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Preface

Long ago, when the computer industry was young, software was built – and rebuilt – 
from the “ground up”. Each application was custom designed and built for a given 
machine, and interacted directly with the hardware of that particular machine only. 
The idea of a common operating system – let alone middleware upon which to rapidly 
develop new applications – was a mere flicker of a dream in the minds of a few vision-
aries. The applications for a particular computer were usually built by its vendor. Need-
less to say, software was scarce and expensive. 

Gradually, computer vendors began to recognize that software applications would 
become the driving force of their industry. In their quest to satisfy customer demands 
for unerring software rapidly delivered, the vendors sought new ways to develop soft-
ware more quickly and at a lower cost. From these roots, the Independent Software 
Vendor (ISV) industry emerged. In order to make the building of applications cheaper 
and easier, ISVs, often in partnership with computer vendors, endeavored to create an 
“environment” that would assure more or less “common” functionality for all applica-
tions. As a result, various operating systems were born. 

Much later, the breakneck rise in the Internet created a situation of ubiquitous connec-
tivity between fully autonomous components. Collectively, this may comprise the larg-
est and most complex distributed system ever developed by a civilization. Operating 
on an international scale, Internet needs to provide reliable services to billions of peo-
ple around the world. Today many companies are competing to provide these services. 

Again, an ability to quickly and economically build various IP1 services, or outsource 
their building, is crucial to attract and retain customers. A parallel with the past and 
the need for an independent service vendor (ISV) community is quite obvious. 

1. Internet Protocol 
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This led to the idea of a common IP service platform and the creation of GeoPlex, con-
ceived, developed and deployed at AT&T Labs, and referenced in this book. GeoPlex is 
the “project codeword” for generations of Advanced Networking Middleware. This 
middleware strives towards fully integrated global connectivity, To date, this has pro-
vided important deployments of service architecture, and further it has infused the 
community with leading-edge ideas. Many of these ideas have been incorporated into 
ongoing standards and evolution of the Internet industry, The GeoPlex principles will 
likely survive many generations of evolutionary deployments. 

GeoPlex is not an operating system, nor does it attempt to compete with one. It is net-
working middleware that uses one or more operating systems running on computers 
connected to the Internet. Unlike an operating system which manages resources of a 
given machine such as users, files, and processes, GeoPlex is a service platform that 
manages networks and on-line services. Contrasted to a process-oriented operating 
system such as Unix, GeoPlex maps all of the IP network activities into one or more ser-
vices.

There are several basic design principles GeoPlex designers adhered to. As a service 
platform, above all else, it abstracts the low-level network fabric while offering values 
to on-line services; values that help in their ability to scale to support very large num-
ber of customers or assume security and privacy. These include the ability to support 
any well behaved client-server IP application unmodified, the ability to map any sys-
tem activity to a service, and the ability to present the same interface to any client 
independent of his role as an end-user, an administrator, a customer care agent, or a 
sales representative. 

This book describes one approach in the telecommunication industry’s transition to 
IP data networks. It offers a case study, an exercise if you like, of how to organize and 
build a complex system with simple, off-the shelf components. It does this by offering 
an introductory reference to the GeoPlex project of AT&T Labs. This project defined, 
designed and developed innovative Platform Infrastructure Software that pioneered a 
vision of an IP Service Platform. GeoPlex was the predecessor for the emerging Inter-
net infrastructure and services of the new AT&T. 

We note that, although the complete platform deployed in a production network 
would require the support of many proprietary components, this book describes the 
kernel that consists only of standard components and protocols. 

This book does not offer a complete coverage of related work in the telecommunica-
tion industry nor does it intend to be a complete guide to GeoPlex. It is, however, a goal 
of the authors to present a thorough picture of what GeoPlex is, its Application Pro-
gramming Interfaces (APIs), and the impact of deploying an IP Service Platform on the 
telecommunications industry, 

Dalibor “Dado” Vrsalovic
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Book Outline 

The material in this book is presented in three major parts: IP Technology Fundamen-
tals, IP Service Platform Fundamentals, and Building the IP Platform. Part I of IP Tech-
nology Fundamentals presents key technologies and issues that lay the foundation for 
building IP service platforms. Chapter One reviews present telecommunications and 
the Internet timelines, and describes the metamorphosis occurring in the telecommu-
nications industry and its impact on network vendors and the software industry Next 
we look at the emergence of the Internet Protocol (IP) as the convergence mechanism; 
the changing role of the network; and ubiquity of access devices. This leads to the sec-
tion on the “civilizing” of data networks and customers’ expectations of what data net-

works should and should not be. The chapter finishes with challenges for 21st century
networks and a summary of the current state of the Internet. This discussion con-
cludes with a question: 

What is missing in the way things are done today, and why does this impel the 
industry towards IP service platforms? 

Chapter Two provides a brief technology overview and gives a broad perspective on 
related technologies as a means of demonstrating the parallels between present devel-
opments in the Internet and the Public Switched Telephone Network (PSTN). The 
chapter starts with a high level description of the PSTN technologies and services. 
Here we introduce the Intelligent Network (IN) and the Advanced Intelligent Network 
(AIN), and look at TINA-C, JAIN, and Parlay as examples of middleware efforts to 
bridge PSTN and data services. Next we briefly describe data network mechanisms 
consisting of frame relays, ATMs, gigabit ethernets, and wireless systems. The rest of 
the chapter describes a broad range of current and emerging services and applications 
such as Quality of Service (QoS) and Virtual Private Networks (VPNs). Included are 
sections on the client/server model, network security, data encryption, certificates and 
authorities. Higher up in the abstraction it consists of Unified Messaging (UM) sup-
port, Electronic Commerce (EComm), and IP Telephony and Voice-over-IP. At the 
highest level of abstraction, the chapter describes the services offered by the World 
Wide Web and the emerging support of Java, XML, and HTTP/1.1. 

Part II of this book outlines the IP platform fundamentals. Chapter Three looks at the 
current market of network-enabled and online services. It first looks at the issues deal-
ing with the development and delivery of services along with the opportunities for the 
telecommunications carriers that are essential in addressing these issues. It is here 
that we look more closely at the benefits of network middleware. The chapter finishes 
with the several lengthy provisioning scenarios through which we attempt to describe 
the challenges and opportunities. 

Chapter Four addresses IP platform requirements such as security, scalability, and 
interoperability that are driving the movement towards IP service platforms. It then 
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presents design principles on which an IP platform architecture and a subsequent 
implementation can be based. The implementations follow the evolution in Internet 
Architectures, from client-server through multi-layered systems. This leads directly to 
the IP platform capabilities that were designed into the GeoPlex system. We begin 
exploration of these capabilities, in Chapter Five, by extending the architecture into an 
edge gateway supporting service nodes, called S-Nodes.

In Chapter Five, we outline the reengineering of the underlying network infrastructure 
in order to enable the deployment of the service platform. Here we look at the physical 
architecture and the relationship between the different hardware components. 

Part III of the book plunges into the technical details for the system. Beginning in 
Chapter Six with a detailed discussion of security fundamentals, it proceeds to discuss 
the application of these fundamentals to a variety of practical security problems. These 
include authentication, security over open networks, and single sign on (SSO). 

Chapter Seven describes middleware as the methodology that unites diverse standards 
in internetworking as well as application support. This builds upon open APIs as a fun-
damental principle of software engineering, with platform support that integrates 
multiple layers. Chapter Seven also introduces the development kits that embody the 
design principles. Detailed discussion of the components, found in Chapter Eight and 
Nine, describes the layered software environment through discussions as well as exam-
ples.

Then, in Chapter 10, we describe the monitoring and management requirements that 
are unique to IP service platforms, particularly as they seamlessly integrate multiple 
distributed components. Chapter 11 describes sample services, including virtual 
worlds integrated with networking. 

We conclude the book with Chapter 12 by mapping the proposed systems onto the new 
and emerging application service provider sector. It is pleasing to note that what may 
have started five years ago as a attempt to rejuvenate the aging telecommunication 
infrastructure is now finding its acceptance in the Internet space of Application Ser-
vice Providers (ASPS).

Audience

This is not just another book about Internet protocols. This book has something 
unique to offer. Anyone – whether a University student, an engineer in the Telecommu-
nications or Software industry, or the people charting the future of the Internet – is 
provided with all the elements to understand the complex issues of design and deploy-
ment of emerging systems. 
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We envisioned this book as a starting place to acquire an overall picture of the issues
and topics of platform technologies, what exists right now as well as where things are
going. Thus we describe the background, APIs, and a working reference architecture. 

This book is intended for technical people interested in the next generation of data 
networks. It assumes working knowledge of Internetworking, including network proto-
cols, network fabric basics, and software development. While Parts I and II contain a 
general text on the technology that require little programming experience, Part III is 
intended for developers and technology managers with its emphasis on architecture 
and APIs. 

Thus if we combine the slightly different audiences of Parts I, II and 111, one should 
read this book if he or she is 

• An administrator of an Internet Service Provider (ISP) and wants to learn what 
service support the industry will likely offer in the future 

• Someone interested in contributing to the growth of the ASP market 

• An application designer and wants to learn what new capabilities the network 
may offer 

• A software developer and wants to preview the APIs that will link applications 
and services with the network infrastructure 

• A professional who wants to understand network middleware, or 

• One who wants to keep up with the emerging telecommunications infrastruc-
ture

Contacting the Authors 

Michah receives email sent to michah@ieee.org.George is best contacted directly
through george@vanecek.com.Nino reads v_nino@hotmail.com.Dado can be
reached at dalibor.f.vrsalovic@intel.com. The contributors can also be reached 
through the main AT&T Labs IP Technology Organization (IPTO) main number at
(408)576-1300.
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PART I IP Technology 
Fundamentals

This first part of this book reviews network technology fundamentals, in particular key 
technologies and issues pertinent to the building of IP service platforms. We take the 
position that the Internet is not just a client-server application which merely exploits 
available transport technologies, as the school of “dumb network” supports. Rather, 
the Internet is simultaneously a shaping-force for the new telecommunications infra-
structure, and the subject of innovations that continue to change it in fundamental 
ways. At this time, the industry needs to embrace change and not be afraid of radical 
revision to the infrastructure. The Internet is adapting as its infrastructure changes; 
and the adoption of the IP service platform approach is moving to support many dif-
ferent types of devices, transport mechanisms, user communities and services. Think 
of the IP service platform as an adaptive distributed-computing substrate. This book 
demonstrates that an open and standard IP platform can indeed provide a stable plat-
form necessary for service development and deployment during and after this adapta-
tion. Upon completion of this part, you should understand why an IP service platform 
is necessary, and you should appreciate the many ramifications to the changes under-
way within the circuit-switched network. 
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CHAPTER1 Introduction

The genesis of an IP service platform is rooted in the many different technologies that 
rapidly matured and became commonplace during the second half of the 1990’s. The 
discussion of next-generation networks based on common IP service platforms cannot 
easily be made without first establishing the framework of how it fits in with emerging 
technologies, as well as users’ expectations of what those technologies should deliver. 
The chapter begins with the first “opening” of the network upon expiration of Bell’s 

patents. It progresses rapidly to the end of the 20th century telecommunications era

and onto expectations for the burgeoning 21St century data communication and infor-
mation revolution. Along the way, we point out the major evolutions in technology, as 
well as the essential relationship between business and technology. 

1.1 The Golden Age of the Telecommunication Industry 

The late eighties were “golden years” for the telecommunications industry, Since the 
beginning of the telegraph and the telephone revolution at the turn of the 20th century, 
the industry has worked diligently to achieve global communications at affordable 
rates. The successes can arguably be attributed to the fact that for most of the century, 
AT&T and the Bell System functioned as a legally sanctioned, regulated monopoly, 
Driven by the fundamental principles set forth in 1907 by Theodore Vail, AT&T’s first 
president, the company worked hard to offer “one system, one policy, and universal ser-
vice.”

When the Bell patents expired circa 1894, hundreds of independent local firms began 
to compete (but not cooperate) with the Bell company, eventually causing great frus-
tration to customers. Vail argued that “the telephone, by the nature of its technology, 
would operate most efficiently as a monopoly providing universal service”. Govern-
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ment regulation, “provided it is independent, intelligent, considerate, thorough and 

just,” was an appropriate and acceptable substitute for the competitive marketplace.1

The federal government directed the nascent industry to offer universal services for 
the benefit of all customers, regardless of their location. Thanks in part to the monop-
oly that made it economically feasible, the Bell Telephone Company succeeded in cre-
ating a telephony infrastructure that met these goals. 

It is illuminating to consider 
the words of Vail in 1910, in 
light of the current revolution 
surrounding the Internet, 

“...One system with a com-
mon policy, common pur-
pose, and common action; 
comprehensive, universal, 
interdependent, intercom-
municating like the high-
way system of the country, 
extending from every door 
to every other door afford-
ing electrical communica- 
tion of every kind, from 
everyone at every place to 
everyone at every other 

place.”2

Figure 1-1: Kansas, 1909 - The Wages of Competition 

and compare this to the vision offered by William Gates, founder and Chairman of 
Microsoft, the world’s most successful software company: 

... company vision that will focus on customers and the power of the Internet, 
offering people and businesses the ability to be connected and empowered any 

time, anywhere, and on any device.” 3

The Internet of 2000 – like the Universal Service of 1910 – builds upon innovations and 
new technologies. As with Universal Service, the Internet has significant impact upon 
the existing infrastructure. Perhaps this explains the views of both Vail and Gates. 

1. From the “Background on Divestiture”, http://www.att.com/corporate/restructure/hist2.html 
2. Theodore Vail, AT&T Annual Report, 1910. 
3. Microsoft Corporate Profile: http://www.microsoft.com/presspass/cpIntro.htm
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The current infrastructure revolution can be traced to the emergence of new network 
technologies during the 1980s. These innovations galvanized the industry toward 
developing a whole new field of services. New consumer devices proliferated in tandem 
with rising computing power at astonishingly lower prices. The telephone became only 
one of many different ways of accessing information. To the benefit of us all, the tele-
communications industry perceived an opportunity – and an obligation, perhaps – to 
bring these innovations to the masses. Mike Armstrong, the current CEO and presi-
dent of AT&T, is overseeing and vigorously pursuing changes to the industry in much 
the same way that Theodore Vail did a century ago. 

1.2 Internet – The New Kid on the Block 

It is difficult to find anyone who does not recognize the term Internet. Although it had 
its beginnings in the early 1970s, public awareness started more recently in 1991. At 
that time, the National Science Foundation (NSF) privatized and commercialized its 
NSFnet, allowing the first commercial use of the Internet. Soon the first Commercial 
Internet Exchange was launched. Initially, government contracts were given to BBN 
Planet, MCI, and Sprint; and commercial services were launched by UUNet and PSINet. 
By 1992, the number of Internet hosts rocketed to one million – mostly academic and 
military users. In 1993, the World Wide Web (WWW) and the Mosaic web browser 
from NCSA were introduced. The number of users and the amount of traffic flowing 
over the Internet has grown exponentially ever since, reaching 10 million users in 1995, 
and 100 million in 1998. 

Since its infancy, the Internet has served as a “model” for Internetworking and online 
systems development – a model in the sense that it responds rapidly to consumer 
needs, spurring technological advances and vast increases in committed resources. 
From the point-of-view of a network provider, a major challenge for the next-genera-
tion network is to properly administer its resources. For example, who – or what – will 
be using them, and who – or what – will be controlling them? The network and its end 
point devices should mutually communicate control and policy information so as to 
better utilize distributed network resources. To the consumer, or network client, the 
resources should be simply seen as a managed space over which the clients have some 
advisory control. 

This perspective extends the telecommunication industry’s observations that the full 
functionality and usefulness of the data networks have, thus far, been greatly underuti-
lized. This functional underutilization tends to move all costs, management, and com-
plexity to the end points and casts the burden upon the end point devices. This 
arguably increases the overall complexity of the end-devices and potentially reduces 
the user’s ability to manage and operate the devices. It also reduces their useful life as 
their deployment and obsolescence almost coincide! Such scenarios cannot compete 
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in the current information-centric world, with its focus upon unique functionality, 
simplicity, reliability, and of course competitive cost. Instead, industry scrutiny now 
discerns the unique advantages of each element in the communication infrastructure 
and strives to develop these to their full potential. Rather than obsolescence, the 
industry makes a concerted effort to fully leverage all resources. 

We may observe this trend from its birth in 1978 with Vincent Cerf’s Catenet, and the 
subsequent publication of “DOD Standard IP” as RFC-760 in January 1980. These 
paved the way for the Internet, a packet-delivery, connectionless, best-effort, network 
of networks. The Internet mushroomed out of the idea that individual computers 
could talk to each other and that essential network services (such as Domain Name 
Service) should be implemented at the application level and not tied to the protocol 
architecture. Over the following decade or so, the IP-networking industry exerted most 
of its efforts on achieving higher bandwidth, faster access, lower cost, and greater par-
ticipation while stemming the tide of increasing control and legislation from the fed-
eral government. The basic framework remained largely unchanged up through the 
early 1990’s, relegated mostly to research laboratories and halls of academia. 

Then, during the mid 1990’s, the ripening Internet technology flourished into a domi-
nant technology. Embraced by business, enhanced through innovation, and nourished 

through massive investment, the Internet now serves as the favored basis for 21st Cen-
tury telecommunications. The Internet must now satisfy many high-performance
demands. Businesses want security, reliability, reduced operational costs, and cus-
tomer reach. Consumers want ease of use and advanced features. Everyone wants the 
reliability and the simplicity of the global telephone network. Equally important are 
the hybrid services and the move towards convergence of the telephone network, the 
Internet, the wireless networks, broadcast networks, and many enterprise networks. 

Interestingly, the Internet was not designed to support many of today’s telecommuni-
cation requirements. For example, the pure client-server architecture does not scale. It 
is difficult to secure rigorously. It provides little or no support for network-based ser-
vices. For instance, the network’s essential services run on machines that are distin-
guished only by size or user’s preferences, and it is a mere artifact that they are owned 
and operated by the network providers. The Internet still depends on distributed con-
trol. This complicates traffic engineering although it insulates the network against cer-
tain failures. Indeed, many of the original contributors, including Bob Metcalfe who 
invented Ethernet, find continued bewilderment and awe in the continued use of the 
Internet, particularly given its present capacity. In spite of all this, there is a general 
agreement that the Internet – with all its flaws – is the best we have and that emerging 
networks will retain many of its basic features. 

There is growing realization that the Internet should evolve towards an aggregation of 
smart, service-supporting and cooperating networks. Moreover, these networks should 
interoperate with other types of networks and a wide range of clients. Network func-
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tion should thrive in a heterogeneous environment of multiple providers and domains.
To this end, the basic fabric of packet delivery and Domain Name Services functions
needs to be supplemented with additional service-supporting capabilities that are
intrinsic to the support of the above objectives.

1.3 Metamorphosis of the Telecommunications Industry

In spite of the focus upon the Internet, many people may not be aware of the guiding
influence that the telecommunication industry had on the early realization and
deployment of the Internet and, conversely, of the profound changes that took place in
the industry as a result.

At the beginning of the 21st century, the Telcos are aggressively making profound
changes to enable hybrid network technology and become global information and
knowledge providers. This refutes the pundits who would claim the Telcos are captives
of history, destined to move slowly, like some dinosaur on its way to extinction. On the
contrary, the Telcos understand the profound lessons that have been learned by other
industries, such as the railroads, and are moving aggressively to reshape their networks
and their businesses. In a few brief lines, let’s review what happened to the Railroads,
and why the Telcos are not repeating history’s errors.

A century ago, the railroad industry, then the comparative equivalent of the
telecommunications industry today, owned not only most of the long distance
transportation, but exerted a major influence on the affairs of the state. Few
affairs dealing with transportation or commerce were outside the influence of
the railroads.At that time, two seemingly insignificant technologies emerged.
The first was a self-propelled ground vehicle, free of geographical restrictions
imposed by rails, called the automobile. The second was the self-propelled air
vehicle, free of restrictions imposed by gravity, called the aeroplane. The auto-
mobile was weak and frail and subject to frequent mishaps as well as poor
road conditions, exacerbated by poor weather conditions. The early aeroplane
was but a toy that could fly short distances, carry only a few persons or small, 
light cargo, and was greatly affected by even minor weather conditions. 

At this point the railroad barons, through a lack of vision and the hubris of 
their position, failed to understand the significance and the potential of these 
new technologies. They reasoned that they were in the railroad business and 
not the transportation business. They failed to envision heavy cargo moving 
long distances efficiently and cost effectively over their rail lines; then unloaded 
at depots onto trucks for dispersal to local distribution centers. Neither did 
they imagine the automobiles’ efficient high-speed delivery of items over the 
last mile, providing material directly to the point of demand. Nor did they fore-
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see the diversity of cargo with its need for multiple classifications. They did not 
grasp that aeroplanes, no matter how small, could nevertheless fly very long 
distances to deliver high-priority items in a fraction of a locomotive’s delivery 
time.

Such a transportation network – built from hybrid services and utilizing heter-
ogeneous technologies – eluded the barons. Consequently, they elected to lay 
more iron and upgrade their locomotives and cars while undermining or at 
best ignoring the new transportation intruders. The rest, as we say, is history. 

Unlike the railroads, the U.S. auto industry faced overseas competition during the 
1970s and 1980s. The Japanese auto industry refined the production of automobiles, 
thereby reducing cost and improving quality. The hard-hit U.S. industry staggered, tens 
of thousands of auto workers were laid off, and then recovered thanks to an eagerness 
to change. This change involved close collaboration on the part of the auto industry 
players and their entire supply chains. It required that the “Big Three” develop new 

understanding of various corporate roles as they think and act globally1. Sometimes 
they compete, and at other times they must collaborate – this being called “coopeti-
tion” (sic.). The U.S. auto industry now manages change in response to developing 
technology, and once again leads the world. 

These lessons have not been lost on the telecommunications industry. AT&T, as well as 
most of the major Telcos, began to restructure their core business based on the notion 
that the industry is fundamentally in the communications business – not merely a pro-
vider of telephony services. As we will later point out, telephony is seen as a service that 
transports specific “cargo” over data networks. Compared to the century it took to 
build the Plain Old Telephony Service (POTS) network as we know it today, it took less 
than a decade for the industry to reorganize itself in much the same way that the aging 
U.S. auto industry did a decade ago. 

1.4 Rising Intelligence in the Network 

“Intelligence” in telephone networks has been evolving since the 1960’s when the con-
cept of stored program control (SPC) was added to the telephone switch. To those 
unfamiliar with telephony jargon, the term “intelligence” may raise visions of human 
cognition and reasoning with science fiction overtones. Given the actual meaning, the 
use of the term is unfortunate. Network intelligence actually means the ability to pro-
vide services to users by means of standardized and reusable software modules. The 
primary example is the switched network known as the Intelligent Network (IN), 

1. The “Big Three” were Chrysler, Ford, and General Motors (GM). Chrysler recently merged with the major 
European automobile firm Mercedes to become DaimlerChrysler. 
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which we analyze in Chapter 2. The switched network demonstrates the substantial 
value realized by creating an enhanced network that does more than offer end-to-end
communication to the users. 

Four decades later, intelligence (in the IN/AIN sense) is being introduced into data net-
works, and slowly, but with an increasing rate, into the Internet itself. These data net-
works are also “smart” in the sense that middleware is gradually appearing in the data 
networks. One can describe general properties of this yet-unbuilt network it will be 
more functional and essential than the present-day Internet, and it will be less com-
plex and more open than the current PSTN. Beyond these general properties, one can 
only speculate whether the next-generation network will be active or passive, smart, 
dumb, or intelligent; open or proprietary, It will likely provide each of these where 
appropriate.

To understand the move to place the intelligence into the network, reflect on the rise of 
electronic commerce (so-called “eCommerce”) and consider a key problem you will 
face adding new services as a service provider. Ultimately, you succeed or fail based on 
how well you deliver network services to users. 

Suppose your task is to add a new eCommerce wine buying service, ninovino.com, to
your existing service offering. Ninovino.com, like any network service, has two distinct 
aspects: content and infrastructure. Users care about content. They come to 
ninovino.com because they are interested in wine. On the other hand, the infrastruc-
ture connects users to content and supports all the operational details of the services. 
Infrastructure is everything from the physical wiring to the login screen to the billing 
system. Users notice the infrastructure only when it does not work, such as when they 
cannot log on or their bill is wrong. 

But you must care a lot, even without knowing the first thing about wine. Your part-
ners at ninovino.com have Merlots and Sauvignon Blancs down cold. You, on the other 
hand, have to worry about the infrastructure. If you have a typical network, adding 
ninovino.com will involve creating a whole new set of infrastructure functions. You 
will have to create a user database for those who join ninovino.com. Then you’ll need 
to design and implement a registration system. Don’t forget to track user sessions, 
decide how much to charge, design an order-entry system and deploy a billing system. 
You might be able to borrow the user database from your calling application, the usage 
tracking from your distance learning package, and adapt the billing system from 
another eCommerce application. Don’t forget to test all of this and develop the opera-
tional procedures, both for normal and abnormal operations. Bringing up 
ninovino.com means a lot of work that has nothing to do with wine and everything to 
do with infrastructure. The reader will observe this follows the regular system-develop-
ment model, and does not leverage any intrinsic network functions other than reliable 
delivery.
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We call this a “smokestack” network 
model, because each new service requires 
that you develop a complete vertical slice 
of each needed network function. Smoke-
stack development is expensive, slow, and 
frustrating. It adds unnecessary complex-
ity to your network and delays the intro-
duction of revenue-generating services. 
The smokestack development model sim-
ply cannot support the next generation of 
full-featured, media-rich networks. 

One clever way out of this bind is to inte-
grate essential functions and outsource as 
much of the service support as possible. 
Why duplicate membership management, 
authentication, access control, usage 
recording, and security? What if those 
functions were integrated, available to any 
new service, the same way that a PC oper-
ating system provides essential functions 
to application programs? 

Look deeper into the system and you find 
intelligent clients, intelligent services, and 
yet, ironically, a dumb network. It is 
ironic because the network is the one 
common element that touches everything. 
In most cases the network just transports 
data from one point to another. Your job 
would be substantially easier if you could 
take advantage of a smarter network. 
Instead of battling a hodge-podge of 
incompatible programs and technology, 
you could take advantage of an integrated, 
flexible communications framework Sup-
ported by such a network, you would be 
free to develop profitable new services 
faster and more reliably. 

To this end, there is a collective movement 
within the network-related industries to 
enhance their network infrastructures and 
enable support of new services. The col-

Figure 1-3: Middleware Model 
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lective movement consists of fairly separate efforts. Each one addresses a key challenge 
within the network infrastructure. To list only three of these: 

• Virtual Private Networks (VPNs) to allow private and secure communication 
over public networks 

• Quality of Service (QoS) to add control over network resources to the packet 
deliver mechanisms of packet networks 

• Voice on the Network (VoN) to allow voice communication over data networks 

No network innovation can remain a technology “island” onto itself. There are interde-
pendent areas with each solution depending on the connection to others. This results 
in necessary interoperability, with a dependence on a common set of features. Com-
mon functionality and network intelligence can be engineered directly into the net-
work, providing a powerful form of networking middleware. 

1.5 Civilizing Data Networks 

Much effort is still required in building a network that offers extended function to 
include interoperability, last-mile convergence, security and quality of service. There is, 
however, little debate focused on the question of what kind of a network we really want, 
should have, or need. Sometimes we get so caught up with new technology that we do 
not pause to consider how best to utilize it. 

In relation to the provisioning of emerging networks, technologists typically espouse 
two schools of thought. One comes from the Internet side that advocates keeping the 
network as simple as possible and placing all the intelligence outside, within the hosts. 
The other comes from the telecommunications side that advocates high intelligence in 
the network, while keeping the end point devices as simple as possible. Despite com-
pelling arguments in both camps, it is clear that neither is completely right nor com-
pletely wrong. This is demonstrated by Internet2 and Next Generation Internet (NGI) 
on the academic side, and by Virtual Private Networks (VPNs) and Voice over IP (VoIP) 
efforts on the Telco sides. Internet2 is a project supported by the University Corpora-
tion for Advanced Internet Development (UCAID) with over 170 U.S. university partic-
ipants working with corporate and affiliate members to research and develop 
advanced Internet technologies vital to higher education. Internet2 is complementary 
to the federally-led NGI through contributions and demonstrations. 

The diversity of these two schools seems to ensure that both the technical and social 
aspects of the future networks will be thoroughly explored. What is clear is that the 
future networks will be smarter, active, and more capable than the first generation 
Internet, but less complex and more open than the typical PSTN. These networks 
should also evolve in a way that neither infringes on our privacy, nor creates a global 
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monopoly. In a way, if you consider the innovation and re-engineering of data net-
works, collectively the effort is directed towards civilizing data networks. It is an exer-
cise in building the ideal digital society. 

By way of comparison to early American history – when the settlers civilized the rocky 
terrain of New Hampshire, the fertile soils of California, and the wide expanse between 
the two – each settler depended on his own resources and abilities to settle and estab-
lish communities. The settlers had to carry all provisions, defend themselves against 
bandits, and fight for rights of passage. Their lawless West is the stuff of American leg-
end, as is the survival of the rugged individuals settling on the East. Despite our origins 
as independent groups, today we live in a “civilized society” with a common law. Soci-
ety – not individuals – builds roads, bridges, schools, and courts of law. We share this 
common infrastructure and the multitude of commercial benefits. 

The future network will offer, similarly, a common infrastructure to enable digital pres-
ence in the network. Why build servers and applications to handle security and privacy 
in a proprietary way if the network is secure? Why pay for and maintain private lines 
out of the need for guaranteed performance and capacity when the public network 
offers both? Why deal with multiple forms of identification, passwords, accounts, 
phone numbers, and cards when the network manages our identities and orchestrates 
access?

1.6 End-point Devices and the Changing the Role of 
Networks

Data networks already support more at the periphery than just UNIX workstations and 
PCs running Microsoft Windows. Many other types of information devices are now 
and will increasingly become dominant. This includes personal data assistants (PDAs 
such as the Palm Pilot), network appliances (such as the Internet refrigerator), smart 
phones (such as Nokia’s IP wireless device with built-in GPS), desktop boxes (such as 
WebTV), networked game stations, embedded systems (such as GM’s OnStar), and 
game consoles (such as Sony Playstation or Nintendo). For some, like the smart 
phones, lack of local mass storage or low-end computing power will put the burden on 
network services to provide persistent state and computing resources. For others, like 
the next generation of game consoles, high-computing ability and broadband access 
will create opportunities for new services requiring the mediation and application sup-
port of the service providers. To the user, an intelligent network presence may support 
access to any device, at any time, and from anywhere with a wide range of supporting 
services.

Here an analogy to intelligence in the PSTN is appropriate. The telecommunication 
networks can historically be seen as moving from the telegraph, to the telephone, to 
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the intelligent IN/AIN, and recently to the ubiquitous intelligent communications net-
work. Presently, the telephone network can be characterized as offering a balance. On 
one hand, the PBX provides dedicated premises equipment. On the other hand, Cen-
trex offers centralized network equipment with the same functionality as the PBX but 
without the cost and effort of operating one’s own equipment. Regardless of deploy-
ment, both offer services which, when seen in their entirety, create the “PSTN experi-
ence”.

These designs were specifically engineered to handle the limited capabilities of the 
first-generation telephone devices. Service providers could use either intelligence in 
the network or intelligence in the PBXs. They both offer services that are independent 
of the limitations of the end device. Today, there is a far greater opportunity to balance 
the service support inequality between the network and the end devices by taking full 
advantage of all the equipment. 

1.7 Growing Dependency on Middleware 

While putting intelligence into the telecommunication networks has been the goal of 
the PSTN for quite a while, in recent years a separate but in many ways a similar goal 
was followed by the software industry with its pursuit of middleware. 

There are many definitions of middleware. Functionally, it embraces the full diversity 
of the software world enabling the interconnectivity and operability of applications, 
systems and devices. The Gartner Group calls it “runtime system software that enables 
application level interactions among programs”. Some professionals have described it 
as “the odd bits of programs residing between the operating system and the applica-

tion layer”1. From the network perspective, middleware is above the network layer, and 
below the applications layer. As such, it provides the common basis for the applica-
tions to share structure, framework, and common functionality. With middleware, 
software vendors are beginning to integrate, support, and enhance large complex 
applications.

As a taxonomy imposes structure upon the domain, one would expect a standard tax-
onomy for network middleware. Unfortunately, there are only partial taxonomies. We 
can categorize middleware loosely as being related to communication, security, or 
integration, where 

• Communication middleware consists of protocols and architecture supporting 
distributed systems and computing based on the object-oriented paradigm and 

1. From article by ADT Staff on Middleware [STAF99]. 
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message passing, for example CORBA ORBS using IIOP/GIOP, or Java with RMI 
and JINI. DCOM, sponsored by Microsoft, is a third example 

• Security middleware, which contains the essential functions of authentication, 
access control, data privacy and integrity, and encryption. It must navigate the 
complexities of multiple protocols, session keys and certificates, and administra-
tive requirements 

• Integration middleware, which constitutes the integration between a computing 
platform and enterprise-wide applications. These provide a management layer 
supporting multiple and complex application engines. It provides adapters 
between the concepts, details and frameworks of many application components. 
As an example, the next generation of middleware (as described by some) in the 
form of Enterprise Application Integration (EAI) falls into this category 

The taxonomies can be application-specific as well, for example 

• Data transform software 

• Message-oriented middleware 

• Object request brokers 

• Application servers 

• Transaction monitors 

• Directories, and 

• Publish-and-subscribe software 

What is certain is that as network-enabled service and online applications grow in 
complexity, middleware will emerge as a key technology for offering solutions in this 
space. This trend is also finding its way into the network infrastructure of carriers, 
Internet Service Providers (ISP), and Application Service Providers (ASP). For these, 
middleware is considered to encompass a large set of services with the components 
needed to support them, thereby driving a common set of applications constructed 
within a networking computer environment. Such environments are typically distrib-
uted over a large geographical area. 

1.8 Need for Protocol Mediation and Translation in the 
Network

Classically, network applications evolved around the client-server and the peer-to-peer
models. The connectivity between the hosts is provide by a simple packet delivery 
mechanism. A more sophisticated model, long used by many industries, is based on 
the role of a mediator and a broker. This translates into a modified client-server model 
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that is the client-network middleware-server model. These mediators are located at 
various points other than the end points. Indeed, network-located components to 
improve performance have been used in the web nearly from its inception. Cache prox-
ies are one such example, since their presence in the network has many positive bene-
fits. They reduce network traffic and improve the user experience. 

There is, however, a much greater asset in the use of transparent proxies by service pro-
viders and enterprises for general protocol mediation and translation. The active net-
work-based analysis of data can serve many roles: 

1. Seamlessly deliver services and applications across a variety of different communi-
cations networks. For example, mediation can seamlessly integrate POTS and 
packet networks by automatically transforming traffic, signaling, and billing infor-
mation from traditional POTS formats to IP-based protocols and vice-versa. The 
supporting mediation system can optimize traffic flow across networks according 
to service characteristics and leverage specific network strengths (e.g., database 
technology and content) 

2. Transparently convert protocols and “render” media for different interfaces and for 
various emerging information appliances. Mediation can be offered as a virtual 
“proxy” capability to support “thin” client interfaces such as speech-activated tele-
phony and device-independent graphical-browser interfaces. For pagers, mediation 
converts Network Signaling Protocol to Paging Network Protocol such as IP-TNPP
(Telelocator Network Paging Protocol) and IP-Wireless Signaling such as SMS and 
CDPD. Mediation can also enable interoperability between incompatible NT and 
Unix LAN/WAN environments and client/server software 

3. Compensate for different bandwidth capabilities by automatically providing cach-
ing, mirroring, and load distribution functionality 

4. Provide a means for capabilities such as security, localization, and personalization 
by offering intelligent filters, proxies, and web-based self-provisioning of services 

For service providers, economic benefit can be obtained in intercepting and manipu-
lating protocols. The network can easily manage and manipulate all standard proto-
cols to add value as necessary. Consider several examples of this. The first example 
relates to standard protocols used by World Wide Web such as HTTP and FTP. The 
network can transparently support a distributed cache architecture that intelligently 
monitors and caches documents flowing over the Web. For early-entry ISPs that over-
subscribe their service, and have limited capacity at their peering routers, local caches 
may be the only way to reduce outgoing traffic and eliminate peak-hour bottlenecks. 
For these ISPs, this has the following benefits: 

• Network congestion is reduced by eliminating repeated access to the servers 
holding commonly accessed information 

• HTTP and FTP server loads are reduced by off-loading the content into the net-
work caches 
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• Document usage recording can be handled by the network instead of the servers 
while guaranteeing that the service operators still hold the control and get paid 
for the documents given to the users 

• The servers’ document access rights are honored by the network, removing the 
responsibility from the service providers 

The second example relates to streaming video protocols. Consider a video source 
streaming a live MPEG to a number of users. If the users are authenticated with the 
network, the network mediation system can know the hardware capabilities and there-
fore the limitations of the users’ access devices and their bandwidth. MPEG proxies on 
the side of the streaming source can dynamically adjust the quality and size of the 
images to provide a stream that is optimally configured for the bandwidth and capabil-
ity of the users’ devices. 

One can also envision putting virus scanners at the network edges to monitor mail, 
web and ftp protocols. Load balancing is a form of mediation. So is access control and 
tunnelling. Clearly the benefits of mediation as one of the basic features of a network 
has not been fully realized. 

1.9 Emergence of IP as the Unifing Mechanism of 
Computing and Communication 

The telecommunications industry has joined the software and operating system indus-
tries in accepting the Internet Protocol (IP) as its industry standard. Other competing 
standards such as Frame Relay and ATM have been specialized to enterprise and net-
work core solutions. IP, on the other hand, is now embraced for all its consumer inter-
networking and internal services. That includes everything from telephony to 
Operations Support Systems (OSS). In an essence, IP has become the mechanism by 
which the industry can unify computing and communication. 

The Vice President of AT&T Internet Services, Kathleen B. Early, said: 

“AT&T strongly believes that IP is the unifying protocol for transforming the 
telecommunications industry worldwide. ” 

IP was invented by Vincent Cerf and Bob Kahn in 1974 as a communication protocol 
using a UNIX system. It emerged and partially owes it success to the prior invention of 
Ethernet by Bob Metcalfe at a Xerox laboratory in Palo Alto, California. In. 1978, the 
Department of Defense mandated TCP/IP as the standard for its data networks, and by 
1983 it became the protocol standard for the Advanced Research Projects Agency NET-
work, or ARPANET. Over the next decade, ARPANET slowly grew into the Internet we 
know today, thanks to nurturing mostly by universities and research labs. Only since 
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the mid-1990’s has it “exploded” in commercial and consumer popularity, powered 
mainly by the invention of the World Wide Web (WWW) by Tim Berners-Lee at CERN 
in 1989. 

Interestingly, IP success is based only partly on its technical merits. The best technol-
ogy does not always succeed and IP is certainly not the ideal solution for every tele-
communications need. The TCP/IP protocol suite was designed to address a very 
specific data network requirement, specifically a “bomb proof” network, or one that 
would operate despite outages in multiple components. 

IP is a standard that enjoys wide coverage and acceptance, due primarily to the success 
of the Internet and the WWW; yet its adaptation in the telecommunications industry 
was initially greeted with much reservation. As it stands now, the Internet depends 
almost entirely on IP version 4 (IPv4), and this falls short of what the carriers expect in 
terms of quality and reliability. IPv4 is not secure, does not support isochronous 
streams or quality of service, and offers only a 32-bit address space that is already in 
danger of running out of host addresses. 

The telecommunications industry recognizes these shortcomings and together with 
network vendors and the software industry is aggressively working on new solutions. 
This can be seen in what the Chief Executive Officer of AT&T, Mike Armstrong, 
recently committed to: 

“We will do for [the Internet] what we have been doing for years with the tele-
phone – make it safe, reliable, and secure.” 

For telecommunication carriers, the move to IP means they must increase router 
capacity, eliminate excessive router hops, support multiple grades of services, and 
deliver QoS for multiple traffic classes. The traffic will include diverse classes, includ-
ing real-time and bursty-data services. The carriers must also manage peering between 
other networks. These are formidable goals when achieved at global scale with carrier-
grade quality and reliability. 

So why is IP the winner? Consider IP in the company of the other technologies that are 
equal winners: IP, Ethernet, and the WWW. In all cases, the underlying technologies 
are very simple, easy to understand, and easy to implement. More importantly, they are 
open and ubiquitous. Everyone can both contribute to their growth and simulta-
neously benefit from their growth; and best of all, market forces dictate that problems 
are addressed and fixed. 

John Backus, a computer-science pioneer and the author of several early high-level
programming languages, speculated about future programming languages: “I don’t 
know what the computer language will be, but I know it will be called FORTRAN”, a 
sentiment echoed by Martin Greenfield’s statement “The one central attribute of For-
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tran is its name”1. In a similar fashion we can postulate that we don’t know what the 
future communication networks will be, but we now suspect that it will use IP. 

1.10 From Protocols to Interfaces 

The early Internet was primarily a network of wires connecting a set of routers, 
bridges, and hubs, that interconnected a set of hosts. The hosts were self-contained
systems communicating with each other over a well-defined set of wire protocols. At 
the lowest level, a protocol defines the syntax of information and the semantics of its 
content so that a server and its clients can understand each other. By this nature, 
everything that happened outside the boundary of a host is based on protocols. 

Internally, hosts are collections of hardware and software components, interconnected 
into subsystems. Various layers of hardware, firmware, and software utilize resources 
such as the CPU engine, the operating system kernel, the file system, the networking 
system, the graphics system, and the sound system. These subsystems, unlike the inde-
pendent hosts, are highly interdependent on each other through a well-defined set of 
interfaces. These interfaces export a subsystem’s functionality externally via Applica-
tion Programming Interfaces (APIs). More importantly, the interfaces take on a natural 
horizontal layering in which the abstraction played a key role in simplifying both the 
programming effort and the ultimate user experience. 

The two methods – network connected hosts on one hand, and single-chassis “chips 
and wire” machines on the other – arose as specific solutions given the underlying 
infrastructures. The first uses fully autonomous systems. These communicate over a 
single bandwidth-limited channel, and may be geographically dispersed. The second 
method combines smaller components into a collocated, tightly coupled, and interde-
pendent device possessing many channels with unlimited capacity and bandwidth. 

These systems must communicate to achieve their purposes. The “language” of com-
munication therefore must receive considerable attention, specifically to distinguish 
between protocols and interfaces. One might speculate that the form of communica-
tion, be it protocol or interface, is relatively unimportant. However, the form of com-
munication is actually very important. Were we to view the choice as a mere 
“implementation detail”, then inevitably we would also find that the difference 
between the protocol and interface technologies must also be resolved as “implemen-
tation detail”. This leads directly to a close association between the underlying tech-
nology and the level of abstraction that the infrastructure presents. 

1. The fascinating development of this revolutionary language is described by John Backus in “The History 
of Fortran I, II, and III” in IEEE Annals of the History of Computing, Vol. 20, No. 4,1998. 
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Such an approach may succeed for discrete systems designed to operate without any 
further change. It does not work well for large heterogeneous, distributed systems 
operating in a climate of constant change. Distributed systems need to manage con-
stant change in the layers below and above. Protocols and interfaces take on very dif-
ferent roles. Protocols, better referred to here as wire protocols, operate at a very low 
level of abstraction. Interfaces, on the other hand, rise to a higher level of abstraction. 
Interfaces encapsulate activities and hide much of the underlying implementation 
detail.

This brings us once again to the notion of network middleware and the application 
program interfaces (APIs) that they offer. Presently, the Internet has yielded many 
attempts to offer middleware in the form of development platforms that hide the 
underlying diversity and complexity through interfaces. Examples include TINA, 
TINA-C, JTAPI, JAIN, Parlay, and APIs for H.323 and SIP. The hardware vendors have 
been using the concept of well defined interfaces (such as the PCI, ISA, USB, or the 
PCMCIA) for a long time to build components and assemble complete systems using 
third party components. It seems that the software industry is following suit and the 
carriers are more than ready to build their next-generation networks with middleware 
based on these interfaces. One must question the wisdom of such an approach, given 
the low-level abstraction of protocols. This contrasts with the high-level API abstrac-
tion, as required for distributed systems. 

1.1 1 Challenges for the 21 st Century Networks 

In the broader picture, significant advancements are taking place in the way enter-
prises use information, which directly impacts consumers. Enterprises are expanding 
their use of global networks. Telephony services are being used in new, multimedia and 
integrated ways. Corporations are connecting to the Internet to reach broader cus-
tomer bases while interconnecting their branch offices though Virtual Private Net-
works. Use of internal information technology networks (“Intranets”) are being 
coordinated with the Internet, online services, and WANs. To conduct business in the 
fiercely competitive global market place, companies and end users need fast, reliable, 
and interoperable ways of communicating, accessing information, and doing business. 
With the merging of computing and communications, society is moving toward a 
“spaceless-timeless dimension”. The technologies of the Internet, Multimedia, and 
Electronic Commerce are lowering the historical barriers of time, distance, and cost. 
Multinational business customers are looking to harness this convergence of tele-
phony and computing in order to push back the barriers of geography and time. They 
are looking to build and access these networks as soon as possible. 

It has been said that the Internet is a driving force behind profound changes to com-

munications in the 21st century, The ensuing “global village” will likely change the per-
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ceptions of our individual and national identities. This statement is, however, based 
more on a vision of what the Internet can offer rather than what it currently offers. The 
beauty of our times is that the vision is readily attainable. We already have the enabling 
technologies and know-how to achieve most of what we can envision. Nevertheless, we 
do not have the luxury to solve every problem. We have to target and solve the right 
problems. One criterion for problem selection is the identification of the leading chal-
lenges.

Here we discuss several key challenges that are confronting future telecommunica-
tions networks. 

1.11.1 Empowering Anyone to become a Service Provider? 

From early human history up until a few years ago, only a few privileged elite could 
author and distribute information to the masses, particularly geographically distrib-
uted ones. Indeed, an official Imprimatur was, for much of Europe, a prerequisite for 
any publication; this had substantial and often repressive effects upon the content of 
printed materials. This is clearly no longer the case. Indeed, with the World Wide Web, 
anyone can publish anything in nearly any media. 

The World Wide Web enabled anyone to distribute information to the masses; be they 
governments, large corporations, universities, special interest groups, or private indi-
viduals. All that is needed is a connection to the Internet through an Internet Service 
Provider (ISP) and a server to host the web content. The cost of the former is typically 
$19.95 a month and the latter is a PC for under $500. 

If we adjust for the emerging times, a new challenge emerges as well: How do we enable 
anyone to be a service provider? A service provider is someone who offers services to 
subscribers and benefits economically by doing so. Consider the following example. 

What if you are an individual and you had some content you want to advertise or sell 
on the Internet, say, grandma’s secret recipes for knedliky (or knaidloch) from her vil-
lage south of Prague. Each month you get charged the $19.95 by your ISP but instead of 
paying it, you receive a check for $9980.95. This comes from the 100,000 people who 
paid a dime each to access your content. For simplicity, let’s not worry about FICA and 
federal and state taxes, nor the fee to the ISP for perhaps offering some outsourcing 
services.

What you need is a mechanism for advertising your content, an easy means of updat-
ing content, the ability to specify access rights, the means of monitoring usage, and the 
means to clear financial transactions. You want to do this preferably through standard, 
off-the-shelf applications, such as a common web browser and your email client, or 
third-party services. You do not want to learn all the latest technology and build a self-
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contained computing center, nor have lots of hardware and software and contracts for 
others to run and manage it. 

This challenge requires that many problems be solved including two key ones. Service 
scalability is one. The second is outsourcing of the OSS and financial functions. ISPs 
and ASPS can provide these specialized functions. 

This is, however, a non-trivial challenge as was already demonstrated by a fallacy that 
arose around the early Web that “on the Internet, everyone looks the same”. This refers 
to the impression that one cannot tell how big or small the web content provider is 
since even the little guys’ home pages can look like the big corporations’. The fallacy 
arose from the first impressions one got from the look and feel of the content presenta-
tion. Anyone can buy inexpensive tools or hire someone to create rich-looking
dynamic web pages. Today, one does not have to be an engineer or a computer scientist 
with an art degree. 

Where the fallacy quickly breaks down is in the ability to handle a large volume of 
requests. The fallacy completely falls apart under very high-volume bursts of requests 
that can flood even the largest of hosting services. In a somewhat explosive example 
during the early web days, the single T1 line that serviced Purdue University’s main 
campus in West Lafayette was completely shut down for hours when a chemistry grad-
uate student placed pictures and instructions on how to start a barbecue using liquid 
oxygen. Network congestion completely choked off the campus to any external net-
work traffic. 

Such problems plagued the first generation Internet. It was based on a simple access 
and transport role for the backbone, with a similarly simple client-server mechanism. 
It lacked any network middleware support. There are many problems with the simple 
model. First, the client-server model does not scale; no matter how large the server (or 
cluster of servers) is, the high-demand bursts will always outstrip the server’s ability to 
handle the loads. Second, using the same argument, no amount of reasonable band-
width will offer guaranteed access without causing a bottleneck. The imperfect solu-
tion of an over-engineered network is expensive. Worse, it can be shown that over-
engineered systems will still fail to support the traffic peaks that result from multiple 
coincident interactions, even when the average load remains within the system’s 
design parameters. As such, few service providers on the Internet today can offer fast, 
responsive services without the dependence on network middleware. 

Thus consider again the question of whether it is possible to enable everyone to be a 
service provider. It is clear from the discussion above that few can do this alone, no 
matter how resourceful or affluent they may be. Ultimately, the approach fails, as scal-
ability and operational costs increase with an expanding customer base. The answer is 
for the network to provide all necessary support, and thereby offset the functional 
insufficiency of those who do not have it. When designing networks and network infra-
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structure, we can build a common infrastructure that can support various groups 
based on their size and their ability to pay. Technically speaking, we could treat every-
one the same (from a one-horse operation to the largest corporate giants) and build in 
capabilities that can be turned on or off as needed. This would create the ability to out-
source many basic requirements to run a service and ultimately would enable anyone 
to be a service provider. 

1.11.2 Enabling Faster Time to Market at Lower Cost 

The above scenario of individuals as service providers falls at one end of a spectrum 
that spans the realm of possibilities. While the majority of users would prefer to out-
source the entire infrastructure to someone else, other more resourceful individuals 
and corporations may prefer to control some part or the entire part of offering ser-
vices. As we proceed along the spectrum, greater importance is placed upon the ability 
to interoperate, customize, extend and self-provision services outside the network 
infrastructure.

This presents two major challenges when bringing new services to market. First is the 
time required to develop the new services, and second is the cost of the development. 
Both challenges can be related to the number of developers it will take to write, test, 
and “productize” the code, and the level of abstraction that exists from which they can 
begin to create their service’s value to differentiate themselves from everyone else. One 
goal of a network infrastructure is to create a sufficiently high level of abstraction with-
out creating too much of a good thing. Ultimately, it should be possible to take an 
existing legacy system, integrate it with the network infrastructure, and implement it 
with half a dozen developers within a month of work. Similarly, it should be possible to 
take a new idea and, after creating the core of the system that offers the actual value of 
the service, take two developers and two weeks to create a world-class online service. 

This is not a new challenge. The software industry offers solutions tailored specifically 
to these challenges. Such solutions unfortunately target very specific vertical markets. 
The challenge of network middleware is to offer general, lasting solutions for a wide-
range of services that leverage the emergence of network intelligence. This means cre-
ating value in the network. This value must be easy to use. A fundamentally different 
data network emerges, one that facilitates the easy and productive use of network 
capabilities.

1.11.3 Reducing Complexity and Providing for Ease-of-use

Perhaps the most ambitious goal is embracing new and emerging technologies for the 
benefit of end users as quickly as they become available. This can bring the “latest and 
greatest” to market faster. The viability of this goal requires that our systems – and in 
particular the network that delivers the services – must keep technical complexity in 
check. Consider the dilemma found by the first users of any technology. New technol-
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ogy may be somewhat disruptive and may even impel its users to change their life-
styles. The personal usage-styles of the World Wide Web users are a case in point. 

Yet even if consumers accept this change, they have to pay the associated costs. New 
technologies classically impose a cost on their initial users: 

• A high learning curve to technical proficiency 

• A high level of management and upkeep 

• Poor user interfaces 

• Functions incompatible with other existing products 

• Poor documentation and service support 

New products are rarely user friendly despite their functionality. They are typically 
developed by programmers for programmers, or by engineers for engineers. If the mar-
ket expects consumers to accept major changes in their lifestyles, the producers and 
providers have to take on the responsibility of the stated challenge. 

The 21st century will most likely be marked by a tight interdependence between man 
and machine. Increasingly complex technology needs to be reengineered for simplicity 
and ease-of-use. Businesses are finding out that customers are very receptive to highly 
functional systems, provided the technology does not get in the way and works as 
expected. The challenge is thus to find ways to maintain a high rate of innovation (and 
increasing system complexity) while presenting the users with a constant or even 
reduced learning curve. 

1.11.4 Design for Seamless Interoperability and Mobility 

The time in which users are willing to buy and operate a wide range of non-interopera-
ble devices is quickly coming to an end. Answering machines, voice recorders, home 
PCs, TVs, phones, ATMs, credit cards, PDAs, and ISPs that do not communicate, share 
user identity and preferences, or exchange data will slowly be replaced by smart 
devices and service operators that interoperate and offer mobility. 

Interestingly, the smarter devices get, the more intelligent the network must become to 
support these devices. This is not a technical but rather an economic necessity based 
on costs of ownership. 

One aspect of this is the emergence of Public Key Infrastructures (PKIs) and Certificate 
Authorities (CA). Interoperability and mobility mean that users, service providers, 
merchants and businesses have to manage risks, identities and rights. For two carriers 
to interoperate their services, or for users to roam over foreign networks, credentials 
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have to be presented and verified. Such mechanisms have to be built into the networks, 
standardized, and then made available for widespread use. 

1.11.5 Working towards Reliable IP Networks 

The telecommunications industry has expended great engineering efforts to achieve 
99.999 percent reliable telephony. Today, the reliability and service availability of the 
telephone are taken for granted. The telephone network even has its own redundant 
power source so that when the local electrical grid fails, telephones still operate. Com-
pare this to the slow and unreliable ISP and Internet services, and you see a wide gap 
between the reliability and availability of the telephone service and today’s Internet 
services. That is not to say that IP is not reliable. 

“TIP is said to be 99.9  percent reliable, which may sound good to some people, 
but to me, that means 1,000 defects per million.” [KRAU99] 

The challenge here is to make IP networks equal if not more reliable than the PSTN. 
Given the much larger demand on the Internet compared to the PSTN of the future, 
this reliability will be a necessity. 

1.11.6 Consolidated Intelligence in Data Networks 

When we consider the efforts of Virtual Private Networks (VPNs), Quality-of-Service
(QoS), Voice-over-IP (VoIP), unified messaging, e-commerce, and online entertain-
ment, we observe the wealth of supporting distributed systems spanning the entire 
network stack spectrum from the physical up to the application layer, from the en 
devices through the network and into supporting services. There is an healthy abun-
dance of experimentation trying to resolve issues relating to how and where to put the 
pieces required to support the applications. 

The challenge here is to recognize that data networks are getting more intelligent and 
that it is imperative to help in identifying the “how’s” and “where’s”. 

1.12 Summary 

Many within the Industry perceive that IP has vanquished other networking technolo-
gies, and that it is now time to sit back and build on its established technology. Others, 
like us, however, see this as a transition time marked by a major readjustment driven 
by social, political, and market forces. Once this readjustment stabilizes, as will happen 
when the Internet becomes a common utility, we may find, “although unlikely”, that 
the underlying technology may end up falling short of expectations. 
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Early on, at the beginning of the AT&T WorldNet offer, many in the industry wanted 
simply “to follow the vertical smokestack model and throw a bunch of servers into a 
big server farm in some complex and connect it to the world with fat pipes.” [KRAU99] 
From the management and operational perspective, this is a valid solution, as it 
reduces the cost of operations and saves the company money while satisfying the short 
entry time requirement. From an infrastructure, extensibility and long-term value 
proposition perspective, this is very expensive and somewhat shortsighted. We have 
learned that many problems are much more complex than previously understood. Ser-
vice-related issues need a generalized solution that can be customized – rather than 
custom solutions that cannot be generalized. Occasionally in our rush to conduct busi-
ness and maintain a leadership role, we neglect the long term consequences. What we 
need now is to recreate ourselves in the same way that the auto industry did a decade 
ago; take account of our situation, look at the surroundings, and invest in our future. 
As part of such efforts, it also means that new ways and methods be tried, allowed to 
grow, with the proven successes incorporated while the mistakes recognized and 
learned from. Ignoring these considerations would repeat the errors of the railroad, 
steel, and other industries about whom the American philosopher and Harvard 
scholar might have anticipated: 

“Those who cannot remember the past are condemned to fulfill it.” 

- George Santayana 
THE LIFE OF REASON, 1906
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CHAPTER 2 Technology Overview 

This chapter lays out the background needed to understand IP service platforms, and 
in particular the synergistic technological developments that are transforming the 
communications industries. The spectrum of the interrelated topics is very broad. We 
view them from the unifying perspective of network middleware that spans the gamut 
from the physical network fabric to the applications themselves. In this chapter we 
focus on the key technologies needed by the IP service platform, and how these tech-
nologies are directly impacted by such a platform. We also identify their significance 
and relationships to other technologies. Beginning with developments in the circuit-
switched networks that make up our telephone systems, we then explore their relation-
ship to packet networks – such as the Internet – that carry our data in a multitude of 
forms, and the services these networks offer. Coincident innovations in the software 
industries extend the client and server technologies and thus imbue the Internet with 
a dynamic and interactive presence. From this technological mosaic emerges the sub-

strate for reliable systems enabling businesses and consumers through the 21St Cen-
tury.

2.1 Public Switched Telephone Network (PSTN) 

To most of us, the oldest and most pervasive communication network in the world is 
the Public Switched Telephone Network (PSTN). This is the familiar global voice tele-
phone network that provides telephone to anyone with a telephone and access rights. 
Today, PSTN spans every country and territory in the world. Since the invention of the 
telephone in the late 1800’s, PSTN has steadily grown out of the original Bell System 
network developed by AT&T. In the U.S., it is made up of 196 geographical local access 
and transport areas (LATAs) that are serviced by one or more Local Exchange Carriers 
(LECs). Some of the well known LECs are GTE, Ameritech, NYNEX, Bell Atlantic, Bell 
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South, and Southwestern Bell. Inter-LATA traffic is provided by the Interexchange Car-
riers (IXCs). Examples of IXCs are AT&T, MCI WorldCom, Sprint, and Interliant. The 
three-digit area codes are assigned to LECs within a given LATA. 

This relationship between LATAs, LECs and IXCs is shown in Figure 2-1. Typical cus-
tomers connect their premises equipment over a local loop to the LEC’s closest central 
office (CO). The LEC connects its COs through a number of lines to its switching cen-
ters, called tandem offices (TA). 

The inter-LATA calls are switched to an IXC’s point of presence (POP) based on the 
customer’s choice of long distance providers. Once the call leaves the LATA and enters 
the IXC network, it may get switched through multiple provider’s networks based on 
their peering arrangements. 

Figure 2-1: The LATA view of PSTN 

As part of “our” telephone network we may also think of wireless cell phones (see 
Figure 2-2). This service is supported by a separate network using different technolo-
gies from the wireline PSTN however, the two are closely peered and offer seamless 
exchange of voice services. Unfortunately, there are several competing service stan-
dards including different ones for analog and digital; these include the advanced 
mobile phone service (AMPS) for analog, digital AMPS (D-AMPS), global system for 
mobile communications (GSM), personal communications service (PCS), low-earth
orbiting satellites (LEO), specialized mobile radio (SMR), and cellular digital packet 
data (CDPA). In the U.S., PCS is the dominant service with the large national PCS pro-
viders being AT&T Wireless and Sprint PCS; most local Bells support their own cellu-
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lar networks. A service that runs well on one of these standards or networks may be of 
interest to the others as well; for example, the mobile “browser cell phone” merges 
desirable features that originated in separate networks. 

Figure 2-2: Connection Layers: Tower, MTSO Mobile Switch, PSTN Central Office 

The PSTN is based on circuit-switching technology that establishes and maintains a 
single end-to-end circuit for each call placed. The management of the calls requires the 
support of three primary functions: switching, transmission, and signalling. 

• Switching. This function handles automatic call routing by means of highly 

sophisticated computers such as the 4ESS switching machines. A national net-
work has on the order of 100 such switches strategically located in major hubs. 
They were introduced in the mid-1970’s and continue to be upgraded with state-
of-the art switching technology. Today, a single 4ESS switch can handle upwards 
of 1.2 million calls per hour 

Transmission. These facilities are responsible for physical transport of the call’s 
information, in a manner that permits satisfactory recovery of the source signal. 
The technologies include fiber-optic cables, microwaves, radio relays, and satel-
lite communications. Most of today’s traffic is carried over Synchronous Optical 
NETworks (SONET) and Dense Wave Division Multiplexing (DWDM) on fiber-
optic cables. SONET operates at multiples of OC1(51.84 Mb/s) and the European 
equivalent ITU-T SDH operating at OC3 and above 

• Signalling. This function operates the out-of-band signalling which controls the 

flow of calls across the network and supports the enhanced telephony services 
such as toll-free calling including 800 service. We do not consider in-band sig-
nalling
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2.1.1 Intelligent Network 

The PSTN is actually composed of two networks. The first is the switched network that 
carries the calls over circuits, and the second is data network that carries signalling. 
This signalling network benefits greatly from reliable digital transport and processing. 
They improve the efficiency of network management, while operating at much lower 
cost. The signalling network also enables new and enhanced services. At the heart of 
this network are the 4ESS switches and the SS7 protocol that form the modern Intelli-
gent Network. 

In the mid-1970s, AT&T developed Signalling System 6 (SS6) for the old Bell System to 
automate calling-card validation, and remove the dependency on operators to handle 
this validation. It was the first use of new computer-controlled switching functions on 
an out-of-band secondary data network. The result was an all-in-one solution in which 
each switch also performed basic call processing and database processing for both ser-
vices and control. These solutions were typically built and deployed by different ven-
dors who used different approaches to the provisioning and operation of the switches. 
This required extensive and expensive coordination to synchronize and update both 
the software and the database contents in the entire network. Nevertheless, this 
enabled service providers to begin creating new services such as call forwarding. These 
services were custom built from scratch and required extensive patching to integrate 
into the existing systems. 

As a side note, even with the later move to IN/AIN, this practice of building vertically 
integrated systems continued until the early 1990s. In much the same way, the early 
history of Internet services followed the same model. Yet in both industries, the tele-
communication and the Internet models for building, provisioning, and operating ser-
vices relied on a shared common infrastructure mainly out of economic necessity. 

Ten years later, a faster and more capable Signalling System 7 (SS7) was developed as a 
layered protocol with signalling links of 64Kbs. Today it supports 1.54 megabit signal-
ling links. This established a global standard based on Common Channel Interoffice 
Signalling architecture (CCIS), and was the beginning of the Intelligent Network (IN). 
With the introduction of SS7, services moved out of the switches and into Service Con-
trol Points (SCP). 

The basic components of SS7 are the Signal Transfer Points, Service Control Points, 
and Service Switching Points, as shown in Figure 2-3.

• STP – Signal Transfer Point 

STPs are signal transfer points which route queries between central office 
switches and databases in SCPs. These are packet switches that forward SS7 
messages from SSPs to SCPs based on the destination address of the SCPs. 



PUBLIC SWITCHED TELEPHONE NETWORK (PSTN) 31

Figure 2-3: SS7 components of an IN/AIN 

• SCP – Service Control Point 

SCPs are the databases that hold the call routing instructions and the enhanced 
services such as the network-based voice mail, or fax and IVR applications. 

• SSP – Service Switching Point 

SSPs enable central offices to initiate queries to databases and specialized com-
puters.

The model for the Intelligent Network was realized when the services moved from 
switches and into the SCPs, where these services could accept standardized messages. 
This standardization concept was well understood in the software industry, but it was 
not until the adaptation of SS7 and its common set of standardized messages that the 
model entered the telephone networks. The standard message and the well specified 
set of rules published by ITU-T and Bellcore created a very powerful platform on which 
to build the next generation of telephony services. 

2.1.2 Private Branch Exchange, Key Systems, and Centrex 

Businesses using telephony services depend on the use of Private Branch Exchanges 
(PBX), key systems, or Centrex systems; they support voice mail, service call centers, 
speed dialing, redial, and other advanced voice services. All of these systems provide 
connectivity between the members of the supported organization and the connectivity 
to the PSTN. They differ in the location of the equipment and the ownership of that 
equipment.

PBX and key systems are on-site privately owned systems. They differ mainly in the 
size with PBX supporting large organizations while key systems tend to support small 
businesses with only dozens of connections. Due to the large organizations supported 
by PBX, PBX’s are connected to the central offices with T1 or PRI ISDN trunks. How-
ever, the big difference between the two lies in the control of the local telephones. PBX 
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grounds all calls and thus provides the dial tone to its organization. To call outside, an 
outside access code has to tell the PBX to route the call outside. The PBX then has ded-
icated trunk lines connecting it to a central office. With a key system, the dial tone is 
provided by the central office. 

Centrex, in contrast to a PBX or key system, is located in the central office of a tele-
phone company; the term is derived from the words central and exchange. The motiva-
tion for a Centrex was for a large company to outsource its PBX services to the 
telephone company and save on the administrative and operational cost of managing 
their own PBXs. The first Centrex system was deployed in 1965 in Newark, New Jersey 
to support the Prudential Life Insurance Company. By 1982, according to a 1986 
DataPro report, Centrex provided service to 70% of all business with over 1000 lines. 
Since the divestiture of 1984, the legislation made Centrex more applicable to both 
small and large businesses. 

It is insightful to note that the Intelligent Network and the Centrex/PBX systems are 
targeting the same requirements but from different sides of the spectrum. IN/AIN 
offers telephone companies the infrastructure on which to build in-network services 
focused primarily on home subscribers; while the latter offers local services and con-
trol to organizations. As we explore next, the “new kid on the block (i.e., Internet) 
offers these customers a captivating wealth of services common to both the PSTN and 
data networks. 

2.1.3 Services Spanning both the PSTN and the Internet 

Since the early days of data networks, many ventures have tried to interoperate ser-
vices in the PSTN and the data networks. These span a spectrum from controlling tele-
phone-based devices and services from Internet hosts, up through running large data 
and call centers in support of PSTN services. The results include Computer Telephony 
Integration (CTI) with Telephony APIs (e.g., TAPI/JTAPI/TSAPI) on one end, and car-
rier-class interoperability efforts such as TINA, Java AIN (JAIN), and Parlay API on the 
other end. Several of these convergence technologies strive to decouple the upper-layer
services from the specific supporting technologies, and we describe several challenges 
introduced through this realization. 

CTI and Telephony APIs 
Some of the key CTI applications include Integrated Voice Response (IVR), 
predictive dialing, “faxback”, call center management, and IP telephony, To 
address the growing demand by businesses to deploy CTI applications a 
number of competing standards developed. These include Lucent’s Pas-
sageways, IBM’S CallPath, SunXTL, Microsoft’s TAPI, Sun’s JTAPI, and Nov-
ell/Lucent’s TSAPI. As an example, Microsoft’s TAPI integrates multimedia 
stream control with legacy telephony and H.323 conferencing standard as 
part of its Windows platform. TAPI solutions use their COM API to inte-
grate a TAPI Server, interoperating with a PBX or a PC modem for PSTN 



PUBLIC SWITCHED TELEPHONE NETWORK (PSTN) 33

access or ATM/ISDN NIC for WAN access, with an LDAP directory and 
TAPI clients. TAPI uses RTP and RTCP for managing the synchronization 
and timing of its isochronous (i.e., fixed duration between events or sig-
nals) packets. 

In October 1996, Sun developed Java Telephony API (JTAPI) in cooperation 
with IBM, Intel, Lucent, Nortel, and Novell in an effort to offer a Java-based
open-specification for computer telephony standard. One of its goals was 
to bridge the gap between numerous proprietary, competing standards for 
CTI. With JTAPI, applications, regardless of the platform on which they 
were developed, are able to interoperate with JTAPI-compliant compo-
nents built with the other standards. 

TINA (Telecommunication Information Network Architecture) 
In 1993, the TINA Consortium (TINA-C) was formed with 40 leading Telcos 
and software companies to cooperatively create a common architecture to 
address the communication industry’s growing difficulty with the delivery 
of new services, or adaptation to changes within the infrastructure. In 1997 
TINA-C delivered a set of validated architectural specifications that inte-
grated all management, development and control functions into a unified, 
logical software architecture supported by a single distributed computing 
platform, the Distributed Processing Environment (DPE). TINA’s DPE is 
based on OMG technology, CORBA, and extends CORBA to provide func-
tions specific to telecommunication. 

TINA’s architecture is based on four principles, specifically: 

• Object-oriented analysis and design 

• Distribution 

•

• Separation of concern 
These principles address the telecommunication industry’s requirements 
of interoperability, portability and reusability of software components, and 
achieves valuable independence from specific technologies. Creation and 
management of complex systems, formerly the burden of large vertically 
integrated corporations, can now be shared among different business 
stakeholders, such as consumers, service providers, and connectivity pro-
viders.

Decoupling of software components, and 

JAIN (Java APIs for Integrated Network) 
JAIN is a set of Intelligent Network (IN) specific APIs developed by Sun 
Microsystems for the Java platform. JAIN targets the integration of PSTN, 
wireless, and IP networks, and specifically aims at some of the incompati-
bility between IN programs that use SS7. The JAIN APIs define interfaces 
for TCAP (SS7 database and switch interactions), ISUP (ISDN signalling) 
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and MAP (cellular processing); its classes also support Operations Admin-
istration and Maintenance (OA&M) and Media Gateway Controller Proto-
col (MGCP). These capabilities parallel JAIN support for IP voice protocols 
(H.323 and SIP). Together, they enable service development that is indepen-
dent of the underlying communications stacks and implementations. 

At its core, the JAIN architecture defines a software component library, 
development tools, a service creation environment (SCE), and a carrier-
grade service logic execution environment for building next-generation
services for integrated PSTN, packet and wireless networks. 

Parlay API 
In May 1998, an industry consortium was formed to develop an open API 
standard that would allow 3rd party developers access to the Telcos’ 
switches and which would support new IP-based telephony services. The 
consortium was spearheaded by British Telecom given the discussions 
with the AT&T GeoPlex project, and now also includes DGM&S Telecom, 
Microsoft, Nortel Networks, Siemens, Ericsson, Cisco and others. The Par-
lay API being standardized by the consortium would facilitate the inter-
networking of IP networks with the PSTN while maintaining its integrity, 
performance and security. 

Parlay’s philosophy closely parallels the approach taken in the GeoPlex 
project at AT&T. Due to the close interoperation with PSTN, however, the 
architecture does not subscribe to all the design principles described in 
this book Specifically, it does not subscribe to the Routing Principle. 

The Parlay API supports registration, security, discovery, event notifica-
tion, QA&M, charging and billing, logging and auditing, load and fault 
management, and offers service interfaces for services such as call control 
and messaging. 

Parlay-based applications are also intended to support TAPI-based appli-
cations developed by enterprises. 

JAIN and Parlay APIs are complimentary and together will provide significant oppor-
tunities to expand the access and breadth of services available. Java provides the com-
mon mechanism that makes Parlay services available on the Internet. Parlay is a way to 
bring telecom models including security to the JAIN community, expanding the reach 
of the JAIN activity 

2.2 Packet Networks 

This brings us to digital packet networks; these move data in small packets. Unlike the 
switched networks that dedicate a single circuit to a single session, these move many 
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packets from many sessions over the same circuit simultaneously, The previous span-
ning services (Section 2.1.3) anticipated many of these interrelated developments. 

Today with all the sophistication and complexity of the PSTN, many people perceive 
the telephone and the data networks as being two completely different technologies 
having little to do with each other. They perceive the use of modems to tunnel over 
POTS between our computers and the Internet as shown in Figure 2-4; or perhaps 
think of DSL or cable as offering direct broadband to the Internet through their ISP. 

Figure 2-4 Tunneling to an ISP over POTS to reach the Internet 

What many people do not realize is that parts of the PSTN have carried Internet traffic 
since the very beginning of digital signalling, and this rising trend builds upon the 
existing properties of the PSTN. Specifically: the underlying network technologies for 
carrying voice and data are the same. Their respective transport networks are there-
fore merging into one network. In some cases the all-digital voice circuits even bridge 
the “last mile” into the subscriber’s business or home, thereby eliminating the remnant 
analog portion from their local loops. In other cases the customers retain analog 
equipment.

Due to the mix of premises technologies, the differences in this mix can be handled at 
local switches and associated programs. These edge components distinguish between 
analog and digital traffic. The ingress network adjusts to each kind of traffic, and for 
PSTN service the source signals are transparent to the transport network. For example, 
transmission impairments (i.e., noise) present different challenges to analog and data 
signals.

The classic case is echo on a two-wire connection. Only analog devices – such as the 
“black phone” – require echo cancellation to filter out the return signal inherent in the 
sharing of one wire-pair by both end points. The networks’ echo canceller removes the 
return signal that arrives after one round-trip delay time. Whereas echo cancellation 
removes unwanted signals from analog voice, it must be disabled during digital trans-
mission. Digital signals have different characteristics than analog ones. Modem 



36 MIDDLEWARE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

devices actively maximize the useful bandwidth through signal-specific adjustments 
adapting to various kinds of line-noise, including echo. The network’s echo-cancella-
tion would drastically reduce the available digital bandwidth, and must be disabled 
during digital traffic. Digital packet phones could make the echo cancellers completely 
obsolete on all-digital loops, and thus eliminate the cost of these devices. 

Another example of network convergence is in the use of T1 lines to simultaneously 
carry data as part of the Internet, while also carrying voice. A PBX supports these mul-
tiple traffic types over a single central-office connection. Network transports such as 
T1, T3, ATM, Frame Relay, SONET and WDM subsequently carry the packets for both 
PSTN voice and digital data. The transports can potentially be partitioned to carry 
other media, including video or fax. 

T1 is a common carrier for data packets and links many IP networks today, yet it was 
developed by AT&T in the 1960s and deployed in 1983 specifically to save money on 
outside cabling for telephony. T1 allows 24 channels over two pairs of copper, fiber, or 
microwave media. Any one of the channels can carry either analog voice or data pack-
ets. For data, that amounts to a DS-1 speed of 1.544 megabits per second arising from 
the DS-0 speed of 64kb per channel. Similarly, T3 supports 672 channels, or a DS-3
speed of 44 megabits per second. The WAN that became the Internet was built largely 
as a result of the existence of Tls serving the PSTN. Early in its deployment, channel 
banks served the time-division muliplexing functions in connecting the T1 lines to 
PBXs and central offices. It was at these channel banks that external data connections 
could tap into the T1 lines along with audio lines from telephones and PBXs, and 
apportion some or all of the 24 channels for data packets. 

It was not long before T1 offered companies the solution for their long-distance com-
munication needs for the multiple medias of both voice and data. Corporations could 
lease private T1 or fractional T1 lines to interconnect their branch offices or to access 
the Internet. Soon, however, its high cost created the need for a cheaper solution. The 
result was the Frame Relay (FR). FR is a high-speed packet public network offered by 
local and long distance telephone companies. 

Companies that previously leased or owned costly private dedicated T1 lines of fixed 
capacity, could instead rent circuits on an FR network. Inexpensive access lines con-
nect the customer premise equipment (CPE) with the FR network. Depending on the 
levels of desired service and cost, the FR circuits are either permanent virtual circuits 
(PVC) or switched virtual circuits (SVC). PVCs are logical predefined paths through 
the FR charged at a fured rate, while SVCs are temporary circuits charged per use. In 
either case, the FR service offers a service level agreement (SLA) known as committed 
information rate (CIR), or the minimum guaranteed throughput. These rates can be 
guaranteed by the carrier given that they do not oversubscribe the capacity of the 
frame relay. Neither PVCs nor SVCs can offer absolute guarantees on throughput or 
Quality of Service (QoS). 
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FR was, and continues as, the preferred method for connecting branch offices, particu-
larly where time critical data is not an issue. This preference is under challenge by vir-
tual private network (VPN) solutions with similar connectivity at lower cost. VPN 
solutions may exploit multiple technologies and thereby obtain lower average delay for 
a fixed traffic class. 

In contrast to frame relay service which excels in interconnecting LANs and carrying 
pure data traffic, network service providers now offer Asynchronous Transfer Mode 
(ATM) as a high-speed switching service capable of carrying mixtures of voice and 
video along with data traffic. ATM was developed by the telecom industry as a high-
speed network technology specifically to carry isochronous streams (voice and video). 
Fundamentally, ATM is a connection-oriented data link that carries small fured-sized
cells of 53 bytes arranged as a 48-byte payload and a five byte header. Instead of rout-
ers, ATM networks establish virtual circuits (VC) and switch cells directly in hardware 
according to the header. Virtual paths multiplex aggregated VCs through virtual path 
connections (VPC) that define end points and QoS. The ATM standards define five 
QoS classes and a variety of admission control algorithms ensure consistent perfor-
mance.

At this point we should compare data with the isochronous traffic of voice and video. 
From this discussion, it should become clear that some network services are better 
suited for data and others for voice. To the hosts and applications that deal specifically 
with one or more multimedia types, it may not matter exactly how the information 
moves or over what types of network the information flows. They communicate every-
thing over IP. It is the underlying network fabric that has to contend with the different 
media requirements and here the differences are vast. 

Consider real-time interactive voice and video applications [SEIF98]. These applica-
tions are 

• Sensitive to absolute delay (i.e., real-time)

• Sensitive to delay variance (i.e., isochronous) 

• Tolerant of information loss (i.e., receiver interpolation), and 

• Assume a priori knowledge of the communications requirements 

The design of real-time interactive services must consider the human aspects of per-
ception, especially since the underlying technologies may have unexpected effects on 
the services. Human perception is extremely sensitive to short-term variations. This 
occurs, for example, through subtle variations in signal delay giving rise to the phe-
nomena of jitter. 

This human sensitivity to artifacts – even the infinitesimal variations in ambient noise 
– was crisply observed by an advanced student engaged in the programming of real-
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time experiments at the Human Perceptual Research Laboratory of Purdue Univer-
sity’s Department of Audiology. Informed subjects, typically students, were trained in 
soundproof rooms to recognize minute, low-level signals produced by high-fidelity
computer-controlled audio equipment. These subjects indicated what they heard by 
pressing the appropriate button on a console. Surprisingly, trained subjects demon-
strated the ability to reliably detect the audio stimuli even with the volume set to zero! 
Upon investigation it was determined that background noise included artifacts of the 
computer-controlled switches. The subjects acquired a learned behavior that mea-
sured artifacts beneath the threshold of their direct observation. Their perception was 
better than the ambient noise. This lesson has not been lost on the communications 
community, driven as it is by customer perception. 

The public telephone system conforms to ITU standards for the minimum require-
ments on voice quality to be acceptable; those standards stipulate the acceptable jitter, 
delays, and thresholds that for the majority of the people are below their threshold of 
perception. The standards recognize that a person’s perception system can interpolate 
between drops in the signal and still be understood. That is why, for instance, we have 
moving pictures; a sequence of images presented rapidly at a fixed rate. 

Compare this to the requirements for data. A data exchange may proceed unfettered 
with concern for small variations in the time scale, provided that content remains 
flawless and the protocol can adapt to the timing variations (as IP does). Such trans-
fers are: 

• Insensitive to absolute delay 

• Insensitive to delay variance (only when the last packet arrives is the data whole) 

• Intolerant of information loss (even one lost packet may make the whole content 
unusable), and 

• Asymmetrical (data flows mostly in one direction, from the servers to the clients 
and vice-versa)

Thus compare data traffic with voice traffic. Data is very sensitive to packet loss but 
totally unaffected with delay and jitter, or the order of delivery. Voice traffic is, in every 
respect, the opposite. ATM was designed specifically to address the requirements of 
real-time interactive voice and video. Unlike data networks that tend to be connection-
less, ATM is a connection-oriented network that guarantees performance characteris-
tics of its virtual circuits and consequently is optimized for voice and collaborative 
video. Although ATM has been described by some as the ultimate solution for inte-
grated broadband communications networks [DEPR93], others feel that this is true 
only in light of the limited bandwidth available today, 

Throughout this book, we focus heavily and take advantage of the ubiquity of IP, but 
for this discussion, a technology that is equally ubiquitous is the Ethernet [GIGAET]. 
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According to IDC, by 1997, more than 83 percent of all installed network connections 
were Ethernet. This represents over 120 million interconnected PCs, workstations and 
servers. The remaining network connections are a combination of Token Ring, Fiber 
Distributed Data Interface (FDDI), ATM and other protocols. Unlike the higher cost of 
the ATM and the higher complexity of mapping Ethernet frames to ATM cells, one 
contender to ATM that avoids these disadvantages is the Gigabit Ethernet. 

Gigabit Ethernet is a data link and physical layer technology that support capacities in 
excess of 1Gb per second. It is an evolutionary technology from Ethernet that is simi-
larly a connection-less, unacknowledged, variable-length packet delivery system. Cur-
rently, the Ethernet running at 10Mb/s and Fast Ethernet running at 100Mb/s 
dominate LANs; Gigabit Ethernet can offer seamless interconnection for the LANs in 
the backbone. This dramatically reduces the cost of equipment and operations over 
other heterogeneous solutions. 

This brings us to the physical layer technologies in the WANs. A common signalling 
method across optical-fiber links is SONET. SONET is commonly used by the carriers 
to carry ATM, but it can also multiplex many different data link technologies simulta-
neously. What SONET offers is the simultaneous transport of ATM, DS-1, DS-3, con-
nection-less packet over SONET (POS), as well as all the others. This creates 
opportunities to utilize the best-of-breed data-link technologies that are optimized for 
given applications, and combine them to run over a transport backbone. This can sim-
plify the end point view of networks through support of the ubiquitous Ethernet LANs 
with end-to-end IP connectivity. 

The best part of these new opportunities is the elimination of traffic bottlenecks, 
which become mere artifacts imposed by slow multiples-of-64Kb backbone connec-
tions. Today’s fiber optics form the technology for moving vast amounts of informa-
tion, and the routing and switching technology has quickly moved from megabit, to 
gigabit and now terabit capacities. A single switch that has a terabit capacity can move 
a lot of information. Consider what a terabit channel (actually composed of 1000 giga-
bit channels) can carry. One terabit capacity is equivalent to 300 years of daily newspa-
pers sent in one second; the ability to stream 100 thousand television channels 
simultaneously, carry 12 million telephone conversations or support 10 million Inter-
net users browsing the web. Although OC-192 is being deployed today, OC-758 and OC-
3072 are already on the horizon. 

2.3 Network Access and the Local Loop 

To the majority of users such as consumers, small business owners and public organi-
zations that access the Internet, the innovation in the backbone is of distant concern. 
Their online experience comes from the simple task of gaining access and maintaining 
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an acceptable performance of their connections to the Internet through their ISPs or 
enterprise LAN connections. For most of them, the promise of rich user-experience
with high-speed, 7 days by 24 hours (7 x 24 ) access using their LEC’s local loop has 
lagged behind the state-of-the-art technology in the core networks. This has been due 
primarily to the need to avoid incurring the high cost of upgrading the “last mile” local 
loops from existing copper, twisted-pair wiring intended for analog signals. Yet, by late 
1998, broadband-to-the-house services on wireless, DSL, and cable services began to be 
widely offered. 

Up until about 1998, consumer access to the Internet was provided by ISPs mostly 
through dial-up modem access. A modem (short for MOdulator/DEModulator) con-
verts a digital stream to an analog signal and vice-versa using the standard telephone 
lines in the local loop and the PSTN in the backbone. The first analog modems oper-
ated at only 110 baud (about ten characters per second), and the introduction of 300 
baud modems (30 characters per second) was then viewed as a dramatic advance. 
Today the consumer-market modems operate at a peak performance of 56kbps, 
although their typical operational speed is slower due to the narrow effective band 
available for the analog signal. 

Faster technologies use existing wiring in a digital mode instead of an analog mode. 
The first promising method was Basic Rate Interface (BRI) Integrated Services Digital 
Network (ISDN) that uses two standard “copper pairs” providing two 64kbs channel 
and one 16kbs signalling channel for a maximum throughput of 128kbs. This technol-
ogy has not been widely accepted due to its difficulty to provision and install, as well as 
the typical pay-per-minute charges. ISDN, much like the basic modem traffic, travels 
through the telephone system and is an integral part of the circuit architecture. The 
only physical differences are the local loop and the equipment at the central office. Due 
to the digital signalling and aggregation of multiple copper pairs, the ISDN line sup-
ports a wider range of services, transfers more data over the same LEC and IXC facili-
ties, and is subject to different FCC tariffs than the analog voice line. 

A more attractive class of service, Digital Subscriber Line (DSL), has recently emerged. 
Unlike BRI ISDN, DSL’s relation to the telephone system is only in the local loop, and it 
does not impose load upon the conventional circuits of the LEC or IXC transports. At 
the central office, a DSL Access Multiplexer (DSLAM) forwards all traffic to the appro-
priate ISP and bypasses the PSTN. DSL runs over standard Category 3 wiring, the basic 
telephone lines up to and inside the house. 

DSL utilizes the untapped bandwidth available in the telephone wiring of the local 
loop. Audio voice traffic requires only a very narrow band (4k Hz) leaving ample fre-
quency for data (typically 100k Hz). Thus POTS voice and the DSL data can move 
simultaneously over the same wires without interference. The frequencies are sepa-
rated at both ends of the local loop with splitters or DSL modems, as shown in 
Figure 2-5.
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There are several variations on the basic DSL service such as the Asymmetrical DSL 
(ADSL), ADSL Lite, High bit rate DSL (HDSL), Consumer DSL (CDSL), and Very high 
bit rate DSL (VDSL). These vary in basic service cost and speeds. DSL is very sensitive 
to the length of the wires connecting the Central Office DSLAM and the DSL modems 
at home. The actual rate obtained depends on the class of service and the distance. A 
typical rate is 1.5 Mbps downstream and 512Kbps upstream. For a full ADSL, speeds 
can be as high as 8 Mbps downstream and 1.5 Mbps upstream. Unlike cable which con-
nects many users in the vicinity on a single shared segment of the cable, DSL provides 
dedicated access. 

Figure 2-5: Internet and POTS with Digital Subscriber Loop 

The same notion of piggy-backing data over a medium carrying a signal for another 
application is used with television coaxial cable. The main difference is that cable was 
designed as a simplex broadcast medium while telephones were designed as separate 
full-duplex circuits. With cable, the local-loop is one shared segment (basically a LAN) 
that services a small neighborhood (as shown in Figure 2-6). The cable segment is ter-
minated at the SOHO end by a splitter and at the cable office with a combiner that 
merges the TV RF signal with the data signal from the Internet. 

2.4 World-Wide Web 

Before 1989, the non-commercial Internet that encompassed most universities and 
research labs was the clubhouse of “techies” and academics. It was a simple but elegant 
world of UNIX programming; information from other hosts was accessed through 
command-line networking; each user knew all the wire-protocols and commands 
needed to access the information on other machines using command shells for appli-
cations such as TELNET, FTP, network news, and email. Commercial networked sys-
tems were being deployed, but these were mostly large enterprise database solutions 
accessing large computer mainframes deployed outside the labs and campuses. 
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Figure 2-6: Internet and Television access over Cable 

Even so, much activity centered around posting large collections of information online 
(see Figure 2-7). Network news was a highly popular means of publicly exchanging 
information; Gopher, the precursor to WWW was quickly gaining university and gov-
ernment support for distributing information; Veronica and Jughead, served as the 
Gopher search supports; Archie (derived from the word archive) was an effort to 
archive the content of FTP sites using several Archie servers; the Wide-Area Informa-
tion Server (WAIS) offered detailed document indices allowing keyword searches 
through the archived documents. Gopher was a hierarchical menu-based system con-
sisting of thousands of Gopher servers; it demonstrated the model for what the WWW 
would later generalize and improve upon. Archie was the model for how modern 
search engines and robots on the Web collect information, and WAIS and Veronica 
were the models for how they can be searched. 

In the mid 1980’s, a scientist in a wide range of disciplines began to collaborate over the 
Internet and to exchange information and access networked resources in geographi-
cally disparate locations. To a non-computer scientist or an engineer this was both an 
asset and a limitation. It was an asset because scientist in different continents could 
share information easily and quickly; a limitation because everyone needed to learn 
how to program and understand low-level networking. 

As with most great innovations, the time was “right” to address this problem by com-
bining several technologies: the Internet, the client-server model, hypertext authoring, 
multimedia mail specification, and scheme of universal resource addressing. Formerly 
intimidating technologies suddenly became simple and widely accessible. Tim Bern-
ers-Lee put these elements together in 1989 at the European laboratory for Particle 
Physics (CERN) creating the basic architecture we now call the World Wide Web 
(WWW). At that time, email was taking on additional media capabilities through the 
support of Multipurpose Internet Mail Extensions (MIME) for description of 
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Figure 2-7: On the Road to the World-Wide Web 

attributes of the content in SMTP, as well as encapsulation of multibody, multimedia 
content. At the same time, a hypertext technology was being standardized around 
SGML. Tim merged the two into a new protocol called the Hypertext Transfer Protocol 
(HTTP) that utilized MIME and a newly designed document type definition (DTD) of 
SGML called Hypertext Markup Language (HTML). These innovations were used to 
create the web as a collection of HTTP servers that individually formed portals into the 
local servers’ information bases. Almost immediately, the physicists at CERN could 
offer their multimedia information without requiring the direct use of FTP or TELNET. 

With the HTTP servers, the burden of the ease-of-access was shifted to the software 
clients accessing the web. Initially simple text-based clients were created to resolve the 
new Universal Resource Locators (URLs), retrieve the resource, and either store it 
locally or render it using a collection of existing applications. Almost immediately, the 
notion of a browser was formed. A browser was to be an GUI application that could 
render most of the standard multimedia formats: text, image, and sound. The browser 
would abstract even the higher level client-server details of the WWW from the user 
and offer a simple visual window based point-and-click interface to the information on 
the web. 

Although Tim’s WWW foundation was the single most important enabling factor for 
the industry, the catalyst that ignited the popularity of WWW happened at the 
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National Center for Supercomputing Applications (NCSA) at the University of Illinois. 
There, graduate students developed a graphical browser called Mosaic. Mosaic was a 
government sponsored project to create a standards-based browser for the WWW. 
One of those students was Mark Andreessen, who directed the Mosaic team and later 
co-founded Netscape Communications Inc. Mosaic demonstrated the potential of the 
WWW and helped launch the wildly popular Internet we know today. 

Figure 2-8: WWW Connectivity 

Around that time, work resumed on extending the role of the servers, which then 
offered primarily static information stored on local disks. The first step was develop-
ment of the Common-Gateway Interface (CGI) allowing HTTP requests to invoke 
external programs. These programs could deliver individualized content through 
interpretive shell scripts, Perl or TCL language programs. Currently, CGI programs are 
being replaced by Java servelets or server-side scripting languages such as Personal 
Home Page (PHP) and JavaScript. These are designed to dynamically generated pages. 
PHP is a particularly elegant solution in the form of a scripted language embedded in 
HTML and executed by the server as the HTML is relayed to the browser. PHP’s stron-
gest value is generation of database-enabled dynamic web pages, a role that it achieves 
easily and quickly through activates of diverse databases. This leverages vast informa-
tion assets stored in dBase, FilePro, Informix, InterBase, mSQL, Oracle, Sybase, UNIX 
dbm and other repositories. It also supports interfaces to other services using proto-
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cols such as IMAP, SNMP, NNTP, POP3 and HTTP In general, server-side scripting lan-
guages have changed the nature of the web; what used to be a domain of mostly static 
pages is now predominantly the domain of up-to-date, dynamic pages that integrate 
multiple sources and formats. 

The original deployment of CGI led to the more general notion of generality and exten-
sibility of the browsers themselves, leading to the notion of browser plug-ins. Third 
party developers crafted browser-oriented services delivering complex information 
through a collage of content-oriented formats including device independent Portable 
Document Format (PDF), macromedia, and Virtual Reality Markup Language (VRML). 
This soon transformed into a general notion of dynamically varying presentations 
through browser-resident programs, automatically downloaded through new scripting 
languages such as JavaScript. The unprecedented levels of dynamic interactions drove 
the browser from its stateless situation, and arrived at persistent browser-specific
information.

To create scalable browsers with stable information and yet preserve subscriber pri-
vacy, the notion of cookies was developed. In computer jargon, a cookie encapsulates 
arbitrary name/value pairs. Servers can create cookies, and browsers selectively store 
such cookies locally upon receipt. The browsers return the right cookie on subsequent 
visits. This way a service offered via the server can store the state in the client (see Sec-
tion 6.7.1). 

Today, the notion of rendering HTML is being generalized to multiple translations per-
formed by both the server and the browsers with HTML serving a very narrow function 
as the final presentation format. This involves information represented in the Extensi-
ble Markup Language (XML) suitably transformed to HTML according to rules 
described with extensible Style sheet Language (XSL). The browser presents the 
HTML through locally-stored presentation styles described by Cascading Style Sheets 
(CSS).

The proliferating WWW technologies hastened ongoing developments centered 
around security and privacy. Almost immediately, HTTP could be made to communi-
cate authentication and access control attributes that the servers verified and imple-
mented. This initiated a shift of the public WWW into subscription-based private 
subgroups with restriction of information to authorized users. To ensure information 
privacy, public-key encryption technology was incorporated into the client and servers 
thereby providing cryptographically-secured data streams, known as crypto-tunnels,
between the servers and the browsers. Strong market-driven concerns for interopera-
bility – the choice to use any browser or server – impelled the universal acceptance of 
Secure Socket Layer (SSL) technology which is a de facto standard of WWW privacy 

The web servers are no longer the sole sources of Web information. Proxies, which sim-
ply put, are HTTP relays with value-added functions, quickly became an integral part 
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of the Web. Proxies supplement many server roles, while also adapting to many net-
work configurations. One role is that of security for enterprises, whereby the proxies 
interoperate with corporate firewalls to enable data tunnels between internal 
machines that may safely contact external web servers. All browsers today allow traffic 
to be “proxied” through designation of the hostname and port that provide proxy ser-
vices.

Proxies also provide scalability, the ability to support ever increasing loads. Caching 
proxies can retain content for subsequent replay. They also store content closer to the 
consumers. Such techniques are one remedy for the sluggishness typical in overloaded 
networks, and also seen in servers jammed with growing demands for content. The 
problem is a fundamental one; as we describe in Section 4.3 the classical client-server
architecture creates “hot spots” and does not scale to large sizes; nor do the obvious 
variations on client-server. Reducing the amount of traffic that terminates at the serv-
ers is thus a key role of proxies. Specialized caching proxies retain copies of recently 
accessed information, in anticipation of further requests for the same content. Many 
large ISPs support their subscribers through a network of caching proxies, and this 
decreases request traffic going over the backbone networks. It also reduces bottlenecks 
at their peering routers caused by redundant web traffic. A client can obtain the bene-
fits of caching proxies in several ways, for example by configuration of the web browser 
to send all requests to the caching proxy. 

A more recent extension to the simple notion of WWW servers is the definition of por-
tals. A portal is a WWW “super” site that offers a variety of online services including 
Web searching, news, weather, stock information, shopping, email, chat rooms and 
various directories such as white and yellow pages. The portal can provide a personal-
ized user experience, one that reflects the usage patterns or explicit preferences of a 
specific browser. This happens without identification of the user, by merely tagging the 

browser with a unique but anonymous cookie1. Advertisements became the first, and 
for most the only, source of revenue on the Internet. This requires that users visit the 
site that supports the advertisement. The notion of proxies provides this point of con-
tact, and the portal model supports this combination of the users’ interest in personal-
ized views, plus the providers’ need to earn revenue through advertising. Some of the 
more prominent portals are Yahoo, AOL, Lycos, Infoseek, and Altavista. 

1. The server-supplied and globally unique “tag” does not demand a description of the subscriber’s per-
sonal identity. However, since the portal customizes the user experience by acquiring a description of the 
user actions, it is possible the description could also identify the specific user. 
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2.5 Java Language 

The Java Language is without doubt one of the most important and one of the most 
successful programming languages used by network related applications and services. 
It combines a powerful yet simple object model, plus a Java Virtual Machine that 
allows “write once, run everywhere”. Much of this success is related to its influence on 
the Internet. It is instrumental in our discussion of IP service Platforms to take a closer 
look at the history of the Java language. 

2.5.1 Green Project 

In 1990 Patrick Naughton, a Sun software engineer, wrote a memo to the CEO of Sun 
Microsystems detailing the problems their software division faced coming from the 
huge assortment of application programming interfaces (APIs) which Sun supported. 
As a response, Sun's management commissioned Bill Joy, Andy Bechtolsheim, Wayne 
Rosing, Mike Sheridan, James Gosling and Patrick Naughton to form a research group 
to explore opportunities in the consumer electronics market. 

The team, codenamed Green, set for themselves the goal of creating a single operating 
environment with support for both processor and the software to run upon it. This 
environment was to be used by all consumer electronic devices, from computers and 
video game machines all the way down to remote controls and VCRs. Their vision was 
to enable interactivity between all such devices, as well as to speed up development 
and reduce the cost of implementing new features through the use of a single, small 
core operating environment. 

In contrast to the workstation products, top priorities in the consumer marketplace 
are low-cost, bug-free and relatively simple, easy-to-use products. To compete in the 
consumer electronics market, companies treat underlying technologies, such as CPUs, 
as commodities that can be swapped for lower-cost alternatives. To accommodate the 
consumer market's demand for CPU flexibility, the Green team began extending the 
C++ compiler. Eventually, however, they realized that even with lots of extras, C++ 
would not suffice. After much research and testing, the result was a simple object-ori-
ented programming language named Oak. The name came to Gosling when, while cre-
ating a directory for the new language, he glanced out his window, and spotted a tree - 
an oak - although other stories abound. 

In a very short time, the Green project built an operating system (GreenOS), a language 
(Oak), a graphical toolkit, an interface, and a new hardware platform with three cus-
tom chips. By the fall of 1992 the Green project engineers developed a small hand-held
device which featured an easy-to-use, graphic-intensive and appealing interface called 
“*7”. The user's guide and helper for this device was an animated figure named Duke, 
who later became Java's official mascot. 
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The product was demonstrated around Sun and impressed important people like Scott 
McNealy and Bill Joy, but the next step was uncertain. The fledgling Oak had yet to 
develop the roots that now support substantial portions of the Internet. 

2.5.2 First Person Inc. 

In early 1993, Sun incorporated the Green project into First Person Inc., a fully owned 
subsidiary, and the company began searching for a market for its unique product. After 
learning about Time Warner’s RFP for its interactive cable-TV trial in Orlando, Florida, 
First Person focused on the interactive television market, in particular on the set-top
box operating-system market, and placed a bid with Time-Warner. Despite having the 
widely-perceived best technology, Sun did not win the bid. 

First Person kept trying to pursue set-top boxes until early 1994, when it concluded 
that the market wasn’t ready. After deals with companies such as 3DO and Time-
Warner fell through in the interactive television area, the outlook for the fledgling 
company seemed bleak. Alternative First Person business plans centered around a CD-
ROM/online multimedia platform based on Oak, and received very mixed reviews from 
Sun executives. Soon after that, First Person stopped pursuing the set-top box business 
and dissolved. Sun Interactive was created. Half of the FirstPerson’s employees joined 
this venture with its focus on digital video data servers. 

In summer 1994, a few people still pursuing the Oak technology joined the “LiveOak” 
team, established by Bill Joy to develop a big small operating system. 

In the meantime, the National Center for Supercomputing Applications (NCSA) 
released Mosaic, an application which allowed users to easily and graphically access 
mostly text-based Internet. Within a year, this visually-based, readily accessible net-
work of Internet sites known as the World Wide Web had grown from a mere research 
project into a revolutionary medium to transmit data. The number of web-sites acces-
sible by a web-browser such as Mosaic was growing at a phenomenal rate. 

2.5.3 HotJava and the “tumbling” Duke 

By mid-1994, the World Wide Web was big. The LiteOak team realized that they could 
build, in their own words “a really cool browser”, one that is architecturally neutral, 
real-time, reliable and secure. This resolved issues that were not “show stoppers” in the 
workstation world but were emerging as the essential challenges to an open Internet 
world. By early fall, Jonathon Payne and Naughton finished writing “WebRunner,” a 
Mosaic-like browser later renamed “HotJava”. At the same time Arthur Van Hoff 
implemented Java compiler in Java.

In September of 1994, the WebRunner browser was first demonstrated to SunLabs 
director Bert Sutherland and Eric Schmidt, Sun’s chief technology officer (CTO). In an 
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impressive demo, WebRunner showed off LiteOak language in a new light. In a most 
unusual move, the company decided to give the source for the Oak language away over 
the Internet. 

Sun renamed the language to Java. Although Java could produce stand-alone applica-
tions, it was its ability to be transmitted chunks of Java code (applets) and run it over 
the Internet that brought it to the spotlight. Sun formally announced Java and HotJava 
at SunWorld '95. 

The final piece to the puzzle was when Sun produced its HotJava Web browser and 
made license agreement with Netscape, which enabled the Netscape browser to exe-
cute these new Java applets as well. 

2.5.4 JavaSoft 

In January of 1996, Sun founded JavaSoft, the company that oversees development of 
the Java language. A few months later JavaSoft released the Java Development Kit 
(JDK) version 1.0. A number of companies followed with integration announcements 
that leverage this enabling technology: 

• Oracle announced its WebSystem suite of WWW software which includes a Java-
compatible browser 

Sun, Netscape and Silicon Graphics announce new software alliance to develop 
Internet interactivity tools based on the Java technologies 

Borland, Mitsubishi Electronics, Sybase and Symantec announced plans to 
license Java 

• IBM and Adobe announced a licensing agreement with Sun for use of Java 

• Lotus Development Corp., Intuit Inc., Borland International Inc., Macromedia 
Inc.,and Spyglass Inc. announced plans to license Java 

•

•

On December 7, 1995 during announcement of suite of new Internet products, 
Microsoft announced plans to license the Java technologies. 

The rest, as we say, is history ... 

2.6 IP Version 6 

For several decades now, IP version 4 (IPv4) has been – and continues to be – the stan-
dard for the Internet. Over the last decade, however, key problems surfaced, stemming 
from limitations in the IPv4 protocol. Solutions to the problems presently come in the 
form of “workarounds”. Thus, VPN technology and public key infrastructure resolve 
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many challenges of security and privacy. The issues of a small IPv4 address space is 
resolved largely through network address translation (NAT). Tagged switching reme-
dies many routing complexity issues. 

Predicting these problems, in the late 1980’s IETF started to consider the next genera-
tion IP (IPng) that would overcome IPv4’s shortcomings and guarantee IP’s usefulness 
in the future. From a number of proposals and much debate about the details, IPng 
was drafted and the IPng proposal was recommended by the IPng Area Directors of the 
Internet Engineering Task Force at a Toronto IETF meeting on July, 1994 in RFC 1752. 
The recommendation was approved by the Internet Engineering Steering Group and 
made a Proposed Standard in November of that year. The formal name of the IPng pro-
tocol is IP version 6 (IPv6). The core set of IPv6 protocols were made an IETF Proposed 
Standard a year later in September 1995. 

In general, IPv6 addresses the Internet scaling problem, provides a flexible transition 
mechanism for the current Internet, and supports the needs of new markets such as 
those needed by nomadic personal computing devices, networked entertainment, and 
device control. IPv6 provides a platform for new Internet functionality including sup-
port for real-time flows, provider selection, host mobility, end-to-end security, auto-
configuration, and auto-reconfiguration.

IPv6 supports large hierarchical addresses that will allow the Internet to continue to 
grow and provide new routing capabilities not built into IPv4. It has anycast addresses,
which can be used for policy route selection, and has scoped multicast addresses that 
provide improved scalability over IPv4 multicast. It also has local use address mecha-
nisms that enable “plug and play” installation. The address structure of IPv6 can also 
carry the addresses of other Internet protocol suites. Space was allocated for IPX and 
NSAP addresses, and this facilitates migration of these Internet protocols to IPv6. 

Most importantly, IPv6 does all this in an evolutionary way that builds on IPv4, instead 
of the complete redesign suggested by some of the early contributors. Ease of transi-
tion was an essential point in the design of IPv6, not a mere add-on. IPv6 is designed to 
interoperate with IPv4. Specific mechanisms (embedded IPv4 addresses, pseudo-
checksum rules etc.) were built into IPv6 to support transition and compatibility with 
IPv4. Thus, IPv6 permits a gradual and step-by-step deployment with a minimum of 
dependencies. It can be installed as a normal software upgrade in Internet devices and 
is interoperable with the current IPv4. Its deployment strategy is designed to avoid 
“flag days” or other dependencies. IPv6 also runs efficiently on high performance net-
works such as Gigabit Ethernet, OC-12, and ATM. At the same time it is efficient for 
low bandwidth networks. Functions that work well in IPv4 were kept in IPv6, and the 
ineffective or unused functions have been removed. The changes from IPv4 to IPv6 fall 
primarily into the following categories: 

Expanded Routing and Addressing Capabilities 
IPv6 increases the IP address size from 32 bits to 128 bits, to support more 
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levels of addressing hierarchy and a much greater number of addressable 
nodes, plus simpler auto-configuration of address spaces. The scalability of 
multicast routing is improved by adding a “scope” field to multicast 
addresses.

The longer IPv6 addresses identify interfaces; both as individual interfaces, 
and also as sets of interfaces. Addresses of all types are assigned to inter-
faces, not nodes. Since each interface belongs to a single node, any of that 
node’s interfaces’ unicast addresses may be used as an identifier for the 
node. A single interface may be assigned multiple IPv6 addresses of any 
type.
There are three types of IPv6 addresses: unicast, anycast, and multicast. 
Unicast addresses identify a single interface. Anycast addresses identify a 
set of interfaces such that a packet sent to a anycast address will be deliv-
ered to one member of the set. Multicast addresses identify a group of 
interfaces, such that a packet sent to a multicast address is delivered to all 
of the interfaces in the group. There are no broadcast addresses in IPv6, 
their function being superseded by multicast addresses. 

A new address type of is defined to identify sets of nodes. A packet sent to 
an anycast address is delivered to one of the nodes. The use of anycast 
addresses in the IPv6 source route allows nodes to control the path over 
which their traffic flows. 

Header Format Simplification 

Anycast Address 

Some IPv4 header fields have been dropped or made optional, to reduce 
the common-case processing cost of packet handling and to keep the 
bandwidth cost of the IPv6 header as low as possible despite the increased 
size of the addresses. Although the IPv6 addresses are four times longer 
than the IPv4 addresses, the IPv6 header is only twice the size of the IPv4 
header.

Improved Support for Options 
Changes in the way IP header options are encoded allow for more efficient 
forwarding, less stringent limits on the length of options, and greater flexi-
bility for introducing new options in the future. 

A new capability is added to enable the labeling of packets belonging to 
particular traffic “flows” for which the sender requests special handling, 
such as non-default quality of service or “real- time” service. 

IPv6 includes the definition of extensions which provide support for 
authentication, data integrity, and confidentiality. This is included as a 
basic element of IPv6 and will be included in all implementations. 

Quality-of-Service Capabilities 

Authentication and Privacy Capabilities 
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The current Internet has a number of security problems and lacks effective 
privacy and authentication mechanisms below the application layer. IPv6 
remedies these shortcomings by having two integrated options that pro-
vide security services. These two options may be used singly or together to 
provide differing levels of security to different users. 

The first mechanism, called the IPv6 Authentication Header, is an exten-
sion header which provides authentication and integrity (without confi-
dentiality) to IPv6 datagrams. While the extension is algorithm-
independent and will support many different authentication techniques, 
the use of keyed MD5 is proposed to help ensure interoperability within the 

worldwide Internet. This can be used to eliminate a significant class of net-
work attacks, including host masquerading attacks. The use of the IPv6 
Authentication Header is particularly important when source routing is 
used with IPv6 because of the known risks in IP source routing. Its place-
ment at the Internet layer can help provide host origin authentication to 
those upper layer protocols and services that currently lack meaningful 
protections. This mechanism should be exportable by vendors in the 
United States and other countries with similar export restrictions because 
it only provides authentication and integrity, and specifically does not pro-
vide confidentiality. The exportable IPv6 Authentication Header encour-
ages its widespread deployment and use. 

The second security extension header provided with IPv6 is the IPv6 
Encapsulating Security Header. This structure provides integrity and confi-
dentiality to IPv6 datagrams, It is simpler than some similar security pro-
tocols (e.g., SP3D, ISO NLSP) but remains flexible and algorithm-
independent. To achieve interoperability within the global Internet, the use 
of DES CBC is being used as the standard algorithm for use with the IPv6 
Encapsulating Security Header. The IPv6 protocol consists of two parts, 
the basic IPv6 header and IPv6 extension headers. 

In summary it is appropriate to discuss IPv6 in relation to the network middleware. 
IPv6 is addressing all the right technical issues and its early deployment would help 
solve the related problems plaguing the Internet and aid in the problems targeted by 
the IP service platforms. Unfortunately, the industry is as yet not pursuing a wide move 
to IPv6. This is mainly due to the large investment in IPv4 equipment and software, the 
continued economic benefits in supporting IPv4, and partly due to the ability to adopt 
IPv4. Somehow, IPv4 remains sufficient to function without requiring the move to 
IPv6. The move to IPv6 is, however, inevitable in the absence of new technologies that 
make it obsolete before its wide deployment. 
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2.7 IPSec: Internet Protocol Security 

With IPv4’s lack of security, and with the preparation for IPv6, the Internet Protocol 
Security (IPSec) has emerged as a standard for offering interoperable network encryp-
tion. IPSec is a set of guidelines developed by IETF as described in RFC2401 for 
enabling secure communication over insecure networks. The standard secures IP 
transport by offering service for data encryption, end point authentication, data integ-
rity validation, and prevention against unauthorized retransmission. While IPSec is 
optional for use with IPv4, it will be required for IPv6. The source code is freely avail-
able and it is not subject to U.S. or any other nation’s export restrictions. 

IPSec enables secure communication-based activities on an insecure network. It pro-
vides a standard yet extensible “Security Architecture for IP” as described in RFC2401 
and subsequent standards. Summarized briefly, the protocol secures IP transport 
through authentication, encapsulation and tunneling. The specific secure services are 
defined by Security Associations, or SAs. IPSec maintains a Security Policy Database 
(SPD) that defines protected traffic, protection methods, and sharing of these meth-
ods. The SPD may specify multiple levels of security as well as the granularity of traffic 
that receives a specific policy. Central features include key exchange (IKE, for example) 
and transport formats. The protocol allows both an authentication header (AH) and 
an encapsulated security payload (ESP). 

IPSec operates between the internet layer (i.e., IP) and the transport layers (i.e., TCP or 
UDP) on a compliant host. IPSec works primarily in two ways. The first method is the 
transport mode (as shown in Figure 2-9) for communicating between two IPSec hosts. 
Here, the IPSec layer protects the application and TCP/UDP content. 

Figure 2-9: IPSec Transport Mode 

The second method is the tunnel mode shown in Figure 2-10. This method is typical of 
corporate VPNs, over which all traffic outgoing from the corporate edge is encrypted 
and tunnelled to the destination (protected) network The protection in applied by a 
security gateway that encapsulates the entire IP packet and forwards it over the public 
network to the destination security gateway, which strips away the protection before 
relaying the packet to the receiving host. 
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Figure 2-10: IPSec Tunnel Mode 

To offer a complete security solution of IP, IPSec combines authentication with confi-
dentiality. The protocol establishes the identity of hosts and gateways through multi-
ple authentication mechanisms, including the Public Key Infrastructure (PKI) as 
defined by the standard X.509 v3. Automated key management, such as the Internet 
Key Exchange (IKE) may conveniently leverage the PKI. Once authenticated, the proto-
col negotiates appropriate security associations (SA) to ensure tamper-proof and con-
fidential communication. The Security Associations define the specific secure services. 
IPSec also addresses the issue of non-standard security frameworks by permitting pri-
vate encryption algorithms and consequently cliques within the private algorithm. 

IPSec policies define the acceptable methods for key exchange, as well as subsequent 
security services. One policy issue is the key-exchange method, also know as Phase I. 
The most protective method is main-mode key exchange. Main-mode key uses six 
messages, and both protects the peer’s identities and supports the negotiation of 
options. The negotiation can be made non-repudiable by means of public keys in the 
challenge-phase of the protocol [Doraswamy1999]. Alternatively, the number of mes-
sage exchanges can be cut in half if the policy permits aggressive-mode key exchange. 
This is useful when the protection suites are known in advance. 

The security services are defined in Phase II of an IPSec session setup. These determine 
the granularity, security attributes, and actions for each data flow. Both kinds of policy 
can be defined for every pair of entities. RFC2407 defines Domain of Interpretation 
(DOI), stating how the SAs are negotiated. 

IPSec is not a panacea for security, despite its many potential advantages. Issues 
include the definition and management of the Security Policy Database (SPD), as well 
as transparency to other protocols. Faulty assumptions about key management can 



IPSEC: INTERNET PROTOCOL SECURITY 55

weaken the security. These key-management issues are important to the overall suc-
cess of IPSec deployment. The cryptographic security described by an X.509 v3 certifi-
cate assumes that appropriate safeguards protect the private keys. Very serious 
security breaches could occur if private keys were improperly distributed. Compliance 
with correct usage policies is one way to retain the benefits of the underlying technol-
ogy, and the networking middleware can help ensure this compliance. For example, the 
networking middleware can provide certified key-management services that a secu-
rity-naive use may depend upon. 

A second area of concern is interoperability with existing protocols. The IPSec proto-
col is only transparent on an end-to-end basis, and even then it introduces data 
latency, or delay. Standard network protocols may not work because of these changes. 
Three types of protocols may experience a “meltdown effect for end users” 
[Kaufman99]. These are externally-bound protocols (HTTP, SMTP), internally-active
protocols (SNMP, RFC1537), and latency-intolerant protocols (VoIP). In general, a pro-
tocol that requires data “in the clear” may be adversely affected. An infrastructure plat-
form should retain the functionality of the existing protocols, while including the 
security protections of IPSec. 

To summarize IPSec, its advantages include: 

• IP packet based authentication of source and destination as a simplex (unidirec-
tional) flow 

• Resistance to tampering, such as the insertion of extra packets into traffic, or 
modification of in-transit packets. This is detected and prevented on the IP layer. 
It impedes “cyberattacks” such as spoofing, flooding, or denial-of-service. For 
example, an attacker cannot insert a reset into the TCP stream by setting the 
TCP RST flag 

• Connection-less IP packet integrity. Each packet is endorsed with an Integrity 
Check Value, thus authenticating the content as non-tampered

• Optional IP packet based confidentiality (encryption) when enabled packets are 
encrypted independently. This independence is important because the correct-
ness of an IP connection is unaffected by out-of-sequence receipt at the end 
point. It also provides confidentiality for both connection oriented and connec-
tion-less protocols 

• Protection against repays due partial sequence integrity 

• Partial traffic flow confidentiality in tunnel mode. The address of the originator 
and final destination are hidden inside the inner encrypted IP header. The 
address of the security gateway is still exposed, as this value is needed by the IP 
routing network 
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Networking infrastructure can leverage certain advantages with particular strength, 
including:

• The Security Association (SA) is based upon user authentication at the IP level. 
The authenticated user is identified by the security provider index (SPI) inserted 
in the IP packet. This provides a significant advantage over the “traditional” use 
of the IP address and port as a client identifier 

Consequently,

• It resists forgery 

• It supports mobility, as one user may use multiple source IP addresses, and these 
can change dynamically 

There are also disadvantages, including: 

• To enforce access policy, IPSec authentication security option must be enabled 

• There is a cost in bandwidth, as well as a computational cost in establishing the 
sessions

Much like IPv6, IPSec is quickly becoming the solution for the lack of privacy and data 
integrity of IP. Unlike IPv6, however, IPSec is already in general use on the Internet, and 
many vendors already have IPSec incorporated in their products. 

2.8 Common Object Request Broker Architecture 

Today’s enterprise and carrier software system are complex, heterogeneous, distrib-
uted systems of communicating components. In many cases, these components do not 
interoperate effectively given that their integration consists of ad hoc or proprietary 
interfaces. This results in high maintenance costs and creates limited ability to evolve 
with new technology. It also results in redundant data, multiple conversions of data 
and ad hoc transfers, as well as redundant software functionality. Ultimately, this leads 
to an unnecessary increase in the overall system complexity. 

It is for these reasons that an infrastructure called the Common Object Request Broker 
Architecture (CORBA) was developed for supporting systems integration. CORBA is an 
industry standard developed by the Object Management Group (OMG), the world’s 
largest software consortium. It is also supported by X/Open, the Open Software Foun-
dation (OSF), the Common Open Software Environment (COSE), CI Labs, and X/Con-
sortium among some others. 

CORBA provides a uniform layer encapsulating other forms of distributed computing 
and integration mechanisms. As a communication infrastructure, CORBA acts as an 
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application layer interface that insulates the applications from the lower layer proto-
cols, operating system issues, the server hardware, or language details. 

CORBA is object oriented. Its encapsulation of system components presents all the 
components as objects that can be easily interconnected. This interconnection is facil-
itated by a wrapper around the component, so to speak, generated from the compo-
nent’s interface specification written in a common Interface Definition Language 
(IDL). The IDL specifications can be compiled into the language specific stubs to sup-
port components written in programming languages such as C, C++, or the Java envi-
ronment.

The actual communication between the components (i.e., objects), is facilitated by the 
Object Request Broker (ORB). An ORB transparently relays the requests between the 
objects and handles the dynamic nature of object creation and event notification. 

2.9 Virtual Private Networks 

For some time, large companies that required networked connectivity for their 
employees operated their own LANs interconnected by private leased lines. This 
offered some benefits: control over their own equipment and operations, an argument 
similar to the use of PBX vs. Centrex; and guaranteed security given that the networks 
were isolated from public networks, or if connected, were well controlled by a few well-
secured edge gateway systems. The commercialization of the Internet, which created a 
low-cost public-network for a large customer base, also highlighted some problems 
with VPNs: the cost of leasing external lines, lack of global customer reach, and the 
high cost of offering access to employees led to rethinking how to deploy and operate 
enterprise networks. The notion arose of deploying a secure and private network over a 
public network using virtual connections. 

VPNs have arisen as the solution to address the cost and security needs of enterprise 
networks. It is estimated that by year 2002, VPN business will reach $10 billion. This 
comes from the estimate that over 73% of Fortune 1000 companies will move away 
from private networks and deploy VPNs. A company that switches from leasing lines to 
a VPN solution can reduce its operational cost by 60%. VPNs offer a one-time invest-
ment in systems that enable branch offices to interconnect over public networks, while 
their employees attain remote access via low-cost ISPs. Outsourcing remote access also 
leads to greater global visibility and the easier reach by customers. Of course, this all 
occurs while corporate privacy is maintained, local resources are hidden, and corpo-
rate networked data is protected. 

Under a more detailed analysis, VPNs may provide a number of different features that 
collectively support the lower cost and high security requirements. 
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Figure 2-11: Enterprise VPN Combining Best Public and Private Networks 

• User authentication and authorization. Remote users need to authenticate and 
attain access to only authorized information 

• IP addresses and hostname protection. Local IP addresses and host names should 
be hidden and protected from inspection; NAT along with DHCP should be used 
to reduce the need for class A or B domains and a large number of dedicated IP 
addresses

• Data privacy and integrity. The flow of data between the branch office or to the 
employee should maintain privacy and integrity 

• Key and certificate management: Session keys and certificates should be cen-
trally managed 

• Multi-protocol support. general packet tunnels should allow all IP traffic to move 
between the VPN users and remote sites 

VPN management. The system components should be easily managed and moni-
tored as well as offering various levels of self-provisioning

• QoS Control. The VPN system should offer control over QoS parameters for man-
aging performance for various levels of services 

• Combined data, voice, and video. Besides data traffic, the VPN should also allow 
for secure voice and video collaborative and interactive communication as well 

• Intrusion detection and active monitoring. The overall system should be aware of 
breaches in its security and offer alerts both for external intrusion as well as 
internal compromise from employees 

• Reliability, availability, and serviceability. Above all, the systems should be reli-
able, highly available, and easily serviceable 

•
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VPNs are made up of varying collections of components and policies that collectively 
support the above features. They are usually composed of firewall, encryption, tunnel-
ing, proxy servers, authentication, access control, certificate authorities, monitoring, 
and management components. Figure 2-12 illustrates a typical VPN solution showing 
the relationship between these technologies: 

Figure 2-12: Typical VPN Solution 

Firewalls

Firewalls serve as the front edge protection for a LAN. Firewalls are usually 
placed in the main flow between the external and internal routers at the 
edge gateways; all outgoing and incoming traffic for a LAN has to pass 
through the firewall. Although some perceive the firewall as the key com-
ponent of a VPN, unless they are properly placed and combined with other 
VPN technologies and properly configured, they by themselves do not 
serve much use. Consider a firewall that protects a LAN with a mail server; 
if SMTP packets are allowed to enter and passed to an incorrectly config-
ured or buggy sendmail server, the firewall does nothing to prevent the 
server from being abused as a SPAM relay by an external attacker. There 
are many examples of buffer overflow problems in daemons running under 
root ownership that allow an attacker to trivially enter through a firewall 
and take over all the functions of a system. Nevertheless, packet filter fire-
walls and filtering routes can be a powerful tool for controlling the inflow 
and outflow of packets. Firewalls are typically controlled by packet rules 
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based on the source and destination IP addresses, ports, and protocols. 
The early firewalls were statically provisioned and an administrator had to 
manually tweak the rules to allow new services. New firewalls can be pro-
grammed dynamically through programmable interfaces based on the 
active state of services. For instance, some services such as FTP open mul-
tiple temporary TCP and UDP connections. These firewalls understand the 
semantics of the services and do not leave permanent holes open. Other 
recent features involve tying the firewall to the authentication and access 
control systems that add a user identification to the IP address, port and 
protocol.

Proxy servers 
Proxy servers are the next line of defense after firewalls. They are typically 
placed after the exterior firewall but in front of another interior firewall to 
form a transparent mediation of a specific services’ packets. This has great 
advantages as no packets enter directly in the LAN without the inspection 
of the proxy server. In some cases, the mediation can check the semantics 
of the packets at the application layer. Basically, a firewall performs coarse-
grain access control that can make decisions about the incoming packets 
based on their IP headers. Proxy servers perform fine-grain access control, 
which relies on understanding the higher-level protocols like HTTP, FTP, 
and SMTP. This is a very powerful notion that is implemented into the 
AT&T-developed GeoPlex system as one of its basic features. 

Encryption
Any hacker knows how to monitor unprotected IP packets flowing through 
a node under their control and steal FTP and TELNET user ids and pass-
words; or perhaps how to proxy flows to selectively alter the content of 
higher-level protocols; or to replicate email messages or sensitive docu-
ments.

Encryption is the process of scrambling and then descrambling informa-
tion so that when the data is not directly under your control, it is difficult if 
not impossible, to inspect in its original form. Encryption dates back at 
least to ancient Egypt, and was used for military purposes by the Roman 
empire with the famous – though simplistic by today’s standards – Ceasar 
cipher.

One problem with cryptography is that both the sending and the receiving 
parties have to share or posses some common secrets, or keys, that can 
used to lock and unlock the encryption process. Exactly what the keys are, 
how they are generated, exchanged, and used depends on the specific algo-
rithm. The welI-known algorithms are DES, 3DES, RSA, RC2 and RC4. 
Depending on where these are used systems like PGP, SSL, and IPSec utilize 
them to manage the encryption process. For instance, IPSec can be used to 
encrypt and tunnel all traffic over the public networks between the edges 
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of the LANs. Many vendors such as Cisco, Cosine Communication, and 
Cylink offer IPSec for this purpose in their equipment. 

Tunneling
Two or more LANs can be interconnected by tunnels to create private net-
works; these include Point-to-point Tunneling Protocol (PPTP), Layer 2 
Tunneling Protocol (L2TP), and IPSec. Tunnels can be set up between two 
hosts or between two tunnel servers. With a tunnel, all packets entering 
the tunnel are encapsulated with a new IP destination of the terminating 
host and sent over a single connection. In VPNs, the tunnels are then 
bracketed by crypto relays that take the encapsulated packets of the tunnel 
and encrypt the payload. 

Authentication and access control 
Entry into a secured network through RAS or over a tunnel from a public 
network is usually proceeded by an authentication phase. Authentication 
verifies the user’s identity, validates membership rights and supports the 
synchronization of session properties including encryption keys, data tun-
nels, and QoS characteristics. This phase also establishes the access rights 
and may enable access to services by reprogramming the external firewall. 
While user ID and password may seem sufficient to authenticate, this is 
the weakest and the least desirable form of authentication. Strong bilateral 
authentication is desired when the identity of both parties needs to be 
mutually verified; the user authenticates to the VPN and the VPN authenti-
cates to the user. This is typically done by certificates and a secret that only 
the user holds locked away on his or her PC or on a smart card. There are 
also more sophisticated challenge-and-response systems by which a 
pseudo-random challenge is presented – different every time – that the 
user has to answer based on some algorithm under the user's control. 

Certificate Authorities 
The use of certificates presupposes the existence of a trusted authority 
that can be used to verify the authenticity and validity of a certificate. 
Without the use of well publicized public certificate authorities, individual 
certificates are only as good as the trust in the individual people or organi-
zations that signed them. VPNs can utilize CAs to perform this service, 
especially where VPNs have to interoperate with partners and a large cus-
tomer base. 

Monitoring and management Systems 
For large VPNs, the easiest way to operate a VPN is to locate all the VPN 
equipment in a single control root and hire administrators to manually 
provision and manage its operations. In most VPNs, it is more appropriate 
to allow self-administration by managers given a well defined hierarchical 
control structure. Combined with the ability to globally monitor the usage 
and the performance of the VPNs, VPN monitoring and management sys-
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tems become an important integral component of the overall VPN. 

The benefits of VPNs are clear and well received. Unfortunately, the need for VPNs is 
much like the need for QoS. In the case of QoS, it is the realities of limited bandwidth. 
Seifert’s law of networking states that 

No one needs a QoS guarantee when they have enough bandwidth. 

Similarly, no one needs VPNs if the networks are secure and the hosts have operating 
systems that embed security features. This however, places the burden on the “dumb” 
networks and weak operations support systems (OSS) to address these issues by grow-
ing in intelligence and sophistication. As we discussed in the previous sections, IPv6 
and IPSec are addressing parts of these issues, but that still leaves the need for more 
intelligence in the networks. 

VPNs by themselves do not offer a complete solution and have their own set of prob-
lems. Without standards like IPSec and with national security export restrictions, 
deploying a proprietary security VPN solution in an international arena, as is the 
requirement for large multinational corporations, shows VPN in a greatly reduced 
effectiveness. Even if this is resolved, today’s practice of frequent acquisition of compa-
nies and corporate mergers commands Interoperability between two incompatible 
VPN technologies. This frequently causes the less expensive VPN to fold and for the 
more expensive VPN to absorb the role of the other. On the management side, VPNs 
have a potentially major drawback that arises from the loss of control; some ISPs may 
offer unreliable connectivity and inconsistent throughputs due to factors such as over-
subscribing their access networks. 

2.10 Quality of Service 

Perhaps the greatest growing pains for the Internet have centered around the issues of 
preferential service and resource allocation given limited bandwidth. The Internet pre-
decessor, Arpanet, operated on a “best-effort” packet delivery mechanism that is for 
the most part the basis of today’s Internet. Ironically, the operational and economic 
simplicity of this mechanism which has contributed to the Internet’s success is now 
hindering the wide deployment and acceptance of new services. 

Limited bandwidth and resources is a given. No matter how much the backbone is 
built out, it always seems to fill up. This causes congestion which results in delays and 
dropped datagrams. This becomes evident in very slow Web surfing; it is most evident 
in delay-sensitive applications such as IP telephony, video conferencing and multi-
player online gaming. These require isochronous delivery to obtain low-delay, low-jit-
ter reception. The transport systems are called upon to support diverse application-
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centric traffic characteristics, and yet these characteristics vary without clear defini-
tion.

In general, quality-of-service (QoS) refers to the performance characteristics of a net-
work. Packet traffic can be characterized at the routers and switches in terms of sev-
eral attributes; transmission rates, error rates, variations in delay, average delay, 
priorities, data types, etc. The deployment of QoS systems can be defined as a way of 
measuring and affecting network traffic characteristics in order to allocate network 
resources (so packets can be delivered consistently and predictably). 

One approach taken by large corporations is to utilize private data networks with 
ample bandwidth and resources to maintain low utilization. Low utilization offers 
ideal network performance for networked applications. This is called “over-engineer-
ing”. This is of course an over simplification of the problem; nevertheless, over-engi-
neering is a feasible solution if cost and global accessibility are not issues. 

Most LANs are over engineered and do not employ any QoS support. Local hosts can 
communicate over a LAN with a very high level of QoS. Industry trends indicate that 
emerging higher capacity network components are being offered at continually lower 
costs and that will continue to make over engineering of LANs a viable solution for 
QoS over LANs. Within the public Internet, experience has shown that any bandwidth 
gets saturated quickly. There, over-engineering is a less successful practice; so employ-
ing QoS becomes a viable alternative. 

The deployment of QoS deals with the management of bandwidth capacity and the 
available resources at the routers and switches. Deploying QoS systems cannot create 
more bandwidth or resources, but it can manage it intelligently, This requires a com-
plete end-to-end support from one host, through all the network nodes, to the other 
host, that spans all the network layers up to the application layer. This requirement lies 
at the complete opposite of the original “best-effort”, loosely coupled paradigm of the 
original Internet, and balances out the original notion of a dumb network with smart 
end-points. QoS techniques include traffic control policies such as bandwidth man-
agement through admission, shaping, and resource reservation. These complement the 
engineering of links and switch functionality, as well as capacity management. 

Besides over-engineering, QoS architectures are evolving around the notions of reserv-
ing resources for specific flows and prioritizing traffic into classes, both supported by 
IETF.

Resource Reservation (IntServ) 
Integrated Services (IntServ) refers to the extension of the Internet service 
model to handle packet switching protocols for transporting audio, video, 
and data traffic. Here, network resources are seen as a robust, integrated-
service communications infrastructure in which applications can reserve 
resources at different levels of service for different users 
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IntServ requires that the network elements manage some state informa-
tion for individual flows, communicate the flows’ application require-
ments, and convey QoS management information. The communication is 
done with a signalling protocol for reserving resources called the Resource 
ReSerVation Protocol (RSVP). RSVP is a control protocol that conceptually 
establishes a path for the flow and sets up a communication circuit for the 
network elements to negotiate QoS resources. This requires the deploy-
ment of a complex mechanism that diverges from the simple “best-effort”
model of IP networks and which requires major changes in the routers and 
switches; this also requires a fair amount of network middleware to sup-
port the policy management and state information 

Traffic Prioritization (DiffServ) 

Here, the notion is that applications can classify network traffic by labeling 
each packet (via the TOS octet of IPv4, or Traffic Class octet of IPv6) with a 
class of service tags; and network resources can be apportioned according 
to bandwidth policy managed by a given network. Thus the single, best-
effort delivery service, is partitioned into differentiated classes of services. 
Unlike IntServ which micromanages the network resources for each flow 
and requires signalling to every hop, DiffServ is a reservation less method
that instead macromanages the classes of services. This is similar to multi-
lane freeways with slower moving traffic in the right lane, faster moving 
traffic in the left lane, and privileged traffic in the commuter lane 

DiffServ pushes the policy management to the edge of the network where 
all policy decisions and packet tagging takes place. Policy decisions and 
their implementations are left to each individual network that the flows 
traverse. Each network core then handles only the problem of quickly for-
warding the packets based solely on the tags inserted at the ingress and 
removed at the egress of the network 

DiffServ and IntServ are complementary to each other. Each can be used indepen-
dently, or they may combine to offer end-to-end QoS. While IntServ provisions net-
work resources for each flow, DiffServ simply marks and prioritizes flows at the edges. 
Due to its increased complexity and fidelity, IntServ is more appropriate for LANs and 
corporate networks, where DiffServ, with its simplicity and ability to differentiate 
between flows of different classes, is better suited for the backbone. 

Service providers negotiate QoS performances with their customers through Service 
Level Agreements (SLA). SLAs are contracts that define the service providers’ responsi-
bilities in terms of network levels and times of availability, methods of measurement, 
as well as consequences if the service levels are not met or the defined traffic levels are 
exceeded by the customer, and the costs. 
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In DiffServ architecture, service providers can offer each customer a range of network 
services that are differentiated on the basis of performance in addition to past pricing. 
These services are monitored for fairness and in meeting the SLAs. To do this, the edge 
routers implement traffic-conditioning functions that ensure the traffic entering a 
DiffServ network conforms to Traffic Conditioning Agreements (TCA). These func-
tions perform metering, shaping, policing, and marking of the packets. 

Metering
The metering function monitors traffic pattern of each flow and checks 
this against the traffic profile. Flows that fall outside the profile are either 
re-tagged or dropped 

Marking
This function uses the performance level requested for a given packet as 
indicated by the DS field to classify and tag the packet for transmission 
over the DiffServ network 

Policing
The traffic entering the DiffServ network is classified into aggregates that 
are policed according to the TCA. This function operates at the network 
ingress and polices the aggregates 

Shaping
The relative forwarding rates of each aggregate can be adjusted so that the 
flows do not exceed the rates specified in the profiles. The shaping function 
ensures fairness between flows and guards against congestion 

All of this depends on the ability of the networks to enforce, police, and administer 
consistent policy information among the managed network elements. This requires 
protocols for distributing the policy information such as LDAC the Common Open 
Policy Service (COPS), SNMP or CLI over TELNET. It also requires policy repositories. 
One initiative for this purpose is the Directory Enabled Network (DEN). The DEN ini-
tiative is an effort to build intelligent networks and networked applications that can 
associate users and applications to services available from the network according to a 
consistent and rational set of policies. 

With RSVP playing the role of resource reservation, the Real-time Transport Protocol 
(RTP) is the Internet-standard protocol for the transport of real-time data, audio, and 
video. RTP is a transport layer protocol riding on top of the User Data Protocol (UDP) 
which includes timestamp and synchronization information in the header. Although 
RTP is a transport layer protocol, unlike TCP, it does not offer any form of reliability or 
a protocol-defined flow/congestion control. RTP’s control counterpart is the Real-
Time Control Protocol (RTCP) which is used to exchange congestion information 
between network nodes and the hosts, and synchronization. In general, RTP is a state-
less protocol and can be used over most packet networks; furthermore, most routers 
cannot distinguish RTP packets from other UDP packets. Note, that although it is 
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called a real-time protocol, no end-to-end transport or application protocol can guar-
antee real-time delivery, That can be guaranteed only by the lower layers that are 
tightly integrated and in full control of the network hardware components. 

What is driving the QoS development is the recognition of the need for bandwidth 
management and the tremendous business opportunities of turning the “best-effort”
service into differentiated services. With QoS support in place, real-time services 
including audio and video, as well as data services will be offered over the same IP net-
works in support of new consumer and business services. However, enabling this QoS 
capability requires profound changes to the network fabric. Much of this fabric 
requires the a network middleware layer as an interface between higher-level services, 
and lower-level networks. Indeed, the middleware layer decouples the “what’ of QoS 
from the “how” of QoS. 

2.1 1 IP Telephony and Voice over IP 

Interactive voice applications using IP networks have been around only since 1995. Yet 
already, this development has led to a broad range of IP telephony supporting commu-
nication between two PCs, between PCs and standard telephones, and between two 

telephones on the PSTN1 bridged by an IP backbone. Carrying voice over pure data 
networks (unlike ATM), that use best-effort delivery under limited bandwidth and with 
little to no QoS control is very hard; unless of course the speakers do not mind what is 
called “the CB-radio to the moon” quality. Using digital packet backbone for telephony 
is not the issue here, as that is already the standard in the long-distance PSTN. The 
issue is the general voice application that can support all types of integrated services 
over IP networks. Probe Research estimated that by the year 2005, global voice/fax traf-
fic over IP networks will amount to close to 90 billion minutes. 

To leverage the lower costs of IP for long distance telephony, AT&T provides a service 
called the AT&T Global Clearinghouse. This is a financial settlement system that bro-
kers the rates, billing and settlement to partners and call administration. For two ISPs 
to handle each other’s IP telephony traffic, they have to have a bilateral agreement and 
then build connections between their POPs. Currently there are thousands of interna-
tional LECs, and hundreds of IXCs, each offering different pricing. It is not possible for 
each LEC to form an agreement with all the IXCs and ISPs. The clearing house is a bro-
ker that establishes these relationships and then buys and sells the lowest-cost min-
utes to LECs. Thus, the call that leaves the LATA is dynamically routed through the 
global clearinghouse to the cheapest carrier. In many cases, the voice traffic originates 
and terminates in a LEC but may travel over private IP networks. 

1. These are commonly referred to as the Class A, B or C telephony, where Class A is the PC to PC telephony. 
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Figure 2-13: IP Telephony Components 

ISPs and telephone companies which specifically support IP telephony and offer VoIP 
services are called Internet Telephony Service Provider (ITSP). ITSPs offer application 
software for PCs to place calls as well as access to the PSTN through specialized gate-
ways that bridge the PSTN and the Internet. The current appeal of ITSPs to consumers 
is in the lower cost of placing long distance calls; this is due primarily to the ITSP’s 
ability to bypass regulatory regimes and tariff structures, such as telephone access 
charges, imposed on carriers. The appeal for ITSP is that the declining margins for 
simple Internet access offered by ISPs can now be supplemented with profitable value-
added services that leverage the best of the IN/AIN in the PSTN and the Internet. 

There is already a move to offer smart phones and next-generation cell phones that 
offer IP-based PDA functionality. Through these, the telephony experience can be dra-
matically enhanced by changing the fundamental ways that users communicate over 
telephones. However, IP telephony already is having major impact on how existing 
communication-dependent systems operate; systems like call centers and customer 
support centers. Its use is paramount to applications such as multimedia conferenc-
ing, multicast, collaborative workgroup applications and unified messaging. Estimates 
for IP voice and fax services are close to 14 billion dollars by 2005. Figure 2-13 shows a 
simplified IP telephony arrangement that can be embedded on existing infrastructure. 

IP Telephony revolves around two key, somewhat competing protocols, H.323 and SIP 

H.323
H.323 is an ITU standard for real-time multimedia communications (video 
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conferencing) for packet-based networks. It supports call setup, the com-
bined exchange of compressed audio and video with data, and interopera-
bility with non-H.323 hosts. It specifies several video codecs including 
H.261 and H.263, and audio codecs such as G.711 and G.723. A codec 
(meaning coder/decoder) is a component that converts audio, speech, or 
video from analog to digital or vice-versa

H.323 started with its first release in 1996 as a standard for visual tele-
phone systems and equipment for LANs and did not provide any QoS sup-
port. With the second release of H.323 in 1998, voice-over-IP requirements 
were addresses by offering support for communication between PC-based
phones and PSTN. Version 3 will include support for fax-over-packet net-
works, gatekeeper-to-gatekeeper communications, and fast-connection
mechanisms

H.323 encompasses a range of protocols; this includes RTP for data trans-
port, H.225 for call setup, H.245 for format negotiation, H.450 for supple-
mentary services and H.332 for panel-style conferences. H.323 itself is part 
of a H.32 x family of recommendations specified by ITU-T which include 
specification for multimedia communication services over different net-
works. This includes: 

• H.320 over ISDN 

•

•

• H.324 over PSTN 

H.323 interoperates with these other networks through the use of gate-
ways. These gateways perform any network or signalling translation 
required for interoperability 

H.321 and H.310 over Broadband ISDN (B-ISDN)

H.322 over LANs with guaranteed QoS 

SIP

The Session Initiation Protocol (SIP) is a simple, light-weight, signalling 
protocol for creating, modifying, and terminating multimedia conferences, 
IP telephony, and multimedia distribution sessions between participants. 
It communicates with either a mesh of unicast connections or via multi-
cast. It also support registration and the location of users, allowing for 
mobility and proxies 

SIP is a text-based protocol based similar to HTTP that uses MIME in the 
messages. It is the result of an IETF working group that considered various 
proposals in 1996. The group’s main objectives in developing SIP were to 
strive for simplicity, to rely on other existing IP protocols, and to integrate 
with other IP applications. 
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In summary, H.323 and SIP are competing standards that vary in many respects and do 
not necessarily address the same problem sets. Unlike H.323, SIP is highly extensible. 
H.323 is a stateful system that requires servers to keep call states for the duration of 
the call; SIP is stateless. H.323’s architecture is very monolithic based on the H.323 
family and related components; SIP is very modular. That is, while H.323 encompasses 
all aspects of the technology, SIP encompasses only a small basic set relying on other 
protocols for QoS, directory access, service discovery, and session content description. 
In general, while H.323 is highly inclusive, SIP is relatively simple, based loosely on 
HTTP, including URL addressing and relying on other IP protocols for support of the 
remaining functionality included in H.323. These differences came out of the philoso-
phies of the two groups, the ITU and the IETF that support the two standards. While 
ITU pursues a sophisticated H.323, IETF strives for the simplicity with SIPS.

2.12 Unified Messaging 

For most businesses and individuals, there are a few standard tools for distant commu-
nication. These center around the phone system, voice mail, email, and fax. The mid-
1990s brought “store and forward” messaging services such as email and voice mail. 
More recently a new breed of real-time messaging services such as instant messaging 
and alerting/notification, became available. These solutions combined the common 
communication services in a single system, known as unified messaging. 

Unified messaging creates a common repository for voice, email and fax messages, 
offers instant messaging, and provides a variety of access methods through phones, 
email clients, Web browsers and PDAs. This repository stores messages on behalf of 
users in private mailboxes that can be organized into folders and which can be further 
associated with various filters and rules. These mailboxes support the standard Inter-
net messaging protocols such as Simple Mail Transfer Protocol (SMTP), Internet Mes-
saging Access Protocol (IMAP), Post Office Protocol (POP), and Multipurpose Internet 
mail Extensions (MIME). 

Some systems allow users to check voice mail, email and faxes by dialing a single num-
ber, including a personal 1-800 number, have email read to them over the phone, and 
finally administer their messages remotely. New types of systems, better known as per-
sonal assistants, also utilize speech recognition to offer a simple voice interface to the 
user’s mailboxes. These system can also dial outgoing calls, announce callers, remem-
ber important numbers, and organize the messages through voice commands. 

Instant messaging refers to the system’s ability to notify users of messaging events 
through a number of end-user devices such as pagers, phones, email or PC-based noti-
fication clients. Users and system administrators can customize the system’s triggering 
mechanisms by adding rules. These rules, personalized for each user, understand the 
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source of the events and the delivery mechanisms. Messages can be delivered to text-
based pagers or read to the user using text-to-speech support. 

Unified messaging has a wide appeal to mobile users who spend a large part of their 
time away from their office. It also appeals to SOHO users that do not have the finan-
cial and technical means to deploy well supported multiple solution systems and 
phone-based solution. Instead these users can subscribe with unified-messaging ser-
vice providers at a low cost. 

2.13 Electronic Commerce 

Even before the Internet was commercialized in 1995, Electronic Commerce (eCom-
merce) was a major driving force for conducting business online. 

“In 1886, a telegraph operator was able to obtain a shipment of watches that 
was refused by the local jeweler. Using the telegraph, he sold all the watches to 
fellow operators and railroad employees. Within a few months, he made 
enough money to quit his job and start his own store. The young man’s name 

was Richard Sears, and his company later became Sears, Roebuck.”1

Today, many may perceive electronic commerce as simply buying and selling products 
and services over the Internet. It is more. Electronic commerce spans the full spectrum 
of online business, from the handling of purchase transactions to transferring funds. It 
deals with both revenue generation and its support. This includes the means for gener-
ating demand for goods and services, offering sales support and customer service, or 
facilitating communications between business partners. 

Early eCommerce facilitated transactions between large corporations, banks, and 
other financial institutions. It has been around for over two decades, in the form of 
Electronic data interchange (EDI) and email or FTP over value-added networks (VAN). 
VANs are private networks provisioned to support customized services such as Elec-
tronic Funds Transfer (EFT). 

The focus today, is on moving eCommerce away from VANs and towards the Internet, 
resolving the obvious limiting problems or reliability, scalability, and security. The 
Internet brings eCommerce to the consumers. In this matter, eCommerce is changing 
business in much the same way that the Web changed publishing and the dissemina-
tion of information. 

1. Obtained from the Tech Encyclopedia at http://www.techweb,com/encyclopedia. 
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The combination of the Web and the nature of the Internet is a strong motivator for 
ecommerce. Their use nicely supports the required business processes of sharing 
information with the customers, ordering goods and services, receiving payment, ful-
filling the order and managing customer relationship through services and support. 
The Web has created an unprecedented medium for businesses to bring advertising 
and marketing information to consumers. The standard protocols and data formats, 
the rich multimedia presentation and the easy programmability of GUIs supported by 
Web browsers offer the ideal platform for presenting catalogs, information, FAQs, cus-
tomer support, and technical support. The Web browser is the customer’s electronic 
portal to the online business, while the server support through CGI, servelets, Email, 
and database backends offer businesses new opportunities to serve their customers. 

This technology is removing certain physical constraints in doing business, in that 
online shops offer detailed, up-to-date catalogs and a 24 hours a day, 7 days a week 
business. This includes customer support and technical assistance. It is also bringing 
new ways of doing business. Companies such as Amazon.com act as a store front for 
publishers selling books online, although they have no physical stores. From the tech-
nology perspective three new eCommerce technologies offer the greatest changes. 
These include micropayments, software agents, and smart cards. 

Micropayments are partial transactions that allow for very small charges to be 
incurred without having to fully reconcile the transactions. This can be used for 
instance to charge for content, place calls, or use premium channel services. This 
requires some form of usage tracking that accumulates the transactions and an inte-
grated billing system as part of the system’s middleware. Software agents are programs 
that can perform acts on behalf of the users such as searching multiple catalogs to 
locate the desired product at the lowest price. Finally, smart cards are credit-card size 
plastic cards that have an embedded microprocessor and some storage capacity. These 
can hold a variety of business related information such as digital cash, user profiles, 
certificates, and purchase history, They can be used for authenticating the user to end-
devices such as ATMs, PCs or telephones, as is already done in Europe. 

The discussion on ecommerce, much like the discussion on unified messaging, is 
intended to elucidate reflection on the enabling infrastructure or lack of it. eCom-
merce and unified messaging are new classes of services that can without doubt be 
built on top of very dumb networks. But at what cost and with what lasting value? 
Doing so goes back to our discussion of building vertical smoke stacks in the Introduc-
tion. Are there any benefits to eCommerce or messaging systems running over the pub-
lic networks if the networks are made secure? Are there any benefits if many of the 
operational subsystems can interoperate and exchange information between compet-
ing service providers? 
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2.14 Summary 

The last decade of the 20th century will be described as the closing of the 1st genera-
tion of telecommunication and the beginning of the age of global communication. The 
transition will be seen as the convergence of many different technologies for support-
ing the instantaneous and high-fidelity communication by anyone, anywhere, using 
many different types of devices. The telephone itself will remain the most frequently 
used, ubiquitous device, but not without undergoing major changes in its sophistica-
tion and the offered services. In some ways, IP telephony is the “killer application” that 
is driving the convergence between the data and the switched networks. 

The technologies exists today to achieve the new age. All the pieces are in place to 
move to ultra-high speed data networks in the backbone and broadband to the homes; 
to offer a new generation of highly functional integrated devices; to offer all human 
knowledge and information online; to converge the various network services. What is 
missing is the intelligence in data networks to support this transition. 

This chapter demonstrated the most pertinent technologies and the common thread 
of either offering or requiring a common service infrastructure. Consider again the 
issues of security, quality of service, and electronic commerce. In all three, common 
problems exist and similar solutions such as the need for accounting, billing, authenti-
cation, and management emerged. It is this commonality that drives the designers and 
architects of the IP service platform; to enable a common infrastructure in the network 
to support these requirements. 



PART II IP Service 
Platform
Fundamentals

This part presents an introduction to GeoPlex – a set of requirements, a set of princi-
ples, and a set of capabilities used for the IP platform design and architecture pre-
sented in Part III. The requirements are the high-level problem specifications obtained 
from carriers, Internet Service Providers, universities, and business enterprise net-
works. The principles are the guiding axioms that were identified by the design teams 
in helping to create the system designs and the overall architecture. While there can be 
a competing set of different principles each satisfying a collection of requirements, 
designating a set of basic principles establishes a framework for the design and logi-
cally leads to the final architecture. With the design principles in place, a set of capa-
bilities is presented that support the full range of the requirements. 
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CHAPTER 3 Network-enabled and 
Online Services 

The telecommunication industry is navigating its way through a maze of technological 
crossroads that will ultimately determine what kind of networks the world will use in 
the 21st century. In this journey, the industry has already passed several essential hur-
dles.

One was the movement from pure voice over PSTN towards voice over data networks. 
It is now clear that voice and video are just another data type that can be transmitted 
through packet networks. While no one is proposing that the PSTN be retired, it is no 
longer a surprise to observe voice, video, and data running over the same high-speed
data network. Another crossroad dealt with is the protocol above the network layer 
used at the network edge. Here, the TCP/IP protocol suite has emerged as a winner 
over other protocols to offer end-to-end convergence of communication and comput-
ing.

One challenge that still remains is the definition of the exact nature of the network 
middleware for the development and delivery of network-enabled and online services 
and its architecture. Service providers should be able to create a new service leveraging 
both their own resources and the features offered by the network middleware. Many 
basic service functions that have classically been built as a vertical solution in a stand-
alone and non-interoperable product should be outsourced to the network. To this 
end, there are great benefits in standardizing some of these common service functions 
and building them into the network middleware. 

To pass this juncture, the approach taken by network providers and service operators 
has been to: 

1. Differentiate between the service functions that belong to the applications, the net-
work middleware, and the network infrastructure 
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2. Deploy mandatory and guaranteed network services, such as active user and service
directory as opposed to voluntary services offered by users or corporations, such as
hosting that the network must guarantee, and 

3. Develop a standard and open service supporting network middleware that imple-
ments the set of agreed upon capabilities and exports appropriate interfaces on 
which services can be developed, deployed, and managed 

In this chapter we take a closer look at these three issues dealing with development 
and delivery of network-enabled and online services. We describe the problems, the 
opportunities for a new solution, and the benefits of the solution to the users, the cor-
porations, the information content and service providers, and the network operators. 

As we indicated in the Introduction, there is a broader issue here dealing with how and 
where such a solution should be deployed. Although the incentive comes from the 
Internet, the focus is not on the Internet itself. The Internet is driven by free market 
forces that do not react well to the imposition of new and untried standards. This is a 
self-regulating protection mechanism that partially led to its current success. The 
focus should rightfully be on the restructuring of privately owned and managed service 
network such as they exist in carrier networks, university campuses, enterprise net-
works, ISPs and ASPs. These network islands are the hot spots where most of the Inter-
net activity originates or terminates. These are the places that can be reengineered or 
that can be constructed in a green-field environment to comply with service platform 
standards. They are also the places that can demonstrate to the rest of the Internet the 
successes or failures of deploying the proposed solution. 

Before proceeding, we clarify some common terms used throughout this text. For 
instance, we speak of services and platforms which are heavily overloaded terms in the 
industry. Unless we precisely define these terms confusion may result in applying the 
terms outside their intended context. The most important terms are application, ser-
vice, and offer: 

Application
An application is any computer tool and its supporting resources, data, 
and interfaces employed by users. Here we are concerned mainly with net-
work-enabled applications. These can be either client tools or servers. An 
email client, a web browser, or a document server are examples of network-
enabled applications. 

Service
This refers to application services as opposed to network fabric services 
such as QoS or VPNs. A service is any bundled collection of applications
that comprises a specific policy and that can be accessed by a single IP 
address, port number, and protocol; a service is a registered server applica-
tion(s). Some examples of services include chat services, web hosting ser-
vices, and electronic commerce services. 
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Offer
An offer is a service provided by ISPs and carriers consisting of a complete 
set of business services. This includes the supporting customer care and 
billing services. Examples include hosting and IP telephony offers. 

The following terms refer to the implementation of services and offer: 

Interface
An interface is a connection and interaction between hardware, software 
and users. Different types of interfaces exist between different kinds of 
components comprising the user interface between users and computers, 
application programming interfaces ( APIs) between various software lay-
ers but primarily between applications and the underlying system, and 
communication interfaces between distributed systems dictated by spe-
cific protocols. 

Protocol
A protocol comprises the rules for inter-component communication. It 
includes a syntax to format data, a semantics on coordination and error 
handling, as well as timing for control of sequence and speeds. Protocols 
operate over many layers. For example, IP is a link-layer communication 
protocol. NNTP, SMTP, CIFS, and HTTP are application-layer protocols. 

Component
A component is an application providing specific functionality to a larger 
system or an offer. We also equate this term with essential services of a plat-
form such as an email component. 

An environment is a specification configuration for a collection of software 
or hardware. 

Environment

System
A system is a collection of components that perform a certain task operat-
ing within a specific environment. A system’s value is in its capabilities
offered to the compliant applications and in insulating the applications
from the underlying hardware and network components. 

Capability
A capability refers to a specific feature of a system. A component of a sys-
tem implements various capabilities offered by that system. 

Middleware
Middleware here refers to a network operating system that supports appli-
cations. Middleware is seen as both the supporting system and the applica-
tion programming interfaces (APIs) that provide functionality to the 
applications.
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Platform
A platform is a system in the form of middleware bundled with essential
offers and providing a development environment for developing new and
integrating existing services and applications.

Trust is a technical word, one that is subject to varying definitions in spe-
cific contexts. Attempts to rigidly define “trust’ will instead establish stan-
dards for security, and provide methods to evaluate these standards. For
example, the Trusted Computer Security Evaluation Criteria (known as the
“Orange Book”) defines many different levels of trusted computer systems. 

In general, trust indicates that the systems’ administrators are willing to 
allow some kind of access, for example the sharing or alteration of infor-
mation. The establishment of trust typically includes administrative per-
missions and leverages cryptographically secure methods. These methods 
can establish identities, and provide various secure services. 

Trust

Non-repudiation
Non-repudiation establishes the unique source or entity to which an action 
is attributable. There is a distinction between technical non-repudiation
and legal non-repudiation. Technical non-repudiation assumes the algo-
rithms and systems work correctly; for example, the private key has not 
been compromised in an asymmetric-key cryptosystem. Legal non-repudi-
ation supports these assumptions; for example to establish that no one else 
had the private key; this is an issue for Laws and Courts that this text does 
not venture into. 

3.1 The Market for Online Services 

The market for network-enabled and online services is large and fast growing; the 
demand for these services by businesses and consumers is seemingly insatiable. As 
well, the associated media attention has spawned tremendous industry interest, finan-
cial investment, and business opportunity. 

Forecasts predict fast growth in every sub sector of network-enabled and online ser-
vices: access, hosting, electronic commerce, and intelligent communications. Busi-
nesses look to the “online” market as a mechanism to either provide better value or 
expanded business reach. They expect that network-enabled and online services will 
increase top line revenue growth and/or lower bottom line costs and expenses. 

• Cheaper distribution channels and methods, access to broader, global markets, 
and expanded services are mechanisms to achieve more revenue (as shown in 
Figure 3-1).
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Figure 3-1: Building Global Markets

• Online product distribution, lower marketing costs and cheaper services are

paths to better manage costs – both expenses as well as capital

Network-enabled and online services can be segmented into four sectors: access, host-
ing, electronic commerce, and intelligent communications.

• Access is defined as software, hardware, and services for the ability to connect to

and then use any data space – typically the “Internet” 

• Hosting is usually the capability to aggregate content and present it through a 

single venue. However, this content can be single, specialized services, or aggre-
gated, broad consumer-oriented services such as America On Line (AOL) or 
Prodigy

• Electronic Commerce is defined as support of secure, transaction-oriented activ-

ities across networks such as electronic distribution, banking and finance capa-
bilities; catalog sales, collaboration, software distribution, Cybercash, home-
banking, electronic document interchange (EDI), electronic and fax mail, or 
work flow 

• Intelligent Communications is the integrated (and intelligent) utilization of com-
munications with and across other common information sources and devices 
(phone/voice, data, cellular, pagers, hand-helds, fax, etc.). From this base of PCs 
and telephony, the set-top “platform” becomes an easy extension. Examples 
include integrated multimedia phone, integrated wireless/cellular communica-
tions, personal digital assistants (PDA), pagers, conference linkages, translation 
services (language and data), and conversion services (voice-to-email, email-to-
voice)
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3.2 Issues with the Development and Delivery of Network-
Enabled and Online Services 

However, given the technology that is available today, network carriers and Content 
Providers are increasingly unable to provide the kinds of network-enabled and online 
services that businesses and consumers are demanding: 

• Network-enabled and online services typically consist of (a) an underlying pro-
prietary administrative service infrastructure and (b) value-added content. The 
administrative service infrastructure consists of those services which enable the 
value-added content to be delivered such as registration, authentication, cus-
tomer care, or billing 

Currently, there is no available “off-the-shelf” administrative service infrastruc-
ture to run online services. This infrastructure has had to be developed – from 
scratch – for each new online service (as well as the existing content for the 
online service) 

Network carriers and Content Providers have found that the development of this 
administrative infrastructure dramatically increases the cost and significantly 
delays the delivery of the value-added content to businesses and consumers 

This approach, both incredibly expensive and time-consuming, may cause con-
tent providers to miss market windows (and lose any “first mover” advantages) 

• Developed apart from telephone and digital video services provided by network 
carriers, most network-enabled and online services lack integration with the 
most fundamental network-enabled and online service – the consumer’s tele-
phone for voice and video services. 

Today’s problems will become magnified as new data types such video, fax, 
expanded voice, and bandwidth-on-demand are added to the complexities of 
tomorrow

• Finally, even when developed, network-enabled and online services are typically 
not “carrier grade”; that is, designed for scaling to profitable volume. In most 
cases, this has proven to be very difficult as quality of service (predictable high 
performance with consistent reliability) deteriorates significantly when the 
number of consumers grows large 

Providing services to hundreds of thousands – even millions – of consumers 
around the world is a very complex and difficult task. 

Today’s solutions, given today’s client-server technology architecture, is to over-provi-
sion. Often, addition of more machines requires more human resources as well. This 
cuts into operating profit and margins. 
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3.2.1 Implications of these Issues 

These issues with the development and delivery of network-enabled and online ser-
vices have had several implications for network carriers and consumers. 

1. The result has been network-enabled and online services that, to date, have been 
unable to provide the value that businesses and consumers have wanted. Today’s 
solutions are offered as individual, “point” solutions and have little “integration” 
capabilities such as the ability to technically interoperate or “semantically” link con-
tent with other solutions. 

From the Consumer’s point of view, network-enabled and online services require 
additional telephone lines (when used extensively), have inconsistent performance, 
and lack satisfactory safety and security for electronic commerce. The services are 
sometimes difficult to install; for example, loading a new service may disrupt an 
existing service. 

With each having a separate, proprietary account registration process, the services 
are often difficult to learn. The services are standalone and non-interoperable;
information from multiple services cannot be easily interconnected 

2. Clearly, in spite of problems, these services are looked to by the market with great 
anticipation. Today, network carriers may already carry some portion of this con-
tent provider’s network traffic. However, in many cases, this traffic fails to leverage 
the network carrier’s primary assets – voice capabilities 

More importantly, these services are being conceived, delivered, and managed out-
side the partnership with the network carrier. This increasingly places the network 
carrier in the role of being a “tactical” provider of transport services and not as a 
strategic partner. Long term, network carriers could potentially lose their most 
valuable asset – their customer base 

The resulting market is advancing at an uneven pace, sometimes racing faster than the 
technologies can follow, and other times proceeding unevenly, too slowly, and too 
expensively. Many problems still defy cost-effective solutions. 

3.2.2 Network-Enabled and Online Services Architecture 

To help solve these problems and enable network carriers and ASP’s to become strate-
gic providers, two areas must be reviewed: the current network architecture that is 
being used to deliver the network-enabled and online services as well as the future 
market requirements for these services. 

Currently, the network architecture for delivering network-enabled and online services 
is client-server. Client-server features intelligent end points that communicate over a 
non-intelligent network (refer to Figure 3-2):

• The server endpoint provides the services with both the administrative service 
infrastructure as well the as service content. The infrastructure is the set of core 
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Figure 3-2: First Generation Architecture for Network-Enabled Services 

administrative functions that enable the service content to be provided: registra-
tion, billing, security, authentication, tracking/reporting, customer care, net-
work care, etc. 

• Without the ability to leverage a commonly available, easily accessible, and reus-
able administrative service infrastructure, each content provider has had to 
develop its own proprietary set of core administrative functions. Content provid-
ers often reinvent their administrative infrastructure for each new application 

• The client endpoint provides the user interface to access the service content; in 
most cases, the user interface is different from any other content provider’s user 
interface

• The non-intelligent network simply transports messages to and from the servers 
and clients 

Even if content providers could somehow overcome the above limitations, in the future 
these network-enabled and online content providers will face additional market 
requirements.

• First, the explosion in classes of services – data, video, fax, voice, bandwidth on 
demand, etc.– dramatically increases the technical complexity of reliably deliver-
ing network-enabled and online services to millions of consumers 

• Second, the speed of market entry on a globally competitive basis will necessar-
ily mean constant demands on lowering prices and increasing features 

• Third, the growing base of experienced consumers will increase the sophistica-
tion of their expectations; consumers will be demanding capabilities that have 
not, as yet, been thought of 
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For content providers, the implications of these problems are also substantial. First, 
content providers who want to deliver new network-enabled and online services are 
finding that to build, install, and maintain a new service is expensive, time-consuming,
and laborious: 

• There is no available, off-the-shelf core infrastructure (registration, consolidated 
billing, security, authentication, tracking/reporting, customer care, network 
care, etc.) on which to build a new service and then make the service universally 
available

• These new services lack voice and data integration, worldwide availability, and 
integration with other services. 

Second, with the number of subscribers growing quickly, “successful” new network-
enabled and online services must quickly scale to increase coverage. Lacking the ability 
to scale automatically, the systems are manifest with technical problems such as: per-
formance degradation, unpredictable response, and increased unreliability. Today’s 
solution to scaling problems means adding more server machines: more people are 
needed to tend the machines. This erodes the profit margin. 

3.2.3 The Opportunity for Network Carriers 

For network carriers, against the economic backdrop of increased competition, dereg-
ulation, commoditized pricing, and the emergence of new forms of communications 
(packet-voice, satellite, cable, cellular), the implications of these problems are signifi-
cant.

In many cases, network-enabled and online services are being delivered to consumers 
completely outside of the network carriers physical network. Increasing volumes of 
data traffic are residing outside the network carrier’s domain; in the future, long-dis-
tance voice communication, through packet voice, will be achieved outside the net-
work carrier as well. 

When the network carrier’s physical network is used, the client-server architecture 
reduces the network carrier to being a non value-added transport only. The network 
carrier’s underlying physical network assets provide strategic advantage when inte-
grating voice, data, and other sophisticated capabilities (as shown in Figure 3-3). This 
advantage should be leveraged to reduce the cost of Internetworking. 

• First, since network carriers enjoy a “trusted service provider” relationship with 
businesses and consumers, network carriers are ideal partners for content pro-
viders

• Second, network carriers can provide voice, data, and other related sophisticated 
capabilities for content providers in a well understood, commonly accepted, 
standardized architecture 
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Figure 3-3: Merging the Internet and International Telephone Systems 

• Third, network carriers have the capability to work with other global network 
carriers – around the world – to enable new services to be delivered globally. 
(This is analogous to network carriers originally pioneering integration and 
interoperability with other voice networks [such as US and Germany] through 
the development of the common signaling network) 

• Lastly, network carriers have the engineering skill sets and talent pools, and 
understand the problems and complexities of global networking 

3.3 A Solution: IP Service Platform 

A solution we offer in this book is to take a complete approach of 

Smart nodes coupled with smart networking. 

The complete approach positions the network as performing necessary computational 
support for distributed and online applications. It should provide for multilateral secu-
rity, scalable performance, and routine manageability. This requires a reengineered 
network that supports an IP service platform both in the network and at its edges (see 
Figure 3-4).

To distinguish existing networks that do not use this approach with those that are 
based on it, we will refer to networks with our approach as a cloud. From now on, when 
we refer to a cloud we are referring to 
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Figure 3-4: Reengineering of the Network-Computing Architecture 

A network operating system and a network architecture that supports our pro-
posed principles. 

The next chapter outlines the requirements that the IP Service Platform must satisfy, 
and the principles we use for the design and implementation of our proposed architec-
ture.

A cloud, as a concept, is the enabling software that provides a reusable, sharable intelli-
gent “service” platform for network-enabled, online service applications. As software, 
its role is that of network middleware; it lives between the physical network topology 
and the associated online applications. In effect, it creates a “logical” network of ser-
vices and capabilities living between the applications and the actual transport mecha-
nisms (see Figure 3-5).

A cloud provides off-the-shelf, open components that make it is easy for a network car-
rier, as well as ISPs and ASPs, to build and operate a value-added digital network. The 
resulting network is based on standard protocols; is compatible with existing Internet 
application products; and is able to interoperate with other standard networks, includ-
ing the International Telephone Network! Clouds can be linked together to handle any 
combination of network sizes and possible configurations, as we describe later. 

Intelligent networks should offer a set of services which the online applications utilize 
as components. For example, a cloud should provide a commonly available, easily 
accessible, and reusable service infrastructure for all core administrative functions 
such as registration, consolidated billing, security, authentication, tracking/reporting, 
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Figure 3-5: Distributed Online System 

customer care, network care, and any other “services” which the service providers care 
to offer. 

Instead of each content provider reinventing its own version of these services, the 
cloud offers the developer a set of consistent building blocks – reusable modules – that 
provide these services. Thus, the cloud speeds delivery of future applications to mar-
ket.

The model of a smart network service platform – combined with the client-server
model of smart end-nodes – provides the best solution for many of the complex prob-
lems facing online applications. These clouds can communicate with any other net-
work – public (i.e., Internet) or private (companies) and share network information 
such as billing and other services. 

Networking middleware is the foundation for true, global, online electronic commerce-
based applications. Since a cloud can shield the applications from the physical aspects 
of the underlying networks, a cloud can begin to integrate different networks (topology 
and data types) and have them behave as a set of capabilities (as seen in Figure 3-6). In 
this way, intelligent communications with disparate devices can occur. 

Obviously, off-the-shelf components make is easier for a network carrier to build and 
operate a value-added digital network, The resulting network is based on standard pro-
tocols; it is compatible with existing Internet application products; and its able to 
interoperate with other standard networks. A cloud can be bundled into product sets 
for a range of network sizes. 
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Figure 3-6: PCs to Phones – Middleware Networking Supports All Devices 

Domains interconnect to form an economically viable global marketplace. Multiple 
network carriers can provide reconciliation, security, authentication, and billing infor-
mation such that, to the consumer, there is seamless access across multiple domains. 

End points 

End points enable access, development, and deployment of network-
enabled and online service applications on networks. Network end points 
are peers that connect content providers and consumers through clouds; 
and, provide a single point of access for all services (such as access, secu-
rity, and billing) via a single dial-up or dedicated connection, giving con-
sumers the ability to register, authenticate, and communicate in a secure 
fashion over these clouds. 

Network Transport 

The network transport components furnish the network and network-
mediated services of a domain, and additionally provide the foundation for 
performance, security, scaling, management, and a range of value-added
network features. 

Network Services 

Network services provide efficient, scalable services (e.g., directory, billing, 
customer-care, and naming services) and a host of network-provider and 
consumer visible services that create, maintain, or refer to information cre-
ated and stored “in the network” (e.g., registration, directory, billing, paren-
tal control, and customer care). 

To the consumer, this architecture pulls together – into a single account – all IP Service 
platform enabled-networks and online services (refer to Figure 3-7).
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Figure 3-7: All Users Obtain Access to All Services 

For example, if the following services were all supported by interconnected clouds, the 
consumer could log onto traditional content providers such as AOL, Prodigy, Com-
puServe, or Interchange; and onto Internet services such as personal banking, email, 
travel, or the local newspaper; and onto the office local-area network all at the same 
time – without the need to log into and out of each service individually, The reason: the 
consumer is actually logged onto the cloud itself, and the services are registered to the 
cloud(s).

Based on open platform and standards such as Microsoft Win32, UNIX, TCP/IP, Sock-
ets, HTTP, or HTML, networking middleware leverages advanced technology that has 
already been developed by the market. Open architectures will be scalable yet inexpen-
sive to own and operate. 

For example, the architecture isolates and protects applications and networks, allow-
ing each to evolve independently. With this evolutionary approach, existing applica-
tions run “as is.” This can provide better support for wireless mobile models. Different 
networks can be aggregated: voice, data, video, wireless, “commerce,” future(s). 

For network carriers, this reusable, open standards-based intelligent service platform 
leverages not only existing assets in physical networks, but also engineering skills and 
corporate credibility. Network carriers will be able to rapidly solidify their market lead-
ership position for existing and new content providers, because enabling middleware 
will dramatically expand network traffic over existing network assets. This concept 
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provides the pathway to offering new services, generating new revenues, participating 
in the new networking world, and leveraging the value of global assets. 

A cloud should be a one-stop shop for a complete engineering solution. For that reason 
it needs to be evolutionary – it should provide additional value for the network carri-
ers’ existing physical network. It should provide the network server and customer care 
functionality that enables new services to be easily developed, introduced, and man-
aged on the network. 

Instead of content providers developing their own network infrastructure to deliver 
their content, network carriers and application service providers (ASPs) will enable 
these content providers to provide their online services much more quickly, to many 
more customers, at much lower cost. In this way, network carriers will enable content 
providers to focus on content and user interface innovation, and differentiation, and 
then to extend their access to much larger markets. 

3.3.1 Benefits of Networking Middleware 

With an IP Service Platform as the solution, it is possible to describe the benefits to 
four communities consisting of end users, corporations, information content and ser-
vice provides, and network operators. 

End Users 
For end users, the solution provides a platform accessing online services in 
a controlled and secure manner, and for automating and integrating inter-
nal information systems in a comprehensive, multimedia fashion. The 
solution provides the ubiquity and standard structure of the Internet with 
the convenience and security of a commercial online service. The solution 
networks support a single point of contact for registration, billing, and cus-
tomer care, and a standard navigation and location mechanism and 
encryption for all data. The solution networks provide end users with a 
range of services such as caching, security, predictable performance, 
parental control over content, simultaneous voice and data, that make 
using the network safer, easier to use and more convenient. 

For corporations, the solution provides an Intranet platform which sup-
ports a comprehensive set of features, while still leveraging Internet and 
online services technology. With the solution, a corporation can deploy an 
internal information system which integrates corporate e-mail, voice mail, 
telephony, document management, secure communications, and collabo-
ration.

Corporations

Information Content and Service Providers 
For information content and service providers, the solution provides a set 
of services to build electronic commerce and communications applica-
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tions. The solution networks factor out common functions such as authen-
tication, billing, and access control, move them from the individual servers 
into the network and provide them for all content services in a simple, 
standard manner. The content provider can concentrate on the organiza-
tion and presentation of their content, using standard tools for content 
management, while letting the solution network provide the commercial 
infrastructure and security. Non-programmers can create services easily 
through the server capability of a peer, and a simple programming inter-
face based on industry standards and languages. With the solution, techni-
cally proficient content providers can build next-generation telephone/ 
Internet/commerce applications more quickly than from scratch. 

This solution adds to the arsenal of tools available for service development. 
An information content provider can attack a global multimedia-com-
merce enabled market, innovate more quickly, and retool existing applica-
tions while using the latest technology. 

For network operators, the solution provides a way to keep telephony and 
video conferencing traffic running on existing network assets. This multi-
media traffic is integrated with Internet applications, but travels on net-
work operators’ existing networks. This strategy delivers better quality to 
the end user, enabling increased usage through new generation network 
applications.

A complete solution provides everything needed to build an online service. 
The network server and customer care become reusable functions. This 
eases the creation of new services developed, introduced, and managed on 
the network’s application server farms, including directory management 
software, security, network management, and billing systems, which collect 
and handle the alerts and events generated by the service-consuming and 
service providing systems (peers) attached to the network. The infrastruc-
ture provided by the solution makes it easier to support end users and ser-
vice providers on their network. 

For network operators, the solution provides the pathway to offer new ser-
vices, generate new revenue, participate in the new Internetworking world, 
and leverage the value of assets. 

Network Operators 

3.4 Service Provisioning Scenario 

A middleware-enabled network changes the way services are developed and deployed, 
and the way users access these services. Here we delve a little deeper on the changes 
that are required and then present several scenarios illustrating the interactions with 
the network. 
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The Internet Protocol (IP) is defined as a stateless and best-effort protocol. Data 
between two end points can follow multiple paths and even arrive out of order. This 
affords considerable advantages in scalability and performance, but presents unique 
challenges for secure services. Network-based systems must be secured against poten-
tial security attacks. A secure network “substrate” allows development of secure ser-
vices within the network, further improving performance as well capabilities and 
security. A cloud can develop precisely such a substrate by forcing all packets through 
a security gateway, The gateway monitors packets and ensures a consistent security 
policy with service support. 

The design principles make this explicit – see Chapter 4, “Platform Requirements and 
Principles”. The secure cloud framework never reveals protected resources. Complete 
insulation is guaranteed by the cloud’s security gateway. Traffic is allowed only 
between authorized components. Communication with elements on insecure net-
works (such as the Internet) employs mandatory encryption. In all cases, the traffic 
must pass through the security gateway. This suggests that the routing cannot be arbi-
trary, which violates the “stateless” nature of IP. 

The solution lies within the domain. Domains may be viewed as slices of the IP address 
space. All services are hosted within the domain, and hence must pass into a domain 
gateway. This domain is protected by the security framework. When a service portal is 
within the domain, there it receives full support of all applicable APIs. Elements inside 
the domain are “trusted” and accorded appropriate rights and privileges. Elements 
outside the domain must obtain a “trusted” status. These external elements may then 
operate as proxy services, with appropriate network support. 

3.4.1 How a Service is Deployed 

Network middleware, as a general technique to simplify application development, 
resolves many troubling design issues that have plagued the architects of client-server
applications. The network middleware assumes responsibility for all aspects of the 
information that passes through its borders, including its accuracy and distribution. 
Issues such as device capabilities and format conversions are engineered by the net-
work rather than customers. The network insulates both users and providers from the 
intricacies of components and architecture. Reusable components now move into the 
network, where they can actually be reused in a coordinated manner through standard 
network APIs. As an architectural issue, this simplifies many design issues; for exam-
ple, information management and scalability. The providers and users now concen-
trate on their particular areas of expertise. This approach is entirely consistent with 
the layered architecture approach that simplifies many engineering designs. 

The differences in system design are profound. Formerly, a provider began with the 
specification and design of every resource. Consider the challenge of designing a data-
base as part of a larger service offering. The contents must be defined, secured, moni-
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tored, and maintained. Formidable networking challenges include high availability 
with low delay to a geographically dispersed user community. Such designs typically 
cannot be achieved at low cost by an end user, and even large service organizations 
must use precious resources for design, deployment and operation. Such expertise is 
marketed as hosting services, the electronic equivalent of department stores and malls. 
They reduce costs of simple sites, but constrain the development of innovative and 
compelling services. 

When a service is deployed, however, there are substantial vulnerabilities. These vul-
nerabilities are seen commonly in the security violations and limited routing controls 
of the Internet, as well as management of bandwidth and delay. From a security per-
spective, data packets can be forged, copied, replayed, and mangled in various ways. 
The routing limitations complicate efforts to prevent unauthorized capture of a data 
stream, and the consequent security problems. The very definition of IP is a “best-
effort” protocol, which makes it difficult to predict, let alone guarantee bandwidth and 
delay characteristics. 

The new network eliminates these cumbersome steps. The previously restrictive 
deployment issues give way to flexible location of servers. Formerly nightmarish secu-
rity challenges are replaced by authenticated and managed traffic. Gone are the diffi-
cult management problems that often straddled divergent interfaces at several layers 
of applications and networking. The enterprise can now concentrate upon its primary 
goal of developing compelling new services for both end-user clients as well as other 
providers.

Let’s consider our prototypical service – Jane the Dandelion Wine Merchant. 
She knows everything about dandelions and making fine wine from them, but 
she is rather naive about the Internet. She buys a web server, has some friends 
over for wine, and together they put up a simple web site. They do not go 
through the long system engineering process because they trust their comput-
ers. Together, she and her clients and suppliers start to build an electronic busi-
ness, Their network looks something like the one in Figure 3-8, below. 

It is not long before Jane’s site is “hacked” by the infamous “Coalition Against 
Dandelion Wine ”. Her connoisseur client received spearmint tea instead; the 
dandelion supplier shipped fresh flowers to a competitor; and Jane’s merchant 
bank account was cancelled. There should be a better way – and there is. That 
is why you are reading this book. 

Let’s make this concrete by taking an existing server and placing it onto the new net-
work The network will grant service only to components (clients) that can prove their 
identity and maintain an authenticated connection. This is achieved with a standards-
based authentication module which supports the open APIs of the network. The sim-
plest solution provides this by installing a program component that allows the server 
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Figure 3-8: Jane the Dandelion Wine Merchant’s Unmanaged Internet 

to securely identify himself to the network, as well as continually validating the 
authenticated status. The module can be either a Java class or a pre-packaged “peer” 
program that supports self-provisioning and management with a Graphical User Inter-
face (GUI). These tools counteract the Internet’s notorious vulnerability to “cyberat-
tacks” – exploitation of weaknesses through specialized mangling and forgery, as well 
as more sophisticated traffic hijackings. 

Jane has heard about the new middleware network, especially how easy it is to 
implement. So, she takes the plunge, installs a certified peer, and connects her 
system with the middleware network. Things seem much better. Jane settles 
down for a cup of dandelion tea (the new wine is not readyyet). Her system 
now looks like the illustration in Figure 3-9.

While sipping her tea, Jane leafs through the catalog of services available to the 
middleware users. Value-added services include billing, credit transactions, 
and even suppliers of fermentation equipment. Each user belongs to the polite 
society of the middleware network. Simple graphical interfaces let her publish 
her subscriptions to services. Jane reads about a special kind of user, called an 
authenticated user, who is specially protected with a secure user identity. 
Nobody can change his identity without authenticating again. 

But then she wonders about her arch nemesis, the Coalition Against Dandelion 
Wine. What if they become members of the middleware network? Stirring her 
tea, she decides they may buy her wine as long as they pay for it. Since the Coa-
lition cannot forge someone else’s identity (or even repudiate their own), they 
can be held strictly accountable for all orders they place. The middleware net-
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Figure 3-9: Jane’s Partially Managed Internet 

work enforces uniform authentication and access control. If their behavior 
becomes too obnoxious, their access can be abridged or revoked. 

Being something of a flower child, Jane the Dandelion Wine Merchant feels that 
it’s unfair to exclude people who have not yetjoined the middleware network. 
She also realizes that presence on the public Internet will remain an important 
aspect of her sales. What can she do about this? At first, it seems nearly enough 
to send her back to risky, unmanaged world of thepublic Internet. 

Jane now understands why there are three kinds of services supported by the 
middleware: full-public, cloud-public, and private. By providing limited access 
as a full-public service, she can reach unregistered users. Her cloud-public view 
will reach registered users. Jane’s accountant will be given private (subscrip-
tion-only) access to both billables and receivables, whereas her receiving 
department does not need access to the billables. Well, finally her wine is ready 
to taste. Between the wine and the middleware she is again optimistic. 

The full use of network APIs is reserved for managed users. These users have an iden-
tity on the network, and therefore are trusted to interact with their piece of the net-
work. This server becomes a trusted member of the network by authenticating itself to 
the network and continually validating its authenticated status. 

An authenticated user obtains many benefits, as we will discuss in the following chap-
ters. One of these benefits is the event mechanism. This provide reliable delivery to 
multiple subscribers by use of intuitive publisher/publish and subscriber/subscription 
relationships.
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Example: Jane wants her air-freight shipper to be notified automatically every 
time she receives an order for wine. So, she registers an event with the middle-
ware, and her server generates an event notification every time an order is 
received. The events are reliably delivered to the shipper of her choice. Jane also 
receives event notification from her suppliers. Whether the cost of dandelions 
decreases in the spring or increases during the winter, she can subscribe to the 
pricing information and obtain the best pricing. 

The server now authenticates with the network. This is a two-way authentication 
(technically, we call this bilateral-authentication) where the network and server prove 
their identities to each other. They also compute a secret symmetric key for the secure 
exchange of data. Every securely transmitted packet is encrypted before entering the 
Internet, and decrypted upon exit. Cyberattacks cannot extract or modify any infor-
mation, but instead they generate improperly keyed packets. These packets appear as 
garbled data, forcing retransmission, and potentially triggering countermeasures. An 
attacker can still disrupt the client, but cannot alter any encrypted stream. We have 
protected the data between the network and the server machine, but this is only part of 
the solution. Traffic that bypasses the new network is not protected. 

The server receives two sources of data. Some of it passes through the new network, 
and is secured on Jane’s behalf. This traffic is a mixture of management information 
and traffic that the network has secured on Jane’s behalf. Other traffic, however, did not 
pass through the new network, and is not secured. Since the server is sitting on the web 
it is still subject to a number of attacks on the unsecured data. The traffic mixture 
occurs because IP does not require any specific kind of routing. Jane receives reliable 
services from the network middleware, but the traffic is still vulnerable. 

Jane’s membership does not completely shield her from non-middleware traffic, 
and she continues to receive threatening digital packages from the Coalition. 
Jane’s site is on the Internet, the Coalition is on the Internet, and Jane has not 
learned how to control routing to her machine. Fortunately she can exclude 
them from her services, but still feels uncomfortable when those Coalition 
packages arrive. 

The components have a trusted session with the network middleware. Some traffic 
between them does not have to go through the middleware. It may route through the 
untrusted connection that rides on the Internet. This bypasses the security, and it also 
bypasses all other functions of the new network middleware. 

Jane now understands why all traffic must pass through the middleware net-
work in order receive the full benefits of the middleware. She wonders if its nec-
essary to move her server (right now it supports several flowerpots of 
dandelions, so she’s not eager to move it). She thinks of an inexpensive private 
line into the middleware, but would prefer a software solution that doesn’t 
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increase her costs. She also wonders why the middleware network keeps talk-
ing about protocol mediation as a service enhancement. She adds a touch of 
organic sugar to the newest batch of wine, andponders the choices. Fortu-
nately, none of her software will have to change. She seals the new batch of wine 
and hopes for a vintage year. 

One example is protocol mediation, where the middleware enhances the data traffic, 
for example by providing a service to the data stream. Jane and her cohorts immedi-
ately purchase a secure IPSec “tunnel router” on their systems, and their traffic goes 
directly into the middleware network. We have ruggedized the sites with a protected 
data tunnel, and provided a standards-based authentication module. This ruggedized 
connection provides a safe passage to the gateway, as shown in Figure 3-10.

Figure 3-10 Peered Tunnels 

Explicit tunnels provide a networking solution, but the server is still physically con-
nected to the Internet. Full-public traffic continues over the basic Internet Protocol 
(IP), and cannot be compelled to route through the middleware network. Their traffic 
does not enter the middleware network, and cannot take advantage of it. 

The safest solution places the server in a physically protected location, with routing on 
a private network. This network could be physically protected for maximum benefit, or 
it can be a virtual private network when the networking connectivity affords sufficient 
reliability. A second, simpler, solution is redirection, where the service is known by an 
address within the middleware network. Data to this address is forwarded by a proxy to 
the Internet-located address. All traffic must route into the middleware network The 
network assumes the role of a security gateway and forwards traffic to the server as 
appropriate. Developments in the Internet Engineering Task Force (IETF) recently 
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concluded the design of Internet security capabilities known as IPSec. This protocol is 
making its way into the mainstream of networking software. 

3.4.2 Where do Services Run? 

We have thus far discussed services that run on a server machine, and presented a pro-
gression from unmanaged, to authenticated, and then to routed. Authenticated traffic 
uses software, either standard APIs running in a protected Java Virtual Machine, or 
certified peer. This can interact with software tunnels to protect traffic between the 
server and the middleware network. The routed traffic can also be directed by physical 
routing. The choice affects the clients that benefit from the route. 

Some services run on servers, and others run on the network itself. The latter are gate-
based services. Users do not generally write gate services, although we anticipate that 

active networks1 will open this capability to a wider user community. 

Figure 3-11: Services as Stores on the Middleware Network 

A general server can run either on the Internet (as a server) or on the middleware net-
work (as a store-based service, as shown in Figure3-11). Clients on the Internet 
authenticate to the network, and their traffic passes through the Internet. The store-
based services have a physically protected network connection and hardware-based
routing through the middleware network. Server-based services use the Internet as the 

1. The field of active networks understands the profound advantages this can provide. See references. 



98 MIDDLEWARE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

network connection. Server-based services need to use encryption as the minimum 
method to ensure data authenticity. A server-based service also needs some way to 
make the traffic route through the cloud from the client. This is done either by a soft-
ware tunnel or by Internet extensions. 

Consider a service. The middleware network has special “service hosting” gates. Client 
traffic cannot pass directly into the cloud because the gates maintain a security perim-
eter. They are not on the public Internet; there is no problem with security of the traffic 
hitting the machines. 

3.4.3 Network Integration Services 

Let consider Victor, the Entrepreneur of Internet Telephone Services. 

Victor knows three things: He was the first. he was the best, and he will never 
sell out. 

Victor has a problem. His company has been selling phone cards and recently 
became involved with Internet Telephone services. Anyone on the Internet can 
use his service, and he collects a reasonable fee for the service he has put 
together. Victor has also considered ways to make his service available as a 
general web resource, simply by referencing his URL. 

Victor has a loyal following of hard-earned customers, and he wants to keep 
them while expanding his business. But he has also lost significant revenue 
through fraud. He has trouble improving the sound quality of the calls, as he 
cannot control the variation in the calls’ IP routes. Sometimes the call echo is 
intolerable despite the echo-cancelling gateway he installed. Victor considered 
buying more equipment, but his accountant advises that he lease it, and the 
lease arrangements are exorbitant. 

What business is Victor really in? Is it customer management and the crafting of ser-
vice offers? Is it running an Internet infrastructure? Or, is it the design and develop-
ment of telephony standards? Victor realizes that revenue is generated through service 
to the end-user customer, not the design of a new network. Hence, it makes sense that 
Victor should outsource his technology needs to a network provider. 

3.4.4 How Authentication Tokens Can Protect Network Web Content 

As simply one example, consider the web servers that provide the common delivery of 
content including valuable media such as entertainment, news, financial information, 
as well as personal data. Secure requests and delivery of this content must be assured, 
and a single-sign-on (SSO) capability enhances the usability. In the past, there was no 
scalable and industrial-strength solution to this requirement. A user had to maintain 
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multiple passwords and use the more expensive HTTPS (SSL protected) protocol of 
the Internet. 

A user of the enhanced network finds a far simpler world. He can log into the cloud and 
work from a standard browser, and then receive security services that protect his con-
nection. The network provides special authentication tokens that are encrypted by the 
cloud. The encryption key changes frequently, and a secure channel provides the 
browser with the authenticated user’s currently valid tokens. The tokens must be pre-
sented to domain-based web servers as a condition to receive content, and only autho-
rized clients possess these tokens. Of course, it is possible that a determined hacker 
will steal an authentication token. However, the tokens are only valid for a short time, 
and will be recognized only for the browser they were intended for. A stolen token is 
likely to be of little use to a hacker. 

Let’s see how this works. First, the user Bob opens a session by authenticating to the 
cloud. On his browser he enters the URL of the cloud login site. His browser verifies the 
clouds X.509v3 certificate, so he can be certain the site is an authorized provider. He 
then provides his user name and authentication information. This can be either a pass-
word or a digital certificate previously issued by the cloud certificate authority (CA). 
The certificate resides either on his machine, or on a removable device or smart-card.
Once Bob logs in, he will be recorded as an active user within the cloud’s list of active 
users. The system now provides his browser with authentication tokens over a secure 
channel.

If Bob logs out, or his connection is broken, he will be removed from the list of active 
users. The system maintains a control channel with his browser, and violation of the 
channel's protocol will terminate his session. 

Now Bob attempts access to any cloud-protected web site. The site can be a standard 
HTTP site which does not include an encrypted SSL channel, or it can be a protected 
HTTP channel using the SSL protocol. Many services are not SSL protected, but never-
theless they benefit from greater security. For example, this prevents theft of informa-
tion even when the information is of only modest value. The encrypted authentication 
token lets the cloud validate his privilege to receive content. 

Bob's browser sends a request which includes site-specific information. This includes 
his encrypted authentication token. This token is validated by the cloud, which also 
recognizes that Bob is still logged in. The cloud has verified that Bob is allowed to have 
the content, so it establishes a proxy connection to the web server. The cloud then 
delivers requests and content as required. 

Bob accesses several sites in this manner, and never has to provide a password to any of 
them. The sites can verify that Bob is an authenticated user. The cloud can validate his 
privilege to access the site, since all users' access rights are stored in the membership 
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database. Thus, both user and service provider are protected. Bob can also benefit from 
other features of the network, for example, a managed cache or licensed content. 

Suppose Tom, Bob’s nefarious neighbor, has managed to steal one of these authentica-
tion tokens. It will do him little good. First, expiration makes the token invalid for 
retrieval of information (although use of expired tokens could trigger a security alert to 
disable Tom's connection). Second, Tom's browser is not authenticated to use Bob's 
token, so he will fail for a second reason. Third, Tom is likely not an authenticated user 
because use of invalid tokens could disable his authenticated session. 

3.4.5 Multiple Networks and Accounts 

Suppose a network user wants to access a non-HTTP content-service that gives privi-
leged materials; for example, games, or printers. These resources are protected by their 
owners, and such protection schemes often limit a client to only one membership. A 
user must request an account from each content provider, and may pay usage fees. 
Since there are many content providers, each may have membership requirements that 
are somewhat different. For example, changing from one provider's name (or domain) 
might “shut off” the other providers. The content providers, for their part, each must 
collect usage fees. They too would benefit from a single system due to subscriber man-
agement. Windows NTLM is one such protection mechanism, and its content includes 
executable programs such as games, video content, and the like. 

Single-Sign-On (SSO) simplifies access to participating systems. The user does not 
have to establish an account with each content service. The cloud receives the client's 
request and only permits access when the client has previously subscribed to the con-
tent-provider's site. The cloud contacts the content-service with valid credentials, and 
proxies between the client request and the server's information. Depending on the ser-
vice, the cloud can either provide its own credentials, or per-user credentials. Subscrip-
tion and access events are generated by the cloud and can update network resources 
such as naming services and credential services. 

Consider the client who requests protected content. The cloud receives the request 
from an authenticated and subscribed user. Correct security credentials are electroni-
cally inserted into the client request. The content provider gladly provides content for 
with these credentials. The credentials are not stored on the client machine, and this 
protects the provider from misuse. The client access to all services is controlled from a 
single point, allowing prompt refunds as well as disconnects. The client can even 
access content from different providers at the same time. This was not possible before 
networking middleware, and is now achieved simply for both clients and content pro-
viders.

Technically, this is achieved because a cloud maintains a trust relationship with each 
content provider. This authorizes the cloud to provide authentication information as 
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required. It can be achieved in several ways: running a peer on an authorized account 
maintenance machine is one such method. Shared trust takes other forms as well, as 
will be discussed subsequently. 

3.5 Summary 

Conceptually, networking middleware requires a global standard and compliance. 
Compliant and certified applications will enable these network operators to achieve 
better account control and increased network traffic. In summary, with a cloud, net-
work carriers can reduce costs, increase traffic over existing networks, retain valuable 
customer relationships, ease the entry into new markets, and be the vehicle for key 
partnerships with software vendors, content providers, and other businesses. 
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CHAPTER 4 Platform
Requirements and 
Principles

Network solutions range from the very broad to the very specific. Typically, the lower 
down the level of abstraction a solution falls, the broader and the more general it has to 
be. This also holds for its requirements. The lower down one attempts to solve a prob-
lem, the requirements one encounters deal with broad issues dealing more with the 
nature of the problem instead of the specific details and features found at the higher 
levels. In this chapter we describe the requirements used in designing extant examples 
of networking middleware, and we state principles that lay the foundation for the sub-
sequent design and implementation. As we described earlier, any problem can be 
solved in a number of different ways: one way to choose a solution is to collect require-
ments that drive the solution. The fulfillment of these requirements serves as a litmus 
test for judging its success. 

4.1 Requirements 

The requirements presented here are basic, general requirements taken in the context 
of future data services. They form a generalization of what is certainly a wide range of 
requirements and consequently may be too general in some areas and too specific in 
others. What we are attempting here is to state a set of requirements that address the 
shift from the first-generation Internet to a service-aware network infrastructure. 
Regardless of one’s perspective as an end user or a carrier, the requirements provide a 
common understanding of what a network should achieve. 

Our requirements focus on the network’s infrastructure and middleware capabilities to 
support online services and applications. We offer 13 requirements. 

Security in the Network 
We tend to think of public networks as no-man’s-land thus putting all 
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security solutions on the hosts. Our requirement is to balance out the 
responsibility for security between the end point hosts and the network. 

Here the issue is not the scalability of the network infrastructure but the 
scalability of online services. It is always relatively easy to deploy a new ser-
vice for a few customers. Overseeing the expansion of the service to thou-
sands or millions of customers is a complex, costly, and difficult 
undertaking. Our requirement is to offer a support in the network for scal-
ability without the complexity, cost, or difficulty. 

Scalability of Services 

Extensibility of the Platform 
Any initial solution in this space creates an immediate opportunity for 
improvements. The only certainty is the constancy of change. The design 
for change is the third requirement. However, this has to be done in a way 
that allows the network middleware to be upgraded without requiring nec-
essary changes in the end point devices and vice-versa.

Cloud Manageability 
Powerful network management has always been a key requirement for car-
riers and ISPs. Network administrators should be able to monitor and man-
age all aspects of the network elements and key system components. 
Customer-controlled services deployed on top of the network providers 
systems require a different management approach; that of self-manage-
ment and provisioning. Here, service providers need to monitor and man-
age their systems in addition to what the network providers can already 
provide.

Interoperability between Clouds 
Interoperability is the ability to seamlessly utilize products from different 
vendors through insulating layers of abstraction that hide the products’ 
details and differences. The network middleware should aid the network 
and service providers in interoperating by again offering appropriate 
abstraction layers that provide suitable information hiding. 

Adding protocol mediating and translating proxies, additional information 
systems, and management frameworks must be done in a way that does 
not adversely affect the performance of raw network switches’ capacity. 
Although the transition from dumb to smart networks is without some 
penalty, it is a balancing act that achieves the combined requirements 
without unduly sacrificing efficiency. 

In addition to the standard personal computers (PCs) and workstations, 
the network must support diverse end point devices such as telephones, 
personal digital assistants (PDA), network computers (NC), pagers, and 

Implementation Efficiency 

Device Ubiquity 
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cellular phones. For some devices, such as the NCs and PCs, providing the 
devices with supporting software should permit direct communication 
with the network that can be easily programmed. 

Internationalization and Localization 
The network middleware must be capable of handling different human-
readable languages. Internationalization can be thought of in terms of the 
data flows through the system. Due to the many different flows passing 
through such systems and the variety of platforms and operating systems, 
internalization poses a large design and implementation problem. Only a 
system that stores, manipulates and displays international character sets 
and changes from one set to another without recompilation of the entire 
system can be considered truly internationalized. 

Commercial Viability 
The network middleware needs to create a framework within which every-
one can benefit financially and which pays for itself. It has to be commer-
cially viable. Much like the internationalization requirement the network 
middleware must be aware of value added services, who controls them, and 
who uses them, and in the end must offer accounting to appropriate billing 
systems for reconciling usage and online transactions. 

Easy Provisioning 
It must be easy to create, provision, advertise, control, manage, outsource, 
and bundle services through the platform either through integrated meth-
ods using service-side APIs, or through remote administration tools. 

Mobility
Mobility supports changes in viewpoint, resource availability, auditing, as 
well as location independence. Users and their end point devices are 
becoming much more mobile as new technology allows them to connect to 
the network in various places. This leads to the need to manage and track 
resources as dynamic entities and not static one. 

To facilitate the platform's extensibility and interoperability, the platform 
must support global and open standard specifications. It must be an IP-
based platform built on top of standard sockets and provide easy migra-
tion from IPv4 to IPv6, while easily integrating standard protocols such as 
HTTP, LDAP, SMTP, POP3, H.323, NNTP, and LDAP. 

Openness

Usability
The platform must be designed for minimal disruption and ease-of-use.
Users should not have to deal with network configuration and manage-
ment tasks such as specifying DNS addresses, masks, domain names, 
phone numbers or proxy settings. Users should see little difference from 
their previous system, yet observe the networks value through their ability 
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to access new services easily and with added values. Once installed on the 
users’ clients or servers, the enabling-software should be transparent and 
nonintrusive during network sessions. 

In the remaining sections of this chapter, we take a closer look at some of the key 
requirements; security, scalability, and extensibility The other requirements are 
addressed in other parts of the book. 

4.2 Security 

In targeting security, the overall emphasis should be on developing a framework for the 
implementation and deployment of the next generation of Internet, telephone, and 
global electronic commerce networks. It should combine, in a single seamless whole, 
the best characteristics of digital packet and circuit-switched services and provides to 
its subscribers a degree of convenience and assurance comparable to that enjoyed by 
the users of today's modern telephone networks. 

As a comparison, people who use modern voice-grade landline telephones do not 
worry about the security or integrity of their calls. For most, eavesdropping is a remote 
possibility; the telephones are used daily to discuss and exchange with friends and col-
leagues an astonishing variety of sensitive and personal information. Nor do we often 
doubt the integrity of the telephone network in the sense of one telephone instrument 
(telephone number) masquerading as another, or the transparent substitution of one 
speaker for another. 

However, the same degree of confidence and trust is not shared with respect to digital 
data networks. Here the issues of security, integrity and authentication arise repeat-
edly, since the ease with which digital information can be manipulated makes such 
networks susceptible to a wide variety of attacks. A viable security architecture needs 
to be explicitly designed to address such concerns, and set for its end users, be they 
consumers or vendors. This must provide a standard of confidence and trust compara-
ble to that enjoyed by the switched telephone network. 

The reader should understand that security and trust pervade networks. We previously 
defined “trust” on page 78. The current chapter describes the main concepts. We will 
later detail the theory and practice of security in Chapter 6, “Interoperable and Scal-
able Security”. 

4.2.1 Adequate Security for Acceptable Cost 

An architecture should be based on the principle of adequate security for acceptable 
cost. Many systems, particularly those designed for military or government use, man-
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date complete security at any cost, an approach characterized by high overhead, bur-
densome procedures, and draconian enforcement. The commercial world, in contrast, 
evaluates the benefits, risks, and expenses (money, time, overhead, infrastructure and 
such) of security in the context of a strategic business plan. These industries approach 
security pragmatically and balance the potential damage of a security breach against 
the costs of protecting themselves against such losses. 

For example, credit card companies take precautions against credit card theft and 
fraud, balancing probable losses against consumer convenience. These vendors toler-
ate modest loss due to fraud as the cost of doing business; that is, the cost of the mali-
cious misuse of a credit card is a small (and acceptable) percentage of the total 
revenue. In other words, security is a business decision made in the context of business 
goals, common practices, tolerable losses, and ease of use. 

The numerous and varied trust relationships that exist among businesses is another 
important element of commercial security. For example, it is in the mutual interest of 
telephone carriers to establish intercarrier exchange agreements that permit the “pur-
chase” of telephone service across carrier (geographical) boundaries. These agree-
ments are enforced by procedural, social, economic, and legal mechanisms with 
technical security as only one element in a complex web of overlapping safeguards. 
Consider how two carriers, A and B, might reconcile, for billing purposes, their use of 
one another’s network: 

• A, relying on its own usage records, determines both its use of B’s network and 
B’s use of A’s facilities; B does likewise with respect to A. These two reconcilia-
tions are compared and any discrepancies are resolved using procedures detailed 
in the intercarrier agreement 

• A and B present their billing records to a neutral third party who performs the 
reconciliation. The reconciliations are checked, at regular intervals, by each car-
rier using standard accounting techniques 

• A accepts the reconciliation determined by carrier B and, as a safeguard against 
error, double-checks B’s accounting periodically 

In the first case, neither party relies on the other for reconciliation, but each trusts the 
other to apply mutually accepted procedures for the resolution of differences including 
the mechanisms of contract law. In the second case, the parties rely upon a trusted, 
independent intermediary This is a common business practice that has been 
institutionalized in a variety of forms including escrow agents, banks, underwriters, 
and notary publics. In the third case, the trust relationship is direct and unmediated. B
may be a substantially larger carrier than A and it is simply not in B’s best interests to 
violate A’s trust, since the consequences (loss of face, legal costs, increased regulatory 
interference) would be far more severe than the value of a deception (say, skimming a 
few percentage points off the reconciliation in B’s favor). 
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4.2.2 Technical Security Differs from Organizational Trust 

The point is simple, but worth repeating for emphasis — technical security is but one 
element of many in a trust relationship. Society has developed numerous mechanisms 
for mutually suspicious parties to transact business, such as social relationships, legal 
contracts, bonding and insurance, mediation, regulatory agencies, and courts. The 
consequences for duplicity are as varied as the mechanisms themselves and include 
social stigma, loss of livelihood, fines, imprisonment, loss of business, destruction or 
confiscation of property, and personal loss. These mechanisms and others, developed 
over thousands of years of commerce, are time-tested and effective. 

There are many examples of security architectures that promise to replace these rich 
mechanisms and their long history of successful application with “superior” technical 
solutions. Frankly, such solutions, if possible at all, will be a long time in coming and at 
this point we have neither the expertise nor the experience to put them into daily prac-
tice.

The technical mechanisms of a security architecture should not be designed to replace 
the elaborate trust relationships and safeguards that already exist in the world of tele-
communications and commerce. Instead, the security architecture should supply a 
necessary technical basis for these older business procedures, allowing them to be 
transplanted, largely unchanged, to the new world of digital networking and electronic 
commerce. Not only should the architecture carry the old world forward into the new – 
it should be also designed to take advantage of advances in technical mechanisms and 
business practices. 

The security architecture can evolve as carriers, vendors, and consumers gain experi-
ence. To a large extent this evolution is transparent, since the architecture is not just a 
specific implementation. Rather, it is a framework in which methods may be transpar-
ently upgraded or replaced with improved subsystems. Thus, all parties in using this 
architecture have the added assurance that their investment (be it hardware, software, 
content, training, or experience of use) will not be wiped out overnight by unexpected 
advances in digital security, code breaking, or network-based business models. The 
ability of an architecture to be both stable and adaptable will encourage content sup-
pliers and third-party manufacturers to produce compliant products, since their 
investment will retain value over a long period of time. 

4.2.3 Security Goals 

Security needs to be a fundamental, ever-present theme of the architecture. Unlike 
many early systems, security has not been added after the fact or designed as an exten-
sion grafted onto an earlier architecture. The security architecture should be fully inte-
grated into the architecture as a whole; consequently, all actions are mediated by the 
underlying security mechanisms. To this end, the security architecture has four goals: 
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• Maintain information secrecy; that is, prevent sensitive information from being 
revealed to unauthorized parties 

• Ensure information integrity; that is, prevent the undetected alteration or adul-
teration of information 

Guarantee accountability; that is, prevent one user or service from either unde-
tectable assuming the identify of another or denying, at some later date, their 
participation in a transaction 

• Ensure availability; that is, prevent a malicious subscriber or external agent from 
denying service to others 

•

The security mechanisms should be designed so that they: 

• Cannot be circumvented accidentally 

• Cannot be circumvented deliberately without a high probability of detection and 
a significant level of effort by an adversary 

• Do not present an unreasonable burden to either the system operators or the end 
users

To prevent accidental circumvention, the various security mechanisms are introduced 
at the lowest appropriate level of the system and the system structure prevents a 
higher level service from bypassing any lower level. To prevent deliberate circumven-
tion, the architecture should employ cryptographic checks. The cryptography, based 
on widely adopted and rigorously inspected industry standards, will frustrate a deter-
mined adversary by requiring effort well in excess of the likely value of the information. 

Finally, almost all of the security measures should be automatic and occur transpar-
ently without end user or operator intervention. By making every effort to minimize 
the burden on users and operators, the architecture ensures that the security mecha-
nisms will not be ignored or set aside by frustrated users or harried system operators. 

To summarize, no accident may lead to loss of secrecy (disclosure), loss of integrity 
(undetected modification), or loss of accountability (repudiation of identity). Further-
more, any effort to deliberately disclose information, modify information, or substitute 
one identity for another is so likely to be detected or require such a large expenditure 
of effort (time, money, equipment, or personnel) that it is unwise or unprofitable. The 
security mechanisms themselves are either simple enough, or sufficiently transparent, 
that they do not intrude upon users or prevent the system operator from administering 
the system with reasonable ease and efficiency. 
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4.2.3.1 Information Secrecy 

Information secrecy and information integrity are related, but independent, proper-
ties. Secrecy refers to the prevention of the unwanted disclosure of information. When 
A and B communicate, each wants to ensure that no third party X is eavesdropping 
and extracting information. Integrity refers to the veracity of the communication; that 
is, both A and B want to ensure that no system fault or a malicious action by X has led 
to the deletion, insertion, or alteration of information. 

4.2.4 Information Integrity 

Encryption in the network middleware platform serves double duty: the protection of 
information from disclosure (privacy), and protection from alteration (which supports 
that integrity). Encryption is a necessary, but not sufficient, underpinning for informa-
tion integrity. To understand this we prevent a case analysis of a malicious intruder X
who, frustrated by his failed attempts to break the code, is attempting to destroy the 
integrity of the information passing between A and B. X has three avenues of assault. 

• Altering ciphertext bytes. When the receiver decrypts an altered byte it will likely 
be gibberish – particularly in the context of the plaintext immediately preceding 
and following the substitution 

• Deleting one or more ciphertext bytes. All ciphertext bytes from the point of dele-
tion on will be incorrectly decrypted by the receiver since it will be using the 
wrong keytext to decrypt the ciphertext byte. In other words, from the point of 
deletion on, the stream will probably decrypt into garbage since the ciphertext 
stream is out of phase with the key stream by an amount equal to the length of 
the deletion 

• Inserting bytes into the ciphertext stream. An argument similar to the case above 
applies since the introduction of additional bytes will throw the ciphertext 
stream out of phase with the key stream by an amount equal to the length of the 
insertion

Since any change made by X to the ciphertext stream must be some combination of 
alterations, deletions, or insertions, the best that X can hope to achieve is a lucky shot 
in the dark that will lead to the undetected loss or alteration of vital information. 
Nonetheless, if the end points A and B fail to take defensive measures, then X can
potentially do serious damage, particularly if X has detailed knowledge of the applica-
tion-specific protocol that A and B have layered atop the stream connecting them. 

Imagine that A and B are client and server, respectively, using a data stream passing 
through one of our clouds to conduct a business transaction. Any competent and 
responsible client/server implementation requires extensive error checking at the 
application layer to protect both sides against transmission errors, lower level protocol 
failures, program bugs, and so on. Failure to do so leaves A and B open to a wide variety 
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of ploys. In other words, the stream encryption supports, but does not supplant, appli-
cation-specific integrity checks. 

If the applications at either end of the connection are reasonably robust, then at worst 
they will recognize that an error has occurred and gracefully close the connection. In 
this case, X has achieved a denial of service but there is no loss of information integrity. 
Well-constructed applications might try to recover by flushing a portion of the stream 
and coordinating a retransmission; or, assuming sufficient redundancy in the stream, 
might be able to reconstruct the correct plaintext. Thus, the stream encryption of a 
managed cloud can transparently supply an additional layer of protection over and 
above application-specific deterrents. The combination of stream encryption and 
application self-checking ensures that even moderately sophisticated attempts to alter 
information or steal service will be frustrated. 

4.2.4.1 Accountability 

To guarantee accountability, the architecture should enforce bilateral authentication; 
that is, not only must all users and services identify themselves to the network in a 
manner that, for all practical purposes, denies impostors access, the network in turn 
must identify itself to its users and services in an equally strong manner. Consequently, 
when a connection between cloud and peer or cloud and user is established, both par-
ties to the connection are assured that the opposite end point is legitimate and valid. 
In addition, this process of bilateral authentication establishes, for the lifetime of the 
given connection, a billable entity that is responsible for all charges and transactions 
generated, either directly or indirectly, over the connection. A billable entity can take 
many forms, ranging from a private individual to the procurement arm of a large cor-
porate or government organization. The architecture guarantees that each and every 
transaction will be associated with exactly one known (to the cloud) billable entity. 

This strong association has direct practical implicates. It alleviates a critical concern 
of administrators or service providers, namely, reliable billing. The introduction of the 
security architecture prevents users (and providers alike) from ever denying their par-
ticipation in a transaction. Since the architecture ensures that every transaction gen-
erates a billing record(s) and that every billing record is tied to a known billable entity, 
all parties to a transaction are assured of comprehensive and accurate accounting. 

In an effort to reduce the burden on a user or service, authentication should occur only 
once for any given session1. Consequently, unless a service provider requires additional 
service-specific authentication, a user, once connected, can freely tour and exploit all 
of the services offered by the network without additional effort. As we shall see, the 
same authentication may transparently give the user access to services in other net-

1. For our purposes, a session and a connection are synonymous. 
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works in keeping with the trust relationships that exist between the user’s home net-
work and other foreign networks. 

4.2.4.2 Availability 

The high service standards set by telephone service providers lead us to expect, as a 
matter of course, the continual availability of the switched telephone network We 
assume, without question, the presence of dial tone and sufficient circuit capacity to 
complete the call. The network architecture should strive to offer comparable guaran-
tees of availability for its digital network services. However, in the case here the chal-
lenge is greater since the switched telephone network is, by its nature, more resistant 
to denial of service attacks. Consequently, the platform should incorporate into its 
base architecture a variety of mechanisms to protect itself and its end users from 
attacks initiated either by other legitimate users or by forces outside the sphere of 
influence. Examples of such attacks include, but are not limited to: 

• Packet flooding, insertion, and sniffing 

• E-mail bombing 

• Packet hijacking 

In addition to corruption of service, the architecture must prevent service attacks that 
seek to either monopolize resources or deny access outright. Such attacks may be acci-
dental or deliberate; for example, a service peer may, as a consequence of a previously 
undetected bug, run amok, flooding the network with superfluous accounting records. 
On the other hand, a malicious user may attempt denial of service to others by sending 
to the gate boundless amounts of traffic in the hopes of exhausting cloud resources. A 
managed architecture should provide several mechanisms to both localize such 
attacks, and to reduce the effect of such circumstances on “innocent bystanders”. 

One approach leverages the unique capabilities of packet filters/firewalls. A firewall is 
able to monitor the throughput of individual TCP/IP sessions as well as the combined 
throughput of sessions associated with particular peers or particular IP addresses. It is 
possible to define firewall actions to use this information to control traffic by dropping 
packets after thresholds are crossed. Since these actions can be customized to each 
user or service, the platform could tailor such thresholds for different users or services, 
or classes of users or services. Thus, the platform should be able to localize and limit 
potential performance “damage” caused by a malicious or misbehaving user. 

In addition, since much service is enhanced by active gate “mediation” or proxying, the 
platform should support another level of control through monitoring and throttling of 
service requests in each “mediation agent”. For example, the stored profiles of users 
and services may associate network parameters with specific services. For example, 
electronic mail could use a high bandwidth but low priority connectivity, whereas cer-
tificate validation can use a lower bandwidth but high priority connectivity. 
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Finally, the nature of the architecture should tend to localize most traffic. The interpo-
sition of a gate element could mean that if the previously described mechanisms fail to 
control an overload condition, many will cause overload circumstances to become evi-
dent only to users of the affected gate. Users and services served by other gates will 
tend to be unaffected. Each gate provides redundancy to the attached users. 

4.2.5 Security Summary 

The requirements and principles given in this chapter are one way to reduce complex-
ity through middleware. This simplifies the mechanics of network access and service, 
and improves the capacity to grow and evolve. Service providers can be assured that 
their investment in this platform will continue to have value and that their procedures, 
practices, and goals will be supported long into the future. This groundwork defines 
fundamentals that allow providers and companies to establish and maintain the poli-
cies best suited to their business needs. The platform does not dictate solutions; it pro-
vides freedom of choice amid a wealth of mechanism. 

4.3 Scalability 

The typical architecture of an information system (shown in Figure 4-1) consists of cli-
ents that make requests in order to retrieve data from the servers. Clients and servers 
are connected through points-of-presence (POPs) to the interconnection network. The 
interconnection network could be for example the Internet, a private network con-
nected to the Internet, or just a private network. 

Figure 4-1: Typical Architecture of the Internet 

Typical connections from clients to the POPs are telephone dial-up connections, ISDN 
dial-up, LAN, etc. POPs enable not only physical connection to the interconnection 
network, but they also provide some other functionality; e.g., authentication, routing 
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and connection termination for dial-up connections. POPs provide links to intercon-
nection network such as T1, data dial-up (POTS or ISDN), etc. 

An interconnection network consists of the intermediate links that provide point-to-
point connections between POPs and servers. 

This architecture imposes many hotspots that could become bottlenecks if the 
amount of the traffic increases. These hotspots can be categorized according to their 
location:

Servers

At the server side, there are two hotspots that can become bottlenecks: the 
number of connections that can be handled by the server simultaneously 
and the bandwidth of the link by which the server is connected to the 
Internet. For most applications there is a limit to the number of connec-
tions that can be handled by the server simultaneously. Once this limit is 
reached, no new connection can be established without additional ones 
being terminated. On the other hand, the bandwidth of the link that con-
nects the server to the Internet is divided among many clients. If the num-
ber of the requests increases, then the response time to the clients is much 
higher than what users can tolerate. 

POP

At the POPs side, a similar problem occurs. There are two types of bottle-
necks: the number of connections provided for the clients and the band-
width of the link that connects POP with Internet. A large number of 
clients share the same link from the POPs to the Internet. The bandwidth 
of this link is divided among all of the clients when they are using it to 
transfer simultaneously. This bandwidth supports administrative func-
tions as well as client’s interactions with the Internet. The same link is 
used by different functions provided by the POPs: registration, authentica-
tion, access control, usage recording, billing etc. Most of the data needed 
for these processes is stored by one of the special server across of the Inter-
net. In order to get the data from remote special servers, POPs use the 
same link to the Internet as the clients are using. 

Interconnection network 

Bottlenecks can happen also at the intermediate links and routers of the 
Internet. This could happen during peak hours of network usage during 
which many connections between servers and clients exist. Since many 
connections can be handled by the same intermediate links and routers, 
these links and routers can become bottlenecks. 

There are many attempts to resolve each of these bottlenecks, but there were no sug-
gestions for the integrated solutions that could resolve most of these hotspots. 
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4.3.1 Current or Known Solutions 

The current and known solutions are presented through the short history of architec-
tures applied thusfar to the Internet; they range from the classical client/server archi-
tecture to the communicating proxy architecture. Multiple machines are introduced in 
order to run very popular services, and more and more POPs are distributed all over 
the country to enable connections for the clients. 

4.3.1.1 Client-Server Architecture 

The client-server architecture (as shown in Figure4-2) was the first architecture of 
Internet-hosted information systems. In this architecture, each client sends requests 
for Internet objects directly to the server, and the server responds to all requests. This 
simple architecture was efficient for small systems. However, scalability problems 
occur with moderate increases in the number of clients, the number of requests, and 
the size of the Internet objects. Internet information systems continue their dramatic 
global climb, as measured by the number of clients, number of requests, number of 
servers, and also the amount of available information. It is possible that forthcoming 
services will escalate this growth. For example, multimedia significantly increases the 
size of the objects through sound, pictures, and video. Such services may even support 
interactions between multiple video entities (consider, for example, personal videocon-
ferencing)

Figure 4-2: “Classical” Client-Server Architecture 

Advanced applications, if left unmanaged, can significantly increase the traffic over 
the Internet, as well as increase the load on servers and POPs. At some point, the net-
work, servers and POPs become bottlenecks. In addition, many other functions are 
implemented on servers: registration, authentication, access control, usage recording, 
billing, etc. These further increase server load; combined, they may increase network 
load beyond the capacity of the client-server architecture. 
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4.3.1.2 Client-Server Architecture Extended with Proxy Machines 

In order to decrease traffic through network and reduce load on servers, the proxy 
machines are introduced. Requests from the clients are not longer sent directly to the 
servers. They are sent to the proxies located nearby the clients (see Figure 4-3). Proxy 
machines act on behalf of both servers and clients. By caching objects, the proxies are 
able to directly respond to the clients without sending any request to servers. This 
reduces traffic over the network and decreases server load. These improvements can 
significantly reduce latency. Since proxies communicate with servers on behalf of cli-
ents, the communication between proxies and servers can also be optimized. For 
example, if multiple clients request the same object, only one request will be sent to the 
server instead of multiple requests from all requesting clients. The replication tech-
nique can also allow local “proxy-based services such as registration, authentication, 
access control, usage recording, billing, etc. This further improves system perfor-
mance.

Figure 4-3: Proxy Architecture 

While the proxy architecture improves the performance of the Internet information 
system, the gain was less than expected. There are two reasons. First, the proxies soon 
became the hot spots. The second reason is that proxies were isolated; they lacked any 
knowledge or connections to the other proxies. Therefore, they were not able to benefit 
from some nearby idle proxy, even when the idle proxy had the necessary functionality 
and information. Instead of sending the request to an idle proxy, the request was sent 
directly to the server. To make matters worse, nothing ensured the proxies would have 
the necessary information to satisfy the requests. Servers could be still become easily 
overloaded.

4.3.1.3 Architecture Based on Communicating Proxy Machines 

To gain from nearby proxies, proxy servers, such as the Harvest cache, enabled com-
munication between the cache proxies (see Figure 4-4). The communication scheme 
can be organized in many different ways, mostly in hierarchical communication struc-
tures. Hierarchical structure enables several levels of request-filtering before the 
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request arrives at the server. It also checks whether neighbor proxies can handle the 
request more efficiently than the server. 

Figure 4-4 Communicating Proxies Architecture 

This approach additionally reduces server load and traffic, but it could increase 
latency by a significant amount. Inappropriate and ad hoc communication schemes, as 
well as too many hierarchical levels, can push data requests through many stages. This 
significantly increases latency and traffic. Therefore, there is a need to organize the 
proxies into structures that can control the communication in an efficient way In 
addition, without organized proxies in more firm structures it is not possible to effi-
ciently implement all other functions such as registration, authentication, access con-
trol, usage recording, billing, etc. 

4.3.1.4 Multiple Servers and POPs 
In order to reduce the load on servers and POPs, multiple machines can be introduced. 
While this solution reduces the number of the connections and/or clients per 
machine, the link that connects these machines to the Internet could be overloaded. 
The solution with multiple machines and a single link to the Internet is presented in 
Figure 4-5, below. 
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Figure 4-5: Multiple Machines Sharing Single Link 

Each of the machines, which replicate the function of the server of POP, could have its 
own link to the Internet. This solution is presented in Figure 4-6. In this solution, both 
machines and links are no longer hotspots of the Internet information system. How-
ever, the interconnection network remains bottlenecked. 

Figure 4-6: Multiple Machines Sharing Multiple Links 

4.4 Extensibility 

The network must be highly extensible to permit the adoption of new services. Deploy-
ing new services that take advantage of the enhanced network support must be rela-
tively simple and cost effective. This extensibility must be possible for a wide spectrum 
of providers and their capabilities. The network should support large, well-supported
and designed services such as AT&T Worldnet, as well as one-person operations 
hosted in their homes or small businesses. 
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This would be possible only if there are well defined and standardized sets of interfaces 
that insulate the services from any particular network’s implementation. Conceptually, 
this requires an analog of the telephone dial tone and the RJ-11 modular plug in one's 
wall. The interfaces must provide the following: 

• The interfaces must be provided as APIs that target standard and widely used 
programming languages. For example, the network core functionality is typically 
written in C and C++, while client software may be written in the Java language 

• Different interfaces must target different subsystems and their use. It is neither 
practical nor desirable to create a single universal interface with the obligatory 
major overhead in marshaling data for various subsystems. Multiple access con-
trol issues only frustrates extensibility more. Instead, multiple interfaces – each 
addressing different subsystems and features – should be created. This assumes 
modularity of the underlying system 

Interfaces insulate the two sides from each other. They simplify extensibility through 
the addition of new services or systems, and they also enable the transparent improve-
ment of existing services. 

4.5 Design Principles 

The requirements, such as security, scalability, and extensibility, are technical and eco-
nomic requirements which the final design and architecture have to satisfy. They offer 
a guideline for what has to be done but not how they should be achieved. Any given 
requirement can be achieved in a number of ways; independently or collectively; ele-
gantly or add-hoc, etc. 

To guide the process of designing an IP Service Platform, we further define a set of 
design principles. These principles collectively form the basis of the design process. 
Their definition comes from the efforts of a core group of architects. Once the set of 
design principles is established, much of the specification of the design and architec-
ture becomes an exercise in execution. Furthermore, understanding the principles is of 
key importance in attempting to understand the final system, its components, and the 
relationships between the components. 

In our definitions, we use the term cloud to refer to an IP-based network implementing 
the policies of the network operators, offering the service logic, and managing its users, 
services, and resources. 

These seven principles are partially ordered to reflect their interdependence; the later 
principles depending on the adaptation of the earlier ones. The principles state the 
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cloud’s role in routing, membership, authentication, activity, mediation, access, and 
tracking.

4.5.1 Routing Principle 

Hosts associated with a cloud direct all traffic between users, services, and 
other networks to flow unconditionally through its edge gateways. 

Figure 4-7: Routing Principle: Peer-Gate-Peer Communication. 

For a given cloud, the edge gateways need to be under the cloud’s control and they 
need to mediate all packets between its hosts and other networks (clouds) even if it 
means only relaying packets from one host to another. Here, an edge gateway can be 
perceived as a next-generation router or switch that has computational capability and 
can be dynamically controlled from the cloud’s service logic. If hosts are intercon-
nected over LANs or extranets that do not regulate the host-to-cloud flows, then medi-
ation of the edge gateways requires explicit routing. This can use tunnels between the 
hosts and the edge gateways thereby directing traffic to the cloud (see Figure 4-7).

This is a very strong and somewhat controversial principle. It states that for any two 
hosts to communicate, their packets flow unconditionally through a mediating edge 
gateway. It is relatively easy to configure a host’s routing table to forward all packets to 
a gateway, Doing so however, does not deter someone from bypassing the policies and 
required services of its home cloud by simply reprogramming the host. The only way to 
protect against this is to either dedicate a private line to the edge gateway, or tunnel all 
packets. In the case that this is subverted, the benefits and services offered by the 
cloud become inaccessible. 

A weaker and somewhat more pragmatic form of this principle states that the connec-
tivity to the cloud is optional and established only for specific networked applications. 
While this offers the enabled applications the benefits of the clouds, overall security 
cannot be guaranteed and other nonenabled applications do not benefit. 
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4.5.2 Membership Principle 

All users, services, and other networks that establish a relationship with a 
cloud must register with the cloud. 

Figure 4-8: Membership Principle – One-time Initial Registration 

A cloud must know the identity and profiles of its users, hosted services and other 
clouds with which it has working relationships (as shown in Figure 4-8). This identity is 
known either explicitly through prior registration or indirectly via a third party repre-
sentative. Anonymous users may use a registered service as an access proxy to support 
a class of services on behalf of the user. Anonymous users, services, and clouds can 
form shared identities that yield a restricted access to otherwise registered services. To 
support this, a cloud needs a core directory service. 

This principle states that for any traffic to pass through the cloud, the identity of the 
user (or other services) and the service accessed by the user be known and managed. 
This enables the cloud to manage the network resources and access rights for the 
users, services, and other clouds assuming the next principle. 

4.5.3 Authentication Principle 

All traffic passing through the cloud must be authenticated. 

Given the Membership Principle, all traffic through the cloud needs to be authenti-
cated by a strong bilateral authentication process (see Figure 4-9). All flows need to be 
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associated with registered users and services. These need not belong to the cloud in 
question, but can be obtained by agreement from their respective clouds. 

Figure 4-9: Authentication Principle – Gates Identify Access to Cloud 

A strong bilateral authentication can be done either per flow or per session. This 
strong form of authentication allows the support of services needing strong identifica-
tion such as VPNs and E-Commerce applications; it also nicely supports services need-
ing only a weak form of authentication such as DiffServ and IntServ for which the 
identity of the application is sufficient, or no authentication at all, such as public and 
anonymous web access. Given this principle, the identities are used and offered to ser-
vices based on the specific policies of the cloud and agreements with the users and ser-
vice providers. 

4.5.4 Activity Principle 

The cloud tracks all active users and services. 

The act of authenticating and the subsequent connectivity activity by a user or a ser-
vice are tracked, as shown in Figure 4-10. The awareness of active participation is 
needed for the proper management of resources and nicely supports services requiring 
that information. Active directories automatically keep track of users’ sessions and 
their locations. This function combines nicely with the Authentication Principle that 
can trigger log-in and log-out events to automatically update the active directories. 
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Given the Routing Principle, the knowledge of the activity is guaranteed for all flows 
through the cloud, independent of the applications. That is, the responsibility to keep 
track of the users’ activity – at appropriate flow or session levels – falls on the cloud 
and not the applications. 

Figure 4-10: Activity Principles – Gates Monitor Authentication 

4.5.5 Mediation Principle 

The cloud must have the ability to mediate and translate flows through the 
cloud without compromising the data privacy and integrity. 

Figure 4-11: Mediation Principle – Clouds Redirect to Service Proxies. 

Application-layer protocol (e.g., FTP, HTTP, or TELNET) mediation and translation 
can be supported via protocol-specific transparent proxies managed by the cloud (see 



124 MIDDLEWARE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

Figure 4-11). The cloud can redirect certain control protocols at the edge gateways to 
network-side proxies driven by the service subscription mechanisms. This mediation 
can be used to enforce service policies, implement network-level resource manage-
ment and services such as fine-grain access control or usage tracking, or provide value-
added services for service providers. 

The mediation principal is also controversial given the uncertainties of nonintrusive 
correctness preservation of network semantics under protocol transformation. Chang-
ing the flow can be problematic. If the end points assume a particular network state 
and one changes characteristics of the flow, it potential violates state assumptions 
within the network. 

On the contrary, the intention is not to provide arbitrary modification, but rather 
enable synergistic cooperation between appropriate elements, in a manner that pre-
serves the essential protocol assumptions. 

4.5.6 Access Principle 

The cloud supports both coarse-grain and fine-grain access control at the edge 
gateways for all users, services and other networks defined by a negotiated pol-
icy.

Figure 4-12 Access Principle – Peers Manage Traffic at Gates 

Coarse-grain access control is the ability to control connectivity based on the source 
and destination IP addresses, ports, and transport layer protocols. This removes the 
need of the end-point devices (e.g., servers) to deal with access control and policy, and 
places the requirement on the cloud. This principle imposes the use of dynamically 
managed firewalls and packet filters at the edges of the cloud (as shown in 
Figure 4-12). This changes the classical use of firewalls as protecting the LAN from the 
outside world to protecting the cloud (the core network) from its end points, and the 
end points from each other. 

It is instructive to reconsider the Routing Principle in view of the Access Principle just 
described. Fine-grain access control is the tightly coupled support of transparent prox-
ies performing application protocol mediation redirected at the edge gateways. Fine-
grain access control is the ability to control access by understanding the specific pro-
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tocol and the data content of the messages. For example, simple HTTP coarse-grain
access mechanisms can easily be bypassed by placing an HTTP relay (i.e., a proxy) out-
side the gate since the destination URL is encapsulated in the HTTP header, which fire-
walls and packet filters do not analyze. This can be easily controlled by analyzing the 
header by an HTTP access control proxy or similar forms of content inspection. Such 
access-control proxies can be collocated with the edge gateway; they may also refer the 
credentials and request to a legacy application that contains the access-control logic. 

The access control at the edge gateways depends on both the Authentication and 
Activity Principles for managing state information about individual sessions or fl ows, 
and on the Mediation Principle for fine-grain access control. 

4.5.7 Tracking Principle 

The cloud generates usage and audit records for traffic generated by sub-
scribed services and users. 

Figure 4-13: Tracking Principle – Usage and State Changes Logged at Gates 

Assuming the Activity Principle for identifying the owners of network traffic and the 
Mediation Principle for monitoring and analyzing traffic, the cloud can submit usage 
records for various events, connections, times, or content on behalf of the registered 
services (as illustrated in Figure 4-13). The collected records can then be accessed by 
authorized users and services. This principle enables the cloud to support accountabil-
ity, microbiology, and self-administration. The Routing Principle along with the 
Authentication Principles guarantee that all usage is accounted for. 

4.6 Summary 

The design principles presented form a basis from which the design and architecture 
of a IP service platform can be built, on which existing and new services can be 
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deployed, and on which network and hardware vendors can design their components. 
Their choice is distilled primarily from the collective consideration of the require-
ments and the changing nature of the Internet as it relates to large service providers. In 
most cases, however, the adoption of such principles becomes the decision of the cor-
poration undertaking the design of the IP Service Platform. 



CHAPTER 5 Cloud Architecture 
and Interconnections 

In order to realize the vision of moving some applications into the network, where they 
can provide better service at lower cost, we need to reengineer the network slightly. 
This chapter describes how to evolve the network through service-oriented clouds, and 
to interconnect these to create a flexible network fabric. This builds upon legacy net-
works, commercially available IP networking products and standards-driven proto-
cols. Such tools are one element in the design of appropriate redundancy, specific 
interconnections and the trade-offs between centralization or distribution. The result-
ing networking middleware readily satisfies the complex and changing operational 
requirements for capacity, throughput and reliability. This achieves low cost through 
use of “off the shelf” general-purpose computers. 

As part of the network reengineering, clouds will tend to rely upon optional distrib-
uted network elements (DNE). These unify a wide range of network elements through a 
single virtual network connection and APIs, as presented later in Section 5.5. Consider 
the example of VPN services superimposed upon lower-level capabilities through plat-
form-based software. This leverages the underlying network capabilities, while drawing 
upon higher-level VPN techniques of tunneling and secure routing. This could secure 
IP routes through L2TP or IPSec for one user, MPLS for another, and custom encryp-
tion for yet another. 

Network elements should exhibit a predictable and stable behavior that is largely 
immune to changes in configurations or components. Middleware achieves this 
through a uniform set of open APIs that satisfy detailed functional requirements irre-
spective of specific configuration. This is fundamental, particularly given the recogni-
tion that networks – and the Internet in particular – are fluid, “moving targets” that 
defy any purportedly “optimal” configuration. The middleware itself caters to a busi-
ness-oriented service model supporting flexible provider roles. This service model 
accommodates the changing definitions of providers and infrastructure. 
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This entire section presents a concrete discussion of hardware and software that 
accomplish these goals. The current chapter begins with the architectural description 
of general architecture comprising an internal backbone network with externally fac-
ing SNodes (service nodes). The SNodes provide services near the network edge, where 
computing engines can serve the locally attached networks, thus attenuating the 
increased backbone traffic. Scalability relies on nearly stateless protocols and intelli-
gent network interactions. 

The chapter proceeds through a sequence of increasingly powerful systems – starting 
with a small cloud built from three computers, which supports the full middleware 
capabilities and the APIs. This configuration adeptly supports community-scale
SNodes, and is also suitable for service development. The small cloud can evolve to 
support a wider range of services by joining a larger network comprised of multido-
main clouds (Section 5.6). Cloud capacity and reliability can be increased by adding 
processing power – either through more engines, or faster multiprocessors. These 
larger clouds leverage the “elastic capacity” designed into the middleware though tech-
niques such as caching and load balancing. These techniques support smooth evolu-
tion into a substantially larger cloud by adding gates, disks and internal networking. 
This evolutionary path eventually leverages hundreds of computers, fault-tolerant
components, optimized router networks and long-distance backbones. It supports 
nationally deployed services. These retain the same software and data stores as the 
smaller systems. 

Such capabilities enable fully reliable eCommerce and other essential services. These 
services are reliably exported to other clouds without modification. This model com-
bines multiple autonomous clouds and draws upon middleware capabilities of interna-
tionalization. Each cloud supports a domain composed hierarchically of accounts, 
users and services. Intercloud trust relationships extend privileges to specific accounts 
or users from other clouds. Multiple fully autonomous clouds thereby interoperate and 
provide mobility of services and users. 

The chapter also discusses a novel distributed cloud utilizing the public Internet for 
the cloud interconnections. We conclude with a discussion of Internet routing as it 
affects middleware. 

5.1 Cloud Architecture 

All clouds share the prototypical architecture of an edge gateway enforcing a security 
perimeter, thereby protecting core services and network-switched traffic. The gateway 
supports intelligent services through service-hosting and network intelligence such as 
routing and protocol mediation. The core services include databases that contain both 
dynamic and persistent object-oriented information. The gateway and core are logical
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entities that may be deployed in multiple components or distributed configurations as 
required.

5.1.1 Applications, Kernels and Switches 

A cloud functionally consists of three major layers: application layer, kernel layer and 
switch layer. Each layer controls traffic according to the authentication and encryption 
policy The traffic is either encrypted/decrypted and passed through a given layer, or it 
is redirected to a higher layer. 

Application Layer 
The application layer supports registration, authentication, encryption/ 
decryption, etc. This layer replicates the data and functions in order to effi-
ciently control traffic on all three layers. The application layer also provides 
fine-grain access control mechanisms. Communication through the secu-
rity perimeter is regulated at multiple granularities. 

The kernel layer is mainly responsible for the routing and coarse-grain
access control through the support of firewalls, such as packet filters. 

The switch layer supports physical transport and encryption/decryption 
functions are performed by specially designed hardware devices, such as 
ATM switches. The application layer provides all needed data for the 
switch layer and prepares the switch layer to work at high speed. The main 
task of the switch layer is to support high-speed communication and real-
time applications that need high bandwidth, such as telephony, video con-
ferencing, and the like. 

Kernel Layer 

Switch Layer 

5.1.2 Points of Presence (POPs) and System Operation Centers (SOCs) 

The physical architecture of a cloud is structured to concentrate most of the service 
logic as a distributed environment at the edges of the managed network. At the edges, 
physical Points-of-Presence (POPs) aggregate traffic from hosts and other networks, 
and send it into the cloud through a Service POP (SPOP), as shown in Figure 5-1.

POP
POPs are the physical points of presence that aggregate traffic from a vari-
ety of hosts and networks into the cloud. This consists of IP traffic ingress 
from LANs and WANs; terminating PPP connections from modems over 
PSTN; or terminating voice and FAX traffic from a POTS line. All traffic 
becomes IP based once it passes into the physical POP. 

SPOPs are the Service POPs that implement middleware layer service logic. 
In addition to other functionalities, SPOPs act as gateways to the backbone 

SPOP
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Figure 5-1: Points of Presence and Operating Centers Located at Network Edge 

of high bandwidth/low latency IP transport to other SPOPs and POPs, as 
shown in Figure 5-1.

SOC

System Operating Centers (SOCs) are SPOPs dedicated to the system mon-
itoring and management purposes of the cloud. SOCs may, or may not, 
have POPs connected directly to them as traffic to the SOCs must flow 
exclusively through the backbone. 

An SPOP can be provisioned in a number of different ways depending on the capacity 
and throughput of its connections. For small to medium throughputs and a limited 
number of users accessing the cloud through this SPOP, the platform’s service logic sys-
tems can be placed on a single (possibly a multiprocessor) machine. Here, the edge 
gateway implements functions such as routing and firewall as well as the service func-
tions such as usage recording and access control. A single SPOP constructed with cur-
rent technology can provide all service logic and network functions for several 
thousand users. 

For a much larger workload and a greater number of active users and services, the 
SPOP can be provisioned as a group of distributed network elements in which high-
speed smart switches support the network functions. The service functions utilize a 
cluster of edge gateways that offload the router/switch functions to a distributed net-
work element (DNE, see Section 5.5.2). These two configurations are shown in 
Figure 5-2, where SPOP #1 supports large user bases through replicated processing and 
a distributed network element (DNE), and SPOP #2 is a single node. 
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The SPOPs actively support the conventional end points – users and servers – thereby 
enabling their active participation in the cloud’s service logic and networking. These 
end points must support IP-based communication and an active control channel to an 
edge gateway in an SPOP. The channel enables and controls the managed interactions 
between the peer and the cloud. A peer may, for example, ensure nonrepudiation of 
action as well as interact with active directories. 

Figure 5-2: Interconnected SPOPs Using DNE and Full Gates (non-DNE).

Peers interact securely with other peers through the SPOPs of their cloud, as well as 
with other clouds with established peering agreements. Mandatory encryption pro-
tects the authentication and control functions, and optional encryption protects other 
interactions when deemed necessary, For example, a user who desires Internet access, 
would first establish an authenticated connection to the cloud through an SPOE The 
user could then access other SPOPs, including the Internet-connected POPs. 

5.1.3 Gates, Cores, and Stores 

The overall networking middleware architecture is organized upon three types of the 
logical function: gates, cores, and stores. These form the basic elements of the distrib-
uted system, and can be combined into points of presence, or POPs, as shown in 
Figure 5-3.
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Gates

The gateway is composed of one or more gates. These form a security 
perimeter protecting the system and its users from intrusion or improper 
use of resources. The perimeter builds upon a dynamic rules-based firewall 
that blocks unauthorized traffic, removes fraudulent packets, and identi-
fies legitimate traffic. All authenticated data transmissions traverse the 
firewall and become subject to the security infrastructure. 

Figure 5-3: Large Cloud Showing Gates, DNEs, Stores, and Core 

The gates support both the packet routing function, and also a service 
logic function. The gates enforce authentication, advanced security ser-
vices, access control, resource usage tracking, caching, and international-
ization. Gates provide protocol mediation and service as needed. 

The routing functions enable connections by external networks, thereby 
supporting communications with the core servers and other external net-
works. These networks connect clients, servers, stores and POPs residing 
outside of the firewall, as well as noncompliant legacy and enterprise net-
works. The gateways are constructed from one or more gate machines. 

Section 5.5.2 ”Distributed Network Element Integrates Gate with Network 
Elements” describes the architecture that distinguishes these to roles. 

Core
The Core maintains distributed information, thus supporting highly 
responsive and reliable operations. Distributed algorithms are used to 
maintain a consistent system state, thereby providing a degree of “loca-
tional independence”. The core server maintains dynamic service-specific
and connection-specific information on both ,authenticated and nonau-
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thenticated entities. It manages local caches, providing minimal latency 
delay. Global correctness is preserved through locking and hashing algo-
rithms. Dedicated hardware supports this repository of global information, 
which can be deployed on one or several machines, either at a single loca-
tion or distributed through networking. 

The Core contains both dynamic data and persistent information. 
Dynamic data is rapidly changing as it reflects the state of all cloud-sup-
ported connections. It includes substantial authentication data necessary 
for strong authentication of user sessions. Maintaining global correctness 
for all of this data exceeds the capabilities of commercially available LDAP 
servers, yet is nevertheless essential for active directories and closely tied 
access control and usage recording. Resolving the problem through highly 
optimized code, the system caches the relevant state upon establishment 
of a secure session, and the state is maintained for the duration of the 
user’s connection to the network. 

The Core also maintains persistent information about accounts (users and 
services), recent usage records, and stored cryptographic credentials: 

• Registration database. This associates a uniquely numbered billable 
entity with each individual account, user or service. Data for the 
billable entity includes the user’s name, address, point of contact, 
and other pertinent account information 

Usage Database. Operating as a nonrepudiation service, the usage 
database retains the details of an account’s resource usage 

• Authentication base. Secure services and transport utilize crypto-
graphic keys, X.509 certificates, passwords and associated informa-
tion. These are retained in a structured authentication base and 
are protected by the security perimeter 

•

Store

A store implements services dealing with maintenance, provisioning, and 
daily use of the system. This includes white and yellow pages directory 
functions, customer care, billing, e-mail, voice mail, and paging messaging. 
It also covers such related databases as customer contact and tracking, 
archival usage records, billing histories, and historical network logs. 

5.1.4 POP Based Authentication and Aggregation 

The combination of gates, cores and stores forms the POP, which provides an access 
point and service point, as shown previously in Figure 5-3. This provides multiple gran-
ularities of network connectivity and authentication services. The finest granularity is 
an individual subscriber. The individual subscriber registers an identity with the cloud 
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and then authenticates directly to the cloud for access to both subscriber-hosted ser-
vices and cloud-supported services. 

At a coarser grain, the POP supports externally hosted aggregation services typically 
operated by an aggregation provider. The provider is a corporate entity, whereas the 
services are the “electronic commodity” available through the provider. The aggrega-
tion service combines the traffic of many subscribers. Aggregation services are config-
urable through the aggregation provider, an entity that operates a pool of modems or 
LAN connections and provides value-added services to its subscribers. The provider 
registers subscribers, accepts responsibility for their activities, and supports an 
authentication method. Standard authentication support includes RADIUS, NAT-
based Web-browser access, and Microsoft internetworking. The aggregation server 
passes the composite traffic to the POP, where the users receive services in accordance 
with access permissions of the aggregation provider. 

Aggregation by Internet Service Providers (ISPs) supports public use of cloud services, 
for example through bulk sale of services. The SPOP allows administration as well as 
“branding” of an ISP’s service. A corporate enterprise, by way of contrast, receives spe-
cialized and private aggregation. The enterprise augments existing corporate services 
through cloud-managed services available to authorized employees. Attractive ele-
ments of these models include the preservation and extension of existing logon identi-
ties and their associated business relationships. 

In summary, the POP interacts closely with cloud security structure. Consider the 
example of a dial-up service building upon the RADIUS authentication server common 
to corporate and public networks. These servers may authenticate their users with the 
RADIUS server and proxy software of the cloud, thereby leveraging the provider’s exist-
ing infrastructure. This specifically includes RADIUS as an authentication mechanism 
to obtain cloud access, and also RADIUS authentication as a supported cloud service 
provided to other authentication platforms. Both of these leverage the existing infra-
structure to support rapid construction of scalable and reliable services. 

5.2 Small Cloud – Development and Providers 

A small cloud (see Figure 5-4) supports the complete functionality of a smart network, 
including routing, authentication, access control and proxies. When such a cloud is 
connected to the backbone network, we call it a service node (SNode). SNode users 
may obtain membership in supported services, security protection, and other essential 
services. The architecture is suitable for small-scale (entry-level) providers of either 
networks or consumer services, and it provides a scalable approach for services devel-
opment.
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Within this small SNode, all secure information resides on a single core server (labelled 
coredb in the figure). Essential cloud services run on the storel machine and pro-
vide web server, mail and key applications. This cloud shows one external gate 
(gate2. vanecek. com) connecting the “insecure” internet with the cloud and ser-
vices. The gate supports all standard services, including authentication, access control, 
and submission or retrieval of usage information. The gate supports Internet stan-
dards including routing and DNS. 

Figure 5-4: Single-Gate Cloud with Centralized Store 

The reader will notice special “virtual IP address” named cloudvip.This protects the 
internal cloud address, insulates the users from the internal network dependencies 
and variabilities of a distributed network, and also provides a means by which the 
cloud can provide subscriber-specific services. The cloudvip name is advertised by 
the domain name service (DNS) running on the gate. The gates determine the services 
that will be provided to all internally-bound connections. The gate may route the con-
nection to a cloud component, and may also proxy the connection when appropriate. 

Protection of the cloud’s internal addresses is not inappropriate. A user should never 
directly address core services. The core is only addressable from inside the cloud, 
where it provides service to cloud components and systems management. This mecha-
nism not only protects the core, but permits resolution of cloudvip to different 
addresses in a multiple-gate environment, and is one means of load balancing. 

The small cloud of Figure 5-4 can grow by adding more gates, stores, or network adapt-
ers. Figure 5-5 shows an SNode with three edge connections. This leads incrementally 
to the construction of larger service nodes. 
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Figure 5-5: Small SNode Composed of Three Gates and One Core 

5.3 Large Service Node Cloud, the SNode 

The SNode architecture scales to very large sizes and reuses the value-added services 
that were developed on smaller SNodes. A very large configuration combines fault-tol-
erant processing with a high capacity self-healing transport network This class of sys-
tem delivers coordinated services through the aggregation of many multiprocessors, 
having a value of many millions of dollars. The system load is reduced by caches at the 
gates, and all components (gates, core and store) run in a failover mode. The disk 
arrays, for example, include multiported disks with failover software. Internal switch-
ing uses fast network switches supporting various routing protocols. Management 
functions leverage the additional fault-tolerant routers, disk arrays, and failstop pro-
cessors. The configuration supports continuous “24 x 7” operation. 

Due to the large size, we partition the large SNode into three major subsystems. The 
mediation subsystem dynamically mediates protocols, supports authentication, and 
provides access control. It can interact with the transport subsystem to ensure satis-
factory network performance by dynamic adjustment of switches and routers. 

A distinct Hosting Subsystem provides peer-enabled server machines. Many of the 
hosting machines support network-enhanced proprietary applications. Others are 
dedicated to operations support such as customer information, billing and manual 
interactions. The third major subsystem, the transport subsystem, is composed of hops 
that provide the dial-based as well as IP-based connectivity to other SNodes. 
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While the specific management algorithms require capacity-based “tuning” for opti-
mal performance, the basic middleware runs unaltered on clouds of different sizes. 
Software-based services retain the same API interfaces. The platform middleware sup-
ports these APIs through large-scale versions of the underlying components, as well as 
through platform-managed extensions. These extensions augment and combine com-
ponents through middleware techniques described in Chapter 9. 

Figure 5-6: Logical View of a Large Middleware Service Node 

5.4 Distributed Network Cloud (GuNet) 

The networking middleware also runs on a rather surprising configuration utilizing 
the public Internet as the connection between the gate and core components. Known 
as GuNet, the gates are geographically distributed at University campuses. Instead of 
secure routers with spare capacity, the IP traffic follows the often-congested public 
network that is subject to long delays, outages, and security attacks. Security attacks 
are a virtual certainty because the Internet is not secure in any sense. Connectivity by 
Virtual Private Networks (WN) is mandatory for the core interconnect in such cases. 
This can be provided with hardware devices (such as Cylinks Secure Domain Units 
(SDU) encryption engines), or through software methods, although this increases CPU 
load.
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A diagram of a GuNet cloud is shown in Figure 5-7. This shows multiple SPOPS, repre-
sented by gates such as uoregon-gate, cmu-gate, and drexel-gate. These SPOPS main-
tain private core information; for example, cached information about the users and 
services that the SPOPs communicate with. The SPOPs also share a central core on the 
cloudvip subnetwork of the sj-gate. Access to the core uses the VPNs that link the gates 
through the Internet. 

Figure 5-7: Distributed GUNet Cloud Via Cylink’s VPN Solution Over Internet 

The unreliable and unmanaged public Internet interconnections can be viewed as a 
well-nourished “petri dish” of network pathologies. This is quite important in the 
design and development of reliable systems. The relatively large error rate and the 
unpredictable error model guarantee an effective “stress test” of the network middle-
ware. The actual test environment presents fault scenarios not found in simulated test-

ing. Although network engineers frequently use fault simulators (such as the TAS®) to 
understand system behavior under erred conditions, such simulations are constrained 
to specific fault models. The simulation of “real world” error scenarios is frequently 
elusive. The distributed GuNet cloud leverages the changing error profile of the Inter-
net, thereby providing a test bed for interesting network problems. 

The fact that GuNet has been “running live” in this environment for several years is a 
convincing demonstration that the software is perspicuous and adaptable. It is refresh-
ingly free of timing dependencies, link-delay assumptions, and their ilk This validates 
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our design assumptions, particularly that of a single software definition that supports 
many configurations. 

5.5 Gates as Distributed Network Elements (DNE) 

Service functionality is concentrated at the network edge where the SNodes provide 
intelligent network-based services. The cost-effective realization of these services 
requires careful resource management. Unfortunately, data networks today do not con-
tain much integrated intelligence; they transport data packets between hosts by rout-
ing and switching the packets. In relation to the network topology, the path taken by a 
data packet varies from moment to moment. The hosts typically have only an indirect 
influence on the routes, bandwidth or delay. These routing algorithms are designed for 
reliability and good aggregate behavior, but their typical behavior does not necessarily 
satisfy the specific resource requirements of diverse applications. The performance of 
the edge gateways, not surprisingly, presents several technical challenges in the areas 
of network management, including routing and resource allocation within the network 
elements.

5.5.1 Routing Protocols and the Inherent Difficulty of Resource Allocation 

Routing is inherently difficult due to the large number of routers under multiple 
autonomous systems (AS), dynamically changing loads, and variation in topology. 
Routes between ASs rely on external gateway protocols (EGPs), thereby achieving inde-
pendence from the routing within the AS. EGPs consider coarse-grain constraints 
imposed by independent ASs, which may belong to different network providers. Border 
Gateway Protocol (BGP, RFC-1771) is the best known EGP. 

Routing within an AS considers different constraints through an internal gateway pro-
tocol (IGP). These include the Routing Information Protocol (RIP, RFC-2453) and the 
substantially more powerful Open Shortest Path First (OSPF, RFC-2676). OSPF is a 
dynamic routing protocol in the sense that it detects topology changes and adjusts 
routes accordingly. It is the most powerful of the current link-state routing algorithms. 

OSPF describes route characteristics through the type of service (TOS) feature and cor-
responding DS header of the IP packets. TOS describes route characteristics such as 
monetary cost, reliability, throughput and delay. However, routers are not required to 
support all TOS values; nor can the routers ensure suitable routes for each service type. 
In practice it is quite difficult for a host application to control either the specific path 
or the characteristics of the path. It is very difficult in standard IP to make the associa-
tion between data flows and the application to which they belong. 
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This gives rise to one of the most difficult aspects of implementing an end-to-end
resource allocation policy in a network environment. To run properly, a multimedia 
application needs a variety of resources. Host behavior is sensitive to allocations of 
CPU time, memory allocation and I/O cycles. Network behavior such as bandwidth and 
delay are sensitive to the specific routes between network elements, as well as the low-
level allocations in the switches or routers, for example queue space and I/O ports. 
These allocations are difficult to assign. 

Two models describe different forms of network resource allocation. IntServ (RFC-
1633, RFC-2210) strives for “guaranteed and predictive service”. Thus we have proto-
cols – such as RSVP (RFC-2205) – which provide a method, rather than guaranteed and 
scalable service. The differentiated services (DiffServ, RFC-2475) model for QoS is sat-
isfied with more modest goals that do not require substantial saved state, and hence 
DiffServ is scalable. 

Under DiffServ an application can suggest bandwidth allocation. The network element 
can either satisfy or reject the request; the element does not provide remedial actions 
for rejected requests. This model cannot provide direct support for resource alloca-
tions, simply because the network elements do not possess sufficient information 
about the availability of resources throughout the network, The DiffServ model never-
theless provides guidelines for the management of network resources, and identifies 
the problem as the responsibility of the administrative domain such as the network 
operator. As stated in the RFC: 

The configuration of and interaction between traffic conditioners and inte-
rior nodes should be managed by the administrative control of the domain 
and may require operational control through protocols and a control entity. 
There is a wide range of possible control models. The precise nature and 
implementation of the interaction between these components is outside the 
scope of this architecture. However, scalability requires that the control of the 
domain does not require micromanagement of the network resources. [Diff-
Serv, RFC-2475, page 20] 

Even without the combinatorial explosion that micromanagement would bring, the 
control models, protocols and entities still impose a performance penalty and generate 
extra traffic in the network. 

The DiffServ model recognizes that substantial performance improvements can be 
obtained simply by providing several classes of traffic. In the simplest form this distin-
guishes low bandwidth traffic from the high bandwidth isochronous traffic. The pri-
mary origin of low bandwidth traffic is control messages. These are typically generated 
by value-added services and receive gate mediation. Control messages must receive 
rigorously enforced security services. On the other hand, high bandwidth isochronous 
traffic carries mostly raw data such as video and audio. The transport is the exclusive 
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domain of specialized switches and routers. Control of the high-speed transport may 
use either a low-speed link or specially coded control words embedded in the high-
speed stream. 

Refinements of the SNode architecture can ameliorate the major bottlenecks on high-
speed transport. The bottlenecks occur due to the conventional hosts and IP transport 
delays. Regardless of CPU power, the transfer of data from an input network interface 
(NI) to an output NI limits the sustained throughput of the gateway, and may also 
imposes substantial overhead on the CPU. The distributed control of the TCP/IP pro-
tocol is another bottleneck. For example, the sliding-window methods of congestion 
avoidance (such as “slow start” as well as “fast retransmit”) impose limits that may 
best be resolved through supplementary signalling. 

The central concept is the avoidance of NI-based hosts in the path between the origi-
nating host and network. The data must travel, as much as possible, on network ele-
ments exclusively, Shifting traffic from the slow network nodes to the fast network 
elements is desirable because the network elements provide better switching than any 
host can provide. 

5.5.2 Distributed Network Element Integrates Gate with Network Elements 

To address these challenges, we devised an edge gateway architecture that is based on 
a Distributed Network Element (DNE), as shown in Figure 5-8. A DNE is a new genera-
tion of network gateway that provides the services offered by our clouds without com-
promising the performance of the network. 

A DNE is a network element which has its main functionality implemented on a sys-
tem formed by at least one transport element (an ATM switch or a router) and one ser-
vice element (a gate in the SNode). The DNE provides APIs and hardware that 
combines multiple forms of transport with the varying service requirements of the ser-
vice elements. 

5.5.2.1 DNE Specialization of Gate Functionalities 
The DNE behaves like a single virtual network device supporting the gate functionality. 
This functionality can be split into two parts, one dealing with the handling of packets 
and one dealing with the handling of services. The transport related functions are con-
trolled by the DNE network element, while the service related functions are placed on 
the service node (which we’ll continue to refer to as a gate). The gate is then seen as a 
higher-level controller for the associated network switch or switches. This is shown in 
Figure 5-8.

The high-speed transport utilizes any of the new generation switches or routers that 
can be dynamically controlled via either a custom protocol, or a standard protocol. The 
DNE adapts to standard switch protocols including Virtual Switch Interface (VSI) and 
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Figure 5-8: Distributed Network Element (DNE) 

General Switch Management Protocol (GSMP, RFC-2297). It interacts, for example, 
with Cabletron’s Smart Switched Routers controlled through SNMP; Cisco’s BPX ATM 
switches controlled through Virtual Switch Interface (VSI); or Cisco’s IP routers (IOS 
12.05X) controlled through their proprietary Application Service Architecture (CASA) 
protocol. The DNE provides a clear separation between the intricacies of these proto-
cols, on one hand, and the function areas required by the gates, on the other. 

5.5.2.2 DNE Functional Areas 
The network element can itself be a single unit or a tightly coupled set of units that col-
lectively support low-level packet functions related to quality of service, packet filter-
ing, firewall, authentication, resource allocation, stream encryption and decryption, 
tunnelling, routing tables, and data flows. More specifically, consider the following: 

Coarse-grain access control by rejecting or forwarding packets based on 
the source and/or destination IP addresses, ports and protocols. Traffic 
can be allowed or disallowed at the network elements. The network may 
implement partial access control, as well as software-defined routing, as 
shown in Figure 5-9.

Redirection of a stream to a new destination IP address/port based on the 
source and/or destination IP addresses, ports and protocol to balance the 
load of the network or satisfy QoS SLAs. Network elements can receive spe-
cific traffic routes, as shown in Figure 5-9.

Filtering

Routing, Switching and Load Balancing 
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Figure 5-9: Network-Based Access Control 

Control and Management 
Distribution and dynamic control/management of network elements 
though VSI or GSMP. We present a management interface for relatively 
static management and monitoring of the DNE in Chapter 9. 

Resource Allocation and Monitoring 
Collection and monitoring of traffic statistics, utilization and performance 
data. As service-based network systems become more complex and dis-
tributed it becomes critical that a network management system employ 
real-time expert management tools. These tools dynamically monitor and 
allocate system resources, while also adjusting the parameters of the net-
work control algorithms. Operating as the natural extension of a firewall, 
traffic management can be deployed within networking elements such as 
routers and switches. 

QoS
Allocation and assignment of traffic classes and switch resources. The 
DNE provides an API and formal protocol to control supported QoS by 
access control devices, network elements and applications. These define 
“service spaces” that map QoS policies to traffic flow attributes. This allows 
layer 2 to layer 4 switching/routing. The industry trend is to access net-
work elements and nodes in a unified way using directory services and pro-
tocols such as Lightweight Directory Access Protocol (LDAP, RFC-1777).

Network Development APIs support increased integration of the software-
defined gate architecture as it interacts with the DNE hardware and switch 
infrastructure. We refer to this as the DNEAPI; this software is provided in 
C++, CORBA and Java, as discussed in Chapter 9. 

Transport
Integration of IP Multicast and tunneling protocols with the cloud middle-
ware functions. This improves scalability and supports virtual private net-
work functions with efficient network-level technologies. 
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5.5.2.3 DNE Behavior 

The SNodes obtain DNE services through APIs and thereby can control and exploit the 
streaming-data capability built into the DNE. This element is independent of its con-
trolling gate’s operating system. It is instead controllable through standard interfaces 
with access through a set of C/C++ and Java APIs. This provides building blocks for the 
next generation of networks that tightly integrate between nodes and elements. In con-
cept this is similar to the device controllers that support disk drives or printers on per-
sonal computers, although the internal control of the DNE is considerably more 
complicated due to stringent requirements of maximal transfer rate, minimal delay, 
and zero lost data despite fluctuating source loads. 

To illustrate a scenario, suppose that a client wants to connect to a video-streaming
server. The client traffic needed for the “negotiation phase” (e.g., authentication and 
access control) requires high security due to the authentication and billing content. 
The DNE forwards this to the network node via a secured connection. The node veri-
fies the client identity, access permissions and service requests. 

When a service requires high bandwidth with QoS support, the DNE commands the 
network element to open a direct connection between the client and the server. This 
traffic does not need to be encrypted by the distributed network element, since it will 
bypass the network node and therefore it cannot endanger the secure domain. Of 
course, the traffic can still be encrypted at the application level. The node thus imple-
ments the user, provider and service policies and maps them onto the network ele-
ments. During the client-server communication, the gate can monitor the connection, 
monitor the end point identities and resource usage, and also redirect the traffic at the 
start or end of a connection. This supports the mediation design principle while also 
satisfying the performance requirements of transport services. 

To summarize, the DNE is a concept for a new generation of network gateways. This 
architecture is highly scalable and avoids a significant bottleneck for high bandwidth 
traffic – the network node – while allowing the network nodes to act as general-pur-
pose computers that add intelligence to the network. In this, it should be clear that our 
design principles and the proposed cloud architecture make up but one model of this 
system. In any case, this dual system behaves like a single virtual and intelligent net-
work element with its functionality implemented in a distributed manner. It promotes 
a new concept: by using open and dynamic APIs and standard protocols, the network 
elements and nodes constitute a tightly coupled dual system. 

5.6 Scaling with Multiple Clouds 

DNEs allow scaling at edges of a given cloud. Scaling can also be achieved in a number 
of other ways. We previously described a single high-capacity cloud (scaling of the pro-
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cessing power) and a single geographically distributed cloud (scaling of location). The 
cloud architecture can support multiple account hierarchies (called domains, as will 
be discussed later). The domain structure may also vary in accordance with the admin-
istrative concerns that are relevant to the domain. 

Independent domains can be hosted on fully autonomous clouds. Each cloud is sepa-
rately administered. Each cloud hosts a unique domain, providing a convenient parti-
tioning of the users while also bounding the necessary cloud size. New domains can 
then be added without affecting the other clouds, and the complexities of increasingly 
larger clouds can by managed through several smaller domains. 

A cloud may establish trust relationships with other clouds, and subsequently request 
authentication of “visiting” users or services. The trust relationship supports the selec-
tive sharing of domain objects. The reader may view multidomain as similar to post 
office routing – each user has a unique address. These addresses can be used to obtain 
any necessary information about the user and provide appropriate services of the 
user’s “neighborhood”. 

There are a number of important considerations in multidomain deployments. These 
include the problem of unique names, as well as maintaining the trust relationships 
between each of the domains. Consider Figure 5-10. This views each cloud as a unique 
administrative domain. These administrative domains may be composed of multiple 
domains. Domains trust each other on a bilateral basis, but not on a transitive basis. 
Thus, cloudA and cloudB trust each other, and cloudB may share mutual trust with 
cloudc. This does not require that cloudA trust cloudC. In this example, trusting 
domains are willing to accept the authentication services of other domains, and will 
then provide access control to the authenticated user. The clouds enforce the trust pol-
icies with mechanisms of nonrepudiation, usage recording, and domain information. 

Trust is administered at the level of accounts and services, not at the cloud. Each user 
or service in an account can be granted a subscription to other elements of any trusted 
domain’s structure. In keeping with the hierarchical trust model, the account path 
from service to the client must permit service access, and in addition the client must 
be subscribed to the service. This information is contained in active registries; the con-
tent and programming of these registries is given in Section 8.2. 

5.7 Summary 

This chapter presented the cloud architecture and examples. The functional architec-
ture consists of distinct layers designated as switch, kernel and application. These 
operate at physical Points of Presence, called POPs. The POP provides aggregation 
from ingress networks. A Service POP (SPOP) extends the POP through a gateway 
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Figure 5-10: Networks Scale with Multiple Autonomous Domains 

function to the backbone network, as well as middleware layer service logic. The SPOP 
gateway includes routers and switches; highly efficient SPOPs utilize a distributed net-
work element (DNE) providing an extended interface to the switch layer. Dedicated 
SPOPs provide monitoring and management as Systems Operation Centers (SOCs). A 
localized configuration of POPs, SPOPs and SOCs is called a service node (SNode). 

The logical SNode organization consists of gate, core and store. The logical gate oper-
ates at the switch, kernel and application layers. At the lowest layer the gate forms a 
security perimeter through a dynamic rules-based firewall, authentication mecha-
nisms and the optional DNE. The gate provides access-controlled routing at the kernel 
layer. At the application layer, the gate executes middleware service logic. Global sys-
tem information resides within the security perimeter, through the logical core. This 
including dynamic tables and persistent databases; in particular the domain database. 
Stores support the servers and applications for the consumer-oriented applications as 
well as archival information pertaining to cloud operations. 

A common set of open APIs supports application development, as will be discussed 
beginning in Chapter 7. The APIs are architecture independent and configuration ind-
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pendent. They are designed for simple scalability and reuse on a wide range of physical 
deployments. The APIs receive support through middleware mechanisms as discussed 
in subsequent chapters. A service that is developed on one configuration can migrate 
unchanged to another configuration, either through soft configuration (such as load 
balancing) or by reinstallation of the service on a new cloud. This scalability allows 
designers to deploy services that previously were too expensive, cumbersome or risky. 

These principles are validated on a variety of clouds – from a single gate SNode up 
through large SNodes composed of many dozens of multiprocessor gates, stores and 
switching fabric. A variety of interconnections support communication within the 
SNode, as well as between them. Multiple autonomous clouds can interconnect to 
form larger aggregate networks through multiple domains with shared trust. Services 
are share the same APIs and the same IP infrastructure. Thus, the services leverage the 
most recent IP advances including IP switching. 

We will now turn to an in-depth description of the software environments for develop-
ment of such systems. 
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PART III Building the IP 
Service Platform 

The first two parts of this book describe the history and technology background, moti-
vate the need for moving intelligence into the data networks, and define requirements 
and design principles. Part III shows how to achieve the requirements within a network 
infrastructure characterized by security, extensibility, manageability, and programma-
bility. The focus here is on specific solutions that support the premise that certain 
components belong with the network, rather than with clients and servers. We begin 
with discussion of the system security. We proceed in subsequent chapters to describe 
the software, and elaborate on the architecture, APIs, and support for systems that are 
scalable, interoperable and secure. 

Global connectivity provides an amazing selection of resources. Some, such as data-
bases, newspapers, or motion-picture archives, focus upon data. Others focus upon 
actions – for example, authentication, purchasing, and problem-solving. Examples of 
advanced action services include rule-based diagnostics, machine translation, and 
text-to-speech generation. The composition of such services can quickly create com-
pelling new services. Such composition leads to the view of individual services as “ser-
vice modules”, underscoring the need for an intelligent, extensible platform into which 
to plug the modules. 

We base much of this part on the GeoPlex architecture and APIs, as described in the 
preface to this book. 
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CHAPTER 6 Interoperable and
Scalable Security 

Networking middleware challenges a basic dilemma of system security: security con-
strains privileges, whereas interoperability and scalability extend privileges. Secure sys-
tems ensure information privacy and integrity. They resist noxious interactions that 
could arise from component failure, malicious elements, or simple error. System secu-
rity may achieve these goals through precise definition of the systems’ objects, and 
enforcement of the permissible relationships between them. This approach relaxes the 
many restrictions found in closed systems, such as their dependence on the specific 
hardware, software, interconnects and physical access – such restrictions are incom-
patible with open systems. Specifically, scalability increases the number and locations 
of the secured entities, and typically, these locations are not controlled. Interoperabil-
ity facilitates the seamless integration of diverse products and networks. Rather than 
restrict the permissible components, we resolve the dilemma by integrating multiple 
technologies within a secure fundamental structure, and making them accessible 
through common APIs. We call this an “extensible framework”. 

Security is a fundamental, ever-present theme of the architecture. Unlike many other 
systems, security has not been added after the fact or designed as an extension grafted 
onto an earlier architecture. The security architecture is fully integrated into the archi-
tecture as a whole; consequently, all actions are mediated by the underlying mecha-
nisms. These enforce the object relationships. To this end, the security architecture has 
four goals: 

• Maintain information secrecy; that is, prevent sensitive information from being 
revealed to unauthorized parties 

• Ensure information integrity; that is, prevent the undetected alteration or adul-
teration of information 
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• Guarantee accountability; that is, prevent one user or service from either unde-
tectable assuming the identify of another or denying, at some later date, their 
participation in a transaction 

• Ensure availability; that is, prevent a malicious subscriber or external agent from 
denying service to others 

The security mechanisms are designed so that they: 

• Cannot be circumvented accidentally 

• Cannot be circumvented deliberately without a high probability of detection and 
a significant level of effort by an adversary 

• Do not present a unreasonable burden to either system operators or end users 

To prevent accidental circumvention, the various security mechanisms are introduced 
at the lowest appropriate level in the system. The system structure prevents a higher-
level service from bypassing any lower level. To prevent deliberate circumvention, the 
middleware networking employs cryptographic checks, as well as administratively 
secured networks where appropriate and verifiable. The cryptography, based on widely 
adopted and rigorously inspected industry standards, will frustrate a determined 
adversary by requiring effort well in excess of the likely value of the information. 

Finally, almost all of the security measures are automatic and occur transparently 
without end user or operator intervention. By making every effort to minimize the bur-
den on users and operators, the middleware network ensures that security mecha-
nisms will not be ignored or set aside by frustrated users or harried system operators. 

Networked security services support a flexible service model through the integration of 
multiple security mechanisms. These include access control, management of crypto-
graphic credentials, and the integration of disparate security domains. A subscriber 
authenticates to the platform exactly once, at the beginning of a session. This initial 
authentication provides a proof of identity by secure methods such as challenge-
response or authentication certificates. Access to services is granted in accordance 
with the user and service profiles. A data path is established only for the permissible 
requests.

6.1 Secure System Structure 

Security services for the cloud are provided by appropriate functionalities built into a 
managed platform. One cannot assume that encryption, for example, resolves all secu-
rity issues. Indiscriminate use of security mechanisms would be expensive, yet provide 
few guarantees. On the other hand, structured and managed use of the platform 
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enables large-scale interoperability within reasonable cost. Managed security strives to 
provide the appropriate security features within specified resource limits. Instead of 
globally imposing security restrictions, we provide an open platform that manages 
security at multiple granularities. This provisions the security mechanisms that are 
best suited for particular applications. Thereby, managed security enforces well 
defined safeguards, while also controlling the cost of information protection. For 
example, cloud-managed key lengths and key redistribution are two security manage-
ment services. 

The elements of our middleware security framework, shown in Figure 6-1, include: 

• Platform authentication, access control, and transport security. These are based 
upon custom- and standards-defined protocols 

• Secure protocols, algorithms, syntax and devices. These include standards-based
methods and a suite of private methods 

• Secure subsystems. These are composed from the protocols, algorithms, syntax 
and devices 

• Management of the secure subsystems. This enforces policies such as permissi-
ble usage, strength of protection, and the granularity of information that is 
affected by a security association. For example, are all resources of one end point 
under the same security association – or is each resource protected indepen-
dently? Similarly, multiple locations might share a security association (SA). 
Managed subsystems validate the correct operation of the systems 

• Credential formation, account creation and credential enrollment. This con-
structs an association between a resource and a secure subsystem. This may also 
describe permissible use and interactions between resources 

• Authentication procedures. These establish object identity through the defined 
subsystems

Authorization procedures. These define the permissible object interactions, and 
are mediated by the platform when interactions utilize multiple subsystems 

• Enforcement procedures. These guarantee that approved interactions occur as 
defined

•

Platform authenticators support multiple authentication methods. In addition to the 
platform’s own native methods, other well known schemes supported include X.509 
certificates, Transport Layer Security (TLS – RFC 2246), IPSec, and validation of 
Microsoft Windows NT accounts by means Windows NT 4.0 server, for example. 

The platform security framework ensures that only authorized components and users 
gain access to the cloud, thanks to strong authentication and access control mecha-
nisms. One benefit of this is a single-sign-on (SSO) capability. SSO addresses many 
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Figure 6-1: Architecture of Middleware System Security 

common security concerns, ranging from such practical issues as user convenience to 
evaluation of security threats: 
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• Practical concerns include the difficulty of providing diverse clients with suit-
able authentication software and credentials, while maintaining reasonable user 
friendliness

• Policy concerns include the decision to reveal client identities to additional 
cloud services 

• Threats include possible exposure to crypto attack whenever a credential is 
allowed outside of a secure domain 

The platform approach provides an easily administrated method for supporting SSO. 
Specific accounts may be assigned administrative authorization required by specific 
types of credentials. For example, specific services will accept the Microsoft NTLM (or 
other) credentials for particular users. The middleware network then provides access 
to the network-protected applications, while not restricting the account’s access to 
NTLM file/print services. 

SSO leverages the platform’s trusted status through service logon and network setup. 
The cloud obtains access credentials and uses them on a client’s behalf. This form of 
platform mediation provides benefit to both third-party service provider and the cli-
ent. Consider network-brokered access that dynamically augments a client’s request 
through appropriate login credentials. These credentials are not disclosed to the client, 
thereby avoiding improper disclosure or usage of the Credentials. Cloud-held creden-
tials also shield the client’s identity while retaining nonrepudiation. We discuss SSO in 
Section 6.7. 

6.2 Cryptographic Fundamentals of Secure Systems 

Open networked systems protect information by appropriate cryptographic methods. 
These include the cryptographic hash (or simply, hash) and cryptographic encryption 
(simply, encryption). An ideal hash function computes an irreversible result that does 
not disclose information about the input. Computation of an appropriate hash value, 
given a shared random “challenge”, demonstrates knowledge of the information. 
Encryption, on the other hand, is easily reversible given the proper key. Encryption 
produces a coded sequence that does not disclose the content of the original informa-
tion. Decryption recovers the original information, also called cleartext. Encryption
functions are either symmetric or asymmetric.

Symmetric encryption uses one key for both encryption and decryption. Parties that 
have the key can securely communicate, in the sense that no party without the key will 
be able to impersonate or eavesdrop on the communication. However, it is not possible 
to directly determine the actual source of any information. The parties are in many 
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ways indistinguishable. One common symmetric encryption algorithm is the Data 
Encryption Standard (DES). 

Asymmetric encryption is a recent technology based on pairs of specially related keys. 
Data encrypted with one key can be decrypted only with the other key. Given only one 
key, recovery of the other is computationally intractable despite the encryption/ 
decryption relationship between them! This enables secure and nonrepudiable com-
munication between parties. For example, in public/private key systems, each party 
obtains a key pair, holds one key privately, and distributes the other. Information 
encrypted with the private key can be recovered through the appropriate public key, in 
a computation that uniquely identifies the sender. This capability, however, comes at a 
cost: asymmetric encryption is computationally more expensive than – by several 
orders of magnitude – symmetric encryption. 

Cryptographic methods have specific characteristics affecting the suitability for a 
given purpose. These characteristics include cost, the layer where encryption occurs, 
susceptibility to attack, as well as the disclosure of side-effect information. For exam-
ple, asymmetric encryption is expensive. This cost applies to the key generation, as 
well as actual encryption and decryption with the given key. It may therefore be desir-
able to distribute the less costly symmetric key through a secure distribution that is 
established with asymmetric encryption. Similar principles affect the keys; for exam-
ple, the cost of large and highly secure keys can be offset by periodic updates that use 
smaller keys. Lower security keys, valid for a specific transaction or session, can be dis-
tributed by means of the higher security keys. Correctly used, these methods constrain 
cost while effectively providing privacy and integrity. Nevertheless, it is essential to rec-
ognize the different properties of these encryption methods, and specifically the
absence of a nonrepudiation property to standard symmetric encryption.

6.2.1 Symmetric Cryptography

In the world of digital communications, secrecy and encryption are synonymous; 
encryption is the technical means by which networks can ensure privacy. Networks 
also can use well-provisioned switching systems to ensure privacy, though we do not 
consider this approach in the current text. Stream encryption converts a plaintext byte 
stream b0, b1, b2, ... bn into a ciphertext byte stream c0, c1, c2, ... cn where each cipher-
text byte ci is the encrypted form of plaintext bi. The sender produces the ciphertext by 
generating a pseudorandom sequence of keytext bytes k0, k1, k2, ... kn and then for each 
plaintext byte bi transmits ci where

ci=bi ⊕ ki (EQ1)

that is, ci is the result of exclusive-or’ing plaintext byte bi with its respective keytext 
byte ki. We will describe several algorithms through the notation of Table 1. 
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TABLE 1: Cryptographic Elements 

a Public half of public/private key pair 

b Private half of public/private key pair 

[x]n The n low order bits of x

h A hash function

MD5 The hash function MD5 

The sender and the receiver share a secret that provides the receiver with sufficient 
information to generate, on its own, the identical pseudorandom keytext sequence k0,
k1, k2, .... For example, the xor operation (designated ⊕ ) has many useful properties. It 
is transitive and reversible, as in: 

cii ⊕  ki =(bi ⊕ ki ) ⊕ ki = bi ⊕ (ki⊕ ki) = bi ⊕ 0 = bi (EQ 2) 

The receiver can trivially recover the plaintext. This process is illustrated in Figure 6-2
with the sender producing ciphertext on the left and the receiver recovering the origi-
nal plaintext on the right. 

Figure 6-2: Encryption and Decryption with Shared-Secret Key 

X A random number 

x ⊕ y The bitwise exclusive-or of x and y

x . y The concentration of bit strings x and y

Ie The unique indentifier of entity e

Ek(X) Encryption of x using key k

Dk (X) Decryption of x using key k

[x]n The n high order bits of x
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From the perspective of eavesdropper X, the ciphertext stream c0, c1, c2, ... looks like a 
sequence of random bytes from which it is impossible to extract any useful informa-
tion. Exclusively, the intended receiver, armed with the knowledge required to generate 
the corresponding keytext sequence, can decode the ciphertext stream. Since the key-
text stream itself never passes over the communications link, X faces a formidable 
challenge when eavesdropping on A and B.

For our purposes, “breaking the code” means obtaining sufficient information to 
reproduce the keytext sequence used by A and B. An attack on an encryption scheme is 
a systematic computational procedure that X follows to break the code. The strength of
an encryption scheme is a measure of the difficulty X will have in pursuing an attack 
and is expressed in terms of the average amount of computation X must perform to 
achieve that end. Strong schemes require so much computation that even with the 
fastest computers now available X could require tens, hundreds, or even thousands of 
years to break the code. A general discussion of the comparative strengths of various 
encryption methods and their known attacks is well beyond the scope of this text; 
interested readers are encouraged to consult [Schneier]. 

6.2.2 Asymmetric-Key Encryption 

Asymmetric-key encryption generates a pair of keys that can mutually encrypt and 
decrypt information. Data is transformed into encrypted information by either key, 
The data is recovered through the other key of the pair. No distinction is made between 
the secure properties of either key: they each support equally strong encryption. In a 
public-key structure, one key is publicly distributed, and the other is held privately. 
There are referred to as the public and the private keys. The key pairs support several 
important security services: 

• Confidentiality: Confidential data is encrypted with the public key, and then 
transmitted over an insecure channel. Only the private key can decrypt it. Tam-
pering with encrypted data will be detected upon decrypting, particularly if the 
data includes a message digest or similar summary information 

A message digest is a fixed-length digital signature computed from an arbitrary-
length input; ideally the signature would be unique to the message and not 
reveal any of the message contents. In practice the MD5 hash function serves as 
an excellent message digest. It is “collision resistant” in the sense that it is com-
putationally infeasible (though not impossible) to find a pair of values with the 
same hashed value [OPPL96] 

• Authentication: Information is encrypted with the private key, and then trans-
mitted over an insecure channel. Anyone with the sender’s public key can 
decrypt the message. The result is an authentic message, provided it was not 
tampered with in-transit. A message digest, encrypted with the private key, 
allows tamper detection. This is often called a signature. The message can be val-
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idated by decrypting the signature with the signer’s public key, and then compar-
ing the recovered digest to the computed digest 

More formally, given a public/private key pair α/β, the encryption function y = Eα  (x) 
transforms an m-bit string x, using public key α, into an m-bit stringy, the ciphertext 
of x. Using private key β, Dβ  (y) = x performs the inverse transformation and returns 
the original cleartext x. 

The distinguishing characteristic of public/private key encryption schemes is that the 
roles of keys α and β may be interchanged, in other words: 

Dβ  (E α  (x)) = x = Dα  (E β  (x)) (EQ 3) 

If party A holds the private half of the public/private key pair and party B holds the 
public half, then A and B can securely communicate, since each can decrypt the mes-
sages encrypted with the other’s key. 

Furthermore, if B can decrypt a message using the public key, then it has a high degree 
of assurance that the message was sent by A since, if the message had been encrypted 
with any other private key, if would have decoded into gibberish. Thus, public/private 
key encryption not only secures communication but also proves identity. 

Additional secure services can build upon the asymmetric encryption. For example, a 
two-message protocol allows a peer to prove that it holds a private key. One peer starts 
the challenge by forming a message (called a “challenge”) and encrypting it with the 
public key, The challenged peer decrypts it with the private key, modifies the message 
in a predetermined manner (this is called “response”), and securely returns it to the 
inquiring party. This “challenge-response” algorithm allows a peer to identify itself as 
the possessor of a private key 

6.2.3 Digital Signatures – Cryptographic Seals 

Information integrity ensures that data cannot be undetectably modified, either dur-
ing transmission or during storage. Seals, also known as signatures, have historically 
been tools in the service of integrity. Cryptographic tools provide similar functionality 
in a digital world. A cryptographic algorithm identifies its input data without disclo-
sure of the data contents. The seal and data form a composite message that can be 
stored or transmitted. The seal can later be recomputed from the data. Comparison of 
the original and recomputed seals will detect modification to the message. Modifica-
tion renders the message invalid. 

The design of cryptographic hash functions is a very difficult problem. An excellent
and widely used function is MD5(x), described in RFC-1132. This method accepts an 
arbitrary bit string x (of any length) as input and produces a 128-bit string y as output.



160 MIDDLEWARE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

The MD5(x) method is a widely accepted standard for the generation of cryptographic 
seals.

Cryptographic seals provide data integrity in the following manner. Let m be an arbi-
trary message (bit string). Consider a communication between A and B, which are two 
arbitrary devices with a connection between them. A can send m to B and supply B
with a means for determining that the message B receives is exactly m and nothing 
else. To do so, A transmits m . s to B where s is a cryptographic seal augmenting m,
such that: 

• In general, s = h(m) for a hush function h known to A and B. Hash functions map 
a bit string of arbitrary length into a fixed-size (typically smaller) bit string 

• It is computationally infeasible to invert s. That is, given s and h, it is effectively 
impossible for any outside party X to compute any m such that s = h(m). h is said 
to be a one-way or noninvertible function

• If h returns a bit strings of length n bits for any input string, then there are 2n

possible values for s. On the average, a single bit change in the input alters half of 
the output bits. This makes it very difficult to recover a message from its hash, 
assuming an effective hash such as MD5.

Given a specific message m´ and the hashed result sm´ , the average number of tri-

als required to find an input m '' with a specific hash value sm´ is 2 n – 1 . If n is suffi-
ciently large, say n = 128, then at the rate of one trial per nanosecond it would 
take well over a billion times longer than the scientifically estimated total life-
time of the universe to arrive at some input m" for which s = h(m"). Moreover,
this does not even prove that m´ = m" since the domain from which m is drawn 
typically is larger than the n bits of s, and there can be multiple messages with 
the same hashed value. Consequently, additional mechanisms might be neces-
sary to determine whether the discovered m" is the transmitted message m', in
particular if the message content is “shuffled” before hashing. 

The cryptographic seal may be used as follows. Let E and D be any encryption and cor-
responding decryption function, respectively. and let f represent an appropriate hash 
function. A transmits

u . s where u = E(m), s =f(m) (EQ 4) 

to B, who upon receipt extracts m = D(E(m)) and computes f(m) for himself. If the seal 
validates the message through equality s =f(m), then B has a high degree of assurance 
that the transmission has not been tampered with in any way 

The hash and encryption must resist various attacks intended to modify or disrupt the 
message. Consider X, a malicious third party unable to break encryption scheme E, and
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who chooses instead to undetectably alter m so that B receives a message different 
from what A intended (if X has broken E, then X can freely substitute fake messages, 
suitably encrypted with E, the specific algorithm and key). Given the transmission u . s,
an attack by X will typically fail to recover m from u . s, since X does not know E.

Since X cannot discover m, X may instead try to alter m through substitution of 
replacement bits for a portion of the message. This modifies either u, s or both. For an 

arbitrary substitution and an n-bit message, X has only one chance in 2 n that the mod-
ified message and seal will agree. Given an f with a large n, B is almost certain to detect 
any tampering by X. To make things even more difficult for X, it is common practice to 
encrypt both message and seal for transmission as 

u . v where u = E(m), v = E(f(m)) (EQ 5) 

thereby denying X knowledge of even the value of the one-way hash calculation. 

The attacker X, who by now recognizes the futility of either generating a new message 
or modifying an existing one, may resort to simple replay of a previously captured mes-
sage. Such a replayed message contains the correct seal s corresponding to the given
content u. The capture and replay of an important message (such as “yes,” “buy,” “sell” 
or “delete”) could, if left unchecked, inflict major damage. Replay of an arbitrary mes-
sage, though less forceful, might disrupt communications. 

Fortunately, these replay attacks are foiled through sequence-sensitive encryption of 
message contents. Rather than encode each byte independently from others (ECB 
mode, shown in Equation 1), one can use cipherblock chaining mode (CBC, shown here 
in Equation 6) in which each byte is encrypted by the key combined with a previous 
byte of the stream; when replayed out of sequence it will be incorrectly decrypted by 
the receiver. 

ci = ki ⊕ (bi ⊕ ci-1) (EQ 6) 

An attacker would have to inject the replayed message into the traffic stream so that it 
is received immediately after the identical ci-1; it would also need to be ‘in phase” with 

the other elements of the cipher chain. Failure to satisfy. such stringent requirements 
will result in incorrect decryption of the replayed message. The receiver instead 
decrypts the message into some kind of gibberish. An alternative to chain encoding is 
a shared-secret counter that augments the encrypted data and thereby detects dupli-
cate or deliberately mis-sequenced messages. Recent results [Wong99] extend these 
ideas to efficient multicast communication. 
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6.3 Peer Credential and Key Management 

A cloud-aware system provides the option of a custom security method that offers low 
cost and high security. This is utilized in so-called “peer-based” methods, in contrast 
to more recent work that uses SSL and PKI-based methods. The peer-based methods 
are customizable to limit the computational cost of encryption, as well as ensure com-
pliance with Federal export regulations or the restrictions imposed by certain foreign 
governments upon encryption. These peer-based methods nevertheless provide 
enhanced security within the regulations. Such methods support three distinct phases 
specific to data communications: forming credentials, authentication of end points, 
and session behavior. Internally, the methods manage encryption keys, thereby 
enhancing security within the constraints or costs. 

The credential-formation layer is invoked at enrollment time – when a peer client first 
subscribes to the cloud. This layer utilizes a public/private layer cryptosystem based 
upon asymmetric encryption. During registration, a peer computes a public/private 
key pair. Each key can be 300 or more decimal digits long, so typically they have to be 
stored on stable storage. The client’s public key is shared with the cloud, which stores it 
in the client’s user profile. The client’s private key should never leave the peer. To pro-
tect it within the peer, it is encrypted with a passkey known only to the user of the peer, 
and stored on the user’s peer device. It can also be stored on a smart card to support 
removable credentials. Conversely, the cloud supplies the peer with the public key half 
of one of its own public/private key pairs. Although the smart card provides removabil-
ity, it is not yet a reliable method to provide mobility. 

The authentication layer is invoked at connection time, when a peer and a cloud mutu-
ally identify (authenticate) themselves to one another. The session layer is invoked at 
session establishment (immediately following authentication) to provide encryption 
for the communication session that the peer and cloud are conducting over their con-
nection.

These three times – credential-formation, authentication, and session – have direct 
analogies in the world of commerce. Imagine a consumer applying for a credit card 
online. An applicant asserts an identity to the credit card company. The company vali-
dates this identity, and establishes policy for use of the credit privileges. Authentica-
tion occurs whenever a consumer presents a credit card to a merchant for a 
transaction. This can take many forms, such as physical inspection of the card, a 
demand for additional corroborating identification such as a driver’s license, or a 
query to the credit card provider to confirm the validity of the card. Finally, swiping the 
card through a reader corresponds to a session in this sequence of events. Note that 
barring loss or replacement of the credit card, the credentials are formed only once, 
while authentication precedes with each session. 
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The credential-formation phase typically occurs during registration, and consists of 
two phases: 

• In the first phase, the peer and the cloud cooperatively generate a set of crypto-
graphic keys that will be used for authentication and session security including 
the secure exchange of registration data. This may use Diffie-Hellman key 
exchange [DIFF76] or other methods to establish a secure session between anon-
ymous clients 

During the second phase, the peer supplies the cloud with sufficient information 
to establish a billable entity for the peer. This includes the given name and sur-
name of the peer user, a postal address, and payment information such as a 
credit card number and a billing address 

•

Both phases are described in detail below. We assume, for the purposes of this discus-
sion, that the peer is a personal computer or a server and not a narrowly specialized 
device like a pager or a cellular telephone. In this scenario, the peer obtains the regis-
tration software by downloading it from a public web site maintained by the service 
provider, or by ordering the software by post or telephone. The software package con-
tains cryptographic checks to ensure that it has not been tampered with. 

The outcome of the registration process is twofold: 

• An X.509 digital certificate that encapsulates the client identity and public key. A 
certificate authority (CA) places a tamper-proof cryptographic seal onto the cer-
tificate. This process should also provide secure storage of both the certificate 
and the private key in the client’s record 

• Secure generation of a shared-secret authentication key, known to the peer and 
the cloud. This key is used in the subsequent login sessions for mutual authenti-
cation of the peer and the cloud 

The key generation phase produces a 56-bit DES authentication key that is a shared 
secret between the registering peer and the cloud. The key is computed through an 
inherently distributed computation. The end points reach agreement on the authenti-
cation key, yet never reveal the specific values utilized in the key generation. Instead, 
each end point computes random values, exchanges a portion of these values, and con-
ceals the full information internally. Each end point accumulates the other’s partial 
information through a series of data exchanges. At this juncture, both end points pos-
sess sufficient information to compute the identical value of the shared symmetric key. 
However, an outside observer lacks the concealed data that each end point retained 
privately, and cannot obtain the key The steps in the key generation process are: 

1. The cloud calculates a system-wide unique identifier for the peer, Ip, thereby provid-
ing a global identifier 

2. The peer p generates:
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• A public/private key pair α p /β p, and

• A 184-bit random number X p

3. Simultaneously, the cloud c generates:

• Its own 184-bit random number Xc. Recall that at installation time the cloud was 

assigned its own unique identifier Ic

4. The peer transmits its public key α p to cloud c, thereby enabling c to encrypt trans-
missions to peerp with Eap. Since only the peer knows β p, it alone can decrypt mes-
sages to which Eαp has been applied. The computation is structured to deny benefit 
to an eavesdropper that obtains α p

5. The cloud, in response, delivers two messages to the peer: 

• A digital certificate Cc containing the public key half αc of one of the cloud’s 

many public/private key pairs α c /βc. The peer extracts α c from Cc for future use. 
Since this is a public key, it is also available to the eavesdropper 

• An encrypted message 

Eα p (Eb c(t . MD5(t))) where t = Ic . Ip . Xc (EQ 7) 

This message is encrypted with the peer private key, and hence protects its con-
tents. These contents are further protected by the MD5(t) cryptographic seal for t. 
This permits the peer to detect tampering or a transmission error. Using αc , the
peer extracts Ic, Ip and X, from the message 

6. The peer transmits an analogous message back to the cloud of the form 

Eα c(Eβ p(u . MD5(u))) where u = Ic . Ip . X p (EQ 8) 

Since the cloud obtained ap from the peer in Step 2 above, it can decrypt the mes-
sage to obtain Xp. At this point, both peer and cloud possess Xc and Xp, and given 
the cryptographically secure exchange, it is unlikely that any party eavesdropping 
on this “conversation” can discover Xc or Xp.

At this point the peer and cloud uniquely possess the quantities t and u. These con-
tain the randomly selected 184-bit values hidden in the end points, prefixed by 
unique cloud and peer identifiers 

7. Both peer and cloud can now independently generate a shared authentication key, 
kA, and a shared session key, ks, where

kA = h(Xc, Xp) 56 and ks = h(Xc, Xp 1 2 8 (EQ9)

The authentication key is a 56-bit DES key and the session key is a 128-bit RC4 key.
The session key will be used in the second phase of the registration process to 
encrypt all further registration information passing between peer and cloud. The 
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modulus, floor and ceiling functions truncate the sequence without loss of random-
ness

At this point, the peer and cloud establish a secure control connection (channel) that 
is encrypted with the newly generated session key. The final act of the registration pro-
cess is the transmission of the peer’s digital certificate, Cp, from cloud to peer over the 
secure control channel. Cp defines the lifetime of the peer’s public/private key pair 
(hence the rekeying frequency of this key pair) and may be used by the peer as proof of 
identity in a variety of transactions. This method augments the relatively small key by 
frequent rekeying, which can resist “session hijacking”. 

6.3.1 Authentication and Session Layers 

The purpose of the authentication process is to mutually identify the peer and the 
cloud to one another. Authentication involves the secure mutual exchange of random 
information in a manner that makes it difficult for an adversary to impersonate a peer 
to a cloud or a cloud to a peer. The outcome of authentication is twofold: the secure 
mutual identification of both parties one to the other, and the generation of a shared 
session key that will be used to encrypt all further communication for the current ses-
sion. This so-called “stream encryption” has the least cost, and operates at the bottom 
layer in a hierarchy of encryption mechanisms safeguarding peer/cloud communica-
tions. The hierarchy is organized with stronger (more resistant to attack) methods at 
the top of the hierarchy and weaker methods at the bottom, as shown in Figure 6-5.
Each layer is identified by its time of use. 

The session key is used by the session layer to ensure the security and integrity of two 
communication channels. The first is a secure control channel utilized by both peer 
and cloud for out-of-band signaling and control. This channel provides a cloud with a 
secure “toehold” on a peer client. The peer and the cloud exchange heartbeats and a 
variety of configuration, security and control information. Since the control channel is 
implementation specific, it can employ a wide variety of strong mechanisms – crypto-
graphic and otherwise – to ensure the secrecy and integrity of its traffic. 

The second channel, the data or bearer channel, is the pathway for all data communi-
cations between peer and cloud and, at the option of the peer, is stream encrypted. The 
encryption, if enabled, uses the session key generated following authentication as the 
starting point for the generation of the keytext stream discussed above. It is important 
to note that stream encryption is transparent to the peer applications since the peer 
software is responsible for session management, including the encryption and decryp-
tion of session streams. The communication paths between peers and cloud are illus-
trated below in Figure 6-3.

This securely produces a 128-bit RC4 session key, ks, that will be used to encrypt the 
peer/cloud control channel and optionally the peer/cloud data channel. The protocol 
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Figure 6-3: Encrypted Links between Peers and Cloud 

is based on DES and relies on the shared secret 56-bit DES authentication key, kA ,pr
duced by the registration protocol described above. Here, EkA and DkA denote the DE
encryption and decryption functions, respectively, based on the authentication ke
The steps in the protocol are: 

1. The peer and cloud generate 128-bit random numbers Xp and Xc , respectively

2. The peer sends 

Ic•Ip  • EkA(Xp•Ic•Ip) (EQ

to the cloud. The cloud uses Ip as a database key to retrieve the secret authentica-
tion key, kA ,shared by the peer and the cloud and applies DkA to decrypt Xp  • Ic  •
Comparison of the cleartext and decrypted versions of Ic and Ip serves as a messa
integrity check and proves to the cloud that the peer possesses kA and is Ip as
claimed

3. The cloud replies to the peer with the message 

m=EkA(Xc•Xp) (EQ1

Successful decryption of m confirms for the peer that the cloud received Xp and Ip
If the cloud received another peer identifier, Ip, then

m = EkA(Xc • Xp)

DkA(m) = DkA(EkA(Xc •Xp)) = u•v

(EQ 1

(EQ 1

would have yielded garbage where v ≠Xp

4. The peer sends EkA(Xc) back to the cloud as proof that it received the random num
ber generated by the cloud 

5. Both peer and cloud generate a new session key 

ks=h(Xc •Xp) (EQ1
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Figure 6-4: Authentication Protocol 

6.3.2 Key Hierarchy 

The registration, authentication, and session 
keys form an unbroken chain of protection in 
which each key in the chain secures and protects 
the key immediately below it in the encryption 
hierarchy. This chain is illustrated in Figure 6-5.

At the top of this chain is the user passkey. The 
passkey encrypts the private half of the registra-
tion public/private key pair. The private key is 
never shared, in any form, with any element. It is 
never sent out of the peer. Even removable stor-
age media - either a “smart card’ or a disk copy 
- contains only a passkey-encrypted form of the 
private key The passkey itself is known only to 
the peer user/owner and is never stored on the 
peer itself. Protection of this key is the responsi-
bility of the user alone, who must take all typical precautions, including defenses 
against password cracking such as dictionary attacks, and maintenance of physical 
security. The passkey is typically an alphanumeric string selected by the user. 

Figure 6-5: Key Hierarchy 
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The passkey also encrypts the shared authentication key The authentication key never 
leaves the peer or the cloud. This key is simultaneously computed by both parties at 
key generation time. It provides a shared secret that supports challenge-response pro-
tocols. This ensures that no attacker can obtain the authentication key without sub-
stantial effort. 

Finally, the authentication key secures the session key, which is generated anew at least 
once per connection. The peer and the cloud use the shared-secret authentication key 
to securely exchange the random information required to create the session key. The 
session key is never transmitted over the network; instead it is generated simulta-
neously at both ends by the peer and the cloud. 

Our philosophy of adequate security for acceptable cost is reflected in the design of the 
encryption hierarchy The encryption algorithms lower in the hierarchy are less resis-
tant to attack than those above them in the layering; however, the algorithms at the 
bottom of the hierarchy are roughly 1,000 times faster than those at the top. Here a rea-
soned trade of performance for security has been made; nonetheless, the trade-off is 
balanced through careful management of key lifetimes as discussed below. 

6.3.3 Key Lifetimes 

Key lifetime is a function of the key’s position in the encryption hierarchy, with key life-
times decreasing as one proceeds from the top to the bottom of the hierarchy. Rekeying
is the process of generating and substituting new keys for old. By rekeying at regular 
intervals, the cloud further frustrates attackers, since each new key forces an attacker 
to repeat all of the effort and expense of discovering the key and, even if the attacker 
manages to discover a key, its limited lifetime further reduces its value. 

A registration-level key expires when the associated registration certificate expires, at 
which point, the peer, in cooperation with the cloud, will: 

• Automatically generate a new public/private key pair 

• Obtain a new registration certificate for the public/private key pair 

• Generate a new authentication key 

Cloud-issued certificates have a lifetime of one to two years, well under the estimated 
time that a non-government entity would likely require to crack a given key. Once the 
certificate expires, the private key may no longer be used, and the cloud would not 
allow authentication with this key. The peer must regenerate the registration keys at 
least this frequently 
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TABLE 2: Crypto Key Lifetimes 
The lifetime of an authentication key is on 
the order of weeks to months and is deter-
mined, as a matter of policy, by the cloud 
administrators. Session keys are the most 
ephemeral of the three, with a new session 
key generated for every peer/cloud session.
Additionally, in order to increase resistance 
to penetration attacks, the cloud adminis-
trators can require than an ongoing session be rekeyed at frequent, regular intervals; 
hence a session key will have a lifetime measure in minutes to hours. In all cases and at 
all levels (registration, authentication, and session), rekeying is automatic and trans-
parent to the peer user. Table 2 summarizes the key lifetimes at each level. 

The various levels of key lifetime support manageable security policies that provide the 
best available security pursuant to resource availability as well as the regulations of 
multiple governments.

6.3.4 Rekeying 

There are three forms of rekeying, each corresponding to a different key in the key hier-
archy. The peer’s public ap supplied by the peer to the cloud at registration time, has a 
lifetime of approximately one year. The period of validity of ap is defined by a digital 
certificate issued by the cloud to the peer at registration time. When the certificate 
expires, the peer and cloud rerun the registration protocol enumerated in Section 6.3 
and establish a new peer public key, authentication key, and session key; αp, kA , and ks,
respectively

6.3.4.1 Authentication Rekeying 
A new authentication key, kA, is generated on the order of every few weeks. The proto-
col resembles the registration protocol and proceeds as follows: 

1. The peer and the cloud each generate a 184-bit random number Xp and Xc, respec-

2. The peer sends the cloud the message 

tively

Eαc(Xp ) (EQ15)

Note that the peer uses the public key of the cloud to ensure secrecy

3. The cloud replies with the message 

Eαp(Xc •MD5(Xp) ) (EQ16)

Note that the cloud uses the public key of the peer to ensure secrecy and includes a 
cryptographic seal of the peer’s random number, Xp. By comparing the cloud’s seal 
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with its own value for MD5(Xp) , the peer can determine with a high degree of assur-
ance that the random number received at the cloud is indeed the random number 
generated by the peer 

4. The peer’s response is the message 

Eαc(MD5(Xc)) (EQ 17) 

which enables the cloud to determine that the random number received at the peer 
is truly the random number generated by the cloud 

5. The peer and the cloud now both possess Xp and Xc  permitting each to compute 

kA =  h(Xc· Xp) 56 and ks = h(Xc • Xp)128 (EQ 18) 

6.3.4.2 Session Rekeying 

Finally, session rekeying occurs every few minutes to hour, and is invoked periodically
during a session. This generates a new RC4 key through a sequence of DES-protected
transfers that protect the values the new key is generated from. The protocol resembles 
a stripped-down version of the reauthentication protocol just given. More precisely:

1. The peer and the cloud each generate a 128-bit random number Xp and Xc respec-

2. The peer transmits EkA(Xp)  to the cloud

3. The cloud responds with EkA(Xc• Xp)

4. The peer confirms its receipt of Xc by replying with the message EkA(Xc)

5. At this point, both parties have confirmed the receipt of the other’s random number 

tively

and each independently computes a new ks = h(Xc • Xp)

6.3.5 Peer-Based Credential Usage 

Once a peer is authenticated to the cloud and a session is established, additional secu-
rity mechanisms come into play. Section 6.3.4 described how stream encryption and 
regular, frequent rekeying protect the secrecy and integrity of information passing 
between cloud and peer. Section 6.3.1 presented the protocols employed by the cloud 
and its peers to create new encryption keys at scheduled intervals. However, these pre-
cautions alone cannot ensure 100% resistance against malicious intrusion, damage, or 
deliberate misuse. The cloud must: 

• Ensure that the peer has access to just those services - and no more - for which 
the peer’s billable entity has agreed to pay 

• Guarantee that no information passing between peer and cloud will lead to 
denial of service to other peers 



PEERCREDENTIAL AND KEYMANAGEMENT 171

• Prevent the delivery of inappropriate or unwanted information within the con-
text of a legitimate service 

• Establish a user-cloud trust relationship, as determined the user’s form of 
authentication, account privileges and cloud policy, Access to services may be 
based on this trust relationship 

• Ensure the privacy and authenticity of information exchanged between the cli-
ent and the cloud. Privacy uses cryptographic services, for example, the plat-
form-wide encryptor module. This establishes a key for encryption during 
authentication (we call this the session key). The deployment uses different ele-
ments for each operating system, and can use hardware-based encryption when 
available.

On the Solaris operation system, transport level encryption is handled by a 
streams module. Encryption is handled through the WinSock2 Layered Service 
Provider on the Win32 platform, but comes standard on Windows 98, NT and 
Windows 2000 

To summarize the cryptographic discussion of the earlier section, secure registration 
must precede authentication. This requires that the Peer and Cloud exchange public 
certificates to establish a trust relationship, and then a 512-bit RSA public/private 
(asymmetric) key-pair is established during registration. This key is used to protect the 
registration data and the authentication key. The private key is stored encrypted in the 
peer’s user. properties file. Only the peer knows this key. The public key is stored 
unencrypted in the peer’s user. properties file, and unencrypted on the cloud - it
is meant to be publicly available. During registration, a shared-secret key is also estab-
lished for future authentication. This 56-bit DES shared-secret key will be used for sub-
sequent authentication. This key protects the authentication data and the session 
keys. This key is stored encrypted in the peer’s user. properties file, and in the 
cloud. Only the peer and cloud know this key. 

To authenticate, both cloud and peer must possess the same shared-secret key. This 
key is established during registration. Only the peer and cloud know this key. They 
exchange random messages encrypted with the shared key, and reach agreement 
which allows them to mutually authenticate. Authentication succeeds when both par-
ties return an encrypted combination of the messages. 

As part of the authentication process, a shared-secret streaming session key is estab-
lished. This key is used by both the cloud access gate and the peer for symmetric 
encryption and decryption of subsequent connections through the cloud. This key is 
the 128-bit RC4 key established during authentication and used for subsequent 
streaming encryption on socket sessions 1 .
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Ongoing data security requires selective encryption. The platform encryption module 
contains a table of rules to consult when initiating a socket connection. The rules 
determine whether to apply streaming encryption to the connection. Because the 
encryption is symmetric, encryption and decryption have the same effect. 

6.3.5.1 Selective Encryption 
The decision whether or not to encrypt new connections is made using a two-step pro-
cess:

• The first step checks an encryption setting that applies to all new connections. If 
this global setting is false, then new connections will not be encrypted 

• If this setting is true, then an ordered list of rules will be consulted to determine 
whether the new connection should be encrypted 

Each rule in the list of ordered rules consists of a base address, a netmask, a port, and a 
boolean indicating whether connections matching the rule should be encrypted: 

1. To determine if a connection matches a rule, the destination IP address of the con-
nection is logically AND-ed with the netmask of the rule 

2. The result of that operation is then compared to the result of logically AND-ing the 
base address of the rule and the netmask 

3. If the two results are the same, and the destination port of the connection matches 
the port for the rule, then the rule applies for that connection 

As an example, consider a netmask of 255.255.255.0, a base address of 198.155.70.0:80
and an encryption flag of true. A connection to 198.155.70.2:80will receive encryption. 
The result of step 1 (198.155.70.2 x 255.255.255.0) equals the result of step 2 
(198.155.70.0 x 255.255.255.0). The ports are also equal, and hence the rule applies; since 
the rule specifies the flag as true this connection will be established with encryption. 

6.3.6 Cloud Security 

This section describes in some detail the security mechanisms at work within a single 
cloud. These mechanisms form the basis for all aspects of information security within 
a cloud as a whole and generalize gracefully to support intercloud information secu-
rity.

Given this architecture, there should be three crucial relationships: peer-peer, cloud-
peer, and cloud-cloud. Intracloud security is devoted to the secrecy, integrity, account-
ability, and availability of peer-peer and peer-cloud interactions while intercloud secu-

1. The actual key size is configurable, for example for a 40-bit key where required by export regulations, and 
a 128-bit key domestically. 
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rity focuses on cloud-cloud services. However, the notion of identity for both peers and 
clouds is fundamental to all three of these relationships: 

Peer identity 
Every peer receives a cloud-unique identity. Permits clouds to support 
peer-specific secrecy and integrity. The peer ID also provides the basis for 
caller ID, a service by which one peer can securely and unambiguously 
determine the identify of an end point in a peer-peer connection (called ID 
in this context has nothing to do with the POTS system, using instead IP-
based transport). 

The peer identity also provides the foundation of resource allocation, as 
well as complete and detailed accounting of all peer-peer transactions, The 
cloud provide quality of service (resource availability) guarantees for peers 
based on their membership (a form of identify) in one or more service 
classes corresponding to the Differential Service (DiffServ) model, for 
example, basic, extended, or premier service. The cloud accounts for activ-
ities by collecting non-repudiable usage records. 

Since all transactions could be made traceable to some billable entity, the 
cloud must supply the identities of all parties to the transaction: the con-
sumer, the vendor, and the cloud itself. The authentication mechanisms 
described earlier implement the mutual identification of peer to cloud and 
vice versa. Since both consumers and vendors are cloud peers, this estab-
lishes two of the three elements required for billing; namely, the identities 
of the two end points, consumer and vendor, respectively. The missing 
third element, the cloud identity, is examined here. A cloud identity is com-
posed of at least three elements: a cloud name, a set of cloud-specific pub-
lic/private key pairs, and a certificate. 

Cloud Identity 

Cloud Names 
Unlike other networks, a cloud supporting this architecture is not an anon-
ymous bitway Each cloud should have a unique name that identifies the 
cloud to its peers and to other clouds worldwide. Cloud names are man-
aged by some central authority, which acts as the issuing authority for 
cloud names in much the same fashion that the IEEE is the issuing author-
ity for Ethernet addresses (a unique 48-bit integer assigned to individual 
Ethernet devices). A cloud name could be a 16-byte unsigned integer that 
is guaranteed to be unique among compliant clouds worldwide. 

Each cloud also holds one or more public/private key pairs. These keys are 
generated by the cloud itself at installation time, or may be assigned to the 
cloud by an outside agent. The public keys are shared with the cloud’s 
peers and fellow clouds. The private halves of each key pair are secret and 
are never revealed outside of the security perimeter of the cloud. 

Cloud Keys 
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Cloud Certificates 
Finally, each cloud possesses digital certificates that attest to the binding of 
the identity of the cloud with a public key. The certificate is analogous to a 
driver’s license or a passport; it is a credential containing information that 
establishes the bearer’s identity. A digital certificate is a non-forgeable,
tamper-proof electronic document that binds an entity’s identity to its 
public key. Since a digital certificate is nothing but a (long) binary string, it 
must rely on cryptographic features to foil attempts at forgery or alter-
ation. Information contained within the certificate is verified and sealed 
with the digital signature of a trusted third party, known as a Certificate 
Authority. The digital signature relies on strong cryptographic methods 
that are judged by experts to be exceptionally resistant to attack. The cloud 
has a separate certificate for each of its public/private key pairs. 

The digital certificates comprise an essential element of the Public Key Infrastructure 
(PKI) incorporated into the network middleware. We discuss this at length Section 6.5. 

6.3.6.1 Gates and Peers 

To guard a cloud’s information security perimeter, the cloud needs to be bordered by 
edge gateways, simply referred to as gates. Within that perimeter lies critical and sen-
sitive network information such as registration, usage, billing, and customer care data-
bases that must be protected from unwanted intrusion and modification. Beyond that 
perimeter lies a world of untrusted service and client peers whose access to, and use of, 
the cloud must be governed and regulated peer by peer. A gate is a peer’s sole point of 
contact with a cloud and the relationship between gate and peer proceeds through 
three main phases from the beginning of the relationship to its end: 

• Credential establishment. The peer or an agent acting on behalf of the peer 
defines an identity and securely provisions the fundamental parameters and its 
future relationship with the cloud. Barring unusual circumstances, the establish-
ment of credentials occurs exactly once 

• Authentication and connection. The gate (representing a service node called the 
SNode) and the peer mutually identify themselves to one another (authentica-
tion) and establish a bidirectional communications path (connection) from one 
to the other. Typically, over a lifetime of the relationship a gate and peer will 
authenticate and connect with one another many times 

Use and access. Following authentication and connection, in which the gate and 
peer cooperate in the exchange of information and service until the connection 
is broken by either side 

•

The information and security relationships between a peer and a cloud gate are initi-
ated at registration time and continue unbroken until termination time. 
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6.3.6.2 Corporate Intranets 

One significant use of large-scale Internets should be the provisioning of Corporations, 
including the essential services of such organizations’ networks. Geographically dis-
persed offices can operate local clouds but share a company-wide base of information 
services by interconnecting the local office clouds into a single corporate virtual cloud. 
Company employees would enjoy uniformity of service irrespective of location and 
could freely move from one office to another. Furthermore, the framework would 
encourage companies to implement and field information services tailored to their 
business needs and customer base. 

The security mechanisms would encourage the implementation of partitioned and 
compartmentalized clouds where, even though a community of users (say, both 
employees and customers) access the same cloud, different classes of users see vastly 
different services and features. For example, customers access automated order plac-
ing and tracking services, but the corporate engineering databases are inaccessible to 
anyone but company engineers. Similarly, the online personnel files can be accessed 
and edited by only those employees (managers and administrators) with a need to 
know The same approach can be extended to offices which specialize in serving a 
given geographical region or a particular line of business. 

6.3.7 Intercloud Security

A cloud should treat another cloud as it would any peer; all of the relationships that 
exist between peers and clouds are replicated in the dealings between two clouds. If A
and B are two independent clouds, then A must register with B prior to A using B‘s ser-
vices, just as a peer must register with a cloud before taking advantage of its service 
offerings. Consequently, A obtains from B a “peer identity,” a digital certificate signed 
by B that attests to A’s identity, and an authentication key, shared by A and B, that per-
mits session establishment by A to B and the generation of per-session encryption 
keys.

Each cloud makes available to its peers a detailed description of its service offerings. 
This description can, for example, be based on a directory or service identification pro-
tocol. We will, for the present, describe it in the context of PICS (Platform for Internet 
Content Selection), a language originally developed for describing both content rating 
services and their individual ratings for specific Internet content such as web pages. 
The language is quite general and can be used with equal ease to describe the services 
of digital vendors such as mail, video-on-demand, various forms of electronic com-
merce, or Internet telephony. Using the PICS language a cloud specifies the basic ser-
vices that it supports, such as white and yellow pages directory lookup, customer care, 
and electronic mail as well as cloud-specific optional services such as digital paging, 
access to financial transaction networks, or dedicated high-bandwidth data services. 
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In addition to a cloud’s description of its offerings, all of the service peers connected to 
a cloud also provide descriptions to their particular services. Once a peer is connected 
to a cloud it can, using standard mechanisms in the peer software, access all of a 
cloud’s service descriptions irrespective of their source, be it the cloud itself or service 
peer.

Not only was PICS designed to describe network content and services, it was also 
designed to support filtering. Using cloud-aware peer software, a peer can tailor, 
restrict, or block altogether the services it receives either from the cloud directly or via 
the cloud’s service peers. For each peer, the cloud maintains a set of peer-specific con-
tent and service restrictions that, based on the PICS specifications of content and ser-
vices provided by vendors and rating agents, specify in precise detail the access rights 
and service privileges of the peer. This mechanism allows: 

• Parents to restrict a child’s access to content or services that may be unsuitable 
or inappropriate, such as violent network games or electronic brokerages 

• A cloud provider to create and maintain differentiated service pools for classes 
of users; a premier service pool may include quality of service guarantees and 
service offerings (say, digital paging) that are not available to the members of a 
basic service pool 

• Business subscribers to restrict their employees’ access to content and services 
that are not relevant to their line of business 

In addition, the filtering specifications can be arranged hierarchically, allowing an 
organization to mandate a generic set of filters for its members overall with various 
subgroups appending group-specific restrictions. For example, a business that owns a 
cloud for its internal intranet can prevent the members of the engineering department 
from accessing the personnel database and at the same time grant the engineers exclu-
sive access to high-performance computing resources attached to the cloud as special-
ized service peers. 

The cloud gates provide a logical location for the enforcement of a peer’s filtering spec-
ifications; a natural filtering point since all peer/cloud interactions are gate-mediated.
Service providers’ self-monitoring can be validated and enforced. Thus, the gate guar-
antees that the peer receives just the content and services for which it is permitted. 

Let A and B be two independent clouds. Like the intercarrier agreements that exist 
now between phone providers, it may be advantageous for the two clouds to establish 
either a unilateral or a bilateral service agreement. In the former case, B may wish to be 
a service peer with respect to A’s cloud. All of the mechanisms described above apply 
here, since from A’s perspective B is just another (large) service peer. All of the services 
that B makes available to the other peers of A are described in PICS as would the offer-
ings of any other service peer. Furthermore, access to B’s offerings are governed by the 
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same PICS-based filtering mechanisms that are already part of the cloud infrastructure
of A (just as identical mechanisms are also present on B).

In a bilateral service agreement, A and B each agree to act as a service peer to the other.
All of the specification and filtering mechanisms apply now to both sides; for example,
the two may agree to support high-quality Internet telephony between the two clouds,
and the filter specifications will guarantee that no peer of B ever uses cloud A as a bit-
way for an Internet telephone call to some other foreign cloud C. Each can also restrict
service access at times of high processing load to prevent, say, A’s peers from degrading
a service for which B ensures preferential access to its own customer base.

6.3.8 Roaming

One common form of intercloud relationship should be the support for “roaming;” that
is, a peer using the network connectivity of a foreign cloud to contact the peer’s home
cloud. Roaming allows users to reach their home clouds from remote locations where
their cloud may not have a direct presence. It is essential for mobile users, whether
they utilize a laptop computer or any other networked device. Cloud carriers will, like
their telephony counterparts, arrange intercarrier agreements so that cloud “point of
presence” patches a roaming peer through to its home cloud. This arrangement is
strongly analogous to the support offered by cellular telephone providers whereby
roaming cellular users are automatically registered for temporary service with the local
provider so that distant incoming calls are transferred to the roaming cellular tele-
phone and outgoing calls are routed via the cellular and landline network to the desti-
nations.

Let S and T be two independent clouds with an agreement that cloud S will provide
connectivity for the roamers of cloud T. In describing the mechanics of roaming, the
following notation will be used. Let p be the roaming peer of T; gs be the gate of S to
which p connects; gs → T be the gate of S connected to cloud T; and gT → S be the gate of
T connected to cloud S.

As part of the implementation of the roaming agreement, a gate of S, gs → T , maintains a
continuous connection to gT → s of T. This is the logical equivalent of two separate tele-
phone carriers sharing a landline that is the principal connection between the switches
of both carriers. With this assumption in place, the roamingprotocol is as follows:

1. Peer p sends its usual authenticate message

m =IT
. Ip

. EK A (Xp
. Ic

. Ip )

to foreign cloud S via gate gs

2. Cloud S, noting that the authenticate message it just received is prefaced by a cloud
identity, IT ≠ Ι S consults its database of service descriptions to determine if it sup-
ports the roamers of cloud T. After determining that roamers from T are allowed to
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connect through, S forwards the message m to T via gates gs → T and gT → s along with
an addendum indicating that p is roaming 

3. Cloud T, using the same database mechanisms employed by S, consults its peer ser-
vice descriptions to determine if p has roaming privileges. If p is not allowed to 
roam, then S is informed as such, and subsequently the connection between gate gs
andp is broken by S.

Otherwise, T acknowledges the presence of roamerp to S and dynamically alters the 
firewall rules of its gates gT → s to allow the network packets carrying p’s authentica-
tion protocol messages to pass through 

4. S, upon receiving T’s acknowledgment, dynamically alters the firewall rules of gates 
gs and gS → T in a like manner to allow the network packet carrying p’s authentica-
tion protocol messages to pass on to T

5. At this point, the authentication protocol proceeds as if p were directly connected 
to its home cloud T. The role of cloud A throughout this phase is to transparently
forward network packets back and forth between P and T

6. Upon successful completion of the authentication protocol, cloud T sends a p-spe-
cific set of roaming firewall rules for addition to the p-specific firewall stacks that 
exist on gs → T and gs. In addition, thep-specific firewalls are adjusted to permit all
network packets to pass transparently through S on their way betweenp and gT → S .

Once these firewall amendments are in place and acknowledged, p can proceed 
from this point as if it were directly connected to home cloud T

The implementation of roaming depends, in a critical way, on many of the novel fea-
tures of this architecture, including: 

• Worldwide unique cloud identities 

• A powerful and cryptographically secure authentication protocol 

• The use of high-level machine-interpreted service descriptions for both cloud/ 
cloud and peer/cloud relationships 

• Peer-specific and dynamically adjustable firewalls 

The combination of these features can allows a cloud to provide a degree of conve-
nience and functionality that, in many respects, is comparable to that found in the 
switched telephone network These same features can be applied in other interesting 
ways, such as favored treatment of roamers of T by S in contrast to the roamers of 
another cloud U, time-limited connections, or the incremental improvement of quality 
of service based on total cumulative roaming connections, thereby favoring frequent 
roamers over infrequent ones. 

One obvious generalization is the use of intermediate clouds to allow interconnection 
between two clouds that do not have a direct intercarrier relationship. Let the notation 
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A ⇔ B denote that clouds A and B have a direct intercarrier agreement. If A, B, and C
are independent clouds where A ⇔ B and B ⇔ C but no direct intercarrier agreement 
exists between A and C, then the mechanisms outlined above, with appropriate elabo-
ration, are capable of supporting B as an intermediary in a connection chain A ⇔ B ⇔ 
C.

6.3.9 Security Applications and Benefits 

The primary goal of the security architecture is to provide adequate security at reason-
able cost. That goal can be achieved by using sophisticated, but widely accepted cryp-
tographic techniques, embedded in a framework specifically designed to adapt and 
grow in response to advances in security techniques, modern business practices, and 
the burgeoning field of electronic commerce. Furthermore, it seeks to unify disparate 
services such as authentication, billing, and service provisioning into a single seamless 
whole.

The combination of cloud and peer identity, secure authentication and communica-
tion, the automated adjustment and filtering of service offering based on a machine-
readable service description language, and transparent interconnect from one cloud to 
another allows a cloud to control the appearance, quality, content, and timeliness of 
both intracloud and intercloud service offerings. 

Directory Services 
Extensive white (user directory) and yellow (service directory) pages are a 
natural focal point for intercloud cooperation. Clouds may offer yellow 
pages and specialize them by concentrating on a particular geographic 
region or selected industries. A query may be transparently passed on to 
another cloud allowing clouds to offer white pages and yellow pages well in 
excess of their own individual holdings. 

Secure communications are essential for sensitive or personal information. 
Vendors and clients alike enjoy secure, encrypted communication that is 
transparent to both end points. Applications should be made compliant 
with a minimum of alteration and yet enjoy immediate benefits. The 
secure protocols need to be upgradable without disturbing any application 
(however, the underlying peer software may change); users will be assured 
that their transactions are protected by the most modern and secure cryp-
tography commercially available. 

Over time, general and special-purpose clouds will emerge to serve hori-
zontal and vertical markets, respectively. The architecture should serve 
both equally well, It is, first and foremost, a broad spectrum solution for 
Internet provisioning and contains all of the requisite component for the 
administration, management, and servicing of a large digital network. 

Secure Communications 

Specialty Markets 
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However, the platform should also be a framework for hosting custom ser-
vices that address the needs of a specific, homogeneous clientele. 

Since the trust1 and security mechanisms, along with the ability to estab-
lish and maintain intercloud relationships founded on enforceable busi-
ness contracts, allow cloud operators to profitably share service offerings, 
cloud operators can now specialize without fear that their users will turn 
elsewhere for an important service. Nor are they condemned to offer ser-
vice over an extensive arena in which they cannot hope to effectively com-
pete. Instead, using the mechanisms discussed previously, operators can 
cooperatively agree, in a manner that is enforceable by the platform itself, 
to exchange connections, sessions, information and services to the mutual 
profit of all parties. 

In short, intercloud cooperation permits more service offerings than any one single 
provider can supply and simultaneously supports familiar business models and prac-
tices, their continued evolution, and the implementation of entirely new models and 
practices crafted solely for digital electronic commerce. 

6.4 Trust Boundaries: Firewalls and Protocols 

We have thus far presented cryptographic algorithms and standards for the verifica-
tion of identity and protection of data. We now turn to network-based mechanisms 
that harness these techniques. These place the system security directly into the net-
work, thereby frustrating attackers. The first method we discuss is firewall technology, 
with the example of a managed firewall. We then turn to the Public Key Infrastructure 
(PKI) and, following, the IETF IPSec standard that defines IP security in a general and 
open manner. 

6.4.1 Managed Firewalls 

The GeoPlex system developed at AT&T Labs is one example of firewall technology. 
This uses multiple packet filters on each data stream. These validate all traffic that 
enters the cloud, whether from a client-peer or a service-peer. These define the destina-
tion of packets. The filters further can be active on the egress gate as well, and this is 
appropriate for highly-secure traffic. Since the data content is also encrypted, fraudu-
lent packets are easily detected, and the firewall discards incorrectly encrypted traffic. 

Since a peer’s sole point of contact with a cloud is a gate, all information passing 
between a peer and cloud must transit a gate in the form of network packets. Each of 

1. The reader may review the definition of trust page 78. 
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the packet headers will be inspected by the gate firewall, a low-level software filter, exe-
cuted by the gate, that is interposed between the hardware network interfaces of the 
gate and the higher-level network applications. If the packet is incoming (from peer to 
gate), the firewall either allows the packet to pass on or destroys (drops) it, thereby pre-
venting the packet from ever reaching its destination (application). If the packet is out-
going (from gate to peer), the firewall either transmits the packet to the peer or 
destroys (drops) it, thereby preventing the peer from ever seeing the packet. The fire-
wall may modify the destination of the packet as well, as we will discuss. 

Understanding the details of firewall construction requires knowledge of the structure 
and contents of an IP (Internet Protocol) packet. IP packets are the fundamental “coin 
of the realm” for information exchange within the Internet. Internet hosts 
intercommunicate by converting aII information transfers into an ordered sequence of 
IP packets that are routed to their destination by the network. When the packets arrive 
at their destination, the destination host is responsible for reassembling the packet 
sequence into a meaningful unit of information such as an electronic mail message, a 
web page, a few seconds of audio, or a frame of a digital movie. 

Each Internet host has a unique IP address (a 32-bit quantity) that identifies the loca-
tion of the host within the Internet. An end point of an Internet connection (session) 
from host to host is denoted by a:p where a is an IP address and p is a port, a small pos-
itive integer in the range (0, 216 - 1]. A connection between IP hosts A and B is fully 
specified by naming its end points aA : pA and aB : pB and a protocol. Port numbers in 
the range (0,10231 are assigned by the Internet Engineering Task Force and represent 
the connection points for well known Internet services such as file transfer, mail deliv-
ery, network time, web servers, and the like. Port numbers above 1023 are used by net-
work applications for their own purpose. 

The packet filter applies one of four actions to every packet, as shown in Table 3. Fire-
walls are driven by rules that specify just which packets may pass and which must be 
dropped. A firewall rule has the form t ⇒a where t is a conjunction of zero or more
conditions c1 ∧ c2 ∧ ... ∧ cn, n ≥ 0, and a is any of the permissible actions: PASS, DROP,
LOCAL or MAP. The individual conditions ci are simple true/false tests on the elements 
of the IP packet and include but are not limited to: 

• Comparison tests (=, ≠, >, <, ≥, ≤) on addresses and ports 

• Comparison tests (=, ≠) defined over protocols 

• Range tests on addresses or ports 

A test t = c1 ∧ c2 ∧ ... ∧ cn of a rule t ⇒ a is true with respect to a packet p if and only if
each condition ci is true with respect to p, otherwise the test is false. The action a is 
taken with regard to packet p only if the test evaluates to true, otherwise the action is 
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TABLE 3: Firewall Actions 

Rule
PASS

DROP

LOCAL

MAP

Action

Allow traffic to its destination 
unmodified

Stop traffic from passing. Can 
optionally redirect the connection 
to an error-handler

Process the packet locally 

Redirect the connection. This sup-
ports proxy connections, where 
the traffic is redirected to the 
proxy framework This permits 
manipulation of the traffic, as well
as implementation of a server 
directly by the network. The 
framework will be discussed in
detail subsequently

ignored. A rule with an empty test (no conditions ci at all) is denoted ⇒ a; always
evaluates to true irrespective of the packet contents.

Multiple rules are organized into ordered sets of rules, Ri = {ri,1, ri, 2 ..., rij ..., ri,m}. We

use the notation rij to indicate the jth rule of the ith ruleset, tij is the conjunctive test
and aij is the action. When a packet p enters a firewall, the packet is evaluated with
respect to each rule ri,1, ri, 2, ... of the applicable rule set Ri starting with ri,1. If the test
tij of rule ri,j = (tij ⇒ aij) evaluates to true, then action ai,j is taken; otherwise the fire-
wall turns to the next rule rij+1 in the rule set, and begins evaluation of the conditions.
Optimizations of the evaluation order are permissible provided the results are indistin-
guishable.

If action ai,j is PASS, then packet p is passed to its destination application. If action ai,j is
DROP, then packet p is destroyed and is never seen by its destination application. Such
traffic can, of course, be analyzed as part of proactive security measures, for example
intrusion detection. If action aij is LOCAL, then packet p is “proxied” or routed to a lis-
tening application on the local host. Finally, if action ai,j is MAP, the filter substitutes
the new destination into the packet p.The firewall records the LOCAL and MAP modifi-
cations thereby allowing the downstream redirection of the traffic to the original desti-
nation.

Once a packet is passed, dropped, blocked or remapped, the firewall immediately turns 
its attention to the next arriving or outgoing packet. Furthermore, a rule set rl, ..., rm
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must be arranged such that for any packet p there exists a rule in the set ri = (ti ⇒ ai)
for which ti is true with respect to p. This ordering rule ensures some action for all 
arriving packets. In practice, the rules provide a “local” action that directs unrecog-
nized packets to a cloud access-control component for creation of an appropriate rule. 

6.4.2 Discussion of Rules-Based Firewall 

The packet-filter rules define the action or routing for IP packets of a given protocol, 
source (IP/port) and destination (IP/port). Rules are organized into rule sets repre-
senting peers or services. The active rules are cached for runtime efficiency, and cache 
lifetime is configurable. The firewall architecture is novel in several further respects: 

• Each packet is evaluated with respect to multiple independent rule sets R1..., Rk.
Complete rule sets Ri may be added to, or removed from, the collection at any 
time

• The contents of the individual rule sets Ri consulted by the firewall may change 
dynamically as well, enabling the cloud to fine tune its packet ingress and egress 
policies on the fly in response to changing conditions 

• The LOCAL action allows the firewall to locally process matched packets by 
means of a “proxy” active on the firewall device. This mediation capability allows 
the gate to mediate traffic and provide enhanced service that deploy mecha-
nisms unavailable to the firewall 

• The MAP action creates an efficient mechanism allowing the firewall to alter the 
headers of the matched packets. The firewall can redirect traffic destined for one 
host to a different one, or to redirect traffic from a particular port to another 

The evaluation of multiple rule sets R1, ..., Rk is a generalization of the evaluation of 
individual rule sets. A packet p is permitted to pass if and only if it passes each individ-
ual rule set Ri; p is immediately dropped if any matching rule specifies the drop action. 
The rule sets are evaluated in the order given, starting with R1.

Like other firewalls, the GeoPlex firewall is organized into two parts, an incoming filter 
and an outgoing filter as shown in Figure 6-6. The incoming side inspects packets trav-
eling from peers to the gate, while the outgoing side filters packets traveling from the 
gate out to peers. 

Figure 6-6: Incoming and Outgoing Filters 



184 MIDDLEWARE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

These two distinct and independent 
processing paths are illustrated in 
Figure 6-7. Stage one forms a distinc-
tive session cache of frequently used 
information, including recently-used
rules, as well as connections that 
should be immediately dropped due 
to invalid-access attempts or other 
intrusion-detection software. The 
stage-two rules are consulted when 
the packet does not match any cached 
rule. The stage-two rules describe glo-
bal behavior and the user-specific
behavior specified through service 
subscriptions.

Logically speaking, each peer connec-
tion to a gate is assigned its own fire-
wall, as shown in Figure 6-8. Each
half, incoming and outgoing, of this 
firewall is further subdivided into a 
stack of three independent rule sets: a 
cloud-specific prologue, a peer-spe-
cific rule set, and a cloud-specific epi-
logue. Irrespective of whether the 
packet is incoming or outgoing, the 
order of rule set evaluation is identical: cloud prologue, peer, and finally cloud epilogue. 
All six rule sets (three on each side) may be completely different and each may be 
changed over the lifetime of the session. 

Whenever an entry is added to the session cache, a maximum of four version numbers 
are stored in the entry. There are up to four versions that need to be saved: the version 
of global pre-rule base, the version of the global post-rule base, the version of the 
source peer’s local out rule base, and the version of the destination peer's local rule 
base, The session cache assigns monotonically increasing version numbers to each 
cache entity. These are updated upon modifications to the rule base. Whenever an 
entry is added to the session cache, a maximum of four version numbers can be stored 
and saved in the entry. The versions include: 

Figure 6-7: Rule Sets Enforce Session Level Policy

Figure 6-8: Packet-Filter Rule Stacks

• global pre rule base 

• global post rule base 

• source peer's local out rule base 

• destination peer's local in rule base 
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One or more of these rule bases are used to derive a particular entry. Only the versions 
of those rule bases that are used to derive a cache entry are stored in the entry. A flag in 
the entry is set to denote rule bases that need to be checked once a packet arrives. 

When a packet matches a entry of the session cache, the entry must be checked to ver-
ify consistency with the rule bases that it was derived from. A matching entry that is 
inconsistent with the rule base is immediately marked as invalid and will be removed 
from the session cache. Processing proceeds to the next stage: 

• At the start of the next stage of processing, a packet exists for which there is no 
valid matching session in the session cache 

The global pre-rule base is checked for a rule which matches the packet. If a 
match is found in the global pre-rule base, an entry is added to the session cache. 
The rule's action is performed and the processing of this packet ends 

• If a matching rule is not found in the global pre-rule base, then a search is made 
for one or more applicable local (peer's) rule bases. A hash function is applied to 
the IP source address of the packet, and the “peer out rule base” hash table is 
searched for a match 

• If a matching rule base is found, then it will be referred to as the “source rule 
base.” Similarly, a hash function is applied to the IP destination address of the 
packet, and the “peer in hash table” is searched for a match. If a matching rule 
base is found it will be referred to as the “destination rule base” 

• If a source rule base is found, it is searched for a rule that matches the packet. If a 
matching rule is found in the source rule base, then the matching rule's action 
will be referred to as the “source action”. If a destination rule base is found, it is 
searched for a rule that matches the packet. If a matching rule is found in the 
destination rule base, the matching rule’s action will be referred to as the “desti-
nation action” 

• If a source action is found, and it is a DROP action, then an entry is added to the 
session cache, the DROP action is performed, and the processing of this packet 
ends. Similar steps are performed if a destination action is found 

• If a source action and a destination action are both found, and they are both 
PASS actions, then an entry is added to the session cache, the PASS action is per-
formed, and the processing of this packet ends 

If a source action is found, it is a PASS action, and no destination rule base is 
found, then an entry is added to the session cache, the PASS action is performed, 
and the processing of this packet ends. If a destination action is found, it is a 
PASS action, and no source rule base is found, then an entry is added to the ses-
sion cache, the PASS action is performed, and the processing of this packet ends 

• If there are no matches, the post-rule base is checked for a rule which matches 
the packet. If a match is found in the post-rule base, an entry is added to the ses-

•
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sion cache, the rule's action is performed, and the processing of this packet ends.
Since the global post-rule base must contain a default rule whose condition 
matches all packets, not finding a match at this point is considered an error con-
dition

• The LOCAL and CHECK actions are similar to the PASS, except they modify the 
packet and maintain the tables of local and remote mapping 

These techniques support extremely fast firewall behavior. The benefits of the firewall 
architecture include: 

• Each peer/cloud connection is protected by a peer-specific firewall that can be 
tuned to the needs and service demands of that peer alone without affecting the
service relationship of any other peer

• Feedback from monitoring tools and instrumentation can be used to prevent or
limit the damage of denial of service attacks by restricting or severing particular 
packet flows 

• Rule sets can evolve with the addition of new network services and experimental 
services can be offered to privileged or trusted peers without fear that the rest of 
the cloud or untrusted peers will be affected 

• Network services can be switched on or off based upon the time of day. To ensure
a high quality of service, the firewalls can be dynamically adjusted to temporarily 
deny or limit access to services that are regularly in high demand during known 
time periods 

• More generally, network services can be throttled based on server and network 
load. Automatic limit switches (analogous to circuit breakers) can use the fire-
walls to shed load in order to prevent network congestion 

• Network operators can easily move a peer from one service pool to another (say 
from basic to premium) by adjusting the peer-specific firewall rule sets 

• Rule sets can be equipped with time locks thereby allowing network operators to 
offer limited “trial periods” for services

Firewall technology provides a simple and reliable method that controls the IP packets that 
may enter or exit a network. In conjunction with software that defines the packet filters (or 
firewall rules), this provides a  powerful mechanism capable of providing specialized pro-
cessing for any connection. This technique can support multiple policies for authentication 
and access control. A specific managed firewall has been presented as a specialized exam-
ple that shows the utility of this technique.
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6.5 Public Key Infrastructure – PKl 

Most people have heard something about “electronic signatures” or “public keys”, and 
yet it is difficult to estimate the impact these technologies may have upon our daily 
lives. Consider for a moment a view of the February 4, 1997 State of the Union address 
by the President of the United States, William J. Clinton, as cited and discussed by emi-
nent physicians and scientists of the National Academy of Sciences: 

In his 1997 state of the Union address, President Clinton noted that “we should 
connect every hospital to the Internet, so that doctors can instantly share data 
about their patients with the best specialists in the field.” The security and con-
fidentiality implications of web-connecting the nation’s clinical data are a 
major impediment to realizing this noble goal. [HALA97]

One resolution of the “impediment” is the public key infrastructure (PKI). Indeed, the 
underlying asymmetric cryptography and public-key cryptosystems constitute the axi-
oms of distributed security. By structuring cryptographic methods through well-
defined syntax and algorithms, the Public Key Infrastructure (PKI) formulates the 
authoritative basis of open yet secure systems. As an accepted standard with global 
deployment, this enables applications including eCommerce, encrypted file systems, 
secure email, as well as the configuration and security of system software. A network 
middleware structure integrates these applications through a common structure that 
supports multiple PKI components. 

The areas of middleware and PKI are receiving substantial attention within the Aca-
demic and Government sectors as well as the Private sector. The University Corpora-
tion for Advanced Internet Development (UCAID) considers the PKI within the 
context of “glueworks” middleware; see http://www.internet2.edu/middleware. At the 
Federal level, the National Institute of Standards (NIST) hosts the PKI technical work-
ing group (PKI-TWG); see http://csrc.nist.gov/pki/. 

PKI builds upon asymmetric encryption, in which key pairs are generated by a trusted 
source. As described in Section 6.2.2, information that is encrypted with either key can 
only be decrypted with the other key of the pair. One key is distributed publicly, and 
the other is held privately. The security of PKI requires the private key is securely held 

by the certificate owner1; unless otherwise stated we always assume private keys are 
securely held. This secures many activities. For example, a message that is decrypted 
with a public key must have been encrypted by the owner of the corresponding private 
key, and hence we know who provided the message. Conversely, any entity that 
encrypts a message with the public key may be fully confident that only the intended 

1. A wide range of biometric technologies are emerging as products to enforce the 
assumption of securely held private keys, even in the consumer market. 
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recipient can decrypt it. We refer to this property as non-repudiation, as defined on 
page 78. Indeed, the IETF definition of PKI states in RFC-2459:

A certifcate user should review the certificate policy generated by the certifca-
tion authority (CA) before relying on the authentication or non-repudiation
services associated with the public key in aparticular certificate. To this end, 
this standard does not prescribe legally binding rules or duties. 

Central to the PKI is the digitally signed certificate for storage and transmission of 
public keys. The ITU X.509 v3 standards specify syntax and semantic for certificates. 
The standard includes cryptographic seals that detect any alteration to a certificate. 

The seal is typically computed as an MD5 message digest1 and then encrypted with the 
private key of the issuing Certificate Authority (CA). The encryption protects the 
digest from modification, as it cannot be rewritten without the CA’s private key. The 
CA publishes its public key, and hence the digest can be recovered. Alterations are 
detected by comparison of the certificate with the recovered digest. 

6.5.1 PKI and the X509 v3 Certificate Authority 

Asymmetric encryption, as a pure mathematical algorithm, does not directly support 
secure operations on a public infrastructure. Various standards organizations, includ-
ing the International Telecommunication Union (ITU) and the Internet Engineering 
Task Force (IETF) address these issues in standard X.509 and associated documents. 
These standards define a digital certificate consisting of the public key, a subject (or 
identity), as well as additional information including a serial number, validity dates, 
information on the issuer as well as an identification of the signing algorithm and key-
extension fields. 

The Public Key Infrastructure (PKI) standardizes the format for representing the keys. 
In particular, the public key is encapsulated in a structured form called a certifcate.

The X.509 v3 certificate is currently a standard with wide acceptance2. This defines the 
algorithms for key pair computation, as well as a framework for certificate policies and 
procedures concerned with methods to establish the initial identity of the principal 

1. The digital signature is a tamper-proof digital fingerprint. The fingerprint is typically formed with the 
MD5 function, a one-way function producing a 128-bit result that is sensitive to any change in the 
source. Tamper resistance is provided by encryption, typically RSA algorithm using the signer’s private 
key The signature is verified by recomputation of the message digest, and comparison to the digest 
stored in the digital signature. Everyone with the signer’s public key can obtain the correct message 
digest.

http://www.ietf.org/html.charters/pkix-charter.html and to the 
RSA Corporation at http : / /WWW. rsa . com to reference the standards information. 

2. The reader is referred to the Internet Engineering Task Force (IETF) at 
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who requests a key, and recommended formats that facilitate interoperable storage 
and communication of the certificates (see RFC-2527 and IETF pkix drafts). 

Central to the idea of public key infrastructure (PKI) is the certificate authority (CA), 
an organization whose importance cannot be underestimated with the current tchnol-
goies. As stated in testimony to Congress: 

While digital signatures can be used to support sender authentication, non-
repudiation, and information integrity, it is necessary to establish a hierarchy 
of trust that will provide the ability for users to verify that thepublic key used to 
verify a signature is actually the key of the individual or organization that 
signed the electronic message or transaction. The term certificate is used to 
describe the technique used to establish confidence in the legitimacy of apub-
lic key. A certificate is a digital document which attests to the binding of apub-
lic key to an individual or other object. An entity, usually referred to as a 
Certificate Authority, serves as the trusted third party to provide independent 
authentication of apublic key with a specific user. This is accomplished 
through the issuance of Certificates. Commercial Certificate Authorities are 
now being created to meet the growing need for the authentication in an elec-
tronic environment. [BIDZ97]

The CA issues the certificate by placing the necessary information into the standard 
format and then signing with a digital signature (see Table 4). Analogs of Certificate 
Authorities are commonplace in the non-digital world. Each document, like a driver’s 
license or a passport, has an issuing authority, an individual or organization that is rec-
ognized, through social, political, or legal means as legitimately possessing sufficient 
authority to grant such documents. Passports are issued by national governments 
while drivers’ licenses are issued by state bureaucracies. All such certificates bear phys-
ical features that make them difficult to forge or alter, such as watermarks, seals, 
stamps, signatures, distinctive colors, and materials. 

A Certificate Authority, like its non-digital counterparts, must: 

•

•

Issue certificates to those parties that meet its issuance criteria 

Verify its certificates on demand to third parties who wish to check the validity 
of a certificate 

• Revoke certificates that have expired or been compromised in some respect 

These rights and responsibilities are similar to those of a national government when it 
issues, verifies and confiscates passports. 

Digital certificate authorities are ’organized into hierarchies resembling our legal and 
social structures. The United States, assuming powers granted by international law 
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and common agreements among nations, supplies passports to its citizens while 
granting the individual states the authority to issue a wide variety of certificates. The 
state of California, in turn, then empowers various agencies and licensing bodies 
within its jurisdiction to grant licenses (certificates) ranging from drivers’ licenses 
(Department of Motor Vehicles) to physicians’ licenses (Board of Medical Examiners), 
Further down in the hierarchy, city governments supply business licenses and building 
permits to individuals and commercial entities. Indeed, a complex web of certificate 
authorities predates the Internet. These authorities already influence much of our 
daily lives. 

6.5.2 Certificates Characteristics and Syntax 

A digital certificate is tamper resistant by virtue of the digital signature included in the 
certificate. The signature provides data integrity through a cryptographic message 
digest that must be decrypted with the public key. Its properties include: 

• Unforgeable, hence authentic. There can be no doubt that it was deliberately 
issued

• Not reusable. The digital signature cannot be moved to a different document 

• Unalterable. The document cannot be changed undetectably 

• Not susceptible to repudiation. A signatory’s plea of forgery is void of technical 
merit, since the signer retains exclusive possession of the private key. Further-
more, the certificate identifies the client’s identity as verified by a Certificate 
Authority

The PKI relies on X.509, an international standard for 
the structure and interpretation of digital certifi-
cates. An X.509 certificate includes the fields shown 
in Table 4, where: 

• Version specifies which generation of the X.509 
certificate structure is employed by the issuer 

• Serial number is a unique integer assigned by 
the issuer who guarantees that no two certifi-
cates it creates have the same serial number 

• Algorithm identifier specifies the encryption 
algorithm employed by the issuer to create the 
digital signature that seals this certificate. The signature is appended to the cer-
tificate (see item Signature below). The algorithm field also presents the relevant 
algorithm parameters 

• Issuer is a representation of the identity of the party that issued the certificate, 
such as a cloud identifier 

TABLE 4 Certificate Fields 

Version

Serial Number 

Algorithm Identifier 

Issuer

Period of Validity 

Subject

Subject Public Key 

Signature
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• Period of validity defines the time interval over which the certificate is valid 

• Subject is a representation of the identity of the party to whom the certificate
was issued. This is also known as the distinguished name (DN). A trustworthy CA 
must validate the subject information prior to issuing a certificate 

• Subject public key contains the public key of the subject named above, as well 
identification of the algorithm used for this key The algorithm identified here is 
independent of the algorithm affiliated with the digital signature placed on the 
certificate signature 

• Signature is a cryptographic seal, computed by application of the algorithm 
identified by the Algorithm identifier field to the contents of the certificate, and 
then appended to the certificate. This signature embodies the attributes enu-
merated above and is generated using the algorithm and parameters specified in 
the algorithm identifier field 

• Additional fields may be included in the certificate with suitable encoding, for
example the signingTime,  countersignature, challengePassword
or extendedCertificateAttributes.These are defined in PKCS#9 and 
other standards 

The encoding of the certificate fields uses DER, the Distinguished Encoding Rules for 
Abstract Syntax Notation (ASN.1) as defined in X.509. Certificate fields are identified 
with registered Object Identifiers (OIDs). For example, a private key may be identified 
as PKCS#1 rsaEncryption having the OID { 1 2 840 113549 1 1 1}.

6.5.3 Certificate Validation 

Certificates validation should precede certificate usage, as a means to ensure the cer-
tificate is authentic; that is, no modification has occurred. Cryptographic integrity 
attests to authenticity by recomputation of the signature and comparison to the certif-
icate’s signature. Dissimilar signatures refute virtually any tampering or forgery. The 
correctness of this method assumes authenticity of the certificate that holds the 
signer’s public key. The validation problem is simplified when the certificates are 
signed by a well-known and trusted authority. 

The certificates of trusted authorities can be indelibly written into software or hard-
ware during manufacturing, and indeed the major web browsers include the certifi-
cates for AT&T, VeriSign, and others. These certificates serve as the trusted roots for 
sequences of certificates. Given a new certificate C issued by an unknown issuer 
Issuer a client can validate the certificate by retrieving a series of issuing certificates: 

IssuerC1,IssuerIssuerC1,IssuerIssuerIssuerC
, . . . CATrusted. Validation requires that the chain eventu-

ally reach CATrusted. The peer already trusts CATrusted as an authority, and holds a correct 
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copy of its certificate. The peer unwinds the chain of signatures by verifying each issu-
ing certificate, and then verifies the new certificate. 

Signature verification is a purely mathematical process that proves the information 
was not tampered with subsequent to issuance of the certificate. It asserts (without 
proof) that the CA correctly verified the information before writing the certificate. A 
CA should enforce policies that validate information on certificates. They may, for 
example, require that applicants sign a legally binding document, or post a cash bond. 

The cryptographic properties of typical certificates are static, and cannot be reversed. 
Certificate authorities also provide a list of revoked signatures that are no longer 
acceptable. Revocation services provide a means to check for certificates that should 
not be trusted, much as an invalid credit card can be listed on a registry of revoked 
cards.

Certificates of specific CAS are legally binding signatures in many States within the U.S. 
as well as Europe, although the standards and procedures vary both domestically and 
internationally; we previously discussed the difference between legal non-repudiation
and technical non-repudiation. On November 9, 1999 the U.S. House of Representa-
tives passed, by a vote of 356-66, HR 1714 “A bill to establish a single, nationwide legal 
standard for electronic signatures and records. The bill does not mandate a particular 
type of authentication or technology.” The bill also states that “ ... nothing ... shall be 
construed to limit or otherwise affect the rights of any person to assert that an elec-
tronic signature is a forgery, is used without authority, or is otherwise invalid for rea-
sons that would invalidate a signature in written form.” 

6.5.4 Middleware Networks and the Public Key Infrastructure 

An open PKI is one component of networking middleware. This leverages the CAs’ cur-
rent role of providing verification of subject identities, as well as signing the certifi-
cates that serve as non-repudiable credentials. Under an open PKI the users can freely 
select whatever CA they prefer, much as the Telco customers may select the carrier of 
their choice. The middleware enables this through certificate-aware and vendor-neu-
tral components providing services from IP connectivity to service access. Trusted net-
work middleware also ensures that users do not need to become security experts. 

One means in which service-oriented middleware achieves this is the integration of 
multiple CAS by means of a flexible CA interface. The resulting interoperability com-
bines multiple independent CAS into a single interoperable PKI intrinsic to the net-
work. These CAS may operate either independently or as a network service. As a 
network service, the CA receives pre-screened certificate requests that conform to a 
particular user community’s business requirements. Such CAS retain complete respon-
sibility for the issuance of new certificates, maintaining revocation lists of compro-
mised certificates, and supporting the validation of existing certificates. 
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As an instrument of credential management, middleware defines policies for the issu-
ance, enrollment and use of the certificates. Enrollment takes an existing certificate 
and validates it for use by the system. No modification is made to the certificate; rather, 
the enrollee presents the certificate with proof of ownership (i.e., an authentication 
through private-key signing). The platform subsequently recognizes enrolled certifi-
cates for authentication or enhanced services. This autonomous enrollment and usage 
ensures that the PKI remains open, nonintrusive and reliable. Certificate enrollment 
does not curtail the revenue growth of reputable CAs, since it enhances the user’s free-
dom to select the best CA for his needs. Indeed, both the CA and the network provider 
can offer advance time-of-use services as described in Section 6.5.4.3. 

6.5.4.1 Five Principles of an Open PKI 
Based on the above discussion, we offer the following categories and five general prin-
ciples in support of the open PKI: 

Vendor neutrality 
The infrastructure permits all legal actions of internally hosted or exter-
nally accessed certificate authorities. This ensures a “level playing field” in 
which any entity may establish a certificate authority, as well as create ser-
vices that require certificates. The subscribers and providers of middle-
ware services may, at their own discretion, utilize all certificates and CAs 
without platform constraints. 

The trusted CAs define the acceptable sources of certificates that are eligi-
ble for enrollment; eligibility is defined through administrative controls 
over accounts and subaccounts. There is no a priori restriction on the CAs 
that can be trusted. 

Select trusted CAs 

Select issuing CAs and certificate content 
Middleware-mediated issuance of certificates constrains the mandatory or 
forbidden content of requested certificates, as well as the authorities that 
may issue certificates on the behalf of the network. This enables standard-
ized services that leverage multiple CAs through uniform content. 

The platform may use any certificate of a platform-trusted or a platform-
issuing CA without change to the trust relationship between the certificate 
owner and the issuing CA. Section 6.5.5 discusses the Certificate Practice 
Statement (CPS), a CA-issued document that includes required usage pro-
cedures for certificates of their issue. Trust management and the mathe-
matics of trust are tools that ensure this principle; see [GOLL99] or 
[FEGH99].

Enhanced Usage 

Undiminished Trust 

The middleware or service may grant any privilege to certificate holders. 
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The granting and exercise of privileges are under the control of the plat-
form or account administrator. 

These broad principles provide advantages to all parties in the PKI structure, as dis-
cussed in the next section. 

6.5.4.2 Advantages of PKI Principles 

The above five principles offer a number of practical benefits, which we discuss here. 

Mobility
Mobility between PKI providers – regardless of the certificate interface or 
protocol issues – with continued use of existing X.509 certificates. Vendor 
independence prevents “legacy lock-in” with concomitant substandard 
service or excessive price. Lock-in occurs when a customer is compelled to 
keep using a provider simply due to the costs of changing to a new pro-
vider.

Management
Certificate management ensures that all users have ample notification of 
any potential problems with their Certificates. This includes notification of 
impending expiration or revocation of a client’s certificates. These man-
agement services are essential to ensure uninterrupted availability despite 
dependence on external authorities. 

Issuance Policies 
Certificate issuance is controlled by policies that define the permitted pro-
viders, as well as the content of X.509 certificates. The PKI is integrated 
with the customer information profile thereby providing uniform policy 
definition and enforcement. 

Policy Content 
Certificate contents are determined by the administrator through defini-
tion of preferred policies. For example, the customer rather than the CA 
vendor defines the naming structure. 

Administrator-defined preferences for the maximum permissible and min-
imum acceptable security of certificates, as well as service-specific exten-
sions.

Innovation

Preferences

A PKI provider may deploy improved software or hardware without requir-
ing any customer changes. The certificate infrastructure accommodates 
the “front end” changes. 

A platform-issuing CA is assured of a well-defined community of pre-
Compliance
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screened applicants. Middleware-mediated requests are guaranteed to be 
“in compliance” with the policies and procedures of the user’s community 
or organization. 

Protection
Services may subscribe to network certificate protection. Prospective users 
of a service first register the credential through the network. The network 
only allows access by clients who possess a registered and valid certificate. 
This can be augmented through network-based intrusion detection thereby
detecting attacks on security, for example by identification of inappropri-
ate usage patterns. Since invalid attempts are eliminated, this reduces the 
operational costs incurred by service providers. 

Services Unconstrained 
Third-party services remain free to accept certificates that have not been 
registered with the network. Such services must perform independent vali-
dation of the certificate. Services may define their preferred certificate-val-
idation methods. 

Simplicity
Platform use is simplified by allowing users to authenticate with their cur-
rent credentials. The authentication maps the DN to a specific account 
within the platform’s hierarchy of accounts and users. Subsequent access-
control decisions rely upon the account hierarchy. This form of authentica-
tion may amplify or attenuate the user’s rights. 

PKI-based services can be bundled with platform-managed services sup-
porting access and communication. For example, IPSec components may 
choose to use IPSec for specific traffic, and rely on firewall-based access 
control when this is an acceptable lower-cost alternative. Non-IPSec com-
ponents continue to use either firewall-based access control or open-Inter-
net routes as appropriate to the application. 

Platform-Bundled Services 

The PKI also allows extended associations between certificates and users. 

Multiple Associations: 
Certificates are more general than a conventional computer login. We dis-
tinguish between a user identity and a user object (the present discussion 
avoids the term account, as this will later be associated with a collection of 
objects). The user identity may be defined through a certificate. 

The user object is represented by a unique element in a tree of users and 
accounts. Associated with the object are privileges including access rights. 
The user object may also contain credentials that allow the object to per-
form additional actions; we do not discuss the signing procedures neces-
sary to ensure accountability for use of a stored credential. 



196 MIDDLEWARE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

Various registration processes may form associations between a user iden-
tity and a user object. Multiple user identities can be associated with a sin-
gle user object, and conversely a single user identity can be associated with 
multiple user objects. Instead of the prior 1:1 relationship between users 
and privileges, we have the general N:M relationship. 

This may be viewed through two distinct scenarios: 

• Multiple user identities with one user object 

Multiple user identities are enrolled for a single user object. Each user iden-
tity may subsequently acquire the privileges of the one user object. 

1. Define the administrator or owner of the user object, by designation of 

2. Enroll additional certificates as valid for the same user object 

3. An enrolled entity presents a valid credential and name of the target 
user object. The privileges of the user object are assigned to the user 
identity for the duration of the authentication. Application of these 
privileges (i.e., “doing something”) is recorded in the system usage files. 
Nonrepudiation through transparent usage structures may employ mul-
tiple signatures including the user identity and a unique identification 
of the user object 

one identity as the unique “primary owner” 

• One user identity with multiple user objects 

One user identity enrolls for multiple user objects. The one user identity 
may subsequently acquire the privileges of any of these user objects. For 
example:

1. When authenticated to the user object named ‘‘operator’’ the subject’s 
privileges include placing a call on a customer’s behalf. Actions are non-
repudiable and are attributable to the user identity that performed the 
activity

uniquely associated with the user identity (i.e., the “home” id), the privi-
leges include placing calls but not on a customer’s behalf 

2. When authenticated instead a different user object, or one that is 

6.5.4.3Additional Value-Added Services 
Based upon fee-for-service, many value-added services leverage the fundamental secu-
rity properties of PKI. The services can be provided within the middleware thus 
increasing the value for diverse services, ranging from eCommerce though pocket-size
communication services. These service can also be offered by CAS.

Certificate usage monitoring and accounting 
A non-repudiation service preserves detailed chronology of certificate 
usage, including the time, service name and duration. A middleware-based
deployment leverages existing usage systems by placing a signed message 
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into the secure usage objects. The IETF is currently considering drafts on
similar non-revocation services. 

Bonded certificate validation 

Transaction semantics allow atomic commit, which is contingent upon val-
idation of the certificate chain, certificate revocation list (CRL) and per-
missible usage. Under atomic transactions either all the actions complete 
successfully, or none of the actions make any modification to stable stor-
age. A transaction aborts without effect when the usage criterion cannot 
be validated within a fured duration. Bonded validation can provide mone-
tary incentives to use the service, since the transaction semantics forbid 
improper usage. 

Certificate suites 

A suite of certificates is protected by the platform and unlocked on-
demand by the client. The required certificate is provided to the appropri-
ate service. This supports, for example, software leasing through a distrib-
uted and sharable certificate structure. 

6.5.5 Conformance and Compliance with External CA 

Whereas the certificates’ cryptographic properties are mathematically provable, the 
decision to trust a certificate is frequently not subject to formal proof. Instead, a for-
mal Certificate Practice Statement (CPS) provides a basis to voluntarily trust the cer-
tificates of a CA that complies with the CPS. The CPS is a legal document, not one that 
automatically affects computer deployments. The statement describes: 

• Policies a CA utilizes in the handling of certificates 

• Legally binding liabilities 

• Permissible certificate usage 

Violation of the CPS may invalidate the contractual liability assumed by the CA as a 
guarantee of their service. Non-permissible use may, in some cases, have a tangible 
effect upon the assumptions that support the trust of a certificate. For example, it 
would be inappropriate to use a Commercial Bank’s eCommerce certificate to send a 
private SMIME-encoded message: this might imply an endorsement of the Bank! This 
would, at the very least, suggest improper protection of the certificate, and might indi-
cate compromise of the credential. 

The CPS may be surprisingly detailed in its requirements. These details are concerned 
with auditable processes, rather than the cryptographic validity of the identity on the 
certificate. Consider, for example, the “VeriSign Certification Practice Statement Ver-

sion 1.2”1, a lengthy document carrying the names of 18 lawyers, 11 experts in Engi-
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neering & Technology, eight Management & Consulting experts, and ten experts in 
Audit and Business Controls. They require eight distinct steps, including: 

• Establish certificate chain 

• Ensure the chain is the “most suitable” 

• Check for revocation of or suspension of certificates in the chain 

• Confirm the certificates in the chain (step one merely established it, but did not 
confirm it). Thus, each party in the chain must be validated at time of use, which 
may demand reevaluation of the assumptions that permitted any policy deci-
sions to trust the certificate 

• Ensure that all certificates in the chain authorize the usage as a private key 

• Delimit between signed data, and other data carried on the certificate 

• Indicate the digital signature time and date 

• Establish the assurance intended by the signer 

Middleware services can encourage compliance with the CA policies. For example, the 
platform can maintain a network-wide certificate revocation list (CRL) in part through 
Online Certificate Status Protocol (OCSE RFC-2560) as described briefly in Section 
9.2.5.4 on page 303. Revocation services can be queried to verify the validity of a certifi-
cate. The logging of such queries an element of the operational procedures that may be 
required to prove compliance with the CPS. 

6.6 IPSec 

Complementary to firewalls - which define permitted traffic at the IP layer of a specific 
host - is IPSec. IPSec is an IETF standard for secure IP. This standard defines policy 
enforcement mechanisms for peer authentication and secure transport, including data 
integrity, data privacy, as well as tunneling and security policies. It operates in either 
tunnel mode or transport mode. We previously introduced this protocol in “IPSec: 
Internet Protocol Security” on page 53. 

Platform synergies occur when IPSec combines with the networking middleware. For 
example, the peer-authentication can provide a satisfactory proof of client identity. 
This requires suitable policies in the Security Policy Database (SPD), as well as appro-
priate storage of security associations. The middleware can, in addition, extend IPSec-
secured services to platform-authenticated entities, even when they are non-IPSec

1. VeriSign ™ CPS VeriSign Certification Practice Statement, Version 1.2,© 1996,1997 VeriSign, Inc. ISBN 0-
9653555-2-7.
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hosts or networks. Deployment of IPSec within an infrastructure can also reduce the 
interoperability problems with certain protocols. This utilizes the networking middle-
ware as a trusted partner, thereby leveraging the SNode as a security gateway. 

Consider the question of IPSec-enabled peers and network-cached content. Caching 
typically assumes the content is recognizable to the cache-server. The content can also 
be reused unless the “do not cache” header is set. The header merely describes correct-
ness, and should not be relied upon for security purposes. IPSec clients cannot directly 
interact with this cached content, due to potentially different security associations 
(SAs) of the cache and the client. One resolution is a specialized Security Association 
(SA) for cached content. Given suitable authorization, the networking middleware can 
obtain cached content from the cachable security association (SA), and provide it to 
clients.

IPSec-enabled components may also connect to the middleware and subsequently use 
middleware-hosted services. The network’s trusted status eliminates the need for uni-
form encryption of traffic within the security perimeter. This allows continued opera-
tion of all protocols on the internal network, as well as protocol mediation. The client 
and service benefit from the tunnelling to the cloud, and standard protocols continue 
to work transparently. 

Figure 6-9: IPSec Tunnel Between User and Gateway 

This case is shown in Figure 6-9. IPSec provides a secure tunnel from the client to the 
SNode. A Security Association (SA) is established between a user and the SNode secu-
rity gateway, This gateway restricts service access to authenticated users. It enforces 
subscription-based access control and proxy functions. IPsec provides data origin 
authentication for each packet on IP layer, and provides data payload encryption and 
detection on application layer. It also provides connectionless integrity, anti-replay
protection, and optional data and traffic flow confidentiality. 

On the other hand, connections that tunnel through the network may also maintain an 
association with the SNode and middleware, thereby obtaining network managed ser-
vices. This uses two security associations: one to the cloud, and one to the service, as 
shown in Figure 6-10. The security association between the user and the SNode can 
provide access control; for example, by controlling access through a firewall. The fire-



200 MIDDLEWARE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

Figure 6-10 IPSec Connection to Service with Cloud-Administered Access Control 

wall restricts access to the authenticated clients. This combines multiple security 
methods and may be appropriate from an administrative perspectives. The IPSec pro-
tocol also covers the emerging situation of multiple users with a single IP address. In 
modern internet architectures, network address translation units (NATs) are used to 
hide private networks behind a single IP address. This invalidates the direct associa-
tion of a user ID with an IP address, although content-based methods clearly identify 
the content owner. IPSec remedies this situation through tunneling. Whereas some 
protocols attempt to multiplex multiple clients on a single connection (CIFS, RFC-
1002, RFC-1002), IPSec provides a security context as an inherent part of the protocol. 
This allows each client to establish a unique security association with the SNode. Alter-
natively, the SAs can also maintained through a corporate gateway, and the secure 
IPSec tunnels may then pass through the gateway as shown in Figure 6-11.

Figure 6-11: Security Associations with SNode and Service - IPSec Through Gate 
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6.7 Authentication, Secure Single-Sign-On and Service-
Access

The security mechanisms discussed thusfar are deployed through an extensible mid-
dleware structure that supports common security components. The critical character-
istic of the authentication structure is the ease with which it supports the secure 
mechanisms described in this chapter. The following shows the usage of these methods 
to support single-sign-on (SSO) and other capabilities 

We previously discussed single-credential login through X.509 certificates that are 
acceptable to multiple domains. We now turn to single signon through multiple cre-
dentials. The middleware obtains valid credentials through mechanisms such as 
shared LDAP servers or service-specific agents programs. The cloud uses these creden-
tials to assist the client in obtaining service. The assist can take several forms: 

• Obtain service through a proxy to the service, and return the answer to the client 
(see Section 6.7.1)

• Splice the credentials into the network traffic (see Section 6.7.2) 

One embodiment of SSO runs a security agent that runs on a third-party system. This 
agents authenticates twice: once to the middleware network, and once to the third 
party. It is now trusted by both parties, and mediates between them. To make this even 
more specific, consider a security agent that provides access to Microsoft-hosted
domains, for instance using NTLM authentication. An authorized administrator 
installs an agent as a privileged program on the login server, specifically the Primary 
Domain Controller (PDC). The agent authenticates to the middleware network, and 
also to the NTLM domain. The agent henceforth performs as a trusted member of both 
networks. The module’s control logic creates and modifies user accounts on the PDC, 
and the middleware translate the satisfies the client’s requests by a proxy login to the 
newly created account. 

While in many cases the platform can negotiate a single-sign-on (SSO) on the client’s 
behalf, there also are situations where the client’s platform must be directly involved: 
for example, to digitally sign a document with the client’s private key, 

As the current chapter focuses on security, we defer detailed discussion of these mech-
anisms until Section 8.2.4.1 (“Validation of Identity - Peer and HTTP CallerID” on
page 253). Summarizing briefly, the section describes an authentication mechanisms 
using a proxy called AuthProxy 

The AuthProxy is the only component that is permitted to establish the cloud-
authentication status between a client outside of the cloud and the cloud itself: 
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A separate authentication agent, or AuthAgent, 
must be developed for each type of supported 
authentication mechanism. These AuthAgents 
communicate with the clients to negotiate the 
form and content of keys or other credentials. 
The AuthProxy communicates with the 
AuthAgents through a bidirectional protocol, 
and based upon the protocol content the Auth-
Proxy selectively decides whether to allow the 
authentication. The AuthProxy and AuthAgent 
APIs also leverage the industry-standard General Security Services GSS-API and 
defines security provider interfaces (SPI) to security transport providers (STP). These 
operate within protected security contexts as identified by private storage describing 
particular security architectures. 

6.7.1 Web Browser Security - Peerless Web Login and Service Access 

The HTTP and HTTPS protocols support several authentication techniques, although 
they do not directly provide actual “login” to the remote server. 

The primary authentication methods are: 

1. Authentication Request/Response. The web server presents an authentication 
method and requests the credential type. The browser suggests a known method, 
such as clear text or a generic challenge/response protocol. The Microsoft Internet 
Explorer also supports the NTLM protocol 

authenticate with various credentials. The most common are X.509v3 certificates 
and passwords. Certificates support mutual authentication through the public keys 
that validate each end point’s identity. Passwords are more portable since they do 
not require storage of one’s private key. These can be combined through middleware 
to reference a security state stored in a secure network. Password information is 
safely transmitted through the HTTPS protocol 

2. SSL-Based. Using the secure session layer protocol (SSL) the client and server 

Repeated authentication on a per-request basis is not a substitute for login. Authenti-
cation is relatively costly due to the multiple message exchanges. The client might also 
have to reenter the credential for each request, as a means to protect the information 
and also demonstrate permission to use the credential. Fortunately, web browsers sup-
port “cookies” that can, in a reasonably secure manner, carry a secured payload that 
identifies the authenticated session. 

Persistent session state can be preserved through HTTP cookies. Such cookies may tag 
a client’s session and allow the serving end to provide client-specific service. This also 
avoids the need to frequently reauthenticate. 
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6.7.1.1 Saved State in RFC-2109 “Cookies”

HTTP cookies (see RFC-2109 “HTTP State Management”) provide a format and 
access-control that augment HTTP requests with browser-specific information. The 
browser and server may pass information between them in the form of the cookie, and
the browser may store cookies that are specific to a given server. Such cookies are auto-
matically replayed to the server upon request. Using the Set-Cookie and Cookie
headers, the server and client may negotiate the update and authorized replay of infor-
mation.

Cookies are subject to a coarse-grain access control known as domain matching. This
compares the host domain with the domain contained in the cookie or header. Only 
the domain-matching cookies can be accepted or transmitted. Identical domain 
names (or addresses) match. A maximal-length suffix also matches a dot-prefixed
domain containing an embedded dot. The usefulness of domain matching assumes 
knowledge of the end point domains. For this and other reasons, the end points may 
encrypt the cookies thereby protecting against a variety of attacks including a domain 
impersonation.

Cookies support a pseudo-login as follows. The client provides proof an initial proof of 
identity. Once established, this identity can be stored in a server-provided cookie and
securely set into the client browser through HTTPS under control of the authenticat-
ing host. Browser software then provides this cookie to domain-matching requests. 
This “tags” the client’s HTTP requests. The server recognizes these tags in subsequent 
traffic, and associates the appropriate server-side state with the requests. 

A client contacts a web site within the network, and is redirected to a secure (SSL) site. 
Identities are exchanged and proven through either certificates or passwords. Once the 
authentication is complete, the SNode provides the client with an encrypted authenti-
cation token - stored in the form of an RFC-2109 cookie. This cookie is encrypted, and 
will be honored for only a short time. A secure control channel refreshes the cookie on
a continuous basis. 

The identity, now untethered from a particular IP address, is subject to access control 
lists (ACLs) at the SPOP host, or service levels. This is essential when the IP address 
may change, cannot be relied upon as unique, or is shared amongst multiple identities. 
The cookie-based identity allows validity checks to ensure the client is authenticated, 
and supports various service models including subscription or private services. All 
domain-matching hosts receive the cookie, and should enforce access control by refer-
ence to a common directory or shared ACL. The underlying IP network can also detect 
the cookie contents - given suitable firewalls, switches and routers - and may provide 
appropriate behaviors. 
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Figure 6-12: Web-Based Authentication 

6.7.1.2 Encrypted Cookies from Authentication to Termination

The detailed information flow is shown in Figure 6-12 on page 204. A user first 
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ticates through a standard browser such as Netscape Navigator or Microsoft Internet 
Explorer. Authentication is carried out on the cloud side by the Authentication Proxy 
(AP). AP negotiates a protocol identically to a WWW server, and indeed appears as a 
server to the web-based clients. 

Consider the example of a user named Alice. She begins the authentication procedure 
by directing her browser to the login HTML page located in the cloud and managed by 
the AP. Alice uses the HTTPS schema to reach the login page. In response, AP presents 
her with a form in which Alice types her name and her password; alternatively, she 
leaves the password field blank and uses a browser-resident X.509 certificate as the 
credential. Then Alice presses the “Login” button to submit her request. 

The AP receives Alice’s message and attempts to verify her credential. Assuming it is 
valid, the AP sends Alice a new page containing a small JavaScript security monitor, 
and closes the connection to Alice’s browser. The script creates a new SSL browser win-
dow and reconnects with the AP at a uniquely named page. This page is subsequently 
managed by the AP. For the duration of the login session, this connection serves as a 
control channel between the AP and the Agent running on Alice’s machine. This con-
trol channel supports, at lower cost than general SSL mechanisms, the download of 
encrypted cookies, as well as invalidation of the user upon logout. 

The AP maintains this connection with the client, and manages the client’s authenti-
cation tokens through it. New cookies are sent to the client browsers prior to expira-
tion of the current cookies; timing is defined by the periodic regeneration of the 
master secret key by the AI? The AP places a unique identifier of the key in each 
authentication token encrypted by the key, and later the AP removes a key from the 
ACT when it generates a new key. 

DP uses the unique identifier value in the authentication token to locate a correct 
decryption key in the ACT. Key removal immediately invalidates all authentication 
tokens having the identity of the key. If that key is not found in ACT, the authentication 
token is not valid, and access is denied. 

The authentication tokens are stored as cookies. These must be protected against 
interception or replay. Interception can only occur during access to non-secure ser-
vices, as these operate over a clear channel. Client-initiated replay can occur on either 
a clear of encrypted channel. 

Limited lifetime encrypted cookies are the primary protective mechanism against 
replay or modification. This host-supported encryption layer shields against undetect-
able modification, while rekeying prevents replay or stale or stolen cookies. These 
cookies contain an encrypted authentication token that is valid only for a short dura-
tion.AP sends each authenticated user a new set of tokens prior to expiration of the 
current ones. 
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When Alice wishes to terminate her session, she presses the “Logout” button displayed 
in the Agent browser window. This removes her from the ACT and invalidates the 
authentication tokens. This measure allows invalidating transient client credentials 
almost instantly when the client disconnects. The methods foil well-known attacks 
including capture/replay on the network, as well as “core peeking” by a program 
through access to the browser memory. These protective techniques are in common 
use, although they are not currently standardized. 

6.7.2 Microsoft NTLM and Browser Authentication 

We now discuss integration with users of popular Microsoft networks. Clients that 
belong to a Microsoft domain can use their existing authentication as a method for 
gaining access to networking middleware. These credentials are verifiable by reference 
to the hosting Microsoft domain. This leverages the security mechanisms of Microsoft 
NT and its clients, as these are widely accepted by the industry. We take the view of 
reusing without modification these native client’s capabilities wherever possible. This 
principle of non-modification preserves the intrinsic security model. Furthermore, 
there is zero per-client cost for development, operation, or maintenance. 

Security extensions for SSO are obtained primarily by adding functionality at the 
SNode. This also uses an AT&T Security Agent for NT (ASNT); the security module is 
active on the primary domain controller of the Microsoft domain. Its purpose is verifi-
cation of authentication information. The middleware maintains a secure channel 
communicating this authentication information between the cloud and ASNT active 
on the NT-hosted Primary Domain Controller (PDC). 

6.7.2.1 Microsoft Security Architecture 
The enterprise logon authenticates a Windows computer directly to a domain, typi-
cally over a LAN or direct dialup. This combines secure logon to a domain, with per-
connection authentication for clients not logged into the domain. A non-enterprise
user authenticates each connection by use of a challenge/response protocol such as 
NTLM. Under secure logon: 

1. Clients identify themselves, for example, by a Graphical Identification and Authen-
tication (GINA). This requires a domain, an account name, and a proof of identity; 
passwords or X.509 certificates are the most common methods to “prove” identity 

2. The server authenticates a client by means of the Local Security Authority and Sub 
Systems (LSA and LSASS). LSASS invokes a replaceable authentication library such 
as MSV1_0 for NTLM under NT 4.0, or Kerberos v5 under Windows 2000 

operating system provides access control by comparison between a token and an 
object's security descriptor. The amplification or attenuation of access rights occurs 
at the thread-level by a technique known as impersonation, or the temporary use of 
a different access token 

3. Client obtains an access token referencing the required resource. The Windows 
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Under the NTLM challenge/response for file access: 

1. Client initiates a session setup 

2. Server responds with a challenge, which is a random byte value called a nonce

3. Client irreversibly transforms the password and computes a hash of the challenge 

4. Server repeats the calculation. It grants access if the client response is appropriate 

using the transformed password; this response goes back to the server 

for the challenge transmitted in step two 

6.7.2.2 Single-Sign-On to Middleware Services through NTLM 

The authentication provided by a trusted NT domain can be acceptable, given appro-
priate administrative controls. Specifically, the challenge-response of the native 
browser method is captured and then verified by a component running on the PDC. 
This validation includes checking the domain controller to validate the credential and 
prevent a replay attack. This protocol mediation does not modify the data stream, but 
rather performs auxiliary actions to “network-enable” the client’s access. The client’s 
trusted status within its enterprise server provides sufficient proof of identity. This 
agent receives the browser-generated security credentials and validates them. The vali-
dation of the credentials ensures they belong to the same active session that provided 
them to the network. 

Consider the data flow of Figure 6-13, below. When the browser accesses a URL (1), the 
browser is redirected to the authentication proxy for login (2), and requests login cre-
dentials over a secure SSL connection (3). A Microsoft IE browser returns the NTLM 
authentication information (4), whereas other browsers return an encrypted cookie 

containing the account name and password1. The NTLM authentication is passed to 
the security agent on NT (4) running the AT&T Authentication Server for NT (ASNT), 
which uses the Microsoft Security Support Provider Interface (SSPI) to validate the 
token. Since the ASNT is privileged it can obtain this information and relay the status 
back to the AP (6), thereby preventing replay attacks from unauthenticated clients. 
Upon successful authentication, the authentication connection table (ACT) is updated 
and the browser is directed to the content (7). 

Windows 2000 can optionally replace NTLM with Kerberos v5 as the primary authenti-
cation method thereby supporting mutual authentication and transitive trust, even in 
a noxious environment of traffic spoofing and modification. Kerberos is a basic 
authentication scheme exploiting a trusted Key Distribution Center (KDC) as a “third-
party” authenticator providing security for clients. Clients are known by their Principal 
Names and receive a pair of tamper-proof credentials in the form of a ticket-granting

1. The password is provided under SSL by the user upon initial connection (repeated only when the pass-
word changes), and is securely stored in encrypted form on the client’s machine as a cookie. 
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Figure 6-13 Data Flow Validating Access via NTLM Credentials 

ticket and ticket session key. The credentials must be presented to the KDC in order to 
access a service. 

Kerberos interoperability relies upon administrative domains, called realms. Each 
realm supports a Kerberos database. The feature of cross realm operation supports 
operation across organizational boundaries (Kerberos V5, RFC-1510, RFC-1964 RFC-
2623) by means of inter-realm keys and suitable registration APIs. The realms are typi-
cally arranged hierarchically. This mechanism permits, for example, one service pro-
vider’s realm to share trust with another provider’s realm. 

The Kerberos tickets may include authorization data that refines a ticket’s rights. Spe-
cifically, Microsoft encodes access control information by means of Microsoft security 
identifiers (SIDs). Although stored in RFC-1510 compliant format, the data and format 
have little value to non-Microsoft entities. Consequently, they may require a Microsoft-
aware component running on an edge vehicle. This component can be integrated by 
running a peer on the Microsoft-aware component. A related question is the assign-
ment of permissions to a principal name within an X.509 certificate instead of through 
a Kerberos ticket. The server may map the principal name to an SID and file access. 
Alternatively, each principal name can have a corresponding Windows directory. See 
[Tung99] for more information about MIT Kerberos and Windows 2000. 

6.7.2.3 Single-Sign-On to Microsoft Services through Middleware 

Platform usability is simplified by allowing users to authenticate in the simplest way 
possible. Not only does this leverage NTLM from browsers, as described above, but it 
also provides login credentials by means of a proxy. The NTLM authentication provides 
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the users’ identity, and maps it to a specific user within the platform’s hierarchy of 
accounts and users. 

Figure 6-14 Protocol Flow and NetBios Proxy 

Windows clients (W95/W98/WinNT and Win2000®) can use the Windows NT 4.0 net-

work-authentication method known as NT LAN Manager (NTLM®). This challenge/ 
response protocol authenticates each connection to the server. The client transmits an 
irreversible cryptographic transformation of the logon password. Although the pass-
word cannot be recovered, the NTLM protocol can be manipulated by ‘on-the-wire’
protocol mediation to change user credentials, specifically the domain, user name and 
password. This protects the NTLM HTTP authentication method from the man-in-
the-middle (MITM) attack by doing it over an SSL-protected connection. 

The cloud can capture the server’s challenge as the traffic passes through the network. 
As shown in Figure 6-15, the network then replaces the account name and login pass-
word as they return to the server1. This allows replacement of the client’s password 

1. This technique will not work with NTLM v2, which prevents the “man in the middle” attack. Either the 
NTLM v2 extended security can be negotiated ‘bff, or the Kerberos security can be used with appropri-
ate realms and proxiable (forwardable) tickets. 
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with some other password maintained by the middleware. In this manner, the protocol 
mediation grants privileges by changing the user’s identity. GeoCIFS provides SSO in 
this manner. 

The replacement of the user’s identity grants the user access according to pre-stored
permissions of the new identity. Technically, this technique exploits the privileged 

Figure 6-15: Credential Swapping 

position of the cloud as a protocol mediator. It exploits a peer configured as a trusted 
member of the NT domain. This peer can create user accounts in the Microsoft 
domain, as well as modification of user groups. This provides unique per-user identi-
ties. The NTLM proxy must have access to the assigned user names and passwords. 
This permits proxy-based insertion of the cryptographically correct credentials into 
the session setup protocol, as shown in Figure 6-15. The authentication challenge is 
captured by the cloud in steps one through four; the client’s credentials are replaced 
between steps five and six; and the domain controller authenticates these new creden-
tials in steps seven through ten. 

The resulting credentials are indistinguishable from native NT credentials, because 
they are computed with the same algorithm. The NTLM proxy provides access to NT 
services that would otherwise be unavailable to the client. 

6.7.2.4 LDAP Credentials with Microsoft Commercial Internet System 

The Microsoft Commercial Internet System (MCIS) is an integrated offer of Microsoft 
components including a web-based SSO supported by multiple applications. It does 
not require X.509 certificates or Kerberos-compliant applications. Instead, MCIS 
embraces standards such as LDAP as a protocol for the storage and access of authenti-
cation information. For example, authentication information (groups, users, member-
ships, passwords) are provisioned through LDAP v3. They information is stored as a 
SQL or other database. The database entries propagate to other compliant databases 
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depending on the configuration. Access validation functions – typically provided by 
the Security Access Monitor (SAM) – are replaced by the MCIS monitor. This validates 
access requests through impersonation accounts and private validation checks. The 
fact this operates “outside” the NT kernel is sometimes considered irrelevant to the 
Internet users’ experience, and we do not argue the merits of “in kernel/out kernel” 
security. Suffice it to say that Windows 2000 corrects the issue. 

Possible security vulnerabilities of the MCIS architecture are resolvable through fire-
wall-integrated SSO. The network enforces coarse-grain access control through appro-
priate firewall rules. These rules are added selectively for specific users, and are subject 
to access permissions. These rules forbid access unless an authenticated and autho-
rized component allows the access. 

In a heterogeneous SSO environment (i.e., not pure Microsoft), the MCIS administrator 
grants administrative access to a trusted third party such as the network operator of a 
network cloud. The authorized party may then runs software that registers its clients 
into the LDAP directory containing accounts, groups and users. These clients’ subse-
quent access control is subject to the identical constraints as native MCIS clients. 

Upon user registration to the network cloud, a small piece of custom code is notified of 
the event. This updates the MCIS account structures via LDAI? At some later time the 
client authenticates to the networking middleware. The middleware opens the firewall 
and allows connection to MCIS service. Since the client’s authentication credentials 
are valid, the user can access the services according to the MCIS group permissions. 

This LDAP compatibility uses Microsoft APIs and SQL server and IIs to ensure full 
compatibility. In principle the MCIS system can also be configured to a third party 
LDAP server. In either case, both MCIS and the authentication daemon should possess 
appropriate authentication credentials in order to update the LDAP directory. This 
model also supports the update of existing credentials as new services are added, or 
when clients select them. 

6.8 Summary 

This chapter provided an overview of the fundamental methods and the specific appli-
cations of system security. This presented the core cryptographic methods and appli-
cations of these methods. The reader is cautioned not to assume this discussion is 
comprehensive (for example, DES is no longer certified by the National Institute of 
Standards), though this chapter does provide a firm core. 
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CHAPTER 7 APIs and Managed 
Infrastructure

Network middleware enriches the 
communications infrastructure, 
infuses the network with managed 
resources and imparts uniform 
interfaces to diverse technologies. 
As a cohesive large-scale system, 
this network integrates technology 
with policy as depicted in 
Figure 7-1. The topmost plane pro-
vides APIs for declaration of exter-
nal characteristics, as well as 
requests for internal activities. 
Managed objects carry out these 
requests through interactions in 
the horizontal supporting planes. 
The vertical planes ensure consis-
tent network-wide behavior, rang-
ing from security policies to open 
interoperability over multiple net-
works.

This layered approach supports the rapid construction of reusable and integrated ser-
vices, by means of the open APIs. The network infrastructure selectively accepts, 
refines and fulfills the API requests, subject to subscriber profiles, access rights and 
network resources. Execution draws upon appropriate computational processes and 
communication protocols. 

Figure 7-1: Network Middleware Layers 
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7.1 Viewpoints on Middleware 

Building upon the principle of common APIs, middleware consolidates vendor-spe-
cific APIs and features. This simplifies interoperability, and eases the introduction of 
new technologies. Consider the example of integrating multiple vendors’ HTTP caches. 
The caches were not designed to interoperate, and this constrains design of interoper-
able systems. Each vendor provides a different feature set and distinct API. We can 
restore the freedom of “vendor independence” by use of a single API empowered with 
platform-supplied mediation between feature sets. This is not simply a question of 
syntactic transformation. The feature sets are substantially different. For example, 
Netscape’s NSAPI initializes cache size and defines selective memory mapping. Apache 
permits explicit handlers with memory pools, per-directory configuration and fine 
grain controls. Other cache systems require identification of the specific pages eligible 
for cache-residence, and automatically refresh the cache. Middleware can mediate 
between these distinct frameworks. 

As a resource manager, network middleware provides fundamental support for secure 
storage, global state, and managed datapaths between cooperating processes. Like a 
modern computer operating system, it manages resources to provide requisite service 
levels on demand. The value of resource management applies to networking resources, 
access to a service, maintaining the target hit-ratio on a content cache, or guaranteed 
system security. 

Network middleware assumes responsibility for information that passes through its 
borders, including the authenticity of its source and distribution. Issues ranging from 
device capabilities through billing and security can leverage network-provided intelli-
gence. The network insulates both users and providers from the intricacies of compo-
nents and architecture. Reusable components now move into the network, where their 
reuse is coordinated through standard network APIs. As an architectural issue, this 
simplifies many end point design issues; for example, information management and 
scalability. The providers and users now concentrate on their particular areas of exper-
tise. This approach is entirely consistent with layered architecture approaches that 
simplify many engineering designs. This resolves many troubling design issues that 
have plagued the users, developers and architects of network applications. Myriad 
details are abstracted into the platform layer. The platform provides a reliable means to 
fulfill the API calls by its clients. 

This service framework provides a powerful means to build systems that resolve these 
issues. The framework combines open APIs, data protocols, and system resources in a 
holistic view. That is, the APIs interact with the whole system, rather than simply 
demanding a standard procedure invocation by the platform. This view integrates the 
APIs for diverse areas including network control, end point interaction, and manipula-
tion of hierarchical account structure of users and services. 
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7.1.1 Middleware as Integrator of Standards 

Standards specify required behavior within precisely circumscribed domains of appli-
cability. This provides an essential link between the myriad components of multiple 
vendors. Although written by industry experts, standards nonetheless cannot address 
every question or interaction. Important items fall outside the scope of ratified stan-
dards. Proprietary designs and diverse technical perspectives occasionally forestall 
standardization. Variant interpretations, incomplete conformance, or non-enforce-
ment may diminish a standard’s utility. Is there little wonder at incompatible products 
purporting compliance to the same standard? Standardization improves quality but 
does not resolve all issues of design or function. 

Middleware resolves many of these challenges. It unites components despite variations 
in abstraction, standards or artifacts of implementation. Horizontal middleware layers 
select suitable elements, and vertical layers ensure proper overall behavior. Middle-
ware-based systems, as compared with their non-middleware counterparts, can more 
easily prevail over the complexities of global networking. This empowers the human-
chain – from architects and developers to the customer. They are freed from concern 
for artifacts, version dependencies, or multilayer interactions. This profoundly affects 
the information industry, which is increasingly reliant upon programmable devices at 
every layer above physical transport. These devices can interact more easily and at 
lower cost. Compelling examples even show these devices sharing the same object-ori-
entation through the Java language. There is little wonder that Sun Microsystems has 
stated “The Network is the Computer”, that Cisco routers run a sophisticated operat-
ing system, and that Microsoft is extending its products toward the network layers. 

The effectiveness of advanced services – from Unified Messaging (UM) through Voice 
Over IP (VOIP) and interactive multimedia – hinges upon rapid deployment with fault-
less behavior. Reliability, performance, and simplicity must rival the traditional “black 
phone” despite the vastly greater complexity. This leverages the adaptable networking 
middleware. The areas of networking middleware services includes authentication and 
access control, remote access, interoperability, fault-tolerance, security services 
including encryption acceleration and digital certificates, policy-based management, 
and QOS/bandwidth management. For example, flexible software systems can craft a 
consumer service in a manner suitable for a particular client or market. The success of 
such activities is dependent on the infrastructure’s guarantees of reliability and perfor-
mance. Middleware solutions provide an element of success. 

The platform uses standards when available, yet there are many cases where the public 
standards do not address critical platform requirements. We briefly consider three 
examples, including one where currently available standards are now integrated into 
the networking middleware: 

• firewall packet-filter. The current standards do not describe packet filters with 
the generality or functionality necessary for a multi-domain network middle-
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ware. Consequently, we depend on our own APIs and implementation for firewall 
control. Since the firewall is a fundamental of system security it is entirely appro-
priate to go outside of the standards to obtain required functionality 

• Platform storage. Because the data storage has many unique characteristics, we 
provide our own API and storage known as the domain API. This builds upon the 
best-in-class engines in object-oriented databases. This provides network mid-
dleware with the necessary flexibility, and harnesses third-party technology for 
their expertise in areas such as replication, caching and fault-tolerance. Stan-
dards for Directory Enabled Networks (DEN) can be combined with the plat-
form’s APIs when required 

• Authentication and transport security, These are widely available in the standard 
SSL/TLS protocol. The middleware leverages this in support of browsers, as well 
as other secure data transport. However, prior to widespread availability of SSL, 
the middleware developed a powerful encrypted control protocol supporting 
authentication, callerID, a heartbeat to monitor the connection, and tight inte-
gration with the server-side functionality. This peer continues to be used for 
applications that require close integration with the middleware 

7.1.2 Middleware as Extender of Standards 

Middleware uses transport protocols and application protocols. Standards-based
transport protocols enable the exchange of information, whereas application protocols 
are specialized to a particular kind of information or interaction. Protocols are the 
essential means to communicate between networked components. There are advan-
tages to the use of standards based protocols. They improve interoperability. They also 
improve correctness through public scrutiny, since no proprietary wall hides a detail or 
flaw. A wide range of vendors can provide standards-compliant components thereby 
driving the software (and hardware) markets towards innovation and quality. 

Networking middleware manages and leverages these protocols. Bandwidth manage-
ment is a prime example where advanced features enhance IP transport performance 
while retaining compliance with industry standards. The underlying principle is well 
understood:

Standards do not constrain an implementation from extensions – such as opti-
mizations or features – provided that such extensions do not contradict any of 
the relevant standards. 

For example, multiple classes of service can be enforced at servers through manage-
ment of local resources. This may take the form of directing a particular client’s pack-
ets to a specific network interface with “premium” characteristics (say, a T3 line 
instead of a highly congested T1 line). Middleware components also influence the 
routing, albeit indirectly, through appropriate advertisement of type of service (TOS) 
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metrics they are willing to provide, using for example OSPF (RFC-2328, RFC-2676)
messages. Management of local computational resources (CPU priority, buffer space) 
also has measurable upon TCP performance. 

In particular, the “best effort” requirement of IP has never been defined as “identical 
results”. Systems manage their internal computational and network resources accord-
ing to policies that prefer some activities over others. This is typically done in keeping 
with underlying principles of “fairness”, as this improves overall system function. Fair-
ness prevents the indefinite postponement of pending activities, and in a more techni-
cal sense, bounded fairness tries to limit the degree of postponement [FRAN86]. As it 
is in processors (buy the fastest you can afford) so it is in software (contract the 
resource you need). 

This is not to say that end points cannot directly control traffic through standard pro-
tocols. A number of tunneling protocols such as L2TP and IPSec support end-to-end
characteristics as virtual private networks (VPNs) with specific security properties. 
Through potentially provides better service for the applications riding on the IP net-
work. However, direct control of bandwidth and delay remains difficult through stan-
dard protocol, due in part to the diverse networks. These limitations are currently 
being resolved through specialized network elements as well as the IETF standards for 
IntServ (RFC-1633 and subsequent) and DiffServ (RFC-2430 and subsequent). 

For standards-based application protocols the situation is somewhat different. Net-
working middleware infuses the application protocols with enhancements for better 
performance and improved functionality. The underlying protocol remains unmodi-
fied, and the protocol behavior becomes integrated into the network. The processing of 
application protocols may occur either at the connection end points, or directly on the 
data path. Section 9.4.3.1 gives an example of end point-based enhancements to DNS. 
Datapath enhancement elevates the transport mechanism from a mere replicator of 
bits, into an active element that adds significant value to services. Section 9.4.3.2 of 
presents data path-enhancement for hypertext (HTTP), followed by enhancements for 
the Common Internet File Systems (CIFS) in Section 9.4.3.3. 

7.1.3 Characteristics of Network Middleware APIs 

The middleware APIs give control over the network, end points and domains. Features 
include authentication, routing, and protocol mediation. A user on a service-oriented
platform can announce the services that his network provides, define the clients that 
may subscribe for the service, and later retrieve the usage records that account for 
these clients’ use of the service. The APIs operate on a managed network thereby 
avoiding the myriad problems that emerge on an unmanaged network. The platform 
supports the APIs by direct execution of processes, as well as control of protocol fl ows 
between distributed components. Since the APIs are open, users can potentially 
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develop self-hosted services that utilize the API elements. The system elements pro-
hibit actions that might compromise system security or information privacy. 

All interaction is by common application program interfaces (APIs) that are common 
to all systems. This facilitates the essential and powerful ubiquity principle: 

Any component on any network can obtain authorized services by use of the 
standard APIs 

APIs declare behavior. The framework then addresses the steps necessary to achieve 
the API-defined behavior. This can use object inheritance, reference to user-profiles, or 
other framework features. 

Although the APIs are open, the network is not. API functionality can be restricted. 
Consider the roles of network operator, an individual user, and a corporate user. Net-
work operators can establish acceptable usage policies for groups of users. These oper-
ators can use all administrative APIs. However, the users function within the 
constraints of the applicable policies. These restrict a user’s permissible actions. This 
leaves several subtle questions unresolved. For example, in regards to reusable 
resources, how should a system share cached information? A customer who pays for a 
large web cache might balk at sharing this cache even when the content is publicly 
available.

7.1.3.1 Object Oriented and Extensible 

The design of the middleware APIs adheres to object-oriented techniques of composi-
tion and inheritance. The APIs are polymorphic, both in the sense of supporting multi-
ple signatures, as well as adapting their function through the platform layers. The APIs 
combine multiple components that can be inherited through an underlying object-ori-
ented model. They deliberately do not establish a new object framework, but instead 
are designed to work with existing frameworks. Thus, we prefer to use these APIs from 
a framework such as Enterprise JavaBeans (EJB) rather than define yet another frame-
work.

Specific APIs also provide a standard means to extend system functionality. Autho-
rized peers can define services that reside outside the firewall yet communicate 
securely to components inside the firewall. Other APIs allow the definition of services 
that may run inside the firewall, for example to define new protocols. This can be done 
with a proxy development framework, as well as through the standard GSS-API.

7.1.3.2 Abstraction 
Given the complexity of these domains, the APIs depend upon abstraction to achieve 
simplicity without compromising completeness. This supports the design of the 
salient aspects of the middleware network, and frees the developer from handling 
many irrelevant details. For example, network components are described with nearly 
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independent concepts such as flows, filters, domains, events, and sessions. At a differ-
ent abstraction the security APIs describe the authentication and authorization 
between components such as peers and networks. Interaction is expressed through 
inheritance and composition, for example definition of a firewall filter that enforces 
authentication. Ease-of-use is achieved because the APIs’ abstractions shield the 
developer from non-essential detail. 

The APIs operate at several levels of abstraction. Consider routing. Packet filter APIs
describe routes at the layer of IP connections, and provide fine granularity controls 
including timers and composite filters. The access control APIs describe permissible 
routes from the perspective of the domains that organize hierarchies of accounts, users 
and services. A Virtual Private Network (VPN) naturally abstracts both packet filter, 
access control, and also route control. The creation of a VPN defines routes with broad 
parameters such as membership, bandwidth and delay, This extends even to the con-
trol of edge routers in the network. 

As a second example, from the perspective of an eCommerce service, the APIs allow 
definition, announcement and management of the service. Service definition describes 
operating parameters, as well as the access controls on specific users and accounts. 
Announcement can define the location of the service. Management functions include 
resource monitoring and the control of specific service features. Each uses an appro-
priate API that operates within the context of the service. 

7.1.3.3 Complete Coverage 

The APIs achieve complete coverage by partitioning the networking middleware into 
functionally distinct areas. All necessary functions are defined in each of these areas. 
Interactions are controlled in two ways. One is the object model’s inheritance struc-
ture. The second is composition of multiple items as executable code. These codes uti-
lize a functionally complete suite of interfaces that interact with the edge gateway, the 
internal cloud components, and the external client components. 

Middleware components support API calls from outside the cloud via authenticated 
channels, and from inside the cloud by means of internally-issued calls. The APIs gen-
erally use the same syntax for the internal calls and external calls, but can provide dif-
ferent functionality. The user’s capabilities define the valid API calls and imposes 
limits upon them. The cloud can enforce these limits and protect resources, since it 
maintains information about all accounts, users, and services as well as active ses-
sions. Firewall filters and gate mediation eliminate service providers’ concerns about 
invalid access to resources. 

For example, the internal components are not required to authenticate when accessing 
most other internal components. Communications from outside the gate, on the other 
hand, require authentication in order to access a cloud-public service. An additional 
access control check occurs when the service is cloud-private. The internal systems 
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also enforce domain-specific rules; for example only an authorized account adminis-
trator can define the subscription rights of users. 

7.1.3.4 Comparison with Remote Procedure Call (RPC) 

Networking middleware provides abstraction, complexity management and scalability 
through fundamental design principles. Network middleware is aware of the opera-
tional requirements as well as the “data semantics”, and can therefore apply intelli-
gence in the network. The deployment is “network aware” and integrates at multiple 
levels of infrastructure. For example, the middleware is integrated with usage systems, 
common open authentication, and network switches and routers. Remote Procedure 
Call (RPC), on the other hand, combines mechanisms for marshalling/unmarshalling 
parameters, and data transfer between the processes at two end points., While embrac-
ing the client-server paradigm, it does not directly support managed services. Because 
RPC is not network-managed, each routine must independently activate the required 
network services. These can include security, network bandwidth, and management 
services. Indeed, there are hybrid RPCs with aggregate objects. Some of them are highly 
advanced with XML interfaces, and these would be better classified as middleware 
than RPC. 

7.2 Managed Networks 

The text now discusses various ways to manage networks. It covers several challenges 
in network routing and presents the concept of a service model that rides on the net-
work. This raise the issue of managing state information. 

7.2.1 Substrate: Middleware-Defined Networks 

The edge gateway defines two distinct views of the cloud, shown in Figure 7-2. From 
the outside, the cloud appears as an address-space that imposes end-to-end require-
ments upon information exchange. Components outside the cloud may request func-
tionality, but may not instruct the cloud how to provide it. Edge components mediate
between the internal and external interfaces to specify behavior. The edge components 
complement the external interfaces when necessary, for example to provide encryp-
tion when the interface is not verifiably secure. 

From the inside, the cloud as a middleware layer provides APIs, protocols, algorithms, 
databases and common infrastructure. Platform-internal functions may either directly 
enforce the behavior or defer to other middleware components. For example, security 
operates at network, middleware and application layers, and end-to-end guarantees 
are essential. The middleware layer applies correctness-preserving transformations for
data, as a kind of adapter between the client’s request and the platform’s overall 
requirements for correct behavior. These enhance the user experience by providing 
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appropriate network behavior. Support of HTTP cache and Single Sign On are exam-
ples.

Figure 7-2: Internal and External Views of the Cloud 

Consider a user who requests a service, say downloading a movie to a consumer. The 
cloud is willing to provide this information to the authenticated and authorized user. 
The service is a private and secure “premium” service, and the data should be delivered 
quickly and accurately. The edge gateway should negotiate an appropriate connection 
to the client. This must consider the verifiable properties of the external network. The 
gateway may detect and adjust the network’s delay and bandwidth through selection of 
network interface, by labelling a traffic flow, or through allocation of buffers and sched-
ulers at the switch level. Other controllable network characteristics may include secu-
rity; secure links can be used when they are available, and the gateway must otherwise 
interact with the client to establish encryption keys. We discuss this network integra-
tion in depth in Section 9.5.3 (“Distributed Network Element – DNE”). 

An essential part of middleware-defined networks is tl- routing that determines the 
path and policies of data-transport. The path is the sequence through switches and 
routers. The policies may describe packet loss, bandwidth, delay, as well as privacy. The 
pure IP protocol neither requires nor forbids adjustment of the path or allocating of 
resources along the path. The potential for such adjustments depends in part upon the 
administrative domains a path intersects: 

• Internal route. Internal routes are under a single administrative domain. The 
traffic can be directed to services as needed. The domain defines and enforces 
policies as necessary 
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• Route Between Independent Networks. These networks are connected exclusively 
through the cloud. Each gate maintains an unique security association of every 
authenticated peer. The gate also provides services as required. Service-level
guarantees may be negotiated between the cloud operator and the external net-
work provider 

• External-with-External: Traffic only receives cloud services when it routes 
through the cloud. The external end points require partial route control that
directs the traffic into the cloud 

Consider the possible paths of Figure 7-3 [REGL99]. The IP protocol does not require 
that data pass through a specific gate. Data passing between the two peer consoles can 
either go through the cloud, or around the cloud. Only traffic that routes through a 
cloud can receive cloud services, and the cloud must load-balance such traffic. How-
ever, the IP protocol does not provide a method to define specific routing. 

Figure 7-3: Function and Performance Unpredictable with Unconstrained Routing 

The IP protocol defines “loose” and “strict” routing, with strict routing being an anach-
ronism no longer supported, but rather generalized in IPv6 through anycast addresses. 
Loose routing specifies only the source and destination addresses, and can robustly 
follow any available path to the destination; loose routing benefits from efficient route 
computation through protocols such as OSPF (RFC-2328). Strict routing – which we 
have emphasized is typically a non-supported “feature” of the IP protocol – specifies a 
particular route in the IP packet; yet there is no assurance the path is even valid. It 
makes the unwarranted assumption that switches and routers will honor the 
requested route. It is inefficient as well, unable to recover gracefully from congestion or 
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outages. Path-discovery is also a problem. Although programs such as traceroute
can often dynamically obtain a path, routers are not required to provide this informa-
tion. Cloud-centered routing needs some other method to specify an intermediate host 
between the source and destination. 

Figure 7-4: Non-Proxied Route 

Consider the world as seen by the peers 
K1 and K2, as shown in Figure 7-4. The 
peers can directly communicate without
the cloud. This precludes K1 (or K2) from 
receiving cloud services in conjunction 
with the data path to K2 (or K1). For 
example, the gate can obtain callerID 
information from K1 or K2, but neither K1

nor K2 can directly obtain the callerID 
from the other. The route between them 
does not receive cloud mediation. 

The reader may wonder why the Internet routers cannot simply be reprogrammed to 
provide this intermediate-route capability? We provide two answers: 

• Complexity. There are potentially N2 such routes between N clients. This gives a 

staggering 1015 routes based upon the number of Internet users in 1997 

• Security. Each peer operates under a unique security association maintained at 
the edge gateway. Packets from Peer1 to Peer2 are transformed from the K1 secu-
rity association to the K2 association. However, a directly shared security associ-
ation (such as a symmetric key K1,2) could defy monitoring, usage, mediation or 
pairwise security. The cloud might be unable to revoke K1,2 if a peer looses its 
trusted status 

The problem is remedied by proxitizing 
each of the connections to the cloud, as 
shown in Figure 7-5. In this case the proxy 
traffic will pass from a peer, to the cloud, 
and then to the other peer. Non-proxy
data will continue to use “best effort” 
routing. It passes around the cloud, and 
does not benefit from cloud services such 
as security. The peer programs must dis-
tinguish between traffic they address to 
the proxy-address, and the traffic they 
address to other hosts on their network. Figure 7-5: IP Traffic under Explicit Routing 
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Proxies provide an economical way to direct traffic through a specific host, compared 
to the costs of software encapsulation approaches such as L2TP or IPSec. A cloud-
hosted proxy can serve as the internal end point for inbound connections. Switch 
based VPNs with suitable route control protocols are a developing solution that will 
likely provide faster service and impose less load on the end points. 

7.2.2 Middleware as Service Manager: The Service Model 

Networking middleware can provide a service-oriented architecture consisting of mul-
tiple providers and network connections. The services actually use several kinds of pro-
viders. The network provider operates the platform and connectivity. The service
provider operates the consumer-service (such as a specific eCommerce application). 

A provider offers services through four steps: registration, invocation, announcement, 
and accepting connections from authenticated and authorized customers. A customer 

requests the service by initiating a connection to the provider1. We will briefly describe 
these steps, and will then examine how the cloud can facilitate access to services. The 
basic paradigm support many variations, as determined by the particular service. 

1. Registration: A service provider specifies the name, access policy, and the protocols 
required. These protocols include standard (TCP, UDP, HTTP, etc.) as well as custom 
protocols. The custom protocols can be intrinsic or specially built for the particular 
service. A provider can register the service through software that utilizes standard 
commands, as well by creation of a service object and storage into the domain data-
base (see Section 8.3) 

2. Invocation: The network-provider ensures availability of all required protocols and 
infrastructure, including suitable bandwidth and security. These utilize the plat-
form features in a reusable manner, employing the trusted status of the platform as 
the authenticator of connections. The service provider authenticates to the cloud, 
activates and then verifies software which “listens” on the designated IP address 

3. Announcement: A network resident Authenticated Service Registry (ASR) describes 
all active services. Services are announced into the ASR by an API that accepts 
name, protocol and location of the service. The location can be specified as an IP 
address and port, but this does not require the service is actually provided at the 
address. There is no required correspondence between the service IP address and 
the resource that actually provides the service. For example, the service can be pro-
vided on the path to the address. Cloud mediation can provide the service without 
traffic actually routing to the service IP address. In many cases there is a connection 
to the service IP address, but this is not mandatory. 

The service announcement is made through the Service Development (SD, Section 
7.3.2) announceService API issued either from a peerlet, or through the console 

1. Even with provider-initiated services, the customer must still “power on” to receive service. 
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commands manageAur -e (from the core) or the peer interface command (pido
- 1 announce).The network administrator can also preload services through the 
preload_aur command

Networking clients can now attempt connection with a service. The authentication 
and access control software provide client-specific behavior; see “Deployment of 
Proxy-Enabled Services” on page 309. 

7.2.3 Middleware as Manager of Global Shared State 

Another area of challenge is the management of global state including system objects. 
Systems are composed of objects, and a state-space representation of these objects 
describes their essential attributes. The system regulates its activities by reference to 
the state space. Consider the example of a user’s request for a certain service. Deciding 
how to process the request will reference objects that describe the user, the requested 
service, and system policies. The outcome might allow, disallow, or modify the users’ 
request. Management of this state information is essential due to storage requirements 
as well as the latencies inherent in modification or reference to state information. 

In order to operate within fixed costs, a managed platform focuses considerable effort 
upon the management of global state. There are costs inherent in the storage and 
manipulation of state, and these costs may be described in terms ranging from the 
physical design characteristics of storage or network components, and up through the 
cost a customer pays for services. Since network middleware is inherently distributed, 
the global state requires distribution of information to ensure the state descriptions 
are accurate, even when some component references the state of a distant object. It is 
clearly important that global objects should be available with minimal access delay, 
and yet the general object-synchronization problem is extremely complex. 

Structure and optimization are two techniques that tame the complexities of managing 
state information. The software components therefore structure system objects in a 
manner that supports their intended use. Optimizations also help a system operate 
effectively within the multiple constraints that limit object manipulation. Of particular 
interest in a middleware network are the hardware devices that report and store state, 
as well as the transport methods that copy the state to the appropriate control point. 

The physical characteristics of these devices and transports imposes delays on the 
propagation and synchronization of the changes. Clearly these delays cannot be elimi-
nated. Scalable systems therefore try to avoid dependencies upon synchronized state, 
and when unavoidable, the systems manage such dependencies. These challenges may 
appear unique to networked systems, but they occur in centralized ones as well. 

Networked systems work primarily with distributed information, whereas centralized 
systems need to structure their information for ease of access. Comparison of these 
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two kinds of systems is highly instructive in regards to the specific middleware 
designs. IP networks are a prime example of distributed information. Rather than 
depend on global shared state or the correctness of every routing entry, IP utilizes mul-
tiple distributed information bases located at the routers, switches and end points. AS-
needed computation shares information with the local neighborhood. These distrib-
uted properties facilitate large networks and global scale, However, these systems can-
not easily locate specific information or control fine-grained resource allocations. Such 
networks require substantial extensions – such as networking middleware – to sup-
port services-specific routing or bandwidth allocations. An important challenge is sup-
port of such state-dependent services – or an approximation of them – without 
compromising the stateless nature of IP. 

Conventional operating systems, on the other hand, retain localized and detailed infor-
mation. Low-level data structures organize the information and facilitates the man-
agement of system resources, including the “virtual machine” concept. Higher-level
descriptions allow exercise of very precise control over system behavior, for example by 
reference to a specific user’s privileges. However, as the number of processes, users, and 
other resources increases, the maintenance of this information becomes increasingly 
costly. Systems therefore migrated towards distributed architectures that localize 
information for related tasks. Micro-kernel operating systems, for example, exploit 
this principle. In a similar manner, the networking middleware combines multiple sys-
tems.

This views the networking middleware as a large and distributed micro-kernel operat-
ing system. Linux is well-known for a similar approach. The power of Linux is the 
mechanisms to easily reconfigure the kernel while retaining Posix compliance. Linux’s 
popularity is not due to its stability, nor to serving as an alternative to Microsoft. 
Rather, it is the flexibility of modular design that readily reconfigures from the smallest 
to the largest implementation; similar capabilities are available through commercial 
Unix offerings as well. 

7.3 Organization of the Middleware APIs 

We now shift to a specific set of communication middleware APIs that support the 
development, operation and management of services. These APIs are organized into 
general categories. These categories overlap and share common functions as required. 
For example, the callerID function is found in several categories. 

• Proxy Development (PD) for gate and core functionality. This includes packet fil-
ter, security checks, events generation, user and service registries, as well as the 
proxy framework for developing new proxies. It includes a callerID capability for 
non-repudiable client identification even for untethered clients that do not have 
a fixed and unique IP address 
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• Software Development (SD) for peer and core functionality. This includes librar-
ies for connections, the domain API, events, security, usage, and more features. It 
also includes a security framework (SF) API for credential and web authentica-
tion management 

• Network Development (ND). This provides advanced firewall and QoS control 
through interaction with network element: including the DNE 

• Operations Development (OD). This supports creation and maintenance of 
domains.

These APIs insulate the developer from the intricacies of the networking and compo-
nents. Consequently, the services built with these broad API classes (see Table 5) 
adhere to the platform principles and can leverage the platform optimizations. By use 

TABLE 5: Network APIs and Component Availability 

Standard
BrowserPurpose Gate PeerAPI Group 

NoYes PartialRouting Secure connections at designated service 
levels

Authenti-
cated Con-
nections

Active registries, connection manage-
ment, non-repudiation interaction 
including events and usage. 

Yes Yes Yes

User and Service access control YesAccess
Control

Yes Use, not 
specify

Account hierarchy storing describing 
users, services 

Yes YesDomain Use, not 
specify

Security
Framework

Yes Yes Use, not 
specify

Use, not 
specify

Manipulation of user credentials and 
inclusion of secure methods 

YesUsage
Recording
and Retrieval 

Non repudiation of action. Submit and 
retrieve usage records encapsulated in 
translucent cookies 

Yes

Yes Yes YesNaming Directory services such as LDAP and pri-
vate proxy DNS 

MostNetwork
Management

Log, control, and measure components. 
Application management. Define, pub-
lish, subscribe and receive events with 
descriptions

Yes Use, not 
specify

Yes Yes NoName/Value
pair (NVP) 

Association Lists 

Toolkits Yes As
needed

NoNetwork Proxy framework, Service Devel-
opment framework, Network Develop-
ment toolkit, Security Framework toolkit 
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of the APIs one can develop any functionality and it will be reusable on many compati-
ble architectures. One example is the SD for software development as shown in 
Figure 7-12. Consequently, the platform deployment is application-independent and 
optimized for available technologies. The ongoing developments such as OMG and 
JAIN may provide compatibility for even larger scale compatibility 

7.3.1 PD – Proxy Development 

The Proxy Development tools describe APIs, sample code, tools, and documentation to 
enable application developers to write proxy applications for the middleware plat-
forms, and allows programmers to network-enabled client software. The PD describes 
the internal side of middleware-enabled networks, and supports full interaction with 
the security and service functions including access control and dynamic firewall pro-
tection. This enables the development of network proxies, allowing network mediation 
and enhancement of various protocols. In addition, network proxies are one technique 
to support scalability of various types of services, as well as fault tolerant services. 
These network proxies run on the gate machines in the GeoPlex Cloud. The PD enables 
developers to fully utilize and extend the cloud. 

The proxy framework fully supports custom proxies logically placed in the data path 
between a client and a server, as shown in Figure 7-7. It is an integral part of the mid-
dleware platform. This allows the developer to easily and reliably add functionality in a 
fully-standardized manner. All new components share the same structure. Network 
proxies make use of various APIs as needed. The proxy developer can focus on the 
mediation facilities of the protocol, and let the rest be handled by the Development 
Framework The GeoPlex PD provides the following C and C++ APIs: 

• Proxy Development Framework 

• Access Control, including packet filter API 

• Active User Registry (AUR) 

• Active Service Registry (ASR) 

• Active Connection Table (ACT) 

• Usage Library 

• Directory Service 

• Network Management Service, including monitoring and events 

As a service architecture, it is important that the network provider be able to extend 
the cloud functionality with new network-based logic. Such custom tailoring may be 
designed as application level protocols that mediate data as it flows through the cloud. 
The proxy development framework provides managed multi-threaded support and 
grants such proxies the full power of the PD APIs. This includes systems management, 
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usage recording, encryption and other security services. These APIs can run, for exam-
ple, on the gate architecture of Figure 7-6 as detailed subsequent chapters. 

Figure 7-6: Gate Components – Network Interfaces through Application Proxies 

Proxy development builds upon the firewall control and address remapping features. 
The development framework is programmed with the PD, and it provides access to the 
API sets listed above, including the packet filter, domain, and management APIs. The 
services are provided dynamically by a standard “plug in” process, technically dynamic 
load libraries. Once installed, they are protected by the network: the developer (or his 
company) does not have any risk of the proprietary code being copied or misused. The 
developer simply provides the custom proxy The network protects this resource by 
restricting use of the executable. All network components, including the custom proxy 
code, benefit from monitoring, usage tracking, and other network behaviors. 

Figure 7-8 shows the insertion of custom proxy code into the dataflow between the cli-
ent-side and server side. The platform’s standard proxy framework dynamically sup-
ports multiple custom proxies, for example through the data daemon (see Figure 7-6).
Each proxy registers into the framework with the proxyRegister function. The frame-
work then transparently places the custom code into the data flow, where it can medi-
ate and enhance services. Proxies can register in either the “proxy” mode that interacts 
with two authenticated end points, as well as the “server” mode when only one end 
point is required. A “server” mode proxy responds directly to the client requests. 

These proxies can build application-layer protocols. The protocol requirements are 
defined during the registration and authentication of the service. This information is 
stored, as one might expect, in the secured cloud storage. Specifically, the service is 
represented by a service object within a domain, and the protocol can be an attribute 
of the service object. 

Application-layer protocols extend the standard protocols. This technique is known as 
proxy mediation. Proxies sit between the client and the server, for the express purpose 
of receiving a specific protocol and providing support. As Figure 7-7 shows, custom 
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Figure 7-7: Middleware Layers Supporting End-to-End Connection 

proxies build on the layered software design. The proxies can use all APIs, for example 
to check a user’s access rights, modify the packet filter, and retrieve information from 
the domain API. 

Every custom proxy can handle a large number of independent connections, each with 
its own “generation of storage” that remains associated with the connection for its 
entire lifetime. This storage is allocated to the custom proxy that mediates the connec-
tion. The proxy can selectively access or modify the storage, and does this without con-
cern for how many other connections use the same proxy. Each of the connections 
originates from a unique 32-bit source IP and 16-bit port (for IPv4), with the maximum 
number of simultaneous connections constrained by the host operating system’s 
capacity. While some end point devices may restrict the number of connections, it is 
typically not an issue for server-class machines. The new 64-bit operating systems and 
hardware are designed with large numbers of connections. 

Data flows bidirectionally through the proxy, in keeping with the full-duplex nature of 
TCP service. The contents of each packet flows through the proxy framework and the 

Figure 7-8: Custom Proxy Code Installed with Proxy API 
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proxy code. The connection end points are appropriately referred to as the “connect” 
side and the “accept” side. The connection initially flows from the connect-side
towards the accept-side, and the reply flows from the accept-side back towards the 
connect-side. Neither end point is constrained to a purely client or server role. 

Proxies share information in several ways. Multiple instances of the same proxy can 
directly access global memory of the controlling process. This is useful for example to 
share information between distinct connections that use the same application-layer
protocol. Caching is one example but other forms of shared information include read/ 
write locks as well as other synchronization methods. 

A number of tools simplify the standardized development and effective management 
of these mediation components. These include logging, alerting, monitoring, and 
online control through management interfaces. These standardized elements are auto-
matically incorporated into all proxies thereby ensuring coordination between system 
components. These functions are essential to all middleware networks. Systems man-
agement and monitoring is discussed in detail Chapter 10. 

Figure 7-9: Custom Server Code Installed with Proxy API 

A proxy can also directly serve the connect-side requests, rather than provide the 
passthrough functionality just discussed. These proxies register as a “server” instead of 
as a proxy, as shown in Figure 7-9. This allows the custom proxy to provide all content 
to the client. Such proxies typically keep one or more TCP connections open to various 
resources. The proxy interacts with the resources on the client’s behalf and provides 
computation and communication-based responses as required. 

Proxies either modify or augment a data flow. Consider a simple proxy that resolves the 
problem of supporting a private password for the large number of users who can regis-
ter to the cloud. The password protects some resource, for example a technical support 
service or a mail server. Password distribution and maintenance is error prone and dif-
ficult to control in a large open user community. Rather than jeopardize the resource, a 
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proxy will provide the password whenever an authorized user requires it. The password 
can be transmitted by various means, of which a simple method is splicing it into the 
data stream where a dummy password occurs. A mediation proxy unlocks the resource 
by providing the password when required. This extends the password-based applica-
tion from a closed domain to an open domain. The platform authenticates users and 
grants them the single-use of the password as required. 

A proxy is not limited to modification of the protocol flow. Activation of secondary ser-
vices can be achieved by the generation of cloud events by means of the management 
APIs. This can activate highly sophisticated services. They are activated by a cloud 
component called the access daemon, which modifies the firewall packet filter to 
map traffic to the appropriate application-level proxy. The traffic is remapped back to 
its original destination processing by the proxy, as shown earlier in Figure 7-7. We dis-
cuss this in greater detail later (see section 9.4.1.2 ”Proxy-Enabled Service Activa-
tion”).

7.3.2 SD – Service Development and Peer 

The Software Development (SD) tools are composed of a set of Java APIs that develop-
ers may use to build client and server applications for a middleware network. This pro-
vides one method by which external components may gain a “toehold” to the cloud 
and directly request cloud services. These APIs use the SD, and can also extend a stan-
dard client-peer. Figure 7-10 shows the relationship between the cloud and the SD 
application. The SD supports an authenticated control connection. This provides con-
siderable insulation against network attacks, even in the public Internet, due to the 
inability of an attacker to determine the proper encryption keys (which are per-session
and dynamic). 

Figure 7-10: SDK Integrates Client to Cloud-Managed Network and Services 
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The authenticated channel allows private and verified communication between the SD 
applications and the cloud. They may confidently request actions, and share informa-
tion. The actions are invoked subject to authentication controls as shown in 
Figure 7-11.

Figure 7-11: Open APIs Expose Platform Functionality 

7.3.2.1 Peer Functionality 

There are three primary functions of the peer, and these are available to all peer-based
services:

• Establish a trust relationship between an end-point and its access Gate 

• Support information privacy through encryption of network traffic 

• Provide separate APIs for authentication, registration, account management, 
usage tracking, and the generation and reception of events on the network 

The SD supports both a standard and extensible environment, known as the peer. Cus-
tomized applications can be developed with the SD in accordance with the needs of 
specific user communities and applications. The peer functionality is mediated by the 
cloud as shown in Figure 7-12. Peer applications fall into three architectural models: 
Peerlets, Monolithic Peers, and External Peer applications. Two of these, Peerlets and 
Monolithic Peers, differ only in whether the application controls the Java Virtual 
Machine (JVM). Peerlets extend the behavior of a standard GUI peer program, whereas 
the monolithic peers provide interfaces. External Peer applications, on the other hand, 
do not run in the same JVM as the Peer, and can be written in C or in Java. 
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A subset of the Java-based functionality is made available for C language developers as 
well. It includes Peer software. This is installed on the client or server end-points of a 
supporting network The Peer contains all of the Java packages and C libraries needed 
to support client and server applications written for the network The SD adds docu-
mentation, C header files, examples, and the Java Development Kit (JDK) from Sun 
Microsystems, Inc. Figure 7-12 presents some of the clients and services that could be 
constructed with the SD. The user console is currently available, and several custom 
clients have been designed or implemented. 

Figure 7-12: Clients Capabilities Extended through Common Platform with SD 

Peer-enabled applications may use cloud functions from outside the cloud. This is a 
powerful method to construct integrated services. Chapter 11, “Sample Consumer Ser-
vices” describes an application of “virtual worlds” that combines multiple services with 
the SD. 

Users can authenticate to the network either with or without a Peer. If they do not use a 
Peer, it is referred to as “Peerless” authentication. Peerless authentication provides 
access to fewer cloud capabilities, and is intended for clients with web-browser access. 
Thus, this is not an option for developers who want to deploy a service on a supported 
network. Since some services may require peer-capabilities on an end-to-end basis, 
users who authenticate by Peerless authentication have access to fewer services than 
those users who use Peer-based authentication. 

The SD APIs provide the following functionality: 

• Peerlet management supports: starting, stopping, and communicating with 

Peerlets
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• Connection management supports establishing authenticated connections to a 
network, announcing service availability (service announcements), and control-
ling the platform encryptor 

• Registration, account management, and subscription supports registration and 
maintenance of user and service information that is maintained in a network 

Usage tracking supports the submission and retrieval of usage information 

Event generation and reception supports the delivery of events to and from dae-
mons distributed across the network 

• External APIs support manipulation of the Peer from an external application, via 
the Peer Interface 

•

•

Although APIs are provided both in C and Java, the C API is restricted to the function-
ality available through the Peer Interface, which represents a subset of the complete 
support available. 

7.3.3 Network Development – ND 

Network Development (ND) uses a collection of APIs and tools that can be used to 
access the network infrastructure system. Users can access and customize the net-
work’s API to meet their own needs. It supports the following functionality 

• Network measurement: resources, load, random-variable sampling 

• Network Control: 

• Full QoS & MPLS network adaptation environment with network interface 
APIs per IP architecture 

• Multicast support 

• Extranet support 

• E-Commerce support 

• Video conferencing support 

• Fax support 

• Network Interactions 

7.3.4 Operations Development – OD 

The Operations Development (OD) supports rapid deployment of new IP services in a 
secure, scalable manner. The platform also provides a means of reliably identifying 
both clients and servers, and a means for adding value to standard IP protocols 
through a proxy framework. 
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The platform accomplishes this by integrating a wide variety of underlying (network-
ing) functionality into a single unified whole. Furthermore, the platform provides a 
unified, consistent set of interfaces for configuring and manipulating this underlying 
functionality. By utilizing these interfaces, anyone can effectively perform all of the 
necessary activities for deploying new IP services on the platform. 

The platform supports three broad categories of activity: 

• Activities related to controlling access to platform and service resources; this is 
the Domain API 

• Activities related to platform and service administration; the processes that 
modify cloud components and accounts 

• Activities related to the establishment and verification of financial responsibili-
ties

These three categories of activity represent groupings of tasks/operations according to 
their overall purpose (i.e., access control, platform administration, and financial 
authorization) and are orthogonal to one another. Together, these three broad catego-
ries of activity effectively identify all the types of OAM&P functionality available on the 
platform. This book is primarily about the base technology, not the business plans that 
these technologies support. Consequently, we discuss only the first of the OD activities, 
and the reader is referred to the appendices for details on the administrative and 
financial capabilities of the platform. 

7.4 Summary 

The basic Internet Protocol (IP) based networks provide efficient packet delivery using 
only the Domain Name Service and routing for in-network services. All the richness 
and diversity of services and applications lies fully encapsulated solely in the client and 
server end-points. Likewise, most of the cost and complexity also lies in the end-
points. Careful analysis reveals that much of the complexity is contained in the service 
support, and this is common to most of the clients and servers. This includes service 
support for registering users, their authentication, data stream encryption and com-
pression, directory access, and usage tracking and billing. One way of reducing the cost 
and complexity of the clients and servers is to identify a common set of service support 
and embed those services in the network. These common services can be standardized 
and deployed through the network, where the functionality is reliable and reusable. By 
exposing appropriate interfaces to this enhanced network, the client and server end-
points provide the same functionality as before but in a standard and simplified man-
ner. The enhanced network forms a higher-layer of abstraction on the basic network 
and creates an enabling service-network infrastructure. 
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This enhanced network can also help solve another problem that exists in today's net-
works' infrastructure. Today's networks allow many hot spots and bottlenecks that 
increase the cost of maintaining the networks and reduce overall quality of services. 
Client and servers are connected to the network through POPs (Point of Presence) over 
a diverse set of connections such as telephone dial-up connections, ISDN lines, or 
LANs. The hot spots and bottlenecks can appear in the servers, POPs, and the inter-
connection network. In the servers and POPs, a physical limit exists on the number of 
connections that can be established simultaneously and on the bandwidth of the link 
by which the server is connected to the network. Within the network, bottlenecks can 
occur at the intermediate links and routers. 
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CHAPTER 8 Smart Network 
Components

This chapter gives an “inside view” of the APIs and their usage, through discussion of a 
reference implementation operating in a distributed environment. Beginning with a 
functional decomposition into logical components, the chapter subsequently dis-
cusses the layered design of these components and specific design decisions. Detailed 
examples describe many of the APIs with focus on their network interactions. The net-
work interactions build upon the trusted security perimeter as safeguarded by one or 
more gates. Gates provide aggregate services built from reusable support components. 
Load balancing, scalability and manageability are inherent to this structure. The 
reader should not expect a “how to build it” guide, but rather an illustration of how 
these pieces fit together as a substrate that energizes multiple components. 

The discussion distinguishes between logical and physical components. Logical com-
ponents define a particular function without reference to specific hardware or soft-
ware. The logical taxonomy describes global information, the edge gateway, and
monitoring/management, as shown schematically in Figure 8-1 and enumerated below. 
The figure shows the architecture layers from the network interfaces up through 
higher level service-oriented structures. The security and information subsystems per-
meate all the layers and are shown at the perimeter of the diagram. Taken together, 
these components define the basic architecture for a large class of middleware net-
works.

Physical components, on the other hand, instantiate the logical components with a 
specific deployment or configuration. These particular deployment choices reflect the 
performance requirements and associated “build or buy” decisions. The core naming 
services, for example, combine carefully engineered and tunable custom components 
with suitable “off-the-shelf” components. The custom components satisfy rigorous 
performance requirements under conditions of rapidly changing state, and this com-
plements the standards-driven “off-the-shelf’ software components. 
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Figure 8-1: Logical Cloud: Network, Filter, Framework, Processes and Services 

Most of this chapter illuminates the fundamental issues that we encountered in the 
design, development and evolution of the architecture. Such issues are important to 
application design for networking middleware, as well as forthcoming systems. 

To orient the reader, we begin with the “basic anatomy” of the cloud. The following list 
provides the skeleton that supports detailed understanding of the cloud. The current 
chapter describes the use, effect and central interactions between these components. 
We defer discussion of the engineering, mechanisms and complexities to Chapter 9, 
“Mechanisms of Middleware Components”. 

1. Global information shared between all POP elements 

1.1. Authenticated Users and Services 

Global lists of authenticated components, addresses, and properties including 
security globs 

1.2. Domain Models and Attributes 

Object-oriented hierarchy of accounts, users and services providing stable 
store

2. Edge gateway vehicles 
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2.1. Security Framework 

Define and enforce security methods, including Internet Protocol Security 
(IPSec), tunneling, and public key infrastructure (IPSec). Extensible through 
standard GSS API. It includes the Distributed Network Element (DNE) that 
defines forwarding, flow and quality of service behavior through interaction 
with a routed network 

2.2. Secure Protocols (L2TP, IPSec) 

Receive, send and forward tunnelled or secured traffic by means of appropriate 
security association and support appropriate interactions including PKI 

2.3. Rule-Based Packet Filter/Firewall 

Filter and route IP packets at local network interfaces 

2.4. Authentication Proxy and Libraries 

Authenticate new connection or labelled flow. Places the user into the Authen-
ticated Connection Table (AuthConnTab). The Authentication Proxy is the 
custodian of authenticated users, and authentication libraries support specific 
forms of authentication 

2.5. Control Daemon 

Maintain control channel to authenticated connection or labelled flow 

2.6. Access Daemon 

Determine access permission for specific traffic instance (connection or 
labelled-packet). Update packet filter to enforce the permitted access 

2.7. Data Daemon 

Interface and support for custom proxies 

2.8. Proxy Framework 

Create and support per-connection instances of application-level protocols. 
Provides threaded data-driven socket interfaces integrated to gate APIs 

2.9. Standard Protocols and Services 

Execute standard components and protocols, including protocol wrappers 

2.10. Registration Proxy and Libraries 

Registration support for users and services. Create, register and store authenti-
cation credentials. Supports business offers’ registration requirements through 
creation of credentials and interaction with domain database 

2.11. Usage Proxy and Libraries 

Submit and retrieve nonrepudiable usage records, both at the session level, 
application level, and custom levels 

System components and application support that extend the platform with 
customized proxies 

2.12. Application Protocols and Proxies 
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3. Monitoring and Management 

Subsystem monitors and manages components and network 

3.1. Monitor and log 

3.2. Command and Control 

Validate component status. Support component logging and detail control 

Send commands to components to start, stop, and modify behavior 

3.3. Measure performance 

Measure performance component and subsystem behavior via probes and sta-
tistical sampling 

3.4. Alert 

Recognize and generate alerts when distinguished measures of quality 
(DMOQ) are not met 

3.5. Event 

Generate and receive structured events with publisher/publication subscriber/ 
subscription paradigm, including exact-once semantics and stable storage 
until delivery 

These components provide an extensible platform that supports multiple services. 
Consider, for example, Voice over IP (VoIP). The gate architecture can provide trusted 
support for telephony protocols such as H.323 or SIP; for example, augmentation of 
call setup with cloud-supplied customer information. Integration of such protocols 
will utilize the flexible “smart controller” capability of the logical architecture. 

8.1 Overview of SNode — Edge Gateway Functionality 

Service nodes (SNodes) connect the external elements with the secure inner network. 
These SNodes support services, including transport and scalable computing. Their 
location at the network perimeter provides proximity to end users and thus makes the 
gates a logical location for intelligent functionality. This includes security services, as 
well as proxy-based extensions. An SNode based on the extensible architecture can 
have many gates, and each supports a minimum of two hardware network interfaces 
on different networks. The external interface supports the non-trusted side of the 
security perimeter, and the other interfaces supports the internal trusted network. 
Multiple gates provide both scaling and load balancing. 

The user is, nevertheless, not tied to or limited by a particular gate. The network data-
bases and support infrastructure are shared between them. This does not change even 
when load balancing uses multiple physical processors. In the current deployment, 
gates are hosted on large-scale UNIX machines. 
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Figure 8-2: Edge Gateway: Filters and Proxies Extending Protocols and Interfaces 

The gate defines a security perimeter and a protocol mediation framework for the mid-
dleware network. A dynamic packet-filter/firewall maintains this perimeter. This 
restricts entry to authorized traffic exclusively, and may modify the destination of any 
packet. The firewall provides extensible security options, and integrates multiple secu-
rity packages including IPSec, low-cost web-based single-sign-on, and the proprietary 
peer. Data traverses the SNode perimeter only as permitted by the cloud security policy 
and security packages. These packages provide transformation, authentication and 
authorization. The combined result is managed security through rule-driven access 
policies. Enforcement of access policies is implemented at both coarse and fine granu-
larities, as shown in Figure 8-3. The gates further support a proxy framework for ser-
vice development and protocol mediation. 

These powerful tools support application programming both on the gates and 
remotely from outside the security perimeter. The off-gate capabilities are provided by 
peer-based, browser-based, and proxy-enabled devices. The gates thereby become a 
safe haven for security information, registration information, and cloud status. This 
versatile architecture provides the requisite flexibility to fully and quickly leverage new 
standards and products. 
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Managed firewall secures 
portal into network-based
services. Authentication with 
standards-based methods (SSL, 
Radius, etc.) Optional stronger 
security through configurable 
extensions. Custom peer and 
IPSec available as needed. 

Architectural basis for scaling, 
load balancing and extensibility. 
API support through PDK. 

Figure 8-3: Gate Enforces Security Boundary 
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Other gates support services by accepting the authenticated connections from service 
machines. These gates mediate the service requests that originate with clients, and 
pass them to the service machines. Service machines are typically physically secured 
and highly reliable engines providing application-level support. The cloud insulates 
these machines by providing an intermediary between them and Internet clients. Nev-
ertheless, the service machines are outside the logical trust boundary. They are trusted 
only to provide a given set of services. They cannot directly modify the security infra-
structure or the middleware network. Rather, they provide value-added services. The 
service machines request cloud interactions by the use of standard APIs. 

The firewall controls ingress traffic1 through a managed service-oriented architecture. 
Combined with programmable APIs and toolkits, the architecture is highly extensible 
within the fundamental security policies. Architects and developers are completely 
free to add components and craft the requisite functionality. There is very little time 
lag involved with special purpose devices or protocols. This enables major improve-
ments in the development cycle. Instead of working with a brittle architecture, devel-
opers build applications relatively unencumbered by the conventional complexities of 
system design. The open architecture supports rapid development, and the resulting 
designs may migrate toward hybrid architectures with better cost/performance ratio, 
as has occurred, for example, with managed transport. 

8.1.1 Gate Capabilities 

The gate software is grouped into the three layers shown in Table 6, below The upper-
most group shows the firewall through access control system. These provide substan-
tial functionality as well as a “bootstrap” for the other components. The packet filter/ 

1. The firewall mechanism can also limit egress traffic, although cloud policies only limit upon entry alone. 
This follows logically from the concept of the cloud as a trusted intermediary. 
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TABLE 6: Layered Architecture Combines Firewall and Proxies 

Component

Firewall and Packet 
Filter

Proxy Framework 
Authenticated Con- 
nection Table (ACT) 

Access Daemon 

Control Daemon 
(CD) and Authenti- 
cation Proxy (AP) 

Authentication
Libraries

Credential Proxies 

Data Daemons 

Description

Admission control, classification and selective redirec- 
tion. Dynamic firewall rules grouped by session. Supports 
multiple policies and extensible mechanisms for security 
and mediation. Tie-in with IPSec 
Register listeners and processes for proxied connections 
Cache describing active sessions. Synchronized with the 
packet filters and active registries (users and services) 
Analyze IP traffic and install rules in new, existing, or 
default sessions of packet filter; support access checks 

Standard components for authentication and recording 
this information in the active registries. Supports multi- 
ple authentication protocols, encrypted control channel, 
and additional security requirements by means of 
authentication protocol and authentication libraries 
Protocol-specific components: Peer, TSL/SSL, RADIUS, 
NTLM, Kerberos, X.509 v3, etc. 

Protocol-specific registration mechanisms for multiple 
devices and policies; these include web-based, peer- 
based, and extensions. PKI interactions 

Network support of advanced intelligent services and 
network interactions by means of protocol mediation 

firewall inspects the IP packet headers and provides session-specific controls includ-
ing rule-driven redirection. The proxy framework associates standard processes with 
these redirected connections. 

In order to manage the multiple traffic streams, the SNode gates refer to a structure 
known as the authenticated connection table (ACT). This describes every valid con- 
nection, including the session’s packet filter. Removal of an entry from the ACT deletes 
the session’s rules from the packet filter thereby “shutting off” any data flow to the ele-
ments. Rules are added to the filter on an as-needed basis, through the access daemon, 
shown as the fourth row of Table 6. The access daemon adds rules to the packet filter in 
accordance with cloud access policies, as discussed in Section 9.2.4. The rules can also 
obtain fine-grain packet filtering by redirection of traffic to a daemon for further pro-
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cessing. Taken together, the first cluster of Table 6 defines a kernel supporting a pow-
erful set of standard components. 

The middle level consists of the essential cloud control programs – control daemon, 
authentication daemons, and credential proxies. These provide the authentication ser-
vices, including control channels and secure creation of credentials. This middle layer 
defines how a subscriber may authenticate, and enforces the security services that 
maintain the integrity of the authentication. This layer also includes a registration 
server, and web-based peerless authentication. These use an innovative SSL Data Proxy 
(see Section 9.2.2 on page 294). 

The control daemon and authentication proxy (AP) combine a secure control channel 
with a generalized authentication mechanism. Multiple methods can “plug into” the 
AP in the form of authentication libraries. As a custodian of security, the SNode can 
also issue credentials as appropriate. Taken together, the cluster supports credential 
formation, access control, extensible security, and advanced protocol support. The 
resulting gate architecture is elegant, reliable, and powerful. For example, new traffic 
types are directed by the firewall to the access control daemon for analysis. It decides 
whether the traffic should be permitted. 

At the third layer, generalized data daemons support a wide range of functions. This 
includes HTTP support for web proxies and naming services such as DNS. Gates also 
support management through the GMMS subsystem and usage subsystem. Certificate 
authorities provide secure services to the cloud internally as well as to users of the 
cloud.

8.2 Active Registries: Connections, Users and Services 

Networking middleware retains both dynamic and persistent information. The 
dynamic state information describes the authenticated components including active 
connections, services, configuration, and security contexts. The descriptions of active 
clients and services resides in distributed active registries (see Figure 8-4). Services 
perceive these registries as nearly instantaneous descriptions of the authenticated 
users and services. Optimization of the registries ensures that frequently used infor-
mation is readily available at the appropriate network nodes. This exploits the locality 
of information access, since each edge element is primarily concerned with the con-
nections that pass through its interfaces. A small number of transit connections may 
also pass through, and these are required to aggregate the traffic within the connec-
tion.

The registries are the authenticated user registry (AUR) that details all the authenti-
cated users, as well as the authenticated service registry (ASR) with service-specific
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Figure 8-4 Secure Global Storage: Active Registries 

information. A composite registry, known as the authenticated connection table (Auth-
ConnTab, or ACT) describes every active connection including the object that owns 
the connection and the security parameters of the object. 

These registries provide highly optimized data stores designed in view of the locational 
characteristics of users, services and connections. This ensures the fastest response to 
the most common or important events, while still ensuring correct responses for less 
common ones. For example, a subscriber’s ingress gate stores information relevant to 
the subscriber and its services. 

Cloud components update these registries with object-oriented APIs. As users authen-
ticate and later terminate, session information is added and removed from the Active 
User Registry (AUR) and Active Connection Table (ACT). Whenever a service is 
announced or de-announced, the Active User Registry (ASR) is updated, and the entry 
records the user who made the announcement. Entries are purged when the user ter-
minates. Service announcements occur either automatically from the client’s peer soft-
ware, through commands given by an administrator, or alternatively by custom code 
that uses the platform APIs. 
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Persistent information resides in the domain database and is accessed exclusively 
through the domain API, providing a standard method to manipulate and interact with 
such objects. For example, the domain API provides stable storage for security creden-
tials, standard attributes of services and users, as well as the hierarchical relationship 
between them. We elaborate on persistent information later, in Section 8.3. 

8.2.1 Authenticated User Registry (AUR) 

The AUR can be thought of as a form of dynamic directory or login registry The fol-
lowing information is maintained for currently authenticated users: 

• User identifier 

• User handle (i.e., a symbolic user identifier) 

• IP address or other identification of the end point from which user is currently 
active

• Home proxy of the user (i.e., the gate to which the user’s connection is directly 
connected)

Optional data that is opaque to the AUR. This may describe specific properties 
that are relevant to a specific user, such as device properties and a unique data 
path within an IP address 

•

Components that query the service registries include the Authentication Proxy, Con-
trol Daemon, Access Daemon and data proxies. Internal access control components 
and other cloud management/monitoring applications communicate directly with the 
AUR rather than with an X.500 or LDAP directory for the following reasons: 

• The basic functioning of the cloud is not affected by the availability, or lack 
thereof, of a White Pages (directory) server. White Pages is not a core functional-
ity of a network cloud, rather it is considered an essential service which may be 
tailored by the service provider. It is even conceivable that multiple White Pages 
servers may exist for a given cloud 

• Since the AUR sits on a core subnetwork, queries to the server do not need to 
pass through a firewall. By contrast, the LDAP server(s) cannot sit inside the 
secure perimeter due to the protocol requirements. Thus, if the LDAP service is 
not authenticated, or that particular gate is down, no users would be able to 
authenticate to the cloud from any gate 

• The AUR is optimized for performance based on the functionality most often 
used by its clients. For example, the ability to access all users that are connected 
to a particular gate is extremely useful when a communications failure requires 
the redirection of the client traffic. The affected users are easily identified 
through a single operation in the AUR. It might, however, use multiple opera-
tions if the information were stored in the LDAP directories described above 
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• The AUR information can be cached on the components that require fastest 
access

By providing a small and specific set of services, the AUR can be based on a lightweight 
protocol and operations, making it very efficient. For example, White Pages servers 
typically time out LDAP connections after a certain time period, causing the repeated 
overhead of reconnecting. The AUR, on the other hand, provides optimized services 
and also allows clients to remain connected as needed. 

8.2.2 Authenticated Service Registry (ASR) 

When a service is announced, information about the service is added to the ASR by the 
authentication proxy and a component known as the Control Daemon maintains an 
authenticated channel as required. Conversely, when the service is de-announced, the 
information is removed from the ASR. The ASR supplies this information to other 
components by providing a mechanism to search its contents. The following is some of 
the information maintained for currently authenticated services (henceforth referred 
to as active services): 

• Service identifier 

• Service handle (i.e., a symbolic service identifier) 

• User identifier – the user that authenticated the service 

• IP address of the terminal on which the service is available 

• Port on which the service is available 

• The TCP Protocol used by the service 

• Home proxy of the service (i.e., the gate to which the service is directly con-
nected)

• Access controls and encryption information for the service 

• Information used to determine the type of proxy used by the service 

• An optional glob of data that is opaque to the ASR 

The information contained in the ASR is used by the Access Daemon and the Control 
Daemon for access control and encryption enforcement. These components enforce 
access policies through system-wide objects of accounts, users and services.

These registries support various kinds of users: both “tethered” users, who are 
uniquely identified by an IP address; as well as “untethered” users, who are identified 
through the content of the traffic. Support of untethered users includes the web proxy 
and peerless support. This allows a wide variety of services including web browsing, 
pocket phones, and other items that are granted services by an “unconventional” data 
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stream without a dependency on a fixed IP address. Caching mechanisms ensure the 
system can quickly determine the status of a user or service by reference to the Active 
Registries. This lets the cloud know what users are logged on, the services currently 
active on the cloud, as well as particulars of each user. The user’s device and type of 
authentication are of particular importance. 

The middleware combines these active registries with other components and proto-
cols. For example, a telephony application may benefit from the combination of an IP-
based protocol (such as H.323 or SIP) with information on active users and services. 
This directly utilizes the ASR and AUR. 

8.2.3 Authenticated Connections Table (ACT, AuthConnTab) 

The authenticated connections table (ACT) maintains global cloud information, 
including descriptions of users and connections. Updates and queries satisfy the 
extremely stringent performance requirements, and provide the capability to manipu-
late connections at multiple granularities within the following hierarchy of cloud down 
to services and connections. The ACT uses hashed in-memory data structures sup-
porting very fast access through shared memory, as well as through a messaging proto-
col. Each gate serves as the primary copy of ACT information that describes the locally 
authenticated connections. Gates also retain cached information describing relevant 
remote connections. The connection management software propagates cached infor-
mation.

The ACT APIs descend the hierarchy by progressing to finer levels of detail. They can 
also ascend the hierarchy by identification of the users that are authenticated to a ser-
vice, gate, domain or cloud. 

• Cloud. Domains, gates, users, services, and their interconnections 

• Domain. Gates, users, services and their connections 

• Ingress gate. Describes the users, services and connections of the gate 

• User. Connections from users 

• Services. Connections to services 

• Connection. Identification of the user that initiated the connection, the service 
being accessed, and the security parameters of this connection 

The ACT is maintained by a communications manager located in the cloud. This 
enforces a the semantics of system objects and assures their correct network interac-
tions. This guarantees that modifications originate from authorized system compo-
nents, specifically the authentication libraries including peered, peerless and RADIUS 
authenticators. The ACT retains global state; consequently, all ACT updates are syn-
chronized by the AP. The ACT entries are created when a client authenticates. The 
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entries are removed – and the essential accompanying actions are performed on the 
firewall, usage records, and associated services of a user – when a voluntary or involun-
tary termination occurs. 

The ACT records each client’s authentication algorithm and credential type, as well as 
the global master secrets used by specific security methods. There are four kinds of 
objects:

• Authenticated clouds. Associated domains and routed destinations within the 
clouds

• Authenticated users. The user, the user’s ingress local cloud, and the security 
parameters of the user, This includes the credential type such as login or 
RADIUS, X.509 certificate, Kerberos ticket information, or peer-based authenti-
cation key Service-specific credentials may include PSTN phone number 

• Announced Services. The service names, service IDS, and the user that 
announced the service 

• Security Information. The master encryption secrets for peerless authentication. 
IPSec information is maintained separately in the SPD 

Information in the ACT entries include the following, although not all fields are rele-
vant to every connection: 

• Source. IP address, subnet mask, port 

• Context. Socket FD, thread ID, session ID, time stamp 

• Security information. Encryption keys, encryption flag. These are accessed 
through method-specific access functions 

User information. Handle, ID, cloud ID, user type, indices into firewall table, ser-
vice IDS

• Cloud information. Cloud ID, domain name, relationship, destination addresses 

•

8.2.4 Programming the Registries – AUR, ASR and ACT 

APIs provide access to the AUR, ASR and ACT. Cloud-internal processes may modify 
and query the registries. They should not, however, modify the ACT. A command-line
interface facilitates administrative control and provides proper synchronization. The 
manageAur command, for example, permits query or adjustment to the registry. 

Changes to the AUR/ASR are programmed with either Java or C++ APIs. The C++ 
classes geoAsrClient and geoAurClient support entry, query and deletion of registry 
objects, and operate upon AsrEntry and AurEntry. A query can return a set of items. 
Figure 8-5 demonstrates these classes. The figure initializes a GeoAurClient object
with a connection to the AUR server at the local host; alternatively, it can use shared 
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#include "geoIncludes.h"

int main(int argc, char *argv[])

#define AURSERVERNAME "localhost"
geoAurClient theAur;
char *serverName = AURSERVERNAME;
// The DNS name geoplexaur is the standard name to access AUR. 
// A parameter may specify the DNS name of the AUR server 
if (argc > 1)

{

serverName = argv[1];
{

}

try
{

}

{

// Connect to the AUR server at the default port (AURSERVERPORT) 

theAur.connect(serverName);

catch (const GeoException& e)

cerr cc "Got an exception while connecting: ” << e.getMessage( )

return 1;
<< " (" << e.getErrorCode( ) << ")\n";

}

// Define the storage structure for an AurEntry entry 
AurEntry anEntry; 

// Fill in the userID, the IP addresses of the user and the gate 
anEntry.userId = Ox400001L; // Assigned user ID 
strcpy(anEntry.userHandle, theuser); // Copy of the user's name
anEntry.userAddress = theAddress; // 32 bit IP address of client 
anEntry.homeProxy = homeProxy; // 32 bit IP address of user's gate 
anEntry.proxyInstance = THISPROXY; // Component that added the entry? 
anEntry.opaqueData = NULL; // Optional information such as key 

// Add the entry to the AUR 
theAur.add(anEntry);

}

Figure 8-5: Example of AUR Update 

memory instead of a connection. The process then initializes an AurEntry structure
with client-specific update data of the user ID, name and network addresses. The client 
adds the information to the AUR with the add method. The APIs support query of the 
AUR in a similar manner. They may also use the Java API as discussed in Section 8.3.2. 

Support of the Authenticated Connection Table (ACT) provides a more restricted API 
interface, as shown in Figure8-6, and only allows read access. Updates are tightly 
restricted and occur only through the authentication proxy and the control daemon. 
There are several reasons for these restrictions, but primarily a client cannot be placed 
into the ACT until the firewall rules are completely built and propagated as appropri-
ate. Likewise, removal of an authenticated connection requires coordinated purging of 
the users’s firewall rules as well as termination of all connections to services provided 
by the user. The ACT methods coordinate these updates at both the local gate and 
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other SNode elements. Such updates are therefore performed exclusively by the 
Authentication Proxy and libraries, as discussed in Section 8.2.4.1. 

1. Define ACT pointer and entry: 
ACT_SharedMem* act = openACT( ); 

AuthConnTab_t act_entry; 

• IP address 

• subnetmask 

• network 

• userID 

• cloud ID 

• domainname 

2. Specify query by filling in keys in the act-entry:

3. Issue the query for specific information: 

• Obtain a list of entries: getACTentbylP( act, &act_entry ); 

• Process the entries from the act_entry pointer 

4. Obtain the peer authentication type: 
int geoGetPeerType(ACT_SharedMem*, in-addr);

returns ACT_PEERLESS... ACT_GEOPEER
5. Obtain the “shared secret” for peerless authentication: 

int geoGetExportedMasterSecret(ACT_SharedMem*, void *buf, int *size); 

Figure 8-6: Access to Authenticated Connections (AuthConnTab) 

8.2.4.1 Validation of Identity – Peer and HTTP CallerID 

Caller ID is a general mechanism to identify the authenticated client who has origi-
nated a connection. It has nothing to do with POTS lines or the caller ID provided by 
local carriers. Rather, this allows services to verify the identity of a client. This is useful 
in a wide variety of services. For the example of eCommerce, the identification of a cli-
ent’s identity is part of securing a transaction. An IP telephony system will need to val-
idate the client identity as well. 

The cloud, authenticated peers, and general web servers can obtain the user ID of an 
authenticated peer at a given IP address. The Caller ID Table API is used to maintain a 
shared memory table to exchange session related information between different pro-
cesses running on the same gate. The caller ID functionality is defined as follows: 
When client (peer) establishes a connection, the connection can be uniquely identified 
by the caller ID item represented by the triple: (local_port, src_addr, 
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src_port) ,where local_port is the local port (on the gate side) of the connection 
to the peer, and thesrc_addr, src_port identify the peer side of the connection. 
The local port is used in formation of a unique session key. Upon accepting peered con-
nections, the server (proxy) populates the caller ID table The other processes on the 
same machine can use it through the common caller ID table API to store, retrieve, or 
delete caller ID items from the table. 

The API is very simple and represented by the five functions of Table 7. 

TABLE 7: CallerID Table Maintenance and Access 

Name of Function Purpose 

geoOpenCIDTable

geoPutClDltem

geoGetClDltem

geoDelClDltem

geoCloseClDTable

open the shared resource (caller ID 
table)

insert the caller ID item into the table 

get the caller ID item from the table 

delete the caller ID item from the table 

close the shared resource (caller ID 
table)

8.2.4.2 Specification of Connection Control – Packet Filter API 

The packet-filter/firewall provides an essential “regulator” on traffic that passes 
through the network. While most of the connections are allowed by the access dae-
mon, there are important instances where services must dynamically modify the filter. 
The pf_ APIs permit programming the packet filter. Consider the support of remote 
procedure call (RPC). A client will typically request a service by communicating the 
service description to a standard well known port, often called a port mapper. This 
assigns an available port, and replies with a description of the port. Since the firewall 
never opened the port, however, the requesting client will be unable to connect over it. 

This port mapper receives support of a port mapping service inside the cloud. This ser-
vice monitors requests and replies. When it receives a reply message, the port mapping 
service matches it to a previous request, and dynamically adds this port to the appro-
priate connection’s session table. This allows traffic to pass between the specific client/ 
server pair. Of course, this is done subject to access controls. The port mapping service 
may remove this entry at any time. The access permission also closes automatically 
when either end point terminates the connection, when authentication is removed, 
upon an inactivity timeout. 

The specifics of connection control are programmed by a packet filter API to pass, 
drop, map or check. The API operates upon distinct objects: 
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• Mapping objects. These record the original and remapped addresses for each seg-
ment of a connection, and allow, for example, restoration of the initial destina-
tion

• Session objects. These provide a grouping function that combines rules of a single 
logical connection. The full packet-filter API can define, delete or modify exist-
ing firewall sessions 

• Rule objects. These are consulted by the packet filter to determine the correct 
action when unclassified packets arrive 

The packet filter API provides two levels for use by new in-cloud processes. Two addi-
tional levels are preserved for internal controls such as the access control programs. 
The level one rules are informational only, providing status, time-out, as well as map-
ping between addresses. 

Query packet filter status 

intgp_gf_get_status(constchar *tag, void*data,
intlength, int*actual,int*errnop);

Obtain default session timeout for IP protocol and action 

ushort gp_gf_get_default_session_timeout(char_t protocol, 
gp_gf_action_taction);

Get real IP information from MAPPED or LOCAL packet 

int gp_gf_get_mapped_info (const gp_pf_session_key_t *key, 
gp_qf_session_key_t*real, int*errnop);

Get action attribute for session defined by key 

int gp_gf_get_session_action (const gp_gf_session_key_t *key, 
gp_gf_action_t*action, int*errnop);

Figure 8-6: Level-One Packet Filter API 

The level two rules modify the session cache, and L3/L4 specify global filter behavior. 

Add session to cache on behalf of proxy 

int gp_pf_add_proxy_session(gp_gf_proxy_space_t 

*proxy, gp_gf_session_key_t *key, char *in_if, 

char *out_if, gpgf-action_t action, 

ushort_t timeout, int *perror); 

Remove session from cache on behalf of proxy 

int gp_gf_remove_proxy_session(gp_gf_proxy_space_t *proxy, 

gp_gf_session_key_t *key, char *in_if, 

char *out_if, int *perror); 

Figure 8-7: Level-Two Packet Filter APIs 
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8.2.4.3 Validation of Access Control – Access Check API 

These APIs allow checking the access permission of a connection, whether it is a peer-
based or a web-based connection. We will ignore the polymorphic wrapper that deter-
mines the kind of traffic, and consider two specific API calls that determine access per-
mission.

From peer client 
geoAccessCheck(int fd, in_addr ip, ushort_tport, int proto) 

From web client (get uid from cookie) 
intgeoUserAccessCheck (intfd, in_addr ip, ushort_tport,

int proto, geo_userid_t uid) ;

Figure 8-8: Access Control Validation APIs 

8.2.4.4 Usage Recording and Retrieval APIs 

Usage records, on the other hand, support a particular function of monitoring and 
tracking completed events within the system. Both accounting and performance mon-
itoring use the usage trails. The usage records are created automatically by the cloud 
components to record resource usage. A redundant series of usage collectors and vali-
dation services helps to ensure that usage information will not be lost, even in the face 
of component faults or operator errors. The records may be retrieved by certain users 
such as the account administrator. These records are secure at the record level because 
each record is protected by a translucent storage structure called a “cookie” (these are 
different from HTTP cookies). 

GeoUsageCookie cookie; 

errno = geoUsageSessionCookie(userInfo->userIP, 

userInfo->userport, &cookie); 

geoNVPInit(&nvpairs) ;
geoNVPPut(&nvpairs,"LOGOUT",0,userData->serviceType) ; 

sprintf(buffer,"%d",userData->conBytes) ; 
geoNVPPut (&nvpairs, "connectBytes",1,buffer) ;
errno = geoUsageSubmitRecord(cookie, 

geoNVPDestroy(&nvpairs) ;

Figure 8-9: Submitting Usage Record 

userData->serviceID, &nvPairs); 

The cookie is allocated at the beginning of a session, and uniquely identifies the ses-
sion. Usage content is stored into the flexible data structure of name value pairs (NVP), 
which can use multiple encodings. The usage records are submitted (or retrieved sub-
ject to access permissions) through the appropriate API. This is shown in Figure 8-9.
The usage architecture is designed as a scalable, highly efficient, and above all, a reli-
able method to collect and store the critical usage information. This offers sufficient 
flexibility for a wide range of deployments. 
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Figure 8-10: Elements and Interactions of Usage Subsystem 

The usage subsystem supports the principle of “one-customer one-bill” as well as real-
time billing in conjunction with suitable rating methods. 

8.2.5 Summary of the Gate Architecture and Capabilities 

Let’s consider each of the eight design principles described in Chapter 4, “Platform 
Requirements and Principles”, to appreciate the gate-oriented architecture: 

Routability
The ability to control routing is one of the most important issues in the 
large, scalable Internet. A gate makes the routing decisions for all traffic 
that enters the cloud. For example, data passing to a gate can be monitored 
and routed by the gate software, as well as with special purpose switches 
(Distributed Network Element). This supports per-user quality of service 
(QoS) flows by means of the caller ID functionality supported at each gate. 
The gate decides which services the user can access, as well as the version 
or location of the service. 

Registration
The gates support a registration service. By placing the registration sup-
port at the first network contact, the hardware design inherently supports 
low-cost and low-latency registration of new users. This permits them to 
join the network where they participate in the full range of system func-
tions.



258 MIDDLEWAFIE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

Coarse Grain Access Control 
The hardware architecture limits service access through admission con-
trol. Unauthorized clients are refused access by the gate, and any permit-
ted access must be mediated by the gate which provides this control. 

Non-Repudiable Policy-Based Connections 
The client capabilities can be determined on a per-user basis, regardless of 
how the users connect to the network The gate may broadcast policy 
requirements in such diverse areas as security (i.e., how is the client 
authenticated), resource requirements (bandwidth, delay), as well as per-
missible content. The gate as the controlled access point is authorized to 
control policy settings on behalf of the client. This is possible only because 
the client has authenticated to the network, and, since the cloud is the con-
tact point, this permits control. A special gate component (an access dae-
mon) validates connection attempts and populates the policies for the user 
and available services. 

Data Mediation Integrity 
The gate machine provides the computational force for data mediation. 
This supports hardware routing, load balancing, and actual changes to 
data as required to provide advanced services. 

8.3 Domains: Accounts, Users and Services 

As a managed substrate of network interactions, the middleware platform constructs 
and represents user profiles. This supports various registration processes. However, as 
we have previously noted, a single API cannot address the diverse requirements of 
complex business issues. Registration is a particularly complex question with multiple 
concerns. Credential generation as we discuss it can support but not supplant resolu-
tion of such registration issues. 

• Create or import secure authentication credentials 

• Create or update user profiles in the domain API 

• These services are deliberately “low level” and do not define the full range or 
user-registration services. We view registration as a higher level business pro-
cess, one that is specifically oriented towards particular consumer services. Such 
registration services can be deployed on external servers. They may also be 
implemented directly on the gate machines when appropriate; for example, with 
a secure control channel and a cloud-resident proxy, 

A second method uses an secure connection that interacts with a web server, and the 
web server would use APIs to register the user. A registration server receives requests 
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to register, and selectively grants credentials to suitable clients. This corresponds to 
the “Peerless Reg Front-end” shown in Figure 8-11.

Figure 8-11: General Credential-Issuance Framework 

The second major component of the networking middleware is the hierarchical active 
directory structure. This combines an open API, known as the domain API, with 
underlying implementations constructed from the “best in class” in object-oriented
databases. These components are integrated into the middleware through distributed 
proxies, as shown in Figure 8-12.

Figure 8-12: Secure Global Storage: Domain API and Database 
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8.3.1 Membership Structure 

Figure 8-13: Domain Model and Attributes 

The framework provides a substrate that supports all system components, as well as 
development kits providing an appropriate view of these components to various kinds 
of developers and users. The development APIs (PD, SD and ND) manipulate various 
objects that define a unified structure for definition and management of services. 
These objects are arranged in a hierarchy composed of accounts, users and services. 
This defines the capabilities for participants within a network cloud. The rights and 
privileges of any user or service can be defined within this hierarchy. This naturally 
supports account oriented activities, of which billing and access control are the most 
prominent members. Use of the hierarchical structure permits the flexible granting 
and revocation of privileges. 

The platform should support standard objects and relationships between them, and 
will assume some relationship to structure them. The best-known structure is a hierar-
chical relationship between accounts, users and services. The objects allow creation, 
monitoring, modification and deletion in a coordinated manner defined by cloud poli-
cies. A cloud administrator may define policies specific to multiple user communities. 
The hierarchal organization allows inheritance of privileges (or restrictions) and parti-
tions the name space into locally manageable subhierarchies. 

The account structure associates attributes and values with each object as it occurs in 
the hierarchy. Some of these attributes provide security information for the authenti-
cation processes. For example, the identity can be challenged and proven. Authentica-
tion information may include a password, static and dynamic encryption information, 
public-key certificates, or biometric data. 
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The account structure also describes the permissions the cloud will allow to the 
devices or processes that act on behalf of the identity. For example, this allows sub-
scription-based services. The domain API updates the account structure. It supports 
hierarchies consisting of standardized (fixed) and administrator-specific (variable) 
objects. The fixed objects are mandatory, whereas the variable ones reflect the infor-
mation requirements of a specific administrative realm. These objects are organized 
into domains. 

8.3.2 Domain Model 

One of the most important aspects of network accounts is the concept of a domain. A 
domain is essentially the container which is used to hold and reference the types of 
entities recognized by the middleware platform (e.g., users, accounts, and services). 
Whenever a new entity is created, it is created within the bounds of some domain. It is 
created as a member of only that particular domain, and it can only be accessed as a 
member of that particular domain. 

Domains typically correspond to some sort of natural organizational or functional 
groupings, and the entities contained within a domain typically correspond to the 
individuals and services within those groups. A domain typically corresponds to a sin-
gle overarching organization or enterprise (e.g., an Internet Service Provider or a uni-
versity) and typically contains information regarding all of the users, services, and 
administrative operators supported by that organization. 

In principle, domains could be associated with smaller subsets of an organization (e.g., 
the sales department of a company, or the School of Engineering of a university) 
instead of the entire Organization. However, in order to do so, any subset must satisfy 
the following restriction: the selected subset must represent a natural partitioning of 
the organization. This is because domains are mutually exclusive – domains do not 
overlap, and one domain cannot be a sub domain of another domain. An entity can be 
a member of exactly one domain and a domain can never be a member of a domain. 

Figure 8-14, for example, shows two domains and the entities contained within them. 
Note that all of the entities in Domain A are separate and distinct from those in 
Domain B, even though some of them share the same (local/not-fully-qualified) name. 
For example, “User 1” in Domain A is a separate and distinct entity from “User 1” in 
Domain B. “User 1” in Domain A can only be referenced through Domain A as “A:User 
1” and “User 1” in Domain B can only be referenced through Domain B as “B:User 1”. 
Because of this restriction, domains typically map onto entire organizations. It is often 
easiest to partition users and services along the boundaries between distinct organiza-
tions.

Each cloud must be tied to at least one domain, and in the typical/standard configura-
tion, a single cloud utilizes/maintains exactly one domain. In theory, multiple domains 
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Figure 8-14 Two Independent Domains 

could simultaneously be maintained on a single provider’s platform, and full support 
for this capability will be available in the future. 

Domains are identified by a globally unique name. In addition, domains also possess a 
“handle” attribute that is a fully qualified domain name (FQDN). This handle is cur-
rently used to find the host (or hosts) that can serve the domain and all of its associ-
ated domain objects. Finally, a domain also possesses a “certificate” attribute, which 
contains the platform (“cloud”) certificate signed by a recognized certificate authority. 

8.3.3 Domain Objects: Accounts, Users, and Services 

An account is the root of one or more accounts, users and services. An account may 
have multiple descendant accounts, as well as users and services. A user is an entity 
that can authenticate, receive privileges, and access resources pursuant to the privi-
leges.

A service is a registered provider of some value-added capability. There are many kinds 
of services, and they all use the cloud to obtain enhancements. For example, traffic 
always passes through the firewall and is subject to authentication and usage record-
ing. Enhancements available through APIs include security services, protocol media-
tion, and interaction with APIs. Service composition is possible by custom codes. For 
example, authentication and registration are two services. Security capabilities, usage 
access, and Microsoft file/print are additional services. 

8.3.3.1 Subscriber Management 

Managed Internet platforms may choose to deliberately restrict the ability of clients to 
register or announce services. A prospective service provider must first be a registered 
user. This not only allows the network provider to bill a service provider, it also locates 
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the service provider within a hierarchy of accounts. This account hierarchy can restrict 
access to the service, thereby supporting multiple views of the Internet. 

The service architecture provides service-registration and service-announcement
capabilities. Service registration defines the essential parameters, including location, 
name, access path, and protocols supported. Service announcement states availability 
of the service, and is required because the service might be temporarily offline. 

The relationship between accounts, services and users is shown in Figure 8-15. These 
form a recursive structure. An account may have multiple subaccounts, as well as mul-
tiple users and services. The rights and privileges of the user or services are defined by 
the path from the root account to the object’s parent account. This provides aggrega-
tion of multiple entities, greatly easing management. For example, when a privilege is 
added (or removed) from an account this affects down-level accounts, users and ser-
vices.

An addition to an account structure, there are three types of service permissions. A 
service can be either: 

• full-public

• cloud-public

• cloud-private

A full-public service may be accessed by any client, even if the client is not authenti-
cated. This is a convenient mechanism to support registration services, for example, 
when users are not preregistered. A service provider can export a registration service 
that can be accessed even before the client is permitted to authenticate for the service. 
Similarly, a deprecated “free” service can be provided as a free trial that may encourage 
clients to register for a service. 

The cloud-public service is the second kind. A client must be authenticated to the 
cloud but need not have any special permission to access the service. 

The third kind of service is the cloud-private service. These are subscription-based ser-
vices. Access to a cloud-private service is granted only when the client is both autho-
rized and subscribed to the service. Authorization requires that the client’s parent 
account is authorized, as are all hierarchically superior accounts. 

The reader may observe that the access control requires two steps: one is authorization 
of the account tree, and the second is an explicit subscription action. Both must be 
active to allow access to an account. A user who is subscribed will not receive the ser-
vice unless the user’s account is authorized for the service (which requires that all 
ancestor accounts are allowed, as well). This simplifies the granting or denial of ser-
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vices to large administrative entries. Per-user control is then exercised by the sub-
scriber paradigm. This can be seen in Figure 8-15.

In the context of a domain, a User object corresponds to a user that has registered with 
the network. Through authentication, users establish their identities with the network. 
Users who don’t authenticate are referred to as anonymous users. Personal attributes 
of a user, such as name, address, and telephone number, are stored in User objects. 
Additionally, every User object has a handle and an identifier that uniquely identifies it 
within the domain. A user’s primary use of the network is to access services. Services 
are applications that may be made available on the network. As mentioned before, 
there are three types of services in a middleware network: full-public, cloud-public, and 
cloud-private. Anonymous users can only access full-public services. All authenticated 
users can access full-public and cloud-public services, and can access private services 
too, provided they have previously subscribed to the service. Services are represented 
by Service objects in the domain, which contain the attributes that describe the ser-
vice, such as name, description, and URL. As with User objects, each Service object has 
a unique handle and identifier within the domain. 

Figure 8-15: Sample Account Hierarchy for Manufacturing Domain 

All User and Service objects have a single parent Account object that contains 
attributes that hold billing information. Each Account object can contain multiple 
User and Service objects, allowing for the aggregation of multiple Users and Services 
under a single billable entity. 



DOMAINS: ACCOUNTS, USERS AND SERVICES 265

Every account is controlled by an account administrator. Account administrators can 
add new users, services, and subaccounts to the account. Account administrators also 
serve as service administrators for any services that are contained in the account. A 
service can only be announced by its service administrators. 

Accounts can also contain other accounts, referred to as subaccounts, allowing for a 
hierarchical distribution of users and services across the domain. When an account 
has subaccounts, the account administrators of the parent account are also adminis-
trators of the subaccounts. The hierarchy allows an organization’s structure to be 
reflected in the domain, and enables policies that conform to this structure. It there-
fore plays an important role in the access control model, as well as the PKI model. 
Because of this capability, account handles are only unique within their parent 
account. However, like User and Service objects, accounts also have an identifier that is 
unique within the domain. 

Accounts, users and services can be created with the registration proxies, and these in 
turn populate the domain database residing in the secure system core. The API sup-
plies methods for manipulation of accounts, services, and users. The API is symmetric 
and allows adding, deleting, and inquiry For example, a privilege is added to an 
account with the addPrivilege method. The privilege is added to the service with the 
addAllowed. The user can then receive the privilege with the addSubscription
method.

8.3.4 Account Privilege List 

Associated with each account is a list of privileges that the account has been granted. 
The users of an account are only allowed to access private services that appear in the 
account’s privilege list. Thus, although a user may have been added to the access con-
trol list of a service, he cannot access the service unless the user’s parent account has 
been granted the privilege to use the service. 

Privileges are granted and removed by the parent account's account administrators. 
The account administrators can only grant privileges passed down from the parent 
account itself. The result of this is that a subaccount never has more service privileges 
than its parent account. When a privilege is removed from an account, it is also 
removed from all the subaccounts of that account. The methods for manipulating an 
account’s privilege list are getServicePrivileges(), addPrivilege(), and removePrivi-
lege() and can be found on the geo.domain.Account interface.

8.3.5 Service Access Control List 

A service’s access control list specifies the users that are allowed to access the service. 
The list is maintained as three separate lists: ALLOWEDUSERS, ALLOWEDACCOUNTS, and 
ALLOWEDSERVICES. The list of ALLOWEDUSERS explicitly specifies users that may access 
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the service. The list of ALLOWEDACCOUNTS specifies groups of users to be added to the 
overall access control list. Any user whose parent account is in the ALLOWEDACCOUNTS

list will be allowed to access the service. 

A service’s list of ALLOWEDSERVICES grants permissions to groups of users. Rather than 
specify the groups through account hierarchies, this mechanism inherits the access 
permission from other services. The users that have access to any related service may 
also access the service that lists it. This becomes clear with an example. Consider the 
hypothetical services PLAYMESSAGE and PRINTMESSAGE. Each services’ ALLOWEDSER-

VICES lists a third service, ADVANCEDMESSAGES. Consequently, every user with permis-
sion to access ADVANCEDMESSAGES is also granted access to the PLAYMESSAGE and
PRINTMESSAGE services. Now, suppose that PLAYMESSAGE also lists a fourth service, 
BASICMESSAGES. Any user who may access BASICMESSAGE will automatically be able to 
access PLAYMESSAGE, but requires further permission to access PRINTMESSAGE.

The lists of allowed users, accounts, and services can only be modified by the service 
administrator. The methods for manipulating these lists are getAllowedUsers(), getAl-
lowedAccounts(), getAllowedServices(), addAllowed(), and removeAllowed(), and
can be found on the geo.domain.Service interface. 

8.3.6 User Subscription List 

A user’s subscription list contains the list of private services that the user is allowed to 
access. To add a service to this list, the service must be in the user’s parent account’s 
privilege list, and the user must be in the service’s access control list. If either of those 
conditions does not hold, the subscription fails, and the service cannot be added to the 
user’s subscription list. After the subscription has been successfully added, if either the 
service is removed from the privilege list or the user is removed from the access control 
list, the subscription is removed from the subscription list. 

The subscription list can be modified directly by the user and the user’s parent account 
administrators. The methods for manipulating this list are getServiceSubscriptions(),
addSubscriptlon() and removeSubscription(), and can be found on the 
geo.domain.User interface. Subscriptions can also be removed indirectly, as noted in 
the preceding paragraph. 

8.3.7 Objects and Attributes 

Domain API data can only be retrieved and modified by calling methods of a Domain 
API object. Data elements that are associated with objects are called attributes. The 
object which provides the methods to retrieve and modify the value of an attribute is 
called the owner of the attribute. Domain API objects can have three types of 
attributes:
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Single-valued fixed attributes 

The value of a single-valued fixed attribute can be retrieved using a 
get.. .() method and modified using a set. . . ( ) method on the 
owner of the attribute (e.g., the user handle can be retrieved using the 
getHandle ( ) method and modified using the setHandle ( ) method
of the geo . domain.User interface).

Multi-valued fixed attributes 

The values of a multi-valued fixed attribute can be retrieved using a get...() 
method, which returns an iterator over the values of the attribute. Specific 
values can be added and removed using add.( ) and remove.() methods 
on the owner of the attribute (e.g., the getServicePrivileges( ) 
method of the geo . domain. Account interface will return an iterator over 
the list of services for which an account has privilege; the addPrivi-
lege() and removePrivilege ( ) methods can be used to add and 
remove specific services from the list). 

Single-valued flexible attributes 

Fixed attributes are always associated with a certain kind of domain object 
(e.g., users). Flexible attributes can be defined by the application and can 
be attached to any domain object. They can be any of the usual elementary 
data types (e.g., int, String etc.). The value of a single-valued Flexible 
attribute can be retrieved using a get. . . () method and modified using 
the set() method of the geo. domain. FlexObject interface. The 
methods of the FlexObject interface take an additional argument for the 
attribute name, whereas the method names of the get. . . ( ) and
set...() methods for fixed attributes already contain the attribute 
name (e.g., getHandle()/setHandle()) .

The following sections describe in detail how to retrieve and modify these types of 
attributes.

8.3.7.1 Retrieving Attribute Values

In order to retrieve any attribute values, you must first retrieve the object which owns 
the attribute. For example, to retrieve user “ joe” from domain foobar.com, you
would use the code of Figure 8-16, below. 

The getUser () , getAccount() and getService() methods of 
geo . domain. Domain have special exception behavior. These methods return 
objects which serve as references to domain objects. If you request a domain object 
which does not exist, these methods will not throw an exception – they will still return 
a user, account or service object. 
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Domain domain = Context.getDomain( "foobar.com" );
User joe = domain.getUser( " joe" ) ;

Now you can retrieve all of Joe's attribute values: 

int state = joe.getState( ); // single-valued fixed 
// single-valued flexible 
String address = joe.getstring( "Address" );
String phone-number= joe.getString( "PhoneNumber" );
// multi-valued fixed 
ServiceIteratorsi=joe.getServiceSubscriptions( ) ;

Service service;
while (si.hasNext() ) 

service = si.nextService( );
System.out.println( service.getHandle ( ) + " : " 

{

+ service.getString( "Protocols" ) );
}

Do not rely on the fact that if you retrieve the same domain object more than 
once, the objects will be the same Java objects, although you can compare them 
using the equals..() method:

Domain domain = Context.getDomain ( "foobar.com" );
User joe = domain.getUser( "joe" );
User joe-again= domain.getUuser( "joe" );
// Following is guaranteed by Domain API
if ( joe.equals ( joe-again) ) 
// Following is NOT guaranteed by Domain API 

if ( joe == joe_again ))

Figure 8-16: Retrieval of User Joe from Domain foobar.com 

If you call any method on this object, the method will throw DomainObjectNot-
FoundException. If you pass the object as an argument to a method of another 
object, this method will also throw DomainObjectNotFoundException.

If you want to make sure that a domain object exists when you call getUser ( ) , 
getAccount() you can use the has. . . ( ) methods of 
geo.domain.Domain:

or getService (),

Domain domain = Context. getDomain ( "foobar.com" ) ; 
User joe = null; 
// this will always call the remote server 
if (domain. hasUser("joe"))
joe = domain.getUser ("joe") ; // joe certainly exists 
now
else
... // joe does not exist 

The has. . . () methods will always make a call to the remote server to check if the 
domain object exists or not. The following example illustrates the reason for this 



DOMAINS: ACCOUNTS, USERS AND SERVICES 269

behavior. If you call a method that takes a domain object as its argument, you often 
write code like this: 

Domain domain = Context. getDomain ( "foobar. com" ) ; 
Account foo_account = 
domain.getAccount ("foo_account") ; 
Service foo_service = 
domain.getService ("foo_service") ; 
foo_account.addPrivilege (foo_service) ;

This code will add the privilege for service "foo_service" to account 
"foo_account". If foo_service does not exist, you would expect getSer_
vice() to throw HandleNotFoundException. However, in order to determine if 
foo-service exists, Domain API would have to make a call to a remote server. 
Then, if foo_service does exist, Domain API would have to make a second call to 
the remote server to add privilege for foo_service to foo_account. So for 
increased efficiency, Domain API does not call the remote server to check if 
foo_service exists. Instead, the getService () method always returns a service 
object which you can use as a reference to service "foo_service". When addPriv_
ilege() is called, Domain API will make the call to the remote server. If it turns out 
that foo_service does not exist, addPrivilege () and not getService ()
will throw HandleNotFoundExcept ion.

8.3.7.2 Retrieving Multiple Attribute Values in One Network Call 

The Domain API obtains information from the primary repository, and this typically 
runs on a remote server. Network interaction and concomitant delays may be incurred 
upon attribute retrieval, specifically when you invoke the get. . . ( ) methods. As an 
optimization, the Domain API can retrieve several attributes with a single call to the 
remote server, This is substantially more efficient because it avoids the network delays. 
This allows the application to run much faster. In order to take advantage of this fea-
ture, you have to specify which attributes you want to retrieve when you retrieve the 
owner of the attributes. 

The attributes are retrieved in one call, and subsequent requests for the 
attributes will return the statically stored local copy: 

static final String[] ATTR_NAMES = 
new String [] { User.STATE, "Address" , "Phone Number" } ;
Domain domain = Context.getDomain ("foobar.com");
User j oe = domain. getUser("joe" , ATTR_NAMES) ;
// single-valued fixed 
int state = joe. getSstate();
// single-valued flexible 
String address = joe.getString ("Address") ; 
String phone-number = joe.getString ("Phone Number") ; 
// Following retrieves identical static local value 
String address2 = joe .getString ("Address") ; 
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For user "joe", the Domain API will retrieve state, address and phone number from 
the remote server at the time when you call getUser (). It does not have to make 
additional calls to the remote server when you call getSstate () , get-
String("Address") and getString("Phone Number") .If you omit attribute 
names when you call getUser ( ), you will incur a network interaction upon each 
get . . . ( ) method to retrieve an attribute. The network calls occur only the first time
that you retrieve the attribute. 

If you retrieve an attribute a second time (e.g., when you call joe .get-
String ( "Address" ) the second time in the previous example), Domain API will 
not make a call to the remote server. Instead, the API will return the same value as the 
first time when you called the method (i.e., in the previous example, address2 will
always be equal to address). This assumes you do not need a fresh value. 

8.3.7.3 Value Refresh 

In order to force Domain API to reread current attribute values from the remote server 
(e.g., because they may have been changed by someone else in the meantime), you sim-
ply retrieve the owner of the attribute again (e.g., by calling 
domain. getUser ("joe") in the previous example, or by using any other Domain 
API method that returns a user object). Subsequent get. . . ( ) calls on this object 
will retrieve updated attribute values from the remote server. 

Iterators are a second technique to obtain fresh values. When you request an iterator 
over the values of a multi-valued attribute, you can also specify the names of the 
attributes that you want to retrieve from every element in the iterator. Domain API will 
use this information to optimize the number of calls to the remote server. 

For example: 

static final String[ ] ATTR NAMES = 
new string [ ] {Service.HANDLE, "Protocols"} ;
ServiceIterator si = 

joe.getServiceSubscriptions(ATTR_NAMES) ; 
Service service; 
while (si.hasNext ()) { 

service = si.nextService ();
System.out.println(service.getHandle() + " : " 
+ service. getString("Protocols") ) ;

}

When you request an iterator a second time (e.g., if you called getServiceSsub-
scriptions() again in the previous example), Domain API will always make a call 
to the remote server. The iterator does not lock the record; you may get different values 
in the second call than in the first call if someone has changed the values in the 
interim.
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In order to modify attribute values you must first retrieve the owner of the attribute in 
the same way as described above. For example: 

static final String[] ATTR-NAMES = 
new String [] { "Phone Number" } ;

Domain domain = Context. getDomain("foobar.com" ) ;
User j oe = domain. getUser("joe", ATTR_NAMES) ;
String new_phone = 

// single-valued flexible 
joe.set ("Phone Number" , new_phone) ;
// single-valued fixed 
joe.setState(User.INACTIVE) ; 
// multi-valued fixed 
joe.addSubscription (domain.getService ("foo_service")) ; 
joe.update () ;

ChangePhoneNumber ( joe.get("Phone Number" ));

Figure 8-17: Modifying Attribute Values 

For efficiency, you can specify the attribute names when retrieving the user object, so 
Domain API can retrieve the user object and the attribute values in one network call. 
After all modifications to a domain object have been made, you must call update ()
on the domain object to make the changes permanent. If you do not call update () ,
your modifications will be lost. 

8.3.7.4 C++ Example Running as Proxy Code 

Figure 8-18 combines the network thread API with the domain API. Taken together, 
this provides the user identity of the active thread, and then retrieves essential domain 
elements. This example runs within the proxy framework. This demonstrates the 
retrieval of user information from the domain database, and the subsequent use of this 
information. This code can run as a proxy process and is written in C++ 

8.4 Service Development 

Services benefit substantially through adherence to the design principles described in 
Section 4.5. Such services exhibit well-defined characteristics including manageability 
and extensibility, Rapid and reliable compliance with these design principles enhances 
the service development process by standardizing the network interactions, as well as 
through common features, easily and reliably invoked. Existing applications receive 
benefits through a software peer, thus attaching the application to the network. New 
applications obtain full benefit through the platform Software Development (SD) APIs. 

Rather than reinvent from “the ground up”, the SD provides managed interfaces that 
operate independently of location, hardware or interface capabilities. This “toehold 
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// Initialize for usage system 
GeoUsageCookiecookie;
ermo = geoUsageSessionCookie(userInfo->userIP,

// Invoke network thread API to obtain user number of this connection. 
GeoUsr geoUsr; 
GeoNetworkThreadToInit.geouserinfo(geoUsr); // Get user info
userData->qeouser = geoUsr.geouser; // Retain Geo user number 
// Prepare to use the domain´API for detailed information 
Domaincontext *dc; User *u; Service *s; Domain *d; Account *a; 

userInfo->userPort, &cookie);

dc = new DomainContext();
try { domain = dc->getDomain(); } 
catch (DomainException&de)

{fprintf(stderr, "fail getdomobj");
de.print(stderr);
exit(1); }

// Retrievable flexible attributes are defined in.../GeoDefs/names,
// The will be cached locally by getuser. 
Stringitems[] ={GEO_NVPNAMES_USER-X509_CERTIFICATE,

GEO_NVPNAMES ACCT NUMBER

int itemLen = 3; 
u = domain->getUser(geoUser.geouser, items, itemLen); // Returns user object

// Retrievable fixed attributes are defined by specialized methods in the API. 
// These methods return objects.
userData->geoHandle =u->qetHandle (); 
u->getId (); // Get the integer ID; // This object happens to be an int 
a=domain- qetAccount(u) ; // And this object has methods 

The cached values are strings. 

GEO_NVPNAMES_USER_HANDLE};

// This object happens to be a string 

Figure 8-18: Network Thread API Combines with Domain API 

into the network” firmly establishes a trust relationship and identity through authenti-
cation with the cloud. Applications benefit from managed network interactions that 
provide security, resource allocation, and usage tracking. Network interactions build 
upon a bundled collection of objects active in the peer. Runtime support makes use of 
development components that satisfy the principles given in Chapter 4, “Platform 
Requirements and Principles”. Thus, a service utilizes the SD on a peer, while providers 
enhance cloud functionality with the PD on the gates. This section describes the SD 
peer APIs for service development and deployment. 

8.4.1 SD APIs for Service Development and Development and Peer 

Service development and delivery – the sole purpose of the platform – utilize the SD to 
efficiently provide services that may leverage the cloud environment. There are several 
special properties of the SD, and these resolve many costly issues of ensuring a com-
mon behavior. The underlying control channel coordinates network behavior and 
interactions. This channel distinguishes the SD applications. These realize the service
model of Section 7.2.2 through this channel. This extends the basic network through 
the attachment of the service to the network. The SD guarantees the identity and 
secure interactions between any authenticated component and the service that is 



SERVICE DEVELOPMENT 273

active on the peer. As such, the physical peer location is immaterial to a consumer of 
the peer’s services. The peer also receives network services without regard for the phys-
ical location of these services. This insulates each peer from maintenance issues such 
as the distribution of software updates, and enables network-managed resources. 
Interactions are mediated by the cloud. These interactions can be custom-tailored to 
attributes that are specific to the peer’s identity; for example, account membership 
and accompanying privileges. 

Each SD application runs in a peer. This receives an appropriate level of trust depend-
ing on whether it has authenticated to the cloud. The SD and peer establish and main-
tain an authenticated connection to the cloud. Access to the APIs and services may be 
based on the user/service trust relationship. The following APIs require prior authenti-
cation: connection management, domain database, event management and usage 
recording. The SD supports development in Java or C++. The Java APIs correspond to 
these categories, specifically: 

TABLE 8: SD Java Classes and Purpose 

Class

Geo.peer

Geo.connection

Geo.dom, geo.domain.util 

Geo.security

Geo.usage

Geo.event

Geo.defs

Geo.util

Geo.peer.pi

Purpose

Peer class and peerlet management 

Connection management, including remote 
user identification through caller ID. The 
class Connect ion contains the methods 
used to establish and disconnect an authenti-
cated connection between a peer and a sup-
ported network It also provides initial access 
to many of the networking APIs, including 
the domain API, the usage API, and the event 
API. It can be used to determine the identity 
of a remote user accessing a service (caller 
ID)
Domain API (stable store). Registration, 
account management, and subscriptions 
(directoryservices)

Manipulation of user credentials 

Submission and retrieval of usage records 

Generation and reception of events to and 
from the network 

Internationalization support 

Utilities

Application management, including control 
of the peer from external applications 



274 MIDDLEWARE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

Let’s briefly discuss the primary APIs in each of the major classes, and then view a few 
simple examples. 

Peerlet management 
Provides installation] invocation, and termination of nearly independent 
programs into a specific peer. Each program runs as a separate thread of 
control within the peer, which allows a high degree of concurrency between 
these programs. These programs are called “peerlets” because they are 
active within a single peer and share resources as defined by the peer. They 
receive runtime support from this peer, specifically the remaining catego-
ries of activity listed below 

Connection management 
Provides control and information for the network connection. This 
includes providing a secure control channel, authentication of the peer to 
the network, definition of per-connection encryption to the cloud, as well 
as announcement of active services. Authentication is the essential prereq-
uisite for network interaction, although specific interactions can be per-
mitted to unauthenticated clients. Rather than assume the security of the 
network connection, a platform encryptor controls encryption on a per-
connection basis. SD APIs specify encryption requirements on a per-con-
nection basis where necessary to communicate with nonencrypted devices 
or systems. Nonencrypted connections rely on the network, rather than 
peer encryption, for transport security 

The connection class supports single-sign-on by providing services with 
the ability to determine the identity of remote users using the services. 
This is essential to services that implement native access control or pro-
vide client-specific behavior. Nonrepudiable client identification is strictly 
more powerful than simple knowledge that a client is authenticated. This 
works through a mechanism known as callerID. One mechanism supports 
peer request for the remote identification] and a second supports legacy 
HTTP servers’ requests for the remote identification. 

Both the SD and the PD support geoPeerGetCallerID returning the 
caller ID information of a user, purportedly authenticated from a specific 
IP address and port. It is required that the peer be authenticated with the 
cloud to perform this operation successfully. This function utilizes the 
cloud’s Caller ID table to obtain the ID of the user authenticated at the 
given address. The cloud authentication mechanisms must ensure the 
accuracy of this information. We have previously discussed the gate’s role 
in maintaining this table. 

When a service receives a new socket connection from a remote user, it can 
use the IP address and port of the remote user to determine the identity, or 
caller ID, of the user. This is done using the getCallerID method of the 
Connection interface. The getCallerID method returns a 
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geo.peer.CallerID object that contains the user handle and numeric 
identifier of the user, as well as the handle and identifier of the cloud that 
the user is authenticated to. If the user if not authenticated to a middle-
ware-supported network, an exception is thrown. 

The caller ID function also supports CGI programs by including a mini 
web-server in the peer package. A “legacy” web server can query the peer 
and obtain its caller ID information. The caller ID “wedge” is a preinstalled 
peerlet that is deployed with the peer and operates as service from each 
peer instance. This service should be announced on the port the wedge is 
listening on so that the HTTP traffic is sent to the wedge when a client 
makes an HTTP request. The wedge inserts the caller ID cookie and for-
wards the request to the actual web server at serverhoskserverport. This 
HTTP “wedge” is shown in Figure 8-19:

Figure 8-19: HTTP CallerID Wedge in Peer 

Caller ID information is accessed through two different APIs. The geoP-
eerGetHTTPCallerID function provides a way for (http) web-based
services to access caller ID information of the user. The peer software inter-
cepts and redirects all HTTP requests to a port that provides caller ID, and 
adds a “cookie” to the HTTP request before handing it off to an HTTP 
server. A CGI program subsequently extracts the cookie via a CGI environ-
ment variable and uses GetCallerID API. 

Domain database 
Interface to persistent store for user, account and service information. This 
includes declaration of the names and parameters of the services hosted 
on the peer machine. It also describes availability of the services. A peer 
places services into the domain by authenticating as the administrator of 
an account. It then creates the service object through assignment of a 
name and appropriate parameters. The parameters include protocols 
(both transport and application protocols), access controls, the IP ports 
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providing service, and additional service-specific parameters 

Submission and retrieval of usage records. Such records support fine-grain
tracking of peer activities and thereby ensure nonrepudiation of action. 
Usage tracking provides important management support through profiling 
of usage patterns 

Definition, generation and receipt of events through the publish/subscribe 
paradigm. These events provide a distributed systems-level communica-
tion of exactly-once semantics providing structured messages to sub-
scribed components. It utilizes stable storage to ensure event reception 
even by components that are unavailable at the time of event generation 

Interface to additional APIs that may be added for a specific application. 

Usage tracking 

Event Generation and Reception 

External APIs 

The SD API supports C/C++ through the peer interface. This supports a substantial 
subset of the SD Java classes, as shown: 

TABLE  9: C/C++ Interfaces with SD 

Interface

Domain Interface 

Connection Interface 

Peer Interface 

Capabilities

User, service and subaccount creation. Infor-
mationretrieval. Subscription management 

User authentication, service announcement, 
platform encryptor manipulation, connec-
tion status determination 

Remote user identification (callerID), peer 
status determination, peerlet management,
log control 

8.4.2 Service Development (SD) Application Models 

There are three programming models for peer activities: peerlet, monolithic peers, and 
the external model. These share the common software base of a software peer that 
interacts with the cloud network. The peerlet and the monolithic peer use the Java lan-
guage and Java APIs; and the external model supports other languages or applications 
through peer-resident capabilities. 

Peerlets run under the control of a precompiled peer running in a Java virtual machine. 
The peer provides the execution environment and support. Peerlets are precompiled 
and then loaded into the peer, which invokes them as distinct threads. Monolithic 
peers use the peer software as a library, but provide a main program that invokes the 
peer’s initialization functions. Indeed, the peer itself is a monolithic program that can 
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load and invoke peerlets. The peerlet and the monolithic peer models both run a single 
process containing the SD control and the application logic. 

External applications run in their own process and communicate with an existing peer 
through a peer interface. Existing applications, or programs written in C/C++, interact 
with middleware APIs through the interface channel to the running peer. 

8.4.3 Peerlets 

SD programs use either of three models – the peerlet described currently, as well as 
monolithic peers or external models, which provide varying amounts of structure to 
the developer. The greatest structure is provided with the so-called peerlet model. Col-
lections of functions pertaining to a single purpose are compiled into an archive that 
can be installed as a complete peerlet. This runs as a thread within the peer, technically 
by extending the geo.peer.Peerlet class.

The peerlet therefore is controlled by the peer, and must be installed into the peer. This 
provides a module method for distribution of prepackaged functionality. A peerlet is 
relatively unconstrained by the peer environment, and may access the execution con-
text and command-line arguments as needed The peer runs many peerlets with 
resource allocation under the control of the Java virtual machine. 

1 package samples.sdk.peerlets;
2 import Java. awt .*;
3 import java.awt.event.*;
4 import javax.swing.*;
5 import geo.peer.*;
6
7 public class HelloworldPeerlet extends Peerlet (
8 private JFrame_frame;
9
10 public void run(){
11 _frame =new JFrame( "HelloWorldPeerlet" );
12 _frame.addWindowListener (new WindowAdapter ()(
13 public voidwindowClosing(WindowEventwe )(
14 getPeerletContext().firePeerletStopped ();
15 }
16 } );
17 _frame.getContentPane().add(new JLabel( "Hello World",
18 JLabel.CENTER ),
19 BorderLayout.CENTER );
20 Dimension prefsize =new Dimension( 250, 60);
21 _frame.getRootPane ().setPreferredSize( prefSize );
22 _frame .pack();
23 _frame. setVisible( true ) ;

25
26 public void cleanup() {
27 _frame.dispose ( );

24 )

28 }
29 }

Figure 8-20: The "Simplest" Peerlet
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Peerlets may not provide a main ( ) method, and must provide a run ( ) method. They 
should not invoke the System.exit() method since this terminates the entire pro-
cess. Instead, they invoke the firepeerletstopped () method of their runtime 
context, getpeerletcontext() .This allows the peer to reclaim resources. Peerlets 
are, in essence, prepackaged routines stored as Java archives. The peer methods sup-
port loading, starting and stopping of peers. 

Figure 8-20 shows a simple peerlet. The reader may notice this code is nearly indistin-
guishable from a well written Java module. This peerlet, when invoked, displays a 
popup window that displays the time-honored welcome text of any first program, 
“Hello World”. Lines 1 through 4 define the package and import standard java.awt
and javax.swing providers of graphics and popup windows. Line 5 imports the 
geo.peer class that defines the interfaces for the peer. Lines 7 through 29 implement 
the HelloWorldPeerlet class. Line 7 defines this class, and in particular the class 
extends the peerlet class. This uses the libraries that we imported back in line five. 
The class defines a private graphics frame at line 8. 

Line 9 departs from an ordinary Java class, and provides the mandatory method pub-
lic void run () . All peerlets must have a run method. This serves as the entry 
point when the peer invokes the peerlet. The peerlet also calls the getPeerletCon-
text ( ).firepeerletstopped () ; The body of this method defines what the 
peerlet does; this example creates a suitable graphics frame and displays Java code that 
defines and displays a window, as well as a resource deallocation routine (lines 27-28).
The peerlet is compiled, packaged for distribution, and installed through tools 
included with the SD. 

8.4.4 Monolithic Peer Application Model 

Monolithic peers define a main() method and call the geo.peer.Peer.init() method to 
initialize the SD. This provides full access to all SD APIs, including the ability to load 
and invoke peerlets. Rather than define a standard runtime environment, it grants 
greater freedom to the developer who develops the service or application. 

The sample program of Figure 8-21 also creates a popup window that displays the 
time-honored welcome text of any first program, “Hello World”. The simplest mono-
lithic program includes the same application logic as the peerlet model. However, sev-
eral significant differences change it from a peerlet into a monolithic program. The 
class definition that line 7 provides no longer extends the Peerlet class, and instead 
the monolithic example provides a main () method rather than the run () line of the 
Peerlet. Line 9 (which was intentionally left blank in the Peerlet) now initializes with 
Peer. initialize () , Upon completion at line 13 it terminates with Sys-
tem.exit() whereas the peerlet signalled completion with getPeerletcon-
text() .firepeerletstopped().
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package samples.sdk.external; 
import java.net.UnknownHostException; 
import java.io.FileNotFoundException; 
import java.io.IOException; 
import geo.peer.pi.*; 
import geo.util.GeoException; 

public class AuthenticateExternal { 
static private void usage( ) 

System.err.println( "usage: AuthenticateExternal " + 
{

}

{

"userHandle cloudName passphrase" ) ; 

static public void authenticate( String userHandle, 
String cloudName, String passphrase ) 

try { 
String deploy = System.getProperty ( "GEOPLEX_DEPLOY" ) ; 
PIConnection piConn = new PIConnection( deploy ) ;
ConnectionHandler conn = new ConnectionHandler( piConn ); 
conn.login( userHandle, passphrase, cloudName, "PropertiesFile" ) ; 

}

{

}

catch ( Exception ge ) 

System.err.println( ge.getLocalizedMessage ( ) ); 

static public void main( String argv [] ) { 
if ( argv.length != 3 ) 

{ System.err.println( "Incorrect number of command " + 
"line arguments provided: " + argv.length ) ; 
usage(); System.exit( } ); 

}
authenticate( argv [0] , argv [1] , argv [2] ) ;
}

}

Figure 8-21: Simples Monolithic Peer without Authentication 

There is one more, somewhat hidden difference. The peerlet ran in the context of its 
peer, and the peer interfaced directly with the cloud. The peer supported authenticat-
ing and other cloud interactions through a GUI. On the other hand, the simplest mono-
lithic program merely initialized the peer, but never authenticated it. We need to 
enhance the program through several internal changes and an additional 20 lines of 
Java program, shown in Figure 8-22.

8.4.5 Connection Objects Independent of Domains and Locations 

The very significant security implications of mobility, peering, and other issues require 
careful consideration of the client's identity, as well as the network connection and 
authentication. The program networking APIs therefore provide a general framework 
available through abstract APIs that leverage the specifics of the client, local devices, 
networking or remote capabilities. These capabilities utilize the connection, security 
and utility classes imported at lines 2 through 4 of Figure 8-22. Note in particular that 
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the connection object (line 28) does not specify what it is connecting to. Rather than 
constrain the connection to a single cloud or domain, the API supports a variety of 
domains, peering and roaming arrangements. This example provides specific values as 
program parameters (lines 24, 25 and 26 access argv [] ), though in practice the 
authentication passphrase cannot be a simple stored String.

1 package samples.sdk.mono; 
2 import geo.peer.*; 
3 import geo.connection.Connection; 
4 import geo.security.Credentials; 
5 import geo.util.*; 
6
7 public class AuthenticateMPeer ( 
8
9 static private void usage( ) ( 
10 System.err.println( 
11 "\nusage: samples.sdk.mno.AuthenticateMPeer"+
12 "userHandle cloudNaine passPhrase\n" );

14
15 static public void main( String argv[] ) ( 
16 Peer. initialize(1;
17 Log log = Peer.getDefaultLog ();
18 if (argv.length!=3 ) {
19 log.log( Log.ERROR, Incorrect numberof conmand"+
20 "line argumentsprovided: " +argv.length )
21 usage ();
22 Systein.exit( 1);

24 String userHandle = argv [0] ;
25 String cloudName = argv [1] ;
26 String passphrase = argv [2];
27
28

try
Connectionconn= Peer.getConnection( ) ;

29 Credentials cred =
30 conn. createCredentialsObject("PropertiesFile");
31 cred.setUserHandle( userHandle );
32 cred.setCloudNaine( cloudName);
33 conn.authenticate( cred,passphrase);
34 System.out.println( "Authenticationsucceeded!");
35 } catch(GeoExceptionge) (
36 log.log( Log.ERROR, ge ); 
37 log.log( Log.ERROR,ge.getKeyword ( ) ) ;
38 System.err.println( ge.getlocalizedMessage ( ) ); 
39 System.exit ( 1 );

41 System.exit( 0);

13 } 

23 } 

40 } 

42 } 
43 } 

Figure 8-22: Monolithic Peer with Authentication Code 

The credential object (line 29) provides a structured container for the various creden-
tials or algorithms that may be required to establish and protect the connection. These 
include X.509 certificates as well other security information described in Section 6.3. 
This information is too voluminous for most people to remember, and hence it must be 
stored on a hardware device. The conn. CreateCredentialObject () specifies a 
source, which in this example (line 30) it is a propertiesFile stored in partially 
encrypted form on the local disk The specific user and cloud are placed into the object 
(lines 31, 32), but the "unlock key" is not placed into the object. The program specifies 
values including the subscriber's home cloud, user name, and authentication informa-
tion appropriate for the activities the subscriber requires of this object (lines 31, 32), 
and then authenticates over the connection. The credentials can be constrained by the 
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1 package samples.sdk.mono;
2 import java.awt.*; 
3 import java.awt.event.*;
4 import javax.swing.*; 
5 import geo.peer.*; 
6
7 public class HelloWorldMPeer { 

9 Peer.initialize ();
10 JFrame frame = newJFrame (Hello World Monolithic Peer");
11 frame.addWindowListener( new WindowAdapter( ) ( 
12 public voidwindowClosing(WindowEventwe ) ( 
13 System.exit( 0 ); 

15 static public void main( String argv [ ] ) ( 
16 Peer. initialize();
17 Log log = Peer.getDefaultLog ();
18 if (argv.length !=3 ) ( 
19 log.log( Log.ERROR, "Incorrectnumberofcommand"+
20 "line argumentsprovided: "+argv.length);
21 usage () ;
22 System.exit( 1);

24 String userHandle = argv [0] ;
25 string cloudName = argv [1] ; 
26 String passphrase = argv [2];
27
28

try
Connection conn = Peer.getConnection () ;

29 Credentials cred =
30 conn.createCredentialsObject("PropertiesFile") ;
31 cred.setUserHandle( userHandle ); 
32 cred.setCloudName( cloudName ); 
33 conn.authenticate( cred, passphrase ); 
34 System.out.println( "Authentication succeeded!" );
35 } catch ( GeoException gs ) [ 
36 log.log( Log.ERROR,ge);
37 log.log( Log.ERROR, ge.getKeyword () ); 
38 System.err.println( ge.getLocalizedMessage () ); 
39 System.exit( 1 );

41 System.exit( 0);

8 static public void main( String argv [] ) ( 

14 ) 

23 } 

40 ) 

42 } 
43 } 

Figure 8-23: External Application Model 

local connectivity; for example, an office provides a private physical network, whereas 
a "road warrior" or telecommuter may access a specialized local access through infor-
mation defined in the credentials. 

The program provides a main () method (line 15), initializes the peer and sets up a 
standard log (line 16), and verifies the parameters (lines 18-23). It then creates a con-
nection object (line 28) thereby enabling the IP connectivity, and specifies a source for 
the credentials that will be needed to authenticate (line 30). The user’s name (line 31) 
defines identity for this connection. The identity is unique within a domain as defined 
through the setCloudName method (line 32). Authentication of the connection is then 
requested (line 33), at which time the volatile “unlock key” or passphrase must be pro-
vided. The remainder of the program handles errors and terminates with an appropri-
ate return code. 

8.4.6 External Peer Application Model 

.External applications are more loosely integrated with the peer. They control an inde-
pendently executing Peer using a Peer Interface (PI), and can be written in any sup-
ported languages such as C, C++ or Java. However, access is limited to the networking 
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services and SD APIs. It is best used for legacy applications, but may also be useful for 
applications that specialization to Java virtual machines makes difficult to achieve 
under the peerlet or monolithic models. This is shown in Figure 8-23.

8.5 Summary 

We have presented a reference implementation for network middleware. This defines 
and explains essential components including active registries, dynamic directories, 
and access control models. These components provide APIs that describe, at an 
abstract layer, the activities necessary for service development and deployment. Mid-
dleware components provide these services in keeping with the platform design princi-
ples, and thus the polymorphic APIs may specify “why” rather than “how”. The 
middleware can deploy the APIs through various mechanisms that leverage the most 
appropriate technologies available. 



CHAPTER 9 Mechanisms of 
Middleware
Components

This chapter explores the form and function of the middleware components, with 
emphasis upon what they can do and how they work. Starting with the selective admis-
sion of IP packets through the firewall, Section 9.1 describes a full range of functional-
ity that subsumes the enforcement of security policy The firewall directly supports a 
framework for managed security (Section 9.2) through dynamic binding of secure 
modules, thereby integrating standards-based security components into a manageable 
structure. Extensibility leverages a generalized proxy framework, as described in Sec-
tion 9.3. We then present several examples, including customizing the standard 
domain name service (DNS) protocol, network-based extensions of the hypertext 
transport protocol (HTTP), and the Common Internet File System (CIFS) protocol 
ubiquitous to Microsoft networking. The latter example enables “software leasing”, a 
model recently identified by the Application Service Provider (ASP) industry as it 
evolves from the Internet Service Provider (ISP) model. 

9.1 Rules-Based Packet Filter Firewall 

Firewalls typically serve exclusively as a security component, while ignoring the 
higher-layer application semantics and lower-layer network behaviors. This narrow 
expertise sustains highly efficient performance with minimal delay and maximum 
safety. Consequently, we partition the firewall into separate control and action compo-
nents. The control portion maintains a structured rule base that quickly locates the 
appropriate rules. Several structuring techniques organize the rules according to the 
static hierarchy of users, services and sessions. Dynamic data structures maintain per 
session rule caches for fast runtime lookup. Machine specific parameters configure the 
specific sizes of these dynamic structures, although this tuning question is beyond the 
confines of the current work. 
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Rapid execution by a powerful firewall engine enforces the rules at low cost, and elimi-
nates dependence upon either extensive runtime state or expensive algorithms. This 
follows directly from the logical decomposition into a specialized rule component, 
plus a refined engine that executes the rules. Reliability also improves because each 
component is smaller and hence easier to test, validate and refine. The composite 
rules-base and programmable firewall protects the SNodes from invalid traffic, while 
also adapting to new traffic patterns. 

Positioned as the physical mediator of all network traffic, the firewall aptly enforces a 
broad range of system behaviors that extends beyond security. Rather than confining 
the firewall to security enforcement alone, the architectural partitioning between rules 
and engine extends naturally into a more capable view of the firewall. This synergistic 
result arises from the design requirements of highest attainable throughput, and the 
consequent engineering of a highly efficient and streamlined engine. Reuse of the com-
ponent does not in any way diminish its efficiency, but rather reinforces its centrality 
to the SNode design. 

Figure 9-1: Firewall Integrates Transport Features with Service Requirements 

SNodes deploy two or more network interface cards (NIs) that constitute the physical 
connection between multiple networks. All information passed into the SNode enters 
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through these NICs and encounters the firewall. When filtering at a coarse granularity 
and acting upon packet-header information through cached rules, the filter does not 
impose a significant computational burden. The filter selectively activates fine granu-
larity processes only when necessary It is interesting to note this coarse-to-fine
approach arises as the preferred solution in other complex processes as well. The 
SNode also provides a routing function as it receives packets that are destined for vari-
ous IP addresses – not only the local IP address. 

The dynamic firewall interposes as a mediator between IP networking and higher layer 
services, and thus preserves the rich capabilities of the higher and lower layers, as 
shown in Figure 9-1. The dynamic firewall is constructed from five primary compo-
nents:

• Packet filters that define the behavior of IP connections (“Managed Firewalls” on 
page 180) 

Encryption modules that recover inbound data and protect outbound data 
(“Authentication and Session Layers” on page 165) 

• ACT APIs that modify the firewall rule cache as client authentications change 
(“Active Registries: Connections, Users and Services” on page 246) 

• Authentication proxy that validates client credentials and indicates when a cli-
ent is authenticated (“Security Framework Authentication Proxy and Agents” 
on page 290) 

• Access daemon that maintains the firewall rules to the firewall rule cache (“Fire-
wall and Access Control – Access Daemon” on page 297) 

•

The firewall can perform any of four actions upon a packet, and makes this determina-
tion through the packet’s source/destination IP address and port. These actions are: 
PASS, DROP, LOCAL and MAP (see Table 3 on page 182). These methods support both 
coarse-granularity and fine-granularity access control. At the coarse granularity level, 
the PASS action allows direct IP routing to the destination IP and port, whereas the 
DROP action discards the traffic. This may squelch certain cyber attacks such as denial 
of service, at least when there is a rhyme or reason to the targeted addresses and ports. 
Traffic flow and function are modified through the MAP action, as this redirects traffic 
to another address. The LOCAL action activates a local process, and it is through such 
local actions that fine-grain access control is enforced. The LOCAL action also supports 
protocol mediation. 

The architecture runs multiple and simultaneous copies of the firewall (each copy run-
ning within its own gate). Additional servers can run duplicate copies of the gate and 
firewall software that is brought online as the volume of network traffic increases. 

These components support a flexible security system while also preserving the rich 
capabilities unique to both upper-layer services and the lower-layer networking: 



286 MIDDLEWARE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

Security System 
The packet filter allows the rules to be changed dynamically by the authen-
tication system. This is capable of creating independent sets of rules or 
rule bases and combining the changes with an authentication system. 
These rules sets can be tuned to the needs and service demands of a partic-
ular session without affecting the service relationship of any other session. 
For instance: 

• When a host authenticates to the network, a rule base can be 
loaded into the packet filter defining which packets will be allowed 
to pass from and/or to that host, thereby defining one aspect of 
access control and security for the host 

• Adding fortification to the security of a specific session or service. 
The security configuration may be modified; for example, to enable 
or disable integrity checks or heartbeat signals. This balances the 
costs and benefits of such integrity checks 

• Similar methods facilitate custom monitoring tools and proactive 
responses to possible intrusion, through methods to prevent dam-
age from service attacks by restricting packet flows 

Services Layer 
Rule sets can be allowed to evolve as new network services are added, or 
experimental services are tested. These rule sets grant privileged peers spe-
cial access without affecting other components or clients. The behavior of 
network services can be influenced in several ways, for example: 

• Coarse granularity access control uses firewall rules inserted into 
the session cache by the access daemon. These rules support ser- 
vices by passing traffic to an appropriate service instance; the rules 
can even drop the traffic under overload conditions 

Services can be easily switched on or off based on the time of day or 
network load. To ensure a high quality of service, the firewalls can 
be adjusted to temporarily deny or limit access to services that are 
in high demand but have low priority during known time periods 

• Network services can be throttled back when server and network 
load exceeds acceptable maximums. To prevent network conges-
tion, automatic limit switches can use firewalls to reduce the load. 
In a similar manner, rule sets can be equipped with time locks, 
allowing network operators to offer limited “trial periods” of ser- 
vices

• Network operators can move a peer from one service pool to 
another by adjusting the peer-specific firewall rule sets 

•
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Network Layer 

The firewall can modify egress (outbound) packets to use specific NIs or to 
redirect specific packet classes to other networks. This can support roam-
ing agreements and redirection to alternate switching locations. Proxy pro-
cesses such as the DNEAPI directly affect network elements such as 
switches and routers. 

Early packet filters, when properly configured, were an effective first line of system 
defense – they accepted authorized traffic without restriction but excluded all other 
packets. However, sophisticated services need more support, including routing and 
mediation. Therefore, the rules-based packet filter integrates with a service model and 
supports the protocol mediation principle. Multiple application-specific protocols are 
supported without the requirement of any change to the client’s operating environ-
ment.

9.1.1 Rules Management: Unambiguous Caching of Dynamic Entries 

The firewall programs ensure the accuracy of firewall rules and caches. These pro-
grams respond dynamically to the changing network traffic. This traffic consists of 
valid traffic interspersed with erroneous or fraudulent traffic. Clients and services 
receive services as they authenticate, invoke packet filter APIs, dynamically modify the 
firewall behavior, and exit. Intruders should not disrupt this, although proactive coun-
termeasures must be imposed through the firewall rules. These complex interactions 
interact with many firewall capabilities, and in particular: 

• Rule lifetime 

• Rule ambiguities 

• Cache management 

• Number of rules 

The first of these – rule lifetime – manages the introduction and removal of rules from 
the packet filter. It maintains a session cache of per-peer information that can be 
quickly removed from the firewall. The immediate expunging of irrelevant rules is 
essential to avoid “stale” rules that could be exploited by clever hackers. By managing 
the rules we can immediately flush selected rules when needed, either to protect 
against an attack, or merely because a user logged off the network. 

The second – rule ambiguity – must address conflicts between rule actions. Suppose 
one rule allows a user access, and another denies the access? The rule manager main-
tains these rules along the principle of maximal security, thereby imposing the maxi-
mally restrictive actions. 
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The packet filter maintains two rule bases, as previously described in Section 6.6. First 
are the global rules that affect all the hosts on a network. These are partitioned into 
global pre-rules and global post-rules. Second are the peer rules that affect a particular 
subscriber. These are partitioned into an in-rule base for packets travelling toward the 
peer, and an out-rule base for packets travelling away from the peer. 

Rule management begins when a subscriber authenticates to the network. The in-rule
base and out-rule base are retrieved from the subscriber’s entry in the domain data-
base. Dynamically allocated packet filter memory stores these rules, and backpointers 
to these allocations support fast access by hashing the peer’s identity or IP address. 
This is required, for example, to remove rules when a peer voluntarily cedes its authen-
ticated status; disconnects abruptly; or when an intrusion is detected. 

Thus, we encounter the third element in rules management. The session cache stores 
the actively referenced rules, and thereby ensures the firewall can run very quickly. 
This cache holds the “drop” rules that block invalid traffic, as well as the recent peer 
rules that permit the traffic. The cache uses a strict timeout algorithm. A rule is placed 
into the cache with a given timeout value. This value decrements once per second, and 
resets upon each access to the rule. A rule is purged from the cache when its timeout 
value is non-positive.

Allowing dynamic changes to the rule bases causes entries to remain in the session 
cache, which may not be accurate because of a change to a rule base. This occurs when 
an entry is placed in the session cache and the rule base(s) from which that entry is 
derived is removed or modified. 

To ensure consistency, the session cache may use either of the following methods: 

• Remove all the entries in the cache whenever a rule base is added, modified or 
removed. This is unreasonably costly 

• Associate version numbers with each rule base. The version number increases 
whenever a change is made to the rule base, at which time the current version 
number is copied into the session cache entries that are derived from the rule 
base. The rule base and session cache entries match when their version numbers 
are equal. This technique is described in Section 6.4.1 

While it might seem contradictory to let a crucial piece of the system’s “armor” be pro-
grammable though an API (and an open one at that!) it actually makes good sense. The 
platform is designed to support services, including, of course, someone provisioning a 
service (the “service provider”). Hence, the ability to self-prohion by managing the 
firewall traffic to his or her own site (only) is a reasonable extension of platform capa-
bilities. The API requires that a client first authenticate, at which time the client per-
missions propagate to cloud elements as needed. The propagation occurs within the 
trusted security perimeter, thereby granting limited access to firewall capabilities. This 
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enforces sufficient and clearly defined safeguards. Automatic programming of the fire-
wall is actually a process of examining and modifying user-specific rules, which are 
used to determine permissible access. These rules, loaded when a user authenticates to 
the system, are consulted the first time the user attempts access to any service. This is 
done by a combination of the packet filter and a special access control daemon. 

9.1.2 How to Build a Packet Filter 

Packet filters, once a Frankenstonian technology of the research laboratories, are now 

available for many operating systems. Sun Solaris ., for example, can be extended to 
support packet filtering. This exploits the implementation, in which each protocol or 
layer provides an interface. One such interface is sockets to make the traffic available 
through a file descriptor (fd).

As an engineering decision on Solaris and other System-V derivatives, this flow is 
encapsulated as a logical sequence known as a stream. The stream interacts with the 
Solaris TCP stack shown in Figure 9-2. Solaris supports modification of the stream 
flow by adding streams modules. This provides a powerful API to modify data flow and 
thereby capture the raw data beneath the IP layer within the kernel. Prior to modern 
UNIX systems such as Solaris, HP-UX and others, such changes would have required 
relinking the kernel. Packet filtering is available under Linux as well, through ipfi1-
ter.

Figure 9-2: Streams-Based Packet-Filter

The stream-based filter supports a kernel layer mechanism to intercept the data before 
it arrives at the IP layer. A firewall exploits this architectural feature; it simply captures 
every packet, determines if it is well-formed, and decides what should happen to the 
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packet. The IP header contains the protocol, source address/port, and destination/ 
port. The firewall logic compares these values with the packet filter rules and selects 
the appropriate rule. Rules can specify: 

• Drop the packet 

• Pass it unchanged 

• Remap to a new IP/port 

• Introduce traffic mediation in this connection; the packets of this connection 
will pass through the mediation process en route to the client-specified destina-
tion

Traffic mediation introduces application-layer protocols that mediate existing 
streams. Traffic maps to a new port, and a listener on this port receives the packets, 
modifies them, and then forwards them as necessary. The various mechanisms of stan-
dard listeners, maps, etc. are provided by the proxy framework, thereby supporting a 
well-integrated methodology of proxy processing. 

9.2 Security Framework: Authentication Proxy and Agents 

The security framework (SF) provides an extensible and standards-based structure for 
the secure definition of authentication mechanisms. This uses an authentication proxy 
supported by authentication agents. It further supports standard security APIs, 
including the General Security Services API v2 (GSS-API), a de facto standard security 
services API (see RFC-1508, RFC-1509 and subsequent extensions). The use of a stan-
dard security API is more than a convenience. It brings important assurances regard-
ing the completeness and solid design – two characteristics of particular importance 
for security. As discussed in [Opp196], the GSS API retains maximum freedom for the 
deployment of effective security, as seen in the design goals: 

• Mechanism independence: general interface is independent of particular mecha-
nism

• Protocol environment independence: independent of communications protocol 
suite

• Protocol association independence: security context should be independent of 
communication protocol association context 

• Suitability to a range of implementation placements: clients should not be con-
strained to reside with a trusted computing perimeter 

Data transformation services, including encryption or security contexts, are registered 
internally through the GSS-API. The services are subsequently available to both 
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authentication and session transport. The modular architecture enforces a single 
point of authentication (the authentication service), and provides extensibility. Despite 
its value as a standard, GSS-API is not universally deployed, and several major software 
suppliers have developed similar but syntactically incompatible APIs. This presents a 
challenge that middleware easily accommodates. For example, the model discussed in 
this text uses an Authentication Proxy (AI?) providing a security framework which can 
load libraries that implement the authentication mechanisms. As a standardized secu-
rity service, it provides a single control point, and furthermore this decreases opera-
tional expenses. It may be viewed as: 

AuthProxy + AuthAgentLibrary = AuthMechProxy 

The AP implements the AuthProxy API, 
the exclusive communication between 
the AuthAgent and AP. This API allows 
verification of a user’s credentials and 
subsequent granting of network access. 
An AuthAgent cannot directly authen-
ticate a client, but must instead com-
municate through internal AuthProxy 
and AuthAgent APIs. The AP also hosts 
add-on authentication components 
that are specialized for specific security 

multi-threaded and distributable com-
ponent. An AP configuration object 
contains the parameters of an installa-
tion’s security options and extensions. 

The two-phase agent/proxy architecture supports multiple authentication protocols 
without jeopardizing security, The AP is a highly trusted component. It is not 
restricted to any specific authentication protocol. Instead, the AP communicates with 
protocol-specific software by means of the authProxy and authAgent APIs. The details 
of a specific protocol are encapsulated within authentication agents. Agents support, 
for example, the proprietary peer, SSL-based with cloud-supported single-sign-on, and 
RADIUS.

These agents interact with the AP thereby enforcing cloud-specific requirements. The 
agents and AP negotiate the client’s authentication over the authProxy API and the 
authAgent API. The typical outcome of the negotiation is authentication of client traf-
fic. Another outcome can be limited access, for example to specific sites or by means of 
a data filter. The authentication agents support the major forms of authentication: 
proprietary peer-based, open web-based with explicit login, open web-based with 
implicit login, as well as others. The authentication proxy may also validate the 
authentication agents. 

extensions. The AP is an efficient Figure 9-3: AuthenticationStructure
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The authentication agent supports 
mutual authentication between the client 
and cloud, with the client proving identity 
through appropriate credentials as 
required by the agent. The authentication 
agent negotiates with the AP on the cli-
ent’s behalf, specifically to present the cre-
dentials. Upon satisfactory 
“authentication dance” the AP may create 
an authenticated connection. This places 
the client into the Authenticated Connec-
tion Table (ACT) in support of subsequent 
access-controlled interactions. The 
authentication mechanisms can establish 
a control channel that maintains a heart-
beat to validate connectivity, as well as 
state information. State information must include encryption keys, and may include 
application-support as well. Once authentication is complete, the client may request 
cloud services. Client services may be subsequently transformed as needed by the 
Security Provider Interfaces (SPI) module. The transform modules support bidirec-
tional data streams. 

The AuthProxy and AuthAgent APIs negotiate through a series of request/reply calls. 
These APIs also permit dynamic installation of callback functions. The callbacks 
establish a security context and activate agent-specific heartbeat functions. The 
AuthAgent must initialize before accepting any connections. The initialization grants 
secure resources to the agent, while also providing validation information to the Auth-
Proxy. Validation information establishes the permitted activities of the authAgent as 
well as shared-secret information. This information can be changed at any time; for 
example, to synchronize the AuthAgent and the AuthProxy. 

An initialized AuthAgent receives requests from external hosts or devices. These 
requests may arrive on a new IP connection, and interestingly they may also arrive on 
an active IP connection. A single IP connection carries secure traffic for multiple cli-
ents, provided the payload can be associated with a specific client. For example, the 
peerless web-based agent (see Section 9.2.2) accepts multiple clients over a single con-
nection, thereby effectively multiplexing multiple clients that are distinguished 
through unique HTTP cookies. 

Authentication requests may be encrypted; for example, through SSL/TLS. The 
AuthAgent obtains identification and security credentials from the client, and may 
interact with the AuthProxy to refine specific requirements of an authentication. The 
AuthProxy references master secrets and security transforms in deciding how the cli-
ent must complete authentication. AuthAgent transfers the login credentials to the 

Figure 9-4 Service Provider Interface 
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AuthProxy for validation. The AuthProxy may then call a protocol-specific function, 
thereby authenticating the user to the cloud; this updates the AUR and ACT entries. 
Since the AuthProxy alone may modify the ACT, this retains a single source of active 
authentications. The AuthProxy then reports successful authentication through a call-
back function, thereby notifying the AuthAgent. AuthAgents can also “fortify” a secure 
connection through API calls that specify mandatory channel maintenance such as 
periodic challenge/response or CBC-mode “heartbeat” signals (see Figure 9-6). These 
serve as “heartbeat” signals that monitor the connection through bidirectional proto-
cols that detect tampering on the communication channel. 

Considerable care has been taken to protect privilege information even within the 
secure domain. At no time are protected resources simply decrypted into cleartext. 
Instead, the AuthAgent and AuthProxy interact with the GSS-API through protected 
(hashed) pointers that indirectly share security context. The AuthAgent and Auth-
Proxy cannot obtain the referenced data. The callback can also return information to 
the agent, thereby supporting supervised “need to know” access to security keys. For 
example, such information is also protected through security contexts that must be 
passed along with the data. Making this concrete, we can observe the integrated secu-
rity architecture shown in Figure 9-5.

Figure 9-5: Integrated Security Architecture 

Authentication agents support multiple authentication methods. Browser-based
access supports login passwords, authentication certificates, or a trust relationship 
with a hosting domain. Password authentication will validate the password supplied by 
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the user. Certificate authentication uses an X.509 certificate for mutual authentication. 
Clients can either register an existing certificate for the purpose of cloud authentica-
tion, or they may request a cloud-sponsored certificate. These specific security impli-
cations of these issues are discussed in Section 6.7.2. 

We now examine several security components in detail. We will study the access con-
trol daemon, the control daemon, several protocol-specific authentication compo-
nents, and a prototypical registration daemon. 

9.2.1 Authentication Agent – Control Daemon and Peers 

Managed network connections 
become established through the 
authentication server at an appro-
priate port. Authentication pro-
ceeds over a secure channel to 
mutually prove the identifications 
of the client and the cloud. The cli-
ent will not authenticate unless all 
components satisfy a crypto-
graphic proof of identity. The peer 
and the cloud negotiate a shared 
session key through secure bilat-
eral exchange of identities, as well 
as a randomly selected numerical 
basis for the session key, as dis-
cussed in Section 6.3.1. 

Successful negotiation establishes an authenticated session between the peer and the 
control daemon of the peer’s ingress gate. The channel, shown in Figure 9-6, remains 
active until the peer is logged off. The messages used by the Authentication Channel 
are IFF, ENCRYPT, PEER_HEARTBEAT, PROXY_HEARTBEAT, LOGOFF, USAGEREC,

AURLOOKUP, LOGIN, LOGIN2, CID_REQUEST. If the heartbeat signals are not 
received in a timely manner the control daemon terminates the user’s session. This 
immediately purges the firewall of any rules installed on the user’s behalf. The user is 
removed from the AUR, ASR and ACT. Thus, services that the user had announced are 
de-announced, and active connections are terminated. 

9.2.2 Authentication Agents – Data Proxy and Secured Web “Logins” 

Web authentication supports SSO with secure and personalized content. Authentica-
tion uses the AuthProxy and an HTTP-based AuthAgent that we collectively refer to as 
AP. Content services utilize a Data Proxy (DP) that supports all HTTP/HTTPS requests
and requires specially encrypted HTTP cookies. This section describes behavior and 

Figure 9-6: Authentication Protocol “Dance” 
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interactions of the AP and DP; the cryptographic properties are described in Chapter 
6, Section 6.7.1. The current section discusses these components from the perspective 
of Alice, a remote web user who is purchasing desert wine from NinoVino.com
(which recently took over the DandelionWine. corn; see Pages 9 and 91 for discus-
sion of these services). 

Alice authenticates exactly once through her web browser over a secured SSL connec-
tion (step one of Figure 9-7). An authentication data exchange validates her identity by 
means of a previously enrolled certificate, or through a user name with password. 
Bilateral authentication ensures the veracity of the cloud identity, based on the cloud 
certificate previously downloaded. Assuming that Alice is a legitimate user, the AP will 
add Alice’s user ID to the ACT (Authenticated Connections Table, step two of the Fig-
ure). Before finalizing Alice’s login, the AP creates a new SSL connection and popup 
window on Alice’s browser; these support control functions such as logout, as well as 
dynamic refresh of the authentication information. 

Alice’s authentication should persist over many HTTP requests within the domain, and 
yet HTTP does not directly support a user “login”. Rather than repeat the authentica-
tion, the AP provides Alice’s browser with special authentication tokens. Encrypted 
through a time-sensitive algorithm, these tokens cannot be recovered after expiration. 
The AP generates authentication tokens for each web service protected by the net-
work. Each one contains her unique user ID, the token’s expiration-time, and service-
specific information. These cookies may be restricted to secure web services (i.e., ser-
vices that require use of the HTTPS protocol) through the appropriate attribute. 

The cookies are received into Alice’s computer through the SSL connection established 
during authentication, and are installed by the browser into its cookie database. All 
standard browsers send the correct (i.e., domain matching) cookie each time Alice vis-
its a web site. Since the cookie database is shared by all instances of the web browser 
on Alice’s machine, the cookie is automatically sent to the appropriate site whenever 
Alice visits it. The cookies are protected through time-sensitive encryption (Section 
6.7.1.1 discusses the cryptographic techniques that protect cookies, as well as domain-
matching). These steps proceed automatically without Alice’s intervention. 

Alice directs her browser to a network-protected web site such as HTTPS : //por-
tal. domain. com/server. Her browser augments the request message with the 
domain-specific cookie (step 4). Since the service is protected, the request is redirected 
to the data proxy (DP). DP extracts the cookie from the Alice’s request, and tries to 
decrypt its content; the decryption can only succeed for legitimate and non-expired
cookies. DP verifies the cookie, extracts the user ID, and verifies Alice’s ACT entry 
(step 5). 

If Alice uses an HTTPS connection, finding Alice among active users gives the DP the 
assurance that the authentication token is not being replayed. Unprotected HTTP con-
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Figure 9-7: Time-Varying Encrypted Cookies Securing Identity 

nections, however, strictly require fortification to protect their content. The tokens 
sent by Alice over an unprotected HTTP connection may be captured and replayed by 
malicious users who share Alice‘s IP address. The limited lifetime and specificity to 
Alice’s ACT entry provide substantial fortification. Given the expense required to 
intercept Alice’s network traffic, the transient nature of the tokens, and the fact that 
those tokens are rejected by DP on the HTTPS connections, the loss of resources as the 
result of such attack is negligible (see “Encrypted Cookies from Authentication to Ter-
mination” on page 204). 

After the DP has finished the verification procedure, it contacts the content server 
through a secure proxy connection on Alice’s behalf. The content is returned to Alice’s 
browser. Thus, the middleware supports the most common Internet protocol – HTTP –
through combination of multiple standards and improvements built on them. The 
example of browser login uses the globally accepted standards for HTTP, HTTPS and
HTTP-state (cookies). Security vulnerabilities are closed through specific encryp-
tion schemes that protect system resources and prevent misuse of the accounts of 
web-based clients. Details of the actual cookies are described in Section 6.7.1 

9.2.3 Authentication – RADIUS Dial Support and Session Control 

A third important example is RADIUS authentication (RFC-2138, RFC-2139). This is a 
supported standard often used within inbound dialup modem pools. The RADIUS 
server, operating at the modem pool, receives credentials from the user. These creden-
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tials could be specific to the modem pool, or they could be part of the middleware net-
work. The first situation may arise when an enterprise chooses to administrate its uses 
with a private domain. Such enterprises can broker the requests over a private tunnel 
connection to the middleware. In such uses the enterprise retains responsibility for 
user actions, except when the user negotiates a secure SSL session with a service end 
point. In such cases, the RADIUS authentication agent enforces server-specific poli-
cies. The agent directly supports requests that originated from a modem pool or other 
ingress network, and negotiates the AuthProxy API. These methods standardize the 
interaction with the cloud, simplify development, and guarantee that authentication 
occurs only through a common and controlled framework. 

The second situation allows access to direct subscribers of network middleware. The 
dial platform essential becomes a tunneling pass-through. For these users the requests 
are passed directly to the middleware for validation, with appropriate encapsulation in 
PPP, L2TP or other protocol [Shea]. 

9.2.4 Firewall and Access Control – Access Daemon 

The access daemon (AD) maintains the firewall rules. This enforces service and secu-
rity policies by classifying the first packet of any new IP connection or “stale” existing 
connections not recently used. AD accepts a raw IP packet, analyses the packet, modi-
fies the dynamic firewall according to cloud policies, and sends the packet back to the 
firewall. Packets arrive at the AD due to previously installed rules in the packet filter. 
All valid rules sets include a terminating LOCAL rule directing unprocessed packets to 
the AD, thus ensuring AD will receive the packet. 

The new rule specifies appropriate processing for the original packet, as well as man-
agement information such as the rule inactivity lifetime, and optionally the associated 
user or service. The association with a user or service ensures the rule’s annulment 
upon termination of the user or service; this mechanism utilizes the ACT interfaces of 
the ACT. The rule is also removed upon inactivity. This aging of rules resembles similar 
time-outs in paging caches found on modern operating systems. 

The additional rules directly support higher-level services, either as IP pass-through,
redirection to a service, invocation of a mediated service, or fine-grain access control. 
Rules can also provide a “circuit breaker” against many kinds of cyber attack by 
instructing the network to immediately drop similar packets. 

Looking more deeply into the rule modification, each new rule must specify one of the 
permitted actions (PASS, DROP, LOCAL or MAP), along with any modification to the des-
tination address (see Section 6.4 for details on the firewall actions and modifications). 
The rule also includes management information. Suspected security intrusions are 
handled differently through proactive measures not discussed here; interested readers 
may contact the authors. The standard actions are include: 
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• Allow the source IP/port to reach an authentication agent 

• Allow the source IP/port restricted access to a fully public service through an 
address defined by the access daemon; this may be either the requested destina-
tion or an alternate address 

• Activate an application-layer protocol 

• Direct the packet to the data proxy (DP) or other HTTP server 

• Drop the packet 

These activities “bootstrap” the service model. The AD receives raw packets as pro-
vided by the firewall engine. It classifies and determines the appropriate rule through 
reference to the cloud’s current state. This includes peer rules, authenticated users, 
announced services, protocol definitions, type of network connection, and internal 
policies.

The classification process defines attributes, and then applies logic tables that produce 
the correct action. The attributes include: 

• Whether the packet sources is an authenticated entity 

• The access control rights of the authenticated entity 

• The access control requirements of the requested service 

• The strength of the authentication method 

• The capabilities of the end point devices 

• Declarations of security requirements of any connection that may be established 
(either proxy or to a server) 

The access daemon attempts to identify the owner of the traffic; for example, by refer-
ence to the packet header. This allows reference to the access rules specific to both the 
service and the client identity, which of course must be irrefutable. Anonymous traffic, 
which does not provide an identity, utilizes the service’s “anonymous” rules. These 
rules are flushed when the supporting connections cease to be authenticated and 
announced. Browser-based traffic utilizes HTTP-centric rules including use of the DP 
for protected sites. 

Consider how a client can gain access to the cloud. New client traffic is completely 
unknown to the packet filter, and cannot even reach the authentication proxy! The 
packet is redirected to AD. The AD classifies the packet, selectively installs a firewall 
rule into an appropriate rule base within the packet filter session cache, and then 
sends the packet back to the firewall. The authentication daemon can then negotiate 
an authentication with the client. 
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The access daemon enforces policies before installing firewall rules. These policies 
consider the permissions of the connection source, including its authentication status. 
This supports the access control activities such as permitting or denying a connection 
to the port associated with a service. Since services have unique ports, the access dae-
mon allows the connection only if a client is permitted access to the service at the 
given port. 

The access daemon places rules into the session cache, and then returns the packet to 
the firewall. It must validate the request to determine the proper action. The access 
daemon validates the request in several ways. The destination IP/port must identify a 
previously announced service, as recorded in the ASR. The originator of the request 
must also own an access control entry for the requested service. For peer-based
requests, the source IP/port identifies the originator through the authenticated user 
registry (AUR). For other clients – such as web-based – the IP packet contains identify- 
ing attributes such as authentication tokens. 

The access daemon decides whether to install a DROP or a PASS rule based on the 
above information. When there is an announced and authorized service the access 
daemon installs a PASS, LOCAL or MAP rule. Otherwise, it installs a DROP rule. A 
PASS rule is suitable when no protocol mediation is required. A LOCAL rule activates 
protocol mediation at the local gate, and a MAP rule reroutes to receive services. The 
PASS, LOCAL and MAP actions are provided for full-public services: for cloud-public
services when an authenticated client attempts access; or for cloud-private service 
when an authenticated client is subscribed to the service. Access is forbidden in all 
other situations, and a DROP rule is placed into the session cache to block any attempt 

The access daemon obtains the new port for LOCAL and MAP (if any) by consulting 
the Active Service Registry (ASR) to obtain the service type that corresponds to the 
destination IP and port (as specified in the original IP packet). The daemon then 
examines data from /etc/GeoParams to obtain the new port corresponding to the ser-
vice type. The redirection parameters are now known to the access daemon. It updates 
the firewall session cache and routes the packet back to the firewall. This mechanism 
is independent of the proxy framework. Section 9.4.2 shows a detailed example. 

The access daemon returns the packet back to the firewall after installing a rule into 
the session cache. In this manner, the packet arrives at the firewall at most twice. The 
double-arrival occurs only on the first packet of any connection, and subsequent pack-
ets are described by the session cache. The packet can be IP routed as soon as the fire-
wall specifies the destination IP and port. The session cache entries are duration 
limited and are purged upon inactivity. The access daemon will refresh the cache if a 
packet fails to be recognized due to recent purging of the cache entry. 

The firewall’s redirection and proxy support are also harnessed to combine multiple 
interacting clouds, as shown in Figure 9-8.
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Figure 9-8: Multiple Cloud Firewall 

9.2.5 Middleware-Based PKI and PKI Management 

The mechanisms and deployment of middleware Credential Proxy (CP) controls all the 
credentials related mechanisms in the platform. This handles the generation/issuance, 
revocation and update of credentials. A Credential Management API supports the 
administrative management of credentials and is subject to standard middleware 
access control checks. 

This gives a user the ability to access all the services provided by the platform with a 
standard web browser without the need for any additional client side software. 

• Use of certificates issued by certificate authorities external to the platform – a 
commercial CA service, Intranet hosted CA, etc. 

• Integration of CAs systems offered by different vendors 

• Multiple CAs from multiple vendors serving the platform users 
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• CAs in unlimited hierarchy configuration 

• Life-cycle Management (issuance, revocation, expiration, etc.) of certificate and 
CAs hosted by the platform 

• Account hierarchy based certificate configuration, and CA trust policies 

9.2.5.1 PKI as Basis for Wide Scale Single-Sign-On

Client certificates are a starting point for a specialized vision of single-sign-on (SSO) 
known as single-credential-sign-on. This exploits the standard certificates conforming 
to the X.509 v3 specification. All such certificates include a name field that is consis-
tent with the X.500 directory structure of the issuing authority or third party certifi-
cate issuer service, such as Verisign Inc. Several vendors have demonstrated different 
approaches for enabling single-sign-on using client certificates. Many of them use a 
directory as the repository for user information, with certificates directly coupled to it 
for authentication purposes. Since, the Subject Name field of the certificate must – for 
all compliant implementations – correspond to the Distinguished Name of the X.500 
directory, this appears at first as the most logical choice. 

However, this tight coupling also has its drawback in terms of making it very difficult 
to change or manage the certificates, directory tree, and user accounts as the practical 
demands of business, and frequent changes, take place. It is also problematic for a ser-
vice provider in the business of offering hosting services to existing VPNs, Certificate 
Authorities, and users. It is therefore advantageous to decouple the SSO notion from a 
traditional directory structure. While the X.500 directory structure may hold a user’s 
information, it is not the sole repository of account and authentication information. 

A provider can find greater flexibility with a domain database that includes an account 
tree of user authentication, access control and other information. This tree is consis-
tent with the service provider’s requirements and models of domains, accounts, sub 
accounts, users and services. Multiple certificates can be associated with any item in 
this tree. 

Each certificate is identified through a numerical thumbprint. This is simply a mes-
sage digest computed from appropriate certificate fields. A certificate becomes associ-
ated with an account through an enrollment process. This computes the thumbprint 
of the certificate, and associates it with the specified user account in the tree. The 
thumbprint provides a reliable and trustable association between the certificate and a 
user object within the account tree. The user object can be identified upon subsequent 
presentation of the certificate through a simple indexed lookup keyed from the thumb-
print. Of course, enrollment and usage are subject to standards-compliant verification. 

User-initiated authentication commences with a standard certificate-based authenti-
cation. This proves the presenter posses the private key The platform then computes 
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the thumbprint. The thumbprint identifies at most one user object in the account 
structure through a simple index lookup. This lookup obtains the unique user object 
that was created during user registration, and which was associated with the certifi-
cate during certificate enrollment. The platform may now authenticate the entity and 
grant access to the specified user object. This grants all privileges of the user object. 

This method works for several simple reasons. It is reliable due to collision-resistance
of the thumbprint function. It is trustable because the issuing CA is accredited by the 
platform. It is secure because the certificate subject must first authenticate by stan-
dard protocols that require the user hold the private key corresponding to the public 
key included in the certificate. 

There mechanisms also allow the association of many certificate thumbprints with 
one account, as well as one thumbprint to many accounts. This provides the capability 
of providing different features and functionality to each user, giving a much broader 
SSO capability than use of a single certificate. A user may have multiple accounts in 
different roles, may authenticate from different platforms, and yet have a single-sign-
on experience in terms of service accesses. These extensions require the user specify 
the name of the account that the user wishes to use. This architecture also allows for 
greater flexibility in certificate revocation and expiration management. We discuss the 
pieces of the structure in the following sections. 

9.2.5.2 Credential Generation – Accreditation of Authorities 

Protection against non-accredited CAs is essential given the relative ease of establish-
ing a new, but possibly untrustworthy CA. Indeed, a rogue CA could easily obtain a 
wealth of personal information under the guise of low-cost or value-added certificates. 
In addition to securing a system against rogue CAs, there is also a necessity to ensure 
compliance with local requirements for certificate contents. Certificates should con-
form to appropriate configurations including certificate extension fields that may be 
unique to a specific CA. These are defined by administrative controls, and then are 
refined by the user preferences. 

Certificate generation begins with the selection of an internally accredited CA. The 
user and middleware then provide the information to be written onto the certificate in 
accordance with policies regulating the CA. The middleware mediates the certificate 
content by control of data passing into the certificate request; this includes permitted, 
forbidden and required certificate extensions, as well as validity dates and algorithms. 
The middleware translates the user request to the specific form required by the CA. 
The middleware then supervises the secure request and import of the certificate and 
associated keys. 
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9.2.5.3 Credential Enrollment – Importation of Certificates 

Credentials can be enrolled by a user for multiple purposes. The enrollment process 
first requires proof that one is the certificate owner. A representation of the certificate 
may then be entered into the domain database. When a new certificate is enrolled by a 
user, the credential management system computes two thumbprints, also known as 
message digests. A full certificate thumbprint is based on the complete certificate, and 
is appropriate for authentication. A partial certificate CRL thumbprint supports the 
revocation of third party certificates, and includes only the issuer name and serial 
number. This CRL thumbprint and the corresponding user account mapping are 
stored in the local CRL service. The subject name is neither needed nor stored. 

9.2.5.4 Credential Revocation – Invalidation of Thumbprints 

Revocation of a certificate takes immediate effect through the removal of the certifi-
cate thumbprint from the core database. The certificate thumbprint was initially gen-
erated when the user registered the certificate with the platform. Without the presence 
of the certificate thumbprint, a user will not be able to authenticate to the platform. 

Removal of a thumbprint is the only function that is performed for third party (CAs 
not hosted by the platform) issued certificates. However for a platform hosted CA, a 
revocation request is also propagated to the CA simultaneously. This is managed by 
the Credential Management System that provides an uniform interface to the user or 
to the administrator for managing revocation of certificates for the platform. 

The platform also uses CRLs crafted especially for third party CAs (not hosted by the 
platform) for managing revocation. The CRL management service on the platform 
periodically retrieves the CRLs from the directory locations specified by each of the 
third party CAs. The retrievals interval is specified in each CRL. A revocation service 
maps the information in the CRL to the local store of registered certificate CRL thumb-
prints and account associations. All matching CRL thumbprints are removed from the 
core database for user accounts. The certificate can no longer be used for authentica-
tion purposes. 

The CRL service management also includes an interface to the standard Online Certif-
icate Status Protocol (OCSP, RFC-2560) for certificate status queries by any middle-
ware service. This service is also used by the Credential Management service to check 
the CRL before registering a certificate. The components are designed with appropri-
ate abstraction of the interfaces, and this ensures a convenient migration path. Thus, if 
an OCSP service comes into existence for all CA services, or a future status checking 
mechanism is invented, the CRL Management Service could be easily changed to 
accommodate it. 
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9.2.5.5 Examples of PKI Management and Revocation Services 

In conclusion of the discussion about PKI, the following shows several examples of a 
platform PKI integration service. This service is capable of supporting the services we 
have discussed above. 

Figure 9-9: User-Managed Certificate Selection and Revocation 

9.3 Proxy Framework 

The second mechanism we discuss, namely the proxy framework, builds upon the 
packet filter of Section 9.1. The proxy framework provides a structured mechanism for 
definition, registration, activation and control of new components. The framework is 
specifically designed to accept the redirected connections of the packet filter firewall. 
Using multi-threading technology, it can support large numbers of simultaneous medi-
ation processes. Since it is multithreaded, each client connection can be configured 
with private data storage; or, multiple clients can share a single thread. In either case, 
the new components, called data proxies, register to receive particular kinds of data 
traffic. The gate security architecture sends authorized data to appropriate data prox-
ies. The proxy may utilize all gate capabilities. Proxies typically restore the original des-
tination to each packet, with the option to forward the connection to other IP address, 
or to directly serve a client’s request. 

Some of the things we have done with the proxy framework include: 

• Security Extensions. Support access to the security systems of third party sys-
tems, such as Microsoft file and print services, and integration of the Microsoft 
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Commercial Internet Service (MCIS) by means of common protocols such as 
LDAP (see Section 6.7.2.4) 

• Smart HTTP support. Caching middleware is controlled through user-specific
and account-specific monitoring of the hypertext, thereby enhancing the user 
experience (see Section 9.4.3.2) 

• Load balancing to multiple servers. Both round-robin and feedback-based meth-
ods work to funnel traffic from a gate to the correct server 

• Multiple cloud interactions. Support interactions and trust relationships 
between multiple clouds, as shown in Figure 9-8

9.3.1 Proxy Framework Mechanisms 

A new runtime thread supports each new connection into the gate for a given proxy 
type. Data is decrypted as necessary upon entry into the gate. It then passes to the 
proxy framework. The framework receives each packet of data and may modify the 
data as needed. The proxy may invoke any API call, and can modify the traffic flow. 
Data then IP-routes between the ingress gate and the egress gate without undergoing 
encryption within the cloud. At the egress gate the data may be re-encrypted as 
required by the connection, and subsequently routes to the destination. A second 
proxy can optionally intercede on the data when required for specialized services. 

Per-connection threading provides a robust method and highly capable development 
tool. The framework maintains limited local state information, thereby alleviating the 
otherwise ad hoc methods that would complicate development and maintenance. Cli-
ent status is associated with the thread. For example, it can interact with the packet fil-
ter, support load balancing, and invoke multiple management functions. Per-
connection threading is an appropriate mode of operation when providing sophisti-
cated services. 

The proxy mechanism supports a general 
technique called protocol mediation where
an IP connection may receive enhancement 
or modification as necessary, Network mid-
dleware enhancements can be constructed 
and fully integrated with other frameworks 
(such as security, usage, and event record-
ing) by use of APIs to interact with the gate, 
core and network layers. These capabilities 
allow the cloud to deploy intelligent ser-
vices. This builds on the bidirectional flow of data as it passes from the client to the 
server, and returns toward the client. This data passes through the proxy, as shown ear-
lier in Figure 7-8 and repeated above. 
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A proxy can be easily developed and deployed into the gates. The simplest proxy is 
shown in Figure 9-10. The program consists of standard include statements, a proxy 
routine named int sampleproxy, and an entry point void sampleinit () that registers 
the sample proxy. 

This sampleproxy is a trivial example that shows the basic features of the proxy frame-
work It provides a simple “pass-thru” proxy. The proxy code is invoked every time the 
gates authorize a specific kind of packet, as we will discuss shortly. The pass-thru
example does not manipulate the data or invoke any network functions. The routine 
simply returns the GEOERROR_PDK_OK value, thereby allowing the proxy framework 
to resume control of this instance of the proxy. The framework writes the packet to the 
server side of the connection. 

#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>
#include cnetinet/in.h>
#include <geoProxy.h>

#ifdef _cplusplus 
extern "c" { 
#endif
void sampleinit();
#ifdef__cplusplus

#endif

int sampleproxy(GeoProxyNetworkThread &thread, const int client_fd,

}

const int server_fd, GeoConn side, GeoProxyMsg **buf, void *control)

return GEOERROR_PDK_OK; 
{

}

void sampleinit() ( 
#define PORT 2000
#define PROTO IPPROTO_TCP 
try {

geoProxyRegister(sampleproxy, PORT, PROTO) ; } 

cerr cc e.why () << endl; ) 
catch (xmsg &e) { 

}

Figure 9-10 Simplest Proxy Source Code 

9.3.1.1 Proxy Framework Behavior 

It is insightful to understand how and when the proxies are invoked. The following 
questions discuss the these issues. 

When does the framework invoke the proxy? 
Assume the sampleproxy is already installed as a custom proxy. The gate 
receives a packet from an authenticated peer, provides security services as 
required, and passes the packet to the custom proxy code, sampleproxy in
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this case. The proxy is now ready to run. It may call any of the proxy APIs; 
for example, to modify the packet, interact with the firewall, etc. The proxy 
completes its processing and returns GEOERROR_PDK_OK. The proxy 
framework now ensures the packet will route to the server side of the con-
nection. From there it routes to the destination. Technically, the proxy 
framework uses highly efficient primitives of the underlying operating sys-
tem to support a large number of proxies with extremely low overhead. 

How does the proxy API specify what traffic should be sent to the proxy? 
The proxy framework dynamically loads proxies and invokes their initial-
ization handler. The initialization handler of our example was called sam-
pleinit(). The initialization handler must always register at least one proxy. 
In our example the geoProxyRegister call specifies three parameters: the 
entry point of the proxy (sampleproxy), the port where the proxy should 
listen ( 2000 in this case), and the protocol that the proxy will process 
(TCP in this case). 

How many copies of each proxy are running? 

The third question concerns the number of copies of the proxy. The frame-
work creates a new thread for each active connection. A connection is a 
five-tuple (Clientip, Clientport , Serverip, Serverport ,
Protocol). Thus, if one IP address contacts the port 2000 from five dif-
ferent source ports, there will be five threads. If a second IP address con-
tracts port 2000 there will be a sixth thread, even if this reuses one of the 
source ports of the first IP address. 

Once the proxy is compiled and linked into a relocatable shared library, it is 
dynamically loaded by the proxy framework. 

How does one proxy support multiple independent connections? 

The process is constructed with the proxy-framework that invokes POSIX 
threads to listen on the port specified by the proxy registration function 
(geoProxyRegister). When the listener accepts a new connection, the 
framework spawns a new listener thread, supporting subsequent connec-
tions. The previous thread opens a new connection to the connection to 
original service IP (step 5). Data will be written to this destination IP. 

Once the connection is complete, the proxy framework waits for traffic by 
use of a blocking pollfd system call. It polls the source fd and the 
destination fd, and then reads from the first fd that unblocks the 
poll. The framework reads and buffers the data. The framework then starts 
the proxy function, passing it a pointer to the proxy instance, the two fd's,
the direction of data flow (i.e., an indication of the f d that received the 
data), and buffered message data. Upon return from the proxy function, 
the framework writes the data to the corresponding output fd. The
sequence repeats as: 
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1. Create thread that makes a socket, binds and listens 

1.1. Thread will accept a connection from a client 

1.2. Thread executes initialization function 

1.3. Thread completes the connection to the server 

1.4. Thread yields 

2. Poll, waiting for any the proxy’s file descriptors (two thread) 

2.1. Find the matching thread 

2.2. Read the data 

2.3. Invoke the thread 

2.4. Write data back 

3. Return resources when connection terminates 

9.3.1.2 Summary of Proxy and Component Interactions 
The cloud components communicate over IP con-
nections. Static port assignments provide the sim-
plest configuration; an example is shown in 
Table 10. These ports to support both standard and 
custom application-layer protocols. When neces-
sary, the platform extends standard protocols such 
as HTTP or HTTPS and thereby simplifies the inter-
action with common services. One example of is 
secure formation of credentials, as well as authenti-
cation. A mini-HTTP server supports specialized 
client requests, and issues API calls to the authenti-
cation (and registration) components. These com-
ponents interact with the domain API and the 
active registry API. In this manner we assure that 
content is served exclusively to authorized users 
(see Section 9.2.2, “Authentication Agents – Data 
Proxy and Secured Web ‘Logins”’). 

The firewall and proxy mechanisms provide a lay-
ered and structured software architecture that sup-
ports the proxies and daemons needed at service nodes. Some of these proxies support 
the middleware infrastructure such as registration, authentication, and access control. 
Other proxies support IP services built upon TCP, UDP and other protocols within the 
TCP suite. These IP services are often referred to as application protocols to distinguish 
them from transport protocols. The application protocols range from simple (such as 
SMTP and POP3) to complex (such as H.323). The protocols may benefit from 
enhancements by protocol mediation, as well as “hardware assist” in the form of a pro-

TABLE10: Commonly Used port 

Router Server 41507 

Purpose Port

Authentication
server

2113

Core server 2114

AUR service 2221

ASR Service 2223

HTTP caller ID 7000

Peer caller ID 9000

Control Daemon 41512

Peerless Proxy 

Peerless Certificate 

41515

41517

RADIUS Server 1812
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tocol gateway. The proxy structure is designed to support both kinds of protocols in an 
API-driven manner. These integrated functions are shown in Figure 9-11.

Figure 9-11: Packet Filter Protects Gateways and Supports Proxie 

9.4 Proxy Design, Deployment and Methodology 

Consider, for example, a new service we wish to add with a name (or “handle”) of 
MYSVC. Proxitization of this service requires several steps: listing the service in the 
domain database; announcing the service; updating the system configuration; and 
installation of the software modules that provide the service. The access daemon will 
subsequently redirect the MYSVC traffic to a new IP address, which is most efficiently a 
different port on the local ingress gate. The SNode supports a multithreaded proxy 
framework that defines and operates multiple proxy instances. 

9.4.1 Deployment of Proxy-Enabled Services 

In order to define a proxy-enabled service, the administrator assigns an attribute 
known as the proxy type. The proxy type identifies one of the proxies previously 
installed into the network by the network operator. An administrator then associates 
the proxy type with the service object. 

• The domain database describes the service object. This description contains a 
service ID that identifies the service, and is now updated to include the proxy 
type (also known as the protocol). The domain database describes the registered 
services, though they may not all be active 

A service announcement indicates that a service is now active. The announce-
ment specifies the service ID, the proxy type, the service IP address (this can be 
implicit when announced from a peer), and the service port. The proxy type 

•
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identifies the application layer protocol. This can be standard protocol such as 
TCP, UDP or HTTP. Additional application-layer protocols are defined and 
installed by the network operator 

• The system configuration file /etc/GeoParams describes the available appli-
cation protocols, proxy types and the ports that support them 

• The proxy was previously compiled into a shared library and linked to the proxy 
framework. The proxy was registered as a listener within the framework by use of 
the GeoProxyRegister function

Service requests – in the form of IP connections – will subsequently receive mediation 
en route to the service. The connection receives standard processing by the access dae-
mon. The destination IP/port matches the table of announced services (i.e., the ASR), 
and identifies the proxy type. The daemon obtains the proxy routing information from 
GeoParams, updates the mapping tables, and installs a firewall that remaps the traffic 
the proxy. In-memory routing occurs when the proxy runs in the same memory space 
as the firewall, as typically occurs. These steps are subject to access control and other 
validity checks. 

9.4.1.1 Proxy-Enabled Service Definition 

This section expands on the example given above (Section 9.4.1), and shows the 
detailed service deployment that combines a server with an application-layer proxy. 

An administrator initially creates a service object in the domain, thereby obtaining a 
cloud-unique serviceID. Services can run either on an existing IP protocol such as 
TCP, or a new application-layer protocol that runs on top of either TCP or UDP. The 
protocol name, identifying the application-layer protocol, must be defined in the sys-
tem configuration parameters ( /etc/GeoParams). The example below uses IP 
address 135.197.81.45 with a TCP application layer protocol named MYSVC.

An announcement later indicates the server is ready to receive traffic. The service pro-
vider advertises the service at the service port, for example 5556, and provides service 
by listening on the local IP address at this port. The service subscriber can use the ser-
vice through a connection to the given IP/port. 

The registration and announcement may specify an application-layer protocol, for 
example MYSVC. This ensures the connection will receive mediation services by the 
MYSVC protocol, which can be implemented as a proxy. The client connection steps 
are:

1. Client connects to the service IP/port 

2. Middleware accepts the connection, and provides the application-layer protocol at 

3. Middleware either serves the request, or completes the connection to the service IP 

the protocol port 
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4. This protocol may run on either the announced service port, or on its own unique 
port (called the proxy port). The middleware software will “detour” the connection 
to the proxy port 

5. Client connects to the service IP/port 

6. Middleware accepts the connection, and reroutes it to the proxy IP/port. This can 
be completely different from the service IP/port 

7. Proxy provides application-layer protocol 

8. Proxy completes connection to the service IP/port 

For example, this could announce the service as: 

IP=135.197.81.45
TYPE=MYSVC
ID=serviceID (as assigned during the registration) 
PORT=5556

The client connection for 135.197.81.45/10121 receives service at a cloud IP 
address at the port where the protocol is active, in this case: 

ProxynnType=MYSVC
ProxynnPort=10121

This example can be implemented by an administrative update of the GeoParams con-
figuration information, followed by a service announcement with the manageAur - e
to activate the service IP/port. The announcement can also be accomplished with the 
SDK connection management APIs. 

9.4.1.2 Proxy-Enabled Service Activation 

Assuming a registered and active service, a proxy-based service can be activated by 
service-announcement with associated protocol and address information. Figure 9-11
shows all steps and traffic flows in detail. The example shows a service called the 
michahsvc3, for the purpose of example, running a proxy that supports an applica-
tion-layer protocol ( called michah001). The proxy runs on port 10121 of the firewall 
machine, and the service runs on port 5556 on the store17.dom19.com facility.

The steps are: 

1. The service provider initializes the service with a service-specific command. This 
example uses the application-specific Server command with suitable options 

2. The service provider’s administrator announces the service, giving the service name 
(michahsvc3), protocol ( michah001) and local address ( port5556)

3. The client requests the service by name. Naming services, including proxy DNS (see 
Section 9.4.3.1) resolve the name to an IP address; and advanced routing, where 
available, defines a suitable path to the service. This path may depend on the client 
and server access permissions 
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Figure 9-12: Announcement and Cloud Mediated Access 

4. Client directs packets towards the service. In this example the service runs on 
store17.dom19.com port 5556 

5. The firewall rules remap the packets to the michah001 protocol that is active at 
port 10121. The proxy, active at port 10121, handles the request through a new or 
existing thread of control, as necessary 

6. The framework remaps the proxy output to the service address 

7. Secured communication between gateways 

8. Optional proxy support at the egress gate 

9. Connection routes to server, in this case store17 and port 5556 

9.4.1.3 Proxy-Enabled Traffic Flow for Gate-Deployed Mediation 

Port-specific processing of data permits construction of services upon the redirected 
IP traffic. The processing is provided by a proxy function, and the proxy function 
requires a framework to provide standard processing in a reliable manner. The traffic 
flow is shown in Figure 9-13. The proxies listen on the ports that the GeoProxyRegis-
ter function specified. This occurs regardless of the access daemon's activity. This is 
the natural behavior of the proxy framework or other listener-based process. The fire-
wall, however, will not pass any data to the port unless a rule permits. A rule could be 
specified statically (for example by the rules.pre file) or dynamically (by the access dae-
mon or an API call such as gp_pf_add_session).

When traffic arrives (step 1), the firewall checks for a packet filter rule that matches 
the protocol, source IP/port and destination IP/port. The packet filter does not pass 
unknown traffic: the firewall rules must contain instructions for the protocol, ID and 
port. Unknown traffic is sent to the access daemon, which installs a DROP, PASS or 
MAP rule (step 2). The daemon evaluates the security-related and service-related
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observables, including the type of authentication, the client identity, and the service 
requirements. The daemon constructs the appropriate access rule, which is then 
installed into the packet filter and the session cache. The daemon then sends the 
packet back to the firewall for reevaluation. For example, the access daemon could 
install a DROP rule, and the firewall would subsequently drop the traffic. 

In the MYSVC example, the connection, destined for 135.197.81.45/5556, will be 
redirected to the access daemon. The access daemon finds that the destination IP/port 
must use the MYSVC application protocol. The daemon issues a lookup to the cloud 
configuration and obtains the ProxynnPort corresponding to the MYSVC protocol.
The daemon installs the MAP, and sends the traffic back to the firewall. 

The traffic will now match the packet filter. Figure 9-13 shows the destination IP 
change from Serviceip, port to proxyip, port (step 1). The traffic skips the access 
daemon (step 2), and proceeds up the IP stack to the TCP layer. Selected traffic may 
receive security services at the top of the TCP stack; for example, decryption (step 3). 
The TCP layer will direct the packet to a process that listens on the modified IP/port. 
The proxy framework provides one such process, one that conveniently creates a new 
thread for the connection (step 4), connects to the service address (step 5), and invokes 
the proxy functionality (step 6). The modified data is written to the service address and 
routes to the appropriate interface (step 7). 

9.4.2 Proxy Design and Development Methodology 

The network middleware provides functionality either with classical server-based
components, or with the network-based components. Thus, the service of Figure 9-12
can be provided either at an end point (such as a server-farm identified by store17 in
Figure 9-13), or in the network (such as proxy at 10121 ). The development and 
deployment decision requires understanding of performance trade-offs that are spe-
cific to each application. 

9.4.2.1 Proxy Affinity and Server Affinity 

Balancing these trade-offs can begin with analysis of target service or suite of applica-
tions. This arrives at a distinction between functionality and implementation. Various 
alternatives can be evaluated for their affinity to specific deployments. Components 
may benefit from proxy-deployment when they have any of the following characteris-
tics. Each characteristic increases the “proxy affinity”. Some of the characteristics are: 

• Security. The cloud defines a logical security perimeter. It is also physically secur-
able. This protects resources such as data, programs and configurations. Ele-
ments within the cloud receive guaranteed access policies because there cannot 
be “back door” access 
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Figure 9-13 Detailed Traffic Flow from Client to Proxy and Service 

• Resource availability. Cloud-centric resources may be more reliable, efficient or
flexible from inside the cloud. For example, clustered computing elements adjust
to specific load conditions

• Path reduction. The route to service may be improved by providing service at a
cloud element

• Composition. Interaction between multiple external elements can be mediated
through the cloud

• Reusability. Multiple services can use the same proxy component, and indepen-
dent services' use is tightly controllable if required. Application layer protocols
invoke these proxies as described above.

Designers may consider other characteristics that suggest deployment through the
SDK rather than a proxy from external deployment in other situations. Characteristics
that increase the "server affinity" include the following:
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• Size. Very large databases reside on specialized servers 

• Existing applications. It is easier to integrate an existing application to its own 
platform

• Simplicity, Externally-deployed elements, unlike proxies, may be designed and 
operated with fewer constraints 

9.4.2.2 Examples of Proxy Affinity and Server Affinity 

Security services, such as single-sign-on (SSO) are highly suitable for development as 
cloud services. These processes secure information, and are integral to overall resource 
management. SSO services are reusable by any external domain that chooses to allow 
access to cloud-authenticated users. 

As a second example, consider a subscription-based virtual private network (VPN). A 
cloud could provide different VPN services, to accommodate both bandwidth-hungry
demands of transport-VPNs as well as dynamic route encapsulation of private tunnel 
VPNs. Each service includes a configuration component and a transport component.

The configuration VPN has a large proxy affinity. It works with secure information 
such as the subscriber and service information. It directly affects resources, and should 
be available at low delay, The configuration component also interacts between multi-
ple external components. Provisioned as a network proxy, this is an application-layer
protocol available to authorized VPN providers. 

Turning to transport, a VPN may be viewed either as a pure transport mechanism, or 
alternatively as a service access method. Transport subscribers require low delay with 
high bandwidth. They have little affinity for a proxy during the transport phase. On the 
other hand, service access VPNs may benefit from cloud-hosted features. Consider, for 
example, a managed VPN with the ability to terminate the VPN from within cloud. 

A third example, the processing of a large database site, is left as an exercise for the 
reader. While the database might appear to have little proxy affinity, transaction pro-
cessing (TP) introduces time-critical communication for record locking, concurrency 
control, and atomic commit. Thus, the TP applications can benefit from network 
assists including proxy support. 

9.4.3 Enhancement Examples – DNS, HTTP and CIFS 

Protocol enhancement and service support may occur either in the network or the end 
points, as discussed previously, We now present several examples of each kind of 
enhancement. The first, DNS, runs at a system end point. The next two – HTTP and 
CIFS – run in the network. 
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9.4.3.1 DNS: End-point Enhancement for Names and Services 

When networks were small it was possible to assign a unique IP port to each service, 
and a unique IP address to each provider. However, IP addresses were intended to 
describe hosts, rather than services. This situation persists with naming services. The 
Domain Name Service1 (DNS, RFC-1035) provides a highly robust and distributed 
lookup facility that resolves symbolic names to the provider’s IP address. DNS was 
intended to define the mapping between host names and the corresponding IP 
addresses, or “provide a mechanism for naming resources in such a way that the names 
are usable in different hosts, networks, protocol families, internets, and administrative 
organizations” [RFC-10351. DNS was not intended as a general directory service for 
service location, and is not subject to client authentication or access control. The 
X.500 directory, and the derivative Lightweight Directory Access Protocol (LDAP), 
attempt to resolve these naming issues. Newer protocols will likely provide a better 
solution; for example, the Service Location Protocol (SLP, RFC-2165).

A partial resolution of these challenges uses a technique of virtual IP addressing. The 
cloud can protect internal services by the selective routing of traffic to the appropriate 
internal service element. The external DNS identifies these services with the name 
cloudvip (for cloud virtual IP), along with an IP address on the cloud-internal sub-
network, Internet routing protocols will then obligingly route the service-bound traffic 
to the cloud. The ingress gate then makes access control decisions and reroutes such 
traffic appropriately The gate selects the best location to provide service. For example, 
an authenticated user may receive service at one destination. An unauthenticated user 
can be remapped to a different location. This affords the cloud considerable flexibility. 
Indeed, a similar approach is seen at the routing layer, where IP addresses can be asso-
ciated with localized cache content or other replicas. 

A second solution uses protocol enhancement of the actual DNS protocol. This occurs 
at the end point that provides service, or it can occur in the network. As such, it con-
trasts with the typical DNS caching that provides the global name at the end point that 
requests the service. The protocol supports the open distribution, maintenance and 
translation of host/address pairs, as well as associated information about the hosts. 
While the Internet owes its success partially to the effectiveness of DNS, the unpro-
tected access raises privacy related issues. 

A secure system requires selective export of names, and may also require variations on 
name resolution in accordance with subscriber access permissions. The end point 
mediation provides three overlapping name spaces: 

1. DNS is defined by RFC-1034 and RFC-1035. Newer naming services extend the concept of naming, for 
example X.500, LDAP, and service location protocol (SLP, RFC-2165) that combines a service name with a 
set of attributes. 



PROXY DESIGN, DEPLOYMENT AND METHODOLOGY 317

• Externally visible name space. This stores the NIC-registered domain names and 
network numbers. Connected peers are given the legal public IP address 

• Internal name space. This stores internal protected resources, such as the 
addresses that implement the protected core network. Proxies redirect appropri-
ate inquiries to the internally supported DNS server. The DNS protocol assures 
proper handling of external names 

• Proxy name space. DNS running as a protected service resolves names on a per-
client basis, and can further use the network middleware to enable routing for 
these clients as required 

The middleware network intercepts DNS requests that are bound for the hosts in its 
address space. The DNS responses are generated selectively depending on the 
requestor’s status. Naming is partitioned into internal and external names, with an 
additional proxy-based capability of selective response to external DNS queries. One 
solution is protection of internal cloud components by means of an internal DNS. This 
supports name lookups for private addresses within the middleware network. 

Extending the idea of an internal DNS is an additional proxy DNS1. This provides selec-
tive responses that depend upon the client’s identity and service profile. A conven-
tional external DNS provides the standard functionality and resolves public addresses 
through the standard reference mechanisms. The internal and proxy DNS can be 
extended to support firewall-mapping, caching and routing as necessary. 

The proxy DNS provides user-dependent responses. This enforces per-user limited 
views of the name space. The user-specific views adhere to the access control policies 
defined in the domain database. Reference to the user’s service profile allows custom-
izing responses to name queries. The proxy intercepts the DNS requests for names that 
are within the protected middleware network. The proxy can selectively respond to 
these requests, or alternatively forward the request to an external name server. For 
example, an authenticated user will succeed in name resolution for a cloud-public ser-
vice, but an anonymous user will not. 

9.4.3.2 HTTP Web Development Framework 

Every web browser has its origins in the hypertext transfer protocol, HTTP2. This gen-
eral distributed request/reply protocol lets clients get or post information, and a 
server responds with HTTP headers or documents. The protocol supports the storage 
and transfer of state information (RFC-2109) through domain-specific storage called 
cookies. HTTP/1.1 supports persistent connections and defines caching behaviors 

1. Steve Bellovin of AT&T Laboratories, for example, developed a proxy DNS for such purposes. 

2. RFC-1945 describes HTTP/1.0, and RFC-2616 describes HTTP/1.1 
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including cache correctness1,2. The Web Development Framework insulates services 
from variations in the HTTP version, changes in the security framework, and exten-
sions such as XML pages. 

The HTTP framework supports authentication, plug-ins, caching, and standard adapt-
ers. Conceptually, this monitors HTTP traffic, and executes system callbacks upon 
occurrence of specific detailed events; these events include appropriate headers. We 
find it useful to interact with client’s HTTP requests at distinct points: upon the accep-
tance of a connection, upon receipt of a complete request, just prior to issuing a con-
nection, upon the completion of a data transfer, or just prior to closing a connection. 
The action that occurs in each situation can be defined by a “plug in” code tailored to 
the design of the reply-request cycle. 

The mechanisms can substantially extend the security and performance of the HTTP 
traffic. For example, this includes inherent support for secure transactions thus insu-
lating software developers from the security layer. Consider an HTTP server or client 
that is protected by a secured connection to the network middleware. This could be an 
SSL, IPSec, or other protected connection. HTTP requests must be translated from the 
incoming security association into the outbound association. This allows each compo-
nent to select its security method, and utilizes the network middleware as a “trusted 
broker” between the associations. 

The second use of these data path enhancements improves service by selective redirec-
tion or caching. Load balancing translates the client requests into references to repli-
cas of the required content. These replicates are provided either through explicit 
caches such as the Internet Object Cache (Squid) or advanced commercial caches. 
Such caches are often deployed as part of the network switching structure, where these 
data path enhancements can become fully integrated into the network. 

9.4.3.3 CIFS: Data Path Enhancement for File and Print Services 

Network enhancement can also extend security-aware protocols. Consider the Com-
mon Internet File System (CIFS, see RFC-1001 and RFC-1002) protocol. This permits 
access to file and print services on a Microsoft domain. It provides a measure of secu-
rity through a challenge-response protocol in which the server enforces the domain’s 
access control mechanisms. This requires that the client own an identity on the 
Microsoft domain, which can impede scaling and sharing of resources. CIFS’ other fea-

1. We note that RFC-2616 discussion of cache behaviors cannot anticipate all future applications, and does 
not compel compliance by all Internet components. Indeed, content management is a complex area. A 
substantial component of Internet traffic carries the NO – CACHE tag to ensure correct content deliv-
ery.

2. Caching in the Internet is a major and complex topic, and the subject of many interesting patents (see 
for example Srbljic et al. in US Patent 5,933,849 “Scalable distributed caching system and method). 
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tures include multiplexing of multiple users over one TCP connection, as well as vari-
ous kinds of file locking. 

GeoCIFS maps the user, service registration and access control model into the NT 
domain and security models. This enables NT and CIFS servers, provided they are in 
domains that trust a GeoCIFS NT Domain Controller, to validate and control access for 
users. The GeoCIFS proxy (running at a gate) modifies the CIFS identity and credential 
information that users pass to GeoCIFS servers, thereby securing and tracking Geo-
CIFS usage. A user on a Windows 95 client running both the peer and Windows 
Explorer accesses shared files held on an NT server named \\SOFTWAREMART. The 
CIFS traffic between these is proxitized by the GeoCIFS proxy running on the gate. The 
'soft_dom' NT Domain that \\SOFTWAREMART belongs to has an NT trust relation-
ship with the 'geodev4_dom' NT domain. This allows \\SOFTWAREMART to both val-
idate users from the geodev4 cloud, and also to use NT global groups of those users for 
access control. 

The resulting coupling of platform with Microsoft networking provides enhanced user 
management, user authentication, service provisioning, and access control: 

• GeoCIFS enables network operators and vendors to offer typical LAN-sharable
applications to subscribers 

• GeoCIFS offers a flexible service model enabling the CIFS server to support a 
variety of access models, including duration-based and time limited access to 
shared resources. These leverage the underlying CIFS/NT access mechanisms 

• GeoCIFS supports advanced sharing of files and directories, enabling sophisti-
cated multiuser applications, such as databases 

• GeoCIFS supports advanced sharing of printers 

It combines a peer-enabled account manager on a Microsoft domain, plus a network 
proxy that provides service to authenticated members of the network middleware. The 
account manager receives significant events from the network, and then modifies the 
Microsoft domain’s account structure accordingly. For example, the account manager 
receives notification when a network user registers to use a Microsoft domain. The 
manager is notified whenever the subscription status of the client changes. Upon ini-
tial registration, the account manager creates an authorized login account on the 
Microsoft domain. Subsequent subscriptions affect the Microsoft domain as changes 
in NT global group memberships. 

Now, when traffic arrives destined for the Microsoft domain, it will not have valid cre-
dentials to support the challenge-response protocol. These credentials are provided by 
the network proxy. Since the client identity is available within the network, the corre-
sponding credential is provided on the client's behalf. The traffic may now route to the 
Microsoft domain and receive appropriate access. 
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GeoCIFS integrates Microsoft's NT Networking with a non-Microsoft network to 
enable use of Microsoft Windows NT networking by users. This provides seamless 
access to the shared network drives and printers on Windows NT Servers and other 
CIFS-compliant file servers. The initial deployment of GeoCIFS focused on the specific 
functionality of file-server and print-server access, with 100% integration between the 
user and the Windows NT security, and Microsoft’s NT Networking, which uses Server 
Message Block (SMB) protocol. 

Microsoft has published the SMB specification under the name Common Internet File 
System (CIFS) and has submitted a specification to the IETF for standardization. 
Numerous CIFS-compliant servers are available, including offerings from Microsoft 
(NT Server), AT&T (Advanced Server for UNIX Systems), Samba, SCO (VisionFS), and 
SUN (Syntax1 SMB server). The CIFS protocol builds on the services of NetBIOS. Net-
BIOS can run over NetBEUI, IPX, and TCP (using RFC-1001 and RFC-1002). Since the 
Internet supports IP-based service, GeoCIFS supports the NetBIOS-over-TCP, known 
as NBT (described in RFC-1001 and RFC-1002).

NBT traffic supports name services on the NAME-SERVICE-TCP-PORT(137 decimal) 
and the NAME_SERVICE_UDP_PORT (137 decimal). It supports session services 
under SSN_SRVC_TCP_PORT (139 decimal) and datagram service under 
DGM_SRVC_UDP_PORT (138 decimal). 

By offering a service that exposes shared network disk drives that are accessed via CIFS 
protocols, service providers can offer subscribers access to virtually any application 
that can be shared over a LAN. In addition, subscribers benefit from file and resource 
locking capabilities supporting multiuser collaboration on databases, documents, and 
other file-based objects without risk to data integrity. Each shared network drive or file 
server can be treated as a service, and access to shared drives can be tracked by means 
of usage recording as appropriate. 

GeoCIFS maps the user, service registration and access control model into the NT 
domain and security models. This enables NT and CIFS servers, provided they are in 
domains that trust a GeoCIFS NT Domain Controller, to validate and control access for 
users. The GeoCIFS proxy (running at a gate) modifies the CIFS identity and credential 
information that users pass to GeoCIFS servers, thereby securing and tracking Geo-
CIFS usage. 

An essential component of the GeoCIFS is the account daemon. This is a peer applica-
tion written with the SD. This component leverages the reliable event mechanisms of 
the platform. These capture significant events, and the daemon acts upon them. It can 
thereby maintain user accounts in the trusted CIFS domain. Whenever a client regis-
tration event occurs, the event is received by the account daemon. This daemon has a 
trust relationship with the domain controller of the hosting CIFS domain. 
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The GeoCIFS proxy provides enhanced services beyond the “mere” maintenance of cre-
dentials and passing of NetBIOS traffic. In particular: 

• Secure Connectivity Services. The GeoCIFS proxy refuses to pass traffic from 
users to NetBIOS Application Services that they are not subscribed to 

• Advanced Name Resolution Services. The GeoCIFS proxy’s name service can con-
sider a variety of factors when deciding which IP address to return to a client 
peer. Potential considerations include: 

• Active Service Registry (ASR) integration. The GeoCIFS proxy name service
can resolve service names directly from the ASR database and return the 
IP address from the ASR 

WINS support. Additional naming logic is added by proxy services, which
build upon the standard WINS support provided with Microsoft products

• Localization. Directing a peer to the GeoCIFS server that offers localiza-
tion in their preferred language. For instance, \\SOFTWAREMART can 
maintain one server with English software, another with French software, 
and a third with German software. When a user tries to find \\SOFT-
WAREMART, the GeoCIFS proxy checks with the registration database to 
determine their preferred language, and returns the IP address of the 
server hosting the correct software localization 

• Load balancing. Intelligently distributing clients over an array of GeoCIFS 
servers, or directing them to the 'closest' server. This maps a name onto 
one of several IP addresses 

• Fault tolerance. Not directing clients to a failed GeoCIFS server, and use of 
backup domain controllers and WINS capabilities 

• GeoCIFS Group Membership and Client Authorizations 

When a client wants to access a service in a Windows NT-based service, the Geo-
CIFS proxy performs two validation checks: 

1. The service must have been previously announced and is represented in the 
ASR

2. The user must have subscribed to the service 

If either one of these is false, the connection is rejected 

If the conditions are satisfied, the GeoCIFS proxy will use the credentials 
<NT user name, domain, hashed-authenticator> to access the requested 
Windows resource. Because the user has previously subscribed to the ser-
vice, the cloud passes traffic to the destination. Access will succeed only if 
the security descriptor of the target object grants access to the user. 

Because of the trust relationship between soft_dom and GeoDev4_Dom,
\\MASTERPDC will authenticate “Fred”. The \\SOFTWAREMART will 

•
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accept Fred’s request in accordance with the ACL entries of the object that 
Fred is attempting to access 

• Authentication by Credential Replacement 

Security in GeoCIFS builds upon the secure middleware environment. The sys-
tem identifies each user to the GeoCIFS server by a username, domain, and 
authenticator. The user name is generated from the user ID with a suitable mask-
ing option when client anonymity is required 

SMB_COM_NEGOTIATE in the Command field to the target Windows NT 
Server \\SOFTWAREMART in the resource domain. The message is intercepted 
by the GeoCIFS proxy at gate A 

1. The client machine of authenticated user Fred sends a request SMB with 

2. The GeoCIFS proxy forwards the message to the target server 

3. The target Windows NT server responds with a session key in the return mes-
sage. The return message is intercepted by the GeoCIFS proxy at gate A 

4. The GeoCIFS proxy saves the session key and then forwards the message to the 
client machine 

5. The client machine sends a session-setup request SMB to the target server, which 
is intercepted by the proxy 

6. Assuming that Fred’s user ID is 1234 and the name of the master domain is 
geodev4_dom, the GeoCIFS proxy forms the triple < 1234, geodev4_dom, hashed-
authenticator> and sends the SMB to the server in the resource domain 

7. Note that the user already has an account in the master domain, since the 
account daemon created this on the user’s behalf. The account creation occurred 
when the daemon, running as a trusted program on the PDC, received a “user 
registration” event. By combining APIs with the Win32 APIs it can create NT 
accounts and global groups, as well as maintain appropriate membership in NT 
global groups. The daemon is an SDK application that uses the event store fea-
ture of the Global Management and Monitoring Systems (GMMS) to receive 
notification of relevant events. After registering to receive notification of user 
registration events, as well as subscription to private services, the daemon pro-
cesses these events and issues the appropriate Win32 APIs 

the credentials to a domain controller in geodev4_dom for validation. This con-
nection is proxitized by gate B 

9. The GeoCIFS proxy forwards the request to the master domain PDC. The creden-
tials pass unmodified through the cloud to the PDC, since the credentials at this 
point are encoded within a Microsoft RPC request 

10. The master domain PDC authenticates the user against its own accounts data-
base and sends the user’s SID and the SIDs of all global groups in the master 
domain of which the user is a member, via gate B 

11. The GeoCIFS proxy forwards those SIDs to the server 

8. Since \\SOFTWAREMART is not a member of geodev4_dom, it must forward 
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12. The server in the resource domain augments the packet of SIDs that it received 
from the master domain by adding the SIDs of the appropriate local groups from 
the resource domain. This augmented set of SIDs forms the core of the token 
that represents the authenticated user on the server in the resource domain. 

object that the client is attempting to reference. Access is granted if an ACE per-
mitting the access is positioned before an ACE denying the access. Access is now 
complete. The server in the resource domain responds to the user’s session setup 
SMB, via gate A 

14. The GeoCIFS proxy sends the session setup response back to Fred. Moreover, the 
resource domain authenticates Fred, and authorizes his session. Thus, GeoCIFS 
is one part of SSO. 

13. The server in the resource domain compares the SIDs with the ACLs of the 

We note that rental of business software is a commercial reality through widely adver-
tised sites on the Internet. This motivates another important service, real-time video 
on demand. Integration method using current technology can combine high-layer
middleware with lower-layer network communications, as we now discuss. 

9.5 Programmable Interfaces for Networks (PIN) 

Thusfar we have presented the various roles of networking middleware, as well as some 
of the details behind its operation. We can now describe a specific application that 
leverages multiple network layers through middleware. This includes the negotiation 
of ATM flows through an IP service platform that integrates multiple transport mecha-
nisms in a smart middleware network. The middleware provisions services with the 
transport mechanisms that are best suited for specific activities. In particular, secure 
transfers at low data rates have little concern with the underlying transport mecha-
nism, although the transport properties may affect the cost of securing the traffic. On 
the other hand, high-speed isochronous traffic is sensitive to the transport properties; 
for example, ATM specifically was designed to support the QoS requirements of 
streaming video. While both traffic types can run on IP, the underlying transport 
makes a significant difference to the customer experience. The dynamic selection of 
appropriate transport is one advantage of smart networks. 

Middleware networks are smarter, more active and yet less complex than either the 
intelligent PSTN or the “dumb” Internet. Rather than impose intelligence upon a exist-
ing infrastructure, middleware networks are constructed from the “best in class” stan-
dards, protocols and technologies. These are structured into layered interfaces, thus 
partitioning the network into separate and independent subspecies. This major design 
advantage contrasts with earlier systems that had to leverage existing physical infra-
structure and optimize specific service requirements. 



324 MIDDLEWARE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

9.5.1 Edge Gateway Architecture and Distributed Network Element (DNE) 

The proliferation of IP applications suggests an ever-increasing demand for end-to-
end Quality of Service (QoS) increase. One viewpoint suggests these complex and 
interacting goals can be achieved through a Programmable Interfaces for Network 
(PIN), thus reducing the complexity into manageable components. The IEEE, for 
example, developed a PIN reference model that defines the vertical layers shown in 
Figure 9-14. Specialized networking groups continue to refine this model, thereby 
incorporating various perspectives on hardware, programmable switches, and proto-
cols.

One model derived from IEEE PIN is the IEEE P1520. This defines specific interfaces at 
each layer, and the interfaces support containers for multiple QoS mechanisms. These 
include standards-based models (IntServ, DiffServ), as well as routing algorithms and 
flow-layer protocols. Each of these has a mapping to IP routing through the IEEE PIN 
model. The full model is described by [P1520]. 

Figure 9-14 IEEE Programmable Interfaces Networks (PIN) Reference Model 

The upper layers mesh with the high layer middleware services such as authentication, 
access control and naming (see Table 5 on page 227). Networking middleware interacts 
with the broadband network through for a generalized discussion of these issues. 

9.5.2 Broadband Network Reference Implementation of PIN 

Much like the first cross-continental railroad, the networking middleware meshes with 
the upper layer (management) interfaces in the networking stack Following the IEEE 
PIN model, the feature set includes IP-based signaling and service creation through a 
open programmable network. This supports multimedia applications through appro-
priate underlying transports. The multiple abstractions in the underlying PIN models 
simplifies the combination of different technologies such as ATM with IP. The integra-
tion technologies provide solutions for important challenges in open networks: 
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1. Open programming interfaces 

2. Support for Quality of Service 

3. Programmable transport protocols. 

Rather than exhaustively describe every DNE interaction, we present two examples 
that illustrate some of these capabilities. The first example leverages a broadband net-
work of heterogeneous switching hardware pioneered by Xbind, Inc.; a prototype real-
ization of the xbindIP stack shown in Figure 9-15. The second realization is the 
Distributed Network Element (DNE) that builds on standard APIs and hardware; see 
Section 5.5.2 for the introductory concepts, and Section 9.5.1 for details on the pro-
gramming and internal models. 

Figure 9-15: PIN Model Realization of Managed IP Over ATM 

The xbindIP [LAZA97] provides service over a hybrid of IP control with ATM trans-
port. IP connectivity maintains a flexible service-oriented network that leverages the 
full suite of middleware, thus leveraging the substantial IP infrastructure. 

Selection and display of streaming video is one application that can use this multi-level
structure. Figure 9-16 shows IP control through a cloud, with lower-level ATM switch-
ing fabric for content-delivery. This uses a mediating layer, in this case xbindIP 
between the underlying high-speed transport and the upper-layer control functions. 
At the lowest layer, a fully general transport system provides highly efficient delivery 
with well-engineered standards-compliant components. This was demonstrated at 
OpenArch-99 using hardware from multiple manufacturers including Cabletron Sys-
tems, Fore Systems, Hitachi and NEC (see http://comet.columbia.edu/openarch). 

Services can use this structure in several ways. Consider purchase of media through 
the secured link by means of an HTTP web site. This requires authentication of all cli-
ents and peers thereby allowing capture of nonrepudiable usage information. The 
video service then invokes the mediation level to establish a high-speed transport link 
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Figure 9-16 Multiple Layers Integrates Standards-Based Transports 

to the client using existing switch technologies. Content flows subsequently, with suit-
able usage records collected through standard open APIs. Consider the following 
detailed steps: 

1. Bilateral Authentication by Service and Client (see Figure 9-17)

1.1. Service nodes authenticate to network 

1.2. Service nodes start and announce video selection and content streaming ser-
vices

1.3. Client node authenticates to network 

Figure 9-17: One-Time Secure Authentication Allows Client to Request Content 
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2. Client node visits URL and requests content 

3. Service Delivery through Managed Transport (see Figure 9-18)

3.1. Service node receives request and submits usage record 

3.2. Network elements negotiate connection to the client 

• The negotiated connection provides the appropriate Quality of Ser-
vice (QoS) in keeping with the level service agreements between cli-
ent, network and service 

• In this example this defines an ATM connection at a bandwidth that 
corresponds to the detail level requested by the client 

3.3. Content streams to client 

4. Stream completes or connection-termination event is generated by an end point or 

5. QoS connection terminates 

6. Service node submits total usage records 

These capabilities are harnessed, for example, to securely establish a client identity and 
then provide an ATM session that streams video to the client. 

an administrative component 

Figure 9-18: Client IP-Based Request with Delivery over High-speed Transport 

9.5.3 Distributed Network Element – DNE 

To address such issues we devised an edge gateway architecture that is based on a Dis-
tributed Network Element (DNE). The defining feature of a DNE is the flow separation. 
Flow separation allows the small-volume control flows to be routed through the gate 
and the proxies, and the large-volume data flows to be routed directly through the ele-
ments. Flow separation can lead to a significant performance improvement while 



328 MIDDLEWARE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

keeping the improved control over the network traffic expected in a service network 
The DNE can be configured as a logical extension of the gate architecture, thereby 
enhancing the scalability and efficiency. 

Within the network node (i.e., the gate), the Network Element Adaptation Layer pro-
vides a uniform abstraction of the Network Element. This defines, for example, the 
buffers, policies, and other behaviors that are enforced by the switches outside the 
SNodes. In general, any gate process should be able to access and control the network 
element. A client program may access and control the DNE through an API layer, 
known as the DNE Control Daemon (DNECD). 

The DNECD implements methods that communicate with the network elements using 
well-defined control protocols, and interacts with the access daemon (AccessD) and 
the load balance daemon (LoadBalD), and thereby defines routing policies. The sup-
ported features include the network layer resource allocation and scheduling, and this 
allows the development of highly efficient components. The lowest layer consists of a 
driver that is implemented as a dynamically loadable module. The module implements 
methods that communicate with the network elements using well-defined control pro-
tocols, and interacts with gate functions such as access control and load balancing, 
and thereby defines routing policies. It is implemented as a dynamically loadable mod-
ule running as a user layer process running on any host machine with a valid TCP/IP 
stack.

Figure 9-19: Access Control and Load Balancing through DNE and Network Elements 

In addition to DNECD, the Network Development APIs (DNEAPI) support increased 
integration of the software-defined gate architecture as it interacts with the DNE hard-
ware and switch-defined network infrastructures. The DNEAPI is provided in C++, 
CORBA and Java; there is also a GMMS interface for relatively static management and 
monitoring of the DNE. Its functionality includes: 

• Quality of Service 

• Routing/Address remapping 

• Packet Filter 
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• Firewall/Security 

• Control and Management 

• Flow Separation 

• Monitoring 

The API obtains the requisite functionality through underlying data structures. These 
describe flows and rules. Flows are stored in FlowDB, a hashtable keyed on the 5-tuple
(source IP, source Port, destination IP, destination Port, protocol ID). The table 
describes all specific flows, and does not have any flow with wildcard attributes. 
RuleDB contains general rules. It has the same structure as FlowDB, but supports 
wildcards in the Flowspec. Access-policy objects describe the composite flows, flow-
bundles, listener addresses, and actions, shown below. 

FLOW a, b,c;
a.ACTION=PASS;
a.SPEC={*,*,135.197.25.94,*,*);
FLOWBUNDLE X;
a.BUNDLE=x;
x.SETBUNDLE;
b.ACTION=PASS;
b.SPEC={135.197.25.94,*,*,*,*);

By establishing a privileged control 
plane to modify these two DBs, the 
DNE provides highly secure network 
control. The RuleDB structure
defines network-layer access controls 
and paths, forming the basis of secur-
able IP networks. Data flows can be 
enabled or stopped through the defi-
nitions in FlowDB and RuleDB. 

The Network Element Adaptation Figure 9-20: DNE Data and Control Structures 
Layer provides a uniform abstraction 
of the Network Element. This architecture is highly scalable for multimedia applica-
tions and avoids an important bottleneck for high bandwidth traffic – the network 
node. The dual system containing the network node and element behaves like a single 
virtual network element but with its functionality implemented in a distributed man-
ner. It promotes a new concept through which using open and dynamic API and stan-
dard protocols, the network elements and nodes constitute a tightly coupled dual 
system.



330 MIDDLEWARE NETWORKS: CONCEPT, DESIGN AND DEPLOYMENT

9.6 Summary 

This chapter presented a wide range of mechanisms that support reusable software in 
a distributed environment. The idea has been to “factor out” the common features and 
form a standardized “substrate” that supports the development of new and varied 
components. These components can easily obtain services from the substrate through 
the common APIs, including authentication, access control, extensibility and security. 
These APIs allow development of reusable software components that draw upon these 
middleware-enabled capabilities. 

The mechanisms are network-aware and enforce the platform principles. This sup-
ports standard behaviors that leverage the network as a source of managed capabili-
ties. Thus, internationalization happens at the client SNode easing the entry of a 
service to new markets. Security is customized and adjustable in accordance with the 
safety of the physical connectivity and demands of the application. 

These activities all occur in a managed framework. This management system is the 
topic of the following chapter. 



CHAPTER 10 Systems Management 
and Monitoring 

A given cloud based on an IP service platform is a distributed system with hardware 
components such as servers and routers and software components seen as processes 
that function as proxies, relays, monitors and servers. From the operational viewpoint 
all these components need to be constantly monitored and managed to maintain a 
smoothly running cloud. 

In this chapter, we look at how these hardware and software components are moni-
tored and managed. We base the software management on the GeoPlex Management 
and Monitoring System (GMMS). We base the hardware and network management on 
some third party SNMP-based tool (NMS). This chapter offers a detailed look at GMMS 
and offers a detailed view of its event notification and alerting system that have proven 
useful for operations, accounting and maintenance (OA&M). 

When confronted with a combined software and hardware management challenge, 
most operators resort to an SNMP-based solution for the hardware and network man-
agement as well as a solution for the software management. This well developed solu-
tion is appropriate in a hardware and network-oriented operation in which the 
software components are light and easily managed. In a software-oriented environ-
ment, such as a cloud relying heavily on an IP service platform, this is not such a great 
solution; here, the software management part can greatly benefit from the GMMS 
approach where only the hardware and network components are left to the third party 
network management system, while the software components are managed by GMMS. 
Additionally, GMMS ties the entire system together into a single managed space as 
seen by the system administrators. This provides greater resistance to difficulties 
inherent in SNMP, including its separation from the specific service requirements, as 

well as sometimes creating network problems1. It also eliminates much of the inherent 
complexity of attempting to overload SNMP with general software management tasks 
for which it does not offer an elegant, simple, and general solution. 
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Lets look at two well-known commercial products, one from SUN, called the Enter-
prise Management System (Sun EM); and the other from HP, called OpenView/ITO 
(HP IT/O). Both have two parts. One is related to hardware (SNMP compliant). The 
other is related to software. The software processes are managed with non-SNMP
methods based on Remote Procedure Calls (RPC). For SUN it is EMS using ONC-RPC
(Open Network Computing); for HP it is DCE-RCP (a version taken by Microsoft and 
bolted onto NT). In either case, the software parts are not SNMP compliant and they 
are too complicated and cumbersome (a similar fate plaguing RPC in general). 

SNMP-2.0 was supposed to solve this problem, but with too many companies adding 
their requirements, it got way out of hand, leading to a nonstandard set of competing 
products. In the case of HP, SNMP was scrapped and replaced by a pure RPC control. 
Consequently, to run HP IT/O, one needs HP machines and a special version of Oracle 
to get the entire OpenView/ITO operational. Furthermore it offers authentication, in 
the form of Kerberos, a security system used by DCE-RPC. Although this is a viable 
solution in itself, its use would require a complete bypass of the clouds authentication 
method if implemented without Kerberos. Again, to integrate the two authentication 
methods this would require additional effort and could even eliminate the single-sign-
on feature offered by a cloud. 

Interestingly, even if the cloud was to add SNMP-capable MIBs for all its software com-
ponents, it would still require the implementation of agents as well as GUI manage-
ment applications using the third party vendor APIs. This would lead to the vendor 
specific implementation. While this may not be a bad solution for any one particular 
deployment of a cloud, it is not a viable solution in general. Each cloud’s management 
and monitoring system would subsequently have to customized for the underlying net-
work infrastructure and its supporting third party NMS. 

As such, our approach is to leverage any third party network management solution 
such as the HP IT/O or SUN’S EM to monitor and control the health of hardware and 
network infrastructure, including any of the third party software middleware compo-
nents that are SNMP compliant. However, for monitoring and managing the software 
components that make up the cloud’s IP service platform, we require a general solu-
tion that is third party NMS independent. 

For this, we propose a system such as our GMMS. This dual approach offers the great-
est flexibility for the cloud operators that may want to use their third party NMS tools, 
yet require the complete control over the IP service platform. By offering the platform 
with an inherent ability to monitor and manage itself, it becomes a simple matter to tie 
the software platform and the underlying hardware infrastructure together. Without 
the inherent self-management and monitoring of the software platform, having to inte-

1. Cite “Network Storms” in Distributed Systems. 
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grate the management of the software components into the third party NMS could be 
extremely costly if not outright impossible. 

From the software management point of view, a cloud consists of many interdependent 
processes running on gates, core, and store machines, interconnected over both the 
internal and the external networks 

Fundamentally, GMMS is a hierarchical distributed event system with embedded 
agents (as shown in Figure 10-1). The GMMS architecture consists of a single system 
monitor (SM), subsystem monitors (SSM) and management agents (GeoMAs). These 
logically form a tree with the SM as the root, the SSMs as the internal nodes, and the 
agents as the leaves. The nodes communicate with simple text-based protocol that 
allows the recipient (SM, SSM, or GeoMa) to execute commands described by a simple 
text-based command line syntax. The syntax originated from an early interpretation of 
these commands in the Tcl language. The protocols also allows for general text-based
replies and alerts. The whole system is then accessed from web-based GUIs running on 
remove peers or consoles connected directly to the core machine. 

Figure 10-1: GMMS Web GUIs for Remote Management of All Components. 

There is a GeoMA for the Java language, and also for C/C++. Gate components such as 
the control daemon, the data daemon, the cache, the usage daemon, and the active 
user directory are linked to GMMS through their GeoMAs. This offers system level log-
ging, and built-in commands such as manipulating the log level, measuring cpu and 
memory usage, or obtaining version numbers. In addition, control commands can be 
issued directly to these daemons through the GMMS console. 
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10.1 Third-party Network Management System 

Given that it is essential to support third party NMS for the hardware and network 
infrastructure, it has always been a controversial issue as to where to place it in rela-
tion to the cloud. Placing the management station (of an HP IT/O, as an example) 
inside the cloud security domain raises the issue of allowing access to operators in a 
secure manner across the firewall. Also, devices such as routers and modem racks that 
are outside the cloud have to be accessed for monitoring and management. Recall that 
using a system like HP IT/O uses SNMP and RPC. Here, opening up the cloud’s firewall 
for SNMP and RPC traffic raises security issues. Figure 10-2 highlights the problem of 
managing external SNMP enabled devices from inside the cloud, if this requires that 
the administration open a number of permitted connections through the cloud fire-
wall for SNMP traffic. 

Figure 10-2: Security Problems of SNMP/RPC Traffic Traversing Firewall. 

On the other hand, having the management station outside the cloud raises the issue 
of effective, secure access to the managed components inside. From security point of 
view, this is a less desirable solution as everything in the cloud including the bordering 
edge gateways need to be secured. Putting the station outside is like placing the king 
outside the castle to conduct the battle. 

Although this may be a preferred configuration in certain deployments, a general rec-
ommended and tested configuration is to place the NMS station inside the cloud and 
then solve the issue of how to manage components outside and how to offer remote 
monitoring. The solution to the problem is to have an intelligent firewall and an SNMP 
proxy at the gates. The proxies filter SNMP traffic according to the policies and rules of 
the cloud. Alarms can be raised and automatic intrusion-prevention mechanisms 
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Figure 10-3: Firewall/SNMP-Proxy Solution 

imposed if certain configured thresholds are reached. This solution is shown in 
Figure 10-3. This is a general solution that can be used for other services and legacy 
systems. The whole nature of the platform, as based on the design principles, offers a 
general mechanism for mediating protocols; in this case SNMP. 

NMS Managed Resources 

Figure 10-4: GMMS and NMS Integrate Application Management 

With GMMS in place it can be easily integrated with the infrastructure NMS, such as 
HP IT/O, as shown in Figure 10-4. GMMS feeds alert messages into the NMS from the 
system monitor by mapping GMMS alerts to OPC messages via an OPC agent. This also 
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allows the entire system to leverage the NMS’s features to trigger alarms, perform auto-
matic actions, or utilize its history logs. 

10.2 GMMS Overview 

The GeoPlex Management and Monitoring System (GMMS) is a multilayered hierarchy 
composed of a System Monitor (SM) running on a core machine, a Subsystem Monitor 
(SSM) running on each machine of the cloud to be managed, and a GeoPlex Manage-
ment Agent (GeoMA) that is linked into every daemon that is to be controlled. 

Figure 10-5: GMMS Hierarchical Structure 

In Figure 10-5, a core machine is shown running the primary system monitor along 
with another managed host. The description of the different components is as follows: 

System Monitor (SM) 
The System Monitor process. There is only one System Monitor in a cloud. 
Once started, it listens for SSMs to connect to it. Of course it can explicitly 
start or restart specific SSMs. When the System Monitor starts, it initiates 
a Poll Keeper process alerts 

This is the SubSystem Monitor daemon. There is one SSM for every host in 
a cloud. When started, the SSM tries repeatedly to connect to the cloud’s 
SM. Through the SSM the system can then reach the host’s local daemons 
via their GeoMAs. The SSMs are responsible for monitoring the health of 

Subsystem Monitor (SSM) 
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the network and the local daemons 

GeoMA enabled processes 
are linked to the GeoMA library. They execute GMMS commands and gen-
erate GMMS alerts. The UNIXMA is a special agent that allows an operat-
ing system level control over the host. The GeoMA daemon runs even if its 
SSM fails or is not present. In this way, the entire SM/SSMs hierarchy can 
be stopped, restarted, or turned off completely without affecting the nor-
mal operations of the cloud. Of course, without the GMMS the administra-
tors are blind and would have to resort to standard means of monitoring 
the system such as open a TELNET or SSH connection to a host and exe-
cuting administrative scripts by hand 

is a GMMS daemon that exports shell commands to the GMMS system. It 
facilitates access to UNIX shell commands. Typically, one UNIXMA pro-
cess runs on each UNIX machine and is associated with that host’s Sub-
System Monitor. The same holds for a Microsoft’s Windows NT machine 
running a WinMA 

are applications, such as an Internet browser or the System Monitor Com-
mand Line Interface (SMCLI), that connect to and communicate with 
GMMS

UNIXMA (and WinMA) 

GMMS clients 

GMMS commands 
are issued by GMMS clients and delivered to the System Monitor, Sub-
System Monitors, or GMMS daemons. GMMS commands result in replies 
to the issuing client. Replies may be in the form of error messages if the 
command execution failed 

GMMS alerts 
are messages generated by the System Monitor, Subsystem Monitor, or 
GMMS daemon and delivered to all GMMS clients 

GMMS is registered as a private service. Administrators can authenticate from any 
peer, establish an encrypted connection, and use a browser to access GMMS. Each SSM 
listens on port 2016 to locally running daemons with their embedded GeoMa’s. The SM 
listens on Port 2015 for SSM’s and 2014 for UI’s (Java). SSMs’ on stores (peers) connect 
to SM though gates after they are registered and authenticated. So network manage-
ment runs as a standard service on a cloud and relies on the same security measures 
offered to all other services. That is, encryption form store machines is standard peer 
encryption.

Most of the software components in a cloud connect to GMMS. This provides a way of 
accessing each component’s state and controlling its operations. Components connect 
to GMMS through an API provided by the GeoMA library. However, daemons can be 
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controlled in two ways: directly through a link in the GeoMA library, or externally 
through a UNIXMA process that contains the GeoMA library. Using a UNIXMA pro-
cess, an administrator can check process status, read data files, or perform almost any 
task that could be accomplished at the system console. 

A GeoMA API allows one to dynamically define new commands. For example, to ini-
tialize, run, or export commands. With initialize and run, GeoMa links to the system. 
With export one can creates new commands accessible through GMMS. These com-
mands can then be invoked by the GUIs to access certain specific functionality in a 
given component. There are a few standard ones. 

There is also a poll keeper that initializes pollers in the UnixMAs. Polling is used to 
ping the status of noncompliant daemons. As we already indicated, most of the com-
ponents that are integrated into the cloud are compiled with a dedicated GeoMA that 
can asynchronously alert the system of events that need management. However, not all 
daemons are extended with a GeoMA interface. There are components, such as third 
party or legacy daemons that cannot be so extended. In these cases, an external mech-
anism needs to be set up to handle these functions. Typically, this is done with some 
command line scripts running under a UnixMA. Very much like the Unix Cron, the 
poller runs these periodically to sense the status of the components. When you start 
GMMS, it starts the poll keeper, SM, and one UnixMa. The poll keeper reads the config-
uration of the system, and for each component it runs a dedicated pollers. These are 
applets that get downloaded from a web server running on some core machine. 

10.3 Event System, An Overview 

An event system provides a way of interconnecting components in the system that 
need to exchange relatively small amounts of data (e.g., control messages, or events, 
notifying each other of significant changes in the system). Components that generate 
events do not need to know about recipients of the events; and similarly, components 
interested in notifications about significant changes in the system do not need to 
know which components generate the events. The event system works in such a way 
that even when a component is offline, for a limited amount of time, events are deliv-
ered to the components that subscribe to those events upon the components' activa-
tion. Components make use of a simple API to interact with the event system. 

Two examples of component interconnections that use the event system are: 

• Notify system components of updated configuration, so these components will 
refresh

• Notify system agents of changes to the domain database, so these agents can 
alert and adjust third-party systems accordingly 
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10.3.1 Event System Concepts 

Event producers generate events of a specific event type. Events in addition to event 
type include event priority and event data. Event type has to be registered with the 
event system, or more specifically with the Eventstore daemon. Each event type is 
associated with the event queue size limit and the event storage time limit (or ttl). 
Event consumers subscribe to specific event types, and each event producer and con-
sumer has to register with the event system, i.e., with the Eventstore daemon, through 
the event system administrative APIs. The gmms command is perhaps the most conve-
nient way of accessing the administrative API. It can be however also accessed through 
the geo.sysmon package; i.e., through the GMMS client API. Components are uniquely 
identified with their GMMS names and the physical location where they run, e.g., Aur/ 
coredb, ControlDaemon/gate2, peer/mail, Eventstore. This allows multiple and selec-
tive naming of the events. 

If a component is accessing the event system from outside the cloud trusted domain, a 
user on whose behalf the component executes has to ensure access privilege and sub-
scription to the GMMSstore service. GMMS subsystem has to be running on a machine 
for events to reach components on that machine. A more comprehensive access con-
trol mechanism will be provided in the future. 

Components make use of simple event client APIs to send and receive events. The APIs 
include both synchronous and asynchronous APIs for sending and receiving events. 
The APIs are provided in Java and C within the gate development (GD). A component 
may miss an event if the component is offline for too long. The number of events a 
component missed can be found through the administrative API mentioned earlier. 

10.3.2 Implementation 

The event system is implemented using C and Java programming languages, with 
GMMS as transport mechanism. Main components of the implementation are Event-
Store daemon, administrative APIs, C client APIs, and Java client APIs. The event sys-
tem implements “at least one” delivery semantics. Events can be repeated very seldom, 
thus the semantics are very close to “exactly one”. Implementing “exactly one” delivery 
semantics was highly impractical. The Eventstore daemon runs on the core machine 
and acts as a GMMS daemon connected directly to SM; i.e., at the level usually inhab-
ited by SSMs. Eventstore is implemented in Java. It uses PSE Pro 3.0 database from 
ObjectStore to store event type, component, subscription and undelivered event infor-
mation. Eventstore accepts events on TCP port 2017, and delivers events to compo-
nents through GMMS. There are two main threads in Eventstore. The accepter thread 
accepts events from components and stores them in memory, after which they are 
acknowledged to the components. The deliverer thread takes events from memory, 
stores them in the database, and continually attempts event delivery, As events expire, 
or exceed the allowed space, deliverer thread removes them from database and 
accounts for missed events with the relevant components. (The current implementa-
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tion has the deficiency of keeping events in memory for a short time. This trade-off
between performance and reliability was made to improve performance of event gener-
ation, and reliability will be improved in the future by storing events temporarily in a 
file.)

Administrative API is implemented in Eventstore as a set of GMMS commands. These 
commands provide capabilities of creating, updating and deleting event types, sub-
scribers, and subscriptions. The commands can be sent to Eventstore using gmms(1) 
shell command, using geo.sm.Sm class; from Smlet GMMS client applet; or from any 
other GMMS client through the geo.sysmon GMMS API. The administrative API is 
described in detail on the gmms(1) man page. 

The C API is implemented on top of a layer of reliable GMMS protocol. Reliable GMMS 
implements retransmissions, acknowledgments, duplicate message handling, trans-
parent connection establishment and reset, etc. There is a queue of events between 
reliable GMMS and C API. GMMS deposits events in the queue. C API removes events 
from the queue and acknowledges event reception after its processing. This means 
that event is acknowledged as soon as the geoEventRecv() function returns, in case of 
synchronous event receive, and after the callback function completes, in case of asyn-
chronous event reception. If the asynchronous receive API is used, then there is a event 
processing thread in C API code which invokes the callback functions. The C API 
determines the class of machine it runs on, and establishes a channel directly to 
coredb:2017 when inside the cloud trusted domain, and cloudvip:2017 when outside 
the cloud. The API implementation generates a lot of log entries at high trace level, 
which can be observed by raising traceLevel log parameter to 200 or higher. 

Java API is implemented on top of C API through the use of Java Native Interface func-
tions. Thus, most of the discussion about C API above applies to Java API as well. 

10.3.2.1 Requirements 

Event polling mechanism provides the support for communication between the regis-
tration process and user/service/account aware components of the system. For exam-
ple, mail and directory service subscribe to registration events. Registration service 
stores events and delivers them on demand by consumers. Consumers poll for new 
events periodically (e.g., every few minutes). 

A general event mechanism, decoupled from any service, would be useful to other 
components. Initially, it would give more flexibility to registration service, where its 
Oracle database could be easily substituted with other databases. 

The event system should include the following capabilities: 

• Publish/subscribe paradigm, where event producers can produce only events 
that are already published or registered with the event system. The process of 
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registering event types is an administrative/management operation. Consumers 
can receive only those events to which they are subscribed. Subscription is also 
performed through the management interface, at the level of daemons 

• Reliable event delivery, with “exactly one” semantics, even when some or all sub-
scribers are not active 

• Persistent storage for undelivered events to subscribers, such that no events are 
ever lost, even when a subscriber is not running. However, there will be a limit to 
how many events can be kept undelivered before issuing an error to the pro-
ducer, giving the producer a signal that not all subscribers are receiving data. 
Events would also have a limited time to live and be deleted once they expire. 
The time limit and size of persistent queues would be configured through man-
agement API and they would be attributes of each registered event 

• Simple APIs, for the producers and consumers. Management/administration 
APIs include comprehensive set of capabilities for manipulating event type regis-
tration, attribute inspection and modification, event subscription management, 
persistent queue management, event type(s) to service(s) mapping, etc. 

• Management/administration APIs that would allow for inspection and manage-
ment of the event storage, published event types, event subscriptions, etc. 

• Access control for who can send what event and who can receive what event, at 
the level of users or accounts and event pseudo services. This is done through 
the regular account/user/service subscription mechanism 

10.3.2.2 Architecture 
There are three entities in the event mechanism: 

• Producer. Any daemon or program that sends events 

• Consumer. Any daemon or program that is interested in receiving specific types 
of events 

• Event storage and transport infrastructure. This entity is responsible for perma-
nently storing events until delivered to all subscribers. It provides reliable trans-
port, “exactly one” semantics 

The event transport and storage infrastructure is built on GMMS. GMMS already pro-
vides a communication infrastructure that spreads throughout all of the GeoPlex sys-
tem. A GMMS daemon can use the new event APIs to send and asynchronously receive 
events it is subscribed to. GMMS itself keeps track of what events are published; what 
are their mappings to services; which daemons are subscribed to which events; and 
what events have been delivered to which subscribers. GMMS dynamically updates the 
persistent information to ensure minimal disk space consumption; i.e., it removes 
events that have been delivered to all subscribers and events that have been in the stor-
age longer than a predefined limit. Furthermore, GMMS provides a scalable communi-
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cation infrastructure for an event mechanism, since only one event is generated by 
producer and sent to SSM/SM, and only one event is sent from SM to each SSM, to 
finally be received by multiple subscribers. This is in effect an application level multi-
cast communication structure. 

Producers are able to generate events with a simple API call. Status of the API invoca-
tion indicates the status of event delivery to GMMS, and is further described under 
APIs below. Producer does not know who the recipients are. It simply generates an 
event for which there may be subscribers. GMMS may drop the event if it knows for 
sure that there are no subscribers for that specific event. 

Consumer starts receiving events in the order in which GMMS receives them, as soon 
as consumer initializes GeoEve library, The consumer is responsible for providing the 
event processing function during its initialization. If the consumer does not specify 
from whom it wants to receive events, it receives all events to which it is subscribed 
regardless of who sent the event. Consumers receive the information about the pro-
ducer of an event. The consumers also receives information about how many events it 
has missed since last connected to the event system. 

The order of event delivery is guaranteed to be that of the order of issue; from one pro-
ducer, however, there are no guarantees regarding ordering among events from multi-
ple producers. For example, if two producers send one event each, e.g., e l and e2, then 
two different consumers could receive them in either order, e 1 e2 or e2 e l .

Event are described through an internal event type, event source, i.e., the producer 
name, event data, and event attributes (e.g., length of validity, size of permanent queue, 
access control information, etc.). Some of this information is relevant to event type 
only, while other pertains to individual event instances. All event components are 
ASCII strings, making it easy to map event messages onto current GMMS protocol. In 
addition to producer and consumer APIs, the event mechanism includes management 
interface exposed through GMMS. Through the management interface, a management 
application can perform all necessary management operations. 

Security aspect of the event mechanism consists of two parts: 

• Security 

• Event mechanism access control 

Security provides for control of who can connect to GMMS. Only a machine inside a 
cloud or authenticated machines that are subscribed to GMMS service can connect to 
GMMS. Access control provides finer level of control, described below. 

Access Control 
Access control provided by the event mechanism allows for control of who 
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may send or receive events of specific type. The granularity of the access 
control is that of a user and pseudo service corresponding to the event type 
of interest. For a related set of event types, there is a service corresponding 
to the send operation on this set of event types and another service corre-
sponding to the receive operation on this set of event types, registered 
through usual service registration mechanisms. Users that need to send 
events must be previously subscribed to the corresponding service(s). The 
event mechanism performs the necessary access control based on the rela-
tion of the users, accounts and event type services obtained through the 
core API. 

Event mechanism management interface provides means for examining and modify- 
ing the mapping between event types and event type services. 

10.4 Summary 

GMMS provides an integrated monitoring and management solution. This combines 
the myriad components of multiple vendors, thus enabling fully interoperable systems. 
This grants increased flexibility to utilize the most functional components – including 
the monitoring systems from vendors of infrastructure hardware and software. Our 
experience in dynamic systems management has demonstrated this as an essential 
capability of large scale managed systems. In particular, the ability reliably monitor 
and modify system function remotely under all circumstances is an essential capability. 
The distributed yet secure components allow GMMS perform this. 
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CHAPTER 11 Sample Consumer 
Services

Middleware service platforms are about services, and in particular ones that offer con-
crete value to the end users. As mentioned in the introduction, this book does not dis-
cuss any AT&T consumer-oriented services. We discuss instead a number of original 
and innovative middleware services and extensions designed by the graduate students 
enrolled in “Programming and Design of Modern Internet Service Platforms,” given 
during the Fall of 1999 through the Computer Science Department of Columbia Uni-

versity1. Approximately 50 students completed this course, which was based on an ear-
lier version of this book. These students are not networking experts or experienced 
service builders. Rather, they are bright yet overworked young men and women who 
carry full-time academic loads. The course increased their workload through a 
required semester project using shared computing facilities, somewhat in contrast to 
the usual Industry model. The students completed design, prototypes, documentation 
and demonstration, but did not fully integrate their work with the middleware infra-
structure.

Virtually all the students immediately understood the advantages of common APIs on 
a managed network-integrated platform. The resulting projects demonstrated a wide 
range of ideas, yet shared the common theme of reusability. About half of the projects 
looked at issues in eCommerce. Of these, several groups developed electronic shopping 
malls, and investigated reusable features such as a uniform payment gateway that pro-
vides a single “virtual checkout line”. One eCommerce project developed an applica-
tion portal that customized the user’s environment through dynamic monitoring of 
actions, and the construction of individualized shopping malls that cater to a cus-
tomer’s shopping preferences. A stock service agent provided multiple classes of 
accounts, with purchase, sale, portfolio and pricing services. 

1. The course home page at http://www.cs.columbia.edu/~lerner/CS6998-03 includes full project reports. 
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TABLE 11: Student Projects during Fall 1999 Developed Innovative Services 

Category Project Summary
Electronic
Commerce

Micro cent pay-
ment Systems 

Allows making purchase for goods or services 
which cost only a few cents, or even less 

EasyMeal Food 
Ordering Service 

One-stop shopping for food ordering. Order food 
and have it selected locally and charged to your 
credit card or GeoPlex account 

Stock Service 
Agent

Full featured and secure stock service agent sup-
porting purchase and sale of online stocks, and 
online portfolio, prices and account information 

Virtual Retail Sys-
tem

Portal for sales in a virtual shopping mall 

Workflow service for student registrations Student Registra-
tion

More KidsVille Gateway Extended a network-enabled “virtual world” 

Secure and reliable inter-peer communication 
through a secure channel in the middleware 

Interpeer Commu-
nications

Remote Peer 
Administration

General and scalable method for administering 
multiple distributed peers 

Based on IEEE P1520 Reference Model Quality of Ser-
vice (QoS) 

Unified program-
mable QoS API

Differential Ser-
vices simulation 

Experimental scheduling algorithm for DiffServ 
model and performance measurements 

Language translation of applications between 
languages

Application Trans-
lation Service 

Customer Profile 
Exchange

Network
Enhancements

Marketing-oriented customer profiling through 
collection of actions for customized services 

Portal gathers information on a users’ usage; con-
structs a customized virtual mall of online stores 
and services 

User Profiler and 
Merchant Portal 

ThingServer Generalized object repository attaches user-
defined metadata to chinked distributed store 
with shared caching and object lookups 

Database Transaction Pro-
cessing Support 

Distributed commit combines multiple databases 
through managed replication and synchroniza-
tion

Optimized Multi-
Inventory & Man-
ufacturing System 

OMIMS provides geographically distributed man-
ufacturing through managed network connec-
tions for ordering of composite systems 

In addition to eCommerce, several students investigated network-based issues, in par-
ticular the ideas of APIs for DiffServ, and simulation of DiffServ methods. This pro-
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duced a high-quality conference paper on the topic of DiffServ APIs. A cousin project 
simulated the scheduling of multiple traffic queues within each gate as a pragmatic 
technique for DiffServ; for example, to support both text-based and isochronous mul-
timedia over the same connectivity. 

11.1 KidsVille 

One student project extended an existing application known as KidsVille, written by 
Steve Klinkner et al. in 1997. KidsVille is a multimedia service that combines visually 
appealing graphics with network-based services. Authenticating and service access use 
the middleware facilities to access chat, mail, and other forms of communication. Net-
work-based services are invoked through stylized icons; for example, one reads e-mail
by clicking on a mailbox to open it. The virtual reality application is active at the client 
end points, shown to the left of Figure 11-1 as Andrea, Anya, and Julian. These clients 

Figure 11-1: Conceptual Diagram of Subscribers Access to Service 

access the KidsVille service through the edge gateway into the cloud. This gateway 
requires authentication and enforces the service model. Similar controls must be 
adhered to by the KidsVille services, shown on the right of the cloud. An authenticated 
administrator needs to announce the various services before the cloud will permit 
users to see service on them. This protects the client, the service provider, and the net-
work provider, since they receive platform monitoring and maintenance services. 

Authentication begins with a login screen (Figure 11-2) through which the client 
enters login credentials. The client and cloud negotiate their bilateral authentication, 
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Figure 11-2: KidsVille-II Login Screen 

and the client’s machine then shows the image of a HomeRoom. This achieves a net-
work login that enters the client into the AUR maintained on the core machine. Vari-
ous activities can then be invoked subject to the cloud-maintained access controls. 
Invocation follows the graphical metaphors by moving the mouse into an appropriate 
room, such as MailIn, MailOut, Chat, Phone room, JukeBox room, etc. Currently, only 
the first three rooms are active. To check electronic mail the user clicks on the mailbox 
(see Figure 11-3), and thereby activates the Java code for the appropriate mail server, 
such as a POP3 mailer. The middleware only allows authorized users to access the elec-
tronic mail service, and all access can be subject to usage records. 

The display of message headers and contents imposes a graphic appearance through 
graphics rendering software active at the client. We show an example of sending an e-
mail in Figure 11-4. Assuming that SMTP is a cloud-public service, it can be accessed 
only by authenticated users. Since the KidsVille user previously authenticated, he can 
send an e-mail. In similar fashion, the “chat room” can talk to specific chat servers that 
are enabled for the client login. Figure 11-5 shows an Internet chat server with access 
from the graphical world. The server itself is registered either as a public or private ser-
vice, depending on the service model for Chat. This supports all the standard chat fea-
tures, including an Audience list for displaying active users of the channel. 

The students extended KidsVille by addition of the chat room and other middleware 
services. Whereas chat servers traditionally maintain their own client list, the middle-
ware network provides an authenticated user registry (AUR) and an authenticated 



KIDSVILLE 349

Figure 11-3: KidsVille-II Homeroom Displays Services with 3D Graphics 

Figure 11-4: KidsVille-II Sending E-mail Through Secure Server 
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connection table (ACT). These improve the ability to monitor and maintain the chat 
service. Likewise, service features such as notification (“Tell me when Marshall enters 
the room”) can be provisioned through the event mechanisms common to the middle-
ware, rather than specializations unique to a particular chat protocol. 

Figure 11-5: Chatting with Friends On KidsVille-II 

It should be clear these are only simple services. Packet-based video and audio services, 
as well as telephony services that require a “dialed number” to make a connection, can 
use the same interface and cloud-mediated services. In these cases they would actually 
activate network-based objects. For example, the streaming video example discussed 
on page 293 can use the video room rather than an HTML page as the selector of the 
video service. 



CHAPTER 12 Conclusion: Future 
Directions

In today’s fiercely competitive global marketplace, a network provider must gain tech-
nological advantage; for example, by efficiently integrating voice and data. Only then 
will network carriers be able to join fellow carriers around the globe to offer worldwide 
deployment of essential new services – thereby demonstrating ubiquity among sepa-
rately owned network infrastructures. This clearly is the future! 

These challenges can be largely addressed today through a common, “intelligent” 
infrastructure within the existing network environment. This infrastructure – 
described in detail in this book – has a unified distributed architecture that efficiently 
fuses the resources of many networks and machines. Common capabilities such as 
information retrieval, security, usage recording and access control are fully integrated 
by this infrastructure. Such an approach far excels the global “dumb transport” net-
work operating as a pure “best-effort”, uniform priority, packet delivery means. Such 
networks force themselves into a commodity position by providing only the raw wiring, 
without processing support for signaling or management. They follow the model of a 
simple LAN interconnecting multiple PCs. 

For all practical purposes, corporate extranets and the Internet backbone more closely 
resemble an “intelligent network” than a “dumb network”. If you peek under the hood 
of any of the systems supporting our networks, you will observe many different kinds 
of middleware at work. Every system has some middleware even though this fact may 
not be advertised. All vendors – from network to ISV to ISP and Telco – have heard the 
jest:

Nowdays, someone’s middleware lies above 
and others’ lie below; 
one industry’s middleware is someone else’s underware 
and someone else’s outerware 
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If the mere abundance of middleware is not the source of the Intelligent network, then 
what is? In actuality, the intelligence is obtained through interoperability between var-
ious system layers, each one cooperating with the others. These interactions also intro-
duce some limited stateful information. There can be repercussions of pulling 
inappropriate stateful information into a large network. Indeed, there are good reasons 
why the Internet transport does not depend upon stateful information – scalability 
and reliability being the most widely cited. Nevertheless, substantial state has become 
associated with the Internet. Applications and services require more than a “best 
effort” transport. Over-engineering is neither an economical nor practical solution in 
the long run. Thus, IETF models such as DiffServ and IntServ have begun to force a 
reevaluation of the totally “stateless” position. In many cases, limited stateful informa-
tion augments the transport and services, while the basic IP transport remains state-
less.

DiffServ, in particular, recognizes the requirement to localize such state information at
the edges of the network. The concepts discussed in this book share a similar approach. 
By admitting stateful information into the network view, yet confining it to the edges, 
it becomes possible to efficiently communicate the necessary state changes between 
edge components. This is likely to prove more effective than forcing it outside of the 
network view completely And yet, it preserves the stateless characteristics currently 
required for very high speed transport and unconstrained scalability. Indeed, SS7 
switching maintains separate control and data channels; still, it can share a common 
and configurable transport fabric. 

It was such observations that impelled us in 1995 to establish a common service plat-
form thus leveraging the growing presence of network middleware, and extending the 
provider’s network. Much like the early rocky and uncertain path to the wide accep-
tance of the Java platform today, the notion of an IP service platform has begun to take 
hold in key communities including the ASPs, ISPs and Telcos. Witness the recent 
movement towards Application Service Providers (ASPs) and their business of Web 
Application Hosting (WAH). Front page news proclaims “Internet as Platform” for ser-
vices and ASPs [INFO2000]. 

If we look at the recent growth of ASPs 
and compare it to the growth of ISPs that 
started back in the mid-1980’s, we see 
that ISPs have been steadily adding value 
to their service offerings and reinventing 
themselves as ASPs, as shown in 
Figure 12-1. Much of the ASPs’ growth, as 
well as realignment of the ISPs core val-
ues, emerges in direct response to the 
appearance, availability, and deployment 
of viable service middleware and the con-

Figure 12-1: The Merging of ISPs and ASPs. 
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comitant restructuring of the service providers. Looking back over the history of ISPs 
and service providers, we can identify four distinct phases related to this latest trend. 

These four phases are: 

1. First generation of lightweight clients, with a dumb network – essentially only a 

2. Proliferation of heavy, more functional, clients: PCs or workstations. However, their 

3. Aggregation of common capabilities that can interact in forceful ways, but at rela-

4. The carriers and ASPs currently improve on the third generation 

As we conclude the book, we take a closer look at the structure of these ASPs as they 
relate to IP Service platforms, and demonstrate the ideal position for the network mid-
dleware outlined in this book. 

copper interconnect – and a heavy backhaul to the mainframe 

interconnectivity is limited and interactions are not well integrated 

tively high cost and without 7x24 reliability 

12.1 Application Service Providers 

At the end of 1998, Web Application Hosting (WAH) emerged as a powerful new force 
in the marketplace. WAH offers customers access to fully supported applications 
online. Rather than license, install and support applications in-house, customers can 
simply pay a recurring fee to access applications via the public Internet and VPNs. 
Offering software solutions as a service instead of as a product met wide acceptance. 

In 1999, worldwide revenues generated by ISVs from hosting services totaled about $77 
million. This market is expected to exhibit a cumulative annual growth rate (CAGR) of 
153 percent in Western Europe; 157 percent in Japan; 108 percent in the Asia/Pacific 
region; and 80 percent in North America1. This adds up to about $8 billion by the end 

of year 20042. About 66 percent of this business will be Web hosting and eCommerce, 
while the rest will go to front- and back-office support, including application hosting3.

An Application Service Provider (ASP) is a company that operates a hosting center for 
on-line applications owned by other businesses. These businesses outsource their 
application services to the ASP, which operate and manage them. The ASP Industry 
Consortium defines an ASP as: 

1. International Data Corporation (March 1999). 

2. According to ARC Advisory Group’s new Web Application Hosting Worldwide Outlook. 

3. The Yankee Group (August 1999). 
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An ASP manages and delivers application capabilities to multiple entities from 
a data center across a wide area network. 

ASPs offer multiple advantages. Information Technology (IT) costs decrease as the cli-
ent company outsources its own information technology to an ASP facility. IT quality 
improves too, as the ASP can offer a single bill and single point of contact. The ASP’s 
full range of services may more readily accommodate changing market conditions and 
technologies. Corporate resources, thus freed from the IT concerns, can be refocused 
on the company’s strategic projects and core values. 

Of course, this assumes that an ASP can demonstrate their facility and support staff 
are capable of handling all the business customer’s IT service needs. To do so requires a 
first-class, well-staffed facility supporting the following services and responsibilities: 

• Ability to prepare and manage the infrastructure, connectivity, security, and 
applications necessary for enabling the delivery of services 

• Mechanism for accepting orders from customers, implementing the applica-
tions, and training end users 

• 24x7 support of network connections and applications for customers 

The ASP market is growing quickly and absorbing other specialties. One example is the 
ongoing redefinition of the traditional network providers (Telcos). Ongoing develop-
ments impel the Telcos towards closer association with content providers, as well as 
the essential industries of service providers, systems integrators, consultants, out-
sourcers, and independent software vendors (ISV), as shown in Figure 12.2. This is 
fueled by new entrants that can start off without any legacy infrastructure to revamp 
or depreciate; these originators are depicted as the “Pure Play” in the figure. The soft-
ware vendors and the hardware suppliers are also relabelling themselves as ASPs. In 
general the title is appropriate for anyone who owns a customer relationship and the 
service level agreement (SLA). 

The highly diverse ASP market continues to define new segments. Nevertheless, these 
ASPs can be categorized on the basis of the different classes of applications and ser-

vices they provide1. This categorization reveals that ASPs tend to use each other’s com-
plementary services to offer composite solutions to their customers; thus ASPs have 
defined specific core competencies forming a coopetative (sic.) symbiosis: 

Collocation Providers 
These firms lease technical facilities including servers and Internet access 
to clients; these clients then host their own application software on the 
leased facilities. This arrangement is ideal for companies that want to 

1. From December 1999 article in the SummitVision newsletter. 
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Figure 12-2: ASP Players (International Data Corp., 1999) 

retain full control over their software while leveraging the specialized 
expertise of hardware management and maintenance provided by the col-
location vendor. 

Wholesale Service Providers 

These firms develop and operate large data centers. The data centers are 
typically optimized for ISVs and ASPs that want to host applications soft-
ware in such centers. Two of the larger players that fit this category are 
Intel and Digex. 

Managed Application Providers 
These ASPs specialize in customizing and managing specific enterprise-
class hosted applications. This includes enterprise resource planning, sales 
force automation, eCommerce and customer relationship management. By
operating their own data centers or renting space from a wholesale service 
provider, these ASPs offer a complete solution for enterprises that need to 
completely outsource these services. Usinternetworking and Pandesic are 
well known in this field. 

Rentable/Instant Application Providers 
These firms offer application software that customers can rent on a short-
term basis and access instantly through the Web. Some of the companies 
that offer this are Interliant and Netledger. 

Business Service Providers 
These firms offer their applications software as business services. Good 
examples are On The Go Software and Works.com. 
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Business Process Providers 
Finally, these providers are the “pure plays” shown in Figure 12-2. They 
offer complete business processes through the Web by integrating the 
best-of-the-breed applications from different software providers. 

The ASP market only gelled in the later part of 1999, and garnered phenomenal inter-
est amongst business customers and end users. The driving force is the business cus-
tomer’s ability to move applications to the ASPs, where the businesses leverage the 
economies of the ASPs. Currently, almost every firm is developing or realigning its 
strategy in light of the ASP model. As change will remain a dominant market force, the 
ASPs hone their value propositions. These propositions will emphasize solutions that 
support multiple and malleable business needs. Such solutions must be highly eff-
cient, through economies of scale, improved supply chains, and customer relation-
ships. Business customers can leverage these ASPs by moving their processes to the 
ASP.

With the presence of ASPs, customers will have the luxury to ignore the details of the 
software applications, hardware platforms and the underlying middleware technolo-
gies, and instead focus on the business values. This is one hard lesson that the telecom-
munication industry has recently learned: customers do not want to know nor do they 
care about middleware and platforms – but the industry does indeed care, in as far as 
it forges an enabling infrastructure for their core assets. This lesson translates to a 
strategy that targets the end-user applications while internally developing the neces-
sary platforms. 

12.2 ASPs and IP Service Platforms 

For over 20 years businesses have been building and optimizing their internal opera-
tions, processes and networks, creating substantial LANS, WANs and data services. 
These efforts developed specialized networking systems built upon private and man-
aged resources. Simultaneously, the Internet grew in size, reach and bandwidth, pro-
viding ubiquitous service. This was nearly unnoticed at first, since it was perceived as 
merely a “best effort” system supporting only the most essential services such as DNS. 
Somehow this somewhat primitive Internet began to outstrip many of the dedicated 
packet switched solutions. 

Proliferation of the Web-based services impelled IP towards its current role, the “king” 
of data networks. ISPs and Telcos have started offering online services. These services 
are in many ways similar, as each is constructed from the same basic IP protocol, with 
similar switching and control mechanisms. Despite these similarities, each service 
started out with unique mechanisms for access, authentication, authorization, roam-
ing, directories of names or services, as well as unique usage collection and billing. 
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Figure 12-3: Taxonomy of ASP Businesses 

The Telecom industry realized these duplications were costly to business and confus-
ing to customers. To operate effectively and efficiently, the Telecom industries require 
an administrative service infrastructure incorporating registration, authentication, 
customer care and billing. Yet today, there still exists no such “off-the-shelf‘ platform. 
Furthermore, network-enabled online services lack the necessary integration with con-
sumer telephones to offer seamless interoperable multimedia services. These chal-
lenges become increasingly important as new services supporting video, unified 
messaging and bandwidth-on-demand add to the complexity of the network. In addi-
tion, network-enabled online services must operate at “carrier grade” levels of nearly 
100% reliability while scaling to profitable volume. 

The Telecom developments have not been ignored by other business. Corporations and 
private companies continuously look towards options for their traditional cost centers, 
including communications. The public data networks became a viable alternative to 
the expensive private WANS with their insatiable appetite for bandwidth. External 
providers developed the necessary expertise in communications, and encouraged out-
sourcing of communications services. This placed the Network service providers 
(NSPs) under ever-increasing pressure to replace the depleted POTS market, and to 
offer service level agreements (SLAs), thereby creating a contractual commitment for 
specific service levels. These providers began to compete fiercely, as their niche of pro-
tected services no longer provided a safe haven of secure revenue. The “king”, namely 
IP, had levelled these distinctions. 
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The NSPs perceived the ability to combine communication-based SLAs with informa-
tion services. Indeed, the Telecoms traditionally innovated with computers as a means 
to manage the communications network. By shifting this expertise into traditionally 
computational services, their customers could obtain “one stop shopping” through an 
aggregate service rather than separate computational and communication services. 
Driven by such compelling business reasons, NSPs deployed vastly increased capacity, 
and sought to manage this resource exceedingly well. Integrated middleware function-
ality satisfied these requirements, placing middleware directly into the network. 

This trend continues. Businesses now outsource many data and communication items. 
For example, messaging, office automation and sales force automation are viewed 
nearly as commodity services to be contracted at the lowest standard bid. The trend 
even affects human resources and financial business processes. Thus, the NSPs are 
now starting to deliver corporate applications services as network-resident functional-
ities. What started with pure IP transport is now pervading the processes that run on 
the transport. 

12.3 Summary 

An important aspect of the NSPs’ economic survival depends upon efficiently provid-
ing computing-based applications as a fundamental part of the networks. They are 
building up the general purpose computing capabilities within their networks to host 
these applications. The NSPs aspire to manage the complex interactions between the 
myriad businesses that increasingly interconnect through shared information: finan-
cial, inventory, engineering, reference, distance conferences, as well as the automation 
of office, sales and financial processes. These applications are both computationally 
intensive as well as communications intensive. Well coordinated management of such 
resources must occur to efficiently operate the networks that are intended to support 
these applications. 

Efficient operations calls for common features at the enterprise scale. Without gener-
alized yet secure access, there cannot be authentication of users, machines, or auto-
matic agents. Authorization becomes increasingly critical to ensure that information 
cannot be incorrectly accessed, either through error or intent. Accounting for these 
resources – from usage recording through the generation of bills – occupies another 
shared role that is inherent to all such business processes. 

Finally, the mere availability of service is of little benefit. The services must be provi-
sioned to customers in a timely manner that provides both what they want and what 
they need. Thus, the services must be easily extensible and customized as needs 
change. Such flexibility indeed characterizes the IP transport, and the successful IP 
services that we have today provide a malleable structure. There is no longer tolerance 
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for brittle applications returning an “error 222”, “Segv” or “General Protec-
tion Fault”. Neither can they tolerate the costs of inefficient security systems,
redundant billing systems, or manual processes. Rather, these services must be reliable
and standardized, yet flexible; this not only means they work flawlessly, but they must 
also adapt to changing resources, support network-wide monitoring, and integrate 
with multiple systems for management and control. 

Which brings us back to middleware – a standard way to provide common functional-
ity that is ubiquitous to all networked applications. 

The rest, as they say, is history ... 



This page intentionally left blank.



Glossary

AMPS
Advanced Mobile Phone Service is the mobile phone system equivalent of POTS making up 
PSTN.

API
Application Programming Interface 

Asynchronous Transfer Mode 

Border Gateway Protocol 

ATM

BGP

CHAP
Challenge Handshake Authentication Protocol 

Common Object Request Broker Architecture 
CORBA

DEN
Directory Enabled Network 

DNE
Distributed Network Element 

EAP
Extensible Authentication Protocol 

FDDI
Fiber-Distributed Data Interface 

FTP
File Transfer Protocol 

GSMP
General Switch Management Protocol 
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GUI
Graphics User Interface 

High Performance Connections 

Hyper-Text Transfer Protocol 

Internet Control Message Protocol 

Internet Messaging Access Protocol a mail protocol with MIME integration, folders, shared 
mailboxes and more, that is better than POP3. 

HPC

HTTP

ICMP

IMAP4

IP
Internet Protocol (see IPv4) 

Internet Protocol version 4 
IPv4

IPv6

IPSec

ISDN

JAIN

Java Language 

KERBEROS

Internet Protocol version 6 

IP Security is an IETF security protocol that offers authentication and encryption. 

Integrated Services Digital Network 

Java Advanced Intelligent Network 

Sun Microsystems object-oriented language for the Internet. 

A system that authenticates users, developed by MIT. 

Layer 2 Forwarding is a Cisco protocol that has been combined with PPTP to form L2TP. 

Layer 2 Tunneling Protocol is an IETF tunneling protocol that was formed from L2F and 
PPTP.

L2F

L2TP

LAN
Local Area Network 

LDAP
Light-weight Directory Access Protocol 

Multipurpose Internet Mail Extensions is an ASCII encoding of non-text files with an ASCII 
header used by mail and web technologies. 

MIME
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NAT
Network Address Translation 

NCSA
National Center for Supercomputing Applications for high-performance computing that is 
located on the University of Illinois in Urbana-Champaign, Illinois. 

Next Generation Internet 
NGI

NIST
National Institute of Standards and Technology, previously known as the National Bureau of 
Standards (NBS) 

National Science Foundation 
NSF

OSS
Operations Support System 

Point of Presence, usually ran by ISPs, is the local exchange consisting of RAS’s and other net- 
work equipment through which users access the Internet or other networks. 

Plain Old Telephony Service as relating to the PSTN. 

Plain Old Telephony Service as relating to the PSTN. 

POP

POTS

POTS

PPP
Point-to-Point Protocol

PPTP
Point-to-Point Tunneling Protocol is a Microsoft tunneling protocol that encapsulates other 
protocols and encrypts the tunnel with RSA. 

Public Switched Telephone Network is the worldwide voice telephone network, now almost 
entirely digital except for the analog lines connecting most homes and the central offices. 

Private Virtual Circuit 

PSTN

PVC

QoS

POP3

Quality of Service

Post-Office Protocol 3. 

RADIUS

RAS

Remote Access Dial-In User Service 

Remote Access Service is a computer at the edge of a network that terminates dial-up or ISDN 
connections and offers network access to remote users. 
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RSA
Rivest-Shamir-Adleman is a public-private cryptography method. 

RSVP
Reservation Protocol 

RTP
Real-Time Protocol 

SET
Secure Electronic Transaction 

SSL
Secure Sockets Layer 

SMTP
Simple Mail Transfer Protocol 

SNMP
Simple Network Management Protocol 

SS7
Signaling System 7 

STAR-TAP
Science, Technology and Research Transit Access Point located in Chicago 

TCP
Transfer Control Protocol 

TINA-C
Telecommunication Information networking Architecture Consortium 

UCAID
University Corporation for Advanced Internet Development 

UDP
User Datagram Protocol 

URL
Uniform Resource Locator 

vBNS
The very-high-performance Backbone Network Service is an IP-over-ATM network over 
Sonet, OC-12 (622.08 Mb/s infrastructure). 

VPN
Virtual private Network 

WAN
Wide Area Network 
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