

THE
COMPLETE
BOOK OF

MIDDLEWARE

ABCs of IP Addressing
Gilbert Held
ISBN: 0-8493-1144-6

Application Servers for E-Business
Lisa M. Lindgren
ISBN: 0-8493-0827-5

Architectures for E-Business Systems
Sanjiv Purba, Editor
ISBN: 0-8493-1161-6

A Technical Guide to IPSec Virtual
Private Networks
James S. Tiller
ISBN: 0-8493-0876-3

Building an Information Security
Awareness Program
Mark B. Desman
ISBN: 0-8493-0116-5

Computer Telephony Integration
William Yarberry, Jr.
ISBN: 0-8493-9995-5

Cyber Crime Investigator’s
Field Guide
Bruce Middleton
ISBN: 0-8493-1192-6

Cyber Forensics:
A Field Manual for Collecting,
Examining, and Preserving Evidence
of Computer Crimes
Albert J. Marcella and Robert S. Greenfield,
Editors
ISBN: 0-8493-0955-7

Information Security Architecture
Jan Killmeyer Tudor
ISBN: 0-8493-9988-2

Information Security Management
Handbook, 4th Edition, Volume 1
Harold F. Tipton and Micki Krause, Editors
ISBN: 0-8493-9829-0

Information Security Management
Handbook, 4th Edition, Volume 2
Harold F. Tipton and Micki Krause, Editors
ISBN: 0-8493-0800-3

Information Security Management
Handbook, 4th Edition, Volume 3
Harold F. Tipton and Micki Krause, Editors
ISBN: 0-8493-1127-6

Information Security Policies,
Procedures, and Standards:
Guidelines for Effective Information
Security Management
Thomas Peltier
ISBN: 0-8493-1137-3

Information Security Risk Analysis
Thomas Peltier
ISBN: 0-8493-0880-1

Information Technology Control
and Audit
Frederick Gallegos, Sandra Allen-Senft,
and Daniel P. Manson
ISBN: 0-8493-9994-7

New Directions in Internet
Management
Sanjiv Purba, Editor
ISBN: 0-8493-1160-8

New Directions in Project Management
Paul C. Tinnirello, Editor
ISBN: 0-8493-1190-X

A Practical Guide to Security
Engineering and Information
Assurance
Debra Herrmann
ISBN: 0-8493-1163-2

The Privacy Papers:
Managing Technology and Consumers,
Employee, and Legislative Action
Rebecca Herold
ISBN: 0-8493-1248-5

Secure Internet Practices:
Best Practices for Securing Systems
in the Internet and e-Business Age
Patrick McBride, Joday Patilla, Craig Robinson,
Peter Thermos, and Edward P. Moser
ISBN: 0-8493-1239-6

Securing and Controlling Cisco Routers
Peter T. Davis
ISBN: 0-8493-1290-6

Securing E-Business Applications and
Communications
Jonathan S. Held and John R. Bowers
ISBN: 0-8493-0963-8

Securing Windows NT/2000:
From Policies to Firewalls
Michael A. Simonyi
ISBN: 0-8493-1261-2

TCP/IP Professional Reference Guide
Gilbert Held
ISBN: 0-8493-0824-0

AUERBACH PUBLICATIONS
www.auerbach-publications.com

To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401
E-mail: orders@crcpress.com

OTHER AUERBACH PUBLICATIONS

AUERBACH PUBLICATIONS

A CRC Press Company

Boca Raton London New York Washington, D.C.

THE
COMPLETE
BOOK OF

MIDDLEWARE
JUDITH M. MYERSON

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been
made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the
validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system,
without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new
works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the Auerbach Web site at www.auerbach-publications.com

© 2002 by CRC Press LLC
Auerbach is an imprint of CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1272-8

Library of Congress Card Number 2002016475

Library of Congress Cataloging-in-Publication Data

Myerson, Judith M.
The complete book of Middleware / Judith M. Myerson.

p. cm.
ISBN 0-8493-1272-8 (alk. paper)
1. Middleware. 2. Electronic data processing—Distributed processing. I. Title.

QA76.76.A65 M94 2002
005.7

′

13—dc21 2002016475
 CIP

AU1272 FM Page iv Wednesday, January 30, 2002 10:01 AM

This edition published in the Taylor & Francis e-Library, 2005.

collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.”
“To purchase your own copy of this or any of Taylor & Francis or Routledge’s

ISBN 0-203-97285-6 Master e-book ISBN

v

Contents

Introduction

... xv

1

Distributed Transaction and Messaging Middleware

.............. 1
Remote Procedure Call .. 1

RPC Model .. 1
Port Mapper .. 2
RPC Layers .. 2
RPC Features... 3
XML-RPC ... 4
Microsoft RPC Facility .. 5
The Stubs .. 6
OSF Standards for RPC .. 7
Microsoft RPC Components... 7

Microsoft Messaging Queuing... 8
Writing Applications ... 8
MSMQ Features .. 9
Microsoft Queued Components .. 10
When the Network Goes Down... 12

Distributed Processing Middleware .. 12
Unisys’ Distributed Processing Middleware 13
BEA Tuxedo.. 15
BEA Tuxedo/Q Component .. 18

IBM MQSeries... 19
MQSeries Family... 20
Application Programs and Messaging... 22
Queue Managers .. 23
Commercial Messaging .. 24
MQSeries Internet Pass-Thru ... 25
CICS and MQSeries .. 26
MQSeries JMS Support ... 26

AU1272 FM Page v Wednesday, January 30, 2002 10:01 AM

vi

The Complete Book of Middleware

2

Object-Oriented Middleware: CORBA 3

.................................... 29
Introduction .. 29
CORBA Release Summary ... 30
Organizational Structure .. 31
What Is New? CORBA 3.. 32

Improved Integration with Java and the Internet 33
Quality of Service Control ... 35
The CORBA Component Model.. 36
CCM Development Stages ... 37
CCM Extensions to OMG IDL ... 37
Component Usage Patterns ... 38
Container Programming Model ... 39
Integration with Enterprise JavaBeans.. 39

CORBA Object Services ... 40
Accessing Object Services.. 40
OpenORB.. 43

Other Supporting Facilities.. 44
OMG Technology Committee ... 44
Work-in-Progress Status ... 46
Modeling Specifications ... 46

MDA Inner Core... 51
MDA Middle Core .. 52
MDA Outer Core .. 53
UML Profiles, PIM, and PSMs.. 54
Additional Specifications.. 55
IDL Specified Models ... 55
Bridging Platforms.. 56
Extensions to IDL... 56

3

Microsoft’s Stuff

... 57
Introduction .. 57
.NET Architecture ... 58

Multi-Platform Development ... 59
What .NET Is Not... 59
Some Advantages ... 60
Web Services... 61
.NET Architecture ... 61
Building the .NET Platform ... 62
.NET Enterprise Servers ... 63
Microsoft Content Management Server 2001 63
.NET Framework Security Policy .. 65

Evidence-Based Security .. 66
Role-Based Security .. 67
Authentication and Authorization ... 67

AU1272 FM Page vi Wednesday, January 30, 2002 10:01 AM

vii

Isolated Storage .. 68
Cryptography .. 68
Benefits to Users and Developers .. 69

Open.NET ... 69
SOAP ... 69
Microsoft Transaction Server ... 73
MSMQ in Windows XP.. 74
Windows 2000 Datacenter... 76

Windows Clustering ... 76
Enterprise Memory Architecture.. 77
Winsock Direct ... 78

Windows 2000 Advanced Server .. 78
Increasing Server Performance.. 79
Increasing Server Availability .. 79
SMP and Advanced Memory Management 79
Windows 2000 Clustering Technologies..................................... 80

Cluster Service .. 80
Network Load Balancing ... 81

Windows 2000 Family Management Services 82
Microsoft Management Strategy .. 83

4

Ever-Expanding Java World

.. 85
Introduction .. 85
Enterprise JavaBeans.. 85

Inside Enterprise Beans ... 86
The Container ... 87
Enterprise Bean Types... 88
Passivation and Activation... 90
CORBA Component Model ... 90
AlphaBean Examples ... 91
OpenEJB and CVS.. 91

Java 2 Enterprise Edition... 92
Integration with Legacy, ERP, CRM, and SCM Applications...........92
Oracle9

i

 AS Containers for J2EE... 95
Configuring and Assembling J2EE Applications 96
Enterprise Servlets with J2EE .. 98
J2EE Security Model for OC4J... 99
RMI and Tunneling Services ... 100

Java Messaging Service.. 100
Messaging Domains ... 100

Point-to-Point .. 101
Publish/Subscribe ... 102

EJB 2.0: Message-Driven Beans .. 102
OpenJMS ... 103

AU1272 FM Page vii Wednesday, January 30, 2002 10:01 AM

viii

The Complete Book of Middleware

Java Naming and Directory Interface... 103
Naming Systems and Services ... 104

DNS.. 104
CORBA and RMI... 104
Directory Services... 104

JNDI Architecture ... 105
The Naming Package... 106
The Directory Package .. 106
JNDI 1.2 .. 107

Java Media Framework.. 107
Java APIs: XML Messaging, XML Parsing, and Data Binding 108

The Java API for XML Messaging ... 108
The Java API for XML Parsing .. 109
The Java API for Data Binding... 109

JXTA Project.. 109
JavaSpaces and Jini Technologies... 110

5

Web Services: Hot Stuff

.. 113
Introduction .. 113
Web Services... 114

Defining or Describing Web Services....................................... 114
Comparing Definitions or Descriptions.................................... 116
Web Services Stack... 117
Web Services Architecture (Narrative) 122

Microsoft .NET Web Services .. 122
Sun’s ONE Web Services ... 122
Oracle Web Services .. 123
BEA Web Services .. 124
Hewlett-Packard Web Services .. 124
Borland Web Services .. 125

Emerging Stack Layers ... 125
UDDI Registration .. 126
UDDI Registrars and Services ... 129
Web Services Brokerage .. 129
Workflow Processes ... 131
Versioning of Web Services ... 133

Third-Party Tools.. 134
The Grand Central ... 134
Cape Clear .. 134
Silverstream... 135
IONA Technologies .. 136

Interoperability Test Web Service Description..................... 137
Broker and Supplier Web Service Description 138
Postal Rate Calculator Web Service Description.................. 138

AU1272 FM Page viii Wednesday, January 30, 2002 10:01 AM

ix

Finance Web Service Description ... 138
Electricity Web Service Description 138

6

Database Middleware and Other Stuff

.................................... 157
Introduction .. 157
Data-Level Integration.. 157

WebFOCUS Business Intelligence Suite 158
Integration with Microsoft Tools ... 158
Scalability .. 159
Multi-Analytic Viewpoints .. 159
Java-Based Report Distribution ... 159
Wireless Capabilities... 159
ISO 9000 Certification .. 159
Legacy–Web–ERP Integration .. 159
Development Tools .. 160
Components and Services.. 160

iWay Software: EAI Solutions.. 160
iWay Software: E-Business Integration 160
iWay Software: Mobile E-Business Integration 162
iWay Software: B2B Integration .. 163
iWay Software: E-Commerce Integration.................................. 163

DBMS/SQL Middleware ... 164
Pervasive.SQL Middleware... 164
MERANT Data Connectivity... 165
XML Database Middleware.. 165
Commercial Products ... 166

ActiveX Data Object (ADO): Microsoft 166
Allora: HiT Software... 166
ASP2XML: Stonebroom... 167
Attunity Connect... 167
DB-X: Swift, Inc. .. 167
DB/XML Vision and xPower Transform:
BDI Systems, Inc. (acquired by DataMirror Corp.) 168
Delphi: Borland .. 168
PerXML Smart Transformation System: PerCurrence 168
XML-DB Link: Rogue Wave Software 168
XML Junction and Data Junction Suite................................. 169
XMLShark: infoShark .. 169
XML SQL Utility for Java (Oracle8i Application)................. 169
Net.Data: IBM ... 170

Evaluation-Only Products .. 170
DatabaseDom: IBM .. 170
DataCraft: IBM .. 171

Java-Based Database Middleware ... 171

AU1272 FM Page ix Wednesday, January 30, 2002 10:01 AM

x

The Complete Book of Middleware

Business Sight Framework: Objectmatter 172
CocoBase (Free, Lite, Enterprise): Thought Inc. 172
CocoBase Enterprise Object to Relational Mapping:
Thought Inc. ... 173
DataDirect SequeLink: MERANT ... 173
DB2 Universal Database: IBM... 173
dbANYWHERE Server: Symantec .. 173
DbGen Professional Edition: 2Link Consulting, Inc. 174
Enterprise Component Broker: Information Builders, Inc.......... 174
ExpressLane: XDB Systems.. 174
FastForward: Connect Software... 174
Fresco: Infoscape Inc. .. 175
HiT JDBC/400: HiT Software, Inc. .. 175
HiT JDBC/DB2: HiT Software, Inc. 175
IDS Server: IDS Software... 176
Jaguar CTS: Sybase Inc. ... 176
Javabase/400: Telasoft Data Corporation 176
jConnect for JDBC: Sybase Inc. .. 176
JDBC Developer: Recital Corporation................................... 177
JDBC Lite: Software Synergy ... 177
JdbCache: Caribou Lake Software Inc. 177
jdbcKona: BEA Systems, WebXpress Division 177
JDX: Software Tree... 178
JRB — Java Relational Binding: Ardent Software, Inc. 178
JSQL: Caribou Lake Software Inc.. 178
Jsvr: Caribou Lake Software Inc.. 178
JYD Object Database: JYD Software Engineering Pty Ltd.179
ObjectStore PSE for Java: Object Design Inc. 179
ObjectStore DBMS: Object Design Inc. 179
OpenLink Data Access Drivers for JDBC:
OpenLink Software Inc. ... 179
Oracle Lite: Oracle Corporation .. 180
POET Object Server Suite: POET Software Corporation180
PRO/Enable: Black & White Software Inc. 180
Relational Object Framework: Watershed Technologies...........180
RmiJdbc: GIE Dyade .. 181
SCO SQL-Retriever: SCO.. 181
SOLID JDBC Driver: Solid Information Technology Ltd.181
SOLID Server: Solid Information Technology Ltd. 181
Versant ODBMS: Versant Object Technology 182
VisiChannel (JDBC) Visigenic Software Inc. 182

XML-Enabled Databases .. 182
DB2 XML Extender and DB2 Text Extender: IBM.............. 183

AU1272 FM Page x Wednesday, January 30, 2002 10:01 AM

xi

Informix: IBM ... 183
Microsoft SQL Server 2000 .. 183
Microsoft Access 2002.. 184
Oracle8

i

/9

i

 Application Servers... 184
Web Services-Enabled Database Middleware 185
Windows Telephony with TAPI.. 185
HTTPR... 188

7

Bridging the Gap

... 191
Introduction .. 191
Bridging COBOL to Enterprise Java Beans.................................. 192

Application Mining... 192
Accessing Legacy COBOL Assets from Java 192
Calling Legacy COBOL from Java... 192

Java Considerations .. 193
COBOL Considerations .. 193

Calling Java from COBOL ... 194
Calling COBOL Classes from Java .. 195
COBOL Enterprise JavaBeans.. 196
Enterprise JavaBeans Deployment Descriptor 196
Deploying COBOL Enterprise JavaBeans Application 197
Combination ActiveX/Java Classes.. 198

Wireless Access Protocol: Accessing Oracle 198
WAP Application... 199
Dialogue Scenarios... 199

Scenario One .. 200
Scenario Two.. 200
Scenario Three.. 200

Database Table ... 201
ASP Script: Connecting to Database... 201
XML Syntax ... 202
XML Script... 203
Dialogues .. 204
Conclusion .. 204

XML: Its Role in TCP/IP Presentation Layer (Layer 6) 204
Breaking the Barrier... 204
Product Integration... 206
Translating for All Browsers.. 206
Dynamic XML Servers.. 207
XML Mapping ... 208
Natural Language Dialogue ... 208
Universal XML .. 209
Conclusion .. 209

AU1272 FM Page xi Wednesday, January 30, 2002 10:01 AM

xii

The Complete Book of Middleware

XML Schemas ... 209
Comparing XML Schema and DTD .. 210
Strong Typing Advantage .. 211
True Key Representation Advantage .. 212

8

Middleware Performance

.. 217
Introduction .. 217
IP Traffic Performance... 217

Case Study .. 219
Bandwidth Managers.. 220
Traffic Shapers .. 221

Changing Rates ... 222
Moving Applications... 222

Content Delivery Networks ... 224
Caching ... 225
Load Balancing ... 227

Service Level Management .. 227
Communications Paradigms and Tools .. 228

Comparing Paradigms .. 228
Trade-Offs ... 229
XML-RPC ... 231

Other Performance Tools .. 232
Managing EJB and Java Performance....................................... 232
Database.. 232
Microsoft Operations Manager 2000... 233
Internet Security and Acceleration Server 2000....................... 233

Middleware Selection... 233
Communications Middleware .. 234
Database Middleware... 235
Systems Middleware... 236
E-Commerce Middleware... 237

Enterprise Connector Middleware... 237
Application Servers... 238
Messaging Middleware... 238

Java-Based Middleware.. 238
Web Services Technology.. 239
Middleware Interoperability... 240
Development Middleware.. 240

9

What Lies Ahead?

.. 243
Introduction .. 243

Evolutionary Paths.. 244
Competing Paradigms .. 245

Middleware Hierarchy.. 245
Database Middleware... 246

AU1272 FM Page xii Wednesday, January 30, 2002 10:01 AM

xiii

Web Services... 247
Emerging Internet Standards ... 248

User Interface ... 248
Security.. 248
Workflow Standard... 249

Interoperability ... 251
SOAP Protocol .. 251
J2EE and .NET Platform... 253

Performance Tools ... 254
Service Levels ... 256

10

Glossary

... 259

About the Author

.. 269

Index

.. 271

AU1272 FM Page xiii Wednesday, January 30, 2002 10:01 AM

AU1272 FM Page xiv Wednesday, January 30, 2002 10:01 AM

This page intentionally left blank

xv

Introduction

The wave of recent corporate mergers and growth of business on the Internet
have boosted enterprise systems integration’s profile in both IT and business.
All these factors have contributed to enterprise integration’s importance, but
the marketplace conditions of today’s open, collaborative-based economy are
still the major reasons why companies choose an integrated solution. Com-
panies that can provide information when it is needed, or that can quickly
devise and roll out new products and services, are today’s leading organiza-
tions. The source of information can be broad — from disparate systems
connected to one another through middleware products of all sorts. Middle-
ware technology enables a company to rapidly meet the demands of a
changing market.

The Complete Book of Middleware

 brings together the perspectives, knowl-
edge, and information on major and emerging middleware technologies. Each
chapter examines an issue or technology relevant to today’s enterprise. Col-
lectively, these chapters span the range of industrial, emerging, and open
middleware technologies, architectures, products, services, and standards. All
attempt or aim at making cross-platform integration possible in varying degrees
using XML-based technologies and standards. The integration between Java 2
Enterprise Edition (J2EE) and the .NET platform began in Summer 2001. J2EE
runs on multiple platforms using the Enterprise JavaBeans (EJBs) capability
of encapsulating objects, components, and Web services. The .NET platform
will run on non-Microsoft operating systems after a standardization body
approves the key parts of the technology for implementation and deployment.
The interoperability for the third platform — Common Object Request Broker
Architecture/Internet Inter-ORB Protocol (CORBA/IIOP) — will increase to a
certain extent and will be more so when CORBA 3 is implemented and
deployed, as the core of this version, the CORBA Component Model (CCM),
has been virtually matched feature-for-feature with EJBs.

Still, middleware for Enterprise Application Integration (EAI) and Internet-
based systems does not make up the full picture of today’s enterprise.
Middleware for legacy systems, E-commerce, and other Web-based systems,

AU1272 FM Page xv Wednesday, January 30, 2002 10:01 AM

xvi

The Complete Book of Middleware

client/server applications, networks and communication systems, data ware-
housing, and integrated databases fills out the picture. The overriding goal of
this book is to provide a comprehensive picture of middleware technologies
and architectures.

To meet this goal, the book features the following chapters:

�

Distributed Transaction and Messaging Middleware

�

Object-Oriented Middleware: CORBA 3

�

Microsoft’s Stuff

�

Ever-Expanding Java World

�

Web Services

�

Database Middleware

�

Bridging the Gap

�

Middleware Performance

Each chapter looks at these technologies from an enterprise perspective. An
important part of this perspective is how each technology works within the
entire organization, and each chapter covers integration through middleware
technologies, products, services, and standards into the overall enterprise.

An organization can create new and innovative ways to service customers
or to do business with suppliers and make itself a leader in its field. This
capability relies on a successful strategy that gives the business insight and
the technological know-how to ensure a successful systems integration strategy
via creation or installation and deployment of middleware technologies.

The following gives a brief overview of each chapter.
Chapter 1, “Distributed Transaction and Messaging Middleware,” focuses

on the Remote Procedure Call (RPC), Microsoft Messaging Queuing, Distributed
Transaction Processing, MQ Series, and their associated technologies. Related
to the RPC are the XML-RPC and the Microsoft RPC facility. The XML-RPC is
a specification that allows software running on disparate operating systems
while the Microsoft RPC facility is compatible with the Open Group’s Distrib-
uted Computing Environment (DCE) specification for remote procedure calls.

Applications can use MSMQ to send messages and continue processing
regardless of whether the receiving application is running or reachable over
the network. The MQSeries Integrator Agent for CICS is capable of accepting
MQSeries messages and enables them to be processed within the CICS
environment, and allows application to be run outside CICS on, for example,
an IMS system.

Chapter 2, “Object-Oriented Middleware: CORBA 3,” discusses CORBA’s
background, Java-to-XML mapping, and associated object services. It also
covers the OMG Technology Committee and latest modeling specifications.
The original CORBA focused on the development of an Interface Definition
Language (IDL) that is independent of any programming language while
CORBA 2.0 added Inter-ORB standards to ensure communication among ORBs
provided by different suppliers. Along with IDL and Inter-ORB standards, this
CORBA version includes common Object Services Specifications.

AU1272 FM Page xvi Wednesday, January 30, 2002 10:01 AM

xvii

Considered by many to be the core of CORBA 3, the CORBA Component
Model (CCM) packages up transactionality, persistence, event-handling secu-
rity, and Portable Object Adapter (POA)-based server resource control into a
development and runtime package that business programmers can handle.
This model is intentionally matched feature-for-feature with EJBs. For this
reason, CORBA 3 applications are intended to be broad and varied as well
as friendly to loosely coupled interoperating systems characteristic of the
business-to-business (B2B) applications. This is in contrast to CORBA 2 where
it integrates distributed objects into a tightly coupled application.

The CCM was adopted by OMG in late 1999 and is scheduled for formal
release prior to the end of 2001 as the numbered release CORBA 3. Also
included are CORBA Scripting, Real-Time CORBA, and Minimal CORBA (for
mobile applications).

Chapter 2 also describes seven phases of a CCM Development Project:
analysis design phase, component declaration, component implementation,
component packaging, component assembly, component deployment and
installation, and runtime: component instance activation.

Chapter 3, “Microsoft’s Stuff,” focuses on the .NET platform on which Web
services can be built. This platform represents an evolution of Component
Object Model (COM). To allow .NET to run on non-Microsoft operating
systems, Microsoft submitted key parts of the technology for standardization
to ECMA,

1

 an international standardization body, in late 2000.
The advantages of using .NET are that it offers remoting options, does not

require registry of the interfaces, and skips the need for an interface language.
Another major advantage is that the Web services components are just like
any other middle-tier, business-rules objects through a Web server. This means
that the same consistent functionality offered would be available at anytime,
from anywhere in the world, using any device that can access the Internet.

Chapter 4, “Ever-Expanding Java World,” covers EJB, J2EE, Java Messaging
Service (JMS), Java Naming and Directory Interface (JNDI), Java Media Frame-
work (JMF), and other Java technologies. They are used to build distributed
applications for integration with Enterprise Resource Planning (ERP), Customer
Relationship Management (CRM), Supply Chain Management (SCM), and other
EAI systems, as well as non-EAI legacy and wireless applications.

Chapter 5, “Web Services: Hot Stuff,” discusses Web services and related
technologies (front-end, back-end) and standards. It covers how various ven-
dors and organizations define Web services and present Web services archi-
tectures. The chapter also looks at the Universal Description, Discovery and
Integration (UDDI) technology, Web service brokerage, and some third-party
tools, gives workflow process examples, and briefly discusses versioning of
Web services.

Also included is a short discussion on Bowstreet’s jUDDI as free, open-
source, Java-based software that has been architected to allow it to act as the
UDDI front-end on top of existing directories and databases. jUDDI-enabled
applications can look up services in the UDDI registry and then proceed to
“call” those Web services directly.

AU1272 FM Page xvii Wednesday, January 30, 2002 10:01 AM

xviii

The Complete Book of Middleware

Chapter 6, “Database Middleware and Other Stuff,” covers mostly relational
databases — data-level integration, SQL, XML databases, Java-based databases,
XML-enabled databases and Web services-enabled databases — as the mid-
dleware. Java-based database middleware is the most popular, with at least
35 products, followed by XML database middleware with at least 12 products.
Next in line is the XML-enabled database middleware from major vendors:
DB2 XML Extender, Informix, MS SQL Server 2000, MS Access 2002, and
Oracle8

i

/9

i

 Application Server. Emerging is the Web service-enabled database
middleware that will grow in popularity when the market for Web services
reaches its full potential by late 2002 or 2003.

Chapter 7, “Bridging the Gap,” discusses how middleware such as EJBs
and markup languages can be used to bridge the gap in an enterprisewide
system, what role XML has played in TCP/IP presentation layer, and what
XML schemas are. It looks at how a legacy COBOL system is connected to
EJBs and what the advantages of using XML schemas are in connecting
E-commerce applications.

In view of the fact that the demand for mixing COBOL and Java is ever
increasing, this chapter explains in detail how to bridge COBOL with EJBs.
The existing (or legacy) COBOL applications contained within enterprises
represent the result of a huge investment over many years, embodying the
core of the business practices within COBOL business logic. The last thing
you want to do is throw that all away and rewrite everything in Java.

Chapter 8, “Middleware Performance,” discusses various performance con-
siderations as they apply to middleware and its associated technologies. They
include traffic performance, service levels, communications middleware par-
adigms, performance tools, and middleware selection. Each section of this
chapter presents a different topic.

Chapter 9 discusses “What Lies Ahead?” for middleware technologies. It
looks at evolutionary paths the technologies have taken and at competing
paradigms between the .NET initiative and the J2EE platform. The chapter
then proceeds to a middleware hierarchy that can be expanded to incorporate
new technologies we have not dreamed of. Also included are the emerging
Internet standards, innovative interoperability technologies, better performance
tools, and improved service levels.

Note

1. ECMA is an international industry association founded in 1961 and dedicated to
the standardization of information and communication systems.

AU1272 FM Page xviii Wednesday, January 30, 2002 10:01 AM

1

Chapter 1

Distributed Transaction

and Messaging Middleware

This chapter discusses various transaction and messaging middleware tools.
They include the Remote Procedure Call, Microsoft Messaging Queuing, Dis-
tributed Transaction Processing, MQSeries, and their associated technologies.

Remote Procedure Call

In the early days of computing, a program was written as a large monolithic
chunk, filled with

goto

 statements. Each had to manage its own input and
output to different hardware devices. As the programming discipline matured,
this monolithic code was organized into procedures, with the commonly used
procedures packed in libraries for sharing and reuse. Today, Remote Procedure
Call (RPC) takes the next step in the development of procedure libraries. Now,
procedure libraries can run on other remote computers. Some assume the role
as a middleware in connecting the Enterprise Integration Systems (EIS)

1

 Tier
and the Clients Tier.

RPC Model

Remote Procedure Call (RPC) is a protocol that provides the high-level com-
munications paradigm used in the operating system. The RPC model is similar
to a local procedure call model in which the caller places arguments to a
procedure in a specified location such as a result register. Then, the caller
transfers control to the procedure. The caller eventually regains control,
extracts the results of the procedure, and continues execution.

AU1272Ch01Frame Page 1 Monday, January 21, 2002 7:33 AM

2

The Complete Book of Middleware

The RPC presumes the existence of a low-level transport protocol, such as
Transmission Control Protocol/Internet Protocol (TCP/IP) or User Datagram
Protocol (UDP), for carrying the message data between communicating pro-
grams. It implements a logical client-to-server communications system designed
specifically for the support of network applications.

In the RPC model, a client sends a call message (a procedural call) to a
server (see Exhibit 1). When the message arrives, the server calls a dispatch
routine, performs whatever network service is requested. Each network service
is a collection of remote programs. A remote program implements remote
procedures. The procedures, their parameters, and the results are all docu-
mented in the specific program’s protocol. When the server is done, it sends
a reply message that the procedural call is returning to the client.

Port Mapper

Typically, a server program based on an RPC library gets a port number at
runtime by calling an RPC library procedure. The port-to-program mappings,
which are maintained by the port mapper server, are called a

portmap

. The
port mapper is started automatically whenever a machine is booted. Both the
server programs and the client programs call port mapper procedures.

Every port mapper on every host is associated with port number 111. The
port mapper is the only network service that must have a dedicated port. Other
network services can be assigned port numbers either statically or dynamically,
as long as the services register their ports with their host’s port mapper.

RPC Layers

Programmers can take advantage of three RPC layers: highest, intermediate,
and lowest. They write remote procedure calls to make the highest layer of
RPC available to other users through a simple C language front-end routine
that entirely hides the networking.

Exhibit 1. Simple RPC

Client Server

 call message

call service

implement service

 reply message

AU1272Ch01Frame Page 2 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware

3

The intermediate layer containing RPC routines is used for most applica-
tions. It is sometimes overlooked in programming due to its simplicity and
lack of flexibility. At this level, RPC does not allow timeout specifications,
choice of transport, or process control in case of errors. And the intermediate
layer of RPC does not support multiple types of call authentication.

For the higher layers, RPC takes care of many details automatically. How-
ever, the lowest layer of the RPC library allows the programmer to change
the default values for these details.

RPC Features

The RPC features include:

�

Batching calls

�

Broadcasting calls

�

Callback procedures

�

The

select

subroutine

Batching allows a client to send an arbitrarily large sequence of call
messages to a server (see Exhibit 2). Broadcasting permits a client to send a
data packet to the network and wait for numerous replies (see Exhibit 3). The
main differences between broadcast RPC and normal RPC are as follows:

�

Normal RPC expects only one answer, while broadcast RPC expects one
or more answers from each responding machine.

�

The implementation of broadcast RPC treats unsuccessful responses as
garbage by filtering them out. Therefore, if there is a version mismatch
between the broadcaster and a remote service, the user of broadcast RPC
might never know.

Exhibit 2. Batching Calls

call message 1

call message 2
.
.
.

call message n

 batching

AU1272Ch01Frame Page 3 Monday, January 21, 2002 7:33 AM

4

The Complete Book of Middleware

�

All broadcast messages are sent to the port-mapping port. As a result, only
services that register themselves with their port mapper are accessible
through the broadcast RPC mechanism.

�

Broadcast requests are limited in size to the maximum transfer unit (MTU)
of the local network. For the Ethernet system, the MTU is 1500 bytes.

�

Broadcast RPC is supported only by packet-oriented (connectionless) trans-
port protocols such as UPD/IP.

Occasionally, the server may need to become a client by making an RPC
callback to the client’s process. To make an RPC callback, the user needs a
program number on which to make the call.

The

select

subroutine examines the I/O descriptor sets whose addresses
are passed in the

readfds

,

writefds

, and

exceptfds

 parameters to see if some
of their descriptors are ready for reading or writing, or have an exceptional
condition pending. It then returns the total number of ready descriptors in all
the sets.

XML-RPC

XML-RPC is a specification and a set of implementations that allow software
running on disparate operating systems, and in different environments, to
make procedure calls over the Internet. As a remote procedure, it makes the
calls using HTTP as the transport and XML as the encoding. XML-RPC is
designed to permit complex data structures to be transmitted, processed, and
returned.

Exhibit 3. Broadcasting Calls

reply message 1

reply message 2
.
.
.

reply message n

data packets

broadcasting

AU1272Ch01Frame Page 4 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware

5

XML-RPC works by encoding the RPC requests into XML and sending them
over a standard HTTP connection to a server, or listener piece. The listener
decodes the XML, executes the requested procedure, and then packages up
the results in XML and sends them back over the wire to the client. The client
decodes the XML, converts the results into standard language datatypes, and
continues executing. Exhibit 4 is a diagram showing an actual XML-RPC
conversation between a client (requesting customer information) and a listener
who is returning the results of that procedure.

There are two important aspects of this protocol that one should keep in
mind when building middleware. XML-RPC is built on HTTP and, similar to
ordinary Web traffic, its stateless conversations are of the request and response
variety. There is no built-in support for transactions or encryption.

Microsoft RPC Facility

The Microsoft RPC facility is compatible with the Open Group’s Distributed
Computing Environment (DCE) specification for remote procedure calls and
is interoperable with other DCE-based RPC systems, such as those for HP-UX
and IBM AIX UNIX-based operating systems. The RPC facility is compatible
with the Open Group specification.

The Microsoft RPC mechanism is unique in that it uses other RPC mecha-
nisms, such as named pipes, NetBIOS, or Winsock, to establish communica-
tions between the client and the server. With the RPC facility, essential program
logic and related procedure code can exist on different computers, which is
important for distributed applications.

RPC is based on the concepts used for creating structured programs, which
can be viewed as having a backbone to which a series of ribs can be attached.
The backbone is the mainstream logic of the program that rarely changes.
The ribs are the procedures that the backbone calls upon to do work or
perform functions. In traditional programs, these ribs are statically linked to
the backbone and stored in the same executable file. RPC places the backbone
and the ribs on different computers.

Exhibit 4. XML-RPC Conversation

XML-RPC Request

XML-RPC Response

AU1272Ch01Frame Page 5 Monday, January 21, 2002 7:33 AM

6

The Complete Book of Middleware

Windows 2000 uses dynamic link libraries (DLLs) to provide procedure
code and backbone code. This enables the DLLs to be modified or updated
without changing or redistributing the backbone portion.

Client applications are developed with specially compiled stub libraries
provided by the application program. In reality, these stubs transfer the data
and the function to the RPC runtime module. This module is responsible for
finding the server that can satisfy the RPC command. Once found, the function
and data are sent to the server, where they are picked up by the RPC runtime
component on the server. The server builds the appropriate data structure
and calls the function.

Microsoft RPC allows a process running in one address space to make a
procedure call that is executed in another address space. The call looks like
a standard local procedure call but is actually made to a stub that interacts
with the runtime library and performs all the steps necessary to execute the
call in the remote address space.

Exhibit 5 lists the components of RPC.

The Stubs

The client application calls a local stub procedure instead of the actual code
implementing the procedure. Stubs are placeholder functions that make the
calls to the runtime library functions, which manage the remote procedure
call. They are compiled and linked with the client application. Instead of
containing the actual code that implements the remote procedure, the client
stub code is used. First, this stub retrieves the required parameters from the
client address space and then translates the parameters as needed into a
standard network data representation (NDR) format for transmission over the
network. Next, it calls functions in the RPC client runtime library to send the
request and its parameters to the server.

Exhibit 5. RPC Components

RPC Stub Part of an application executable file or a DLL that is generated
by the Microsoft Interface Description Language (MIDL)
compiler specifically for each interface

Remote Procedure
Call APIs

A series of protocol-independent APIs responsible for
establishing connections and security as well as registering
servers, naming, and endpoint resolution

Datagram Runtime A connectionless RPC protocol engine that transmits and
receives requests using connectionless protocols, such as
UDP

Connection-Oriented
Runtime

A connection-oriented RPC protocol engine that transmits
and receives requests using connection-oriented protocols
such as TCP

Local Runtime A local RPC protocol engine that transmits and receives RPC
requests between processes on the local computer

AU1272Ch01Frame Page 6 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware

7

The server performs the server RPC runtime library functions to accept the
request and call the server stub procedure. It then retrieves the parameters
from the network buffer and converts them from the network transmission
format to the format the server needs. After this, the server stub calls the
actual procedure on the server.

The remote procedure runs, possibly generating output parameters and a
return value. When complete, a similar sequence of steps returns the data to
the client. The remote procedure first returns its data to the server stub. The
server stub then converts output parameters to the format required for trans-
mission over the network and returns them to the RPC runtime library
functions. After this, the server RPC runtime library functions transmit the data
on the network to the client computer.

The client completes the process by accepting the data over the network
and returning it to the calling function. First, the client RPC runtime library
receives the remote-procedure return values and returns them to the client
stub. Then, the client stub converts the data from its network data represen-
tation to the format used by the client computer. The stub writes data into
the client memory and returns the result to the calling program on the client.
As the next step, the calling procedure continues as if the procedure had
been called on the same computer.

OSF Standards for RPC

The design and technology behind Microsoft RPC is just one part of a complete
environment for distributed computing defined by the Open Software Foun-
dation (OSF),

2

 a consortium of companies formed to define that environment.
The OSF requests proposals for standards, accepts comments on the proposals,
votes on whether to accept the standards, and then promulgates them.

The OSF-DCE remote procedure call standards define not only the overall
approach, but the language and the specific protocols to use for communi-
cations between computers as well, down to the format of data as it is
transmitted over the network.

The Microsoft implementation of RPC is compatible with the OSF standard
with some minor exceptions. Client or server applications written using
Microsoft RPC will interoperate with any DCE RPC client or server whose
runtime libraries run over a supported protocol.

Microsoft RPC Components

The Microsoft RPC product includes the following major components:

�

MIDL compiler

�

Runtime libraries and header files

�

Transport interface modules

�

Name service provider

�

Endpoint supply service

AU1272Ch01Frame Page 7 Monday, January 21, 2002 7:33 AM

8

The Complete Book of Middleware

In the RPC model, one can formally specify an interface to the remote
procedures using a language designed for this purpose. This language is called
the Interface

Definition Language (IDL) and the Microsoft implementation of
this language is called the MIDL.

After creating an interface, one must pass it through the MIDL compiler.
This compiler generates the stubs that translate local procedure calls into
remote procedure calls. The advantage of this approach is that the network
becomes almost completely transparent to one’s distributed application. The
client program calls what appears to be local procedures; the work of turning
them into remote calls is done automatically. All the code that translates data,
accesses the network, and retrieves results is generated by the MIDL compiler
and is invisible to one’s application.

The RPC allows a process running in one address space to make a
procedure call that is executed in another address space. The call looks like
a standard local procedure call but is actually made to a stub that interacts
with the runtime library and performs all the steps necessary to execute the
call in the remote address space.

Microsoft Messaging Queuing

Many distributed applications need the ability to handle delays between a
request and a response. This is because all the steps of a distributed application
process may not need to or cannot be completed at one time. Microsoft
Message Queuing (MSMQ) allows applications to use components that com-
municate with one another using queued messages. Like e-mail messages that
sit in an inbox, messages can exist on dissimilar systems that may not even
be directly connected to each other.

Writing Applications

With MSMQ, one can write applications that do not require immediate
responses from either clients or servers, which provide one with the flexibility
needed to handle routine pauses within business processes (see Exhibit 6).
MSMQ complements the capabilities inherent in COM+ and the transaction
services included with the Microsoft Windows 2000 Server and Windows XP
operating system. COM+ lets one write distributed applications; transaction
services provide these applications with the capability of creating
transactions — that is, groups of actions that either all succeed and are posted,
or that fail and are rejected.

COM+ support makes it easy to access MSMQ from Microsoft Transaction
Service, Microsoft Internet Information Service (IIS), Active Server Pages (ASP),
popular applications such as Microsoft Excel, and a wide range of popular
programming languages such as the Microsoft Visual Basic and Visual C++
development systems and Microfocus COBOL.

When writing components that take advantage of MSMQ, one’s application
can send messages to another application without waiting for a response.

AU1272Ch01Frame Page 8 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware

9

Those messages are sent into a queue, where they are stored until a receiving
application removes them. If a response is expected, the sending application
can check a response queue when convenient.

For example, one can use MSMQ to write an application that will let
customers submit orders over the Internet, even when the receiving Web
server is not available (see Exhibit 7). The shipping department does not have
to receive the customer order before the rest of the transaction can be
completed. Using MSMQ, the order entry application can continue running
even if the shipping application is not available.

MSMQ Features

MSMQ features generally include:

�

COM-based access

�

Integration with transactions

�

Automatic message journaling

�

Automatic notification

�

Built-in data integrity, data privacy, and digital signature services

�

Message priority support

�

Simplified application integration

�

Network protocol independence

Exhibit 6. MSMQ in Processing Client Order

Customer information

Credit information

Product information

Shipping information

Client Order

Request
queues

Response
queues

AU1272Ch01Frame Page 9 Monday, January 21, 2002 7:33 AM

10

The Complete Book of Middleware

Exhibit 8 gives a list of new features in Message Queuing 3.0 for Windows XP.
Exhibit 9 indicates what features of Messaging Queuing 2.0 have been added
to Windows 2000.

Microsoft Queued Components

Microsoft Queued Components (QC) extend the familiar COM programming
model to situations in which applications might need to run asynchronously,
such as when servers are disconnected or temporarily unavailable. QC accom-
plishes this by placing the method parameters passed to an object in an MSMQ
message using a COM+ component called the Recorder (see Exhibit 10). The
COM+ Player component then reads the message and runs it on Windows

Exhibit 7. Simple Order–Shipping Scenario

Exhibit 8. Messaging Queuing 3.0 for Windows XP

Internet Messaging HTTP as optional transport protocol; XML-formatted
messages using SRMP (SOAP Reliable Messaging
Protocol); support for Web farms and perimeter
networks (firewalls)

Sending Messages to
Multiple Destinations

IP multicast: Message Queuing support for the PGM
“reliable multicast” protocol; multiple-element format
names; distribution lists hosted in AD (Active Directory)

Improved Management/
Deployment

Message stores can grow beyond 2G; Message Queuing
clients use LDAP to access AD; no need for a Message
Queuing server on a domain controller

Triggers Improved and integrated into the core product
Microsoft Management

Console (MMC) Support
Message Queuing is now administered more completely

using snap-ins hosted in an MMC console
Message Lookup Retrieving a specific message without using cursors

Shipping
Department

Web
Servers

Customer orders
MSMQ

AU1272Ch01Frame Page 10 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware

11

2000 Server located on a remote machine. Because QC uses MSMQ but does
not require the programmer to write code for the MSMQ application program-
ming interface (API), using QC may speed development time.

Exhibit 9. Messaging Queuing 2.0 for Windows 2000

Full integration with Active
Directory

Message Queuing 2.0 publishes all Message
Queuing configuration objects through Microsoft
Active Directory, allowing the configuration objects
to be distributed and discovered throughout the
entire Windows 2000 forest.

Windows 2000 security
integration

In addition to providing support for access control,
auditing, encryption, and authentication, Message
Queuing also takes advantage of the new security
features built into Microsoft Windows 2000, such as
the Kerberos V5 security protocol. The U.S. version
of Message Queuing now supports 128-bit
encryption as well as 40-bit encryption.

Setup through Add/Remove in
Control Panel

Message Queuing 2.0 now allows one to use the
Control Panel to install Message Queuing clients
with any supporting Message Queuing server.

Workgroup mode Message Queuing installed in a workgroup can later
join a domain, and then separate from the domain
again.

Administration through the
Microsoft Management
Console

Message Queuing 2.0 now allows administration
through MMC snap-ins.

Active/active cluster support Message Queuing 2.0 fully supports active/active
operation, which means that Message Queuing can
run on all nodes in a server cluster simultaneously.

Exhibit 10. Queued Components

COM+ Recorder

COM+ Player
MSMQ

Windows 2000 servers

holding queues
(message queuing)

AU1272Ch01Frame Page 11 Monday, January 21, 2002 7:33 AM

12

The Complete Book of Middleware

MSMQ implements asynchronous communications by enabling applications
to send messages to, and receive messages from, other applications. These
applications may be running on the same machine or on separate machines
connected by a network. When an application receives a request message, it
processes the request by reading the contents of the message and acting
accordingly. If required, the receiving application can send a response message
back to the original requester.

While in transit between senders and receivers, MSMQ keeps messages in
holding areas called “queues” — hence the name “message queuing.” MSMQ
queues protect messages from being lost in transit and provide a place for
receivers to look for messages when the receivers are ready to receive them.

When the Network Goes Down

Applications can use MSMQ to send messages and continue processing regard-
less of whether the receiving application is running or reachable over the
network. The receiving application may be unreachable because of a network
problem, or because of natural disconnection as in the case of mobile users
who only connect to the network periodically. When applications use the
transactional delivery mode in MSMQ, MSMQ also makes sure that messages
are delivered exactly on time, and that messages are delivered in the order
that they were sent.

MSMQ enables applications to send messages with delivery guarantees that
can be applied on a message-by-message basis. When networks go down,
receiving applications are offline, or machines containing message queues fail,
MSMQ will ensure that messages get delivered as soon as connections are restored
or applications and machines are restarted. MSMQ implements these guarantees
using disk-based storage mechanisms and log-based recovery techniques. Using
guaranteed delivery options, developers can focus on business logic and not on
sophisticated communications and error-recovery programming.

MSMQ delivers messages using the lowest-cost route currently available.
When networks fail, MSMQ automatically uses the next-lowest-cost route to
deliver messages. Administrators define costs for each network connection
between machines using the MSMQ Explorer. Administrators can also designate
MSMQ servers as communication concentrators to handle all message traffic
between two sites. Routing eliminates single points of failure, improves per-
formance, and provides resiliency to communication environments.

MSMQ supports Internetwork Packet Exchange (IPX) and TCP/IP network-
ing protocols (see Exhibit 11). MSMQ handles all protocol bridging require-
ments automatically.

Distributed Processing Middleware

The Open Group has published the Distributed Transaction Processing (DTP)
model version 3 (G504), a software architecture that allows multiple application
programs to share resources provided by multiple resource managers, and

AU1272Ch01Frame Page 12 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware

13

allows their work to be coordinated into global transactions. It describes the
use of the DTP model within the Common Application Environment (CAE)
(see Exhibit 12) and is a prerequisite to other Open Group documents that
address DTP. This document has been updated to account for CPI-C, Version
2 (C419), and the introduction of the X/Open High-level Transaction Language
(HTL) (see Structured Transaction Definition Language (STDL), C611).

With the boom of Web commerce and Web-related technologies, businesses
are streamlining back-end business applications and processes, making that
infrastructure available to front-end users. However, greater demands on trans-
action processing, as well as advances in technology, are creating a requirement
for businesses to move to an E-transaction processing environment.

In the OLTP model, many different people and points of intervention are
required to coordinate work flow and individual tasks along the path of a
complete business transaction. In an E-transaction processing model, separate
tasks are now integrated into a streamlined process with less manual intervention.

While the evolution to E-transaction processing is taking place, let us take
a quick look at how Unisys and BEA Systems have built their systems based
on the DTP model.

Unisys’ Distributed Processing Middleware

Unisys e-@ction Distributed Processing Middleware for ClearPath Servers provides
several different interoperability and integration technologies. It establishes an

Exhibit 11. MSMQ Network Support

Exhibit 12. Common Application Environment

MSMQ

TCP/IP IPX other bridges

Distributed Transaction
Processing

Common Application Environment

AU1272Ch01Frame Page 13 Monday, January 21, 2002 7:33 AM

14

The Complete Book of Middleware

implementation environment for today’s systems that require techniques such
as distributed transaction, message queuing, open data access, and multi-server
integration.

A major feature of the ClearPath Server Integrated Operating Environment
is X/Open-compliant software that enables applications to participate in dis-
tributed transactions. The Unisys Open/OLTP implementation is based on the
industry-standard DTP model defined by X/Open. This implementation pro-
vides transaction processing protocols defined by ISO OSI standards.

The following are X/Open-compliant software for ClearPath Servers: Unisys
Open Transaction Integrator, Unisys Open/OLTP, BEA Tuxedo, and MQSeries
for ClearPath OS2200.

1.

Unisys Open Transaction Integrator (OpenTI)

. This enables one to integrate
a variety of existing DTP services with the Microsoft Transaction Server
(MTS) infrastructure. Specifically, OpenTI gives one the ability to provide
Windows clients with access to existing applications and data on one’s
current transaction processing systems such as Unisys Open/OLTP and
BEA Tuxedo, and to provide one’s current transaction processing systems
with access to other resources controlled by MTS. With OpenTI, one can
expand the scope of existing solutions (e.g., Web-enabling services). Open
Transaction Integrator Release 3.0 runs on the Windows 2000 platform and
integrates seamlessly with COM+. It also provides a convenient develop-
ment environment for creating and enhancing Microsoft Component Object
Model (COM) applications. Developers can use any tools that support
COM — Visual Basic, Visual C++, Visual J++, Sybase PowerBuilder, Borland
Delphi, MicroFocus COBOL, Oracle Object for OLE, etc.

2.

Univsys Open/OLTP

. This software lets ClearPath Server applications par-
ticipate in client/server transactions based on the industry standard DTP
model. This implementation provides transaction processing protocols
defined by OSI standards.

3.

BEA Tuxedo.

 Client applications written in X/Open-compliant environments
can access services that reside in any of the heterogeneous multi-processing
(HMP) environments, as well as other UNIX, UNIXWare, or Windows NT
servers that support the DTP model, such as Unisys Open/OLTP software
or the optional, value-added TUXEDO product from BEA Systems, Inc.

4.

MQSeries for ClearPath OS2200.

 This software is message-oriented mid-
dleware. It allows OS2200 applications to securely and reliably exchange
messages with applications on a wide range of operating systems and
platforms. This middleware is based on IBM MQSeries Version 5.0 and
was developed by Unisys under license from IBM.

Additionally, MQSeries for ClearPath OS2200 can participate in X/Open DTP
transactions as a supported X/Open resource manager. Using OLTP-TM2200
as the transaction manager in conjunction with MQSeries Syncpoint, an appli-
cation developer can synchronize MQSeries messaging with Universal Data
System (UDS) database updates as part of a global transaction. In this scenario,
all messaging and database updates are committed (or rolled back) within the
global transactional unit of work.

AU1272Ch01Frame Page 14 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware 15

With the increase in the demand for E-transaction processing, UNISYS has
built an E-business infrastructure. Among other things, it includes Web servers,
Web browser access to transactions, Web-enabled transaction integration, and
Web application development environment.

BEA Tuxedo

BEA Tuxedo is distributed transaction and messaging middleware. It features
a high-level API for building distributed application components connected
via message-based communications. Components execute in a managed server
environment implemented by core BEA Tuxedo services. These services imple-
ment a sophisticated set of transaction and application management functions,
and comprehensive distributed systems administration.

BEA Tuxedo applications range from single server systems with few clients
and services, to large-scale distributed environments encompassing thousands of
clients, hundreds of servers, and a large set of server components and services.
They are specified by configuration files that translate into a tightly coupled set
of runtime shared information bases. These shared bases (known as Bulletin
Boards in the BEA Tuxedo world) reside on each participating server node.

The Transaction Manager is the core of BEA Tuxedo capabilities. It provides
the unifying data structures and services for dynamic application processing.
The Transaction Manager is supported by a group of subsystems providing
advanced distributed functionality in the areas of client management, host
connectivity, and enterprise application configuration. As shown in Exhibit 13,
the core consists of five subsystems.

The Transaction Manager is the architectural hub of BEA Tuxedo. It is the
core of each participating BEA Tuxedo server and provides the critical dis-
tributed application services: naming, message routing, load balancing, con-
figuration management, transaction management, and security.

The Bulletin Board (BB) acts a name server for a BEA Tuxedo application
and is replicated on participating nodes. To provide fast access, the name
server exists as a structure in shared memory. The Transaction Manager uses
the BB naming, configuration, and environmental statistics information to
automatically load-balance service requests to available servers, route client
requests based on data content, and prioritize service requests. Programmers
code applications as function calls to logical entities called named services.
The Transaction Manager maps these logical requests to specific service
instances within the server node/server process environment.

Exhibit 13. Tuxedo Core Subsystems

Transaction Manager
Workstation
Domains
DCE Integration
Queue Services

AU1272Ch01Frame Page 15 Monday, January 21, 2002 7:33 AM

16 The Complete Book of Middleware

Instead of coding the specific partitioning information into the application
code accessing the accounts, one can use Transaction Manager routing. In
effect, Transaction Manager looks at the specified data value, consults routing
information stored in the BB, and dispatches the request to a service operating
on the correct data partition. If one needs to change the database partitioning
(migrating a partition to a new server, or changing the distribution of accounts
across existing partition instances), one only needs to change the Transaction
Manager routing information. The application code is not affected.

To ensure maximum application throughput, the Transaction Manager
automatically performs load balancing and scheduling throughout the system.
Using per-service load factors, the Transaction Manager delivers a particular
request to the server that can process the request most quickly. The Transaction
Manager determines the load on a given server by totaling the load factors
for the currently enqueued requests.

Request prioritization is another core capability offered by the Transaction
Manager. Certain service requests often need to have a higher priority than
others. For example, an airline seat cancellation needs a higher priority than
a reservation: canceled seats must be rebooked as soon as possible for most
airlines.

The Transaction Manager includes many features supporting application
availability, including process availability checks, timeout checks, automatic
server restart and recovery procedures, and user-definable recovery proce-
dures. The Transaction Manager not only controls the flow of activity in the
application and but also ensures smooth efficient operations.

The Transaction Manager provides application service authentication,
authorization, and access control through an architected security interface.
The interface abstracts the Kerberos security model and allows Kerberos, or
similar end-user authentication schemes, to be integrated with the application.
One can use access control lists to protect services, queues, or events from
unauthorized access.

The DTP capability guarantees the integrity of data accessed across several
sites or managed by different database products. The Transaction Manager
coordinates distributed transactions to enable multi-site updates against het-
erogeneous databases on networked computers. It tracks transaction partici-
pants using global transactions and supervises a two-phase commit protocol.
This ensures that transaction commit and rollback are properly handled at
each site.

The Transaction Manager also coordinates the recovery of global transac-
tions in the event of site failure, network failure, or global resource deadlocks.
The Transaction Manager uses the Open Group’s X/Open XA interface for
communication with the various resource managers.

BEA Tuxedo provides a simple, optional mechanism for enqueuing and
dequeuing application requests and replies. Its Queue Services enables the
following:

� Work in progress and workflow applications
� Guaranteed transaction submittal and completion

AU1272Ch01Frame Page 16 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware 17

� Time-sensitive request submittal
� Integration with the BEA Tuxedo MIB and GUI
� Transaction control for enqueuing requests
� Software fault resilience through easy mirroring of services and data

Queue Services provides applications with facilities for batch and time-
delayed transactions. The option provides maximum flexibility for controlling
application flow by maintaining LIFO, FIFO, or user-defined dequeuing and
all original ATMI invocation properties, such as request priority or data-
dependent routing.

The administrative functions of the queue option provide the system
administrator with a great deal of flexibility in managing Queue Services
servers. They enable the system administrator to configure the two servers
briefly described in Exhibit 14. A response by the server is automatically
enqueued to the associated reply queue for the message.

BEA Tuxedo incorporates and is the basis for the Open Group’s X/Open
TX interface standard for defining and managing transactions. The TX interface
is based on the Transaction Manager’s ATMI, and the two interfaces provide
near-identical functionality.

Specifically, the TX interface enables programmers to define transaction
boundaries within their application so the work performed by services can
be treated as an atomic unit. Within a single Transaction Manager transaction,
the work performed in various services, accessing various databases across
many computers, is either committed or rolled back as a single atomic unit
of work. This keeps all the databases synchronized, even if there are machine
failures. The ATMI was selected by X/Open as the reference technology for
OLTP application programming and renamed XATMI.

The COBOL API, available on both Transaction Manager and Workstation
configurations, provides the ability to:

1. Have the COBOL API available on workstations and coexist with the DLL
versions of Workstation for MS Windows and OS/2

2. Write clients and application service routines in the COBOL programming
language

Exhibit 14. Tuxedo Queue Servers

Message queuing server Enqueue and dequeue messages on behalf of clients and
servers. This allows for transparent enqueuing and
dequeuing of messages, whether or not the process is
local to the queue.

Forwarding server Dequeue queued messages and forwards them for
processing. This allows for transparent processing of
enqueued messages by existing Transaction Manager
servers that do not know if the incoming message was
sent as a request/response message or from a queue of
stored requests.

AU1272Ch01Frame Page 17 Monday, January 21, 2002 7:33 AM

18 The Complete Book of Middleware

3. Interface to Transaction Manager primitives using subroutine linkage mech-
anisms familiar to COBOL programmers

4. Build application clients and servers using the familiar subroutine linkage
mechanisms and integrate these clients and servers into an existing or new
Transaction Manager application (the application can mix processes, using
non-COBOL clients and servers)

5. Be compliant with ANSI X3.23-1985, and is based on Micro Focus COBOL

The internationalization feature enables BEA Tuxedo to furnish diagnostic
and system messages in a language appropriate to the locale. All output
messages are stored in catalogs so they can be easily translated and modified
as needed. As a result, one can customize representations to conform to the
date, time, and currency conventions of one’s country. The Transaction Man-
ager implementation conforms to The Open Group’s internationalization XPG
guidelines.

BEA Tuxedo/Q Component

The BEA Tuxedo/Q component allows messages to be queued to persistent
storage (disk) or to nonpersistent storage (memory) for later processing or
retrieval. The BEA Tuxedo ATMI provides functions that allow messages to
be added to or read from queues. Reply messages and error messages can
be queued for later return to client programs. An administrative command
interpreter is provided for creating, listing, and modifying the queues. Servers
are provided to accept requests to enqueue and dequeue messages, to forward
messages from the queue for processing, and to manage the transactions that
involve the queues.

BEA Tuxedo/Q provides other features to BEA Tuxedo application pro-
grammers and administrators. The application program or the administrator
can control the ordering of messages on the queue. Control is via the sort
criteria, which may be based on message availability time, expiration time,
priority, LIFO, FIFO, or a combination of these criteria. The application can
override the ordering to place the message at the queue top or ahead of a
specific message that is already queued.

In addition, a BEA Tuxedo server is provided to enqueue and dequeue
messages on behalf of, possibly remote, clients and servers. The administrator
decides how many copies of the server should be configured. It is also
provided to dequeue queued messages and forward them to services for
execution. This server allows for existing servers to handle queued requests
without modification. Each forwarding server can be configured to handle
one or more queues. Transactions are used to guarantee “exactly once”
processing. The administrator controls how many forwarding servers are
configured.

There are many application paradigms in which queued messages can be
used. This feature can be used to queue requests when a machine, server, or
resource is unavailable or unreliable (e.g., in the case of wide-area or wireless

AU1272Ch01Frame Page 18 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware 19

networks). This feature can also be used for workflow provisioning where
each step generates a queued request to do the next step in the process. Yet
another use is for batch processing of potentially long-running transactions,
such that the initiator does not have to wait for completion but is assured
that the message will eventually be processed. This facility can also be used
to provide a data pipe between two otherwise unrelated applications in a
peer-to-peer relationship.

IBM MQSeries
With IBM’s MQSeries,3 one receives a family of four APIs (see Exhibit 15)
designed to make programming straightforward for any messaging task —
from the simple to the most advanced. IBM specified and developed these
APIs. These APIs can be used for exchanging messages as indicated in
Exhibit 16.

The CMI will provide programming support for both language-dependent
and language-independent data structures in a consistent manner. It will handle
tagged value data such as XML, and language-dependent structures found in
C and Java, used in conjunction with the message dictionary support provided
in MQSeries Integrator.

Exhibit 15. MQSeries APIs

Common Messaging Interface

Construct
Messaging
Application

Application
Messaging
Interface

Messaging
Queuing
Interface

MQSeries
JMS Support

query
update

constructed
messages

AU1272Ch01Frame Page 19 Monday, January 21, 2002 7:33 AM

20 The Complete Book of Middleware

MQSeries Family

The MQSeries family forms the key integration layer in the IBM Application
Framework for E-business, as shown in Exhibit 17. An additional release
(Version 5.2.1) MQSeries for Windows NT and Windows 2000 includes new
usability enhancements (MSI Install, Active Directory, and built-in authentica-
tion) and has achieved Microsoft certification for Windows 2000 Server. Com-
paq users can now participate in business process management with MQSeries
for Compaq NonStop Kernel V5.1 and MQSeries for Compaq OpenVMS Alpha

Exhibit 16. Describing MQSeries APIs

MQI (Messaging Queuing
Interface)

API that provides full access to the underlying
messaging implementation, available for all key
languages and environments

JMS (Java Message Service) Java standard that provides much of the function
available through the MQI (see Chapter 4)

AMI (Application
Messaging Interfacea,b,c)

API that provides the handling of messages with a higher
level of abstraction that moves message-handling logic
from the application into the middleware; the AMI has
been adopted by the Open Applications Group as its
Open Application Middleware API Specification
(OAMAS)d

CMI (Common Messaging
Interface)

Simplifies the creation of message content. All four APIs
can interoperate. (One can construct a messaging
application with the CMI, in conjunction with a
message delivery API, like the MQI, the AMI, or
MQSeries Support for JMS. One can also query and
update constructed messages regardless of their
physical representation.)

a The JMS is an API defined for the Java environment, with a number of vendors providing
implementations. The AMI is an API adopted by the Open Applications Group that
supports C, C++, COBOL, and Java. Both APIs support point-to-point and publish/sub-
scribe styles of communication. Both APIs allow destinations or services to be defined
outside the application. The AMI uses policies to indicate how messages should be sent
or received and can be extended, using policy handlers.

b AMI V1.2 (WIN32, including Windows 2000, AIX, Solaris, HP-UX, OS/400) is available via
the Web as a product extension. It provides additional functions, such as:
 Pluggable policy handlers providing a framework that allows customers and vendors

to extend the function of the AMI. One could use this simply to write an audit log, to
define error-handling policies, or even use it to implement AMI running over non-
MQSeries transports. A set of sample policy handlers is provided.

 Directory support, storing the AMI service and policy definitions in an LDAP directory.
 National Language translation.

c The AMI supports C, C++, and Java on all platforms except OS/390. C and COBOL are
supported on OS/390.

d OAMAS supports a number of application communication patterns, including datagrams,
request/response, file transfer, and publish/subscribe, and communicates with message
brokers such as MQSeries Integrator.

AU1272Ch01Frame Page 20 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware 21

V5.1. Another important new product, MQSeries link for R/3 for OS/390
connects SAP R3 applications on an OS/390, or eserver zSeries to other
applications (including SAP R/3, SAP R/2, and non-SAP) across both IBM and
non-IBM platforms.

The following is a list of MQSeries products that can be integrated with
one another, depending on organizational and technical requirements.
Exhibit 18 shows a simple integration example.

1. The MQSeries Integrator improves business effectiveness. It uses enterprise-
defined transformations and intelligent routing to automatically select and
distribute information to the applications and people who need it. The
latest release extends support for existing AIX, Sun Solaris, and Windows
NT and 2000 platforms, to include HP-UX and a solution for eserver iSeries.

2. The MQSeries Workflow (available on AIX, HP-UX, Sun Solaris, Windows,
and z/OS) is the process engine for business process management (BPM)
from IBM. It is now enriched with a fully supported Web client, a rapid
user interface wizard, support for Oracle8, and improved performance.
Like other members of the MQSeries family, it is open and standards-based,
and supports Web services.

Exhibit 17. MQSeries Family

MQSeries Integrator
MQSeries Workflow

MQSeries Adapter Offering
MQSeries Everyplace for Multi-Platforms

WebSphere Business Integrator
WebSphere Partner Agreement Manager

WebSphere Adapters

Exhibit 18. MQSeries Integration Example

MQSeries WorkflowDefine or Manage
Processes

MQSeries Integrator

MQSeries Adapter
Offering

Manage Transaction

Connect Application

AU1272Ch01Frame Page 21 Monday, January 21, 2002 7:33 AM

22 The Complete Book of Middleware

3. The Adapter Offering works with MQSeries messaging to reduce the risk,
complexity, and cost of point-to-point application integration. It provides
the framework and tools to build adapters to a wide range of applications,
making it easier and quicker to manage the integration of business pro-
cesses. The latest release extends support for Windows and enhances the
offering for the Java environment.

4. The MQSeries Everyplace for MultiPlatforms provides mobile workers and
remote systems with dependable and secure access to business processes.
The latest release sees the introduction of an input node to MQSeries
Integrator, as well as a Retail Edition, and direct support for Linux and
HP-UX.

5. The WebSphere Business Integrator runs on Windows NT/2000 and delivers
a cohesive platform with integrated tooling for the design, development
and deployment of adaptive end-to-end business process solutions across
diverse applications and enterprises. It builds upon tried and tested prod-
ucts from the IBM portfolio, packaged together with a common installation
tool.

6. The WebSphere Partner Agreement Manager enables an organization to
automate interactions with suppliers, business partners, customers, and E-
markets to improve supply chain efficiency and effectiveness. It now
supports closer integration with the WebSphere family, including Web-
Sphere Business Integrator.

7. The WebSphere Adapters use open standards to connect WebSphere Appli-
cation Servers or MQSeries applications to popular packaged software from
J.D. Edwards, Oracle, PeopleSoft, and SAP more quickly and easily. This
significantly enhances integration opportunities with some of today’s lead-
ing E-business products.

Application Programs and Messaging

The IBM MQSeries range of products provides application programming
services that enable application programs to communicate with each other
using messages and queues. This form of communication is referred to as
asynchronous messaging. It provides assured, once-only delivery of messages.
Using MQSeries means that one can separate application programs, so that
the program sending a message can continue processing without having to
wait for a reply from the receiver. If the receiver, or the communication
channel to it, is temporarily unavailable, the message can be forwarded at a
later time. MQSeries also provides mechanisms for generating acknowledg-
ments of messages received.

The programs that comprise an MQSeries application can be running on
different computers, on different operating systems, and at different locations.
The applications are written using a MQI so that applications developed on
one platform can be transferred to another.

Exhibit 19 shows that when two applications communicate using messages
and queues, one application puts a message on a queue and the other
application gets that message from the queue.

AU1272Ch01Frame Page 22 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware 23

Queue Managers

In MQSeries, queues are managed by a component called a queue manager
that provides messaging services for the applications and processes the MQI
calls they issue. The queue manager ensures that messages are put on the
correct queue or that they are routed to another queue manager.

Before applications can send any messages, one must create a queue
manager and some queues. MQSeries provides the utilities to help do this
and to create any other MQSeries objects needed for one’s applications.

Any MQSeries application must make a successful connection to a queue
manager before it can make any other MQI calls. When the application
successfully makes the connection, the queue manager returns a connection
handle. This is an identifier that the application must specify each time it
issues an MQI call. An application can connect to only one queue manager
at a time; thus, only one connection handle is valid (for that particular
application) at a time. When the application has connected to a queue
manager, all the MQI calls it issues are processed by that queue manager until
it issues another MQI call to disconnect from that queue manager.

Before an application can use a queue for messaging, it must open the
queue. In putting a message on a queue, the application must open the queue
for putting. Similarly, if getting a message from a queue, the application must
open the queue for getting. One can specify that a queue is opened for both
getting and putting, if required. The queue manager returns an object handle
if the open request is successful. The application specifies this handle, together
with the connection handle, when it issues a put or a get call. This ensures
that the request is carried out on the correct queue.

When the open request is confirmed, the application can put a message
on the queue. To do this, it uses another MQI call on which one must specify
a number of parameters and data structures. These define all the information
about the message one is putting, including the message type, its destination,
which options are set, etc. The message data (i.e., the application-specific
contents of the message the application is sending) is defined in a buffer,
which is specified in the MQI call. When the queue manager processes the
call, it adds a message descriptor that contains the information needed to
ensure that the message can be delivered properly. The message descriptor
is in a format defined by MQSeries; the message data is defined by the
application (this is what one puts into the message data buffer in the appli-
cation code).

Exhibit 19. Programs Connected to Same Queue

Program A Program B

queue 1

AU1272Ch01Frame Page 23 Monday, January 21, 2002 7:33 AM

24 The Complete Book of Middleware

The program that gets the messages from the queue must first open the
queue for getting messages. It must then issue another MQI call to get the
message from the queue. On this call, one must specify which message one
wants to get.

Exhibit 20 shows how messaging works when the program putting the
message and the program getting the message are on the different computers
and connected to different queue managers.

Commercial Messaging

For true commercial messaging, middleware needs to provide more than
assured delivery. MQSeries is designed to meet the requirements of real
business systems. It supports transactional messaging, which means that oper-
ations on messages can be grouped into “units of work.” A unit of work is
either committed in its entirety, or backed-out, so that it is as if none of the
operations took place. This means that data is always in a consistent state.

For example, an application gets a message off a queue, processes the
data in the message, and creates five further messages to be sent to other
applications, all within one unit of work. If the output queue for the last of
the five messages is temporarily full, then the application can back out the
entire unit of work, so the input message that it got from the queue will be
returned to the queue, and the first four messages that were put onto output
queues will be removed. After the back out, it is as if the application never
got the message in the first place. The application can then try the processing
again at a later time.

MQSeries can also coordinate units of messaging work with other transac-
tional work (e.g., database updates) so that message data and database data
remain completely in-sync at all times.

Security is one of the most important aspects of a distributed system and
MQSeries provides a flexible security framework that allows the appropriate
security architecture to be implemented to meet one’s specific requirements.

Exhibit 20. Programs Connected to Different Queue Managers

Program A

Program B

queue
manager 1

queue
manager 2

AU1272Ch01Frame Page 24 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware 25

There are several aspects to the MQSeries security model:

1. MQSeries Administration Commands. Administration of MQSeries is per-
formed using a number of commands. For example, create queue manager;
start queue manager. Control of individual user’s access to these commands
is via normal operating system controls, such as access control lists.

2. Access to Queue Manager Objects. MQSeries allows one to control appli-
cation access to queue manager objects, such as the queue manager itself,
and its queues. MQSeries on MVS conforms to the SAF interface and thus
one can use an external security manager, such as RACF or TopSecret, to
control application access to a queue manager. MQSeries on most other
platforms provides a security manager that allows one to specify access
controls for queue manager objects. If the security manager does not do
exactly what is needed, then one can write one’s own, because MQSeries
provides a documented interface for security management.

3. Channel Security. To protect the information flowing between MQSeries
queue managers, MQSeries supports exit points into which one can link
security modules. For example, when two queue managers initiate com-
munications via an MQSeries channel, each queue manager can verify the
identity of the other before exchanging any data. Similarly, during message
transmission, data can be encrypted before it is sent over the network and
decrypted when it arrives at the receiving end.

4. Application Security. The MQI programming interface provides facilities
for applications to identify themselves, both by platform and application,
and by principle (or user identifier). This information is propagated with
the message, and only privileged applications can change it. Applications
can therefore use this information to make extra security checks on
messages that they receive.

The asynchronous nature of message queuing may mean that applications
are idle for periods of time when there are no messages to process. To avoid
having idle processes consume system resources while there is no work to
do, MQSeries provides a mechanism to “trigger” applications to start when
certain conditions are met.

Triggering works by defining a specific condition for an application’s queue,
which, when met, will cause the queue manager to send a trigger message to
an MQSeries queue called an “initiation queue.” The trigger message is processed
by a special application called a trigger monitor, which reads the trigger message
from the initiation queue and uses the information in the message to decide
which application to start to process the messages on the application’s queue.

By using a trigger monitor one can have a single process that initiates
many application processes to handle messages arriving on many different
queues, as required.

MQSeries Internet Pass-Thru

The following new features have been added to MQSeries Internet Pass-Thru
(MQIPT):

AU1272Ch01Frame Page 25 Monday, January 21, 2002 7:33 AM

26 The Complete Book of Middleware

� Support added for AIX, HP-UX, and Microsoft Windows 2000 platforms
� Use of an HTTP proxy for outbound connections
� SSL support
� Use of a SOCKS proxy for outbound connections
� An Administration GUI for managing one or more MQIPT servers
� Support for the IBM Network Dispatcher

MQIPT provides a single point of control over the access to multiple queue
managers and supports Java and Windows 2000. It allows the passage of
MQSeries messages through firewalls without additional administrative over-
head for firewall administrators. It can operate as a stand-alone service,
receiving and forwarding MQSeries message flows. Using MQIPT, existing
MQSeries applications can pass data through the firewall without the need to
change them.

MQIPT does not store any MQSeries message data on disk. MQSeries
message data only passes through the memory of the MQIPT application. It
is possible to run more than one MQIPT on the same machine, but only one
can be run as a system service.

CICS and MQSeries

CICS is an application server that provides E-business online transaction
processing and transaction management for mission-critical applications on
OS/390 servers as well as other platforms The MQSeries Integrator Agent for
CICS is capable of accepting MQSeries messages and enables them to be
processed within the CICS environment and allows an application to be run
outside CICS on, for example, an IMS system. One can use a browser to direct
access to CICS without the need for intermediate gateways or Web servers or
to connect to CICS through the IBM WebSphere Application Server for OS/
390. One can access CICS transactions through standard CORBA clients using
standard IIOP protocols for distributed object programming.

Exhibit 21 displays a quick look at what CICS products IBM currently offers.
Browsers can access servlets running in WebSphere Application Server.

These servelts use JavaBeans, which in turn use the Common Connector
Framework (CCF) to access CICS applications. The CCF provides a common
way for Java application to connect to subsystems such as CICS, SAP, and
IMS, among others. For connecting to CICS, the CCF is based on the CICS
Transaction Gateway (CTG) Java classes provided with CICS TS V1.3. The CCF
connector will be replaced with the J2EE connector.

MQSeries JMS Support

IBM’s SupportPacs MA88 contains MQSeries classes for Java and MQSeries
classes for Java Message Service. It provides support for developing MQSeries
applications in Java (for deployment on MQSeries V5.1 and V5.2) through the
following Java-based APIs: MQSeries classes for Java V5.2.0 and MQSeries

AU1272Ch01Frame Page 26 Monday, January 21, 2002 7:33 AM

Distributed Transaction and Messaging Middleware 27

classes for Java Message Service (JMS) V5.2.00. It is available on the following
platforms: AIX, HP-UX, iSeries, Linux for Intel, Linux for OS/390, Microsoft
Windows, Sun Solaria, and OS/390 V2R9 or higher (including z/OS).

MQSeries classes for Java Message Service (JMS) is a set of Java classes
that implement Sun Microsystem’s Java Message Service specification. A JMS
application can use the classes to send MQSeries messages to either existing
MQSeries or new JMS applications. An application can be configured to
connect as an MQSeries client using TCP/IP, or directly using the Java Native
Interface (JNI). If the client-style connection is used, no additional MQSeries
code is required on the client machine. In addition to asynchronous message
delivery, MQSeries JMS also provides support for XA transactions via the XA
Resource interface (not available for iSeries, OS/390, or z/OS).

Notes
1. An EIS generally comprises Enterprise Resource Planning (ERP) systems and appli-

cation servers (database, client, and Web).
2. In selecting the RPC standard, the OSF cited the following rationale:

a. The three most important properties of a remote procedure call are simplicity,
transparency, and performance.

b. The selected RPC model adheres to the local procedure model as closely as
possible. This requirement minimizes the amount of time developers spend
learning the new environment.

Exhibit 21. CICS Offerings

CICS Transaction Server
V2.1 for z/OS and OS/390

Extend CICS applications with Enterprise Java E-business
technology; run mixed application types and workloads
within a single CICS system; and use existing DB2, IMS
DB, and VSAM data from Enterprise JavaBean (EJB)
applications.

CICS Transaction Server
for OS/390, V1.3

Includes CICS Transaction Gateway V3, among others.
This gateway uses the latest technologies, both HTTP
and Java based, to link the open, object-oriented world
of Web browsers on the Internet or an intranet to CICS
enterprise computing. It is also available for CICS
Transaction Server for VSE/ESA and CICS for VSE/ESA.
CICSPlex System Manager, an integral part of CICS
Transaction Server, is IBM’s System-390 management
product for CICS networks.

CICS Transaction Gateway
V4.0

Includes support for the Java Developer’s Toolkit (JDK)
Version 1.3 as well as support for Windows 2000, the HP-
UX 11.00, and Linux on OS/390 platforms. It also allows
one to connect their J2EE architectures to enterprise
CICS programs and data. This gateway is the prime CICS
connector to address the requirements to extend CICS
applications with Enterprise Java E-business technology
to J2EE environments,

Note: Effective December 31, 2002, CICS for MVS/ESA will be withdrawn.

AU1272Ch01Frame Page 27 Monday, January 21, 2002 7:33 AM

28 The Complete Book of Middleware

c. The selected RPC model permits interoperability; its core protocol is well-defined
and cannot be modified by the user.

d. The selected RPC model allows applications to remain independent of the
transport and protocol on which they run, while supporting a variety of other
transports and protocols.

e. The selected RPC model can be easily integrated with other components of the
DCE.

3. As of August 2001, IBM announced that the following MQSeries products are to
be renamed as part of the consolidation of IBM’s middleware product portfolio:
a. MQSeries to WebSphere MQ
b. MQSeries Integrator to WeSphere MQ Integrator
c. MQSeries Workflow to WebSphere Process Manager
d. MQe to WebSphere MQ Everyplace
e. WS BtoBi PAM to WebSphere Partner Agreement Manager

AU1272Ch01Frame Page 28 Monday, January 21, 2002 7:33 AM

29

Chapter 2

Object-Oriented

Middleware: CORBA 3

This chapter discusses the new CORBA 3 and its background and associated
object services. It also covers the OMG Technology Committee and latest
modeling specifications.

Introduction

CORBA (the acronym for Common Object Request Broker Architecture) relies
on a protocol called the Internet Inter-ORB Protocol (IIOP) for remoting
objects. It will not work without the protocol. Everything in the CORBA
architecture is built upon the foundation of Object Request Broker (ORB) over
which each CORBA object interacts transparently with other CORBA objects
in a heterogonous, distributed environment. Each object interfaces with others
via a set of methods.

The ORB itself is represented as a pipeline with supporting facilities of
four kinds (see Exhibit 1):

1.

Common Object Services

 provide a long list of standard services needed
to distribute objects successfully (see the section entitled “CORBA Object
Services”).

2.

Common Frameworks

 are collections of objects to provide comprehensive
services for application deployment which cut across many application
domains such as printing, compound documents, meta objects, and agents.
They are often constructed out of underlying Common Object Services.

3.

Domain Objects

are business objects that represent and model specific
domains, such as telecommunications, shipping, utilities, and medical
businesses. They similarly utilize Common Frameworks and Object Services
to provide their functionalities.

AU1272Ch02Frame Page 29 Monday, January 21, 2002 7:34 AM

30

The Complete Book of Middleware

4.

Application Objects

 express their functionality of the particular application
under development. They can be constructed out of all categories of
CORBA Objects.

To request a service, a CORBA client acquires an object reference to a
CORBA server object. The client calls on the object reference as if the CORBA
server object resided in the client’s address space. When the ORB finds a
CORBA object’s implementation, the system prepares it to receive requests,
communicate requests to it, and carry the reply back to the client.

A CORBA object interacts with the ORB either through the ORB interface
or through an object adapter — either a Basic Object Adapter (BOA) or a
Portable Object Adapter (POA). CORBA can be used on diverse operating
system platforms from mainframes to UNIX boxes to Windows machines to
handheld and mobile devices as long as there is an ORB implementation for
that platform.

CORBA Release Summary

We have come a long way to CORBA 3 since CORBA 1 was first released in
1991. CORBA 1 focused on the development of an Interface Definition Lan-
guage (IDL) that is independent of any programming language. This IDL
provided a beginning point for ORB developers while CORBA 2.0 added Inter-
ORB standards to ensure communication among ORBs provided by different
suppliers. Along with IDL and Inter-ORB standards, this CORBA version
includes common Object Services Specifications (for more information, see
section entitled “What Is New? CORBA 3”).

Then the OMG preannounced CORBA 3 with a suite of ten specifications
in a September 1998 press release. According to Exhibit 2, not all specifications
were adopted and issued as CORBA 3. Most were spread over three point
releases CORBA 2.2, 2.3, and 2.4, while the major release 3.0 was released in
early 2001. The table shows the release number, the date it was published,
the included specifications, and the date it was originally accepted.

Exhibit 1. Visual View of Facilities

Common Object
Services

Common Frameworks

Domain Objects

Application Objects

AU1272Ch02Frame Page 30 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3

31

CORBA 2.4 originally included several Quality of Service (QoS) specifica-
tions such as Asynchronous Messaging, Minimum CORBA, and Real-Time
CORBA specifications, as well as revisions made by several RTFs and FTFs,
including those responsible for the Interoperable Naming Service, Compo-
nents, Notification Service, and Firewall specifications. Minimum CORBA (for
embedded systems) and Real-Time CORBA (for real-time operating systems)
eventually became part of CORBA 3.

As it now stands, CORBA 3 comprises three components on integration
with Java and the Internet, quality control and a component model, each of
which is further explained in the section entitled “What Is New? CORBA 3.”

Organizational Structure

CORBA is structured to allow integration of a wide variety of object systems.
We start with a client sending a request to an object implementation (see
Exhibit 3). The ORB provides for all mechanisms to find the object implemen-
tation for the request, to prepare the implementation to receive the request,
and to communicate the data making up the request. To make the request,
the client can use the dynamic invocation interface (DII).

Exhibit 2. CORBA Release Summary

Release Date Included Specification Originally Adopted

CORBA 2.2 February 1998 POA June 1997
IDL-to-Java Mapping July 1998

CORBA 2.3 June 1999 Valuetypes May 1998
Java-to-IDL Mapping August 1998

CORBA 2.4 Late 2000 Messaging September 1998
Interoperable Naming Service March 1999

CORBA 3.0 Early 2001 CORBA Component Model Late 1999
CORBA Scripting May 1999
Real-Time CORBA May 1999
Minimal CORBA November 1998

Exhibit 3. Client Sending Request to Object Implementation

Client
Object

Implementation

ORB

Request

AU1272Ch02Frame Page 31 Monday, January 21, 2002 7:34 AM

32

The Complete Book of Middleware

The DII allows the dynamic construction of object invocations, rather than
calling a stub routine that is specific to a particular operation on a particular
object. This allows a client to specify the object to be invoked, the operation
to be performed, and the set of parameters for the operation through a call
or sequence of calls.

Another way of making the request is to use an OMG IDL stub (depending
on the interface of the target object). Object-oriented programming languages
such as C++ and Smalltalk do not require stub interfaces. The client can also
directly interact with the ORB for some functions.

The request goes to the object implementation to receive it as an up-call
interface either through the OMG IDL skeleton or through a dynamic skeleton
(see Exhibit 4). The existence of a skeleton does not imply the existence of
a corresponding client stub. The up-call interface allows object implementa-
tions to write routines that conform to the interface and is identical for all
ORB implementations and there can be multiple object adapters. With the
normal-call interface, each object has stubs and a skeleton.

The dynamic skeleton interface (DSI) is analogous to the client’s side’s DII.
Rather than being accessed through a skeleton specific to a particular opera-
tion, an object’s implementation is reached through an interface that provides
access to the operation name and parameters. The object implementation can
call the object adapter and the ORB while processing a request.

There are a wide variety of ORB implementations possible with CORBA.
An ORB can support multiple options and protocols for communication. The
options are listed in Exhibit 5.

What Is New? CORBA 3

Considered by many to be the core of CORBA 3, the CORBA Component
Model (CCM) packages up transactionality, persistence, event-handling secu-
rity, and POA-based server resource control into a development and runtime

Exhibit 4. Structure of Object Request Interfaces

IDL
Stubs

ORB
Interface

Static IDL
Skeleton

Dynamic
Skeleton

Object
Adapter

Dynamic
Invocation

Object ImplementationClient

ORB CORE

AU1272Ch02Frame Page 32 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3

33

package that business programmers can handle. Intentionally matched feature-
for-feature with EJBs, the CCM fulfills the last promise made by the Java and
Internet integration theme that started the three categories. The CCM was
adopted by OMG in late 1999 and is scheduled for formal release before the
end of 2001 as the numbered release CORBA 3. A brief description of CORBA
scripting languages is included.

This section looks at major parts of CORBA 3, CCM development stages,
CCM extension to IDL, component usage patterns, the container programming
model, and integration with Enterprise JavaBeans. In addition to the CORBA
Component Model, CORBA 3 consists of two other parts: improved integration
with Java and the Internet and Quality of Service control.

Improved Integration with Java and the Internet

The first major part of CORBA 3 is improved integration with increasingly
popular Java over the Internet. This became more important as the environ-
ments of servers became outnumbered by client machines by many orders of
magnitude. Computers built for homes and offices have a lot of power, and
downloadable code removes many of the system administration obstacles.
One can now download, for example, various codes (IDL templates) for
CORBA applications under development for wired or wireless offices. The
OMG has published a standard protocol for CORBA over wireless.

This section briefly looks at the status of CORBA’s

valuetypes

, Java-to-
XML mapping, XML/Value mapping, the Naming Service, the CORBA Firewall
specification, and the DCE/Internetworking specification. Readers should
review the section on Work-In-Progress Status of various groups of the OMG
Technology Committee for any other specifications of interest. Check the OMG
Web site for any updates.

Java and CORBA work well together. Java, like CORBA, is object-oriented
and has a distribution facility, Remote Method Invocation (RMI), with parallels
to CORBA. Both run over the Internet. Java is the only language with a reverse
mapping from its object interfaces to IDL. CORBA’s

valuetype

 aligns with

Exhibit 5. ORB Examples

Client and
implementation-
resident ORB

If there is a suitable communication mechanism, an ORB can be
implemented in routines resident in the clients and
implementation.

Server-based ORB To centralize the management of the ORB, all clients and
implementations can communicate with one or more servers
that route requests from clients to implementations.

System-based ORB To enhance security and performance, the ORB could be
provided as a basic service of the underlying operating system.

Library-based ORB For objects that are lightweight and whose implementation can
be shared, the implementation might actually be in a library.

AU1272Ch02Frame Page 33 Monday, January 21, 2002 7:34 AM

34

The Complete Book of Middleware

Java’s

serializable

. The basic level of the CORBA component is aligned
with its Enterprise Java Beans (EJB) specification. On the other hand, CORBA
is a multi-language environment, while Java is a single-language environment
evenly distributed through RMI. Additionally, Java has a larger programmer
base than CORBA.

The

valuetype

 and the reverse Java-to-IDL mapping are building blocks
for XML/Value Mapping, asynchronous invocations, and the CCM. The

val-
uetype

allows an object to be passable with values. It gives CORBA
programmers an alternative construct that passes by value, rather than by
reference. The way the

valuetype

 was defined gives CORBA a construct
that parallels Java’s

serializable

. In other words, one can pass values
between Java and CORBA programs. The

valuetype

 was formally released
as part of CORBA 2.3.

When coding a CORBA program, one defines the interface to each object
type by writing it to IDL, and then uses an IDL compiler to convert it to the
language of choice: C, C++, Java, Smalltalk, Ada, COBOL, Lisp, PL/1, Python,
etc. To reverse the mapping to IDL, one needs Java’s

serializable

 and
CORBA’s

valuetype

. Without them, one will not be able to do so. This
mapping allows Java RMI objects to interoperate over the network like CORBA
objects. The Java-to-IDL mapping was formally released as part of CORBA 2.3.

The Java-to-IDL mapping serves as building blocks for XML/Value Mapping
(and the CCM). Although the role that XML plays in building Internet commerce
is significant, the original CORBA 3 press release did not cover the topic of
mapping XML to CORBA

valuetypes

. What it does is present an XML
document as a collection of native CORBA types — in a standard way.

The specification lets one take advantage of a data type definition (DTD)
if there is one, but works perfectly well for DTD-less XML documents if there
is no DTD. XML documents that come with DTDs have a static structure.
Those without DTDs give a flavor of dynamic structure. The static mapping
takes advantage of the extra information in the DTD. Although more appli-
cations use static rather than dynamic mapping, one is better off with dynamic
mapping especially in developing Internet commerce applications. For the
less sophisticated, static mapping is easier to work with and analyze.

The XML/Value specification maps the DOM interfaces to CORBA

value-
types.

 Not presented in the DOM specification are the methods to parse
from an XML document to a node tree and serialize from a node tree to XML
documents. A new DOM version is needed to make the XML/Value Mapping
work. As of July 2001, Microsoft had not formally announced this version and
the work-in-progress status of the XML/Value FTF (in the category of PTC
Revision Task Forces) indicates that submission deadlines have not been set.
It has not yet been issued as part of a numbered CORBA release. Check the
OMG site for status changes.

The

CORBA Firewall Traversal specification

 allows firewalls to be config-
ured for CORBA, passing IIOP traffic when they are supposed to and keeping
it out when they are not. As of July 2001, the work-in-progress status of the
CORBA Firewall Traversal RTF (in the ORB and Object Services Platform Task
Force category) indicates that initial submissions have been received. Proposals

AU1272Ch02Frame Page 34 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3

35

called for specification of IDL interfaces, mechanisms, and conventions that
will permit IIOP to traverse inter-network firewalls or similar specifications
for any other OMG inter-ORB protocols. Check the OMG Web site for status
changes.

The Interoperable

Naming Service

 is divided into three parts. The first part
defines human-readable object references, while the second part enhances
the ORB’s handling of object references for standard services of start-up. The
third part standardizes the textual representation of an object’s name. In short,
this service is key to allowing newly discovered CORBA objects to be invoked
over the Internet. All of the provisions of this service were added to the
CORBA core in release 2.4.

Although the DCE/CORBA Internetworking specification passed the OMG
PTC vote in September 1998, the marketplace did not fully embrace it. As a
result, this specification was not fully adopted.

Quality of Service Control

Quality of Service control allows one to control the characteristics of an
environment or select and tune a specialized version of CORBA. It includes
CORBA Messaging, Invocation Quality of Service, Real-Time CORBA, Fault-
Tolerant CORBA, Minimum CORBA, and Smart Transducers. Each is briefly
discussed.

�

CORBA Messaging

 encompasses both asynchronous and messaging mode
invocations. This specification was added to CORBA 2.4 and appears as
Chapter 22.

�

Invocation Quality of Service

pertains to both asynchronous and synchro-
nous invocations. Under CORBA 3, one can prioritize invocations, set
timeouts, and control other characteristics when environments become
overloaded.

�

Real-Time CORBA,

the first of the three specialized versions of CORBA,
extends the CORBA architecture to give real-time applications the resource
control they need to guarantee end-to-end predictability for distributed
applications built on real-time operating systems. This specification was
added to CORBA 2.4 and appears as Chapter 24.

�

Fault-Tolerant CORBA

, the second of the three specialized versions, stan-
dardizes redundancy software configurations and systems to provide the
Enterprise applications with more reliable performance.

�

Minimum CORBA

, the last of the specifications, is aimed at embedded
and card-based systems. This specification defines a small-footprint CORBA
configuration by omitting dynamic features (DII, interface repository). This
specification was added to CORBA 2.4 as Chapter 23.

CORBA 3 applications are broad, varied, and friendly to loosely coupled
interoperating systems characteristic of the business-to-business (B2B) appli-
cations. This is in contrast to CORBA 2 where it integrates distributed objects
into a tightly coupled application. B2B and some business-to-consumer (B2C)

AU1272Ch02Frame Page 35 Monday, January 21, 2002 7:34 AM

36

The Complete Book of Middleware

applications must be loosely coupled, meaning that services are available
when needed. These services can wait for a response. This can be partially
accomplished with CORBA’s ability to transmit requests in XML.

Many applications require that invocations complete within a certain time.
This is particularly true for Internet commerce applications. If invocations are
not completed on time, an enterprise can lose many customers. This is where
Real-Time CORBA plays a significant role in time-critical applications. It is
being used today in many systems, from military to flight and space control.
This leads us in two directions: Fault-Tolerant and Minimum CORBA. The first
provides extra reliability in systems while the second makes the software as small
as possible to fit into embedded systems, such as those found in TV or VCR.

The OMG has already gone beyond Minimum CORBA with Smart Trans-
ducers RTF (in the category of ORB and Object Services Platform Task Force).
For those who do not know, smart transducers are systems-on-the-chip. The
task force suggests that three levels of interfaces are required: a real-time
service interface to deliver the data, a diagnostic and maintenance interface
to query log data, and a configuration interface for initial configuration and
updates. As of July 2001, current status shows that initial submissions have
been received.

The CORBA Component Model

The CORBA component model (CCM) is the most interesting specification of
CORBA 3. It combines the key services, with the POA’s servant handling
capability for scalable servers, and wraps these tools with higher-level interfaces.
CCM applications are very compact and are easy to code. Codes are automatically
generated from declarations in new languages built upon OMG IDL.

CCM applications are modular and can be assembled from CCM
components — commercial or in-house programmed. CCM components and
EJBs can be combined in a single application. In addition, CCM applications
can scale to enterprise and Internet usage levels.

The CCM consists of a number of interlocking pieces that comprise the
complete server computing architecture. These pieces include:

�

The components themselves, including:

An abstract component model, as extensions to IDL and the object
model

A component implementation framework, using the new Component
Implementation Definition Language (CIDL)

�

The component container programming model expressed alternatively as
the component implementer and client view and the container provider
view

�

Integration with Persistence, Transactions, and Events Services

�

Component packaging and deployment

�

Interworking with EJB 1.1

�

Component MetaData Model — Interface Repository and Meta-Object Facil-
ity (MOF) extensions

AU1272Ch02Frame Page 36 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3

37

CCM Development Stages

Here are the steps in a CCM development project.

1.

Analysis design phase

. This step includes all the modeling analysis work
that happens before a developer is ready to start designing CORBA com-
ponents. It produces a Unified Modeling Language (UML) model of the
application in several parts, including architecture, a set of use cases, and
others. One can construct a UML model and use it for one’s CORBA or
CMM application. One will have to subset UML to CORBA because CCM
has not been fully standardized.

2.

Component declaration.

 This step requires one to declare CORBA com-
ponent’s methods and home in OMC IDL, using the component extensions.
Then use CORBA 3 IDL to compile it. Server-side products include skeletons
and an XML component description.

3.

Component implementation

. The first part of the implementation step is
to declare each component’s persistent state in Persistent Definition Lan-
guage (PSDL, an extension of OMG IDL) and some behavior in CIDL. One
can use PSDL directly in one’s programming language. The Persistent State
Service (PSS) automates storage and retrieval of a servant’s persistent state
and is the last of the building blocks. The PSS is implemented with the
CCM container that connects to an implementation of the PSS to provide
persistence. Compilation of the CIDL generates component skeletons that
one fills in with business logic in the chosen programming language.

4.

Component packaging

. This step generates a component descriptor: a file,
in XML, that tells the CCM runtime how to connect to and manage the
implementation. It tells how to package the implementation and the compo-
nent descriptor into a component archive file (the file extension of

.car

).
5.

Component assembly

. In this optional step, one can configure each com-
ponent in the assembly, describe how it connects to the other included
components, and tell how the different component types will be partitioned
among a set of computers. One can do this if the installation is designed
for a multi-machine execution environment for load-balancing.

6.

Component deployment and installation

. CCM product vendors must provide
a runtime that supports transactions, security, and event handling. These
systems may support persistence as well, although the CMM specification
allows a runtime to rely on a separate compliant PSS implementation.

7.

Runtime: component instance activation

. At runtime, components are acti-
vated by the container POA using the subset of modes available, and are
invoked by clients via their IDL interfaces. Once deployed and installed,
the component factories are available to be activated and used via the
standard CORBA ORB mechanisms.

CCM Extensions to OMG IDL

A component is a new basic metatype in CORBA. A component is not the
same thing as an interface. The various stubs and skeletons a component
bears are referred to as ports. Four types have special names:

AU1272Ch02Frame Page 37 Monday, January 21, 2002 7:34 AM

38

The Complete Book of Middleware

1.

Facets

 are the potentially multiple interfaces that a component provides
to its clients.

2.

Receptacles

 are the client stubs that a component uses to invoke other
components, as described in its configuration file.

3.

Event sources

 are the named connection points that emit events of specified
type to one or more interested consumers, or to an event channel.

4.

Event sinks

 are the named connection points into which events of a
specified type can be pushed by a supplier or an event channel.

Both event types constitute a CCM event model that is based on publish/
subscribe. This model supports a subset of the semantics of the CORBA
Notification Service, using simplified interfaces.

A component may also incorporate client stubs used to invoke other CORBA
objects — the naming or trader service, for example.

Other new features of the model include:

�

Primary keys:

 values that components that have persistent state expose to
their clients to help identify themselves (a customer account number or
social security number might be a primary key)

�

Attributes and configuration:

 named values exposed through accessors
and mutators primarily used for component configuration

�

Home interfaces:

 provide standard factory and finder operations

Component Usage Patterns

There are seven categories, four supported by the CCM, two by EJB, and an
“empty” category that you can declare and support yourself. Every component
type that you define (using IDL, PSDL, and CIDL) must have a category in its
composition CIDL.

The component category is built up from a CORBA usage model and a
Container API type. The four component categories are (see also Exhibit 6):

1.

Service components

 have no state and no identity. The usage model is
stateless. The Container API type is Session.

2.

Session components

 have transient state and non-persistent identity. The
usage model is conversational. Both the Container API and EJB Bean types
are Session. What this means is that the object reference is transient. It

Exhibit 6. CCM Component Categories

Component
Category CORBA Usage Model Container API Type Primary Key EJB Bean Type

Service Stateless Session No —
Session Conversational Session No Session
Process Durable Entity No —
Entity Durable Entity No Entity

AU1272Ch02Frame Page 38 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3 39

will not survive from one session to another and, having no persistent
state, it cannot have a primary key.

3. Process components have persistent identity and state that may span ses-
sions, but no key is visible to the client. The usage model is durable. The
Container API Type is Entity. It does not have an EJB Bean type.

4. Entity components have persistent state and identity, visible to the client
through a primary key. Both Container API and EJB Bean types are Entity.

Container Programming Model

This model is the programming environment that CCM gives us. The container
is the server’s runtime environment for a CORBA component implementation,
offering CCM services to the components it serves. The POA forms the basis
for scalable CORBA servers. The CCM Container is a specialized POA and
uses the PSS to store the state of persistent objects when executing code is
deactivated between calls. Replacing the now-deprecated Persistent Object
Service, the PSS is used by the CCM Container to store the state of persistent
objects when executing code is deactivated between calls. The PSS was
adopted in late 1999, and is scheduled for inclusion in a formal CORBAservices
release before the end of 2001, intentionally synchronized with the formal
release of the CCM as part of CORBA 3.

There are two types of interfaces that CCM uses:

� External API types: These are the APIs that clients use to invoke operations
on the component or its home.

� Container API types: These are local interfaces that allow either component-
to-container or container-to-component invocations. Component-to-container
invocations request the container-provided services (see Exhibit 7), such as
Transactions, Security, Persistence, and Notification). Container-to-component
invocations primarily concern activation/deactivation and informing the ser-
vant of its primary key so that it can restore the required state.

Integration with Enterprise JavaBeans

The required programming API for Java CORBA Components is EJB 1.1. The
EJB 2.0 specification, released after the CCM, requires that EJBs interoperate

Exhibit 7. Container-Provided Services

ORB

Transactions Security Persistence Notification

AU1272Ch02Frame Page 39 Monday, January 21, 2002 7:34 AM

40 The Complete Book of Middleware

over the network using OMG’s protocol IIOP using equivalent IDL generated
from Java objects via the reverse Java-to-IDL mapping.

Building on this foundation, the CCM specification includes a comprehen-
sive forward and reverse mapping of EJB operations to CCM operations. The
correspondence is extremely close; a thin bridge can span the gap (see
Exhibit 8). It encompasses not only method invocations, but also container,
factory, finder, and other infrastructure operations. With suitable bridges in
place, an EJB running in a CORBA EJB container can look like a CCM
component, and a CCM component running in a CCM container can look like
an EJB.

The CCM architecture allows a component to bear multiple interfaces, and
Component Home type provides class-like operations. Four pre-coded select-
able resource allocation patterns, selected from over 200 provided by the POA,
simplify server-side programming while preserving flexibility.

CORBA Object Services
This section looks at what object services are available and provides a brief
discussion on OpenORB.

Accessing Object Services

The implementation of business objects will often involve access to standard
CORBA object services (see Exhibit 9). Other services, such as the Change
Management Service will be added over time as they are agreed to by the OMG.

1. Collection Service supports the grouping of objects and support operations
for the manipulation of the objects as a group. Common collection types
are queues, sets, maps, etc. Collections can guarantee the uniqueness of

Exhibit 8. Interoperability Between CORBA Components and EJBs

CCM Client EJB Client

CCM ClientEJB Client

EJB
Container

EJB

CCM
Container

CCM

Bridge Bridge

CCM
View

EJB
View

AU1272Ch02Frame Page 40 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3 41

elements, while others allow multiple occurrences of elements. A user
chooses a collection type that matches the application requirements based
on manipulation capabilities.

2. Concurrency Service provides the locking mechanisms that enable sharing
of business object state between active clients and integrates this mecha-
nism with the underlying application/database functions. It ensures that
the consistency of the object is not compromised when accessed by
multiple users, applications, or other types of concurrently executing
computations. This service is used with Persistence Service and Transaction
Service.

3. Event Service supports the asynchronous mechanism for passing messages
on events between business objects that may not know about another and
for automatic notification of changes from one object to another. It decou-
ples the communication between objects and defines two roles for objects:
the supplier role and the consumer role. Suppliers produce event data and
consumers process event data. Event data is communicated between sup-
pliers and consumers by issuing standard CORBA requests. This commu-
nication model contrasts with method calls.

4. Externalization Service uses a special streaming mechanism for moving or
copying the contents of business objects to an external medium. To exter-
nalize an object is to record the object’s data in a stream of data. Objects
can be externalized to a stream (in memory, on a disk file, across the
network, and between hoses) and subsequently be internalized into a new
object in the same or a different process. The Externalization Service is
related to the Relationship Service. It also parallels the Life Cycle Service in
defining externalization protocols for simple objects, for arbitrarily related
objects, and for graphs of related objects that support compound operations.

5. Licensing Service provides a mechanism for producers to control the user
of their intellectual property in a manner determined by their business and
customer needs. It includes three objects: Licensing Service Manager,
Producer Licensing Service, and Licensing Systems.

6. Life Cycle Service defines services and conventions for creating, deleting,
copying, and moving objects. Because CORBA-based environments support
distributed objects, the Life Cycle Service defines conventions that allow
clients to perform life cycle operation on objects in different locations.
This service may vary from vendor to vendor in the way developers are

Exhibit 9. CORBA Object Services

Notification

Collection

Property

Externalization

Security

Licensing

Persistent State

Concurrency

Relationship

Event

Time

Life Cycle

Transaction

Naming

ORB

AU1272Ch02Frame Page 41 Monday, January 21, 2002 7:34 AM

42 The Complete Book of Middleware

allowed to have some measure of control over physical aspects of the
objects.

7. Naming Service supports the use of human-readable and user-friendly
names for business objects and the grouping together of conceptually
related objects within a network. A naming graph allows more complex
names to reference an object.

8. Notification Service describes a CORBA-based notification service, a service
that extends the existing Event Service. New capabilities include the ability
to transmit events, the ability for clients to specify when events they are
interested in receiving, the ability to transmit events in the form of a well-
defined data structure, and the ability for the event types offered by
suppliers to an event channel to be discovered by consumers of that
channel so that consumers can subscribe to new event types as they
become available.

9. Persistence State Service provides the mapping (IDL) between business
object state and external persistent datastores and describes how objects
are stored uniformly in various repositories. It works well with the Trans-
action Service and the POA. (Note that Persistent State Service replaces
Persistent Object Service.)

10. Property Service is concerned with an object supporting an interface that
consists of operations and attributes. Two objects are of the same type if
they support the same interface. Properties are types, names values dynam-
ically associated with an object, outside the type system. One example is
a particular document declared as important must be read by the end of
the month. Another example is an online service download utility that
increments a counter every time an object is downloaded by a user.

11. Query Service provides query operations on collections of objects and can
be used to access server objects or the data in external databases using
keys and the query engine the service provides. The queries are predicate
based and may return collections of objects. They can be specified using
object derivatives of SQL or other styles of object query languages, includ-
ing direct manipulation query languages.

12. Relationship Service concerns distributed objects that are frequently used
to model entities in the real world. They do not exist in isolation and are
related to one another. One example of real-world entities and relationships
is that a company employs one or more persons; and a person is employed
by one or more companies. Another example of several relationships is
employment relationships between companies and people.

13. Security Service provides authentication checks for clients wishing to access
business objects or components and authorization checks at the class,
instance, or method level. It is also designed to allow implementations to
provide protection against the following: security controls being bypassed;
tampering with communication between objects — modifying, inserting,
and deleting items; and lack of accountability due, for example, to inad-
equate identification of users.

14. Time Service involves time service requirements on representation of time
and source of time. The service should also provide the following facilities:
ascertain the order in which “events” occurred, generate time-based events
based on timers and alarms, and compute the interval between two events.

AU1272Ch02Frame Page 42 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3 43

15. Trading Object Service facilitates the offering and the discovery of instances
of services of particular types. A trader is an object that supports the trading
object service in a distributed environment. It can be viewed as an object
through which other objects can advertise their capabilities and match their
needs against advertised capabilities. Advertising a capability or offering a
service is called “export.” Matching against needs or discovering services
is called “import.” Export and import facilitate dynamic discovery of, and
late binding to, services.

16. Transaction Service defines interfaces that allow multiple, distributed
objects to cooperate to provide atomicity. These interfaces enable the
objects to either commit all changes together or to rollback all changes
together, even in the presence of (noncatastrophic) failure. This ensures
that transactional actions affecting many objects are indivisible.

To understand how Object Services benefit all computer vendors and users,
it is helpful to know that the key to understanding the structure of the
architecture is the Reference Model, as shown in the Exhibit 10.

OpenORB

OpenORB Enterprise Suite includes an ORB designed for large scalability,
compliance, interoperability, and improved performance, and provides CORBA
Services and Extensions. It now includes Notification Service and a new
configuration system that allows the configuration and IDL files to be embed-
ded in the JAR files. OpenORB Enterprise Suite is well suited for distributed

Exhibit 10. Reference Model

Object Request
Broker

Enables objects to transparently make and receive requests and
responses in a distributed environment.

Object Services A collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services
are necessary to construct any distributed application and are
always independent of application domains.

Common Facilities A collection of services that many applications may share, but
which are not as fundamental as the Object Services. For
example, a system management or electronic mail facility could
be classified as a common facility. The Object Request Broker
(ORB), then, is the core of the Reference Model. Nevertheless,
it alone cannot enable interoperability at the application
semantic level. An ORB is like a telephone exchange: it provides
the basic mechanism for making and receiving calls but does
not ensure meaningful communication between subscribers.
Meaningful, productive communication depends on additional
interfaces, protocols, and policies that are agreed upon outside
the telephone system, such as telephones, modems, and
directory services. This is equivalent to the role of Object
Services.

AU1272Ch02Frame Page 43 Monday, January 21, 2002 7:34 AM

44 The Complete Book of Middleware

Java applications developed with CORBA. As of May 2001, OpenORB Enter-
prise Suite 1.1.0 is available at http://openorb.exolab.org/.

Other Supporting Facilities
In addition to CORBA Object Services, other supporting facilities include
CORBA facilities and several domain specifications. The CORBAfacilities are
services that many applications share but which are not as fundamental as
CORBAservices. Available are four specifications: Internationalization and
Time, Mobile Agent Facility, Task and Session, and Workflow Management.

As shown in Exhibit 11, each domain provides OMG-compliant specifica-
tions according to the goals of the specification.

OMG Technology Committee
OMG’s Technology Committee’s organizational structure is composed of the
Platform Technology Committee (ptc@omg.org), Domain Technology Commit-
tee (dtc@omg.org), and Architectural Board. As of July 2001, groups in
Exhibits 12, 13, and 14 comprise the Platform Technology Committee, while
groups in Exhibits 15, 16, and 17 make up the Domain Technology Committee.
Exhibit 18 gives groups with the Architectural Board. (Source: OMG In Motion
Newsletter, June 2001).

OMG will add or reorganize groups as needed or requested. Not all groups
for both committees have any activities. Some of those with work-in-progress
status directly or indirectly pertain to CORBA.

Exhibit 11. Domain Specifications

Specifications Interfaces

OMG Financial Concurrency
General Ledger
Party Membership Facility

OMG Healthcare Clinical Observations Access Service
Lexicon Query Service
Person Identification Service
Resource Access Decision

OMG Manufacturing Distributed Simulation Systems
Product Data Management Enablers

OMG Transportation Air Traffic Control
OMG Utilities Utility Management System (UMS) Data Access Facility
OMG Security Common Secure Interoperatility V2 (CSIv2)

Security Service
Resource Access Decision (RAD)
Enterprise Security with EJB and CORBA

AU1272Ch02Frame Page 44 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3 45

Exhibit 12. Platform Technology RTFs and FTFs

CWM RTF XMI 1.2 RTF
UML 1.4 RTF MOF 1.4 RTF
UML Profile for CORBA FTF Core RTF
Security 1.8 RTF C++ Mapping RTF
Interop RTF OTS RTF
Java-to-IDL Mapping RTF C Language Mapping RTF
Components FTF PSS FTF
Clock Service & Executor FTF Portable Interceptors RTF
IDL-to-Java RTF Relationship Services RTF
IDL Script RTF CSIv2 FTF
Additional Structures for OTS FTF Security 1.9 RTF
Object Reference Template FTF XML Value FTF

Exhibit 13. Platform Technology SIGs (PSIGs)

Agents PSIG (agents@omg.org)
 Process WG
 CWM WG
 BOI WG
 UML 2.0 WG
Benchmarking PSIG (benchmark@omg.org)
Digital Asset Management PSIG (docman@omg.org)
Internet PSIG (internet@omg.org)
Japan PSIG (jsig@omg.org)
Product Standard Definition SC (psdef@omg.org)
Realtime PSIG (realtime@omg.org)
 RT Analysis & Design WG
 RT High Performance CORBA WG
 Embedded Systems WG
 Publish/Subscribe WG
 Online Upgrades WG
 Safety Critical WG
 MicroCORBA WG
 Realtime Java WG

Exhibit 14. Platform Technology Task Force

ORB and Object Services Platform Task Force (orbos@omg.org)
 Wrappers WG

AU1272Ch02Frame Page 45 Monday, January 21, 2002 7:34 AM

46 The Complete Book of Middleware

Work-in-Progress Status
As of July 2001, the status of each group is provided in Exhibit 19. To obtain
more information, go to http://www.omg.org/schedule and click on the group
of interest.

Modeling Specifications
This section discusses various modeling specifications, particularly the Model-
Driven Architecture (MDA). We begin with a brief discussion of IT system life
cycles, move to more details about the three cores of MDA, and then look at
related topics.

IT systems have historically been developed, managed, and integrated using
a range of methodologies, tools, and middleware and there appears to be no
end to this innovation. What we have seen in the last few years, especially
as a result of efforts at OMG and W3C, is a gradual move to more complete
semantic models as well as data representation interchange standards. OMG
contributions include CORBA, UML, XML Meta Interchange (XMI), MOF, and
CWM. W3C contributions include XML, the XML Schema, and the ongoing
work of XML-PC working group. These technologies can be used to more
completely integrate the value chain (or life cycle) when it comes to developing
and deploying component-based applications for various target software archi-
tectures.

The life cycle of an application can vary dramatically, depending on
whether one is building a new application from scratch or just surgically

Exhibit 15. Domain Technology RTFs and FTFs

Public Key Infrastructure FTF Genomic Maps FTF
PDM RTF 1.4 CORBA-FTAM/FTP Interworking FTF
Telecom Wireless FTF Organizational Structures FTF
Macromolecular Structure FTF Bibliographic Query Service FTF
Telecom Service Access and Subscription FTF

Exhibit 16. Domain Technology SIGs (DSIGs)

Analytical Data Management DSIG (statistics@omg.org)
Autonomous Decentralized Service System DSIG (adss@omg.org)
CORBAgis DSIG (corbagis@omg.org)
Distributed Simulation DSIG (simsig@omg.org)
Enterprise Application Integration DSIG (eai@omg.org)
Human Resources DSIG (hr@omg.org)
Super Distributed Objects DSIG (sdo@omd.org)
SWradio DSIG (swradio@omg.org)

AU1272Ch02Frame Page 46 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3 47

Exhibit 17. Domain Technology Task Force

Command, Control, Computing, Communications and Intelligence DTF
(c4i@omg.org)

 C4I Roadmap WG
Common Enterprise Model Domain Task Force (bomsig@omg.org)
 IT Asset Management WG
 Organizational Structure Evaluation WG
Electronic Commerce Domain Task Force (ec@omg.org)
 Brokerage WG
 Object Oriented Electronic Data Interchange WG
 Reference Architecture WG
 EC Roadmap WG
 EC eCataloguing WG
Finance Domain Task Force (finance@omg.org)
 Insurance WG
 Accounting WG
 Postal Authorities WG
Healthcare Domain Task Force (healthcare@omg.org)
 CORBAmed Roadmap WG
Life Sciences Research Domain Task Force (lifesciences@omg.org)
 LECIS
 MAPS
 Gene Expression
Management Group (wask@omg.org)
 Cheminformatics
 Bibliographic Services
 Clinical Trials
 Macromolecular Structures
 Architecture & Roadmap
 Sequence Analysis
 Visualization & UI
 Web Pages WG
Manufacturing Domain Task Force (mfg@omg.org)
 Workflow WG
 Product and Process Engineering WG
 Common Business Objects WG
 Manufacturing Execution Systems/Machine Control WG
 People Who Like People WG
Space Domain Task Force (space@omg.org)
Telecommunications Domain Task Force (telecom@omg.org)
 Wireless CORBA WG
 Open Service Market WG
 Network Management WG
Transportation Domain Task Force (transport@omg.org)
 Rail Transport WG
 Air Transport WG
 Highways WG
Utilities Domain Task Force (utilities@omg.org)

AU1272Ch02Frame Page 47 Monday, January 21, 2002 7:34 AM

48 The Complete Book of Middleware

Exhibit 18. Architectural Board

Liaison Subcommittee (liaison@omg.org)
Object & Reference Model Subcommittee (ormsc@omg.org)
 ORM WG
Security SIG (secsig@omg.org)
Testing & Validation SIG (test@omg.org)

Exhibit 19. Work-In-Progress Status

ORB and Object Services Platform Task Force
 Security Domain Membership RFP (Status: Revised submissions have been

received.)
 Unreliable Multicast RFP (Status: Revised submissions have been received.)
 Dynamic Scheduling RFP (Status: Revised submissions have been received.)
 Parallel Processing RFP (Status: Revised submissions have been received.)
 RT Notification RFP (Status: Initial submissions have been received.)
 CORBA Firewall Traversal RFP (Status: Initial submissions have been received.)
 CORBA/SOAP RFP (Status: Initial submissions have been received.)
 Extensible Frameworks RFP (Status: Initial submissions have been received.)
 WAP WMLScript Mapping RFP (Status: Initial submissions have been received.)
 Online Upgrades RFI (Status: RFI has been issued; responses pending.)
 ATLAS RFP (Status: The Technology Adoption vote has completed.)
 GIOP SCTP Mapping RFP (Status: Initial submissions have been received.)
 Smart Transducers RFP (Status: Initial submissions have been received.)
 Load Balancing RFP (Status: Letters of Intent have been received.)
 C Mapping RFP (Status: RFP has been issued; responses pending.)
PTC Revision Task Forces
 Core December 2000 RTF (Status: No deadlines have passed.)
 Security 1.8 RTF (Status: Technology Adoption vote is underway.)
 Security(1.9) December 2000 RTF (Status: No deadlines have passed.)
 C++ December 2000 RTF (Status: No deadlines have passed.)
 OTS December 2000 RTF (Status: No deadlines have passed.)
 IDL-to-Java December 2000 RTF (Status: No deadlines have passed.)
 Interop December 2000 RTF (Status: No deadlines have passed.)
 XMI 1.2 RTF (Status: No deadlines have passed.)
 UML RTF January 2001 (Status: No deadlines have passed.)
 MOF 1.4 RTF (Status: No deadlines have passed.)
 Java-to-IDL December 2000 RTF (Status: No deadlines have passed.)
 Components FTF (Status: The Technology Adoption vote has completed.)
 Components December 2000 FTF (Status: No deadlines have passed.)
 PSS December 2000 FTF (Status: No deadlines have passed.)
 IDLscript December 2000 RTF (Status: No deadlines have passed.)
 Python Mapping 1.1 RTF (Status: RTF Revision is complete.)
 Portable Interceptors RTF (Status: No deadlines have passed.)
 Clock Service and Executor FTF (Status: No deadlines have passed.)
 UML Profile for CORBA FTF (Status: The Technology Adoption vote has completed.)
 Relationship Services RTF (Status: No deadlines have passed.)

AU1272Ch02Frame Page 48 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3 49

 Additional Structures for OTS FTF (Status: No deadlines have passed.)
 CSIv2 FTF (Status: No deadlines have passed.)
 PL/1 FTF (Status: The Technology Adoption vote has completed.)
 Object Reference Template FTF (Status: No deadlines have passed.)
 XML/Value FTF (Status: No deadlines have passed.)
 CWM RTF (Status: No deadlines have passed.)
Analysis and Design Platform Task Force
 Action Semantics for UML RFP (Status: Initial submissions have been received.)
 UML Profile for EDOC RFP (Status: Revised submissions have been received.)
 UML Textual Notation RFP (Status: Letters of Intent have been received.)
 UML Profile for Scheduling RFP (Status: Revised submissions have been received.)
 SPE Management RFP (Status: Revised submissions have been received.)
 XMI Prod. of XML Schema RFP (Status: Revised submissions have been received.)
 UML Profile for EAI RFP (Status: Initial submissions have been received.)
 UML 2.0 Infrastructure RFP (Status: Letters of Intent have been received.)
 UML 2.0 Superstructure RFP (Status: Letters of Intent have been received.)
 UML 2.0 OCL RFP (Status: Letters of Intent have been received.)
 UML 2.0 Diagram Interchange RFP (Status: RFP has been issued; responses pending.)
 CWM MIP RFP (Status: Letters of Intent have been received.)
 CWM Web Services RFP (Status: Letters of Intent have been received.)
 UML Testing Profile RFP (Status: RFP has been issued; responses pending.)
Real-Time PSIG
 Safety Critical RFI (Status: RFI has been issued; responses pending.)
Common Enterprise Models Domain Task Force
 Doc. Repository Integration RFP (Status: Revised submissions have been received.)
 Workflow RAI RFP (Status: Letters of Intent have been received.)
 Workflow Process Definition RFP (Status: RFP has been issued; responses pending.)
 Software Portfolio Mgmt. RFP (Status: Initial submissions have been received.)
 Competency RFP (Status: RFP has been issued; responses pending.)
 Knowledge Mgmt. RFI (Status: Responses have been received.)
Manufacturing Domain Task Force
 PDM Enablers V2.0 RFP (Status: Revised submissions have been received.)
 CAD Services RFP (Status: Revised submissions have been received.)
 Distributed Simulation V2.0 RFP (Status: Letters of Intent have been received.)
Electronic Commerce Domain Task Force
 Registration & Discovery RFP (Status: Revised submissions have been received.)
Telecommunications Domain Task Force
 Telecom Distrib. Accounting RFP (Status: Letters of Intent have been received.)
Financial Domain Task Force
 Product & Agreement Mgmt. RFP (Status: RFP has been issued; responses pending.)
 Payroll Facility RFP (Status: RFP has been issued; responses pending.)
 AR/AP Facility RFP (Status: RFP has been issued; responses pending.)
Healthcare Domain Task Force
 Healthcare Data Interpretation RFP (Status: Revised submissions have been

received.)
 Order Entry/Tracking RFP (Status: Letters of Intent have been received.)
 HILS RFP (Status: Revised submissions have been received.)

Exhibit 19. Work-In-Progress Status (Continued)

AU1272Ch02Frame Page 49 Monday, January 21, 2002 7:34 AM

50 The Complete Book of Middleware

adding a wrapper to an existing application. The cost of enhancement and
maintenance of an application as well as the cost of integrating new applica-
tions, with existing applications, far exceeds the cost of initial development.

In addition, the application life cycle itself can be quite complex, involving
several vendors in each of the life cycle phases. Hence, the need for infor-
mation interchange and interoperability between tools and middleware pro-
vided by different vendors (a very common situation in enterprises today) is
critical.

Like the life cycles for IT systems, the MDA supports many of the commonly
used steps in model-driven, component-based development and deployment.
A key aspect of MDA is that it addresses the complete life-cycle analysis and
design, programming aspects (testing, component build, or component assem-
bly), as well as deployment and management aspects. Exhibit 20 depicts a
high-level representation of how the various pieces fit together in MDA. As
one can see, the model has three cores: inner, middle, and outer. The inner
core consists of the UML, Component Warehouse Modeling (CWM), and MOF,
while the middle core focuses on CORBA, XMI/XML, .NET, and Java — the

Transportation Domain Task Force
 Surveillance RFP (Status: Revised submissions have been received.)
 ITS Center to Center RFI (Status: Responses have been received.)
 Flight Planning RFI (Status: Responses have been received.)
 Interoperability for Rail RFI (Status: Responses have been received.)
Lifesciences Domain Task Force
 Entity Identification Service RFP (Status: Revised submissions have been received.)
 Gene Expression RFP (Status: Revised submissions have been received.)
 Chemical Structure RFP (Status: Initial submissions have been received.)
 LECIS RFP (Status: Revised submissions have been received.)
 BSANE RFP (Status: Initial submissions have been received.)
 Lifesciences RFI 8 (Status: RFI has been issued; responses pending.)
 Chemical Sample Mgmt. RFI (Status: RFI has been issued; responses pending.)
C4I Domain Task Force
 Generic Sonar Interface RFI (Status: RFI has been issued; responses pending.)
Super Distributed Objects DSIG
 Super Distributed Objects RFI (Status: Responses have been received.)
DTC Revision Task Forces
 Genomic Maps FTF (Status: No deadlines have passed.)
 PDM RTF 1.4 (Status: RTF Revision is complete.)
 TSAS FTF (Status: No deadlines have passed.)
 CORBA-FTAM/FTP FTF (Status: No deadlines have passed.)
 Public Key Infrastructure FTF (Status: No deadlines have passed.)
 Bibliographic Query Service FTF (Status: No deadlines have passed.)
 Macromolecular Structure FTF (Status: No deadlines have passed.)
 Organizational Structure FTF (Status: No deadlines have passed.)
 Telecom Wireless FTF (Status: No deadlines have passed.)

Exhibit 19. Work-In-Progress Status (Continued)

AU1272Ch02Frame Page 50 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3 51

middleware. The outermost core is composed of Directory, Pervasive Services,
Security, Events, and Transactions. Obviously, the inner core maps to the
middle core, which in turn, utilizes the outer core to build a Model-Driven
Architecture.

MDA Inner Core

The UML, CWM, and MOF comprise the inner core. In September 2000, OMG
members started work on the Release 2.0 major revision of the UML specifi-
cation. The new release will be tailored to MDA requirements. This work is
being done in four parts:

� UML 2.0 Infrastructure scheduled to complete early 2002
� UML 2.0 Superstructure scheduled to complete mid-2002
� UML 2.0 OCL scheduled to complete early 2002
� UML 2.0 Diagram Interchange scheduled to complete by mid-2002

UML addresses the modeling of architecture, objects, interactions between
objects, data modeling aspects of the application life cycle, as well as the

Exhibit 20. Model-Driven Architecture

Java .NET
M

OF CW
M

Transactions Events

W
eb

CORBA

X
M

I/X
M

L
UML

D
ire

ct
or

y
Pervasive Services
S

ecurity

Model-Driven
Architecture

TelecommSpace

E-C
om

m
er

ce

Tra
ns

po
rta

tio
n

F
in

an
ce

O
thers

Healthcare

M
anufacturing

AU1272Ch02Frame Page 51 Monday, January 21, 2002 7:34 AM

52 The Complete Book of Middleware

design aspects of component-based development, including construction and
assembly. Note that UML is powerful enough that it can be used to represent
artifacts of legacy systems. Artifacts captured in UML models (Classes, Inter-
faces, Use Cases, Activity Graphs, etc.) can be easily exported to other tools
in the life-cycle chain using XMI.

MOF provides the standard modeling and interchange constructs used in
MDA. These constructs are a subset of the UML modeling constructs. Other
standard OMG models, including UML and CWM, are defined in terms of MOF
constructs.

This common foundation provides the basis for model/metadata inter-
change and interoperability, and is the mechanism through which models are
analyzed in XMI. MOF also defines programmatic interfaces for manipulating
models and their instances spanning the application life cycle. These are
defined in IDL and are being extended to Java.

By defining the common meta-model for all of OMG’s modeling specifi-
cations, the MOF allows derived specifications to work together in a natural
way. The MOF also defines a standard repository for meta-models and,
therefore, models (because a meta-model is just a special case of a model).

CWM is the OMG data warehouse standard. It covers the full life cycle of
designing, building, and managing data warehouse applications and supports
management of the life cycle. It is probably the best example to date of
applying the MDA paradigm to an application area.

The CWM standardizes a complete, comprehensive meta-model that enables
data mining across database boundaries at an enterprise and goes well beyond.
Like a UML profile but in data space instead of application space, it forms
the MDA mapping to database schemas. The product of a cooperative effort
between OMG and the Meta-Data Coalition (MDC), the CWM does for data
modeling what UML does for application modeling.

Two related adoption efforts will extend CWM to the Internet. They are:

� CWM Web Services
� CWM Metadata Interchange Patterns (MIP)

CWM Web Services will enable CWM-based metadata interchange over the
Internet by specifying the syntax and semantics of CWM metadata interchange
using a CWM Web Services API and loosely coupled communications. The
interaction patterns, standardized by the separate MIP RFP, will be general
enough to be used elsewhere.

MDA Middle Core

The middle core focuses on CORBA, XMI/XML, .NET, and Java. Historically,
the integration between the development tools and the deployment into the
middleware framework has been weak. This is now beginning to change by
using key elements of the MDA — specific models and XML DTDs and
Schemas that span the life cycle, and profiles that provide mappings between
the models used in various life-cycle phases.

AU1272Ch02Frame Page 52 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3 53

XMI, which marries the world of modeling (UML), metadata (MOF and
XML), and middleware (UML profiles for Java, EJB, IDL, Enterprise Distributed
Object Computing (EDOC)), plays a pivotal role in the OMG’s use of XML at
the core of the MDA. It also provides developers focused on implementation
in Java, VB, HTML, etc., with a natural way to take advantage of the software
platform and engineering discipline when a more formal development process
is desired.

XMI is a standard interchange mechanism used between various tools,
repositories, and middleware. XMI can also be used to automatically produce
XML DTDs and XML Schemas from UML and MOF models, providing an XML
serialization mechanism for these artifacts. XMI has been used to render UML
artifacts (using the UML XMI DTD), data warehouse and database artifacts
(using the CWM XMI DTD), CORBA interface definitions (using the IDL DTD),
and Java interfaces and Classes (using a Java DTD).

MDA Outer Core

OMG Domain Task Forces, after years of writing specifications in only CORBA,
are moving quickly to write base specifications in the MDA. OMG recognizes
(based on analogy to the CORBA-based Object Management Architecture)
three levels of MDA-based specifications: The Pervasive Services, The Domain
Facilities, and MDA Specifications.

The Pervasive Services include enterprise necessities such as Directory
Services, Transactions, Security, and Event Handling (Notification). Additional
Pervasive Services may be defined, either from the list of CORBA services
already standardized by OMG or from other suggestions from OMG members.

The Domain Facilities include industries such as healthcare, manufacturing,
telecommunications, biotechnology, etc. Although MDA-based standards have
yet to emerge, OMG Domain Task Forces have started to work in MDA to
realize the many benefits of this architecture. OMG’s Life Science Research
Domain Task Force, working in biotechnology, has modified its Mission and
Goals Statement to reflect its work in MDA.

In mid-2000, even before MDA, OMG’s Healthcare Domain Task Force
(formerly known by its nickname CORBAmed) published its Clinical Image
Access Service (CIAS), including a non-normative UML model that describes
the normative specification written in OMG IDL. One can examine this
document to get an idea of what a future MDA specification might look like.
In a true MDA specification, the UML model will be normative and fully
developed, defining all interfaces and operations, including parameters and
types, and specifying pre- and post-conditions in Object Constraint Language.

MDA Applications themselves perhaps created and maintained by a software
vendor or end-user company or enterprise using MDA tools to run an MDA-
based methodology, are not standardized by OMG. MDA-based development
tools will be widely available and enterprises around the world will start their
application development by building a PIM instead of writing code.

AU1272Ch02Frame Page 53 Monday, January 21, 2002 7:34 AM

54 The Complete Book of Middleware

Several companies have already developed applications using tools that
are close enough to the MDA (although MDA was not formally defined when
the work was done) to be recognizable as model-driven development.

UML Profiles, PIM, and PSMs

Technically speaking, applications and frameworks (that is, parts of applica-
tions that perform a particular function) can all be defined in the MDA as a
base Platform-Independent Model (PIM) that maps to one or more Platform
Specific Models (PSMs) and implementations. Both levels of models will be
defined in UML, making it the foundation of the MDA. OMG members are
already taking the group’s well-established CORBAservice specifications and
mapping them back to PIMs where they can serve all platforms through the
MDA development pathway.

That is, business experts can model exactly the business rules they want
into the PIM. Once business experts have completed the PIM, it can be
implemented on virtually any platform, or on multiple platforms with interop-
erability among them, to meet the needs of the industry and companies that
use it.

In the MDA, both PIMs and PSMs will be defined using UML profiles.
Eventually, OMG will define a suite of profiles that span the entire scope of
MDA. UML Profiles tailor the language to particular areas of computing (such
as EDOC) or particular platforms (such as EJB or CORBA).

For example, the UML Profile for CORBA defines the mapping from a PIM
to a CORBA-specific PSM. The UML Profile for CORBA specification was
designed to provide a standard means for expressing the semantics of CORBA
IDL using UML notation and thus to support expressing these semantics with
UML tools.

As of July 2001, OMG standards for other profiles are in process, as shown
in Exhibit 21. These profiles are critical links that bridge the UML community
(model based design and analysis) to the developer community (Java, VB, C++
developers), middleware community (CORBA, EJB, and SOAP developers).

Exhibit 21. Other UML Profiles

The UML Profile
for EDOC

Define a profile for component-based systems. This profile will be
used to define core PIMs.

The UML Profile
for EAI

Define a profile for loosely coupled systems; that is, those that
communicate using either asynchronous or messaging-based
methods. These modes are typically used in Enterprise
Application Integration, but are used elsewhere as well. This
specification is expected to complete by the end of 2001.

A UML Profile
for Scheduling

Will support precise modeling of predictable — that is, real-
time — systems, precisely enough to enable quantitative analysis
of their schedulability, performance, and timeliness
characteristics. This specification is scheduled to complete soon.

AU1272Ch02Frame Page 54 Monday, January 21, 2002 7:34 AM

Object-Oriented Middleware: CORBA 3 55

Additional Specifications

Several additional specifications will help tailor the UML to support MDA. A
new Action Semantics for UML specification, scheduled to complete in mid-
2001, will enhance the language’s representation of behavior. A human-
readable UML Textual Notation will enable a new class of UML editor programs
and enhance the way UML models can be manipulated. It will fit into the
EDOC, Notation elements will map one-to-one to the more verbose XMI, but
syntax will differ. This specification is scheduled to complete in late 2001.

Another specification of interest to the CORBA, UML, and MDA community
is a standard Software Process Engineering Metamodel that will define a
framework for describing methodologies in a standard way. This specification
is scheduled to complete soon. It will not standardize any particular method-
ology, but will enhance interoperability from one methodology to another.

IDL Specified Models

IDL itself is not tied to any specific language environment or platform. This
is what made it possible to have ISO adopt IDL as a standard without any
specific reference to CORBA. Indeed, there are many systems in this world
that use IDL to specify the syntactic model of the system but do not use
CORBA as the underlying platform. While OMG has not standardized any
such usage of IDL with alternative platforms, there are broadly deployed
instances in the industry of such use. However, it should be noted that despite
being platform and language environment independent, IDL specified models
are restricted to expressing only the syntax of the interactions (i.e., operation
signatures).

OMG has chosen to use IDL together with the CORBA platform (ORB
and language mappings) as a reasonable package of facilities to standardize.
This facilitates algorithmic construction of skeletons of portable components
of the system for a specific language environment, from language-indepen-
dent specifications, using an IDL compiler. The big win from this is portability
of specifications from one language environment to another, as well as
portability of implementations among different instances of the same lan-
guage environment.

Additionally, given specifications of the exact syntax of interaction between
objects that constitute the system, it is also possible to automatically generate
the syntactic form that is carried on a wire that connects the two communi-
cating objects. OMG has standardized on GIOP/IIOP as the standard means
of conveying communication between IDL declared objects deployed on a
CORBA platform. Again, IDL, and even the CORBA platform, do not preclude
use of other means of communication between objects. Indeed, it is quite
possible for two CORBA objects to communicate with each other using DCOM
or SOAP on the wire. But the adoption of a single means of interoperation
ensures interoperability of implementations.

AU1272Ch02Frame Page 55 Monday, January 21, 2002 7:34 AM

56 The Complete Book of Middleware

Bridging Platforms

The general philosophy has been to adopt a single set of standards within a
broader framework that allows alternatives if there is such a need. The standard
interoperability framework recognizes such possibilities and explicitly defines
domains and how bridges can be specified to enable objects in different
domains to communicate with each other, thus making it possible to construct
systems that span multiple domains.

This framework has been successfully used to specify bridges between the
CORBA platform with GIOP/IIOP-based communication and the COM/DCOM
platform and communication domain in an existing OMG standard. More
recently, an inter-domain bridge between the CCM and the EJB Component
Model has also been adopted as a standard.

The problem of bridging from one platform to another becomes consid-
erably simpler if the two platforms in question share a common model at a
higher level of abstraction. It is fortunate that most broadly deployed distrib-
uted computing environments happen to share such a common model,
although never formally expressed as such, thus making construction of
bridges among them feasible.

Extensions to IDL

Various attempts have been made to extend IDL to capture richer structural
and behavioral information and to automatically generate implementation
artifacts for a given platform that enforces the constraints as specified in the
richer specification.

A recent example of this is the Components extension of IDL together with
the XML-based deployment descriptors, which facilitates specification of entire
systems in terms of its constituent components, their interactions, and deploy-
ment characteristics. However, it should be noted that all such extensions so
far have been point solutions, without paying much attention to a general
model for specifying such extensions.

A model defined in the UML Profile for CORBA provides an alternative
representation of an IDL model. They are different representations of the same
model. In fact, there is precisely one IDL representation that can be derived
from a model represented using the UML Profile for CORBA. The UML model
may, however, provide additional information (such as cardinality) that cannot
be represented in an IDL model today.

Appropriate extensions to IDL that allow representation of these additional
relevant concepts would make it possible to map a model expressed in the
CORBA Profile of UML to an equivalent IDL model in a reversible fashion.
That is, one would be able to reconstruct the corresponding UML from the
equivalent IDL, without loss of information. This ability to “round-trip” the
transformation in this way would allow designers and architects to work in
the technology they are comfortable with (UML or IDL) and algorithmically
generate the alternative representation for the specification.

AU1272Ch02Frame Page 56 Monday, January 21, 2002 7:34 AM

57

Chapter 3

Microsoft’s Stuff

This chapter discusses Microsoft’s stuff that the world has come to know.
They include the .NET platform architecture and associated technologies —
Simple Object Access Protocol (SOAP), Windows 2000 operating systems, and
Microsoft Transaction Server.

Introduction

The .NET platform represents an evolution of the Component Object Model
(COM). The next generation of COM, COM+, is part of .NET Framework. In
1995, Microsoft and DEC

1

 published the COM specification and it has been
the keystone of development using Microsoft platforms ever since. In theory,
COM is available on Macintosh and UNIX platforms. But COM requires a
registry, which is built into Windows and is merely emulated on other systems.
So, in practice, COM has become a Windows-only solution.

Creating a chart in Excel and pasting it into a Word document, using
Outlook to send an e-mail, and developing an application in Visual Basic all
require COM to provide interoperability among them. Another example of
COM components includes ActiveX controls that can be embedded into a
Windows or a Web page. There is a huge third-party market of controls
providing functionality such as grids, graphs, calendars, 3-D viewers, sockets,
etc.

Internet Explorer supports ActiveX controls because it is a Microsoft prod-
uct. On the other hand, Netscape Navigator does not because of issues with
cross-platform compatibility and security, among others. Consequently, the
use of ActiveX controls is mostly limited to intranet and extranet sites where
it is possible to mandate the browser type and operating system that visitors
often use.

AU1272Ch03Frame Page 57 Monday, January 21, 2002 7:34 AM

58

The Complete Book of Middleware

Distributed COM (DCOM) extends COM to allow components to be reg-
istered on one machine and called securely from a client program on another
computer over the network. Previously called “Network OLE,” DCOM is
designed for use across multiple network transports, including Internet pro-
tocols such as HTTP. DCOM is based on the Open Software Foundation’s
DCE-RPC specification and works with both Java applets and ActiveX com-
ponents through its use of the COM.

At the 1997 Professional Developers Conference in San Diego, California,
Microsoft announced plans for COM+, an extension to the COM. COM+ builds
on COM’s integrated services and features, making it easier for developers to
create and use software components in any language.

Because most COM components are written as Dynamic Link Libraries
(DLLs), the components are usually hosted or run in either Microsoft Trans-
action Server (MTS)

2

 on NT4 platforms or in COM+, which is built into all
Windows 2000 platforms.

.NET Architecture

The .NET platform represents an evolution of COM. It is used to create software
components that are completely object based. We will see “COM.NET” as the
next step in COM evolution. Microsoft has already replaced ADO with
ADO.NET, and ASP with ASP.NET.

.NET is designed to be able to interact with COM. It needs to do this
anyway to provide support for COM+, which is considered part of the .NET
framework, and may be used to host .NET as well as COM components.

This facility is provided by the .NET framework’s “COM InterOp” layer (see
Exhibit 1), which provides access between what .NET calls “managed” code

Exhibit 1. “COM InterOp” Layer

COM Interop Layer

Managed code
(within .NET framework)

Unmanaged code
(COM)

AU1272Ch03Frame Page 58 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff

59

(code that is running within the .NET framework) and “unmanaged” code
(such as COM). This is two-way access, so a COM client could also access a
.NET component.

IS departments that want to sample the .NET development experience may
choose to start by exploring ASP.NET because doing so only requires that the
.NET platform be installed on a server machine. The code behind

3

 the ASP.NET
page accesses an existing COM component that is hosted in COM.

The existing COM component could be a production component because
the ASP.NET page is treated as just another client. ASP.NET pages can be
introduced onto an existing site without any disruption to the existing ASP
pages. The Web server simply looks at the file extension of the requested
page. If the extension is

.aspx

, the request is treated as an ASP.NET request.

Multi-Platform Development

Only some .NET facilities are Windows-specific. The Windows Forms frame-
work is intended to replace the Windows graphical API and the graphical part
of Microsoft foundation classes (for C++), and ASP.NET is implemented on
top of Microsoft’s Internet Information Server (IIS) Web server. Most of the
rest of .NET could, in principle, be implemented on top of Linux, Solaris, or
other systems.

One will see .NET on non-Microsoft operating systems. Although one
currently needs Windows to use .NET, in late 2000 Microsoft submitted key
parts of the technology for standardization to ECMA,

4

 an international stan-
dardization body. The elements still under discussion include the common
language runtime (CLR), Common Language Specification (CLS), Microsoft
Intermediate Language (MSIL), C#, and more than 1000 components from the
basic libraries. Microsoft is actively pushing to complete the work much faster
than the usual time it takes for such standards processes.

The recently announced MONO effort (http://www.go-mono.net) is
intended to develop an open-source implementation of .NET, based on the
ECMA specifications and suitable for running on platforms such as Linux. Such
efforts indicate that the transformation of .NET into a multi-platform develop-
ment environment may happen faster than expected.

What .NET Is Not

In describing .NET, it is useful first to point out what it is not. It is neither an
operating system nor a programming language. Microsoft operating systems
continue their own evolution — Windows 2000, Me, XP, CE for embedded
devices. As for programming languages, .NET has introduced a new one, C#
(C-sharp), but it is not the focus of the technology.

Technically, C# looks very much like Java, with extensions similar to
mechanisms found in Delphi and Microsoft’s Visual J++. These extensions
include “properties” — an attempt to remedy Java’s information-hiding

AU1272Ch03Frame Page 59 Monday, January 21, 2002 7:34 AM

60

The Complete Book of Middleware

deficiencies — and an event-driven programming model using the notion of
“delegates” — object wrappers around functions — that are appropriate for
graphical user interface and Web applications.

While it is likely to become a serious competitor to Java, C# is not an
attempt to replace it. Instead, a distinctive characteristic of .NET is its language
neutrality. In addition to Microsoft-supported languages, .NET is open to many
others, including COBOL, Eiffel, Fortran, Perl, Python, Smalltalk, and a host
of research languages from ML to Haskell and Oberon.

Some Advantages

The advantages of using .NET are that it offers remoting options, does not
require registry of the interfaces, and skips the need for an interface language.
There are two ways of using the HTTP transport. One way is to use the SOAP
formatter to convert the call into an industry-standard XML format for remote
procedure calls. This format, SOAP, is primarily intended for use over HTTP
because it is text based and it is unlikely to be blocked by corporate firewalls.
Another way is to go through the Web server, which can host either an
ASP.NET listener application or a Web service.

In addition, .NET classes are packaged in self-describing assemblies (DLL
and .exe files). The assembly contains the program code and a description of
what that code does — somewhat like an interface does in COM. The result
is that there is no longer any need to register the interface, thus paving the
way to running .NET on operating systems other than Windows.

.NET removes the distinction between a program element and a software
component, providing significant benefits over technologies such as CORBA
and COM (see Exhibit 2). Because an assembly provides a well-defined set
of interfaces, other assemblies can use it directly. To turn a software element
into a reusable component, CORBA and COM require writing an interface
description in a special Interface Definition Language (IDL). .NET does not
have anything similar to IDL. One can use a .NET assembly directly as a
component without any further wrapping because it is already equipped with
the necessary information. Meanwhile, two models must coexist; COM InterOp
(see Exhibit 1) should ease the transition.

Exhibit 2. .NET vs. CORBA/COM

.NET assemblies

CORBA Interface Definition
Language

COM Interface Definition
Language

AU1272Ch03Frame Page 60 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff

61

Web Services

Another major advantage of using the .NET platform are the Web services
components that are just like any other middle-tier, business-rules objects
through a Web server. This means that the same consistent functionality offered
would be available anytime, from anywhere in the world, using any device
that can access the Internet.

Imagine a company that processes credit card payments offering a Web
service that allows the following data to be posted securely to its Web server:
merchant ID, card number, expiration date, amount, customer name, and
billing address. Upon receiving a client’s call, the Web service validates the
data and credits payment to the company’s account based on the merchant
ID. It then responds securely by returning a SOAP XML block containing the
authorization code and a transaction number. Data is returned by such a Web
service when the client asks for its Web Service Description Language (WSDL).
WSDL, an XML-based standard that has been agreed upon by the industry,
lists the methods available from the Web service with their arguments and
return types. Web services are therefore self-describing.

Web services can be accessed by other Web services or accessed directly
by user interfaces. Because the data is sent using Get or Post and XML, clients
do not have to be Windows based or even .NET based. A client application
for this service could be an E-commerce site, or it could be a handheld device
with a card reader to swipe the credit card and a keypad to enter the amount.

Offering Web services either as a revenue stream or as a way of dissemi-
nating specific information — such as the information that would be held in
a database — is a common goal for the 36 founding member companies of
Universal Description, Discovery and Integration (UDDI) of Business for the
Web. This organization is responsible for WSDL and two of the leading
members, IBM and Microsoft, host UDDI Business Directories of available
Web services. For more information on Web services, skip to Chapter 5.

.NET Architecture

Exhibit 3 shows that .NET architecture, Microsoft’s Web development platform,
consists of six layers from the user-visible Web services to the internal object
model and CLR.

Exhibit 3. .NET Layers

Frameworks and Libraries:
ASP.NET, ADO.NET Windows Forms

Common Development
Tools: Visual Studio.NET

Interchange Standards:
SOAP, WSDL

Component Model

Object Model and
Common Language Specification

Common Language Runtime

AU1272Ch03Frame Page 61 Monday, January 21, 2002 7:34 AM

62

The Complete Book of Middleware

Exhibit 4 gives a brief description of each layer.

Building the .NET Platform

As shown in Exhibit 5, five areas where Microsoft is building the .NET platform
are servers, tools, XML Services, Clients, and .NET Experience. XML Services
have already been discussed in the section entitled “Web Services,” while
servers are covered separately in the section entitled “.NET Enterprise Servers.”
The remaining three areas are briefly discussed as follows.

Exhibit 4. Describing Each .NET Layer

Layer 1: Web Services The top layer provides .NET users — persons and
companies — with Web services for E-commerce and
business-to-business applications.

Layer 2: Frameworks
and libraries

The second layer consists of a set of frameworks and libraries
including ASP.NET, and active server pages for developing
smart Web sites and services; ADO.NET. Also included are
an XML-based improvement to ActiveX Data Objects, for
databases and object-relational processing, and Windows
Forms for graphics.

Layer 3, first part:
Interchange
standards

XML-based interchange standards serve as a platform-
independent means of exchanging objects, such as SOAP
and WSDL.

Layer 3, second part:
Development
environment

The Visual Studio.NET is an outgrowth of Visual Studio
extended with an application programming interface, not
only supporting Microsoft-implemented languages such as
Visual C++, Visual Basic, and C#, but also allowing third-
party vendors to plug in tools and compilers for other
languages.

Layer 4: Component
model

Before .NET, there were already three major contenders for
leadership in the field of models and standards for
component-based development: CORBA from the Object
Management Group, J2EE from Sun, and Microsoft’s COM.
.NET brings in one more model, based on object-oriented
ideas: with .NET one can build “assemblies,” each consisting
of a number of classes with well-defined interfaces.

Layer 5: Object model The object model provides the conceptual basis on which
everything else rests, in particular, .NET’s OO type system.
The common language specification defines restrictions
ensuring language operability.

Layer 6: Common
language runtime

The CLR provides the basic set of mechanisms for executing
.NET programs regardless of their language of origin:
translation to machine code (judiciously incremental
translation, or “jitting”), loading, security mechanisms,
memory management (including garbage collection),
version control, and interfacing with non-.NET code.

AU1272Ch03Frame Page 62 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff

63

�

Tools.

Visual Studio.NET is Microsoft’s multi-language development tool to
help developers quickly build XML Web services and applications that
scale easily, using the language of their choice. They include Visual Basic,
Visual C++, and C#.

�

Clients.

They include PCs, laptops, workstations, phones, handheld com-
puters, tablet PCs, game consoles, and other smart devices that can access
XML Web services. Some of the .NET client software that Microsoft offers
includes: Windows CE, Windows Embedded, Window 2000, and the
upcoming Windows XP.

�

.NET Experience.

.NET Experiences are XML Web services that allow one
to access information across the Internet and from stand-alone applications
in an integrated way. In addition to Visual Studio .NET, one other product
that Microsoft is transitioning into .NET Experiences is MSN bCentral.

.NET Enterprise Servers

The .NET Enterprise Servers, including the Windows 2000 server family, make
up Microsoft .NET’s server infrastructure for building on integrated business
infastructure — from messaging and collaboration to database management,
from E-commerce to mobile information access, and from content management
to Web Services, as shown in Exhibit 6.

Microsoft Content Management Server 2001

A recent addition to .NET Enterprise Servers is Microsoft Content Management
Server 2001, a rebranded version of the Ncompass Labs’ Resolution that
Microsoft acquired in May 2001. It fills a void in Mircosoft’s E-commerce
product lineup with content contribution and delivery, site development, and
enterprise site management. It enables businesses to effectively create, deploy,
and manage Internet, intranet, and extranet Web sites. In particular, it focuses
on three areas: managing Web services (see Exhibit 7), dynamic content
delivery (Exhibit 8), and rapid time-to-market for enterprise Web sites
(Exhibit 9).

Unlike Resolution, which ran on both Windows NT and Windows 2000,
Microsoft Content Management Server 2001 works only with Windows 2000.
It can be used with, for example, Microsoft’s Commerce Server 2000 and SQL

Exhibit 5. Building the .NET Platform

�

 Servers

�

 Tools

�

 XML Services

�

 Clients

�

 .NET Experience

AU1272Ch03Frame Page 63 Monday, January 21, 2002 7:34 AM

64

The Complete Book of Middleware

Exhibit 6. .NET Enterprise Servers

Application Center 2000
Server

Deploy and manage highly available and scalable
Web applications built on Windows 2000 operating
systems

BizTalk Server 2000 Build XML-based business processes across
applications and organizations

Commerce Server 2000 Build E-commerce solutions with feedback
mechanisms and analytical capabilities

Content Management
Server 2001

Manage content for E-business Web sites

Exchange Server 2000 Enable messaging and collaboration; support
collaborative activities, including group scheduling,
discussions groups, and team folders; provide
Instant Messaging real-time data and video;
conferencing

Host Integration Server 2000 Bridge to legacy systems by providing application,
data, and network connectivity

Internet Security and
Acceleration Server 2000

Enable secure, fast Internet connectivity with multi-
layer enterprise firewall

Mobile Information 2001
Server

Enable application support by mobile devices

SharePoint Portal Server 2001 Share and publish business information
SQL Server 2000

a

Provide Web-enabled database and data analysis
package and support for structured XML data and
the ability to query across the Internet

Windows 2000 Build on NT technology

a

For details, see Chapter 6.

Exhibit 7. Managing Web Services

In-context authoring
templates

Build and contribute richly formatted content in easy-to-use
templates without leaving the Web site

Real-time content
updates

Publish content directly onto development

Revision tracking and
page archiving

Compare changes of previous work with existing pages

Flexible workflow Multiple levels of approval
Content scheduling Use automated tools to schedule content publication and

archival times
Extensible object

properties
Create custom metadata properties on content objects and

profile content as it is being created
Dynamic server

clustering
Enable load-balanced environments that provide site

scalability and server failover
Object caching Caching of content objects in RAM and on the disk
SMP support Support for multiple CPUs on Windows 2000 Advanced

Server and Windows 2000 Datacenter Server

AU1272Ch03Frame Page 64 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff

65

Server 2000, both of which run only on Windows 2000. Microsoft’s choice to
limit the content management server to Windows 2000 allows potential users
to take advantage of the operating system’s built-in network load-balancing
capabilities that make it easier to do the following:

�

Load pages much faster

�

Add servers or scale out as network traffic increases

Other Microsoft server products include BackOffice Server, Proxy Server, Site
Server, Small Business Server, SNA Server, and Systems Management Server.

.NET Framework Security Policy

The .NET Framework Security solution is based on the concept of managed
code, with security rules enforced by the CLR. Most managed code is verified

Exhibit 8. Dynamic Content Delivery

Dynamic page assembly Content objects and templates are assembled as pages
are requested from the Web server

Presentation templates Site design and layout are controlled by presentation
templates

Dynamic template
switching

Change layout or design of the page in real-time

Object-based content
repository

Stored in Microsoft SQL Server™ 2000 as reusable objects

Connected content
pages

Publish contents through multiple presentation templates
to multiple locations or Web sites

Language-specific
content targeting

Target localized content objects to specific users based
on individual language preferences

Exhibit 9. Rapid Time-to-Market Enterprise Web Sites

Sample templates and Web
sites

Provides customization code

COM API Share content with other systems using the
Publishing API

Template and resource galleries Ensure centralized control over corporate
publishing and design standards

Dynamic site map Generate site map and navigation
Site deployment manager Move content and Web sites between servers
.NET suite integration Integrate with Windows 2000 Advanced Server,

Microsoft SQL Server 2000, Microsoft Commerce
Server 2000, and FrontPage 2000

Windows Active Directory
Services (ADS)

Use existing ADS and NT Domain directory services
for security

XML Publish content in XML format

AU1272Ch03Frame Page 65 Monday, January 21, 2002 7:34 AM

66

The Complete Book of Middleware

to ensure type safety, as well as the well-defined behavior of other properties.
In verified code, a method declared as accepting a four-byte value, for
example, will reject an attempted call with an eight-byte parameter as not
type safe. Verification also ensures that execution flow transfers only to well-
known locations, such as method entry points — a process that eliminates
the ability to jump execution to an arbitrary location.

Verification prevents code that is not type safe from executing, and catches
many common programming errors before they cause damage. Common
vulnerabilities — such as buffer overruns, the reading of arbitrary memory or
memory that has not been initialized, and arbitrary transfer of control — are
no longer possible. This benefits end users because the code they run is
checked before it executes.

The CLR also enables

unmanaged code

 to run, but unmanaged code does
not benefit from these security measures. Specific permissions are associated
with the capability to call into unmanaged code, and a robust security policy
will ensure that those permissions are conservatively granted. The migration
from unmanaged code to managed code will, over time, reduce the frequency
of calls to unmanaged code.

Now take a closer look at the building blocks of Microsoft .NET Framework
Security. As shown in Exhibit 10, they are evidence-based security, role-based
security, the concepts of authentication and authorization, as well as isolated
storage, cryptography, and extensibility. Also included are the key benefits to
developers, administrators, and end users of the .NET Framework Security
policy.

Evidence-Based Security

The .NET Framework introduces the concept of

evidence-based

 security.

Evidence

 simply refers to inputs to the security policy about code. It is, in
essence, the set of answers to questions

5

 posed by the security policy:

�

From what site was the assembly obtained?

Assemblies are the building
blocks of .NET Framework applications. They form the fundamental unit
of deployment, version control, reuse, activation scoping, and security
authorization. An application’s assemblies are downloaded to the client
from a Web site.

�

From what URL was the assembly obtained?

The security policy requires
the specific address from which the assembly was downloaded.

Exhibit 10. .NET Framework Building Blocks

�

 Evidence-based security

�

 Role-based security

�

 Authentication and authorization

�

 Isolated storage

�

 Cryptography

�

 Extensibility

AU1272Ch03Frame Page 66 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff

67

�

From what zone was the assembly obtained?

Zones are descriptions of
security criteria, such as Internet, intranet, local machine, etc., based on
the location of the code.

�

What is the strong name of the assembly?

The

strong name

 is a crypto-
graphically strong identifier provided by the author of the assembly. While
it does not provide any authentication of the author, it uniquely identifies
the assembly and ensures that it has not been tampered with.

Once the policy has been completed, an initial set of permissions is created.
Assemblies can fine-tune these grants by making specific requests in three
areas:

�

The first is to specify a minimal set of permissions that the assembly must
have in order to operate. If these permissions are not present, the assembly
will fail to load and an exception will be thrown.

�

Next, an optional set of permissions can be specified. While the assembly
would like any of these permissions, it will still load if they are not available.

�

Finally, particularly well-behaved assemblies can actually refuse risky per-
missions that they do not need.

These three fine-tuning options are accomplished as load-time declarative
statements.

Role-Based Security

Sometimes, it is appropriate for authorization decisions to be based on an
authenticated identity or on the role associated with the context of the code’s
execution. For example, financial or business software may enforce policy
through business logic that evaluates role information. The amount of a
financial transaction may be limited based on the role of the user who is
making the request. Bank tellers may be allowed to process requests up to
a certain dollar amount, whereas anything more requires the role of a super-
visor.

Authentication and Authorization

Authentication is the process of accepting credentials from a user and validating
those credentials against some authority. If the credentials are valid, one speaks
of having an authenticated identity. Authorization is the process of determining
whether that authenticated identity has access to a given resource. Authenti-
cation can be accomplished by either system or business logic, and is available
through a single API.

In ASP.NET forms authentication, the user provides credentials and submits
the forms. If the application authenticates the request, the system issues a
cookie that contains the credentials in some form or a key for reacquiring the
identity. Subsequent requests are issued with the cookie in the request headers
and they are authenticated and authorized by an ASP.NET handler using

AU1272Ch03Frame Page 67 Monday, January 21, 2002 7:34 AM

68

The Complete Book of Middleware

whatever validation method the application desires. If a request is not authen-
ticated, HTTP client-side redirection is used to send that request to an authen-
tication form, where the user can supply authentication credentials. Forms
authentication is sometimes used for personalization — the customization of
content for a known user. In some of these cases, identification rather than
authentication is the issue, so a user’s personalization information can be
obtained simply by accessing the user name.

The purpose of authorization is to determine whether a requesting identity
is granted access to a given resource. ASP.NET offers two types of authorization
services: file authorization and URL authorization. File authorization determines
which access control lists are consulted based on both the HTTP method
being used and the identity making the request. URL authorization is a logical
mapping between pieces of the URI namespace and various users or roles.

Isolated Storage

Isolated storage

 is a new set of types and methods supported by the .NET
Framework for local storage. In essence, each assembly is given access to a
segregated storage on disk. No access to other data is allowed, and isolated
storage is available only to the specific assembly for which it was created.

Isolated storage might be used by an application to keep activity logs, save
settings, or save state data to disk for later use. Because the location of isolated
storage is predetermined, isolated storage provides a convenient way to specify
unique space for storage without the need to determine file paths.

Code from the local intranet is similarly restricted, but less so, and can
access a larger quota of isolated storage. Finally, code from the Restricted
Sites zone (sites that are not trusted) gets no access to isolated storage.

Cryptography

The .NET Framework provides a set of cryptographic objects (see Exhibit 11)
implemented through well-known algorithms, such as RSA, DSA, Rijndael/
AES, Triple DES, DES, and RC2, as well as the MD5, SHA1, SHA-256, SHA-
384, and SHA-512 hash algorithms. The XML Digital Signature specification,
under development by the Internet Engineering Task Force (IETF) and the
World Wide Web Consortium (W3C), is also supported. The .NET Framework
uses cryptographic objects to support internal services. The objects are also
available as managed code to developers who require cryptographic support.

Exhibit 11. Cryptographic Objects

Supports:

�

 Encryption

�

 Digital signatures

�

 Hashing

�

 Random number generation

AU1272Ch03Frame Page 68 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff

69

Benefits to Users and Developers

.NET’s security policy — a benefit to both users and developers — comprises
four major techniques.

1.

Type verification

. The system verifies all .NET codes follow the object
model’s type system rules.

2.

Origin verification.

Any .NET assembly can and usually should be signed
using 128-bit public key cryptography,

6

 which prevents impersonating
another software source.

3.

A fine-grained permission mechanisms.

 Each assembly can specify the
exact permissions that it requires its callers to have: file read, file read and
write, DNS access, and others, and including new programmer-defined
permissions.

4.

A notion of “principal.”

 Software elements can assume various roles during
their lifetimes, with each role giving access to specific security levels.

For modifications to the runtime security behavior of an assembly, changes
can be made as either

declarative

 or

imperative security, depending on the
requirements of the programmer. Declarative security enables a programmer
to specify security requirements for an assembly directly in the metadata of
that assembly’s code. Imperative security is implemented directly in code.
Programmers take security actions programmatically, and the permission is
either granted or denied, based on the state of the security stack.

Open.NET
Developers had planned by the end of 2000 to release open-source versions
of key Microsoft .NET tools. If successful, enterprises would have an easier
time integrating various operating systems that run online applications.

Developer of the popular Gnome user interface for Linux, Ximian leads
the project, called MONO. The group is working on several open-source .NET
projects. One is a version of the C# language, a competitor of Java. The other
is the .NET CLI that runs programs written in C, C++, C#, COBOL, and Pascal.
The developers are also building a set of class libraries, which are software
components used in developing applications.

The primary goal for the project is to build a good set of tools for developing
Web services for Linux. Applications using MONO will be interoperable with
.NET services running on Windows; thus, for example, a Web storefront
running on Linux would be able to call services for payment processing, user
authentication, and inventory management running on Windows.

SOAP
On August 1, 2001, the World Wide Web Consortium released a public draft of
SOAP v 1.2 designed to define messaging formats between different architectures.

AU1272Ch03Frame Page 69 Monday, January 21, 2002 7:34 AM

70 The Complete Book of Middleware

It removes ambiguities on how messages are processed, provides more feedback
in error messaging, and updates the XML Schema and name spacing.

In September 2000, the OMG’s Platform Technology Committee (PTC)
began work on a standard meant to integrate SOAP with OMG’s CORBA. It
allows SOAP clients to invoke CORBA servers, and CORBA clients and servers
to interoperate using SOAP. The PTC also looked at efforts to standardize
methods to transmit CORBA network packets through firewalls and to adapt
real-time object request brokers to emit alternative protocols needed for
telecommunications and other real-time applications.

The SOAP was born out of an idea for an XML-based RPC mechanism
originally fostered by Dave Winer of Userland Software back in 1998. The
idea evolved through a joint effort of Winer, Don Box at DevelopMentor, and
Microsoft to publicly emerge as SOAP version 0.9 in the latter part of 1999.
At that time, the reaction of the developer community was mixed.

IBM officially joined the SOAP development effort in May of 2000 by co-
authoring the SOAP version 1.1 specification, co-submitting it as a W3C Note,
officially signaling the start of the “Web services revolution.” With IBM on
board, developers on non-Microsoft development platforms stood up and took
notice of SOAP for pretty much the first time.

From that point on, Microsoft and IBM took the lead in putting SOAP-
enabled development tools into the hands of developers. Starting simple, IBM
was the first to produce a Java-based toolkit for SOAP that was donated to
the open-source Apache Software Foundation for further development.
Microsoft released the first rendition of its SOAP Toolkit soon thereafter and
announced their massive .NET Web services initiative the following July.

With industry support for SOAP growing rapidly, IBM and Microsoft next
turned their attention to filling the various holes in the Web Services Archi-
tecture that was emerging. Namely, with the potential that SOAP-enabled
applications would grow rapidly, there needed to be a mechanism for describ-
ing the capabilities of such services as well as a mechanism for locating
services once they had been deployed. In September 2000, Microsoft, IBM,
and Ariba jointly announced the UDDI. Then, just a matter of weeks later,
the same three companies announced the WSDL, an XML grammar for describ-
ing the capabilities and technical details of SOAP-based Web services that
compliments SOAP by allowing for dynamic cross-platform integration.

There are at least 39 different implementations of the SOAP Specification,
with growing support for multiple operating systems and development lan-
guages. While each of these has its own level of capability, standards support,
and quality control, they all share at least one thing in common: they all
understand how to create and consume SOAP Envelopes. Regardless of how
the tool was implemented, or where it is deployed, there exists the potential
of seamless interoperability that would allow applications written in one
language on one platform to consume the services of applications written in
a completely different language on a completely different platform.

Exhibit 12 displays a side-by-side feature comparison of four of the most
popular SOAP implementations available for the Java, Win32, and Perl environ-
ments. There are far more similarities between implementations than differences

AU1272Ch03Frame Page 70 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff 71

Exhibit 12. SOAP Implementations

Feature Choices
Apache
SOAP v2.1

SOAP::Lite
for Perl

MS SOAP
Toolkit
Beta 2

SOAP 1.1 Compliance

Data Types
Custom Encoding Styles (Yes/No/Limited) Yes No Limited
Arrays
 Single dimensional (Yes/No/Limited) Yes Yes Yes
 Multi-dimensional (Yes/No/Limited) No No Yes
 Partial (Yes/No/Limited) No No No
 Sparse (Yes/No/Limited) No No No
Multi-references (Yes/No/Limited) Limited Yes Limited
Header/body cross-

references
(Yes/No/Limited) Limited Yes Limited

Circular references (Yes/No/Limited) No Yes No
Entity encoding (Yes/No/Limited) Yes Yes Yes

Fault
Actor (Yes/No/Limited) Limited Limited Limited
Complex detail (Yes/No/Limited) Yes Yes Yes
XML Schema data types

support
(Yes/No/Limited) Yes Yes Yes

Attributes
Must understand (Yes/No/Limited) Limited No Limited
Actor (Yes/No/Limited) Limited Limited Limited
Root (Yes/No/Limited) Yes Limited No
Id/href (Yes/No/Limited) Limited Yes Limited

HTTP
M-POST (Yes/No/Limited) No Yes No
Object serialization (Yes/No/Limited) Yes Yes Yes
UTF8 support (Yes/No/Limited) Yes Limited Yes

Transports
SMTP (No/Full/Client/

Server)
Yes Client No

POP3 (No/Full/Client/
Server)

No Server No

FTP (No/Full/Client/
Server)

No Client No

TCP (No/Full/Client/
Server)

No Full No

HTTP (No/Full/Client/
Server)

Yes Server Yes

IO (No/Full/Client/
Server)

No Full No

AU1272Ch03Frame Page 71 Monday, January 21, 2002 7:34 AM

72 The Complete Book of Middleware

Access to transport
specific details (like
cookie)

(Yes/No) No Yes No

Extensions (i.e.,
compression or
encryption)

(Yes/No) Name
Extensions

Compres-
sion

SOAP Attachments
Support

(Yes/No/Limited) Yes Limited
(Parsing
Only)

No

Security
SSL (Yes/No/Limited) Yes Yes Yes
Basic/digest

authentication
(Yes/No/Limited) No Yes Yes

Digital signatures (Yes/No/Limited) No No No

Administration and Configuration
Logging (Yes/No/Limited) Limited Yes Yes
File-based configuration (Yes/No/Limited) Yes No Yes
Un/deployment (utility,

Web-based access)
(Yes/No/Limited) Yes N/A Yes

Messaging Patterns
One-way messages (Yes/No/Limited) Yes Yes No
Asynchronous messages (Yes/No/Limited) No No No

Dispatching
Namespace to class/

object
(Yes/No/Limited) Yes Yes Yes

SOAP action (Yes/No/Limited) Yes No Yes
Other (Name)

Serialization Support
Payload generation (from

description/manually)
(Manual/From

Description)
Both Both Both

Custom serialization (Yes/No/Limited) Yes Yes Yes
Custom deserialization (Yes/No/Limited) Yes Yes Yes

Service Description
WSDL
 Can read (Yes/No/Limited) No Yes Yes
 Can generate (Yes/No/Limited) No No Yes
 Is optional/required (Optional/Required) N/A Optional Optional
 Stub required (static/

 dynamic)
(Static/Dynamic) Static Both,

Optional
Dynamic

 Complex types (Yes/No/Limited) N/A No Yes

Exhibit 12. SOAP Implementations (Continued)

Feature Choices
Apache
SOAP v2.1

SOAP::Lite
for Perl

MS SOAP
Toolkit
Beta 2

AU1272Ch03Frame Page 72 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff 73

in specific SOAP or SOAP-related features that are supported. The differences
that do exist, however, are, in some cases, significant enough to cause quite
a few headaches.

Both Apache and Microsoft have worked around certain differences and
limitations in implementing the SOAP specification. One can find instructions
and sample codes at http://www.microsoft.com and http://www.ibm.com.

If one needs an XML to convert SOAP-based calls to traditional remote
procedure calls, consider Software AG’s middleware product, EntireX, for
example. In addition, the company’s integration product, Tamino X-Bridge,
now works with user-defined rules to forward incoming XML documents to
the right applications.

Microsoft Transaction Server
Every Windows desktop or server running Windows 98/NT/2000 is inherently
a transaction-capable machine. Microsoft made entry into transaction comput-
ing, first with the Open Database Connectivity (ODBC) functionality and then
with the MTS. Having installed Windows 2000, one no longer needs to install
MTS with a separate package. It comes with the OS, queuing and asynchronous
remote invocations to support any enterprise system — an online commerce
system, a Web-enabled customer relationship management (CRM) system, or
a supply-chain automation system based on transactional workflow.

Of course, distributed access and manipulation of data is not all there is
to transaction processing. Issues concerning scaling to a large number of
concurrent activities, as well as the control and management of resources, are
also extremely important for transaction processing. Solutions that a decade
ago were only available on mainframes were very expensive and much more
primitive.

In addition to transaction servers, a short description of MTS can be the
list of the main services it provides: object monitoring, transaction services,
and security services. MTS builds upon COM and its communication-enabled
version, DCOM. MTS, using the COM facilities, defines a set of interfaces and
protocols that components can use to their own advantage.

 Other (Name) Message
encoding
extension

Error handling (Yes/No/Limited) Yes Yes Yes

Source: James Snell, “Web Service Insider, Part 1: Reflections on SOAP,” DeveloperWorks,
Web Services, Web Services Articles (http://www-106.ibm.com/developerworks/webser-
vices/library/ws-ref1.html, April 2001).

Exhibit 12. SOAP Implementations (Continued)

Feature Choices
Apache
SOAP v2.1

SOAP::Lite
for Perl

MS SOAP
Toolkit
Beta 2

AU1272Ch03Frame Page 73 Monday, January 21, 2002 7:34 AM

74 The Complete Book of Middleware

In Windows 2000, concurrency control can be set at different levels for
each component, allowing high-performance, carefully tuned components to
execute unhindered by external thread control.

The functional unit used by MTS for administration, deployment, and
execution time is the component package. Packages can be created and
configured using the Package Wizard (renamed COM Application Wizard in
Windows 2000). Once a package is created, components can be added using
the Component Wizard to import them from DLL or by selecting them from
among the ones that are already registered.

This process is very flexible because components can be grouped within
packages in many ways. Components within a package share the execution
process, and therefore the identity under which they execute; they share a
more direct although less-secured access to each other, and they also share
properties maintained by the Shared Property Manager. MTS is also capable
of exporting packages from one machine to another, thus facilitating the build,
stage, and deploy process.

MSMQ in Windows XP
Message Queuing is available on all Microsoft platforms from Windows CE
3.0 or higher to the Windows 2000 Server family, Windows XP Professional,
and Windows .NET Server.

In Windows XP, the next version of MSMQ (Message Queuing 3.0) intro-
duces several exciting new features designed to extend the application devel-
oper’s set of tools to support new types of messaging-based applications. In
particular, the four new areas that MSMQ 3.0 focuses on are one-to-many
messaging, messaging over the Internet, programmable management, and
message queuing triggers.

MSMQ is fully integrated with other Windows 2000 features such as
Microsoft ComPlus Transactions (formerly known as MTS); Microsoft IIS, the
built-in Windows 2000 Server Web server; Windows 2000 clustering services;
and the Windows 2000 security environment. MSMQ offers seamless interop-
erability with the IBM MQSeries products through the Microsoft MSMQ-
MQSeries Bridge and with other message queuing products through products
from Level 8 Systems, Inc.

MSMQ technology enables applications running at different times to com-
municate across heterogeneous networks and systems that may be temporarily
offline. Applications send messages to queues and read messages from queues.
MSMQ provides guaranteed message delivery, efficient routing, security, and
priority-based messaging. It can be used to implement solutions for both
asynchronous and synchronous scenarios requiring high performance.

Consider the following scenario. A sending MSMQ application sends two
messages that must arrive in order at a specific URL. The first message sent
in the first HTTP session might be directed to server A in the Web farm, but
the second message might be sent in a different HTTP session and might be
directed to server B. The MSMQ service on server B will process the message

AU1272Ch03Frame Page 74 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff 75

but reject it because it does not know that the first message was delivered to
server A.

To address this issue, MSMQ introduces a new concept: the MSMQ reverse
message proxy server. Each reverse message proxy in the Web farm will
maintain a mapping (see Exhibit 13) between the external URL and internal
URL of a queue. For every incoming message arriving at a Web farm computer,
MSMQ 3.0 will read the external URL address to which it was sent. If there
is an entry in the map for that external URL, MSMQ 3.0 will forward the
message to the internal URL associated with it.

MSMQ 3.0 offers several ways to implement the one-to-many model:

� Real-time messaging multicast. A single copy of the message is sent on
the network that can be processed and distributed by numerous destination
applications (see Exhibit 14).

� Distribution lists and multiple element format names. This allows a sending
application to send a single message to a list of destination queues. Sending
a message to a list of queues, however, uses more network resources than
real-time message multicast, because multiple messages are sent on the
network (see Exhibit 15).

Exhibit 13. External–Internal URL Mapping

Exhibit 14. Real-Time Messaging Multicast

Exhibit 15. MSMQ Distribution Lists

internal URL1 external URL1
internal URL2 external URL2

internal URLn external URLn

Server A Server B

single copy

destination application 1
destination application 2

.

.

.
destination application n

single message

queue 1
queue 2

.

.

.
queue n

AU1272Ch03Frame Page 75 Monday, January 21, 2002 7:34 AM

76 The Complete Book of Middleware

MSMQ Triggers is a Message Queuing application that allows one to
automatically associate incoming messages in a queue with functionality in a
COM component or stand-alone .exe. With MSMQ Triggers, one can invoke
business rules in response to incoming messages without any additional
programming required. Likewise, MSMQ Triggers is a simple and scalable
mechanism that exposes business logic in MTS packages via Message Queuing.
By providing native support within Message Queuing for triggers, one can
deploy standard mechanisms for invoking behavior at a queue level.

MSMQ 3.0 message storage is limited by disk space. In particular, MSMQ
3.0 has relaxed the 2 GB storage limit per machine. The theoretical capacity
limit to persistent MSMQ 3.0 messages is 1TB (terabyte).

The following are features that are no longer relevant, useful, or have been
superseded.

� The MSMQ Exchange connector is no longer supported in Windows XP.
Otherwise, it continues to be available for previous versions of Windows
(Windows NT 4.0 and Windows 2000).

� The IPX Protocol is no longer supported by MSMQ 3.0 in Windows XP.
� The MSMQ service is not available in the Windows XP Personal version.

You can run DCOM-based applications on Windows XP Personal in order
to access MSMQ.

Windows 2000 Datacenter
Windows 2000 Datacenter Server is the operating system for running mission-
critical databases, enterprise resource planning (ERP) software, and high-
volume real-time transaction processing. Datacenter is optimized for large data
warehouses, econometric analysis, large-scale simulations in science and engi-
neering, online transaction processing (OLTP), and server consolidation.

Designed to work in high-traffic computer networks, Datacenter supports up
to 32-way symmetric multi-processing (SMP) and up to 64 gigabytes (GB) of
physical memory. In addition to both four-node clustering and load-balancing
services as standard features, it also provides the Internet and network operating
system (NOS) services of all the versions of Windows 2000 Server.

New features include Physical Address Extension (PAE) to extend physical
memory substantially; Winsock Direct to facilitate high-speed communications
in a system area network (SAN); and the Process Control tool, a new job
object management tool.

Windows Clustering

Windows Clustering is a feature of Windows 2000 Advanced Server and Windows
2000 Datacenter Server that provides multiple complementary clustering technol-
ogies. Network Load Balancing (NLB) clusters provide higher scalability and
availability for TCP/IP-based services and applications by combining up to 32
servers running Windows 2000 Advanced Server or Windows 2000 Datacenter

AU1272Ch03Frame Page 76 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff 77

Server into a single cluster. They can also provide load balancing for servers
running COM+ applications.

Before installing NLB, it is vital to review the checklist (see Exhibit 16),
including the sections on cluster parameters, host parameters, and port rules.
It will be impossible to properly configure NLB without a thorough under-
standing of these three topics.

Windows 2000 Datacenter Server supports up to four nodes in a cluster,
while Windows 2000 Advanced Server is limited to two nodes. A server cluster
cannot be made up of nodes running both Windows 2000 Advanced Server
and Windows 2000 Datacenter Server. In a three-node or four-node server
cluster, all nodes must run Windows 2000 Datacenter Server. Similarly, a two-
node cluster must be made up of nodes running either Windows 2000
Advanced Server or Windows 2000 Datacenter Server, but not both.

Enterprise Memory Architecture

Using Enterprise Memory Architecture (EMA), one can run applications that
take advantage of large amounts of physical memory on Windows 2000

Exhibit 16. Network Load Balancing Checklist

1. Read “Best Practices.”
2. Read “Network Load Balancing System Requirements.”
3. Read “Planning Your Network Load Balancing Cluster.”
4. (Optional) Install a second network adapter.
5. Have ready the cluster’s full Internet name.
6. Have ready the cluster’s primary IP address.
7. Have ready the subnet mask for the cluster.
8. Have ready the current IP address for each host in the cluster.
9. Have ready the subnet mask for each host in the cluster.

10. Read “Cluster Parameters.”
11. Carefully consider how multicast support should be configured.
12. Carefully consider how remote password should be configured.
13. Carefully consider how confirm password should be configured.
14. Carefully consider how remote control should be configured.
15. Read “Host Parameters.”
16. Carefully consider how priority (ID) should be configured.
17. Carefully consider how initial state should be configured.
18. Read “Port Rules.”
19. Carefully consider how port range should be configured.
20. Carefully consider how protocols should be configured.
21. Carefully consider how filtering mode should be configured.
22. Carefully consider how affinity should be configured.
23. Carefully consider how load weight should be configured.
24. Carefully consider how equal load distribution should be configured.
25. Carefully consider how handling priority should be configured.
26. Install NLB.

AU1272Ch03Frame Page 77 Monday, January 21, 2002 7:34 AM

78 The Complete Book of Middleware

Datacenter Server. EMA supports two types of memory enhancement: appli-
cation memory tuning — also known as four-gigabyte tuning (4GT) — and
PAE X86. Neither is enabled by default. Both application memory tuning and
PAE must be manually enabled by editing the Boot.ini file.

Before enabling application memory tuning and PAE, one must use two
checklists: enabling application memory tuning (see Exhibit 17) and enabling
PAE X86 (see Exhibit 18).

Winsock Direct

Winsock Direct is an abstraction layer in the Windows 2000 Datacenter Server
network architecture. It enables unmodified Windows Sockets (Winsock) appli-
cations that use TCP/IP to fully exploit the performance benefits of system area
networks (SANs) for most communication within a SAN. One must use Checklist:
Preparing the System Area Network for Winsock Direct (see Exhibit 19) before
one begins using Winsock Direct with the system area network.

Windows 2000 Advanced Server
Windows 2000 Advanced Server is the server operating system for line-of-
business applications and E-commerce. It includes all the features and application
availability of Windows 2000 Server, with additional scalability and reliability

Exhibit 17. Checklist: Enabling Application Memory Tuning

1. Review the concepts behind application memory tuning.
2. Read EMA hardware requirements.
3. Determine whether the computer supports application memory tuning by

consulting the Microsoft Windows Hardware Compatibility List (HCL).
4. If hardware is unsupported, do one of the following:

a. Update the hardware. If updating the hardware, back up the system first.
b. Or, select different hardware on which to enable application memory tuning.

Exhibit 18. Checklist: Enabling Physical Address Extensions (PAE)

1. Enable application memory tuning.
2. Review the concepts behind Physical Address Extension.
3. Read EMA hardware requirements.
4. Determine whether the computer supports PAE by consulting the Microsoft HCL

and contacting the vendor.
5. Determine whether the network and storage adapters support PAE by consulting

the Microsoft Windows HCL.
6. If the hardware is unsupported, do one of the following:

a. Update the hardware. If updating the hardware, back up the system first.
b. Or, select different hardware on which to enable application memory tuning.

7. PAE X86.

AU1272Ch03Frame Page 78 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff 79

features, such as clustering, designed to keep mission-critical business up and
running and grow under heavy loads. It is well suited for departmental servers
running applications such as networking, messaging, inventory and customer
service systems, databases, and E-commerce Web sites.

Increasing Server Performance

Advanced Server lets one increase server performance and capacity by adding
processors and memory. This approach to increasing network capacity is
referred to as scaling up.

Just as a desktop computer has only one processor, many server PCs also
have a single CPU. One can increase the performance of a server computer
by adding processors that can work together, and many well-known server
manufacturers offer multi-processor servers. Enhanced SMP support in
Advanced Server lets one use multi-processor servers.

Another way to increase server performance is to add memory, which
allows the computer to work with more information at once. Advanced Server
includes enhanced memory capabilities that let one increase the memory
available for server processing.

Increasing Server Availability

The two clustering technologies in Advanced Server let more than one server
work together on a particular task. The first, called the Cluster service, is used
to link individual servers so they can perform common tasks. If one server
stops functioning, its workload is transferred to the other server.

The second clustering technology, called NLB, is used to make sure a
server is always available to handle requests. NLB works by spreading incom-
ing client requests among a number of servers that are linked together to
support a particular application. A typical example is to use NLB to process
incoming visitors to a Web site. As more visitors come to the site, one can
incrementally increase capacity by adding servers. (This type of expansion is
often referred to as software scaling or scaling out.) Major system vendors,
including Dell, Compaq, IBM, Hewlett-Packard, Unisys, and Data General,
offer solutions that take advantage of Cluster service.

SMP and Advanced Memory Management

Another feature of the Advanced Server is the support for enhanced SMP and
large memory to increase availability and scalability. To let software use multi-

Exhibit 19. Checklist: Preparing the System Area
Network for Winsock Direct

1. Confirm that the hardware can support a SAN.
2. Install and configure the SAN hardware and software.
3. Review the concepts behind Winsock Direct.

AU1272Ch03Frame Page 79 Monday, January 21, 2002 7:34 AM

80 The Complete Book of Middleware

processor servers, Advanced Server supports up to eight-way SMP. Improve-
ments in the implementation of the SMP code allow for improved scaling
linearity, making Advanced Server a platform for business-critical applications,
databases, and Web services. Existing Windows NT Server 4.0, Enterprise
Edition servers with up to eight-way SMP can install this product.

Advanced Server also supports up to eight gigabytes (8 GB) of memory
when used with processors supporting Intel’s PAE. Combined with support
for eight-way SMP, this enhanced large memory support ensures that memory-
and processor-intensive applications can be run on the operating system.

Windows 2000 Clustering Technologies

The two Advanced Server clustering technologies are called Cluster service
and NLB. They can be used independently or in combination and applied to
the Datacenter Server.

A server cluster is a set of independent servers (referred to as nodes) and
connected storage devices that are managed together. Advanced Server sup-
ports two-node clusters. Clustered servers are physically connected by cables
and programmatically connected by cluster software. The servers do not have
to be the same size or have the same configuration.

Cluster Service

Exhibit 20 shows that the cluster appears to be a single system to clients and
applications in an environment of multiple servers. Cluster service is ideal for
ensuring the availability of critical line-of-business and other back-end systems,

Exhibit 20. Cluster Service: Single View of Multiple Servers

Shared
Storage

Clustered Servers

Node 1 Node 2

AU1272Ch03Frame Page 80 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff 81

such as Microsoft Exchange Server 2000 or a Microsoft SQL Server 2000
database acting as a data store for an E-commerce Web site. Should one server
stop functioning, a process called failover automatically shifts its workload to
another server in the cluster to provide continuous service.

Line-of-business applications are applications that are central to a com-
pany’s operations, and include systems such as databases, messaging servers,
ERP applications, and core file and print services. Cluster service in the
Windows 2000 operating system ensures that these critical applications are
online when needed by removing the physical server as a single point of
failure. Doing so does not add complexity for users. Because the cluster
appears as a single-system image to end users, applications, and the network,
they can work with the cluster as if it were any other server.

Cluster service is supported by dozens of cluster-aware applications span-
ning a wide range of functions and vendors. Cluster-aware applications include
databases such as Microsoft SQL Server 7.0, SQL Server 2000, and IBM DB2;
messaging servers such as Microsoft Exchange Server 5.5, Exchange 2000
Server, and Lotus Domino; management tools such as NetIQ’s AppManager;
disaster recovery tools such as NSI Software’s DoubleTake 3.0; and ERP
applications including SAP, Baan, PeopleSoft, and JD Edwards. And one can
now cluster such services as DHCP, WINS, SMTP, and NNTP.

Network Load Balancing

In addition to failover, some forms of clustering also employ load balancing,
which distributes incoming requests across a group of servers. As shown in
Exhibit 21, NLB complements Cluster service by supporting highly available
and scalable clusters for front-end applications and services such as Internet

Exhibit 21. Network Load Balancing

Internet or Intranet

Ethernet

AU1272Ch03Frame Page 81 Monday, January 21, 2002 7:34 AM

82 The Complete Book of Middleware

and intranet sites, Web-based applications, media streaming, and Terminal
Services.

Using both clustering technologies together, one can create an n-tier
E-commerce application by deploying NLB across a front-end Web server farm,
and clustering back-end line-of-business applications such as databases with
Cluster service.

NLB load-balances incoming IP traffic across clusters of up to 32 nodes.
NLB enhances both the availability and scalability of Internet server-based
programs such as Web servers, streaming media servers, and Terminal Services.

By acting as the load-balancing infrastructure and providing control infor-
mation to management applications built on top of Windows Management
Instrumentation (WMI), NLB can readily integrate into existing Web server
farm infrastructures.

NLB in both Windows 2000 Advanced Server and Datacenter Server, and
its predecessor in Windows NT Server 4.0, Enterprise Edition, are in use on
a range of popular Web destinations, including Dell.com, TV Guide Online,
and Personable.com, as well as Microsoft Web properties including
Microsoft.com, MSN network of Internet Services, and MSNBC.

Windows 2000 Advanced Server provides the features required to create
highly available and scalable systems. It includes features to help ensure that
one’s systems are always available. It is well-suited to environments that require
a high-performance server, and are capable of supporting multiple processors
and larger amounts of memory than Windows 2000 Server.

Windows 2000 Family Management Services
The Windows 2000 Server family provides management services through
infrastructure enhancements such as the Active Directory service, as well as
tools built on the infrastructure, such as IntelliMirror management technologies.
Windows 2000 Server — Advanced or Datacenter — help system administra-
tors better manage servers, networks, and Windows-based desktops. As shown
in Exhibit 22, they include:

� Group Policy, based on the Active Directory, is a key component of the
IntelliMirror. Group Policy helps one control user access to desktop settings
and applications by group rather than by individual user and computer.
Group Policy lets one define and control the amount of access users have
to data, applications, and other network resources.

Exhibit 22. Management Services

� Group Policy
� Windows Management Instrumentation
� Windows Script Host
� Microsoft Management Console

AU1272Ch03Frame Page 82 Monday, January 21, 2002 7:34 AM

Microsoft’s Stuff 83

� Windows Management Instrumentation (WMI) provides unified access and
event services, allowing one to control and monitor Windows-based envi-
ronments, Simple Network Management Protocol (SNMP) devices, and all
host environments that support the Web-Based Enterprise Management
(WBEM) standards initiative of the Distributed Management Task Force
(DMTF).7

� Windows Script Host (WSH) allows one to automate and integrate common
tasks using a variety of scripting environments, including Microsoft Visual
Basic, Scripting Edition (VBScript), Microsoft Jscript, and Perl. This feature
includes direct scripting to Active Directory and WMI.

� Microsoft Management Console (MMC) provides a common user interface
presentation tool where one can integrate all the necessary Windows-based
and Web-based administration components needed to fulfill a specific task.

Microsoft Management Strategy
Microsoft Operations Manager 2000 complements the capabilities of two other
management solutions from Microsoft: Systems Management Server and Appli-
cation Center 2000. While Systems Management Server delivers change and
configuration management for desktops and servers, Microsoft Operations
Manager 2000 handles the operational management of servers and applications.
Most enterprises will need both products, and will benefit from their comple-
mentary operations.

Application Center 2000 also serves a different purpose than Microsoft
Operations Manager. It is designed specifically for those enterprises that deploy
and manage high-availability Web- and component-based applications built
on the Windows 2000 operating system.

While each of these products addresses a different area of IT systems
management, they are not mutually exclusive. When taken together — and
added to the management technologies built into the Windows 2000 operating
system — Microsoft Operations Manager, Systems Management Server, and
Application Center comprise a complete set of management solutions for
Windows 2000-based environments of all sizes.

Notes
1. Now part of Compaq.
2. Now known as Microsoft ComPlus Transactions, an integrated feature of Windows

2000 operating systems.
3. “Code behind” is a Microsoft term used to describe the language page that coexists

with the HTML page. It can be written in any of the .NET languages, including C#
and VB.NET.

4. ECMA is an international industry association founded in 1961 and dedicated to
the standardization of information and communication systems.

5. These questions could be incorporated into a security questionnaire as part of risk
assessment of .NET Framework-based systems.

AU1272Ch03Frame Page 83 Monday, January 21, 2002 7:34 AM

84 The Complete Book of Middleware

6. The U.S. Department of Commerce requires a company to qualify before buying
the 128-bit SSL encryption software separately or included with a package. The
U.S. Government determines the categories of companies that can implement the
128-bit SSL encryption technology outside the United States and across U.S. borders.
Any company or organization around the world can purchase an ID encrypted
with 128 bits, with the following exceptions.
 Persons listed on the U.S. Government’s Denied Person’s List
 Customers located in the following countries: Afghanistan, Cuba, Iran, Iraq, Libya,

North Korea, Serbia, Sudan, and Syria.
7. Formerly Desktop Management Task Force.

AU1272Ch03Frame Page 84 Monday, January 21, 2002 7:34 AM

85

Chapter 4

Ever-Expanding Java World

This chapter covers Enterprise JavaBeans (EJB), Java 2 Platform Enterprise
Edition (J2EE), Java Messaging Service (JMS), Java Naming and Directory
Interface (JNDI), Java Media Framework (JMF), and other Java technologies.
They are used to build distributed applications for integration with Enterprise
Resource Planning (ERP), Customer Relationship Management (CRM), Supply
Chain Management (SCM), and other Enterprise Application Integration (EAI)
systems, and non-EAI legacy and wireless applications as well.

Introduction

In 1995, Java technology was incorporated into Netscape Navigator, the world
portal to the Internet. As the Internet was becoming popular as a way of
moving media content using HTML, Java technology was designed to move
it across networks of heterogeneous devices.

Meanwhile, the availability of cheaper computing power and increased net-
work bandwidth gave rise to distributed-based computing applications. A dis-
tributed application is a configuration of services provided by different application
components running on physically independent computers that appear to the
users of the system as a single application running on a phsycial machine.

To connect applications requiring operating systems across the Internet,
platform developers and enterprise development teams use various middle-
ware products, such as EJB, J2EE, and associated server-side technologies. All
aim to simplify the development of middleware components.

Enterprise JavaBeans

Enterprise JavaBeans (EJB) servers provide a transaction processing (TP)
monitor-like environment for distributed components. The TP monitor char-
acteristics of the EJB platform allow developers to streamline development by

AU1272Ch04Frame Page 85 Monday, January 21, 2002 7:35 AM

86

The Complete Book of Middleware

automatically managing the entire application environment, including transac-
tions, security, concurrency, persistence, load balancing, and failover. The
distributed-component characteristics of the EJB permit them to assemble
applications from flexible and reusable components.

The distributed components used in EJB are called

enterprise beans (beans).

Enterprise beans are written in Java and are used to model the business logic
of an organization. When a bean is developed, it can be assembled with other
beans into applications and deployed into an EJB server.

Component developers write business components (enterprise beans)
according to the programming model defined in the EJB specification, making
the enterprise beans more portable across all EJB servers. This architecture
could be expanded to

n

-tiers to suit specific requirements of an ERP,

1

 CRM,
and SCM system or subsystem under development.

Exhibit 1 shows how EJB logically fits into a three-tier architecture and
what each tier covers.

Inside Enterprise Beans

As shown in Exhibit 2, an enterprise bean comprises at least four parts: home
interface, remote interface, bean class, and XML deployment descriptor. Home
interface, the most important part, declares factory methods that are used by
Java clients to create new enterprise beans, locate existing beans, and destroy
them. Clients are not necessarily only people or workstations; they may be
servers, other beans, or anything else.

Exhibit 1. Logical View of EJB’s Three-Tier Architecture

Tier Coverage

Presentation Java clients accessing enterprise beans using JNDI and Java RMI-IIOP.
Examples include desktop Java applications, Java servlets, or other
enterprise beans.

Middle Enterprise JavaBeans
Resource Database

Exhibit 2. EJB Components

Remote
Interface

Bean
Class

Home
Interface

XML
Deployment
Descriptor

EJB JAR File

Enterprise Bean

AU1272Ch04Frame Page 86 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World

87

The benefits of using the home interface is that in CORBA and RMI
applications, a factory would have to be developer-defined and implemented
completely. In EJB, however, the developer defines the home interface but
does not have to implement the home class, which is generated by a tool
provided by the EJB vendor.

Remote interface declares the business methods of the enterprise bean that
are used by Java clients at runtime. This interface, for example, advertises the
business methods, such as adding an item for purchase to a shopping cart.
Bean class encapsulates the application logic of the bean and implements the
business methods defined in the remote interface, while the XML deployment
descriptor is an XML configuration file that describes the enterprise bean and
its runtime attributes to the EJB server when it is deployed.

The bean developer must create all four parts and package them — all at
once — into a JAR

2

 file for deployment. One part at a time cannot be packaged.
To read configurations in the XML deployment descriptor, get the tools from
the EJB servers to open a JAR file.

The Container

Once created, the enterprise bean is deployed into a

container

3

 that is
responsible for managing transactions, security, concurrency, persistence, and
resources the enterprise bean uses at runtime. In addition, the container
generates two distributed component proxies:

�

EJBHome

implements the enterprise bean’s home interface. There is only
one EJBHome for every enterprise bean deployment.

�

EJBObject

implements the enterprise bean’s remote interfaces. There is one
EJBObject for every remote reference to an enterprise bean. As shown in
Exhibit 3, there can be several EJBObjects for an EJBHome.

To get to an enterprise bean’s EJBHome, use JNDI

4

 on a Java client on the
presentation tier (first tier) to obtain a remote reference (proxy) to an enterprise
bean’s EJBHome. EJB servers must use some kind of JNDI-compatible naming
or directory service to provide access to the EJBHome. Some EJB servers use
third-party naming or directory services while others provide their own.
Without a directory of some sort, one cannot get to the EJBHome.

The client uses the EJBHome to create or find specific enterprise beans in
the EJB container. When it does, it receives a remote reference to an EJBObject.
The EJBObject implements the enterprise bean’s remote interface and delegates
calls made by the client to instances of the bean.

Java clients access enterprise beans through their EJBHome and EJBObject
remote proxies, rather than directly. The EJB container intercepts every method
invocation made on the remote proxies. When it does so, it can manage the
bean’s runtime environment associated with the invocation. Exhibit 4 shows
the results of method invocations on EJBHome and EJBObjects.

AU1272Ch04Frame Page 87 Monday, January 21, 2002 7:35 AM

88

The Complete Book of Middleware

The EJB container can use many instances of the enterprise bean class to
support many clients. This allows the EJB server to scale, so that it can handle
very large client loads.

Enterprise Bean Types

An enterprise bean comprises three types:

session, entity

, and

message-driven

.
While the message-driven bean is new in EJB 2.0, the session and entity beans
were introduced in Enterprise JavaBeans 1.0 in 1998. Session and entity beans
are similar to typical distributed components; they reside in the middle tier
and handle synchronous remote method calls made by clients (see Exhibit 5),
while a message-driven bean processes asynchronous messages delivered via
JMS.

5

This bean is not like a distributed component.

Exhibit 3. EJBHome and EJBObject Proxies

Exhibit 4. Method Invocations

Component Proxies Method Invocations

EJBHome Cause the enterprise bean’s container to create or locate
enterprise beans and provide EJBObject proxies to the client

EJBObject Delegated to an instance of the enterprise bean class, which
contains the business logic needed to service the request

EJBObjects

EJBHome

enterprise bean 1

EJBObjects

EJBHome

enterprise bean 2

client

AU1272Ch04Frame Page 88 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World

89

A

session bean

 can be stateful or stateless (see Exhibit 6). A stateful session
bean is dedicated to the Java client that created it. Its class defines instance
variables that can hold session data from one method invocation to the next,
making methods interdependent. This trait allows the bean to act as an
extension of the client, maintaining session data on the EJB server and
executing tasks for the client. Stateful session beans are used to model business
concepts that represent agents or roles that perform tasks on a client’s behalf.
Examples of such beans may include a bank teller who processes monetary
transactions, a shopping cart used in online commerce, or a travel agent who
makes flight, hotel, and car-rental reservations (see Exhibit 7).

Exhibit 5. Synchronous/Asynchronous Calls

Exhibit 6. Enterprise Bean Types

Exhibit 7. Bean Examples

Bean Type Example

Stateful session Flight, hotel, car-rental reservations
Stateless session Credit-card processing, financial calculations, and library searches
Entity Bank account

Session bean Entity bean

Synchronous remote calls

Message-driven bean

Asynchronous calls

session bean

stateful

stateless

entity bean

bean-managed persistence

container-managed persistence

message-driven bean JMS

AU1272Ch04Frame Page 89 Monday, January 21, 2002 7:35 AM

90

The Complete Book of Middleware

Stateless session beans

are not dedicated to a single client; they are shared
by many. This sharing makes stateless session instances more scalable, but
also prohibits them from maintaining session data. Stateless session beans
behave more like an API, where method invocations are not interdependent.
Each invocation is effectively stateless and is analogous to static methods in
Java classes. Stateless session beans are used to model stateless services such
as credit-card processing, financial calculations, and library searches.

Entity beans are persistent, transactional, server-side components. They are
used to model persistent business-domain objects such as bank accounts,
orders, and products. Each of these has behavior that is typically stored in a
database.

There are two types of entity bean, distinguished by how their persistence is
managed:

bean-managed persistence (BMP)

 and

container-managed persistence
(CMP)

. A BMP entity bean is responsible for managing its own relationships and
persistence state in the database. A developer defining a BMP bean writes the
database-access logic directly into the bean class. A CMP entity bean, by contrast,
leaves management of its persistent state and relationships to an EJB container.
Database-access code is generated automatically at deployment time.

Developers might use

message-driven beans

 to integrate an EJB system
with a legacy system, or to enable business-to-business interactions. While a
message-driven bean consists of a bean class and an XML deployment descrip-
tor, it does not have a remote or home interface (EJBObject or EJBHome
references). All message-driven beans respond only to asynchronous messages
delivered from JMS and, therefore, are not distributed components. They are
stateless, server-side components used to receive and process messages that
Java clients send to them via JMS. They are used to model processes and
routers that operate on inbound enterprise messages.

Passivation and Activation

EJB has built-in passivation and activation support. Passivation is the process
of temporarily storing the state of the shopping cart to persistent storage if a
customer has not completed the cycle of shopping or checkout. Activation
occurs when the customer returns to complete his checkout.

These capabilities are not provided by CORBA or RMI. The CORBA Portable
Object Adapter (POA) did provide this capability, but it was somewhat of a
latecomer within the CORBA world, not well supported, and rather difficult
to use.

CORBA Component Model

The CORBA Component Model is similar to EJB. Before it made its appearance
on the market, not every CORBA ORB supported transactions, security, and
persistence services. The persistence service was hardly implemeneted or used
at all. These services were not tightly integrated into the server architecture
as they are in EJB where the container automates the calling of these services.

AU1272Ch04Frame Page 90 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World

91

In CORBA, application code is needed to call these services. This resulted in
more lines of code to develop and maintain. Although EJB minimizes the amount
of coding, it adds more work to the task of configuration and deployment.

AlphaBean Examples

To try out a bean or two, one can download the alphaBeans listed in Exhibit 8
and use them to work with JDK 1.2. Other beans (at www.alphabeans.com)
may require a different JDK level.

OpenEJB and CVS

OpenEJB is an open-source EJB 1.1/2.0 container system, is JDK 1.2 compliant,
and provides for Java Authentication and Authorization Support (JAAS). JAAS
extends the security architecture of the Java 2 Platform with additional support
to authenticate and enforce access controls upon users. It builds on the
javax.security package in the core SDK, the Java Secure Socket Extension
(JSSE), the Java Cryptography Extension (JCE), and the Java Security Tools.

As a container system, OpenEJB works like a big plug-in for middleware
servers such as Web servers, CORBA servers, and application servers. By
plugging OpenEJB into these servers, one can obtain instant EJB 1.1/2.0
compliance for hosting Enterprise JavaBeans.

OpenEJB provides a clear separation of responsibilities between the EJB
container and the EJB server. The application server and OpenEJB container
system interact through an open programming interface, which forms the
container/server contact. This contract is defined by the Container Provider
Interface (CPI), which is a small and simple set of classes and interfaces.

Through the server/container interface (SCI), an application server vendor
can use the OpenEJB container system to create an instant and customizable
EJB 2.0 platform. Through the service/provider interface (SPI), primary services
can be interchanged to match any target environment’s specific requirements.
For details, go to http://www.openejb.org/specification.html.

Exhibit 8. AlphaBean Examples

AlphaBean Functions

CryptoBeans Perform various cryptographic transformations with
CryptoBeans Bean Suite (symmetric encryption, password-
based encryption, and hash calculation)

Directory EJB DirectoryEJB extends functionality of the Directory Bean Suite
on the client/server technology.

Common
Application
Functions

Get access to printer, fax, and mail systems in Java applications
and servlets with Common Application Functions Bean Suite

FolderSychronizer Keep folders up-to-date
Authentication Authenticate users with new Authentication Bean Suite

AU1272Ch04Frame Page 91 Monday, January 21, 2002 7:35 AM

92

The Complete Book of Middleware

OpenEJB is the first EJB container system that allows EJB platform devel-
opers to assemble it from existing products rather than construct it from
scratch. These developers can create applications or modify existing ones in
an open, distributed environment. One problem is that some developers have
no way of knowing who has developed what objects or applications. There
is always a possibility of overwriting someone else’s work by mistake.

One way of getting around this problem is to use the Concurrent Versions
Systems (CVS), allowing developers to control source codes over the network.
CVS has four basic functions:

1. Maintain a history of all changes made to each directory tree it manages.
2. Provide hooks to support process control and change control.
3. Provide reliable access to its directory trees from remote hosts using Internet

protocols.
4. Support parallel development, allowing more than one developer to work

on the same sources at the same time.

To download source code and other files from a CVS server, one needs a
CVS client. Go to http://www.cvshome.org/downloads.html and select the
appropriate code for a platform of one’s choice — BeOS, Linus, Machintosh,
OS/2, UNIX, VMS, or Windows 95/NT/2000.

There is no “Install Shield” for CVS. One must put the CVS executable in
any directory and then include that directory in the PATH system variable.
One can then execute CVS commands from anywhere in the command shell.

Java 2 Enterprise Edition

In January 2001, Sun announced Java 2 Enterprise Edition (J2EE) v1.3, offering
simplified connectivity and faster time to market. It is the primary development
platform for server-side enterprise application development. It includes EJB,
Java Server Pages (JSP) servlets, Java Database Connectivity (JDBC), JNDI, as
well as specification for interoperability and connections in Legacy and ERP
systems (see Exhibit 9).

New in J2EE 1.3 are JMF 2.1, EJB 2.0, and enhanced XML support, including
Java API for XML Parsing (JAXP), Java API for XML Messaging (JAXM), and
Java API for Data Binding (JAXB). These are open sourced through Apache’s
Jakarta project. These along with the JXTA networking application API make
up JAX (Java, Apache, and XML).

Exhibit 9 shows most features in J2EE. For example, if the second column
is not blank (e.g., SQL, SQLJ), it means those items are a natural flow from
the corresponding item (e.g., JDBC) in the first column. The first seven items
are part of the EJB framework.

Integration with Legacy, ERP, CRM, and SCM Applications

Enterprise JavaBeans in the J2EE framework provide the ability to create and
package integration points in the EAI space. By leveraging J2EE technologies

AU1272Ch04Frame Page 92 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World

93

such as JMS in combination with Enterprise Information System (EIS) integra-
tion brokers and business-to-business integration brokers, components can be
created that allow standard access to enterprise computing assets. The back-
bone of the modern enterprise is spread across a diverse set of technology
and applications, including legacy, ERP, CRM, and SCM applications (see
Exhibit 10).

To accomplish E-business integration, an integration platform must be
created that combines the presentation capabilities and technologies required
of Internet-based applications with the multitude of technologies that can be
utilized to integrate application systems. There are several approaches to
creating such an integration architecture, including:

Exhibit 9. Java API Flows in J2EE

JDBC SQL, SQLJ
EJB
JMS
JMX
JTA/JTS
JMF

a

JAXP

a

JAXM

a

JAXB

a

JXTA

a

JAX

a

Java, Apache, XML
J2EE Interoperability COM, CORBA, CCM, XML
XML/JAX/JDOM CORBA
Servets, JSP, JSP Taglibs
JDNI
J2EE Connection API Legacy/ERP
Java OSS OSS Trouble Ticket API

OSS Quality of Service API
OSS Service Activation API

Security JCE, JSSE, JAAS

a

New features in J2EE v1.3.

Should be included: CORBA’s dependence on RMI/IIOP
and Java IDL to run the applications.

Exhibit 10. Back-End Applications: ERP, CRM, SCM, and Legacy

Presentation
Logic

EJB

ERP

CRM

SCM

Legacy

AU1272Ch04Frame Page 93 Monday, January 21, 2002 7:35 AM

94

The Complete Book of Middleware

�

Point-to-point integration that leverages APIs to create reusable components

�

EAI integration brokers that provide single-point access to a variety of
back-end systems using a uniform API

�

B2B integration brokers that provide access to external data in the form
of XML messages

�

Composite platforms that utilize a combination of the above to achieve
maximum “connectivity”

At the heart of the J2EE platform are EJB components and containers. The
EJB component model defines the interfaces between the bean and container
that provide enterprise-computing capabilities, including security and transac-
tion support. The behavior of these capabilities is dictated by instructions
specified in the bean’s deployment descriptor, allowing control outside of
program code.

With bean-managed components, the developer is responsible for writing
code to persist specific attributes of the bean. This has the added advantage
of allowing bean attributes to be stored in technologies other than a relational
database. This is important because a significant portion of legacy, ERP, and
CRM information is provided via non-database access.

Key enabling technologies can be utilized to create integration points. JDBC
is used to re-face database queries and tables as EJB objects. Transactional
CICS

6

 systems can be accessed using IBM’s External Call Interface (ECI), which
allows communication. JMS can be used to provide the underlying messaging
interface.

The integration broker provides a single interface for accessing legacy,
CRM, or ERP assets, leveraging XML as a standard message format. The point
integration solutions — such as JDBC, ECI, JMS, and MQSeries — are replaced
by a single API set — the J2EE Connector architecture.

J2EE 1.3 adds support for the connector architecture that defines a standard
architecture for connecting J2EE components to heterogeneous EISs, including
ERP, mainframe systems, database systems, and legacy applications not written
in Java. This J2EE Connector achitecture is an open standard alternative to
time-consuming customizations on proprietary products in providing connec-
tivity between the EIS systems and application servers (e.g., databases, client
applications, and Web components).

This architecture provides containers for an assortment of components,
including EJB and JSP. This allows enterprises to encapsulate parts of existing
applications with them. It also provides a standard set of services to permit
integration of new applications with virtually any back-end enterprise infor-
mation system. These services are supplied as plug-in connectors — resource
adapters that will be supplied by EIS and Java software application server
vendors.

An EIS vendor provides a pluggable resource adapter for an application
server environment to establish connectivity between an EIS, the application
server, and the enterprise application. This means an application server or
client can use the resource adapter to make the connection. For multiple EISs,
one needs a resource adapter for each EIS type. It is possible to plug in

AU1272Ch04Frame Page 94 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World

95

multiple resource adapters in an application server. All adapters provide
support for connection, transaction, and security management in a manner
similar to EJB containers.

In addition, the J2EE Connector architecture defines a Common Client
Interface (CCI) for EIS access. It acts as an integration enabler of application
components and EAI frameworks across heterogeneous EISs. This capability
of using multiple adapters and the CCI enables EJB and other J2EE components
in the application server to access the underlying multiple EISs.

Several ERP vendors are getting a jump on the new architecture by releasing
connectors that are compatible with popular application servers. Two examples
are PeopleSoft and SAP. By using PeopleSoft’s Component Interfaces, third-
party systems can synchronously invoke PeopleSoft business logic via EJB.
SAP validates third-party products for SAP’s Business Technology that supports
development of business logic in Java and data transfer using XML.

As industry pressure to implement E-business initiatives increases and other
trends such as mergers and acquisitions accelerate, the need to integrate legacy
systems with the new “E-conomy” will only increase. The need for architected
composite integration platforms will also increase as the industry continues
to mature and product vendors rush to keep pace and vie for IT dollars in a
very competitive marketplace.

Oracle9i AS Containers for J2EE

Oracle9

i

 Application Server Containers for J2EE (OC4J) is available on all
standard operating system and hardware platforms, including Solaris, HP-UX,
AIX, Tru64, Windows NT, and Linux. With Oracle9

i

 AS v1.0.2.2 release, it is
certified to run on the JDK 1.3 Java Virtual Machine (JVM).

OC4J provides a complete J2EE container that includes a JSP Translator, a
Java servlet engine, and an EJB. It also supports the JMS and several other
Java specifications. Oracle9

i

 AS v1.0.2.2 provides full support for all of the
J2EE APIs, including:

�

EJB 1.1 and several parts of the EJB 2.0 specification, including EJB 2.0
style enterprise beans and message-driven beans

�

Servlet 2.2 (and Servlet 2.3 including facilities such as Servlet Chaining and
Filters)

�

JSP 1.1

�

JTA 1.0.1

�

JNDI 1.2

�

JMS 1.0.1

�

JDBC 2.0

�

JavaMail 1.1.2

Internet applications are designed and implemented as multi-tier applica-
tions. A middle-tier application server provides a runtime environment for the
application and access to existing business functions, legacy systems, and data.
The J2EE reduces the cost and complexity of developing these multi-tier

AU1272Ch04Frame Page 95 Monday, January 21, 2002 7:35 AM

96

The Complete Book of Middleware

applications by defining a standard application model and a standard set of
programming interfaces for developing multi-tier Internet applications. Appli-
cation servers that support J2EE provide a standard “container” environment
for executing J2EE applications, allowing application developers to write once
and target server environments provided by a number of vendors.

Oracle offers JDeveloper as a Java development tool (Java IDE) and two
different database access interfaces (JDBC and embedded SQL in Java (SQLJ)).
Oracle JDeveloper integrates an object-relational mapping — Business Com-
ponents for Java — that supports one-to-one and one-to-many mappings
between Java classes and database schemas and allows the use of SQL to
query the database.

Java applications built with any development tool can be deployed against
OC4J. This container supports standard J2EE deployment packages

7

 of J2EE
Archive (EAR), Web Component (WAR), EJB Java Archive (JAR), or Application
Client JAR files. Applications deployed with OC4J can be debugged using
standard java profiling and debugging capabilities. OC4J provides four logging
services: Web access, server and application activities, RMI activities, and JMS
activities

Oracle also recommends the use of Merant’s JDBC drivers to access non-
Oracle databases, including IBM DB/2, Microsoft SQL Server, Informix, and
Sybase from Java (see Exhibit 11). (Merant is an Oracle Partner.) Oracle also
provides a standard way to embed SQL statements in Java programs. It offers
a much simpler and higher productive programming API than JDBC. One can
use SQLJ to develop both client-side and middle-tier applications that access
databases from Java and to define stored procedures, triggers, methods, etc.
within the database server in Java in a portable manner.

Oracle recognizes that users partition their Internet Application code into
three layers: Web presentation logic, business logic, and data manipulation logic.
In J2EE applications, the Web presentation logic is developed using JSPs or
servlets; the business logic is developed as EJBs. To support J2EE Applications,
Oracle9

i

AS provides a standards-compliant J2EE container that executes on any
JDK JVM (provided on each operating system and hardware platform).

Configuring and Assembling J2EE Applications

This section looks at the configuration and assembly of a J2EE application.
The typical configuration is an application component deployed in a container

Exhibit 11. JDBC Drivers and

Associated Databases

Oracle Oracle9

i

 AS
Non-Oracle IBM DB/2

Microsoft SQL Server
Informix
Sybase

AU1272Ch04Frame Page 96 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World

97

provided by an application server. The application component needs transactional
access to multiple resource managers and uses a transaction manager that is
responsibile for managing transactions across multiple resource managers.

A resource manager can support two types of transactions:

�

JTA/XA Transaction.

 Java Transaction API specifies standard Java interfaces
between a transaction manager and the parties involved in a distributed
transaction system: the resource manager, the application server, and the
transactional applications. Also known as the transaction manager, it is
external to the resource manager.

�

RM/Local Transaction.

 The transaction manager that controls and coordi-
nates the transaction is internal to the resource manager. The coordination
of such transactions involves no external transaction managers. This means
the Transaction Manager component is part of the Resource Manager.

To assemble a J2EE application, one needs three kinds of modules: enter-
prise beans, Web components, and J2EE application clients (see Exhibit 12).
These modules are reusable; one can build new applications from existing
enterprise beans and components. And because the modules are portable, the
application they comprise will run on any J2EE server that conforms to the
specifications.

Exhibit 12. Contents of J2EE Application

J2EE Application
(deployment
descriptor)

.ear file

J2EE App Client
(deployment descriptor

Java Application)
.jar file

Enterprise bean
(EJB class,

deployment descriptor,
Remote, Home)

.jar file

Web Component
(JSP file, deployment
descriptor, Servlet
class, GIF, HTML)

.war file

AU1272Ch04Frame Page 97 Monday, January 21, 2002 7:35 AM

98 The Complete Book of Middleware

An enterprise bean is composed of three class files: the EJB class, the
remote interface, and the home interface. The Web component may contain
files of the following types: servlet class, JSP, HTML, and GIF. A J2EE application
client is a Java application that runs in an environment (container) that allows
it to access J2EE services.

Each J2EE application, Web component, enterprise bean, and J2EE appli-
cation client has a deployment descriptor. A deployment descriptor is an .xml
file that describes the component. An EJB deployment descriptor, for example,
declares transaction attributes and security authorizations for an enterprise
bean. Because this information is declarative, it can be changed without
requiring modifications to the bean’s source code. At runtime, the J2EE server
reads this information and acts upon the bean accordingly.

One bundles each module into a file with a particular format: a J2EE
application into an .ear file, an enterprise bean into an EJB .jar file, a Web
component into a .war file, and a J2EE application client into a .jar file.
An .ear file, for example, contains an .xml file for its deployment descriptor,
and one or more EJB .jar and .war files. An EJB .jar contains its
deployment descriptor and the .class files for the enterprise bean.

As one can see, JAR is a platform-independent file format that aggregates
many files into one. Multiple Java applets and their requisite components
(.class files, images, and sounds) can be bundled in a JAR file and subse-
quently downloaded to a browser in a single HTTP transaction, greatly
improving the download speed. The JAR format also supports compression,
which reduces the file size, further improving the download time. In addition,
the applet author can digitally sign individual entries in a JAR file to authen-
ticate their origin. It is fully backward-compatible with existing applet code
and is fully extensible.

Enterprise Servlets with J2EE

To learn how servlets can be distributed, look at EJB technology, a server-
side component model for implementing distributed business objects. EJB is
designed from the ground up as distributable objects. An EJB implements
business logic and lets the container (essentially the server) in which it runs
manage services such as transactions, persistence, concurrency, and security.
An EJB can be distributed across a number of back-end machines and can
be moved between machines at the container’s discretion. To enable this
distribution model, EJB must follow a strict specification-defined ruleset for
what they can and cannot do.

Servlet distribution (often called clustering) is an optional feature of a
servlet container, and servlet containers that do support clustering are free to
do so in several different ways. As shown in Exhibit 13, there are four standard
architectures, listed here from the simplest to the msot advanced. As is obvious,
one cannot have session migration without clustering. Likewise, one must

AU1272Ch04Frame Page 98 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World 99

have clustering and session migration in place to take advantage of session
failover capabilities.

J2EE 1.2 and higher collect together several server-side APIs, including
Servlet API 2.2, JSP 1.1, EJB, JavaMail, JMS, JTA, CORBA, JDBC, JAXP, and
JNDI. J2EE defines how these technologies can interoperate and make use of
one another, and provides certification that certain application servers are J2EE
compliant, meaning they provide all the required services as well as the extra
connection glue.

J2EE Security Model for OC4J

The J2EE security model lets one configure a Web or enterprise bean com-
ponent so system resources are accessed only by authorized users. For
example, a Web component can be configured to prompt for a user name
and password. An enterprise bean component can be configured so only
persons in specific groups can invoke certain kinds of its methods. Alterna-
tively, a servlet component might be configured to have some of its methods
accessible to everyone and a few methods accessible to only certain privileged
persons in an organization. The same servlet component can be configured
for another environment to have all methods available to everyone, or all
methods to only a select few.

OC4J has an Access Control List (ACL) mechanism that allows for fine-
grained control of the usage of components running on the server. One can
define what can or cannot be executed by which user or group of users, right
down to the Java method level.

Security realms allow the administrator to import information from existing
authorization or authentication systems into the ACL. One can thus import
information from the NT/2000 security system, from an LDAP system, from
the UNIX password file, or from the database. Oracle9i AS v1.0.2.2 is fairly
complete with respect to security. It includes all of the classes for Secure
Sockets Layer (SSL) v3, RSA Encryption, and Support for X.509 certificates.

Another related security topic is the functionality of firewall tunneling.
Oracle9i AS v1.0.2.2 provides the ability to go through firewalls and proxies
via HTTP and HTTPS tunneling. With Oracle9i AS release 2.0, the J2EE security
facilities will support the Oracle Login Server for single-sign-on and single
station administration of security.

Exhibit 13. Clustering

Level Clustering Session Migration Session Failover

NA NA NA NA
Simple X NA NA
Intermediate X X NA
Advanced X X X

AU1272Ch04Frame Page 99 Monday, January 21, 2002 7:35 AM

100 The Complete Book of Middleware

RMI and Tunneling Services

When J2EE Applications are deployed, they are typically divided into two or
three tiers: the Web server tier where the HTTP listeners are deployed; the
Web presentation tier where the JSPs and servlets are deployed; and the EJB
tier where the business logic defined as EJBs is deployed (see Exhibit 14).
Smaller Web sites combine these different tiers into one physical mid-tier;
larger Web sites divide these different tiers into two or three separate physical
tiers for security, scalability, and load-balancing purposes.

Oracle9i AS takes these architectural issues into consideration and is
designed to meet these needs, as shown in Exhibit 15.

Java Messaging Service
One should know about JMS before discussing message-driven beans. JMS
makes available common sets of interfaces for sending and receiving messages
reliably and asynchronously. Asynchronous messaging is an obvious choice
for use with disconnected clients such as cell phones and PDAs. In addition,
JMS is a means of integrating enterprise systems in a loosely coupled (if not
completely decoupled) manner with the primary objective of creating appli-
cations that are seemingly portable across messaging vendors.

There are lots of messaging systems, each with their own API. Messaging
systems provide a way to exchange events and data asynchronously. Let us
quickly go through some of the basics of the JMS APIs.

Messaging Domains

Message systems have several models of operation. The JMS API provides
separate domains that correspond to the different models. A JMS provider can
implement one or more of the domains. The two most common domains are
Point-to-Point and Publish/Subscribe. Both domains have the following con-
cepts.

� Destination: the object that a client uses to specify the target of messages
it sends/receives

� Producer: a client that sends a message to a destination
� Consumer: a client that receives messages from a destination

Exhibit 14. Tiers and Deployment Types

Tiers Deployment Types

Web server HTTP listeners
Web presentation JSPs and servlets
EJB Business logic

AU1272Ch04Frame Page 100 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World 101

Point-to-Point

One form of JMS is a point-to-point (P2P) model designed for use in a one-
to-one delivery of messages. An application developer should use P2P mes-
saging when every message must be successfully processed. Unlike the Pub-
lish/Subscribe model, P2P messages are always delivered. It has the following
characteristics:

� A P2P producer is a sender.
� A P2P consumer is a receiver.
� A P2P destination is a queue.
� A message can only be consumed by one receiver.

In addition, messages are sent to specific queues, and clients will extract
messages from specific queues established to hold their messages. Queues
retain all messages sent until such time as the messages are consumed or
expire. Each message has only one consumer although multiple receivers may
connect to the queue. Messages are removed from the start of the queue.
Receivers acknowledge the successful receipt of a message. For example, a

Exhibit 15. Architectural Issues

Web Server to JSP/
Servlet Engine
Connectivity

The Web server can either use the Apache JServ Protocol (AJP) or
HTTP to direct requests to the JSP/servlet engine. As a result, the
Web server can even be placed outside a firewall and can direct
request to the servlet engine that is placed behind the firewall.

JSP/Servlet-to-EJB
and EJB-to-EJB
Connectivity

Communication from the presentation logic tier to business
logic tier and between EJBs is done using standard RMI, which
gives any client or Web tier program accessing an EJB direct
access to the services in the EJB tier. These services include
JNDI for looking up and referencing EJBs, JMS for sending and
receiving asynchronous messages, and JDBC for relational
database access.

HTTP and HTTP-S
Tunneling

Oracle9i AS also supports the ability to tunnel RMI over HTTP
and HTTP-S. RMI over HTTP/HTTP-S tunneling can be used for
Java-based clients when they need to communicate with
Oracle9i AS and the only option is to use HTTP. Typically, HTTP
tunneling provides a way to simulate a stateful socket
connection between a Java client and Oracle9i AS and to
“tunnel” this socket connection through an HTTP port in a
security firewall. HTTP is a stateless protocol, but Oracle9i AS
provides tunneling functionality to make the connection
appear to be a regular stateful RMI connection. Under HTTP,
a client can only make a request, and then accept a reply from
a server. The server cannot voluntarily communicate with the
client, and the protocol is stateless, meaning that a continuous
two-way connection is not possible. Oracle9i AS’s HTTP
tunneling simulates an RMI connection via HTTP, thus,
overcoming these limitations.

AU1272Ch04Frame Page 101 Monday, January 21, 2002 7:35 AM

102 The Complete Book of Middleware

call center application may use a P2P domain. A phone call enters the queue
and an operator takes care of that call. The phone call does not go to all of
the operators.

Publish/Subscribe

Another form of JMS is a Publish/Subscribe (pub/sub) application model
designed for one-to-many broadcasts of messages. An application developer
may wish to use pub/sub messaging when it is acceptable for some level of
unreliability to exist. It is possible that all consumers will not receive all
messages or no consumer will receive any message. The model has the
following characteristics:

� A pub/sub producer is a publisher.
� A pub/sub consumer is a subscriber.
� A pub/sub destination is a topic.
� A message may have multiple subscribers.

In addition, publishers and subscribers are usually anonymous. The system
takes care of distributing the messages arriving from a topic’s publishers to
its subscribers. Producers and messages via topics and consumers receive
those messages by subscribing to a topic. Messages are retained only as long
as it takes to distribute them to the registered subscribers. Each message may
have multiple subscribers. There are time dependencies that exist between
publishers and subscribers. Subscribers to a topic can only consume messages
published after a subscription is created. Subscribers must maintain their
subscription to a topic to continue receiving messages.

An e-mail newsletter application, for example, may use a pub/sub model.
Everyone who is interested in the newsletter becomes a subscriber; and when
a new message is published (say the head of Human Resources sends out
new information), that message is sent to all subscribers.

EJB 2.0: Message-Driven Beans

Having discussed the fundamentals of JMS, we can now move on to the
message-driven bean, a new component type that is in the EJB 2.0 specification.
Suppose a sender puts messages on the queue, and a receiver reads the
messages and uses that information to send out e-mail. This receiver could
be a program that starts up, subscribes to the “EmailQueue,” and deals with
the messages that come in. Instead of doing this every time one needs a
receiver, it makes more sense to have a component architecture that allows
for the concurrent processing of a stream of messages, is transactionally aware,
and takes care of the infrastructure code, thus allowing one to work on the
business logic.

This is where message-driven beans enter the picture. A message-driven bean
is simply a JMS message consumer. A client cannot access a message-driven

AU1272Ch04Frame Page 102 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World 103

bean directly (as one does with session and entity beans). The only interface
to the message-driven bean is by sending a JMS message to the destination
to which the message-driven bean is listening. To allow reuse, as with the
other EJBs, a lot of information is provided in the EJB deployment descriptor.

OpenJMS

OpenJMS is an open-source implementation of Sun Microsystems’ Java Message
Service API 1.0.2 Specification. The architecture and design were completed
in late February 2000, implementation began in early March 2000, and a
functional prototype was released in mid-May 2000.

OpenJMS allows developers to assemble message services from existing
products rather than construct an application from scratch. These developers
can create applications or modify existing ones in an open, distributed envi-
ronment. One problem is that some developers have no way of knowing
which person has developed what objects or applications. There is always a
possibility of overwriting someone else’s work by mistake.

One way of getting around this problem is to use the CVS, allowing
developers to control source codes over the network. CVS has four basic
functions:

1. Maintaining a history of all changes made to each directory tree it manages
2. Providing hooks to support process control and change control
3. Providing reliable access to its directory trees from remote hosts using

Internet protocols
4. Supporting parallel development, thus allowing more than one developer

to work on the same sources at the same time

To download source code and other files from a CVS server, one needs a
CVS client. Go to http://www.cvshome.org/downloads.html and select the
appropriate code for a platform of choice — BeOS, Linux, Machintosh, OS/
2, UNIX, VMS, or Windows 95/NT/2000.

There is no “Install Shield” for CVS. Just put the CVS executable in any
directory and then include that directory in the PATH system variable. Then
execute CVS commands from anywhere within the command shell.

One can download the latest stable OpenJMS release with source code,
test harness, and example code. One can also look at a number of examples
(http://openjms.exolab.org/examples.html).

Java Naming and Directory Interface
The Java Naming and Directory Interface (JNDI) is an API specified in Java
that provides access to different naming and directory services. Application
developers can use the JNDI API to access files, devices, objects, and many
other types of data available in different kinds of naming and directory services.

AU1272Ch04Frame Page 103 Monday, January 21, 2002 7:35 AM

104 The Complete Book of Middleware

Software vendors such as Novell, Sun, HP, and IBM create Java packages that
plug into JNDI and provide access to a specific naming or directory service.

These JNDI implementations can be created for naming services such as
the Internet DNS and those employed by distributed object systems (CORBA,
RMI, etc.), or directory services such as Novell’s NetWare, Sun Solaris’ NIS+,
LDAP, and many others. JNDI is very similar to other JavaSoft APIs, like JDBC
and JavaMail, where vendor-specific implementations of a particular technol-
ogy can be used interchangeably through a common API.

Naming Systems and Services

A naming system provides a natural, understandable way of identifying and
associating names with data. Computing systems use naming systems to
provide a natural way of organizing and acting on data and objects. Examples
of Naming Services include DNS, CORBA, RMI, and directory services such
as X.500 and LDAP.

DNS

The Internet’s Domain Name System (DNS) is perhaps the largest and best-
known naming service. It allows Internet users to refer to host computers
through easily recognizable names. The DNS is a global distributed naming
service. The bindings that link names with actual host computers are distributed
across many Name Servers.

CORBA and RMI

CORBA and RMI are examples of distributed object systems that employ
naming services. In these types of systems, the naming service associates
names with live objects, thus allowing an application on one computer to
access live objects from a different computer.

Directory Services

The directory service is a natural extension of the naming service. Directory
services are typically organized as hierarchical naming services, organizing
data and objects within the context of directories and subdirectories.

Enterprise-level directory services allow all kinds of resources to be
arranged and managed, including files, printing services, computing devices,
user accounts, security, and business objects — practically any device or
functionality found on a network. The real power of a full-featured directory
service is its capacity to represent, manage, and provide access to a diverse
set of resources. Directory services can be central to a local area network or
global, providing access to widely distributed resources. The following para-
graphs provide brief descriptions of both local and global enterprise-level
directory services. Exhibit 16 gives JNDI directory service examples.

AU1272Ch04Frame Page 104 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World 105

Naming and directory services vary in their exact implementation from one
service to the next. NDS, NIS+, LDAP, and X.500 are all directory services, but
they use different servers, bindings, protocols, and clients. The same is true
of the DNS and naming systems such as those utilized by CORBA and Java
RMI. The differences in naming and directory services, however, are encap-
sulated in their implementations and APIs: the basic architecture of these
systems are the same.

Directory and naming services usually employ two layers: a client layer
and a server layer. The server is responsible for maintaining and resolving the
actual name-object bindings, controlling access, and managing operations
performed on the structure of the directory service. The client acts as an
interface that applications use to communicate with the directory service.

JNDI is a client API that provides naming and directory functionality
specifically for Java applications. JNDI is specified in Java and is designed to
provide an abstraction that represents those elements most common to naming
and directory service clients. JNDI is not intended as an alternative to estab-
lished naming and directory services; rather, it is designed to provide a
common interface for accessing existing services such as DNS, NDS, LDAP,
CORBA, and RMI.

JNDI Architecture

The JNDI architecture is separated into two main interfaces: the API and SPI.
The JNDI API provides a set of classes and interfaces that application devel-
opers use for navigating across multiple naming systems. The JNDI API shields
application developers from the nuts and bolts of how different naming and
directory services function. Vendors who are developing service providers for
JNDI can use the JDNI SPI. This interface provides the classes and interfaces
that a directory service must implement to be available to a JNDI client.

Exhibit 16. JNDI Directory Services

X.500 Defined by ISO, X.500 can be used for many types of data. X.500 is a very
robust data model and set of operations that has been adopted in part by
several other directory service implementations.

LDAP The University of Michigan introduced the Lightweight Directory Access
Protocol (LDAP) directory service as a lightweight version of X.500 that could
run on the TCP/IP protocol stack.

NDS NetWare Directory Service (NDS) is Novell’s proprietary directory service.
NDS organizes objects in a distributed database, independent of their
physical location, and can be used for acting on both physical and logical
entities within a NetWare network.

NIS+ Network Information Service Plus (NIS+) is Sun Microsystems’ proprietary
directory service for Sun Solaris 2.0. NIS+ is an enterprise network
administration tool and repository for information about network entities
such as users, servers, and printers. NIS+ improves on an older directory
service called NIS.

AU1272Ch04Frame Page 105 Monday, January 21, 2002 7:35 AM

106 The Complete Book of Middleware

The JNDI API is divided into two packages: the javax.naming and
javax.naming.directory packages. This is a natural and logical packaging system
for representing naming and directory services. As previously discussed, a
directory service is a type of naming service; thus, it is natural and logical
that the directory package would be largely derived from the naming package.

The Naming Package

The javax.naming.Context interface is the most important type in the JNDI
API. It provides access to name-object bindings, the heart of any naming
system. A Context object provides methods for resolving named objects,
binding and unbinding names to objects, and creating and destroying sub-
contexts. In JNDI, a type of Context called InitialContext — the root of a
client’s naming system — is used as a starting point for navigating a namespace.

The javax.naming.Reference class is the heart of JNDI’s federated naming
facilities. It enables different service providers to cooperate, producing seam-
less transitions from one directory or naming service to the next. A reference
can be thought of as a pointer from one namespace to another. It is named
and placed in a binding just like any other context or named object. When
an object of type Reference is resolved, however, JNDI automatically detects
that it is a Reference and uses the information it contains to transition the
client to the service provider, namespace, and appropriate object described
by the Reference.

A Reference object is really just a collection of strings that JNDI uses to
load and initialize a service provider. It describes the type of service, the name
of the server, the object name, and a URL for dynamically loading the
appropriate service provider.

This gives JNDI the ability to dynamically load service providers as needed
and to store links to other namespaces. Everyone involved in developing and
using JNDI, from the vendor that creates service providers to the application
developer to the user, is insulated from the mechanics of JNDI’s federated
naming facilities. To allow a JNDI client to cross from one namespace to
another, a simple Reference can be created and stored in the server — JNDI
takes care of the rest.

The Directory Package

DirContext interface is as important to the directory package as Context is to
the naming package. In fact, DirContext extends javax.naming.Context by
adding methods for examining and searching attributes associated with a
directory object. The defining difference between a directory service and a
naming service is that a directory service is organized as a hierarchical naming
system that includes functionality for evaluating and modifying attributes
attached to contexts and the ability to search a context using attributes as a
filter. The concept of a directory service with a hierarchical structure is very
easy to model with JNDI.

AU1272Ch04Frame Page 106 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World 107

Every DirContext object contains zero or more objects of class Attribute.
Every Attribute object has a String identifier — a name — and a set of values.
Because a directory has attributes and also extends the Context class, it can
be both described and used as a naming context. A person’s e-mail address,
phone number, and other personal information, for example, could all be
available through the Attributes of a DirContext associated with a specific
person. In addition, resources specific to that person, such as their printer,
fax machine, and scheduler, could be obtained through a lookup.

JNDI 1.2

JNDI 1.2 is a major new upgrade release that adds new functionality to the
basic naming and directory support offered in the 1.1.x releases. New features
include event notification, and LDAP v3 extensions and controls. This release
contains valuable contributions from the following companies: Netscape, Nov-
ell, Tarantella, Sun, and BEA.

JNDI 1.2 is a Java Standard Extension, running on all compatible platforms.
Exhibit 17 shows what new features have been added since JNDI 1.1.

Java Media Framework
Java Media Framework (JMF) 2.1 provides a unified architecture for the capture,
playback, streaming, and transcoding of media content — such as audio and
video — across most major operating systems. It enables developers to incor-

Exhibit 17. New JNDI 1.2 Features

Event Notification The javax.naming.event package contains classes and
interfaces for supporting event notification in naming and
directory services.

LDAP v3 Extensions
and Controls

The javax.naming.ldap is for applications and service
providers that deal with LDAP v3 extended operations and
controls.

Using Resources for
Configurations

A mechanism using resources is defined for service providers
and applications to provide configuration information to
JNDI.

Service Provider
Support

Storing Objects defines a mechanism for service providers to
transform the state of an object into a form that can be stored
into naming/directory services.

Federation specifies the policy for how a service provider
should support dynamic location of the next naming system.

Environment Properties specifies how a convention is defined
for the naming of environment properties to prevent
namespace collisions.

Modification to JNDI
1.1 Packages

Several modifications are made to the javax.naming,
javax.naming.directory, and javax.naming.spi
packages.

AU1272Ch04Frame Page 107 Monday, January 21, 2002 7:35 AM

108 The Complete Book of Middleware

porate time-based media content into Java applications and applets. JMF 2.1.1
extends the Java platform by offering advanced media processing capabilities,
including media capture, compression, streaming, playback, and support for
important media types and codecs such as M-JPEG, H.263, MP3, Real-Time
Transport Protocol and Real-time Streaming Protocol (RTP/RTSP), Macrome-
dia’s Flash, IBM’s HotMedia, and Beatnik’s Rich Media Format (RMF). JMF
2.1.1 also supports popular media types such as Quicktime, Microsoft’s Audio-
Video Interleaved (AVI) format, and Motion Picture Experts Group-1 (MPEG-
1). In addition, JMF 2.1.1 includes an open media architecture, allowing
developers to access and manipulate individual components of the media
playback and capture process, such as effects, tracks, and renders, or to utilize
their own custom plug-in components.

JMF 2.1.1 technology ships in four different versions tailored to meet
specialized developer needs, starting with the most portable version, written
entirely in the Java programming language, and designed to work with any
Java-compatible system. JMF source code will be released under Sun Com-
munity Source Licensing (SCSL).

Java APIs: XML Messaging, XML Parsing, and Data Binding
JAXM, JAXP, and JAXB form the core of XML support in the J2EE platform.
These Java technologies for XML give developers an API toolset for developing
and deploying Java technology-based applications that harness the synergies
of the Java platform’s portable code and XML’s portable data (see Exhibit 18).
All three technologies are being developed through the Java Community
Program (JCP) program, the open, community-based organization that stewards
the evolution of the Java platform.

The Java API for XML Messaging

JAXM enables the packaging, routing, and transport of both XML and non-
XML business messages across a number of key communications infrastruc-
tures, such as those based on HTTP, SMTP, and FTP protocols. By supporting
industry-standard packaging and an asynchronous messaging model, Java

Exhibit 18. XML Support

XML Support

JAXM JAXP JAXB

AU1272Ch04Frame Page 108 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World 109

technology programmers can build and secure B2B E-commerce applications
with JAXM.

JAXM supports a variety of XML messaging methods, such as the evolving
XML messaging standard being defined in the ebXML framework. ebXML is
intended to provide a global standard for simple, robust, low-cost trade
facilitation and is a joint development effort between the Organization for the
Advancement of Structured Information Standards (OASIS) and the United
Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT).
Sun is involved in defining ebXML and is contributing to multiple working
groups, such as the Transport/Routing & Packaging group, and leading the
Proof-of-Concept working group.

The Java API for XML Parsing

JAXP enables the reading, manipulating, and generating of XML documents
through Java APIs by providing a standard way to seamlessly integrate any XML-
compliant parser with a Java technology-based application. JAXP v.1.1 supports
the latest XML standards, including the Document Object Model (DOM) level 2,
a W3C recommendation that was recently released; Simple API for XML (SAX)
level 2, the industry standard for XML parsing; and XSL Transformations (XSLT),
an integrated XML transformation standard defined by the W3C.

With JAXP, developers can swap XML parsers, depending on the needs of
the application, without actually changing any code. One XML parser that
could be used is “Crimson,” which was developed at Sun and donated to the
Apache Software Foundation. Crimson is used as the default XML parser with
JAXP v.1.1; however, the technology’s pluggable architecture allows any XML-
conformant parser to be used, including the existing xml.apache.org XML
parser, code named Xerces.

The Java API for Data Binding

JAXB, formerly Project Adelard, enables Java technology developers to deliver
and maintain high-performance, XML-enabled applications with a minimum
of development effort. JAXB provides two-way mapping between XML doc-
uments and Java technology-based objects along with a schema compiler tool.
The compiler automatically generates Java technology classes from XML sche-
mas without requiring developers to write any complex parsing code. In
addition, the compiler contains automatic error and validity checking of XML
messages, helping to ensure that only valid, error-free messages are accepted
and processed by a system.

JXTA Project
The goal of Project JXTA is to leverage distributed computing by providing
direct access or communication to resources from one node (device) on the

AU1272Ch04Frame Page 109 Monday, January 21, 2002 7:35 AM

110 The Complete Book of Middleware

network to another, without any centralized server control. As wireless mobile
devices such as personal data assistants (PDAs), cell phones, pagers, and
laptops increasingly become connected to the Internet, and become nodes
on a peer-to-peer8 network, it will be possible for a PDA to directly access
information from a laptop, without requiring a centralized server.

JXTA’s four key concepts are:

1. Peer groups: the ability to create groups of groups in a dynamic, fluid,
flexible environment; the ability to allow different ways for people to
become aware of each other, trust one another, and aggregate content
logically and cohesively

2. Peer pipes: the ability to connect one peer to another across the network
in a distributed fashion

3. Peer monitoring: the ability to know what is going on and to establish
control policies among peers

4. Security: a mechanism available to ensure privacy, confidentiality, identity,
and controlled access to services

JavaSpaces and Jini Technologies
The JavaSpaces technology allows dynamic communication, coordination, and
sharing of objects between Java technology-based network resources such as
clients and servers. In a distributed application, this technology acts as a virtual
space between providers and requestors of network resources or objects.
Participants can use Java objects to exchange tasks, requests, and information.

The JavaSpaces technology is a Jini technology — an architecture for the
construction of systems from objects and networks. The Jini architecture lets
programs use services in a network without knowing about the wire technol-
ogy the service uses. One implementation of a service might be XML based,
another RMI based, and a third CORBA based. A service is defined by its
programming API, making itself known by publishing an object that imple-
ments the service API.

To find the service, the client looks for an object that supports the API.
When the object is found, it will download any code in order to talk to the
service. The programmer who implements the service chooses how to translate
an API request into bits using RMI, CORBA, or a private protocol.

Notes
1. For more information about ERP, CRM, and SCM, go to the section on “Java 2

Enterprise Edition.”
2. See “Configuring and Assembling J2EE Applications” in this chapter.
3. The container defines the part of the EJB server that hosts instances of enterprise

beans.
4. JNDI is a vendor-neutral Java API that can be used with any kind of naming or

directory service, such as CORBA naming or LDAP. For more information, go to
the section on JNDI in this chapter.

AU1272Ch04Frame Page 110 Monday, January 21, 2002 7:35 AM

Ever-Expanding Java World 111

5. See the “Java Messaging Service” section in this chapter.
6. CICS applications written in Java indicate that the enterprises are moving into the

world of objects from CICS, using a native IIOP interface for a CORBA-compliant
client. CICS support for Java enables delvelopers to exploit the JavaBeans compo-
nent model. CICS is being transformed into an Enterprise Java Server to extend
support for Enterprise APIs and e-Business Connectors for enterprise systems.

7. For more information on .ear, .jar, and .war files, go to the section on “Java
Applications.”

8. The term “peer-to-peer” currently has no single definition. Taken literally, a peer-
to-peer transaction involves servers talking to one another; but in practice, peer-
to-peer expands beyond servers and decentralizes transactions on the Internet.

AU1272Ch04Frame Page 111 Monday, January 21, 2002 7:35 AM

AU1272 FM Page xiv Wednesday, January 30, 2002 10:01 AM

This page intentionally left blank

113

Chapter 5

Web Services: Hot Stuff

This chapter discusses Web services and related technologies (front-end, back-
end) and standards. It covers how various vendors and organizations define
Web services and present Web services architecture traffic. The chapter also
looks at Universal Description, Discovery and Integration (UDDI) technology,
Web service brokerage, and some third-party tools; provides workflow process
examples; and briefly discusses versioning of Web services.

Introduction

Web services are designed for incorporation into software for human inter-
vention. Operating at a code level, Web services call and are called by other
Web services and other components to exchange information.

Web services technology can be thought of as an evolution of Common
Object Request Broker Architecture (CORBA). Its major advantage over CORBA
is that Web services do not require integration of an ORB. The underlying
transport protocol behind Web services is based on eXtensible Markup Lan-
guage (XML) over the Hypertext Transport Protocol (HTTP). Another advantage
is that Web services are stateless

1

 and connectionless,

2

 while CORBA is stateful.
As of August 30, 2001, Jupiter Media Matrix, a leading company in Internet

and new technology measurement analysis, reports that the U.S. Web services
revolution will not reach full scale for another 18 to 24 months. It expects
“that enterprise application vendors will begin to remake pieces of their
applications around the Web services architecture by late 2002.”

Most of the companies employing Web services use them for internal
application, such as retrieving customer information from a customer relation-
ship management (CRM) system or passing a transaction from a front-office
system to a back-office system. Some will deploy Web services technology
for interaction with existing suppliers and partners for purposes such as
authorizing credit-card transactions or conducting credit checks.

AU1272Ch05Frame Page 113 Monday, January 21, 2002 7:36 AM

114

The Complete Book of Middleware

Wily Technologies offers Version 2.6 of its monitoring and measuring
software for Enterprise JavaBeans (EJBs). It has been extended to Web services.

Web Services

Before discussing what a Web services stack is, we need to define what Web
services are. The problem here is that there are so many definitions for them.
There is no standard definition for Web services. Where a definition could
not be provided or found, it is replaced with a short description.

Defining or Describing Web Services

As one will notice below, the definitions or descriptions range from very easy
to understand to very abstract that only a few people will know exactly what
they really mean. Some are very short while others are very wordy.

Web services are encapsulated, loosely coupled [and] contracted func-
tions offered through standard protocols.

 — WebServices.org

Web services allows the customer to rent components from various
sources on the Internet, and mix and match them to create new
applications [over the Internet].

 — Scott Leibs,
“Web Services: The Great Buildup,”

CFO

, May 2001

Web services are defined as loosely coupled applications that can be
exposed as services and easily consumed by other publication using
Internet standard technologies (XML, SOAP, WSDL, UDDI). Web services
are URL addressable resources that exchange information and execute
processes automatically without human interventions.

 — The Grand Central (Third-Party)
Scott Durchslag, Craif Donato, and John Hagel, III

Web Services: Enabling the Collaborative Enterprise

The Stencil defines Web services as loosely coupled, reusable software
components that semantically encapsulate discrete functionality and are
distributed and programmatically accessible over standard Internet pro-
tocols.

 — The Stencil Group (Market Services)

AU1272Ch05Frame Page 114 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff

115

A Web service is an interface that … [is] network accessible through
… XML messaging, … transport protocols. The interface hides the
implementation details … Web services … applications … [are] loosely
coupled … [It] can be used alone or with other Web services to carry
out a complex aggregation or a business transaction.

 — Heather Kreger,
WebServices Conceptual Architecture (WSCA 1.0)

IBM Software Group, May 2001

A Web service is defined from existing applications, Web sources,
databases, or other sources of content or functionality using XML.
Developers and administrators create services by defining … the syntax
of the service request and response. The resulting

service package

 is
… a local directory that contains a … descriptor file in XML.

 — Developing, Deploying,
Managing Web Services with Oracle9

i

June 2001

Web services are functional software components that can be accessed
over the Internet. They combine the best aspects of component-based
development and the Web, delivering true distributed “peer-to-peer”
computing. Based on open Internet standards, Web services enable the
construction of Web-based applications using any platform, object
model, or programming language.

 — Cape Clear (Third-Party)

… a

Web service

 is a programmable application component that is
accessible through standard Web protocols. There are four categories
of Web services that will be delivered to the Internet:

1. Public .NET Web Services
2. Commercial .NET Building Block Web Services
3. Ready-to-use, out-of-the-box Web Services
4. Custom-developed Web Services

 — Michael Herman,
Developing Collaborative Microsoft .NET Solutions

EC3 Enterprise Consulting Competency Centers, Microsoft
Microsoft .NET Framework

A Web service is an application that accepts requests from other

systems

across the Internet or an intranet, mediated by lightweight, vendor-
neutral communications technologies.

 — SunOne Architecture
James Kao,

Building XML-based Web Services with the Java 2 Platform
Enterprise Edition (J2EE), June 2001

AU1272Ch05Frame Page 115 Monday, January 21, 2002 7:36 AM

116

The Complete Book of Middleware

Web services can be described as the protocols, conventions, and
network facilities that expose business functions to authorized parties
over the Internet from any Web-connected device.

 — BEA Systems WebLogic

Web services are modular and reusable software components that are
created by wrapping a business application inside a Web service inter-
face.

 — Hewlett Packard NetAction

Web services can for example comprise financial, logistic or auctioning
services.

 — SAP

Web services are software components that can be housed in an
application on a local network or the Internet, and are accessible by
applications….

 — Romin Irani,
“Part II — ebXML and Web Services:

The Way to Do Business”

Web Services Architect,

 July 25, 2001

Web services can … connect applications using standard XML formats
over … Internet protocols to virtually any client, including desktop
applications, Web browsers, mobile devices, and PDAs. … [They] inter-
connect applications from … different hardware platforms, such as
mainframes, application servers, and Web servers … [via] Windows,
Java, and UNIX.

 — Borland Web Services

Comparing Definitions or Descriptions

Note that the first example as given by WebServices.org, a standards organi-
zation, is quite abstract, while the second example from the

CFO

 magazine
is very easy to understand. Both mean almost the same thing.

Like CORBA, Web services are components that one can reuse in building
applications. The tasks that Web services perform when customers reuse and
put together the components are not seen from the outside. This is known
as the encapsulation. Encapsulated tasks are transparent. Reusable components
can be encapsulated.

When a customer mixes and matches components, it means that the Web
services are reconfigurable or, in a more formal sense, loosely coupled.
Although tasks are reconfigurable, a change in the implementation of one
function does not require a change to the invoking function. “Loosely coupled”

AU1272Ch05Frame Page 116 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff

117

does not refer to communications between two applications, as Web services
rely on a remote procedure call (RPC) in which queries and responses are
exchanged in XML over HTTP.

Loosely coupled also means that Web services can send messages to a
queue for later retrieval, as in a workflow process. It is not necessary for a
receiver to be present when a sender transmits a message; the receiver can
get it at a later time — from a queue. It is also not necessary for the sender
to get a response immediately after sending a message.

Encapsulated and loose coupling require wire-level messaging protocols
to perform the data transfer between functions, independent of the runtime
environment. XML, being a self-description language, is used and the Simple
Object Access Protocol (SOAP) acts as the “envelope” for the messages. These
messages must be routed with reliability and have transactions support (such
as the SQL Commit statement).

Web services require contracted functions, meaning that there are publicly
available functions (in addition to private ones not available to public appli-
cations). They include interfaces for standard description languages, such as
discovery, workflow, and standard taxonomies used to search and store
information a private directory (e.g., stock service brokerage) or public direc-
tory (e.g., UDDI).

The contracted functions can be extended to aggregations of Web services,
transactions, and workflow, all of which require quality of service (QoS),
security for confidentiality, authorization, data integrity, message origin authen-
tication (not a replay of old message), and non-repudiation, as well as
management for process execution at all levels.

For our own purpose, contracted functions are grouped into the following:

�

Web description languages

�

Discovery, workflow, and standard taxonomies

�

Negotiation-runtime agreement on the protocols for Web services aggre-
gations

�

Management, security, and quality of service (QoS)

All definitions or descriptions indicate implicitly or explicitly that Web
services use standard protocols to distribute them over the Internet — in a
format common to the customers. Standard protocols are widely published
and freely available for anyone to implement. Standard organizations such as
the World Wide Web Consortium (W3C) and the Organization for the Advance-
ment of Structured Information Standards (OASIS) facilitate agreement and
collaboration between companies on messaging standards. These protocols
refer to the Open Standards component of the Web services stack.

Web Services Stack

As with the above definitions or descriptions, the architecture of the Web
services stack varies from one vendor to another and from one standard

AU1272Ch05Frame Page 117 Monday, January 21, 2002 7:36 AM

118

The Complete Book of Middleware

organization to another. A Web services stack is either short and simple, or
long and abstract. Where information on a stack architecture is unavailable,
the organization presents a similar content in a narrative format (see the section
entitled “Web Services Architecture (Narrative)”).

In a stack, a Web service interface can be implemented using an Internet
protocol, such as SOAP, SOAP Messages with Attachments (SwA), ebXML
Message Service, e-Speak, XML-RPC, CORBA, Java Remote Method Invocation
(RMI), or COM+. This makes it possible to achieve interoperability between
Web services client operations and application server middleware, such as
CORBA, Java 2 Enterprise Edition (J2EE), EJB applications, connected to UDDI
Registry and Wireless Service Applications.

We first present the stacks from WebServices.org, IBM, The Stencil Group,
W3C WebServices Workshop, Microsoft, Sun, Oracle, BEA systems, and Hewlett
Packard (see Exhibits 1 through 10) and then compare some of them.

Exhibit 1 displays the Web services stack from WebServices.org. If one
transforms this exhibit into a pyramid with the Service Negotiation layer at
the top, one sees that business logic process goes from one layer to another
in succession — from top to down. The stack starts with, for example, two
trading partners who negotiate and agree on the protocols to aggregate Web
services.

Then they move to the next lower layer to establish workflow processes
using Web Services Flow Language (WSFL)

3

 to specify how a Web service is
interfaced with another, and how it can either function as an activity in one
workflow or consist of a series of sequenced activities or workflows. Some
Web services, however, are private; they cannot expose details of these services
to public applications.

Web services that can be exposed may, for example, get the information
on credit validation activities from a public directory or registry, such as UDDI.
The ebXML, E-Services Village, BizTalk.org, and xml.org registries and a stock
service brokerage are other directories that could be used with UDDI in
conjunction with Web services for business-to-business (B2B) transactions in
a complex Enterprise Application Integration (EAI) infrastructure.

Exhibit 1. WebServices.org Web Services Stack

Service Negotiation — Trading Partner Agreement

Management
Quality of Service

Security
Open Standards

Workflow, discovery, registries (UDDI and ebXML registries),
IBM WSFL, MS XLANG

a

Service Description Language — WSDL/WSCL

Messaging — SOAP/XML Protocol

Transport HTTP, FTP, SMTP

Internet

a

An XML language to describe processes and spawn them.

AU1272Ch05Frame Page 118 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff

119

The first release of UDDI was published in May 2001. Before year’s end,
additional revisions to this registry were planned before it was turned over
to a standards organization. Microsoft has worked with IBM, Ariba, Commer-
ceOne and some 200+ companies in developing and revising UDDI.

As one can see when moving down the stack, one needs an XML-based
Web Services Description Language (WSDL) that one can use to connect to
a Web service. This language describes in an abstract way the services’
connections and various protocols and their uses, forming a key element to
the directory.

One also needs Web Service Conversational Language (WSCL)

4

 to help the
developers better describe the XML schema, so they will know what a given
Web service can do. WSCL can be used to specify a Web service interface
and to describe service interactions.

WSDL help service requestors “find, bind, and publish” the results of getting
the information on services from UDDI. Now we are getting to the Messaging
layer where SOAP acts “as the envelope” for XML-based messages. Messages
are sent back and forth regarding the status of various Web services as the
work progresses (e.g., from customer order to shipping product).

After this, Web services have one more door to enter: the Transport layer
that uses HTTP, File Transfer Protocol (FTP), and Standard Mail Transfer
Protocol (SMTP). Then, Web services take a ride over the Internet to provide
services to a service requestor or to give a status to a service provider or
service broker.

The Stencil Group presents the stack shown in Exhibit 2. This stack is
similar to that of WebServices.org except that ebXML and WSCL are not
considered part of the emerging layers.

IBM looks at the stack in a slightly different way, as indicated in Exhibit 3.
The IBM Web Services Stack does not show WSCL and ebXML, as shown in
WebServices.org’s stack. It refers, in the Network layer, to IBM MQSeries
messaging systems and the Internet Inter-ORB Protocol (IIOP) — a protocol
CORBA uses to transmit data, information, and messages between applications.
The stack also applies QoS, management, and security to all six layers.

Exhibit 2. The Stencil Group Web Services Technology Stack

Other Business Rules (not yet defined)

Emerging Layers
Web Services Flow Language (WSFL)

Universal Description, Discovery and Integration (UDDI)

Web Services Description Language (WSDL)

Simple Object Access Protocol (SOAP)

Core LayerseXtensible Markup Language (XML)

Common Internet Protocols (TCP/IP, HTTP)

AU1272Ch05Frame Page 119 Monday, January 21, 2002 7:36 AM

120

The Complete Book of Middleware

As of May 2001, IBM announced software and tools that enable businesses
to create, publish, securely deploy, host, and manage Web services applica-
tions. They include WebSphere Application Server Version 4.0, WebSphere
Studio Technology Preview for Web Services, WebSphere Business Integrator,
DB2 Version 7.2, Tivoli Web Services Manager (to monitor performance of all
aspects of the Web services environment), and Lotus software suite (to enable
Web collaboration, knowledge management, and distance learning).

In addition, IBM’s Web Services ToolKit (WSTK) provides a runtime envi-
ronment as well as demo/examples to design and execute Web-service appli-
cations to find one another and collaborate in business transactions without
programming requirements or human intervention. The WSTK demonstrates
how some of the emerging technology standards such as UDDI and WSDL
work together and provides simple-to-use examples of Web services.

The W3C Web Services Workshop, led by IBM and Microsoft, has agreed
that the architecture stack consists of three parts: wire, description, and
discovery. Exhibit 4 shows which layers constitute the Wire Stack. This Wire
Stack has extensions to two layers: SOAP and XML. This means that whenever
the SOAP is used as the envelope for the XML messages, they must be secure,
reliable, and routed to the intended service requestor or provider.

The Description Stack consists of five layers as shown in Exhibit 5. As
shown, the Service Description layer comprises two parts: Service Interface
and Service Implementation, both of which require WSDL. As the name

Exhibit 3. IBM Conceptual Web Services Stack

WSFL Service Flow

Quality of Service
Management

Security

Static

→

 UDDI Service Directory

Direct

→

 UDDI Service Publication

WSDL Service Description

SOAP XML-Based Messaging

HTTP, FTP, e-mail , MQ, IIOP Network

Exhibit 4. W3C Web Services Wire Stack

Other “extensions”

Attachments Routing

Security Reliability

SOAP/XML Protocol

XML

AU1272Ch05Frame Page 120 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff

121

implies, the Discovery Stack (see Exhibit 6) involves the use of the UDDI,
allowing businesses and trading partners to find and discover one another
over the Internet.

All three stacks form the Architecture Stack (see Exhibit 7).

Exhibit 5. W3C Web Services Description Stack

Business Process Orchestration

Message Sequencing

Service Capabilities Configuration

Service Description (WSDL)
Service Interface

WSDL
Service Implementation

XML Schema

Exhibit 6. W3C Web Services Discovery Stack

Discovery UDDI

Inspection

Exhibit 7. W3C Services Architecture Stack

Wire Stack

Other “extensions”

Attachments Routing

Security Reliability

SOAP/XML

XML

Description
Stack

Business Process Orchestration

Message Sequencing

Service Capabilities Configuration

Service Description (WSDL)
Service Interface

WSDL
Service Implementation

XML Schema

Discovery
Stack

Directory (UDDI)

Inspection

AU1272Ch05Frame Page 121 Monday, January 21, 2002 7:36 AM

122

The Complete Book of Middleware

Web Services Architecture (Narrative)

This section covers Web services architecture as presented by Microsoft, Sun,
Oracle, BEA Systems, Hewlett-Packard, and Borland. Each has a different
perspective.

Microsoft .NET Web Services

Microsoft is offering .NET as “a platform for Web services.” Loosely coupled
.NET Framework allows a Web service consumer to send and receive using
XML, including a description of the Web services it and other consumers offer.
The SOAP is used to invoke Web services and is supported by XML Schema
Datatypes (XSD), Service Contract Language (SCL), and XML/HTTP protocols
such as Web Distributed Authoring and Versioning (WebDAV).

The first commercial Web services that Microsoft will make available are
currently known by the codename “HailStorm.” In launching Web services at
the beginning of 2002 (the .NET Platform is due out in November 2001),
Microsoft offers user-centric Web services.

Included in the 14 services scheduled for the HailStorm release are:

1. myProfile (name, nickname, special dates, picture)
2. myContacts (electronic relationships/address book)
3. myNotifications (notification subscription, management and routing)
4. myCalendar (time and task management)
5. myDocuments (raw document storage)
6. myWallet (receipts, payment instruments, coupons and other transaction

records)
7. myDevices (device settings, capabilities)

Sun’s ONE Web Services

SunOne presents the ONE Web services developer model as a way of building
Web services with XML and Java technologies (see Exhibit 8). The Java platform
includes native support for XML.

The SunOne architecture recommends four types of XML messagaing
systems: SOAP, SwA, ebXML Message Service, and XML Protocol (XMLP).
ebXML Message Service is an XML messaging service designed to support the
requirements of B2B E-commerce. It extends SwA by adding a QoS framework
that ensures reliable and secure message delivery. An ebXML message can
transport any number of XML documents and nonXML attachments. However,
the ebXML Message Service does not support an RPC programming convention.

As of Summer 2001, XMLP specification was under development. Its stated
goal was to be an extensible, general-purpose XML protocol. The XMLP Activity
used the SOAP V1.1 specification as a starting point.

AU1272Ch05Frame Page 122 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff

123

Oracle Web Services

The core of the Oracle9

i

 Web Services Framework is the Web Service Broker,
a J2EE execution engine deployed in Oracle9

i

 Application Server (see
Exhibit 9). Application developers can access the engine using the Oracle Web
Services Java client APIs, which provide a level of abstraction over the
communication protocol used by the client library to connect to the execution
engine (direct Java method calls, PL/SQL calls, HTTP, HTTPS, or JMS messages).

Oracle9

i

 AS contains the Web Services Broker and registry cache and
protocol adapters within it. The Web Services Broker is a policy and service
management engine that executes services. It retrieves the service descriptor,
sets up the execution environment, issues execution requests to the resource

Exhibit 8. Java Technologies

Java API for XML Processing
(JAXP)

Provide a native Java interface to DOM, SAX, and
XSLT.

Java API for XML Data Binding
(JAXB)

Bind XML data to Java code. A developer uses JAXB
to compile XML schema information into Java
objects. At runtime, JAXB automatically maps the
XML document data to the Java object, and vice
versa.

Java API for XML Messaging
(JAXM)

Provide native Java interface to XML messaging
systems, such as the ebXML Message Service,
XMLP, and SOAP.

Java API for XML Registries
(JAXR)

Provide an interface to XML registries and
repositories, such as the ebXML Registry and
Repository, and the UDDI Business Registry.

Java APIs for XML-based RPC
(JAX/RPC)

Provide direct support for an RPC programming
convention for XML messaging systems, such as
SOAP and XMLP.

Exhibit 9. Oracle Web Services Architecture (Partial)

Web Services Broker

Input/Output transformers Execution modules Protocol adapters

Registry cache

Service Registry Application Profile Registry

Oracle Internet Directory (OID) Server

AU1272Ch05Frame Page 123 Monday, January 21, 2002 7:36 AM

124

The Complete Book of Middleware

providers, receives responses from the resource provider, and transforms them
for the client.

Registry cache caches service definitions from the Web Services Registry,
which stores service definitions containing information. This registry enables
the Web Services Broker to set up and execute services, and access distributed
sources. Different registry options can be used without affecting the client.
Developers will be able to access the registry, which is based on the Oracle
Internet Directory (OID) through Lightweight Directory Access Protocol (LDAP)
or the UDDI interface layer.

Protocol adapters transform the standard service requests to the input
needed by the service following the underlying protocol. They include Web
service, database service, and other service providers.

BEA Web Services

BEA Systems develops Web services on the J2EE platform using the SOAP
protocol. Future J2EE products will eventually support and possibly standardize
how Web services will work as part of complex business processes partici-
pating in business transactions.

J2EE applications expose EJBs and JMS destinations as Web services.
Exposed services use WSDL as the service description language and provide
access to components. Private registries (possibly based on UDDI) are used
to integrate with partners by some applications. Typical enterprise application
integration is based on the J2EE Connector Architecture (J2EE CA).

BEA uses the Business Transaction Protocol (BTP) — an XML dialect for
orchestrating inter-enterprise business transactions that address the unique
business-to-business (B2B) requirements. This protocol is stack agnostic, so it
can be easily implemented in conjunction with other standards, such as ebXML
or SOAP. For example, a header can be added to the ebXML message envelope
to carry the transaction context defined by BTP.

Hewlett-Packard Web Services

The Hewlett-Packard Web Services Platform supports both Web service inter-
actions and Web service implementation bindings via an architecture that
addresses three key infrastructure service areas:

�

Messaging

�

Interaction control

�

Application processing

In addition to the these key infrastructure services, supporting functions that
handle transactional semantics, security, availability and scalability, and mon-
itoring and management are provided by the underlying HP Total-e-Server
platform (see Exhibit 10).

AU1272Ch05Frame Page 124 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff

125

Borland Web Services

Delphi 6 Borland provides three new key features needed to build and deploy
Web services. They are:

�

BizSnap

: simplifies E-business integration by creating and using XML/
SOAP-based Web services.

�

WebSnap

: a component-based Web application development framework
that supports leading Web application servers, including Apache, Netscape,
and Microsoft Internet Information Services (IIS).

�

DataSnap

: a Web service-enabled database middleware that enables any
client application or service to easily connect with any major database
over the Internet. It supports all major database servers such as Oracle,
MS-SQL Server, Informix, IBM DB2, Sybase, and InterBase. Client applica-
tions connect to DataSnap servers through industry-standard SOAP/XML
HTTP connections over the Internet without bulky database client drivers
and complex configuration requirements. DCOM, CORBA, and TCP/IP
connections are also supported.

Each feature forms the basis for the Web services architecture. DataSnap
is apparently the core of this architecture, as it is the middleware for Web
services. See Chapter 6 for more information on DataSnap.

Emerging Stack Layers

This section cities the following as possible emerging stack layers:

�

Web Services User Interface (WSUI)

�

Security Assertion Markup Language (SAML)

�

eXtensible Access Control Markup Language (XACML)

�

XML Key Management Specification (XKMS)

To use Web services for application integration, several extensions must be
added to the collection of Web services specifications, including security and
user interfaces. Web services currently lack a mechanism to encapsulate a user

Exhibit 10. HP Web Services Architectural Overview

Application Processing
(Workflow, Servlet EJB, JSP, Cocoon)

Security
Transactions
Availability
Scalability

Monitoring
Management

Tools

Interaction Control
(Envelope Processing, Dispatch to Application Components)

Messaging
(Transports, Listeners, Content Format Handlers)

AU1272Ch05Frame Page 125 Monday, January 21, 2002 7:36 AM

126

The Complete Book of Middleware

interface. This encapsulation allows packaging of an application and embed-
ding it into another application.

As a partial solution, the WSUI Initiative, drawn up in June 2001, defines
the concept of what views the developers should use to display a Web service
on a screen. It specifies that views employ eXtensible Stylesheet Language
Transformation (XSLT) to transform into a HyperText Markup Language
(HTML) or Wireless Markup Language (WML) script.

Web services, in addition, lack security facilities. The application of Web
services for business-to-business integration (B2Bi) will be limited if services
for authentication, encryption, access control, and data integrity are not avail-
able. Web services cannot certify the identity of the publisher or consumer of
a Web service. There are no facilities to restrict access to a Web service to a
group of authorized users. As a partial solution, the XML-Based Security
Services Technical Committee from the OASIS is working on a specification
for SAML. OASIS is also working on XACML that would allow organizations
to limit access to services to authenticated, authorized users.

Among other system standards being developed regarding the implemen-
tation of low-level security services is the XKMS proposed by Microsoft,
VeriSign, and webMethods. This specification aims at reducing the complexity
of creating products that support public key infrastructure (PKI).

UDDI Registration

Today, organizations find it difficult to locate a business offering services that
best fit their needs. UDDI

5

 makes it possible for organizations to quickly
discover the right business out of the millions that are currently online via
known identifiers (e.g., DUNS, Thomas Registry), standard taxonomies (e.g.,
NAICS, UN/SPSC), or business services.

Once an organization finds a potential business partner, there is no standard
mechanism to figure out how to conduct electronic business with this partner.
UDDI makes it possible for organizations to programmatically describe their
services and specify how they prefer to conduct business, so that partners
can quickly and easily begin trading.

UDDI can give a business visibility on a global scale by providing the means
for an organization to advertise its business and services in a global registry. It
can help a business develop new E-business partnerships by enabling businesses
to quickly and dynamically discover and interact with each other on the Internet.
The ultimate goal is to offer the basic infrastructure for dynamic, automated
integration of all E-commerce transactions and Web services.

The information provided in the UDDI Business Registry consists of three
components: “white pages” of company contact information, “yellow pages”
that categorize businesses by standard taxonomies, and “green pages” that
document the technical information about services that are exposed. The
registry does not list an organization’s catalog of products and available
services. Exhibit 11 provides examples of what information the companies
need to register about their business and Web-based services.

AU1272Ch05Frame Page 126 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff

127

Alternatively, a business can have a registrar perform UDDI registration
services on its behalf. The registrar can help the business compose its registry
information, including its list of services and the models that describe those
services.

The UDDI Business Registry is the implementation of the specification
developed by uddi.org. It is a core element of the infrastructure that supports
Web services, and provides a place for a company to register its business and
the services it offers. People or businesses that need a service can use this
registry to find a business that provides the service.

This registry is operated as a distributed service. Currently, IBM and
Microsoft operate registry nodes. Additional operators will bring more nodes
online in the future. Hewlett-Packard has signed an agreement to operate
another registry node. An Operator’s Council sets policy and quality of service
guidelines for the operators.

Exhibit 12 shows how the information is organized in the registry.
The UDDI specification does not dictate registry implementation details. It

defines an XML-based data model and a set of SOAP APIs to access and
manipulate that data model. A UDDI implementation could be built on an
LDAP directory as long as it conforms to the specified behavior. Thus far, all
UDDI implementations have been built on relational databases.

Businesses that offer ebXML or e-Speak business services will want to
register their businesses and their services in the UDDI Business Registry. The
UDDI business services, service types, and specification pointers could point
to the ebXML Registry and Repository or E-Services Village for business and
technical descriptions of the services.

Businesses that register their schemas and style sheets in BizTalk.org or
xml.org will want to register these business formats as service types in the
UDDI Business Registry. The UDDI tModel specification pointers could point
to these schemas and style sheets in BizTalk.org or xml.org.

Exhibit 11. UDDI Business Registry

White pages Business name

Contact information

Human-readable description

Identifiers (DUNS, NAICS, UNSPSC, ISO 3166, SIC, tax ID, etc.)

Yellow pages Services and products index

Industry codes

Geographic index

Green pages E-business rules

Service descriptions

Application invocation

Data binding

AU1272Ch05Frame Page 127 Monday, January 21, 2002 7:36 AM

128

The Complete Book of Middleware

The UDDI Business Registry will help businesses in different marketplaces
determine which potential trading partners use the same technology they do,
and it will encourage the creation of new Web services to translate from one
technology to another. This will help unify businesses and marketplaces through
the use of a common set of specifications for description and integration.

RosettaNet defines standard set of protocols and message formats for supply
chain integration, called Partner Interface Processes (PIPs). The RosettaNet
PIPs have been registered as service types in UDDI, and businesses can
associate their services with these RosettaNet service types. Users can search
the UDDI registry for businesses that support these PIPs. Other industry
organizations can also register their service types in UDDI.

One can start registering at www.uddi.org where it provides links that take
one to the registration forms at the various distributed UDDI Business Registry
nodes. One should register at only one of the operator nodes (IBM or Microsoft
currently, or Hewlett Packard at a future date). One’s data will be automatically
replicated to the other nodes. Once one registers with an operator, that
operator node will be the custodian of the registration. One must use this
same operator node to make changes to a registration.

If the marketplace provides a way of accepting electronic orders and other
business documents, then one will need to work with that marketplace
provider to correctly describe one’s services. The specific marketplace with
which one currently participates may programmatically register one’s organi-
zation with UDDI.

Exhibit 12. Organization of UDDI Information

Business
Entity

A business entity represents information about a business. Each
business entity contains a unique identifier, the business name, a
short description of the business, some basic contact information,
a list of categories and identifiers that describe the business, and a
URL pointing to more information about the business.

Business
Service

Associated with the business entity is a list of business services
offered by the business entity. Each business service entry contains
a business description of the service, a list of categories that
describe the service, and a list of pointers to references and
information related to the service.

Specification
Pointers

Associated with each business service entry is a list of binding
templates that point to specifications and other technical
information about the service. For example, a binding template
might point to a URL that supplies information on how to invoke
the service. The specification pointers also associate the service with
a service type.

Service Types Multiple businesses can offer the same type of service, such as the
name of the organization that published the tModel, a list of
categories that describe the service type, and pointers to technical
specifications for the service type such as interface definitions,
message formats, message protocols, and security protocols.

AU1272Ch05Frame Page 128 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff

129

UDDI Registrars and Services

Peregrine Systems has integrated UDDI into its Get2Connect.net Web site and
serves as a UDDI registrar, enabling its users to register and update their
businesses and services in the UDDI Registry. Peregrine also allows its users
to search UDDI directly from its Web site. RealNames will act as a registrar,
providing single-click UDDI registration when customers are establishing a
RealNames Keyword.

The ResolveNet Global Business Registry (GBR) has integrated its business
registry with UDDI. This gives those registering for the GBR the option of
simultaneously publishing their profiles to UDDI. Riskebiz Internet Services
Inc. has established an E-marketplace UDDI for the insurance industry. As a
registrar, Riskebiz will provide an environment for finding insurance-related
Web services.

RealNames and Microsoft have enabled UDDI search directly from the
address bar of the Internet Explorer browser utilizing RealNames Keywords,
making Internet Explorer the first major discovery and distribution channel
for UDDI data available from every desktop. RealNames will also register their
Keywords customers into the UDDI Business Registry with a single click,
making RealNames a registrar for UDDI.

Web Services Brokerage

Salcentral.com and Xmethods are among the two leading Web services bro-
kerage firms providing their own centralized Web services network. Salcen-
tral.com sees its network as a benefit to UDDI and will be able (as of August
2001) to search the UDDI project for Web services. Such a centralized bro-
kerage aims to help customers find Web services and assist Web service
providers in advertising their functionality.

Salcentral.com provides five benefits to Web service users: find Web ser-
vices, buy access to Web services, watch Web services, get Web service support,
and use the specialized searching facility. The Web service providers would
benefit from promoting, selling, testing, and supporting Web services and
using the searching facility.

Salcentral.com currently gives a short tutorial on how to create a Web
service with Visual Basic (Version 5 and 6). At a future date, it will provide
tutorials on using other languages to create Web services. Another service that
this brokerage offers includes various utilities that convert schemas to the
WDSL format.

The RDF Site Summary (RSS) format news feed standard is used to publicize
a Web services list that changes on a daily basis. RSS is a file format that uses
XML and is defined as a lightweight multi-purpose extensible metadata descrip-
tion and syndication format. One can create it by hand or with any Web
content management system.

To better understand how RSS works, take a look at its background. In
March 1999, Netscape introduced the RDF Site Summary (RSS) 0.9 format as
a way of syndicating Netcenter channels. Since then, many Web sites have

AU1272Ch05Frame Page 129 Monday, January 21, 2002 7:36 AM

130

The Complete Book of Middleware

adopted the format for everything from syndicating news feeds to threaded
messages. Along the way, RSS 0.91 moved away from RDF in favor of a Data
Type Definition (DTD) that is used to describe the format of an XML document.
Netscape called it the Rich Site Summary.

In time, RSS evolved to meet the demands of users who wanted Weblogs,
message boards, catalogs, event feeds, and data exchange. Users began to
extend RSS by adding their own tags in the RSS files and some editors began
inserting non-RSS elements and tags such as HTML. This caused problems
when exchanging these files with the public.

The RSS 1.0 proposal reintroduced the use of RDF (visit http://purl.org/
rss/1.0/for full specification). It was developed to meet the growing require-
ments for flexible extensibility that maintain its ability to be shared with third
parties.

Now, let us continue the discussion of the Web services brokerage. Here
is a business architecture of support and sales services that SalCentral recom-
mends. The architecture shows that there are 11 parts of the development
process of a Web service grouped under four categories: Creation, Publication,
Promotion, and Selling. Obviously, the Creation category involves four key
players — the designer, the developer, the distributor, and a third-party com-
pany to test the service’s interoperability. Good technical documentation about
a Web service is required of these four categories.

To publish the Web service, the developer’s source codes and scripts need
to be kept in a secure storage area and version control must be in place to
track changes to the codes. An organization must be specified to host the
compiled Web service and to set up a data warehouse for the data used by
the Web service.

Promotion in the business architecture is another way of saying Web service
discovery. It provides a means to locate (or discover) a Web service by
browsing or using a specialized Web service directory. Promotion also provides
value-added services for customers and accreditation to be given to Web
services hosting and development organizations.

The Selling category focuses on Web service auditor and accounts. The
auditor part refers to the:

�

Organizations that review and check the Web services their customers are
using

�

Customers who check that the Web service complies with the service level
agreement (SLA)

Xmethods currently offers a directory of publicly available web services,
hosting and deployment facilities for service developers, SOAP interoperability
Testbed, and forums for discussing Web services. Some examples of Web
services in its registry include text-to speech (TTS), e-mail, EDGAR search,
currency exchange rate, and a mechanism that allows a customer system to
check real-time inventory levels. Xmethods offers a built-in UDDI interface
using GLUE and provides links to IBM UDDI, MS UDDI, Sun UDDI, and Java-
based (jUDDI).

AU1272Ch05Frame Page 130 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 131

Bowstreet developed jUDDI as one of the industry’s first implementations
of UDDI. The implementation came less than four weeks after Ariba, IBM,
and Microsoft unveiled a draft specification of the standard. Bowstreet intro-
duced jUDDI as free, open-source Java-based software that has been archi-
tected to allow it to act as the UDDI front end on top of existing directories
and databases. jUDDI-enabled applications can look up services in the UDDI
registry and then proceed to “call” those Web services directly.

Bowstreet incorporates jUDDI technology into its products, including the
Bowstreet Business Web Factory. Customers can point-and-click to search,
select, and acquire Web services from the UDDI registry with the jUDDI-
enabled Bowstreet Business Web Factory. They can then combine these Web
services, incorporate them with Web services within companies and in other
directories across the Web, and customize and proliferate the results.

Workflow Processes

A Web service that serves as an activity in one workflow can consist of a
series of sequenced activities or a workflow. One can compose a Web service
from a workflow.

Start with a simple Web service workflow: a publisher service and an author
service (see Exhibit 13), the seller service whose interface is defined using
WSDL. The buyer service is invoking the technical report order on the seller
service using SOAP and WSDL. It knows what the SOAP reply message looks
like as defined in the WSDL language.

As shown in Exhibit 14, the seller service is a workflow encapsulated as
a single Web service. The seller service consists of a credit validation activity,
document listing activity, and buyer accounting service. The system uses WSDL
to interface the seller service with the buyer interface. The seller service does
not expose the details of these services to public applications and services
that seek to use the seller service.

Now one can expand the workflow to include several activity steps for
the Document Listing Web Service (see Exhibit 15). The Credit Validation
Service hidden from public view uses a Pubic Credit Service over the Internet
from a UDDI registry.

Now assume that the Buyer Accounting Service is an encapsulated EJB
and replace the activities in the Document Listing Service as EJBs (see

Exhibit 13. Simple Workflow

Buyer

Seller

Order Technical
reports

AU1272Ch05Frame Page 131 Monday, January 21, 2002 7:36 AM

132 The Complete Book of Middleware

Exhibit 16). Also add an encapsulated EJB to serve as a Web service client
application between the Credit Validation Service and the Public Credit Service.
This workflow also calls out middleware products that currently support or
will support WSFL. After the WSFL has been standardized, it is more likely
that it will be used more widely as Web services reach full scale by the end
of 2002.

Exhibit 14. Complex Workflow (Hidden)

Exhibit 15. Complex Workflow (Public Credit Service)

Buyer

Seller

Order Technical
reports

Credit
Validation
Service Service

Buyer
Accounting

Service

Document
Listing

Hidden

Buyer

Seller

Order

Credit
Validation
Service Service

Buyer
Accounting

Service

Document
Listing

Step 1 Step 3Step 2

Public
Credit

Service

Technical
reports

AU1272Ch05Frame Page 132 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 133

Versioning of Web Services

As the Web services market matures, large organizations (as well as medium-
sized businesses and small shops) will be faced with the enormous task of
maintaining different versions of Web services for different customers. Suppose
an organization decides to Web service-enable system modules of an enterprise
planning resource (ERP) system (sales, human resources, finance, accounting,
inventory, customer) as a group of integrated Web services, and defines WSDL
interfaces to hook up to the modules of this distributed version. The organi-
zation publishes these interfaces in a Web services brokerage firm’s6 private
registry or the publicly accessible UDDI registry.

When the organization releases a new version of its product and upgrades
it to the current ones, it does not mean all customers will use the latest
versions. One or two may wish to stay with the older version. Some may
require customizations to the product to suit their special requirements. The
organization will find it more difficult to maintain older versions while improv-
ing on the latest version of its products and customizing for a few customers.

If the WSDL changes drastically, the organization will need service broker
to scan incoming requests and inform the older interface invocations of
incompatibility. It can also make use of services provided by Web services
brokerages, such as salcentral.com, that provide services of scanning WSDL
schemas for changes in their structures. After finding a change, the service
e-mails, stating that a change has occurred. Maintaining different versions of
Web services at a central place, however, can be a problem when the
organization customizes Web services on a global scale.

Exhibit 16. EJB-Based Workflows

Buyer

Seller

Order Technical
reports

Credit
Validation
Service

Buyer
Accounting

Service

Document
Listing

Public
Credit
Service

EJB EJBEJBEJB EJB

Service

AU1272Ch05Frame Page 133 Monday, January 21, 2002 7:36 AM

134 The Complete Book of Middleware

Third-Party Tools
This section takes a look at the Grand Central, Cape Clear, Silverstream, and
IONA Technologies and what tools each offers.

The Grand Central

As the major vendors keep pushing their Web services strategies, third parties
continue to emerge and offer complementary technologies. Grand Central, for
instance, has launched its Web services Network to enable companies to
partner for online business transactions by providing many-to-many and one-
to-many use cases.

The Grand Central Network uses a SOAP native interface. Applications that
speak native SOAP typically require little or no changes to work with the
Grand Central Network. For existing applications that are not SOAP based,
Grand Central provides lightweight, standards-based SDKs for Java, Perl, and
COM that allow applications to post and receive SOAP messages via the
Network. Using emerging standards such as XML, SOAP, UDDI, and WSDL,
the Grand Central Network enables companies to connect, integrate, and
manage their business processes with those of their partners and customers.

Grand Central’s service consists of four layers, as indicated in Exhibit 17.
The Grand Central Network leverages Web services standards to provide the
foundation that businesses require to enable inter-enterprise collaboration.
Web services are a simple, lightweight, and standards-based way to connect
applications to one another. They have entered into the third wave of the
Internet, allowing companies to connect their systems and business processes
with those of their partners and customers. As such, the third wave has evolved
from the second wave, whereby the Web sites are connected to people, and,
in turn, from the first wave, in which e-mail is used to connect with people.

As a service, the Grand Central Network integrates Web services — far
cheaper than the more expensive EAI solutions that require highly skilled
support staff. Pricing for the service is subscription based, and developers can
take advantage of the company’s two-month, no-risk, free trial.

The Grand Central’s Web Services Network complements the Web services
strategies outlined by IBM, BEA, and Sun with a suite of services that provide
the capabilities necessary for inter-enterprise collaboration — reliable messag-
ing between Web services, the ability to manage and provision Web services
interfaces, and the tools to organize logical chains of Web services into business
processes. Other partners include Verisign, Salesforce.com, Tarrific, and Blue
Matrix.

Cape Clear

Cape Clear Software offers CapeConnect with the iPlanet Application Server,
among others. In addition, CapeConnect now includes fine-tuned support for
the recently announced CapeStudio, which is a rapid application development

AU1272Ch05Frame Page 134 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 135

tool for Web services, updated interoperability with other leading SOAP-
enabled products, and an enhanced SOAP client builder.

CapeConnect is a complete Web services platform that allows one to
automatically expose existing Java, EJB, and CORBA components as Web
services without writing code. CapeConnect Web services provide full support
for SOAP, WSDL, and UDDI.

Web services created with CapeConnect use SOAP to communicate, are
described in WSDL, and can be published to the UDDI repositories. Cape-
Connect is compatible with leading J2EE application servers, such as WebLogic,
WebSphere, and iPlanet. Supported CORBA platforms include Orbix, Visibro-
ker, and WebLogic Enterprise. CapeConnect is also compatible with Microsoft
.NET technology.

CapeConnect comes in two versions: CapeConnect One for CORBA and
CapeConnet Two for J2EE. Its architecture contains three core components as
shown in Exhibit 18.

Silverstream

SilverStream Software offers SilverStream Application Server 3.7.3 with full
Web services capabilities, including support for XML, SOAP, WSDL, and UDDI.

Exhibit 17. Grand Central Service Layers

Secure,
reliable
messaging

This feature includes guaranteed delivery, even if the receiving is
temporarily down or unavailable, allowing both senders and
receivers of messages to specify their delivery preference. The
Grand Central Network acts as a third party in any application-to-
application communication, providing non-repudiation and
tracking capabilities that allow the delivery status of any message
to be confirmed or diagnosed.

Service
management

The Grand Central Network allows companies to effectively
manage and provision Web services interfaces that are exposed for
consumption by partners and customers. Companies can configure
levels of service, allowing them to determine which partner or
customer can access Web services at certain levels.

Business
process
orchestration

Enterprises can use the Network to logically chain Web services
into inter-enterprise business processes. Grand Central offers
“message routers” that allow companies to program the Network
with their specific business processes. It provides networking
capabilities that allow enterprises to view the status of any business
process.

Discovery
services

The Central Network offers a directory of Web services and
metering service to allow companies to track how their services are
used. It provides companies with a gateway to connect with others,
including those who run both proprietary and nonproprietary
services.

AU1272Ch05Frame Page 135 Monday, January 21, 2002 7:36 AM

136 The Complete Book of Middleware

In addition to providing a J2EE-certified platform for building and deploying
enterprise-class Web applications, the SilverStream Application Server features
the SilverStream eXtend Workbench to streamline J2EE and Web services-based
application development.

The Silverstream eXtend Workbench includes jBroker Web, a Web services
engine that assists developers in building and deploying Web services using
Java. Like other SilverStream products, it supports J2EE application servers
beyond the company’s own server, including IBM WebSphere, BEA WebLogic,
and Oracle9i AS.

IONA Technologies

IONA XMLBus is an enabling technology for the IONA e-Business Platform
for Total Business Integration. Used in conjunction with IONA’s EAI and
business-to-business integration (B2Bi) technologies, IONA XMLBus contrib-
utes to IONA’s support for end-to-end E-business integration. For example,
coupled with IONA Enterprise Integrator, IONA XMLBus provides a platform
for building service-oriented architectures. When coupled with IONA B2B
Integrator, IONA XMLBus provides a platform for business process collabora-
tion among trading partners.

Using IONA XMLBus technology, Web services created in .NET can be
utilized in J2EE environments. This allows developers to build Web services
from J2EE applications running on the IONA iPortal, BEA WebLogic, or IBM
WebSphere application servers. Sun’s Java Management Extensions (JMX)
instrumentation ensures that customers can administer and manage Web
services in the same way that they manage their existing systems.

Exhibit 18. CapeConnect Architecture

CapeConnect gateway A servlet that runs on the servlet engine of the Web server.
It acts as a communication bridge between remote clients
and the CapeConnect XML engine.

CapeConnect XML
engine

Converts SOAP messages from the gateway to EJB calls
on back-end components. It then converts the results of
these EJB calls to XML documents and returns these
documents to the gateway.

CapeConnect J2EE
(EJB container)

Represents a single standard for implementing and
deploying Web-enabled applications that include
enterprise beans, servlets, and JavaServer Pages (JSP).
Using J2EE, these technologies can work together to
provide a complete solution. The CapeConnect J2EE
engine employs these technologies to enable developers
to quickly create and deploy multi-tier solutions. It is
possible to use other third-party J2EE products, such as
BEA WebLogic, IBM WebSphere, and Sun Microsystems
iPlanet.

AU1272Ch05Frame Page 136 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 137

The XMLBus technology provides support for SwA, allowing the develop-
ment of Web services based on document passing style. Multi-part MIME
attachments within a SOAP message can transmit XML documents, images,
arbitrary binary data, and encrypted messages across the wire. This imple-
mentation demonstrates IONA’s commitment to ebXML.

XMLBus provides tools and a runtime environment to turn existing Java
and J2EE applications into Web services without having to write code. Java
classes and EJBs can be exposed as standard Web services. IONA XMLBus
generates Java code for the appropriate Web server container, and enlists the
Web service to the specified UDDI registry.

This technology provides a portable Web services container that can be
installed on top of an existing J2EE environment or run as a stand-alone
application. Web services are deployed into the container with automatic
connection to back-end resources, via dispatchers. The container is available
on most application server platforms or as an XMLBus stand-alone.

Dispatchers are provided for Java classes and Enterprise JavaBeans (EJBs).
No programming is required to bind new Web services to preexisting appli-
cation functionality supported by these dispatchers. Future dispatchers will
include support for IONA Enterprise Integrator, IONA B2B Integrator, CORBA
2.3, JMS, and MQSeries.

Web services include gateways into back-end systems. They can be used
in banking, insurance, brokerage, telecommunications services, retailing, man-
ufacturing and supply chain management, and many other industries to expose
existing systems via either the public Internet or private intranets and extranets
within service-oriented architectures.

The following are Web service examples to demonstrate various features
of XMLBus and Web services.

1. Interoperability Test Web Service
2. 1999 WSDL Interoperability Test Web Service
3. Length Conversion Web Service
4. Broker and Supplier Web Service
5. SOAP with Attachments Web Service
6. Postage Rate Calculator Web Service
7. Knowledge Base Web Service
8. Finance Web Service
9. Electricity Web Service

The WSDL examples shown here include Interoperability Test Web Service,
Broker and Supplier Web Service, Postage Rate Calculator Web Service, Finance
Web Service, and Electricity Web Service. All XML documents have a .wsdl
file extension.

Interoperability Test Web Service Description

To concretely measure the ability of a SOAP implementation to work with
other SOAP implementations, a set of tests has been devised by the SOAP

AU1272Ch05Frame Page 137 Monday, January 21, 2002 7:36 AM

138 The Complete Book of Middleware

developers’ community to validate the interoperability of each SOAP platform.
These tests are encapsulated by the Interoperability Test Web Service. Clients
generated from this Web service can be used to test the interoperability of
other SOAP implementations. Likewise, clients based on other toolkits can be
used to test the interoperability of IONA’s XMLBus.

Appendix A includes a client built with Microsoft’s SOAP toolkit and a
client built with Microsoft’s .NET platform. These clients can be used to talk
to Interoperability Test Web Service.

To test this service using other vendor’s SOAP implementations, or to test
the XMLBus interoperability client against other servers, visit http://
www.xmethods.com/ilab.

Broker and Supplier Web Service Description

There are two primary supplier Web services representing online bookstores
called “Anaconda” (see Appendix B) and “FarmsAndRegal” (see Appendix C).
The “Broker” Web service (Appendix D) acts as a middleman. End customers
send purchase orders to the broker, the broker forwards them to each of the
suppliers, and then the broker returns a composite quote with the best prices
from each supplier. In addition to the Java clients, Appendices B through D
include a Microsoft .NET client to demonstrate the interoperability of XMLBus
with .NET.

Postal Rate Calculator Web Service Description

Appendix E consists of a domestic postage rate calculator. This service takes
in a query string as an argument and returns a quote for that query. The user
enters all the necessary information about a package to be sent via the United
States Postal Service (USPS). This information is sent to the USPS server as a
query and the results are returned to the user and displayed.

Finance Web Service Description

Appendix F provides financial computations related to interest, APR, future
value, tax rates, and mortgages. One can also use this service to compare the
compound interest accumulated with a rule-of-72 estimate to that of the exact
compound interest calculated.

Electricity Web Service Description

Appendix G computes Watt, volt, and ampere relationships. Using this service,
one can also calculate the correct cable size for household appliances.

AU1272Ch05Frame Page 138 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 139

Notes
1. Stateless means there is no record of previous interactions and each interaction

request has to be handled based entirely on the information that comes with it.
Stateful means an entity, such as CORBA, keeps track of the state of interaction.
Stateful and stateless are derived from the usage of state as a set of conditions at
a moment in time.

2. For connectionless communications, the calling program does not enter into a
connection with the target process. The receiving application acts on the request
and responds if required. In contrast, connection-oriented communications involve
the two parties who first connect, exchange messages, and then disconnect.

3. MQ Series Workflow, a middleware product from IBM, supports the WSFL. It defines
workflows composed of Web services.

4. WSCL has been recently submitted to W3C (Summer 2001).
5. Among the first technology leaders to endorse and collaborate on the UDDI Project,

a cross-industry initiative designed to accelerate and broaden business-to-business
integration and commerce on the Internet, are American Express Co., Andersen
Consulting, Ariba Inc., Bowstreet, Cargill Inc., Clarus Corp., Commerce One Inc.,
CommerceQuest Inc., Compaq Computer Corp., CrossWorlds Software Inc., Dell
Computer Corp., Descartes, Extricity Software Inc., Fujitsu Ltd., Great Plains, i2,
IBM Corp., Internet Capital Group, Loudcloud Inc., match21, Merrill Lynch & Co.
Inc., Microsoft Corp., NEON, Nortel Networks Corp., NTT Communications Corp.,
Rational Software Corp., RealNames Corp., Sabre Holdings Corp., SAP AG, Sun
Microsystems Inc., TIBCO Software Inc., Ventro Corp., Versata Inc., VeriSign, Ver-
ticalNet Inc., and webMethods Inc.

6. Examples include www.salcentral.com and www.xmethods.net.

AU1272Ch05Frame Page 139 Monday, January 21, 2002 7:36 AM

140 The Complete Book of Middleware

Appendix A: Interoperability Test WDSL Example
<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name="InteropTestService"

targetNamespace="http://soapinterop.org/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://soapinterop.org/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsd1="http://soapinterop.org/xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

- <types>
- <schema targetNamespace="http://soapinterop.org/xsd"

xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

- <complexType name="SOAPStruct">
- <all>

<element name="varFloat" type="xsd:float" />
<element name="varInt" type="xsd:int" />
<element name="varString" type="xsd:string" />

</all>
</complexType>

- <complexType name="ArrayOffloat">
- <complexContent>
- <restriction base="SOAP-ENC:Array">

<attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="xsd:float[]" />
</restriction>

</complexContent>
</complexType>

- <complexType name="ArrayOfstring">
- <complexContent>
- <restriction base="SOAP-ENC:Array">

<attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="xsd:string[]" />
</restriction>

</complexContent>
</complexType>

- <complexType name="ArrayOfint">
- <complexContent>
- <restriction base="SOAP-ENC:Array">

<attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="xsd:int[]" />
</restriction>

</complexContent>
</complexType>

- <complexType name="ArrayOfSOAPStruct">
- <complexContent>
- <restriction base="SOAP-ENC:Array">

<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="xsd1:SOAPStruct[]" />

</restriction>
</complexContent>

</complexType>
</schema>

</types>
- <message name="echoStructRequest">

<part name="inputStruct" type="xsd1:SOAPStruct" />
</message>

- <message name="echoStructResult">
<part name="return" type="xsd1:SOAPStruct" />

</message>
- <message name="echoBooleanRequest">

<part name="inputBoolean" type="xsd:boolean" />
</message>

- <message name="echoBooleanResult">
<part name="return" type="xsd:boolean" />

</message>
- <message name="echoDateRequest">

<part name="inputDate" type="xsd:dateTime" />
</message>

- <message name="echoDateResult">
<part name="return" type="xsd:dateTime" />

</message>
- <message name="echoFloatArrayRequest">

<part name="inputArray" type="xsd1:ArrayOffloat" />

AU1272Ch05Frame Page 140 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 141

</message>
- <message name="echoFloatArrayResult">

<part name="return" type="xsd1:ArrayOffloat" />
</message>

- <message name="echoFloatRequest">
<part name="inputFloat" type="xsd:float" />

</message>
- <message name="echoFloatResult">

<part name="return" type="xsd:float" />
</message>

- <message name="echoStringArrayRequest">
<part name="inputArray" type="xsd1:ArrayOfstring" />

</message>
- <message name="echoStringArrayResult">

<part name="return" type="xsd1:ArrayOfstring" />
</message>

- <message name="echoIntegerArrayRequest">
<part name="inputArray" type="xsd1:ArrayOfint" />

</message>
- <message name="echoIntegerArrayResult">

<part name="return" type="xsd1:ArrayOfint" />
</message>

- <message name="echoStructArrayRequest">
<part name="inputArray" type="xsd1:ArrayOfSOAPStruct" />

</message>
- <message name="echoStructArrayResult">

<part name="return" type="xsd1:ArrayOfSOAPStruct" />
</message>

- <message name="echoDecimalRequest">
<part name="inputDecimal" type="xsd:decimal" />

</message>
- <message name="echoDecimalResult">

<part name="return" type="xsd:decimal" />
</message>
<message name="echoVoidRequest" />
<message name="echoVoidResult" />

- <message name="echoStringRequest">
<part name="inputString" type="xsd:string" />
</message>

- <message name="echoStringResult">
<part name="return" type="xsd:string" />

</message>
- <message name="echoIntegerRequest">

<part name="inputInteger" type="xsd:int" />
</message>

- <message name="echoIntegerResult">
<part name="return" type="xsd:int" />

</message>
- <message name="echoBase64Request">

<part name="inputData" type="xsd:base64Binary" />
</message>

- <message name="echoBase64Result">
<part name="return" type="xsd:base64Binary" />

</message>
- <portType name="InteropTestPortType">
- <operation name="echoStruct">

<input message="tns:echoStructRequest" name="echoStruct" />
<output message="tns:echoStructResult" name="echoStructResult" />

</operation>
- <operation name="echoBoolean">

<input message="tns:echoBooleanRequest" name="echoBoolean" />
<output message="tns:echoBooleanResult" name="echoBooleanResult" />

</operation>
- <operation name="echoDate">

<input message="tns:echoDateRequest" name="echoDate" />
<output message="tns:echoDateResult" name="echoDateResult" />

</operation>
- <operation name="echoFloatArray">

<input message="tns:echoFloatArrayRequest" name="echoFloatArray" />
<output message="tns:echoFloatArrayResult" name="echoFloatArrayResult" />

</operation>
- <operation name="echoFloat">

<input message="tns:echoFloatRequest" name="echoFloat" />
<output message="tns:echoFloatResult" name="echoFloatResult" />

</operation>

AU1272Ch05Frame Page 141 Monday, January 21, 2002 7:36 AM

142 The Complete Book of Middleware

- <operation name="echoStringArray">
<input message="tns:echoStringArrayRequest" name="echoStringArray" />
<output message="tns:echoStringArrayResult" name="echoStringArrayResult" />

</operation>
- <operation name="echoIntegerArray">

<input message="tns:echoIntegerArrayRequest" name="echoIntegerArray" />
<output message="tns:echoIntegerArrayResult" name="echoIntegerArrayResult" />

</operation>
- <operation name="echoStructArray">

<input message="tns:echoStructArrayRequest" name="echoStructArray" />
<output message="tns:echoStructArrayResult" name="echoStructArrayResult" />

</operation>
- <operation name="echoDecimal">

<input message="tns:echoDecimalRequest" name="echoDecimal" />
<output message="tns:echoDecimalResult" name="echoDecimalResult" />

</operation>
- <operation name="echoVoid">

<input message="tns:echoVoidRequest" name="echoVoid" />
<output message="tns:echoVoidResult" name="echoVoidResult" />

</operation>
- <operation name="echoString">

<input message="tns:echoStringRequest" name="echoString" />
<output message="tns:echoStringResult" name="echoStringResult" />

</operation>
- <operation name="echoInteger">

<input message="tns:echoIntegerRequest" name="echoInteger" />
<output message="tns:echoIntegerResult" name="echoIntegerResult" />

</operation>
- <operation name="echoBase64">

<input message="tns:echoBase64Request" name="echoBase64" />
<output message="tns:echoBase64Result" name="echoBase64Result" />

</operation>
</portType>

- <binding name="InteropTestBinding" type="tns:InteropTestPortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />

- <operation name="echoStruct">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoStruct">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</input>
- <output name="echoStructResult">

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

- <operation name="echoBoolean">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoBoolean">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</input>
- <output name="echoBooleanResult">

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

- <operation name="echoDate">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoDate">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</input>
- <output name="echoDateResult">

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

- <operation name="echoFloatArray">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoFloatArray">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</input>
- <output name="echoFloatArrayResult">

AU1272Ch05Frame Page 142 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 143

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

- <operation name="echoFloat">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoFloat">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</input>
- <output name="echoFloatResult">

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

- <operation name="echoStringArray">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoStringArray">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</input>
- <output name="echoStringArrayResult">

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

- <operation name="echoIntegerArray">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoIntegerArray">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</input>
- <output name="echoIntegerArrayResult">

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

- <operation name="echoStructArray">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoStructArray">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://soapinterop.org/" use="encoded" />

</input>
- <output name="echoStructArrayResult">

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

- <operation name="echoDecimal">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoDecimal">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://soapinterop.org/" use="encoded" />

</input>
- <output name="echoDecimalResult">

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

- <operation name="echoVoid">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoVoid">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://soapinterop.org/" use="encoded" />

</input>
- <output name="echoVoidResult">

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

- <operation name="echoString">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoString">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://soapinterop.org/" use="encoded" />

AU1272Ch05Frame Page 143 Monday, January 21, 2002 7:36 AM

144 The Complete Book of Middleware

</input>
- <output name="echoStringResult">

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

- <operation name="echoInteger">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoInteger">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://soapinterop.org/" use="encoded" />

</input>
- <output name="echoIntegerResult">

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

- <operation name="echoBase64">
<soap:operation soapAction="urn:soapinterop" style="rpc" />

- <input name="echoBase64">
<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://soapinterop.org/" use="encoded" />

</input>
- <output name="echoBase64Result">

<soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
namespace="http://soapinterop.org/" use="encoded" />

</output>
</operation>

</binding>
- <service name="InteropTestService">
- <port binding="tns:InteropTestBinding" name="InteropTestPort">

<soap:address location="http://www.xmlbus.com:9010/xmlbus/container/
InteropTest/InteropTestService/InteropTestPort/" />

</port>
</service>

</definitions>

Appendix B: Broker and Supplier Web Service:
Anaconda WSDL Example
<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name=“AnacondaService”

targetNamespace=“urn:target-anaconda-service”
xmlns=“http://schemas.xmlsoap.org/wsdl/”
xmlns:SOAP-ENC=“http://schemas.xmlsoap.org/soap/encoding/”
xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tns=“urn:target-anaconda-service”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:xsd1=“uri:Anacondadata-namespace”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”>

- <types>
- <schema targetNamespace=“uri:Anacondadata-namespace”

xmlns=“http://www.w3.org/2001/XMLSchema”
xmlns:wsdl=“http://schemas.xmlsoap.org/wsdl/”>

- <complexType name=“com_iona_xmlbus_examples_brokerDemo_brokerIntf_
PurchaseOrder”>

- <all>
<element name=“CustomerName” type=“xsd:string” />
<element name=“TotalPrice” type=“xsd:float” />
<element name=“LineItems”type=“xsd1:ArrayOfcom_iona_xmlbus_examples_
brokerDemo_brokerIntf_LineItem” />

</all>
</complexType>

- <complexType name=“com_iona_xmlbus_examples_brokerDemo_brokerIntf_LineItem”>
- <all>

<element name=“SupplierName” type=“xsd:string” />
<element name=“UnitPrice” type=“xsd:float” />
<element name=“TotalPrice” type=“xsd:float” />
<element name=“Quantity” type=“xsd:float” />
<element name=“ProductName” type=“xsd:string” />

AU1272Ch05Frame Page 144 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 145

</all>
</complexType>

- <complexType name=“ArrayOfcom_iona_xmlbus_examples_brokerDemo_brokerIntf_
LineItem”>

- <complexContent>
- <restriction base=“SOAP-ENC:Array”>

<attribute ref=“SOAP-ENC:arrayType” wsdl:arrayType=“xsd1:com_iona_
xmlbus_examples_brokerDemo_brokerIntf_LineItem[]” />

</restriction>
</complexContent>

</complexType>
- <complexType name=“ArrayOfstring”>
- <complexContent>
- <restriction base=“SOAP-ENC:Array”>

<attribute ref=“SOAP-ENC:arrayType” wsdl:arrayType=“xsd:string[]” />
</restriction>

</complexContent>
</complexType>

</schema>
</types>
- <message name=“requestQuoteRequest”>

<part name=“requestForQuote”
type=“xsd1:com_iona_xmlbus_examples_brokerDemo_brokerIntf_PurchaseOrder” />

</message>
- <message name=“requestQuoteResult”>

<part name=“return”
type=“xsd1:com_iona_xmlbus_examples_brokerDemo_brokerIntf_PurchaseOrder” />

</message>
<message name=“getCatalogRequest” />

- <message name=“getCatalogResult”>
<part name=“return” type=“xsd1:ArrayOfstring” />

</message>
<message name=“getSupplierNameRequest” />

- <message name=“getSupplierNameResult”>
<part name=“return” type=“xsd:string” />

</message>
- <portType name=“AnacondaPortType”>
- <operation name=“requestQuote”>

<input message=“tns:requestQuoteRequest” name=“requestQuote” />
<output message=“tns:requestQuoteResult” name=“requestQuoteResult” />

</operation>
- <operation name=“getCatalog”>

<input message=“tns:getCatalogRequest” name=“getCatalog” />
<output message=“tns:getCatalogResult” name=“getCatalogResult” />

</operation>
- <operation name=“getSupplierName”>

<input message=“tns:getSupplierNameRequest” name=“getSupplierName” />
<output message=“tns:getSupplierNameResult” name=“getSupplierNameResult” />

</operation>
</portType>

- <binding name=“AnacondaBinding” type=“tns:AnacondaPortType”>
<soap:binding style=“rpc” transport=“http://schemas.xmlsoap.org/soap/http” />

- <operation name=“requestQuote”>
<soap:operation soapAction=“urn:target-anaconda-service/requestQuote”
style=“rpc” />

- <input name=“requestQuote”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-anaconda-service” use=“encoded” />

</input>
- <output name=“requestQuoteResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-anaconda-service” use=“encoded” />

</output>
</operation>

- <operation name=“getCatalog”>
<soap:operation soapAction=“urn:target-anaconda-service/getCatalog”
style=“rpc”
/>

- <input name=“getCatalog”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-anaconda-service” use=“encoded” />

</input>
- <output name=“getCatalogResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”

AU1272Ch05Frame Page 145 Monday, January 21, 2002 7:36 AM

146 The Complete Book of Middleware

namespace=“urn:target-anaconda-service” use=“encoded” />
</output>

</operation>
- <operation name=“getSupplierName”>

<soap:operation soapAction=“urn:target-anaconda-service/getSupplierName”
style=“rpc” />

- <input name=“getSupplierName”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-anaconda-service” use=“encoded” />

</input>
- <output name=“getSupplierNameResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-anaconda-service” use=“encoded” />

</output>
</operation>

</binding>
- <service name=“AnacondaService”>
- <port binding=“tns:AnacondaBinding” name=“AnacondaPort”>

<soap:address location=“http://www.xmlbus.com:9010/xmlbus/container/Anaconda/
AnacondaService/AnacondaPort/” />

</port>
</service>

</definitions>

Appendix C: Broker and Supplier Web Service:
FarmsandRegal WSDL Example
<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name=“FarmsAndRegalService”

targetNamespace=“urn:target-farmsandregal-service”
xmlns=“http://schemas.xmlsoap.org/wsdl/”
xmlns:SOAP-ENC=“http://schemas.xmlsoap.org/soap/encoding/”
xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tns=“urn:target-farmsandregal-service”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:xsd1=“uri:FarmsAndRegaldata-namespace”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”>

- <types>
- <schema targetNamespace=“uri:FarmsAndRegaldata-namespace”

xmlns=“http://www.w3.org/2001/XMLSchema”
xmlns:wsdl=“http://schemas.xmlsoap.org/wsdl/”>

- <complexType name=“com_iona_xmlbus_examples_brokerDemo_brokerIntf_
PurchaseOrder”>

- <all>
<element name=“CustomerName” type=“xsd:string” />
<element name=“TotalPrice” type=“xsd:float” />
<element name=“LineItems”
type=“xsd1:ArrayOfcom_iona_xmlbus_examples_brokerDemo_brokerIntf_
LineItem” />

</all>
</complexType>

- <complexType name=“com_iona_xmlbus_examples_brokerDemo_brokerIntf_LineItem”>
- <all>

<element name=“SupplierName” type=“xsd:string” />
<element name=“UnitPrice” type=“xsd:float” />
<element name=“TotalPrice” type=“xsd:float” />
<element name=“Quantity” type=“xsd:float” />
<element name=“ProductName” type=“xsd:string” />

</all>
</complexType>

- <complexType name=“ArrayOfcom_iona_xmlbus_examples_brokerDemo_brokerIntf_
LineItem”>

- <complexContent>
- <restriction base=“SOAP-ENC:Array”>

<attribute ref=“SOAP-ENC:arrayType”
wsdl:arrayType=“xsd1:com_iona_xmlbus_examples_brokerDemo_brokerIntf_
LineItem[]” />

</restriction>
</complexContent>

</complexType>

AU1272Ch05Frame Page 146 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 147

- <complexType name=“ArrayOfstring”>
- <complexContent>
- <restriction base=“SOAP-ENC:Array”>

<attribute ref=“SOAP-ENC:arrayType” wsdl:arrayType=“xsd:string[]” />
</restriction>

</complexContent>
</complexType>

</schema>
</types>

- <message name=“requestQuoteRequest”>
<part name=“requestForQuote” type=“xsd1:com_iona_xmlbus_examples_brokerDemo_
brokerIntf_PurchaseOrder” />

</message>
- <message name=“requestQuoteResult”>

<part name=“return” type=“xsd1:com_iona_xmlbus_examples_brokerDemo_brokerIntf_
PurchaseOrder” />

</message>
<message name=“getCatalogRequest” />

- <message name=“getCatalogResult”>
<part name=“return” type=“xsd1:ArrayOfstring” />

</message>
<message name=“getSupplierNameRequest” />

- <message name=“getSupplierNameResult”>
<part name=“return” type=“xsd:string” />

</message>
- <portType name=“FarmsAndRegalPortType”>
- <operation name=“requestQuote”>

<input message=“tns:requestQuoteRequest” name=“requestQuote” />
<output message=“tns:requestQuoteResult” name=“requestQuoteResult” />

</operation>
- <operation name=“getCatalog”>

<input message=“tns:getCatalogRequest” name=“getCatalog” />
<output message=“tns:getCatalogResult” name=“getCatalogResult” />

</operation>
- <operation name=“getSupplierName”>

<input message=“tns:getSupplierNameRequest” name=“getSupplierName” />
<output message=“tns:getSupplierNameResult” name=“getSupplierNameResult” />

</operation>
</portType>

- <binding name=“FarmsAndRegalBinding” type=“tns:FarmsAndRegalPortType”>
<soap:binding style=“rpc” transport=“http://schemas.xmlsoap.org/soap/http” />

- <operation name=“requestQuote”>
<soap:operation soapAction=“urn:target-farmsandregal-service/requestQuote”
style=“rpc” />

- <input name=“requestQuote”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-farmsandregal-service” use=“encoded” />

</input>
- <output name=“requestQuoteResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-farmsandregal-service” use=“encoded” />

</output>
</operation>

- <operation name=“getCatalog”>
<soap:operation soapAction=“urn:target-farmsandregal-service/getCatalog”
style=“rpc” />

- <input name=“getCatalog”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-farmsandregal-service” use=“encoded” />

</input>
- <output name=“getCatalogResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-farmsandregal-service” use=“encoded” />

</output>
</operation>

- <operation name=“getSupplierName”>
<soap:operation soapAction=“urn:target-farmsandregal-service/getSupplierName”
style=“rpc” />

- <input name=“getSupplierName”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-farmsandregal-service” use=“encoded” />

</input>
- <output name=“getSupplierNameResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”

AU1272Ch05Frame Page 147 Monday, January 21, 2002 7:36 AM

148 The Complete Book of Middleware

namespace=“urn:target-farmsandregal-service” use=“encoded” />
</output>

</operation>
</binding>

- <service name=“FarmsAndRegalService”>
- <port binding=“tns:FarmsAndRegalBinding” name=“FarmsAndRegalPort”>

<soap:address location=“http://www.xmlbus.com:9010/xmlbus/container/
FarmsAndRegal/FarmsAndRegalService/FarmsAndRegalPort/” />

</port>
</service>

</definitions>

Appendix D: Broker and Supplier Web Services:
Broker WSDL Example
<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name=“AnacondaService”

targetNamespace=“urn:target-anaconda-service”
xmlns=“http://schemas.xmlsoap.org/wsdl/”
xmlns:SOAP-ENC=“http://schemas.xmlsoap.org/soap/encoding/”
xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tns=“urn:target-anaconda-service”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:xsd1=“uri:Anacondadata-namespace”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”>

- <types>
- <schema targetNamespace=“uri:Anacondadata-namespace”

xmlns=“http://www.w3.org/2001/XMLSchema”
xmlns:wsdl=“http://schemas.xmlsoap.org/wsdl/”>

- <complexType name=“com_iona_xmlbus_examples_brokerDemo_brokerIntf_
PurchaseOrder”>

- <all>
<element name=“CustomerName” type=“xsd:string” />
<element name=“TotalPrice” type=“xsd:float” />
<element name=“LineItems” type=“xsd1:ArrayOfcom_iona_xmlbus_examples_
brokerDemo_brokerIntf_LineItem” />

</all>
</complexType>

- <complexType name=“com_iona_xmlbus_examples_brokerDemo_brokerIntf_LineItem”>
- <all>

<element name=“SupplierName” type=“xsd:string” />
<element name=“UnitPrice” type=“xsd:float” />
<element name=“TotalPrice” type=“xsd:float” />
<element name=“Quantity” type=“xsd:float” />
<element name=“ProductName” type=“xsd:string” />

</all>
</complexType>

- <complexType name=“ArrayOfcom_iona_xmlbus_examples_brokerDemo_brokerIntf_
LineItem”>

- <complexContent>
- <restriction base=“SOAP-ENC:Array”>

<attribute ref=“SOAP-ENC:arrayType”
wsdl:arrayType=“xsd1:com_iona_xmlbus_examples_brokerDemo_brokerIntf_
LineItem[]” />

</restriction>
</complexContent>

</complexType>
- <complexType name=“ArrayOfstring”>
- <complexContent>
- <restriction base=“SOAP-ENC:Array”>

<attribute ref=“SOAP-ENC:arrayType” wsdl:arrayType=“xsd:string[]” />
</restriction>

</complexContent>
</complexType>

</schema>
</types>

- <message name=“requestQuoteRequest”>
<part name=“requestForQuote”
type=“xsd1:com_iona_xmlbus_examples_brokerDemo_brokerIntf_PurchaseOrder” />

</message>

AU1272Ch05Frame Page 148 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 149

- <message name=“requestQuoteResult”>
<part name=“return”
type=“xsd1:com_iona_xmlbus_examples_brokerDemo_brokerIntf_PurchaseOrder” />

</message>
<message name=“getCatalogRequest” />

- <message name=“getCatalogResult”>
<part name=“return” type=“xsd1:ArrayOfstring” />

</message>
<message name=“getSupplierNameRequest” />

- <message name=“getSupplierNameResult”>
<part name=“return” type=“xsd:string” />

</message>
- <portType name=“AnacondaPortType”>
- <operation name=“requestQuote”>

<input message=“tns:requestQuoteRequest” name=“requestQuote” />
<output message=“tns:requestQuoteResult” name=“requestQuoteResult” />

</operation>
- <operation name=“getCatalog”>

<input message=“tns:getCatalogRequest” name=“getCatalog” />
<output message=“tns:getCatalogResult” name=“getCatalogResult” />

</operation>
- <operation name=“getSupplierName”>

<input message=“tns:getSupplierNameRequest” name=“getSupplierName” />
<output message=“tns:getSupplierNameResult” name=“getSupplierNameResult” />

</operation>
</portType>

- <binding name=“AnacondaBinding” type=“tns:AnacondaPortType”>
<soap:binding style=“rpc” transport=“http://schemas.xmlsoap.org/soap/http” />

- <operation name=“requestQuote”>
<soap:operation soapAction=“urn:target-anaconda-service/requestQuote”
style=“rpc” />

- <input name=“requestQuote”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-anaconda-service” use=“encoded” />

</input>
- <output name=“requestQuoteResult”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-anaconda-service” use=“encoded” />

</output>
</operation>

- <operation name=“getCatalog”>
<soap:operation soapAction=“urn:target-anaconda-service/getCatalog”
style=“rpc” />

- <input name=“getCatalog”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-anaconda-service” use=“encoded” />

</input>
- <output name=“getCatalogResult”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-anaconda-service” use=“encoded” />

</output>
</operation>

- <operation name=“getSupplierName”>
<soap:operation soapAction=“urn:target-anaconda-service/getSupplierName”
style=“rpc” />

- <input name=“getSupplierName”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-anaconda-service” use=“encoded” />

</input>
- <output name=“getSupplierNameResult”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-anaconda-service” use=“encoded” />

</output>
</operation>

</binding>
- <service name=“AnacondaService”>
- <port binding=“tns:AnacondaBinding” name=“AnacondaPort”>

<soap:address location=“http://www.xmlbus.com:9010/xmlbus/container/Anaconda/
AnacondaService/AnacondaPort/” />

</port>
</service>

</definitions>

AU1272Ch05Frame Page 149 Monday, January 21, 2002 7:36 AM

150 The Complete Book of Middleware

Appendix E: Postal Rate Calculator Web Service
WSDL Example
<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name=“DomesticCalculatorService”

targetNamespace=“urn:target-domesticcalculator-service”
xmlns=“http://schemas.xmlsoap.org/wsdl/”
xmlns:SOAP-ENC=“http://schemas.xmlsoap.org/soap/encoding/”
xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tns=“urn:target-domesticcalculator-service”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:xsd1=“uri:DomesticCalculatordata-namespace”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”>

- <types>
- <schema targetNamespace=“uri:DomesticCalculatordata-namespace”

xmlns=“http://www.w3.org/2001/XMLSchema”
xmlns:wsdl=“http://schemas.xmlsoap.org/wsdl/”>

- <complexType name=“ArrayOfstring”>
- <complexContent>
- <restriction base=“SOAP-ENC:Array”>

<attribute ref=“SOAP-ENC:arrayType” wsdl:arrayType=“xsd:string[]” />
</restriction>

</complexContent>
</complexType>

</schema>
</types>

- <message name=“java_net_MalformedURLException”>
<part name=“java_net_MalformedURLException” type=“xsd:string” />

</message>
- <message name=“java_io_IOException”>

<part name=“java_io_IOException” type=“xsd:string” />
</message>

- <message name=“org_xml_sax_SAXException”>
<part name=“org_xml_sax_SAXException” type=“xsd:string” />

</message>
- <message name=“java_lang_Exception”>

<part name=“java_lang_Exception” type=“xsd:string” />
</message>

- <message name=“getDomesticRateRequest”>
<part name=“query” type=“xsd:string” />

</message>
- <message name=“getDomesticRateResult”>

<part name=“return” type=“xsd1:ArrayOfstring” />
</message>

- <portType name=“DomesticCalculatorPortType”>
- <operation name=“getDomesticRate”>

<input message=“tns:getDomesticRateRequest” name=“getDomesticRate” />
<output message=“tns:getDomesticRateResult” name=“getDomesticRateResult” />
<fault message=“tns:java_io_IOException” name=“java_io_IOException” />
<fault message=“tns:java_lang_Exception” name=“java_lang_Exception” />
<fault message=“tns:org_xml_sax_SAXException”
name=“org_xml_sax_SAXException”/>

<fault message=“tns:java_net_MalformedURLException”
name=“java_net_MalformedURLException” />

</operation>
</portType>

- <binding name=“DomesticCalculatorBinding” type=“tns:DomesticCalculatorPortType”>
<soap:binding style=“rpc” transport=“http://schemas.xmlsoap.org/soap/http” />

- <operation name=“getDomesticRate”>
<soap:operation soapAction=“urn:target-domesticcalculator-service/
getDomesticRate” style=“rpc” />

- <input name=“getDomesticRate”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-domesticcalculator-service” use=“encoded” />

</input>
- <output name=“getDomesticRateResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-domesticcalculator-service” use=“encoded” />

</output>
- <fault name=“java_io_IOException”>

<soap:fault encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
name=“java_io_IOException” namespace=“urn:target-domesticcalculator-

AU1272Ch05Frame Page 150 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 151

service” use=“encoded” />
</fault>

- <fault name=“java_lang_Exception”>
<soap:fault encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
name=“java_lang_Exception” namespace=“urn:target-domesticcalculator-
service” use=“encoded” />

</fault>
- <fault name=“org_xml_sax_SAXException”>

<soap:fault encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
name=“org_xml_sax_SAXException” namespace=“urn:target-domesticcalculator-
service” use=“encoded” />

</fault>
- <fault name=“java_net_MalformedURLException”>

<soap:fault encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
name=“java_net_MalformedURLException” namespace=“urn:target-
domesticcalculator-service” use=“encoded” />

</fault>
</operation>

</binding>
- <service name=“DomesticCalculatorService”>
- <port binding=“tns:DomesticCalculatorBinding” name=“DomesticCalculatorPort”>

<soap:address location=“http://www.xmlbus.com:9010/xmlbus/container/
DomesticCalculator/DomesticCalculatorService/DomesticCalculatorPort/” />

</port>
</service>

</definitions>

Appendix F: Finance Web Service WSDL Example
<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name=“FinanceService”

targetNamespace=“urn:target-finance-service”
xmlns=“http://schemas.xmlsoap.org/wsdl/”
xmlns:SOAP-ENC=“http://schemas.xmlsoap.org/soap/encoding/”
xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tns=“urn:target-finance-service”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:xsd1=“uri:Financedata-namespace”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”>

- <message name=“calculateTimeToDoubleUsingRuleOf72Request”>
<part name=“InterestRate” type=“xsd:double” />

</message>
- <message name=“calculateTimeToDoubleUsingRuleOf72Result”>

<part name=“return” type=“xsd:int” />
</message>

- <message name=“calculateRateToDoubleUsingRuleOf72Request”>
<part name=“year” type=“xsd:int” />

</message>
- <message name=“calculateRateToDoubleUsingRuleOf72Result”>

<part name=“return” type=“xsd:float” />
</message>

- <message name=“calculateFutureValueRequest”>
<part name=“initial_amount” type=“xsd:double” />
<part name=“rate” type=“xsd:double” />
<part name=“compound_period” type=“xsd:int” />
<part name=“total_period” type=“xsd:int” />

</message>
- <message name=“calculateFutureValueResult”>

<part name=“return” type=“xsd:double” />
</message>

- <message name=“paymentMortgageRequest”>
<part name=“LoanAmount” type=“xsd:double” />
<part name=“InterestRate” type=“xsd:double” />
<part name=“Period” type=“xsd:int” />

</message>
- <message name=“paymentMortgageResult”>

<part name=“return” type=“xsd:double” />
</message>

- <message name=“calculateTimeToDoubleRequest”>
<part name=“InterestRate” type=“xsd:double” />

</message>

AU1272Ch05Frame Page 151 Monday, January 21, 2002 7:36 AM

152 The Complete Book of Middleware

- <message name=“calculateTimeToDoubleResult”>
<part name=“return” type=“xsd:double” />

</message>
- <message name=“calculateRateToDoubleRequest”>

<part name=“year” type=“xsd:double” />
</message>

- <message name=“calculateRateToDoubleResult”>
<part name=“return” type=“xsd:double” />

</message>
- <message name=“periodMortgageRequest”>

<part name=“MonthlyPayment” type=“xsd:double” />
<part name=“LoanAmount” type=“xsd:double” />
<part name=“InterestRate” type=“xsd:double” />

</message>
- <message name=“periodMortgageResult”>

<part name=“return” type=“xsd:int” />
</message>

- <message name=“showTaxRateRequest”>
<part name=“TaxStatus” type=“xsd:int” />
<part name=“Income” type=“xsd:float” />

</message>
- <message name=“showTaxRateResult”>

<part name=“return” type=“xsd:float” />
</message>

- <message name=“calculateRateRequest”>
<part name=“APR” type=“xsd:double” />
<part name=“compound_period” type=“xsd:int” />

</message>
- <message name=“calculateRateResult”>

<part name=“return” type=“xsd:double” />
</message>

- <message name=“calculateAPRRequest”>
<part name=“InterestRate” type=“xsd:double” />
<part name=“compound_period” type=“xsd:int” />

</message>
- <message name=“calculateAPRResult”>

<part name=“return” type=“xsd:double” />
</message>

- <portType name=“FinancePortType”>
- <operation name=“calculateTimeToDoubleUsingRuleOf72”>

<input message=“tns:calculateTimeToDoubleUsingRuleOf72Request”
name=“calculateTimeToDoubleUsingRuleOf72” />

<output message=“tns:calculateTimeToDoubleUsingRuleOf72Result”
name=“calculateTimeToDoubleUsingRuleOf72Result” />

</operation>
- <operation name=“calculateRateToDoubleUsingRuleOf72”>

<input message=“tns:calculateRateToDoubleUsingRuleOf72Request”
name=“calculateRateToDoubleUsingRuleOf72” />

<output message=“tns:calculateRateToDoubleUsingRuleOf72Result”
name=“calculateRateToDoubleUsingRuleOf72Result” />

</operation>
- <operation name=“calculateFutureValue”>

<input message=“tns:calculateFutureValueRequest”
name=“calculateFutureValue” />

<output message=“tns:calculateFutureValueResult”
name=“calculateFutureValueResult” />

</operation>
- <operation name=“paymentMortgage”>

<input message=“tns:paymentMortgageRequest” name=“paymentMortgage” />
<output message=“tns:paymentMortgageResult” name=“paymentMortgageResult” />

</operation>
- <operation name=“calculateTimeToDouble”>

<input message=“tns:calculateTimeToDoubleRequest”
name=“calculateTimeToDouble” />

<output message=“tns:calculateTimeToDoubleResult”
name=“calculateTimeToDoubleResult” />

</operation>
- <operation name=“calculateRateToDouble”>

<input message=“tns:calculateRateToDoubleRequest”
name=“calculateRateToDouble” />

<output message=“tns:calculateRateToDoubleResult”
name=“calculateRateToDoubleResult” />

</operation>
- <operation name=“periodMortgage”>

AU1272Ch05Frame Page 152 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 153

<input message=“tns:periodMortgageRequest” name=“periodMortgage” />
<output message=“tns:periodMortgageResult” name=“periodMortgageResult” />

</operation>
- <operation name=“showTaxRate”>

<input message=“tns:showTaxRateRequest” name=“showTaxRate” />
<output message=“tns:showTaxRateResult” name=“showTaxRateResult” />

</operation>
- <operation name=“calculateRate”>

<input message=“tns:calculateRateRequest” name=“calculateRate” />
<output message=“tns:calculateRateResult” name=“calculateRateResult” />

</operation>
- <operation name=“calculateAPR”>

<input message=“tns:calculateAPRRequest” name=“calculateAPR” />
<output message=“tns:calculateAPRResult” name=“calculateAPRResult” />

</operation>
</portType>

- <binding name=“FinanceBinding” type=“tns:FinancePortType”>
<soap:binding style=“rpc” transport=“http://schemas.xmlsoap.org/soap/http” />

- <operation name=“calculateTimeToDoubleUsingRuleOf72”>
<soap:operation soapAction=“urn:target-finance-service/
calculateTimeToDoubleUsingRuleOf72” style=“rpc” />

- <input name=“calculateTimeToDoubleUsingRuleOf72”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</input>
- <output name=“calculateTimeToDoubleUsingRuleOf72Result”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</output>
</operation>

- <operation name=“calculateRateToDoubleUsingRuleOf72”>
<soap:operation soapAction=“urn:target-finance-
service/calculateRateToDoubleUsingRuleOf72” style=“rpc” />

- <input name=“calculateRateToDoubleUsingRuleOf72”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</input>
- <output name=“calculateRateToDoubleUsingRuleOf72Result”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</output>
</operation>

- <operation name=“calculateFutureValue”>
<soap:operation soapAction=“urn:target-finance-service/calculateFutureValue”
style=“rpc” />

- <input name=“calculateFutureValue”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</input>
- <output name=“calculateFutureValueResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</output>
</operation>

- <operation name=“paymentMortgage”>
<soap:operation soapAction=“urn:target-finance-service/paymentMortgage”
style=“rpc” />

- <input name=“paymentMortgage”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</input>
- <output name=“paymentMortgageResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</output>
</operation>

- <operation name=“calculateTimeToDouble”>
<soap:operation soapAction=“urn:target-finance-service/calculateTimeToDouble”
style=“rpc” />

- <input name=“calculateTimeToDouble”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</input>
- <output name=“calculateTimeToDoubleResult”>

AU1272Ch05Frame Page 153 Monday, January 21, 2002 7:36 AM

154 The Complete Book of Middleware

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</output>
</operation>

- <operation name=“calculateRateToDouble”>
<soap:operation soapAction=“urn:target-finance-service/calculateRateToDouble”
style=“rpc” />

- <input name=“calculateRateToDouble”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</input>
- <output name=“calculateRateToDoubleResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</output>
</operation>

- <operation name=“periodMortgage”>
<soap:operation soapAction=“urn:target-finance-service/periodMortgage”
style=“rpc” />

- <input name=“periodMortgage”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</input>
- <output name=“periodMortgageResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</output>
</operation>

- <operation name=“showTaxRate”>
<soap:operation soapAction=“urn:target-finance-service/showTaxRate”
style=“rpc” />

- <input name=“showTaxRate”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</input>
- <output name=“showTaxRateResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</output>
</operation>

- <operation name=“calculateRate”>
<soap:operation soapAction=“urn:target-finance-service/calculateRate”
style=“rpc” />

- <input name=“calculateRate”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</input>
- <output name=“calculateRateResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</output>
</operation>

- <operation name=“calculateAPR”>
<soap:operation soapAction=“urn:target-finance-service/calculateAPR”
style=“rpc” />

- <input name=“calculateAPR”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</input>
- <output name=“calculateAPRResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-finance-service” use=“encoded” />

</output>
</operation>

</binding>
- <service name=“FinanceService”>
- <port binding=“tns:FinanceBinding” name=“FinancePort”>

<soap:address location=“http://www.xmlbus.com:9010/xmlbus/container/Finance/
FinanceService/FinancePort/” />

</port>
</service>

</definitions>

AU1272Ch05Frame Page 154 Monday, January 21, 2002 7:36 AM

Web Services: Hot Stuff 155

Appendix G: Electricity Web Service WSDL Example
<?xml version="1.0" encoding="UTF-8" ?>
- <definitions name=“ElectricityService”

targetNamespace=“urn:target-electricity-service”
xmlns=“http://schemas.xmlsoap.org/wsdl/”
xmlns:SOAP-ENC=“http://schemas.xmlsoap.org/soap/encoding/”
xmlns:soap=“http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tns=“urn:target-electricity-service”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:xsd1=“uri:Electricitydata-namespace”
xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance”>

- <message name=“computeVoltsRequest”>
<part name=“Amps” type=“xsd:int” />
<part name=“Watts” type=“xsd:int” />

</message>
- <message name=“computeVoltsResult”>

<part name=“return” type=“xsd:int” />
</message>

- <message name=“computeWireSizeRequest”>
<part name=“Amps” type=“xsd:int” />

</message>
- <message name=“computeWireSizeResult”>

<part name=“return” type=“xsd:string” />
</message>

- <message name=“computeWattsRequest”>
<part name=“Amps” type=“xsd:int” />
<part name=“Volts” type=“xsd:int” />

</message>
- <message name=“computeWattsResult”>

<part name=“return” type=“xsd:int” />
</message>

- <message name=“computeAmpsRequest”>
<part name=“Volts” type=“xsd:int” />
<part name=“Watts” type=“xsd:int” />

</message>
- <message name=“computeAmpsResult”>

<part name=“return” type=“xsd:int” />
</message>

- <message name=“computeAmpacityRequest”>
<part name=“wire” type=“xsd:string” />

</message>
- <message name=“computeAmpacityResult”>

<part name=“return” type=“xsd:int” />
</message>

- <portType name=“ElectricityPortType”>
- <operation name=“computeVolts”>

<input message=“tns:computeVoltsRequest” name=“computeVolts” />
<output message=“tns:computeVoltsResult” name=“computeVoltsResult” />

</operation>
- <operation name=“computeWireSize”>

<input message=“tns:computeWireSizeRequest” name=“computeWireSize” />
<output message=“tns:computeWireSizeResult” name=“computeWireSizeResult” />

</operation>
- <operation name=“computeWatts”>

<input message=“tns:computeWattsRequest” name=“computeWatts” />
<output message=“tns:computeWattsResult” name=“computeWattsResult” />

</operation>
- <operation name=“computeAmps”>

<input message=“tns:computeAmpsRequest” name=“computeAmps” />
<output message=“tns:computeAmpsResult” name=“computeAmpsResult” />

</operation>
- <operation name=“computeAmpacity”>

<input message=“tns:computeAmpacityRequest” name=“computeAmpacity” />
<output message=“tns:computeAmpacityResult” name=“computeAmpacityResult” />

</operation>
</portType>

- <binding name=“ElectricityBinding” type=“tns:ElectricityPortType”>
<soap:binding style=“rpc” transport=“http://schemas.xmlsoap.org/soap/http” />

- <operation name=“computeVolts”>
<soap:operation soapAction=“urn:target-electricity-service/computeVolts”
style=“rpc” />

AU1272Ch05Frame Page 155 Monday, January 21, 2002 7:36 AM

156 The Complete Book of Middleware

- <input name=“computeVolts”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-electricity-service” use=“encoded” />

</input>
- <output name=“computeVoltsResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-electricity-service” use=“encoded” />

</output>
</operation>

- <operation name=“computeWireSize”>
<soap:operation soapAction=“urn:target-electricity-service/computeWireSize”
style=“rpc” />

- <input name=“computeWireSize”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-electricity-service” use=“encoded” />

</input>
- <output name=“computeWireSizeResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-electricity-service” use=“encoded” />

</output>
</operation>

- <operation name=“computeWatts”>
<soap:operation soapAction=“urn:target-electricity-service/computeWatts”
style=“rpc” />

- <input name=“computeWatts”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-electricity-service” use=“encoded” />

</input>
- <output name=“computeWattsResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-electricity-service” use=“encoded” />

</output>
</operation>

- <operation name=“computeAmps”>
<soap:operation soapAction=“urn:target-electricity-service/computeAmps”
style=“rpc” />

- <input name=“computeAmps”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-electricity-service” use=“encoded” />

</input>
- <output name=“computeAmpsResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-electricity-service” use=“encoded” />

</output>
</operation>

- <operation name=“computeAmpacity”>
<soap:operation soapAction=“urn:target-electricity-service/computeAmpacity”
style=“rpc” />

- <input name=“computeAmpacity”>
<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-electricity-service” use=“encoded” />

</input>
- <output name=“computeAmpacityResult”>

<soap:body encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”
namespace=“urn:target-electricity-service” use=“encoded” />

</output>
</operation>

</binding>
- <service name=“ElectricityService”>
- <port binding=“tns:ElectricityBinding” name=“ElectricityPort”>

<soap:address location=“http://www.xmlbus.com:9010/xmlbus/container/Electricity/
ElectricityService/ElectricityPort/” />

</port>
</service>

</definitions>

AU1272Ch05Frame Page 156 Monday, January 21, 2002 7:36 AM

157

Chapter 6

Database Middleware

and Other Stuff

This chapter primarily focuses on relational databases — that is, data-level
integration, SQL, XML, Java-based, XML-enabled, and Web-services enabled —
as the middleware.

Introduction

Individuals use database applications to create, store, and manage raw data.
People who need to see this data may be using different operating systems
and applications than those who store the data. Middleware, in the form of
relational database management systems and related products, bridges this gap.

Database middleware comes in various flavors: data-level integration, SQL,
XML, and Java-based. Whatever the products an enterprise chooses, other
middleware comes into play in collaboration efforts in integrating and trans-
ferring data. Among them are the Windows Telephony with TAPI, wireless
APIs, and reliable messages.

Data-Level Integration

Information Builders’ FOCUS is a family of enterprisewide data access and
reporting tools, supporting the development of graphical client and server
applications, as well as host-based, character-interface applications. FOCUS
applications also support relational and non-relational data sources and can
directly access many different data managers. Additional databases are sup-
ported through EDA/SQL middleware products.

AU1272Ch06Frame Page 157 Monday, January 21, 2002 7:36 AM

158

The Complete Book of Middleware

Information Builders’ EDA middleware provides data-level integration and
built-in information access capabilities of WebFOCUS Business Intelligence
Suite. This middleware product offers access to most database or application
technologies on any computer platform. It works with all security systems and
network architectures, allowing the widest universe of users — including
Internet users — to interact with any information system in an enterprise. EDA
also integrates with eXtensible Markup Language (XML), Enterprise JavaBeans
(EJB), Distributed Component Object Model (DCOM), and other component-
based technologies.

iWay Software, an Information Builders company specializing in middle-
ware technology, adds enterprise application integration capabilities to EDA.
iWay Software provides standard connections to over 120 back-office systems

1

and many front-end applications, enabling organizations to leverage technol-
ogies such as IBM MQSeries, XML, and Java. These connections provide the
integration of E-business applications with the enterprise at all levels, including
data, application, transition, and messaging.

WebFOCUS Business Intelligence Suite

WebFOCUS is designed to support today’s most critical E-business and E-
government initiatives — business-to-business (B2B), business-to-consumer
(B2C), and business-to-enterprise (B2E). Whether one’s needs are production
reporting, complex analysis, supply chain management (SCM), customer rela-
tionship management (CRM), or self-service applications, WebFOCUS can help
to quickly build and deploy Web reporting and transactional systems over
intranets, extranets, and the Internet.

Features include:

1. Integration with Microsoft tools
2. Scalability
3. Multi-analytic viewpoints
4. Java-based report distribution
5. Wireless capabilities
6. ISO 9000 certification
7. Legacy–Web–ERP integration
8. Development tools
9. Components and services

Integration with Microsoft Tools

WebFOCUS features industry-leading integration with Microsoft Office 2000
and BackOffice 2000. For example, you can save complex WebFOCUS reports
as Excel 2000 documents while preserving all formatting and drill-downs.
From within WebFOCUS, you can even generate Excel Pivot Tables with a
single click of a check box. WebFOCUS also integrates with Microsoft Online
Analytical Processing (OLAP) Services, providing a single-vendor solution for

AU1272Ch06Frame Page 158 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff

159

high-performance reporting from cubes. In addition, Microsoft cube data can
be combined with other sources for comprehensive enterprise reporting.

Scalability

WebFOCUS scales to the mainframe and runs on NT, UNIX, Linux, OS/400,
OpenVMS, OS/390, MVS, and CMS. It provides a flexible architecture to fit
into an infrastructure.

Multi-Analytic Viewpoints

Multi-dimensional analytic capabilities allow users to examine their data from
many different points of view. Users can change sort fields, filter reports with
varying selection criteria, or drill-down to view information in a whole new
light. They can even look at multiple reports and graphs on a single page to
easily compare data. Flexible styling allows each user to design reports that
are most usable for his or her needs.

Java-Based Report Distribution

Both administrators and end users have the capability of scheduling and
distributing reports. Reports can be delivered via e-mail, over intranet systems
or the Internet, to network printers or to wireless devices.

Wireless Capabilities

WebFOCUS allows one to initiate queries from wireless devices such as Palm
Pilots and retrieve reports that can be viewed on the devices’ screens. Reports
can even contain drill-down to detail data — exactly like the reports one
would retrieve from one’s office PC.

ISO 9000 Certification

WebFOCUS has been awarded the ISO 9002 certification. This certification is
an internationally recognized standard for assessing the quality of business
solutions.

Legacy–Web–ERP Integration

WebFOCUS leverages Information Builders’ enterprise integration middleware
to access over 85 data sources, including all major relational database struc-
tures, enterprise resource planning (ERP) packages (SAP and PeopleSoft), and
legacy data (CICS and IMS transaction systems). This makes it easy to con-
solidate all data sources for the enterprise business intelligence.

AU1272Ch06Frame Page 159 Monday, January 21, 2002 7:36 AM

160

The Complete Book of Middleware

Development Tools

From a single frontend, users can design Web pages that mix graphs, tabular
reports, and spreadsheets. No prior knowledge of Hypertext Markup Language
(HTML), Java, JavaScript, or other complex 3GL programming language is
required to create applications. Users can use Microsoft FrontPage to integrate
these Web pages into, for example, a multimedia Web site.

Components and Services

The components and services of the WebFOCUS solution are designed to
meet the needs of a business enterprise. They include:

�

Reporting, query, and analysis

�

Report distribution

�

Managed reporting

�

Development and reporting tools

�

Management and administration tools

�

Report templates

iWay Software: EAI Solutions

iWay Software’s products and reusable service channel architecture provide a
complete E-business to Enterprise (E2e) infrastructure with everything needed
for building end-to-end enterprise application integration (EAI) solutions. iWay
works with all major integration brokers — the heart of EAI systems — so
they can connect to virtually any transaction system, application, business
package, or data source in an enterprise.

iWay’s EAI solutions work with one’s existing integration broker. These
features include:

�

iWay Enterprise Integrator

2

 (see Exhibit 1)

�

Connectors for one’s existing current integration broker

�

iWay Connector for IBM MQSeries Integrator, or the iWay IBM MQSeries
Connector if one already uses MQSeries messaging and queuing

�

iWay Network Adapters for virtually all enterprise network protocols

�

Information for over 120 data sources from iWay’s Enterprise Adapter Suite

�

iWay Transaction Processing Adapters and the iWay Terminal Emulation
Adapter to extend enterprise transaction systems and terminal applications
for E-business

iWay Software: E-Business Integration

iWay Software’s reusable service channel architecture provides E2e integration
capabilities. With its simplified, universal view of all back-office information
systems — no matter how complex — iWay’s service channel architecture lets
one create new composite applications and message flows (see Exhibit 2).

AU1272Ch06Frame Page 160 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff

161

Among the features are:

�

iWay Application Server, including an embedded WebSphere Application
Server Advanced Edition from IBM (One can optionally use one’s own
J2EE-compliant application server.)

�

iWay Application Developer (One can optionally use one’s own Java
development environment.)

�

iWay Enterprise Integrator, including an embedded MQSeries Integrator v
2.0 from IBM to provide integration broker-based EAI (One can optionally
use one’s existing integration broker.

Note:

 If already using MQSeries
Integrator, one may get the functionality of the iWay Enterprise Integrator
via the iWay Connector for IBM MQSeries Integrator.)

Exhibit 1. iWay Enterprise Integrator

Exhibit 2. E-Business Integration

Applications

Adapters

iWay
Enterprise
Integrator

Mobile Packaged Web

Transactions Applications Relational
Data

Legacy
Data

Applications

Adapters

iWay
Enterprise
Integrator

Wireless

iWay
Application

Server

Web

Transactions Applications Relational
Data

Legacy
Data

AU1272Ch06Frame Page 161 Monday, January 21, 2002 7:36 AM

162

The Complete Book of Middleware

�

iWay Network Adapters for virtually all enterprise network protocols

�

Information adapters for over 120 data sources from iWay’s Enterprise
Adapter Suite

�

iWay Transaction Processing Adapters and the iWay Terminal Emulation
Adapter to extend enterprise transaction systems and terminal applications
for E-business

iWay Software: Mobile E-Business Integration

E2e integration components aim at integrating mobile solutions with complex
back-office environments. iWay mobile E-business solutions (see Exhibit 3)
include its service channel architecture for connecting mobile applications to
virtually any transaction system, application, business package, or relational
or non-relational data source in an enterprise.

Features include:

�

One or more applications from iWay Mobile Application Suite developed
with NovaSync

�

iWay Mobile Computering Server, a Java Application Server with available
mobile technologies from Pumatech or Aether

�

iWay Application Developer (One can optionally use Java development
environment.

)

�

iWay Enterprise Integrator, including an embedded MQSeries Integrator
v2.0 to provide integration broker-based EAI (One can optionally use one’s
existing integration broker.

Note:

 If already using IBM’s MQSeries Integrator,

Exhibit 3. Mobile E-Business Integration

Palm Palm Palm Palm Phone Pager

iWeb
Remote
Ranger

Other
Mobile

Applications

Pumatech
or

Aether

Java
Application

Server

iWay
Enterprise
Integrator

iWay Mobile
Computing Server

Adapters

Transactions Applications Relational
Data

Legacy
Data

AU1272Ch06Frame Page 162 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff

163

one may get the functionality of the iWay Enterprise Integrator using the
iWay Connector for IBM MQSeries Integrator.)

�

Information adapters for over 120 data sources from iWeb’s Enterprise
Adapter Suite

�

iWay Network Adapters for virtually all enterprise network protocols

iWay Software: B2B Integration

iWay Software’s B2B products work with most popular integration servers. Its
reusable service channel architecture provides a simplified view of one’s back
office — even when one is using technologies such as XML, wireless, and
IBM MQSeries. iWay’s B2B integration solutions (see Exhibit 4) include:

�

iWay Enterprise XML Connector

�

iWay Connector for IBM MQSeries Integrator or the iWay IBM MQSeries
Connector if already using MQSeries messaging and queuing

�

iWay Network Adapters for virtually all enterprise network protocols

�

Information adapters for over 120 data sources from iWay’s Enterprise
Adapter Suite

iWay Software: E-Commerce Integration

iWay Software’s E-Commerce products and reusable service channel architec-
ture provide a complete E2e infrastructure with everything needed for building
end-to-end E-commerce solutions. That allows one to connect E-buying, E-
selling, and other E-services to virtually any transaction system, application,
or relational or non-relational data source in an enterprise.

The iWay e-Commerce Suite (see Exhibit 5) includes IBM’s E-commerce
technologies, together with value-added components that extend them to
virtually all back-office environments.

Exhibit 4. B2B Integration

Adapters

Transactions Applications Relational
Data

Legacy
Data

iWay
XML

Connector

Any
Integration

Server

AU1272Ch06Frame Page 163 Monday, January 21, 2002 7:36 AM

164

The Complete Book of Middleware

E-commerce solutions include:

�

iWay Commerce Suite, including an embedded WebSphere Application
Server from IBM

�

iWay ETL Manager for populating storefront databases from back-office
systems

�

For integration broker-based EAI, optional iWay Enterprise Integrator —
or use existing integration broker

�

iWay Application Developer (One can optionally use one’s own Java
development environment.)

�

If already using IBM’s MQSeries Integrator, one may get the functionality
of the iWay Enterprise Integrator using the iWay Connector for IBM
MQSeries Integrator

�

iWay Network Adapters for virtually all enterprise network protocols

�

Information adapters for over 120 data sources, from iWay’s Enterprise
Adapter Suite

DBMS/SQL Middleware

This section focuses on two types of DBMS middleware: Pervasive SQL and
MERANT Java.

Pervasive.SQL Middleware

Pervasive Software’s history began in 1982 when SoftCraft was founded to
create the PC-based Btrieve database and market it to commercial developers

Exhibit 5. E-Commerce Suite

Adapters

iWay
Enterprise
Integrator

Wireless Web

Transactions Applications Relational
Data

Legacy
Data

E-Buying
Services

Other
E-Services

E-Selling
Services

iWay
Application

ServeriWay
ETL

iWay E-Commerce Suite

AU1272Ch06Frame Page 164 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff

165

building business-critical applications. In 1987, Novell acquired SoftCraft and
merged Btrieve with the NetWare network operating system. As Btrieve’s
popularity grew, new products, such as the Scalable SQL relational database,
were introduced to the market. In 1994, Novell sold its database business and
Btrieve Technologies was born. Renamed Pervasive Software in 1996 to reflect
a growing worldwide presence, Pervasive completed its initial public offering
in September 1997.

Pervasive.SQL 2000/2000i is an evolution of the Btrieve database engine,
provides a system analyzer, is platform independent, and has Object Database
Connectivity (ODBC), Object Linking and Embedding Database data source
(OLE DB), and Java Database Connectivity (JDBC) interfaces. Available on
NT/2000, Netware, Solaris, and Linux (Red Hat, Caldera, SuSE), it plays well
with Microsoft’s Visual environment, as well as Delphi, Cobol, and Magic, and
allows one to move between databases.

Samples on integration with Perl and PHP are provided. Pervasive.SQL
2000i has native support for all Btrieve applications and associated data, and
provides samples on integration with Perl PHP.

MERANT Data Connectivity

MERANT

3

 DataDirect offers two options for data connectivity for each standard
API (JDBC, ODBC, and ADO): connect application components for a client-
or server-based application, and SequeLink — end-to-end data middleware.
With SequeLink, one can add on database servers or APIs to extend data
access across the enterprise.

SequeLink Java Edition is a result of MERANT DataDirect’s technological
breakthrough that became the first JDBC driver to earn Sun’s “100% Pure Java”
certification. Recognizing Java’s unique value to Internet applications, MERANT
designed JDBC middleware with built-in features for online environments.

SequeLink Java, in particular, provides full multi-threaded Java-based con-
nectivity to diverse data sources, including desktop, relational databases,
enterprise resource planning (ERP), and mainframe and legacy data, across a
wide variety of interfaces and operating systems. It offers multi-level security
capabilities essential for secure business applications or online transactions.
SequeLink Java includes the ability to spool or cache database requests.

XML Database Middleware

Database middleware is software used by data-centric applications to transfer
data between XML documents and databases. It is written in various languages,
but almost all use ODBC, JDBC, or OLE DB for relational databases. A Web
server is required for most middleware products if one wants to take advantage
of remote data access.

XML database middleware products are arbitrarily grouped into three parts:
commercial, evaluation-only, and open-source products.

AU1272Ch06Frame Page 165 Monday, January 21, 2002 7:36 AM

166

The Complete Book of Middleware

Commercial Products

The following products offer commercial license and allow data transfer in
both directions: from XML to database and from database to XML, unless
otherwise indicated.

1. ActiveX Data Object (ADO): Microsoft
2. Allora: HiT Sioftware
3. Attunity Connect
4. DB-X: Swift, Inc.
5. DB/XML Vision and xPower Transform: BDI Systems
6. Delphi: Borland
7. PerXML Smart Transformation System: PerCurrence
8. XML-DB Link: Rogue Wave Software
9. XML Junction and Data Junction Suite

10. XMLShark: infoShark
11. XML SQL Utility for Java (Oracle8i Application)
12. Net.Data: IBM

ActiveX Data Object (ADO): Microsoft

URL:

http://www.microsoft.com/data/ado/

Data source:

ADO/OLE DB, ODBC

Description

: ADO can persist a Recordset object as an XML document and
open the latter as a Recordset object. It provides a way to
transfer data between XML and a database, using Recordsets as
intermediate objects. The XML document is split into two parts:
(1) the first part maps the XML in the second part to the
Recordset, and (2) the second part contains the actual data in
XML format.

ADO’s use of XML allows a tree of nested elements to be
opened as the tree of nested Recordsets, and vice versa. If the
Recordset contains pending updates, deletes, or inserts, these
are specifically flagged in the XML document with ADO-specific
tags. One feature of ADO is Remote Data Service (RDS), which
allows developers to create data-centric applications within
ActiveX-enabled browsers such as Internet Explorer.

Allora: HiT Software

URL:

http://www.hitsw.com/dsheets/alloramidware.htm
Data

source

: ODBC, OLE DB, JDBC

Description:

Allora is an XML platform that consists of design-time tools for
mapping XML to relational data and a set of APIs (runtime

AU1272Ch06Frame Page 166 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff 167

engine) for building applications that are integrated with rela-
tional databases. The product can call to retrieve data from a
table, result set, or catalog query as a Document Object Model
(DOM) tree or as Simple API for XML (SAX) events.

Allora is available in Java and Windows versions. The Java
version shows how the DOM tree is constructed, and how the
changes to the tree are tracked. The Windows version comes
with a graphical database viewer and a tool for tracing API calls.

ASP2XML: Stonebroom

URL: http://www.stonebroom.com/asp2xml.htm
Data source: ODBC, OLE DB
Description: ASP2XML provides an interface between almost any ODBC- or

OLE DB-compliant data source and any XML-enabled client. It
is designed for use with Microsoft Active Server Pages (ASP)
scripts, or as a stand-alone COM-compliant ActiveX Dynamic
Link Library (DLL) component. ASP2XML offers a range of
options, including provision for creating XML documents as disk
files.

Attunity Connect

URL: http://www.attunity.com/content/products/
Data Source: Relational and non-relational such as IMS, ADABAS, Enscribe,

DB2, Sybase, and Oracle
Description: Attunity Connect integrates applications and data sources

through industry-standard interfaces. It can receive SQL state-
ments in XML and return results in XML, enabling solutions to
construct complex XML documents using standard SQL state-
ments.

DB-X: Swift, Inc.

URL: http://www.swiftinc.co.jp/en/frame/products/XMLServerWare/
DB-X/

Data Source: Relational via ADO
Description: DB-X is a Windows-based component that connects to RDMS

(like Oracle, SQL Server, ODBC data sources) and transforms
data to XML format via an XSLT-like language. It transfers data
from one or more ADO record sets to an XML document and
uses DB-X-specific elements to embed queries in a template.

AU1272Ch06Frame Page 167 Monday, January 21, 2002 7:36 AM

168 The Complete Book of Middleware

DB/XML Vision and xPower Transform: BDI Systems, Inc.
(acquired by DataMirror Corp.)

URL: http://www.bdisystems.com/
Data Source: JDBC
Description: DB/XML Vision automatically creates XML documents contain-

ing hierarchical data from any database for B2B applications,
and integration with EDI and databases. Its Tree-Structured-
Query tool allows query-in-and-structured-XML-out with no
need to write any code to structure result sets. xPower Transform
provides an engine for bi-directional data transformation
between XML, database, and text formats.

Delphi: Borland

URL: http://www.borland.com/delphi/del6/featurematrix/
bizsnap.html

Data Source: Relational, such as Borland Database Engine, ADO, InterBase
Description: Delphi is an application development tool that supports the

transfer of data between XML documents and databases through
the use of client data sets. Data set updates can be reflected in
both the database and the XML document. Note: DataSnap, a
Web services-enabled database middleware, is now available.

PerXML Smart Transformation System: PerCurrence

URL: http://www.percurrence.com/products/index.html
Data Source: Relational
Description: The PerXML Smart Transformation System includes a runtime

engine to reduce the time and cost of building and maintaining
XML applications. The PerXML Client supports major editing
environments such as XML Spy and XMetal Pro, while the
PerXML Server supports dynamic content integration and deliv-
ery in XML, HTML, Wireless Markup Language (WML), and most
other Web environments.

PerXML transforms non-XML data into XML (e.g., database
to XML), and integrates native XML and legacy data into XML
documents. PerXML can accept all kinds of content (text,
images, animations) for transformation into a common XML
view with which the user can use PerXML to recombine the
content into new objects.

XML-DB Link: Rogue Wave Software

URL: http://www.roguewave.com/products/xml/xmldblink/
Data Source: Relational via (OpenSQL — a Rogue Wave database API)

AU1272Ch06Frame Page 168 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff 169

Description: XML-DB Link is a Web server plug-in that accesses relational
databases based on predefined, parameterized SQL statements
called “services.” When XLM-DB Link receives a request for a
Web service, it locates the appropriate service, accesses the
database to get information, and executes the service. Results
are transformed into XML as a SOAP document, and then sent
back to the client where they are displayed or used by the
requesting application.

XML Junction and Data Junction Suite

URL: http://www.xmljunction.net/; http://www.datajunction.com/
Data Source: ODBC, OLE DB, Native Drivers
Description: XML Junction is used for rapidly building E-business and appli-

cation integration solutions and is a component within Data
Junction’s Integration Suite, the basis for B2B, EAI, and business
intelligence solutions. Data Junction contains a transformation
engine to convert databases into non-database formats (includ-
ing XML) and vice versa. XML Junction is a visual mapping and
integration tool that handles all dialects of XML as well as data
type definitions (DTDs), external data representations (XDRs),
and XML schema. One can map and move any type of data
(including electronic data interchange (EDI), SQL, ASCII,
COBOL, Binary) to or from XML, in batch mode or transaction
mode (using Java Message Service (JMS), MQSeries, or Microsoft
Message Queuing (MSMQ)). XML Junction is a free trial product.

XMLShark: infoShark

URL: http://www.infoshark.com/products/index.shtml
Data Source: Oracle, IBM DB2, Microsoft SQL Server and JDBC driver
Description: XMLShark is a software product for accomplishing distributed

data exchange, allowing organizations to share information cap-
tured within corporate databases with anyone in the world by
utilizing established XML document definitions. Developed in
Java, it allows customers to achieve interoperability among
diverse internal and external systems. Through a GUI, the user
controlling the source database specifies what data to transfer,
what server to use, and when to transfer the data. Similarly, the
user controlling the target database specifies when to read data
from the XML document.

XML SQL Utility for Java (Oracle8i Application)

URL: http://technet.oracle.com/docs/products/oracle8i/content.html
Data Source: JDBC

AU1272Ch06Frame Page 169 Monday, January 21, 2002 7:36 AM

170 The Complete Book of Middleware

Description: XML SQL Utility for Java is a set of Java classes for transferring
data between a relational database and an XML document. These
classes are found in either a provided front end or in a user-
written application. One must perform three steps when gen-
erating XML: (1) create a connection, (2) create an Oracle
XMLQuery instance by supplying a SQL string or a ResultSet
object, and (3) get the result as either a DOM tree or an XML
string.

Net.Data: IBM

URL: http://www-4.ibm.com/software/data/net.data/
Data Source: ODBC, JDBC, Native Drivers (database to XML)
Description: Net.Data is a scripting language that allows one to create Web

applications and is a no-cost feature of most versions of DB2
Universal Database. One can access data from DB2, Oracle,
Distributed Relational Database Architecture (DRDA)-enabled
data sources, and ODBC data sources, as well as flat file and
Web Registry data. One can also use ASP to connect to DB2
through ODBC and ADO. Net.Data Version 7.2 for OS/2, Win-
dows NT, and UNIX provides XML output, XHTML compatibility,
file upload capability, and SQL statement nesting. Version 7
Net.Data for OS/390 and z/OS includes FastCGI, a COBOL
language environment, and enhanced tracing.

Evaluation-Only Products

The following products are downloadable, are subject to evaluation, and have
not yet been licensed. They allow data transfer in both directions: from XML
to database, and from database to XML.

� DatabaseDom: IBM
� DataCraft: IBM

DatabaseDom: IBM

URL: http://www.alphaworks.ibm.com/tech/databasedom
Data Source: JDBC
Description: DatabaseDom is a combination of Java JDBC, IBM Data Access

Bean, and DOM programming. It includes an XML template file
to define the database and XML structure. A JavaBean is used
to read the template, to create XML from the results of a database
query, and to update the database based on a new or modified
XML structure.

When the tree structure gets deep, recursive methods of
searching through and rebuilding XML trees become inefficient.

AU1272Ch06Frame Page 170 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff 171

As a partial solution, the faster hashtable data structure is used
to search and update JDBC databases. The data from XML DOM
tree format can be updated into JDBC database tables while
XML files can be stored back into a database format.

DataCraft: IBM

URL: http://www.alphaworks.ibm.com/tech/datacraft
Data Source: DB2, Microsoft Access (database to XML)
Description: DataCraft is a tool targeted for Resource Description Framework

(RDF)/XML applications within the context of Web-commerce
applications and is a facility capable of generating visual query
skeletons for use with IBM DB2 or Microsoft Access. It employs
RDF and XML to describe data collection structures and to
exchange resource schema and query between the server and
client. Written in Java, DataCraft can be accessed by Web
browsers.

Java-Based Database Middleware
Not all database middleware products are fully Java-compliant. Some contain
JavaBeans while others do not. Not all fully JDBC-compliant products are
certified by Sun as “100% Pure Java.”

The following are examples of these products. Additional sources of
information can be obtained from http://www.infoworld.com, and http://
www.informationweek.com.

1. Business Sight Framework: Objectmatter
2. CocoBase (Free, Lite, Enterprise): Thought Inc.
3. CocoBase Enterprise Object to Relational Mapping: Thought Inc.
4. DataDirect SequeLink: MERANT
5. DB2 Universal Database: IBM
6. IBM dbANYWHERE Server: Symantec
7. DbGen Professional Edition: 2Link Consulting, Inc.
8. Enterprise Component Broker: Information Builders, Inc.
9. ExpressLane: XDB Systems

10. FastForward: Connect Software
11. Fresco: Infoscape Inc.
12. HiT JDBC/400: HiT Software Inc.
13. HiT JDBC/DB2: HiT Software, Inc.
14. IDS Server: IDS Software
15. Jaguar CTS: Sybase Inc.
16. Javabase/400: Telasoft Data Corporation
17. jConnect for JDBC: Sybase Inc.
18. JDBC Developer: Recital Corporation
19. JDBC Lite: Software Synergy Listing

AU1272Ch06Frame Page 171 Monday, January 21, 2002 7:36 AM

172 The Complete Book of Middleware

20. JdbCache: Caribou Lake Software Inc.
21. jdbcKona: BEA Systems, WebXpress Division
22. JDX: Software Tree
23. JRB–Java Relational Binding: Ardent Software, Inc.
24. JSQL: Caribou Lake Software Inc.
25. Jsvr: Caribou Lake Software Inc.
26. JYD Object Database: JYD Software Engineering Pty Ltd.
27. ObjectStore PSE for Java: Object Design Inc.
28. OpenLink Data Access Drivers For JDBC: OpenLink Software Inc.
29. Oracle Lite: Oracle Corporation
30. POET Object Server Suite: POET Software Corporation
31. PRO/Enable: Black & White Software Inc.
32. Relational Object Framework: Watershed Technologies
33. RmiJdbc: GIE Dyade
34. SCO SQL-Retriever: SCO
35. SOLID JDBC Driver: Solid Information Technology Ltd.
36. SOLID Server: Solid Information Technology Ltd.
37. Versant ODBMS: Versant Object Technology
38. VisiChannel (JDBC): Visigenic Software Inc.

Business Sight Framework: Objectmatter

Platforms: Intel: Windows 95/98/NT/2000
Cert. 100% Pure: No
Java Bean: No
Description: Business Sight Framework is an object-relational Java class

library. It allows Java objects to be saved and retrieved from
relational databases accessible by JDBC, Remote Data
Object (RDO), or ADO with Microsoft’s ODBC drivers. The
Framework supports local objects in a single-user or client/
server configuration, as well as distributed business objects
in a n-tier architecture. A graphical user interface (GUI)
mapping tool can be used to reverse-engineer existing Java
classes and database tables, and generate Java source tem-
plates and Data Definition Language (DDL) scripts.

CocoBase (Free, Lite, Enterprise): Thought Inc.

Platforms: Intel PC, SPARC, RS/6000, HP/9000, Mac, SGI, Alpha, AS/
400, Windows 95/98/NT/2000, Solaris, AIX, HP/UX, MacOS,
JavaOS, Irix, OS/2, OS/400

Cert. 100% Pure: No
Java Bean: Yes
Description: An object-to-relational mapping tool, CocoBase sits on top

of the JDBC drivers and employs Common Object Request
Broker Architecture (CORBA) or Remote Method Invocation
(RMI) to access and manipulate databases and data stores

AU1272Ch06Frame Page 172 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff 173

as application objects without using the SQL. It glues
together the GUI, ORB (or RMI), and JDBC driver of the
developer’s choice. The Enterprise version includes tools
for mapping objects, and converting classes into objects,
and tables to objects.

CocoBase Enterprise Object to Relational Mapping: Thought Inc.

Platforms: Windows, Solaris, Linux, HP, SGI, AIX
Cert. 100% Pure: Yes
Java Bean: Yes
Description: CocoBase maps database tables or Java classes, creates

Container or Bean Managed Persistent Beans (CMP/BMP),
and generates Java Server Pages (JSPs) for the popular EJB
J2EE application servers, including Allaire, BEA Weblogic,
Borland, Bluestone, Gemstone, IBM WebSphere, iPlanet,
JBOSS, and Sybase.

DataDirect SequeLink: MERANT

Platforms: Windows, Solaris, AIX, OS/400, DEC UNIX
Cert. 100% Pure: Yes
Java Bean: Yes
Description: SequeLink Java Edition delivers data integration for all major

platforms and data stores. By implementing the full JDBC
specification, it ensures database support and complete
compatibility across the latest browsers and Java servers.
This product provides direct, native access to data, thus
eliminating the need for gateways or DBMS vendor mid-
dleware.

DB2 Universal Database: IBM

Platforms: Intel, SPARC, RS/600, HP/9000, Windows 95/NT, Solaris,
AIX, HP/UX, OS/2

Cert. 100% Pure: No
Java Bean: No
Description: DB2 Universal Database is a multimedia, Web-enabled data-

base for decision support, data warehousing and data min-
ing, and OLAP and online transaction processing (OLTP).

dbANYWHERE Server: Symantec

Platforms: Intel PC, Windows 95/98/NT/2000
Cert. 100% Pure: No
Java Bean: No

AU1272Ch06Frame Page 173 Monday, January 21, 2002 7:36 AM

174 The Complete Book of Middleware

Description: dbANYWHERE Server is a middleware application server
that manages transactions and connectivity between Java
clients and many databases — Oracle, Sybase, MS SQL
Server, Sybase SQL-Anywhere, MS Access, and other ODBC
sources, including DB2. This product is 100 percent JDBC
compliant.

DbGen Professional Edition: 2Link Consulting, Inc.

Platforms: Intel, SPARC, Windows 95/98/NT/2000, Solaris, x.86 Solaris
Cert. 100% Pure: No
Java Bean: Yes
Description: DbGen is an object-relational mapping tool that generates

Java objects to do basic insert, update, and delete operations
on the tables of a relational database via a JDBC driver.

Enterprise Component Broker: Information Builders, Inc.

Platforms: Intel, SPARC, HP/9000, RS/6000, Windows 95/98/NT/2000,
Solaris, OS/2, AIX, HP/UX, Netware 4.11

Cert. 100% Pure: No
Java Bean: Yes
Description: Enterprise Component Broker is an Application Server and

Java development platform for client- and server-side appli-
cations using the JavaBean component model. It enables
connections to Java applications for integration with trans-
action systems such as CICS and IMS, other applications,
and many databases.

ExpressLane: XDB Systems

Platforms: Intel PCs, Windows 95/98/NT/2000
Cert. 100% Pure: No
Java Bean: No
Description: ExpressLane optimizes performance of Java-based applets

and business applications when accessing MVS/DB2, IMS,
and VSAM data sources. It includes an optional RDBMS, a
native JDBC driver, as well as a smart ODBC driver, Link
software, and GUI tools for developing and deploying appli-
cations.

FastForward: Connect Software

Platforms: Intel, SPARC, Windows NT/95, Solaris
Cert. 100% Pure: No
Java Bean: No

AU1272Ch06Frame Page 174 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff 175

Description: FastForward is a JDBC implementation for Sybase and
Microsoft SQL Server.

Fresco: Infoscape Inc.

Platforms: Intel, SPARC, Mac, Windows 95/98/NT/2000, Solaris, System 7
Cert. 100% Pure: Yes
Java Bean: No
Description: The Fresco product family is a suite of tools and servers

for creating and deploying enterprise-scale intranet database
applications. It includes Fresco Designer, a Java rapid appli-
cation development tool; Fresco Information Server, an
intranet application server; and Fresco Adapters, providing
seamless connections to corporate databases.

HiT JDBC/400: HiT Software, Inc.

Platforms: Windows, Solaris, Linux, AS/400
Cert. 100% Pure: Yes
Java Bean: Yes
Description: HiT JDBC/400 is fully Java-compliant middleware for DB2/

400 SQL that can access databases from custom applications
and third-party products. HiT JDBC/400 accepts standard
JDBC function calls; translates these into native DB2/400
SQL; and communicates with the AS/400 server to retrieve,
update, and insert DB2 data (type 4 driver). All communi-
cation with the DB2/400 servers can be encrypted and
authenticated via SSL v3.0. HiT JDBC/400 works with any
operating system running Java Virtual Machine (JVM) 1.02
or later, including Windows, UNIX, Linux, IBM OS/400, and
IBM OS/390.

HiT JDBC/DB2: HiT Software, Inc.

Platforms: Windows, Solaris, Linux, AS/400
Cert. 100% Pure: Yes
Java Bean: Yes
Description: HiT JDBC/DB2 accepts standard JDBC function calls; trans-

lates these into native DB2 SQL; and communicates with
the DB2 servers to retrieve, update, and insert DB2 data
(type 4 driver). All communication with the DB2 server can
be encrypted and authenticated via SSL v3.0. Leveraging the
IBM Distributed Relational Database Architecture (DRDA)
protocol, HiT JDBC/DB2 uses native IBM server programs
and does not require any additional DB2 server software.
The middleware supports DB2 Universal Database (UDB)

AU1272Ch06Frame Page 175 Monday, January 21, 2002 7:36 AM

176 The Complete Book of Middleware

for OS/390 and works with any operating system running
JVM 1.02 or later, including Windows, UNIX, Linux, IBM
OS/400, and IBM OS/390.

IDS Server: IDS Software

Platforms: Windows 95/98/NT/2000
Cert. 100% Pure: No
Java Bean: No
Description: IDS JDBC Driver, which comes with the IDS Server, is a

Type-3 JDBC driver. It supports JDK 1.02 and JDK 1.1
browsers, zero client installation, public key encryption
(Secure JDBC), firewall access, ResultSet caching, and any
other features not found in competing JDBC drivers.

Jaguar CTS: Sybase Inc.

Platforms: Intel, SPARC, HP/9000, RS/6000, Windows NT/2000, Solaris,
HP/UX, AIX

Cert. 100% Pure: No
Java Bean: Yes
Description: Jaguar is a component transaction server designed to deliver

scalable, transaction-based applications for the Internet. It
supports multiple component models, including JavaBeans,
ActiveX, and C/C++ while providing connection manage-
ment, session management, monitoring, multi-database con-
nectivity, and point-and-click administration. The
production version supports EJBs and a set of APIs to allow
JavaBeans to run in a transaction server.

Javabase/400: Telasoft Data Corporation

Platforms: Intel, AS/400, Windows 95, x.86 Solaris, OS/400
Cert. 100% Pure: No
Java Bean: Yes
Description: Javabase/400 is a client/server application that provides Java

with secure record-level access to the AS/400 relational
database DB2/400. You can access record and field level
database files, call AS/400 programs or commands, and
return parameters.

jConnect for JDBC: Sybase Inc.

Platforms: Intel, SPARC, Alpha, HP/9000, SGI, RS/6000, Mac, Windows
95/98/NT/2000, Solaris, DEC UNIX, HP/UX, Irix, AIX, System 7

Cert. 100% Pure: Yes

AU1272Ch06Frame Page 176 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff 177

Java Bean: Yes
Description: jConnect for JDBC translates JDBC calls directly into Sybase’s

native protocol, Tabular Data Stream (TDS), and is well
suited for “thin-client” business applications where no client
software installation is desired. It directly supports Sybase’s
SQL Server; SQL Anywhere; and more than 25 other data
sources, including Oracle, DB2, and Informix and through
Sybase’s middleware products OmniConnect and Direct-
Connect.

JDBC Developer: Recital Corporation

Platforms: Windows, Solaris, Linux, BSD, HP/UX, Irix, AIX, OpenVMS
Cert. 100% Pure: No
Java Bean: Yes
Description: JDBC Developer combines a JavaType 3/Type 4 JDBC 1.0

driver with a server architecture, allowing access to Recital,
Oracle, Ingres, Informix, DB2/6000, C-ISAM, Digital RMS,
dBase, FoxPro, Clipper, and ODBC data sources.

JDBC Lite: Software Synergy

Platforms: Intel, Windows NT/95
Cert. 100% Pure: No
Java Bean: No
Description: JDBC Lite is a lightweight JDBC driver, providing access to

ODBC databases. The driver requires only a tiny memory
footprint, and uses minimal overhead because it is down-
loaded with the applet. JDBC Lite works well on platforms
with limited memory.

JdbCache: Caribou Lake Software Inc.

Platforms: Windows, Solaris, Linux, AIX, HP/UX
Cert. 100% Pure: Yes
Java Bean: No
Description: JdbCache is a class library for “caching” multiple JDBC

connections within a multi-threaded Java application. It
pools, reuses, and serves JDBC connections, thus allowing
a Java application to reuse a small number of database
connections to service many requests. Usage statistics are
also provided.

jdbcKona: BEA Systems, WebXpress Division

Platforms: Windows, Solaris, SunOS, HP/UX, AIX, Irix, OS/2, OS/400

AU1272Ch06Frame Page 177 Monday, January 21, 2002 7:36 AM

178 The Complete Book of Middleware

Cert. 100% Pure: No
Java Bean: Yes
Description: The product includes JDBC drivers for Oracle, Sybase, Infor-

mix, and Microsoft SQL Server. Native drivers are JBDC-
compatible.

JDX: Software Tree

Platforms: Intel, SPARC, RS/6000, Windows 95/98/NT/2000, x.86
Solaris, Solaris, AIX

Cert. 100% Pure: No
Java Bean: No
Description: JDX provides transactional persistence of Java objects in

relational databases by mapping relational data to Java
objects. With JDX, programmers are not required to write
SQL statements.

JRB–Java Relational Binding: Ardent Software, Inc.

Platforms: Intel PC, SPARC, HP/9000, SGI, RS/6000, Windows 95/98/
NT/2000, Solaris 2.4/2.5

Cert. 100% Pure: No
Java Bean: Yes
Description: JRB bridges the gap between applications and databases,

while providing persistence for Java developers. Program-
mers can read Java objects from and write Java objects to
the database. Objects are automatically mapped into data-
base format, offering transparent management of persistent
Java objects. This eliminates the need for developers to
know the location of either the underlying database engine
or stored objects.

JSQL: Caribou Lake Software Inc.

Platforms: Windows, Solaris, Linux, AIX, HP/UX
Cert. 100% Pure: No
Java Bean: No
Description: JSQL is a multi-tier software suite designed for secure, robust

mission-critical Java applications requiring JDBC. The prod-
uct is compliant with Sun’s JDBC 2.0 specification.

Jsvr: Caribou Lake Software Inc.

Platforms: Windows, Solaris Intel, Solaris, DEC UNIX, HP/UX, Irix, AIX
Cert. 100% Pure: Yes
Java Bean: Yes

AU1272Ch06Frame Page 178 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff 179

Description: Jsvr is a JDBC connection server configurable with client-
specified timeouts, meta data, BLOB support, complete
connection logging, and advanced security features.

JYD Object Database: JYD Software Engineering Pty Ltd.

Platforms: Windows, Solaris, Linux
Cert. 100% Pure: No
Java Bean: No
Description: This product is an object DBMS for use by Java applications.

It is a multi-user system with client/server support and
garbage collection on the database.

ObjectStore PSE for Java: Object Design Inc.

Platforms: Intel, SPARC, Alpha, HP/9000, SGI, RS/6000, Mac, Windows
95//98/NT/2000, x.86 Solaris, OS/2, Solaris, Irix, System 7

Cert. 100% Pure: Yes
Java Bean: Yes
Description: The product is a full-featured pure Java database with a

150-kilobyte footprint. An object architecture, it reduces
database and application memory requirements by 25 per-
cent or more because no mapping code is needed.

ObjectStore DBMS: Object Design Inc.

Platforms: Intel, SPARC, Alpha, HP/9000, RS/6000, SGI, Windows NT,
Solaris, Solaris x.86, DEC UNIX, HP/UX, AIX, Irix

Cert. 100% Pure: No
Java Bean: No
Description: ObjectStore is an object database management system

(ODBMS) for Java, C++, and ActiveX developers. It manages
data as objects rather than as rows and columns. Among
its features are native object storage, distributed data cach-
ing, seamless Java integration, navigational access, and
extensibility.

OpenLink Data Access Drivers for JDBC: OpenLink Software Inc.

Platforms: Intel, SPARC, Alpha, HP/9000, Mac, Windows, x.86 Solaris,
Linux, BSD, Solaris, SunOS, DEC UNIX, HP/UX, MacOS,
InixWare, SCO

Cert. 100% Pure: No
Java Bean: Yes
Description: The product contains JDBC drivers providing access to remote

database engines from JDBC-compliant Java Applications,
Applets, Serverlets, and Bean Components. It gives bi-

AU1272Ch06Frame Page 179 Monday, January 21, 2002 7:36 AM

180 The Complete Book of Middleware

directional scrollable cursor support to all database engines
supported by OpenLink Software: Oracle, Informix, CA/
OpenIngres, Sybase, Progress, MS SQL Server, Unify, DB2,
Postgres95, Kubl, and Velocis.

Oracle Lite: Oracle Corporation

Platforms: Intel, SPARC, Mac, Windows 95/98/NT/2000, Solaris, System 7
Cert. 100% Pure: Yes
Java Bean: No
Description: Oracle Lite is a single-user object-relational DBMS with Java

object persistence, standard Oracle interfaces, Java stored
procedures and triggers, and native JDBC driver. It includes
replication to servers with SQL*Net, FTP, API, HTTP, mime
or file-based protocols.

POET Object Server Suite: POET Software Corporation

Platforms: Windows, Linux, Solaris, HP/9000
Cert. 100% Pure: No
Java Bean: Yes
Description: POET Object Server Suite (OSS) 6.0 is a database solution

for creating packaged, complex data applications. It com-
bines POET’s FastObject Technology with multi-threading
and transaction capabilities.

PRO/Enable: Black & White Software Inc.

Platforms: Intel, SPARC, HP/9000, Windows 95/98/NT/2000, Solaris,
HP/UX

Cert. 100% Pure: No
Java Bean: No
Description: PRO/Enable (Persistent Relational-Object) provides persis-

tent relational-object mapping and application development
for three-tier applications on UNIX and Windows platforms.

Relational Object Framework: Watershed Technologies

Platforms: Intel, HP/9000, RS/6000, Windows, Linux, HP/UX, AIX
Cert. 100% Pure: No
Java Bean: Yes
Description: Relational Object Framework (ROF) is a relational DBMS

(RDBMS) to Java Object middleware layer for enterprise
application development and is complementary to EJB, JSP,
CORBA, and servlet solutions. It provides a bridge by mapping
Java Objects to database elements. With ROF, developers

AU1272Ch06Frame Page 180 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff 181

are not required to know about SQL in order to connect
business objects to a relational database.

RmiJdbc: GIE Dyade

Platforms: RS/6000; AIX
Cert. 100% Pure: No
Java Bean: No
Description: RmiJdbc is a client/server JDBC driver that relies on Java

RMI. All JDBC classes, such as Connection and ResultSet,
are distributed as RMI objects.

SCO SQL-Retriever: SCO

Platforms: Intel, SPARC, Alpha, HP/9000, RS/6000, Windows 95/98/
NT/2000, SCO, Solaris, HP/UX, AIX

Cert. 100% Pure: No
Java Bean: No
Description: SCO SQL-Retriever is designed for rapid development of

database access solutions. It uses JDBC/ODBC to deliver
UNIX-based SQL database information to PCs without the
cost or complexity associated with proprietary database
vendor networking products.

SOLID JDBC Driver: Solid Information Technology Ltd.

Platforms: Intel, SPARC, HP/9000, RS/6000, SGI, Windows 95/98/NT/
2000, Linux, SCO, UNIXWare, OS/2, Solaris, HP/UX, Irix,
AIX, VxWorks

Cert. 100% Pure: No
Java Bean: No
Description: SOLID JDBC Driver is a full Java implementation of JDBC,

providing native database access to SOLID Server. It can be
downloaded on the fly, enabling the use of SOLID database
in thin-client Java applications.

SOLID Server: Solid Information Technology Ltd.

Platforms: Intel, SPARC, HP/9000, RS/6000, SGI, Windows, Linux, SCO,
UNIXWare, OS/2, Solaris, HP/UX, Irix, AIX, VxWorks

Cert. 100% Pure: No
Java Bean: No
Description: SOLID Server is a compact database engine for embedded

use in Web applications and packaged software. It has a
native ODBC driver and a fully Java-compliant native JDBC
driver.

AU1272Ch06Frame Page 181 Monday, January 21, 2002 7:36 AM

182 The Complete Book of Middleware

Versant ODBMS: Versant Object Technology

Platforms: Intel, SPARC, HP/9000, SGI, RS/6000, Win NT/2000, Solaris,
HP/UP, Irix, RS/6000

Cert. 100% Pure: No
Java Bean: No
Description: Versant Object Database Management System is Java-

enabled persistent storage for objects. It supports the ODMG
2.0 standard for transactional object data management, and
provides native thread support, Javasoft collections, high
concurrency, and fault tolerance.

VisiChannel (JDBC) Visigenic Software Inc.

Platforms: Intel, SPARC, Windows NT, Solaris
Cert. 100% Pure: No
Java Bean: Yes
Description: A JDBC driver is well suited for most popular DBMSs via

ODBC drivers and works with firewalls. It is fully JDBC
compliant and built on top of company’s VisiBroker CORBA
product.

XML-Enabled Databases
XML-enabled databases are databases (usually relational) that contain exten-
sions (either model- or template-driven) for transferring data between XML
documents and themselves. They are generally designed to store and retrieve
data-centric documents. This is because data is transferred to and from user-
defined tables rather than database tables specifically designed to model XML
documents.

Because many databases can publish documents to the Web, the line
between XML-enabled databases and XML servers is blurred, although the
latter are designed primarily for building Web-based applications. More distinct
is the line between XML-enabled databases, XML application servers (which
cannot receive data as XML), and content management systems (which are
generally used for storing document-centric documents and contain features
such as editors and version control).

This section describes the following XML-enabled databases.

1. DB2 XML Extender: IBM
2. Informix: IBM
3. Microsoft SQL Server 2000
4. Microsoft Access 2002
5. Oracle8i/9i Application Servers

AU1272Ch06Frame Page 182 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff 183

DB2 XML Extender and DB2 Text Extender: IBM

URL: http://www-4.ibm.com/software/data/db2/extenders/
xmlext.html, http://www-4.ibm.com/software/data/db2/extend-
ers/text.htm

Data Source: Relational
Description: The DB2 XML Extender is used to transfer data between XML

documents and DB2. XML DTDs are mapped to relational
schema (and vice versa) with the XML-based Data Access Def-
inition (DAD) language. The language comes in two flavors:
SQL mapping and relational database (RDB) node mapping.
SQL mapping is a template-based language and can only be
used to transfer data from the database to an XML document.
RDB node mapping is a model-based language and uses object-
relational mapping. It can be used to transfer data both to and
from the database. Applications use stored procedures to invoke
the extender, which then stores or retrieves data based on the
DAD document. The DB2 Text Extender contains a variety of
search technologies, such as fuzzy searches and synonym
searches among others.

Informix: IBM

URL: http://www.informix.com/idn-secure/webtools/ot/,
http://www.informix.com/datablades/dbmodule/informix1.htm

Data Source: Relational
Description: Informix supports XML through its Object Translator and the

Web DataBlade. The Object Translator generates object code,
including the ability of objects to transfer their data to and from
the database. It also supports functionality such as transactions
and optimistic and pessimistic locking. A GUI tool allows users
to create object-relational mappings from XML documents to
the database and specify how to construct intermediate objects.
Object Translator Version 2.0 and higher supports SOAP as well
as the capability to generate XML DTDs from object and rela-
tional schema.

The Web DataBlade is an application that creates XML doc-
uments from templates containing embedded SQL statements
and other scripting language commands. It is run from a Web
server and supports most major Web server APIs.

Microsoft SQL Server 2000

URL: http://msdn.microsoft.com/library/periodic/period00/sql2000.
htm (see “XML Support” section), http://msdn.microsoft.com/
library/periodic/period00/thexmlfiles.htm

AU1272Ch06Frame Page 183 Monday, January 21, 2002 7:36 AM

184 The Complete Book of Middleware

Data Source: Relational
Description: Microsoft SQL Server 2000 supports XML in four ways:

� The FOR XML clause in SELECT statements. This clause has three
options specifying how the SELECT statement is mapped to
XML: RAW, AUTO, and EXPLICIT.

� Xpath queries using annotated XML-Data Reduced schemas.
These mapping schemas specify an object-relational mapping
between the XML document and the database, and are used to
query the database using a subset of Xpath.

� The OpenXML function in stored procedures. This function uses
a table-based mapping to extract parts of an XML document as
a table and use it in most places where a table name can be
used, such as the FROM clause of a SELECT statement. This
can be used, for example, in conjunction with an INSERT
statement to transfer data from an XML document to the data-
base.

� ADO 2.6. One can use ADO as a tool to process XML directly
without having to make conversions between XML and another
format. The version of ADO must be 2.6 or later.

Microsoft Access 2002

URL: http://www.microsoft.com/office/access/
Data Source: Relational
Description: Microsoft Access 2002 is the Windows XP Office Database

solution. It uses XML to publish and view reports on a Web
browser with HTML 4.0 or higher. These reports may contain
the results of data analysis using Microsoft PivotTable and
Microsoft ChartTable that allow one to view the information in
different ways. Access 2002 also imports XML documents into
Access (Jet) or an SQL Server database and exports XML from
Access into other formats. It can both upload tables to corporate-
level, back-end SQL Server and access information from it.
Access 2002 permits one to interact with data on the Web
browser via a Web-enabled database.

Oracle8i/9i Application Servers

URL: http://technet.oracle.com/tech/xml/info/htdocs/relational/
index.htm#ID795,
http://technet.oracle.com/docs/products/ifs/doc_index.htm
(registration required),
http://technet.oracle.com/products/intermedia/,
http://otn.oracle.com/products/reports/htdocs/
reports_faq.htm#XML1

Data Source: Relational

AU1272Ch06Frame Page 184 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff 185

Description: Oracle9i AS includes Native XML Database Support (XDB), and
navigational search for XML documents. Oracle9i supports XML
as a data source (including XML-Schema and xsql result sets).
Developers can describe an entire report definition in XML and
save the definition to either an RDF or XML file.

Oracle8i can store XML documents in three different ways:
� In the Internet File System (IFS)
� Using the XML SQL Utility for Java
� As a BLOB that can be searched using the Oracle Intermedia

XML Search.
The first two employ an object-relational mapping tool while
only IFS supports content management features such as check-
in/check-out and versioning. Oracle8i includes the XML Class
Generator to generate Java classes from a DTD.

Web Services-Enabled Database Middleware
DataSnap Enterprise Edition (see Exhibit 6) permits developers and companies
to enable their existing RDBMS infrastructure with industry-standard Web
services without major upgrades. It leverages distributed computing standards
such as SOAP/XML, Web Services Definition Language (WSDL), COM, TCP/
IP, and CORBA to allow the integration of existing systems with E-commerce
applications.

This product is fully client- and server-side compatible with Borland MIDAS
technologies. DataSnap optimizes RDBMS server connections and bandwidth
by centralizing data access and updates among all E-business processes.
DataSnap supports multiple Delphi data-access connectivity solutions with
access to Access, dBase, FoxPro, MySQL, MyBase, Paradox, Oracle, DB2, the
MS SQL server, Informix, Sybase, and InterBase. It runs on Microsoft Windows
2000, Windows Me, Windows 98, or Windows NT 4.0 with Service Pack 5 or
later.

Windows Telephony with TAPI
Windows Telephony Applications Programming Interface (TAPI) 2.1, a part of
the Windows Open System Architecture, lets developers create telephony
applications. TAPI is an open industry standard, defined with considerable
and ongoing input from the worldwide telephony and computing community.
TAPI-compatible applications can run on a wide variety of PC and telephony
hardware and can support a variety of network services.

Microsoft TAPI is a convergence platform that enables applications to
provide a consistent user experience even when the applications are running
on various topologies such as the public switched telephone network (PSTN),
ISDN, PBX systems, and IP networks. With other Microsoft products such as

AU1272Ch06Frame Page 185 Monday, January 21, 2002 7:36 AM

186 The Complete Book of Middleware

Exhibit 6. Dephi 6 DataSnap Feature Matrix

Feature
Enterprise

Edition
Professional

Edition
Personal
Edition

DataSnap Web-Service Enabled Database Middleware

New! Web Client, GUI Client, and Web
service access to any supported RDBMS

Y

New! SOAP/XML, COM, CORBA, Web, and
TCP/IP access connections available for
maximum network connectivity and flexibility

Y

New! Easily build XML/SOAP Web service
interfaces to any enterprise-class database —
Oracle, MS SQL Server, DB2, InterBase, and
more

Y

Dataset-based architecture for rapid learning
curve — use existing skillsets to scale
applications

Y

Support for dbGo, BDE, IBX, and
NewdbExpress data access architectures

Y

High availability with the object broker
failover safety to guarantee your data is ready
when you need it

Y

Load-balancing to promote the highest
performance even when under the heaviest
loads

Y

Distributed data with transaction processing
extends the reach of applications while
maintaining data integrity

Y

Automatic database constraint propagation
brings the business rules to the client
applications for local processing, conserving
server horsepower

Y

Low-maintenance, thin, and easily configured
client-side applications to reduce deployment
costs

Y

High-speed database connectivity yields
higher performance in applications

Y

Server object pooling maximizes the
conservation of resources on servers, keeping
materials costs down

Y

Supply data to thin-client applications rapidly,
efficiently, and securely

Y

Remote data broker to easily partition
applications

Y

AU1272Ch06Frame Page 186 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff 187

Microsoft SNA Server and Microsoft Exchange Server, this integration extends
to mainframe applications, messaging, and scheduling, among other things.
TAPI 2.1 addresses the client/server need for call control. A telephony client
application can integrate with the phone system via a link between the server
and phone system, or via a link between the desktop PC and telephone set.

Feature
Enterprise

Edition
Professional

Edition
Personal
Edition

TransactionResolver for transaction conflict
resolution

Y

Exclusive. Advanced Master/Detail Provider
and Resolver support

Y

BDE Resource Dispenser for MTS Y

Stateless DataBroker for more control in
mobile and low-bandwidth situations

Y

Server object pooling for complete scalability Y

Provider options increase control over how
and what information is transmitted

Y

DataSnap Development License included Y

Simple DataSnap deployment licensing Y

CORBAsupport

New! VisiBroker 4.0.x for Delphi 6, including
CORBA client and server development

Y

New! Wizards to simplify development of
CORBA clients and servers

Y

New! BorlandAppServer v4.5 SIDL support —
and build new rich applications and Web
services with Delphi’s RAD environment that
uses EJBs for AppServer

Y

Visual Type Library Editor — CORBA IDL
Emitter

Y

DataSnap CORBA connection component Y

Support for simultaneous COM and CORBA
objects

Y

Server object persistence model for greater
scalability

Y

Remote CORBA debugging/event stepping
(multi-platform — UNIX/NT/Java)

Y

Exhibit 6. Dephi 6 DataSnap Feature Matrix (Continued)

AU1272Ch06Frame Page 187 Monday, January 21, 2002 7:36 AM

188 The Complete Book of Middleware

HTTPR
As of August 2001, developers consider Reliable HTTP (HTTPR) an unpopular
item. Yet, reliable message support is not a new technology. Messaging
middleware products such as the IBM MQSeries, Oracle Message Broker
(Oracle8i), and MSMQ have supported it for years and are widely deployed
in enterprise computing environments. Reliable messaging is currently sup-
ported via product-specific protocols.

As a partial solution, IBM is making the HTTPR specification available to
the public to stimulate public discussion on reliable message delivery on the
Internet. HTTPR is a protocol for the reliable transport of messages from one
application program to another over the Internet, even in the presence of
failures either of the network or the agents on either end. It is layered on top
of HTTP.

Messaging agents can use HTTPR together with persistent storage capability
to provide reliable messaging for applications. The specification of HTTPR
does not include the design of a messaging agent, nor does it say what storage
mechanisms should be used by a messaging agent. It does specify the state
information needs to be in to be stored safely and when to store it so that a
messaging agent can provide reliable delivery using HTTPR.

SOAP messages transported over HTTPR will have the same format as
SOAP messages over HTTP. The additional information needed to correlate
request and response in the HTTPR asynchronous (or pseudo-synchronous)
environment is put into the HTTPR message context header. The SOAPAction
parameter is carried in the HTTPR message context header as the type app-
soap-action. Extensions to SOAP such as in ebXML and SOAP-RP contain
application-level correlation information that must also be carried in the HTTPR
message context header for this protocol.

SOAP can operate over HTTPR to allow Web services to make use of these
reliability features. A WSDL specification for HTTPR will be almost precisely
the same as for HTTP. For example, the following binding:

<soap:binding style = “…”
transport = “http://JohnIbbotson/ToFillIn/httpr”/>

will reference this HTTPR binding.

AU1272Ch06Frame Page 188 Monday, January 21, 2002 7:36 AM

Database Middleware and Other Stuff 189

Notes
1. Here is a partial list of data adapters available for the following databases, ERPs,

transaction systems, and files.
a. Relational and legacy data: ADABAS, ALLBASE/SQL, ALL-IN-1, C-ISAM, CA-

Datacom/DB, CA-IDMS, CA-Ingres, Cloudbase, DB2, DB2/2, DB2/400, DB2/6000,
DBMS, dBASE, DL/1, DMS, ENSCRIBE, Essbase, FOCUS, IDS-II, IMS/DB, INFOAc-
cess, Infoman, Informix, ISAM, KSAM, MODEL 204, MS SQL Server, MS OLAP
Services, Mumps, Net-ISAM, Rdb, Tandem NonStop, Omnidex, Oracle, PACE,
Pick Systems, Proprietary Files, Progress, QSAM, Red Brick, RMS, ShareBase,
SQL/DS, SUPRA, Sybase, System 2000, Teradata, Total, TurboIMAGE, UFAS,
Ultrix/SQL, UNIFY, UX, VSAM, WIIS

b. ERP systems: SAP R/3, J.D. Edwards, PeopleSoft, Oracle, Baan, Walker Interactive,
Millenium, Hogan Financials, Integral

c. OLTP/messaging: CICS, IMS/DC, IMS/TM, MQSeries
d. Operating Platforms: OS/390 Open Edition, VM, MVS, AIX, AIX/6000, OS/400,

VMS, OpenVMS, Digital UNIX, AT&T UNIX, Sun Solaris, SunOS, HP-UX, Linux,
Bull GCOS, Siemens, Windows NT, Windows 2000, IBM OS/2

2. iWay Enterprise Integrator integrates mobile, packaged and custom Web applica-
tions, using four types of adapters: transactions, applications, relational data, and
legacy data.

3. MERANT is a strategic partner with Sun in the development of Java2 Enterprise
Edition (J2EE), and Java Transaction Service (JTS), an API used by resource managers
and transaction managers to incorporate database transaction capabilities.

AU1272Ch06Frame Page 189 Monday, January 21, 2002 7:36 AM

AU1272 FM Page xiv Wednesday, January 30, 2002 10:01 AM

This page intentionally left blank

191

Chapter 7

Bridging the Gap

Introduction

This chapter discusses how middleware such as Enterprise JavaBeans (EJBs)
and markup languages such as XML can be used to bridge the gaps in an
enterprisewide system. It looks at how a COBOL system is connected to EJBs,
how Java is called from COBOL, and how COBOL classes are used to call
from Java. The chapter presents what the advantages of using XML Schemas
are in connecting E-commerce applications and shows why these schemas
are better than DTDs. It also considers the role XML has played in TCP/IP
Presentation layer and gives an overview of how XML is used to connect to
an Oracle database over the air.

Bridging COBOL to Enterprise Java Beans

In view of the fact that the demand for mixing COBOL and Java is ever
increasing, this section explains in detail how MERANT Micro Focus Net
Express can be used to bridge COBOL to EJBs. It particularly focuses on
accessing legacy COBOL assets from Java and EJBs, accessing Java objects
from COBOL applications, invoking Object COBOL methods from Java and
EJBs, and wrapping COBOL assets as COBOL EJBs.

Because these legacy systems include an estimated 200 billion lines of
COBOL code, the ability of such enterprises to rapidly and reliably deliver
COBOL business logic to the Internet is very important to the success and
survival of organizations. It is impractical to convert all COBOL code to Java
counterpart, as Java does not have certain features that COBOL has.

While it is obvious that Java will never completely replace COBOL, users
can establish their legacy applications upon a strategic platform for extension

AU1272Ch07Frame Page 191 Monday, January 21, 2002 7:36 AM

192

The Complete Book of Middleware

toward E-business. Doing so will allow users to connect these legacy systems
with new code written in Java, and reuse rather than rewrite legacy business
logic, delivering it with application servers such as IBM WebSphere, BEA
WebLogic, and others as part of EJBs.

Application Mining

The first step in building an application interface is to extract the business
logic from the application. One can do this with the technique known as
application mining, and offered by MERANT AssetMiner. This technique ana-
lyzes and modularizes the application that can interface with Java and wrap
the COBOL as an EJB for deployment on Windows and UNIX systems.

While in the past the interfaces and capabilities provided by Web applica-
tion servers differed considerably, they primarily targeted Java and C++, making
it difficult for COBOL applications to interoperate with Java. To establish
interoperability between Java and COBOL, the convergence toward the EJB
model, the delivery of existing COBOL business logic into that model, and
utilizing Java classes from COBOL should be combined.

While such interoperability has long been possible, it has not necessarily
been easy. The Java platform allows Java methods to call non-Java (or native)
methods via the mechanism known as Java native interface (JNI). Yet COBOL
programmers must still perform low-level API functions to make Java calls.

Accessing Legacy COBOL Assets from Java

The existing (or legacy) COBOL applications contained within enterprises
represent the result of a huge investment over many years, embodying the
core of the business practices within COBOL business logic. The last thing
one wants to do is throw that all away and rewrite everything in Java.

If one has newer systems already written in Java, or wishes to take
advantage of Java for less business orientated new development, the ability
to call legacy COBOL programs from Java (and as we will see later from EJBs)
provides a fast way to make existing COBOL business logic available to Java
programs. One is not required to have any knowledge of object COBOL
syntax. The support is provided through a special Java class (

mfcobol.run-
time

) that provides functions to enable one to load, call, and cancel COBOL
programs.

Calling Legacy COBOL from Java

If one understands COBOL jargon, here is an example of calling a legacy
COBOL program from Java. This is a simple COBOL subroutine, named

subroutine.cbl

, consisting of a working-storage section, a linkage section,
and procedure division.

AU1272Ch07Frame Page 192 Monday, January 21, 2002 7:36 AM

Bridging the Gap

193

working-storage section.
01 wsResult pic s9(9) comp-5.
linkage section.
01 wsOperand1 pic s9(9) comp-5.
01 wsOperand2 pic s9(9) comp-5.
01 wsOperation pic x.
procedure division using wsOperand1 wsOperand2 wsOperation.
evaluate wsOperation
when “a”
add wsOperand1 to wsOperand2 giving wsResult
when “s”
subtract wsOperand1 from wsOperand2 giving wsResult
end-evaluate
exit program returning wsResult.

Below is a Java program that calls this subroutine.

import mfcobol.* ;
class SimpleCall
{
public static void main(String argv[])
{
Object theParams[] = {new Integer (4),

new Integer(7),
new Byte((byte)’a’)} ;

int i = runtime.

cobcall_int

(“subroutine”, theParams) ;
System.out.println(i) ;
theParams[2] = new Character (‘s’) ;
i = runtime.

cobcall_int

(“subroutine”, theParams) ;
System.out.println(i) ;

}
}

Java Considerations

To make COBOL support available to a Java program, include the following
statement at the start of the Java source file:

import mfcobol.*.

Calling
COBOL from Java is a straightforward process. In the case of legacy COBOL,
this involves the use of static

cobcall_

 functions provided by the classes
supplied and imported as shown in the example code above.

As discussed, parameters are converted between Java and COBOL data. In
the example above, the COBOL program is returning a signed integer such
as

Pic S9(9) comp-5

that is equivalent to the Java data type

int

. Thus,
one would call the COBOL program using the

cobcall_int

 function.

COBOL Considerations

Java runtime systems are multi-threaded, so any COBOL program to be used
with Java must be linked with the COBOL multi-threaded runtime system,

AU1272Ch07Frame Page 193 Monday, January 21, 2002 7:36 AM

194

The Complete Book of Middleware

whether or not the Java program calling it uses multi-threading. If the COBOL
program is going to be called from a multi-threaded Java program, one needs
to take care that the COBOL data accessed from one thread is not corrupted
by another thread.

Calling Java from COBOL

Calling Java from COBOL translates to calling Java objects because Java is an
object-oriented language. This does not, however, mean that one has to rewrite
the entire COBOL application in Object COBOL or as an Object COBOL class,
but one will be using some Object COBOL syntax to call (or invoke) Java.
Add a Class-Control section to a COBOL program and use the INVOKE verb
each time one wants to call a Java function — and it can be done without
touching any business logic.

Java classes can easily be declared for use in a COBOL program with a
single entry in Class-Control section.

class-control.
Rectangle is class “$java$java.awt.Rectangle”

The Java Rectangle class can be instantiated in several different ways,
including the two shown below in Java code.

Rectangle r1 = new Rectangle ()
Rectangle r2 = new Rectangle(4, 5, 10, 20)

The equivalent COBOL code is shown below.

working-storage section.
01 r1 object reference.
01 r2 object reference.
...
procedure division.
...
invoke jRectangle “new” returning r1
invoke jRectangle “new” using 4, 5, 10, 20
returning r2

The Rectangle class has three different add() methods, which take different
parameters. The Java code below shows three different ways one can call the
add() method on a rectangle.

Rectangle r1 = new Rectangle(0,0,0,0) ;
Point pt = new Point(6,6) ;
Rectangle r2 = new Rectangle(3,4,9,9) ;
r1.add(4,5) ;
r1.add(pt) ;
r1.add(r2) ;

AU1272Ch07Frame Page 194 Monday, January 21, 2002 7:36 AM

Bridging the Gap

195

The equivalent code in COBOL looks like the following.

class-control.
jRectangle is class “$java$java.awt.Rectangle”
jPoint is class “$java$java.awt.Point”
.
.
.
working-storage section.
01 r1 object reference.
01 r2 object reference.
01 pt object reference.
procedure division.
invoke jRectangle “new” returning r1
invoke jPoint “new” using 4 5 returning pt
invoke jRectangle “new” using 3 4 9 9 returning r2
invoke r1 “add” using 4 5
invoke r1 “add” using pt
invoke r1 “add” using r2

Calling COBOL Classes from Java

With Net Express one can write COBOL-wrapped Java classes. Essentially,
these are classes in COBOL that can be called from Java programs as if they
were Java classes. One does this by providing a simple Java wrapper class,
which provides a function for each method in the COBOL class. The Net
Express Class and Method Wizard generates the Java code at the same time
as the COBOL code while creating a complete class infrastructure.

The most interesting part is an Object COBOL infrastructure into which
one can slot COBOL business logic, either within the class itself or by calling
out to existing COBOL applications. While the class generated by the wizard
differs little from any other COBOL class, it inherits from

javabase

,

the Java
domain supplied in COBOL.

The following code fragments illustrate the definition of a class and method
in COBOL.

*>---
*> Class description
*>--
class-id.JavaCalc
inherits from javabase.

Object section.
Class-control.
JavaCalc is class “javacalc”

*>--
working-storage section. *> Definition of global data
*>--
class-object. *> Definition of class data and methods
*>--
object-storage section.

AU1272Ch07Frame Page 195 Monday, January 21, 2002 7:36 AM

196

The Complete Book of Middleware

01 currentRate pic 9(2).9(2) value 0.
01 currentRate-x pic x(5) redefines currentRate.
*>---
method-id. “setInterestRate”.
Local-storage Section.
*>---USER-CODE. Add any local storage items needed below.
Linkage Section.
01 rate pic x(5).
Procedure division using by reference rate.
*>---USER-CODE. Add method implementation below.
Move rate to currentRate-x
exit method.
End method “setInterestRate”.

The following Java code invokes the above COBOL code fragment.

Public static void setInterestRate (String rate) throws
Exception, COBOLExceptions
{
// Parameters are passed to COBOL in an array
Object[] params = {rate};

cobinvokestatic_void (“setInterestRate”, params);
}

COBOL Enterprise JavaBeans

We have seen how to create COBOL-wrapped Java classes with Net Express.
This same technology can be applied one step further, facilitating the creation
of COBOL-wrapped EJBs. The Net Express class wizard enables one to create
a COBOL class for use as an EJB.

EJBs are software components that run on application servers. The appli-
cation server is responsible for all the services required by the bean, such as
security, transaction integrity, and persistence, so that EJBs only need to
implement business logic. By calling business logic within COBOL-wrapped
EJBs, one can combine the benefits of an application server environment with
the performance gain of compiled COBOL code.

For a COBOL-wrapped EJB, the Net Express class wizard will create the
following files, as shown in Exhibit 1.

Exhibit 2 shows the main development steps.

Enterprise JavaBeans Deployment Descriptor

Each method added to the COBOL class must be added to the Java wrapper
class, and also to the remote interface class. If using the Net Express method
wizard, it automatically updates the wrapper and remote interface.

Now one has a COBOL EJB that can be tightly or loosely coupled with
the legacy COBOL application. Maintaining the connectivity to a defined
interface helps to deliver the same business logic to multiple component
technologies.

AU1272Ch07Frame Page 196 Monday, January 21, 2002 7:36 AM

Bridging the Gap

197

Deploying COBOL Enterprise JavaBeans Application

At deployment time, COBOL-wrapped EJBs require the presence of the COBOL
Runtime (also known as the application server). This server can be deployed
either on Windows (with Net Express application server) or major UNIX
platforms (with Server Express application server) as shown in Exhibit 3.

Exhibit 1. COBOL-Wrapped EJB Files

COBOL file Classname.cbl
Methods ejbCreate,

ejbRemove,
ejbActivate,
ejbPassivate,
setSessionContext

The COBOL file for each class includes
required EJB methods; they are part of the
SessionBean interface, which is implemented
by all Enterprise JavaBeans

Class Classname.java The Java wrapper class corresponds to the
COBOL class and contains the EJB methods

Class

classname

Home.java The home interface to the Java wrapper
Class

classname

Remote.java The remote interface to the Java wrapper
XML file Ejb-jar.xml

Exhibit 2. COBOL EJB Development Steps

Class and
Method
Wizard

COBOL EJB
Application

Legacy
COBOL

Legacy
COBOL

Java Application
Class (Optional)

Deployment
Descriptor

EJB Remote
Class

EJB Home
Class

Java Wrapper
Class

EJB JAR

Built COBOL
EJB Application

Java
Wrapper

EJB Home
Interface

EJB Remote
Interface

Java
Application

Source

Integrated
Development
Environment

AU1272Ch07Frame Page 197 Monday, January 21, 2002 7:36 AM

198

The Complete Book of Middleware

Combination ActiveX/Java Classes

One can also create Object COBOL classes that can be used either by Java
as Java classes or through OLE automation as ActiveX classes. The support
that enables one to create combination ActiveX/Java classes is provided
through an Object COBOL class called

componentbase

. ActiveX servers
usually inherit from a class called

olebase

, and Java classes inherit from a
class called

javabase

. If one changes the inheritance of one of these classes
to

componentbase

, it can be used within either the Java or OLE automation
domains. The domain to which the class is available depends on how it was
first loaded within a process. The simplest way to create a class is to use the
class wizard to create a class for OLE automation, and then create the Java
wrapper class and methods manually.

This technology also enables one to create an Object COBOL class that
can be used as a Microsoft Transaction Server (MTS) Object or as an EJB. It
also allows one to call COBOL subroutines, middleware, ESQL, etc. as one
would expect the COBOL EJB to do.

Wireless Access Protocol: Accessing Oracle

This section is based on the author’s article “Accessing Oracle over the Air.”

Exhibit 3. COBOL EJB Application Deployment

Java Application
Class (Optional)

Deployment
Descriptor

EJB Remote
Class

EJB Home
Class

Java Wrapper
Class

EJB JAR

EJB JAR

Web Application Server

ODBC
Data

Source

ODBC
Data

Source

ODBC
Data

Source

COBOL EJB
Application

Legacy
COBOL

Server Express
Application Server

Web Browsers

AU1272Ch07Frame Page 198 Monday, January 21, 2002 7:36 AM

Bridging the Gap

199

E-business users access two types of content from their cellular phones
and personal digital assistants (PDAs): static content, such as stock quotes,
news, and weather information; and transactional applications used to manip-
ulate corporate data from various ERP and CRM systems. End users get them
after requesting access to remote data and applications through the Oracle9

i

Application Server Wireless Edition.
This edition provides adapter/transformer pairs to allow content to go

directly to a wireless device while permitting developers to skip intermediary
steps of converting into XML documents. Adapters convert the content in its
original format from a database table into XML documents, while transformers
convert the XML documents into one of many formats, such as Wireless
Markup Language (WML) or VoXML. The Wireless Edition ships with a set of
preconfigured adapters for common data sources and markup languages and
allows developers to build their own adapters.

WAP Application

Because Oracle does not provide wireless platforms, it has partnered with
Motorola to collaborate on delivering WAP, VoXML, and Bluetooth applications
to businesses with a mobile workforce. With a WAP-enabled phone, one can
say certain words and hear the reply as the phone speaks. This process of
interacting with the system is known as dialogue in the WAP world.

To begin, the user dials in a key number to make a connection and the
system transparently refers the user to a database and opens it as specified
in an Active Server Pages (ASP) script. The system then takes the user to the
XML script in the same application. The XML script will not work if the ASP
script fails to connect to and open the database. The user must include

<?XML
version

= “1.0”?>

 to indicate the start of the script.
Depending on the number of dialogues between a user and the system,

the application can have several ASP/XML scripts. A dialogue in one XML
script may call another in a different XML script and get a returned value.

Dialogue Scenarios

Suppose the user is in the following dialogue, assuming all CIOs are located
in Washington, D.C. The user goes through a series of steps to get the fax
number needed to use with a fax machine in sending important documents
to a CIO. Scanning bulky documents and e-mailing them are not cost-effective.

The following are three scenarios of simple interaction between a user and
the system.

AU1272Ch07Frame Page 199 Monday, January 21, 2002 7:36 AM

200

The Complete Book of Middleware

Scenario One

The user says a CIO’s name that is already in the database.

System: Welcome aboard my ship! How can I help you?
User: CIO
System: Which CIO?
User: John Adams
System: 210 666-7878
System: To hear fax number, say fax or another CIO’s name
User: Fax
System: 210 666-9090
User: Bye
System: Goodbye

Scenario Two

The user says a CIO’s name that does not have a phone number in the
database. (

Note:

 Skip to bold lines to see the changes.)

System: Welcome aboard my ship! How can I help you?
User: CIO
System: Which CIO?

User: Thomas Adams
System: There are no current phone numbers for Thomas Adams
User: Bye
System: Goodbye

Scenario Three

The user says a CIO’s name that has only the phone number in the database.
(

Note:

 Skip to bold lines to see the changes.)

System: Welcome aboard my ship! How can I help you?
User: CIO
System: Which CIO?

User: Robert Adams
System: 210 868 4678
System: To hear fax number, say fax or another CIO’s name
User: Fax
System: There are no fax numbers available for Robert Adams
User: Bye
System: Goodbye

AU1272Ch07Frame Page 200 Monday, January 21, 2002 7:36 AM

Bridging the Gap

201

Database Table

Before writing a WAP-based application, create and open a database. The
next step is to create a table: CIOlist containing CIO’s name, organizational
code, city, phone number, and fax number.

CREATE TABLE CIOlist (
id integer INTEGER;
Lastname VARCHAR2 (50),
Firstname VARCHAR2 (25),
Organizational_Code VARCHAR2 (5)
City VARCHAR2 (10)
Phone VARCHAR2 (15)
Fax VARCHAR2 (15)

);

One can add variables to the database table and reassign primary, foreign,
and alternate keys. One can also create other tables and relate the CIOlist
table with another primary and other keys. For WAP-based applications, it is
best to keep the database table concise, clear, and compact.

ASP Script: Connecting to Database

Before starting a dialogue, one must create an ASP script using VBScript as
its language for each dialogue to make the connection to the database. All
scripts begin with

Option Explicit

. One must make the connection
(

objConnection

) private to one’s application, not shared with others. This
is also true for the other three variables —

rsCIOs, strCIO

, and

SQLQuery

.
Private variables in the other two dialogues may be different. All other variables
remain the same.

To connect to and open a database for the first dialog, use

Set objConnection

= Server.CreateObject(“ADODB.Connection”)
ObjConnection Open “NavyCIO Database”

The following is a complete ASP script.

<%@ LANGUAGE = “VBSCRIPT” %>
<%
Option Explicit
Private objConnection, rsCIOs
Private strCity, SQLQuery
Set objConnection = Server.CreateObject(“ADODB.Connection”)
ObjConnection Open “NavyCIO Database”
%>

The other two dialogues are shown in the following listings.

AU1272Ch07Frame Page 201 Monday, January 21, 2002 7:36 AM

202 The Complete Book of Middleware

<%
Option Explicit
Private objConnection, rsPhone, SQLQuery
Private strCIO, Valid
Set objConnection = Server.CreateObject(“ADODB.Connection”)
objConnection.Open “NavyCIO Database”
%>

<%
Option Explicit
Private objConnection, rsPhone, SQLQuery
Private strCIO, Valid
Set objConnection = Server.CreateObject(“ADODB.Connection”)
objConnection.Open “NavyCIO Database”
%>

To get the connection to work, establish an ODBC for Oracle. Under
Windows 98, click the ODBC Data Sources icon in the Control Panel, and
then the Add button in the Systems tab. One must have Oracle 7.3 or higher
and networking components before selecting Micfrosoft ODBC for Oracle. If
using Windows 2000, look for the ODBC Data Sources icon in the Adminis-
trator’s Tools folder. Enter the Microsoft ODBC for Oracle into the System
folder.

XML Syntax

As one can see in the complete WAP application in Appendix A, each dialogue
part (dialog1.asp, dialog2.asp, dialog3.asp) has a beginning tag and an ending
tag:

<DIALOG>………</DIALOG>.

This block starts with a class name:

<Class Name = class name>

One can have as many class names as one wishes inside the block. If using

<OPTION NEXT = option name>…</OPTION>

as part of the option list

<INPUT TYPE = “OPTIONLIST”>
<OPTION NEXT = option name1>…</OPTION
<OPTION NEXT = option name2>…</OPTION
<OPTION NEXT = option name3>…</OPTION

</INPUT>

one needs a routine that an option name can call when needed. This routine
has the following syntax:

AU1272Ch07Frame Page 202 Monday, January 21, 2002 7:36 AM

Bridging the Gap 203

<Step Name = name PARENT = parent name>

Note that PARENT is optional. It is needed when there is more than one
class name within a dialogue.

XML Script

In the script, there are two class names: help_top and help_dialog1.
The “init” step is the “help_top” class’s child. This step gives a list of options,
one of which can be activated by a spoken word to call a step whose parent
is “help.dialog1.” For example, if the user says “CIO,” the “init” step will take
the user to the “cio” step as the “help.dialog1” class’s child.

Then, the application will prompt the user for a CIO name. When the user
says “John Adams,” the system gets all CIO names and then jumps to the
second dialogue to list phone numbers that correspond to the CIO name
requested. The system says the results and then gives the user a choice of
speaking “FAX” or another CIO’s name.

If the user chooses “fax,” the system takes the user to another step named
“next command,” with “help.dialog1” as its parent. This step moves to the
third dialogue to list fax numbers. If they do not exist, the system apologizes
that these numbers are not available for a certain CIO.

To get an idea of how the system retrieves all CIO names from the CIOlist
table and compares each one to the requested CIO’s name, take a look at
the INPUT block in the “CIO” STEP. This routine assigns

SELECT * FROM CIOlist

to SQLQuery. The system then sets rsCIOs records to SQLQuery that is
executed when it connects to and opens a database.

As one can see,

<% DO UNTIL rsCIOs.EOF%>
.
.
.

<% LOOP %>

allows the system to repeat the process of moving to the next record until it
reaches the last one. During this process, the system calls the second dialogue
to check if the CIO’s name in the record matches the CIO’s name the user
wants. If they match and the corresponding phone number exists in the table,
the system speaks it. On the other hand, if they match and the table does
not have the phone number, the user gets a polite apology from the system.

Keep in mind that the “committee” and “airgram” steps in the first dialogue
are not currently supported. The fourth step ends the dialogue when the user
says “Bye.” They are included for demonstration purposes.

AU1272Ch07Frame Page 203 Monday, January 21, 2002 7:36 AM

204 The Complete Book of Middleware

Dialogues

Appendix A shows a complete program that has been adapted from the
Motorola’s scripts at http://www.mobileblueprint.com.

Conclusion

User-system interaction with a remote database is one big step forward for
the mobile workforce. The only problem is that digital connection may not
be available in certain areas. This type of connection is not as widespread as
its analog counterpart. Other problems include bandwidth allocations, traffic
bottlenecks, and quality of service. With the evolving and emerging technol-
ogies for mobile users, one would expect to see more and more developers
putting out marketable mobile services.

XML: Its Role in TCP/IP Presentation Layer (Layer 6)
This section was previously published in Auerbach’s Data Communications
Management, (51-40-65), 2000.

Breaking the Barrier

Integration between applications should be viewed, at least, as a communi-
cation problem. Like the parties on the telephones, the applications should
speak the same language to effectively communicate with one another. If the
sending application uses one language, and the receiving application speaks
in another language, they would need a translator, just like a human coun-
terpart, to understand one another as long as both agree on the semantics
and syntax of the language.

Once the applications speak the same language independently or through
a translator, there should be a mechanism to support the exchange of messages
in a standard way. One such instance is XML, which has become the de facto
standard for communication between applications. Using XML allows human
agents to send all messages of self-describing texts between applications. This
makes it easier for both humans and machines to understand the messages
on a common ground. While it nearly achieves the concept of human–machine
interaction, it falls short in the packaging of these messages. XML scripts in
text format can be quite a bit larger than their binary representation of the
same information.

There are three aspects of inter-application communication:

� Transport: refers to how the information gets across the wire
� Protocol: refers to how to package the information sent across that wire
� Message: refers to the information itself

The transport is usually a lower-level network standard such as TCP/IP.
On top of such transports are CORBA, DCE, and DCOM. This means each

AU1272Ch07Frame Page 204 Monday, January 21, 2002 7:36 AM

Bridging the Gap 205

transport uses a different protocol to communicate. CORBA uses IIOP while
electronic mail uses SMTP. One can package, for example, a message, specify
a destination, and send the message to the destined location.

While XML does have SOAP as a lightweight XML protocol, it relies on
other protocols as well. Using SOAP allows one to use various synchronous
and asynchronous mechanisms to send messages based on whatever appro-
priate protocol one chooses. However, this protocol seems constrained and
has not overcome the barrier imposed by the TCP/IP model scheme. What
this means is that some protocols are not as easily extended as XML. Flexibility
and extensibility are the norm for XML. They easily lead to standardization
of definitions, semantics, schemas, and templates in the exchange of informa-
tion between products, applications, and vendors.

XML documents contain meta-information about the information being
transmitted and can easily be extended. One advantage of using XML is that
both humans and computers can read the documents. A disadvantage is that
XML is less efficient than transmitting information in binary format. This
efficiency is overcome, in part, with the latency of Web-based applications so
the overhead is not as large as it seems. Any protocol can be used to send
XML messages.

To send or receive an XML message, one must enable an application to
do so — independent of the protocol used. Once one gets applications or
organizations to agree on the meanings of the XML message, one can send
a package of these messages to its intended destination. The meanings must
be exact and unambiguous. A data dictionary is suggested to list the XML
vocabularies, their meanings, and their associated schemas that define docu-
ment structure for specific industries. This allows industry-specific information
to be exchanged as XML and would serve as input into the development of
XML templates that organizations can use to send and receive messages.

For example, FPML defines an XML schema for the financial industry to
exchange information about financial products. ebXML uses an XML schema
for the electronic commerce to exchange information business-to-business and
business-to-customer scenarios. adXML targets advertising agencies, while
CIML (Customer Identity Markup Language) is useful for information on
customer relationship management. More than 200 XML schemas for specific
industries, groups, and programs are listed at www.xml.org.

These schemas, along with others, are the foundation for building reusable
templates of schemas. More templates are on the way as organizations see
the merits of standardizing meta-information contained in XML messages and
applications.

To get a message to where it is supposed to go, HTTP is a natural choice.
Because XML documents do not have the ability to listen to a port like HTTP
does (port 80), they must be translated into HTML formats — via XSL, for
example. This protocol generates HTTP requests/responses as an application
(the other example is FTP) at the Application layer (the top) of the TCP/IP
model.

Once translated, the application moves in the next layer down the TCP/
IP road — the Presentation layer. Here, the layer formats the data so that it

AU1272Ch07Frame Page 205 Monday, January 21, 2002 7:36 AM

206 The Complete Book of Middleware

is recognizable or readable by the receiver. It provides services such as
encryption, text compression, and reformatting to provide a standardized
interface. It is also concerned with the data structures used by programs and
therefore negotiates data transfer syntax for the receiving application layer.
When the HHTP requests/responses get the data down to the wire, they take
a ride on the highway, get off it, and enter the “welcome” door of a receiving
host’s TCP/IP tower.

Product Integration

One of the great benefits of XML is the ease of integration of products. A
good example of the power of XML in this area comes from the CiscoWorks
2000 Service Level Management Solution that determines the impact on various
enterprise resources and the degree of success in moving an application or
its data from a failed server, node, cluster, or any other network component
to an operational one.

By providing XML interfaces via an SDK, Cisco has allowed partner products
to integrate more closely into CiscoWorks 2000. Extending the benefits of the
Cisco Management Connection, the XML interface allows other products to
access Cisco information at the Transport and Network layers of the OSI model
and other information on remaining layers, including the Application and
Presentation layers, and present the information to the user under one seam-
lessly integrated display.

XML integration also allows an XML partner’s product to pass control
information and data to CiscoWorks 2000. The interface allows CiscoWorks
2000 to perform actions to a group of routers, for example, thus providing a
one-to-many capability for the partner’s product. This is one of the ways XML
standardizes the definitions between products — accomplished through the
Presentation layer.

Translating for All Browsers

While various tools are available to translate XML documents into HTML using
XSL, Microsoft’s XSLISAPI lets users enable XML on all browsers. The trans-
formation occurs entirely on the server and enables a browser to convert XML
documents into HTML requests/responses for processing by the Presentation
layer.

XSLISAPI is a self-extracting executable and one can obtain it from the
MSDN Online Downloads Site. It currently works on Windows 2000 Server
on Win2K Advanced Server if one installs SXLML 2.4 or higher. It comes with
restrictions when it is used on the Windows NT 4.0 Server. XSLISAPI may
change significantly to fit into the ASP+ and .NET architecture.

The tool automatically chooses different stylesheets based on a client’s
browser. Downloading the file will not complete the installation. One needs
to take additional steps:

AU1272Ch07Frame Page 206 Monday, January 21, 2002 7:36 AM

Bridging the Gap 207

1. Enter at the command line prompt: regsvr32 xslisapi2.dll.
2. Right-click the Default Web Site node (if right-handed) in the IIS admin-

istration Control Panel applet.
3. Select Properties and then the ISAPI Filters tab.
4. Add the new filter to the list. After closing and reopening the Properties

dialogue box, a green arrow will appear next to the new filter name.
5. Create a new virtual directory — Xslisapi. Do not forget to point this

directory to the folder where xslisapi.exe was expanded.
6. Set the Run Script permissions on the virtual directory.

To associate an XSL file with an XML document, do the following in an
XML processing instruction:

<?xml version=“1.0”?>
<?xml-stylesheet type=“text/xsl”
server-coding=“sampleA-Config.xml”

href=“sampleA=IE5.xsl”?>

href takes precedence over server-config. If href is not included,
the server-config attribute points to an XML file in the same folder as
the XML document. The XML file contains information about which XSL
stylesheet to use for a given browser. An example of a code snippet from a
possible server-config file is:

<server-styles-config>
<device browser=“IE” version=“5.0”>
</device>
<device browser=“Netscape” version=“4.5”>
<stylesheet href\”NN45.xsl”/>

</device>
</server-styles-config>

From the server-config file, the filter points to NN45,xsl as a XSL
stylesheet to use and loads it. Next, the filter transforms the XML code into
HTML, as illustrated in the following example:

OrigPath=Request.ServerVariables(“HTTP_SSXSLSRCFILE:”);
ServDoc.URL = origPath;
ServDoc.UserAgent = Request.ServerVariables(“HTTP_USER_AGENT:”);
ServDoc.Load(requestPath);
ServDoc.Transform(Response);

Dynamic XML Servers

Not all servers are the same. They are generally grouped into repository and
dynamic. Repository servers have been around for a while. They hold XML
documents — those documents that already have been encoded in XML. Too
many, however, can consume enormous resources with the Presentation layer
on their way over to an XML server and eat up precious disk space with such
a server.

AU1272Ch07Frame Page 207 Monday, January 21, 2002 7:36 AM

208 The Complete Book of Middleware

Enter dynamic XML servers as a partial solution. Rather than storing the
source information as an XML document, they collect information in a tradi-
tional data source or in a live application. What this means is that one can
pull data out of a traditional database on one server, pass its more streamlined
format through the Presentation layers, and transform it into an XML document
on another server.

One can also use the dynamic server as an XML interface for the existing
acquisition tracking component of the much larger E-commerce system. One
example function of this interface is to receive XML documents from prospec-
tive bidders at a Web site and extract the XML documents from those docu-
ments. After passing through the Presentation layer, the interface stores it in
a database, gets it to generate XML documents of another kind, and then
feeds it to the live acquisition tracking application on the receiving server.
The dynamic interface can be accomplished through protocols such as CICS
and JavaBeans.

One advantage of using the dynamic XML server is to make publicly
available the XML parsers, Java, or a scripting language and make calls to a
database given the appropriate access rights and privileges. A disadvantage
is that one may not have the expertise to handle the load-balancing problems,
database connection pooling, and to set the limits that the cache pages and
memory can reach. One might be better off with a ready-made dynamic XML
server. When considering a server, keep in mind that vendors offer different
storage capabilities and methods, especially when they store and retrieve data
from various sources, assign XML tags, and distribute them to applications.

XML Mapping

Mapping between XML and relational databases is more complicated than map-
ping between XML and objects. There are additional joins in SQL queries needed
to create the XML, while the XML and the objects are very similar. In parsing
XML, one will find a one-to-one relationship between each object and XML.

Recognizing the problems regarding XML mapping, Oracle offers a database
with hybrid capabilities that can store XML natively. Its SQL syntax has been
extended with XML Query Language. Because they provide a more natural
XML mapping, some products are being marketed as XML databases created
from the ground up (Tamino from Software AG) or redesigned (eXcelon
Corp.). While each provides an XML Query Language, it has not been stan-
dardized. The World Wide Web Consortium (W3C) is currently working on a
XML Query Language. By itself, this language will access XML files as if they
were databases.

Natural Language Dialogue

In March 2000, voice forum (www.voicesml.org) released Voice XML 1.9. Two
months later, W3C accepted it as the basis for developing a W3C dialogue
markup language that could be used to provide voice interfaces on traditional

AU1272Ch07Frame Page 208 Monday, January 21, 2002 7:36 AM

Bridging the Gap 209

interactive voice response platforms. Three initial versions of the language
included support for basic state-based dialogue capabilities, using a design
with simple form-based natural language capabilities that leave room to grow
as the technology evolves.

While VoiceXML reuses many concepts and designs from HTML, the dif-
ferences between visual and voice interactions should be noted. When an
HTML document is fetched from a network resource specified by a uniform
resource identifier, it is presented to the user all at once. A VoiceXML document,
in contrast, contains a number of dialogue units (menus or forms) presented
sequentially — only if the user is talking to or listening to one other person.
This difference is due to the visual medium’s ability to display a number of
items in parallel, while the voice medium is inherently sequential.

The field of spoken interfaces is not nearly as mature as the field of visual
interfaces; thus, standardizing an approach to natural dialogue is more difficult
than designing a standard language for describing visual interfaces such as
HTML. VoiceXML allows applications to give users some degree of control
over the conversation — in a standard way. The data used in voice interfaces
is negotiated in the Presentation layer for transfer to the receiving application.

Universal XML

When standards organizations ratify key standards for XML and implement
them, one will see a new trend in the market. Within two years, XML is
destined to be universally supported, so that separate XML products will not
be necessary. When standards are in place, the market will offer general-
purpose dynamic XML server products. The developers will no longer think
in terms of low-level details of XML syntax and semantics when they develop
applications. In addition, one may see an extension to the Presentation layer
based on the powerful capabilities of XML. This extension would be the first
attempt in associating the data transfer syntax with bits on the wire.

Conclusion

The powerful capabilities of XML when applied to TCP/IP applications appear
to be unlimited. Universal XML will help make the move easier beyond the
traditional TCP/IP model that has been constrained by lack of a standardized
way of associating data with blobs and bits on the wire.

XML Schemas
On May 1, 2001, the W3C announced that the XML Schemas has been finally
declared a formal recommendation — after more than two years of review
and revision. W3C Recommendation status is the final step in the consortium’s
standards approval process. This indicates that the schema is a fully mature,
stable standard backed by more than 500 W3C member organizations.

AU1272Ch07Frame Page 209 Monday, January 21, 2002 7:36 AM

210 The Complete Book of Middleware

The finalized Schema solves the primary problem of B2B communication
and interoperability that has held XML back from its full potential. The W3C
expects XML Schemas to integrate data exchange across business and to
facilitate and accelerate electronic business.

XML Schema was conceived to overcome shortcomings of Document Type
Definitions (DTDs). It provides developers with:

� Strong typing for elements and attributes
� Key mechanism that is directly analogous to relational database foreign keys
� Standardized way to represent null values
� Defined as XML documents, making them programmatically accessible

This section focusses on the first two advantages, after a brief overview
on comparing data types in DTD and XML Schema.

Comparing XML Schema and DTD

To give an idea why XML Schema is better than DTD, look at Exhibit 4, which
compares complex data types in DTD and XML Schema. Although the XML
code in Exhibit 4 conforms to both DTD and XML Schema fragments, there
is a big difference between them. In a DTD, all elements are global. The XML
Schema allows Title and Author to be defined locally within the element
Book. To exactly duplicate the effect of the DTD declarations in XML Schema,
the elements Title and Author must have a global scope as shown in the
following table. The ref attribute of element element allows one to refer
to previously declared elements.

<element name=‘Title’ type=‘string’/>
<element name=‘Author’ type=‘string’/>

XML Document
<Book>>

<Title>XML Schema</Title>
<Author>John Doe</Author>

</Book>

DTD
<!ELEMENT Book (Title, Author)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Author (#PCDATA)>

XML Schema
<element name=‘Book’ type=“BookType”/>
<complexType name=‘BookType’>
<element name=‘Title’ type=‘string’/>
<element name=‘Author’ type=‘string”/>

</complexType>

Exhibit 4. Comparing Complex Data Types

AU1272Ch07Frame Page 210 Monday, January 21, 2002 7:36 AM

Bridging the Gap 211

<element name=‘Book’ type=‘Booktype’/>
<complexType name=‘BookType’/>
<element ref=‘Title’/>
<element ref=‘Author’/>

</complexType>

In the examples in Exhibit 4 and in the code above, BookType is global
and can be used to declare other elements. By contrast, the code below makes
the type local to the definition of element Book and makes it anonymous.
Note that the XML document fragment in Exhibit 4 matches all three schema
fragments in Exhibit 4, in the code above, and in the following:

<element name=‘Title’ type=‘string’/>
<element name=‘Author’ type=‘string’/>
<element name=‘Book’ />
<complexType name=‘BookType’/>
<element ref=‘Title’/>
<element ref=‘Author’/>

</complexType>

Strong Typing Advantage

In a DTD, there is not much choice in specifying constraints for elements and
attributes. There is no way to specify that an element’s text content must be
a valid representation of an integer, or even that the content may not exceed
a certain number of characters.

Unlike DTD, XML Schema offers greater flexibility for expressing constraints
on the content model of elements. Like DTD, one can associate attributes at
the simplest level with an element declaration and indicate that a sequence
of one only (1), zero or more (*), or one or more (+) elements from a given
set of elements can occur with it. With XML Schema, one can express additional
constraints using, for example, minOccurs and maxOccurs attributes of
element element, and the choice, group, and all elements.

<element name=‘Title’ type=‘string’/>
<element name=‘Author’ type=‘string’/>
<element name=‘Book’ />
<complexType name=‘BookType’/>
<element ref=‘Title’ minOccurs=‘0’/>
<element ref=‘Author’ maxOccurs=‘2’/>

</complexType>

When one sets the minimum number of titles to zero, it means the
occurrence of Title is optional in Book. When one sets the maximum
number of authors to two, it means there must be at least one, but no more
than two authors in the element Book. The default value of minOccurs
and maxOccurs is 1 for element. Another element, all, expresses the
constraint that all child elements in the group may appear once or not at all,
and they may appear in any order. The following code expresses the constraint

AU1272Ch07Frame Page 211 Monday, January 21, 2002 7:36 AM

212 The Complete Book of Middleware

that both Title and Author must occur in Book in any order, or neither
will. Such constraints are difficult to express in a DTD.

<xsd:element name=‘Title’ type=‘string’/>
<xsd:element name=‘Author’ type=‘string’/>
<xsd:element name=‘Book’ />
<xsd: complexType name=‘BookType’/>
<xsd:all>
<xsd:element ref=‘Title’/>
<xsd:element ref=‘Author’/>

</xsd:all>
</xsd:complexType>
</xsd:element>

True Key Representation Advantage

If one has ever attempted to describe a relational database with a complex
relationship map using a DTD, then one has likely had to use the ID-IDREF
pointing mechanism. For example, in a structure where two entities are related
in a many-to-many way through a relating table (borrowers and assets on a
loan application, for example), the simple XML parent-child relationship is
insufficient. However, IDs and IDREFs have their own weaknesses: IDs must
be unique across an entire document, and IDREF declarations do not specify
the type of element an instance of the IDREF attribute must reference. XML
Schema provides a way to specify these pointing relationships in much the
same way that foreign key relationships are declared in a relational database.
For example, if one has a foreign key relationship that cannot be expressed
using a simple parent-child relationship in the XML, one can declare the two
related elements as in the following listing.

<xsd:element name=“rootElement”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=“elementOne” maxOccurs=“unbounded”>
<xsd:complexType>
<xsd:attribute name=“elementOneKey” type=“integer” />
<xsd:attribute name=“elementOneDesc” type=“text” />

</xsd:complexType>
<xsd:key name=“elementOnePK”>
<xsd:selector xpath=“.//elementOne”/>
<xsd:field xpath=“@elementOneKey”/>

</xsd:key>
</xsd:element>
<xsd:element name=“elementTwo” maxOccurs=“unbounded”>
<xsd:complexType>
<xsd:attribute name=“elementTwoKey” type=“integer” />
<xsd:attribute name=“elementOneKey” type=“integer” />
<xsd:attribute name=“elementTwoDesc” type=“text” />

</xsd:complexType>
<xsd:keyref name=“elementOneFK” refer=“elementOnePK”>
<xsd:selector xpath=“.//elementTwo”/>

AU1272Ch07Frame Page 212 Monday, January 21, 2002 7:36 AM

Bridging the Gap 213

<xsd:field xpath=“@elementOneKey”/>
</xsd:keyref>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

In this code, the key definition in the complex type for the elementOne
element declares that the elementOneKey attribute must be present for all
elementOne elements, and that it must be unique across all elementOneKey
attributes on elementOne elements (note that this differs from IDs, which
must be unique regardless of the element with which they are associated). The
keyref definition in the complex type for the elementTwo element then
states that the elementOneKey field must match one of the elementOneKey
fields found on an elementOne element elsewhere in the document.

Another nice feature of this key mechanism is that the keys can be strongly
typed -– as opposed to ID and IDREFs, which must be XML name tokens —
so one can use that automatically incremented primary key in a table without
modification. It is also possible to define composite keys so that one can
create primary keys (using the key element) and foreign keys (using the
keyref element) that map directly to the keys found in one’s existing
relational database.

To get started with XML Schema, check out the W3C XML Schema primer
(http://www.w3.org/TR/xmlschema-0/). For more details, refer to the structural
reference at http://www.w3.org/TR/xmlschema-1/and data type reference at
http://www.w3.org/TR/xmlschema-2/.

IBM has a robust XML Schema verification tool, XML Schema Quality
Checker, at http://www.alphaworks.ibm.com/tech/xmlsqc. It is available as a
free-trial download through alphaWorks. The Checker is a program that takes
as input an XML Schema written in the W3C XML schema language and
diagnoses improper uses of the schema language. For schemas composed of
numerous schema documents connected via <include>, <import>, or
<redefine> element information items, a full schema-wide checking is
performed.

AU1272Ch07Frame Page 213 Monday, January 21, 2002 7:36 AM

214 The Complete Book of Middleware

Appendix A: Complete WAP Script

<%@ LANGUAGE=“VBSCRIPT” %>
<%
Option Explicit
Private objConnection, rsCIOs
Private strCIO, SQLQuery
Set objConnection = Server.CreateObject(“ADODB.Connection”)
objConnection.Open “NavyCIO Database”
%>
<?xml version=“1.0”?>
<!--__-->
<!-- dialog1.asp
___-->
<DIALOG>
<CLASS NAME=“help_top”>
<HELP> You are at the top level menu. For NavyCIO information,
say CIO. </HELP>
</CLASS>
<STEP NAME=“init” PARENT=“help_top”>
<PROMPT> Welcome aboard my ship!.<BREAK SIZE=“large”/>
How may I help you? </PROMPT>
<INPUT TYPE=“OPTIONLIST”>
<OPTION NEXT=“#NavyCIO”> CIO </OPTION>
<OPTION NEXT=“#committee”> committee </OPTION>
<OPTION NEXT=“#airgram”> airgram </OPTION>
<OPTION NEXT=“#bye”> exit </OPTION>
</INPUT>
</STEP>
<CLASS NAME=“help_dialog1”>
<HELP> Your choices are <OPTIONS/>. </HELP>
</CLASS>
<STEP NAME=“CIO” PARENT=“help_dialog1”>
<PROMPT> Which CIO? </PROMPT>
<INPUT TYPE=“optionlist” NAME=“CIO”>
<% ‘ Get all CIO names. %>
<% SQLQuery = “SELECT * FROM CIOList” %>
<% Set rsCIOs = objConnection.Execute(SQLQuery) %>
<% Do Until rsCIOs.EOF %>
<% ‘ Create an OPTION element for each CIO. %>
<OPTION NEXT=“dialog2.asp#getphone”
VALUE=“<%= rsCIOs(“CIO”) %>“>
<%= rsCIOs(“CIO”) %></OPTION>
<% rsCIOs.MoveNext %>
<% Loop %>
<OPTION NEXT=“#bye”> exit </OPTION>
</INPUT>
</STEP>
<STEP NAME=“nextcommand” PARENT=“help_dialog1”>
<% strCIO = Request.QueryString(“CIO”) %>
<PROMPT> To hear fax number <%=strCIO%>, say
fax, or say another CIO name. </PROMPT>
<INPUT TYPE=“optionlist” NAME=“CIO”>
<% ‘ Get all CIO names. %>

AU1272Ch07Frame Page 214 Monday, January 21, 2002 7:36 AM

Bridging the Gap 215

<% SQLQuery = “SELECT * FROM CIOList” %>
<% Set rsCIOs = objConnection.Execute(SQLQuery) %>
<% Do Until rsCIOs.EOF %>
<% ‘ Create an OPTION element for each CIO. %>
<OPTION NEXT=“dialog2.asp#getphone”
VALUE=“<%= rsCIOs(“CIO”) %>“>
<%= rsCIOs(“CIO”) %></OPTION>
<% rsCIOs.MoveNext %>
<% Loop %>
<OPTION NEXT=“dialog3.asp#getfax”
VALUE=“<%= strCIO %>“> fax </OPTION>
<OPTION NEXT=“#bye”> exit </OPTION>
</INPUT>
</STEP>
<STEP NAME=“committee”>
<PROMPT> Committee update is currently not supported. </PROMPT>
<INPUT TYPE=“NONE” NEXT=“#init”/>
</STEP>
<STEP NAME=“airgram”>
<PROMPT> Airgram update is currently not supported. </PROMPT>
<INPUT TYPE=“NONE” NEXT=“#init”/>
</STEP>
<STEP NAME=“bye” PARENT=“help_top”>
<PROMPT> Goodbye. </PROMPT>
<INPUT TYPE=“NONE” NEXT=“#end”/>
</STEP>
</DIALOG>
<!--_________________End of Dialog1.asp_________________________-->
<%@ LANGUAGE=“VBSCRIPT” %>
<%
Option Explicit
Private objConnection, rsPhone, SQLQuery
Private strCIO, Valid
Set objConnection = Server.CreateObject(“ADODB.Connection”)
objConnection.Open “NavyCIO Database”
%>
<?xml version=“1.0”?>
<!--__-->
<!-- dialog2.asp
__-->
<DIALOG>
<CLASS NAME=“help_dialog2”>
<HELP> Your choices are <OPTIONS/>.</HELP>
</CLASS>
<STEP NAME=“getphone”>
<% strCIO = Request.QueryString(“CIO”) %>
<% Valid = “TRUE” %>
<% SQLQuery = “SELECT * FROM CIOlist WHERE(CIO=‘“ & strCIO & “‘
)” %>
<% Set rsPhone = objConnection.Execute(SQLQuery) %>
<% If rsPhone.EOF Then %>
<% Valid = “FALSE” %>
<PROMPT> Sorry, <BREAK/> There are no current phone
number available for <%=strCIO%>.<BREAK/></PROMPT>
<% Else %>

AU1272Ch07Frame Page 215 Monday, January 21, 2002 7:36 AM

216 The Complete Book of Middleware

<% ‘ Speak current phone number %>
<PROMPT> <%=rsPhone(“Current”)%> </PROMPT>
<%End If %>
<INPUT TYPE = “Hidden” NAME=“CIO” VALUE=“<%=strCIO%>“ >
</INPUT>
<% If (Valid = “FALSE”) Then %>
<INPUT TYPE=“none” NEXT=“dialog1.asp#init”</INPUT>
<% Else %>
<INPUT TYPE=“none” NEXT=“dialog1.asp#nextcommand”></INPUT>
<% End If %>
</STEP>
</DIALOG>
<!--_________________End of Dialog2.asp______________________-->
<%@ LANGUAGE=“VBSCRIPT” %>
<%
Option Explicit
Private objConnection, rsPhone, SQLQuery
Private strCIO, Valid
Set objConnection = Server.CreateObject(“ADODB.Connection”)
objConnection.Open “NavyCIO Database”
%>
<?xml version=“1.0”?>
<!--___-->
<!-- dialog3.asp
-->
<!--___-->
<DIALOG>
<CLASS NAME=“help_dialog3”>
<HELP> Your choices are <OPTIONS/>.</HELP>
</CLASS>
<STEP NAME=“getfax”>
<% strCIO = Request.QueryString(“CIO”) %>
<% Valid = “TRUE” %>
<% SQLQuery = “SELECT * FROM CIOlist WHERE(CIO=‘“ & strCIO & “‘)” %>
<% Set rsPhone = objConnection.Execute(SQLQuery) %>
<% If rsPhone.EOF Then%>
<% Valid = “FALSE” %>
<PROMPT> Sorry, <BREAK/> There is no fax number
available for <%=strCIO%>.<BREAK/></PROMPT>
<% Else %>
<% ‘ Speak fax number information %>
<PROMPT> <%=rsPhone(“Fax”)%> </PROMPT>
<% End If %>
<INPUT TYPE = “Hidden” NAME=“CIO” VALUE=“<%=strCIO%>“ > </INPUT>
<% If (Valid = “FALSE”) Then%>
<INPUT TYPE=“none” NEXT=“dialog1.asp#init”</INPUT>
<% Else %>
<INPUT TYPE=“none” NEXT=“dialog1.asp#nextcommand”></INPUT>
<% End If %>
</STEP>
</DIALOG>
<!--_________________End

AU1272Ch07Frame Page 216 Monday, January 21, 2002 7:36 AM

217

Chapter 8

Middleware Performance

This chapter discusses various performance considerations as they apply to
middleware and its associated technologies. They include traffic performance,
service levels, communications middleware paradigms, performance tools, and
middleware selection.

Introduction

Integration broker middleware is the largest segment in the middleware market
and the fastest growing. Risks abound for vendors and users due to rapid
changes in technology, standards, and product packaging. Such risks include
degraded performance, network (or rather middleware) bottlenecks, poor
caching schemes, and defective service level agreements, among others.

Various performance solutions and standards have been debated, tried, and
offered — both proprietary and open source — yet we have not seen a
Middleware Performance Service Provider for Enterprise Application Integra-
tion (EAI) systems although other provider types

1

 have been around for a
while that aim to free time that enterprise management requires to make
important strategic decisions. Should this type of provider emerge by the time
this book hits the market, time has caught up with us.

This chapter focuses on the various performance issues and considerations
regarding the design, deployment, use, and maintenance of middleware prod-
ucts. While it is not possible to address all performance issues, the chapter
does look at middleware products that act as a translator, converter, or
integrator — or all three simultaneously as the glue between applications.

IP Traffic Performance

The biggest problem is that thousands of users, devices, routers, and appli-
cations could tie up IP traffic when they look for the same information or

AU1272Ch08Frame Page 217 Monday, January 21, 2002 7:37 AM

218

The Complete Book of Middleware

messages or performing similar tasks over the Internet simultaneously — with
the middleware products of all sorts standing between them (see Exhibit 1).
One possible outcome is a blank screen or a page greeting the users with
“Page is not available” or even a shaky cursor during, for example, extreme
network traffic fluctuations.

Web sites with heavy network traffic or rich multimedia, particularly those
containing a large gallery of heavy-duty images and Java applets of computer
voices, sometimes experience slow loading pages or even outages, even when
they are using data, voice, and image streaming technology. In addition, the
quality of packetized voices is sometimes below “toll-grade” PSTN calls, partly
due to the inability of a network to reserve enough bandwidth or achieve the
quality of service (QoS) at acceptable levels.

The amount of bandwidth can affect how the fragmented packets arrive
at a destination for reassembling of the fragments in their proper sequence.
If the bandwidth is insufficient, the system will either retransmit too many
times or completely lose packets. When this happens, a computer voice or
screen will stutter, causing a user to quickly move to another Web site that
offers faster and more appealing loading pages and better voice quality.

In the network world, there are thousands and thousands of gateway
destinations through which the packets must pass data to a maze of middle-
ware products. Not all destinations, however, have the same types of gateways.
Some can restrict the amount of bandwidth they can accept. The bandwidth,
for example, is more limited for a WAN than for a LAN (see Exhibit 2); and

Exhibit 1. Information, Messages, and Tasks

Exhibit 2. Network Bandwidths

Users

DevicesRouters

Applications

Information

Messages

Tasks

LAN

LAN

LAN

WAN

AU1272Ch08Frame Page 218 Monday, January 21, 2002 7:37 AM

Middleware Performance

219

the pipes, in turn, are narrower for a LAN than for a T1 line. Things can get
a bit complicated with thousands of LANs connected to several WANs, and
then to a T1 line.

When there is not enough bandwidth, some companies tend to limit
throughput as a way of stretching bandwidth resources and cut backbone
traffic to manageable levels. This technique is not a good idea because it can
dramatically reduce QoS.

One way of increasing the quality is to include a service level agreement
(SLA) that specifies guaranteed bandwidths

2

 and network tools to manage band-
widths, delivery contents, and Web caches, and shape network traffic at accept-
able levels. This agreement must specify uptime availability, service availability
and quality, and should also include what the scope of service is, how it can
be applied to applications development services, security services, feasibility
study, system design and specifications, and what the special requirements are.

Whatever the methods or techniques a company will choose for an SLA,
periodic throughput and other performance tests should be part of the service
contracts. Without them, there will be no way of knowing whether the
performance will decline or improve in regard to bandwidth, traffic patterns,
caching schemes, and network contents.

For a bandwidth manager to work, one must divide traffic into classes,
typically by IP address or TCP/IP application-level port number, although the
classification schemes vary widely from product to product. Then tell the
bandwidth manager, for example, how much of the WAN traffic each class
gets. Each product has different capabilities, ranging from assigning a simple
raw number to more complex rules involving setting priorities and minimum
and maximum amounts of traffic the device can pass.

Without a bandwidth management device, managing bandwidths can be
quite complex. Throttling back applications efficiently requires in-depth knowl-
edge of the entire protocol stack being used. An application running over
TCP may have internal retransmissions if packets are lost or delayed. TCP has
an entire series of internal timers and buffer interactions that vary from
implementation to implementation, and IP and Ethernet have their own
sensitivities. Taken together, the simple-minded approach of “drop packets
when limits are reached” can have the effect of wasting WAN bandwidth, as
well as skyrocketing LAN traffic and protocol stack CPU time.

Before going any further, take a look at the following case study.

Case Study

About five years ago, transmitting EAI files through intermediary systems at
three states was a headache. Every time the files arrived late at a destination,
a system engineer would get a phone call asking him or her to explain why
certain systems along the way failed to accept them at specific times or why
a file update screen appeared to stutter.

The engineer was fully aware that an operating system running at each
intermediary point was different from another (Exhibit 3). They included

AU1272Ch08Frame Page 219 Monday, January 21, 2002 7:37 AM

220

The Complete Book of Middleware

UNIX, Windows NT, Honeywell, IBM MVS/390, HP 3000, Novell Netware,
and Vines Banyes, and quite a few others. On top of them was a maze of
LANs, WANs, and routers, each with a different network topology as well
messaging and middleware products, enterprise servers, databases, and
firewall/network products.

The engineer knew about the problems of sending packetized files to the
network and associated gateways, each with a different maximum bandwidth it
could carry. The engineer also suspected that some original applications — front-
end middleware and back-end — were consuming bandwidth more than usual.

After many meetings and phone calls, the engineer got the files at the final
destination — his or her office. If the engineer’s staff had bandwidth managers,
traffic shapers, content network delivery, and caching schemes, as well as other
tools to better manage network traffic fluctuations and the resulting middleware
performance, the files would arrive during normal hours, as scheduled.

So, take a look at some tools that monitor and improve middleware
performance and consider the downsides and advantages of each.

Bandwidth Managers

Among the causes of network bottlenecks are the applications that consume
an unusual amount of bandwidth allocated to network traffic. If the applica-
tions do not get enough bandwidth, they will drop out of the network or be
subject to excessive delays or retransmission. Compounding the problem is
packet queuing in routers that are vulnerable to delay, dropped packets, and
frequent retransmission. Even when this vulnerability is not exploited, the
packets can travel at uneven rates through multiple networks in a heteroge-
neous environment, taking somewhat longer to reassemble the fragmented
packets in the proper sequence.

All happen because business, engineering, and EAI applications do not
know anything about network flows and may request more bandwidth than
is available. Without proper monitoring tools, the network does not know
when the loads are coming, how long they will last, or how and what the
user demand is going to be. These tools, however, do not always make good
predictions on the bandwidth behavior of some applications.

Exhibit 3. Heterogeneous Network

UNIX

Windows NT/2000

IBM MVS 390

HP 3000

Novell Netware

Vines Banyes

AU1272Ch08Frame Page 220 Monday, January 21, 2002 7:37 AM

Middleware Performance

221

An average user can wait no more than eight seconds for a Web page to
load onto a PC desktop. Otherwise, the user will grow impatient and go to
another site that takes much less time to download pictures, sound, and text.
As a partial solution, the SLAs focus on maximum upload availability and
guaranteed bandwidth. Consistent response time for latency-sensitive applica-
tions, however, are not guaranteed.

Due to the complexity and heterogeneous environment of networks, band-
width management can be quite complex, requiring full-time attention from
a network manager. For example, throttling back applications efficiently
involves an in-depth knowledge of the entire protocol stack being used.

Then come the bandwidth managers to help network administrators attend
to other tasks while managing bandwidths. They work exclusively on TCP/
IP traffic, dropping or passing through non-IP traffic and can look at a
customer’s bandwidth utilization. Because they can throttle the link, they give
service providers the capability to limit the bandwidth a customer can consume.

No two managers are alike. Some can slow down the lower-priority
applications and deliver more bandwidth to those with higher priority, while
others can reject any new connections or accept new ones with lower
prioritized rates. Yet another can provide brokering of bandwidth between
server providers or other domains.

More advanced bandwidth managers allow customers to request bandwidth
on demand. Customers can use this feature to alert the service providers that
more bandwidth is needed for certain times. Another advanced feature is the
capability to signal the network of the desired QoS. Some bandwidth managers
are of a proprietary nature and may require a networking expert to make
them interoperable with others in another category.

To give the enterprise an easier way to enforce its policies across its networks,
the Internet Engineering Task Force (IETF) adopted Intel’s open source version
of the Common Open Policy Service (COPS) technology in January 2001. This
provides network equipment vendors with a standard technology that they can
use with bandwidth managers and other network devices, such as routers,
switches, and load-balancing devices. While open source products aim at network
interoperability, some have features that others do not.

Whatever features a bandwidth manager offers, it is far cheaper than leasing
T1 line to get more bandwidth. ASPs that are unable to contain costs of
bandwidth among others, regardless of various network tools, are on their
way out. Web services are seen as an alternative way of controlling bandwidth
costs by allowing customers to rent components from various sources rather
than all software components from one place. Time will tell if this meets
customers’ overall expectations in the long run.

Traffic Shapers

Traffic shapers permit one to control the traffic going out of an interface in
order to match its flow to the speed of the remote, target interface. Some
traffic shapers can peek at the application riding inside every packet, while

AU1272Ch08Frame Page 221 Monday, January 21, 2002 7:37 AM

222

The Complete Book of Middleware

others can determine who is using what bandwidth and when. Others use
traffic policies to set maximum bandwidths and rate parameters, allowing
packets that exceed the acceptable amount of traffic to drop out of sight or
transmit with a different priority.

In general, traffic shapers come in two groups:

�

Changing traffic rates

�

Moving higher-priority applications

Changing Rates

A traffic shaper can change the rate at which traffic generated from an
application can flow. It takes advantage of certain QoS capabilities that allow
applications to request a certain level of bandwidth from the network. This
allows for more important applications the service they need to run efficiently,
thus preventing a single application from becoming a bandwidth hog in a
congested network. QoS, however, should be specified in an SLA so that it
will be available to the applications when needed.

Moving Applications

This second type of traffic shaper can move high-priority applications more
quickly and more efficiently than the lower-priority ones in a heavy traffic.
Controlling flows can be accomplished through TCP rate control and FIFO
Queue bucket.

TCP rate control is a technique that smoothes out the IP flow by detecting
a remote user’s access speed, factoring in network latency, and correlating
this data with other traffic for information. It is designed to distribute packet
transmissions by controlling TCP acknowledgments to the sender. When there
is insufficient bandwidth, the sender can throttle back to avoid packet loss.

FIFO Queue bucket collects varying incoming flows and controls how they
flow out of the bucket. It comes in two flavors: leaky bucket (see Exhibit 4)
and token type. A leaky bucket uses a fixed transmit rate mechanism to smooth
out the traffic, while the token type gets a fixed number of tokens with burst
capability.

More and more office workers are turning to mobile devices while on the
road or roaming from one office to another in the same building. Under
certain conditions, these workers are prone to sudden bouts of LAN contention.
For example, in an enterprise in which decision makers bring wireless laptops
to a meeting, lecturers may ask them to access a particular Web site all at
once — from the wireless segment of a corporate enterprise network (see
Exhibit 5). Tens or hundreds of simultaneous Web page downloads from a
confined area will overload the available access points. It turns out that this
wireless segment is a strong candidate to benefit from traffic-shaping technol-
ogies and equipment. The New York Stock Exchange (NYSE), for example,
which runs wireless LANs used by brokers with handheld terminals, must be

AU1272Ch08Frame Page 222 Monday, January 21, 2002 7:37 AM

Middleware Performance

223

sure that bandwidth is allocated equally and fairly among all traders. A one-
second delay could give an overt advantage to one broker over another.

The NYSE installed the Packeteer PacketShaper, a LAN-side bandwidth
manager, to allocate equal amounts of LAN bandwidth (using a capability
called dynamic subscriber partitioning) to the several hundred NYSE members
registered to use wireless computers on its trading floor.

One way of utilizing a traffic-shaping technique is to cluster bandwidth
management devices to function as a traffic shaper (see Exhibit 6). Sitara
allows large companies (and service provider users) to cluster, for example,
two Sitara QoSWorks bandwidth management devices to function as one in
managing application traffic. They divide traffic into four schemes: class-based
queuing (CBQ), TCP rate shaping, packet-size optimization, and an algorithm
for fair allocation of bandwidth by connection.

CBQ classifies traffic and queues based on that classification, while TCP
rate shaping bypasses queuing by applying flow-control policies to individual
traffic flows and classes of flows. Packet-size optimization manages latency
by reducing packet size. Fair bandwidth allocation doles out an equitable

Exhibit 4. Leaky Bucket

Exhibit 5. Simultaneous Access

Laptop 1

Laptop 2

Laptop 3

Laptop 4

.

.

.

Laptop n

Wireless
LAN

AU1272Ch08Frame Page 223 Monday, January 21, 2002 7:37 AM

224

The Complete Book of Middleware

share of bandwidth for connections within a class, so that individual connec-
tions do not timeout.

Content Delivery Networks

One good definition is that a content delivery network (CDN) is a network
that delivers specific content, such as static Web pages, transaction-based Web
sites, streaming media, or even real-time video or audio — through commu-
nications, database, and system middleware.

There are two general approaches to building CDNs: the overlay approach
and the network approach. In the overlay approach, application servers or
caches at various points in the network distribute Web graphics, streaming
video, or other likes. It does not consider the core network infrastructure
needed in content delivery. Good examples of the overlay model are the
CDNs deployed by companies such as Akamai, Digital Island, and Speedera,
which replicate content to thousands of servers worldwide. These CDNs aim
to improve Web site response time by redirecting user requests for Web content
to the nearest CDN server.

The network approach, on the other hand, deploys code to routers and
switches so that they can recognize specific application types. Examples of
this approach include devices that redirect content requests to local caches
or switch traffic coming into data centers to specific content delivery servers.
In some cases, both the network and overlay approaches are used, for
example, when a switch at a server farm’s front end redirects a hypertext
transfer protocol (HTTP) request to an Akamai server located closer to the
end user. IP Multicast is a good example of the combined network–overlay
approach.

How fast a user’s content request travels to its final destination (server)
depends on how heavy the traffic is at any given time. There is, however,
one drawback: some CDNs are of a proprietary nature, and thus are not
compatible with others. Another drawback is that many CDNs do not integrate
with associated technologies such as application deployment, content edge
delivery, content switching, and intelligent network devices. A third concern

Exhibit 6. Clustering into Traffic Shaper

bandwidth
management

device 1

bandwidth
management

device 2

cluster traffic
shaper

AU1272Ch08Frame Page 224 Monday, January 21, 2002 7:37 AM

Middleware Performance

225

is that Web servers can be bogged down with the heavy use of non-content
applications.

One way of speeding the performance of Web sites with large amounts of
data, images, and other multimedia content is to combine content delivery
with traffic management. Another way is to distribute the content traffic
between multiple sites. To free space to handle multiple content requests, a
Web server should offload non-content requests such as Secure Sockets Layer
(SSL) security processing functions.

Some products offer service providers with capabilities to control network
bandwidth availability and original server scalability, and handle distance or
latency obstacles and cope with network bottlenecks. Others are more limited
in their scope.

Whatever the products offer, they are useful to the application service
providers (ASPs) that specialize in producing digital video and audio Web site
acceleration, streaming media, distance learning, and media-enriched E-com-
merce. There is one drawback, however, in that many CDNs do not integrate
content technologies such as application deployment, content edge delivery,
content switching, and intelligent network services.

In September 2000, The Content Alliance was formed by service providers
to support content peering that would allow smaller enterprises and service
providers to create CDNs and peer these networks to provide global content
distribution coverage. This group endorsed a content peering standard and
submitted the draft standard to the IETF. In April 2000, the Wireless Multimedia
Forum (WMF) was formed to help content creators deliver rich media to any
IP-ready wireless device.

Recently, CDN services have focused on helping companies make streaming
media a reality, but Web-enabled, corporate, and E-commerce applications also
benefit from CDNs. They make the content available to users when they want it.

Caching

Everyone knows that a cache is a place where it can temporarily hold
downloaded pages when one is in a browser mode. One can go back to the
pages by having the browser quickly fetch them from the cache. The cache
comes in handy when it takes too long to download them over the lines or
when the lines are experiencing network congestion.

Not all cache mechanisms, however, are alike. Some have features not
available in others. Elegant features do not always guarantee high cache
performance; some may bog down performance during peak times. If the
cache for Web pages is insufficient, the cache is not performing well. The PC
either automatically reboots itself or greets the user with an exiting message.

To determine how well a cache is performing, the following criteria should
be used: peak throughput, hit ratio, cache age, response time, and downtime.
What each criteria measures is shown in Exhibit 7.

Peak throughout measures the maximum number of HTTP requests per
second that the cache can handle at peak load. The results are presented in

AU1272Ch08Frame Page 225 Monday, January 21, 2002 7:37 AM

226

The Complete Book of Middleware

a price/performance metric that shows how much throughput can be pur-
chased for a certain value.

Hit ratio measures the number of times a cache produces a hit vs. the
times it passes the request to the Web. This amounts to the percentage of
times the cache successfully finds a requested Web page. For example, if one
is in the second-last page instead of the immediate last page when the BACK
button on the browser is hit, one would know if a cache misses it. A higher
cache hit ratio can cut down the bandwidth required.

Cache age measures the average age of the oldest object stored in a cache.
The hit rate is higher when a product stores an object the longest before it
is dumped from the cache. Caches have a finite amount of storage space and
are programmed in different ways to allow for new storage.

Response time is the time it takes for a packet to be delivered under peak
load conditions. As mentioned in the section on bandwidth managers, packets
are sometimes retransmitted or travel at uneven rates on their way over to
the destinations due to insufficient bandwidth.

The average user can only stand to wait a maximum of eight seconds for
a Web page to load onto a PC desktop. If the user waits too long, he or she
grows impatient and then moves to another Web site that gives better cache
response time in delivering a packet or so under peak load. Consistent
response time for latency-sensitive applications, however, are not guaranteed.

Downtime is the time it takes for the cache to recover from an unexpected
condition such as a power outage or emergency maintenance shutdown. It is
important to periodically back up the cache if it is not recoverable. It is
common sense to place backup tapes and drives off-site rather than in a
library next to a computer/network room in the same building.

Caching metrics are not the only means of measuring how well caching
schemes are performing (see Exhibit 8). Another way is to cluster caches into

Exhibit 7. Cache Criteria

Criteria Measures

Peak throughput Maximum HTTP request
Hit ratio Number of times a cache produces a hit
Cache age Age of oldest object
Response time Delay time during peak times
Downtime Recovery time

Exhibit 8. Caching Performance

Caching

metrics clustering

AU1272Ch08Frame Page 226 Monday, January 21, 2002 7:37 AM

Middleware Performance

227

a single function. Cache device maker Stratacache, for example, offers Super-
liner, an enterprise cache system that lets users direct traffic to a single cache
by scaling up to 16 Intel processors in a single box. This system provides an
alternative to clustered cache offerings where, for example, a news site might
have cached content about weather on one cache device and requests for
feature stories about health issues might be handled by another cache.

According to Oracle, Oracle9

i

 lets dynamic Java applications serve up to
85 times more users than it would running on the same hardware without
Edge Side Includes (ESI)-enabled caching. ESI is a proposed open industry
standard for dynamic Web content caching.

Load Balancing

Load balancing is traditionally associated with four traditional tiers: browsers,
Web servers, transaction servers, and database servers. Now a fifth one is
added: middleware servers. Load balancing means having any number of these
servers working on one application — middleware, front end, and back end.

Load balancing allows for even distribution of processing and communi-
cations activity across a computer network so that no single device is over-
whelmed. It is especially important for networks where it is difficult to predict
the number of requests that will be issued to a server. Busy Web sites typically
employ two or more Web servers in a load-balancing scheme. If one server
starts to get swamped, requests are forwarded to another server with more
capacity. Load balancing can also refer to the communications channels
themselves.

SolidSpeed Networks offers open-source software products that let enter-
prises or service providers implement load balancing and measure the speed
and availability of their Web sites. One example is FEZ-Director, a software
for load balancing across distributed Web servers. It allows mirroring, caching,
and multi-homing. Multi-homing is the ability to put Web software on more
than one site and balance traffic between them. In addition, FEZ-Director
measures latency and packet loss in DNS and sites that use HTTP redirection
and reroutes users to the sites that are capable of handling the traffic.

Service Level Management

Corporations all over the world have turned to enterprise resource planning
(ERP) applications to provide comprehensive business and information man-
agement tools that fully integrate business processes on a global basis. To
ensure optimal utilization of this ERP environment, organizations seek to
minimize downtime, optimize application performance, monitor availability,
establish application control, predict problems or constraints, and control user
experience.

Complicating this situation is the fact that the middleware technology has
grown in many different directions, which results in many trade-offs when
considering middleware performance. Typically, software development project

AU1272Ch08Frame Page 227 Monday, January 21, 2002 7:37 AM

228

The Complete Book of Middleware

leaders select middleware without considering performance. This kind of
impetuosity can lead to disaster, including failed projects, upset users, or both.

One way of improving performance is to establish a policy on service level
management (SLM) solutions, such as those offered by BMC Software. They
offer maximum availability, performance, and recovery of ERP applications
such as SAP R/3 Suite, PeopleSoft, Oracle Applications, and Microsoft Com-
merce Server 2000 (the follow-on release to Site Server Commerce Edition),
along with their underlying databases and technologies.

In particular, BMC Software’s PATROL for EAI solutions provides capabilities
for end-to-end service level management. These solutions support the widest
variety of applications, databases, middleware, and Web technologies across
an array of operating systems. They work with MQSeries Integrator, Tuxedo,
as well as BEA WebLogic and IBM WebSphere Application Server Advanced
Edition.

BMC Software also offers online self-assessment and permits one to rate
SML competency on factors, such as minimizing connection delays among the
middleware, front-end, and back-end applications, lowering operating system
outages downtime, and reducing the chances of getting human error factors
into system outages. Also included are the amount of customer rebates when
SLAs are not fulfilled, and determining if the company’s stock price is directly
tied to the availability of its Web site.

Communications Paradigms and Tools

For the purposes here, communications paradigms can be divided into syn-
chronous, asynchronous, direct or queued.

3

 Some middleware products may
use one, two, or all of these communications paradigms. After a short discus-
sion on the paradigms, this section compares some middle products and then
provides a brief discussion of XML-RPC.

Comparing Paradigms

A remote procedure call (RPC), such as the one that exists within products such
as the Open Software Foundation’s Distributed Computing Environment (DCE),
is the best example of a synchronous middleware layer. The RPC is the calling
program (see Exhibit 9) that sends a request to a remote program and waits for
the response. The calling program, however, must stop processing or is blocked
from proceeding until the remote procedure produces a response.

In contrast, asynchronous communications are unblocked or do not block
the program from proceeding. The program can make the request and continue
processing before a response occurs; it does not stop processing to wait for
a response. Most message-oriented middleware (MOM) layers support asyn-
chronous communications through the point-to-point-messaging

4

 or message
queue models.

In direct communications, the middleware layer accepts the message from
the calling program and passes it directly to the remote program. One can

AU1272Ch08Frame Page 228 Monday, January 21, 2002 7:37 AM

Middleware Performance

229

use either direct or queued communications with synchronous processing (see
Exhibit 10); however, the direct type is usually synchronous in nature, and
the queued type is usually asynchronous.

When using queued communications, the calling process (typically a queue
manager) places a message in a queue. The remote application retrieves the
message at any time after it has been sent. If the calling application requires
a response, such as a verification message or data, the information flows back
through the queuing mechanism.

The advantage of the queuing model over direct communications is that
the remote program does not need to be active for the calling program to
send a message to it. Because it is asynchronous in nature, queuing commu-
nications middleware typically does not block either the calling or the remote
programs from proceeding with message processing.

Trade-Offs

One should review what middleware is before discussing trade-offs among
the products. Middleware is the software that connects two or more separate
applications. For example, there are a number of middleware products linking
a database system to one or more Web servers. These products enable users
to employ Web-based forms to dynamically request data from and enter them
into the database, and get a reply from a Web server.

In particular, middleware serves as the “glue” between two or more
applications and is often referred as the “plumbing” through which applications
transfer data among them. Middleware has been traditionally grouped into
transaction processing (TP) monitors,

5

 DCE environment,

6

 RPC systems, object

Exhibit 9. Remote Procedure Call

Exhibit 10. Synchronous Communications

RPC
Remote
Program

sends request

RPC
Remote
Program

stops and waits

RPC
Remote
Program

returns reply

Synchronous Communications

Direct Queued

AU1272Ch08Frame Page 229 Monday, January 21, 2002 7:37 AM

230

The Complete Book of Middleware

request brokers (ORBs), database access systems, and message passing. Data-
base access systems are discussed in Chapter 6. For information on other
middleware types, see the section entitled “Middleware Selection” in this
chapter.

The primary advantage of using RPCs (remote procedure calls) is their
simplicity. The major issue with RPCs is that they require a lot more processing
power. In addition, many exchanges must take place across a network to
carry out the request. For example, a typical RPC might require 20 distinct
steps to complete the requests, as well as several calls across the network.

The overhead of RPCs can be high. RPCs may require 10,000 to 15,000
instructions to process a remote request. They may make requests to three
services: security, naming, and translation. They do not scale well unless
combined with other middleware mechanisms such as a transaction processing
(TP) monitor or message queuing middleware.

Another problem is that RPCs are bundled into so many products and
technologies. For example, if RPCs exist within DCE products, they also make
requests to directory, time, threads, and distributed file services. All add to
the overhead of RPCs.

While RPCs are slow, their blocking nature provides the best data integrity
control. For example, if using an asynchronous layer to access data, one would
not know that the update occurs in a timely manner. An update to a customer
database could be sitting in a queue waiting for the database to free up while
the data entry clerk is creating a sales transaction using the older data. When
using RPCs, updates are always applied in the correct order. Thus, if data
integrity is more important than performance, consider RPCs.

Another example would be the CORBA-compliant distributed objects that
sit on top of an RPC and thus rely on synchronous connections to communicate
object-to-object. The additional layer means additional overhead when pro-
cessing a request between two or more distributed objects. Both CORBA and
DCOM provide similar types of capabilities as traditional RPCs. This is one of
the reasons that there has been so much discussion of and presentation on
scalability issues of CORBA and (to a lesser extent) DCOM.

MOM (message-oriented middleware) has some performance advantages
over traditional RPCs. There are two models supported by MOM: point-to-
point and message queuing (MQ). Unlike RPC, MQ lets each participating
program proceed at its own pace without interruption from the middleware
layer. The calling program can post a message to a queue and leave it there.
If a response is required, it can get the message from the queue later.

Because the MQ software (e.g., IBM’s MQ Series, Microsoft’s MSMQ,
FioranoMQ,

7

 SonicMQ, TIBCO,

8

 and Talarian) manages the distribution of the
message from one program to the next, the queue manager can take steps
to optimize performance. Messages are stored in queues that can be buffered
(reside in memory) or persistent (reside on a permanent device). The MQ
software’s asynchronous communications style provides a loosely coupled
exchange across multiple operating systems.

There are many performance enhancements that come with these products,
including prioritization, load balancing, and thread pooling. Some features in

AU1272Ch08Frame Page 230 Monday, January 21, 2002 7:37 AM

Middleware Performance

231

one messaging product may be better than others in another, depending on
the organizational requirements.

All implement key requirements for messaging server, including clustering
and load balancing, key security features, integration with application servers,
and Lightweight Directory Access Protocol (LDAP) servers. Additionally impor-
tant are scalability and latency factors. There is a maximum limit to the number
of users that a server can handle concurrently. These are strict requirements
governing the delay between the time a message is published and the time
it is received by one or more subscribers. Latency is a critical factor for
measuring performance with overall throughput of the system.

As of August 2001, the American Stock Exchange (AMEX) decided to install
Talarian’s SmartSockets to replace TIBCO and take advantage of the scalability
features as a way of coping with ever-increasing quote traffic. For a while,
both Talarian and TIBCO will co-exist until such time that all key exchange
applications are fully into Talarian’s messaging architecture. The rising quote
volume trend is partially attributed to volatility and product expansion.

TP monitors provide the greatest performance advantage over both MQ
and RPCs. Several features of TP monitors, such as BEA’s Tuxedo, IBM’s CICS,
and Microsoft Transaction Server (MTS), enhance performance as well as
provide the ultimate in scalability.

TP monitors also provide message queuing, routing, and other features,
which let distributed application developers bypass the TP monitor’s transac-
tional features. One can assign priorities to classes of messages, letting the
higher priority messages receive server resources first.

XML-RPC

XML-RPC is a way of overcoming the limitations of traditional RPCs that are
restricted to a few operating systems. This specification is a set of implemen-
tations that allow software running on disparate operating systems and in
different environments to make procedure calls over the Internet. As a remote
procedure, XML-RPC makes the calls using HTTP as the transport and XML
as the encoding. It is designed to permit complex data structures to be
transmitted, processed, and returned — synchronously.

XML-RPC works by encoding the RPC requests into XML and sending them
over a standard HTTP connection to a server (or

listener

 piece). The listener
decodes the XML, executes the requested procedure, and then packages the
results in XML and sends them back over the wire to the client. The client
decodes the XML, converts the results into standard language datatypes, and
continues executing. Exhibit 11 is a diagram showing an actual XML-RPC
conversation between a client (requesting customer information) and a listener
who is returning the results of that procedure.

There are two important aspects of this protocol that one should keep in
mind when building middleware. XML-RPC is built on HTTP and, like ordinary
Web traffic, its stateless conversations are of the request and response variety.
There is no built-in support for transactions or encryption.

AU1272Ch08Frame Page 231 Monday, January 21, 2002 7:37 AM

232

The Complete Book of Middleware

Other Performance Tools

This section looks at some tools to improve Java database and enterprise
performance. It also briefly discusses the merits of the Microsoft Operations
Manager 2000 and the Internet and Security Acceleration (ISA) Server 2000.

Managing EJB and Java Performance

Computer Associates Athena not only monitors Java 2 Enterprise Edition (J2EE)
application servers, but also examines and tests the performance of large,
complex E-business applications based on Enterprise JavaBeans (EJBs). It looks
at how the beans interact with one another and reports potential performance
bottlenecks at the bean level. The product reduces the operational overhead
of ensuring performance and availability of EJB components and J2EE-com-
pliant application servers such as BEA WebLogic, IBM WebSphere, Silverstream,
as well as J2EE-compliant Web servers.

Straka JProbe Profiler, a part of the JProbe ServerSide Suite, pinpoints Java
performance problems (EJB or Java Server Pages (JSPs)) with server-side profiling.
The ServerSide Edition provides the the ability to work with Java applications
running remotely in a networked, heterogenous environment; for example,
profiling one’s server-side applications as they run on a Solaris or NT/2000 server.

JProbe Profiler provides detailed code performance information: looping,
memory usage (heap, stack, and garbage collection). It lets one monitor
interdependencies between methods, prevent deadlock, overflow, etc.

Database

The Transaction Processing Performance Council (TPC) divides database per-
formance into three categories: online transaction processing (OLTP), ad hoc
queries, and Web E-commerce transactions. Based on the council’s criteria,
the best performers in the first category went to Microsoft SQL Server 2000
running Windows 2000 Datacenter Server on an IBM xSeries 370 machine.

Exhibit 11. XML-RPC Conversation

XML-RPC Request

XML-RPC Response

AU1272Ch08Frame Page 232 Monday, January 21, 2002 7:37 AM

Middleware Performance

233

Topping the list in the second category were IBM DB2 UDB 7.2 running Linux
on an SGI 1450 Server, and Microsoft SQL Server running Windows 2000.
Only SQL/Windows 2000 received best scores for the third category.

Microsoft Operations Manager 2000

Microsoft Operations Manager 2000 incorporates event and performance man-
agement tools for Windows 2000 Server and the family of .NET Enterprise
Servers, as well as a variety of third-party enterprise and data-center software.
It primarily collects and views event information to monitor servers and
applications. The software consolidates events, compressing repetitive events
into one single event (which logs the number of repeated attempts) to prevent
event log overflow. The same happens with event notices when a server fails.
Network administrators are notified once, although the event notification logs
the number of users affected.

Microsoft has collaborated closely with NetIQ in the development of the
Microsoft Operations Manager, as NetIQ licensed the Operations Manager
technology to Microsoft. NetIQ plans to develop XMPs (Extended Management
Packs) that integrate the Microsoft Operations Manager with a variety of other
platforms and environments, including Linux, UNIX, Novell, Lotus Notes,
Oracle, and SAP.

Internet Security and Acceleration Server 2000

The ISA Server 2000 integrates an extensible, multi-player enterprise firewall
and a scalable high-performance Web cache. It builds on Microsoft Windows
2000 security and directory for policy-based security, acceleration, and man-
agement of internetworking.

ISA Server comes in two editions: Standard Edition and Enterprise Edition.
Both have the same feature sets, although the Standard Edition is a stand-
alone server supporting a maximum of four processors. For large-scale deploy-
ments, server array support, multi-level policy, and computers with more than
four processors, one will need ISA Server Enterprise Edition.

ISA Server protects networks from unauthorized access, inspects traffic,
and alerts network administrators to attacks. It includes an extensible, multi-
player enterprise firewall featuring security with packet-, circuit-, and appli-
cation-level traffic screening, stateful inspection, broad application support,
integrated virtual private networking (VPN), system hardening, integrated
intrusion detection, smart application filters, transparency for all clients,
advanced authentication, secure server publishing, etc.

Middleware Selection

According to Exhibit 12, ten basic requirements should be ranked when
selecting middleware.

AU1272Ch08Frame Page 233 Monday, January 21, 2002 7:37 AM

234

The Complete Book of Middleware

While performance is among the most important selection criteria, other
criteria that should be considered include:

�

How middleware is defined

�

How a middleware hierarchy is developed

�

What are the desired types of middleware products

�

What performance levels are acceptable

�

What roles the middleware products will play in an EAI system

�

What are the organization’s future plans

All are related to performance criteria in one way or another. The following are
examples of answers to two questions: middleware definition and hierarchy.

Definition:

 middleware is an integrator, converter, and translator — all
facilitating the communication between two applications. It provides an API
through which applications invoke services over the network. If one divides
middleware products into management and development, management mid-
dleware connects existing applications, while development middleware pro-
vides management tools and a development platform. Management
middleware can be further grouped into communications middleware, data-
base middleware, systems middleware, E-commerce middleware, and Java-
based middleware (see Exhibit 13).

In particular, communications middleware allows one to connect applica-
tions based on communication styles such as message queuing, ORBs, and
publish/subscribe, while database middleware allows clients to invoke SQL-
based services across multi-vendor databases via de facto standards such as
JDBC, ODBC, DRDA, and RDA.

9

 System middleware, on the other hand,
provides inter-program communications regarding the use of local facilities to
access remote resources. An example is TP monitors that are required to
control local resources and also cooperate with other resource managers to
access remote resources.

Communications Middleware

Communications is further broken down into object middleware and message-
oriented middleware (see Exhibit 14). Object middleware permits clients to
invoke methods or objects that reside on a remote server. This middleware
revolves around OMG’s CORBA and Microsoft’s DCOM.

Exhibit 12. Middleware Selection Criteria

Security Access to Legacy Data

24

×

7 Availability 99.9 percent uptime availability in SLAs
Scalability Fault tolerance
Remote management Load balancing
Protocol support Performance

AU1272Ch08Frame Page 234 Monday, January 21, 2002 7:37 AM

Middleware Performance

235

MOM is a set of products that lets users run applications remotely on
different systems by sending and receiving application data as messages. It
provides an interface between client and server applications, allowing them
to send data back and forth. Examples include RPC, CPI-C, and message
queuing. CPI-C (an acronym for Common Programming Interface Communi-
cations) refers to IBM’s SNA peer-to-peer API that can run over SNA and TCP/
IP. Message queuing allows one to store messages in queues in memory
(buffered queue) or on a disk or other permanent storage device (persistent
queue). It runs in an asynchronous communications style and provides a
loosely-coupled exchange across multiple operating systems.

Database Middleware

Applications such as databases or spreadsheets are used by individuals to
create, store, and manage raw data on one or more local or remote databases.

Exhibit 13. Management Middleware Hierarchy

Exhibit 14. Communications Middleware

TP Monitors

Distributed
Objects

Application
Servers

Mobile

Enterprise
Connector
Middleware

Systems

Database

Communications

Legacy-to-Web
Middleware

J2EE
Connector

Architecture

JMS
JAXB
JAXR
JAXM

Web-to-
RDBMS

Middleware

CDBC
JDBC
DRDA

Messaging-
Oriented

Middleware

Object
Middleware

Communications
Middleware

Systems
Middleware

Database
Middleware

E-Commerce
Middleware

Java-Based
Middleware

Communications middleware

Message-oriented
middleware

Object middleware

AU1272Ch08Frame Page 235 Monday, January 21, 2002 7:37 AM

236

The Complete Book of Middleware

But people who need to see this data may be using different operating systems
and applications. Database middleware bridges this gap for users (see
Exhibit 15); it does not, however, transfer calls or objects.

In addition, database middleware does not allow for two-way communi-
cation between servers and clients. Unlike messaging middleware, servers
cannot initiate contact with clients; they can only respond when asked. One
uses a standard browser to get data via Web middleware or send data to a
database via Web-to-RDBMS middleware.

This middleware employs Structured Query Language (SQL) services for
multi-vendor databases through standards such as ODBC, DRDA, RDA, and
JDBC. DRDA stands for IBM’s Distributed Relational Database Architecture
while RDA is spelled out as Remote Data Access, usually to an RDBMS via
SQL. ODBC is short for Open Database Connectivity, a Windows standard
API for SQL communication. It is based on the Call-Level Interface (CLI)
specifications from X/Open and ISO/IEC for database APIs.

JDBC is a trademarked name, not an acronym, although it can be thought
of as “Java Database Connectivity.” It is a technology that enables universal
data access for the Java Programming Language. With Java and the JDBC API,
it is possible to publish a Web page containing an applet that uses information
obtained from remote databases running on different operating systems,
including Windows and UNIX.

Systems Middleware

Systems middleware, on the other hand, provides inter-program communica-
tions regarding the use of local facilities to access remote resources (see
Exhibit 16). An example is a TP monitor that is required to control local
resources and also cooperate with other resource managers to access remote
resources. It can sit between a requesting client program and databases,
ensuring that all databases are updated properly. This middleware is a control
program that manages the transfer of data between multi-terminals (or smart
desktop computers and laptops) and the application programs that serve them.

Other examples include distributed object middleware, mobile middleware,
and application server middleware. Distributed object middleware manages
the real-time execution of processes on remote systems while mobile middle-
ware involves the use of mobile agents to add a layer of mobility services on
top of distributed object middleware. Ideally, these services support wireless

Exhibit 15. Database Middleware

Database middleware

Web-to-RDBMS
middleware

ODBC JDBC DRDA

AU1272Ch08Frame Page 236 Monday, January 21, 2002 7:37 AM

Middleware Performance 237

user mobility and mobile access to remote resources, such as those offered
by IBM’s MQSeries Everywhere. Application server middleware is a Web-based
application server that provides interfaces to a broad range of applications
and can be used as middleware between browser and legacy systems.

E-Commerce Middleware

E-commerce middleware connects back-end enterprise software and data to
users over the Internet or through direct connections via the Web. It comes
in three layers: enterprise connector middleware, application servers, and
messaging middleware (see Exhibit 17). Legacy-to-Web middleware aims at
unifying browser client interfaces to multiple applications. B2B integration of
EAI applications is an ongoing process.

Enterprise Connector Middleware

If one wants to connect legacy applications to application servers (e.g., the
Web), one should consider enterprise connector middleware. Connector mid-
dleware tools are generally used for translating mainframe application data
into a form usable by Web applications. Examples include Information Builders’
EDA and J2EE.

Exhibit 16. Systems Middleware Hierarchy

Exhibit 17. E-Commerce Middleware

Systems middleware

TP monitors

Distributed object
middleware

Mobile middleware

Application server
middleware

E-Commerce middleware

Enterprise connector
middleware

Systems
middleware

Communications
middleware

Legacy-to-Web
middleware

Database
middleware

AU1272Ch08Frame Page 237 Monday, January 21, 2002 7:37 AM

238 The Complete Book of Middleware

Application Servers

When one needs to translate data into many forms for use by many different
types of E-commerce applications, one needs one or more application servers.
They provide a layer of business logic that handles incoming requests and
converts back-end data into an appropriate form for transfer outside a firewall.
Application servers include both prepackaged applications and application
development platforms. Outsourced E-commerce solutions such as online
marketplaces rely heavily on application server infrastructure.

Some application servers are built with a specific type of E-commerce in
mind. Microsoft’s BizTalk Server 2000 is designed for server-to-server connec-
tions between organizations, using XML-based messages to perform Internet
transactions. Other application servers rely on custom-built or packaged com-
ponents to provide business services within their application framework.

Many of these servers use the EJB component framework for application
logic components. Microsoft’s Commerce Server 2000 relies on Microsoft’s
enhanced Component Object Model, known as COM+, while other products
offer a blend of the Java and COM worlds.

Messaging Middleware

When E-commerce applications integrate from server to server instead of using
a Web interface, one will likely require messaging middleware. These mes-
saging products are generally used to guarantee that transactions are delivered
and acted upon in a specific order, and to ensure that more sophisticated
applications with complex transaction rules do not fail because of a lack of
network bandwidth or a client disconnect.

An E-commerce application can use any or all types of middleware,
depending on the type of application. A wireless supply requisitioning appli-
cation, for example, could consist of a wireless application server, multiple
types of connector middleware to hook into legacy accounting systems, and
messaging middleware — possibly with additional application servers — to
handle transaction routing and guarantee secure delivery to an appropriate
vendor.

Java-Based Middleware

An infrastructure can be built to integrate B2B with Java-based middleware
products in addition to other middleware types covered in this section. Java-
based middleware uses standards such as J2EE Connector Architecture (J2EE
CA), Java Messaging Service (JMS), JAXB, JAXR,10 and Simple Object Access
Protocol (SOAP) as well as Web services.

To understand how Java-based middleware can be used, one can start with
a standard Web browser. When one sends a request, it goes to a J2EE server
that interfaces with Web services11 (for details, see Chapter 5). In response to
the request, Web services looks up a wholesale customer in a Universal Descrip-
tion, Description and Integration (UDDI) directory that catalogs services, mostly

AU1272Ch08Frame Page 238 Monday, January 21, 2002 7:37 AM

Middleware Performance 239

with Web Services Description Language (WSDL) describing the services’
locations and protocols. These services are then accessed over SOAP that
supports RPCs over the applications protocol that binds the Web with the
HTTP. See the section on RPC trade-offs.

To complete the integration of this online with the Web services, one
requires several Java APIs, as shown in Exhibit 18. Note that Web services
platforms like Microsoft’s .NET initiative are built on XML, the SOAP, WSDL,
and UDDI. Some platforms, notably BEA System’s WebLogic, iPlanet, and
IBM’s WebSphere, support both J2EE and SOAP.

Web Services Technology

Web services technology can be thought of as an evolution of CORBA. Its
major advantage over CORBA is that Web services do not require integration
of an ORB. The underlying transport protocol behind Web services is based
on XML over the HTTP.

There is one drawback. For Web services for application integration to
work properly, several extensions must be added to the collection of Web
services specifications. Web services currently lack a mechanism to encapsulate
a user interface. This encapsulation allows packaging of an application and
embedding it into another application.

As a partial solution, the Web Services User Interface (WSUI) Initiative was
drawn up in June 2001 and defines the concept of what views the developers
should use to display a Web service on a screen. It specifies that views employ
eXtensible Stylesheet Language Transformation (XSLT) to transform into a
Hypertext Markup Language (HTML) or Wireless Markup Language (WML)
script.

Another drawback is that Web services lack security facilities. The appli-
cation of Web services for business-to-business integration (B2Bi) will be
limited if services for authentication, encryption, access control, and data
integrity are not available.

A third problem is that Web services cannot certify the identity of the
publisher or consumer of a Web service. There are no facilities to restrict
access to a Web service to a group of authorized users. As a partial solution,
the XML-Based Security Services Technical Committee from the Organization

Exhibit 18. Java APIs

Java API for XML (JAX) Send messages and exchange data
Java Architecture for XML Binding (JAXB) Map elements in the XML documents to

Java classes
Java API for XML Registries (JAXR) Update the UDDI Registry
Java API for XML Messaging (JAXM) Integrate a back-end legacy system with

a company’s supply chain via a B2B
private exchange; enable a system to
send SOAP messages

AU1272Ch08Frame Page 239 Monday, January 21, 2002 7:37 AM

240 The Complete Book of Middleware

for the Advancement of Structured Information Standards (OASIS) is working
on a specification for Security Assertion Markup Language (SAML). OASIS is
also working on XACML (eXtensible Access Control Markup Language), which
would allow organizations to limit access to services to authenticated, autho-
rized users.

Among other system standards being developed regarding the implemen-
tation of low-level security services is the XML Key Management Specification
(XKMS) proposed by Microsoft, VeriSign, and WebMethods. This specification
aims at reducing the complexity of creating products that support public key
infrastructure (PKI).

Middleware Interoperability

Another performance criteria to consider is the interoperability of some mid-
dleware products. On August 15, 2001, IONA, a leading E-business platform
provider, announced that Web services created in Microsoft .NET can be
utilized in Sun Micrososystem’s J2EE environments, and vice versa, using the
IONA XMLBus technology. This software allows developers to build Web
services from J2EE applications running on the IONA iPortal, BEA WebLogic,
or IBM WebSphere application servers. Available free of charge, it provides
support for industry standards such as SOAP, WSDL, and the XML Schema.
In addition, JMX instrumentation ensures that customers can administer and
manage Web services in the same way that they manage their existing systems.

Development Middleware

One good example of a middleware development platform is Computer
Associates’ Jasmine ii — the ii stands for intelligent infrastructure. Jasmine ii
is an object-oriented development environment that provides database support,
e-mail management and middleware services through a single interface. It also
supports a mix of CORBA and EJB components.

At the core of Jasmine are reusable objects based on the Jasmine object
database. To control the objects in an application using Jasmine, the objects
must be identified as fitting one of the Jasmine providers. Among the providers
that Computer Associates has created so far are ones for COM, CORBA,
JavaBeans, the Microsoft Messaging Application Programming Interface
(MAPI), Microsoft Object Linking and Embedding (OLE), XML, LDAP, Computer
Associates’ Neugents technology, as well as database management and enter-
prise resource planning systems.

Notes
1. Examples include management services provider (MSP), Internet service provider

(ISP), and application service provider (ASP).
2. Guaranteed bandwidths are not prioritized bandwidths.

AU1272Ch08Frame Page 240 Monday, January 21, 2002 7:37 AM

Middleware Performance 241

3. Other paradigms include connectionless communications and connection-oriented
communications. For the former paradigm, the calling program does not enter into
a connection with the target process. The receiving application acts on the request
and responds if required. For the latter paradigm, the two parties first connect,
exchange messages, and then disconnect.

4. The most common messaging models are publish-subscribe messaging, point-to-
point messaging, and request–reply messaging. Not all MOM providers support
each model. When multiple applications need to receive the same messages,
publish–subscribe Messaging is used. With this model, it is possible to have multiple
senders and multiple receivers. When one process needs to send a message to
another process, point-to-point messaging can be used. It can take either a one-
or two-way direction. The first type of point-to-point messaging systems involve a
client that directly sends a message to another client. The second type is based on
the concept of a message queue. For either type, there may be multiple senders
of messages and only a single receiver. When an application sends a message and
expects to receive a reply, request–reply messaging, the standard synchronous
object-messaging format, can be used. Unlike the other two messaging models,
Java Message Service (JMS) does not explicitly support request–reply messaging.

5. TP monitor is a program that monitors a transaction as it passes from one stage in
a process to another. The TP monitor’s purpose is to ensure that the transaction
processes completely or, if an error occurs, to take appropriate actions.

6. DCE is a suite of technology services developed by The Open Group for creating
distributed applications that run on different platforms. DCE services include:
a. RPC
b. Security service
c. Directory service
d. Time service
e. Threads service
f. Distributed file service

7. Fiorano is the first vendor to implement the JMS specification.
8. TIBCO Software is a leading integration middleware provider.
9. See the “Database Middleware” section regarding these four acronyms.

10. See Exhibit 18 on explanations of Java APIs.
11. The concept has existed for several years, first in component-based computing

frameworks such as Forte’s and more recently in platforms such as Java 2 Enterprise
Edition (J2EE).

AU1272Ch08Frame Page 241 Monday, January 21, 2002 7:37 AM

AU1272 FM Page xiv Wednesday, January 30, 2002 10:01 AM

This page intentionally left blank

243

Chapter 9

What Lies Ahead?

This chapter discusses what lies ahead for middleware technologies. It looks
at evolutionary paths the technologies have taken and at competing paradigms
between the .NET initiative and J2EE platform. The chapter then proceeds to
a middleware hierarchy that can be expanded to incorporate new technologies.
Also included are the emerging Internet standards, innovative interoperability
technologies, better performance tools, and improved service levels.

Introduction

Renting components is not really new. One can rent a vendor’s visitor
monitoring control as a component of one’s Web page to assist in tracking
the visitors coming to the site — by client operating system, hour, day, and
country. It takes much less time to rent the component (a few minutes) than
to code, program, test, and implement it (from a few days to several months),
and make it part of one’s Web page.

What is really new is the concept of Web services. This concept goes a
little further than ASPs in allowing companies to rent an entire software
package — enterprise resource planning (ERP),

1

 supply chain management
(SCM), customer relationship management (CRM), and other aspects of the
enterprise application integration (EAI) paradigm. Customers can rent compo-
nents from various sources on the Internet, and mix and match them to create
new Web services, such as:

�

Currency conversion

�

Credit authorization

�

Translation

�

Hotel reservation

�

Airline reservation

�

Local weather report

AU1272Ch09Frame Page 243 Monday, January 21, 2002 7:37 AM

244

The Complete Book of Middleware

any of which the customers could link to a vendor’s database service. By
changing the mix of components, they can determine which applications show
the best performance on an overall basis.

When a customer mixes and matches components, it means that the Web
services are reconfigurable or, in a more formal sense, loosely coupled.
Although tasks are reconfigurable, a change in the implementation of one
function does not require a change to the invoking function.

The problem here is that Web services have different meanings for the
following groups of users:

�

Consumers

�

Service providers

�

Independent software vendors

�

Managed service providers

�

Corporate application developers

Each group has a different perception of what Web services are and what
they should do. (See Chapter 5 for a list of various definitions.) Unlike Internet
standards, a common definition for Web services does not exist.

Web services include gateways into back-end systems. They can be used
in banking, insurance, brokerage, telecommunications services, retailing, man-
ufacturing and supply chain management, and many other industries to expose
existing systems via either the public Internet or private intranets and extranets
within service-oriented architectures.

Evolutionary Paths

Microsoft’s .NET platform represents an evolution of the Component Object
Model (COM) because it is used to create software components that are
completely object-based. The “COM.NET” is the next step in COM evolution.
Microsoft replaced ActiveX Data Objects (ADO) with ADO.NET and ASP with
ASP.NET, and launched Web services when .NET became available in late 2001.

Web services technology can also be thought of as taking an evolutionary
path from Common Object Request Broker Architecture (CORBA). Its major
advantage over CORBA is that Web services do not require integration of an
ORB. In the Java world, Web services are encapsulated as Enterprise JavaBeans
(EJBs).

All three object models — the COM, CORBA/IIOP, and EJB — are tools
that allow the creation of reusable software components. The underlying
transport protocol behind Web services is based on eXtensible Markup Lan-
guage (XML) over the Hypertext Transport Protocol (HTTP). All use SOAP to
transmit services (and messages, as well). Most vendors — including Microsoft,
IBM, Oracle, and Sun — are now providing SOAP-enabled products, services,
and toolkits. The open-source community has also released SOAP modules
for the Apache server and Perl.

AU1272Ch09Frame Page 244 Monday, January 21, 2002 7:37 AM

What Lies Ahead?

245

Web services have entered into the third wave of the Internet, allowing
companies to connect their systems and business processes with those of their
partners and customers. As such, the third wave has evolved from the second
wave whereby the Web sites are connected to people, and, in turn, from the
first wave in which e-mail is used to connect with people.

Competing Paradigms

Currently, two competing paradigms are clamoring for the Web services
spotlight: Microsoft’s product strategy (.NET initiative) and a standard called
Java 2 Enterprise Edition (J2EE) created by Sun Microsystems.

The great thing about the J2EE standard and .NET initiative is that they
are very compatible with each other. The main reason is that both entities
are complying with Internet standards. The key standards thus far include
Universal Description, Discovery and Integration (UDDI) for describing and
locating services; XML for handling data in a uniform way, Simple Object
Access Protocol (SOAP) for defining the interface and how to send the services;
HTML; and Web Services Description Language (WSDL) for accessing the
components comprising a Web service.

Although all provide the means by which software modules can work with
and find one another on the Web, Web services have drawbacks, particularly
in security and user interface. As a partial solution, new Internet standards
have emerged or are in the development to make Web services more interop-
erable, more user-friendly and more secure. A short discussion on these
standards is covered in the section entitled “Emerging Internet Standards.”

Middleware Hierarchy

In the first attempts to define comprehensive software platforms for distributed
applications 25 years ago, researchers created basic middleware elements such
as remote procedure call (RPC), file service, and directory service based on
dramatic advances (in those days) in hardware technology and fast networking
and workstation systems. In the industrial world, RPC has evolved into XML-
RPC to enable RPC to work with a wider range of operating systems. File
service took two evolutionary directions (database management systems and
network file services) while directory service has blossomed into more sophis-
ticated directory networking services.

It is believed that the history of “industrial” middleware began when it was
necessary to connect front-end client applications with back-end databases,
using RPC and directory services to send messages and data between appli-
cations. Middleware allows independent applications to access and share
functions and data stored in heterogeneous databases. In a large bank,
hundreds of application subsystems must be integrated. These applications
access data stores ranging from relational databases to external information
providers (e.g., credit validation service).

AU1272Ch09Frame Page 245 Monday, January 21, 2002 7:37 AM

246

The Complete Book of Middleware

The scope of middleware is now much broader, incorporating other types
of middleware that include:

�

Database middleware

�

Communications middleware

�

Systems middleware

�

E-commerce middleware

�

Java-based middleware

All address the issues of quality-of-service (QoS) management and information
security to varying degrees. Exhibit 1 shows how each is grouped into sub-
levels where appropriate in an arbitrary middleware hierarchy (for details, see
Chapter 8).

The middleware hierarchy’s big picture will change, including new middle-
ware types not yet dreamed of. Whatever the hierarchy will be, one must consider
the many trade-offs of various middleware products when considering how well
these products will perform and interoperate with protocols and diverse platforms
in a distributed environment of applications and systems over the Internet.

This section looks at database middleware, Web services, and workflow
systems.

Database Middleware

SQL/relational databases evolved from the Indexed Sequential Access Method
(ISAM), which is dependent primarily on COBOL to index records and is not

Exhibit 1. Middleware Hierarchy

TP Monitors

Distributed
Objects

Application
Servers

Mobile

Enterprise
Connector
Middleware

Systems

Database

Communications

Legacy-to-Web
Middleware

J2EE
Connector

Architecture

JMS
JAXB
JAXR
JAXM

Web-to-
RDBMS

Middleware

CDBC
JDBC
DRDA

Messaging-
Oriented

Middleware

Object
Middleware

Communications
Middleware

Systems
Middleware

Database
Middleware

E-Commerce
Middleware

Java-Based
Middleware

AU1272Ch09Frame Page 246 Monday, January 21, 2002 7:37 AM

What Lies Ahead?

247

yet formalized as a data model. Today, almost all major databases are XML
enabled. They include two from IBM (DB2 XML Extender and Informix), two
from Microsoft (SQL Server 2000 and Microsoft Access 2002), and one from
Oracle (Oracle8i/9i Application Servers). In particular, Access 2002 imports
XML documents into Access (Jet) or an SQL server database and exports XML
from Access into other formats. It can both upload tables to corporate-level,
back-end SQL Server and access information from it.

With Microsoft SQL Server, one can use ADO as a tool to process XML
directly, without having to make conversions between XML and some other
format. As of September 2001, Microsoft released XQuery Demo on the Web.
XQuery is an SQL equivalent for use with XML data, based on the World Wide
Web Consortium’s (W3C’s) XQuery working draft released on June 7, 2001.
It allows developers to manipulate sets of XML data and combine it with other
XML data. It is much better than using XPath query language to locate and
process items in an XML document and the Extensible Stylesheet Language
Transformation engine (XSLT) to filter the information. For a list of issues that
need to be resolved, go to http://131.107.228.20/xquerydemo/demo.aspx.

Web Services

One possible addition to the middleware hierarchy is Web services, when the
market for them reaches its full potential by 2002 or 2003. Some third-party
vendors already offer tools to compose, test, and deploy Web services.
Salcentral.com, for example, provides a short tutorial on how to create a Web
service with Visual Basic (Versions 5 and 6). At a future date, it will provide
tutorials on using other languages to create Web services. This brokerage also
offers various utilities that convert schemas to the WSDL format.

One major vendor — Microsoft — launched its first commercial Web ser-
vices (currently known by the code name “HailStorm”) at the beginning of
2002, a few months after the .NET platform, which came out in November 2001.

Included in the 14 services scheduled for the HailStorm release are:

�

myProfile (name, nickname, special dates, picture)

�

myContacts (electronic relationships/address book)

�

myNotifications (notification subscription, management, and routing)

�

myCalendar (time and task management)

�

myDocuments (raw document storage)

�

myWallet (receipts, payment instruments, coupons, and other transaction
records)

�

myDevices (device settings, capabilities)

They are for personal use. One can build “business” Web services with
.NET platform, J2EE platform, or third-party tools or servers, such as Shinka
Technologies’s Integration Server 1.2, a Web services platform. One can also

AU1272Ch09Frame Page 247 Monday, January 21, 2002 7:37 AM

248

The Complete Book of Middleware

get information from Dun and Bradstreet’s Web services. Mobile users can
look forward to Java 2 Micro Edition (J2ME) for micro services.

According to Gartner, Web services are already having “an impact on
commerce strategies.” Examples include E-commerce services for providing
payment, logistics, fulfillment, tracking, and rating services; E-syndicated ser-
vices for incorporating reservation services on a travel site or rate quote
services on an insurance site; Bow Street for providing the Business Web
Factory to create interactive Web services that can be mass-customized and
assembled at runtime; and Web Collage Syndicator for providing the capability
to assemble interactive Web services, customize them, and place them in the
partner’s site.

Emerging Internet Standards

Internet standards have emerged to rectify some of the drawbacks of Web services
in areas where CORBA, EJB, and COM object models shine, and to make
workflow processes more open, more standardized, and more flexible. This
section covers standards for user interface, security, and workflow processes.

User Interface

The Web Services User Interface (WSUI) Initiative was drawn up in June 2001;
it defines the concept of what views the developers should use to display a
Web service on a screen. It specifies that views employ XSLT to transform
into a Hypertext Markup Language (HTML) or Wireless Markup Language
(WML) script.

This initiative provides Web services with a mechanism to encapsulate a
user interface. This encapsulation allows packaging of an application and
embedding it into another application. It is not necessary to add several
extensions to a collection of Web services, as one must do so when not using
the user interface standard.

Security

The XML-Based Security Services Technical Committee from the Organization
for the Advancement of Structured Information Standards (OASIS) is working
on a specification for the Security Assertion Markup Language (SAML). This
standard lets Web services certify the identity of the publisher or consumer
of a Web service. Without it, there are no facilities to restrict access to a Web
service to a group of authorized users.

OASIS is also working on eXtensible Access Control Markup Language
(XACML), which would allow organizations to limit access to services to
authenticated, authorized users. The application of Web services for business-
to-business integration (B2Bi) will be limited if services for authentication,
encryption, access control, and data integrity are unavailable.

AU1272Ch09Frame Page 248 Monday, January 21, 2002 7:37 AM

What Lies Ahead?

249

Related to these security initiatives are the system standards being devel-
oped regarding the implementation of low-level security services. They include
the XML Key Management Specification (XKMS) proposed by Microsoft, Veri-
Sign, and WebMethods. This specification aims to reduce the complexity of
creating products that support public key infrastructure (PKI).

Workflow Standard

The problem is that a company can only call one set of Web services from
another company. Suppose a drapery contractor interacts with a fabric mate-
rials provider to supply the material, a drapery manufacturing company to
make the draperies for an industrial plant, a drapery fixture company to set
up the rods and other fixtures above the windows, and a utility company to
map where the rods can or cannot be. The drapery contractor needs to find
a way to order the fabric materials and send them to the drapery manufacturer
and have this process coordinated with the windows fixture company to
actually set up the draperies. On top of that, the drapery contractor needs all
these services rolled back if the utility company says that the current blueprint
for the draperies crosses essential utility lines. Currently in this system, there
is no standard way of aggregating all these services together to act as one
transaction and have them automatically stop or change in some way based
on the responses from each or all of the mentioned services. This is where
IBM’s Web Services Flow Language (WSFL), introduced in May 2001, comes
into play.

What the WSFL (described as an XML document) does is allow a company
to:

�

Define all its external services that it routinely deploys in a WDSL format.

�

Map connections between its business processes so that the services are
aggregated.

�

Finish the process if and when services are successfully executed as
planned.

�

Coordinate the canceling of some or all of the services if things go wrong.

What was demonstrated above is from the industrial drapery contractor’s
side. Now suppose that the other companies that do business with the
contractor also support the WSFL standard. Like the contractor, they would
know how to coordinate the services requested from them with the contractor’s
other needed services. For example, the fabric provider can coordinate with
the contractor’s packaging company of choice to send fabrics to the drapery
manufacturing company. And using that one document, the drapery manu-
facturing company can do the exact same thing when it has to ship the
draperies to the drapery fixture company.

After the WSFL has been standardized, it is more likely that it will be used
more widely as the market for Web services reaches full scale in 2002. Do
not confuse this workflow standard with the creation and deployment of Web
services in workflow processes (briefly discussed below).

AU1272Ch09Frame Page 249 Monday, January 21, 2002 7:37 AM

250

The Complete Book of Middleware

A Web service can serve both as an activity in one workflow and a series
of sequenced activities in another workflow, and can be composed out of a
workflow.

Start with a simple Web service workflow: a seller service (publisher) and
a buyer service (author or technical report user), as shown in Exhibit 2. The
seller service interface is defined using WSDL. The buyer service is invoking
the technical report order on the seller service using SOAP and WSDL. It
knows what the SOAP reply message looks like as defined in WSDL.

As shown in Exhibit 3, the seller service is a workflow encapsulated as a
single Web service. The seller service consists of a credit validation activity,
a document listing activity, and a buyer accounting service. The system uses
WSDL to interface the seller service with the buyer interface. The seller service
does not expose the details of this service to public applications and services
that seek to use the seller service.

Exhibit 2. Simple Workflow

Exhibit 3. Complex Workflow (Hidden)

Buyer

Seller

Order Technical
reports

Buyer

Seller

Order Technical
reports

Credit
Validation
Service Service

Buyer
Accounting

Service

Document
Listing

Hidden

AU1272Ch09Frame Page 250 Monday, January 21, 2002 7:37 AM

What Lies Ahead?

251

Now expand the workflow to include several activity steps for the Docu-
ment Listing Web Service (see Exhibit 4). The Credit Validation Service hidden
from public view uses a Pubic Credit Service over the Internet from a UDDI
registry.

Now assume that the Buyer Accounting Service is an encapsulated EJB
and replace the activities in the Document Listing Service as EJBs (see
Exhibit 5). Also add an encapsulated EJB to serve as a Web service client
application between the Credit Validation Service and the Public Credit Service.
This workflow also calls out middleware products that currently support or
will support WSFL.

Interoperability

We need more than open middleware as provided by Java APIs, standards, and
platforms. What is needed is to increase the scope of interoperability using SOAP
protocols and among platforms such as J2EE and .NET. Although CORBA 3.0
can be used with Java, EJBs, and SOAP, third-party tools for interoperability
among the “big three” — J2EE, .NET, and CORBA — are yet to be seen and
may become available by the time, or shortly after, this book is published.

SOAP Protocol

This protocol comes in three primary flavors: Microsoft (the original contrib-
utor), Perl, and Apache. Differences among them have been noted when, for

Exhibit 4. Complex Workflow (Public Credit Service)

Buyer

Seller

Order

Credit
Validation
Service Service

Buyer
Accounting

Service

Document
Listing

Step 1 Step 3Step 2

Public
Credit

Service

Technical
reports

AU1272Ch09Frame Page 251 Monday, January 21, 2002 7:37 AM

252

The Complete Book of Middleware

example, the developers change from a Microsoft operating system to a non-
Microsoft one, and vice versa.

Using the WSDL description for a Web service listed in a UDDI registry,
one can create a SOAP message that binds an application to the described
Web service and then sends that message over HTTP to invoke the service
itself. A SOAP-enabled interface on the service side translates the SOAP
message and directly invokes the service, sending the response message
(through SOAP) back. One can then translate the SOAP response message for
one’s own uses.

HTTP is not the only transport protocol over which one can send SOAP
messages. One can e-mail a SOAP message by binding the application to the
Web service and then send the message over Simple Mail Transport Protocol
(SMTP) that a service has been invoked or will be invoked pending a user
prompt.

Whatever transport protocol is used, SOAP is a tool for developing Web
services on both .NET and J2EE platforms. While the former platform for Web
services was discussed earlier in this chapter, BEA Systems’ rationale for using
SOAP to develop Web services on the J2EE platform is briefly discussed here.

First, BEA chose this platform because of the ability of the EJBs to encap-
sulate Web services. Second, BEA has taken advantage of using J2EE appli-
cations to expose EJBs and Java Messaging Service (JMS) destinations as Web
services. Exposed services use WSDL as the service description language and
provide access to components.

Third, it can use the J2EE Connector Architecture (CA) to integrate with
partners’ service by some applications of the EAI paradigms via private and

Exhibit 5. EJB-Based Workflows

Buyer

Seller

Order Technical
reports

Credit
Validation
Service

Buyer
Accounting

Service

Document
Listing

Public
Credit
Service

EJB EJBEJBEJB EJB

Service

AU1272Ch09Frame Page 252 Monday, January 21, 2002 7:37 AM

What Lies Ahead?

253

public registries. BEA Systems’ future J2EE products will eventually support
and possibly standardize how Web services will work as part of complex
business processes participating in business transactions.

J2EE and .NET Platform

The main benefits and disadvantages of J2EE and .NET involve how they link
into legacy systems, which platforms they can run on, which languages they
use, how portable the systems are, how much they cost, and their performance
and scalability metrics. The ability to interoperate is possible because both
platforms have continually incorporated support for XML. In the near future,
one will see .NET on non-Microsoft operating systems as a result of Microsoft’s
ongoing efforts to make its Web services available to non-Microsoft users in
all five categories: consumers, service providers, independent software ven-
dors, managed service providers, and corporate application developers.

In late 2000, Microsoft submitted key parts of the technology for standard-
ization to the ECMA,

2

 an international standardization body. The elements still
under discussion include the common language runtime (CLR), Common
Language Specification (CLS), Microsoft Intermediate Language (MSIL), C#,
and more than 1000 components from the basic libraries. Microsoft is actively
pushing to complete the work much faster than the usual time it takes for
such standards processes.

When Microsoft’s .NET platform was released in November 2001, many
users worked with or used both the .NET and J2EE platforms. The latter
platform had an earlier start in achieving interoperability among diverse
operating systems.

To take advantage of Web services in both environments, IONA developed
XMLBus technology to allow one to create Web services in .NET and utilize
them in J2EE environments. What this means is that developers can build Web
services created in .NET from J2EE applications running on the IONA iPortal,
BEA WebLogic, or IBM WebSphere application servers. Sun’s Java Management
Extensions (JMX) instrumentation ensures that customers can administer and
manage Web services in the same way that they manage their existing systems.

XMLBus provides tools and a runtime environment to turn existing Java
and J2EE applications into Web services without having to write code. Java
classes and EJBs can be exposed as standard Web services. IONA XMLBus
generates Java code for the appropriate Web server container, and enlists the
Web service to the specified UDDI registry.

This technology provides a portable Web services container that can be
installed on top of an existing J2EE environment or run as a stand-alone
application. Web services are deployed into the container with automatic
connection to back-end resources, via dispatchers. The container is available
on most application server platforms or as a XMLBus stand-alone.

Dispatchers are provided for Java classes and EJBs. No programming is
required to bind new Web services to preexisting application functionality
supported by these dispatchers. Future dispatchers will include support for

AU1272Ch09Frame Page 253 Monday, January 21, 2002 7:37 AM

254

The Complete Book of Middleware

IONA Enterprise Integrator, IONA B2B Integrator, CORBA 2.3,

3

 JMS, and
MQSeries.

The XMLBus technology, in addition, provides support for SOAP with
Attachments (SwA) to permit the development of Web services based on
document passing style. Multi-part MIME attachments within a SOAP message
can transmit XML documents, images, arbitrary binary data, and encrypted
messages across the wire. This implementation demonstrates IONA’s commit-
ment to ebXML.

Used in conjunction with IONA’s EAI and business-to-business integration
(B2Bi) technologies, IONA XMLBus contributes to IONA’s support for end-to-
end E-business integration. For example, coupled with IONA Enterprise Inte-
grator, IONA XMLBus provides a platform for building service-oriented archi-
tectures. When coupled with IONA B2B Integrator, IONA XMLBus provides
a platform for business process collaboration among trading partners.

Performance Tools

This section discusses various performance issues and considerations regarding
the design, deployment, use, and maintenance of middleware products. While
it is not possible to address all performance issues, this section looks at
middleware products that act as a translator, converter, or integrator — or all
three simultaneously as the glue between applications.

Among others, performance data is important criteria in middleware selec-
tion. If software development project leaders select middleware without con-
sidering performance, it can lead to budget overruns, frequent rescheduling,
high staff turnover, and even disaster, including failed projects. When dealing
with third-party vendors, it is important to determine if their SLAs are adequate.

Integration broker middleware is the largest segment in the middleware
market, as well as the fastest growing. It is slightly larger than the transaction
processing (TP) segment. Risks

4

 abound for vendors and users due to frequent
changes in technology, standards, and product packaging, among other factors
such as middleware technology bugs and incomplete ERP packages. They
include degraded performance, network (or rather middleware) bottlenecks,
poor caching schemes, and defective service level agreements.

Another problem is that business, engineering, and EAI applications via
integration broker middleware do not know anything about network flows
and may request more bandwidth than is available. Without proper monitoring
tools, the network does not know when the loads are coming, how long they
will last, or how and what the user demand is going to be.

Various performance solutions and standards have been debated, tried, and
offered — both proprietary and open source. As monitoring tools, they do
not always guarantee that they can make good predictions on traffic behavior
of some applications. They instead provide good estimates on traffic patterns
that could occur based on statistical and qualitative analysis of historical data
collected over a period of time.

AU1272Ch09Frame Page 254 Monday, January 21, 2002 7:37 AM

What Lies Ahead?

255

Among the causes of network bottlenecks are the applications that consume
an unusual amount of bandwidth allocated to network traffic. If the applica-
tions do not get sufficient bandwidth, they will drop out of the network or
be subject to excessive delays or retransmission. Compounding the problem
is packet queuing in routers that are vulnerable to delay, dropped packets,
and frequent retransmission. Even when this vulnerability is not exploited, the
packets can travel at uneven rates through multiple networks in a heteroge-
neous environment, taking somewhat longer to reassemble the fragmented
packets in their proper sequence.

An average user can usually wait no more than eight seconds for a Web
page to load onto a PC desktop. Otherwise, the user will grow impatient and
go to another site that takes much less time to download pictures, sounds,
and text. As a partial solution, the SLAs focus on maximum upload availability
and guaranteed bandwidths. Consistent response times for latency-sensitive
applications, however, are not guaranteed.

Due to heterogeneous environment of open, distributed networks, band-
width management can be quite complex, requiring full-time attention from
a network manager. For example, throttling back applications efficiently
involves an in-depth knowledge of the entire protocol stack being used.

Bandwidth managers came to help network administrators attend to other
tasks while managing bandwidths. They work exclusively on TCP/IP traffic,
dropping or passing through non-IP traffic and can look at a customer’s
bandwidth utilization. Because they can throttle the link, they give service
providers the capability to limit the bandwidth a customer can consume.

No two managers are alike. Some can slow down the lower-priority
applications and deliver more bandwidth to those with higher priority, while
others can reject any new connections or accept new ones with lower
prioritized rates. Another provides brokering of bandwidth between server
providers or other domains.

More advanced bandwidth managers allow customers to request bandwidth
on-demand. Customers can use this feature to alert service providers that more
bandwidth is needed for certain times. Another advanced feature is the
capability to signal the network of the desired QoS. Some bandwidth managers
are of a proprietary nature and may require a networking expert to make
them interoperable with others in another category.

Whatever features a bandwidth manager offers, it is far cheaper than leasing
a T1 line to get more bandwidth. ASPs that are unable to contain the costs
of bandwidth among others, regardless of various network tools, are on their
way out. Web services are seen as an alternative way of controlling bandwidth
costs by allowing customers to rent certain components from various sources
rather than renting all components of a software package from one place.
Time will tell if it meets customers’ overall expectations in the long run.

To give the enterprise an easier way to enforce its policies across its
networks, the Internet Engineering Task Force (IETF) adopted Intel’s open-
source version of the Common Open Policy Service (COPS) technology in
January 2001. This gives network equipment vendors a standard technology

AU1272Ch09Frame Page 255 Monday, January 21, 2002 7:37 AM

256

The Complete Book of Middleware

that they can use with bandwidth managers and other network devices, such
as routers, switches, and load-balancing devices. While open-source products
aim at network interoperability, some have features that others do not have.

For information on other performance tools, see Chapter 8.

Service Levels

Corporations all over the world have turned to enterprise resource planning
(ERP) applications to provide comprehensive business and information man-
agement tools that fully integrate business processes on a global basis. To
ensure optimal utilization of this ERP environment, organizations seek to
minimize downtime, optimize application performance, monitor availability,
establish application control, predict problems or constraints, and control user
experience.

One way of improving performance is to establish a policy on service level
agreements (SLAs) and service level management (SLM) solutions. The SLAs
focus on maximum upload availability and guaranteed bandwidth, while the
SLM solutions, such as those offered by BMC Software, offer maximum
availability, performance, and recovery of ERP applications

5

 along with their
underlying databases and technologies.

In particular, BMC Software’s PATROL for EAI solutions provide capabilities
for end-to-end service level management. These solutions support the widest
variety of applications, databases, middleware, and Web technologies across
an array of operating systems. They work with MQSeries Integrator, Tuxedo,
as well as BEA WebLogic and IBM WebSphere Server Advanced Edition.

BMC Software also offers online self-assessment and permits one to rate
one’s SML competency on factors such as minimizing connection delays among
the middleware, front-end, and back-end applications; lowering operating
system outages downtime; and reducing the chances of getting human error
factors into system outages. Also included are the amount of customer rebates
when SLAs are not fulfilled and determining if a company’s stock price is
directly tied to the availability of its Web site.

For either service level type, consistent response times for latency-sensitive
applications, however, are not guaranteed. The minimum acceptable level of
latency between an event and the response can be specified as long as the
effects of latency, such as voice, cursor, or screen, do not appear to stutter.

Notes

1. PeopleSoft began by specializing in back-office systems and then expanded into
the ERP’s front office. Oracle specialized in relational database management systems,
went into data warehousing, and then moved into ERP. SAP started by specializing
in manufacturing automation before expanding into other ERP areas.

2. The ECMA is an international industry association founded in 1961 and dedicated
to the standardization of information and communication systems.

3. See Chapter 2 on CORBA 3.0.

AU1272Ch09Frame Page 256 Monday, January 21, 2002 7:37 AM

What Lies Ahead?

257

4. Risks also occur from management, user, and other technical problems such as
middleware technology bugs, incomplete ERP packages, complex and undefined
ERP-to-legacy-system interfaces, and poor system performance.

5. SAP R/3 Suite, PeopleSoft, Oracle Applications, and Microsoft Commerce Server
2000 (the follow-on release to Site Server Commerce Edition).

AU1272Ch09Frame Page 257 Monday, January 21, 2002 7:37 AM

AU1272 FM Page xiv Wednesday, January 30, 2002 10:01 AM

This page intentionally left blank

259

Chapter 10

Glossary

A2A

: Application-to-Application.

ACL

: Access Control List.

ActiveX

: A Microsoft Corp. architecture that lets components interact in a
networked environment, regardless of the language used to create them.

AD

: Active Directory.

ADO

: ActiveX Data Objects.

ADS

: Windows Active Directory Service.

AMEX

: American Stock Exchange.

AMI

: Application Messaging Interface.

API

: Application Programming Interface.

APPC

: Advanced Program-to-Program Communication.

Application server middleware

: Software that lets users access legacy pro-
grams either locally or remotely via a browser.

ASP

: Active Server Pages.

ASP

: Application Service Provider.

Asynchronous Communications

: A form of communication by which appli-
cations can operate independently, so that they do not have to be running
or available simultaneously; a process sends a request and may or may
not wait for a response; a non-blocking communications style.

ATMI

: Application-to-Transaction Monitor Interface.

Automatic Binding

: Describes the action when an

RPC

 client stub locates a
specific server on a list of servers.

AVI

: Audio-Visual Interleaved.

B2B

: Business-to-Business, in reference to commerce conducted between
companies rather than between companies and private individuals or
consumers.

B2Bi

: Business-to-Business integration.

B2C

: Business to Consumer; this refers to commerce conducted between
companies and individuals or consumers, in contrast to B2B.

AU1272Ch10Frame Page 259 Monday, January 21, 2002 7:37 AM

260

The Complete Book of Middleware

B2E

: Business-to-Enterprise.

Bandwidth

: The amount of data that can be sent through a connection;
usually measured in bits per second.

Binding

: The association of a client and a server.

Blocking Communications

: A synchronous messaging process whereby the
requestor of a service must wait until a response is received.

BMP

: Bean-Managed Persistence.

BOA

: Basic Object Adapter.

BTP

: Business Transaction Protocol.

Buffered Queue

: A message queue that resides in memory.

CAE

: Common Application Environment.

CBQ

: Class-Based Queuing.

CCF

: Common Connector Framework (CICS).

CCI

: Common Client Interface.

CCM

: CORBA Component Model.

CDN

: Content Delivery Network.

CGI

: Common Gateway Interface.

CIAS

: Clinical Image Access Service.

CIDL

: Component Implementation Definition Language.

CIML

: Customer Identity Markup Language.

CLI

: Call Level Interface.

CLR

: Common Language Runtime.

CLS

: Common Language Specification.

CMI

: Common Messaging Interface.

CMP

: Container-Managed Persistence.

COM+

: An extension to COM that makes it easier to use C++ and avoids the
complexities of the Interface Definition Language.

COM

: Component Object Model.

Connectionless

: The calling program does not enter into a connection with
the target process; the receiving application acts on the request and
responds if required.

Connection Oriented

: The two parties first connect, exchange messages,
and then disconnect.

COPS

: Common Open Policy Service.

CORBA

: Common Object Request Broker Architecture.

CPI

: Container-Provided Interface.

CRM

: Customer Relationship Management.

CTG

: CICS Transaction Gateway.

CVS

: Concurrent Versions Systems.

CWM

: Component Warehouse Modeling.

cXML

: Commerce XML. A meta-language that defines the necessary informa-
tion about a product. It is a set of document type definitions (DTD) for
the XML specification. Eventually, it will be used to define the exchange
of transaction data for secure electronic transaction over the Internet..

DAD

: Document Access Definition.

AU1272Ch10Frame Page 260 Monday, January 21, 2002 7:37 AM

Glossary

261

Data Level Integration

: A form of

EAI

 that integrates different data stores to
allow the sharing of information among applications. It requires the loading
of data directly into the database via its native interface and does not
involve the changing of business logic.

Data Transformation

: A key requirement of

EAI

 and

message brokers

. There
are two basic kinds: syntactic translation changes one data set into another
(such as different date or number formats), while semantic transformation
changes data based on the underlying data definitions or meaning.

Database Middleware

: Software used to integrate database contents across
an enterprise.

DCE

: Distributed Computing Environment.

DCOM

: Distributed COM.

DDL:

 Data Definition Language.

Development Middleware

: Software that adds routines to make applications
network-cognizant.

DII

: Dynamic Invocation Interface.

Distributed Object Middleware

: Software that makes applications on one
part of a system available everywhere on the network.

DLL

: Dynamic Link Library.

DMTF

: Distributed Management Task Force.

DNS

: Domain Name System.

DOM

: Document Object Model.

DRDA

: IBM’s Distributed Relational Database Architecture.

DSI

: Dynamic Skeleton Interface.

DTD

: Data Type Definition.

DTP

: Distributed Transaction Processing.

E2e:

 E-business to enterprise.

EAI

: Enterprise Application Integration.

EAR

: J2EE Archive.

ECI

: External Call Interface (IBM).

EDI:

 Electronic Data Interchange.

EDOC

: Enterprise Distributed Object Computing.

EIS

: Enterprise Integration System.

EJB

: Enterprise JavaBean.

EMA

: Enterprise Memory Architecture.

ERP

: Enterprise Resource Planning.

ESI

: Edge Side Includes.
Extranet: A network that links an enterprise to its various divisions and

business partners and uses secured Internet links.
FTP: File Transfer Protocol.
Gateway: A hardware/software setup that performs translations between

disparate protocols.
GBR: Global Business Registry.
GIOP: General Inter-ORB Protocol.
Groupware: A collection of technologies that allows the representation of

complex processes that center around collaborative human activities.

AU1272Ch10Frame Page 261 Monday, January 21, 2002 7:37 AM

262 The Complete Book of Middleware

GUI: Graphical User Interface.
HCL: Hardware Compatibility List.
HMP: Heterogeneous Multi-Processing.
HTL: X/Open High-level Transaction Language.
HTML: Hypertext Markup Language.
HTTP: Hypertext Transfer Transport Protocol.
HTTPR: Reliable HTTP.
IDL: Interface Definition Language.
IETF: Internet Engineering Task Force.
IIOP: Internet Inter-ORB Protocol.
IIS: Internet Information Server.
Invasive Integration: An implementation approach that requires changes or

additions to existing applications; opposite of non-invasive integration.
IPX: Internetwork Packet Exchange.
ISA: Internet Security and Acceleration Server 2000.
ISAM: Indexed Sequential Access Method.
ISAPI: Internet Server API.
ISO: International Standards Organization.
J2EE CA: J2EE Connector Architecture.
J2EE: Sun Microsystems’ Java 2 platform, Enterprise Edition.
JAAS: Java Authentication and Authorization Support.
JAR: EJB Java Archive.
JavaBeans: Modules written in Java.
JavaScript: A Web scripting language derived from Java.
Java: Sun Microsystems’ universal platform language, which is replacing C++

for many applications on the Web.
JAX/RPC: The Java APIs for XML-based RPC.
JAXB: Java API for XML Data Binding.
JAX: Java API for XML.
JAXM: Java API for XML Messaging.
JAXP: Java API for XML Parsing; Java API for XML Processing.
JAXR: Java API for XML Registries.
JCE: Java Cryptography Extensions.
JCP: Java Community Program.
JDBC: Java Database Connectivity.
JDK: Java Developer’s Toolkit.
JDNI: Java Naming and Directory Interface.
JMF: Java Media Framework.
JMS: Java Message Service.
JMX: Java Management Extensions.
JNI: Java Native Interface.
JSP: Java Server Page.
JSSE: Java Secure Socket Extension.
JTA: Java Transaction API.
JVM: Java Virtual Machine.
LDAP: Lightweight Directory Access Protocol.

AU1272Ch10Frame Page 262 Monday, January 21, 2002 7:37 AM

Glossary 263

Legacy-to-Web Middleware: Unifies browser interfaces with multiple appli-
cations.

Load Balancing: Automatic balancing of requests among replicated servers
to ensure that no server is overloaded; distributing work to avoid over-
loading a system.

Management Middleware: Complex software that manages data moving
between disparate elements.

MAPI: Microsoft Messaging Application Interface.
MDA: Model-Driven Architecture.
MDC: Meta-Data Coalition.
Message Broker: A key component of EAI, a message broker is an intelligent

intermediary that directs the flow of messages between applications, which
become sources and consumers of information. Message brokers provide
a very flexible communications backbone and provide services such as
data transformation, message routing, and message warehousing.

Middleware: Software that connects disparate computers, operating systems,
and protocols.

MIDL: Microsoft Interface Description Language.
MIP: Meta-Interchange Patterns.
MMC: Microsoft Management Console.
MOF: Meta-Object Facility.
MOM: Message-Oriented Middleware.
MPEG: Motion Picture Experts Group.
MQI: Messaging Queuing Interface.
MQ: Message Queuing.
MSIL: Microsoft Intermediate Language.
MSMQ: Microsoft Message Queuing.
MSP: Management Services Provider.
MTS: Microsoft Transaction Server.
MTR/MTU: Maximum Transmission Unit Rate.
NDR: Network Data Representation.
NDS: NetWare Directory Service.
NIS+: Network Information Services.
NLB: Network Load Balancing.
Non-Blocking Communications: An asynchronous messaging process

whereby the requestor of a service does not have to wait until a response
is received from another application.

Non-Invasive Integration: An implementation approach that does not require
changes or additions to existing applications.

NOS: Network Operating System.
NSAPI: Netscape API.
NYSE: New York Stock Exchange.
O/R: Object/relational.
OAG: Open Applications Group. An industry consortium formed to promote

the easy and cost-effective integration of key business application software
components.

AU1272Ch10Frame Page 263 Monday, January 21, 2002 7:37 AM

264 The Complete Book of Middleware

OAMAS: Open Applications Group as its Open Application Middleware API
Specification.

OASIS: Organization for the Advancement of Structured Information Standards.
OC4J: Oracle9i/AS Container for J2EE.
ODBC: Open Database Connectivity, a Windows standard API for SQL com-

munication.
ODBMS: Object Database Management System.
OID: Oracle Internet Directory.
OLAP: Online Analytical Processing.
OLE: Object Linking and Embedding.
OLTP: Online Transaction Processing.
OMG: Object Management Group. A consortium of object vendors and the

founders of the CORBA standard.
ONC: Open Network Computing.
ORB: Object Request Broker.
OSF: Open Software Foundation.
OSI: Open Standard Interconnect.
PAE: Physical Address Extension.
PDA: Personal Data Assistant.
PDL: Persistent Definition Language.
Perl: Practical Extraction Report Language.
Persistent Queue: Queues stored on a permanent device (e.g., disk).
PIM: Platform-Independent Model.
PIPs: Partner Interface Processes.
PKI: Public key infrastructure.
POA: Portable Object Adapter.
PSM: Platform-Specific Model.
PSS: Persistent State Service.
PTP: Point-to-Point.
Publish/Subscribe: Publishers broadcast data to subscribers that have issued

the type of information to receive; an application or user can be both a
publisher and subscriber.

QC: Microsoft Queued Components.
QoS: Quality of Service.
RDA: Remote Data Access.
RDBMS: Relational DBMS.
RDF: Resource Description Framework.
RDO: Remote Data Object.
RDS: Remote Data Service.
RMF: Rich Media Format.
RMI: Remote Method Invocation.
ROF: Relational Object Framework.
Router: A special-purpose computer or software package that handles the

connection of two or more networks; routers check the destination address
of the packets and decide the route to send them.

RPC: Remote Procedure Call (network services via TCP port 80).
RSS: Rich Site Summary.

AU1272Ch10Frame Page 264 Monday, January 21, 2002 7:37 AM

Glossary 265

RTP: Real-Time Transport Protocol.
RTSP: Real-Time Streaming Protocol.
SAML: Security Assertion Markup Language.
SAN: System Area Network.
SAX: Simple API for XML.
SCI: Server Container Interface.
SCL: Service Contract Language.
SCM: Supply Chain Management.
SCSL: Sun Community Service Licensing.
SLA: Service Level Agreement.
SLM: Service Level Management.
SMP: Symmetric Multi-Processing.
SMTP: Standard Mail Transfer Protocol.
SNA: System Network Architecture, a network architecture from IBM.
SNMP: Simple Network Management Protocol.
SOAP: Simple Object Access Protocol.
Sockets: A portable standard for network application providers on TCP/IP

networks.
SPI: Service Provider Interface.
SQLJ: Embedded SQL in Java.
SQL: Structured Query Language.
SRMP: SOAP Reliable Messaging Protocol.
SSL: Secure Sockets Layer.
Stateful: An entity or object keeps track of the state of interaction.
Stateless: There is no record of previous interactions and each interaction

request has to be handled based entirely on information that comes with it.
STDL: Structured Transaction Definition Language.
Stored Procedure: A program that creates a named collection of SQL or

other procedural statements and logic that is compiled, verified, and stored
in a server database.

STP: Straight Through Processing occurs when a transaction, once entered
into a system, passes through its entire life cycle without any manual
intervention; STP is an example of a Zero Latency Process, but one specific
to the finance industry which has many proprietary networks and messaging
formats.

SwA: SOAP with Attachments.
Synchronous Communications: A form of communication that requires

applications to run concurrently; a process issues a call until it receives a
response.

TCP/IP: Transmission Control Protocol/Internet Protocol (RPC and Web ser-
vices network services via TCP ports 111 and 80).

TDS: Tabular Data Screen.
TP Monitor: Transaction processing monitor.
TPC: Transaction Processing Performance Council.
TP: Transaction Processing.
Trigger: A stored procedure that is automatically invoked on the basis of

data-related events.

AU1272Ch10Frame Page 265 Monday, January 21, 2002 7:37 AM

266 The Complete Book of Middleware

Two-Phase Commit: A mechanism to synchronize updates on different
machines or platforms so that they all fail or all succeed together. The
decision to commit is centralized, but each participant has the right to veto.
This is a key process in real-time transaction-based environments..

UDDI: Universal Description, Discovery and Integration.
UDP: User Datagram Protocol.
UDS: Universal Data System.
UML: Unified Modeling Language.
UMS: Utility Management System.
UN/CEFACT: United Nations Centre for Trade Facilities and Electronic Busi-

nesses.
VBScript: An extension of Visual Basic used to create scripts.
VoXML: Voice over XML.
VPN: Virtual Private Network.
W3C: World Wide Web Consortium.
WAP: Wireless Access Protocol.
WAR: Web Component Archive.
WBEM: Web-Based Enterprise Management.
WebDAV: Web Distributed Authoring and Versioning.
Web-to-RDBMS Middleware: Software that can be used to publish data on

the Web.
WinSock: Windows Sockets.
WMF: Wireless Multimedia Forum.
WMI: Windows Management Instrumentation.
WML: Wireless Markup Language.
WSCL: Web Service Conversational Language.
WSDL: Web Services Description Language.
WSFL: Web Services Flow Language.
WSH: Windows Script Host.
WSUI: Web Services User Interface.
X/Open: An independent open systems organization. Its strategy is to combine

various standards into a comprehensive integrated systems environment
called Common Applications Environment, which contains an evolving
portfolio of practical APIs.

XACML: eXtensible Access Control Markup Language.
XAMTI: X/Open ATMI.
XDR: External Data Representation.
XHTML: eXtensible HTML.
XKMS: XML Key Management Specification.
XLANG: Cross language (Microsoft).
XMI: XML Meta Interchange.
XML: eXtensible Markup Language.
XMLP: XML Protocol.
XMP: Extended Management Pack.
XSD: XML Schema Datatypes.
XSLT: eXtensible Stylesheet Language Transformation.
Zero Latency: No delay between an event and the response.

AU1272Ch10Frame Page 266 Monday, January 21, 2002 7:37 AM

Glossary 267

Zero Latency Enterprise: An enterprise in which all parts of the organization
can respond to events as they occur elsewhere in the organization, using
an integrated IT infrastructure that can immediately exchange information
across technical and organizational boundaries.

Zero Latency Process: An automated process with no time delays (i.e., no
manual re-entry of data) at the interfaces of different information systems.
STP is an example.

AU1272Ch10Frame Page 267 Monday, January 21, 2002 7:37 AM

AU1272 FM Page xiv Wednesday, January 30, 2002 10:01 AM

This page intentionally left blank

269

About the Author

Judith M. Myerson is a systems engineer/architect with a Master’s degree in
engineering. A noted columnist and writer with over 150 articles/reports
published, she is the editor of Auerbach’s

Enterprise Systems Integration, 2nd
edition,

 handbook covering a broad range of technologies relevant to an
enterprise. They include middleware, enterprisewide systems, databases,
enabling technologies, application development, network management, dis-
tributed systems, component-based technologies, and project management.

She is also the author of the following articles for Auerbach:

�

“XML: Its Role in TCP/IP Presentation Layer (Layer 6)”

�

“Designing a Capacity Database Server”

�

“Web-Enabling a Capacity Database Server”

�

“Virtual Server Overview”

�

“Managing ERP Systems in a Heterogeneous Environment”

�

“Oracle in Wireless Offices”

�

“Performance Tuning: SQL Query (Indexes, Joining Process, Fragmentation,
and Other Stuff)”

�

“Web-Enabling Image and Sound Objects in Database Tables”

AU1272Ch11Frame Page 269 Monday, January 21, 2002 7:38 AM

AU1272 FM Page xiv Wednesday, January 30, 2002 10:01 AM

This page intentionally left blank

271

Index

A

Access Control List (ACL), 99
ACL, see Access Control List
Active Server Pages (ASP), 8, 199
Adapter Offering, 22
ADO, see Microsoft ActiveX Data Object
Akamai server, 224
AlphaBean examples, 91
alphaWorks, 213
American Stock Exchange (AMEX), 231
AMEX, see American Stock Exchange
AMI, see Application Messaging Interface
Analysis and Design platform task force, 49
API, see Application programming interface
Application(s)

back-end, 93, 256
business-to-business, 35
business-to-consumer, 35–36
cluster-aware, 81
E-mail newsletter, 102
J2EE, 96, 97
line-of-business, 81
memory tuning, enabling of, 78
Message Queuing, 76
Messaging Interface (AMI), 20
Microsoft Component Object Model, 14
mining, 192
model, Publish/Subscribe, 102
objects, 30
programs, 22
security, 25
servers, 95, 238
service providers, 225
telephony client, 187
WAP, 202
Web-based, 115
workflow, 16

Application programming interface (API), 11
flows, Java, 93
Java, 108, 239

for data binding, 109
for XML parsing, 109

MQSeries, 19, 20
types

container, 39
external, 39

Ardent Software, Inc. JRB–Java Relational
Binding, 178

Ariba, 131
ASP, see Active Server Pages
AST.NET

authorization services, 68
handler, 67

Asynchronous invocations, 34
Asynchronous messaging, 22, 100
Attunity Connect, 167
Authentication, 67
Authorization, 67
AVI format, see Microsoft Audio-Video

Interleaved format

B

Back-end
applications, 93, 256
systems, gateways into, 244

Back-office environments, 163
Bandwidth

allocations, 204
management, 221
manager, 220, 255

Basic Object Adapter (BOA), 30
Batching calls, 3
BB, see Bulletin Board
B2B, see Business-to-business (B2B)
B2C applications, see Business-to-consumer

applications
BDI Systems, Inc. DB/XML Vision and xPower

Transform, 168
Bean(s)

class, 86
deployment descriptor, 94
entity, 90
-managed components, 94
-managed persistence (BMP), 90
message-driven, 88, 90, 102, 103
session, 89
source code, 98

AU1272 Index Page 271 Monday, January 28, 2002 7:24 AM

272

The Complete Book of Middleware

stateful session, 89
stateless session, 90

BEA Systems, 107
jdbcKona, 177–178
Tuxedo, 15
Tuxedo/Q component, 18
WebLogic, 192, 256
Web services, 124

Beatnik Rich Media Format (RMF), 108
BeOS, 92, 103
BizTalk.org, 118, 127
Black & White Software, Inc. PRO/Enable, 180
Blue Matrix, 134
BMP, see Bean-managed persistence
BOA, see Basic Object Adapter
Borland

Delphi, 168
Web services, 125

Bowstreet, 131
BPM, see Business process management
Broadcasting calls, 3, 4
Broker Web service description, 138
Browsers, translating for all, 206
BTP, see Business Transaction Protocol
Bulletin Board (BB), 15
Business

process management (BPM), 21
software, 67
Transaction Protocol (BTP), 124

Business-to-business (B2B)
applications, 35
communication, primary problem of, 210
integration, 163, 239, 248, 254

brokers, 94
technologies, 136, 254

Business-to-consumer (B2C) applications,
35–36

C

Cache, 225
age, 226
criteria, 226
performance, 226

CAE, see Common Application Environment
Callback procedures, 3
Call-Level Interface (CLI), 236
Cape Clear Software, 134
CapeConnect architecture, 136
Caribou Lake Software, Inc.

JdbCache, 177
JSQL, 178
Jsvr, 178–179

CBQ, see Class-based queuing
CCF, see Common Connector Framework
CCI, see Common Client Interface
CCM, see Common Object Request Broker

Architecture Component Model
CDN, see Content delivery network
C41 Domain task force, 49
Cell phones, 110
Channel security, 25
CIAS, see Clinical Image Access Service
CICS offerings, 27
CIDL, see Component Implementation

Definition Language

CIML, see Customer Identity Markup
Language

CiscoWorks 2000, 206
Class-based queuing (CBQ), 223
ClearPath Servers, 14
CLI, see Call-Level Interface
Client

CORBA, 30
RPC runtime library, 7

Clinical Image Access Service (CIAS), 53
CLR, see Common language runtime
CLS, see Common Language Specification
Clustering, 98, 99

-aware applications, 81
services, 74, 80, 81
technology, 79

CMI, see Common Messaging Interface
CMP, see Container-managed persistence
COBOL, 60

business logic, 191
calling Java from, 194
code fragment, 196
Enterprise JavaBeans, 196, 197, 198
language environment, 170
legacy, 193
programmers, subroutine linkage

mechanisms familiar to, 18
subroutine, 192
support, 193

Code
bean source, 98
fragment, COBOL, 196
JMF source, 108
managed, verified, 65
unmanaged, 59, 66

Collection service, 40
COM, see Component Object Model
Commercial messaging, 24
Common Application Environment (CAE), 13
Common Client Interface (CCI), 95
Common Connector Framework (CCF), 26
Common Enterprise Models Domain task

force, 49
Common frameworks, 29
Common language runtime (CLR), 59, 253
Common Language Specification (CLS), 59,

253
Common Messaging Interface (CMI), 20
Common Object Request Broker Architecture

(CORBA), 29, 113, see also CORBA 3
-based notification service, 42
basic metatype in, 37
client, 30
/COM, .NET vs., 60
Component Model (CCM), 32, 36, 90

component categories, 38
development stages, 37
event model, 38

fault-tolerant, 35
Firewall Traversal specification, 34
messaging, 35
minimum, 31, 35
object services, 40, 41
organizational structure, 31
Portable Object Adapter, 90
Real-Time, 31, 35, 36
release summary, 30, 31
RMI and, 104

AU1272 Index Page 272 Monday, January 28, 2002 7:24 AM

Index

273

Services and Extensions, 43
Common object services, 29
Common Open Policy Service (COPS), 221,

255
Common Programming Interface Communica-

tions (CPI-C), 235
Communications(s)

B2B, primary problem of, 210
connectionless, 139
inter-application, 204
middleware, 217, 234, 235, 246
synchronous, 229

COM.NET, 58
Component(s)

assembly, 37
bean-managed, 94
CCM, 38
declaration, 37
deployment and installation, 37
developers, 86
EJB, 86
entity, 39
Implementation Definition Language

(CIDL), 36
instance activation, 37
Object Model (COM), 10, 57, 244
packaging, 37
process, 39
reusable, 116
service, 38
session, 38
usage patterns, 38
Warehouse Modeling (CWM), 50
Web, 97

Concurrency service, 41
Concurrent Versions Systems (CVS), 92
Configuration management, 15
Connectionless communications, 139
Connect Software, FastForward, 174–175
Container

API types, 39
-managed persistence (CMP), 90
programming model, 39
-provided services, 39
Provider Interface (CPI), 91

Content delivery network (CDN), 224
COPS, see Common Open Policy Service
CORBA, see Common Object Request Broker

Architecture
CORBA 3, 29–56

CORBA object services, 40–44
accessing object services, 40–43
OpenORB, 43–44

CORBA release summary, 30–31
modeling specifications, 46–56

additional specifications, 55
bridging platforms, 56
extensions to IDL, 56
IDL specified models, 55
MDA inner core, 51–52
MDA middle core, 52–53
MDA outer core, 53–54
UML profiles, PIM, and PSMs, 54

OMG Technology Committee, 44–46
organizational structure, 31–32
other supporting facilities, 44
what is new, 32–40

CCM development stages, 37

CCM extensions to OMG IDL, 37–38
component usage patterns, 38–39
container programming model, 39
CORBA component model, 36
improved integration with Java and

Internet, 33–35
integration with Enterprise JavaBeans,

39–40
quality of service control, 35–36

work-in-progress status, 46
CPI, see Container Provider Interface
CPI-C, see Common Programming Interface

Communications
Credit card

payments, processing of, 61
transactions, authorizing, 113

Credit Validation Service, 131, 132
CRM, see Customer relationship management
CryptoBeans, 91
Cryptographic objects, 68
Currency exchange rate, 130
Customer

Identity Markup Language (CIML), 206
relationship management (CRM), 73, 85,

113, 158, 243
CVS, see Concurrent Versions Systems
CWM, see Component Warehouse Modeling

D

Data
binding, Java API for, 109
Junction Suite, 169
transfer syntax, 206
type(s)

comparison of complex, 210
definition (DTD), 34, 130

warehouse standards, OMG, 52
Database(s)

access
interfaces, 96
systems, 230

multi-vendor, 234
SQL/relational, 246
table, 201
Universal Data System, 14
updates, 24
XML-enabled, 182

Database middleware, 157–189, 234, 235, 236,
246

data-level integration, 157–164
iWay Software B2B integration, 163
iWay Software EAI Solutions, 160
iWay Software E-business integration,

160–162
iWay Software E-commerce integration,

163–164
iWay Software mobile E-business integra-

tion, 162–163
WebFOCUS business intelligence suite,

158–160
DBMS/SQL middleware, 164–165

MERANT data connectivity, 165
Pervasive.SQL middleware, 164–165

flavors of, 157
HTTPR, 188

AU1272 Index Page 273 Monday, January 28, 2002 7:24 AM

274

The Complete Book of Middleware

Java-based database middleware, 171–182
Business Sight Framework, 172
CoCoBase, 172–173
DataDirect SequeLink, 173
dbANYWHERE Server, 173–174
DbGen Professional Edition, 174
DB2 Universal Database, 173
Enterprise Component Broker, 174
ExpressLane, 174
FastForward, 174–175
Fresco, 175
HiT JDBC/400, 175
HiT JDBC/DB2, 175–176
IDS Server, 176
Jaguar CTS, 176
Javabase/400, 176
jConnect for JDBC, 176–177
JdbCache, 177
JDBC Developer, 177
jdbcKona, 177–178
JDBC Lite, 177
JDX, 178
JRB–Java Relational Binding, 178
JSQL, 178
Jsvr, 178–179
JYD Object Database, 179
ObjectStore DBMS, 179
ObjectStore PSE for Java, 179
OpenLink Data Access Drivers for JDBC,

179–180
Oracle Lite, 180
POET Object Server Suite, 180
PRO/Enable, 180
Relational Object Framework, 180–181
Rmijdbc, 181
SCO SQL-Retriever, 181
SOLID JDBC Driver, 181
SOLID Server, 181
Versant ODBMS, 182
VisiChannel, 182

Web services-enabled database
middleware, 185

Windows telephony with TAPI, 185
XML database middleware, 165–171

commercial products, 166–170
evaluation-only products, 170–171

XML-enabled databases, 182–185
DB2 XML Extender and DB2 Text

Extender, 183
Informix, 183
Microsoft Access 2002, 184
Microsoft SQL Server, 183–184
Oracle8i/9i application servers, 184–185

Data-center software, 233
DataSnap, 125
DBMS/SQL middleware, 164
DCE, see Distributed Computing Environment
DCOM, see Distributed COM
Delphi 6 DataSnap feature matrix, 186–187
Deployment descriptors

bean, 94
XML-based, 56

Dequeuing, user-defined, 17
Development middleware, 240
Dialogue scenarios, 199
Digital signatures, 68
DII, see Dynamic invocation interface
DirContext, 106, 107

Directory
EJB, 91
package, 106
services

enterprise-level, 104
JNDI, 105

Discovery Stack, 121
Distributed COM (DCOM), 58
Distributed Computing Environment (DCE),

5, 228
Distributed Management Task Force (DMTF),

83
Distributed object middleware, 236
Distributed transaction and messaging mid-

dleware, 1–28
distributed processing middleware, 12–19

BEA Tuxedo, 15–18
BEA Tuxedo/Q component, 18–19
Unisys’ Distributed Processing

Middleware, 13–15
IBM MQSeries, 19–27

application programs and messaging,
22

CICS and MQSeries, 26
commercial messaging, 24–25
MQSeries family, 20–22
MQSeries Internet Pass-Thru, 25–26
MQSeries JMS support, 26–27
queue managers, 23–24

Microsoft Messaging Queuing, 8–12
Microsoft queued components, 10–12
MSMQ features, 9–10
when network goes down, 12
writing applications, 8–9

Remote Procedure Call, 1–8
Microsoft RPC components, 7–8
Microsoft RPC facility, 5–6
OSF standards for RPC, 7
port mapper, 2
RPC features, 3–4
RPC layers, 2–3
RPC model, 1–2
stubs, 6–7
XML-RPC, 4–5

Distributed Transaction Processing (DTP),
12

Distribution lists, 75
DLLs, see Dynamic link libraries
DMTF, see Distributed Management Task

Force
Document Listing Web service, 131
Domain

objects, 29
specifications, 44
technology

FTFs, 46
RTFs, 46
SIGs, 46
task force, 47

Downtime, 226
DSI, see Dynamic skeleton interface
DTD, see Data type definition
DTP, see Distributed Transaction

Processing
Dynamic content delivery, 65
Dynamic invocation interface (DII), 31
Dynamic link libraries (DLLs), 6, 58
Dynamic skeleton interface (DSI), 32

AU1272 Index Page 274 Monday, January 28, 2002 7:24 AM

Index

275

E

EAI, see Enterprise Application Integration
E-business

integration, 93, 161, 162
partnerships, 126

ebXML, 118
ECI, see External Call Interface
E-commerce

middleware, 234, 237, 246
suite, 164
transactions, integration of Web services

and, 126
E-conomy, 95
EDA/SQL middleware products, 157
EDGAR search, 130
EDI, see Electronic data interchange
EDOC, see Enterprise Distributed Object

Computing
Eiffel, 60
EIS, see Enterprise Integration Systems
EJB, see Enterprise JavaBeans
EJBObject proxies, 88
Electricity Web service description, 138
Electronic Commerce Domain task force, 49
Electronic data interchange (EDI), 169
EMA, see Enterprise Memory Architecture
E-mail, 102, 130
Encapsulation, 116
Encryption, 68, 84
Endpoint supply service, 7
Enterprise

Application Integration (EAI), 85, 118, 217,
243

bean types, 88, 89
connector middleware, 237
Distributed Object Computing (EDOC), 53
Integration Systems (EIS), 1
Memory Architecture (EMA), 77
network protocols, 160
resource planning (ERP), 76, 85, 133, 227,

243, 256
-to-legacy-system interfaces, 257
packages, 159

servers, 220
Web sites, rapid time-to-market, 65

Enterprise JavaBeans (EJB), 34, 39, 85, 114,
158, 191

application, deployment of COBOL, 197
-based workflows, 133, 252
built-in passivation and activation support,

90
Component Model, 56
deployment descriptor, 196
directory, 91
E-business applications based on, 232
files, COBOL-wrapped, 197
interoperability between CORBA compo-

nents and, 40
Java Archive (JAR), 96
servers, 87
three-tier architecture, 86
vendor, 87

Enterprisewide system, bridging of gap in,
191–216

bridging COBOL to Enterprise Java Beans,
191–198

accessing legacy COBOL assets from
Java, 192

application mining, 192
calling COBOL classes from Java,

195–196
calling Java from COBOL, 194–195
calling legacy COBOL from Java, 192–194
COBOL Exterprise JavaBeans, 196
combination ActiveX/Java classes, 198
deploying COBOL Enterprise JavaBeans

application, 197
Enterprise JavaBeans deployment

descriptor, 196
complete WAP script, 214–216
role of XML in TCP/IP presentation layer,

204–209
breaking of barrier, 204–206
dynamic XML servers, 207–208
natural language dialogue, 208–209
product integration, 206
translating for all browsers, 206–207
universal XML, 209
XML mapping, 208

Wireless Access Protocol, 198–204
ASP script, 201–202
database table, 201
dialogue scenarios, 199–200
WAP application, 199
XML script, 203
XML syntax, 202–203

XML schemas, 209–213
comparing XML schema and DTD,

210–211
strong typing advantage, 211–212
true key representation advantage,

212–213
Entity

beans, 90
components, 39

ERP, see Enterprise resource planning
Error

handling, 73
-recovery programming, 12

E-Services Village, 118, 127
e-Speak business services, 127
E-transaction processing model, 13
Evaluation-only products, 170
Event service, 41
Evidence-based security, 66
eXtensible Access Control Markup Language

(XACML), 125, 240, 248
eXtensible Markup Language (XML), 19, 113,

158, 244
application servers, 182
-based data model, 127
-based deployment descriptors, 56
configuration file, 87
database middleware, 165
deployment descriptor, 90
documents, 205, 249
-enabled databases, 182–185
Junction, 169
Key Management Specification (XKMS),

125, 240
mapping, 208
messaging, 108, 115
Meta Interchange (XMI), 46
parent-child relationship, 212

AU1272 Index Page 275 Monday, January 28, 2002 7:24 AM

276

The Complete Book of Middleware

parsing, Java API for, 109
Protocol (XMLP), 122
Query Language, 208
-RPC, 4, 5, 231, 232
Schema Datatypes (XSD), 122
Schema Quality Checker, 213
Schema verification tool, 213
script, 203
servers, dynamic, 206
syntax, 202
universal, 209

eXtensible Stylesheet Language Transforma-
tion (XSLT), 126, 239, 247

External API types, 39
External Call Interface (ECI), 94
Externalization service, 41

F

Fault-tolerant CORBA, 35
FIFO Queue bucket, 222
File Transfer Protocol (FTP), 119
Finance Web service description, 138
Financial Domain task force, 49
Financial software, 67
FioranoMQ, 230
Firewall(s), 10

configuration, 34
tunneling, 99

Fortran, 60
Forwarding server, 17, 18
FoxPro, 185
FTP, see File Transfer Protocol

G

GBR, see ResolveNet Global Business Registry
GIE Dyade RmiJdbc, 181
goto statements, 1
Grand Central Network, 134, 135
Group Policy, 82

H

Hailstorm, 122, 247
Hashing, 68
Haskell, 60
Healthcare Domain task force, 49
help.dialog1, 203
Heterogeneous multi-processing (HMP) envi-

ronments, 14
Hewlett-Packard, 124, 127
HiT Software, Inc.

Allora, 166
HiT JDBC/400, 175
HiT JDBC/DB2, 175–176

HMP environments, see Heterogeneous
multi-processing environments

Honeywell, 220
HP-UX, 22
HTML, see HyperText Markup Language
HTTP, see Hypertext Transport Protocol
HTTPR, see Reliable HTTP

Human–machine interaction, 204
HyperText Markup Language (HTML), 126,

160, 239, 248
Hypertext Transport Protocol (HTTP), 4, 5,

113, 119, 224, 244
transaction, 98
transport, ways of using, 60
tunneling, 99

I

IBM, 131
Data Access Bean, 170
DataCraft, 171
DB2 Universal Database, 173
DB2 XML Extender and DB2 Text Extender,

183
External Call Interface, 94
Informix, 183
middleware product portfolio, 28
MQSeries, 19, 230

Everywhere, 237
Integrator, 162

Net.Data, 170
Network Dispatcher, 26
Web Service Flow Language, 249
Web Services ToolKit (WSTK), 120
WebSphere, 192, 256

IDL, see Interface Definition Language
IDS Server, 176
IETF, see Internet Engineering Task Force
IFS, see Internet File System
IIOP, see Internet Inter-ORB Protocol
IIS, see Microsoft Internet Information

Services
Indexed Sequential Access Method (ISAM),

246
Information Builders, Inc.

Enterprise Component Broker, 174
FOCUS, 157

Informix, 96, 185
Infoscape, Inc. Fresco, 175
infoShark, XMLShark, 169
InitialContext, 106
Inter-application communication, 204
Interface Definition Language (IDL), 8, 30, 60

compiler, 55
extensions to, 56
specified models, 55
templates, 33

Internet
Engineering Task Force (IETF), 68, 221, 255
File System (IFS), 185
integration with Java and, 33
Inter-ORB Protocol (IIOP), 29, 119
standards, emerging, 248

Internetwork Packet Exchange (IPX), 12
Interoperability of implementations, 55
Intrusion detection, 233
IONA Technologies, 136
IP traffic

load-balancing of, 82
performance, 217

IPX, see Internetwork Packet Exchange
ISAM, see Indexed Sequential Access Method
ISO 9000 certification, 159

AU1272 Index Page 276 Monday, January 28, 2002 7:24 AM

Index

277

Isolated storage, 68
iWay Software

B2B integration, 163
EAI solutions, 160
E-business integration, 160
E-commerce integration, 163
Enterprise Integrator, 161
mobile E-business integration, 162

J

JAAS, see Java Authentication and Authoriza-
tion Support

JAR, see EJB Java Archive
Java, 19

APIs, 108, 239
for XML Messaging (JAXM), 92
for XML parsing, 109

Application Server, 162
Authentication and Authorization Support

(JAAS), 91
-based connectivity, 165
-based database middleware, 171
-based middleware, 234, 238, 246
calling COBOL classes from, 195
CICS applications written in, 111
classes, 194, 253
clients, factory methods used by, 86
Community Program (JCP), 108
Cryptography Extension (JCE), 91
Database Connectivity (JDBC), 92, 236
-to-IDL mapping, 34
integration with Internet and, 33
Media Framework (JMF), 85, 107
Messaging Service (JMS), 27, 85, 100, 169,

238, 252
Naming and Directory Interface (JNDI), 85,

103
architecture, 105
-compatible naming service, 87
directory services, 105
1.2 features, 107
federated naming facilities, 106

Native Interface (JNI), 27, 192
runtime systems, 193
Secure Socket Extension (JSSE), 91
Security Tools, 91
Server Pages (JSP), 92, 136, 232
technologies, 123
Transaction Service (JTS), 189
Virtual Machine (JVM), 95
wrapper class, 197
XML SQL utility for, 169

Java 2 Micro Edition (J2ME), 248
Java 2 Platform Enterprise Edition (J2EE), 85,

92, 189, 232, 241, 245
application(s)

configuring of, 96
contents of, 97

CA, see J2EE Connector Architecture
Connector Architecture (J2EE CA), 124, 252
enterprise servlets with, 98
Java API flows in, 93
security model, 99

JavaSpaces technology, 110
Java world, ever-expanding, 85–111

Enterprise JavaBeans, 85–92
AlphaBean examples, 91
container, 87–88
CORBA Component Model, 90–91
enterprise bean types, 88–90
inside enterprise beans, 86–87
OpenEJB and CVS, 91–92
passivation and activation, 90

Java APIs, 108–109
for data binding, 109
for XML messaging, 108–109
for XML parsing, 109

Java 2 Enterprise Edition, 92–100
configuring and assembling J2EE

applications, 96–98
enterprise servlets with J2EE, 98–99
integration with legacy, ERP, CRM, and

SCM applications, 92–95
J2EE security model for OC4J, 99
Oracle9i AS Containers for J2EE,

95–96
RMI and tunneling services, 100

Java Media Framework, 107–108
Java messaging service, 100–103

EJB 2.0, 102–103
messaging domains, 100–102
OpenJMS, 103

Java naming and directory interface,
103–107

directory package, 106–107
JNDI 1.2, 107
JNDI architecture, 105–106
naming package, 106
naming systems and services, 104–105

javax.naming.Reference class, 106
JAXM, see Java APIs for XML Messaging
JCE, see Java Cryptography Extension
JCP, see Java Community Program
JDBC, see Java Database Connectivity
J2EE, see Java 2 Platform Enterprise Edition
Jini technology, 110
J2ME, see Java 2 Micro Edition
JMF, see Java Media Framework
JMS, see Java Messaging Service
JMX, see Sun Java Management Extensions
JNDI, see Java Naming and Directory

Interface
JNI, see Java Native Interface
JSP, see Java Server Pages
JSSE, see Java Secure Socket Extension
JTA/XA transaction, 97
JTS, see Java Transaction Service
JVM, see Java Virtual Machine
JXTA Project, 109
JYD Software Engineering Pty Ltd. JYD Object

Database, 179

K

Kerberos security model, 16

L

Language mappings, 55

AU1272 Index Page 277 Monday, January 28, 2002 7:24 AM

278

The Complete Book of Middleware

Laptops, 110
LDAP, see Lightweight Directory Access

Protocol
Leaky bucket, 223
Legacy–Web–ERP integration, 159
Legacy-to-Web middleware, 237
Licensing service, 41
Life cycle service, 41
Lifescience Domain task force, 49
Lightweight Directory Access Protocol

(LDAP), 104, 105, 124, 231
Line-of-business applications, 81
2Link Consulting, Inc. DbGen Professional

Edition, 174
Linux, 22, 92, 103, 165
Listener piece, 231
Load balancing, 15, 16, 227
Local procedure call model, 1
Lotus software suite, 120

M

Macintosh, 92, 103
Managed code, verified, 65
Management

middleware hierarchy, 235
services, 82

Manufacturing Domain task force, 49
MAPI, see Microsoft Messaging Application

Programming Interface
Mapping(s)

Java-to-IDL, 34
language, 55
URL, 75
XML, 208

Maximum transfer unit (MTU), 4
MDA, see Model-Driven Architecture
MDC, see Meta-Data Coalition
Memory management, advanced, 79
MERANT

AssetMiner, 192
DataDirect SequeLink, 173

Message(s)
-driven beans, 88, 90, 102, 103
journaling, automatic, 9
once-only delivery of, 22
-oriented middleware (MOM), 230
passing, 230
queuing (MQ), 12, 230

application, 76
asynchronous nature of, 25
server, 17

routing, 15
Messaging

agent, 188
asynchronous, 22, 100
commercial, 24
CORBA, 35
domains, 100
middleware, see Distributed transaction

and messaging middleware
multicast, real-time, 75
patterns, 72
point-to-point, 241
priority-based, 74
publish-subscribe, 241

Queuing Interface (MQI), 20
request–reply, 241
XML, 108, 115

Meta-Data Coalition (MDC), 52
Metadata Interchange Patterns (MIP), 52
Meta-Object Facility (MOF) extensions, 36
Microsoft, 131

Access 2002, 184
ActiveX Data Object (ADO), 166, 244
Audio-Video Interleaved (AVI) format, 108
Component Object Model, 14
Content Management Server 2001, 63
Exchange Server, 187
Exchange Server 2000, 81
Interface Description Language (MIDL), 6
Intermediate Language (MSIL), 59, 253
Internet Explorer, 57
Internet Information Services (IIS), 8, 125
Management Console (MMC), 83
management strategy, 83
Message Queuing (MSMQ), 8

application programming interface, 11
distribution lists, 75
Exchange connector, 76
features, 9
network support, 13
in processing client order, 9
servers, 12
Triggers, 76
in Windows XP, 74

Messaging Application Programming
Interface (MAPI), 240

MSMQ, 230
Object Linking and Embedding (OLE), 240
Online Analytical Processing (OLAP), 158
Operations Manager 2000, 233
Queued Components (QC), 10
RPC, 6

components, 7
facility, 5

SQL Server, 96
SQL Server 2000, 183–184
-supported languages, 60
Transaction Server (MTS), 14, 58, 73, 198,

231
Visual Basic, 8
Visual J++, 59

Microsoft stuff, 57–84
Microsoft management strategy, 83
Microsoft Transaction Server, 73–74
MSMQ in Windows XP, 74–76
.NET architecture, 58–69

advantages, 60
building .NET platform, 62–63
Microsoft Content Management Server

2001, 63–65
multi-platform development, 59
.NET architecture, 61–62
.NET Enterprise Servers, 63
.NET Framework Security policy, 65–69
Web services, 61
what .NET is not, 59–60

Open.NET, 69
SOAP, 69–73
Windows 2000 Advanced Server, 78–82

increasing server availability, 79
increasing server performance, 79

AU1272 Index Page 278 Monday, January 28, 2002 7:24 AM

Index

279

SMP and advanced memory manage-
ment, 79–80

Windows 2000 clustering technologies,
80–82

Windows 2000 Datacenter, 76–78
Enterprise Memory Architecture, 77–78
Windows Clustering, 76–77
Winsock Direct, 78

Windows 2000 family management
services, 82–83

Middle-tier application server, 95
Middleware

communications, 217, 234, 235, 246
database, 234, 235, 236, 246

flavors of, 157
Java-based, 171
XML, 165

DBMS/SQL, 164
definition of, 234
development, 240
distributed object, 236
E-commerce, 234, 237, 246
enterprise connector, 237
hierarchy, 245, 246
Java-based, 234, 238, 246
Legacy-to-Web, 237
message-oriented, 230
messaging, 236, 238
products, EDA/SQL, 157
selection criteria, 234
systems, 234, 246

Middleware performance, 217–241
communications paradigms and tools,

228–231
comparing paradigms, 228–229
trade-offs, 229–231
XML-RPC, 231

IP traffic performance, 217–227
bandwidth managers, 220–221
caching, 225–227
case study, 219–220
content delivery networks, 224–225
load balancing, 227
traffic shapers, 221–224

middleware selection, 233–240
communications middleware, 234–235
database middleware, 235–236
development middleware, 240
E-commerce middleware, 237–238
Java-based middleware, 238–239
middleware interoperability, 240
systems middleware, 236–237
Web services technology, 239–240

other performance tools, 232–233
database, 232–233
Internet Security and Acceleration Server

2000, 233
managing ELB and Java performance,

232
Microsoft Operations Manager 2000, 233

service level management, 227–228
Middleware technologies, what lies ahead for,

243–257
competing paradigms, 245
emerging Internet standards, 248–251

security, 248–249
user interface, 248
workflow standard, 249–251

evolutionary paths, 244–245
interoperability, 251–254

J2EE and .NET platform, 253–254
SOAP protocol, 251–253

middleware hierarchy, 245–248
database middleware, 246–247
Web services, 247–248

performance tools, 254–256
service levels, 256

MIDL, see Microsoft Interface Description
Language

Minimum CORBA, 31
MIP, see Metadata Interchange Patterns
MMC, see Microsoft Management Console
Model(s)

CCM
event, 38
programming, 10

Component Object, 57
container programming, 39
CORBA Component, 32, 36, 90
-Driven Architecture (MDA), 46, 51

inner core, 51
middle core, 52
outer core, 53

DTP, 13
EJB Component, 56
E-transaction processing, 13
IDL specified, 55
Kerberos security, 16
local procedure call, 1
Microsoft Component Object, 14
OLTP, 13
Platform-Independent, 54
point-to-point, 101
Publish/Subscribe application, 102
queuing, advantage of, 229
RPC, 28
security, J2EE, 99
specifications, 46
XML-based data, 127

MOF extensions, see Meta-Object Facility
extensions

MOM, see Message-oriented middleware
Motion Picture Experts Group-1 (MPEG-1),

108
MPEG-1, see Motion Picture Experts

Group-1
MQ, see Message queuing
MQI, see Messaging Queuing Interface
MQIPT, see MQSeries Internet Pass-Thru
MQSeries

APIs, 19, 20
CICS and, 26
Everyplace for MultiPlatforms, 22
family, 20, 21
integration example, 21
Integrator, 21, 256
Internet Pass-Thru (MQIPT), 25
JMS support, 26
Workflow, 21

MSIL, see Microsoft Intermediate Language
MSMQ, see Microsoft Message Queuing
MTS, see Microsoft Transaction Server
MTU, see Maximum transfer unit
Multi-homing, 227
Multi-platform development, 59
MyBase, 185

AU1272 Index Page 279 Monday, January 28, 2002 7:24 AM

280

The Complete Book of Middleware

N

Name-object bindings, 105
Name service provider, 7
Naming

package, 106
service, 35, 42, 87
systems, 104

Natural language dialogue, 208
NDR, see Network data representation
.NET

architecture, 58
Enterprise Servers, 63, 64
Framework Security policy, 65
layer, description of, 62
platform, building of, 62, 63

Netscape, 107
Netscape Navigator, 57, 85
NetWare, 165
Network(s)

bandwidths, 218
bottlenecks, 217, 255
data representation (NDR), 6
file services, 245
heterogeneous, 220
Load Balancing (NLB), 76, 79, 81

cluster service and, 81
incoming IP traffic load-balanced by, 82

OLE, 58
operating system (NOS), 76
protocol independence, 9
traffic fluctuations, extreme, 218
wireless, 19

New York Stock Exchange (NYSE), 222
NLB, see Network Load Balancing
NOS, see Network operating system
Notification service, CORBA-based, 42
Novell, 107
Novell NetWare, 104
NYSE, see New York Stock Exchange

O

OAMAS, see Open Application Middleware
API Specification

OASIS, see Organization for the Advancement
of Structured Information Standards

Oberon, 60
Object(s)

cryptographic, 68
Database Connectivity, 165
implementation, client sending request to,

31
Linking and Embedding Database data

source (OLE DB), 165
-oriented middleware, see CORBA 3
-oriented programming languages, 32
query language, 42
Request Broker (ORB), 29, 43, 229–230

examples, 33
and Object Services platform task force,

48
request interfaces, structure of, 32
Services Platform Task Force, 36

Object Design, Inc.
ObjectStore DBMS, 179

ObjectStore PSE for Java, 179
Objectmatter Business Sight Framework, 172
OC4J, see Oracle9i Application Server Con-

tainers for J2EE
ODBC, see Open Database Connectivity
OID, see Oracle Internet Directory
OLAP, see Microsoft Online Analytical

Processing
OLE, see Microsoft Object Linking and

Embedding
OLE DB, see Object Linking and Embedding

Database data source
OLTP, see Online transaction processing
OMG Technology Committee, 44
Online transaction processing (OLTP), 76, 232
Open Application Middleware API Specifica-

tion (OAMAS), 20
Open Database Connectivity (ODBC), 73
OpenJMS, 103
OpenLink Software, Inc. OpenLink Data

Access Drivers for JDBC, 179–180
Open.NET, 69
OpenORB Enterprise Suite, 43
Open Software Foundation (OSF), 7

-DCE remote procedure, 7
standards, for RPC, 7

Oracle Corporation, 185
Internet Directory (OID), 124
Message broker, 188
Oracle Lite, 180
Web services architecture, 123

Oracle8i/9i application servers, 184–185
Oracle9i Application Server Containers for

J2EE (OC4J), 95
ORB, see Object Request Broker
Order–shipping scenario, 10
Organization for the Advancement of

Structured Information Standards
(OASIS), 109, 117, 239–240, 248

Origin verification, 69
OS/2, 92, 103
OSF, see Open Software Foundation

P

Package Wizard, 74
Packeteer PacketShaper, 223
Packet-size optimization, 223
PAE, see Physical Address Extension
Pagers, 110
Partner Interface Processes (PIPs), 128
PDAs, see Personal data assistants
Peer

groups, 110
monitoring, 110
-to-peer transaction, 111
pipes, 110

PeopleSoft Component Interfaces, 95
PerCurrence PerXML Smart Transformation

System, 168
Performance tools, 254
Perl, 60
Permission mechanisms, fine-grained, 69
Persistence state service, 42
Persistent Definition Language (PSDL), 37
Persistent State Service (PSS), 37

AU1272 Index Page 280 Monday, January 28, 2002 7:24 AM

Index

281

Personal data assistants (PDAs), 110, 116, 199
Pervasive Software, 164
Physical Address Extension (PAE), 76, 78
PIM, see Platform-Independent Model
PIPs, see Partner Interface Processes
PKI, see Public key infrastructure
Platform-Independent Model (PIM), 54
Platform Specific Models (PSMs), 54
Platform technology

FTFs, 45
RTFs, 45
SIGs, 45
task force, 45

Platform Technology Committee (PTC), 48, 70
POA, see Portable Object Adapter
POET Software Corporation POET Object

Server Suite, 180
Point-to-point (P2P), 101

domain, 101
messaging, 241
model, 101

Portability of implementations, 55
Portability of specifications, 55
Portable Object Adapter (POA), 30, 90
Port mapper server, 2
P2P, see Point-to-point
Process components, 39
Product integration, 206
Programming errors, 66
Property service, 42
Protocol stack CPU time, 219
PSDL, see Persistent Definition Language
PSMs, see Platform Specific Models
PSS, see Persistent State Service
PSTN, see Public switched telephone network
PTC, see Platform Technology Committee
Public Credit Service, 131, 132
Public key infrastructure (PKI), 126, 240
Public switched telephone network (PSTN),

185, 218
Publish-subscribe

application model, 102
messaging, 241

Python, 60

Q

QC, see Microsoft Queued Components
QoS, see Quality of Service
Quality of Service (QoS), 31, 117, 218

control, 35
management, 246

Query
manager(s), 23

objects, access to, 25
programs connected to different, 24

service, 42
Queue, programs connected to same, 23
Queuing model, advantage of, 229
Quicktime, 108

R

RAD, see Resource Access Decision

Random number generation, 68
RDF Site Summary (RSS), 129
RDS, see Remote Data Service
Real-Time CORBA, 31, 35, 36
Real-time messaging multicast, 75
Real-Time PSIG, 49
Real-time Streaming Protocol (RTSP), 108
Real-Time Transport Protocol (RTP), 108
Recital Corporation, JDBC Developer, 177
Relationship service, 42
Reliable HTTP (HTTPR), 188
Remote Data Service (RDS), 166
Remote Method Invocation (RMI), 33
Remote procedure call (RPC), 1, 117, 230, 245

components, 6
features, 3
layers, 2
model, 28
OSF standards for, 7
requests, encoding of, 231
runtime library, client, 7

Request prioritization, 16
Request–reply messaging, 241
Research languages, 60
ResolveNet Global Business Registry (GBR),

129
Resource Access Decision (RAD), 44
Reusable components, 116
RMF, see Beatnik Rich Media Format
RMI, see Remote Method Invocation
RM/local transaction, 97
Rogue Wave Software XML-DB Link, 168
Role-based security, 66, 67
RPC, see Remote procedure call
RSS, see RDF Site Summary
RTP, see Real-Time Transport Protocol
RTSP, see Real-time Streaming Protocol
Runtime libraries, 7

S

Salesforce.com, 134
SAML, see Security Assertion Markup Lan-

guage
SANs, see System area networks
SCI, see Server/container interface
SCL, see Service Contract Language
SCM, see supply chain management
SCO SQL-Retriever, 181
SCSL, see Sun Community Source Licensing
Secure Sockets Layer (SSL), 99, 225
Security, 72, 110

application, 25
Assertion Markup Language (SAML), 125,

240, 248
channel, 25
evidence-based, 66
Kerberos, 16
model, J2EE, 99
.NET Framework, 65
role-based, 66, 67
service, 42

Seller service, 250
Serialization support, 72
Server(s)

Akamai, 224

AU1272 Index Page 281 Monday, January 28, 2002 7:24 AM

282

The Complete Book of Middleware

application, 238
availability, increasing of, 79
ClearPath, 14
/container interface (SCI), 91
dynamic XML, 207
EJB, 87
enterprise, 220
forwarding, 17, 18
Java Application, 162
Lightweight Directory Access Protocol, 231
message queuing, 17
Microsoft Exchange, 187
Microsoft SQL, 96
Microsoft Transaction, 14, 58, 73, 198
middle-tier application, 95
MSMQ, 12
.NET Enterprise, 63, 64
performance, increasing of, 79
port mapper, 2
single view of multiple, 80
Tuxedo queue
Unix, 14
UNIXWare
WebSphere Application, 120
Windows 2000 Advanced, 78
Windows 2000 Datacenter, 76, 77
Windows NT, 14
wireless application, 238
XML application, 182

Service
components, 38
Contract Language (SCL), 122
level agreement (SLA), 130, 219

defective, 254
focus of on maximum upload availability

and guaranteed bandwidths, 255
policy on, 256

level management (SLM), 228, 256
package, 115
/provider interface (SPI), 91

Servlet distribution, 98
Session

bean, 89
components, 38

Shared Property Manager, 74
SIGs

domain technology, 46
platform technology, 45

SilverStream Software, 135
Simple Network Management Protocol

(SNMP), 83
Simple Object Access Protocol (SOAP), 57, 69,

117, 283
-based Web services, 70
implementations, 71–73, 137, 138
as lightweight XML protocol, 205
protocol, 251
with Attachments (SwA), 254
XML block, 61

SLA, see Service level agreement
SLM, see Service level management
Smalltalk, 32, 60
Smart transducers, 36
SMP, see Symmetric multi-processing
SMTP, see Standard Mail Transport Protocol
SNMP, see Simple Network Management

Protocol
SOAP, see Simple Object Access Protocol

Software, see also specific application
business, 67
data-center, 233
elements, various roles assumed by, 69
enterprise resource planning, 76
financial, 67

Solaris, 165
Solid Information Technology Ltd.

SOLID JDBC Driver, 181
SOLID Server, 181

SolidSpeed Networks, 227
SonicMQ, 230
SPI, see Service/provider interface
SQL, see Structured Query Language
SSL, see Secure Sockets Layer
Stack layers, emerging, 125
Standard Mail Transport Protocol (SMTP), 119,

252
Stateful session bean, 89
Stateless session bean, 90
STDL, see Structured Transaction Definition

Language
Stonebroom ASP2XML, 167
Strong name, 67
Structured Query Language (SQL), 157, 236

object derivatives of, 42
/relational databases, 246
statements, predefined, 169

Structured Transaction Definition Language
(STDL), 13

Stub procedure, local, 6
Sun, 107

Community Source Licensing (SCSL), 108
Java Management Extensions (JMX), 136,

253
J2EE environment, 240
ONE Web services, 122
Solaris, 21, 104

Super Distributed Objects DSIG, 49
Supplier Web service description, 138
Supply chain management (SCM), 85, 158,

243
SwA, see SOAP with Attachments
Swift, Inc. DB-X, 167
Sybase, Inc., 96

Jaguar CTS, 176
jConnect for JDBC, 176–177

Symantec dbANYWHERE Server, 173–174
Symmetric multi-processing (SMP), 76
Synchronous/asynchronous calls, 89
System(s)

area networks (SANs), 78
hardening, 233
middleware, 234, 246

T

Tabular Data Stream (TDS), 177
Talarian, 230
Tamino X-Bridge, 73
TAPI, see Windows Telephony Applications

Programming Interface
Tarantella, 107
Tarrific, 134
TCP/IP, see Transmission Control

Protocol/Internet Protocol

AU1272 Index Page 282 Monday, January 28, 2002 7:24 AM

Index

283

TDS, see Tabular Data Stream
Telasoft Data Corporation Javabase/400, 176
Telecommunications Domain task force, 49
Telephony client application, 187
Thought, Inc. CoCoBase, 172–173
TIBCO, 230
Time service, 42
Tivoli Web Services Manager, 120
TP, see Transaction processing
TPC, see Transaction Processing Performance

Council
Trading object service, 43
Traffic

bottlenecks, 204
performance, 217
rates, changing, 222
shapers, 221, 222

Transaction(s)
E-commerce, 126
HTTP, 98
management, 15
Manager, 15, 16
peer-to-peer, 111
processing (TP), 14, 85, 229, 230, 254
service, 43
Web E-commerce, 232

Transaction Processing Performance Council
(TPC), 232

Transmission Control Protocol/Internet
Protocol (TCP/IP), 2

application-level port number, 219
MQSeries client using, 27
networking protocols, 12
presentation layer, role of XML in, 204
tower, 206
traffic, 255

Transportation Domain task force, 49
Transport interface modules, 7
Trigger monitor, 25
Tunneling

firewall, 99
HTTP, 99
services, 100

Tuxedo queue servers, 17
Type verification, 69

U

UDDI, see Universal Description, Discovery
and Integration

UDP, see User Datagram Protocol
UDS, see Universal Data System
UML, see Unified Modeling Language
UN/CEFACT, see United Nations Centre for

Trade Facilitation and Electronic
Business

Unified Modeling Language (UML), 37
editor programs, 55
profiles, 54

UNISYS, 15
Unisys e-@ction Distributed Processing

Middleware, 13
United Nations Centre for Trade Facilitation

and Electronic Business
(UN/CEFACT), 109

United States Postal Service (USPS), 138

Units of work, 24
Universal Data System (UDS), 14
Universal Description, Discovery and Integra-

tion (UDDI), 61, 113, 124, 238, 245
Business Registry, 126, 127, 128
information, organization of, 128
Registry, 118, 252
repositories, 135

Universal XML, 209
UNIX, 92, 103

password file, 99
server, 14

UNIXWare server, 14
Unmanaged code, 59, 66
URL mapping, external–internal, 75
U.S. Department of Commerce, 84
User

Datagram Protocol (UDP), 2
-defined dequeuing, 17
interface, 248

USPS, see United States Postal Service

V

Verisign, 134, 240
Versant Object Technology Versant ODBMS,

182
Virtual private networking (VPN), 233
Visigenic Software, Inc. VisiChannel, 182
Visual Basic, 247
VMS, 92, 103
VoiceXML document, 209
VPN, see Virtual private networking

W

WAN
bandwidth, wasting of, 219
traffic, 219

WAP, see Wireless Access Protocol
Watershed Technologies Relational Object

Framework, 180–181
WBEM, see Web-Based Enterprise

Management
W3C, see World Wide Web Consortium
Web

-based applications, 115
-Based Enterprise Management (WBEM),

83
Collage Syndicator, 248
components, 97
-connected device, 116
description languages, 117
E-commerce transactions, 232
-enabling services, 14
sites, Enterprise, rapid time-to-market, 65

WebFOCUS, 158
WebMethods, 240
Web service(s), 61, 113–156

Anaconda WSDL example, 144–146
architecture, Oracle, 123
BEA, 124
Borland, 125
brokerages, 133

AU1272 Index Page 283 Monday, January 28, 2002 7:24 AM

284

The Complete Book of Middleware

broker WSDL example, 148–149
container, portable, 137, 253
custom-developed, 115
definition of, 114
description of, 114
directory, specialized, 130
document listing, 131
electricity Web service WSDL example,

155–156
FarmsandRegal WSDL example, 146–148
features of, 137
finance Web service WSDL example,

151–154
Hewlett-Packard, 124
integration of E-commerce transactions

and, 126
interoperability test WDSL example,

140–144
listing of in UDDI registry, 252
management of, 64
postal rate calculator Web service WSDL,

150–151
revolution, 70
SOAP-based, 70
stack, 114
Sun ONE, 122
third-party tools, 134–138

Cape Clear, 134–135
Grand Central, 134
IONA technologies, 136–138
Silverstream, 135–136

Web services stack, 114–133
comparing definitions or descriptions,

116–117
defining or describing Web services,

114–116
emerging stack layers, 125–126
UDDI registrars and services, 129
UDDI registration, 126–128
versioning of Web services, 133
Web services architecture, 122–125
Web services brokerage, 129–131
workflow processes, 131–132

workflow, 250
Web Service(s)

Broker, 123
Conversational Language (WSCL), 119
Description Language (WSDL), 61, 119, 239,

245
Flow Language (WSFL), 118, 132
User Interface (WSUI), 125, 239

Web Services Description Language example
Anaconda, 144–146
broker, 148–149
electricity Web service, 155–156
FarmsandRegal, 146–148
finance Web service, 151–154
interoperability test, 140–144
postal rate calculator Web service, 150–151

WebServices.org, 116
WebSnap, 125
WebSphere

Adapters, 22
Application Server, 120
Business Integrator, 22
Partner Agreement Manager, 22

Wily Technologies, 114

Windows, see also Microsoft
Clustering, 76
Management Instrumentation (WMI), 82, 83
NT, 14, 92, 103, 220
Script Host (WSH), 83
Sockets, 78
Telephony Applications Programming

Interface (TAPI), 185
Telephony with TAPI, 157

Windows 2000
Advanced Server, 78
clustering

services, 74
technologies, 80

Datacenter Server, 76, 77
Family Management Services, 82
Messaging Queuing 2.0 for, 11

Windows XP
Message Queuing 3.0 for, 10
MSMQ in, 74

Winsock Direct, 78, 79
Wireless Access Protocol (WAP), 198

application, 202
-based applications, 201
script, complete, 214–216

Wireless application server, 238
Wireless Markup Language (WML), 199, 239,

248
Wireless Multimedia Forum (WMF), 225
Wireless networks, 19
WMF, see Wireless Multimedia Forum
WMI, see Windows Management

Instrumentation
WML, see Wireless Markup Language
Workflow(s)

applications, 16
complex, 132, 250, 251
EJB-based, 133, 252
Management, 44
processes, 131
simple, 131, 250
standard, 249
Web service, 250

Work-in-progress status, 46, 48–50
World Wide Web Consortium (W3C), 68, 69,

117, 208
Web Services

architecture stack, 121
description stack, 121
discovery stack, 121

Web Services Workshop, 120
XQuery working draft, 247

WSCL, see Web Service Conversational
Language

WSDL, see Web Services Description
Language

WSFL, see Web Services Flow Language
WSH, see Windows Script Host
WSTK, see IBM Web Services ToolKit
WSUI, see Web Services User Interface

X

XACML, see eXtensible Access Control
Markup Language

XATMI, 17

AU1272 Index Page 284 Monday, January 28, 2002 7:24 AM

Index

285

XDb Systems ExpressLane, 174
XKMS, see XML Key Management

Specification
XMI, see eXtensible Markup Language Meta

Interchange
XML, see eXtensible Markup Language

xml.org, 118, 127
XMLP, see eXtensible Markup Language

Protocol
XSD, see XML Schema Datatypes
XSLT, see eXtensible Stylesheet Language

Transformation

AU1272 Index Page 285 Monday, January 28, 2002 7:24 AM

	Contents
	Introduction
	1 Distributed Transaction and Messaging Middleware
	Remote Procedure Call
	RPC Model
	Port Mapper
	RPC Layers
	RPC Features
	XML-RPC
	Microsoft RPC Facility
	The Stubs
	OSF Standards for RPC
	Microsoft RPC Components

	Microsoft Messaging Queuing
	Writing Applications
	MSMQ Features
	Microsoft Queued Components
	When the Network Goes Down

	Distributed Processing Middleware
	Unisys’ Distributed Processing Middleware
	BEA Tuxedo
	BEA Tuxedo/Q Component

	IBM MQSeries
	MQSeries Family
	Application Programs and Messaging
	Queue Managers
	Commercial Messaging
	MQSeries Internet Pass-Thru
	CICS and MQSeries
	MQSeries JMS Support

	2 Object-Oriented Middleware: CORBA 3
	Introduction
	CORBA Release Summary
	Organizational Structure
	What Is New? CORBA 3
	Improved Integration with Java and the Internet
	Quality of Service Control
	The CORBA Component Model
	CCM Development Stages
	CCM Extensions to OMG IDL
	Component Usage Patterns
	Container Programming Model
	Integration with Enterprise JavaBeans

	CORBA Object Services
	Accessing Object Services
	OpenORB

	Other Supporting Facilities
	OMG Technology Committee
	Work-in-Progress Status
	Modeling Specifications
	MDA Inner Core
	MDA Middle Core
	MDA Outer Core
	UML Profiles, PIM, and PSMs
	Additional Specifications
	IDL Specified Models
	Bridging Platforms
	Extensions to IDL

	3 Microsoft’s Stuff
	Introduction
	.NET Architecture
	Multi-Platform Development
	What .NET Is Not
	Some Advantages
	Web Services
	.NET Architecture
	Building the .NET Platform
	.NET Enterprise Servers
	Microsoft Content Management Server 2001
	.NET Framework Security Policy

	Open.NET
	SOAP
	Microsoft Transaction Server
	MSMQ in Windows XP
	Windows 2000 Datacenter
	Windows Clustering
	Enterprise Memory Architecture
	Winsock Direct

	Windows 2000 Advanced Server
	Increasing Server Performance
	Increasing Server Availability
	SMP and Advanced Memory Management
	Windows 2000 Clustering Technologies

	Windows 2000 Family Management Services
	Microsoft Management Strategy

	4 Ever-Expanding Java World
	Introduction
	Enterprise JavaBeans
	Inside Enterprise Beans
	The Container
	Enterprise Bean Types
	Passivation and Activation
	CORBA Component Model
	AlphaBean Examples
	OpenEJB and CVS

	Java 2 Enterprise Edition
	Integration with Legacy, ERP, CRM, and SCM Applications
	Oracle9i AS Containers for J2EE
	Configuring and Assembling J2EE Applications
	Enterprise Servlets with J2EE
	J2EE Security Model for OC4J
	RMI and Tunneling Services

	Java Messaging Service
	Messaging Domains
	EJB 2.0: Message-Driven Beans
	OpenJMS

	Java Naming and Directory Interface
	Naming Systems and Services
	JNDI Architecture
	The Naming Package
	The Directory Package
	JNDI 1.2

	Java Media Framework
	Java APIs: XML Messaging, XML Parsing, and Data Binding
	The Java API for XML Messaging
	The Java API for XML Parsing
	The Java API for Data Binding

	JXTA Project
	JavaSpaces and Jini Technologies

	5 Web Services: Hot Stuff
	Introduction
	Web Services
	Defining or Describing Web Services
	Comparing Definitions or Descriptions
	Web Services Stack
	Web Services Architecture (Narrative)
	Emerging Stack Layers
	UDDI Registration
	UDDI Registrars and Services
	Web Services Brokerage
	Workflow Processes
	Versioning of Web Services

	Third-Party Tools
	The Grand Central
	Cape Clear
	Silverstream
	IONA Technologies

	6 Database Middleware and Other Stuff
	Introduction
	Data-Level Integration
	WebFOCUS Business Intelligence Suite
	iWay Software: EAI Solutions
	iWay Software: E-Business Integration
	iWay Software: Mobile E-Business Integration
	iWay Software: B2B Integration
	iWay Software: E-Commerce Integration

	DBMS/SQL Middleware
	Pervasive.SQL Middleware
	MERANT Data Connectivity
	XML Database Middleware
	Commercial Products
	Evaluation-Only Products

	Java-Based Database Middleware
	XML-Enabled Databases
	Web Services-Enabled Database Middleware
	Windows Telephony with TAPI
	HTTPR

	7 Bridging the Gap
	Introduction
	Bridging COBOL to Enterprise Java Beans
	Application Mining
	Accessing Legacy COBOL Assets from Java
	Calling Legacy COBOL from Java
	Calling Java from COBOL
	Calling COBOL Classes from Java
	COBOL Enterprise JavaBeans
	Enterprise JavaBeans Deployment Descriptor
	Deploying COBOL Enterprise JavaBeans Application
	Combination ActiveX/Java Classes

	Wireless Access Protocol: Accessing Oracle
	WAP Application
	Dialogue Scenarios
	Database Table
	ASP Script: Connecting to Database
	XML Syntax
	XML Script
	Dialogues
	Conclusion

	XML: Its Role in TCP/IP Presentation Layer (Layer 6)
	Breaking the Barrier
	Product Integration
	Translating for All Browsers
	Dynamic XML Servers
	XML Mapping
	Natural Language Dialogue
	Universal XML
	Conclusion
	Conclusion

	XML Schemas
	Comparing XML Schema and DTD
	Strong Typing Advantage
	True Key Representation Advantage

	8 Middleware Performance
	Introduction
	IP Traffic Performance
	Case Study
	Bandwidth Managers
	Traffic Shapers
	Content Delivery Networks
	Caching
	Load Balancing

	Service Level Management
	Communications Paradigms and Tools
	Comparing Paradigms
	Trade-Offs
	XML-RPC

	Other Performance Tools
	Managing EJB and Java Performance
	Database
	Microsoft Operations Manager 2000
	Internet Security and Acceleration Server 2000

	Middleware Selection
	Communications Middleware
	Database Middleware
	Systems Middleware
	E-Commerce Middleware
	Java-Based Middleware
	Web Services Technology
	Middleware Interoperability
	Development Middleware

	9 What Lies Ahead?
	Introduction
	Evolutionary Paths
	Competing Paradigms

	Middleware Hierarchy
	Database Middleware
	Web Services

	Emerging Internet Standards
	User Interface
	Security
	Workflow Standard

	Interoperability
	SOAP Protocol
	J2EE and .NET Platform

	Performance Tools
	Service Levels

	10 Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	About the Author
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

