]) {
ndup++;

}
else {

for (int si2=si+1;si2<s.length;si2++) {
if (!sdup[si2]) {

sdup[si2] = s[si] == s[si2];
}

}

Listing 4.1 Computing the Jaccard measure

A B∩
A B∪

Find duplicates and
subtract from union.

Skip duplicates.

Find intersection.

Return
Jaccard
distance.

88 CHAPTER 4 Fuzzy string matching
}
}
return ndup;

}

In the implementation code in listing 4.1, you first calculate the union part (the
denominator) of the equation by subtracting the number of duplicate characters in
the two strings from a counter keeping track of the union count. Next, you calculate
the number of items in common between the two (the numerator). Finally, you finish
it off by returning the score.

 A common extension to the Jaccard measure is to weight characters based on fre-
quency, such as the TF-IDF measure you saw in chapter 3. Using this weighting
approach, the cosine similarity measure is a natural choice for computing the similar-
ity between two strings due to its similarity to search, but it returns a value in the range
of -1 to 1. To normalize this measure to return between 0 and 1, you can modify the
measure slightly as shown here:

The resulting measure, known as the Tanimoto coefficient, is identical to the Jaccard
coefficient when every character is weighted identically.

 Since Solr uses cosine-based scoring for its retrieval, which provides similar scoring
results as Tanimoto, the easiest way to implement this type of scoring is to index your
dictionary or other set of terms, treating each term as a document and each character
as its own token in Solr. This can be done by specifying a pattern tokenizer as follows:

<fieldType name="characterDelimited" class="solr.TextField">
<analyzer>
<tokenizer class="solr.PatternTokenizerFactory" pattern="."

group="0" />
</analyzer>

</fieldType>

You can then query this field with a term and Solr will provide a cosine-based ranking
of terms based on the frequency of characters in the dictionary words. If you want to
try a quick version of indexing terms this way, see com.tamingtext.fuzzy.Overlap-
Measures and its cosine method. In practice, this will produce reasonable results, but
it may be difficult to choose between results with similar scores. This approach also
disregards character position in scoring, which can help you better choose sugges-
tions. To address this concern, let’s look at a different measure that can account for
position.

JARO-WINKLER DISTANCE

One disadvantage of character overlap approaches is that they don’t model character
order. For example, in the previous measures we’ve discussed, a character in the
beginning of a string can match a character at the end of a string and this match isn’t

A B⋅
A 2 B 2 A B⋅–+

--

89Approaches to fuzzy string matching
treated differently from a match in a similar area of the string. The extreme version of
this scenario is that if a word is reversed, its score is identical to a string that matches
exactly. The Jaro-Winkler distance tries to heuristically address this in three distinct
ways. The first is that it limits matching to a window of characters in the second string
based on the length of the larger of the strings. The second is that it also factors in the
number of transpositions or matching letters that don’t occur in the same order.
Finally, it adds a bonus based on the length of the largest common prefix of both
words. Many discussions of this approach are available on the internet which may be
of interest, and for those interested in using this distance measure, an efficient imple-
mentation is built into Lucene in the org.apache.lucene.search.spell.Jaro-
WinklerDistance class.

 The primary disadvantage of character overlap approaches is that they don’t
model character order well. In the next section, we’ll look at an approach known as
edit distance that models character order more formally. Modeling character order typ-
ically comes at a higher computational cost than measures that only use character
overlap. We’ll also look at ways to efficiently compute these measures.

4.1.2 Edit distance measures

Another approach to determining how similar one string is to another is by edit dis-
tance. The edit distance between two strings is the number of edit operations required
to turn one string into the other string. Edit distances comes in a variety of forms, but
typically include insertion, deletion, and substitution operations:

 An insertion adds a character to the source string to make it more similar to the
target string.

 A deletion removes a character.
 A substitution replaces one character in the source string with another from the

target string.

The edit distance is the sum of the number of insertions, deletions, and substitutions
required to transform one string into another. For example, to turn the string tamming
test into taming text would require one deletion of an m and one substitution of an s
with an x, resulting in an edit distance of 2. This simple form of edit distance where
the edit operations of insertions, deletions, and substitutions are allowed and each
given an equal weight of 1 is known as the Levenshtein distance.

COMPUTING EDIT DISTANCE

Though there are multiple sequences of operations that will transform one string into
another, you typically want the edit distance for two strings with the minimal number
of operations to do so. Computing the minimum sequence of operations needed to
transform one string into another may initially appear to be computationally expen-
sive, but it can be done by performing n x m comparisons where n is the length of one
of the strings and m is the length of the other. The algorithm to perform this task is a
classic example of dynamic programming where the problem is decomposed into

90 CHAPTER 4 Fuzzy string matching
determining the optimal edit action given two offsets into each of the strings being
compared. The code in listing 4.2 is the reduction of this process to Java. Note that
we’ve chosen to show the straightforward approach to implementing Levenshtein dis-
tance; there are more efficient implementations that use less memory. We’ll leave it as
an exercise for the reader to explore this more.

public int levenshteinDistance(char s[], char t[]) {
int m = s.length;
int n = t.length;
int d[][] = new int[m+1][n+1];

for (int i=0;i<=m;i++)
d[i][0] = i;

for (int j=0;j<=n;j++)
d[0][j] = j;

for (int j=1;j<=n;j++) {
for (int i=1;i<=m;i++) {

if (s[i-1] == t[j-1]) {
d[i][j] = d[i-1][j-1];

} else {
d[i][j] = Math.min(Math.min(

d[i-1][j] + 1,
d[i][j-1] + 1),
d[i-1][j-1] + 1);

}
}

}
return d[m][n];

}

Table 4.1 shows what this distance matrix looks like for our two sample strings: taming
text and tamming test. Each cell contains the minimum cost of editing one string to
arrive at the other string. For instance, you can see the cost of the deletion of the m in
row 3 column 4, and the cost of the substitution in row 10 column 11. The minimal
edit distance is always found in the lower-right corner of the distance matrix.

Listing 4.2 Computing edit distance

Table 4.1 Matrix for computing edit distance

t a m m i n g t e s t

0 1 2 3 4 5 6 7 8 9 10 11 12

t 1 0 1 2 3 4 5 6 7 7 8 9 10

a 2 1 0 1 2 3 4 5 6 7 8 9 10

m 3 2 1 0 1 2 3 4 5 6 7 8 9

i 4 3 2 1 1 1 2 3 4 5 6 7 8

n 5 4 3 2 2 2 1 2 3 4 5 6 7

g 6 5 4 3 3 3 2 1 2 3 4 5 6

7 6 5 4 4 4 3 2 1 2 3 4 5

Allocate
distance
matrix.

Initialize
upper bound
on distance.

Cost is same
as previous
match.

Cost is 1 for an
insertion, deletion,
or substitution.

91Approaches to fuzzy string matching
Now that you can compute the edit distance, we’ll look at how to use it.

NORMALIZING EDIT DISTANCE

In most applications using edit distance, you’ll want to set a threshold for edit distances
to exclude corrections that are too different or, said another way, involve too many
edits. In performing this calculation you quickly run into the following issue. Intuitively,
an edit distance of 2 for a string of length 4 is a much larger edit than the same edit dis-
tance for a string of length 10. Additionally, you need to rank many possible corrections
to a string based on edit distance. Keep in mind these correction strings may be of dif-
ferent lengths. In order to compare the edit distances with strings of multiple sizes, it’s
helpful to normalize the edit distance based on the size of the strings.

 To normalize this distance into a number between 0 and 1, you subtract it from
the length of the larger of the two strings and divide by the same length. In the pre-
ceding case this would be the length of tamming test, 12 minus 2, divided by 12, or
0.833. If you’re correcting a short string such as editing tammin to produce taming,
the result is 6 minus 2, divided by 6, or 0.666. This normalization helps capture the
intuition that the two edits in the second example constitute a bigger change than
the two edits in the first example. This process also makes it easier to assign thresh-
olds for these distances, because edit distances can be compared across strings of
many different lengths.

WEIGHTING EDITS

For different applications, the edit operations used to determine the edit distance can
be weighted. In such cases the edit distance is the sum of the weights for each opera-
tion used in the transformation of one string into another. As you saw previously with
Levenshtein distance, the simplest weighting assigns each of these operations a weight
of one. Using different weights for different operations can be useful in cases where
different types of operations aren’t equally likely. For example, in spelling correction,
the replacement of one vowel with another may be more likely than the replacement
of a consonant with another. Weighting different operations or different operations
based on their operands can help better capture these distinctions.

 A common variation on Levenshtein distance is Damerau-Levenshtein distance. This
measure allows the additional operation of transpositions of adjacent letters. This can
be thought of as an alternative weighting scheme where transpositions of adjacent let-
ters are given a weight of one instead of the standard weighting of two edits for the
corresponding deletion and insertion operation that would be required without this
operation.

t 8 6 6 5 5 5 4 3 2 1 2 3 4

e 9 7 7 6 6 6 5 4 3 2 1 2 3

x 10 8 8 7 7 7 6 5 4 3 2 2 3

t 11 8 9 8 8 8 7 6 5 3 3 3 2

Table 4.1 Matrix for computing edit distance (continued)

t a m m i n g t e s t

92 CHAPTER 4 Fuzzy string matching
 Many discussions of Levenshtein distance are available on the internet, including
more formal analysis of the algorithm presented and proofs of its correctness. For
those interested in using this distance measure, there’s also an optimized implementa-
tion built into Lucene in the org.apache.lucene.search.spell.Levenshtein-
Distance class. This version of the code only allocates two rows of the distance matrix,
noting that only the previous row is needed in the computation of the subsequent
row. It also performs length normalization as described previously.

4.1.3 N-gram edit distance

In the variations of edit distance we’ve looked at so far, the operations have only
involved single characters. One way to extend the notion of edit distance is to allow it
to capture multiple characters at a time, or what’s known as n-gram edit distance.
N-gram edit distance takes the idea of Levenshtein distance and treats each n-gram
as a character. Looking at the example we considered before using n-grams of size 2
(bigrams), the distance matrix is computed in table 4.2.

The impact of this n-gram approach is that insertions and deletions which don’t
involve double letters are more heavily penalized using n-gram methods than uni-
gram methods, whereas substitutions are equally penalized.

ENHANCEMENTS TO N-GRAM EDIT DISTANCE

Several enhancements are typically applied to the n-gram approach. The first is the
result of noticing that the initial character only participates in a single n-gram,
whereas intermediate characters often participate in all n-grams. In many applica-
tions, these initial characters are more important to match than intermediate charac-
ters. An approach to take advantage of this is called affixing. Affixing involves
prepending n-1 characters (for whatever value of n is being used) to the beginning of

Table 4.2 Matrix for computing n-gram edit distance

ta am mm mi in ng g_ _t te es st

0 1 2 3 4 5 6 7 8 9 10 11

ta 1 0 1 2 3 4 5 6 7 8 9 9

am 2 1 0 1 2 3 4 5 6 7 8 9

mi 3 2 1 1 1 2 3 4 5 6 7 8

in 4 3 2 2 2 1 2 3 4 5 6 7

ng 5 4 3 3 3 2 1 2 3 4 5 6

g_ 6 5 4 4 4 3 2 1 2 3 4 5

_t 7 6 5 5 5 4 3 2 1 2 3 4

te 8 7 6 6 6 5 4 3 2 1 2 3

ex 9 8 7 7 7 6 5 4 3 2 2 2

xt 10 9 8 8 8 7 6 5 4 3 2 3

93Approaches to fuzzy string matching
the string. The result is that the first character participates in the same number of
n -grams as an intermediate character. Also, words that don’t begin with the same n -1
characters receive a penalty for not matching the prefix. The same process could also
be applied to the end of the string, in cases where matching the end of the string is
deemed important.

 A second enhancement is to allow some level of partial credit for n-grams that
share common characters. You could use the Levenshtein distance to determine the
edit distance between two n -grams and normalize this by dividing by the size of the
n -gram so that the partial credit remains in the range between 0 and 1. A simple posi-
tional matching approach will also work well instead of the Levenshtein distance. In
this approach, you count the number of characters that match in value and position
for the two n-grams. This is faster to compute for n-grams larger than 2. In the bigram
case, it’s equivalent to the Levenshtein distance. In table 4.3, we present a distance
matrix that includes affixing and partial credit for partial matches.

Lucene contains an implementation of the n-gram edit distance that uses affixing and
length normalization. The implementation is in the org.apache.lucene.search
.spell.NgramDistance class.

 In this section, we examined various approaches to determine how similar two
strings are to one another based on the distance measure between two strings. We
examined string overlap measures such as the Jaccard measure and extensions to it
using frequency as a means to weight letters. We also discussed the Jaro-Winkler mea-
sure, which uses overlap measures in a moving window across the string. We then con-
sidered edit distance and looked at a simple form of this measure, Levenshtein
distance. We discussed enhancements such as length normalization and customizing
the weighting for different edit operations, and finally extended this measure to look

Table 4.3 Matrix for computing n-gram edit distance with enhancements

0t ta am mm mi in ng g_ _t te es st

 0 1 2 3 4 5 6 7 8 9 10 11 12

0t 1 0 1 2 3 4 5 6 7 8 9 10 11

ta 2 1 0 1 2 4 5 6 7 8 8.5 9.5 10.5

am 3 2 1 0 1.5 3 4 5 6 7 8 9 10

mi 4 3 2 1 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8

in 5 4 3 2 1.5 1.5 1.5 2.5 3.5 4.5 5.5 6.5 7

ng 6 5 4 3 2.5 2.5 2.5 1.5 2.5 3.5 4.5 5.5 6

g_ 7 6 5 4 3.5 3.5 3.5 2.5 1.5 2.5 3.5 4.5 5

_t 8 6.5 6 5 4.5 4.5 4.5 3.5 2.5 1.5 2.5 3.5 4

te 9 7.5 6.5 6 5.5 5.5 5.5 4.5 3.5 2.5 1.5 2.5 3

ex 10 8.5 7.5 7 6.5 6.5 6.5 5.5 4.5 3.5 2.5 2 3

xt 11 9.0 8.5 8 7.5 7.5 7.5 6.5 5.5 4.5 3.5 3 2.5

94 CHAPTER 4 Fuzzy string matching
at multiple letters. Up until now we’ve assumed you have the two strings you want to
compare and have focused on how to perform the comparison. In the next section,
we’ll look at how to find good candidate string matches for a given input string with-
out having to compare the input string against all possible candidates.

4.2 Finding fuzzy string matches
Being able to compute some measure of similarity between two strings is useful, but
only if you already have both strings. In many applications that use string matching,
you only have one of the strings that you’d like to use as input for one of the string
similarity functions outlined in the previous section. For example, in spelling correc-
tion you typically have a word that isn’t found in a dictionary and that you suspect is
misspelled. If you had a list of suggestions, you could use one of the previous func-
tions to rank that list, and present the user with some of the top-ranked alternatives.
Theoretically, you could compute the similarity between the word for which you’d like
to generate a suggestion and all the words in the dictionary. Unfortunately, this is
computationally expensive (also known as slow) and most of the strings you’re com-
paring have low similarity and few characters in common. In practice, you need a fast
way to determine a small list of likely candidates on which you can perform one of the
more computationally expensive comparisons. In this section we’ll describe two
approaches to determine such a list—prefix matching and n-gram matching—as well
as efficient implementations for them.

4.2.1 Using prefixes for matching with Solr

One approach to quickly determining a set of strings that are similar to another string
is prefix matching. Prefix matching returns the set of strings that share a common prefix
with the string you’re looking for. For example, if you want to correct the word tam-
ming, then considering words with the prefix tam reduces a dictionary of about
100,000 words to about 35 entries which are all forms of the following seven words:
tam, tamale, tamarind, tambourine, tame, tamp, tampon. From a computational per-
spective, this is a significant reduction, and since the strings share a common prefix,
you’re guaranteed that they’ll have this much in common.

 One way to perform prefix matching is with Solr. When documents are being put
into a Solr index, you can compute all the prefixes of a given length and store these as
terms which Solr will match against. At query time, the same operation can
be performed on the query and a list of terms that contain some level of prefix match-
ing will be returned. Since this is a fairly common task, Solr includes an implementa-
tion called the EdgeNGramTokenFilter (the full class name is org.apache.lucene
.analysis.ngram.EdgeNGramTokenFilter). The result is that when a term such as
taming is indexed, the terms ta, tam, tami, and tamin are indexed as well. As you saw in
chapter 3, this can be done by specifying the field type that’s applied to document
fields at index and query time in the schema.xml file. This can be seen in the follow-
ing listing.

95Finding fuzzy string matches

<fieldtype name="qprefix" stored="false" indexed="true"
class="solr.TextField">

<analyzer>
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EdgeNGramFilterFactory"

side="front" minGramSize="2" maxGramSize="3"/>
</analyzer>

</fieldtype>

In the example, we use Solr’s built-in EdgeNGramFilterFactory class in combination
with a whitespace tokenizer and a lowercase token filter to produce the prefixes.

 This filter is used at both indexing and query time. At query time it generates the
prefixes that match against the ones generated at index time. One of the common use
cases for this functionality is in implementing query type-ahead, also known as auto-
suggest. Prefix matching is useful in this case because it has well-understood semantics
and a user presented with a list of words that match the prefix of the query they’re typ-
ing understands why these items are in the list, and how typing another character will
change the list’s contents. We’ll explore type-ahead matching later in this chapter, and
in the next section we’ll consider data structures for storing prefixes efficiently in
memory, which may be required by some applications.

4.2.2 Using a trie for prefix matching

Though Solr can be leveraged to perform prefix matching, in some cases it may not
be practical to make a connection to a Solr instance for every prefix you want to look
up. In such cases it’s desirable to be able to perform prefix queries on an in-memory
data structure. A data structure well suited for this task is a trie (pronounced “tree” by
some, “try” by others).

WHAT’S A TRIE?
A trie, or prefix tree, is a data structure that stores strings by decomposing them into
characters. The characters form a path through a tree until such time as a child node
of the tree represents a string uniquely or all characters of the string have been used.
In the trie in figure 4.2, you can see that most words are represented by nodes which
represent only a fraction of their characters because they’re the sole word in the trie
with a specific prefix. But the word tamp is a prefix to another word in the trie, tampon,
and as such contains a node in the trie for each character.

IMPLEMENTING A TRIE

A simple implementation of a trie is much like implementing any tree structure. In a
trie, the number of children for each node is typically equal to the size of the alphabet
being represented by the trie. In the next listing, you can see an implementation for
strings consisting solely of the lowercase letters, a-z.

Listing 4.3 Specifying a field type for prefix matching in Solr

96 CHAPTER 4 Fuzzy string matching

private boolean isWord;
private TrieNode[] children;
private String suffix;

public TrieNode(boolean word, String suffix) {
this.isWord = word;
if (suffix == null) children = new TrieNode[26];
this.suffix = suffix;

}

The trie needs to support adding and retrieving words based on a common prefix.
Since a trie is a tree structure, it’s common to use a recursive approach of removing
the first character, and then descending the structure using the remaining characters.
For performance reasons, the splitting of the string isn’t explicitly performed, and
instead the split point is represented as an integer. Though there are several cases to
consider, the recursive nature of the code makes it relatively short; see the following
listing.

Listing 4.4 Constructing the node of a trie

text

tam-
arind

tam-
bour-

ine
tam-
ing tamp

tamp-
on

a b l p

o

m

t

a e

Figure 4.2 A trie for the words
tamarind, tambourine, taming, tamp,
tampon, and text

Does this prefix make a word?

Rest of word if prefix is unique.

Initialize children
for each letter.

97Finding fuzzy string matches

s

public boolean addWord(String word) {
return addWord(word.toLowerCase(),0);

}

private boolean addWord(String word, int index) {
if (index == word.length()) {

if (isWord) {
return false;

}
else {

isWord = true;
return true;

}
}
if (suffix != null) {

if (suffix.equals(word.substring(index))) {
return false;

}
String tmp = suffix;
this.suffix = null;
children = new TrieNode[26];
addWord(tmp,0);

}
int ci = word.charAt(index)-(int)'a';
TrieNode child = children[ci];
if (child == null) {

if (word.length() == index -1) {
children[ci] = new TrieNode(true,null);

}
else {

children[ci] = new TrieNode(false,word.substring(index+1));
}
return true;

}
return child.addWord(word, index+1);

}

Retrieving words is done by traversing the tree structure to the node that represents
the prefix being queried. This is done by looking at each character of the prefix and
then accessing the child node for the character. When the prefix node has been
found, a depth-first search is performed to collect all words with the common prefix.
In cases where the prefix node doesn’t exist, at most one word will be returned
depending on whether the word represented by that node matches the prefix being
queried. An implementation of this approach is shown next.

public String[] getWords(String prefix, int numWords) {
List<String> words = new ArrayList<String>(numWords);
TrieNode prefixRoot = this;
for (int i=0;i<prefix.length();i++) {

Listing 4.5 Adding words to a trie

Listing 4.6 Retrieving words from a trie

Check if end
of word.

Existing word; return false.

Mark prefix
as word.

Check if this node
has a suffix.

Existing word;
return false.

Split up suffix.

Prefix creates
new word.

Prefix and
uffix create
new word.

Recurse
on next
character.

Traverse tree
until prefix is
consumed.

98 CHAPTER 4 Fuzzy string matching
if (prefixRoot.suffix == null) {
int ci = prefix.charAt(i)-(int)'a';
prefixRoot = prefixRoot.children[ci];
if (prefixRoot == null) {

break;
}

}
else {

if (prefixRoot.suffix.startsWith(prefix.substring(i))) {
words.add(prefix.substring(0,i)+prefixRoot.suffix);

}
prefixRoot = null;
break;

}
}
if (prefixRoot != null) {

prefixRoot.collectWords(words,numWords,prefix);
}
return words.toArray(new String[words.size()]);

}

private void collectWords(List<String> words,
int numWords, String prefix) {

if (this.isWord()) {
words.add(prefix);
if (words.size() == numWords) return;

}
if (suffix != null) {

words.add(prefix+suffix);
return;

}
for (int ci=0;ci<children.length;ci++) {

String nextPrefix = prefix+(char) (ci+(int)'a');
if (children[ci] != null) {

children[ci].collectWords(words, numWords, nextPrefix);
if (words.size() == numWords) return;

}
}

}

This implementation of a trie is efficient for adding and retrieving words, but its rep-
resentation requires that an array the size of the alphabet be used. This array is con-
structed for each node that doesn’t contain a suffix. Though this makes the lookup of
characters efficient, often only a small fraction of the possible next letters actually
occur. Other implementations of tries, such as the double-array trie, reduce the mem-
ory required for storing transitions but incur addition costs during an insertion. Many
of the uses of tries such as dictionary lookup are computed on relatively static content,
making this approach beneficial since the additional work required to add words is a
one-time cost. A discussion of this approach can be found in “An efficient digital
search algorithm by using a double-array structure” (Aoe 1989).

Handle case where
prefix hasn’t been split.

Collect all words
that are children
of prefix node.

99Finding fuzzy string matches
TRIES IN SOLR

Solr 3.4 supports a trie-inspired implementation of numeric fields that greatly
improves the performance of range queries on these fields. This can be used by speci-
fying that the field type be implemented as a trie field as shown in the following listing.

<fieldType name="tint" class="solr.TrieField" type="integer"
omitNorms="true" positionIncrementGap="0" indexed="true"

stored="false" />

Unlike the trie implementation shown previously, the Solr version is implemented in a
fashion similar to the prefix token approach taken earlier. Though trie fields are used
for numeric types in Solr, to understand how this works, let’s consider an example
using strings first. If you wanted to perform a range query on spanning the string tami
to the string tamp, you could use their common prefix, tam, to limit your search, and
then check each returned document field for inclusion in the range. As you saw in the
case of prefixes, this significantly reduces the number of documents you need to con-
sider as potential matches for a range query. You could further refine your search by
introducing the notion of an increment to your prefixes such as tamj, tamk, taml…
tamp and then search for documents matching these prefixes. Note that any docu-
ment matching one of the incremented prefixes before tamp will only include docu-
ments that match the range query.

 To determine which documents match, you’d only have to consider documents
that match the edge prefixes and compare those against the actual range terms. The
size of the increment relative to the number of documents which match that prefix
determines how many comparisons are needed to compute which documents match
the range query. Here we’re using an increment of one character applied to the four
characters of the string, but a variety of other increments are possible. You can imag-
ing searching an integer range such as [314 TO 345] by searching for numbers with
the prefixes 31, 32, 33, and 34. The solr.TrieField uses a similar approach to com-
pute numerical ranges for integers and floats using binary representations as opposed
to base-10 representations in this example.

 In this section we looked at trie representations which are an efficient way to insert
and retrieve prefixes. We’ve provided a simple implementation and discussed how
Solr uses similar approaches to improve performance for range queries. In the next
section we’ll move beyond prefix matching and look at more robust matching
approaches that incorporate characters beyond the beginning of a word.

4.2.3 Using n-grams for matching

Though prefix matching is powerful, it does have limitations. One of these limitations
is that any similar term suggested using prefix matching must contain some common
prefix. For a word or term where the initial character is incorrect, prefix matching will
never be able to make a suggestion with this type of correction. Though such cases

Listing 4.7 Using the Solr TrieField type

100 CHAPTER 4 Fuzzy string matching
may be rare, they’re not unheard of. Let’s look at another technique that’s more
robust in these cases.

 You saw in the previous section that prefixes can be used to limit the set of strings
considered for matching against a string that has been provided by a user. You also saw
how a larger prefix provides a greater reduction in the number of suggestions that
need to be considered, but that a larger prefix also increases the risk that the best
term to suggest will be excluded because a correction is required in a character con-
tained in the prefix. An extension of the idea of using prefixes is suggested when you
consider that a prefix of size n is the first n-gram of a string. By also considering the
second, third, and remaining n-grams, you can generalize the notion of prefixes to
apply to all positions in a string.

 N-gram matching works by limiting potential matches to those that share one or
more n-grams with a query string. Using our previous example, tamming, you could
consider strings that contain the prefix tam as well as all the other trigrams for this
word: amm, mmi, min, ing. Applied to our 100,000-word dictionary, only about a tenth
of the words match one of these trigrams. Though this is as significant a reduction as
the prefix alone, you’re now able to deal with a larger range of possible errors in your
original text, including the initial character being incorrect. The n-gram approach
also provides a straightforward means of ranking your various matches, as some words
match multiple n-grams, and more matches typically means a better suggestion. In the
preceding cases, 19 words match 4 of the 5 n-grams and 74 words (including the 19)
match 3 of the 4 n-grams. By ranking the n-gram matches, you can consider the
approach of only considering a fixed number of suggestions with reasonable certainty
that the word with the lowest edit distance will be among the top-ranked matches.

N-GRAM MATCHING IN SOLR

As with prefix matching, Solr comes with n-gram analysis capabilities by way of the
org.apache.lucene.analysis.ngram.NGramTokenFilter and the associated factory
class, org.apache.solr.analysis.NGramFilterFactory.

 The piece of information that n-gram matching doesn’t capture is positional infor-
mation. No distinction is given to an n-gram that’s found at the beginning of a string
but matches at the end of another string. One way to overcome this limitation is to use
string affixing to capture this positional information at the beginning or end of
strings. You saw this technique used previously in section 4.1.3.

 In this section, we’ve covered techniques for quickly finding fuzzy string matches.
Combining these tools with the previous techniques for computing edit distances
allows you to find and rank fuzzy string matches. We can now look at how these tools
can be combined to build applications that use them. In the next section, we’ll
explore three such applications that use these techniques.

4.3 Building fuzzy string matching applications
Building on the tools we’ve described so far, this section will look at three uses of fuzzy
string matching in real applications. Specifically, we’ll explore type-ahead functionality

101Building fuzzy string matching applications
in search, query spell-checking, and record matching. Type-ahead functionality, which is
also often called auto-complete or auto-suggest, provides users examples of terms that
occur in the index so as to save keystrokes by selecting the word instead of finishing
typing. It also has the benefit that the user knows the word is spelled correctly, thus
resulting in a better search experience. Spell-checking the query, often shown on a site
like Google via the Did You Mean section of the page, is a simple way to guide users to
an alternate spelling of a word that should produce better results. Note, we say alter-
nate, as it doesn’t necessarily have to be a correctly spelled word. In some cases, the
majority of occurrences in the index are spelled incorrectly (for instance, in online
forums) and would thus yield better results to a user by showing the incorrectly spelled
word. Finally, record matching, sometimes called record linkage or entity resolution, is the
process of determining when two distinct records actually are the same thing. For
instance, when merging two user databases, record matching tries to determine
whether the Bob Smith in one record is the same Bob Smith in another record. We’ll
focus on these three examples since they’re common usages of fuzzy string matching
in many of today’s text-based applications.

4.3.1 Adding type-ahead to search

A common feature of many applications is automatic completion of text entry. For
instance, many integrated development environments (IDEs) will auto-complete vari-
able names for you as you use them while programming. In search applications, type-
ahead is often used as the user begins entering their query in the search box, and
likely completions of it are suggested as the user types. Though this feature saves the
user time from typing in the entire query, it also guides the refinement of the search
process by only suggesting queries that will match some document in the search
index. Type-ahead allows the user to quickly refine their search to a phrase that will
provide good results on the index being searched and improves a user’s overall expe-
rience. Providing suggestions based on what the user is typing can be thought of as a
prefix query. Specifically, you want to return results that have the same prefix as the
query that the user is typing. As with our previous example, you can use Solr to return
the results of such queries.

INDEXING PREFIXES IN SOLR

The first step is to allow Solr to create prefix queries. For partial queries that are
incomplete, you can once again use the EdgeNGramFilterFactory to compute pre-
fixes and add them to the set of tokens generated. A field type using it can be speci-
fied in your schema.xml file similar to before and then assigned to a field to store
prefixes, as in listing 4.8. Note that in this case, you have a maximum n-gram size to
account for more variations as the user types. This will increase the size of the underly-
ing data structures, but they’ll still be manageable.

102 CHAPTER 4 Fuzzy string matching

<fieldtype name="prefix" stored="false" indexed="true"
class="solr.TextField">

<analyzer type="index">
<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.EdgeNGramFilterFactory"
minGramSize="2" maxGramSize="10"/>

</analyzer>
<analyzer type="query">

<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>

</analyzer>
</fieldtype>

This field type handles multiword queries and allows matches to begin at word bound-
aries. Note that the EdgeNGramFilterFactory need not be applied to the query as it’s
already a prefix. In order to apply this field type, you need to specify a field that uses
this type and index documents which populate that field. For this example, let’s
assume you’re indexing dictionary entries in the field word. You’d then add a new
field using this field type in your schema.xml file, as in the following example:

<fields>
<!-- other fields -->
<field name="wordPrefix" type="prefix" />

</fields>
<!-- other schema attributes -->
<copyField source="word" dest="wordPrefix"/>

Documents with a word field will now have their prefixes stored in the wordPrefix
field during indexing. With these prefixes indexed, you can now turn to querying
these prefixes.

RETRIEVING PREFIX MATCHES FROM SOLR

Using this field and field type, you can now query with prefixes from Solr and return a
list of words. This can be done with the following query:

http://localhost:8983/solr/select?q=wordPrefix:tam&fl=word

In order to have this work from a search input field from a browser, you’d also need to
write JavaScript to perform the queries as the user typed and display the top-ranked
results. The JavaScript for this involves handling keypress events typed in the search
field, periodically sending requests to a server that responds with a list of query expan-
sions, and displaying those results. Fortunately, this is a common enough activity that
there are many JavaScript libraries which will perform these actions for you. One of the
more popular of these libraries is script.aculo.us. (JQuery also has support for this
functionality.) It requires that you be able to specify the prefix query and return the
query expansions as an unordered HTML list. Though you could easily write a servlet to
interact with Solr and format the result appropriately, we can use this as an opportunity
to demonstrate Solr’s ability to customize the request format and response output.

Listing 4.8 Specifying a field type for type-ahead matching in Solr

Specify analyzers
for indexing.

Use edge-bounded
n-grams (prefixes).

Remove edge
n-gram filter;
queries are
already prefixes.

103Building fuzzy string matching applications
 Customizing the response format requires writing a QueryResponseWriter as well
as specifying that it should be used to render the response to type-ahead queries. Writ-
ing a custom response writer is straightforward and several are included with Solr on
which to model your code. For our simple case the code is shown next.

public class TypeAheadResponseWriter implements QueryResponseWriter {

private Set<String> fields;

@Override
public String getContentType(SolrQueryRequest req,

SolrQueryResponse solrQueryResponse) {
return "text/html;charset=UTF-8";

}

public void init(NamedList n) {
fields = new HashSet<String>();
fields.add("word");

}

@Override
public void write(Writer w, SolrQueryRequest req,

SolrQueryResponse rsp) throws IOException {
SolrIndexSearcher searcher = req.getSearcher();
NamedList nl = rsp.getValues();
int sz = nl.size();
for (int li = 0; li < sz; li++) {

Object val = nl.getVal(li);
if (val instanceof DocList) {

DocList dl = (DocList) val;
DocIterator iterator = dl.iterator();
w.append("n");
while (iterator.hasNext()) {

int id = iterator.nextDoc();
Document doc = searcher.doc(id, fields);
String name = doc.get("word");
w.append("" + name + "n");

}
w.append("n");

}
}

}
}

A JAR containing this class would need to be placed in Solr’s library directory, typically
solr/lib, so that Solr could resolve this class. You also need to tell Solr about your
response writer and create an endpoint that will use it by default. This is done in the
solrconfig.xml file, as shown next.

Listing 4.9 A Solr response writer for formatting type-ahead results

Specify field
displayed by
response writer.

Find
document
list.

Retrieve
document with
specified field.

104 CHAPTER 4 Fuzzy string matching

<queryResponseWriter name="tah"

class="com.tamingtext.fuzzy.TypeAheadResponseWriter"/>
<requestHandler name="/type-

ahead" class="solr.SearchHandler">
<lst name="defaults">

<str name="wt">tah</str>

<str name="defType">dismax</str>
<str name="qf"> wordPrefix^1.0 </str>

</lst>
</requestHandler>

This new request handler will allow you to query for prefixes and format them appro-
priately for script.aculo.us. Specifically, you can now use the following Solr query and
no longer need to specify the response type or search field as query parameters.

http://localhost:8983/solr/type-ahead?q=tam

DYNAMICALLY POPULATING THE SEARCH BOX

Now you can build a type-ahead search box, as shown next.

<html>
<head>

<script src="./prototype.js" type="text/javascript">
</script>
<script src="./scriptaculous.js?load=effects,controls"

type="text/javascript">
</script>

<link rel="stylesheet" type="text/css"
href="autocomplete.css" />

</head>
<body>

<input type="text" id="search"

name="autocomplete_parameter"/>
<div id="update" class="autocomplete"/>

<script type="text/javascript">
new Ajax.Autocompleter('search','update',

'/solr/type-ahead',
{paramName: "q",method:"get"});

</script>
</body>

</html>

Listing 4.10 Specifying the response writer and request handler in Solr

Listing 4.11 A Solr URL for accessing a prefix using a query response handler

Listing 4.12 HTML and JavaScript for performing search type-ahead

Specify custom
response writer.

Specify request handler as URL path.

Specify default response writer.

Specify search field.

Import script.aculo.us.

Specify input field.

Specify div for type-ahead result.

Create type-ahead object.

105Building fuzzy string matching applications
The results of the JavaScript rendered in a browser are
shown in figure 4.3.

 In this example, you saw how you could use prefix
matching to allow type-ahead functionality to be added to
a search application. You were able to add a field and field
type in Solr to store the prefixes and use its token filters to
generate prefixes of a particular size. The flexibility of
Solr also allowed you to customize the processing of the
request as well as the response to make integrating with
popular JavaScript libraries like script.aculo.us easy. In our
next example, we’ll continue using the fuzzy matching
tools introduced in the previous sections to build addi-
tional applications.

4.3.2 Query spell-checking for search

Adding query spell-checking, or Did You Mean, function-
ality for a website can help a user identify the difference
between a misspelled query and one that doesn’t return
any results. This can make the user’s experience of refin-
ing their query much more productive and satisfying. In
this section, we’ll look at how to rank spellings and their corrections from a probabilis-
tic perspective and then show how you can use the tools and techniques discussed ear-
lier in the chapter to implement an approximation of those probabilities. This can be
done easily using Solr, SolrJ, and libraries provided with Lucene. Though the result-
ing spell-checker may not be ready for prime time, it provides a basis on which you
can make improvements to customize it or the spell-checker provided in Lucene.
Finally, we’ll describe how to use the spelling correction component provided with
Solr and how the component architecture in Solr makes it easy to integrate a custom
spelling component.

OUTLINING YOUR APPROACH

The task of picking the best correction for a misspelled word is typically formalized as
the task of maximizing the probability of a spelling and a correction. This is based on
the product of two probabilities, p(s|w) x p(w), where s is a spelling and w is a word.
The first probability is the probability of seeing a word spelled a particular way given
the word, and the second is the probability of the word itself. Since it’s difficult to esti-
mate p(s|w) without a lot of corrected data that has been human-checked, a reason-
able approximation is to use edit distance. The normalized edit distance for a spelling
s, and a word w, can be seen as an estimate of p(s|w). The probability of the word
being suggested (p(w)) is typically easier to estimate than the probability of a particu-
lar spelling. In many cases, reasonable results can be achieved by estimating this prob-
ability crudely or ignoring it all together. This is what most spell-checkers do, opting
to let the user choose from a list. One way to explain this is that the vast majority of

Figure 4.3 Suggested
type-ahead completions for
the prefix tami

106 CHAPTER 4 Fuzzy string matching
spelling errors, 80-95%, are single-letter mistakes. Edit distance can provide a reason-
able ranking of suggestions.

 Cases where such an approach breaks down include where the spelling that needs
to be corrected is itself another word, where the number of reasonable suggestions is
very large, and when only a single suggestion can be made. In these cases, being able
to influence the rank of a suggestion based on its likelihood can greatly improve per-
formance. This can be based on query logs or the indexed text with a basic notion of
word frequency. For multiword phrases, n-gram models can be used to estimate
sequences of words, but a discussion of n-gram models is beyond the scope of this
book.

 Now that you have a theoretical basis for how to approach spelling corrections,
let’s look at how to implement spelling correction. Our fuzzy matching approach to
spelling correction is as follows:

 Construct a set of candidate corrections.
 Score each of those candidates.
 Apply a threshold for showing a suggestion.

As you saw earlier, n-gram matching is a good way to construct a set of candidate
matches. Looking at the terms that contain the most n-gram matches with the spelling
you’re trying to correct will provide a good list of candidates. You can then apply an
edit distance metric to each of these terms and rerank them based on the edit dis-
tance. Finally, you need to apply a threshold for the edit distance metric so that in
cases where there’s no appropriate suggestion, one isn’t made. The exact threshold
value used for this typically requires some experimentation.

IMPLEMENTING DID YOU MEAN WITH SOLR

You can implement the previous approach using Solr and SolrJ. You first need to
define a field type, a field, and its source of data in your schema.xml file for storing
the n-grams, as in the following example.

<fieldtype name="ngram" stored="false" indexed="true"
class="solr.TextField">

<analyzer>
<tokenizer class="solr.KeywordTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.NGramFilterFactory"

minGramSize="2" maxGramSize="10"/>
</analyzer>

</fieldtype>
<!-- other types -->
<field name="wordNGram" type="ngram" />
<!-- other fields -->
<copyField source="word" dest="wordNGram"/>

Listing 4.13 Schema changes to support n-gram matching in Solr

107Building fuzzy string matching applications
Next you need to query that field and compute the edit distance between the results
and a particular spelling, as in the following listing.

public class SpellCorrector {

private SolrServer solr;
private SolrQuery query;
private StringDistance sd;
private float threshold;

public SpellCorrector(StringDistance sd, float threshold)
throws MalformedURLException {
solr = new CommonsHttpSolrServer(

new URL("http://localhost:8983/solr"));
query = new SolrQuery();
query.setFields("word");
query.setRows(50);
this.sd = sd;
this.threshold = threshold;

}

public String topSuggestion(String spelling)
throws SolrServerException {

query.setQuery("wordNGram:"+spelling);
QueryResponse response = solr.query(query);
SolrDocumentList dl = response.getResults();
Iterator<SolrDocument> di = dl.iterator();
float maxDistance = 0;
String suggestion = null;
while (di.hasNext()) {

SolrDocument doc = di.next();
String word = (String) doc.getFieldValue("word");
float distance = sd.getDistance(word, spelling);
if (distance > maxDistance) {

maxDistance = distance;
suggestion = word;

}
}
if (maxDistance > threshold) {

return suggestion;
}
return null;

}
}

The object passed to the SpellCorrector constructor that implements the org
.apache.lucene.search.spell.StringDistance interface returns a 1 if the strings
are identical and a 0 (zero) if they’re maximally different. Several implementations of
this interface are included with Lucene, including Levenshtein distance, Jaro-Winkler
distance, and an n-gram distance implementation.

 The approach we’ve outlined so far is equivalent to ignoring (or treating as con-
stant) the word probability term of our previous model. Estimating the word probabil-
ity can be done by counting the number of times a word occurs in your document

Listing 4.14 Java code to get possible corrections from Solr and rank them

Number of
n-gram matches
to consider.

Query field that
contains n-gram.

Compute
edit
distance.

Keep best suggestion.

Check threshold;
otherwise return
no suggestion.

108 CHAPTER 4 Fuzzy string matching
collection or query logs, divided by the number of words. This term can then be used
in ranking along with edit distance. If you want this probability to influence the sug-
gestions returned by Solr, you can do this with document boosting.

 A document boost is a multiplicative factor for increasing the relevancy of a docu-
ment; it’s set at index time and is typically above 1. A document boost of 2 indicates
that this document is inherently twice as relevant as a document with no boost. Since
each of your possible spelling suggestions are modeled as documents in Solr and
because the probability of a word is independent of the spellings, you can model p(w)
as the inherent relevancy of a document. Determining the boosting values that are
most appropriate to your domain requires some experimentation. When boost values
have been determined, they’ll impact the order in which results are returned from the
n-gram query used previously to determine candidate suggestions.

USING SOLR’S SPELL-CHECK COMPONENT

Now that you have an understanding of an implementation of spelling correction
using Solr, let’s take a look at the mechanisms for spelling correction that are built
into Solr. A spell-checking implementation is provided in Lucene and integrated into
Solr. Its approach is similar to the one outlined here. It can be invoked in Solr as a
search component and added to a request handler. The search component for spell-
ing can be defined as follows.

<searchComponent name="spell_component"
class="org.apache.solr.handler.component.SpellCheckComponent">
<lst name="spellchecker">

<str name="name">default</str>
<str name="field">word</str>
<str name="distanceMeasure">

org.apache.lucene.search.spell.LevensteinDistance
</str>
<str name="spellcheckIndexDir">./spell</str>
<str name="accuracy">0.5</str>

</lst>
</searchComponent>

It can be added to a request handler by placing it as an argument after the defined
defaults for the handler.

<requestHandler ...
<lst name="defaults">
...
</lst>
<arr name="last-components">

<str>spell_component</str>
</arr>

</requestHandler>

Listing 4.15 Defining a spell-checker as a search component in Solr

Listing 4.16 Adding the spell-checker search component to your request handler in Solr

Possible suggestions
stored here.

Distance
measure
to use.

Threshold
for making
suggestion.

109Building fuzzy string matching applications
Queries to the spell-checker are made along with regular queries and suggestions
returned with regular search results. This has the benefit of allowing a suggestion to
be made and a result retrieved with a single request to Solr. In cases where the spelling
correction requires a different tokenization than the request handler, such as with a
dismax handler, then the spelling query can be placed in an alternate parameter,
spellcheck.q.

 As we mentioned previously, the spell-checking component provided with Solr and
found in Lucene uses a similar approach to the one we implemented with SolrJ. Some
of the differences include additional boosting for matching the prefix of a correction,
and functionality to only suggest words whose frequency is higher than the query
term. You can also build a customized spell-checking component and integrate it into
your build of Solr. This is done by extending the abstract class org.apache
.solr.spelling.SolrSpellChecker and implementing the getSuggestions method,
as well as methods for building and reloading the component. As you saw earlier, this
class needs to be included in a JAR that’s made available to Solr in its solr/lib direc-
tory. After this is done, the component can be specified in the configuration, as was
done with the SpellCheckComponent class.

 In this section, you’ve seen how to combine techniques for finding fuzzy matches
with n-gram with techniques for computing edit distances to perform spelling correc-
tion. Next, we’ll use these techniques and others to perform fuzzy matches across a
wider range of fields in a record matching task.

4.3.3 Record matching

Our final fuzzy string matching application isn’t as prominently featured as our previ-
ous examples, but is the basis for many interesting applications. At its core, record
matching is the application of the mashup. If you have two data sources that contain
entries for the same entity in the world, and you can match the entries of those
records, then you can mash up the distinct information contained in each data
source. This combination of information can often provide a distinct perspective that
neither of the individual data sources can provide on their own. In some cases this is
straightforward, but in many cases it requires some fuzzy matching.

OUTLINING THE APPROACH

Our fuzzy matching approach to record matching is as follows:

 Find candidate matches.
 Rank, or score, the candidate matches.
 Evaluate the results and pick a candidate.

This is similar to the approach taken for spelling correction, where we determined can-
didate matches with n-gram matching, scored matches with an edit distance metric, and
applied a threshold. The main addition is the criteria that only a single match that
exceeds the threshold be found. This prevents matches from being asserted in cases
where there are multiple candidates and the algorithm hasn’t clearly ranked them.

110 CHAPTER 4 Fuzzy string matching
 Our example domain is theatrically released movies. This is a domain where a
number of different sources of information contain references to this common space.
This could include data sources such as the Internet Movie Database (IMDb), NetFlix,
TV and On-Demand listings, iTunes and Amazon Rentals, or DVDs. In this example,
you’ll match up entries for movies between IMDb and Tribune Media Service (TMS).
TMS provides TV listings data to Tivo and online at http://tvlistings.zap2it.com.

FINDING CANDIDATE MATCHES WITH SOLR

Your first task is to find a means to identify a candidate set of matches for which you’d
like to perform more advanced matching. As with spelling corrections, you can do this
using n-gram matching in Solr. Here you apply n-gram matching to the field that you
think is most likely to match and which is the most informative. For a movie, this
would be the title. Unlike the spelling correction case where you had an obvious
choice about which dataset to apply the n-grams to (the corrections), in this case you
could construct n-gram tokens from either data source. Though there may be
application-specific reasons why one data source is preferable to another, it’s typically
favorable to apply n-grams to the data source with the most entries. This is because
you may run your matching algorithm over the entries several times and the n-gram
construction is less likely to change. As you improve your algorithm, it’s quicker to
iterate over the smaller set of entries. Additionally, indexing time is often faster than
record matching.

 For your dataset, an XML document has been constructed for each movie in our
IMDb database. Typically entries look as follows.

<doc>
<field name="id">34369</field>
<field name="imdb">tt0083658</field>
<field name="title">Blade Runner</field>
<field name="year">1982</field>
<field name="cast">Harrison Ford</field>
<field name="cast">Sean Young</field>
<!-- Many other actors -->

</doc>

The relevant portions of the schema.xml entries for these fields are shown next.

<field name="title" type="ngram"
indexed="true" stored="true"/>

<field name="year" type="integer
indexed="true" stored="true"/>

<field name="imdb" type="string"
indexed="false" stored="true"/>

<field name="cast" type="string" indexed="true"

multiValued="true" stored="true"/>

Listing 4.17 Examples of entries in our IMDb dataset

Listing 4.18 Additions to the Solr schema for record matching

N-gram field used
earlier for spelling
correction.

Multivalued cast field.

111Building fuzzy string matching applications
Candidates can be queried and retrieved with SolrJ as follows.

private SolrServer solr;
private SolrQuery query;

public Iterator<SolrDocument> getCandidates(String title)
throws SolrServerException {
String etitle = escape(title);
query.setQuery("title:""+etitle+""");
QueryResponse response = solr.query(query);
SolrDocumentList dl = response.getResults();
return dl.iterator();

}

The title needs to be escaped to prevent special characters such as AND, +, or ! from
being interpreted as query functions when used as a query.

RANKING CANDIDATE MATCHES

After you have a set of candidate matches, the question becomes how to score these
matches. In the spelling case, you used edit distance. This may be a good candidate
for the title, but you’ll achieve the best matching by leveraging data from several
fields. Let’s consider the following fields as things you’d like to match as well as how
you might score each component and the entire record match.

 Title—Edit distance is probably the most appropriate measure here. Since titles
are more like names, you’ll use the Jaro-Winkler distance measure rather than
Levenshtein distance or n-gram distance.

 Actors—Though you could use edit distance for actors’ names, since actors’
names are really their brand, they tend to have standard spellings. (No one
refers to the actor Thomas Cruise.) As such, exact match with some normaliza-
tion will work in almost all cases. Your measure for actor overlap will be the per-
centage of actors who match exactly. Since there are often differences in the
number of cast members listed between data sources, using the smaller number
of cast members as the denominator is typically acceptable.

 Release date—The release date is also useful to distinguish between items with the
same title. Minor differences in these numbers occur depending on whether the
date is when the project started, its theatrical release, or DVD release year. The
difference between the year listed in each feature provides a good measure that
can be normalized by taking a reciprocal rank, so items with the same year
receive a score of 1 and those that differ by 2 receive a score of 1/2. Differences
could also be degraded linearly if a cutoff can be establish for when the score
should become 0 or another constant.

You then need to combine each of these terms. This can be done by weighting each of
the preceding terms and adding them together. Since each of your terms is normal-
ized such that it returns a value between 0 and 1, if weights are chosen such that they
sum to 1, then the resulting sum of weighted terms will also be between 0 and 1. For

Listing 4.19 Retrieving candidate matches from Solr for record matching

Escaped title.

Title in quotes
to prevent
tokenization.

112 CHAPTER 4 Fuzzy string matching

Use Jaro-Wi
on

r

the task at hand, you’ll a priori assign half of the weight to the title portion and divide
the remaining weight between the other two terms. This is implemented in
listing 4.20. You could also use a collection of already matched records to determine
these weights empirically. Matching proceeds by querying Solr with the title of the
record being matched and then scoring each of those candidates.

private StringDistance sd = new JaroWinklerDistance();

private float score(String title1, int year1, Set<String> cast1,
String title2, int year2, Set<String> cast2) {
float titleScore = sd.getDistance(title1.toLowerCase(),

title2.toLowerCase());

float yearScore = (float) 1/(Math.abs(year1-year2)+1);

float castScore = (float) intersectionSize(cast1,cast2)/
Math.min(cast1.size(),cast2.size());

return (titleScore*.5f)+
(yearScore*0.2f)+
(castScore*0.3f);

}

private int intersectionSize(Set<String> cast1,
Set<String> cast2) {

int size = 0;
for (String actor : cast1)

if (cast2.contains(actor)) size++;
return size;

}

EVALUATING THE RESULTS

Let’s look at some examples using this approach. An example where you can see the
benefits of combining multiple sets of data for matching is shown in tables 4.4 and 4.5.

Listing 4.20 Retrieving candidate matches from Solr for record matching

Table 4.4 Example of importance of combining multiple sets of data

ID Title Year Cast

MV000000170000 Nighthawks 1981 Sylvester Stallone, Billy Dee Williams, …

Table 4.5 Second example of importance of combining multiple sets of data

Score
Title term + year term +

cast term
ID Title Year Cast

0.55 (0.5*1.00) + (0.2*0.25) +
(0.3*0.00)

tt0077993 Nighthawks 1978 Ken Robertson, Tony
Westrope, …

0.24 (0.5*0.43) + (0.2*0.12) +
(0.3*0.00)

tt0097487 Hawks 1988 Timothy Dalton, Anthony
Edwards, …

0.96 (0.5*0.98) + (0.2*1.00) +
(0.3*0.88)

tt0082817 Night Hawks 1981 Sylvester Stallone, Billy Dee
Williams, …

nkler
titles.

Use
eciprocal
on years.

Use cast
overlap
percentage.

Combine
scores into
single score.

Compute
intersection
using exact
string matching.

113Building fuzzy string matching applications
The candidates are listed as returned by Solr based on title matches alone. You see
that combination of data allows you not only to rank the correct entry higher than the
other candidates, but also to exclude the other candidates such that you’re confident
that the best-scoring match is correct. In general, using an n-gram approach to retriev-
ing candidates and the Jaro-Winkler edit distance allows this approach to deal with a
number of variations in the data such as punctuation, numbers, subtitles, and even
misspellings. Some examples of these titles are shown next:

 Willy Wonka and the Chocolate Factory and Willy Wonka & the Chocolate Factory
 Return of the Secaucus 7 and Return of the Secaucus Seven
 Godspell and Godspell: A Musical Based on the Gospel According to St. Matthew
 Desert Trail and The Desert Trail

Evaluating this approach on 1,000 movies in TMS, we’re able to match 884 of them to
IMDb. These are all correctly matched, giving a precision of 100% and a recall of
88.4%, assuming that all movies can be matched. This also suggests that if you were
tuning your algorithm, you might want to allow for looser matches, since you’re not
currently making any mistakes using your current algorithm and weights. Though the
goal of this example isn’t to optimize movie matching, looking at some of the cases
where the algorithm failed to find a match is useful in that it exposes other factors you
might consider when constructing record matching algorithms in other domains.
Some of the matches that were missed are analyzed in table 4.6.

Table 4.6 Analysis of missed matches

TMS title/year IMDb title/year Description

M*A*S*H (1970) MASH (1970) This is a case where the n-gram matching
will fail because all the n-grams in one of
the titles will contain asterisks and none
of the n-grams in the other title will contain
that character.

9 to 5 (1980) Nine to Five (1980) Here’s a case where numeric normalization
would be required to match the titles.

The Day the World Ended
(1956)

Day the World Ended (1955) In this case, the algorithm is unable to
compensate for the mismatches in the
leading determiner due to other mis-
matches between fields such as the date.
Removing leading Thes Ans and As from
titles would help alleviate this problem.

Quest for Fire (1981) La guerre du feu (1981) In some cases no amount of normalization
will help. This case needs either to be han-
dled editorially or for alternative titles to be
leveraged.

114 CHAPTER 4 Fuzzy string matching
These cases demonstrate that even using the best techniques, data normalization is
important to successful matching. The algorithm would benefit from a number of
normalization steps for numerics, determiners, and alternative titles. In order to pro-
duce highly effective algorithms, you must spend a fair amount of effort making sure
that what gets to your matching code is the data you want.

 In this section, you’ve seen how various string matching techniques can be used to
power a number of applications. For supporting type-ahead, we used prefix matching
in Solr. We showed how a combination of n-gram matching and edit distance can be
used to suggest alternative spellings. Finally, we used n-gram matching, edit distance,
and exact matching to perform record matching for movies.

4.4 Summary
The chapter began with the question of what it means for strings to be similar—how
fuzzy is fuzzy matching? It then introduced several approaches to fuzzy string match-
ing to provide a formal notion of how similar two strings are to one another. These
included measures that use just the characters, such as the Jaccard measure; the char-
acter’s order, such as edit distance; and windows of characters, such as Jaro-Winkler
measure and n-gram edit distance. We also showed how prefix and n-gram matching
can be used to efficiently produce candidate matches for the more computationally
expensive edit distance computations. Finally, we built applications that leverage these
techniques and also leverage Solr as a platform to make building these applications
easy. In the next chapter, we’ll move from comparing strings to one another to finding
information inside strings and documents.

4.5 Resources
 Aoe, Jun-ichi. 1989. “An efficient digital search algorithm by using a double-array

structure.” IEEE Transactions on Software Engineering, 15, no.9:1066–1077.

Smokey and the Bandit
(1977)

Smokey and the Bandit (1977) In this case, though the best match was
the correct match, the score for the match
between this movie and its sequel,
Smokey and the Bandit II also scored
above the threshold and so the match was
canceled.

The Voyage of the Yes
(1972)

The Voyage of the Yes (1972) Here’s a case where one data source,
TMS, classifies this as a movie and
another as a TV show. As such it wasn’t a
candidate for matching.

Table 4.6 Analysis of missed matches (continued)

TMS title/year IMDb title/year Description

Identifying people,
places, and things
People, places, and things—nouns—play a crucial role in language, conveying the
sentence’s subject and often its object. Due to their importance, it’s often useful
when processing text to try to identify nouns and use them in applications. This
task, often called either entity identification or named-entity recognition (NER) is often
handled by a parser or chunker, as you saw in chapter 2. Though using a parser is
nice for understanding a sentence, text applications often will find it more useful
to focus on a subset of nouns that identify specific instances of an object such as
proper nouns, also often called named entities. Furthermore, fully parsing a sen-
tence is a process-intensive task, whereas finding proper nouns need not be so
intensive.

In this chapter
 The basic concepts behind named-entity

recognition

 How to use OpenNLP to find named entities

 OpenNLP performance considerations
115

116 CHAPTER 5 Identifying people, places, and things
 In many situations, it’s also useful to go beyond names of people and places and
include temporal and numeric concepts like July 2007 or $50.35. From a text-based
application perspective, proper nouns are everywhere and, at the same time, specific
instances of a proper noun may be exceedingly rare. For example, consider any
recently occurring news event (especially those not involving a celebrity or high-
ranking government officials). How many proper nouns are in the story? How many
are people you’ve never heard of before? How many of those people will still be in the
news in six months? Where and when did the events take place?

 Obviously, the context of the article informs you that a particular sequence of
words is a proper noun and there are probably other clues like capitalization, or titles
such as Mr. or Mrs., but how can you codify this so a text processing application can
learn to recognize these entities? In this chapter, we’ll first spend some time under-
standing the background behind named-entity identification, and then we’ll look into
Apache OpenNLP to enable you to learn how to recognize named entities. We’ll also
examine performance considerations and look at customizing a model to your
domain, but let’s start here by looking at what you can do with named entities.

 Identifying people, organization, places, and other named entities allows you to
capture what an article is about in an actionable way. For instance, with this informa-
tion you can provide more information about these entities, suggest other content
which also features them or is related to them, and ultimately increase engagement in
your site. In many large companies or organizations, this work of identifying named
entities is often done editorially. The result can be a site where people get lost reading
part of one article, seeing another interesting link and wandering off to another arti-
cle, only to look up at the clock not realizing that they spent the last hour on the site.
For example, in figure 5.1, Yahoo! has highlighted the named-entity Sarah Palin and
then added a pop-up that highlights other content about the 2008 vice presidential
candidate. They’re even showing ads based on the named entity at the bottom of the
pop-ups in the hopes of capturing more revenue. This kind of engagement is invalu-
able for a site (especially one monetized by ad impressions), and fostering that
engagement provides an experience that has users returning to the site time and
again. As you can imagine, doing this editorially is labor intensive and companies are
often looking for ways to automate, or at least partially automate, the process of iden-
tifying named entities.

 Furthermore, unlike with keywords, tags, or other meaning-based representations
of an article’s content, the notion of a related article based on the presence or
absence of an entity is a clear relationship (assuming you’ve done proper record
matching to make sure they’re the same entities, as described in chapter 4!) and
makes intuitive sense to a user.

 In this chapter, we’ll look at how to perform the task of identifying names in text
automatically. We’ll examine the accuracy of a popular open source tool for perform-
ing named-entity recognition as well as its runtime performance characteristics in
order to assist you in choosing where and when to employ this technology. We’ll also

117Approaches to named-entity recognition
examine how to customize its models to perform better on your data. Even if you
don’t want to expose named-entity information directly to users, it may be useful in
constructing data to engage users such as a site zeitgeist or the top 10 most popular
people mentioned on a site. With all these possible uses, let’s dig into the details.

5.1 Approaches to named-entity recognition
In undertaking named-entity recognition (NER), we’re interested in identifying some
or all mentions of people, places, organizations, time, and numbers (not all are tech-
nically proper nouns, but we’ll classify them all as such for brevity). NER boils down to
answering the questions of where, when, who, and how often or how much. For exam-
ple, given the sentence

The Minnesota Twins won the 1991 World Series,

an NER system may recognize Minnesota Twins, 1991, and World Series as named entities
(or possibly, 1991 World Series as a single named entity). In practice, not all systems
have the same requirements for extracting named entities. For example, marketers
might be looking for names of their products so they can understand who’s talking
about them; whereas a historian responsible for constructing a chronology of events
from hundreds of eyewitness accounts will be interested in not only the people taking
part in the event, but also the exact times and locations where each person witnessed
the event.

5.1.1 Using rules to identify names

One approach to performing NER is to use a combination of lists and regular expres-
sions to identify named entities. With this approach, you need only codify some basic
rules about capitalization and numbers and then combine that with lists of things like
common first and last names and popular locations (not to mention the days of the

Figure 5.1 Snippet of article on Yahoo! News and entity page click. Sarah Palin is marked as a Y! News Shortcut.
Image captured 9/21/2008.

118 CHAPTER 5 Identifying people, places, and things
week, names of months, and so on) and then throw it at a bunch of text. This
approach was popular in early research on named-entity recognition systems but has
become less popular because such a system is difficult to maintain for the following
reasons:

 Maintaining the lists is labor intensive and inflexible.
 Moving to other languages or domains may involve repeating much of the

work.
 Many proper nouns are also valid in other roles (such as Will or Hope). Said

another way: dealing with ambiguity is hard.
 Many names are conjunctions of other names, such as the Scottish Exhibition and

Conference Center where it’s not always clear where the name ends.
 Names of people and places are often the same—Washington (state, D.C., or

George) or Cicero (the ancient philosopher, the town in New York, or some
other place).

 It’s difficult to model dependencies between names across a document using
rules based on regular expressions.

It should be noted that rule-based approaches can perform nicely within specific well-
understood domains, and shouldn’t be discarded completely. For a domain such as cap-
turing length measurements, where the items themselves are typically rare and the
number of units of length bounded, this approach is probably applicable. Many useful
resources are available publicly to help in bootstrapping such a process for a number of
entity types. Basic rules and some general resources are available at the CIA World Fact
Book (https://www.cia.gov/library/publications/the-world-factbook/index.html) and
Wikipedia (http://www.wikipedia.org). Also available are dictionaries of proper nouns
(many available online), along with domain-specific resources like the Internet Movie
Database or domain-specific knowledge that can be effectively utilized to achieve rea-
sonable performance, while minimizing the work required.

5.1.2 Using statistical classifiers to identify names

A less brittle approach that’s easy to extend to other domains and languages and that
doesn’t require creating large lists (gazetteers) to be maintained is much more desir-
able. This approach is to use a statistical classifier to identify named entities. Typically
the classifier looks at each word in a sentence and decides whether it’s the start of a
named entity, the continuation of an already started entity, or not part of a name at
all. By combining these predictions, you can use a classifier to identify a sequence of
words that make up a name.

 Though the tagging approach is fairly common to most classifier-based approaches
to identifying names, variation exists in how different entity types are identified. One
approach is to use the tagging approach or even a regular expression–based approach
to simply identify text that contains a name of any type and, in a second pass, distin-
guish between the different types of names or entity types. Another approach is to

119Basic entity identification with OpenNLP
simultaneously distinguish between different entity types by predicting the entity type
along with the name start or continuation. Yet another approach is to build a separate
classifier for each name type, and to combine the results for each sentence. This is the
approach taken by the software we’ll work with later in this chapter. Also, later in this
chapter, we’ll examine some of these variations in approach in more detail and discuss
their trade-offs.

 Regardless of which of the various classification approaches is used, a classifier
needs to be trained on a collection of human-annotated text to learn how to identify
names. Some of the advantages of such an approach include these:

 Lists can be incorporated as features and as such are only one source of
information.

 Moving to other languages or domains may only involve minimal code changes.
 It’s easier to model the context within a sentence and in a document.
 The classifier can be retrained to incorporate additional text or other features.

The main disadvantage of such approaches is the need for human-annotated data.
Whereas a programmer can write a set of rules and see them being applied to a collec-
tion of text immediately, the classifier will typically need to be trained on approxi-
mately 30,000 words to perform moderately well. Though annotation is tedious, it
doesn’t require the set of specialized skills needed for rule crafting and is a resource
that can be extended and reused. With sufficient amounts of training data, the perfor-
mance can be near to human quality, even if people are less than perfect at the task of
identifying names. Good NER systems are usually capable of properly recognizing enti-
ties better than 90% of the time in evaluation experiments. In the real world, with real
data, expectations must be lowered, but most systems should still provide decent qual-
ity that’s usable. Furthermore, a good system should be easy to set up and, if needed,
trained to learn proper nouns. Ideally, the system would also support incremental
updates when new examples or counterexamples are available. With these require-
ments in mind, the next section takes a look at how the OpenNLP project provides
named-entity identification capabilities.

5.2 Basic entity identification with OpenNLP
The OpenNLP project, as mentioned in chapter 2 and currently available for download
at http://opennlp.apache.org, maintains a suite of tools for doing many common NLP
tasks such as part of speech tagging, parsing, and, most useful to us in this chapter,
named-entity recognition. These tools are licensed under the Apache Software License
(ASL) and were originally developed by Thomas Morton and others, but are now an
Apache Software Foundation project much like Solr and maintained by a community
of users and contributors. Though several tools will perform named-entity recognition,
the majority of these either aren’t open source or are research projects, many of which
are distributed with research-only licenses or under the GPL, which isn’t always viewed
as usable in many companies. OpenNLP is distributed with a collection of models that

120 CHAPTER 5 Identifying people, places, and things

Init
tokeni

split sen
into indiv

word
sym
perform well for some common entity types, and is actively maintained and supported.
For these reasons and due to our familiarity with the software itself, we’ll focus on it for
providing named-entity capabilities.

 OpenNLP is distributed with prebuilt models that allow you to identify proper
nouns and numeric amounts and to semantically tag them into seven distinct catego-
ries. The categories and examples of text which fall into them are provided next:

 People—Bill Clinton, Mr. Clinton, President Clinton
 Locations—Alabama, Montgomery, Guam
 Organizations—Microsoft Corp., Internal Revenue Service, IRS, Congress
 Dates—Sept. 3, Saturday, Easter
 Times—6 minutes 20 seconds, 4:04 a.m., afternoon
 Percentages—10 percent, 45.5 percent, 37.5%
 Money—$90,000, $35 billion, one euro, 36 pesos

Users can select any subset of these categories depending on the requirements of
their particular project.

 In the remainder of this section, you’ll learn how to use OpenNLP to identify the
previously mentioned categories in text, and then we’ll look at some provided tools
that help you understand what was extracted. Finally, we’ll finish up the section by
looking at how to leverage OpenNLP’s scores to understand the likelihood that an
extraction (or multiple extractions) is correct.

5.2.1 Finding names with OpenNLP

Let’s get started by looking at an example of how to use OpenNLP to identify people
by writing a few lines of Java code.

String[] sentences = {
"Former first lady Nancy Reagan was taken to a " +

"suburban Los Angeles " +
"hospital "as a precaution" Sunday after a " +

"fall at her home, an " +
"aide said. ",

"The 86-year-old Reagan will remain overnight for " +
"observation at a hospital in Santa Monica, California, " +

"said Joanne " +
"Drake, chief of staff for the Reagan Foundation."};

NameFinderME finder = new NameFinderME(
new TokenNameFinderModel(new FileInputStream(getPersonModel()))

);

Tokenizer tokenizer = SimpleTokenizer.INSTANCE;

Listing 5.1 Identifying names with OpenNLP

Initialize new
model for
identifying people
names based on
the binary
compressed
model in the file
en-ner-person.bin.ialize

zer to
tence
idual
s and
bols.

121Basic entity identification with OpenNLP

a

for (int si = 0; si < sentences.length; si++) {
String[] tokens = tokenizer.tokenize(sentences[si]);
Span[] names = finder.find(tokens);
displayNames(names, tokens);

}

finder.clearAdaptiveData();

In the example, you first create a document of two sentences and then initialize the
NameFinderME class and a tokenizer to be used with it. The NameFinderME class is given
a model for identifying a particular type of named entity you want to find (people, in
this case), and is based on the person model file distributed with OpenNLP. Each sen-
tence is then tokenized and the names contained within it are identified and then dis-
played to the user. Finally, after all sentences in a document are processed, a call is
made to the clearAdaptiveData() method. This tells the NameFinderME to clear any
document-level data that has been stored based on the processing thus far. By default,
OpenNLP’s NameFinderME class keeps track of whether a word has been identified as
part of a name previously; this is a good indication as to whether subsequent mentions
should also be considered as parts of a name. The call to clearAdaptiveData() clears
this cache.

 The example shows that the NameFinderME processes a single sentence at a time.
Though not explicitly required, this prevents names from being erroneously found
that cross sentence boundaries. In general, it’s beneficial to have the name finder pro-
cess the smallest units of text that won’t split the occurrence of a name. This is
because the OpenNLP implementation is actually considering up to three alternative
sets of names for every unit of text processed. If you process a document, you get
three alternatives for the entire document, but if you process a sentence, you get three
alternatives for each sentence.

 The input to the NameFinderME.find() method is a sequence of tokens. This
means that each sentence that will be processed will also need to be tokenized. Here
you use a tokenizer provided by OpenNLP that splits tokens based on character
classes. Because tokenization affects how the find() method sees the sentence, it’s
important to use the same tokenization procedure for finding new names as was used
in training the name finding model. In section 5.5, we’ll discuss training new named-
entity identification models with alternative tokenizations.

5.2.2 Interpreting names identified by OpenNLP

The NameFinderME.find() method returns an array of spans that specify the location
of any name identified in the input sentence. The OpenNLP span data type stores the
index of the first token of a name (accessible via the getStart() method), and the
index of the token immediately following the last token of a name (accessible via the
getEnd() method). In this case, spans are used to represent token offsets, but

Split sentence into
array of tokens.Identify

names in
sentence

nd return
token-
based

offsets to
these

names.

Clear data structures that store
which words have been seen
previously in the document and
whether these words were
considered part of a person’s name.

122 CHAPTER 5 Identifying people, places, and things

e.Split in
return

offset

Com
chara

C
cha

(last ch

Comp
that r
OpenNLP also uses this data type to represent character offsets. The following code
sequence prints each name on a line as a sequence of tokens.

private void displayNames(Span[] names, String[] tokens) {
for (int si = 0; si < names.length; si++) {

StringBuilder cb = new StringBuilder();
for (int ti = names[si].getStart();

ti < names[si].getEnd(); ti++) {
cb.append(tokens[ti]).append(" ");

}
System.out.println(cb.substring(0, cb.length() - 1));
System.out.println("ttype: " + names[si].getType());

}
}

OpenNLP also provides a utility to convert a span into the string representing the
name, as is done in listing 5.3, using the Span.spansToStrings() method.

 If you want to see the name in its untokenized form, you can map the name onto
its character offsets as shown next. In this case, you ask the tokenizer to return the
character offset spans for the tokens using the tokenizePos() method rather than the
String representation of the tokens. This allows you to determine where in the origi-
nal sentence a name occurred.

for (int si = 0; si < sentences.length; si++) {
Span[] tokenSpans = tokenizer.tokenizePos(sentences[si]);
String[] tokens = Span.spansToStrings(tokenSpans, sentences[si]);
Span[] names = finder.find(tokens);

for (int ni = 0; ni < names.length; ni++) {
Span startSpan = tokenSpans[names[ni].getStart()];
int nameStart = startSpan.getStart();

Span endSpan = tokenSpans[names[ni].getEnd() - 1];
int nameEnd = endSpan.getEnd();

String name = sentences[si].substring(nameStart, nameEnd);
System.out.println(name);

}
}

5.2.3 Filtering names based on probability

OpenNLP uses a probabilistic model that makes it possible to determine the probabil-
ity associated with a particular name that has been identified. This can be particularly
useful in cases where you want to filter out some of the names returned by the name

Listing 5.2 Displaying names with OpenNLP

Listing 5.3 Displaying names using spans

Iterate over
each name.

Iterate over each
token in name.

Remove extra
space at end of
name and print.

Iterate over
each sentencto tokens;

 character
s (spans).

Convert spans
to strings.

Identify names;
return token-
based offsets.

pute start
cter index

of name.

ompute end
racter index
aracter +1).

ute string
epresents

name.

123In-depth entity identification with OpenNLP

int

R

finder, which may be mistakes. Though there’s no way to automatically determine
which names have been identified erroneously, in general, names that the model has
assigned lower probabilities are less likely to be accurate. To determine the probability
associated with a particular name, you can call the NameFinderME.getProbs() method
after each sentence has been processed, as shown in the following listing. The
returned array of values correspond by index to the names identified by the spans
given as input.

for (int si = 0; si < sentences.length; si++) {
String[] tokens = tokenizer.tokenize(sentences[si]);
Span[] names = finder.find(tokens);
double[] spanProbs = finder.probs(names);

}

Filtering names would then consist of determining a threshold probability below
which a name would be excluded based on the needs of your application.

 In this section, you’ve seen how to identify a single name type using OpenNLP,
interpret the data structures used by OpenNLP to designate the location of names,
and determine which names are more likely to be accurate. In the next section, we’ll
look at identifying multiple names and get into the details of how OpenNLP actually
determines the presence or absence of a name in text.

5.3 In-depth entity identification with OpenNLP
Now that you’ve seen the basics, let’s look into some more advanced cases that will
likely come up when building a real system using these tools. As you saw in section 5.1,
there are multiple approaches to identifying a named entity. The primary limitation
of the examples you’ve seen so far is that they involve only a single type of named
entity. In this section, you’ll see how OpenNLP can be used to identify multiple
named-entity types in the same sentence as well as examine what information it uses to
identify individual name types.

5.3.1 Identifying multiple entity types with OpenNLP

In OpenNLP, each name type uses its own independent model to identify a single
name type. This has the advantages that you only need to employ the subset of models
that your particular application needs, and that you can add your own models for
other name types to the existing ones. It also implies that different models can iden-
tify names from overlapping sections of text, as shown next:

<person> Michael Vick </person>, the former <organization> <location>
Atlanta </location> Falcons </organization> quarterback, is serving a 23-

month sentence at maximum-security prison in <location> Leavenworth </
location>, <location> Kansas </location>.

Listing 5.4 Determining name probabilities

Iterate over
each sentence.

Split sentence
o array tokens.

Identify names; return
token-based offsets.

eturn probability
associated with

each name.

124 CHAPTER 5 Identifying people, places, and things

Initializ
fo

peop
and da

compr
in the

person

en-n

Obtain
a token

s
indiv

a

Split
ar

Ite
name f

lo
Here you see that Atlanta is marked as a location as well as part of an organization.
 The disadvantage of such an approach is that you need to combine the results of

each model. In this section, you’ll look at some approaches to overcome this problem.
Having each name type use its own model also has implications on performance and
training. We’ll talk more about these implications in sections 5.4 and 5.5.

 Since each model is independent of the others, using multiple models is a simple
matter of processing a sentence with each of the models, followed by the less simple
matter of combining the results. In listing 5.5, we collect the names from three mod-
els. To facilitate this, we’ve created a helper class, Annotation, to hold the name spans
along with their probability and type.

String[] sentences = {
"Former first lady Nancy Reagan was taken to a " +

"suburban Los Angeles " +
"hospital "as a precaution" Sunday after a fall at " +

"her home, an " +
"aide said. ",
"The 86-year-old Reagan will remain overnight for " +
"observation at a hospital in Santa Monica, California, " +

"said Joanne " +
"Drake, chief of staff for the Reagan Foundation."};

NameFinderME[] finders = new NameFinderME[3];
String[] names = {"person", "location", "date"};
for (int mi = 0; mi < names.length; mi++) {

finders[mi] = new NameFinderME(new TokenNameFinderModel(
new FileInputStream(

new File(modelDir, "en-ner-" + names[mi] + ".bin")
)));

}

Tokenizer tokenizer = SimpleTokenizer.INSTANCE;
for (int si = 0; si < sentences.length; si++) {

List<Annotation> allAnnotations = new ArrayList<Annotation>();
String[] tokens = tokenizer.tokenize(sentences[si]);
for (int fi = 0; fi < finders.length; fi++) {

Span[] spans = finders[fi].find(tokens);
double[] probs = finders[fi].probs(spans);
for (int ni = 0; ni < spans.length; ni++) {

allAnnotations.add(
new Annotation(names[fi], spans[ni], probs[ni])

);
}

}
removeConflicts(allAnnotations);

}

Listing 5.5 Running multiple name models on the same text

e new model
r identifying
le, locations,
tes based on

the binary
essed model
 files en-ner-
.bin, en-ner-
location.bin,
er-date.bin.

reference to
izer to split

entence into
idual words
nd symbols.

Iterate over
each sentence.

 sentence into
ray of tokens.

rate over each
inder (person,
cation, date).

Identify names in
sentence and
return token-
based offsets.

Get probabilities
with associated

matches.

Collect each
identified
name from
name finders.

Resolve overlapping
names in favor of more
probable names.

125In-depth entity identification with OpenNLP

t

I

p

o

ck.

 is
er
 so

 is

n,
.

Combining the output of the three models is only problematic when the names over-
lap. Depending on the application, the criteria for when names overlap may be differ-
ent. In order to combine the results, a series of things should be considered:

 Is it OK for the same span of text to be identified as a name by different models?
Typically, no.

 Is it OK for a name that’s smaller to be found within a larger name? Typically,
yes.

 Can names overlap but also each contain distinct text? Typically, no.
 If names collide, what criteria should be used to adjudicate? Typically, the

probability.

The following is an implementation that follows these default criteria: names must
have distinct spans and can overlap, but if they do so, one name must completely con-
tain the other.

private void removeConflicts(List<Annotation> allAnnotations) {
java.util.Collections.sort(allAnnotations);
List<Annotation> stack = new ArrayList<Annotation>();
stack.add(allAnnotations.get(0));
for (int ai = 1; ai < allAnnotations.size(); ai++) {

Annotation curr = (Annotation) allAnnotations.get(ai);
boolean deleteCurr = false;
for (int ki = stack.size() - 1; ki >= 0; ki--) {

Annotation prev = (Annotation) stack.get(ki);
if (prev.getSpan().equals(curr.getSpan())) {

if (prev.getProb() > curr.getProb()) {
deleteCurr = true;
break;

} else {
allAnnotations.remove(stack.remove(ki));
ai--;

}
} else if (prev.getSpan().intersects(curr.getSpan())) {

if (prev.getProb() > curr.getProb()) {
deleteCurr = true;
break;

} else {
allAnnotations.remove(stack.remove(ki));
ai--;

}
} else if (prev.getSpan().contains(curr.getSpan())) {

break;
} else {

stack.remove(ki);
}

}

Listing 5.6 Resolving conflicting names

Sort names based
on their span’s star
index ascending,
then end index
descending.

nitialize
stack to

track
revious
names.

Iterate
ver each

name.
Iterate over each item in sta

Test if name span is
identical to another name
span, and if so remove the
less probable one.

Update index of
name after
deletion to

negate ai++ at
end of for loop.

Test if name span
overlapping anoth
name span, and if
remove the less
probable one.

Update index of
name after
deletion to

negate ai++ at
end of for loop.

Test if name span
subsumed by
another name spa
and if so exit loop

Test if name span is
subsumed by
another name span,
and if so exit loop.

126 CHAPTER 5 Identifying people, places, and things
if (deleteCurr) {
allAnnotations.remove(ai);
ai--;

deleteCurr = false;
} else {

stack.add(curr);
}

}
}

This approach to merging is linear in time complexity with respect to the length of
the sentence, but because you’re allowing names to occur within other names, you use
a second loop to process the stack that holds nested names. This stack size can never
exceed the number of name types being used, so the time taken by the second loop
can be treated as a constant. Now that we’ve discussed some of the background and
seen an example of using multiple models, let’s take a look at the engineering details
that go into how names are identified in OpenNLP.

5.3.2 Under the hood: how OpenNLP identifies names

If we asked a non-engineer, “How does a TV work?” he might answer, “Well, you point
the remote at it, and push this red button...” Thus far we’ve described how to use the
named-entity identification software in OpenNLP and provide this kind of answer. In
this section, we’ll look at how that software actually performs the task of identifying
names. This information will prove valuable in sections 5.4 and 5.5 when we consider
the topics of performance and customization.

 OpenNLP treats identifying names as a tagging task, similar to what will be dis-
cussed in chapter 7. The process is one of labeling each token with one of three tags:

 Start—Begin a new name starting at this token.
 Continue—Append an existing name onto this token.
 Other—This token is not part of a name.

For a typical sentence, this tagging looks like table 5.1.

By connecting start tags with any number of continue tags, the example sequence of
classifications can be turned into a set of Spans. The statistical modeling package used
by OpenNLP builds a model to determine when it should be predicting each of the
three tags. This model uses a set of features, specified in the code, to predict which out-
come is most likely. These features are designed to distinguish proper names, different

Table 5.1 Sentence tagged for named-entity identification

0 1 2 3 4 5 6 7 8 9 10 11

" It is a familiar story , " Jason Willaford said .

other other other other other other other other start continue other other

Test if name span is past
another name span, and
if so remove previous
name from the stack.

127In-depth entity identification with OpenNLP
types of numeric strings, and the surrounding context of words and tagging decisions.
The features used by OpenNLP for named-entity identification are as follows:

1 The token being tagged
2 The token 1 place to the left
3 The token 2 places to the left
4 The token 1 place to the right
5 The token 2 places to the right
6 The token class for the token being tagged
7 The token class for the token 1 place to the left
8 The token class for the token 2 places to the left
9 The token class for the token 1 place to the right

10 The token class for the token 2 places to the right
11 The token and token class for the token being tagged
12 The token and token class for the token 1 place to the left
13 The token and token class for the token 2 places to the left
14 The token and token class for the token 1 place to the right
15 The token and token class for the token 2 places to the right
16 The predicted outcome for the token 1 place to the left or null
17 The predicted outcome for the token 2 places to the left or null
18 The token and the token 1 place to the left
19 The token and the token 1 place to the right
20 The token class and the token class 1 place to the left
21 The token class and the token class 1 place to the right
22 The outcome previously assigned to this token string or null

Many of these features are based on the token being tagged and its adjacent neigh-
bors, but some of these features are based on the token class. A token’s class is based
upon basic characteristics of the token, such as whether it consists solely of lowercase
characters.

 These features model the decision about what tokens constitute an entity and its
type based on the words used, a set of classes for those words, and the decisions made
previously in this document or sentence. The words themselves are important and
take the place of lists in a rule-based approach. If the training data contains a word
that’s annotated as an entity enough times, then the classifier using feature 1 can sim-
ply memorize that word. Feature 6, like feature 1, focuses on the word being tagged,
but instead of using the word itself, it uses the token class.

 The token classes used for named-entity identification are as follows:

1 Token is lowercase alphabetic
2 Token is two digits
3 Token is four digits

128 CHAPTER 5 Identifying people, places, and things
4 Token contains a number and a letter
5 Token contains a number and a hyphen
6 Token contains a number and a backslash
7 Token contains a number and a comma
8 Token contains a number and a period
9 Token contains a number

10 Token is all caps, single letter
11 Token is all caps, multiple letters
12 Token’s initial letters are caps
13 Other

The token classes outlined here are designed to help predict certain entity types. For
instance, token class 3 is indicative of year dates such as 1984. Token classes 5 and 6
are also typical of dates, whereas token classes 7 and 8 are more typical of monetary
amounts. Features 2–15 allow the context that the word occurs in to be taken into
account so that an ambiguous word such as Washington might be more likely to be
identified as a location in the context “in Washington” and a person in the context
“Washington said.” Features 16 and 17 allow the model to capture that continue tags
follow start tags, and feature 18 allows the model to capture that if a word was previ-
ously tagged as part of a person entity, then a subsequent mention of the same word
might also be part of a person entity. Though none of the features by themselves are
entirely predictive, an empirically weighted combination of them usually captures the
name types used in OpenNLP.

 The features are targeted to capture the types of information needed to identify
the named-entity types that OpenNLP identifies. It may be the case that, for your appli-
cation, the entities that OpenNLP identifies will suffice. Since automated techniques
for identifying names will never be perfect (and neither will manual approaches), the
question for your application is, are they good enough? In the next section, we’ll look
at how well the models distributed with OpenNLP perform at identifying these enti-
ties, as well as the runtime performance of the software. These characteristics will help
you determine whether you can use this software out of the box and in what types of
applications it can be applied. You may also need to identify additional entity types for
your application. In this case, the features shown here may not capture the kind of
information needed to model these new kinds of entities.

5.4 Performance of OpenNLP
We’ll consider three areas of performance as it relates to named-entity identification.
The first is the quality of the linguistic annotations, or specifically the names found by
the OpenNLP components. As we described before, linguistic analysis is never perfect,
but that shouldn’t stop you from looking at how closely a system matches human per-
formance. Using this information, you can access whether the models provided are
likely to be accurate enough for your application or whether additional training mate-
rials or customization will be necessary.

129Performance of OpenNLP
 The second area of performance we’ll consider is the speed at which we can per-
form the tasks. We’ll discuss some of the optimizations OpenNLP performs to improve
runtime efficiency and evaluate the speed at which various numbers of models can be
applied to text. Finally, we’ll look at the amount of memory required to run the name
finder. As we mentioned before, the named-entity identification models are treated
separately so that you only need to use the ones you want. This is in part due to the
large amount of memory required by the named-entity models. We’ll look at exactly
how much memory is required as well as an approach to significantly reduce the
amount of memory required to load a subsequent model. This information can be
used to identify where this technology will be applicable to your applications and spe-
cifically whether named-entity technology can be incorporated in an online fashion or
as an offline batch process.

5.4.1 Quality of results

The linguistic quality of the named-entity identification system is dependent on the
data that it’s trained on. OpenNLP trains its named-entity models on data designed for
the MUC-7 (http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7
_toc.html) task. This dataset is used commonly for research into systems for identify-
ing names. This task has specific criteria for what’s considered a person, an organiza-
tion, a location, or some other entity type. Though these may seem like clear
categories, a number of cases occur in real text that aren’t obvious and require guide-
lines to resolve. For example, most artifacts that have names, such as Space Shuttle
Discovery, aren’t classified, but according to the guidelines, airports are considered
locations. What’s important in learning to identify these categories is not so much the
exact set of choices that are made about particular edge cases, but that these cases are
annotated consistently so that the models can learn them.

 We evaluated the models distributed with OpenNLP using the training and test sets
for the MUC-7 task. OpenNLP isn’t trained on the data in the test set, so it also provides
a reasonable measure of its performance on unseen text. Results of this evaluation are
shown in table 5.2.

 Precision is a measure of how often, when the system identifies a name, that name is
correct. Recall is a measure of how many of the total number of actual names have
been identified. The F-measure is the weighted harmonic mean of precision and recall.
In this case, the F-measure is computed by equally weighting precision and recall. You
can see from these results that the system is able to identify at least 75% of the entities
and is only mistaken about 10% of the time.

Table 5.2 Evaluation of quality of annotations produced by OpenNLP

Dataset Precision Recall F-measure

train muc7 87 90 88.61

test muc7 94 75 83.481

130 CHAPTER 5 Identifying people, places, and things
5.4.2 Runtime performance

The second area of performance that we’ll consider is runtime performance. As we
discussed in section 5.1.2, the model identifies names by tagging each word in a sen-
tence with a start, continue, or other tag. This means that for each type of name that
needs to be detected, the model must make a decision for each token. This is poten-
tially multiplied by a factor of three, as up to three alternative sets of names are con-
sidered for any unit of text processed. As models are added to a system, this cost can
become prohibitive.

 OpenNLP mitigates the cost of this processing in two ways. First, caching is per-
formed on the outcome probabilities so that when the features that are generated to
predict an outcome are identical for any of the three alternative name sets, that prob-
ability distribution is computed once and the result cached. Second, caching is per-
formed on the feature generation itself. Since the same features are used across all
models, and the sentences are processed one at a time, sentence-level features that
aren’t dependent on previous decisions made by the model are computed once and
the results cached. The result of this is that, though using fewer models is obviously
faster than using more, there’s not a strict linear cost in adding models. The perfor-
mance graph in figure 5.2 demonstrates that as the number of models increases, the
runtime performance isn’t reduced in a strictly linear fashion.

 In section 5.5, we’ll describe an alternative model that gives up some flexibility, but
performs comparably to a single model while detecting all entity types.

500

400

300

200

100

0
1 2 3 4 5 6 7

Figure 5.2 The number of sentences per second processed by the name finder
against the number of model types being identified

131Performance of OpenNLP

g
5.4.3 Memory usage in OpenNLP

In this section, we’ll examine the memory requirements of OpenNLP’s named-entity
identification system. As you saw in the previous section, maintaining separate models
comes with some cost. The memory that a process consumes when using the person
model is approximately 68M. Some of this space is taken up by code and the JVM, but
approximately 54M of that memory is taken up by the model. A model consists of fea-
tures, outcomes, and parameter values, but much of this space is taken up by storing
the names of the features. This is because we use lexical features, so every word in our
training data that occurs more than a certain number of times will be stored in our
model as a feature. As lexical features are potentially combined with other lexical and
nonlexical features, the total number of features that the model needs to store can be
large. To load all models into memory requires approximately 400M of memory.

 We noted in the previous section that each of the named-entity models uses the
same feature set. If they’re trained on the same data, then they’ll contain the same fea-
tures and only their parameter values for those features will be different, as different
factors will be important to different types of named entities. Even if the models aren’t
trained on the same data, there will be significant overlap in features, as two pieces of
text will typically contain many of the same words. If you could somehow share the
memory allocated to these features, you’d expect a significant amount of memory
reduction when using more than one model. One mechanism for doing this is Java’s
String.intern() method. This method returns a canonical representation of the
string that it’s applied to by implementing a string pool. Using this method, you can
ensure that all references to a particular string reference the same object in memory.

 The Taming Text source code includes a model reader which uses the
String.intern() method to achieve this effect. The following example revisits the
previous example that uses multiple name models to see how to use this model reader.

String[] names = {"person","location","date"};
NameFinderME[] finders = new NameFinderME[names.length];
for (int mi = 0; mi < names.length; mi++) {

finders[mi] = new NameFinderME(
new PooledTokenNameFinderModel(

new FileInputStream(
new File(modelDir, "en-ner-"

+ names[mi] + ".bin"))));
}

Using this approach, all seven models can be loaded into memory using approxi-
mately 225M, saving you about 175M. Because the mapping of features to a common
representation is performed at model load time, there’s no impact on the runtime
performance of applying the model to text.

 Now that you understand the basics of OpenNLP quality, speed, and memory usage,
let’s take things up another level and look at how you can customize OpenNLP for your

Listing 5.7 Using string pooling to reduce memory size in named-entity identification

Initialize name
finders for identifyin
people, locations,
and dates.

Use string pooling
model to reduce
footprint.

132 CHAPTER 5 Identifying people, places, and things
domain. In the next section, we’ll take a look at what it takes to train your own model
and other customizations you might need for deployment in your application.

5.5 Customizing OpenNLP entity identification
for a new domain
In many cases, the models provided with OpenNLP will be sufficient for your applica-
tion or domain. But there may be cases when you want to train your own model. In
this section, we’ll cover how to train models with OpenNLP and how to change the fea-
tures used to predict the names, and describe an alternative way to use OpenNLP to
identify names, which has certain advantages in some cases.

5.5.1 The whys and hows of training a model

There are many reasons to train your own model. For instance, you may need to iden-
tify a new type of entity, such as a vehicle. Alternatively, you may need to detect people
or some other type of entity supported by OpenNLP, but your domain is sufficiently
different that the models provided with OpenNLP aren’t performing well. Or perhaps
you have a special case where you need a different definition of people than the one
used in the OpenNLP model. In addition, if you’re detecting a different entity type or
working in another domain, you may have new features that you’d like the model to
use. Finally, the tokenization used by OpenNLP may not be appropriate to the domain
or to subsequent processing, in which case you’d want to train a model using a differ-
ent tokenizer.

 The biggest difficulty in training a new model with OpenNLP is finding or creating
training data in sufficient amounts that are practical for statistical modeling. Though
some datasets are available publicly, if you’re building models for a new entity type,
then you’ll almost certainly need to annotate some text of your own. Though annota-
tion is time consuming, it doesn’t typically require someone with a specialized skill set,
and is often less expensive than having a programmer construct a set of rules. An
annotated dataset can also be reused with different types of models, so that as the
modeling improves (perhaps with the identification of more predictive features), you
can improve the performance of the named-entity identification system without addi-
tional annotation costs. Typical datasets for named-entity identification consist of at
least 10K–15K words for training. You’ll also need to set some of the annotated data
aside to evaluate progress and to ensure that changes to a system are improving over-
all performance.

 If you’re looking to improve the performance of a model distributed with
OpenNLP on a new domain, then there are more options. Though OpenNLP distrib-
utes a set of models, it doesn’t distribute the training data used to build these models
due to licensing restrictions. Three common solutions to this problem are these:

 Only use data from the domain—With enough data, this is likely to produce the
most accurate model as it’s targeted to the domain.

 Build a separate model and combine the results—This is similar to the approach you
saw earlier in this section, where we also combined different types of annotations,

133Customizing OpenNLP entity identification for a new domain
only in this case, both classifiers are predicting the same class. If both classifiers
are high-precision, then combining them should help improve recall.

 Use the output of the OpenNLP model for training data—This is a method to boot-
strap the amount of training data available to use. It works best if combined
with some human correction. The OpenNLP models are trained on newswire
text, so best results will come from applying them to similar text.

No matter the case for customizing OpenNLP, the contents of the following sections
will help you understand how to undertake the process.

5.5.2 Training an OpenNLP model

Now that you’re clear about when and why you’d want to train a new named-entity
identification model, and you have some annotated data, let’s look at how to do the
training. OpenNLP provides code for training in NameFinderME.main(), which sup-
ports options such as specifying the character encoding and a few other features. In
the next listing, we’ll look at a stripped-down version of that code that has been
slightly rearranged.

File inFile = new File(baseDir,"person.train");
NameSampleDataStream nss = new NameSampleDataStream(

new PlainTextByLineStream(
new java.io.FileReader(inFile)));

int iterations = 100;
int cutoff = 5;
TokenNameFinderModel model = NameFinderME.train(

"en", // language
"person", // type
nss,
(AdaptiveFeatureGenerator) null,
Collections.<String,Object>emptyMap(),
iterations,
cutoff);

File outFile = new File(destDir, "person-custom.bin");
FileOutputStream outFileStream = new FileOutputStream(outFile);
model.serialize(outFileStream);

The first two lines of the code specify the file containing the training data and create a
NameSampleStream. NameSampleStream is a simple interface that allows you to iterate
through a series of NameSamples, where a NameSample is a simple data structure for
holding named-entity spans and tokens. NameSampleDataStream implements that
interface and parses one sentence per line. Each line consists of space-delimited
tokens where names are marked with space-delimited <START> and <END> tags:

"It is a familiar story " , <START> Jason Willaford <END> said .

Listing 5.8 Training a named-entity model with OpenNLP

Create stream of
name samples based
on annotated data.

Train model.

Save model to file.

134 CHAPTER 5 Identifying people, places, and things
Though support for this format is provided, other formats can easily be supported by
writing a class to parse them that implements the NameSampleStream interface.

 The training routine takes a number of parameters. The first two indicate the lan-
guage and type of model you’re producing. The next is the NameSampleDataStream
that will be used to generate NameSamples, which are turned into a stream of events
used to train the model. As you saw in section 5.1.2, OpenNLP sees each name as a
series of start/continue/other decisions based on a set of contextual features.

 The next parameter to the train method is an object containing training parame-
ters created by the ModelUtil.createTrainingParameters method. This encapsu-
lates the number of iterations and the feature cutoff that are used in model creation.
The iterations parameter can largely be ignored, but as the model trains, it’ll output
for each step of these 100 iterations. The feature cutoff parameter provides the lower
bound for the number of times a feature must occur to be included in the model. The
default setting says that any feature which occurs less than five times won’t be included
in the model. This is necessary in order to control the size of the model as well as the
amount of potential noise, since the model will also not be very accurate at estimating
parameter values for features that only occur a few times. Setting this value too low
will lead to models that perform poorly on unseen data. But for small datasets, this
cutoff value means that the model may improperly classify an example that it has seen
in the training data if the words of that example occur fewer than five times and the
context of the example isn’t very predictive.

 The next parameters to the train method are placeholders. Providing a null for the
AdaptiveFeatureGenerator parameter will cause NameFinderME to use the default set
of feature generators that are effective for named-entity detection. An empty map is
used for the resources argument because you have no additional resources to add to
the generated model.

 The last few lines of code write the model to disk. The filename indicates that the
model should be written in the binary format and compressed. Though the
opennlp.maxent package supports other formats, this is the one expected by the code
that applies the model to new text.

5.5.3 Altering modeling inputs

So far, we’ve discussed several reasons why you might train your own model and shown
you the basics of training a model. As mentioned earlier, two of the reasons involve
changing the inputs to the modeling procedure, in addition to acquiring or building
your own set of annotated data. The first change we’ll look at involves the tokeniza-
tion process.

 Changing the tokenization process involves a couple of steps. First, in the training
procedure, the training and test text must be converted from whatever format it’s in
to one that contains space-delimited tokens similar to the Jason Willaford example
shown in the previous section. Though this conversion can be done as you see fit, we
suggest using the same code base as used in the second step of the process: applying

135Customizing OpenNLP entity identification for a new domain

t
sses
ow
ht).
the model to unseen text. For applying the model to unseen text, it’s a matter of iden-
tifying the new tokens and passing them to the NameFinderME.find method. This step
involves writing your own implementation of the OpenNLP Tokenizer class, similar to
the opennlp.tools.tokenize.SimpleTokenizer we used in section 5.2. Since extend-
ing this class only involves splitting up a String and returning an array of Strings, we’ll
forgo showing an example here and instead move on to looking at altering the fea-
tures used.

 The other change to the input of the training and testing routine we’ll consider is
changing the features used by the model to predict the name. Like tokenization,
changing the features used to identify a name is also straightforward, as the Name-
FinderME class is configured to accept an AggregatedFeatureGenerator, which can
be configured to contain a collection of feature generators, as shown next.

AggregatedFeatureGenerator featureGenerators =

new AggregatedFeatureGenerator(

new WindowFeatureGenerator(

new TokenFeatureGenerator(), 2, 2),

new WindowFeatureGenerator(

new TokenClassFeatureGenerator(), 2, 2),

new PreviousMapFeatureGenerator()

);

OpenNLP contains a large number of different implementations of AdaptiveFeature-
Generators to choose from, or you can easily implement your own. Here are some of
the available classes and what they do:

 CharacterNgramFeatureGenerator—Uses character n-grams to generate fea-
tures about each token.

 DictionaryFeatureGenerator—Generates features if the tokens are contained
in the dictionary.

 PreviousMapFeatureGenerator—Generates features indicating the outcome
associated with a previously occurring word.

 TokenFeatureGenerator—Generates a feature that contains the token itself.
 TokenClassFeatureGenerator—Generates features reflecting various token

aspects: character class (digit/alpha/punctuation), token length, and upper-/
lowercasing.

 TokenPatternFeatureGenerator—Partitions tokens into subtokens based on
character classes and generates class features for each of the subtokens and
combinations of those subtokens.

Listing 5.9 Generating custom features for named-entity identification with OpenNLP

Creates aggregated feature
generator containing the 3
generators defined below.Creates feature

generator
corresponding to
the tokens in a 5-
oken widow (2 to
the left, and 2 to

the right).

Creates feature generator
corresponding to the token cla
of the tokens in a 5-token wid
(2 to the left, and 2 to the rig

Creates feature generator
that specifies how this token
was previously tagged.

136 CHAPTER 5 Identifying people, places, and things
 WindowFeatureGenerator—Generates features for a given AdaptiveFeature-
Generator across a window of tokens (such as 1 to the left, 1 to the right).

In the training routine, you need to modify the call to the NameFinderEventStream
class to also include a custom NameContextGenerator class constructor, as shown here.

File inFile = new File(baseDir,"person.train");
NameSampleDataStream nss = new NameSampleDataStream(

new PlainTextByLineStream(
new java.io.FileReader(inFile)));

int iterations = 100;
int cutoff = 5;
TokenNameFinderModel model = NameFinderME.train(

"en", // language
"person", // type
nss,
featureGenerators,
Collections.<String,Object>emptyMap(),
iterations,
cutoff);

File outFile = new File(destDir,"person-custom2.bin");
FileOutputStream outFileStream = new FileOutputStream(outFile);
model.serialize(outFileStream);

Likewise, for testing, you modify the call to the NameFinderME class to also include the
NameContextGenerator class constructor, as shown next.

NameFinderME finder = new NameFinderME(
new TokenNameFinderModel(

new FileInputStream(
new File(destDir, "person-custom2.bin")
)), featureGenerators, NameFinderME.DEFAULT_BEAM_SIZE);

Having explored how to change the inputs to OpenNLP’s training mechanism, you
can now model new types of names and capture new types of information about the
named entities you detect. This will allow you to extend the software to a wide variety
of other name types and text domains. Even armed with this information, in some
cases, the trade-off made by OpenNLP to allow it to be flexible with respect to how it
models different entity types comes at too great a cost in terms of memory and run-
time performance. In the next section, we’ll explore some ways to further customize
OpenNLP’s named-entity software to realize improved performance.

5.5.4 A new way to model names

We’ve discussed previously that OpenNLP creates a separate model for each name
type to allow users to flexibly choose which models they want to use. In this section,
we’ll look at an alternative way to model names which isn’t as flexible, but has other

Listing 5.10 Training a named-entity model with custom features in OpenNLP

Listing 5.11 Using a named-entity model with custom features in OpenNLP

Create
sample
stream.

Train model with
custom feature
generator.

Save
model
to file.

137Customizing OpenNLP entity identification for a new domain
advantages. Earlier you saw that names are modeled by predicting one of three out-
comes (start, continue, other) for each token. Here we consider a model where the
outcomes also include the type of entity being identified. Using this approach you’d
predict outcomes such as person-start, person-continue, date-start, date-continue,
other, and so on, depending on the types you want your model to predict. Table 5.3
shows the predictions assigned to a sentence.

This approach provides several distinct advantages over the approach of using a sepa-
rate model for each name type, but also comes with some limitations and disadvantages.

 The advantages are

 Potential runtime gains—Since only a single model is used, features need only be
computed once for all categories. Likewise, only one set of predictions needs to
be computed for this model. The number of alternative sets examined when
processing a sentence may need to be increased as a larger number of out-
comes are possible, but it’s unlikely that you need three for each name type
being computed.

 Potential memory savings—Only one set of features needs to be loaded into mem-
ory with the model. Also, there are fewer parameters, as the other tag is shared
across name types in this model.

 Entity merging—With only one model, no entity merge process is necessary.

The disadvantages are

 Non-overlapping entities—Since only a single tag is assigned to each token, nested
named entities can’t be tagged. This is usually addressed by only tagging the
named entity with the largest span in training data.

 Potential memory/runtime losses—Because there’s only a single model, you can’t
choose to only use the parts of the model that are needed. This may incur mem-
ory or runtime penalties, especially in cases where only one or two categories is
needed.

 Training data—You can’t leverage training data that hasn’t been annotated for
all the categories. The addition of a new category to this model would require
the annotation of all training data.

As with any set of trade-offs, whether this approach is preferable will depend on the
application requirements. It may be that a combination of these two models is what
works best for the application. The methods described in section 5.3.1 for combining
individual models also apply to combining these types of models to single name type
models that might be developed.

Table 5.3 Sentence tagged under alternate model for named-entity identification

0 1 2 3 4 5 6 7 8 9

Britney Spears was reunited briefly with her sons Saturday .

person-start person-continue other other other other other other date-start other

138 CHAPTER 5 Identifying people, places, and things
 To build a model of this type, a couple of changes need to be made. The first is
that the training data needs to reflect all annotations instead of a single annotation
type. This can be done by altering the training data to use a format that supports mul-
tiple tag types. One example of this is as follows:

<START:person> Britney Spears <END> was reunited with her sons <START:date>
Saturday <END>.

With training data in this form, you can use the NameSampleDataStream provided by
OpenNLP in the same way as was done in section 5.5.2. The code in the next listing
demonstrates how such a model is produced.

String taggedSent =
"<START:person> Britney Spears <END> was reunited " +
"with her sons <START:date> Saturday <END> ";

ObjectStream<NameSample> nss = new NameSampleDataStream(
new PlainTextByLineStream(new StringReader(taggedSent)));

TokenNameFinderModel model = NameFinderME.train(
"en",
"default" ,
nss,
(AdaptiveFeatureGenerator) null,
Collections.<String,Object>emptyMap(),
70 , 1);

File outFile = new File(destDir,"multi-custom.bin");
FileOutputStream outFileStream = new FileOutputStream(outFile);
model.serialize(outFileStream);

NameFinderME nameFinder = new NameFinderME(model);

String[] tokens =
(" Britney Spears was reunited with her sons Saturday .")
.split("\s+");

Span[] names = nameFinder.find(tokens);
displayNames(names, tokens);

This model maps start and continue outcomes onto names of a given type. The type of
name is prepended to the tag’s name in the outcomes. Sequences of person-start and
person-continue tags produce spans of tokens that specify people, and likewise date-
start and date-continue tags specify dates. The name type is accessed via the get-
Type() method in each span produced when input is processed using the model.

5.6 Summary
Identifying and classifying proper names in text can be a rich source of information
for applications that involve text processing. We’ve discussed how to use OpenNLP to
identify names and also provided metrics on the performance of the quality of the
names, the quantity of memory required, and the quickness of the processing. We’ve
also looked at how to train your own models and explored the reasons you might want

Listing 5.12 Training a model with different name types

139Further reading
to do so. Finally we described how OpenNLP performs this task and examined how to
customize models, going so far as to consider an alternative way to model names.
These topics will allow you to leverage high-performance named-entity identification
in text processing applications. Additionally, they give a sense of how classification sys-
tems are used in text processing. We’ll revisit these themes in greater detail later in
the book when we look into classification and categorization. Next, we’ll look into
how to group similar items such as whole documents and search results automatically
using a technique called clustering. Unlike classification, clustering is typically an unsu-
pervised task, meaning it doesn’t involve training a model but instead automatically
groups items based on some measure of similarity.

5.7 Further reading
 Mikheev, Andrei; Moens, Marc; Glover, Claire. 1999. “Named Entity Recognition

without Gazetteers.” Proceedings of EACL ’99. HCRC Language Technology
Group, University of Edinburgh. http://acl.ldc.upenn.edu/E/E99/E99-
1001.pdf.

 Wakao, Takahiro; Gaizauskas, Robert; Wilks, Yorick. 1996. “Evaluation of an algo-
rithm for the recognition and classification of proper names.” Department of
Computer Science, University of Sheffield. http://acl.ldc.upenn.edu/C/C96/
C96-1071.pdf.

 Zhou, GuoDong; Su, Jian. 2002. “Named Entity Recognition using an HMM-based
Chunk Tagger.” Proceedings of the Association for Computational Linguistics
(ACL), Philadelphia, July 2002. Laboratories for Information Technology, Singa-
pore. http://acl.ldc.upenn.edu/acl2002/MAIN/pdfs/Main036.pdf.

Clustering text
How often have you browsed through content online and clicked through on an
article that had an interesting title, but the underlying story was basically the same
as the one you just finished? Or perhaps you’re tasked with briefing your boss on
the day’s news but don’t have the time to wade through all the content involved
when all you need is a summary and a few key points. Alternatively, maybe your
users routinely enter ambiguous or generic query terms or your data covers a lot of
different topics and you want to group search results in order to save users from
wading through unrelated results. Having a text processing tool that can automati-
cally group similar items and present the results with summarizing labels is a good
way to wade through large amounts of text or search results without having to read
all, or even most, of the content.

In this chapter
 Basic concepts behind common text clustering

algorithms

 Examples of how clustering can help improve text
applications

 How to cluster words to identify topics of interest

 Clustering whole document collections using Apache
Mahout and clustering search results using Carrot2
140

141Google News document clustering
 In this chapter, we’ll take a closer look at how to solve problems like these using a
machine learning approach called clustering. Clustering is an unsupervised task (no
human intervention, such as annotating training text, required) that can automati-
cally put related content into buckets, helping you better organize your content or
reduce the amount of content that you must manually process. In some cases, it also
can assign labels to these buckets and even give summaries of what’s in each bucket.

 After looking at the concepts of clustering in the first section, we’ll delve into how
to cluster search results using a project called Carrot2. Next up, we’ll look at how
Apache Mahout can be used to cluster large collections of documents into buckets. In
fact, both Carrot2 and Mahout come with several different approaches to clustering,
each with their own merits and demerits. We’ll also look at how clustering can be
applied at the word level to identify topics in documents (sometimes called topic model-
ing) by using a technique called Latent Dirichlet Allocation, which also happens to be in
Apache Mahout. Throughout the examples, we’ll show how this can all be built on the
work you did earlier with Apache Solr, making it easy to access cluster information
alongside all of your other access pathways, enabling richer access to information.
Finally, we’ll finish the chapter with a section on performance, with an eye toward
both quantity (how fast?) and quality (how good?). First, let’s look at an example
application that many of you are probably already familiar with but may not have
known that it was an implementation of clustering: Google News.

6.1 Google News document clustering
In the age of the 24-hour news cycle with countless news outlets hawking their version
of events, Google News enables readers to quickly see most of the stories published in
a particular time period on a topic by grouping similar articles together. For instance,
in figure 6.1, the headline “Vikings Begin Favre era on the road in Cleveland” shows
there are 2,181 other similar stories to the main story. Though it’s not clear what clus-
tering algorithms Google is using to implement this feature, Google’s documentation
clearly states they’re using clustering (Google News 2011):

Our grouping technology takes into account many factors, such as titles, text, and
publication time. We then use various clustering algorithms to identify stories we
think are closely related. These stories displayed on Google News present news arti-
cles, videos, images and other information.

The power of being able to do this kind of grouping at a large scale should be obvious
to anyone with an internet connection. And though there’s more to the problem of
grouping news content on a near-real-time basis than running a clustering algorithm
over the content, having clustering implementations designed to scale like those in
Apache Mahout are vital to getting off the ground.

 In a task like news clustering, an application needs to be able to quickly cluster
large numbers of documents, determine representative documents or labels for dis-
play, and deal with new, incoming documents. There’s more to the issue than just hav-
ing a good clustering algorithm, but for our purposes we’ll focus on how clustering
can help solve these and other unsupervised tasks that aide in the discovery and pro-
cessing of information.

142 CHAPTER 6 Clustering text
6.2 Clustering foundations
Clustering boils down to grouping similar unlabeled documents together based on
some similarity measure. The goal is to divide all documents in the collection that
are similar into the same cluster as each other while ensuring that dissimilar docu-
ments are in different clusters. Before we begin looking into the foundations of clus-
tering, it’s important to set expectations about clustering in general. Though
clustering is often useful, it’s not a cure-all. The quality of the clustering experience
often comes down to setting expectations for your users. If your users expect perfec-
tion, they’ll be disappointed. If they expect something that will, for the most part,
help them wade through large volumes of data quickly while still dealing with false
positives, they’ll likely be happier. From an application designer standpoint, a fair
amount of testing may be required to find the right settings for striking a balance
between speed of execution and quality of results. Ultimately, remember your goal is
to encourage discovery and serendipitous interaction with your content, not neces-
sarily perfectly similar items.

 With the basic definition and admonitions out of the way, the remaining founda-
tional sections below will examine

 Different types of text clustering can be applied to
 How to choose a clustering algorithm
 Ways to determine similarity
 Approaches to identifying labels
 How to evaluate clustering results

6.2.1 Three types of text to cluster

Clustering can be applied to many different aspects of text, including the words in a
document, the documents themselves, or the results from doing searches. Clustering
is also useful for many other things besides text, like grouping users or data from a
series of sensors, but those are outside the scope of this book. For now, we’ll focus on
three types of clustering: document, search result, and word/topic.

 In document clustering, the focus is on grouping documents as a whole together,
as in the Google News example given earlier. Document clustering is typically done as

Figure 6.1 Example of clustering news documents on Google News. Captured on 09/13/2009.

143Clustering foundations
an offline batch processing job and the output is typically a list of documents and a
centroid vector. Since document clustering is usually a batch processing task, it’s often
worthwhile to spend the extra time (within reason) to get better results. Descriptions
of the clusters are often generated by looking at the most important terms (deter-
mined by some weighting mechanism such as TF-IDF) in documents closest to the cen-
troid. Some preprocessing is usually required to remove stopwords and to stem words,
but neither of these are necessarily a given for all algorithms. Other common text
techniques such as identifying phrases or using n-grams may also be worth experi-
menting with when testing approaches. To read more on document clustering, see An
Introduction to Information Retrieval (Manning 2008) for starters.

 For search result clustering, the clustering task, given a user query, is to do a search
and group the results of the search into clusters. Search result clustering can be quite
effective when users enter generic or ambiguous terms (such as apple) or when the
dataset contains a disparate set of categories. Search result clustering is often charac-
terized by several factors:

 Clustering on short snippets of text (title, maybe a small section of the body
where the query terms matched).

 Algorithms designed to work on small sets of results and to return as fast as
possible.

 Labels take on more significance, since users will likely treat them like facets to
make decisions about how to further navigate the result set.

Preprocessing is often done just as in document clustering, but since labels are usually
more significant, it may make sense to spend the extra time to identify frequently
occurring phrases. For an overview of search result clustering, see “A Survey of Web
Clustering Engines” (Carpineto 2009).

 Clustering words into topics, otherwise called topic modeling, is an effective way to
quickly find the topics that are covered in a large set of documents. The approach is
based on the assumption that documents often cover several different topics and that
words related to a given topic are often found near each other. By clustering the
words, you can quickly see which words appear near each other and then also what
documents are attached to those words. (In a sense, the approach also does docu-
ment clustering.) For instance, the output from running a topic modeling algorithm
(see section 6.6) yields the clustered words in table 6.1 (formatted for display from
the original).

Table 6.1 Example topics and words

Topic 0 Topic 1

win saturday time game know nation u more after
two take over back has from texa first day man
offici 2 high one sinc some sunday

yesterday game work new last over more most year
than two from state after been would us polic peopl
team run were open five american

144 CHAPTER 6 Clustering text
In this example, the first thing to notice is that the topics themselves lack names. Nam-
ing the topic is the job of the person generating the topics. Next, you don’t even know
what documents contain which topic. So why bother? Generating the topics for a col-
lection is one more way to aid users in browsing a collection and discovering interest-
ing information about the collection without having to read the whole collection.
Additionally, there has been some more recent work on better characterizing the top-
ics through phrases (see Blei [2009]).

 To learn more on topic modeling, start with the references at the end of this chap-
ter and also http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation, which will
lead you to the primary academic papers written on the topic.

 Now that you have some groundwork for the types of text you want to cluster, let’s
take a look at the factors that play into the selection of a clustering algorithm.

6.2.2 Choosing a clustering algorithm

Many different algorithms are available for clustering, and covering them all is
beyond the scope of this book. For instance, as of this writing, Apache Mahout con-
tains implementations of K-Means (demonstrated later), Fuzzy K-Means, Mean-Shift,
Dirichlet, Canopy, Spectral, and Latent Dirichlet Allocation, and there will no doubt
be more by the time this book is published. Instead of digging too much into how
each is implemented, let’s look at some of the more common features of clustering
algorithms in order to better understand what criteria are helpful in picking a cluster-
ing algorithm.

 In discussing clustering algorithms, there are many aspects to examine to deter-
mine what’s going to work best for an application. Traditionally, one of the main
deciding factors has been whether the algorithm is hierarchical in nature or flat. As
the name implies, hierarchical approaches work either top-down or bottom-up, build-
ing a hierarchy of related documents that can be broken down into smaller and
smaller sets. Flat approaches are usually much faster since they don’t have to relate
the clusters to other clusters. Also keep in mind that some flat algorithms can be mod-
ified to be hierarchical.

 Moving beyond hierarchical versus flat, table 6.2 provides details on many other
factors that play out when choosing a clustering approach.

Table 6.2 Clustering algorithm choices

Characteristic Description

Cluster membership (soft/hard) Hard—Documents belong to one and only one cluster.

Soft—Documents can be in more than one cluster and often have
an associated probability of membership.

Updateable Can the clusters be updated when new documents are added or
does the entire calculation need to be re-executed?

Probabilistic approach Understanding the underpinnings of an approach will help you
know the benefits and failings of such an approach.

145Clustering foundations
Individual algorithms also have their own quirks that need to be considered when
evaluating what approach to take, but table 6.2 should provide some overall guidance
on choosing an algorithm. From here, expect to spend some time evaluating the vari-
ous approaches to determine which works best for your data.

6.2.3 Determining similarity

Many clustering algorithms contain a notion of similarity that’s used to determine
whether a document belongs to a cluster. Similarity, in many clustering algorithms, is
implemented as a measure of the distance between two documents. In order for these
distance measures to work, most systems represent documents as vectors (almost
always sparse—meaning most entries are zero) where each cell in the vector is the
weight of that particular term for that particular document. The weight can be any
value the application wants, but is typically some variation on TF-IDF. If this all sounds
vaguely familiar to you, it should, as the approaches for weighting documents for clus-
tering are similar to those used for searching. To remind yourself of these concepts,
see section 3.2.3.

 In practice, document vectors are almost always normalized first using a p-norm
(p >= 0) so that really short and really long documents don’t affect the results in a neg-
ative way. Normalizing by a p-norm just means dividing each vector by its length,
thereby scaling all the vectors onto the unit shape (for example, the 2-norm’s is a unit
circle). The most common norms used, and the ones most readers will be familiar
with, are the 1-norm (Manhattan distance) and 2-norm (Euclidean distance). You’ll
notice that the examples later in the chapter use the Euclidean distance for normaliz-
ing our vectors. For more information on p-norms, see http://en.wikipedia.org/wiki/
Norm_(mathematics).

Speed The runtime of most flat clustering approaches is linear in the
number of documents, whereas many hierarchical approaches are
nonlinear.

Quality Hierarchical approaches are often more accurate than flat ones,
at the cost of execution time. More on evaluation in section 6.2.5.

Handles feedback Can the algorithm adjust/improve based on user feedback? For
instance, if a user marked a document as not appropriate for a
cluster, can the algorithm exclude that document? Does it change
other clusters?

Number of clusters Some algorithms require an application to decide on the number
of clusters up front; others pick the appropriate number as part of
the algorithm. If the algorithm requires this to be specified, expect
to experiment with this value to obtain good results.

Table 6.2 Clustering algorithm choices (continued)

Characteristic Description

146 CHAPTER 6 Clustering text
 After the vectors are created, it’s then reasonable to measure the distance between
two documents as the distance between two vectors. There are many different distance
measures available, so we’ll focus on the few most common ones:

 Euclidean distance—The tried and true “as the crow flies” distance between any
two points. Variations include the squared Euclidean distance (saving a square
root calculation) and one that can weight parts of the vector.

 Manhattan distance—Otherwise known as the taxicab distance, as it represents the
distance traveled if one were driving a taxicab in a city laid out on a grid, as in
Manhattan in New York City. Sometimes the parts of the calculation may be
weighted.

 Cosine distance—Takes the cosine of the angle formed by putting the tails of two
vectors together; so two similar documents (angle == 0) have a cosine equal to 1.
See section 3.2.3.

As you’ll see in the Apache Mahout section later, the distance measure is often a
parameter that can be passed in, allowing experimentation with different measures.
As to which distance measure to use, you should use one that corresponds to the nor-
malization applied to the vector. For instance, if you used the 2-norm, then the Euclid-
ean or Cosine distances would be most appropriate. That being said, though
theoretically incorrect, some approaches will work without such an alignment.

 For probabilistic approaches, the question of similarity is really a question of the
probability that a given document is in a cluster. They often have a more sophisticated
model of how documents are related based on statistical distributions and other prop-
erties. Also, some of the distance-based approaches (K-Means) can be shown to be
probabilistic.

6.2.4 Labeling the results

Because clustering is often used in discovery tools with real users, picking good labels
and/or good representative documents is often as important to a clustering-based
application as determining the clusters themselves. Without good labels and represen-
tative documents, users will be discouraged from interacting with the clusters to find
and discover useful documents.

 Picking representative documents from a cluster can be done in several ways. At
the most basic, documents can be selected randomly, giving users a wider mix of
results, and potentially lead to new discoveries, but also, if the documents are far from
the center, failing to capture what the cluster is about. To remedy this, documents can
be picked based on their proximity to the cluster’s centroid or their likelihood of
membership. In this way, documents are likely good indicators of what the cluster is
about, but may lose some of the serendipity associated with random selection. This
leads to a dual approach where some documents are picked randomly and some are
picked based on proximity/probability.

147Clustering foundations
 Picking good labels, or topics, is more difficult than picking representative docu-
ments, and there are many approaches, each with their pros and cons. In some appli-
cations, simple techniques akin to faceting (see chapter 3) can be used to effectively
showcase the frequency of tags common to a cluster, but most applications are better
served by finding and displaying important terms and phrases in the cluster. Of
course, what’s deemed important is a subject of ongoing research. One simple
approach is to leverage the weights in the vector (say, using our friend TF-IDF; see sec-
tion 3.2.3) and return a list of the terms sorted by weight. Using n-grams, this can be
extended to return a list of phrases (technically they’re phrases, but they may not be
of high quality) based on their weights in the collection/cluster. Another common
approach is to do some conceptual/topic modeling through techniques that utilize
singular value decomposition, such as latent semantic analysis (see Deerwester
[1990]) or Latent Dirichlet Allocation (see Blei [2003], demonstrated later in the
chapter). Another useful approach is to use the log-likelihood ratio (LLR; see Dun-
ning [1993]) of terms that are in the cluster versus those outside of the cluster. The
underlying math for the approaches other than TF-IDF (which we’ve already dis-
cussed) is beyond the scope of this book. But in using this chapter’s tools (Carrot2 and
Apache Mahout), you’ll see demonstrations of all of these approaches either implic-
itly as part of the algorithm itself or explicitly via a specific tool. Regardless of how you
get labels, the results will be useful in understanding the quality of your clusters,
which is the subject of the next section.

6.2.5 How to evaluate clustering results

As with any text processing tool, experimenting and evaluating clustering results
should be as much a part of building the application as designing the architecture or
figuring out how to deploy it. Just as in search, named entity recognition, and the
other concepts in this book, clustering can be evaluated in a number of ways.

 The first approach most people use is the laugh test, otherwise known as the smell
test. Do these clusters look reasonable when viewed by a person with some knowledge
of what a good result should be? Though you should never read too much into the
smell test, it’s nevertheless an invaluable part of the process and one that usually
catches “dumb” mistakes like bad or missing input parameters. The downsides are that
it’s impossible to replicate a person’s reaction on demand and in a repeatable manner,
not to mention it’s only one person’s opinion. It’s also, for better or worse, dependent
on the label generation process, which may not capture the clusters accurately.

 Taking a few people and having them rate the results is often the next step up
testing-wise. Whether it’s a quality assurance team or a group of target users, correlat-
ing the reactions of a small group of people can provide valuable feedback. The cost is
the time and expense involved in arranging these tests, not to mention the human
error and lack of on-demand repeatability. But if done several times, a gold standard
can be derived, which is the next approach.

148 CHAPTER 6 Clustering text
 A gold standard is a set of clusters created by one or more people that are inter-
preted as the ideal set of results for the clustering task. Once constructed, this set can
then be compared against clustering results from various experiments. Creating a
gold standard is often impractical, brittle (dealing with updates, new documents, and
so on), or prohibitively expensive for large datasets. If you know your collection isn’t
going to change much and if you have the time, creating a gold standard, perhaps on
a subset of the total, may be worthwhile. One semi-automated approach is to run one
or more of the clustering algorithms and then have one or more people adjust the
clusters manually to arrive at the final result. When the judgments are in place, a num-
ber of formulas (purity, normalized mutual information, Rand index, and F-measure)
can be used to sum up the results into a single metric that indicates the quality of the
clustering. Rather than lay out their formulas here, we’ll refer the interested reader to
section 16.3 of An Introduction to Information Retrieval (Manning 2008), where proper
treatment is given these measures.

 Finally, some mathematical tools are available that can help evaluate clusters.
These tools are all heuristics for evaluating clustering and don’t require human input.
They shouldn’t be used in isolation, but instead as helpful indicators of clustering
quality. The first measure is calculated by randomly removing some subset of the
input data and then running the clustering. After the clustering is complete, calculate
the percentage of documents in each cluster out of the total number of points and set
it aside. Next, add back in the random data, rerun the clustering, and recalculate the
percentage. Given that the held back data was randomly distributed, you’d expect it to
roughly conform to the distribution from the first set. If cluster A had 50% of the doc-
uments in the first set, it’s reasonable to expect it (but not guaranteed) to still hold
50% of the documents in the larger set.

 From information theory (see http://en.wikipedia.org/wiki/Information_theory
for starters) come several other useful measures that may help assess clustering qual-
ity. The first is the notion of entropy. Entropy is a measure of the uncertainty of a ran-
dom variable. In practical terms, it’s a measure of the information contained in a
cluster. For text-based clustering, you can build on the entropy and calculate the per-
plexity, which measures how well cluster membership predicts what words are used.

 There’s plenty more to learn about clustering. For those interested in learning
more about the concepts behind clustering, a good starting point is An Introduction to
Information Retrieval (Manning 2008). In particular, chapters 16 and 17 focus at a
deeper level on the concepts discussed here. Cutting et al. also provide good informa-
tion on how to utilize clustering in discovery in their paper “Scatter/Gather: A
Cluster-based Approach to Browsing Large Document Collections” (Cutting 1992).
For now, we’ll continue on and look at how to run several clustering implementations,
including one for search results and another for document collections.

149Clustering search results using Carrot2
6.3 Setting up a simple clustering application
For the discussions in the following sections on clustering, we’ll demonstrate the con-
cepts using the content from several news websites via their RSS/Atom feeds. To that
end, we’ve set up a simple Solr Home (schema, config, and so forth), located under
the solr-clustering directory, that ingests the feeds from several newspapers and news
organizations. This instance will rely on Solr’s Data Import Handler to automatically
ingest and index the feeds into the schema. From these feeds, we can then demon-
strate the various clustering libraries discussed in the following sections.

 Building on the search knowledge gained in chapter 3, the three primary Solr pieces
of interest for our new clustering application are schema.xml, rss-data-config.xml, and
the addition of the Data Import Handler to solrconfig.xml. For the schema and the RSS
configuration, we examined the content from the various feeds and mapped that into
a few common fields, which were then indexed. We also stored term vectors, for reasons
shown later in section 6.5.1.

 The details of the Data Import Handler (DIH) configuration can be found on
Solr’s wiki at http://wiki.apache.org/solr/DataImportHandler. To run Solr with the
clustering setup from the Taming Text source, execute the following commands in the
source distribution root directory:

 cd apache-solr/example
 ./bin/start-solr.sh solr-clustering

 Invoke the Data Import Handler import command: http://localhost:8983/
solr/dataimport?command=full-import

 Check the status of the import: http://localhost:8983/solr/dataimport?
command=status

With this basic setup, we can now begin to demonstrate clustering in action using the
data indexed from the feeds we just described. We’ll start with Carrot2 for search
results and then look into document collection clustering using Apache Mahout.

6.4 Clustering search results using Carrot2

Carrot2 is an open source search results clustering library released under a BSD-like
license and found at http://project.carrot2.org/. It’s specifically designed for deliver-
ing high-performance results on typical search results (say, a title and small snippet of
text). The library comes with support for working with a number of different search
APIs, including Google, Yahoo!, Lucene, and Solr (as a client) as well as the ability to
cluster documents in XML or those created programmatically. Additionally, the Solr
project has integrated Carrot2 into the server side, which we’ll demonstrate later.

 Carrot2 comes with two clustering implementations: STC (suffix tree clustering)
and Lingo.

 STC was first introduced for web search result clustering by Zamir and Etzioni in
“Web document clustering: a feasibility demonstration” (Zamir 1998). The algorithm
is based on the suffix tree data structure, which can be used to efficiently (linear time)

150 CHAPTER 6 Clustering text
identify common substrings. Efficiently finding common substrings is one of the keys
to quickly finding labels for clusters. To read more on suffix trees, start with http://
en.wikipedia.org/wiki/Suffix_tree.

 The Lingo algorithm was created by Stanisław Osiński and Dawid Weiss (the creators
of the Carrot2 project). At a high level, Lingo uses singular value decomposition (SVD;
see http://en.wikipedia.org/wiki/Singular_value_decomposition to learn more) to
find good clusters and phrase discovery to identify good labels for those clusters.

 Carrot2 also comes with a user interface that can be used for experimenting with
your own data, and a server implementation supporting REST that makes it easy
to interact with Carrot2 via other programming languages. Finally, if so inclined,
an application may add its own clustering algorithm into the framework via a
well-defined API. To explore Carrot2 in greater depth, refer to the manual at http://
download.carrot2.org/head/manual/.

 For the remainder of this section, we’ll focus on showing how to use the API to
cluster a data source and then look at how Carrot2 is integrated into Solr. We’ll finish
the section with a look at performance both in terms of quality and speed for both of
the algorithms.

6.4.1 Using the Carrot2 API

Carrot2 architecture is implemented as a pipeline. Content is ingested from a docu-
ment source and then handed off to one or more components that modify and cluster
the sources, outputting the clusters at the other end. In terms of actual classes, at its
most basic, the pipeline consists of one or more IProcessingComponents that are
controlled by the IController implementation. The controller handles initializing
the components and invoking the components in the correct order and with the
appropriate inputs. Examples of IProcessingComponent implementations include the
various document sources (GoogleDocumentSource, YahooDocumentSource, Lucene-
DocumentSource) as well as the clustering implementations themselves: STC-

ClusteringAlgorithm and LingoClusteringAlgorithm.
 Naturally, a bunch of other pieces get used by the implementation to do things like

tokenize and stem the text. As for the controller, there are two implementations:
SimpleController and CachingController. The SimpleController is designed for
easy setup and one-time use, whereas the CachingController is designed for use in
production environments where it can take advantage of the fact that queries are
often repeated and therefore cache the results.

 To see Carrot2 in action, let’s look at some sample code that clusters some simple
documents. The first step is to create some documents. For Carrot2, documents con-
tain three elements: a title, a summary/snippet, and a URL. Given a set of documents
with these characteristics, it’s straightforward to cluster them, as is demonstrated in
the next listing.

151Clustering search results using Carrot2

//... setup some documents elsewhere
final Controller controller =

ControllerFactory.createSimple();
documents = new ArrayList<Document>();
for (int i = 0; i < titles.length; i++) {

Document doc = new Document(titles[i], snippets[i],
"file://foo_" + i + ".txt");

documents.add(doc);
}
final ProcessingResult result = controller.process(documents,

"red fox",
LingoClusteringAlgorithm.class);

displayResults(result);

Running listing 6.1 yields the following results:

Cluster: Lamb
Mary Loses Little Lamb. Wolf At Large.
March Comes in like a Lamb

Cluster: Lazy Brown Dogs
Red Fox jumps over Lazy Brown Dogs
Lazy Brown Dogs Promise Revenge on Red Fox

Though the documents of the example are obviously made up (see
Carrot2ExampleTest.java in the source for their construction), the code effectively
demonstrates the simplicity of using the Carrot2 APIs. Moving beyond the simple case,
many applications will want to use the CachingController for performance reasons.
As the name implies, the CachingController caches as much of the results as possible
in order to improve performance. Applications may also want to use other data
sources (such as Google or Yahoo!) or implement their own IDataSource to represent
their content. Additionally, many of the components come with a variety of attributes
that can be set to tune/alter both the speed and quality of results, which we’ll discuss
in section 6.7.2.

 Now that you have an idea of how to implement some of the basics of clustering
with Carrot2, we can take a look at how it integrates with Solr.

6.4.2 Clustering Solr search results using Carrot2

As of version 1.4, Apache Solr adds full support for search result clustering using
Carrot2, including the ability to configure, via the solrconfig.xml file, all of the compo-
nent attributes and the algorithms used for clustering. Naturally, Carrot2 uses the Solr
search results to cluster on, allowing the application to define which fields are used to
represent the title, snippet, and URL. In fact, this has already been set up and config-
ured in the Taming Text source distribution under the solr-clustering directory.

 There are three parts to configuring Solr to use the Carrot2 clustering compo-
nent. First, the component is implemented as a SearchComponent, which means it
can be plugged into a Solr RequestHandler. The XML to configure this component
looks like this:

Listing 6.1 Simple Carrot2 example

Create IController.

Cluster documents.
Print out clusters.

152 CHAPTER 6 Clustering text
<searchComponent
 class="org.apache.solr.handler.clustering.ClusteringComponent"
 name="cluster">
 <lst name="engine">
 <str name="name">default</str>
 <str name="carrot.algorithm"><lineArrow/>
 org.carrot2.clustering.lingo.LingoClusteringAlgorithm</str>
 </lst>
 <lst name="engine">
 <str name="name">stc</str>
 <str name="carrot.algorithm"><lineArrow/>
 org.carrot2.clustering.stc.STCClusteringAlgorithm</str>
 </lst>
 </searchComponent>

In the <searchComponent> declaration, you set up the ClusteringComponent and
then tell it which Carrot2 clustering algorithms to use. In this case, we set up both
the Lingo and the STC clustering algorithms. The next step is to hook the Search-
Component into a RequestHandler, like this:

<requestHandler name="standard"
 class="solr.StandardRequestHandler" default="true">
 <!-- default values for query parameters -->
 <!-- ... -->
 <arr name="last-components">
 <str>cluster</str>
 </arr>
 </requestHandler>

Finally, it’s often useful in Solr to set up some intelligent defaults so that all of the var-
ious parameters need not be passed in on the command line. In our example, we
used this:

<requestHandler name="standard"
 class="solr.StandardRequestHandler" default="true">
 <!-- default values for query parameters -->
 <lst name="defaults">
 <!-- ... -->
 <!-- Clustering -->
 <!--<bool name="clustering">true</bool>-->
 <str name="clustering.engine">default</str>
 <bool name="clustering.results">true</bool>
 <!-- The title field -->
 <str name="carrot.title">title</str>
 <!-- The field to cluster on -->
 <str name="carrot.snippet">desc</str>
 <str name="carrot.url">link</str>
 <!-- produce summaries -->
 <bool name="carrot.produceSummary">false</bool>
 <!-- produce sub clusters -->
 <bool name="carrot.outputSubClusters">false</bool>
 </lst>
 </requestHandler>

In the configuration of the default parameters, we declared that Solr should use the
default clustering engine (Lingo) and that Carrot2 should use the Solr title field as the

153Clustering search results using Carrot2
Carrot2 title, the Solr description field as the Carrot2 snippet field, and the Solr link
field as the Carrot2 URL field. Lastly, we told Carrot2 to produce summaries but to skip
outputting subclusters. (For the record, subclusters are created by clustering within a
single cluster.)

 That’s all the setup needed! Assuming Solr was started as outlined in listing 6.3,
asking Solr for search result clusters is as simple as adding the &clustering=true
parameter to the URL, as in http://localhost:8983/solr/select/?q=*:*&clustering
=true&rows=100. Executing that command will result in Solr retrieving 100 docu-
ments from the index and clustering them. A screenshot of some of the results of run-
ning this clustering query appears in figure 6.2.

 At the bottom of figure 6.2, we purposefully left in a junk result of R Reuters
sportsNews 4 to demonstrate the need for proper tuning of Carrot2 via the various

Figure 6.2 A screenshot of running a Solr clustering command

154 CHAPTER 6 Clustering text
attributes available, which will be discussed in section 6.7.2. See http://wiki.apache
.org/solr/ClusteringComponent for a full accounting of the options available for
tuning the clustering component in Solr.

 Now that you have an understanding of how to cluster search results, let’s move on
and take a look at how to cluster whole document collections using Apache Mahout.
We’ll revisit Carrot2 later in the chapter when we look at performance.

6.5 Clustering document collections with Apache Mahout
Apache Mahout is an Apache Software Foundation project with the goal of developing
a suite of machine learning libraries designed from the ground up to be scalable to
large numbers of input items. As of this writing, it contains algorithms for classifica-
tion, clustering, collaborative filtering, evolutionary programming, and more, as well
as useful utilities for solving machine learning problems such as manipulating matrices
and storing Java primitives (Maps, Lists, and Sets for storing ints, doubles, and so on).
In many cases, Mahout relies on the Apache Hadoop (http://hadoop.apache.org)
framework (via the MapReduce programming model and a distributed filesystem
called HDFS) for developing algorithms designed to scale. And though much of this
chapter focuses on clustering with Mahout, chapter 7 covers classification with
Mahout. The other parts of Mahout can be discovered on its website at http://
mahout.apache.org/ and in Mahout in Action (see http://manning.com/owen/). To
get started for this section, you’ll need to download Mahout 0.6 from http://
archive.apache.org/dist/mahout/0.6/mahout-distribution-0.6.tar.gz and unpack it
into a directory, which we’ll call $MAHOUT_HOME from here on out. After you down-
load it and unpack it, change into the $MAHOUT_HOME directory and run mvn
install -DskipTests (you can run the tests, but they take a long time!).

 Without further ado, the next three sections examine how to prepare your data
and then cluster it using Apache Mahout’s implementation of the K-Means algorithm.

Apache Hadoop—The yellow elephant with big computing power
Hadoop is an implementation of ideas put forth by Google (see Dean [2004]), first
implemented in the Lucene project Nutch, and since spun out to be its own project
at the Apache Software Foundation. The basic idea is to pair a distributed filesystem
(called GFS by Google and HDFS by Hadoop) with a programming model (MapReduce)
that makes it easy for engineers with little-to-no background in parallel and distrib-
uted systems to write programs that are both scalable and fault tolerant to run on
very large clusters of computers.

Though not all applications can be written in the MapReduce model, many text-based
applications are well suited for the approach.

For more information on Apache Hadoop, see Hadoop: The Definitive Guide (http://
oreilly.com/catalog/9780596521981) by Tom White or Hadoop in Action (http://
manning.com/lam/) by Chuck Lam.

155Clustering document collections with Apache Mahout

or
-

 3.

w

fi
sp
6.5.1 Preparing the data for clustering

For clustering, Mahout relies on data to be in an org.apache.mahout.matrix.Vector
format. A Vector in Mahout is simply a tuple of floats, as in <0.5, 1.9, 100.5>. More
generally speaking, a vector, often called a feature vector, is a common data structure
used in machine learning to represent the properties of a document or other piece of
data to the system. Depending on the data, vectors are often either densely populated
or sparse. For text applications, vectors are often sparse due to the large number of
terms in the overall collection, but the relatively few terms in any particular
document. Thankfully, sparseness often has its advantages when computing common
machine learning tasks. Naturally, Mahout comes with several implementations that
extend Vector in order to represent both sparse and dense vectors. These implemen-
tations are named org.apache.mahout.matrix.SparseVector and org.apache

.mahout.matrix.DenseVector. When running your application, you should sample
your data to determine whether it’s spare or dense and then choose the appropriate
representation. You can always try both on subsets of your data to determine which
performs best.

 Mahout comes with several different ways to create Vectors for clustering:

 Programmatic—Erite code that instantiates the Vector and then saves it to an
appropriate place.

 Apache Lucene index—Transforms an Apache Lucene index into a set of Vectors.
 Weka’s ARFF format—Weka is a machine learning project from the University of

Waikato (New Zealand) that defines the ARFF format. See http://
cwiki.apache.org/MAHOUT/creating-vectors-from-wekas-arff-format.html for
more information. For more information on Weka, see Data Mining: Practical
Machine Learning Tools and Techniques (Third Edition) (http://www.cs.waikato
.ac.nz/~ml/weka/book.html) by Witten and Frank.

Since we’re not using Weka in this book, we’ll forgo coverage of the ARFF format here
and focus on the first two means of producing Vectors for Mahout.

PROGRAMMATIC VECTOR CREATION

Creating Vectors programmatically is straightforward and best shown by a simple
example, as shown here.

double[] vals = new double[]{0.3, 1.8, 200.228};

Vector dense = new DenseVector(vals);

assertTrue(dense.size() == 3);

Vector sparseSame = new SequentialAccessSparseVector(3);

Vector sparse = new SequentialAccessSparseVector(3000);

for (int i = 0; i < vals.length; i++) {

sparseSame.set(i, vals[i]);

Listing 6.2 Vector creation using Mahout

Create DenseVector with label
of my-dense and 3 values. The
cardinality of this vector is 3.

Create SparseVect
with a label of my
sparse-same that
has cardinality of

Create
SparseVector
ith a label of

my-sparse
and a

cardinality of
3000.

Set values to
rst 3 items in
arse vectors.

156 CHAPTER 6 Clustering text

T
s

C

Wr

phy
out

A

Vector
the un

Sequen
sparse.set(i, vals[i]);

}

assertFalse(dense.equals(sparse));

assertEquals(dense, sparseSame);

assertFalse(sparse.equals(sparseSame));

Vectors are often created programmatically when reading data from a database or
some other source that’s not supported by Mahout. When a Vector is constructed, it
needs to be written to a format that Mahout understands. All of the clustering algo-
rithms in Mahout expect one or more files in Hadoop’s SequenceFile format. Mahout
provides the org.apache.mahout.utils.vectors.io.SequenceFileVectorWriter to
assist in serializing Vectors to the proper format. This is demonstrated in the follow-
ing listing.

File tmpDir = new File(System.getProperty("java.io.tmpdir"));
File tmpLoc = new File(tmpDir, "sfvwt");
tmpLoc.mkdirs();
File tmpFile = File.createTempFile("sfvwt", ".dat", tmpLoc);

Path path = new Path(tmpFile.getAbsolutePath());
Configuration conf = new Configuration();
FileSystem fs = FileSystem.get(conf);
SequenceFile.Writer seqWriter = SequenceFile.createWriter(fs, conf,

path, LongWritable.class, VectorWritable.class);
VectorWriter vecWriter = new SequenceFileVectorWriter(seqWriter);
List<Vector> vectors = new ArrayList<Vector>();
vectors.add(sparse);
vectors.add(sparseSame);
vecWriter.write(vectors);
vecWriter.close();

Mahout can also write out Vectors to JSON, but doing so is purely for human-readability
needs as they’re slower to serialize and deserialize at runtime, and slow down the clus-
tering algorithms significantly. Since we’re using Solr, which uses Apache Lucene
under the hood, the next section on creating vectors from a Lucene index is much
more interesting.

CREATING VECTORS FROM AN APACHE LUCENE INDEX

One or more Lucene indexes are a great source for creating Vectors, assuming the
field to be used for Vector creation was created with the termVector="true" option
set in the schema, as in this code:

<field name="description" type="text"
indexed="true" stored="true"
termVector="true"/>

Given an index, we can use Mahout’s Lucene utilities to convert the index to a
SequenceFile containing Vectors. This conversion can be handled on the command

Listing 6.3 Serializing vectors to a SequenceFile

he dense and
parse Vectors

aren’t equal
because they

have different
cardinality.

The dense and sparse
Vectors are equal because
they have the same values
and cardinality.

Create
Configuration
for Hadoop.

reate Hadoop
SequenceFile.
iter to handle

the job of
sically writing

 the vectors to
a file in HDFS.

 VectorWriter
processes the
s and invokes
derlying write

methods on
ceFile.Writer.

Do work of writing out files.

157Clustering document collections with Apache Mahout
line by running the org.apache.mahout.utils.vector.lucene.Driver program.
Though the Driver program has many options, table 6.3 outlines the more commonly
used ones.

To put this in action in the context of our Solr instance, we can point the driver at the
directory containing the Lucene index and specify the appropriate input parameters,
and the driver will do the rest of the work. For demonstration purposes, we’ll assume
Solr’s index is stored in <Solr Home>/data/index and that it has been created as
shown earlier in the chapter. You might generate your Vectors by running the driver
as in the next listing.

<MAHOUT_HOME>/bin/mahout lucene.vector

--dir <PATH>/solr-clustering/data/index

--output /tmp/solr-clust-n2/part-out.vec --field description

--idField id --dictOut /tmp/solr-clust-n2/dictionary.txt --norm 2

In the example in listing 6.4, the driver program ingests the Lucene index, grabs the
necessary document information from the index, and writes it out to the part-out.dat
(the part is important for Mahout/Hadoop) file. The dictionary.txt file that’s also cre-
ated will contain a mapping between the terms in the index and the position in the
vectors created. This is important for re-creating the vectors later for display purposes.

Table 6.3 Lucene index conversion options

Argument Description Required

--dir <Path> Specifies the location of the Lucene index. Yes

--output <Path> The path to output the SequenceFile to on
the filesystem.

Yes

--field <String> The name of the Lucene Field to use as the
source.

Yes

--idField <String> The name of the Lucene Field containing the
unique ID of the document. Can be used to
label the vector.

No

--weight [tf|tfidf] The type of weight to be used for representing
the terms in the field. TF is term frequency
only; TF-IDF uses both term frequency and
inverse document frequency.

No

--dictOut <Path> The location to output the mapping between
terms and their position in the vector.

Yes

--norm [INF|-1|A double >= 0] Indicates how to normalize the vector. See
http://en.wikipedia.org/wiki/Lp_norm.

No

Listing 6.4 Sample Vector creation from a Lucene index

158 CHAPTER 6 Clustering text
Finally, we chose the 2-norm here, so that we can cluster using the CosineDistance-
Measure included in Mahout. Now that we have some vectors, let’s do some clustering
using Mahout’s K-Means implementation.

6.5.2 K-Means clustering

There are many different approaches to clustering, both in the broader machine
learning community and within Mahout. For instance, Mahout alone, as of this writ-
ing, has clustering implementations called

 Canopy
 Mean-Shift
 Dirichlet
 Spectral
 K-Means and Fuzzy K-Means

Of these choices, K-Means is easily the most widely known. K-Means is a simple and
straightforward approach to clustering that often yields good results relatively quickly.
It operates by iteratively adding documents to one of k clusters based on the distance,
as determined by a user-supplied distance measure, between the document and the
centroid of that cluster. At the end of each iteration, the centroid may be recalculated.
The process stops after there’s little-to-no change in the centroids or some maximum
number of iterations have passed, since otherwise K-Means isn’t guaranteed to con-
verge. The algorithm is kicked off by either seeding it with some initial centroids or by
randomly choosing centroids from the set of vectors in the input dataset. K-Means
does have some downsides. First and foremost, you must pick k and naturally you’ll get
different results for different values of k. Furthermore, the initial choice for the cen-
troids can greatly affect the outcome, so you should be sure to try different values as
part of several runs. In the end, as with most techniques, it’s wise to run several itera-
tions with various parameters to determine what works best for your data.

 Running the K-Means clustering algorithm in Mahout is as simple as executing the
org.apache.mahout.clustering.kmeans.KMeansDriver class with the appropriate
input parameters. Thanks to the power of Hadoop, you can execute this in either
standalone mode or distributed mode (on a Hadoop cluster). For the purposes of this
book, we’ll use standalone mode, but there isn’t much difference for distributed
mode.

 Instead of looking at the options that KMeansDriver takes first, let’s go straight to
an example using the Vector dump we created earlier. The next listing shows an
example command line for running the KMeansDriver.

<$MAHOUT_HOME>/bin/mahout kmeans \
--input /tmp/solr-clust-n2/part-out.vec \
--clusters /tmp/solr-clust-n2/out/clusters -k 10 \
--output /tmp/solr-clust-n2/out/ --distanceMeasure \

Listing 6.5 Example of using the KMeansDriver command-line utility

159Clustering document collections with Apache Mahout
org.apache.mahout.common.distance.CosineDistanceMeasure \
--convergenceDelta 0.001 --overwrite --maxIter 50 --clustering

Most of the parameters should be self-explanatory, so we’ll focus on the six main
inputs that drive K-Means:

 --k—The k in K-Means. Specifies the number of clusters to be returned.
 --distanceMeasure—Specifies the distance measure to be used for comparing

documents to the centroid. In this case, we used the Cosine distance measure
(similar to how Lucene/Solr works, if you recall). Mahout comes with several
that are located in the org.apache.mahout.common.distance package.

 --convergenceDelta—Defines the threshold below which clusters are consid-
ered to be converged and the algorithm can exit. Default is 0.5. Our choice of
0.001 was purely arbitrary. Users should experiment with this value to deter-
mine the appropriate time-quality trade-offs.

 --clusters—The path containing the “seed” centroids to cluster around. If
--k isn’t explicitly specified, this path must contain a file with k Vectors (serial-
ized as described in listing 6.3). If --k is specified, then k random vectors will be
chosen from the input.

 --maxIter—Specifies the maximum number of iterations to run if the algo-
rithm doesn’t converge before then.

 --clustering—Take the extra time to output the members of each cluster. If
left off, only the centroids of the clusters are determined.

When running the command in listing 6.5, you should see a bunch of logging mes-
sages go by and (hopefully) no errors or exceptions. Upon completion, the output
directory should contain several subdirectories containing the output from each itera-
tion (named clusters-X, where X is the iteration number) as well as the input clusters
(in our case, they were randomly generated) and the points that map to the final iter-
ation’s cluster output.

 Since Hadoop sequence files themselves are the output, they’re not human-
readable in their raw form. But Mahout comes with a few utilities for viewing the
results from a clustering run. The most useful of these tools is the
org.apache.mahout.utils.clustering.ClusterDumper, but the org.apache.mahout
.utils.ClusterLabels, org.apache.mahout.utils.SequenceFileDumper, and org
.apache.mahout.utils.vectors.VectorDumper can also be useful. We’ll focus on
the ClusterDumper here. As you can probably guess from the name, the Cluster-
Dumper is designed to dump out the clusters created to the console window or a file
in a human-readable format. For example, to view the results of running the KMeans-
Driver command given earlier, try this:

<MAHOUT_HOME>/bin/mahout clusterdump \
--seqFileDir /tmp/solr-clust-n2/out/clusters-2 \
--dictionary /tmp/solr-clust-n2/dictionary.txt --substring 100 \
--pointsDir /tmp/solr-clust-n2/out/points/

160 CHAPTER 6 Clustering text
In this representative example, we told the program where the directory containing
the clusters (--seqFileDir), the dictionary (--dictionary), and the original points
(--pointsDir) were. We also told it to truncate the printing of the cluster vector
center to 100 characters (--substring) so that the result is more legible. The output
from running this on an index created based on July 5, 2010, news yields is shown in
the following code:

:C-129069: [0:0.002, 00:0.000, 000:0.002, 001:0.000, 0011:0.000, \
002:0.000, 0022:0.000, 003:0.000, 00
Top Terms:

time =>0.027667414950403202
a => 0.02749764550779345
second => 0.01952658941437323
cup =>0.018764212101531803
world =>0.018431212697043415
won =>0.017260178342226474
his => 0.01582891691616071
team =>0.015548434499094444
first =>0.014986381107308856
final =>0.014441638909228182

:C-129183: [0:0.001, 00:0.000, 000:0.003, 00000000235:0.000, \
001:0.000, 002:0.000, 01:0.000, 010:0.00
Top Terms:

a => 0.05480601091954865
year =>0.029166628670521253
after =>0.027443270009727756
his =>0.027223628226736487
polic => 0.02445617250281346
he =>0.023918227316575336
old => 0.02345876269515748
yearold =>0.020744182153039508
man =>0.018830109266458044
said =>0.018101838778995336

...

In this example output, the ClusterDumper outputs the ID of the cluster’s centroid
vector along with some of the common terms in the cluster based on term frequency.
Close examination of the top terms reveals that though there are many good terms,
there are also some bad ones, such as a few stopwords (a, his, said, and so on). We’ll
gloss over this for now and revisit it later in section 6.7.

 Though simply dumping out the clusters is often useful, many applications need
succinct labels that summarize the contents of the clusters, as discussed earlier in sec-
tion 6.2.4. Mahout’s ClusterLabels class is a tool for generating labels from a Lucene
(Solr) index and can be used to provide a list of words that best describe the clusters.
To run the ClusterLabels program on the output from our earlier clustering run,
execute the following on the command line in the same directory the other com-
mands were run:

<MAHOUT_HOME>/bin/mahout \
org.apache.mahout.utils.vectors.lucene.ClusterLabels \
--dir /Volumes/Content/grantingersoll/data/solr-clustering/data/index/\

161Clustering document collections with Apache Mahout
--field desc-clustering --idField id \
--seqFileDir /tmp/solr-clust-n2/out/clusters-2 \
--pointsDir /tmp/solr-clust-n2/out/clusteredPoints/ \
--minClusterSize 5 --maxLabels 10

In this example, we told the program many of the same things we did to extract the
content from the index, such as the location of the index and the fields to use. We also
added information about where the clusters and points live. The minClusterSize
parameter sets a threshold for how many documents must be in a cluster in order to
calculate the labels. This will come in handy for clustering really large collections with
large clusters, as the application may want to ignore smaller clusters by treating them
as outliers. The maxLabels parameter indicates the maximum number of labels to get
for the cluster. Running this on our sample of data created earlier in the chapter
yields (shortened for brevity) this:

Top labels for Cluster 129069 containing 15306 vectors
Term LLR In-ClusterDF Out-ClusterDF
team 8060.366745727311 3611 2768
cup 6755.711004478377 2193 645
world 4056.4488459853746 2323 2553
reuter 3615.368447394372 1589 1058
season 3225.423844734556 2112 2768
olymp 2999.597569386533 1382 1004
championship 1953.5632186210423 963 781
player 1881.6121935029223 1289 1735
coach 1868.9364836380992 1441 2238
u 1545.0658127206843 35 7101

Top labels for Cluster 129183 containing 12789 vectors
Term LLR In-ClusterDF Out-ClusterDF
polic 13440.84178933248 3379 550
yearold 9383.680822917435 2435 427
old 8992.130047334154 2798 1145
man 6717.213290851054 2315 1251
kill 5406.968016825078 1921 1098
year 4424.897345832258 4020 10379
charg 3423.4684087312926 1479 1289
arrest 2924.1845144664694 1015 512
murder 2706.5352747719735 735 138
death 2507.451017449319 1016 755
...

In the output, the columns are

 Term—The label.
 LLR (log-likelihood ratio)—The LLR is used to score how good the term is based on

various statistics in the Lucene index. For more on LLR, see http://en.wikipedia
.org/wiki/Likelihood-ratio_test.

 In-ClusterDF—The number of documents the term occurs in that are in the clus-
ter. Both this and the Out-ClusterDF are used in calculating the LLR.

 Out-ClusterDF—The number of documents the term occurs in that are not in
the cluster.

162 CHAPTER 6 Clustering text
As in the case of the ClusterDumper top terms, closer inspection reveals some good
terms (ignoring the fact that they’re stemmed) and some terms of little use. It
should be noted that most of the terms do a good job of painting a picture of what
the overall set of documents in the cluster are about. As mentioned earlier, we’ll
examine how to improve things in section 6.7. For now, let’s look at how we can use
some of Mahout’s clustering capabilities to identify topics based on clustering the
words in the documents.

6.6 Topic modeling using Apache Mahout
Just as Mahout has tools for clustering documents, it also has an implementation for
topic modeling, which can be thought of, when applied to text, as clustering at the
word level. Mahout’s only topic modeling implementation is of the Latent Dirichlet
Allocation (LDA) algorithm. LDA (Deerwester 1990) is a

...generative probabilistic model for collections of discrete data such as text
corpora. LDA is a three-level hierarchical Bayesian model, in which each
item of a collection is modeled as a finite mixture over an underlying set of
topics. Each topic is, in turn, modeled as an infinite mixture over an underly-
ing set of topic probabilities.

In laymen’s terms, LDA is an algorithm that converts clusters of words into topics
based on the assumption that the underlying documents are on a number of different
topics, but you’re not sure which document is about which topic, nor are you sure
what the topic is actually labeled. Though on the surface this may sound less than use-
ful, there’s value in having the topic words associated with your collection. For
instance, they could be used in conjunction with Solr to build more discovery capabil-
ities into the search application. Alternatively, they can be used to succinctly summa-
rize a large document collection. The topic terms may also be used for other tasks like
classification and collaborative filtering (see Deerwester [1990] for more on these
applications). For now, let’s take a look at how to run Mahout’s LDA implementation.

 To get started using LDA in Mahout, you need some vectors. As outlined earlier
after listing 6.3, you can create vectors from a Lucene index. But for LDA you need to
make one minor change to use just term frequencies (TF) for weight instead of the
default TF-IDF, due to the way the algorithm calculates its internal statistics. This might
look like this:

<MAHOUT_HOME>/bin/mahout lucene.vector \
--dir <PATH TO INDEX>/solr-clustering/data/index/ \
--output /tmp/lda-solr-clust/part-out.vec \
--field desc-clustering --idField id \
--dictOut /tmp/lda-solr-clust/dictionary.txt \
--norm 2 --weight TF

This example is nearly identical to the one generated earlier, with the exception of the
different output paths and the use of the TF value for the --weight input parameter.

 With vectors in hand, the next step is to run the LDA algorithm, like this:

163Topic modeling using Apache Mahout
<MAHOUT_HOME>/bin/mahout lda --input /tmp/lda-solr-clust/part-out.vec \
--output /tmp/lda-solr-clust/output --numTopics 30 --numWords 61812

Though most of the parameters should be obvious, a few things are worth calling out.
First, we gave the application some extra memory. LDA is a fairly memory-intensive
application, so you may need to give it more memory. Next, we asked the LDADriver to
identify 30 topics (--numTopics) in the vectors. Similar to K-Means, LDA requires you
to specify how many items you want created. For better or worse, this means you’ll
need to do some trial and error to determine the appropriate number of topics for
your application. We chose 30 rather unscientifically after looking at the results for 10
and 20. Last, the --numWords parameter is the number of words in all the vectors.
When using the vector creation methods outlined here, the number of words can eas-
ily be retrieved from the first line of the dictionary.txt file. After running LDA, the out-
put directory will contain a bunch of directories named state-*, as in state-1, state-2,
and so on. The number of directories will depend on the input and the other parame-
ters. The highest-numbered directory represents the final result.

 Naturally, after running LDA, you’ll want to see the results. LDA doesn’t, by default,
print out these results. But Mahout comes with a handy tool for printing out the top-
ics, appropriately named LDAPrintTopics. It takes three required input parameters
and one optional parameter:

 --input—The state directory containing the output from the LDA run. This
can be any state directory, not necessarily the last one created. Required.

 --output—The directory to write the results. Required.
 --dict—The dictionary of terms used in creating the vectors. Required.
 --words—The number of words to print per topic. Optional.

For the example run of LDA shown earlier, LDAPrintTopics was run as

java -cp "*" \
org.apache.mahout.clustering.lda.LDAPrintTopics \
--input ./lda-solr-clust/output/state-118/ \
--output lda-solr-clust/topics \
--dict lda-solr-clust/dictionary.txt --words 20

In this case, we wanted the top 20 words in the state-118 directory (which happens to
be the final one). Running this command fills the topics output directory with 30 files,
one for each topic. Topic 22, for example, looks like this:

Topic 22
===========
yearold
old
cowboy
texa
14
second
year
manag

164 CHAPTER 6 Clustering text
3414
quarter
opera
girl
philadelphia
eagl
arlington
which
dalla
34
counti
five
differ
1996
tri
wide
toni
regul
straight
stadium
romo
twitter

In looking at the top words in this category, the topic is likely about the fact that the
Dallas Cowboys beat the Philadelphia Eagles in the NFL playoffs on the day before we
ran the example. And, though some of the words seem like outliers (opera, girl), for
the most part you get the idea of the topic. Searching in the index for some of these
terms reveals there are in fact articles about just this event, including one about the
use of Twitter by Eagles receiver DeSean Jackson to predict the Eagles would beat the
Cowboys (don’t these athletes ever learn?) That’s all you need to know about running
LDA in Apache Mahout. Next up, let’s take a look at clustering performance across
Carrot2 and Mahout.

6.7 Examining clustering performance
As with any real-world application, when the programmer has a basic understanding
of how to run the application, their mind quickly turns to how to use the application
in production. To answer that question, we need to look at both qualitative and quan-
titative measures of performance. We’ll start by looking at feature selection and reduc-
tion to improve quality and then look at algorithm selection and input parameters for
both Carrot2 and Apache Mahout. We’ll finish by doing some benchmarking on Ama-
zon’s (http://aws.amazon.com) compute-on-demand capability called EC2. For the
Amazon benchmarking, we’ve enlisted the help of two contributors, Timothy Potter
and Szymon Chojnacki, and set out to process a fairly large collection of email content
and see how Mahout performs across a number of machines.

6.7.1 Feature selection and reduction

Feature selection and feature reduction are techniques designed to either improve the
quality of results or reduce the amount of content to be processed. Feature selection
focuses on choosing good features up front, either as part of preprocessing or

165Examining clustering performance
algorithm input, whereas feature reduction focuses on removing features that contrib-
ute little value as part of an automated process. Both techniques are often beneficial
for a number of reasons, including those listed here:

 Reducing the size of the problem to something more tractable both in terms of
computation and storage

 Improving quality by reducing the amount of noise, such as stopwords, in the
data

 Visualization and post-processing—too many features can clog up user inter-
faces and downstream processing techniques

In many respects, you’re already familiar with feature reduction thanks to our work
in chapter 3. In that chapter, we employed several analysis techniques such as stop-
word removal and stemming to reduce the number of terms to be searched. These
techniques are also helpful for improving results for clustering. Moreover, in cluster-
ing, it’s often beneficial to be even more aggressive in feature selection, since you’re
often processing very large sets of documents, and reductions up front can make for
large savings.

 For instance, for the examples in this chapter, we used a different stopword file
than the one used in the chapter on search, with the difference being that the cluster-
ing stopwords (see stopwords-clustering.txt in the source) are a superset of the origi-
nal. To build the stopwords-clustering.txt, we examined the list of the most frequently
occurring terms in the index and also ran several iterations of clustering to determine
what words we thought were worth removing.

 Unfortunately, this approach is ad hoc in nature and can require a fair amount of
work to produce. It also isn’t portable across languages or necessarily even different
corpora. To make it more portable, applications generally try to focus on removing
terms based on term weights (using TF-IDF or other approaches) and then iteratively
looking at some measure to determine whether the clusters improved. For example,
see the References section (Dash [2000], Dash [2002], and Liu [2003]) for a variety of
approaches and discussions. You can also use an approach based on singular value
decomposition (SVD), which is integrated into Mahout, to significantly reduce the size
of the input. Note, also, that Carrot2’s Lingo algorithm is built on SVD out of the box,
so there’s nothing you need to do for Carrot2.

 Singular value decomposition is a general feature reduction technique (meaning
it isn’t limited to just clustering) designed to reduce the dimensionality (typically in
text clustering, each unique word represents a cell in an n-dimensional vector) of the
original dataset by keeping the “important” features (words) and throwing out the
unimportant features. This reduction is a lossy process, so it’s not without risk, but
generally speaking it can make for a significant savings in storage and CPU costs. As
for the notion of importance, the algorithm is often likened to extracting the con-
cepts in a corpus, but that isn’t guaranteed. For those mathematically inclined, SVD is
the factorization of the matrix (our documents, for clustering, are represented as a
matrix) into its eigenvectors and other components. We’ll leave the details of the

166 CHAPTER 6 Clustering text
math to others; readers can refer to https://cwiki.apache.org/confluence/display/
MAHOUT/Dimensional+Reduction for more details on Mahout’s implementation as
well as links to several tutorials and explanations of SVD.

 To get started with Mahout’s singular value decomposition, we can again rely on
the bin/mahout command-line utility to run the algorithm. Running SVD in Mahout is
a two-step process. The first step decomposes the matrix and the second step does
some cleanup calculations. The first step of running SVD on our clustering matrix
(created earlier) might look like this:

<MAHOUT_HOME>/bin/mahout svd --input /tmp/solr-clust-n2/part-out.vec \
--tempDir /tmp/solr-clust-n2/svdTemp \
--output /tmp/solr-clust-n2/svdOut \
--rank 200 --numCols 65458 --numRows 130103

In this example, we have the usual kinds of inputs, like the location of the input
vectors (--Dmapred.input.dir) and a temporary location to be used by the system
(--tempDir), as well as some SVD-specific items:

 --rank—Specifies the rank of the output matrix.
 --numCols—This is the total number of columns in the vector. In this case, it’s

the number of unique terms in the corpus, which can be found at the top of the
/tmp/solr-clust-n2/dictionary.txt file.

 --numRows—The total number of vectors in the file. This is used for sizing data
structures appropriately.

Of these options, rank is the one that determines what the outcome will look like, and
is also the hardest to pick a good value for. Generally speaking, some trial and error is
needed, starting with a small number (say, 50) and then increasing. According to Jake
Mannix (Mannix 2010, July), Mahout committer and the original author of Mahout’s
SVD code, a rank in the range of 200-400 is good for text problems. Obviously, several
trial runs will need to be run to determine which rank value yields the best results.

 After the main SVD algorithm has been run, a single cleanup task must also be run
to produce the final output, as shown here:

<MAHOUT_HOME>/bin/mahout cleansvd \
--eigenInput /tmp/solr-clust-n2/svdOut \
--corpusInput /tmp/solr-clust-n2/part-out.vec \
--output /tmp/solr-clust-n2/svdFinal --maxError 0.1 \
--minEigenvalue 10.0

The keys to this step are picking the error threshold (--maxError) and the minimum
eigenvalue (--minEigenValue) items. For the minimum eigenvalue, it’s always safe to
choose 0, but you may wish to choose a higher value. For the maximum error value,
trial and error along with use of the output in the clustering algorithm will lead to
insight into how well it performs (see Mannix [2010, August] for more details).

 As you can see, there are many ways to select features or reduce the size of the
problem. As with most things of this nature, experimentation is required to determine

167Examining clustering performance
what will work best in your situation. Finally, if you want to use the results of the SVD in
clustering (that’s the whole point, right?), there’s one final step. You need to do a
multiplication of the transpose of the original matrix with the transpose of the SVD
output. These can all be done using the bin/mahout command, making sure to get
the input arguments correct. We’ll leave it as an exercise to the reader to verify this.
For now, we’ll move on and look at some of the quantitative performance aspects of
both Carrot2 and Apache Mahout.

6.7.2 Carrot2 performance and quality

When it comes to performance and quality of results, Carrot2 provides a myriad of
tuning options, not to mention several considerations for which algorithm to pick in
the first place. We’ll take a brief look at algorithm performance here, but leave an in-
depth discussion of all the parameter options to the Carrot2 manual.

PICKING A CARROT2 ALGORITHM

First and foremost, both the STC and the Lingo algorithms have one thing in com-
mon: documents may belong to more than one cluster. Beyond that, the two algo-
rithms take different approaches under the hood in order to arrive at their results.
Generally speaking, Lingo produces better labels than STC, but at the cost of being
much slower, as can be seen in figure 6.3.

 As you can see in the figure, Lingo is a lot slower than STC, but for smaller result
sizes, the quality of the labels may be worth the longer running time. Also, keep in

0 20000 40000 60000 80000 100000 120000
Number of documents

0.00

50000.00

10000.00

150000.00

200000.00

250000.00

300000.00

350000.00

400000.00

450000.00

500000.00

Cl
us

te
rin

g
tim

e
[m

s]

STC

Lingo

Figure 6.3 A comparison of STC versus Lingo over a variety of document sizes run on the Open
Directory Project Data (http://www.dmoz.org)

168 CHAPTER 6 Clustering text
mind Carrot2 can link with some native code matrix libraries to help speed up the
Lingo matrix decomposition. For applications where performance is more important,
we recommend starting with STC. If quality is more important, then start with Lingo. In
either case, take the time to flesh out which attributes help the most on your data. See
http://download.carrot2.org/head/manual/index.html#chapter.components for a
full accounting of the Carrot2 attributes.

6.7.3 Mahout clustering benchmarks

One of Mahout’s strongest attributes is the ability to distribute its computation across
a grid of computers thanks to its use of Apache Hadoop. To demonstrate this, we ran
K-Means and other clustering algorithms on Amazon’s Elastic MapReduce (http://
aws.amazon.com/elasticmapreduce/) and EC2 instances using an increasing number
of instances (machines) to benchmark Mahout’s scalability.

PREPARATION

As discussed in section 6.5.1, the mail archives must be transformed into Mahout vec-
tors. The preparation steps can be done on your local workstation and don’t require a
Hadoop cluster. The prep_asf_mail_archives.sh script (in the utils/bin directory) in
the Mahout distribution does the following:

 Download the files from s3://asf-mail-archives/ and extract using tar.
 Convert extracted directories containing gzipped mail archives into Hadoop

SequenceFiles using a custom utility based on Mahout’s seqdirectory utility.
(See org.apache.mahout.text.SequenceFilesFromMailArchives in the Mahout
source.) Each file contains multiple mail messages; we split the messages and
extract the subject and body text using regular expressions. All other mail head-
ers are skipped, as they provide little value for clustering. Each message is
appended to a block-compressed SequenceFile, resulting in 6,094,444 key-value
pairs in 283 files taking around 5.7 GB of disk.

HADOOP SETUP We performed all benchmarking work described in this sec-
tion with Mahout 0.4 on Hadoop 0.20.2 using Amazon EC2. Specifically, we
used EC2 xlarge instances deployed using the contrib/ec2 scripts provided in
the Hadoop distribution. We allocated three reducers per node
(mapred.reduce.tasks = n*3) with 4 GB max. heap per child process
(mapred.child.java.opts = -Xmx4096M). The Hadoop contrib/ec2 scripts
allocate an extra node for the NameNode, which we don’t include in our clus-
ter sizes—a 4-node cluster actually has five running EC2 instances. Detailed
instructions on how to set up a Hadoop cluster to run Mahout are available
on the Mahout Wiki at https://cwiki.apache.org/confluence/display/
MAHOUT/Use+an+Existing+Hadoop+AMI.

VECTORIZING CONTENT

The SequenceFiles need to be converted into sparse vectors using Mahout’s
seq2sparse MapReduce job. We chose sparse vectors because most mail messages are
short and we have many unique terms across all messages. Using the default

169Examining clustering performance
seq2sparse configuration produces vectors with several million dimensions, as each
unique term in the corpus represents a cell in an n-dimensional vector. Clustering
vectors of this magnitude isn’t feasible and is unlikely to produce useful results given
the long tail of unique terms within the mail archives.

 To reduce the number of unique terms, we developed a custom Lucene analyzer
that’s more aggressive than the default StandardAnalyzer. Specifically, the
MailArchivesClusteringAnalyzer uses a broader set of stopwords, excludes non-
alphanumeric tokens, and applies porter stemming. We also leveraged several feature
reduction options provided by seq2sparse. The following command shows how we
launched the vectorization job:

bin/mahout seq2sparse \ --input
s3n://ACCESS_KEY:SECRET_KEY@asf-mail-archives/mahout-0.4/sequence-files

/ \
--output /asf-mail-archives/mahout-0.4/vectors/ \
--weight tfidf \ --minSupport 500 \ --maxDFPercent 70 \
--norm 2 \ --numReducers 12 \ --maxNGramSize 1 \
--analyzerName org.apache.mahout.text.MailArchivesClusteringAnalyzer

For input, we used Hadoop’s S3 Native protocol (s3n) to read the SequenceFiles
directly from S3. Note that you must include your Amazon Access and Secret Key val-
ues in the URI so that Hadoop can access the asf-mail-archives bucket. If you’re unsure
about these values, please see the EC2 page on the Mahout Wiki.

AUTHOR’S NOTE The asf-mail-archives bucket no longer exists due to poten-
tial abuse by malicious users. We’re keeping the commands here for historical
accuracy given that’s what was used to generate the performance metrics
based on Mahout 0.4, and due to the fact that we’re out of credits on Amazon
and these benchmarks are an expensive undertaking! In order for you to pro-
duce similar results, you can use Amazon’s public dataset containing a newer
version of the ASF public mail Archives. These archives are located at http://
aws.amazon.com/datasets/7791434387204566.

Most of the parameters have already been discussed, so we’ll concentrate on the ones
that we found to be important for clustering:

 --minSupport 500—Excludes terms that don’t occur at least 500 times across
all documents. For smaller corpora, 500 may be too high and may exclude
important terms.

 --maxDFPercent 70—Excludes terms that occur in 70% or more documents,
which helps remove any mail-related terms that were missed during text analysis.

 --norm 2—The vectors are normalized using the 2-norm, as we’ll be using
Cosine distance as our similarity measure during clustering.

 --maxNGramSize 1—Only consider single terms.

With these parameters, seq2sparse created 6,077,604 vectors with 20,444 dimensions
in about 40 minutes on a 4-node cluster. The number of vectors differs from the

170 CHAPTER 6 Clustering text
number of input documents because empty vectors are excluded from the
seq2sparse output. After running the job, the resulting vectors and dictionary files
are copied to a public S3 bucket so that we don’t need to re-create them each time we
run the clustering job.

 We also experimented with generating bigrams (--maxNGramSize=2). Unfortu-
nately, this made the vectors too large with roughly ~380K dimensions. In addition,
creating collocations between terms greatly impacts the performance of the
seq2sparse job; the job takes roughly 2 hours and 10 minutes to create bigrams, with
at least half the time spent calculating collocations.

K-MEANS CLUSTERING BENCHMARKS

To begin clustering, we need to copy the vectors from S3 into HDFS using Hadoop’s
distcp job; as before, we use Hadoop’s S3 Native protocol (s3n) to read from S3:

hadoop distcp -Dmapred.task.timeout=1800000 \
s3n://ACCESS_KEY:SECRET_KEY@BUCKET/asf-mail-archives/mahout-0

.4/sparse-1-gram-stem/tfidf-vectors \
/asf-mail-archives/mahout-0.4/tfidf-vectors

This should only take a few minutes depending on the size of your cluster and doesn’t
incur data transfer fees if you launched your EC2 cluster in the default us-east-1
region. After the data is copied to HDFS, launch Mahout’s K-Means job using the fol-
lowing command:

bin/mahout kmeans \ -i /asf-mail-archives/mahout-0.4/tfidf-vectors/ \
-c /asf-mail-archives/mahout-0.4/initial-clusters/ \
-o /asf-mail-archives/mahout-0.4/kmeans-clusters \
--numClusters 60 --maxIter 10 \
--distanceMeasure org.apache.mahout.common.distance.CosineD

istanceMeasure \
--convergenceDelta 0.01

This job begins by creating 60 random centroids using Mahout’s RandomSeed-
Generator, which takes about 9 minutes to run on the master server only (it’s not a
distributed MapReduce job). After the job completes, we copy the initial clusters to S3
to avoid having to re-create them for each run of the benchmarking job, which works
as long as k stays the same. Our selection of 0.01 for the convergenceDelta was cho-
sen to ensure the K-Means job completes at least 10 iterations for benchmarking pur-
poses; at the end of 10 iterations, 59 of 60 clusters converged. As was discussed in
section 6.5.2, we use Mahout’s clusterdump utility to see the top terms in each cluster.

 To determine the scalability of Mahout’s K-Means MapReduce implementation, we
ran the K-Means clustering job in clusters of 2, 4, 8, and 16 nodes, with three reducers
per node. During execution, the load average stays healthy (< 4) and the nodes don’t
swap. The graph in figure 6.4 demonstrates that the results are nearly linear, as we
hoped they’d be.

 Each time we double the number of the nodes, we can see an almost two-fold reduc-
tion in the processing time. But the curve flattens slightly as the number of nodes

171Examining clustering performance
increases. This convex shape occurs because some nodes receive more demanding
samples of data and others have to wait for them to finish. Hence, some resources are
underutilized and the more nodes we have, the more likely this is to occur. Moreover,
the differences among samples of documents are envisioned when two conditions are
met. First, the vectors are represented with sparse structures. Second, the dataset pos-
sesses the long tail feature, which leads to an appearance of computationally demand-
ing large vectors. Both conditions are fulfilled in our setting. We also attempted the
same job on a 4-node cluster of EC2 large instances with two reducers per node. With
this configuration, we expected the job to finish in about 120 minutes, but it took 137
minutes and the system load average was consistently over 3.

BENCHMARKING MAHOUT’S OTHER CLUSTERING ALGORITHMS

We also experimented with Mahout’s other clustering algorithms, including Fuzzy
K-Means, Canopy, and Dirichlet. Overall, we were unable to produce any conclusive
results with the current dataset. For example, one iteration of the Fuzzy K-Means algo-
rithm runs on average 10 times slower than one iteration of K-Means. But Fuzzy
K-Means is believed to converge faster than K-Means, in which case you may require
fewer iterations. A comparison of running times of Fuzzy K-Means and two variants of
K-Means is depicted in figure 6.5.

2 4 8 16

200

150

100

50

0

M
in

ut
es

 (1
0

ite
ra

tio
ns

)

Hadoop cluster size (ED2 xlarge instances)

Mahout clustering

K-Means
(20k)

Figure 6.4 A graph of
Mahout’s K-Means
performance on Amazon
EC2 over 2 to 16 nodes

1,000

750

500

250

0

M
in

ut
es

 (1
0

ite
ra

tio
ns

)

Fuzzy K-Means
(k=60)

K-Means
(k=600)*

K-Means (k=60)

* estimated after 2 iterations

Figure 6.5 Comparison of
running times with different
clustering algorithms

172 CHAPTER 6 Clustering text
We used four extra-large instances during experiments. It took over 14 hours (848
minutes) to complete all 10 iterations of Fuzzy K-Means with 60 clusters and the
smoothing parameter m set to 3. It’s approximately 10 times longer than with the
K-Means algorithm, which took only 91 minutes. We’ve observed that the first itera-
tion of both clustering algorithms is always much faster than the subsequent ones.
Moreover, the second, third, and later iterations require comparable amounts of time.
Therefore, we utilized the feedback from the second iteration to estimate an overall
10-iterations time consumption for various levels of k. When the number of clusters k
is increased 10 times, we can expect proportional slowdown. Precisely, we’ve estimated
the running time with k=600 to be 725 minutes. It’s a bit below 10 x 91 because
increasing k lets us better utilize an overhead of the fixed-cost processing. The differ-
ence between the first and the second iteration can be attributed to the fact that in
the first iteration, random vectors are used as centroids. In the following iterations,
centroids are much denser and require longer computations.

 Mahout’s Canopy algorithm is potentially useful as a preprocessing step to identify
the number of clusters in a large dataset. With Canopy, a user has to define only two
thresholds, which impact the distances between created clusters. We’ve found that
Canopy outputs a nontrivial set of clusters when T1=0.15 and T2=0.9. But the time
required to find these values doesn’t seem to pay back in speeding up other algo-
rithms. Keep in mind, also, that Mahout is still in a pre-1.0 release at the time of this
writing, so speedups are likely to occur as more people use the code.

 We also encountered problems with Dirichlet, but with some assistance from the
Mahout community, we were able to complete a single iteration using alpha0 = 50 and
modelDist = L1ModelDistribution. Using a larger value for alpha0 helps increase the
probability of choosing a new cluster during the first iteration, which helps distribute
the workload in subsequent iterations. Unfortunately, subsequent iterations still failed
to complete in a timely fashion because too many data points were assigned to a small
set of clusters in previous iterations.

BENCHMARKING SUMMARY AND NEXT STEPS

At the outset of this benchmarking process, we hoped to compare the performance of
Mahout’s various clustering algorithms on a large document set and to produce a rec-
ipe for large-scale clustering using Amazon EC2. We found that Mahout’s K-Means
implementation scales linearly for clustering millions of documents with roughly
20,000 features. For other types of clustering, we were unable to produce comparable
results, and our only conclusion is that more experimentation is needed, as well as
more tuning of the Mahout code. That said, we documented our EC2 and Elastic
MapReduce setup notes in the Mahout wiki so that others can build upon our work.

6.8 Acknowledgments
The authors wish to acknowledge the valuable input of Ted Dunning, Jake Mannix,
Stanisław Osiński, and Dawid Weiss in the writing of this chapter. The benchmarking
of Mahout on Amazon Elastic MapReduce and EC2 was possible thanks to credits
from the Amazon Web Services Apache Projects Testing Program.

173References
6.9 Summary
Whether it’s reducing the amount of news you have to wade through, quickly summa-
rizing ambiguous search terms, or identifying topics in large collections, clustering
can be an effective way to provide valuable discovery capabilities to your application.
In this chapter, we discussed many of the concepts behind clustering, including some
of the factors that go into choosing and evaluating a clustering approach. We then
focused in on real-world examples by demonstrating how to use Carrot2 and Apache
Mahout to cluster search results, documents, and words into topics. We finished off
the chapter by looking at techniques for improving performance, including using
Mahout’s singular value decomposition code.

6.10 References
 Blei, David; Lafferty, John. 2009. “Visualizing Topics with Multi-Word Expressions.”

http://arxiv.org/abs/0907.1013v1.

 Blei, David; Ng, Andrew; Jordan, Michael. 2003. “Latent Dirichlet allocation.” Journal
of Machine Learning Research, 3:993–1022, January.

 Carpineto, Claudio; Osiński, Stanisław; Romano, Giovanni; Weiss, Dawid. 2009. “A
Survey of Web Clustering Engines.” ACM Computing Surveys.

 Crabtree, Daniel; Gao, Xiaoying; Andreae, Peter. 2005. “Standardized Evaluation
Method for Web Clustering Results.” The 2005 IEEE/WIC/ACM International
Conference on Web Intelligence (WI’05).

 Cutting, Douglass; Karger, David; Pedersen, Jan; Tukey, John W. 1992. “Scatter/
Gather: A Cluster-based Approach to Browsing Large Document Collections.”
Proceedings of the 15th Annual International ACM/SIGIR Conference.

 Dash, Manoranjan; Choi, Kiseok; Scheuermann, Peter; Liu, Huan. 2002. “Feature
Selection for Clustering - a filter solution.” Second IEEE International Confer-
ence on Data Mining (ICDM’02).

 Dash, Manoranjan, and Liu, Huan. 2000. “Feature Selection for Clustering.” Proceed-
ings of Fourth Pacific-Asia Conference on Knowledge Discovery and Data Mining.

 Dean, Jeffrey; Ghemawat, Sanjay. 2004. “MapReduce: Simplified Data Processing on
Large Clusters.” OSDI’04: 6th Symposium on Operating Systems Design and
Implementation. http://static.usenix.org/event/osdi04/tech/full_papers/
dean/dean.pdf.

 Deerwester, Scott; Dumais, Susan; Landauer, Thomas; Furnas, George; Harshman,
Richard. 1990. “Indexing by latent semantic analysis.” Journal of the American Soci-
ety of Information Science, 41(6):391–407.

 Dunning, Ted. 1993. “Accurate methods for the statistics of surprise and coinci-
dence.” Computational Linguistics, 19(1).

 Google News. 2011. http://www.google.com/support/news/bin/answer.py?answer
=40235&topic=8851.

174 CHAPTER 6 Clustering text
 Liu, Tao; Liu, Shengping; Chen, Zheng; Ma, Wei-Ying. 2003. “An evaluation on fea-
ture selection for text clustering.” Proceedings of the Twentieth International
Conference on Machine Learning (ICML-2003).

 Manning, Christopher; Raghavan, Prabhakar; Schütze, Hinrich. 2008. An Introduction
to Information Retrieval. Cambridge University Press.

 Mannix, Jake. 2010, July. “SVD Memory Reqs.” http://mail-archives.apache.org/
mod_mbox/mahout-user/201007.mbox/%3CAANLkTik-uHrN2d838dHfY-
wOhxHDQ3bhHkvCQvEIQCLT@mail.gmail.com%3E.

 Mannix, Jake. 2010, August. “Understanding SVD CLI inputs.” http://mail-archives
.apache.org/mod_mbox/mahout-user/201008.mbox/
%3CAANLkTi=ErpLuaWK7Z-2an786v5AsX3u5=adU2WJM5Ex7@mail.gmail
.com%3E.

 Steyvers, Mark, and Griffiths, Tom. 2007. “Probabilistic Topic Models.” Handbook of
Latent Semantic Analysis. http://citeseerx.ist.psu.edu/viewdoc/download?doi -0.
=10.1.1.80.9625&rep=rep1&type=pdf.

 Zamir, Oren, and Etzioni, Oren. 1998. “Web document clustering: a feasibility dem-
onstration.” Association of Computing Machinery Special Interest Group in
Information Retrieval (SIGIR).

Classification,
categorization, and tagging
Chances are you’ve encountered keyword tags somewhere among the websites
you’ve visited. Photos, videos, music, news or blog articles, and tweets are frequently
accompanied by words and phrases that provide a quick description of the content
you’re viewing and a link to related items. You’ve possibly seen tag clouds: displays
of different-sized words displaying someone’s favorite discussion topics, movie
genres, or musical styles. Tags are everywhere on the web and are used as navigation
devices or to organize everything from news to bookmarks (see figure 7.1).

In this chapter
 Learn the basic concepts behind classification, categorization,

and tagging

 Discover how categorization is used in text applications

 Build, train, and evaluate classifiers using open source tools

 Integrate categorization into a search application

 Build a tag recommendation engine trained using tagged data
175

176 CHAPTER 7 Classification, categorization, and tagging
Tags are data about data, otherwise referred to as metadata. They can be applied to any
sort of content and come in unstructured forms, from a simple list of relevant keywords
or usernames to highly structured properties such as height, weight, and eye color.

 How are these tags created? Some are generated as part of an editorial process. An
author or curator assigns descriptive terms, possibly the first words that come to mind
or carefully selected from a set of approved words and phrases. In other cases, tags are
assigned by users of a site. Each individual tags items, choosing the terms that make
sense based on their own point of view. Be it a book or a song, a piece of content
comes to be defined by the way it’s viewed by hundreds or thousands of individuals,
and the wisdom or lunacy of crowds prevails.

 Machine learning allows you to automatically or semiautomatically generate tags
from content. Algorithms are used to observe how things are tagged and suggest alter-
natives to existing tags or tags for new, untagged content. This form of automated tag-
ging is a specialization of classification.

 The challenge of classification is simply this: given an object, how do you assign it
to one or more predefined categories? To solve this challenge you must consider the
object’s properties. What about it is like other objects? How do you group objects that
share properties and exclude those that are different?

 Classification algorithms learn by example using data that has been organized into
classes manually or through some other automated process. Through the training
process, the classification algorithm determines which properties (or features) indi-
cate that an item belongs to a given class of objects. When trained, classification algo-
rithms can classify previously unlabeled data.

 In chapter 6, we covered another class of learning algorithms known as clustering
algorithms. Classification and clustering are different sides of the same coin. Both of
these types of algorithms seek to assign labels to objects using the features of those
objects to determine the appropriate assignments. Classification is different from clus-
tering in that classification uses a predefined set of labels and learns how best to fit
objects into this scheme. This approach is referred to as supervised learning, where the
labels assigned by the classification algorithm are based on external input such as a
human-defined set of categories. Clustering is a type of unsupervised learning that
doesn’t use a predefined set of labels. Clustering forms groups of objects based on
common characteristics. Despite this difference, both classification and clustering
algorithms are used to perform document categorization.

Figure 7.1 Tags used in a twitter post. Hashtags starting with the #
character are words used to identify key words in a tweet, whereas
tags referencing other users start with the @ character.

177Introduction to classification and categorization
 Document categorization is the act of assigning a category- or subject related-tag to
a document. It’s one application of classification algorithms. In categorization, you
begin with a set of training example documents, each assigned to one or more catego-
ries or subject areas. A categorization algorithm builds a model of how individual
terms and other document features such as length or structure are related to subjects.
When finished, the model can then be used to assign subject areas—in other words,
categorize a new document.

 In this chapter, we’ll begin with an overview of classification and categorization
and discuss the process of training a classifier for use in a production system. From
there we’ll examine a few different classification algorithms and learn how they’re
used to automatically categorize and tag text documents. Some of these algorithms,
such as the naive Bayes and maximum entropy classifiers, are based upon statistical
models, whereas other techniques such as the k-nearest neighbor and TF-IDF catego-
rizers employ the vector space model used for information retrieval, as presented in
chapter 3.

 These algorithms will be presented through a number of hands-on examples using
command-line tools and code from open source projects such as OpenNLP, Apache
Lucene, Solr, and Mahout. In each case, we’ll take you through every step in the pro-
cess of creating a classifier. We’ll explore different approaches to obtaining and pre-
paring training data, train classifiers using each of the algorithms, and see how to
evaluate the quality of their output. Finally, we’ll demonstrate ways in which classifiers
are integrated into a production system. Throughout each of these demonstrations
we’ll take you through the commands and code necessary for you to follow along. By
the end of the chapter you’ll be able to customize each of these examples to meet
your own goals and create an automatic categorizer and tag recommender for your
own applications.

7.1 Introduction to classification and categorization
Classification, in a computational sense, seeks to assign labels to data. Given a set of
features for an object, a classifier attempts to assign a label to that object. The classi-
fier does this by drawing upon knowledge derived from examples of how other
objects have been labeled. These examples, referred to as training data, serve as a
source of prior knowledge that the classifier uses to make decisions about previously
unseen objects.

 Categorization is a specialization of classification. It deals with assigning a category
to an object. Other classification algorithms may simply make a yes/no decision based
upon inputs, such as a fraud detector that indicates whether a credit card transaction
is fraudulent. Categorization algorithms place an object in one of a small set of catego-
ries, such as categorizing cars as coupes, sedans, SUVs, or vans. Many of the concepts
we discuss in this chapter pertain to classification as a whole, whereas others are more
closely related to categorization. You’ll see some terms used interchangeably.

 Document categorization in the sense that we’ll discuss in this chapter is the pro-
cess of assigning a category to text documents. In the examples here, we’ll assign

178 CHAPTER 7 Classification, categorization, and tagging
subject-based categories to documents, but a number of other applications of docu-
ment categorization such as sentiment analysis are used to determine the positivity or
negativity of product reviews, or the emotion behind an email message or customer
support request.

 To understand how automatic classification is performed, think about what makes
a helicopter different from an airplane. Chances are no one explicitly told you that
“blades that spin horizontally” or “lack of fixed wings” are the features that distinguish
helicopters from airplanes. After seeing examples of each type of flying machine, you
were able to distinguish between which was an airplane and which was a helicopter.
Unconsciously you were able to extract the features of the thing named helicopter, and
use those features to identify other helicopters and determine that the things with jet
engines attached to wings weren’t helicopters. Upon seeing a flying machine with a
horizontal rotor, you can immediately recognize it as a helicopter. Classification algo-
rithms work in a similar way.

 This example also touches on the importance in feature selection of determining
the differences between classes of objects. Both helicopters and airplanes fly and
both transport people. Neither of these features are useful in distinguishing between
a helicopter and an airplane, so it’d be useless to train a classifier to use these fea-
tures. In the example from the previous paragraph, suppose that the helicopter were
yellow and the airplane were blue. If these were the only examples of each type of
vehicle you’d seen, you might consider that all airplanes are blue and all helicopters
are yellow. Your own world experience makes it clear that color isn’t something you
can use to determine the difference between an airplane and a helicopter. Without
this knowledge, a classification algorithm that takes colors into account in its decision
process would be incorrect. This highlights the importance of training an algorithm
on a wide variety of training data that covers as many feature possibilities and combi-
nations as possible.

 Classification algorithms learn by example, using training data that has been orga-
nized into classes manually or through some automated process. By observing the
relationship between features and classes, the algorithm learns which features are
important in determining the proper label and which features provide little or mis-
leading information about the appropriate label for the object in question. The result
of the training process is a model that’s used later to classify previously unlabeled
objects. The classifier inspects the features of the objects to classify and uses its model
to determine the best label for each object. Depending upon the classification algo-
rithm used, the classifier may emit a single label or it may emit multiple labels, each
accompanied by a score or probability that ranks the label against other possible
labels for the object in question.

 There are many different types of classification algorithms. One distinguishing fea-
ture is the output they produce. There are binary algorithms that produce two dis-
crete outcomes, such as a yes/no answer. Other algorithms support multiple
outcomes, producing a result from a discrete set of categories or a continuous value,
such as a floating-point score or probability.

179Introduction to classification and categorization
 Binary classifiers produce an indication whether the object being evaluated is a
member of a class. The simplest example of this sort of classifier would be a spam fil-
ter. A spam filter analyzes the features present in an email message and determines
whether it’s spam or not spam. The Bayes classification algorithms we explore in sec-
tion 7.4, which happen to be used frequently for spam detection, develop a statistical
model in order to determine whether an object is a member of a class. Support vector
machines (SVM) is also a binary classification algorithm, which attempts to find a line or
n-dimensional plane known as a hyperplane that will divide the feature space between
examples within a class and outside of a class.

 Binary classifiers are sometimes combined in order to perform multiclass classifica-
tion. Multiple binary classifiers are each assigned a class, and input is evaluated
against each class to determine which it falls into. Depending upon the algorithm, the
output will be a single class that the input is most likely to fall into or a number of
classes that the input is a member of, each weighted in some way to describe the rela-
tive likelihood that an object is a member of a given class. The Mahout Bayes classifier
we’ll explore later in this chapter is an example of training many binary classifiers in
order to assign categories from a multiclass classification scheme.

 Multiple binary classifiers are sometimes organized in tree-like structures. In such
a case, a document that falls into class A, which has child classes B and C, will be eval-
uated against the classifiers trained for each class, B and C. If it matches B, it’d be eval-
uated by B’s children, E and F. In cases where a document fails to be assigned to either
E or F, it’d be considered to be in B; otherwise the document is assigned to the lowest-
level leaf category it matches. This approach is useful where the classes are naturally
hierarchical in nature such as in a topic taxonomy. Variants of this hierarchical
approach have been used to great effect in approaches such as hierarchical binary
decision trees and random forests.

 The maximum entropy document categorizer we’ll explore in section 7.5 is an
example of a multiclass classification algorithm. This categorizer uses the words found
in documents as features and subject areas as categories. The training process con-
structs a model of the relationship between words and subjects. For an uncategorized
document, the model is used to determine feature weights that are ultimately used to
produce an outcome that describes the subject area of the document.

 In section 7.3, we’ll explore document categorization algorithms that take advan-
tage of the properties of the vector space model discussed in chapter 3. In these
approaches, the distance in vector space between all documents that have been classi-
fied is compared to a document that hasn’t been classified, and the result is used to
determine the appropriate classification for the document. In this context, the
uncategorized document becomes a query that’s used to retrieve documents that are
classified or documents that represent the contents of each category. We’ll explore
this approach in this chapter as well as in an example that uses Lucene as a mecha-
nism for indexing training data and returning matching documents for a given query.

 There are numerous classification algorithms and many work well for document
categorization or tagging. This chapter presents a few algorithms that are easy to

180 CHAPTER 7 Classification, categorization, and tagging
implement using code from open source projects. The examples here will serve as a
launching point for further explorations in classification techniques. Much of what’s
covered here is relevant to performing classification and other supervised learning
tasks regardless of the approach taken or algorithm used. We’ll explore these cross-
cutting concerns, such as collecting training data, identifying feature sets, and evaluat-
ing classification quality throughout this chapter by way of a series of examples. Each
presents a different approach toward categorization or tagging, but builds on what’s
been explored in prior examples, both within this chapter and in other sections of
this book.

7.2 The classification process
Developing an automatic classifier follows the same general process regardless of the
algorithm used. This process, shown in figure 7.2, consists of multiple phases: prepa-
ration, training, testing, and production. Often you iterate through this process,
repeating each phase a number of times, either automatically or manually, in order to
fine-tune the behavior of the classifier and produce the best results. The feedback
from each phase helps determine the ways in which the preparation and training
phases should be modified to produce better results. Tuning represents taking the
results from the testing phase and using these to improve the training process. After a
classifier has been put into production, it’s often necessary to extend it to cover addi-
tional cases not covered in the training data.

 The preparation phase involves getting the data ready for the training process. Here
you choose the set of labels the classifier will be trained to identify, the manner in
which the features you’re using for training will be identified, and the items in the
dataset that will be held back for testing. When these decisions have been made, the
data must be transformed into the format used by the training algorithm.

 After the data has been prepared, you enter the training phase, where the training
algorithm processes each labeled example and identifies how features of each relate
to its label. Each feature is associated with the label assigned to the document and the
training algorithm models the relationship between features and class labels. There
are numerous algorithmic approaches toward training classification models, but, in
the end, the training algorithm identifies those features that are important for

Figure 7.2 Phases of the process used to develop an automatic
classifier: preparation of data, training the model, testing the
model, and deploying the classifier into production. Tuning adjusts
training in response to test results. Extension extends a classifier
to cover new cases that arise after deployment.

181The classification process
distinguishing one class of data from another and those that provide little differentia-
tion between classes. Frequently a classification algorithm will accept parameters that
control the way models are built. In many cases, an educated guess is made as to the
best values for these parameters and they’re refined through an iterative process.

 In the testing phase, the classification algorithm is evaluated using additional exam-
ple data known as test data. The evaluation process compares the class each example
belongs to with the class assigned by the classifier. A number of correct and incorrect
class assignments are used to determine the accuracy of the training algorithm. Some
algorithms also produce output from the training phase that helps you understand
how they’re interpreting the training data. This output is then used as feedback in
adjusting the parameters and techniques used in the preparation and training phases.

 Throughout its lifetime, a classifier may be trained multiple times. When perform-
ing the initial development of the classifier, it’s common to repeat the training and
testing phases, tuning the training process with each repetition in order to produce
(hopefully) better results. Modifications may involve tweaking training material by
adding or removing examples, changing the way in which features are extracted from
the data, modifying the classes to identify, or modifying parameters that control the
behavior of the learning algorithm. Many classification algorithms, such as the maxi-
mum entropy algorithm we’ll explore in section 7.5, are designed to automatically
iterate through the training process a number of times in order to converge upon the
best answer. With other classification approaches, iteration is a manual process. In
some cases iterative training is parallelized and multiple variants of a classifier are
trained at the same time. The classifier that produces the best results is chosen and
placed into production.

 After a classifier is put into production, often it will later need to be retrained to
extend its knowledge of the domain it operates within. This is commonly the case
when new vocabulary emerges over time that plays a key role in differentiating
between one class and another. Take, for example, a classifier that organizes product
reviews by topic area. As new products are released, it’ll need to see examples of
tagged documents containing product names; otherwise it won’t be able to deter-
mine that the term android most likely refers to a smartphone or ipad is a mobile com-
puting device.

 Now that you have a working knowledge of the steps in the classification process,
we’ll discuss some of the issues you must consider in each phase in greater detail.

7.2.1 Choosing a classification scheme

Classification algorithms learn by example using data that has been organized into
classes manually or through some other automated process. The classes or categories
you assign to objects have a name and meaning separate from the object being classi-
fied. Each class exists within a context of other classes, a system known as a classifica-
tion or categorization scheme. Some classification schemes may be rigid, allowing each
object to fall into only one class within the scheme. Other classification schemes are

182 CHAPTER 7 Classification, categorization, and tagging
more flexible and acknowledge that in the real world things often have different
aspects or facets. Some classification schemes, such as the Linnaean taxonomy for the
classification of biological organisms, may have a strict hierarchy of meaning. Others
may not have a particular structure other than that connoted by linguistic relation-
ships, such as simple keyword tags found on Flickr or Technorati. Classification
schemes may vary greatly in their scope. They may cover a broad subject area, like the
Dewey Decimal System used in libraries does, or narrow, domain-specific schemes like
the scheme used to describe technical aids for people with disabilities.

 In many contexts, the classification scheme is organic and evolving. In cases such
as social-tagging website delicious.com, tags are defined by how they’re used to classify
web pages. Users choose words that describe a web page and this action is multiplied
millions of times a day. The vocabulary used in the categorization scheme constantly
evolves, and meaning has potential to change continuously based on how the tags are
used. The classification scheme emerges and changes over time from the bottom up,
as opposed to top-down methods to classification where a predefined, possibly hierar-
chical set of subjects are made available to the user to choose from.

 Deciding upon a classification scheme for your application is a matter of evaluat-
ing the trade-offs. Bottom-up tag-based schemes trade precision for simplicity, but can
run afoul of language usage issues when tags have multiple meanings or multiple
words describe the same concept, or even simpler issues such as when one user uses a
plural to annotate a resource but another searches for a singular form. Top-down
taxonomy-based schemes may not share some of these issues and provide an authori-
tative representation of a space of classes, but have difficulty adapting to new vocabu-
laries or meanings.

7.2.2 Identifying features for text categorization

In chapter 2 we discussed different approaches to preprocessing text to extract words
that are used for later processing schemes. The words extracted from text are thought
of as features of that text. These words as features are used in classification algorithms
to determine which class or category documents containing these words appear in.

 The simplest approach, known as the bag-of-words approach, treats a document as a
set of words. Each word appearing in a document is considered a feature and these
features are weighted according to their frequency of occurrence. The TF-IDF weight-
ing scheme presented in chapter 3 is used to generate weights for each word, in order
to assign importance to words in a document based on how frequently each word
occurs in a training corpus. Depending upon the size of the corpus, it may be neces-
sary to use a subset of the terms in the corpus as the set of features to build a classifier
upon. Eliminating words that occur frequently or that have a low IDF allows you to
train a classifier on the most important words in the corpus: the words that have the
greatest strength in discriminating between different categories. Chapter 3 also pre-
sented a number of alternate weighting schemes that are used to weight words for the
purpose of choosing a set of features for making class determinations.

183The classification process
 Word combinations often make useful document features. Instead of treating
every word as it appears in a document as a feature, n-grams are used to capture
important word combinations. A category usually contains word combinations that
are unique to that category, such as title insurance, junk bond, or hard disk. Choosing all
word combinations in a corpus may result in an explosion of features, but algorithms
can identify statistically relevant word combinations known as collocations, and elimi-
nate word combinations that provide little value.

 Aside from content, other document features may be useful when building classifi-
ers. The documents that make up a corpus may have properties that can improve the
quality of the categorization algorithm. Document metadata such as authors and
sources are often useful. The fact that a document is published in a Japanese newspa-
per may suggest that a document is more likely to be a member of the Asian Business
category. Certain authors may commonly write about sports, whereas others write
about technology. Document length may also be a factor in determining the differ-
ence between an academic paper, email message, or tweet.

 Additional resources may be brought to bear to derive features from a document.
A lexical resource such as WordNet may be used to perform term expansion by add-
ing synonyms or hypernyms for key document terms as features. Names are often
extracted by algorithms such as those described in chapter 5 and added, so Camden
Yards or Baltimore Orioles become individual features that are used to determine that an
article fits into the Sports category. Furthermore, the output of clustering algorithms
or other classifiers may be used as features fed into a classifier that can also be used to
make category determinations.

 With all of these options, where’s the best place to start? You can get far with the
bag-of-words approach combined with TF-IDF weighting using the standard vector
space model. In our examples in this chapter, we’ll begin with these and identify alter-
nate approaches towards feature selection as we proceed. Algorithms play an impor-
tant role in the accuracy of an automatic categorization system, but feature selection
can make or break the results regardless of the algorithms chosen.

7.2.3 The importance of training data

A classifier’s accuracy is determined by the features it’s trained on and the quality and
quantity of examples available for training. Without a sufficient number of examples,
a classifier will be unable to determine how features relate to categories. The training
process will make incorrect assumptions about these relationships if insufficient data
is available. It may not be able to differentiate between two categories, or incomplete
data may suggest that a feature is related to one specific category when it’s not. For
example, you intuitively know that color isn’t a distinguishing characteristic when
determining whether something is a helicopter or an airplane, but if your classifica-
tion algorithm only saw examples of yellow airplanes and saw no yellow helicopters, it
might believe that all yellow flying vehicles are airplanes. A comprehensive and bal-
anced training set that includes as many relevant features as possible, along with a uni-
form number of training examples, is important to produce an accurate model.

184 CHAPTER 7 Classification, categorization, and tagging
 But where does training data come from? One approach is to manually assign
classes to data. News organizations such as Reuters have invested considerable time
and effort in manually tagging stories that flow through their organizations. The man-
ual tagging efforts of millions of delicious.com users may be leveraged as a source of
annotated web pages.

 It’s also possible to derive training data using automated processes. In the Mahout
Bayes example in section 7.4, we’ll explore how keyword search is used to collect a
number of documents that are related to a subject area. One or more keywords are
associated with a class and a search is used to retrieve the documents containing those
keywords. The features contained in the documents retrieved for each class determine
the nature of the category associated with the keyword search. This process, known as
bootstrapping, is able to produce classifiers that generate reasonably accurate results.

 There’s a wealth of useful data on the internet when training a classifier. Projects
such as Wikipedia and its relatives, such as Freebase, make bulk data dumps available1

that can provide a tremendous corpus of documents where many have been assigned
categories, tags, or other information useful for training a classifier.

 In conjunction with machine learning research, a number of test collections are
made available. These are useful when attempting to reproduce the results of the
research or in comparing the performance of alternate approaches. Many of these are
restricted to noncommercial use and require citation, but they’re a great way to hit
the ground running, exploring different aspects of classification and providing a
benchmark to let you know you’re headed in the right direction.

 One of the most well-known research test collections is the RCV1-v2/LYRL2004 text
categorization test collection (see Lewis [2004]), which contains more than 800,000
manually categorized stories from the Reuters news wire. The paper that accompanies
this test collection describes the collection in depth and presents the training method-
ology and results for several well-known text classification approaches. Prior to the
release of RCV2, another Reuters test collection was made available, know as Reuters-
21578, which is also widely used. Though this collection contains a significantly
smaller number of files, it’s still useful as a benchmark collection of news wire content
due to the amount of research based upon it that has been published. Another test
collection, referred to as the 20 Newsgroups collection (available at http://people
.csail.mit.edu/jrennie/20Newsgroups/), contains approximately 11,000 articles from
20 separate internet newsgroups that cover subjects from computing to sports, cars,
politics, and religion, and is useful as a small, well-organized training and test corpus.

 Stack Exchange, the parent company of Stack Overflow (http://www.stackoverflow
.com) and many other social question answering sites, makes a data dump available
under the Creative Commons license (found at http://blog.stackoverflow.com/
category/cc-wiki-dump/). Each of the questions on Stack Overflow has been tagged
with keywords by the user community. The data dump contains these tags and serves as

1 Wikipedia makes bulk dumps available at http://en.wikipedia.org/wiki/Wikipedia:Database_download;
Freebase dumps are available from http://wiki.freebase.com/wiki/Data_dumps.

185The classification process
an excellent source of training data. In section 7.6.1 we’ll use a subset of this data to
build our own tag recommender.

 If the data you need isn’t available in bulk-dump form but is available on the inter-
net, it’s not uncommon to develop a targeted web crawler that will retrieve the data
needed to train a classifier. Some large sites such as Amazon even provide a web ser-
vices API that allows you to collect content from their site. Open source crawling
frameworks such as Nutch and Bixo both provide excellent starting points for collect-
ing training data from the internet. When doing so, pay careful attention to each site’s
copyright and terms of service to be sure that the data you collect may be used for
your purpose. Be kind to websites,
restricting your crawl to a handful of
pages every few seconds, and act as if
you’re paying for the bandwidth to pull
the data. Take what you need, nothing
more, and don’t place such a burden on
any given site as to impose a cost on its
owners or deny the service to regular
users. Be a good citizen, and when in
doubt contact the site’s owners. There
may be opportunities to obtain data avail-
able to you that’s not advertised to the
general public.

 If all else fails and you find yourself
having to annotate your collection of
objects by hand, don’t despair. Aside from
recruiting your friends, family, bridge
club members, and random passersby on
the street to hand-tag a collection of Twit-
ter messages for you, you can turn to Ama-
zon Mechanical Turk. Mechanical Turk is
a mechanism by which you, an enterpris-
ing machine learning developer, can fun-
nel tasks that require human intelligence
(HITs or human intelligence tasks in Amazon
MT parlance) to other people around the
globe for a small fee per task. The Ama-
zon Mechanical Turk website contains a
wealth of information on the setup and
execution of such tasks.

 Most classification algorithms sup-
port additional parameters that are used
to influence the calculations performed

Using human judgments as
training data
People have been used to provide
feedback in evaluating or training
computer algorithms in many ways.
It’s common to use human judges to
assess the relevancy of documents in
an information retrieval context,
where people will determine whether
a search result is relevant to the ini-
tial query and score the quality of the
search algorithm based on that judg-
ment. A significant amount of
research is available describing the
issues related to using human judges
in depth; some of these papers are
cited at the end of this chapter.

Keep in mind, we humans are less
than perfect. When embarking on col-
lecting large-scale human judgments,
it’s important to validate that the peo-
ple you’re about to use understand
the meaning of your categories or
labels, are capable of making consis-
tent judgments, and don’t change sig-
nificantly over time. You can check a
human judge’s reliability and the clar-
ity of your categorization scheme by
comparing one person’s judgments
against documents that have already
been classified either by other people
or a machine. Consistency is deter-
mined by having the user repeat judg-
ments over time.

186 CHAPTER 7 Classification, categorization, and tagging
as a part of the training or classification process. Algorithms such as naive Bayes have
few parameters, whereas others such as support vector machines (SVMs) have a num-
ber of modifiable parameters. Often training a classifier is a process involving many
iterations: training with a starting value for each parameter, performing an evalua-
tion, and then adjusting the values slightly in order to identify the best classification
performance.

7.2.4 Evaluating classifier performance

Trained classifiers are evaluated by classifying documents that are already labeled and
comparing these labels to the results produced by the classifier. The quality of a classi-
fier is measured in terms of its ability to produce a result identical to the label previ-
ously assigned to the data. The percentage of cases where the assigned class correctly
matches the pre-assigned labels is known as the classifier’s accuracy. This provides an
overall sense of the classifier’s performance, but it’s necessary to delve deeper to
determine the nature of the errors encountered.

 Variations of the precision and recall metrics introduced in chapter 3 are adapted
to generate more detailed metrics for classifiers. These metrics are based on the types
of errors encountered.

 When you consider the output of a binary classifier, there are four basic outcomes,
as shown in table 7.1. Two of these outcomes indicate a correct response and two indi-
cate an incorrect response. The two correct outcomes include cases where both the
label and the classifier indicate a positive result and cases where both the label and
the classifier indicate a negative result. These are known as true positive and true nega-
tive. The second pair of outcomes indicate an error, where there’s a disagreement
between the classifier and existing label.

 The first is false positive, where the classifier indicates an object belongs to a class
when it indeed doesn’t. The second is known as false negative, where the classifier
indicates that an object doesn’t belong to a class when it actually does. In statistics
these are known as Type I and Type II errors respectively.

 In the context of classification, precision is calculated as the number of true posi-
tives divided by the sum of the number of true and false positives. Recall is the number
of true positives divided by the sum of the number of true positives and false negatives.
A third measure, known as specificity or true negative rate, is measured as the number of
true negatives divided by the sum of the number of true negatives and false positives.

Table 7.1 Classification outcomes

In class Not in class

Assigned to class True positive False positive
(Type I error)

Not assigned to class False negative
(Type II error)

True negative

187The classification process
Depending upon your application, you may be more sensitive to one kind of error
more than another. In spam detection, false positives come with a high cost because
it’ll cause a customer to miss a nonspam email; false negatives may be more accept-
able because seeing spam in your inbox, though frustrating, is easily remedied with
the Delete key. As your application demands, you may focus on overall accuracy, preci-
sion, recall, or specificity.

 In the case of multiclass classifiers, it’s common to produce each of these metrics
for each individual class that the classifier may assign. They’re then aggregated to pro-
duce an average accuracy, precision, and/or recall for the entire classifier.

 Often it’s more useful to understand the interaction between two classes in addi-
tion to the number of true or false positives. A representation of results known as a
confusion matrix describes the nature of error cases by displaying how the documents
with each label were assigned to classes. In the cases where errors are made, the confu-
sion matrix displays the category the document was assigned to in error. In some cases
the majority of the mistakes may involve assigning documents to one other class. They
may identify issues with the training data used or the feature selection strategy.

 In order to calculate these metrics it’s necessary to hold some labeled data out
from the training process. If you have 200 news stories related to the category Soccer,
you might choose to train on 180 of them and hold 20 back so that you’re sure that
your classifier can accurately identify documents about soccer. It’s important to never
train upon your test data; otherwise your tests will be skewed and produce deceptively
accurate results. If you ever encounter a case where your results appear to be too good
to be true, check to be certain you’re not training on your test data.

 There are a number of different ways to split your training data into training and
test sets. Choosing a random selection of documents is a good starting point. If the
documents have a temporal dimension such as publication date, it may be useful to
sort them by date and hold back the most recent documents as test data. This would
validate that new documents that arrive are accurately classified based on the features
found in older documents.

 It’s sometimes useful to go beyond a single split of training and test data when per-
forming classifier evaluation. Our set of 200 news stories from before may be sepa-
rated into 10 groups of 20 documents each. A number of classifiers will be trained
using different combinations of groups as training and test data. For example, one
classifier might be trained using groups 1 to 9 and tested using group 10, another
trained using groups 2 to 10 and tested using group 1, another trained on groups 1
and 3 to 10 and tested using group 2, and so on. The resulting accuracy of each test is
averaged to produce a final accuracy that evaluates the performance of the classifier.
This approach is known as k-fold cross validation where k refers to the number of groups
the data is split into, and is commonly used for statistically rooted classification
approaches.

 Aside from these, other evaluation methodologies can be used to judge classifier
performance. A metric known as area under curve or AUC is useful in cases where

188 CHAPTER 7 Classification, categorization, and tagging
there’s an unbalanced set of training documents across the categories of the corpus. A
metric named the log-likelihood ratio (or sometimes just log-likelihood) is often used
when evaluating statistical models to compare results of multiple training runs.

7.2.5 Deploying a classifier into production

When you have a classifier trained and producing results of sufficient quality, it’s nec-
essary to consider the following issues:

1 Deploying the classifier into production as a part of a larger application
2 Updating the classifier while it’s in production
3 Evaluating the accuracy of the classifier model over time

Each of the classifiers examined in this chapter may be deployed as a component of a
larger service. A common deployment model is one where the classifier is deployed as
a part of a long-running process. At startup the model is loaded into memory and the
service receives requests for classification, either as individual requests or as a batch of
documents. The OpenNLP MaxEnt classifier operates in such a manner, loading its
models into memory at startup and then reusing them throughout its lifecycle. Large
models that can’t fit into working memory must have portions stored on disk. Apache
Lucene uses a hybrid disk/memory scheme for storing document indexes, so it also
works well here for supporting large models. The Mahout Bayes classifier supports
multiple mechanisms for storing data, using both an in-memory store and storage
based on the distributed database HBase. It also provides an API to extend to imple-
ment a data store appropriate for your deployment model.

 After the classifier is deployed, it must be possible to update the model it uses as
new information becomes available. Some models may be updated online, whereas
others require building a replacement model offline and swapping it in to use. A clas-
sifier that’s able to be updated online may be dynamically extended to handle new
vocabularies. Lucene’s index structure makes it simple to add or replace documents
without taking the index offline for queries. In other cases, such as when the model is
stored in memory, the application using the classifier must be developed in such a way
that a second model may be loaded into memory while the original model remains
active. When the load of the second model is complete, it replaces the original model
and the original is dropped from memory.

 Evaluation of a classifier’s performance over time involves collecting additional
data to use in order to evaluate the classifier’s performance. This may involve preserv-
ing some of the input the classifier has seen in production and manually choosing the
appropriate category. Keeping an eye out for cases where your classifier falls down on
the job is useful, but it’s important to collect a broad sample of data for evaluation,
not simply the cases where classification does poorly. Keep an eye out for new subject
areas or terms or topics of discussion. Regardless of the data, the process of evaluating
a classifier in production doesn’t differ from evaluating a classifier as a part of the
development process. You must still have labeled test documents that you can classify
and then compare the results of classification with the labels.

189Building document categorizers using Apache Lucene
 Often it’s necessary to modify the categorization scheme to accommodate new
data. When designing your application, consider how this may impact you. If you store
categorized documents, the categories assigned may become obsolete as your catego-
rization scheme changes. Depending upon your application, you may need to recate-
gorize documents to match a new scheme and it’ll be necessary to have access to their
original contents in order to do so. An alternative may be to develop a mapping
scheme from old to new categories, but as categories merge and split, this frequently
becomes untenable.

 Now that we’ve examined the issues surrounding the training and deployment
process, let’s get our hands dirty by training and testing some categorization algo-
rithms. In the following sections we’ll explore variations on three classification and
categorization algorithms and develop a tag recommendation engine. Throughout
each of these examples, we’ll explore important aspects of the preparation, training,
testing, and deployment process.

7.3 Building document categorizers using Apache Lucene
Some classification algorithms are called spatial techniques. These algorithms use the
vector space model introduced in chapter 3 to represent a document’s content as a fea-
ture vector, a point within vector space. These algorithms determine the proper category
for a document by measuring the distance or angle between the term vector of the doc-
ument to be labeled and other vectors that represent either documents or categories.

 In this section, we cover two spatial classification algorithms: k-nearest neighbor
and TF-IDF. Each algorithm treats the document to be categorized as a query and per-
forms searches against a Lucene index to retrieve matching documents. The catego-
ries of the retrieved documents are used to determine the category of the query
document. The k-nearest neighbor algorithm searches an index of categorized docu-
ments, whereas the TF-IDF approach searches an index where each document repre-
sents one of the categories we will assign. Each algorithm has advantages in terms of
ease of implementation and performance.

 The vector space model is at the heart of Lucene. Lucene is optimized for making
the kind of distance calculations required for both of these algorithms quickly, provid-
ing an excellent base upon which to build this functionality.

 In this section, you’ll build document categorizers that use Apache Lucene and
the k-nearest neighbor and TF-IDF algorithms to assign documents to subject areas.
You’ll train these categorizers using a freely available test corpus and learn how to
evaluate the quality of results produced by the categorizers. This being our first
example, we’ll keep things simple, but the concepts introduced here will be carried
through to the other examples in this chapter. You’ll also notice that each of the sec-
tions in this example parallel the classification process laid out in section 7.2.

7.3.1 Categorizing text with Lucene

Lucene is highly efficient when it comes to performing distance calculations. Given a
query document, similar documents are returned in subsecond response times even

190 CHAPTER 7 Classification, categorization, and tagging
with an index populated with millions of documents. The score returned by Lucene is
the inverse of the distance between two documents: the higher the score for a match
in Lucene, the closer the document is in vector space. Within each algorithm the doc-
uments that are closest to the query will be used to make a category assignment.

 In the k-nearest neighbor (k-NN) algorithm, a category is assigned to a document
based on the categories of the document’s neighbors in vector space. The k in k-nearest
neighbor refers to one of the tunable parameters of the algorithm: the number of
neighbors that are inspected when making the determination of which category is most
appropriate. If k is set to 10, for example, a document’s 10 closest neighbors are evalu-
ated when choosing a category to assign to the query document.

 In the TF-IDF algorithm, you create a single document for each category you seek
to assign. In the example in this section, each category document is a simple concate-
nation of all of the documents in the given category. An alternate approach is to
choose representative documents by hand. This approach is referred to as the TF-IDF
approach because the term frequency-inverse document frequency weight of each
word in a category is used as the basis for making categorization decisions. A term’s
relative importance is based upon the number of categories in which it appears. Fur-
thermore, this drives query term selection and distance calculations between the
query document and the categories in the index. The differences between the k-near-
est neighbor and TF-IDF aproaches can be seen in figure 7.3.

 The implementations of the k-nearest neighbor and TF-IDF algorithms share a sig-
nificant amount of code. Each implementation builds a Lucene index from the train-
ing data. From the perspective of the Lucene API, this means creating an
IndexWriter, configuring how it analyzes text, and creating Document objects to
index. The content of each Document object will vary based upon the classification

Figure 7.3 Comparing the k-nearest neighbor (k-NN) and TF-IDF categorization
algorithms. On the left, the document being categorized (in grey) is linked to its 5
nearest neighbors (k=5). Two neighbors are in category C, whereas one neighbor
each is in A, B, and D. As a result, the document is assigned to category C. The large
circles represent the category documents used in the TF-IDF algorithm which are a
concatenation of each of the original documents in a given category. The result of the
TF-IDF algorithm, shown on the right, demonstrates that the document being
categorized is closest to category D and is assigned a label of D instead of C.

191Building document categorizers using Apache Lucene
algorithm. At a minimum each document will have a category Field object and a
content Field. The category field holds category labels whereas the document text is
stored in the content field. The code used to read and parse training data, add docu-
ments to the index, classify documents, and evaluate the performance of each algo-
rithm is shared between each implementation.

 An important aspect of this process is the conversion of the document you’re
seeking to classify into a Lucene query. One simple approach would be to take each
unique term in the document and add it to the query. For short documents, this may
be sufficient, but you’d quickly encounter difficulty processing long documents.
Many words in such documents may not be useful to determine the appropriate
category. Removing stopwords would reduce the size of document-based queries, but
it’s helpful to consider the contents of the index being searched. It’d be useless to
search for a term that’s not in the index, and searching upon a term that appears in
every document in the index would provide no value but would significantly impact
query time.

 In order to determine the best words to use for categorization, you can use metrics
such as term frequency (TF) and document frequency (DF) that you already calcu-
lated as a part of the index building process. Inverse document frequency is used to
filter out those words with little importance. You end up with a list of query terms
extracted from the document to be categorized chosen based upon their relative
importance in the document index. This way you don’t waste any time executing a
query for a term that serves little purpose in determining whether a document
belongs in category A, B, or C.

 Luckily for us, the Lucene developers have made choosing terms for these sorts of
queries extremely easy. Lucene includes a query type, the MoreLikeThisQuery, that
performs index-based term selection from query documents. For the categorizers
you’ll build in this section, you’ll use MoreLikeThisQuery to generate Lucene Query
objects from your input data.

 Throughout this section, we’ll discuss a categorization implementation that uses the
Lucene API to tokenize a document, generate a MoreLikeThis query, and execute that
query against a Lucene index in order to obtain categories for the input document. The
Lucene index is built from individual training documents in the case of the k-nearest
neighbor algorithm, or categories documents in the case of the TF-IDF algorithm. Since
the two algorithms share a significant amount of code, they’ll be packaged as separate
options within a single implementation we’ll refer to as the MoreLikeThis categorizer.
The code for this implementation is available in the com.tamingtext.classifier.mlt
package in the source code that accompanies this book.

7.3.2 Preparing the training data for the MoreLikeThis categorizer

For this example, you’ll train the MoreLikeThis categorizer to assign articles to the cor-
rect subject categories using the 20 Newsgroups test corpus. This data consists of arti-
cles posted to 20 different internet newsgroups and is split into a training and test set.
The newsgroups cover a variety of subject areas, with some such as talk.politics

192 CHAPTER 7 Classification, categorization, and tagging
.mideast and rec.autos being clearly separate subjects, and others such as
comp.sys.ibm.pc.hardware and com.sys.mac.hardware being potentially quite simi-
lar. The training data contains roughly 600 articles for each newsgroup, whereas the
test data has close to 400 articles for each newsgroup. This set makes a nice sample set
because it contains a uniform number of training and test examples per target cate-
gory. As the name of the archive file suggests, the training/test split has been per-
formed by date, with the training data made up of files that appear chronologically
prior to the files in the test set.

 The 20 Newsgroups test corpus you’ll use for these examples can be downloaded
from http://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz.

 After you’ve downloaded and extracted the archive, you’ll have two directories,
20news-bydate-train and 20news-bydate-test. Each of these directories contains one
subdirectory for each newsgroup. Each of the newsgroup subdirectories contains a
single file for each newsgroup posting. In order to train and test your classifier, you
must take these files and transform them into the appropriate format. For simplicity,
you use the same input format used by Mahout in all of the examples in this chapter.
The PrepareTwentyNewsgroups utility from Mahout is used to create your test input.
Run the following commands to convert the training and test data into the format
you’ll use:

$MAHOUT_HOME/bin/mahout \
org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups \
-p 20news-bydate-train \
-o 20news-training-data \
-a org.apache.lucene.analysis.WhitespaceAnalyzer \
-c UTF-8

$MAHOUT_HOME/bin/mahout \
org.apache.mahout.classifier.bayes.PrepareTwentyNewsgroups \
-p 20news-bydate-test \
-o 20news-test-data \
-a org.apache.lucene.analysis.WhitespaceAnalyzer \
-c UTF-8

NOTE Throughout the examples in this chapter, you’ll see references to the
environment variables $MAHOUT_HOME and $TT_HOME. MAHOUT_HOME
should point to the base directory of a Mahout 0.6 installation, which contains
a directory named bin that in turn contains a script named mahout. TT_HOME
should point to the root directory containing the book’s source code. This
directory contains a directory named bin that in turn contains a script named
tt. Each of these scripts is a wrapper for the Java command that sets up the
appropriate environment in which to execute Java classes included in their
respective distributions. Using environment variables like these allows you to
set up your own working directory, which keeps the data generated by these
examples separate from your copies of Mahout and the Taming Text code.

By the time this book is published, Mahout 0.7 will be released. This
release includes significant changes to the Bayes classifiers, so be sure you’re

193Building document categorizers using Apache Lucene
using the Mahout 0.6 releases with the examples in the book. Keep an eye on
the book’s author forums for updates to the sample code related to Mahout
0.7 and future releases.

As you see from the command, you use the WhitespaceAnalyzer to perform simple
tokenization of the input data. The data will have stemming performed and stopwords
removed using Lucene’s EnglishAnalyzer later as a part of the training and test pro-
cess, so there’s no need to perform anything other than whitespace tokenization at
this point. Other classifiers such as Mahout’s Bayes classifier benefit from performing
stemming and stopword removal as a part of the data preparation phase.

 The preparation commands create a series of files containing training and test
data. There’s one file per category and each file has multiple lines, each line split into
two columns delimited by a tab character. The first column contains the newsgroup
name; the second contains a string, the contents of a training document with newlines
and tabs removed. The following is an excerpt of some of the files in the training set.
Each line contains the headers of the message followed by the message contents:

alt.atheism ... Alt.Atheism FAQ: Atheist Resources Summary: Books,
...
alt.atheism ... Re: There must be a creator! (Maybe) ...
alt.atheism ... Re: Americans and Evolution ...
...
comp.graphics ... CALL FOR PRESENTATIONS ...
comp.graphics ... Re: Text Recognition ...
comp.graphics ... Re: 16 million vs 65 ...
...
comp.os.ms-windows.misc ... CALL FOR PRESENTATIONS ...
comp.os.ms-windows.misc ... Re:color or Monochrome? ...
comp.os.ms-windows.misc ... Re: document of .RTF Organization: ...

Now that your training and test data has been prepared, you can train the More-
LikeThis classifier.

7.3.3 Training the MoreLikeThis categorizer

The training process for the MoreLikeThis classifier is executed from a command
prompt using code included in the examples provided with this book. The following
command generates a model using the k-NN algorithm discussed in section 7.3.1:

$TT_HOME/bin/tt trainMlt \
-i 20news-training-data \
-o knn-index \
-ng 1 \
-type knn

This command builds a Lucene index using the training data you prepared in the pre-
vious section. Building an index that’s used for the TF-IDF algorithm is as simple as
changing the -type argument to tfidf.

194 CHAPTER 7 Classification, categorization, and tagging
 We’ll start by looking at the code behind each of these commands. Listing 7.1 pres-
ents the code required to create an index and set up the text processing pipeline in
order to index your training data.

Directory directory
= FSDirectory.open(new File(pathname));

Analyzer analyzer
= new EnglishAnalyzer(Version.LUCENE_36);

if (nGramSize > 1) {
ShingleAnalyzerWrapper sw

= new ShingleAnalyzerWrapper(analyzer,
nGramSize, // min shingle size
nGramSize, // max shingle size
"-", // token separator
true, // output unigrams
true); // output unigrams if no shingles

analyzer = sw;
}

IndexWriterConfig config
= new IndexWriterConfig(Version.LUCENE_36, analyzer);

config.setOpenMode(OpenMode.CREATE);
IndexWriter writer = new IndexWriter(directory, config);

At B you get started by creating a Lucene Directory object that represents the loca-
tion on disk where the index is stored. Here the Directory is created by calling the
FSDirectory.open() method with the full path to the directory in which the index
should be created. At C you instantiate the analyzer that’s used to generate tokens
from text input.

 Lucene’s EnglishAnalyzer is a good starting point that provides reasonable stem-
ming and stopword removal. Alternate analyzer implementations are available in
Lucene or as external libraries. You should experiment with the different options
available in order to obtain the tokens that are most useful for your application. For
example, you may want to choose an analyzer that can handle languages other than
English, or use a filter that eliminates alphanumeric terms or normalizes mixed-
representation words like Wi-Fi. A number of examples of various analyzers and com-
binations are present in the standard configuration shipped with Solr, as discussed in
chapter 3.

 In this example, you augment the output of Lucene’s EnglishAnalyzer using
n -grams. The code at D shows how the Lucene ShingleAnalyzerWrapper is used to
produce n-grams in addition to individual words if the nGramSize parameter is greater
than 1.

THE SHINGLEANALYZER AND WORD N-GRAMS When we encountered n -grams
previously in chapter 4, we were exploring character-based n -grams. The
n -grams produced by Lucene’s shingle analyzer are word-based n -grams.

Listing 7.1 Creating a Lucene index

Create index directory.B

Set up analyzer.C

Set up shingle filter.D

Create IndexWriter.E

195Building document categorizers using Apache Lucene
When the text now is the time is processed and the nGramSize is set to 2, the
shingle analyzer will produce tokens such as now-is, is-the, and the-time (assum-
ing that stopwords aren’t removed). Each of these tokens will be used as fea-
tures that may be useful in determining the difference between one category
of text and another. In this specific case, the ShingleFilter operates on out-
put of the EnglishAnalyzer. If the input now is the time has the stopwords is
and the removed, and the n-grams now-_ and _-time are produced. The under-
scores capture the position of the removed stopword to prevent capturing
word pairs that didn’t appear in the original text.

The command to run the trainer shown at the beginning of this section uses the
default setting of 1 for the nGramSize parameter. This is changed by adding the -ng
parameter followed by a number to the command, such as -ng 2.

 When the EnglishAnalyzer has been created and potentially wrapped with the
ShingleAnalyzerWrapper, it’s ready to be used to create the Lucene index. At E you
create the IndexConfig and IndexWriter you’ll use to build the index of training data.

 Now you read the training data from the files on disk and transform them into
Lucene Documents that are then added to the index. You must begin by creating the
Field objects that will be used to hold the information that’s stored in each document.

 You have three fields in this case: the document’s ID (a unique identifier), the doc-
ument’s category, and the document’s content, which contains the tokens produced
by the analyzer that will be used as features for training. The following listing shows
how each of the fields are created.

Field id = new Field("id", "", Field.Store.YES,
Field.Index.NOT_ANALYZED, Field.TermVector.NO);

Field categoryField = new Field("category", "", Field.Store.YES,
Field.Index.NOT_ANALYZED, Field.TermVector.NO);

Field contentField = new Field("content", "", Field.Store.NO,
Field.Index.ANALYZED, Field.TermVector.WITH_POSITIONS_OFFSETS);

You don’t need to analyze or create term vectors for either the ID or the category field.
Each of these is stored in the index for later retrieval. The content field is analyzed
using the analyzer you created in listing 7.1, and the term vectors you create for this
field include full-term positions and offsets in order to record the order in which
terms appeared in the original document.

 The trainer code loops over each document in the input file and indexes docu-
ments using different techniques based upon the categorization algorithm. The next
listing shows how documents are built for the k-nearest neighbor algorithm in which
each training example exists as a single document in the index.

Listing 7.2 Setting up document fields

196 CHAPTER 7 Classification, categorization, and tagging

while ((line = in.readLine()) != null) {
String[] parts = line.split("t");
if (parts.length != 2) continue;
category = parts[0];
categories.add(category);

Document d = new Document();
id.setValue(category + "-" + lineCount++);
categoryField.setValue(category);
contentField.setValue(parts[1]);
d.add(id);
d.add(categoryField);
d.add(contentField);

writer.addDocument(d);
}

In the implementation of the k-NN algorithm, the trainer first reads each document
in a category at B, and C produces documents which are added to the Lucene index
at D. With this approach, the index size is proportional to the number of documents
in the training set.

 The following listing shows how training data is indexed for use by the TF-IDF
algorithm.

StringBuilder content = new StringBuilder();
String category = null;
while ((line = in.readLine()) != null) {

String[] parts = line.split("t");
 if (parts.length != 2) continue;

category = parts[0];
categories.add(category);
content.append(parts[1]).append(" ");
lineCount++;

}

in.close();

Document d = new Document();
id.setValue(category + "-" + lineCount);
categoryField.setValue(category);
contentField.setValue(content.toString());
d.add(id);
d.add(categoryField);
d.add(contentField);

writer.addDocument(d);

In the implementation of the TF-IDF algorithm, the trainer reads each document in a
category at B and concatenates the content into a single string. After all of the docu-
ments for a single category have been read, at C a Lucene document is created and is
added into the index at D. If you have a large amount of text for each category, this

Listing 7.3 Indexing training documents for k-NN categorization

Listing 7.4 Indexing training documents for TF-IDF categorization

Collect content.B

Build document.C

Index document.D

Collect content.B

Build document.C

Index document.D

197Building document categorizers using Apache Lucene
algorithm will consume more memory than the k-NN algorithm because a buffer con-
taining the text of all documents in the category is built in memory before passing the
result to Lucene.

 Now that you’ve built indexes containing your training data, you can implement
and test your categorization algorithms.

7.3.4 Categorizing documents with the MoreLikeThis categorizer

The first step to categorizing documents is to open the Lucene index and set up the
analyzers used to parse the text that you want to categorize. It’s important that the
analyzers created here are the same as those used for training, configured in the same
manner so that the terms that make up the query are formed the same way as the
terms stored in the index. This means using the same stopword list, stemming algo-
rithm, and n-gram settings. When the index and analyzers are ready, you create and
configure an instance of the MoreLikeThis class. The next listing demonstrates how
this is done.

Directory directory = FSDirectory.open(new File(modelPath));

IndexReader indexReader = IndexReader.open(directory);
IndexSearcher indexSearcher = new IndexSearcher(indexReader);

Analyzer analyzer
= new EnglishAnalyzer(Version.LUCENE_36);

if (nGramSize > 1) {
analyzer = new ShingleAnalyzerWrapper(analyzer, nGramSize,

nGramSize);
}

MoreLikeThis moreLikeThis = new MoreLikeThis(indexReader);
moreLikeThis.setAnalyzer(analyzer);
moreLikeThis.setFieldNames(new String[] {

"content"
});

At B you create the Directory instance and open both an IndexReader and Index-
Searcher. The reader will be used to retrieve terms to build the query and also later,
after queries have been executed, to retrieve document content. At C and D you cre-
ate the EnglishAnalyzer and optionally wrap it in a ShingleAnalyzer in order to pro-
duce n-grams if that setting is enabled. At E, you create the MoreLikeThis class,
passing it an instance of the IndexReader, setting the analyzer, and configuring it to
use information about terms in the content field to choose which terms to use in its
query. When building queries, MoreLikeThis will look at the frequencies of terms in
the query document and in the index to determine which terms to use. Terms that fall
below the specified frequencies in the query or index, or those that appear too fre-
quently in the index, will be dropped as candidates for query terms because they’d
add little in terms of discriminatory power to the query.

Listing 7.5 MoreLikeThis categorizer setup

Open index.B

Set up analyzer.C

Set up n-grams.D

Create
MoreLikeThis.E

198 CHAPTER 7 Classification, categorization, and tagging
 Now that you’ve created the objects you’ll need to build and execute queries
against the index, you can start performing searches and retrieving categories for doc-
uments. The next listing dives into the method you use to retrieve documents in order
to demonstrate how categorization is performed.

Reader reader = new FileReader(inputPath);
Query query = moreLikeThis.like(reader);

TopDocs results
= indexSearcher.search(query, maxResults);

HashMap<String, CategoryHits> categoryHash
= new HashMap<String, CategoryHits>();

for (ScoreDoc sd: results.scoreDocs) {
Document d = indexReader.document(sd.doc);
Fieldable f = d.getFieldable(categoryFieldName);
String cat = f.stringValue();
CategoryHits ch = categoryHash.get(cat);
if (ch == null) {

ch = new CategoryHits();
ch.setLabel(cat);
categoryHash.put(cat, ch);

}
ch.incrementScore(sd.score);

}

SortedSet<CategoryHits> sortedCats
= new TreeSet<CategoryHits>(CategoryHits.byScoreComparator());

sortedCats.addAll(categoryHash.values());

for (CategoryHits c: sortedCats) {
System.out.println(

c.getLabel() + "t" + c.getScore());
}

At B you create a Reader to read the contents of the document you want to catego-
rize. This gets passed to the MoreLikeThis.like() method, which performs the task
of producing a Lucene query based on the key terms in the document. Now that you
have a query, you perform the search at C, obtaining the standard Lucene response,
a TopDocs object containing the matching documents. At D, you loop over each doc-
ument returned, retrieve its category, and then collect the category name and score
into a CategoryHits object. When you’ve iterated over all of the results, you rank
them at E, where you sort the set of CategoryHits objects, and then print them for
display at F. The highest-ranking category is the category assigned to the document.
This scoring and ranking algorithm is primitive but can produce reasonable results.
We encourage you to explore different approaches toward scoring categories and
through the evaluation process determine what works best for you.

 Categories are chosen the same way regardless of whether the index was built
using the k-NN or TF-IDF algorithm. In the case of k-NN, there may be one or more

Listing 7.6 Categorizing text with MoreLikeThis

Create query.B

Perform search.C

Collect results.D

Rank
categories.

E

Display categories.F

199Building document categorizers using Apache Lucene
documents in the result set for each category; for TF-IDF there will only be one docu-
ment per category. The final score for each document is based upon the scores of the
document or documents that match the query.

 Integrating the MoreLikeThis categorizer into a production system is as simple as
performing the setup once within the application lifetime, and then for each docu-
ment to be categorized, formulating the MoreLikeThis query and retrieving and rank-
ing the categories returned as a part of a search.

 Each of these tasks has been integrated into a class named the MoreLikeThis-
Categorizer in the sample code that accompanies the book. This class may be used as
a starting point for a production categorizer deployment. In this class you’ll see that
the code described in example 7.6, though present, is organized slightly differently
and performs the same operations of setup and categorization. We’ll use this class in
the next section in order to evaluate the categorizer’s accuracy.

7.3.5 Testing the MoreLikeThis categorizer

Test the MoreLikeThis classifier using the following command:

$TT_HOME/bin/tt testMlt \\
-i category-mult-test-data \\
-m knn-index \\
-type knn \\
-contf content -catf category

When this command completes execution, you’ll be presented with two metrics that
describe the quality of the results produced by the categorizer. The first is a count and
percentage of the correctly and incorrectly classified test document instances. This
represents the accuracy of the categorizer as discussed in section 7.2.4. The second
metric is a table called a confusion matrix that describes successful and failed test docu-
ment categorizations. Each column and row of the matrix represents one of the cate-
gories the algorithm can assign to a piece of input. Rows represent the labels pre-
assigned to the test documents; columns represent the categories assigned to the test
documents by the categorizer. Each cell of the matrix contains a count of the number
of test documents that were pre-assigned the corresponding label (corresponding to
the row) and how that test document was categorized (according to the column). A
document has been categorized correctly when both the row and column are the
same category. The confusion matrix presented next is an excerpt of the full confu-
sion matrix you might see when running the testMlt command:

===
Summary

Correctly Classified Instances : 5381 71.4418%
Incorrectly Classified Instances : 2151 28.5582%
Total Classified Instances : 7532

===
Confusion Matrix

200 CHAPTER 7 Classification, categorization, and tagging
a b c d e f ... <--Classified as
315 3 4 5 0 20 ... | 393 a = rec.motorcycles
0 308 0 1 0 2 ... | 390 b = comp.windows.x
0 0 320 4 1 0 ... | 372 c = talk.politics.mideast
2 3 13 271 9 0 ... | 361 d = talk.politics.guns
1 0 10 19 129 0 ... | 246 e = talk.religion.misc
18 3 2 6 2 293 ... | 394 f = rec.autos
...
Default Category: unknown: 20

Confusion matrices are used in the evaluation of any kind of binary or multiclass clas-
sifier. In the case of binary classifiers, they’ll be a 2 x 2 matrix with four cells, similar to
table 7.1. They’re always N x N squares, where N is the number of classes the classifier
has been trained to produce.

 In this example, we’ve limited the matrix to show only the results for the first six
categories in the 20 Newsgroups corpus. Each row represents one of the categories in
the corpus and each column contains a count of the number of test documents that
were assigned to that category. In the example, category a is rec.motorcycles. Of the
393 test documents in this category, the categorizer correctly assigned the category of
rec.motorcycles to 315 of them. The counts in the rest of the columns in this row
show how many of the test documents belonging to rec.motorcycles were assigned
to other categories. This matrix shows that 20 of them were assigned to the rec.autos
category. Not surprising considering the potential similarity between subject areas and
terminology used for those newsgroups.

 You’ll notice that this classifier tends to assign the correct categories to the test
documents in each of the categories by observing that the largest numbers appear on
the diagonal where the category rows and columns intersect. You can also identify
areas where the classifier is running into issues; for example where 20 documents
about motorcycles were classified as being about autos and 18 documents about autos
were classified as having to do with motorcycles. There also appears to be some confu-
sion between the various talk categories, with only 129 of 246 training examples for
talk.religion.misc being correctly classified, and 19 of them being classified as
talk.religion.guns. In cases where documents aren’t correctly assigned, the confu-
sion matrix indicates the classes that were assigned and indicates cases where your
training data contains ambiguity.

 Listing 7.7 demonstrates how we test a trained MoreLikeThis classifier by reading a
number of files from training data. Each document is classified and we compare the
result to the category previously assigned to that document. We use the class Result-
Analyzer from Apache Mahout to collect these judgments and present the metrics
described in the previous paragraphs.

201Building document categorizers using Apache Lucene

final ClassifierResult UNKNOWN = new ClassifierResult("unknown",
1.0);

ResultAnalyzer resultAnalyzer =
new ResultAnalyzer(categorizer.getCategories(),

UNKNOWN.getLabel());

for (File ff: inputFiles) {
BufferedReader in =

new BufferedReader(
new InputStreamReader(

new FileInputStream(ff),
"UTF-8"));

while ((line = in.readLine()) != null) {
String[] parts = line.split("t");
if (parts.length != 2) {

continue;
}

CategoryHits[] hits
= categorizer.categorize(new StringReader(parts[1]));

ClassifierResult result = hits.length > 0 ? hits[0] : UNKNOWN;
resultAnalyzer.addInstance(parts[0], result);

}

in.close();
}

System.out.println(resultAnalyzer.toString());

You begin by creating a ResultAnalyzer at B using the list of categories the catego-
rizer produces and provide the default UNKNOWN category that will be used in cases
where you’re unable to categorize a document. At C you read test data from an input
file into an array of parts. parts[0] contains the category label; parts[1] contains the
training document text. Documents are categorized at D, where you obtain a ranked
list of categories for the document you’re categorizing. You take the highest-ranked
category assigned to the document and add it to the resultAnalyzer at E. If you
have no results from the categorizer, you use the UNKNOWN class. After you’ve processed
all of the training data, at F you display the percentage of the correct categorizations
and confusion matrix.

7.3.6 MoreLikeThis in production

We’ve explored the basic building blocks of a Lucene-based document categorizer. We
covered the interactions with the Lucene API required to train a categorizer by build-
ing a Lucene index of categorized documents, how to categorize documents by trans-
forming them into Lucene queries, and how to evaluate the quality of the categorizer.
We covered some of the basics as to how these algorithms may be used in a production
environment. We’ll expand on one deployment scenario in section 7.4.7. The
scenario covered there is easily adapted to deploy the MoreLikeThis classifier into a

Listing 7.7 Evaluating results from the MoreLikeThisCategorizer

Create ResultAnalyzer.B

Read test data.C

D Categorize.

E
Collect
results.

Display results.F

202 CHAPTER 7 Classification, categorization, and tagging
production environment. The Lucene query API is highly flexible and makes it easy to
integrate these sorts of classifiers in many other contexts as well.

 Lucene’s indexing API makes it easy to modify the model used for classification.
For k-NN classification, enhancing the model is as simple as adding more categorized
documents to the index. Training can occur incrementally and is limited chiefly by
index size. For the TF-IDF model, it’s as simple as replacing an existing category docu-
ment by adding updated content for a category as a new document and deleting the
old one. The ability to add new training data to the classifier in an incremental man-
ner such as this is known as online learning and is often a desirable property of classifi-
cation algorithms. Offline learning algorithms—classifiers that can’t be extended in
this way—must be retrained from scratch each time an improvement must be made,
which may be expensive in terms of time and CPU cycles.

 Now that you’re familiar with the process of building a categorizer using Lucene to
implement a distance-based classification method, we’ll repeat this process in
section 7.4 and train a naive Bayes text categorizer using Apache Mahout. In addition
to exploring a statistical categorization algorithm, we’ll investigate how existing data,
such as the results of a web crawl, can be adapted to be used as training data.

7.4 Training a naive Bayes classifier using Apache Mahout
In chapter 6, you saw how Apache Mahout could be used to group documents into
clusters of similar subject areas. Mahout also includes a number of classification algo-
rithms that are used to assign category labels to text documents. One algorithm that
Mahout provides is the naive Bayes algorithm. This algorithm is used for a wide variety
of classification problems and is an excellent introduction into probabilistic classifica-
tion. In order to perform class assignments, the algorithms that employ probabilistic
classification techniques build a model based upon the probability that document fea-
tures appear for a given class.

 In this section, you’ll use the Mahout implementation of the naive Bayes algorithm
to build a document categorizer. In the first example in this chapter, we demonstrated
how we could use the 20 Newsgroups test corpus to train a classifier based on Lucene.
In this example, you’ll develop your own test corpus from data we collected from the
internet and use it to train the classifier. You’ll use the content collected as part of the
clustering chapter to build training and test sets. From there we’ll demonstrate how
training a classifier is an iterative process and present strategies for reorganizing train-
ing data in order to improve categorization accuracy. Finally, we’ll demonstrate how
the document categorizer is integrated into Solr so that documents are automatically
assigned to categories as they’re indexed. Let’s begin by discussing the theoretical
underpinnings of the naive Bayes classification algorithm.

7.4.1 Categorizing text using naive Bayes classification

The naive Bayes algorithm is a probabilistic classification algorithm. It makes its deci-
sions about which class to assign to an input document using probabilities derived
from training data. The training process analyzes the relationships between words in

203Training a naive Bayes classifier using Apache Mahout
the training documents and categories, and the relationships between categories and
the entire training set. The available facts are collected using calculations based on
Bayes’ Theorem to produce the probability that a collection of words (a document)
belongs to a certain class.

 What makes the algorithm naive is the assumption it makes about the indepen-
dence of words appearing in a given class. Intuitively we know that words don’t occur
independently in text documents within a given subject area. Words like fish are more
likely to occur in documents containing the word water than the word space. As a
result, the probabilities that are produced by the naive Bayes algorithm aren’t true
probabilities. They’re nevertheless useful as relative measures. These probabilities
may not predict the absolute probability that a document belongs to a certain class,
but they’re used to determine that a document containing fish is more likely about
oceanography than space travel by comparing the probabilities assigned to the term
fish for each category.

 When training, the naive Bayes algorithm counts the number of times each word
appears in a document in the class and divides that by the number of words appear-
ing in that class. This is referred to as a conditional probability, in this case the probabil-
ity that a word will appear in a particular category. This is commonly written as
P(Word | Category). Imagine you have a small training set that contains three docu-
ments for the category Geometry, and the word angle appears in one of the docu-
ments. There’s a probability of 0.33 or 33% that any document labeled geometry would
contain the word angle.

 You can take individual word probabilities and multiply them together to deter-
mine the probability of a document given a class. This isn’t strictly useful on its own,
but Bayes’ Theorem provides a way for you to turn these calculations around to pro-
vide the probability of a category given a document, the essence of the classification
problem.

 Bayes’ Theorem states that the probability of a category given a document is equal
to the probability of a document given the category multiplied by the probability of
the category divided by the probability of a document. This is expressed as follows:

P(Category | Document) = P(Document | Category) x P(Category) / P(Document)

We’ve shown how to calculate the probability of a document given a category. The
probability of a category is the number of training documents for a category divided
by the total number of training documents. The probability of a document isn’t
needed in this case because it serves as a scaling factor. If you set the P(Document) =
1, the results produced by this function will be comparable across different categories.
You can determine which category a document most likely belongs to by performing
this calculation for each class you’re attempting to assign to a document; the relation-
ship between these results will have the same relative ranking as long as the P(Docu-
ment) is larger than zero for each calculation.

204 CHAPTER 7 Classification, categorization, and tagging
 This explanation is a useful starting point but it only provides part of the picture.
The Mahout implementation of the naive Bayes classification algorithm includes
numerous enhancements to account for some unique cases where this algorithm falls
down in the face of text data, such as the problem described earlier with dependent
terms. A description of these enhancements is found on the Mahout wiki and in the
paper “Tackling the Poor Assumptions of naive Bayes Text Classifiers” by Rennie et al.
(see Rennie [2003]).

7.4.2 Preparing the training data

A classifier performs only as well as its input. The amount of training data, the way it’s
organized, and the features chosen as input to the training process all play a vital role
in the classifier’s ability to accurately categorize new documents.

 This section describes how training data must be prepared for use with the Mahout
Bayes classifier. We’ll demonstrate the process of extracting data from a Lucene index
and present the process of bootstrapping to produce a training set using attributes of
the existing data. By the end of this example you’ll understand how different boot-
strapping approaches have an effect on the overall quality of the classifier.

 In chapter 6, we described how to set up a simple clustering application using Solr.
This application imported content from a number of RSS feeds and stored them in a
Lucene index. You’ll use the data from this index to build a training set. If you haven’t
already collected data using the Clustering Solr instance, follow the instructions in
section 6.3 now and run the Data Import Handler a number of times over a period of
a few days to build up a reasonable corpus of training documents. After you’ve collected
some data, you can inspect the index to determine what can be used for training.

 Now that you have some data in a Lucene index, you need to review what’s there
and determine how to use it to train a classifier. There are a number of ways to view
data stored in a Lucene index, but by far the easiest to use is Luke. We’ll look at the
data to determine which fields in the documents may be used as a source of categories
you’ll base your categorization scheme upon. We’ll determine a set of categories
whose contents you’ll use for training, and then extract documents and write them in
the training data format used as input to Mahout. The Bayes classifier training process
will analyze the words that appear in documents assigned to a particular category and
will produce a model that’s used to determine the most likely category for a document
based upon the words it contains.

 You can download the latest release of Luke from http://code.google.com/p/
luke/; the file lukeall-version.jar, where version is the current version of Luke, is the
one you want. After you’ve downloaded the JAR file, running the command java -jar
lukeall-version.jar will start Luke.

 Upon startup you’ll be greeted with a dialog window that will allow you to browse
your filesystem in order to select the index you wish to open. Choose the directory
containing your Lucene index and click OK to open the index (the other default
options should be fine).

205Training a naive Bayes classifier using Apache Mahout
 As you browse through the index with Luke, you’ll notice that many sources pro-
vide categories for their documents. These categories vary from highly general labels
such as Sports to the more specific Baseball or even New York Yankees. You’ll use
these entries as a basis for organizing the training data. The goal here is to build a list
of terms that you can use to group articles into coarse-grained categories that you’ll
use to train your classifier. The following list displays the top 12 categories found in
the field named categoryFacet of the index we put together, each accompanied by
the number of documents found in that category:

2081 Nation & World
923 Sports
398 Politics
356 Entertainment
295 sportsNews
158 MLB
128 Baseball
127 NFL
115 Movies
94 Sounders FC Blog
84 Medicine and Health
84 Golf

You’ll notice right away that 2,081 appear in the Nation & World category and that the
number of documents per category drops off quickly, with only 84 articles appearing
in Golf, the 12th-ranked category. You’ll also notice overlapping subject areas like
Sports, Baseball, and MLB, or different representations of the same subject such as
Sports and sportsNews. It’s your job to clean up this data in such a way that you can
use it effectively for training. It’s important to take care in the preparation of training
data because it can have a significant effect on the classifier’s accuracy. To demon-
strate this, we’ll begin with a simple strategy for identifying training documents, follow
up with a more complex strategy, and observe the difference in results.

 From the list of categories found in the index, you can see that some useful terms
appear at the top of the list. You’ll add some other interesting categories from the list
of categories found in the index by exploring it with Luke:

Nation
Sports
Politics
Entertainment
Movies
Internet
Music
Television
Arts
Business
Computer
Technology

Enter this into your favorite text editor and save it to a file named training-
categories.txt. Now that you have a list of categories you’re interested in, run the
extractTrainingData utility using the category list and Lucene index as input:

206 CHAPTER 7 Classification, categorization, and tagging
$TT_HOME/bin/tt extractTrainingData \
--dir index \
--categories training-categories.txt \
--output category-bayes-data \
--category-fields categoryFacet,source \
--text-fields title,description \
--use-term-vectors

This command will read documents from the Lucene index and search for matching
categories in the category and source fields. When one of the categories listed in
training-categories.txt is found in one of these documents, the terms will be extracted
from term vectors stored in the title and description fields. These terms will be written
to a file in the category-bayes-data directory. There will be a single file for each cate-
gory. Each is a plain text file that may be viewed with any text editor or display utility.

 If you choose to inspect these files, you may notice that each line corresponds to a
single document in the Lucene index. Each line has two columns delimited by a tab
character. The category name appears in the first column; each of the terms that
appear in the document is contained in the second column. The Mahout Bayes classi-
fiers expect the input fields to be stemmed, so you’ll see this reflected in the test data.
The --use-term-vectors argument to the extractTrainingData command causes
the stemmed terms from each document’s term vector to be used:

arts 6 a across design feast nut store world a browser can chosen ...
arts choic dealer it master old a a art auction current dealer ...
arts alan career comic dig his lay moor rest unearth up a a ...

business app bank citigroup data i iphon phone say store account ...

business 1 1500 500 cut job more plan tech unit 1 1500 2011 500 ...

business caus glee home new newhom sale up a against analyst ...

computer bug market sale what access address almost ani bug call ...

computer end forget mean web age crisi digit eras existenti face ...

computer mean medium onlin platon what 20 ad attract billion ...

When the ExtractTrainingData class has completed its run, it’ll output a count of
documents found in each category, similar to the following list:

5417 sports
2162 nation
1777 politics
1735 technology
778 entertainment
611 business
241 arts
147 music
115 movies
80 computer
60 television
32 internet

207Training a naive Bayes classifier using Apache Mahout
Note that more documents appear in some categories than others. This may affect the
accuracy of the classifier. Some classification algorithms like naive Bayes tend to be
sensitive to unbalanced training data because the probabilities on the features in the
categories with a larger number of examples will be more accurate that those on cate-
gories with few training documents.

BOOTSTRAPPING This process of assembling a set of training documents
using simple rules is known as bootstrapping. In this example, you’re bootstrap-
ping your classifier using keywords to match existing category names assigned
to the documents. Bootstrapping is often required because properly labeled
data is often difficult to obtain. In many cases there isn’t enough data to train
an accurate classifier. In other cases the data comes from a number of differ-
ent sources with inconsistent categorization schemes. This keyword bootstrap-
ping approach allows you to group documents based upon the presence of
common words in the description of the document. Not all documents in a
given category may conform to this particular rule, but it allows you to gener-
ate a sufficient number of examples to train a classifier properly. Countless
bootstrapping techniques exist. Some involve producing short documents as
category seeds or using output from other algorithms, such as the clustering
algorithms we used in the last chapter or even other types of classifiers. Boot-
strapping techniques are often combined to further enhance training sets
with additional data.

7.4.3 Withholding test data

Now you need to reserve some of the training data you’ve produced for testing. After
you’ve trained the classifier, you’ll use the model to classify the test data and verify that
the categories produced by the classifier are identical to those that are already known
for the document. In the code accompanying this book, we include a utility for exe-
cuting a simple split called SplitBayesInput. We’ll point SplitBayesInput at the
directory the extraction task wrote to and SplitBayesInput will produce two addi-
tional directories: one containing the training date and the other containing the test
data. SplitBayesInput is run using the following command:

$TT_HOME/bin/tt splitInput \
-i category-bayes-data \

-tr category-training-data \
-te category-test-data \
-sp 10 -c UTF-8

In this case, we’re taking 10% of the documents in each category and writing them to
the test directory; the rest of the documents are written to the training data directory.
The SplitBayesInput class offers a number of different methods for selecting a vari-
ety of training/test splits.

208 CHAPTER 7 Classification, categorization, and tagging
7.4.4 Training the classifier

After the training data has been prepped using SplitBayesInput, it’s time to roll up
your sleeves and train your first classifier. If you’re running on a Hadoop cluster, copy
the training and test data up to the Hadoop distributed filesystem and execute the fol-
lowing command to build the classifier model. If you’re not running on a Hadoop
cluster, data will be read from your current working directory despite the -source
hdfs argument:

$MAHOUT_HOME/bin/mahout trainclassifier \
-i category-training-data \
-o category-bayes-model \
-type bayes -ng 1 -source hdfs

Training time will vary depending on the amount of data you’re training on and
whether you’re executing the training process locally or in distributed mode on a
Hadoop cluster.

 When training has completed successfully, a model is written to the output direc-
tory specified in the command. The model directory contains a number of files in
Hadoop SequenceFile format. Hadoop SequenceFiles contain key/value pairs and are
usually the output of a process run using Hadoop’s MapReduce framework. The keys
and values may be primitive types or Java objects serialized by Hadoop. Apache
Mahout ships with utilities that are used to inspect the contents of these files:

$MAHOUT_HOME/bin/mahout seqdumper \
-s category-bayes-model/trainer-tfIdf/trainer-tfIdf/part-00000 | less

The files in the trainer-tfIdf directory contain a list of all of the features the naive
Bayes algorithm will use to perform classification. When dumped they’ll produce out-
put like the following:

no HADOOP_CONF_DIR or HADOOP_HOME set, running locally
Input Path: category-bayes-model/trainer-tfIdf/trainer-tfIdf/part-00000
Key class: class org.apache.mahout.common.StringTuple
Value Class: class org.apache.hadoop.io.DoubleWritable
Key: [__WT, arts, 000]: Value: 0.9278920383255315
Key: [__WT, arts, 1]: Value: 2.4908377174081773
...
Key: [__WT, arts, 97]: Value: 0.8524586871132804
Key: [__WT, arts, a]: Value: 9.251850977219403
Key: [__WT, arts, about]: Value: 4.324291341340667
...
Key: [__WT, business, beef]: Value: 0.5541230386115379
Key: [__WT, business, been]: Value: 7.833436391647611
Key: [__WT, business, beer]: Value: 0.6470763007419856
...
Key: [__WT, computer, design]: Value: 0.9422458820512981
Key: [__WT, computer, desktop]: Value: 1.1081452859525993
Key: [__WT, computer, destruct]: Value: 0.48045301391820133
Key: [__WT, computer, develop]: Value: 1.1518455320100698
...

209Training a naive Bayes classifier using Apache Mahout
It’s often useful to inspect this file to determine whether the features you’re training
on truly relate to those being extracted. Inspecting this output may inform you that
you’re not properly filtering out stopwords, there’s something wrong with your stem-
mer, or you’re not producing n-grams when you expect to. It’s also useful to inspect
the number of features you’re training on, as the size of the feature set will impact the
Mahout Bayes classifier in terms of memory usage.

7.4.5 Testing the classifier

After the classifier has been trained, you can evaluate its performance using the test
data that you held back earlier. The following command will load the model produced
by the training phase into memory and classify each of the documents in the test set.
The label assigned to each document by the classifier will be compared to the label
assigned to the document manually and results for all of the documents will be tallied:

$MAHOUT_HOME/bin/mahout testclassifier \
-d category-test-data \
-m category-bayes-model \
-type bayes -source hdfs -ng 1 -method sequential

When the testing process is complete, you’ll be presented with two evaluation aids:
classification accuracy percentages and the confusion matrix. These are introduced in
section 7.3.5:

===Summary

Correctly Classified Instances : 906 73.6585%
Incorrectly Classified Instances : 324 26.3415%
Total Classified Instances : 1230

===
Confusion Matrix

a b c d e f g h i j k l <--Classified as
0 0 0 0 5 0 0 0 1 0 3 2 | 11 a = movies
0 0 0 0 0 0 0 0 1 0 1 4 | 6 b = computer
0 0 0 0 0 0 0 0 0 0 1 2 | 3 c = internet
0 0 0 4 0 0 0 5 4 0 4 42 | 59 d = business
0 0 0 1 26 0 0 6 10 0 18 10 | 71 e = enter...

0 0 0 0 2 0 0 0 1 0 3 0 | 6 f = television

0 0 0 0 7 0 1 0 0 2 4 0 | 14 g = music
0 0 0 0 0 0 0 103 43 0 10 10 | 166 h = politics

0 0 0 0 1 0 0 25 145 0 16 10 | 197 i = nation
0 0 0 0 8 0 0 3 7 1 3 1 | 23 j = arts
1 0 0 0 1 0 0 1 7 0 493 4 | 507 k = sports
0 0 0 0 0 0 0 15 12 0 7 133 | 167 l = technology
Default Category: unknown: 12

In this case, you can use the confusion matrix to tune your bootstrapping process. The
matrix shows you that the classifier did an excellent job classifying sports documents
as belonging to the Sports category; 493 of 507 instances of sports-related documents

210 CHAPTER 7 Classification, categorization, and tagging
were assigned to this class. Technology did well also with 133 of 167 documents being
assigned to this class. Movies didn’t do very well: out of 11 documents labeled with the
movies class, none of them were properly assigned. The largest single number of
movie-labeled documents was assigned to the Entertainment category. This makes
sense, considering that movies are a form of entertainment and you had significantly
more entertainment documents (778) than movie documents (115) in the training
set. This demonstrates the effects of an unbalanced training set and overlapping
examples. Entertainment clearly overpowers movies due to the significantly larger
number of training documents available for that class, whereas you also see misclassifi-
cation of entertainment content as related to the nation, sports, and technology as a
result of the larger amount of training data in those categories. This instance suggests
that you can obtain better accuracy with better subject separation and a more bal-
anced training set.

7.4.6 Improving the bootstrapping process

In the previous example, you used a single term to define each class of documents.
ExtractTrainingData built groups of documents for each class by finding all docu-
ments that contained that class’s term in their source or category fields. This pro-
duced a classifier that confused several classes due to topic similarity and imbalance in
training sets assigned to each category. To address this issue you’ll use a group of
related terms to define each class of documents. This allows you to collapse all of the
sports-related categories into a single sports category and all of the entertainment-
related categories into another. In addition to combining similar categories, this
approach also allows you to reach further into the pool of documents in your Lucene
index and retrieve additional training samples.

 Create a file named training-categories-mult.txt containing the following labels:

Sports MLB NFL MBA Golf Football Basketball Baseball
Politics
Entertainment Movies Music Television
Arts Theater Books
Business
Technology Internet Computer Science
Health
Travel

In this file, the first word on each line becomes the name of the category. Each word
on a line is used when searching for documents. If any word on the line matches a
term in the document’s category or source field, that document is written to the train-
ing data file for that category. For example, any document containing the string MLB
in its category field will be considered part of the Sports category; documents possess-
ing a category field containing the term music will be a part of the Entertainment
category; and those with category fields containing Computer will be part of the Tech-
nology category.

211Training a naive Bayes classifier using Apache Mahout
 Rerun ExtractTrainingData using the following command:

$TT_HOME/bin/tt extractTrainingData \
--dir index \
--categories training-categories-mult.txt \
--output category-mult-bayes-data \
--category-fields categoryFacet,source \
--text-fields title,description \
--use-term-vectors

Output will be written to the categories-mult-bayes-data directory and the following
document counts will be displayed in your terminal:

Category document counts:
5139 sports
1757 technology
1676 politics
988 entertainment
591 business
300 arts
173 health
12 travel

It’s likely that you’ll be unable to train the classifier to accurately assign documents to
the Travel category based on the number of training examples, so you might consider
collecting additional training documents or discarding the Travel category entirely at
this point, but we’ll leave it there for now to demonstrate the outcome.

 Once again, perform the split, training, and testing steps:

$TT_HOME/bin/tt splitInput \
-i category-mult-bayes-data \

-tr category-mult-training-data \
-te category-mult-test-data \
-sp 10 -c UTF-8

$MAHOUT_HOME/bin/mahout trainclassifier \
-i category-mult-training-data \
-o category-mult-bayes-model \
-type bayes -source hdfs -ng 1

$MAHOUT_HOME/bin/mahout testclassifier \
-d category-mult-test-data \
-m category-mult-bayes-model \
-type bayes -source hdfs -ng 1 \
-method sequential

The output of the testing phase shows that you’ve produced an improved classifier
that can correctly assign categories 79.5% of the time:

Summary

Correctly Classified Instances : 846 79.5113%
Incorrectly Classified Instances : 218 20.4887%
Total Classified Instances : 1064

===

212 CHAPTER 7 Classification, categorization, and tagging
Confusion Matrix

a b c d e f g h <--Classified as
0 0 0 0 0 0 1 0 | 1 a = travel
0 3 0 0 8 0 5 43 | 59 b = business
0 0 2 1 7 1 2 4 | 17 c = health
0 1 0 57 12 1 19 9 | 99 d = entertainment
0 0 0 0 142 0 14 12 | 168 e = politics
0 0 0 17 3 3 4 3 | 30 f = arts
0 1 0 3 9 0 495 6 | 514 g = sports
0 1 0 1 23 0 7 144 | 176 h = technology
Default Category: unknown: 8

From the output you’ll see that your classifier output has improved 6%, a reasonable
amount. Although you’re heading in the right direction, from the confusion matrix
it’s clear that other issues need to be addressed.

 Fortunately for the goals of this example, you have a significant amount of flexibil-
ity in terms of obtaining training data and choosing a categorization scheme. First and
foremost, it’s clear that you don’t have enough training data for the Travel category
because the majority of the documents you do have aren’t being categorized at all.
The Health and Arts categories suffer from the same problems, with the majority of
their documents being miscategorized. The fact that the majority of arts documents
were assigned to the Entertainment category suggests that it may be worth combining
these classes.

7.4.7 Integrating the Mahout Bayes classifier with Solr

After a classifier has been trained, it must be deployed into production. This section
will demonstrate how the Mahout Bayes classifier can be integrated into the Solr
search engine indexing process as a document categorizer. As Solr loads data into a
Lucene index, you also run it through your document categorizer and produce a
value for a category field that’s used as an additional search term or for faceted display
of results.

 This is done by creating a custom Solr UpdateRequestProcessor that’s called
when an index update is received. When it’s initialized, this update processor will load
the model you’ve trained for Mahout’s Bayes classifier, and as each document is pro-
cessed, its content will be analyzed and classified. The UpdateProcessor adds the cate-
gory label as a Field in the SolrDocument that gets added to the Lucene index.

 You begin by adding a custom update request processor chain (see org.apache
.solr.update.processor.UpdateRequestProcessorChain) to Solr by defining one
in solrconfig.xml. This chain defines a number of factories that are used to create the
object that will be used to process updates. The BayesUpdateRequestProcessor-
Factory will produce the class that’s used to process each update and assign a cate-
gory, while the RunUpdateProcessorFactory will process the update and add it to the
Lucene index built by Solr, and the LogUpdateProcessorFactory tracks update statis-
tics and writes them to the Solr logs, as shown in the next listing.

213Training a naive Bayes classifier using Apache Mahout

<updateRequestProcessorChain key="mahout" default="true">
<processor class=

"com.tamingtext.classifier.BayesUpdateRequestProcessorFactory">
<str name="inputField">details</str>
<str name="outputField">subject</str>
<str name="model">src/test/resources/classifier/bayes-model</str>

</processor>
<processor class="solr.RunUpdateProcessorFactory"/>
<processor class="solr.LogUpdateProcessorFactory"/>

</updateRequestProcessorChain>

You configure the BayesUpdateRequestProcessorFactory using the inputField
parameter to provide the name of a field that contains the text to classify, the output-
Field parameter to provide a name of the field to write the class label, and the model
parameter to define the path to the model to use for classification. The default-
Category parameter is optional and, if specified, defines the category that will be added
to a document in the event the classifier is unable to make a determination of the cor-
rect category label. This commonly happens when the input document contains no fea-
tures that are present in the model. The factory is created when Solr starts up and
initializes its plugins. At this time, the parameters are validated and the model is loaded
through the initialization of a Mahout Datastore object. The classification algorithm is
created and a ClassifierContext is initialized using each of these elements.

 The following listing shows how the classifier model is loaded into an InMemory-
BayesDatastore.

BayesParameters p = new BayesParameters();
p.set("basePath", modelDir.getCanonicalPath());
Datastore ds = new InMemoryBayesDatastore(p);
Algorithm a = new BayesAlgorithm();
ClassifierContext ctx = new ClassifierContext(a,ds);
ctx.initialize();

This approach is fine for smaller models trained with a modest amount of features,
but isn’t practical for models that can’t fit into memory. Mahout provides an alterna-
tive datastore that pulls data from HBase. It’s straightforward enough to implement
alternative datastores as well.

 After the ClassifierContext is initialized, it’s stored as a member variable in
BayesUpdateRequestProcessorFactory and injected into each new BayesUpdate-
RequestProcessor instantiated when an update request is received by Solr. Each
update request arrives in the form of one or more SolrInputDocuments. The Solr API
makes it trivial to extract a field from a document, and from there it’s easy to
preprocess and classify the document using the classifier context you initialized ear-
lier. Listing 7.10 shows how preprocessing is achieved using the Solr analyzer, which

Listing 7.8 Update request processor chain configuration in solrconfig.xml

Listing 7.9 Setting up the Mahout ClassifierContext

214 CHAPTER 7 Classification, categorization, and tagging
performs the appropriate preprocessing steps based upon the input field’s configura-
tion in the Solr schema, and the result is written into a String[] array which
Mahout’s classifier context accepts as input. The Solr analyzer follows the Lucene
Analyzer API, so the tokenization code presented here is used in any context that
makes use of the Lucene analyzers.

String input = (String) field.getValue();

ArrayList<String> tokenList = new ArrayList<String>();
TokenStream ts = analyzer.tokenStream(inputField,

new StringReader(input));
while (ts.incrementToken()) {

tokenList.add(ts.getAttribute(CharTermAttribute.class).toString());
}
String[] tokens = tokenList.toArray(new String[tokenList.size()]);

When you have tokens upon which the classifier can operate, obtaining the result is as
simple as calling the classifyDocument method on the Mahout ClassifierContext.
Listing 7.11 shows how this operation returns a ClassifierResult object containing
the label of the document’s assigned class. The classify method also takes a default
category which is assigned in the event that no category is defined, such as the case
where the input document and the model have no words in common. After the label
is obtained, it’s assigned to the SolrInputDocument as a new field as long as the
ClassifierResult isn’t null or equal to the default value for the defaultCategory
parameter, represented by the constant NO_LABEL.

SolrInputField field = doc.getField(inputField);
String[] tokens = tokenizeField(inputField, field);
ClassifierResult result = ctx.classifyDocument(tokens,

defaultCategory);
if (result != null && result.getLabel() != NO_LABEL) {

doc.addField(outputField, result.getLabel());
}

A drawback to this approach, depending upon the type of documents being indexed,
is the need to hold the results of tokenization in memory in order to provide them to
the classifier. In the future perhaps Mahout will be extended to take a token stream as
input directly. A second drawback to this approach is the need to effectively tokenize a
document’s field twice at indexing time. Tokenization is performed once in the pro-
cess at classification time and a second time, later on in the processing stream, in
order to add the tokens to the Lucene index.

 These issues aside, this is an effective mechanism for classifying documents as
they’re added to a Solr index and demonstrates how to use the Mahout Bayes classifier’s
API to classify documents programmatically. Either or both of these mechanisms may be

Listing 7.10 Tokenizing a SolrInputDocument using the Solr analyzer

Listing 7.11 Classifying a SolrInputDocument using the ClassifierContext

215Categorizing documents with OpenNLP
used in your own projects as a way of tagging documents as they’re indexed or automat-
ically classifying documents using the Mahout classifier.

 In this section, we explored the naive Bayes algorithm, a statistical classification
algorithm that determines the probability of a set of words given a category based on
observations taken from a set of training data. The algorithm then uses Bayes’ Theo-
rem to invert this conditional probability in order to determine the probability of a
category, given a set of words from a document. In the following section we present
another statistical classification algorithm that also models the probability of a cate-
gory given a set of words, without first having to determine the inverse relationship.

 We also investigated techniques for making use of training data collected from the
web. We examined the process of bootstrapping, experimented with different
approaches toward grouping training documents, and demonstrated how the amount
of available training data has an impact on classifier accuracy. We’ll continue this
exploration in section 7.5, where we’ll introduce the use of named entities as a way of
enhancing training data in order to improve your results.

7.5 Categorizing documents with OpenNLP
The naive Bayes classification algorithm we explored in section 7.4 is a probabilistic
algorithm that builds a model based on relationships between features and categories
in training data in order to perform text categorization. In this section we’ll use
another statistical algorithm, OpenNLP’s maximum entropy algorithm, to perform
text categorization. The maximum entropy algorithm constructs a model based on
the same information as the Bayes algorithm, but uses a different approach toward
building the model. The MaxEnt algorithm uses a regression algorithm to determine
how document features relate to categories. Its training process iteratively analyzes the
training corpus in order to find weights for each feature and generates a mathemati-
cal formula that will produce output that’s most similar to the outcomes observed in
the training data. In this section we’ll provide a basic overview of regression models in
order to explain how this works and relate those concepts back to our core task of cat-
egorizing text.

 Another useful part of OpenNLP we’ll cover in this section is the name finder
API. This API was presented in chapter 5 where we described how it could be used to
identify named entities: people, places, and things. In this section we’ll use these
entities to improve the performance of the MaxEnt document classifier. In addition
to treating each individual word in the training data as a feature, combinations of
words that OpenNLP determines to be named entities, such as New York City, will be
used as features.

 The OpenNLP name finder is also a classifier. It’s trained to detect words that
appear to be named entities based on a variety of different features. OpenNLP ships
with models that can be used to extract a variety of named-entity types, so in order to
take advantage of the API you don’t need to train your own name detector, although
the option is available if necessary.

216 CHAPTER 7 Classification, categorization, and tagging
 So, in addition to using OpenNLP to categorize your documents, you’ll use a sepa-
rate aspect of OpenNLP to generate features upon which those categorization deci-
sions are based. This is an example of the process of piggybacking, where one classifier,
the document categorizer, is trained using the output of another classifier, the named-
entity detector. This is a common practice. You might also encounter cases where a
classifier is used to determine sentence boundaries, word boundaries, or parts of
speech in order to generate features for categorization. You must be sensitive to the
fact that the performance of the classifier receiving the data is tied to the perfor-
mance of the classifier producing the features.

 At the end of this section, you’ll have an understanding of how the maximum
entropy classifier works, as well as understand the terminology used in its code and
how it relates to document categorization. The example we present demonstrates how
OpenNLP’s document categorization API and name finder API work, and takes you
through the process of building a categorizer from training to performing evaluation
of its quality.

7.5.1 Regression models and maximum entropy
document categorization

The multinomial logistic regression model used in OpenNLP’s MaxEnt classifier is
one of many styles of regression models. In general, regression models are concerned
with determining the relationship between a dependent variable and a number of
independent variables. Each regression model is a mathematical function with a
weight for each feature. When these weights are combined with values for each fea-
ture and the weighted features are then combined, the result represents the model’s
prediction or outcome. The regression algorithm is concerned with determining the
appropriate weights for each feature based upon the outcomes observed in the train-
ing data.

 Figure 7.4 shows a trivial regression model used to predict the speed of a computer
program. This model relates the number of CPUs in a computer with the amount of
time it takes the program to run. This model has a single independent variable, or fea-
ture, which is the number of CPUs. The dependent variable is processing time. Each
point on the graph represents an element of our training dataset, where we’ve mea-
sured the running time of the program on computers with certain numbers of CPUs.
We have a total of five training samples ranging from 1000ms for 1 CPU to about
100ms for 8 CPUs.

 The regression algorithm attempts to create a function that will allow you to pre-
dict the amount of time it’ll take your program to compete running on computers
with a number of CPUs that you don’t have measurements for. The curved line on the
graph represents the output of the function determined by the regression algorithm.
This output shows that it’s likely to take roughly 450ms to run the program with 3
CPUs or 110ms to run the program with 7 CPUs. The formula produced by the regres-
sion algorithm for this case appears below the graph. In this formula you raise the

217Categorizing documents with OpenNLP
value 0.74 to the power of the number of CPUs and multiply the result by 1064.28. The
value used to weight the independent variable whose value is 0.74 is called a parameter;
the other variable whose value is 1064.28 is referred to as the correction constant.
In a regression model, each feature is accompanied by a parameter that’s used to
weight it and there’s a single correction constant for the entire formula. The regres-
sion algorithm determines the best value for both the correction constant and each
parameter that will produce a curve that deviates the least from the training data. In
this trivial example we have only a single independent variable, but the typical cases
where regression models are used are where there are a large number of independent
variables, each with a parameter that must be determined.

 There are many different forms of regression models that combine independent
variables, parameters, and correction constants in various ways. In the preceding
exponential model, each parameter is raised to the power of the value of its indepen-
dent variable, and the result of each is multiplied with the correction constant. In the
linear model, each parameter is multiplied with its independent variable and the
results are summed with the correction constant. Each regression formula produces a
different-shaped result: possibly a line, curve, or more complex shape.

 Aside from the basic structure of the formula, regression algorithms vary based on
how they arrive at values for their parameters. This is where you’ll run into names of
techniques such as gradient descent and iterative scaling: each adopts different
approaches for finding the best weights for each feature value in order to produce the
expected outcomes.

 Regression algorithms also vary based on the output they produce. Some algo-
rithms produce continuous output such as the one in our software performance

1200

1000

800

600

400

200

0
0 1 2 3 4 5 6 7 8 9

Pr
oc

es
si

ng
 ti

m
e

(m
s)

 Number of CPUs
f(x) = 1064.28 0.74 x

 v.
Figure 7.4 A simple two-dimensional regression model. Each dot represents a point of
observed data. The line, drawn by the regression function below the graph, allows you to
extrapolate a value for instances you haven’t observed. The same principle may be used for
categorizing text, where each word represents a separate dimension.

218 CHAPTER 7 Classification, categorization, and tagging
example, whereas others produce binary results that provide a simple yes/no answer.
Multinomial logistical regression as employed by the maximum entropy classifier pro-
duces a result reflecting a series of discrete outcomes, for example, a set of categories.
The result returned by the maximum entropy algorithm associates a probability with
each of the possible outcomes; the highest-ranked outcome is assigned as the label for
the input being classified.

 Regression models are used for predicting everything from the chance of a heart
attack given a variety of health factors to real estate prices given such inputs as loca-
tion, square footage, and number of bedrooms. As we’ve described, the model itself is
nothing more than parameters that get plugged into the regression function. Build-
ing the regression model is a matter of fitting the observed features to the outcomes
stated in the training data, whereas using the model to produce an outcome is a mat-
ter of filling in values for the features and generating a result using the weights stored
in the model.

 How does this all relate to the concepts we’ve been using to discuss text categoriza-
tion? The output of the regression model (the dependent variable) corresponds to
the output of a classifier: the category label produced by a categorizer. The input into
the regression model, the independent variables, are known as features—aspects of
the text such as terms—in the classification context. Regression models used for text
categorization are large because each unique word in a corpus is treated as an inde-
pendent variable. Training is further complicated by the sparsity of text; each training
sample has information regarding a relatively small sample of all of the independent
variables that make up the regression function. You can imagine that determining the
appropriate feature weights for many independent variables is difficult enough in
itself without having to worry about cases where a complete set of data isn’t available.

 The terminology used within the OpenNLP API and source code to describe classi-
fication is more general than the language we’ve used in this chapter to describe text
classification. To understand document categorization with OpenNLP, you must first
explore the relationship between these domains. In the nomenclature of the
OpenNLP classifier, the features you train on are known as predicates. Predicates
appear within contexts, with any given predicate possibly appearing in multiple con-
texts. In document categorization, the predicates are words or other document fea-
tures. Contexts are documents. The training corpus consists of a number of contexts.
Each context is associated with an outcome. The outcomes are equivalent to the cate-
gory labels that the categorizer assigns to documents. These concepts can also be
mapped into the language of regression models. Each predicate (feature or term) is
an independent variable. Each independent variable is used to predict the value of
the dependent variable—the outcome or category label. The corpus of training data
consists of contexts that map predicates to outcomes. These mappings are the obser-
vations you train and test on. As you train your model, you compare the observed
results with the results of the model to determine how the model is improving.

 The training process compares each of the unique terms (predicates) found in a
corpus to the outcomes they produce, and performs a series of iterations in order to

219Categorizing documents with OpenNLP
find the best weight for each predicate in order to produce the desired outcome.
Each iteration improves the ability of the regression equation to produce the results
indicated by the training data.

7.5.2 Preparing training data for the maximum
entropy document categorizer

For the examples in this chapter we’ll reuse the training data you collected for the
Mahout Bayes example in section 7.4, but you could also use the 20 Newsgroups data
used in section 7.3.

 Unlike the Mahout Bayes classifier, the MaxEnt categorizer will perform its own
stemming on the text you’re processing. As a result, you’ll extract training data from
the Lucene index using a slightly different command. Instead of extracting stemmed
terms from Lucene term vectors, the following command will extract the raw text
stored for each field in the index:

$TT_HOME/bin/tt extractTrainingData \
--dir index \
--categories training-categories.txt \
--output category-maxent-data \
--category-fields category,source \
--text-fields title,description

If you take a look at the training data, you’ll see that terms aren’t stemmed and words
are still in mixed case. Case is important because it’s one of the clues used by the Max-
Ent classifier to find named entities:

arts 6 Stores Across the World Are a Feast for Design Nuts A few ...

arts For Old Masters, It's Dealers' Choice While auction houses ...

arts Alan Moore Digs Up 'Unearthing' and Lays His Comics Career ...

...
business Citigroup says iPhone banking app stored data Citigroup ...

business United Tech plans 1,500 more job cuts HARTFORD, Conn. - ...

business New-home sales up, but no cause for glee New-home sales ...

...
computer What's for Sale on the Bug Market? Almost any ...
computer The Web Means the End of Forgetting The digital age ...

computer The Medium: What ‘Platonic’ Means Online Craigslist ...

Next you use splitInput to divide your data into separate training and test sets:

$TT_HOME/bin/tt splitInput \
-i category-maxent-data \

-tr category-maxent-training-data \
-te category-maxent-test-data \
-sp 10 -c UTF-8

Now that you’ve prepared the training and test data, let’s train the maximum entropy
document categorizer.

220 CHAPTER 7 Classification, categorization, and tagging
7.5.3 Training the maximum entropy document categorizer

The OpenNLP project supplies a document categorizer as a part of its distribution,
but a fair amount of programming is required to be able to used it. The following sec-
tion describes the code required to train and test a categorizer built using OpenNLP’s
DocumentCategorizer class.

 The classes TrainMaxent and TestMaxent implement a categorizer based on
OpenNLP that’s run from the command prompt. The trainMaxent command is used
to train the categorizer. The input directory specified by the -i argument must con-
tain training data in the format we’ve used for the preceding examples: one file per
category, each file containing one document per line. The MaxEnt document catego-
rizer expects to receive whitespace-delimited text with no prior stemming or case nor-
malization, as it requires case to perform named-entity detection. The -o parameter is
used to specify the filename the MaxEnt model will be written to:

$TT_HOME/bin/tt trainMaxent \
-i category-maxent-training-data \
-o maxent-model

Let’s take a deeper look into the code used to train an OpenNLP document catego-
rizer model and the aspects of the training process you can customize to meet your
goals.

 In order to train the MaxEnt model, you must set up the input directory and out-
put files, create the raw data source and feature generators that will convert your train-
ing data into features, and pass these to the trainer that will build a statistical model of
your training set. The following listing demonstrates this process.

File[] inputFiles = FileUtil.buildFileList(new File(source));
File modelFile = new File(destination);

Tokenizer tokenizer = SimpleTokenizer.INSTANCE;
CategoryDataStream ds =

new CategoryDataStream(inputFiles, tokenizer);

int cutoff = 5;
int iterations = 100;
NameFinderFeatureGenerator nffg

= new NameFinderFeatureGenerator();
BagOfWordsFeatureGenerator bowfg

= new BagOfWordsFeatureGenerator();

DoccatModel model = DocumentCategorizerME.train("en",
ds, cutoff, iterations, nffg, bowfg);

model.serialize(new FileOutputStream(modelFile));

At B you set up the SimpleTokenizer and CategoryDataStream to extract category
labels and tokens from the training data files.

Listing 7.12 Training the DocumentCategorizer

Create data stream.B

Set up feature generators.C

Train categorizer.D

221Categorizing documents with OpenNLP
 At C you create the NameFinderFeatureGenerator and BagOfWordsFeature-
Generator classes, which are used to produce features that include the raw terms in
the document and the named entities identified by OpenNLP’s name finder.

 After the data stream and feature generators are created, you train the categorizer
model using DocumentCategorizerME. At D you first pass the data stream, feature
generators, and training parameters to the train() method and then serialize the
trained model to disk.

 It’s worth taking a closer look at the tokenization and feature generation process
in order to understand how training data is transformed into the events used to train
the categorizer. The next listing shows how CategoryDatastream is used to generate
DocumentSamples from training data.

public DocumentSample read() {
if (line == null && !hasNext()) {

return null;
}
int split = line.indexOf('t');
if (split < 0)

throw new RuntimeException("Invalid line in "
+ inputFiles[inputFilesIndex]);

String category = line.substring(0,split);
String document = line.substring(split+1);
line = null; // mark line as consumed
String[] tokens = tokenizer.tokenize(document);
return new DocumentSample(category, tokens);

}

At B CategoryDataStream’s read() method obtains lines from the input data by call-
ing the hasNext() method. hasNext() implicitly reads new lines of training data and
makes them available in the line variable, setting line to null when the end of the
training data is reached. As each line of training data is read, the code at C extracts
category and document data. The document data is then tokenized at d to produce a
collection of terms that will be used as features in the training process. Finally, at E a
DocumentSample object is created using category labels and tokens found in the train-
ing sample.

 Within DocumentCategorizerME, the collection of DocumentSamples is passed to
the feature generators by the DocumentCategorizerEventStream. This produces the
events upon which the model will be trained. These events consist of outcomes and
contexts. Outcomes are category labels; the contexts are the collections of words pro-
duced by tokenizing document content.

 The DocumentSample event objects created by the CategoryDataStream are pro-
cessed into features by the NameFinderFeatureGenerator and the BagOfWords-
FeatureGenerator. The latter, provided as a part of the OpenNLP API, returns the

Listing 7.13 Producing DocumentSamples from training data

Read line training data.B

Extract category.C

Tokenize
content.

D
Create
sample.

E

222 CHAPTER 7 Classification, categorization, and tagging
tokens in the document examples as a collection of features. The NameFinder-
FeatureGenerator uses the OpenNLP NameFinder API to find named entities within
the tokens and returns these as features. You encapsulate the setup of the OpenNLP
NameFinder and loading of the various models used to find named entities within the
NameFinderFactory, which is in charge of finding and loading the various models
used to identify named objects. The following listing shows how NameFinderEngine
finds and loads the models used for identifying named entities.

File modelFile;

File[] models
= findNameFinderModels(language, modelDirectory);

modelNames = new String[models.length];
finders = new NameFinderME[models.length];

for (int fi = 0; fi < models.length; fi++) {
modelFile = models[fi];
modelNames[fi] = modelNameFromFile(language, modelFile);

log.info("Loading model {}", modelFile);
InputStream modelStream = new FileInputStream(modelFile);
TokenNameFinderModel model =

new PooledTokenNameFinderModel(modelStream);
finders[fi] = new NameFinderME(model);

}

At B the findNameFinderModels() method scans the model directory for model files
to load. Each model file is then loaded into an array maintained by the NameFinder-
Factory. As each model is loaded, modelNameFromFile() is used at C to convert the
model file name into a model name by stripping any leading path and trailing suffix.
At D the PooledTokenNameFinderModel does the heavy lifting related to reading and
uncompressing the model and writing the results into memory. As each model is
loaded, instances of the NameFinderME class are created using the loaded model. Each
of these models is stored in an array returned by the NameFinderFactory.getName-
Finders() method.

 Now that you’ve loaded the instances of the NameFinder class you’ll use to identify
named entities in your input, the code in the next listing from the class NameFinder-
FeatureGenerator is used to perform the named-entity extraction upon the
DocumentSamples returned by the CategoryDataStream.

public Collection extractFeatures(String[] text) {
NameFinderME[] finders = factory.getNameFinders();
String[] modelNames = factory.getModelNames();

Collection<String> features = new ArrayList<String>();
StringBuilder builder = new StringBuilder();

Listing 7.14 Loading name finder models

Listing 7.15 Using NameFinderFeatureGenerator to generate features

Find models.B

Determine
model
name.

C

Read
model.D

Get name finders.B

223Categorizing documents with OpenNLP
for (int i=0; i < finders.length; i++) {
Span[] spans = finders[i].find(text);
String model = modelNames[i];

for (int j=0; j < spans.length; j++) {
int start = spans[j].getStart();
int end = spans[j].getEnd();

builder.setLength(0);
builder.append(model).append("=");
for (int k = start; k < end; k++) {

builder.append(text[k]).append('_');
}
builder.setLength(builder.length()-1);
features.add(builder.toString());

}
}
return features;

}

You obtain references to the NameFinderME and model names loaded by the
NameFinder factory at B. The NameFinderFactory has stored the finders and their
corresponding model names in parallel arrays. Each model will be used to identify a
different named-entity type such as locations, people, times, and dates.

 At C you process the input tokens with each NameFinderME loaded by the engine
by calling the find method. Each Span in the array returned by this method call refer-
ences the points at which one or more tokens that represent a named entity appear in
the original text using a start and end offset. At D you use these offsets to generate
the strings you’ll store as features. In each case, the model name is prepended to each
string which results in features like location=New_York_City.

 All of the features you generate are collected into a list, which is returned to the
document categorizer in E.

 As training is run, you’ll see output similar to the following:

Indexing events using cutoff of 5

Computing event counts... done. 10526 events
Indexing...
done.
Sorting and merging events... done. Reduced 10523 events to 9616.
Done indexing.
Incorporating indexed data for training...
done.
Number of Event Tokens: 9616

Number of Outcomes: 12
Number of Predicates: 11233

...done.
Computing model parameters...
Performing 100 iterations.

1: .. loglikelihood=-26148.6726757207 0.0024707782951629764
2: .. loglikelihood=-24970.114236056226 0.6394564287750641
3: .. loglikelihood=-23914.53191047887 0.6485793024802813

...

Find names.C

Extract names.D

Collect names.E

224 CHAPTER 7 Classification, categorization, and tagging
99: .. loglikelihood=-7724.766531988901 0.8826380309797586
100: .. loglikelihood=-7683.407561473442 0.8833982704551934

Before training, the document categorizer must organize the features it’ll use for
training in an index where they’re accessed quickly throughout the training process.
The first few lines of output describe the results of this process. Each labeled training
document produces an event, and in the indexing phase duplicate events are counted
and certain documents may be dropped if they don’t contain useful features.

 The cutoff referred to in the trainer output is a minimum term frequency cutoff.
Any terms that appear fewer than five times in the entire training corpus are ignored.
Any document that consists of only terms that fall below the cutoff is also dropped.
Predicates represent the terms used for training, and here you see that a total of
11,233 unique predicates are in the corpus. These include the single word tokens pro-
duced by the OpenNLP BagOfWordsFeatureGenerator, and the named entities pro-
duced by the NameFinderFeatureGenerator. In the regression model, each predicate
is an independent variable.

 The output also indicates that when the indexing process is complete, you have a
total of 12 outcomes and a total number of 9,616 training samples after deduping.

 When the indexing is complete, you begin to see output from the training process.
The process itself consists of 100 iterations; each iteration represents a pass through
the entire set of training data in order to adjust the model parameters and determine
the regression function’s output. For each iteration, the log-likelihood ratio is calcu-
lated that compares the output of the model with the observed output.

 Log likelihood is a measure of the similarity between two models. You don’t use
the value as an absolute measure; rather, it serves as a relative measure of how much
the model is changing across each iteration. You should expect the log likelihood to
move closer to zero with each iteration. This indicates that the model is producing
results closer to the outcomes observed in the training data with each step. If the log
likelihood moves further away from zero, it indicates that the model is getting worse
and there’s potentially a problem with the training data. You’ll also notice that the log
likelihood will change more significantly in the first few training steps than it will as
the iterations increase. If you notice that the log likelihood continues to change signif-
icantly after you reach the 100th iteration, it may be worth experimenting with a train-
ing process that uses more iterations.

 When you reach the 100th iteration, the trainer will write the model to disk and
you now have a model you can use for document categorization. The next section
demonstrates the API calls necessary to use the model for categorization as a part of
the testing process.

7.5.4 Testing the maximum entropy document classifier

We’ll use the same approach to test the maximum entropy document classifier that we
used in sections 7.3.5 and 7.4.5: categorizing a number of labeled documents and
comparing the assigned categories with the original labels. The TestMaxent class that
does this is invoked using the following command:

225Categorizing documents with OpenNLP
$TT_HOME/bin/tt testMaxent \
-i category-maxent-test-data \
-m maxent-model

Here you’re using the test data produced by the extractTrainingData utility along
with the model produced by the trainMaxent command. When the test has com-
pleted, you’ll be greeted with the familiar percentage correct and confusion matrix.

 The TestMaxent class demonstrates how a trained model is loaded into memory
and used to classify documents. The code in listing 7.16 loads the model from disk and
prepares the tokenization pipeline for document processing. You’ll notice that much
of the code is similar to the code used for training the categorizer in listing 7.12.

NameFinderFeatureGenerator nffg
= new NameFinderFeatureGenerator();

BagOfWordsFeatureGenerator bowfg
= new BagOfWordsFeatureGenerator();

InputStream modelStream =
new FileInputStream(modelFile);

DoccatModel model = new DoccatModel(modelStream);
DocumentCategorizer categorizer

= new DocumentCategorizerME(model, nffg, bowfg);
Tokenizer tokenizer = SimpleTokenizer.INSTANCE;

int catCount = categorizer.getNumberOfCategories();
Collection<String> categories

= new ArrayList<String>(catCount);
for (int i=0; i < catCount; i++) {

categories.add(categorizer.getCategory(i));
}
ResultAnalyzer resultAnalyzer =

new ResultAnalyzer(categories, "unknown");
runTest(inputFiles, categorizer, tokenizer, resultAnalyzer);

You begin again by setting up the feature generators at B, and then move on to load-
ing the model from disk C using the DoccatModel class. This model is then used to
create an instance of the DocumentCategorizer class at D. Finally, at E you initialize
the ResultAnalyzer using the list of categories obtained from the categorizer via the
model, and at F you run the test.

 In the next section, we’ll look at the code used to integrate the maximum entropy
document categorizer into a production context.

7.5.5 Maximum entropy document categorization in production

Now that you’ve loaded the model and set up the tokenizer, feature generators, cate-
gorizer, and results evaluator, you’re ready to categorize some documents. Listing 7.17
shows how documents read from a file are processed, categorized, and then delivered
to the ResultAnalyzer class you also used to evaluate the MoreLikeThis and Bayes
classifiers in sections 7.3.5 and 7.4.5.

Listing 7.16 Preparing the DocumentCategorizer

Set up feature
generators.B

Load model.C

Create categorizer.D

Prepare
result
analyzer.

E

FExecute
test.

226 CHAPTER 7 Classification, categorization, and tagging

for (File ff: inputFiles) {
BufferedReader in = new BufferedReader(new FileReader(ff));
while ((line = in.readLine()) != null) {

String[] parts = line.split("t");
if (parts.length != 2) continue;

String docText = parts[1];
String[] tokens = tokenizer.tokenize(docText);

double[] probs = categorizer.categorize(tokens);
String label = categorizer.getBestCategory(probs);
int bestIndex = categorizer.getIndex(label);
double score = probs[bestIndex];

ClassifierResult result
= new ClassifierResult(label, score);

resultAnalyzer.addInstance(parts[0], result);
}
in.close();

}

System.err.println(resultAnalyzer.toString());

As you recall, each test document appears in the second column of a single line in the
input file. You begin by extracting the text from each training document and then using
the SimpleTokenizer to produce a set of tokens B. The tokens are then delivered to
the categorizer at C. The categorize method generates features using the BagOfWords-
FeatureGenerator and NameFinderFeatureGenerator set up in listing 7.16, and then
combines these features with the model to produce a list of possible outcomes, each
accompanied by a probability derived from the model computation. Each outcome
present corresponds to a specific document category, and the highest-ranked category
is ultimately assigned to the document. At D you create a ClassifierResult to feed
into the ResultAnalyzer. After you’ve processed all of the documents in this manner,
you print the summary of the result at E.

 The code required to integrate the OpenNLP DocumentCategorizer into a pro-
duction system doesn’t differ significantly from the code described in this section. A
production system would need to perform a one-time setup of the tokenizers, feature
generators, and categorizer in a manner similar to that demonstrated in listing 7.16
and categorize documents using code like that found in listing 7.17. Consider how
you might adapt the example in section 7.4.7, where you integrated the Mahout Bayes
classifier into Solr to use the OpenNLP document classifier instead.

 Now that we’ve presented a collection of algorithms used to categorize documents
based on their content, we’ll explore one application of these algorithms—content
tagging—and how a variation of the algorithms we’ve presented here is used to orga-
nize content by presenting a mechanism for browsing a large collection of documents
based on subject area or an additional subject facet on search results.

Listing 7.17 Categorizing text with DocumentCategorizer

Preprocess text.B

Categorize.C

Analyze results.D

Present results.E

227Building a tag recommender using Apache Solr
7.6 Building a tag recommender using Apache Solr
Before we begin our implementation of an automatic content tagger, let’s discuss the
background of how tagging emerged as a popular mechanism for locating content
and why it’s important.

 In the early days of the internet, two primary modes of finding content emerged.
Search engines indexed the web and presented simple search interfaces where key-
words could be entered to locate content. Other sites classified web pages into enor-
mous taxonomies, trees of subject-based categories. Each of these approaches
addressed a different sort of information seeking behavior; each had its advantages
and drawbacks.

 The indexes and user interfaces maintained by search engines met the needs of
many, but end users suffered when they had no idea how to describe their informa-
tion need in keywords. Keyword search was further complicated by the fact that many
concepts could be described using a number of different terms, so important content
could be missed based upon the disconnect between the terms used in a search and
the vocabulary present in a document. As a result, keyword searching often consisted
partially of guessing the proper terms and partially of exploration of the search results
to uncover additional query terms.

 Other sites developed large organizational schemes and assigned web pages to cat-
egories within these schemes. Categories were frequently organized in trees, where
each level past the root would become more specific in meaning. Low-level, broad cat-
egories like Arts or Travel would give way to highly specific categories such as Kabuki
or Tourism in Tokyo. These schemes, known as taxonomies, were managed by a single
entity and often grew to the point they couldn’t be easily understood by the end user.
Which branch would you navigate to locate pages about Japanese cuisine? The explo-
sive rate of growth on the web made it impossible to keep up. Each new website would
have to be categorized by hand by individuals who knew the taxonomy inside and out.
Information seekers wanted to be able to quickly find what they were looking for
instead of having to drill down through a complex taxonomy of indeterminate depth.

 Social tagging emerged as an alternative to the large, centrally managed taxonomy.
Instead of forcing content into a single scheme of hierarchical categories, tagging
gives the power of organizing content to the users. For example, when a user wants to
remember a web page, they assign words—tags—to that page that make sense to
them. Twitter users embed hashtags in their posts by prepending a hash mark (#) to
keywords so that others interested in the same subject can locate their tweets.

 In both cases, the tags used are public and, as a result, content is findable by any-
one who has an interest in the same tag. As this behavior is repeated by tens to
thousands of users, a categorization scheme emerges based on the common usage of
terms. The definition of each tag emerges from the way it’s used. Instead of forcing
content into a strictly controlled taxonomy of categories, social content tagging lever-
ages the perspective of a large number of people to define the context of content.

228 CHAPTER 7 Classification, categorization, and tagging
 This organically emerging organization scheme is often referred to as a folksonomy,
a social, collaboratively generated variation of a taxonomy. A folksonomy is a way of
organizing or classifying objects that has naturally emerged from the way a large
group of people organize things over time. With this organization scheme, content
doesn’t need to fit into a rigid taxonomy of categories but is represented by a group of
terms, each of which is considered a sort of category in its own right.

 The act of tagging content on the web is simple enough. You create or find some-
thing interesting on the web, click a button in your browser, and associate some words
to it that will help you find it later. As you tag more content, interesting things emerge
when looking at the tags in aggregate. Take a look at the tag cloud in figure 7.5 that
displays a summary of all of the tags a user has assigned to web pages on delicious
.com. Can’t you quickly determine what they’re interested in?

 Social tagging, as demonstrated on sites like Delicious and Twitter, harnesses the
power of millions of people tagging content. Some people have tagged the same con-
tent our user has, choosing different words meaningful to them. Other people use the
same tags as our user to tag different pieces of content. Though someone may use
their own tags to navigate their content collection, they can use others’ tags to find
web pages that might be related or interesting to them in some way. Tags take on dif-
ferent meanings based upon how people use them.

 In figure 7.6, you’ll notice the recommended tags. Where do these come from?
How are they determined? A simple tag recommendation algorithm may inspect a
user’s existing tags and the tags assigned to the web page by other users and generate
a list based on these metrics. Other algorithms may recommend tags based on the
content of the page being tagged. Analyzing the text of the web page being tagged
and comparing this with a statistical model based on the tags of other pages with simi-
lar content can produce a highly accurate set of tag suggestions.

 You can build upon each of these examples to create a tag recommendation
engine using Lucene. In the distance-based approaches introduced in section 7.3,
each document or category vector is labeled with a single category, and you chose the
single most relevant category from a number of matching candidates. In the Bayes
example, you witnessed that there are often many good categories for each document,
and often these range from general to specific or describe different facets of meaning.

Figure 7.5 Delicious.com
tag cloud generated by
wordle.net. This size of
each word relates to the
frequency of a tag in a
collection of documents.

229Building a tag recommender using Apache Solr
Instead of creating a constrained set of categories, how can you take advantage of the
existing tags in a collection of documents to generate tags for other documents?

 In this section you’ll do just that. We’ll demonstrate how you can use the k-nearest
neighbor categorization algorithm coupled with a set of pretagged documents to
build a tag recommender using Apache Solr. Like the k-nearest neighbor implementa-
tion in section 7.3, you’ll build an index that contains your training data and use the
MoreLikeThis query to match a document to those in the index. The tags you recom-
mend will be harvested from the results of each query.

7.6.1 Collecting training data for tag recommendations

To build your tag recommender, you’ll use a collection of data from the question
answering website Stack Overflow (http://www.stackoverflow.com). Stack Overflow is
a “collaboratively edited question answering site for professional and enthusiast pro-
grammers.” It’s operated by Stack Exchange, a company that runs similar question
answering sites focused on a number of different subject areas. People visit each site
to participate in the process of posting questions, composing new answers, or rating
existing answers from the user community. Each question is assigned a series of key-
word tags by the person asking the question. As of January 2011, the Stack Overflow
data dump contained more than 4 million posts. Of these, approximately a million
posts are questions accompanied by tags. Questions vary in length, but the majority of
these posts provide text and tags that are useful for training a tag suggestion engine
such as the one you’ll build in this example.

 In addition to being an excellent source of training data, Stack Overflow and its sis-
ter sites present an excellent use case for tags on a content-oriented site. Figure 7.7
shows the page describing the java tag. The page presents the most popular questions
that are tagged with the term java. It also presents some statistics regarding the tag,

Figure 7.6 Tagging a web page on delicious.com: users assign a number of keyword tags to
describe the web page so that they can easily find it later by searching on any of these tags.
The tags capture facets of what the page is about.

230 CHAPTER 7 Classification, categorization, and tagging
such as the number of questions tagged with java and related tags and counts. It’s par-
ticularly useful that a definition of the tag is presented as well. This prevents users
from misusing the tag on questions about Indonesia or beverages.

 You’ll start small by identifying a training set of 10,000 posts and a test set of 1,000
posts. The criteria for judging whether a recommended tag is appropriate will be rela-
tively lax at first. Each question may have more than one tag, so you’ll use the text of
each question as training data for each associated tag. If a given question includes the
tags php, javascript, and ajax, you’ll use the question as a training sample for each of
those categories.

 When you evaluate the quality of the tagging engine with regard to the test data,
you’ll look at the tags assigned to an item by the engine and compare these with the
user-assigned tags. If you see one or more matching tags, you’ll consider there to be
a match.

 Like the first examples we explored in this chapter, your tag recommender will be
trained by indexing training documents with Lucene. You’ll take advantage of Solr as
a platform to quickly load and index the Stack Overflow data using the Data Import
Handler and expose the results of your tag recommender as a web service.

Figure 7.7 A page from stackoverflow.com that presents information about the questions tagged
with the word java. This demonstrates one way in which tags are used to navigate information and
also presents a useful source of training data.

Classification and recommendation
The terms classification and recommendation each formally describe related families
of machine learning algorithms. The difference between the two is that classification
offers a small number of possible choices from a controlled list of choices, whereas
recommendation offers a larger subset of options for a nearly infinite set of options
such as a product catalog or a database of scholarly articles.

231Building a tag recommender using Apache Solr

7.6.2 Preparing the training data

To get started with this example, you can download the subset of the Stack Overflow
training and test data we’ve made available at http://www.tamingtext.com or you
can download the full dump directly from Stack Overflow by following the instruc-
tions at http://blog.stackoverflow.com/category/cc-wiki-dump/. From this page you
can download a torrent that will allow you to download the data with your favorite Bit-
Torrent client. The data dump torrent includes files for all of the Stack Exchange site,
so use your BitTorrent client to choose only the Stack Overflow data dump, in
Content\Stack Overflow 11-2010.7z, which is an archive in 7-Zip format.

 After you unpack the archive you’ll have files such as badges.xml, comments.xml,
posthistory.xml, and posts.xml. You’ll use posts.xml as your source of training data.
That file contains a series of row elements nested within a posts element containing
the data you’re looking for. We’ll briefly describe how to generate the splits we’re
interested in and then discuss the format of the file itself.

 You can use the following command to split it into training and test sets:

$TT_HOME/bin/tt extractStackOverflow \
-i posts.xml \
-te stackoverflow-test-posts.xml \
-tr stackoverflow-training-posts.xml

By default extractStackOverflow will extract the first 100,000 questions it finds as
training documents and the first 10,000 questions it finds as test data. You should feel
free to experiment with extracting more or less data and observe how the amount of
data affects training time and quality.

 In the posts.xml file, there are a number of XML elements with the name row.
We’re interested in finding those rows that are questions that have tags. Each question
appears in a row, but not every row in the Stack Overflow data is a question. The
extractStackOverflow utility will take care of filtering out nonquestion rows by

In addition to or instead of content-based decisions, many recommenders analyze
user behavior to determine what to recommend, for example, tracking your likes and
dislikes or watching what you choose or purchase, and comparing those to the behav-
ior of others in order to recommend items to you that you may also like. Companies
like Amazon or Netflix use this sort of recommendation algorithm in order to suggest
books for you to purchase or movies for you to watch.

This example recommends tags using solely the content of an input article and the
content of articles already present on the system. In this way it’s more like the clas-
sification and categorization algorithms that we’ve explored so far as opposed to
behavior-based recommenders. It’d be interesting to combine the two approaches.

If you’re interested in learning more about recommenders, check out Mahout in Action
by Owen, Anil, Dunning, and Friedman, also published by Manning (Owen 2010).

232 CHAPTER 7 Classification, categorization, and tagging
looking at each row’s PostTypeId attribute. Those with a value of 1 are questions and
will be kept; others will be rejected. The other attributes we’re interested in are the
Title, Tags, and Body. We’ll use these as the raw training data. Some of the other
attributes might come in handy as well, so we’ll preserve them too.

 The tags for a question may be found in the tags attribute of each row, where mul-
tiple tags are demarcated with < and > marks. The entire attribute value might look
like <javascript><c++><multithreaded programming> for a post that’s been tagged
with three separate tags: javascript, c++, and multithreaded programming. You’ll need to
parse this format when training and testing with this data.

7.6.3 Training the Solr tag recommender

You’ll train the Solr tag recommender using the Stack Overflow data with Solr’s data
import handler. Provided with the code examples is a Solr instance that’s configured
to read the training data file, extract the necessary fields from the XML, and convert
the tags into discrete values stored in the index. The relevant portion of the configura-
tion is the following listing.

<entity name="post"
processor="XPathEntityProcessor"
forEach="/posts/row"
url=".../stackoverflow-corpus/training-data.xml"
transformer="DateFormatTransformer,HTMLStripTransformer,

com.tamingtext.tagrecommender.StackOverflowTagTransformer">
<field column="id" xpath="/posts/row/@Id"/>
<field column="title" xpath="/posts/row/@Title"/>
<field column="body" xpath="/posts/row/@Body"

stripHTML="true"/>
<field column="tags" xpath="/posts/row/@Tags"/>

The data import handler will use the XPathEntity processor to break the training
data into individual Lucene documents for each occurrence of the <row> tag within
the enclosing <posts> tag. The various attributes within the row tag will be used to
populate the ID, title, body, and tags fields in the index. The contents of the body attri-
bute will have HTML code stripped.

 The StackOverflowTagTransformer is a simple custom transformer that explicitly
searches for the tags attribute and processes any content found there in the manner
just described. This produces separate instances of the tag field for each document in
the solr index. The following listing shows the class in its entirety.

public class StackOverflowTagTransformer {
public Object transformRow(Map<String,Object> row) {

List<String> tags = (List<String>) row.get("tags");
if (tags != null) {

Collection<String> outputTags =

Listing 7.18 Excerpt from dih-stackoverflow-config.xml

Listing 7.19 Transforming data in Solr’s data import handler instances

233Building a tag recommender using Apache Solr
StackOverflowStream.parseTags(tags);
row.put("tags", outputTags);

}
return row;

}
}

The data import handler passes one row of data at a time to the transformRow
method, and the transformer is free to modify the columns of this row in many ways.
In this case the row’s columns are replaced with a new collection of tags parsed from
the original format. You know that you can treat the value of the row.get("tags")
call as a List because the tags field is defined as multivalued within the Solr schema
for this instance.

 As you’ll notice if you inspect the entire dih-stackoverflow-config.xml file, the data
import handler configuration also adds a number of other fields from the Stack Over-
flow data.

 Now that you have a feel for how the indexing process works, you can get it started
by running the Solr instance and loading the documents into it. Start the Solr server
by running the following:

$TT_HOME/bin/start-solr.sh solr-tagging

Solr will start and emit a large amount of logging information to your terminal as it
loads each of its components and configuration items. It should finish start up within
a couple seconds, when you see the following message:

Started SocketConnector@0.0.0.0:8983

Keep this terminal containing the Solr log data open; you may need to refer to it later
in order to troubleshoot issues with loading the data.

 Now that you’ve successfully started Solr, you need to edit the data import handler
configuration to reference the file you’ll be using for training data. Edit the file
$TT_HOME/apache-solr/solr-tagging/conf/dih-stackoverflow.properties and change
the URL value from /path/to/stackoverflow-training-posts.xml to the full path to the
training data on your system. Although the property is named url, it’s fine to provide
it a regular path. After you’ve modified that setting, save dih-stackoverflow.properties
and exit your editor.

 Visit the page at http://localhost:8983/solr/admin/dataimport.jsp, click the link
to DIH-STACKOVERFLOW, and you’ll be greeted by the Solr data import handler
development console screen. You’ve edited the data import handler configuration
since you started Solr, so you’ll need to click the Reload-config button at the bottom
edge of the left-side frame in your web browser to reload the changed configuration.

 When the configuration has been reloaded successfully, you’re ready to load the
training data. Click on the Full-import button near the Reload-config button and Solr
will start chugging away while it loads the training data. You can click the Status but-
ton to display the current status on the right-side frame of your browser in XML for-
mat. In a few minutes you’ll see the following as the status response:

234 CHAPTER 7 Classification, categorization, and tagging

.

Indexing completed. Added/Updated: 100000 documents. Deleted 0 documents

You’ll also see the following message in the Solr log’s output in the terminal where
you issued the start command:

Mar 11, 2011 8:52:39 PM org.apache.solr.update.processor.LogUpdateProcessor

INFO: {add=[4, 6, 8, 9, 11, 13, 14, 16, ... (100000 adds)],optimize=} 05

Now you’ve completed the training phase, and the Solr instance is ready to produce
tag recommendations.

7.6.4 Creating tag recommendations

The solr-tagging instance has been configured to use Solr’s MoreLikeThisHandler
to respond to queries. As with the MoreLikeThis categorizer presented earlier, this
query handler will take a document as input and use the index to identify the terms in
the query most useful for retrieving matching documents. The next listing shows how
the MoreLikeThisHandler is configured in solrconfig.xml.

<requestHandler name="/mlt" class="solr.MoreLikeThisHandler">
<lst name="defaults">

<str name="mlt.fl">title,body</str>
<int name="mlt.mindf">3</int>

</lst>
</requestHandler>

The approach we’ll use to recommend tags is similar to the k-NN classification algo-
rithm described in section 7.3.6. Instead of counting the categories assigned to the
documents returned by a MoreLikeThisQuery, we count tags, which are then used to
provide recommendations. The TagRecommenderClient takes care of delivering the
input document to Solr and postprocessing the results in order to aggregate, score,
and rank the tags. The next listing describes this process at a high level.

public TagRecommenderClient(String solrUrl)
throws MalformedURLException {

server = new HttpSolrServer(solrUrl);
}

public ScoreTag[] getTags(String content, int maxTags)
throws SolrServerException {

ModifiableSolrParams query = new ModifiableSolrParams();
query.set("fq", "postTypeId:1")

.set("start", 0)

.set("rows", 10)

.set("fl", "*,score")

.set("mlt.interestingTerms", "details");

MoreLikeThisRequest request

Listing 7.20 Configuring the MoreLikeThisHandler in solrconfig.xml

Listing 7.21 Using the TagRecommenderClient to generate tag recommendations

Solr client.B

C
Query
parameters

Create and
execute
request.

D

235Building a tag recommender using Apache Solr
= new MoreLikeThisRequest(query, content);
QueryResponse response = request.process(server);

SolrDocumentList documents = response.getResults();
ScoreTag[] rankedTags = rankTags(documents, maxTags);
return rankedTags;

}

First you must set up your connection to Solr. At B you create an instance of Http-
SolrServer which, despite its name, is a Solr client that uses an HTTP client library to
send requests to your Solr server. The URL of the Solr server is provided as a parameter.

 After you’ve created the client, you need to build the query you’ll use to retrieve
the documents that match your query. You’ll use the tags on these retrieved docu-
ments to build tag recommendations. In the Stack Overflow data, only questions have
tags, so when you set up your query parameters in C you use a filter query to limit the
results that are questions having a postTypeId of 1. You’ll also notice that the query
requests the top 10 matching documents; you should experiment with different num-
bers of results to determine what produces the best recommendations for your data.

 When you create the request that will be sent to the Solr server at D, you use a cus-
tom MoreLikeThisRequest instead of the standard Solr QueryRequest. The More-
LikeThisRequest will use HTTP POST to deliver the potentially long query document
directly to the Solr /mlt query handler. The content parameter of this request is used
to hold the content for which you want to recommend tags.

 Now that you have the results, you need to extract and rank the tags found within
to provide recommendations. At E you collect the counts for each tag and rank the
tags by score. The ScoreTag class is used to store each tag found in the results set
along with the number of times it appeared and its score. We examine this further in
the next listing.

protected ScoreTag[] rankTags(SolrDocumentList documents,
int maxTags) {

OpenObjectIntHashMap<String> counts =
new OpenObjectIntHashMap<String>();

int size = documents.size();
for (int i=0; i < size; i++) {

Collection<Object> tags = documents.get(i).getFieldValues("tags");
for (Object o: tags) {

counts.adjustOrPutValue(o.toString(), 1, 1);
}

}
maxTags = maxTags > counts.size() ? counts.size() : maxTags;
final ScoreTagQueue pq = new ScoreTagQueue(maxTags);
counts.forEachPair(new ObjectIntProcedure<String> () {

@Override
public boolean apply(String first, int second) {

pq.insertWithOverflow(new ScoreTag(first, second));
return true;

Listing 7.22 Collecting and ranking tags

Collect
and rank
tags.

E

Count tags.B

Rank tags.C

236 CHAPTER 7 Classification, categorization, and tagging
}
});
ScoreTag[] rankedTags = new ScoreTag[maxTags];
int index = maxTags;
ScoreTag s;
int m = 0;
while (pq.size() > 0) {

s = pq.pop();
rankedTags[--index] = s;
m += s.count;

}
for (ScoreTag t: rankedTags) {

t.setScore(t.getCount() / (double) m);
}
return rankedTags;

}

You begin the ranking and scoring process by first counting tags. At B you scan
through the documents in the result set, extract tags from the tags field, and collect a
count for each tag.

 When you have counts for all of the tags, you rank tags by count. At C you collect
the set of tags in a priority queue that will hold the most frequent tags. You extract the
results from the priority queue at D and calculate the tags’ scores in E. Each tag’s
score is based upon the number of times it appeared in the result set divided by the
total number of tags that appeared in the result set after cutoff. This way, the score
ranges between 0 and 1, with a score closer to 1 indicating that the tag in question was
particularly important in the result set. A set of tags where the top-ranked tag scores
are higher indicates a smaller set of tags was returned, whereas lower scores mean that
a variety of tags were returned for the result set. This could be used as a measure of
certainty. Through experimentation it’s possible to arrive at a cutoff score below
which tags are unsuitable for recommendation.

7.6.5 Evaluating the tag recommender

Evaluating the output of the tag recommender is not substantially different from what
you’ve done previously to evaluate categorizer output. You’ll use a portion of the Stack
Overflow data that you didn’t train on as your test set, obtain tag recommendations
for each of the questions in this set, and compare them with the tags assigned to them.
The significant difference here is that each training document is accompanied with
multiple tags, and the result of each query recommends multiple tags. As a result, the
tests you perform here will collect two scores: the first is a measure of the number of
test documents tagged where at least a single tag was correct. The percentage of docu-
ments you hit where at least one tag is correct will allow you to determine if the classi-
fier is performing correctly. The second metric will be based on the number of cases
where 50% of the tags recommended are correct. For example, if a test document is
assigned four tags and the recommender produces a set of tags that contains at least
two of those tags, the document is judged as being correct. This gives you an idea of
how accuracy drops as the match requirements become more strict.

Collect ranked tags.D

Score tags.E

237Building a tag recommender using Apache Solr
 In addition to these metrics, you’ll be collecting percentage correct metrics for a
subset of the tags you encounter in your training and test data. You’ll identify top most
frequent tags in your test set and generate independent accurate metrics for these.

 Let’s dive right into how this is done by looking at the code. First you need to be
concerned with extracting the Stack Overflow data from the XML files it’s stored in.
For this you use the StackOverflowStream class. This uses the StAX API to parse the
XML documents and produce StackOverflowPost objects containing the fields for
each post, including those that you’re interested in: the title, body, and tags. Much of
the code for StackOverflowStream is boilerplate related to parsing XML and iterating
over a number of posts, so we won’t reproduce that here as it’s available in full in the
sample code accompanying this chapter.

 In order to collect metrics for individual tags, you must extract a set of tags for
which to collect data from the Stack Overflow data. The following command will
extract the 25 most frequent tags in the test data, with a cutoff for tags that appear in
less than 10 posts:

$TT_HOME/bin/tt countStackOverflow \
--inputFile stackoverflow-test-posts.xml \
--outputFile stackoverflow-test-posts-counts.txt \
--limit 25 --cutoff 10

The result will be a text file containing three columns: rank, count, and tag. The fol-
lowing excerpt shows a portion of this output where c# is shown to be the most popu-
lar tag, appearing in 1480 posts, followed by .net in 858, asp.net in 715, and java in 676:

1 1480 c#
2 858 .net
3 715 asp.net
4 676 java

Now that you have your category counts, you can feed them into your testing process.
The following command is used to execute the test class TestStackOverflow. This
class will read the text data and extract the necessary fields from the Stack Overflow
XML format, use the TagRecommenderClient to request a set of tags from the Solr
server, and then compare the tags assigned to the test data with the recommended
tags. As it runs, it collects metrics that describe how the recommender is performing:

$TT_HOME/bin/tt testStackOverflow \
--inputFile stackoverflow-test-posts.xml \
--countFile stackoverflow-test-posts-counts.txt \
--outputFile stackoverflow-test-output.txt \
--solrUrl http://localhost:8983/solr

While testStackOverflow is running, it’ll write metrics every 100 posts it processes.
These will let you know how well the recommender is tagging test posts while the eval-
uation is running. The following excerpt shows how well the recommender is doing
after tagging 300 and 400 test documents:

evaluated 300 posts; 234 with one correct tag, 151 with half correct
%single correct: 78, %half correct: 50.33

238 CHAPTER 7 Classification, categorization, and tagging
evaluated 400 posts; 311 with one correct tag, 204 with half correct
%single correct: 77.75, %half correct: 51

Here, between 77 and 78 percent of all documents tagged had a single tag correct,
and roughly 50% of the documents had half or more tags correct. You’ll notice as
more documents are tagged, these percentages tend to stabilize. This suggests that
although there’s more than enough test data available in the Stack Overflow dataset,
testing with 10,000 documents might be overkill. In this case it probably makes more
sense to test with fewer documents.

 When testStackOverflow completes, it’ll also dump metrics for individual tags to
the specified output file. This file includes the final percent-single and percent-half
correct measures along with correctness measures for each tag found in the counts file:

evaluated 10000 posts; 8033 with one correct tag, 5316 with half correct
%single correct: 80.33, %half correct: 53.16

-- tag total correct pct-correct --
networking 48 12 25
nhibernate 70 48 68
visual-studio 152 84 55
deployment 48 19 39

For each individual tag, you count the number of test documents it appears in, and
then the number of cases where it was recommended for that particular document.
From this you derive a percentage correct that indicates how well the recommender is
doing for any particular tag. In this case, it doesn’t do well for networking but does rea-
sonably well for nhibernate. As you tweak the data used to train the recommender, you
can track how these values change for individual tags.

 There’s also no reason to stick to the top X tags. If you’re interested in how the rec-
ommender is performing on other tags, modify the counts file by hand to include
them. As long as the tags are present in the test set, you’ll see metrics for them in the
output file.

7.7 Summary
In this chapter we explored some ways classification algorithms are used to automati-
cally categorize and tag text documents. Along the way we discussed the process of
creating automated classifiers: preparing input, training the classifier in order to pro-
duce a model for classifying documents, testing the classifier in order to evaluate the
quality of the results it produces, and ways classifiers are deployed in a production sys-
tem. We identified the importance of selecting an appropriate categorization scheme
and choosing the right features for training a classification algorithm, and explored
techniques for obtaining test data, including using publicly available resources, boot-
strapping a training set using an existing set of categories, or adapting human judg-
ments to create a training set. We explored a few different evaluation metrics and
discussed the uses for accuracy, precision, recall, and confusion matrices to present
slightly different views of the performance of a classification algorithm. We explored
different ways the inputs or parameters that control the algorithm are modified to

239References
improve the results of the classifier, and demonstrated how each of our classifiers are
integrated into Solr in order to provide categorization capabilities in a production
environment.

 This chapter has also introduced a number of basic concepts in classification and
text categorization so that you should now be able to begin your own explorations
into other algorithms. As you investigate the research and software available, you’ll
find that there are numerous approaches to solving text categorization problems.
Now that we’ve discussed some of the basic algorithms, k-nearest neighbor, naive
Bayes, and maximum entropy, you have a foundation of knowledge that will allow you
to explore the ways text is tamed using classification, categorization, and tagging.
Numerous other choices are available to you as a developer or researcher. Each algo-
rithm has different characteristics that may make it suitable for your application’s
requirements. Here are a couple more that you should consider exploring as a follow-
on to those demonstrated in this chapter.

 The Mahout project also includes a logistic regression algorithm implemented
using stochastic gradient descent as a learning technique. Generally, this is similar to
the existing logistic regression classifier from OpenNLP, but Mahout’s implementation
is interesting in the numerous ways in which features may be interpreted, providing
mechanisms for incorporating number-like, word-like, and text-like features into a sin-
gle model. Ted Dunning has led the implementation of this classifier in Mahout and
has written extensively about it in Mahout in Action (2011), also published by Manning.

 Support vector machines (SVMs) have also been used extensively for text classifica-
tion. A significant amount of research is available covering various approaches to
modeling text using SVMs, and a number of open source implementations are used to
implement working SVM-based text classification systems. These include the SVM-
LIGHT (http://svmlight.joachims.org) by Thorsten Joachims and LIBSVM (http://
www.csie.ntu.edu.tw/~cjlin/libsvm) by Chih-Chung Chang and Chih-Jen Lin.
Through each of these libraries, text classification is implemented using a variety of
languages.

 There are countless other variations and combinations of these and other tech-
niques to explore further. We’ll discuss some of these alternatives later in this book in
chapter 9, “Untamed text.”

7.8 References
 Lewis, David; Yang, Yiming; Rose, Tony; Li, Fan. 2004. “RCV1: A New Benchmark

Collection for Text Categorization Research.” Journal of Machine Learning
Research, 5:361-397. http://www.jmlr.org/papers/volume5/lewis04a/
lewis04a.pdf.

 Owen, Sean; Anil, Robin; Dunning, Ted; Friedman, Ellen. 2010. Mahout in Action.
Manning Publications.

 Rennie, Jason; Shih, Lawrence; Teevan, Jaime; Karger, David. 2003. “Tackling the
Poor Assumptions of Naive Bayes Text Classifiers.” http://www.stanford.edu/
class/cs276/handouts/rennie.icml03.pdf.

Building an example
question answering system
In the previous chapters, we’ve looked at different technologies and approaches
independently. Though we’ve still managed to build useful applications focusing on
one or two technologies, often you need to combine several of the tools we’ve
described so far to get the job done. For instance, search and tagging (classifica-
tion) with faceting are a natural fit, as are clustering and search, when it comes to
helping users find and discover new and relevant content for their information
needs. For the purposes of this chapter, you’ll build a question answering (QA) sys-
tem capable of answering fact-based questions from users (written in English) using
search, named-entity recognition, and string matching, among other techniques.

In this chapter
 Applying techniques for automatically tagging documents

 Enabling document and subdocument tags to be leveraged
in search

 Reranking documents returned by Solr based on additional
criteria

 Generating possible answers to users’ questions
240

241
Though most of the other chapters stand on their own, in this chapter, we assume
you’ve read the previous chapters and so we don’t explain the basics of Solr and other
systems again here.

 Before we move ahead and build a question answering system, let’s look back at
what we’ve covered previously. You’ll see how all of these items provide the conceptual
underpinning for this chapter. In chapter 1, we discussed the importance of text to
different applications, and covered some of the basic terminology around search and
natural language processing, as well as some of the challenges you face in building
such systems. Much of this foundation is used both implicitly and explicitly in this
chapter, even if we don’t call it out.

 In chapter 2, we focused on the foundations of text processing, including things
like parts of speech, parsing, and grammar, perhaps reminding you of your high
school days. We also took time to look at how to get content out of its raw format and
into the format needed by leveraging Apache Tika. Though we don’t explicitly use
Tika for this example, we’ll be doing preprocessing on the content to get it in shape
for our task. We’ll also make extensive use of tools for tokenizing, parsing, and part of
speech tagging content in order to leverage it to answer questions.

 Chapter 3 introduced search and Apache Solr as a powerful search platform with
which you can quickly and easily index text and retrieve it via a query. We’ll again
leverage Solr here as the foundation for the question answering system along with
some of the more advanced capabilities of Apache Lucene.

 Chapter 4 dealt with fuzzy string matching, which is useful in many of the day-to-
day operations of text processing. This chapter uses what you learned there to per-
form automatic spelling correction, as well as other techniques for fuzzy string match-
ing such as n-grams. Some of these string techniques are used at the low level of
Lucene, and we could easily hook a spell-checking component into our system,
although we choose not to.

 In chapter 5, we used OpenNLP to identify and categorize proper names in text.
Here, we’ll use OpenNLP again to perform this task as well as to identify phrases. This
is useful both in analyzing the query and in processing the underlying content we use
for the lookup of answers.

 In chapter 6, we delved into the world of clustering and showed how we could
automatically group together similar documents using unsupervised techniques.
Though we won’t demonstrate it in this chapter, clustering techniques can be used
both to narrow the search space when looking for answers and to determine near-
duplicates in the results themselves.

 Finally, chapter 7 showed you how to classify text and use a classifier to automati-
cally associate keyword or folksonomy tags with new text. We’ll also use these tech-
niques to assign incoming questions to a category in this chapter.

 Now that you have a sense of where we’ve been, let’s bring all of these things
together to build a real application. Our goal in building a sample QA system is to
demonstrate how many of the moving pieces that we’ve talked about up until now

242 CHAPTER 8 Building an example question answering system
hook together to form a real working system. We’ll build a simple QA application
designed to answer factual questions utilizing Wikipedia as the knowledge base. To
achieve our goal, we’ll use Solr as a baseline system due not only to its search capabili-
ties for passage retrieval, but also for its plugin architecture that allows for easy exten-
sion. From this baseline, you can plug in analysis capabilities during indexing as well
as hook in search-side capabilities to parse users’ natural language questions and to
rank answers and return results. Let’s begin by looking into QA and some of its appli-
cations a bit more.

8.1 Basics of a question answering system
As the name implies, a question answering (QA) system is designed to take in a natural
language question—say, “Who is the President of the United States?”—and provide
the answer. QA systems alleviate the need for end users to search through pages and
pages of search results or click and browse their way through facets. For instance,
IBM’s Watson DeepQA system (http://www.ibm.com/innovation/us/watson/) used a
sophisticated question answering system to play against humans on Jeopardy! (http://
www.jeopardy.com). Did we mention it beat two of the greatest Jeopardy! players of all
time? This system used a very large number of machines to process answers (remem-
ber, Jeopardy! requires the “answer” to be in the form of a question) based on a very
large collection of world knowledge as well as ancillary systems for playing strategy
(selecting clues, betting, and so on; see figure 8.1).

 Note that an automated QA system shouldn’t be confused with any of the popular
crowd-sourced QA systems on the web today such as Yahoo! Answers or ChaCha, even
if some of the technology that powers those systems (identifying similar questions, for
instance) is also useful in building automated QA systems. In many ways, question
answering is like a search application: you submit your query, usually consisting of a
set of keywords, and look at the documents or
pages that are returned for an answer. In ques-
tion answering, you typically submit a full sen-
tence as your query instead of just keywords.
In return for your greater specificity, expect a
piece of text considerably smaller than a docu-
ment to be returned. In general, question
answering is hard, but in particular applica-
tions or genres it can be effective. Many ques-
tions have complex answers and require a
great deal of understanding to answer. As
such, we’re setting the bar for our question
answering lower than full understanding, and
instead will build a system that will perform
better than a standard search for fact-based
questions such as “Who is the President of the
United States?”

Figure 8.1 Screen grab of IBM’s Watson
Avatar as seen during the Jeopardy! IBM
challenge

243Installing and running the QA code
A full-fledged QA system might attempt to answer many different types of questions,
ranging from fact-based to more esoteric. Keep in mind, also, that it’s perfectly rea-
sonable for a QA system to return multiple paragraphs and even multiple documents
as the answer, even though most QA systems try to return answers that are much
shorter. For example, a highly sophisticated system (which doesn’t exist, as far as these
authors are aware) might be able to answer questions that require deeper analysis and
responses, such as “What are the pros and cons of the current college football bowl
system?” or “What are the short- and long-term effects of binge drinking?”1

 Digging deeper, fact-based question answering can be thought of as a fuzzy match-
ing problem at the level of words and phrases. As such, our approach here bears some
resemblance to the strategy we took in performing record matching, with some addi-
tional twists that center around understanding what the type of the answer (referred
to as the answer type) should be for a given question. For instance, if a user asks “Who
is the President of the United States?” we expect the answer to be a person, whereas if
the user asks “What year did the Carolina Hurricanes win the Stanley Cup?” the
answer should be a year. Before we dig into how we built the system, let’s spend a
moment setting up the associated code so that you can follow along.

8.2 Installing and running the QA code
As we mentioned earlier, we’ll use Solr as the base of our system, so installing and
running the QA code means leveraging our existing Solr packaging much like we
did in the clustering chapter. For this case, we’ll use a different Solr setup. If you

1 Retrieved April 12, 2011: http://www.research.ibm .com/deepqa/faq.shtml.

IBM’s Watson: going beyond Jeopardy!
IBM’s Watson system was demonstrated on Jeopardy! as a means of bringing atten-
tion to the problem, but its deeper intent is obviously not to compete on Jeopardy!
but to help people sift through information much more quickly and cost effectively. To
quote the IBM website:1

DeepQA technology provides humans with a powerful tool for their informa-
tion gathering and decision support. A typical scenario is for the end user
to enter their question in natural language form, much as if they were ask-
ing another person, and for the system to sift through vast amounts of
potential evidence to return a ranked list of the most compelling, precise
answers. These answers include summaries of their justifying or support-
ing evidence, allowing the user to quickly assess the evidence and select
the correct answer.

Though the depth of the system is beyond what can be covered here, readers are
encouraged to check out IBM’s DeepQA project (see http://www.research.ibm.com/
deepqa/deepqa.shtml) to find out more.

244 CHAPTER 8 Building an example question answering system
haven’t already, follow the instructions in the README file on GitHub (https://
github.com/tamingtext/book/blob/master/README). Next, run ./bin/start-solr
.sh solr-qa from the TT_HOME directory. If all goes well, you should be able to
point your browser at http://localhost:8983/solr/answer and see a simple QA inter-
face. With the system now running, let’s load in some content so that you can
answer some questions.

 QA systems that are built on top of search engines (most are), as you might
imagine, require content in the search engine to act as the source for discovering
answers, since the system doesn’t have some intrinsic knowledge of all questions
and answers. This requirement brings with it the complication that a QA system can
only be as good as the content that it uses as its source. For instance, if you fed the
engine documents from Europe written in the era before Christopher Columbus
(surely they are all digitized, right?) and asked the system “What shape is the
Earth?” it likely would answer with the equivalent of flat. For our system, we’ll use a
dump of the English Wikipedia taken on October 11, 2010 (the first 100K docs are
cached at http://maven.tamingtext.com/freebase-wex-2011-01-18-articles-first100k
.tsv.gz; 411 MB zipped.) Note that this file is large, but this is necessary, as we wish to
demonstrate with real data. After it’s downloaded, unpack it using gunzip or a simi-
lar tool. If that file is too big or your want to try a smaller version first, you can
download http://maven.tamingtext.com/freebase-wex-2011-01-18-articles-first10k.tsv,
which consists of the first 10,000 articles of the larger file. This file isn’t com-
pressed, so there’s no need to unpack it.

 After you have the data, you can index it into your system by running the follow-
ing steps:

 Type cd $TT_HOME/bin.
 Run indexWikipedia.sh --wikiFile <PATH TO WIKI FILE> (*NIX) or index-

Wikipedia.cmd --wikiFile <PATH TO WIKI FILE> (Windows). This will take
some time to complete. Use the --help option to see all available indexing
options.

After the index is built, you’re ready to explore the QA system. You can start by point-
ing your browser at http://localhost:8983/solr/answer, where we’ve put together a
simple QA user interface utilizing Solr’s built-in VelocityResponseWriter, which
takes Solr’s output and applies an Apache Velocity (see http://velocity.apache.org)
template to it. (Velocity is a templating engine mainly used for creating websites
backed by Java applications.) If all went well with these steps, you should see some-
thing like the screenshot in figure 8.2.

 Assuming this all worked correctly, we’ll proceed to take a look at the architecture
and code to build the system.

245A sample question answering architecture
8.3 A sample question answering architecture
Much like our earlier work in search, our QA system needs to handle indexing content
as well as searching and postprocessing the results. On the indexing side, most of our
customization centers around the analysis process. We’ve created two Solr analysis
plug-ins: one for detecting sentences and one for identifying named entities. Both rely
on OpenNLP for the desired capabilities. Unlike most analysis processes in Solr, we
elected to tokenize directly into sentences since it allows us to send those sentences
directly into the named-entity token filter as well as avoid having to do extra tokeniza-
tion, once in Solr and once in OpenNLP. Since both sentence detection and named-
entity detection were described earlier, we’ll point you at the classes here (Sentence-
Tokenizer.java and NameFilter.java) and show the declaration for the text field
type in schema.xml (located in the solr-qa/conf directory and edited here for space).
Take note that we violated the usual rule of doing the same analysis during both
indexing and searching, since we don’t need to detect sentences on the query side
because we assume a single input question. What matters most is that the output
tokens are equivalent in their form (same stemming, for instance) when output and
not how they arrived at that form. Here’s the field type declaration:

<fieldType name="text" class="solr.TextField" positionIncrementGap="100"
autoGeneratePhraseQueries="true">

<analyzer type="index">
<tokenizer

Figure 8.2 A screenshot from the Taming Text fact-based QA system

246 CHAPTER 8 Building an example question answering system
class="com.tamingtext.texttamer.solr.SentenceTokenizerFactory"/>
<filter class="com.tamingtext.texttamer.solr.NameFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.StopFilterFactory"

ignoreCase="true"
words="stopwords.txt"
enablePositionIncrements="true"
/>

<filter class="solr.PorterStemFilterFactory"/>
</analyzer>
<analyzer type="query">

<tokenizer class="solr.WhitespaceTokenizerFactory"/>
<filter class="solr.StopFilterFactory"

ignoreCase="true"
words="stopwords.txt"
enablePositionIncrements="true"
/>

<filter class="solr.WordDelimiterFilterFactory"
generateWordParts="1" generateNumberParts="1"
catenateWords="0" catenateNumbers="0" catenateAll="0"
splitOnCaseChange="1"/>

<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.PorterStemFilterFactory"/>

</analyzer>
</fieldType>

Though we’ll skip over the details of the analysis process since it was covered in earlier
chapters, it’s important to note that the NameFilterFactory outputs both the original
tokens and tokens indicating any named entities. These named-entity tokens occur at
the exact same position as the original tokens. For instance, running the sentence
“Clint Eastwood plays a cowboy in The Good, the Bad and the Ugly.” through Solr’s analy-
sis.jsp page (http://localhost:8983/solr/admin/analysis.jsp) produces a total of four
tokens occupying the first two positions (two tokens at each position) of the resulting
output, as shown in figure 8.3.

 On the search side, there are more moving parts and we had to write more code,
which we’ll detail in the upcoming sections of this chapter. The crux of the system
relies on two key capabilities:

 Parsing the user question to determine the expected answer type and generat-
ing an appropriate query

 Scoring the documents returned by the generated query

Figure 8.3 An example of how named-entity
tokens overlap the original token positions
for the sentence “Clint Eastwood plays a
cowboy in The Good, the Bad and the Ugly.”

247A sample question answering architecture
Tying indexing and searching together, our architecture can be seen in figure 8.4.
 As we stated earlier and as shown in figure 8.4, the indexing side is pretty straight-

forward. The query side has five steps, which will be covered in the sections following
this one:

 Parse (chunk) the user’s query.
 Determine the answer type so that when we search, we can find candidates that

will best answer the question.
 Generate the Solr/Lucene query using a combination of the parsed query and

the answer type.
 Execute the search to determine candidate passages that might contain the

answer.
 Rank the answers and return the results.

To understand these five steps properly in context, we’ll break this down into two sec-
tions: understanding the user’s query and ranking the candidate passages. We built
these two pieces using two of Solr’s well-defined plugin mechanisms:

 A QParser (and QParserPlugin)—Processes the incoming user query and cre-
ates a Solr/Lucene query.

 A SearchComponent—Chains together with other SearchComponents to do the
work of creating an appropriate response. See chapter 3 for background.

We’ll examine the code more closely shortly, but for now it might be worthwhile to
revisit the chapter on search and Solr (chapter 3) as well as the Solr documentation to
see how these two pieces work in Solr. Assuming you’re familiar with the relevant
mechanisms, let’s take a look at how we understand the user’s question.

Ques�ons

Response

Documents

ON = Apache OpenNLP
AS = Apach Solr
TT = Taming Text code

Index

ON = Apache OpenNLP

Index

Indexing
(AS)

I d i

Sentence
detec�on

(ON)

Named-en�ty
recogni�on

(ON)

Parse query
(ON)

Determine
answer type

(ON)

Generate
query (TT)

Execute search
(AS)

Rank
passages (TT)

Figure 8.4 A sample question
answering architecture built on Apache
Solr, OpenNLP, and some of our own
code to rank passages

248 CHAPTER 8 Building an example question answering system
8.4 Understanding questions and producing answers
We’re concerned with three components of understanding the user’s question and
producing results. They center around determining the answer type (AT), using that
AT to generate a meaningful search engine query, and finally, ranking the results from
the query. Of these three, determining the answer type is the crux of the problem,
after which query generation and passage ranking are relatively straightforward. In
our case, determining the answer type involves three parts: training, chunking, and
the actual AT determination. All three of these parts are outlined in the following sec-
tions as well as our approach to query generation given the AT and passage ranking.
Also note that, in our case, we assume the user is typing in a natural language question
such as “Who was the Super Bowl MVP?” and not a Boolean logic query like we
described in chapter 3. This is important because we’ve trained a classification system
to determine, given a user question, the answer type the user is interested in and our
training data was based on natural language questions.

8.4.1 Training the answer type classifier

For this system, the training data (located in the dist/data directory of the source)
consists of 1,888 questions, each hand-labeled by Tom Morton as part of his PhD the-
sis (see Morton [2005]). The training questions look like this:

 P Which French monarch reinstated the divine right of the monarchy to France
and was known as “The Sun King” because of the splendour of his reign?

 X Which competition was won by Eimear Quinn with “The Voice in 1996,” this
being the fourth win in five years for her country?

In the training questions, the first character is the answer type of the question, and the
remaining text is the question. Our training data supports many different answer
types, but our system currently only handles four for simplicity’s sake (location, time,
person, organization). The supported answer types, along with examples, are outlined
in table 8.1.

Table 8.1 Training data answer types

Answer type (training code) Example

Person (P) Which Ivy League basketball player scored the most points in a single
game during the 1990s?

Location (L) Which city generates the highest levels of sulphur dioxide in the world?

Organization (O) Which ski resort was named the best in North America by readers of
Conde Nast Traveler magazine?

Time point (T) What year did the Pilgrims have their first Thanksgiving feast?

Duration (R) How long did Gunsmoke run on network TV?

Money (M) How much are Salvadoran workers paid for each $198 Liz Claiborne
jacket they sew?

249Understanding questions and producing answers

vent
ich
ining
o the
ng

sifier.
To train the answer type classifier, we leverage the main method of the AnswerType-
Classifier class, like this:

java -cp -Dmodels.dir=<Path to OpenNLP Models Dir>
-Dwordnet.dir=<Path to WordNet 3.0> \
<CLASSPATH> com.tamingtext.qa.AnswerTypeClassifier \
<Path to questions-train.txt> <Output path>

We’ll skip the testing phase that’s normally associated with building a classifier model
since Tom tested it as part of his thesis. If you’re interested in the testing phase, refer
back to chapters 5 and 7 on classification.

 The code for the training process is fairly simple, relying on OpenNLP to chunk
(shallow parse) and part of speech tag the training set, and then to feed into
OpenNLP’s MaxEnt classifier. The key pieces of code are in listing 8.1. Training the
answer type model is similar to the training we did in early chapters on OpenNLP
(named-entity recognition and tagging).

AnswerTypeEventStream es = new AnswerTypeEventStream(trainFile,
actg, parser);

GISModel model = GIS.trainModel(100,
new TwoPassDataIndexer(es, 3));

new DoccatModel("en", model).serialize(
new FileOutputStream(outFile));

After the model is trained, we need to write some code that can use this model. To do
this, we wrote a Solr QParser (and the factory class QParserPlugin) named Question-
QParser (and QuestionQParserPlugin). Before we go into what the code looks like,
the configuration of the QuestionQParser looks like this:

Percentage (C) What percentage of newspapers in the U.S. say they are making a profit
from their online site?

Amount (A) What is the lowest temperature ever recorded in November in New
Brunswick?

Distance (D) What is the approximate maximum distance at which a clap of thunder
can be heard?

Description (F) What is dry ice?

Title (W) In which fourteenth-century alliterative poem by William Langford do a
series of allegorical visions appear to the narrator in his dreams?

Definition (B) What does the postage stamp cancellation O.H.M.S. mean?

Other (X) How did the banana split originate?

Listing 8.1 Training the question model

Table 8.1 Training data answer types (continued)

Answer type (training code) Example

Using the e
stream, wh
feeds us tra
examples, d
training usi
OpenNLP’s
MaxEnt clas

250 CHAPTER 8 Building an example question answering system

Mod
contains

models
througho

Word
re

assis

p

Cre
save

it’s
c

AnswerT
wh
<queryParser name="qa" class="com.tamingtext.qa.QuestionQParserPlugin"/>

As you can see, the primary thing Solr cares about for configuration isn’t the QParser
itself, but the QParserPlugin.

 The primary thing the QuestionQParserPlugin needs to do is load the AT model
and construct a QuestionQParser. As with any QParser and its associated factory, we
want to try to do any expensive or one-time calculations in the initialization of the
QParserPlugin and not in the QParser itself, since the latter will be constructed once
for each request, whereas the former is only constructed once (per commit). In the
case of the QuestionQParser, the initialization code is responsible for loading up the
AT model as well as one other resource—WordNet. The code is straightforward initial-
ization code and is shown next.

public void init(NamedList initArgs) {
SolrParams params = SolrParams.toSolrParams(initArgs);
String modelDirectory = params.get("modelDirectory",

System.getProperty("model.dir"));
String wordnetDirectory = params.get("wordnetDirectory",

System.getProperty("wordnet.dir"));
if (modelDirectory != null) {

File modelsDir = new File(modelDirectory);
try {

InputStream chunkerStream = new FileInputStream(
new File(modelsDir,"en-chunker.bin"));

ChunkerModel chunkerModel = new ChunkerModel(chunkerStream);
chunker = new ChunkerME(chunkerModel);
InputStream posStream = new FileInputStream(

new File(modelsDir,"en-pos-maxent.bin"));
POSModel posModel = new POSModel(posStream);
tagger = new POSTaggerME(posModel);
model = new DoccatModel(new FileInputStream(

new File(modelDirectory,"en-answer.bin")))
.getChunkerModel();

probs = new double[model.getNumOutcomes()];
atcg = new AnswerTypeContextGenerator(

new File(wordnetDirectory, "dict"));
} catch (IOException e) {

throw new RuntimeException(e);
}

}
}

WordNet (http://wordnet.princeton.edu/) is a lexical resource for English and other
languages created by Princeton University containing information about words such
as synonyms, antonyms, and hyper- and hyponyms, as well as other useful information
about individual words. Its license allows for commercial use. You’ll see its use later in
helping us understand questions better.

 Given the creation of these resources, the primary task of the factory is to create
our QuestionQParser, which can be seen in the next listing.

Listing 8.2 Initialization code

el directory
all OpenNLP
 that we use
ut the book.

Net is a lexical
source used to
t in identifying
answer types.

Treebank chunker
works with a Parser

to do shallow
arsing of questions.

Tagger is
responsible
for part of
speech
tagging.

ate actual model and
 it for reuse, because
 thread safe, but the
ontaining class isn’t.

Create the
ypeContextGenerator,
ich is responsible for

feature selection.

251Understanding questions and producing answers

o
lr

 or
ery
ry).

ssifier
d
odel

ry) to
estion.

@Override
public QParser createParser(String qStr, SolrParams localParams,

SolrParams params,
SolrQueryRequest req) {

answerTypeMap = new HashMap<String, String>();
answerTypeMap.put("L", "NE_LOCATION");
answerTypeMap.put("T", "NE_TIME|NE_DATE");
answerTypeMap.put("P", "NE_PERSON");
answerTypeMap.put("O", "NE_ORGANIZATION");
QParser qParser;

if (params.getBool(QAParams.COMPONENT_NAME, false) == true
&& qStr.equals("*:*") == false) {

AnswerTypeClassifier atc =
new AnswerTypeClassifier(model, probs, atcg);

Parser parser = new ChunkParser(chunker, tagger);
qParser = new QuestionQParser(qStr, localParams,

params, req, parser, atc, answerTypeMap);

} else {
//just do a regular query if qa is turned off
qParser = req.getCore().getQueryPlugin("edismax")

.createParser(qStr, localParams, params, req);
}
return qParser;

}

The primary areas of interest in this code are the construction of the answer type map
and the QuestionQParser. The answer type map contains a mapping from the inter-
nal code generated by the AnswerTypeClassifier (as described in table 8.1) and the
type of named entity we tagged during indexing. For instance, L gets mapped to
NE_LOCATION, which matches how we tagged location-named entities during the
indexing process in the NameFilter class. We’ll use this map to later construct an
appropriate clause in our Solr query. The QuestionQParser is the class that actually
parses the question and creates the Solr/Lucene query. On that note, let’s peel back a
layer and look at the QuestionQParser in more detail.

 The QuestionQParser is responsible for three things, all of which are handled in
the parse method of the class:

 Chunk the query into a Parse object
 Compute the answer type
 Create the Solr/Lucene query as a SpanNearQuery (more on this in a moment)

8.4.2 Chunking the query

Chunking is a light-weight form of parsing (sometimes called deep parsing) and is useful
for saving some CPU cycles while focusing on key pieces of the sentence, such as verb
and noun phrases, while ignoring other parts, which fits perfectly with what we’re try-
ing to accomplish. We don’t need a deep parse, just enough to help us get at key parts

Listing 8.3 Creating the QuestionQParser

Construct map of
answer types that

we’re interested
in handling, such

as locations,
people, and times

and dates.

Use this if clause t
create a regular So
query parser when
the user hasn’t
entered a question
entered the *:* qu
(MatchAllDocsQue

The
AnswerTypeCla
uses the traine
answer type m
(located in the
models directo
classify the qu

Construct
chunker (parser)

that will be
responsible for

parsing user
question.

Create
QuestionQParser

by passing in
user’s question

as well as the
preinitialized

resources from
the init method.

252 CHAPTER 8 Building an example question answering system

Tre
of the question. The code in the QParser to do the parsing is rolled up into a single
line, as can be seen here:

Parse parse = ParserTool.parseLine(qstr, parser, 1)[0];

Note that in this parsing example, we pass in a Parser reference. This parser refer-
ence is an instance of ChunkParser, which we wrote to implement OpenNLP’s Parser
interface. The ChunkParser creates a shallow parse of the submitted question by using
OpenNLP’s TreebankChunker, which, as the name somewhat implies, uses the Penn
Treebank resources (see chapter 2) from the 2000 Conference on Computational
Natural Language Learning (see http://www.cnts.ua.ac.be/conll2000/chunking/)
chunking task and a ParserTagger to create a Parse object. The ParserTagger is
responsible for tagging the words of the question with part of speech (POS) tags. This
class is a prerequisite of the chunker since the chunker model was trained using part
of speech information. In other words, part of speech tags are a necessary feature for
chunking in this case. Intuitively, this should seem reasonable: it should be easier to
identify noun phrases if we first identify all the nouns in a sentence. In the example
code, we seed the POS tagger with an existing model named tag.bin.gz, which is avail-
able from the OpenNLP models. Similarly, the TreebankChunker instance uses the
EnglishChunk.bin.gz model that’s included in the downloaded models to take the
output of the POS tagger and produce the parse. Though this is a lot of work (all
rolled up into a single method), it provides us the ability to figure out what kind of
answer the user is after in their question, which we’ll look at next.

8.4.3 Computing the answer type

The next step is to identify the answer type and then to look up the mapping from the
internal, abbreviated answer type code and the label we used when indexing named
entities. The code for this is shown next.

String type = atc.computeAnswerType(parse);
String mt = atm.get(type);

Obviously, a significant amount of work is happening in the AnswerTypeClassifier
and its delegated classes, so let’s take a look at that class before we move on to the gen-
eration of the Solr/Lucene query.

 As the name implies, the AnswerTypeClassifier is a classifier that takes in ques-
tions and outputs an answer type. In many ways, it’s the crux of our QA system, since
without the correct AT, it’ll be difficult to find passages that not only mention the
required keywords, but also contain the expected kind of answer. For example, if the
user asks “Who won the 2006 Stanley Cup?” an appropriate AT indicates that the
answer would be people or an organization. Then, if the system encounters a passage
containing the words won, 2006, and Stanley Cup, it can rank that passage to determine

Listing 8.4 Identifying the answer type

Parse question using
ebankParser. The resulting

Parse object can then be
utilized by the classifier to

determine answer type.

253Understanding questions and producing answers

s.ge
t

o

t

p

erator
the

r type.
whether a matching word or phrase of the appropriate answer type is in the passage.
For instance, the system might encounter the sentence “The 2006 Stanley Cup finals
went to 7 games.” In this case, no people (or organizations) are mentioned, so the sys-
tem can discard the candidate because it lacks the answer type.

 Upon construction, the AnswerTypeClassifier loads up the answer type model
that we trained earlier in the chapter and also constructs an AnswerTypeContext-
Generator instance. The AnswerTypeContextGenerator relies on WordNet and some
heuristics to determine the features to return to the AnswerTypeClassifier for
classification. The AnswerTypeClassifier code that calls the AnswerTypeContext-
Generator is in the computeAnswerType and computeAnswerTypeProbs methods and
looks like the next listing.

public String computeAnswerType(Parse question) {

double[] probs = computeAnswerTypeProbs(question);

return model.getBestOutcome(probs);

}

public double[] computeAnswerTypeProbs(Parse question) {

String[] context = atcg.getContext(question);

return model.eval(context, probs);

}

The key to this code is the two lines of the computeAnswerTypeProbs method. The
first line asks the AnswerTypeContextGenerator class to select a set of features from
the parse of the question, and the second line then hands those features to the model
for evaluation. The model returns an array of the probabilities for each possible out-
come, from which we select the top value and return it as the answer type.

 As you may have noticed in earlier chapters, feature selection is often a difficult
problem as well, so it’s worthwhile to examine more closely the work the AnswerType-
ContextGenerator class is doing. Feature selection in the AnswerTypeContext-
Generator is handled via the getContext() method. This method implements a few
simple rules aimed at choosing good features based on the type of question that’s
being asked. Most of these rules are premised on finding the key verb and noun
phrase in the question, and can be summarized as follows:

 If a question word is present (who, what, when, where, why, how, whom, which,
name)
– Include the question word and label it as qw (qw=who).
– Include the verb to the right of the question word, label it as verb, and also

concatenate it with question word and label that as qw_verb (verb=entered,
qw_verb=who_entered).

Listing 8.5 Computing the answer type

Get probabilities of an
answer type by calling
computeAnswerTypeProb

Given the
probabilities
nerated, ask
he model for

the best
utcome. This

is a simple
calculation

hat finds the
maximum

robability in
the array.

Ask
AnswerTypeContextGen
for the list of features (
context) that should be
predictive of the answe

Evaluate the generated
features to determine the
probabilities for the
possible answer types.

254 CHAPTER 8 Building an example question answering system
– Include all words to the right of the verb and label them with rw (rw=
monarchy).

 If a focus noun is present (the key noun of the question)
– Add the head word of the noun phrase and label with hw (hw=author) and

its part of speech with label ht (ht=NN).
– Include any words that modify the noun, labeled as mw (mw=European), and

their part of speech with label mt (mt=JJ).
– Include any WordNet synsets (a synset is a grouping of synonyms for a word)

of the noun, labeled as s (s=7347, the synset ID).
– Indicate whether the focus noun is the last noun of the phrase and label it as

fnIsLast (fnIsLast=true).

 Include the default feature, called def. The default feature is an empty label
that’s included for normalization purposes. Every question will have it regard-
less of the other features selected, and thus provides a baseline feature for the
system to learn on.

Before we discuss some of the key components of this list, let’s look at the features
selected for the question “Which European patron saint was once a ruler of Bohemia
and has given his name to a Square in Prague?” Its features look like the following:

def, rw=once, rw=a, rw=ruler, rw=of, rw=Bohemia, rw=and,

rw=has, rw=given, rw=his, rw=name, rw=to, rw=a, rw=Square, rw=in,

rw=Prague?, qw=which, mw=Which, mt=WDT, mw=European, mt=JJ, mw=patron,

mt=NN, hw=saint, ht=NN, s=1740, s=23271, s=5809192, s=9505418,

s=5941423, s=9504135, s=23100, s=2137

You can see this example and many others in action by running the demonstrateATCG
test in AnswerTypeTest, whose code can be seen in the following example:

AnswerTypeContextGenerator atcg =
new AnswerTypeContextGenerator(

new File(getWordNetDictionary().getAbsolutePath()));
InputStream is = Thread.currentThread().getContextClassLoader()

.getResourceAsStream("atcg-questions.txt");
assertNotNull("input stream", is);
BufferedReader reader =

new BufferedReader(new InputStreamReader(is));
String line = null;
while ((line = reader.readLine()) != null){

System.out.println("Question: " + line);
Parse[] results = ParserTool.parseLine(line, parser, 1);
String[] context = atcg.getContext(results[0]);
List<String> features = Arrays.asList(context);
System.out.println("Features: " + features);

}

Going back to the feature selection, most features are selected by a few simple rules or
regular expressions, as can be seen in the code of the AnswerTypeContextGenerator

255Understanding questions and producing answers
class. The question of finding a focal noun (or the head noun) stands out from the
other rules, due to it having a number of features that it adds, and also because we do
a fair amount of work to identify it. The focal noun depends on the type of question
word (who, what, which, and so on) and is important in defining what we’re looking
for. For example, in our question about the ruler of Bohemia, our focal noun is saint,
meaning we’re looking for a person who’s a saint. We can then use this noun, along
with WordNet, to get synonyms for saint that might be helpful in identifying other
questions that might ask the same or similar questions in different ways. In our travels
through the question, we also apply certain rules for eliminating false matches for the
focal noun. These are again based on simple rules and regular expressions. In the
code, most of this work is done in the AnswerTypeContextGenerator’s findFocus-
NounPhrase method, which won’t be included here due to length.

 Finally, keep in mind that this feature selection process is based on Tom’s analysis
of the questions as to the important things to consider when building a model. This
doesn’t mean it’s the only way. Moreover, given more training data, it may be possible
to have the system learn the model without any of this feature selection process. In
some regards, this human-in-the-loop feature selection is a trade-off between time
spent collecting and annotating examples and time spent doing up-front analysis of
the existing queries for patterns. Which works best for your system will depend on
how much data and time you have available.

8.4.4 Generating the query

After we’ve determined the answer type, we need to generate a query that will retrieve
candidate passages from our search index. The candidate passages we retrieve need to
have several things in order to be useful for QA:

 One or more words that are of the appropriate answer type must occur within
the passage window.

 One or more of the key terms from the original query must occur within the
passage window.

In order for us to construct a query that will retrieve candidate passages that meet
these requirements, we need to know exactly where in a given document matches
take place. In Solr (and Lucene), the mechanism to do this is via SpanQuery and its
derivative classes. Specifically, SpanQuery classes match documents similar to other
queries in Lucene, but they also, at the cost of extra compute time, can access posi-
tion information, which we can then iterate over to produce a more focused passage
for ranking than a larger document. Finally, we specifically need to construct a Span-
NearQuery class for finding passages, because we want to find the specified terms and
answer type together. A SpanNearQuery can create complex phrase-based queries that
are composed of other SpanQuery instances. The code for creating our query is
shown in the next listing.

256 CHAPTER 8 Building an example question answering system

List<SpanQuery> sql = new ArrayList<SpanQuery>();
if (mt != null) {

String[] parts = mt.split("\|");
if (parts.length == 1) {

sql.add(new SpanTermQuery(new Term(field, mt.toLowerCase())));
} else {

for (int pi = 0; pi < parts.length; pi++) {
sql.add(new SpanTermQuery(new Term(field, parts[pi])));

}
}

}
try {

Analyzer analyzer = sp.getType().getQueryAnalyzer();
TokenStream ts = analyzer.tokenStream(field,

new StringReader(qstr));
while (ts.incrementToken()) {

String term = ((CharTermAttribute)
ts.getAttribute(CharTermAttribute.class)).toString();

sql.add(new SpanTermQuery(new Term(field, term)));
}

} catch (IOException e) {
throw new ParseException(e.getLocalizedMessage());

}
return new SpanNearQuery(sql.toArray(new SpanQuery[sql.size()]),

params.getInt(QAParams.SLOP, 10), true);

In the code for generating the query, we undertake three steps:

 Add the answer type(s) to the query using one or more SpanTermQuery
instances. If more than one answer type is used, we bind them together using a
SpanOrQuery.

 Analyze the user query with the query analyzer for the given field to create
SpanTermQuery instances for each term.

 Construct a SpanNearQuery that glues all of the terms together using a slop fac-
tor passed in by the user (or default to 10).

This approach isn’t the only way we could construct the query. For instance, we could
try to produce more selective queries by doing deeper analysis on the query to identify
phrases or part of speech tagging to match only those terms that have the same part of
speech in the passage. Regardless of the query approach, we hand off the query
to Solr and get back a list of documents that we can then rank using our Passage-
RankingComponent, which we’ll cover in the next section.

8.4.5 Ranking candidate passages

Compared to the query parsing and feature selection process, ranking the passages is
much more straightforward in our case—we’re using a straightforward ranking pro-
cess that was first outlined (Singhal 1999) at the TREC-8 conference on question
answering. Though this approach has been passed by in other systems, it’s still a

Listing 8.6 Query generation

257Understanding questions and producing answers

t

w

 in

 to
right
ow.

in
cent
us and
dows.

b

reasonable approach that’s easy to implement and relatively effective for a fact-based
system. In a nutshell, the approach looks for the matching terms in a series of windows
around the location where the query matched; hence our use of the SpanQuery and its
derivatives. Specifically, the approach identifies the start and end positions of the
query term matches and then constructs two windows of a given number of terms (25
by default in our code, but can be overridden using Solr’s request parameters) on
each side of the match window. This can be seen in figure 8.5.

 To build the passages efficiently, we utilize Lucene’s term vector storage. Simply
put, a term vector in Lucene is a data structure that keeps track, per document, of the
terms and their frequency and positions within the document. Unlike the inverted
index used for searching, it’s a document-centric data structure instead of a term-
centric structure. All this means is that it’s good for doing operations that require a
whole document (such as highlighting or passage analysis) and not good for opera-
tions that require quick term-by-term lookup (such as searching). Given the passage,
which we codify in a class named Passage, we can then begin the scoring process,
which is shown next.

protected float scorePassage(Passage p,
Map<String, Float> termWeights,
Map<String, Float> bigramWeights,
float adjWeight, float secondAdjWeight,
float biWeight) {

Set<String> covered = new HashSet<String>();
float termScore = scoreTerms(p.terms, termWeights, covered);
float adjScore = scoreTerms(p.prevTerms, termWeights, covered) +

scoreTerms(p.followTerms, termWeights, covered);
float secondScore =

scoreTerms(p.secPrevTerms, termWeights, covered)
+ scoreTerms(p.secFollowTerms, termWeights, covered);

//Give a bonus for bigram matches in the main window, could also
float bigramScore =

scoreBigrams(p.bigrams, bigramWeights, covered);
float score = termScore + (adjWeight * adjScore) +

(secondAdjWeight * secondScore)
+ (biWeight * bigramScore);

return (score);
}

Listing 8.7 Code for scoring a candidate passage

Matching
terms

1st
previous

terms

1st
follow
terms

2nd
previous

terms

2nd
follow
terms

Match width25 terms25 terms 25 terms 25 terms

Figure 8.5 The passage scoring component constructs a series of windows
around the matching terms from the query and then ranks the passage.

Score
erms in

main
indow.

Score terms
windows
immediately
the left and
of main wind

Score terms
windows adja
to the previo
following win

Score any
igrams in

the
passage.

The final score for the passage is a
combination of all the scores, each
weighted separately. A bonus is
given for any bigram matches.

258 CHAPTER 8 Building an example question answering system
The scoring process is a weighted sum of the scores for each of the windows in the pas-
sage, with the most weight going to the main match window and decaying the further
away from the main window that we go. We also give a bonus to any time there’s a
match of two words in a row (the bigram bonus). The final score is then used to rank
the passage using a priority queue data structure. When we have a ranked set of pas-
sages, we write out the results to Solr’s response structure; they’re then passed back
out to the client system. An example of the output can be seen in figure 8.6.

 At this point, we now have a working system, based on first processing the user’s
question and then generating a search query that will bring back candidate passages.
Finally, we ranked those passages using a simple scoring algorithm that looked at a
window of terms around the matching parts of the query. With this basis in mind, let’s
take a look at what we can do to improve the system.

8.5 Steps to improve the system
If you’ve followed along in the code so far, you’ll no doubt realize there are many
more tasks that could be done to make the system better. Some ideas are highlighted
in the following list:

 Many QA systems analyze the question and select a predefined question tem-
plate that’s then used as a pattern to identify the appropriate candidate based
on passages that match the template.

 Create more restrictive Lucene queries in your system by requiring that
the answer type be within a certain number of terms or even within a specific
sentence.

Figure 8.6 An example of the Taming Text QA system in action, answering the question “What is
trimethylbenzene?”

259Resources
 Not only identify the passage containing the answer, but extract the answer
from the passage.

 If two or more passages produce the same or very similar answers, deduplicate
these items and boost the result.

 Handle the case where you can’t identify the answer type better by falling back
on search or other analysis approaches.

 Show confidence levels or explanations of how you arrived at an answer and
give the user a mechanism to refine the results.

 Incorporate specialized query handling for specific types of questions. For
instance, questions like “Who is X?” could use a knowledge base resource of
famous people to find an answer instead of searching in the text.

These are just a few things that could be improved. More importantly, we’d encourage
you, the reader, to add your own insights.

8.6 Summary
Building out a working question answering system is an excellent way to see many of
the principles of this book in action. For instance, the question analysis phase requires
us to apply many string matching techniques as well as tasks like named-entity recogni-
tion and tagging, whereas the passage retrieval and ranking tasks require us to lever-
age deep search engine capabilities to not only find documents that match, but find
where exactly in the documents the matches take place. From those matches, we then
applied more string matching techniques to rank the passages and to produce an
answer. All in all, we have a simple fact-based question answering system. Is it going to
win on Jeopardy!? Of course not. Hopefully, it sufficiently shows how a working system
can be built using readily available open source tools.

8.7 Resources
 Morton, Thomas. 2005. Using Semantic Relations to Improve Information Retrieval.

University of Pennsylvania. http://www.seas.upenn.edu/cis/grad/documents/
morton-t.pdf.

 Singhal, Amit; Abney, Steve; Bacchiani, Michiel; Collins, Michael; Hindle, Donald;
Pereira, Fernando. 1999. “AT&T at TREC-8.” AT&T Labs Research. http://
trec.nist.gov/pubs/trec8/papers/att-trec8.pdf.

Untamed text: exploring
the next frontier
Whew! We’ve come a long way, and we don’t just mean in terms of your patience in
waiting for this book to be complete. (It’s very much appreciated!) A few years
back, search was all the rage and social networking was just taking off. Ideas that we
felt were just coming into their own in the search and NLP space are now powering
a wide range of applications, from very large-scale Fortune 100 companies on down
to freshly minted startups and everything in between.

 At the book level, we started by understanding some of the basics of working
with text, searching it, tagging it, and grouping it together. We even looked into a
basic question answering system that ties many of these concepts together into a
single application. And though these capabilities constitute the large majority of

In this chapter
 What’s next in search and NLP

 Searching across multiple languages and detecting
emotions in content

 Resources on emerging tools, applications, and ideas

 Higher orders of language processing, such as
semantics, discourse, and pragmatics
260

261Semantics, discourse, and pragmatics: exploring higher levels of NLP
practical text applications, they by no means constitute the entirety of the fields of
information retrieval (IR) or natural language processing (NLP). In particular, higher-
level language processing that looks at things like user sentiment toward entities
(brands, places, people, and so on) is a rapidly growing area thanks in part to the cur-
rent obsession with stream-of-consciousness tweets and updates.

 We’ll examine sentiment analysis along with many other advanced techniques in
this chapter in hopes of providing both enough information to get started as well as
inspiration to tackle some of the harder problems in the space. We’ll also introduce
the concepts behind each subject, provide resources for readers to explore more, and
where appropriate, provide pointers to open source libraries and tools that may help
during implementation. But unlike prior chapters, we won’t be providing working
code examples.

 We’ll kick things off by looking at working with higher levels of language including
semantics, discourse analysis, and pragmatics, before transitioning into discussions on
document summarization and event and relationship detection. Next, we’ll look at
identifying importance and emotions in text, and then finish up the chapter (and the
book) with a look at searching across multiple languages.

9.1 Semantics, discourse, and pragmatics:
exploring higher levels of NLP
Most of this book is structured to help users—living, breathing human beings—to
find meaning in text by doing things like parsing it, labeling it, searching it, and oth-
erwise organizing it into consumable units of information. But what if we asked the
computer to discern the meaning of the text and tell us the result? At the simplest, we
might ask the meaning of a particular set of words (phrases, sentences), but what if
the computer could determine deeper meaning in text? For instance, what if the com-
puter could tell you what the author’s intent was or that the meaning of one docu-
ment is similar to the meaning of another? Alternatively, what if the machine was able
to use its knowledge of the world to “read between the lines”?

 These ways of thinking about meaning, and others, are generally grouped into
three different areas (see Liddy [2001] and Manning [1999]):

 Semantics—The study of the meaning of words and the interactions between
words to form larger units of meaning (such as sentences).

 Discourse—Building on the semantic level, discourse analysis aims to determine
the relationships between sentences. Some authors group discourse in with the
next level of meaning: pragmatics.

 Pragmatics—Studies how context, world knowledge, language conventions, and
other abstract properties contribute to the meaning of text.

NOTE Though these three areas are primarily focused on meaning in text, all
levels of language contribute to a text’s meaning. For instance, if you string a
bunch of characters together at random, they’ll likely not be a word, which

262 CHAPTER 9 Untamed text: exploring the next frontier
will most often render their use in a sentence as meaningless. Alternatively,
if you change the ordering (syntax) of the words in a sentence, you may
change its meaning, too. For instance, as “Natural Language Processing” (see
Liddy [2001]) points out, the sentence “The dog chased the cat,” and “The
cat chased the dog,” use all the same words, but their ordering significantly
changes the meaning of the sentences.

With these definitions in place, let’s dig deeper into each of these areas and look at
some examples and tools that can be used to process text to find meaning.

9.1.1 Semantics

From a practical standpoint, applications interested in semantic-level processing typi-
cally care about two areas of interest (semantics as a whole is broader):

 Word sense, such as synonyms, antonyms, hypernyms/hyponyms, and so on,
and the related task of word sense disambiguation (WSD)—picking the correct
sense of a word given multiple meanings; for example a bank could be a finan-
cial institution or a river bank.

 Collocations and idioms, which are also related to statistically interesting/improbable
phrases (SIPs), are groupings of words that infer more meaning together than they
do separately. In other words, the meaning of the whole is either greater than or
different from the meaning of the parts. For example, the phrase bit the dust is
about something dying/failing and not about literally eating particles of dust.

In the first area of interest, working with word sense, using synonyms, and so forth
effectively can be beneficial for improving search quality, especially if you can disam-
biguate between senses of a word to select only those synonyms pertinent to the con-
text of the query. That being said, disambiguation in general is often difficult and
slow, making it impractical in the real world of search. But knowing your domain and
what your users are most likely to type can often help improve the results without
deploying a full-fledged disambiguation solution. To get started on WSD, check out
chapter 7 of Manning and Schütze’s Foundations of Statistical Natural Language Process-
ing (1999). Disambiguation is also often a requirement for machine translation appli-
cations that translate one language into another, say French into English. For software
that does WSD, check out the following:

 SenseClusters—http://www.d.umn.edu/~tpederse/senseclusters.html.
 Lextor—http://wiki.apertium.org/wiki/Lextor. Note that Lextor is part of a

larger project; it may require some work to use it as a standalone system.

Many users will also find Princeton University’s WordNet, introduced in chapter 8,
useful for this type of task.

 Collocations and SIPs also have many uses, ranging from search to natural
language generation (the computer writes your next essay or report) to building a
concordance for a book or simply for better understanding a language or field of
study. For instance, in search applications, collocations can be used both to enhance

263Semantics, discourse, and pragmatics: exploring higher levels of NLP
querying and to build interfaces for discovery by showing users, for a given document,
the list of collocations and links to other documents containing those phrases. Or
imagine an application that took in all the literature for a particular field and spit out
the list of SIPs from the literature along with definitions, references, and other infor-
mation that made it easier for you to get up to speed. For software that does colloca-
tions, look no further than Apache Mahout. To learn more, see https://
cwiki.apache.org/confluence/display/MAHOUT/Collocations.

 Other areas of interest at the semantic level can be useful to understand, especially
as a part of the other levels of processing. For instance, assessing the truth of a state-
ment involves having a semantic understanding of the words in a statement, as well as
other knowledge. Semantics are also often difficult to discern given the role of quanti-
fiers and other lexical units in a sentence. For instance, double negatives, misplaced
modifiers, and other scoping issues can make it difficult to understand a sentence’s
meaning.

 There’s much more to learn about semantics. Wikipedia’s article on semantics
(http://en.wikipedia.org/wiki/Semantics) gives a good list of places to start learning
more as should any decent introduction to linguistics.

9.1.2 Discourse

Whereas semantics usually operates within a sentence, discourse goes beyond the sen-
tence and looks at relationships between sentences. Discourse also looks at things like
utterances, body language, speech acts, and so forth, but we’ll primarily focus on its
use in written text. Note also that discourse is sometimes bundled in with the next
area of discussion, pragmatics.

 As far as natural language processing is concerned, the use of discourse tools is
usually focused on anaphor resolution and defining/labeling structures (called dis-
course segmentation) in text. For instance, in a news article, the lead, main story, attribu-
tions, and the like could be split apart and appropriately labeled. Anaphors are
references to other pieces of text, usually nouns and usually preceding the anaphor.
For example, in the sentences “Peter was nominated for the Presidency. He politely
declined,” the pronoun He is an anaphor. Anaphors may be other than pronouns, as
the following sentences demonstrate: “The Hurricanes’ Eric Staal scored the game
winning goal in overtime. The team captain netted the winner at 2:03 in the first over-
time.” In this example, team captain is an anaphor for Erik Staal. Anaphor resolution is
a subset of a more general topic called co-reference resolution, which often also relies on
discourse analysis as well as other levels of processing. Co-reference resolution’s goal is
to identify all mentions of a particular concept or entity in a piece of text. For exam-
ple, in the following text,

New York City (NYC) is the largest city in the United States. Sometimes referred
to as the Big Apple, The City that Never Sleeps, and Gotham, NYC is a tourist
mecca. In 2008, the Big Apple attracted over 40 million tourists. The city is also
a financial powerhouse due to the location of the New York Stock Exchange
and the NASDAQ markets.

264 CHAPTER 9 Untamed text: exploring the next frontier
New York City, NYC, Big Apple, Gotham, and the city are all mentions of the same place.
Co-reference resolution, and thus anaphor resolution, are useful in search, question
answering (QA) systems, and many other places. As an example in the QA context,
suppose someone asked the question “Which presidents were from Texas?” and we
had the following document (from Wikipedia’s article on Lyndon Baines Johnson
(http://en.wikipedia.org/wiki/Lyndon_B._Johnson) as a source in our QA system:

Lyndon Baines Johnson (August 27, 1908–January 22, 1973), often referred to
as LBJ, served as the 36th President of the United States from 1963 to 1969...
Johnson, a Democrat, served as a United States Representative from Texas,
from 1937–1949 and as United States Senator from 1949–1961...

We could use co-reference resolution to determine that the 36th president, Johnson,
was from Texas.

 To learn more on co-reference and anaphor resolution, a book on discourse analysis
is likely a good place to start, as is the Wikipedia article on anaphora (http://en.
wikipedia .org/wiki/Anaphora_%28linguistics%29). Implementation-wise, OpenNLP
supports co-reference resolution.

 Discourse segmentation has uses in search and NLP applications. On the search
side, identifying, labeling, and potentially breaking larger documents into smaller seg-
ments can often lead to more precise results by driving users to the exact area within a
document where matches occur, as well as providing more fine-grained weights of
tokens. The downside is that it may take extra work to piece the document back
together as a whole or to determine when a result that spans multiple segments is bet-
ter than an individual segment.

 Discourse segmentation can also be useful in document summarization techniques
to produce a summary that better covers the topics and subtopics contained within a
text (we’ll cover more on summarization in a later section). See “Multi-Paragraph
Segmentation of Expository Text” (Hearst 1994) as an example of approaches in this
area. The MorphAdorner project (http://morphadorner.northwestern.edu/
morphadorner/textsegmenter/) has an implementation of Hearst’s TextTiling
approach in Java (be sure to check the license for commercial use) as well as a Perl
version in CPAN at http://search.cpan.org/~splice/Lingua-EN-Segmenter-0.1/lib/
Lingua/EN/Segmenter/TextTiling.pm. Beyond that, it’s often possible to do a more
basic level of segmentation in Lucene and Solr through appropriate application-time
decisions either during indexing or during querying (by using SpanQuery objects that
allow for fine-grained positional matching). Many articles have also been written on
passage-based retrieval, which may prove informative in this area. For now, we’ll move
on to talk about pragmatics.

9.1.3 Pragmatics

Pragmatics is all about context and how it affects the way we communicate. Context
provides the framework and foundation for us to communicate without having to
explain every bit of information necessary for understanding. For example, in the

265Semantics, discourse, and pragmatics: exploring higher levels of NLP
proposal stage of this book and throughout its development, one of the key questions
for us authors to answer was, who is the target audience of the book? At the business
level this is useful in determining the size of the market and the expected profit, but
at the author level it’s critical for setting much of the book’s context.

 At the end of the market analysis process, we decided the audience was developers
who are familiar with programming, most likely in Java, but are likely not familiar with
the concepts and practice of search and natural language processing, and who
needed to use these tools and techniques at work. We also decided to avoid complex
mathematical explanations and to provide working examples based on open source
tools that already implement commonly used algorithms. With this context in mind,
we assumed our users were comfortable working on the command line and with the
basics of reading Java or another programming language, thus allowing us to avoid
the tedious descriptions of setup and basic programming principles.

 At a simpler level, pragmatics is about the combination of our knowledge of linguis-
tics (morphology, grammar, syntax, and so forth) with our knowledge of the world
around us. Pragmatics studies how we “read between the lines” to overcome ambiguity
or understand people’s intent. Pragmatic systems often need to be able to reason about
the world in order to make inferences. For example, in our discourse example earlier
about Lyndon Johnson, if the question was “What state was Lyndon Johnson from?” the
QA system would have to identify that Texas was a proper noun and that it’s a state.

 As you can guess, encoding broad swaths of world knowledge into an application is
nontrivial and why pragmatic processing is often difficult. Many open source tools are
available that can help, such as the OpenCyc project (http://www.opencyc.org), Word-
Net (http://wordnet.princeton.edu), and the CIA Factbook (https://www.cia.gov/
library/publications/the-world-factbook/), to name a few. With any resource, applica-
tion developers often get the best results by focusing on just those resources that prove
useful to helping solve the problem via a fairly rigorous evaluation process instead of
trying to boil the ocean by using any and all resources available.

 Other areas of pragmatics might look into the use of sarcasm, politeness, and
other behaviors and how they affect communication. In many of these cases, applica-
tions build classifiers that are trained to label such acts as sarcasm so that they can be
used in downstream applications such as sentiment analysis (discussed later in this
chapter) or an inference engine. In these cases, our earlier chapter on tagging is an
appropriate starting place to dig deeper.

 At the end of the day, pragmatic-level processing is often hard to incorporate into
many applications. To learn more about pragmatics, try Pragmatics (Peccei 1999) or an
introduction to linguistics text. See also http://www.gxnu.edu.cn/Personal/szliu/def-
inition.html for a good introduction as well as pointers to other reading materials.

 Our next topic, along with several others that follow, puts many of these higher lev-
els of language to work in an effort to make it easier for people to deal with the mas-
sive amounts of information available today. To get started, let’s look at how NLP can
be used to significantly reduce the amount of information you need to process by
summarizing documents and even whole collections.

266 CHAPTER 9 Untamed text: exploring the next frontier
9.2 Document and collection summarization
By Manish Katyal

Document summarization techniques can be used to give readers a quick overview of
the important information in a long document or a collection of documents. For
example, figure 9.1 shows a summary of an article from the Washington Post about
unrest in Egypt (from Washington Post article dated February 4, 2011; since removed).

 The summary was generated using Many Aspects Document Summarization from
IBM’s AlphaWorks (see http://www.alphaworks.ibm.com/tech/manyaspects). The
left pane shows the sentences central to the story and gives a good overview of the arti-
cle, which was copied and pasted from the Washington Post. This is an example of sin-
gle document summarization. A summarizer could also be used to generate a
summary of related news articles about the story of unrest in Egypt. The generated
summary could include important information such as “Riots in Egypt. President
Mubarak under pressure to resign. US government urges Mubarak to react with
restraint.” Each of these sentences can be from different news sources that are talking
about the same story. This is referred to as collection summarization or multidocument
summarization.

Figure 9.1 The image shows an example of an application that automatically produces summaries of
larger documents.

267Document and collection summarization
Some other applications of summarization include generating a blurb for each link
on a search page, or a summary of tech news by coalescing similar articles from Tech-
crunch, Engadget, and other tech blogs. The key objective of all these applications is
to give readers enough information so that they can decide whether they want to drill
down and read the details.

 There are three tasks in generating a summary. The first task is content selection. In
this task, the summarizer selects a list of candidate sentences that are vital to the sum-
mary. There’s typically a limit on the number of words or sentences that can be selected.

 There are multiple approaches to the task of selecting candidate sentences. In one
approach, the summarizer ranks sentences by their importance or centrality in the
documents. If a sentence is similar to a lot of other sentences, then it contains com-
mon information with other sentences and therefore is a good candidate to be
selected in the summary. Another approach could be to rank sentences by consider-
ing their position in the documents, by the relevance of the words that they contain,
and also by looking for cue phrases such as “in summary,” “in conclusion,” and so on.
A word is considered informative or relevant for summarization if it occurs frequently
in the document but not as much in a general document collection. A weighting
scheme such as TF-IDF or log-likelihood ratio can be used for determining a word’s
relevance to a document. A third approach is to compute a pseudo-sentence that’s the
centroid of all sentences and then look for sentences that are as close as possible to
the centroid.

 For summarizing document collections, since groups of documents might overlap
a lot, the summarizer must ensure that it doesn’t select identical or similar sentences.
To do this, the summarizer can penalize sentences that are similar to ones that have
been already selected. In this way you can remove redundancy and ensure that each
sentence gives the reader new information.

 In our opinion, content selection is a relatively easy task in comparison to the next
two tasks: sentence ordering and sentence realization. The sentence ordering task must
reorder the selected sentences so that the summary is coherent and information flows
smoothly for the reader. For a single document summarization, you retain the original
order of the selected sentences. Unfortunately, this becomes a much harder task for
document collection summarization.

 In the final task, the ordered sentences may have to be rewritten for readability.
For example, a sentence might have abbreviations or pronouns that have to be
resolved to make it understandable to the reader. For example: “Mubarak promised to
deal with the rioters with a firm hand” might need to be rewritten as “The President of
Egypt, Mubarak, has promised to deal with the rioters with a firm hand.” In our opin-
ion, this task may be skipped, as it requires sophisticated linguistic analysis of the text.

 As with most of these technologies, a few open source options are available for doc-
ument and collection summarization. The MEAD project, located at http://www
.summarization.com/mead/, is an open domain, multidocument text summarizer. An
online demo of LexRank, an algorithm used in MEAD for content selection, can be

268 CHAPTER 9 Untamed text: exploring the next frontier
found at http://tangra.si.umich.edu/~radev/lexrank/. We’ll revisit some of the
approaches that LexRank takes later in the section on importance. Another solution
is Texlexan, located at http://texlexan.sourceforge.net/. Texlexan performs summa-
rization, analysis of text, and classification. It works with English, French, German,
Italian, and Spanish texts.

 To learn more about text summarization, see Speech and Language Processing (Juraf-
sky [2008]). For research papers in this area, see the publications of the Document
Understanding Conference (DUC) located at http://www-nlpir.nist.gov/projects/
duc/pubs.html. DUC was a series of competitions in text summarization.

 Similar to summarization, our next topic, relationship extraction, is aimed at
extracting key bits of information out of text. But unlike summarization, it’s more
about adding structure to text that can then be used by downstream tools or con-
sumed by end users.

9.3 Relationship extraction
By Vaijanath N. Rao

The relation extraction (RE) task aims to identify relations mentioned in the text. Typi-
cally, a relation is defined as a function of one or more arguments, where an argument
represents concepts, objects, or people in the real world and the relation describes
the type of association or interaction between the arguments. Most of the work related
to RE has been focused on binary relations, where the relation is a function of two
arguments, but you can see that it could be extended to more complex relationships
by linking together common entities. As an example of a binary relation, consider the
sentence “Bill Gates is the cofounder of Microsoft.” An RE system might extract the
cofounder relation from the sentence and present it as: cofounder-of (Bill Gates, Micro-
soft). In the rest of the chapter, we’ll focus on binary relation extraction unless other-
wise specified.

 Another example of an RE system is the T-Rex system. Its general architecture and
an example can be seen in figure 9.2. T-Rex is an open source relation extraction sys-
tem from the University of Sheffield and further details can be found later in this sec-
tion. The input text documents are fed to the RE engine which performs the relation
extraction task.

 The RE system in T-Rex consists of two main subsystems: the Processor and the Clas-
sifier. The subsystems are explained in detail in a later section. The right side of the fig-
ure contains an example that was run through the T-Rex system. Consider the
sentence “Albert Einstein was a renowned theoretical physicist, was born in Ulm, on
14th March 1879.” The RE system extracts the relations Occupation, Born-in, and Born-
on. Hence, the relations extracted are Occupation (Albert Einstein, Theoretical Physicist),
Born-in (Albert Einstein, Ulm), Born-on (Albert Einstein, 14th March 1879).

 Relation extraction has a number of applications because it describes the semantic
relations between entities, which helps in deeper understanding of the text. RE is
commonly used in question answering systems as well as summarization systems. For

269Relationship extraction
instance, “Learning Surface Text Patterns for a Question Answering System” (see Rav-
ichandran [2002]) proposed an open-domain question answering system using text
patterns and a semisupervised approach, which we’ll discuss in a moment. For exam-
ple, to answer a question like “When was Einstein born?” they suggest patterns like
“$<$NAME$>$ was born in $<$LOCATION$>$.” This is nothing but the relation {\bf
born-in}({\it Einstein, Ulm}), which could be extracted by a relation extraction system.
With these examples in mind, let’s look at some of the different approaches to identi-
fying relationships.

Figure 9.2 T-Rex is an example of a relation extraction system. In this image, the output of
RE shows several relations were extracted from the sentence.

270 CHAPTER 9 Untamed text: exploring the next frontier
9.3.1 Overview of approaches

A plethora of work has been done related to relation extraction. Rule-based
approaches like those used by Chu et al. (Chu 2002) and Chen et al. (Chen 2009)
have been proposed, where predefined rules are used for extraction for relations. But
this requires a lot of domain understanding for rule formulation. Broadly, the
approaches to RE can be categorized into supervised approaches that formulate rela-
tion extraction as a binary classification task learning from annotated data, semisuper-
vised approaches mainly using bootstrapping methods, unsupervised approaches that
involve clustering, and approaches that go beyond binary relations. An excellent sur-
vey on relation extraction approaches in detail is available in “A Survey on Relation
Extraction” (Nguyen 2007).

SUPERVISED APPROACHES

The supervised approaches (such as Lodhi [2002]) generally view the relation extrac-
tion task as a classification problem. Given a set of tagged positive and negative rela-
tions examples, the task is to train a binary classifier.

 For instance, given a sentence, you can use named-entity recognition (NER) tools
such as those in OpenNLP introduced earlier in the book. Given these entities and the
words that link them, you can then train another classifier that uses the entities to cre-
ate a new classification model that recognizes relationships between the entities.

 Supervised approaches can further be divided into feature-based methods and ker-
nel methods based on the data used for learning the classifier.

 Feature-based methods extract features from the sentences; these features are then
used for classification. They employ different ways for extracting syntactic features
(see Kambhatla [2004]) and semantic features (GuoDong 2002). Examples of syntac-
tic features include named entities, type of the entities (for example person, company,
and so on), word sequence between the entities, number of words between entities,
and more. Examples of semantic features include entities in a sentence’s parse tree,
such as whether it’s a noun phrase or a verb phrase. These features are then used for
training the classifier. Naturally, not all features are equally important and sometimes
it can be difficult to arrive at an optimal feature set. Kernel methods, which we’ll
introduce next, are an alternative approach that remove the dependency upon the
optimal feature selection.

 A kernel is a mapping function between two objects into a higher dimensional
space and defines the similarity between them. Generally a variant of a string kernel
(see Lodhi [2002]) is used for relation extraction. A string kernel computes similarity
between two strings based on the common subsequence between them. The two most
commonly used kernels are the bag-of-features kernel and the convolution kernel. Figure
9.3 shows an example of a sentence and different kernel representations.

 A bag-of-features kernel defines the number of times a particular word occurs in
two strings. For example, as can be seen in figure 9.3, the bag-of-features kernel shows
the number of times each word in the sentence has occurred. If you follow “Subse-
quence Kernels for Relation Extraction” (Bunescu [2005]), you can subdivide into

271Relationship extraction
three subkernels. For the example given in the figure, two entities, John and XYZ, are
identified. A context kernel identifies three areas of context that we’re interested in:

 Before—Words occurring before the entity John
 Middle—Words occurring between the entities John and XYZ

 After—Words occurring after the entity XYZ

Convolution kernels (see Zelenko [2003]) measure the similarity between two struc-
tured instances by summing the similarity of their substructures. An example of a con-
volution kernel is a tree kernel that defines a relation between the two entities using
the similarities between the subtrees. For the example given in figure 9.3, the relation
between the entities John and XYZ is computed using the similarity between the respec-
tive subtrees containing them.

 Though this treatment is short, see the referenced citations for more information.
For now, we’ll move on to look briefly at some semisupervised approaches.

SEMISUPERVISED APPROACHES

Supervised methods require a lot of training data as well as domain expertise for good
performance. In contrast, you can use partially supervised methods with bootstrap-
ping for RE in new domains. Bootstrapping methods proposed in the literature can be
broadly divided into three types. The first approach (see Blum [1998]) uses a small set
of training data called seeds. Using this seed data, an iterative bootstrapping process of
learning is employed for further annotation of new data that’s discovered. The second
approach (see Agichtein [2005]) assumes a predefined set of relations. A small
amount of training data is used in the training process. An iterative two-step boot-
strapping process is employed to discover new examples holding the relations
defined. In the first step, entities are identified and patterns are extracted, which are
used for discovering new patterns in the second step. The third approach (see Green-
wood [2007]) uses only a group of documents classified as relevant or nonrelevant to

Figure 9.3 An example of a bag-of-features kernel and a context kernel

272 CHAPTER 9 Untamed text: exploring the next frontier
a particular relation extraction task. Patterns are extracted from the document per-
taining to relevant and nonrelevant, respectively, and ranked appropriately. These
ranked patterns are later used in an iterative bootstrapping process for identifying
new relevant patterns containing the entities.

UNSUPERVISED APPROACHES

In the cases of supervised and semisupervised, there are an inherent cost of adapta-
tion for new domain as well as requirement of domain knowledge. These costs can be
overcome using the unsupervised approaches, which don’t require any training exam-
ples. Hachey et al. (see Hachey [2009]) proposed an approach that uses similarity and
clustering for generic relation extraction. The approach consists of two phases called
relation identification and relation characterization. In the relation identification phase,
pairs of associated entities are identified and extracted. Different features are used
like co-occurrence windows, constraints on entities (like allowing only person-person
relation or person-company relation), and so forth. Entities need to be appropriately
weighted. In the relation characterization phase, top relations are clustered and the
cluster label is used to define the relationship. For further details, see Hachey’s
detailed report.

9.3.2 Evaluation

In 2000, the United States National Institute of Standards and Technology (NIST—
http://www.nist.gov/index.html) initiated the Automatic Content Extraction shared
tasks program to help technologies that automatically infer meaning from text data.
Five recognition tasks are supported as part of the program, including recognition of
entities, values, temporal expressions, relations, and events. Tagged data is also made
available as part of the shared tasks along with ground truth data (data annotated
with labels).

 Since its inception, this data has been widely used for evaluation of relation extrac-
tion tasks, and most of the supervised methods discussed in this section make use of the
same. Some of the relation types that the data contains are organization-location, orga-
nization-affiliation, citizen-resident-religion-ethnicity, sports-affiliation, and so forth.
Another rich source of data is the Wikipedia (http://www.wikipedia.org) data, as it con-
tains hyperlinked entities in most of its pages and has been used for relation extraction
in Culotta et al.’s work (Culotta [2006]) and Nguyen et al.’s work (Nguyen [2007]),
among others. For the biomedical domain, the BioInfer (see http://mars.cs.utu.fi/
BioInfer/) data and MEDLINE (see PubMed) have been used in earlier work.

 The most widely used metrics for performance evaluation are precision, recall,
and F-measure. Precision and recall are as we defined them in the chapter on search.
F-measure is a simple formula that takes into account both the precision and the
recall to produce a single metric. See http://en.wikipedia.org/wiki/F1_score for
more information. Most of the semisupervised approaches we saw in the earlier sec-
tions operate on large amounts of data. Hence, an estimate of precision is only com-
puted using the relations extracted and the ground truth data available. With large

273Identifying important content and people
datasets, it’s difficult to compute recall since the actual number of relations are diffi-
cult to obtain.

9.3.3 Tools for relationship extraction

In this section, we list some of the commonly used relation extraction tools. As men-
tioned earlier, the T-Rex system consists of two phases: a processing task and a classifi-
cation task. In the processing task, the input text is converted to features. In the
classification task, first the features are extracted and then a classification is trained on
the features extracted. It’s available for download at the T-Rex project page at http://
sourceforge.net/projects/t-rex/.

 Java Simple Relation Extraction (JSRE) uses a combination of kernel functions to
integrate two information sources. The first is the sentence where the relation occurs,
and the second is the context surrounding the entities. It’s available for download at
the JSRE project page at http://hlt.fbk.eu/en/technology/jSRE.

 The relation extraction algorithm in NLTK (Natural Language Toolkit), a Python-
based NLP toolkit, is a two-pass algorithm. In the first pass, it processes the text and
extracts tuples of context and entity. The context can be words before or after the entity
(which can also be empty). In the second phase, it processes the triples of the pairs and
computes a binary relation. It also allows you to specify constraints on entities, like orga-
nization and person, and to limit the relation type, such as lawyer, head, and so on. NLTK
can be downloaded from its project page at http://code.google.com/p/nltk/.

 Just as with all of the sections in this chapter, we’ve only touched on the surface of
what’s involved in doing a good job at relationship extraction. Hopefully your mind is
already thinking of the uses for such extractions in your application. We’ll leave the
topic and look at algorithms for detecting important ideas and the people that relate
to them.

9.4 Identifying important content and people
Given the explosion of information, social networks, and hyperconnectivity in today’s
world, it’s increasingly useful to have help separating content and people according
to some notion of priority or importance. In email applications, the notion of spam
detection (filtering unimportant mes-
sages out) has been implemented for
some time, but we’re just now starting
to use computers to identify which
messages are important. For instance,
Google recently launched, via their
Gmail service, a feature called Priority
Inbox (see figure 9.4) that attempts to
separate important email from unim-
portant email.

 In social networks such as Facebook
and Twitter, you may want to promote

Figure 9.4 Google Mail’s Priority Inbox is an
application that attempts to automatically determine
what’s important to the user. Captured 1/3/2011.

274 CHAPTER 9 Untamed text: exploring the next frontier
posts from people who you rate as of higher priority than others, setting aside lower-
priority ones to be read later or not at all. On different levels, the notion of importance
can be applied to words, websites, and much more. As a final example, imagine getting
the day’s news and being able to focus on just the articles that are critical to your job,
or being able to quickly and easily find the most important papers in a new research
field. (We could’ve used such a tool for writing this chapter!)

 The question of importance is a difficult one, and the approaches to solving it
depend on the application and, often, the users. Importance also overlaps areas such
as ranking/relevance, as well as authoritativeness. The primary distinction is that
something that’s important is also relevant, whereas something that’s relevant isn’t
necessarily important. For instance, information on the antidote for a poison and
where to get it is far more important to someone who just swallowed said poison than
information that describes the way antidotes for poison are developed. It’s unfortu-
nately not clear and fairly subjective when something crosses the threshold from
being relevant to being important.

 In researching this section, it quickly became clear that there’s not yet a notion of
“importance theory,” but instead there’s a growing body of work around solving spe-
cific problems relating to importance. There are also some related areas in informa-
tion theory, such as surprise (see http://en.wikipedia.org/wiki/Self-Information),
mutual information (see http://en.wikipedia.org/wiki/Mutual_Information), and
others. It’s also useful to think about two levels of importance: global and personal.
Global importance is all about what the majority of people in a group think is impor-
tant, whereas personal importance is all about what you, the individual, think is
important. There are algorithms and approaches that work for each level, which we’ll
explore in the next two sections.

9.4.1 Global importance and authoritativeness

Probably the single largest application that leverages global importance (or at least
attempts to) is Google’s search engine (http://www.google.com). Google’s search
engine harnesses the votes (via links, words, clicks, and more) of millions of users
worldwide to determine what websites are the most important/authoritative (it
returns relevant sites as well) to a given user’s query. Google’s approach, which they
call PageRank and describe in its early form in “The Anatomy of a Large-Scale Hyper-
textual Web Search Engine” (http://infolab.stanford.edu/~backrub/google.html), is
a fairly simple, iterative algorithm that “corresponds to the principal eigenvector of
the normalized link matrix of the web.”

NOTE Though beyond the scope of this book, interested readers will do well
to learn more about eigenvectors and other matrix mathematics, as they
come up often in the day-to-day work of NLP, machine learning, and search. A
respected linear algebra text is a good starting point for such an undertaking.

This realization about eigenvectors has led to their use in other areas. For example, you
can see similar approaches used in keyword extraction (TextRank—www.aclweb .org/

275Identifying important content and people
anthology-new/acl2004/emnlp/pdf/Mihalcea.pdf) and multidocument summariza-
tion (LexRank—http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/jair/pub/volume22
/erkan04a.pdf), as well as other graph-ranking strategies. (Grant sometimes calls them
*Rank strategies.) Such approaches are also often used in understanding the dynamics
of social networks, because they can quickly find important people and connections.
The iterative algorithm is simple to implement and can fortunately be scaled fairly eas-
ily. The more difficult part is acquiring the content, at scale, in the first place.

9.4.2 Personal importance

Calculating what’s important to an individual is, in many ways, harder than calculating
global importance. For starters, what’s important to user A is often not important to
user B. Second, depending on the application, the cost of being wrong (either with
false positives or false negatives) can be expensive. Personal importance applications
also have a bootstrapping problem, since it’s fairly hard to understand what an indi-
vidual thinks is important if the individual has never interacted with the system!

 To date, most personal importance applications treat the problem as a classifica-
tion problem, often with a twist discussed earlier in the book. The application trains/
tests n+1 models, where n is the number of users in the system. In other words, each
user has their own model and the extra model is a global model that’s trained with the
notion of global features related to importance. The per-user model is typically just
the differences the user has as compared to the global model, which has a number of
benefits in terms of compactness and scalability. To read more about this in action, see
“The Learning Behind Gmail Priority Inbox” by Aberdeen, et al., at http://
research.google.com/pubs/archive/36955.pdf.

9.4.3 Resources and pointers on importance

Unfortunately, as alluded to earlier and unlike most of the other subjects here, there’s
no one place to go for the theory and concepts of what makes something important.
Even Wikipedia, the default place to start with many subjects in the internet age, has
little more than a placeholder page for the word importance (at least it did as of Janu-
ary 21, 2001; see http://en.wiktionary.org/wiki/importance). Interested readers
shouldn’t be disheartened, as there are still plenty of places to put together the pieces:

 Google’s PageRank paper (http://infolab.stanford.edu/~backrub/google
.html) is a good start for understanding authority and graph ranking strategies.

 Any good textbook on information theory (start at Wikipedia—http://
en.wikipedia.org/wiki/Information_theory), mutual information, entropy, sur-
prisal, information gain, and other topics can help.

Importance and prioritization work are undoubtedly among the hot topics of the day
due to their significant role in social networks and dealing with the information del-
uge. Similarly, sentiment analysis, our next subject, is also an area of active research,
thanks in no small part to the rapid rise of services like Facebook and Twitter.

276 CHAPTER 9 Untamed text: exploring the next frontier
9.5 Detecting emotions via sentiment analysis
By J. Neal Richter and Rob Zinkov

Sentiment analysis is the identification and extraction of subjective information from
text. Often referred to as opinion mining, it generally involves the usage of various NLP
tools and textual analytics software to automate the process. The following simple
example is from the movie review website RottenTomatoes.com and was rephrased
for clarity.

“The movie Battlefield Earth is a disaster of epic proportions!”
 —Dustin Putnam

This is clearly a negative movie review. The basic form of sentiment analysis is polarity
classification, and might assign this sentence a score of -5 out of a normalized range of
[-10,10]. Advanced sentiment analysis techniques would parse the sentence and
deduce the following facts:

 Battlefield Earth is a movie.
 Battlefield Earth is a very bad movie.
 Dustin Putnam thinks Battlefield Earth is very bad movie.

The complexity of the task is also evident. Software would need to recognize the
entities {Battlefield Earth, Dustin Putnam} and have a database of phrases contain-
ing “disaster” with a negative score. It might also have the ability to recognize that
the prepositional phrase “of epic proportions” is acting as an adjective of the noun
“disaster” and is roughly equivalent to “big disaster” and should thus accentuate the
negative value attached to “disaster.” With the rapid proliferation of user-generated
content on the web, it’s now possible to gauge the opinions of large numbers of peo-
ple on topics (politics, movies) and objects (specific products). The desire to find,
index, and summarize these opinions is strong among corporate marketers, cus-
tomer service divisions within corporations, and financial, political, and governmen-
tal organizations.

9.5.1 History and review

The survey papers by Pang and Lee (see Pang [2008]) and Liu (see Liu [2004]) pro-
vide excellent reviews of the history and current status of sentiment analysis. This area
has deep roots in the NLP and linguistics communities. Early work in this area was
done by Janyce Wiebe and co-workers (1995-2001), which they termed subjectivity anal-
ysis. The goal of the research was to classify a sentence as subjective or not based upon
the adjectives used and their orientation.

 Within the software industry, the year 2000 was interesting in sentiment analysis.
Qualcomm shipped a Mood Watch feature in its 2000 release of the Eudora email cli-
ent. Mood Watch performed a simple negative polarity analysis of emails into the
range [-3,0] represented by icons of chili peppers on the screen. The system was
designed by David Kaufer of Carnegie Mellon’s English department (see Kaufer
[2000]). Internally the algorithm categorized the emails into eight categories of com-
mon discourse patterns found in Usenet “flame wars.”

277Detecting emotions via sentiment analysis
 In early 2000 the first author (Neal Richter) began work on an emotional polarity
analysis system for a CRM software vendor specializing in email processing for cus-
tomer service. At the time we used the term affective rating rather than sentiment anal-
ysis to describe the area (see Durbin [2003]). The feature shipped in 2001 and has
been processing hundreds of millions of customer service inquiries per month since
then. The system has also been translated into 30-plus languages. Though there were
pockets of academic work prior to 2001, this year can be regarded as the arrival of sen-
timent analysis as a formal research area in natural language processing.

 The first phase of research centered around using basic grammar rules and struc-
ture of English plus a dictionary of keywords to arrive at heuristic assessments of the
polarity of a snippet of text. The dictionary of keywords was often manually con-
structed from human judgments on polarity. These techniques can achieve reason-
able accuracy; for example, Turney (see Turney [2002]) achieved 74% accuracy in
predicting the polarity of product reviews. These types of techniques are easy to
implement yet fail to capture higher-order structures present in English. In particular
these techniques can fail to take into account the way that words modify the meaning
of those around them, sometimes on the far side of a sentence. As such algorithms
extract only small phrases (two to three words), they may miss more complex con-
structs. These techniques often have bad recall: they often fail to give a classification.

 A limitation of the heuristic algorithms is the enumeration problem. Given the
complex nature of language, it’s somewhat of a fool’s errand to attempt to manually
construct all possible sentiment-expressing patterns. Instead, the next phase of
research used the growth of available internet data from product reviews to induce
sentiment patterns or simply emit predictions. An early supervised learning technique
was “Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of
Product Reviews” (Dave 2003). Starting with basic stemming techniques and prepro-
cessing, usage of TF-IDF, Laplace transforms, and similar metrics, they fed the pro-
cessed and scored reviews into various classifiers. The binary +/- classification was as
high as 87% on a dataset with a naive Bayes’ algorithm.

 A more recent high-performing heuristics-driven approach is described by Ding et
al. (Ding 2009). Highly recommended reading, they fuse a large data-driven opinion-
word lexicon with rich preprocessing and transition state accounting. In particular,
they use a rule grammar (in the compiler’s sense) to extract inferences. The rules
engine is applied multiple times to transform the tagged text into inference state-
ments defining the association between a word and part of speech pair and a senti-
ment polarity. They achieved upward of 80% accuracy in both recall and precision.

 A recent simple unsupervised approach is used by Hassan and Radev (Hassan
2010). They bootstrap on the WordNet database and perform a “random walk” start-
ing from an unknown polarity word. The walk stops when it encounters a word with
known polarity. The polarity prediction is averaged over multiple random walks from
the same starting word. No attempt at utilizing higher-level structures is made. This
method is fast; no corpus is needed other than the relatively short list of “gold stan-
dard” positive and negative terms. It achieved an accuracy of 92–99% on a very small

278 CHAPTER 9 Untamed text: exploring the next frontier
list of seed starting words. Given that this is a non-corpus-based method and WordNet
doesn’t contain all English terms, this idea might be best utilized to bootstrap a senti-
ment keyword dictionary.

9.5.2 Tools and data needs

Most approaches to sentiment analysis require a few basic tools and data. The first is a
part of speech tagger, a software package that parses and labels words in a sentence with
their part of speech. A few common taggers are listed here:

 OpenNLP tagger, discussed previously in the text.
 Eric Brill’s tagger—http://gposttl.sourceforge.net/ (C code)
 Lingua-EN-Tagger—http://search.cpan.org/~acoburn/Lingua-EN-Tagger/

Tagger.pm
 Illinois POS Tagger—http://cogcomptest.cs.illinois.edu/page/software_view/3
 Demo—http://cogcomp.cs.illinois.edu/demo/pos/

In addition to a part of speech tagger, a database of keyword/phrase polarity ratings is
crucial. These can either be gathered from annotated sources or learned from a cor-
pus. Whissell’s Dictionary of Affective Language (DAL) (see http://hdcus.com/ and
http://www.hdcus.com/manuals/wdalman.pdf) and the WordNet-Affect (see http://
wndomains.fbk.eu/wnaffect.html and http://www.cse.unt.edu/~rada/affectivetext/)
are two sources of data. Note that some extraction is required for usage of DAL data. A
semantic dictionary might look like the one in table 9.1.

 In addition, basic textual analysis tools are needed such as tokenizers, sentence
boundary determination, stopword marking, word stemmers, and so forth. See chap-
ter 2 earlier in the book for more info on these items.

Table 9.1 An example semantic dictionary

Lexical entry POS
Sentiment category (+ is

positive; - is negative)

happy JJ +

horror NN -

dreadful JJ -

fears VBZ -

loving VBG +

sad JJ -

satisfaction NN +

279Detecting emotions via sentiment analysis
9.5.3 A basic polarity algorithm

The best way to think of sentiment polarity is as a fluid flowing through a document.
Sentiment is expected to stay consistent across a document. As an example, here’s a
snippet of a review on Amazon of a blender:

This was a good price and works well however it is very loud. Also the first 10-15
uses I noticed a very pronounced electric smell after running it. But hey, you
get what you pay for. The thing works, blends well, and I like that I can stand
the jar up and take it with me.

Notice how the sentiment shifts from positive to negative on the however. The review
then shifts from negative back to positive upon reaching “But.” This shift allows us to
infer that loud has negative sentiment in the context of this review. The sentiment of
loud will usually depend on the document. In discussing a rock concert, loud is usu-
ally a positive feature. In discussing a blender, loud is usually a negative feature.

 Two early polarity algorithms were by Yi et al. (Yi 2003) and Turney (Turney 2002).
Here’s Yi’s algorithm, reframed for clarity of implementation:

 Tokenize the text.
 Find sentence boundaries with heuristic or other approach.
 POS tag each sentence.
 Apply a set of patterns to each sentence to find verb phrases, noun phrases.
 Construct any binary or ternary expressions found.
 Look up verbs and adjectives and their modifiers in the Semantic DB—use

stemming variants as needed.
 Output association expressions found.

An example ternary (target, verb, source) expression is “the burrito,” “was,” “too
messy,” and an example binary expression (adjective, target) is “quality,” “camera.”
Pulling this all together, here’s an example of the Yi algorithm on the sample text:
“This recipe makes excellent pizza crust.”

 Matching sentiment pattern—<“make” OP SP>
 Subject phrase(SP) —This recipe
 Object phrase (OP)—pizza crust
 Sentiment of the OP—positive
 T-expression—<“recipe,” “make,” “excellent pizza crust”>

Turney’s algorithm is another example of a basic pattern extractor that applies point-
wise mutual information (PMI) theory to approximate the polarity of a given keyword
based on its proximity to known positive and negative words in a large corpus of text.
In basic terms, PMI states that two terms are highly related when they co-occur more
often than their individual frequencies would predict. Otherwise it’s similar to the
preceding: it tokenizes and POS tags sentences and then extracts two- and three-word
tagged phrases (bigrams and trigrams) as patterns. It then uses the PMI method to
classify words based upon their co-occurrence with any known positive/negative word
in that bi-/trigram.

280 CHAPTER 9 Untamed text: exploring the next frontier
9.5.4 Advanced topics

One of the more advanced ways to detect sentiment analysis is by using a technique
called conditional random fields (CRF; see Getoor [2007]). A key benefit of CRFs and
other data-driven techniques is their ability to model dependencies and structures
between words. Consequently, they have much better recall performance. Many of the
previously stated techniques treat the sentiment of each term independent of the
terms around it. For many natural language problems this usually doesn’t affect per-
formance too significantly. Unfortunately, the sentiment of a word is heavily deter-
mined based on the words around it. One of the best ways to take into account this
dependency is through modeling the problem using a conditional random field.

 CRFs allow you to model data with internal structure that constrains what labels
terms can take on. Sentiment classification tasks can use a CRF to take advantage of the
structure latently available within human language to achieve state-of-the-art results.

 The particular details of the learning and inference algorithms for CRFs are
beyond the scope of this book. Instead, we’ll concentrate on outlining how we’ll
define the features for the CRF. We may then use an open source library to train our
models. We define a CRF by specifying what features we’d like to take into account
when determining the sentiment of a term. Some of the common features discussed
earlier will be relevant:

 POS of the word.
 Is this word an entity?
 Is this word describing an entity?
 Synonyms of the word.
 Stem of the word.
 Is this word capitalized?
 The word itself.

Now we can take into account features that aren’t just about the given word, such as
these:

 The POS of the previous word and following word.
 Is the previous word not?
 Is the previous word but?
 If this word is an anaphora, features of the word it refers to.

More importantly, we can now link features by defining features that have elements of
the current term, surrounding terms, or even terms that are further away such as the
anaphora feature. As an example, we may have as a feature, the POS of the current
word, and the anaphora it refers to if it does. When we have these features we feed
them through a tool like CRF++ (http://crfpp.sourceforge.net/). Keep in mind that
some preprocessing will be necessary to get your features into a format CRF++ likes.
Some postprocessing will be necessary to use the learned model, but there’s little
magic going on.

281Detecting emotions via sentiment analysis
 Another common operation you’ll want to perform is to aggregate opinions across
multiple terms or documents. In these situations, the aggregations will be in terms of
documents or entities referred to within the document. You may, for example, want to
know the average opinion people have of Pepsi. This can be achieved by averaging the
sentiment of every entity that belongs to or refers to Pepsi.

 In many situations, we want something less well defined. We want to know the
themes of the document. There are natural clusterings of terms that people will have
coherent and consistent opinions about. These clusters are sometimes called topics.

 Topic modeling (which we covered briefly in chapter 6) refers to a family of algo-
rithms designed to find these clusters in a collection of documents. They tend to orga-
nize important terms in the documents into different topics that are most
representative of the documents. If it makes sense for your domain to ascribe senti-
ment to these topics, you may acquire it through a myriad of ways. The simplest is to
average the sentiment of each word weighted based on how strongly it’s associated with
a particular topic. You may also learn your sentiments and topic at the same time. This
allows you to force the choices of topics to have coherent sentiment across the words
within them. The intuition behind this is that you want the words in your topics to have
roughly the same sentiment. Approaches that do this are called sentiment-topic models.

9.5.5 Open source libraries for sentiment analysis

Though many classification libraries can be used to build a sentiment analysis model
(keep in mind, classification is a general approach not specifically geared towards the
sentiment analysis task), there are a few libraries that are already set up to do senti-
ment analysis, including these:

 GATE (http://gate.ac.uk/)—General-purpose GPL-licensed NLP toolkit that
contains a sentiment analysis module

 Balie (http://balie.sourceforge.net/)—GPL-licensed library providing named
entity recognition and sentiment analysis

 MALLET (http://mallet.cs.umass.edu/)—Common Public–licensed library that
implements conditional random fields, among other algorithms

A variety of commercial tools (such as Lexalytics), APIs (such as Open Dover), and
shared source (such as LingPipe) libraries are available for doing sentiment analysis.
As with any tool we’ve discussed in this book, make sure you have the tools in place to
check the quality of results before making a purchase or implementing an approach.

 Though sentiment analysis is one of the hot topics of the day (circa 2012), our
ever-increasing connectivity that spans the globe (Facebook alone has 500 million-
plus users as of this writing, encompassing much of the world) creates the need to
cross the language barrier more effectively. Our next topic, cross-language search, is a
crucial part of the solution that makes it easier for people around the world to com-
municate regardless of their native tongue.

282 CHAPTER 9 Untamed text: exploring the next frontier
9.6 Cross-language information retrieval
Cross-language information retrieval (CLIR) is a search system that allows users to input
queries in a given language and have results retrieved in other languages. By way of
example, a CLIR system would allow a native Chinese speaker (who doesn’t speak Eng-
lish) to enter queries in Chinese and have relevant documents returned in English,
Spanish, or any other supported language. Though those documents are, on the sur-
face, often still meaningless to a nonspeaker, most practical CLIR systems employ some
sort of translation component (automated or manual) for viewing documents in the
user’s native language.

CROSS-LINGUAL VERSUS MULTILINGUAL SEARCH In some search circles, you’ll
hear people say they want multilingual search and sometimes you’ll hear a
need for cross-lingual search. Multilingual search, in our view, deals with a
search application that has multiple indexes containing different languages
and users only query the system using their chosen language. (English speak-
ers query English resources, Spanish speakers query Spanish resources, and
so on.) In CLIR, users explicitly ask to cross the language barrier, such as an
English speaker querying Spanish resources.

In addition to all of the barriers to overcome in monolingual search, as detailed in
chapter 3, CLIR systems must also deal with crossing the language barrier. Given the
difficulty for most humans to learn a new language, it should be obvious that good
cross-language search is no small task in a software application.

 CLIR applications are traditionally built by either translating the user query to the
target language and then performing retrieval against the target documents in their
source language, or by translating, during preprocessing, all of the documents of a
collection from the target language to the source language.

 Regardless of the approach, the quality of the system often hinges on the ability to
do translation. In all but the simplest of systems, manual translation is out of the ques-
tion, so some type of automated approach must be used. The simplest programmatic
approach is to acquire a bilingual dictionary and then do word-for-word substitution
in the query, but this suffers from problems of disambiguation and semantics due to
the fact that most languages use idioms, synonyms, and other constructs that make
word-for-word substitution difficult at best.

 Several commercial and open source tools are available which provide higher-
quality automated translations based on statistical approaches that analyze parallel or
comparable corpora and can therefore automatically learn idioms, synonyms, and
other structures. (Parallel corpora are two collections of documents where each docu-
ment is a translation of the other. A comparable corpus would be two collections of doc-
uments that are about the same topic.) The best-known automated translation system
is likely Google’s online translator, located at http://translate.google.com and shown
in figure 9.5, but there are others including Systran (http://www.systransoft.com/) and
SDL Language Weaver (http://www.languageweaver.com/). On the open source side,

283Cross-language information retrieval
the Apertium project (http://www.apertium.org/) appears to be fairly active, but we
haven’t evaluated it. The Moses project (http://www.statmt.org/moses/) is a statistical
machine translation (MT) system that needs only parallel corpora to build your own sta-
tistical MT system. Finally, Mikel Forcada has put together a decent-sized list of free/
open source MT systems at http://computing.dcu.ie/~mforcada/fosmt.html.

 In some CLIR cases, no direct translation capabilities exist and so a translation may
only be possible via the use of a pivot language (assuming such a language exists) that
acts as an intermediate step. For example, if translation resources exist to go from
English to French and from French to Cantonese, but not directly from English to
Cantonese, then you could pivot through French to get to Cantonese. Naturally, the
quality would suffer, but it might be better than nothing.

 Even in a good translation engine (most are useful as a starting point to get the gist
of the concept), the system often produces multiple outputs for a given input, and so
a CLIR system must have the means to determine when to use a translation and when
not to use one. Similarly, many languages also require transliteration (to transcribe
from one alphabet to another, not to be confused with translation) to take place
between alphabets in order to deal with proper nouns. For instance, in an Arabic-
English CLIR system that Grant worked on, trying to transliterate English names into
Arabic or vice versa often resulted in many different permutations, sometimes hun-
dreds or more, from which you had to decide which to include as search terms based
on the statistical likelihood of the result occurring in the corpus.

NOTE If you’ve ever wondered why some articles spell the name of the Lib-
yan leader as Gaddafi while others spell it Khadafi or Qaddafi, it’s primarily
due to differences in transliteration, as there isn’t always a clear-cut mapping
between alphabets.

In some cases, the translation system will return a confidence score, but in other cases
the application may need to use user feedback or log analysis to be effective. Finally,
and unfortunately, in many cases, no matter how well the search part of the CLIR
equation is implemented, users will likely judge the system based on the quality of the
automated translations of the results, which is almost always mediocre in the general
case, even if it’s sufficient to get the gist of an article with some practice.

Figure 9.5 Example of translating the sentence “Tokyo is located in Japan” from English
to Japanese using Google Translate. Captured 12/30/2010.

284 CHAPTER 9 Untamed text: exploring the next frontier
 To learn more about CLIR, see Information Retrieval by Grossman and Frieder
(Grossman [2004]) as a starter, and Doug Oard’s site at http://terpconnect.umd
.edu/~oard/research.html. There are also several conferences and competitions (sim-
ilar to TREC) focused on CLIR, including CLEF (http://www.clef-campaign.org) and
NTCIR (http://research.nii.ac.jp/ntcir/index-en.html).

9.7 Summary
In this chapter, we’ve lightly covered many other topics in search and natural lan-
guage processing. We started with a look at semantics and the quest for finding mean-
ing automatically, and then proceeded to look at areas as diverse as summarization,
importance, cross-language search, and event and relationship detection. Regrettably,
we didn’t have the time or space to dig into these areas deeper, but hopefully we left
with you some pointers to go find out more if you wish. As you can see, the areas of
search and NLP are filled with challenging problems that can fill a career with interest-
ing work. Making significant inroads on any of these subjects will unlock a multitude
of new applications and opportunities. It’s our sincere hope as authors that the con-
tents of this book will unlock new opportunities for you in your career as well as life.
Happy text taming!

9.8 References
 Agichtein, Eugene. 2006. “Confidence Estimation Methods for Partially Supervised

Relation Extraction.” Proceedings of the 6th SIAM International Conference on
Data Mining, 2006.

 Blum, Avrim and Mitchell, Tom. 1998. “Combining Labeled and Unlabeled Data with
Cotraining.” Proceedings of the 11th Annual Conference on Computation
Learning Theory.

 Bunescu, Razvan and Mooney, Raymond. 2005. “Subsequence Kernels for Relation
Extraction.” Neural Information Processing Systems. Vancouver, Canada.

 Chen, Bo; Lam, Wai; Tsang, Ivor; and Wong, Tak-Lam. 2009. “Extracting Discriminative
Concepts for Domain Adaptation in Text Mining.” Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

 Chu, Min; Li, Chun; Peng, Hu; and Chang, Eric. 2002. “Domain Adaptation for TTS
Systems.” Proceedings of IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP).

 Culotta, Aron; McCallum, Andrew; and Betz, Jonathan. 2006. “Integrating Probabilis-
tic Extraction Models and Data Mining to Discover Relations and Patterns in
Text.” Proceedings of the main conference on Human Language Technology
Conference of the North American Chapter of the Association of Computa-
tional Linguistics.

 Dave, Kushal; Lawrence, Steve; and Pennock, David. 2003 “Mining the Peanut Gal-
lery: Opinion Extraction and Semantic Classification of Product Reviews.” Pro-
ceedings of WWW-03, 12th International Conference on the World Wide Web.

285References
 Ding, Xiaowen; Liu, Bing; and Xhang, Lei. 2009. “Entity Discovery and Assignment
for Opinion Mining Applications.” Proceedings of ACM SIGKDD Conference
(KDD 2009). http://www.cs.uic.edu/~liub/FBS/KDD2009_entity-final.pdf.

 Durbin, Stephen; Richter, J. Neal; Warner, Doug. 2003. “A System for Affective Rating
of Texts.” Proceedings of the 3rd Workshop on Operational Text Classification,
9th ACM SIGKDD International Conference.

 Getoor, L. and Taskar, B. 2007. Introduction to Statistical Relational Learning. The MIT
Press. http://www.cs.umd.edu/srl-book/.

 Greenwood, Mark and Stevenson, Mark. 2007. “A Task-based Comparison of Informa-
tion Extraction Pattern Models.” Proceedings of the ACL Workshop on Deep
Linguistic Processing.

 Grossman, David A., and Frieder, Ophir. 2004. Information Retrieval: Algorithms and
Heuristics (2nd Edition). Springer.

 GuoDong, Zhou; Jian, Su; Zhang, Jie; and Zhang, Min. 2002. “Exploring Various
Knowledge in Relation Extraction.” Proceedings of the Association for Compu-
tational Linguistics.

 Hachey, Ben. 2009. “Multi-document Summarisation Using Generic Relation Extrac-
tion.” Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing: Volume 1.

 Hassan, Ahmed and Radev, Dragomir. 2010. “Identifying Text Polarity Using Random
Walks.” Proceedings of the 48th Annual Meeting of the Association for Compu-
tational Linguistics (ACL). http://www.aclweb.org/anthology-new/P/P10/P10-
1041.pdf.

 Hearst, Marti. 1994. “Multi-Paragraph segmentation of Expository Text.” Proceedings
of the Association for Computational Linguistics.

 Jurafsky, Danile, and Martin, James. 2008. Speech and Language Processing, 2nd Edition.
Prentice Hall.

 Kambhatla, Nanda. 2004. “Combining Lexical, Syntactic, and Semantic Features with
Maximum Entropy Models for Extracting Relations.” Proceedings of the Associa-
tion for Computational Linguistics. http://acl.ldc.upenn.edu/P/P04/P04-
3022.pdf.

 Kaufer, David. 2000. “Flaming: A White Paper.” Carnegie Mellon. http://
www.eudora.com/presskit/pdf/Flaming_White_Paper.PDF.

 Liddy, Elizabeth. 2001. “Natural Language Processing.” Encyclopedia of Library and
Information Science, 2nd Ed. NY. Marcel Decker, Inc.

 Liu, Bing, and Hu, Minqing. 2004. “Opinion Mining, Sentiment Analysis, and Opin-
ion Spam Detection.” http://www.cs.uic.edu/~liub/FBS/sentiment-analysis
.html.

 Lodhi, Huma; Saunders, Craig; Shawe-Taylor, John; and Cristianini, Nello. 2002.
“Text Classification Using String Kernels.” Journal of Machine Learning Research.

 Manning, Christopher D, and Schütze, Hinrich. 1999. Foundations of Natural Language
Processing. MIT Press.

286 CHAPTER 9 Untamed text: exploring the next frontier
 Nguyen, Bach and Sameer, Badaskar. 2007. “A Survey on Relation Extraction.” Litera-
ture review for Language and Statistics II.

 Pang, Bo, and Lee, Lillian. 2008. “Opinion Mining and Sentiment Analysis.” Founda-
tions and Trends in Information Retrieval Vol 2, Issue 1-2. NOW.

 Peccei, Jean. 1999. Pragmatics. Routledge, NY.

 PubMed, MEDLINE. http://www.ncbi.nlm.nih.gov/sites/entrez.

 Ravichandran, Deepak and Hovy, Eduard. 2002. “Learning Surface Text Patterns for
a Question Answering System.” Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics.

 Turney, Peter. 2002. “Thumbs Up or Thumbs Down? Semantic Orientation Applied
to Unsupervised Classification of Reviews.” Proceedings of the 40th Annual
Meeting of the Association for Computational Linguistics (ACL).

 Yi, Jeonghee; Nasukawa, Tetsuya; Bunescu, Razvan; and Niblack, Wayne. 2003. “Senti-
ment Analyzer: Extracting Sentiments About a Given Topic Using Natural Lan-
guage Processing Techniques.” Third IEEE International Conference on Data
Mining. http://ace.cs.ohiou.edu/~razvan/papers/icdm2003.pdf.

 Zelenko, Dmitry; Aone, Chinatsu; and Richardella, Anthony. 2003. “Kernel Methods
for Relation Extraction.” Journal of Machine Learning Research.

index
A

abbreviations, expanding 23
accuracy 186, 209

area under curve 187
k-fold cross validation 187

acronyms
expanding 23
tokenizing 22

AdaptiveFeatureGenerator
134

adjectives 18, 24
adjective phrases 19

adverbs 18, 24
adverb phrases 19

affective rating. See sentiment
analysis;opinion mining

affixing 92, 94
AggregatedFeatureGenerator

135
-al suffix 21
Amazon Mechanical Turk

185
Amazon.com 38, 40
Analyzer 55

CharFilter 55
anaphors 263
answer type 248

determining 252, 255
rules for determining 253
supported types 248
training the classifier 248,

251
AnswerTypeClassifier 249,

251–252
AnswerTypeContextGenerator

253

Apache
Lucene 5
OpenNLP 5

Apache Hadoop 154, 208
benchmarks 168, 172
S3 Native protocol 169
SequenceFile 156, 208

Apache Lucene 5, 82
Analyzer 55
and Apache Solr 52, 57
and Jaro-Winkler

Distance 89
and Levenshtein

distance 92
categorization with 189, 202
converting indexes to

vectors 155–156, 158
discourse segmentation 264
edit distance 107
EnglishAnalyzer 194
indexing 6
k-nearest neighbor 190, 196
Luke 204
MoreLikeThis query 191
n-gram edit distance 93
n-gram token filter 94, 100
n-grams 194
ShingleAnalyzerWrapper

194
StandardTokenizer 22
term vectors 257
TF-IDF 190
TokenFilter 55
Tokenizer 55
training data 204, 207

Apache Mahout
and categorization 192

and Hadoop 154
and naive Bayes 202, 204
classification with 202, 215
ClusterDumper 159
clustering algorithms 144
clustering benchmarks 168,

172
clustering with 154, 162
ClusterLabels 159
environment variables 192
In-ClusterDF 161
integrating with Apache

Solr 212, 215
Latent Dirichlet

Allocation 162
LDAPrintTopics 163
log-likelihood ratio 161
Out-ClusterDF 161
PrepareTwentyNewsgroups

192
preparing data for

clustering 155, 158
preparing vectors 168
ResultAnalyzer 200
SequenceFileDumper 159
testing classifiers 209–210
topic modeling 162, 164
training classifiers 208–209
word sense

disambiguation 263
Apache Nutch 82
Apache OpenNLP 5

altering modeling
inputs 134, 136

and named-entity
recognition 119, 123

caching 130
287

288 INDEX
Apache OpenNLP (continued)
continue tag 126
customizing 132, 138
features 127
finding names 120–121
finding names based on

probability 122–123
how it works 126, 128
identifying multiple entity

types 123, 126
in-depth named-entity

recognition 123, 128
interpreting names 121–122
memory usage 131–132
modeling by entity type 136,

138
models 131
NameFinder ME 121
other tag 126
performance 128, 132
predefined categories 120
quality of results 129
runtime performance 130
Spans 126
start tag 126
token classes 128
training models 133–134

Apache Solr 52, 57
alternatives to 82–83
and Apache Tika 59
and faceted browsing 67, 69
and Jaccard measure 88
and Tanimoto coefficient 88
basic concepts 54, 57
boost factor 54
clustering search results with

Carrot2 151
designing schemas 56–57
Did You Mean 106, 108
discourse segmentation 264
evaluating recommended

tags 236, 238
ExtractingRequestHandler

61
Field 54
field types 57
finding candidate

matches 110–111
improving indexing

performance 80–81
improving search

performance 81
indexing prefixes 101–102
indexing with 54, 57, 62
indexing with XML 58

input parameters 64, 66
installing 52, 54
installing question answer-

ing system 243–244
n-gram matching 100
prefix matching 94–95
preparing training data

231–232
programmatic access 65–66
query interface 67
query parsers 65–66
query spell-checking 106,

108
QueryResponseWriter 54,

65, 103
recommending tags 234, 236
record matching 110–111
retrieving prefix

matches 102, 104
running for first time 52, 54
schema definition 55, 60
searching content with 63,

69
SolrJ 58
SolrQueryResponse 54
SolrRequestHandler 54, 63
spell-checker 108
StandardTokenizer 22
tag recommender 227, 238
training a tag

recommender 232, 234
tries 99
XMLResponseWriter 65

Apache Tika 33, 36
AutoDetectParser 34
indexing with 59
Parser class 34

Apache Velocity 244
API, Carrot2 150
area under curve 187
ARFF format 155
-ation suffix 21
authoritativeness 274
AutoDetectParser 34
Automatic Content

Extraction 272

B

bag-of-features kernel 270
bag-of-words approach 182
BagOfWordsFeatureGenerator

221, 226
Balie 281
Bayes’ Theorem 203

BayesUpdateRequestProcess-
Factory 212

BayesUpdateRequestProcessor
213

bigram bonus 258
bigrams. See n-grams
Boolean operators 44
bootstrapping 184, 207

improving 210, 212
BreakIterator class 27

C

caching 81, 130
CachingController 150
Carrot Search 51
Carrot2 149, 154

and Lingo 149, 167–168
and suffix tree

clustering 149, 167–168
application programming

interface 150
clustering Solr search

results 151
performance 167–168
quality 167–168

categorization 13, 175, 239
accuracy 186, 209
and TF-IDF 182
answer type 248, 251–252,

255
area under curve 187
bootstrapping 184
categorization schemes 181
confusion matrix 187, 199,

209
deploying classifiers 188–189
evaluating performance 186,

188
feature vectors 189
identifying features 182–183
integrating naive Bayes with

Apache Solr 212, 215
k-fold cross validation 187
k-nearest neighbor 190
maximum entropy 215, 226
maximum entropy in

production 225
MoreLikeThis categorizer

197, 199
naive Bayes 202, 204
online learning 202
piggybacking 216
preparation phase 180

289INDEX
categorization (continued)
preparing training data 191,

193, 204, 207
process 180, 189
recommending tags 234, 236
regression models 216
spatial techniques 189
tag recommendation in

Solr 227, 238
testing naive Bayes

classifiers 209–210
testing phase 181
training data 177, 183, 186
training data for maximum

entropy 219
training naive Bayes

classifiers 208–209
training phase 180
true negative rate 186
true negative versus false

negative 186
true positive versus false

positive 186
updating model 188
with Apache Lucene 189, 202
with Apache Mahout 202,

215
with OpenNLP 215, 226
withholding test data 207

CategoryDataStream 220
CategoryHits 198
Character class 22
character overlap measures 86,

89
Jaccard measure 87–88
Jaro-Winkler distance 88

CharacterNgramFeature-
Generator 135

CharFilter 55
chunking 251–252
CIA Factbook 265
classes

BreakIterator 27
Character 22
String 22
StringBuilder 22

classification 175, 239
accuracy 186, 209
and TF-IDF 182
answer type 248, 251–252,

255
area under curve 187
bag-of-words approach 182
bootstrapping 184
classification schemes 181

confusion matrix 187, 199,
209

deploying classifiers 188–189
developing an automatic

classifier 180, 189
evaluating performance 186,

188
feature vectors 189
identifying features 182–183
integrating naive Bayes with

Apache Solr 212, 215
k-fold cross validation 187
k-nearest neighbor 190
maximum entropy 215, 226
maximum entropy in

production 225
MoreLikeThis categorizer

191, 197, 199
naive Bayes 202, 204
online learning 202
piggybacking 216
preparation phase 180
preparing training data 191,

193
process 180, 189
recommending tags 234, 236
regression models 216
spatial techniques 189
tag recommendation in

Solr 227, 238
testing naive Bayes classifiers

209–210
testing phase 181
TF-IDF 190
training data 177, 183, 186
training data for maximum

entropy 219
training naive Bayes

classifiers 208–209
training phase 180
true negative rate 186
true negative versus false

negative 186
true positive versus false

positive 186
updating model 188
versus recommendation 230
with Apache Lucene 189,

202
with Apache Mahout 202,

215
with OpenNLP 215, 226
withholding test data 207

ClassifierContext 214
ClassifierResult 214, 226

classifiers. See statistical
classifiers

classifyDocument 214
clauses 19–20

See also phrases
clearAdaptiveData() 121
CLIR. See cross-language infor-

mation retrieval
clustering 13, 50, 140

and labeling 146–147
benchmarking Fuzzy

K-Means, Canopy, and
Dirichlet 171–172

benchmarks 168, 172
Carrot2 API 150
clustering algorithms 144–

145
Cosine distance 146
creating a simple clustering

application 149
Data Import Handler 149
determining similarity 145–

146
distance vectors 145–146
documents 142, 144
entropy 148
Euclidean distance 146
evaluating results 147–148
feature reduction 164, 167
feature selection 164, 167
feedback 145
gold standard 148
Google News 141
hard versus soft 144
hierarchical versus flat 144
K-Means 144, 158
K-Means benchmarks 170–

171
laugh text 147
Manhattan distance 146
mathematical tools for evalu-

ating results 148
number of clusters 145
performance 164, 172
picking representative

documents 146
picking representative

labels 147
preparing data for Mahout

clustering 155, 158
probabilistic approach 144
programmatically creating

vectors 155–156
quality 145
search results 142, 144

290 INDEX
clustering (continued)
singular value

decomposition 165
smell test 147
Solr search results with

Carrot2 151
speed 145
stopwords 165
topic modeling 143, 162, 164
types of text clustering 142,

144
updateable 144
users rating results 147
with Apache Mahout 154,

162
with Carrot2 149, 154
words 142, 144

clustering algorithms 144–145
ClusteringComponent 152
collection summarization 266
collocations 262
common file formats 32
common nouns 19

plurals 20
comparable corpus 282
computeAnswerType 253
computeAnswerTypeProbs 253
conditional probability 203
conditional random fields 280
confusion matrix 187, 199, 209
conjunctions 18

conjunction phrases 19
content 11

extracting with Apache
Tika 33, 36

faceted browsing on
extracted content 67, 69

indexing 41, 43
indexing with Apache Solr

57, 62
searching with Apache Solr

63, 69
time spent creating 3
vectorizing 168, 170

content selection 267
context 8, 10

window 30
context kernel 271
context window 30
contexts 218
continue tag 126
contractions, tokenizing 23
convergence delta 159, 170
convolution kernel 270
co-reference resolution 263

OpenNLP 264

corpus 25
correction constant 217
Cosine distance 146
cross-language information

retrieval 282
comparable corpus 282
machine translation 283
parallel corpora 282
versus multilingual

search 282
curl 60

D

Data Import Handler 149
DateField 57
deep parsing 29
delicious.com 228
determiners 18, 24
Dictionary of Affective Language

278
DictionaryFeatureGenerator

135
Did You Mean 84, 105, 109,

114
document boost 108
probability 105–106
ranking suggestions 105–106
with Apache Solr 106, 108

discourse 263
anaphors 263
co-reference resolution 263
discourse segmentation 263

discourse segmentation 263
Apache Lucene 264
Apache Solr 264
MorphAdorner 264
TextTiling 264

DismaxQueryParser 65
displaying search results 49, 51

clustering 50
distance vectors 145–146

Cosine distance 146
Euclidean distance 146
Manhattan distance 146

distributed search 81
DoccatModel 225
document boost 108
document frequency 191
document ranking, vector

space model 46, 49
document summarization 266

content selection 267
Many Aspects Document

Summarization 266

MEAD 267
sentence ordering 267
sentence realization 267
Texlexan 268

DocumentCategorizer 220
DocumentCategorizerEvent-

Stream 221
DocumentCategorizerME 221
documents

categorizing with OpenNLP
215, 226

clustering 142, 144
clustering with Apache

Mahout 154, 162
preparing for clustering 155,

158
search for similar 45

-dom suffix 21
downcasing 42

E

-ed suffix 21
EdgeNGramFilterFactory 95,

101
EdgeNGramTokenFilter 94
edit distance 89, 92

accounting for string length
91

Apache Solr 107
computing 89, 91
Damerau-Levenshtein

distance 91
Levenshtein distance 89, 91
n-gram edit distance 92, 94
normalizing 91
ranking matches 111
weighting 91

-ee suffix 21
eigenvalues 166
eigenvectors 166
ElasticSearch 82
email 33

time spent reading 3
email addresses, tokenizing 22
emotions, detecting 276
-en suffix 20–21
English

clauses 19–20
language basics 17, 21
morphology 20–21
parts of speech 18–19
phrases 19–20
syntax 18–19

291INDEX
english.Tokenizer 23
EnglishAnalyzer 193–194, 197
entity identification 10
entropy 148
-er suffix 21
-est suffix 21
Euclidean distance 146
example, question answering

application 4, 8
Extensible Markup Language.

See XML
external knowledge 75, 77
ExtractingRequestHandler 61
extractStackOverflow 231
ExtractTrainingData 210
extractTrainingData 205, 225

F

faceted browsing 38, 40
on extracted content 67, 69

false negative 186
false positive 186
feature reduction 164, 167

singular value decomposition
165

feature selection 164, 167
feature vectors 189

See also vectors
features 127, 182–183

bag-of-words approach 182
caching 130
feature vectors 189

Field 54, 191
boost factor 54
DateField 57
FieldType 55
FloatField 57
indexed 54
IntField 57
multiValued 54
omitNorms 54
schema definition 55
stored 54
StrField 57
TextField 57

FieldType 55
file formats 32
files, common formats 32
find() 121
findFocusNounPhrase 255
findNameFinderModels() 222
FloatField 57
F-measure 129

relationship extraction 272

focus group 71
folksonomies 228
Frankenstein 5, 8
fuzzy string matching 84, 114

building applications
for 100, 114

character overlap
measures 86, 89

edit distance measures 89,
92

Jaccard measure 87–88
Jaro-Winkler distance 88
n-grams 99–100
prefix matching 94–95
query spell-checking 105,

109
record matching 109, 114
Tanimoto coefficient 88
tries 95, 99
type-ahead 101, 105

G

GATE 281
gazetteers 118
gerunds 21
getContext() 253
getEnd() 121
getNameFinders() 222
getProbs() 123
getStart() 121
global importance 274
gold standard 148
Google News, clustering 141
GoogleDocumentSource 150
guided search 45
Gutenberg Project 5

H

-hood suffixes 21
HTML 33
HTMLParser 35
HttpSolrServer 235
hyperplanes 179

I

IController 150
idioms 262
importance 273

authoritativeness 274
global importance 274
LexRank 275

PageRank 274
personal importance 275
TextRank 275

In-ClusterDF 161
IndexConfig 195
indexing 6, 41, 43

and Apache Solr 54
and tokenization 42
curl 60
downcasing 42
improving performance 80–

81
indexing prefixes in Apache

Solr 101–102
inverted index 41
stemming 42
stopword removal 42
synonym expansion 42
using XML 58
vocabulary 41
with Apache Solr 57, 62
with Apache Solr and Apache

Tika 59
with SolrJ 58

IndexReader 197
IndexSearcher 197
IndexWriter 190, 195
information retrieval 8
information, categorization 13
-ing suffix 21
InMemoryBayesDatastore 213
input parameters 64, 66
intern() 131
IntField 57
inverted index, vocabulary 41
IProcessingComponent 150
IR. See information retrieval
irregular verbs 20
-ist suffix 21

J

Jaccard measure 87–88
Tanimoto coefficient 88

Jaro-Winkler distance 88
and Apache Lucene 89

Java, Apache Velocity 244
java.text package 22
java.util.regex package 21
JSONResponseWriter 65
JSRE, relationship

extraction 273

292 INDEX
K

kernels 270
bag-of-features kernel 270
context kernel 271
convolution kernel 270

keywords 44
k-fold cross validation 187
K-Means 144, 158

clustering benchmarks 170–
171

convergence delta 159
k-nearest neighbor 190

and MoreLikeThis 193
with Apache Lucene 196

L

labeling, and clustering 146–
147

language modeling 79
Latent Dirichlet Allocation 162

LDAPrintTopics 163
latent semantic indexing 79
laugh test 147
LDA. See Latent Dirichlet

Allocation
LDAPrintTopics 163
Lemur 82
Levenshtein distance 89, 91

and Apache Lucene 92
Damerau-Levenshtein

distance 91
lexeme 20
LexRank 275
Lextor 262
like() 198
Lingo 149, 167–168
LingoClusteringAlgorithm 150
log-likelihood ratio 161, 224
LogUpdateProcessorFactory

212
lowercasing 75
LuceneDocumentSource 150
LuceneQParser 65
Luke 63, 204
LukeRequestHandler 63

M

machine learning 79
machine translation 283
mail archives, converting to

vectors 168

MailArchivesClustering-
Analyzer 169

main() 133
MALLET 281
Managing Gigabytes for Java 82
Manhattan distance 146
Mannix, Jake 166
Many Aspects Document

Summarization 266
MaxEnt 249
maximum entropy 215, 226

in production 225
preparing training data 219
regression models 216
testing the categorizer 224
training the categorizer 220

MEAD 267
-ment suffix 21
MG4J 82
Microsoft Office 32
Minion 82
modeling

n-gram modeling 30
sequence modeling 30–31

modelNameFromFile() 222
models

altering inputs 134, 136
creating data sets for

training 132
memory usage 131
modeling by entity type 136,

138
training 132–133

ModelUtil.createTraining-
Parameters 134

Mood Watch 276
More Like This 63
MoreLikeThis 191, 197, 199

and k-nearest neighbor 193
and TF-IDF 193
categorizer 197, 199
testing 199, 201
training data 191, 193

MoreLikeThis.like() 198
MoreLikeThisHandler 63, 234
MoreLikeThisQuery 191, 234
MoreLikeThisRequest 235
MorphAdorner 264
morphology 20–21

lexeme 20
MUC-7 129
multidocument summarization

266
mutual information 274

N

naive Bayes 202, 204
conditional probability 203
integrating with Apache

Solr 212, 215
SplitBayesInput 207
testing classifiers 209–210
training classifiers 208–209
training data 204, 207
See also Bayes’ Theorem

name finder API 215
NameContextGenerator 136
named entities 115, 139

and OpenNLP 119, 123
identifying multiple

types 123, 126
identifying using rules 117–

118
overlapping 123, 125
resolving conflicts 125
statistical classifiers 118–119
tagging 118–119

named-entity recognition 115,
139, 270

altering modeling input 134,
136

approaches 117, 119
caching 130
continue tag 126
customizing for new domains

132, 138
features 127
F-measure 129
how OpenNLP works 126,

128
in-depth 123, 128
memory usage 131–132
modeling by entity type 136,

138
models 131
name-based approach 117–

118
non-overlapping entities 137
other tag 126
performance 128, 132
quality of results 129
resolving conflicts 125
runtime performance 130
Spans 126
start tag 126
statistical classifiers 118–119
tagging 118–119
token classes 128
training models 132–133

293INDEX
named-entity recognition
(continued)

using multiple models 123,
126

with OpenNLP 119, 123
NameFilter 245, 251
NameFilterFactory 246
NameFinderEventStream 136
NameFinderFactory 223
NameFinderFactory.getName-

Finders() 222
NameFinderFeatureGenerator

221, 226
NameFinderME 121, 135, 223
names

finding based on
probability 122–123

finding with OpenNLP 120–
121

finding with statistical
classifiers 118–119

interpreting with
OpenNLP 121–122

NameSampleDataStream 134
NameSampleStream 133
natural language processing 8

cross-language information
retrieval 282

determining importance 273
discourse 263
opinion mining 276
pragmatics 264
question answering system

240, 259
relationship extraction 268
semantics 262
sentiment analysis 276

NER. See named-entity recogni-
tion

-ness suffix 21
neural networks 79
n-gram analysis 76
n-gram edit distance 92, 94

affixing 92, 94
enhancements to 92, 94
in Apache Lucene 93
partial credit 93

n-gram matching, in Apache
Solr 100

n-gram modeling 30
n-gram token filter, in Apache

Lucene 100
n-grams 30

and fuzzy string
matching 99–100

candidate ranking 258
n-gram edit distance 92, 94
n-gram matching in Apache

Solr 100
n-gram token filter 94
word-based 194
See also n-gram analysis

NLP. See natural language pro-
cessing

NLTK, relationship extraction
273

nouns 18, 24
common nouns 19
noun phrases 19
nouns based on verbs 20
plurals 20
pronouns 19
proper nouns 19
suffixes 20

numbers, tokenizing 22

O

online learning 202
open source, preprocessing

tools 32
OpenCyc 265
OpenNLP

categorization with 215, 226
contexts 218
co-reference resolution 264
english.Tokenizer 23
MaxEnt classifier 249
name finder API 215
outcomes 218
Parser 29
predicates 218
question answering system

245
relationship extraction 270
sentence detection 28
SimpleTokenizer 23

OpenNLP Maximum Entropy
Tagger 24

OpenNLP Parser 29
See also Apache OpenNLP

opennlp.maxent 134
opinion mining 276

advanced topics 280
aggregating opinions 281
Balie 281
conditional random fields

280
Dictionary of Affective

Language 278

GATE 281
heuristics-driven approach

277
MALLET 281
Mood Watch 276
sentiment polarity 279
sentiment-topic models 281
supervised learning

technique 277
tools 278
unsupervised approach 277
WordNet-Affect 278

org.apache.lucene.analy-
sis.ngram.EdgeNGram-
TokenFilter 94

org.apache.lucene.analysis
.ngram.NGramTokenFilter
100

org.apache.lucene.search.spell
.JaroWinklerDistance 89

org.apache.lucene.search.spell
.LevensteinDistance 92

org.apache.lucene.search.spell
.NgramDistance 93

org.apache.lucene.search.spell
.StringDistance 107

org.apache.mahout.clustering
.kmeans.KMeansDriver
158

org.apache.mahout.matrix
.DenseVector 155

org.apache.mahout.matrix
.SparseVector 155

org.apache.mahout.matrix
.Vector 155

org.apache.mahout.utils
.clustering.ClusterDumper
159

org.apache.mahout.utils
.ClusterLabels 159

org.apache.mahout.utils
.SequenceFileDumper
159

org.apache.mahout.utils.vector
.lucene.Driver 157

org.apache.mahout.utils
.vectors.io.SequenceFile-
VectorWriter 156

org.apache.mahout.utils
.vectors.VectorDumper
159

org.apache.solr.analysis.NGram-
FilterFactory 100

org.apache.solr.spelling.Solr-
SpellChecker 109

294 INDEX
org.apache.solr.update
.processor.UpdateRequest-
ProcessorChain 212

other tag 126
Out-ClusterDF 161
outcomes 218

P

packages
java.text 22
java.util.regex 21

PageRank 274
parallel corpora 282
Parser 252
Parser class 34
ParserTagger 252
parsing 28, 30

Apache Tika Parser class 34
AutoDetectParser 34
chunking 251–252
deep parsing 251–252
HTMLParser 35
OpenNLP Parser 29
shallow versus deep 29

parts of speech 18–19, 252
adjectives 18
adverbs 18
conjunctions 18
determiners 18
nouns 18
OpenNLP Maximum

Entropy Tagger 24
Penn Treebank Project 24
prepositions 18
tagging 24–25, 278
tagging during tokenization

23
tools for identifying 24–25
verbs 18

past participle 21
past tense 21
PDF 33
Penn Treebank Project 24
performance

caching 81
clustering 164, 172
clustering benchmarks 168,

172
external knowledge 75, 77
feature reduction 164, 167
feature selection 164, 167
F-measure 129
hardware improvements 74–

75

improving indexing
performance 80–81

improving search
performance 74, 81

improving Solr
performance 80–81

K-Means 170–171
lowercasing 75
memory usage 131–132
modeling by entity type 137
n-gram analysis 76
of Carrot2 167–168
of OpenNLP 128, 132
quality of results 129
query performance

improvements 76, 78
replication 74, 81
runtime 130
search 69, 73
search analysis

improvements 75–76
sharding 74
stemming 75
synonym expansion 75
user training 77

personal importance 275
PHPResponseWriter 65
PHPSerializedResponseWriter

65
phrase queries 44
phrases 19–20

adjective phrases 19
adverb phrases 19
conjunction phrases 19
noun phrases 19
phrase types 19
prepositional phrases 20
verb phrases 20
See also clauses

piggybacking 216
plurals 20
PooledTokenNameFinder-

Model 222
pragmatics 264

CIA Factbook 265
OpenCyc 265
WordNet 265

precision 70
relationship extraction 272

predicates 218
prefix matching 94–95

tries 95, 99
preparation phase 180
prepositional phrases 20
prepositions 18

preprocessing 31, 36
commercial tools 32
importance of 31, 33
open source tools 32
with Apache Tika 33, 36

PreviousMapFeatureGenerator
135

probabilistic models 79
pronouns 19, 24
proper names. See named

entities
proper nouns 19
punctuation, and tokenization

22
PythonResponseWriter 65

Q

QParser 247, 249
QParserPlugin 247, 249
quality, Carrot2 167–168
queries

generating 255–256
ranking candidates 256, 258

query parsers 65–66
DismaxQueryParser 65
LuceneQParser 65

query spell-checking 105, 109
document boost 108
probability 105–106
ranking suggestions 105–106
with Apache Solr 106, 108
See also Did You Mean; fuzzy

string matching
QueryResponseWriter 54, 65,

103
JSONResponseWriter 65
PHPResponseWriter 65
PHPSerializedResponse-

Writer 65
PythonResponseWriter 65
RubyResponseWriter 65
XSLTResponseWriter 65

question answering application
4, 8

question answering system 240,
259

and Apache Solr 245
and OpenNLP 245
answer type 248
architecture 245, 247
basics 242–243
chunking 251–252
determining answer

type 252, 255

295INDEX
question answering system
(continued)

generating queries 255–256
installing 243–244
parsing 246
ranking candidates 256, 258
scoring returned documents

246
supported answer types 248
Watson DeepQA 242
ways to improve 258

questions, answering 4, 8

R

RandomSeedGenerator 170
ranking 256, 258

bigram bonus 258
RE. See relationship extraction
recall 70

relationship extraction 272
recommendation, versus

classification 230
record matching 109, 114

evaluating results 112, 114
ranking matches 111
with Apache Solr 110–111

regression models 216
correction constant 217

regular expressions 21, 45
relation characterization 272
relation identification 272
relations. See relationship

extraction
relationship extraction 268

approaches to 270
Automatic Content Extrac-

tion 272
bootstrapping 271
evaluation 272
feature-based methods 270
F-measure 272
JSRE 273
kernel-based methods 270
named-entity recognition

270
NTLK 273
precision 272
relation characterization 272
relation identification 272
seeds 271
semisupervised approaches

271
supervised approaches 270
T-Rex 268, 273

unsupervised
approaches 272

relevance 69, 73
A/B testing 72
evaluation techniques 70
focus group 71
precision 70
query log analysis 71–72
recall 70
relevance feedback 78
relevance judgments 72

replication 74, 81
RequestHandler 151
ResultAnalyzer 200, 225
rich text 33
RubyResponseWriter 65
RunUpdateProcessorFactory

212

S

-s suffix 21
S3 Native protocol 169
schemas, designing for Apache

Solr 56–57
search 11, 14, 37, 83

A/B testing 72
alternate scoring models 79
alternatives to Solr 82–83
analysis improvements

75–76
and Amazon.com 38, 40
Apache Solr 52, 57
average query time 73
Boolean operators 44
cache statistics 73
categories 38, 40
categorization 13
clustering 13, 50
clustering results 142, 144
clustering results with

Carrot2 149, 154
displaying results 49, 51
distributed 81
document ranking 46, 49
document throughput 73
evaluation techniques 70
external knowledge 75, 77
extracting information 13
faceted browsing 38, 40
for similar documents 45
guided 45
hardware improvements

74–75

improving performance 74,
81

index size 73
indexing 41, 43
keyword queries 44
lowercasing 75
More Like This 63
n-gram analysis 76
number of documents in

index 73
number of unique terms 73
operators 46
performance 69, 73
phrase queries 44
popularity versus time 73
precision 70
quality 69, 73
quantity 73
query log analysis 71–72
query performance

improvements 76, 78
query spell-checking 105, 109
query throughput 73
query types 46
recall 70
regular expressions 45
relevance 69, 73
replication 74
searching and matching 12
searching content with

Apache Solr 63, 69
sharding 74
stemming 75
stopword removal 75
structured queries 45
synonym expansion 75
type-ahead 101, 105
user input 43, 46
vector space model 46, 49
weighting schemes 48
wildcards 45

SearchComponent 151, 247
semantics 262

statistically interesting/
improbable phrases 262

SenseClusters 262
sentence detection 27–28

BreakIterator class 27
with OpenNLP 28

sentence ordering 267
sentence realization 267
SentenceTokenizer 245
sentiment analysis 276

advanced topics 280
affective rating 277

296 INDEX
sentiment analysis (continued)
aggregating opinions 281
Balie 281
conditional random fields

280
Dictionary of Affective Language

278
GATE 281
heuristics-driven approach

277
history of 276
MALLET 281
Mood Watch 276
sentiment polarity 279
sentiment-topic models 281
subjectivity analysis 276
supervised learning tech-

nique 277
tools 278
unsupervised approach 277
WordNet-Affect 278

sentiment polarity 279
sentiment-topic models 281
Sequence files 208
sequence modeling 30–31

window size 30
SequenceFile format 156
SequenceFiles 168
shallow parsing 29
sharding 74
ShingleAnalyzer 197
ShingleAnalyzerWrapper 194
similarity coefficient. See Jac-

card measure
SimpleController 150
SimpleTokenizer 23, 220, 226
singular value decomposition

165
SIPs See statistically interesting/

improbable phrases
smell test 147
Snowball stemmers 26
SolrJ 58
SolrQueryResponse 54
SolrRequestHandler 54, 63

and faceted browsing 67
input parameters 64, 66
LukeRequestHandler 63
MoreLikeThisHandler 63
StandardRequestHandler 63

SpanNearQuery 255
SpanOrQuery 256
SpanQuery 255
Spans 126
spansToStrings() 122

spatial techniques 189
specificity 186
SpellCheckComponent 109
spell-checking 108
Sphinx 82
SplitBayesInput 207
Stack Overflow 229

collection 184
extractStackOverflow 231

StackOverflowPost 237
StackOverflowStream 237
StackOverflowTagTransformer

232
StandardRequestHandler 63
StandardTokenizer 22, 27
start tag 126
statistical classifiers 118–119
statistically interesting/improb-

able phrases 262
STC. See suffix tree clustering
STCClusteringAlgorithm 150
stemming 23, 25, 27, 42, 75

Snowball stemmers 26
stopword removal 75
stopwords 42, 165

filtering during tokenization
23

StrField 57
String class 22
string manipulation tools 21
string matching

fuzzy 84, 114
prefix matching 94–95
record matching 109, 114
tries 95, 99

StringBuilder class 22
strings

fuzzy matching 84, 114
prefix matching 94–95
tools for manipulating 21

structured queries 45
subjectivity analysis. See senti-

ment analysis; opinion
mining

suffix tree clustering 149, 167–
168

suffixes 20
-al 21
-ation 21
-dom 21
-ed 21
-ee 21
-en 20–21
-er 21
-est 21

-hood 21
-ing 21
-ist 21
-ment 21
-ness 21
-s 21
-th 21
-ure 21

summarization 266
content selection 267
MEAD 267
sentence ordering 267
sentence realization 267
Texlexan 268

supervised learning 176
support vector machines 179
surprise 274
synonym expansion 42, 75
syntax

clauses 19–20
parts of speech 18–19
phrases 19–20

T

tagging
approaches to 227
continue tag 126
delicious.com 228
evaluating recommended

tags 236, 238
folksonomies 228
in named-entity recognition

118–119
in OpenNLP 126
OpenNLP Maximum

Entropy Tagger 24
other tag 126
part of speech 24–25, 252
part of speech tagging 278
preparing training data 231–

232
recommending tags 234, 236
social tagging 227
start tag 126
tag recommender in

Solr 227, 238
taxonomies 227
training a tag recommender

232, 234
training data for tag recom-

mender 229, 231
TagRecommenderClient 234,

237

297INDEX
Tanimoto coefficient 88
taxicab distance 146
taxonomies 227
term frequency 191
term frequency-inverse docu-

ment frequency model 48,
190

and MoreLikeThis 193
term vectors 257
terms. See tokens
test data 207

20 Newsgroups collection
184, 192, 200

testing 11
testing phase 181
TestMaxent 220, 224
TestStackOverflow 237
testStackOverflow 237
Texlexan 268
text

common file formats 32
comprehension 8, 10
context 8, 10
email 33
extracting with Apache

Tika 33, 36
Frankenstein 5, 8
from databases 33
preprocessing 31, 36
rich text 33
time spent reading 3
tokenization 22, 24
See also text analytics and

mining
text analytics and mining

and search 11, 14
categorization 13
challenges of 9
character level 9
clustering 13
comprehension 8, 10
corpus level 9
document level 9
extracting information 13
Frankenstein 5, 8
identifying user needs 10
importance of 2, 4
paragraph level 9
preprocessing 31, 36
question answering applica-

tion 4, 8
sentence level 9
word level 9

text processing
preprocessing 31, 36
tools 21, 31

TextField 57
TextRank 275
TextTiling 264
TF-IDF

and categorization 182
See also term frequency-

inverse document fre-
quency model

-th suffix 21
token classes 128
TokenClassFeatureGenerator

135
TokenFeatureGenerator 135
TokenFilter 55
tokenization 22, 24, 42

abbreviations 23
acronyms 22–23
by token class 23
contractions 23
email addresses 22
english.Tokenizer 23
filtering out stopwords 23
lowercasing tokens 23
numbers 22
part of speech tagging 23
punctuation 22
SentenceTokenizer 245
SimpleTokenizer 23
splitting at word breaks 22
StandardTokenizer 22, 27
stemming 23
training a new model 132
URLs 22
writing your own tokenizer

class 135
tokenizePos() 122
Tokenizer 55
TokenPatternFeatureGenerator

135
tokens 22, 24

lowercasing 75
See also terms

tools 21, 31
Apache Tika 33, 36
commercial preprocessing

tools 32
for parsing 28, 30
for sentence detection 27–28
for sequence modeling 30–

31
for stemming 25, 27
for string manipulation 21
for tokenization 22, 24
identifying part of

speech 24–25

open source preprocessing
tools 32

OpenNLP Maximum
Entropy Tagger 24

OpenNLP Parser 29
OpenNLP sentence detec-

tion 28
regular expressions 21

topic 281
topic modeling 143, 162, 164

Latent Dirichlet Allocation
162

train method 134
training

data sets for 132
modeling by entity type 137
models 132–133

training data 177
20 Newsgroups collection

184, 192, 200
and Amazon Mechanical

Turk 185
bootstrapping 207
crawling for 185
ExtractTrainingData 210
extractTrainingData 205
for answer types 248, 251
for MoreLikeThis 191, 193
for naive Bayes 204, 207
for tag recommendation

229, 231
human judgments as 185
importance of 183, 186
improved bootstrapping

210, 212
preparing 231–232
preparing for maximum

entropy 219
SplitBayesInput 207
splitting into training and

test sets 187
Stack Overflow 229

collection 184
test collections 184
withholding test data 207

training phase 180
TrainMaxent 220
transformRow 233
TreebankChunker 252
T-Rex 268, 273
tries 95, 99

Apache Solr 99
implementing 95, 98

trigrams. See n-grams
true negative 186

298 INDEX
true positive 186
Type I errors. See false positive
Type II errors. See false negative
type-ahead 101, 105

indexing prefixes 101–102
populating the search

box 104–105
query spell-checking 105, 109

U

unigrams. See n-grams
UpdateRequestProcessor 212
-ure suffix 21
URLs, tokenizing 22
user input 43, 46
user training 77

V

vector space model 46, 49
alternative scoring models 79

vectors 155, 158
ARFF format 155
dense 155
feature vectors 189
from Apache Lucene

index 155–156, 158
preparing 168
programmatic 155–156
sparse 155

term vectors 257
vectorizing content 168, 170
Weka format 155
See also vector space model

VelocityResponseWriter 244
verb forms 20
verbs 18, 24

base form 21
gerund form 21
irregular 20
nouns based on verbs 20
past participle 21
past tense 21
third person singular 21
verb forms 20
verb phrases 20

vocabulary 41

W

Watson DeepQA 242
weighting 79

based on frequency 88
edit distance 91

weighting schemes 48
Weka 155
WhitespaceAnalyzer 193
wildcards 45
window size 30

See also n-gram modeling
WindowFeatureGenerator 136

word sense disambiguation 9,
262

Apache Mahout 263
Lextor 262
SenseClusters 262
WordNet 262

WordNet 250, 262
pragmatic processing 265

WordNet-Affect 278
words, clustering 142, 144
WSD. See word sense disambigu-

ation

X

XML 33
and SolrJ 58
indexing with 58

XMLResponseWriter 65
XPathEntity 232
XSLTResponseWriter 65

Y

YahooDocumentSource 150

Z

Zettair 82

	Taming Text
	brief contents
	contents
	foreword
	preface
	acknowledgments
	Grant Ingersoll
	Tom Morton
	Drew Farris

	about this book
	Who should read this book
	Roadmap
	Code conventions and downloads
	Author Online

	about the cover illustration
	1 Getting started taming text
	1.1 Why taming text is important
	1.2 Preview: A fact-based question answering system
	1.2.1 Hello, Dr. Frankenstein

	1.3 Understanding text is hard
	1.4 Text, tamed
	1.5 Text and the intelligent app: search and beyond
	1.5.1 Searching and matching
	1.5.2 Extracting information
	1.5.3 Grouping information
	1.5.4 An intelligent application

	1.6 Summary
	1.7 Resources

	2 Foundations of taming text
	2.1 Foundations of language
	2.1.1 Words and their categories
	2.1.2 Phrases and clauses
	2.1.3 Morphology

	2.2 Common tools for text processing
	2.2.1 String manipulation tools
	2.2.2 Tokens and tokenization
	2.2.3 Part of speech assignment
	2.2.4 Stemming
	2.2.5 Sentence detection
	2.2.6 Parsing and grammar
	2.2.7 Sequence modeling

	2.3 Preprocessing and extracting content from common file formats
	2.3.1 The importance of preprocessing
	2.3.2 Extracting content using Apache Tika

	2.4 Summary
	2.5 Resources

	3 Searching
	3.1 Search and faceting example: Amazon.com
	3.2 Introduction to search concepts
	3.2.1 Indexing content
	3.2.2 User input
	3.2.3 Ranking documents with the vector space model
	3.2.4 Results display

	3.3 Introducing the Apache Solr search server
	3.3.1 Running Solr for the first time
	3.3.2 Understanding Solr concepts

	3.4 Indexing content with Apache Solr
	3.4.1 Indexing using XML
	3.4.2 Extracting and indexing content using Solr and Apache Tika

	3.5 Searching content with Apache Solr
	3.5.1 Solr query input parameters
	3.5.2 Faceting on extracted content

	3.6 Understanding search performance factors
	3.6.1 Judging quality
	3.6.2 Judging quantity

	3.7 Improving search performance
	3.7.1 Hardware improvements
	3.7.2 Analysis improvements
	3.7.3 Query performance improvements
	3.7.4 Alternative scoring models
	3.7.5 Techniques for improving Solr performance

	3.8 Search alternatives
	3.9 Summary
	3.10 Resources

	4 Fuzzy string matching
	4.1 Approaches to fuzzy string matching
	4.1.1 Character overlap measures
	4.1.2 Edit distance measures
	4.1.3 N-gram edit distance

	4.2 Finding fuzzy string matches
	4.2.1 Using prefixes for matching with Solr
	4.2.2 Using a trie for prefix matching
	4.2.3 Using n-grams for matching

	4.3 Building fuzzy string matching applications
	4.3.1 Adding type-ahead to search
	4.3.2 Query spell-checking for search
	4.3.3 Record matching

	4.4 Summary
	4.5 Resources

	5 Identifying people, places, and things
	5.1 Approaches to named-entity recognition
	5.1.1 Using rules to identify names
	5.1.2 Using statistical classifiers to identify names

	5.2 Basic entity identification with OpenNLP
	5.2.1 Finding names with OpenNLP
	5.2.2 Interpreting names identified by OpenNLP
	5.2.3 Filtering names based on probability

	5.3 In-depth entity identification with OpenNLP
	5.3.1 Identifying multiple entity types with OpenNLP
	5.3.2 Under the hood: how OpenNLP identifies names

	5.4 Performance of OpenNLP
	5.4.1 Quality of results
	5.4.2 Runtime performance
	5.4.3 Memory usage in OpenNLP

	5.5 Customizing OpenNLP entity identification for a new domain
	5.5.1 The whys and hows of training a model
	5.5.2 Training an OpenNLP model
	5.5.3 Altering modeling inputs
	5.5.4 A new way to model names

	5.6 Summary
	5.7 Further reading

	6 Clustering text
	6.1 Google News document clustering
	6.2 Clustering foundations
	6.2.1 Three types of text to cluster
	6.2.2 Choosing a clustering algorithm
	6.2.3 Determining similarity
	6.2.4 Labeling the results
	6.2.5 How to evaluate clustering results

	6.3 Setting up a simple clustering application
	6.4 Clustering search results using Carrot 2
	6.4.1 Using the Carrot 2 API
	6.4.2 Clustering Solr search results using Carrot 2

	6.5 Clustering document collections with Apache Mahout
	6.5.1 Preparing the data for clustering
	6.5.2 K-Means clustering

	6.6 Topic modeling using Apache Mahout
	6.7 Examining clustering performance
	6.7.1 Feature selection and reduction
	6.7.2 Carrot2 performance and quality
	6.7.3 Mahout clustering benchmarks

	6.8 Acknowledgments
	6.9 Summary
	6.10 References

	7 Classification, categorization, and tagging
	7.1 Introduction to classification and categorization
	7.2 The classification process
	7.2.1 Choosing a classification scheme
	7.2.2 Identifying features for text categorization
	7.2.3 The importance of training data
	7.2.4 Evaluating classifier performance
	7.2.5 Deploying a classifier into production

	7.3 Building document categorizers using Apache Lucene
	7.3.1 Categorizing text with Lucene
	7.3.2 Preparing the training data for the MoreLikeThis categorizer
	7.3.3 Training the MoreLikeThis categorizer
	7.3.4 Categorizing documents with the MoreLikeThis categorizer
	7.3.5 Testing the MoreLikeThis categorizer
	7.3.6 MoreLikeThis in production

	7.4 Training a naive Bayes classifier using Apache Mahout
	7.4.1 Categorizing text using naive Bayes classification
	7.4.2 Preparing the training data
	7.4.3 Withholding test data
	7.4.4 Training the classifier
	7.4.5 Testing the classifier
	7.4.6 Improving the bootstrapping process
	7.4.7 Integrating the Mahout Bayes classifier with Solr

	7.5 Categorizing documents with OpenNLP
	7.5.1 Regression models and maximum entropy document categorization
	7.5.2 Preparing training data for the maximum entropy document categorizer
	7.5.3 Training the maximum entropy document categorizer
	7.5.4 Testing the maximum entropy document classifier
	7.5.5 Maximum entropy document categorization in production

	7.6 Building a tag recommender using Apache Solr
	7.6.1 Collecting training data for tag recommendations
	7.6.2 Preparing the training data
	7.6.3 Training the Solr tag recommender
	7.6.4 Creating tag recommendations
	7.6.5 Evaluating the tag recommender

	7.7 Summary
	7.8 References

	8 Building an example question answering system
	8.1 Basics of a question answering system
	8.2 Installing and running the QA code
	8.3 A sample question answering architecture
	8.4 Understanding questions and producing answers
	8.4.1 Training the answer type classifier
	8.4.2 Chunking the query
	8.4.3 Computing the answer type
	8.4.4 Generating the query
	8.4.5 Ranking candidate passages

	8.5 Steps to improve the system
	8.6 Summary
	8.7 Resources

	9 Untamed text: exploring the next frontier
	9.1 Semantics, discourse, and pragmatics: exploring higher levels of NLP
	9.1.1 Semantics
	9.1.2 Discourse
	9.1.3 Pragmatics

	9.2 Document and collection summarization
	9.3 Relationship extraction
	9.3.1 Overview of approaches
	9.3.2 Evaluation
	9.3.3 Tools for relationship extraction

	9.4 Identifying important content and people
	9.4.1 Global importance and authoritativeness
	9.4.2 Personal importance
	9.4.3 Resources and pointers on importance

	9.5 Detecting emotions via sentiment analysis
	9.5.1 History and review
	9.5.2 Tools and data needs
	9.5.3 A basic polarity algorithm
	9.5.4 Advanced topics
	9.5.5 Open source libraries for sentiment analysis

	9.6 Cross-language information retrieval
	9.7 Summary
	9.8 References

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

