DEMYSTIFYING
EMBEDDED
SYSTEMS

MIDDLEWARE

¢ [mdedded mdfamas Mu‘ Practiie Dol we bl gt
yeor baawiedge snd viih vp 13 vpeed
o Covens Mandarda retwortag be ryviemn datadaass

ol vewal matboaey

Ba eges 1reri ot ode wred Poreghod (be bech

Tammy Noergaard

Demystifying Embedded
Systems Middleware

Dedication

In loving memory of my father, who gave me the inspiration to write this book
before he passed away,
&
for the team at Elsevier, all of my family, friends, and colleagues that | am lucky
enough to still have in my life today and who continue to inspire me

Demystifying Embedded
Systems Middleware

Tammy Noergaard

AMSTERDAM e BOSTON e HEIDELBERG ¢ LONDON
NEW YORK ¢ OXFORD e PARIS ¢ SAN DIEGO
SAN FRANCISCO e SINGAPORE e SYDNEY e TOKYO

ELSEVIER Newnes is an imprint of Elsevier Newnes

Newnes is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

First edition 2011
Copyright © 2011 Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions @elsevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material
herein. Because of rapid advances in the medical sciences, in particular, independent
verification of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is availabe from the Library of Congress

ISBN-13: 978-0-7506-8455-2

For information on all Newnes publications
visit our web site at books.elsevier.com

Printed and bound in USA

1011121314 10987654321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER %93&{3,{3 Sabre Foundation

mailto:permissions@elsevier.com
http://elsevier.com/locate/permissions
http://www.books.elsevier.com/

Contents

ADOUL the AULRNOFcccnnnnneneeeeeeeectetteeeecccteeeeeeeesanaeeeee e e sanaeeesesssnnnns vii
Chapter 1: Demystifying Middleware in Embedded Systems..................................... 1
Chapter 2: The FOUNAALIONcuuueeeeeeeeeeeeeiiiiiiiiiiiiiiisssssssssssssssssssseeeeeeeeeeenes 15
Chapter 3: Middleware and Standards in Embedded Systenms................................. 59
Chapter 4: The Fundamentals in Understanding Networking Middleware................ 93
Chapter 5: File SYStems............eeeennneeeeeeeeeeeinrnreeeieennnnteeeeeecsnnnneeeesssssssssseeens 191
Chapter 6: Virtual Machines in Middleware......................cccouceeuneuueeeeeecrnnnnnnennn. 255
Chapter 7: An Introduction to the Fundamentals of Database Systems.................. 305
Chapter 8: Putting It All Together: Complex Messaging,

Communication, and SeCUFity..............ceeeeeeeeeeeeeeeeeennnneeeeeecisnneneennn. 329
Chapter 9: The Holistic View to Demystifying Middleware................................... 341
Appendix A: Abbreviations and ACrORYMIS..................eueeeeeeereveeeeeeeeeeeeeeeeeeeeeeeennns 357
Appendix B: Embedded Systems Glossaryuuuuueeeeeeenneneeeeecccisnnnneenennnns 367
L U 389

This page intentionally left blank

About the Author

Tammy Noergaard is uniquely qualified to write about all aspects of embedded systems.
Since beginning her career, she has wide experience in product development, system design
and integration, operations, sales, marketing, and training. She has design experience using
many hardware platforms, operating systems, middleware, and languages. She worked for
Sony as a lead software engineer developing and testing embedded software for analog

TVs, and also managed and trained new embedded engineers and programmers. The
televisions she helped to develop in Japan and California were critically acclaimed and rated
#1 in Consumer Reports magazines. She has consulted internationally for many years, for
companies including Esmertec and WindRiver, and has been a guest lecturer in engineering
classes at the University of California at Berkeley, Stanford University, as well as giving
technical talks at the invitation of Aarhus University for professionals and students in
Denmark. She has also given professional talks at the Embedded Internet Conference and the
Java User’s Group in San Jose over the years. Most recently, her experience has been utilized
in Denmark to help insure the success of fellow team members and organizations in building
best-in-class embedded systems.

vii

This page intentionally left blank

Demystifying Middleware in Embedded
Systems

Chapter Points
e Middleware is introduced in reference to the Embedded Systems Model
e Outline why understanding middleware is important

e Identifying common types of middleware in the embedded space

1.1 What is the Middleware of an Embedded System?

With the increase in the types and profitability of complex, distributed embedded systems,

an approach common in the industry is designing and customizing these types of embedded
systems in some manner that is independent of the underlying low-level system software

and hardware components. To successfully achieve desired results within cost, schedule, and
complexity goals many engineering teams base their approach on architecting various higher-
level middleware software components into their embedded systems designs.

Currently within the embedded systems industry, there is no formal consensus on how
embedded systems middleware should be defined. Thus, until such time as there is a
consensus, this book takes the pragmatic approach of defining what middleware is and how
different types of middleware can be categorized. Simply put, middleware is an abstraction
layer that acts as an intermediary. Middleware manages interactions between application
software and the underlying system software layers, such as the operating system and device
driver layers. Middleware also can manage interactions between multiple applications residing
within the embedded device, as well as applications residing across networked devices.

Middleware is simply software, like any other, that in combination with the embedded
hardware and other types of embedded software is a means to an end to achieving some
combination of the desirable goals shown in Table 1.1.

Demystifying Embedded Systems Middl e. DOI: 10.1016/B978-0-7506-8455-2.00001-7

1

2 Chapter 1

Table 1.1: Examples of Desirable Requirements for Middleware to Meet

Requirement

Description

Adaptive Middleware that enables overlying middleware and/or embedded
applications to adapt to changing availability of system resources

Flexibility and Middleware that allows overlying middleware and/or embedded

Scalability applications to be configurable and customizable in terms of functionality
that can be scaled in or out depending on application requirements, over
all device requirements, and underlying system software and hardware
limitations

Security Middleware that insures the overlying middleware and/or embedded
applications (and the users using them) have authorized access to
resources

Portability The ‘write-once’, ‘run-anywhere’ mantra. Middleware that allows overlying

middleware and/or embedded applications to run on different types of
embedded devices with different underlying system software and hardware
layers. To avoid requiring time-consuming and expensive rewrites of the
application code, middleware can mask the differences in underlying layers
within different types of embedded systems, programming languages, and
even implementations of the same standard produced by different design
teams

Connectivity
and Inter-
Communication

Middleware that provides overlying middleware and/or embedded
applications the ability to transparently communicate with other
applications on a remote device through some user-friendly, standardized
interface. Essentially, communication interfaces abstracted to level of local
procedure call or method invocation

As shown in Figure 1.1a, middleware resides in the system software layer of an embedded
system and is any software that is not a device driver, an operating system kernel, or an
application. Middleware components can exist within various permutations of a real-world
software stack: such as directly over device drivers, residing above an operating system,
tightly coupled with an operating system package from an off-the-shelf vendor, residing
above other middleware components, or some combination of the above, for example.

Keep in mind that what determines if a piece of software is ‘middleware’ is by where it
resides within the embedded system’s architecture, and not only because of its inherent
purpose within the system alone. For example, as shown in Figure 1.1b, embedded Java
virtual machines (JVMs) are currently implemented in an embedded system in one of three
ways: in the hardware, in the system software layer, or in the application layer. When a JVM

is implemented within the system software layer and resides on an operating system kernel is

an example when a JVM is classified as middleware.

Demystifying Middleware in Embedded Systems

Embedded Systems Model

System Software Layer :
Middleware : ;
{ | Operating System /BSP | |
i Sublayer !

Embedded Systems Madel

i+ Other System Middleware .

v (e, IVM, networking,...) | !

i i Operating System / BSP : i
i : Sublayer -
em——— .
! H Device Driver Sublayer §

Embedded Systems Model

Off-the-Shelf
-1 Vendor Middleware

E Operating System / BSP | ¢

Sublayer §
i Device Driver Sublayer
é Hardware Layer :

Figure 1.1a: Middleware and the Embedded Systems Model

Application Layer

Application Layer

System Software Layer

Middleware

Operating System Kemel

IVM Processor Support

Device Drivers

System Software Layer

Java Virtual Machine

Middleware

Operaling System Kernel

Device Dnver Layer

Java Processor

Hardware Layer

Hardware Layer

Application Layer
Java Virtual Machine

Java Application

System Soflware Layer

Middleware ‘

Operating System Kernel ‘

Device Driver Layer

Hardware Layer

Figure 1.1b: Embedded JVMs in the Architecture'

Figure 1.1c shows a high-level block diagram of different types of middleware utilized in
embedded devices today. Within the scope of this text, at the most general level, middleware
is divided into two categories: core middleware and middleware that builds on these core

components. Within each category, middleware can be further broken down into types, such as file
systems, networking middleware, databases, and virtual machines to name a few. Open source and

4 Chapter 1

Application Layer

Middleware

Application Layer

Middleware Building-on-the-Core

Complex Messaging Application Layer Middleware Middleware

Market-Specific
& Conumumeation i H
Middleware Middleware
: Core Middleware Middleware Middleware
: i
| Networkimg Virtual File Databases
‘ Machines Systems Kemel Kernel
BSP BSP
Device Device Device Device Device
Driver Drriver Diriver Drriver Driver Device Device Device Device
Driver Driver Driver Driver

Figure 1.1c: Types of Middleware in Embedded Systems

real-world examples of these types of middleware will be used when possible throughout this book
to demonstrate the technical concepts. Examples of building real-world designs based on these
types of middleware will be provided, and the challenges and risks to be aware of when utilizing
middleware in embedded systems will also be addressed in this text.

Core middleware is software that is most commonly found in embedded systems designs
today that do incorporate a middleware layer, and is the type of software that is most
commonly used as the foundation for more complex middleware software. By understanding
the different types of core middleware, the reader will have a strong foundation to
understanding and designing any middleware component successfully. The four types of core
middleware discussed in this book are:

e Chapter 4. Networking

* Chapter 5. File systems

e Chapter 6. Virtual machines
* Chapter 7. Databases.

Middleware that builds on the core components varies widely from market to market
and device to device. In general, this more complex type of middleware falls under some
combination of the following:

e Message Oriented and Distributed Messaging, i.e.,
Message Oriented Middleware (MOM)
Message Queues
Java Messaging Service (JMS)

Message Brokers
Simple Object Access Protocol (SOAP)

Demystifying Middleware in Embedded Systems 5

e Distributed Transaction, i.e.,
* Remote Procedure Call (RPC)
* Remote Method Invocation (RMI)
* Distributed Component Object Model (DCOM)
* Distributed Computing Environment (DCE)
* Transaction Processing, i.e.,
* Java Beans (TP) Monitor
* Object Request Brokers, i.e.,
* Common Object Request Broker Object (CORBA)
* Data Access Object (DAO) Frameworks
e Authentication and Security, i.e.,
* Java Authentication and Authorization Support (JAAS)
e Integration Brokers.

At the highest level, these more complex types of middleware will be subcategorized and
discussed under the following two chapters:

e Chapter 3. Market-specific Complex Middleware
* Chapter 8. Complex Messaging and Communication Middleware.

This book introduces the main concepts of different types of middleware and provides snap-
shots of open-source to help illustrate the main points. When introducing the fundamentals
of various middleware components within the relative chapters, this book takes a multistep
approach that includes:

e discussing the importance of understanding the standards, underlying hardware, and
system software layers

e defining the purpose of the particular middleware component within the system, and
examples of the APIs provided with a particular middleware component

* introducing middleware models and open-source software examples that would make
understanding the middleware software architecture much simpler

e providing some examples of how overlying layers utilize various middleware components
to apply some of what the reader has read.

The final chapter pulls it all together with pros and cons of utilizing the different types of
middleware in embedded systems designs. As this book will demonstrate, there are several
different types of embedded systems middleware on the market today, in addition to the
countless homegrown solutions. Note that these embedded systems middleware solutions can
be further categorized as other types of middleware depending on the field — such as being
proprietary versus open-source, for example. In short, the key is for the reader to pick up on
the high-level concepts and the patterns in embedded middleware software — and to recognize
that these endless permutations of middleware solutions in the embedded space exist, because
there is not ‘one’ solution that is perfect for all types of embedded designs.

6 Chapter 1

1.2 How to Begin When Building a Complex Middleware-based Solution

For better or worse, successfully building an embedded system with middleware requires more
than just solid technology alone. Engineers and programmers who recognize this wisdom from day
one are most likely to reach production within quality standards, deadlines, and costs. In fact, the
most common mistakes that kill complex embedded systems projects, especially those that utilize
middleware components, are unrelated to the middleware technology itself. It is because team
members did not recognize that successfully completing complex embedded designs requires:

* Rule#1: more than technology

* Rule #2: discipline in following development processes and best practices
* Rule#3: teamwork

* Rule#4: alignment behind leadership

* Rule #5: strong ethics and integrity among each and every team member.

So, what does this book mean by Rule 1 — that building an embedded system with
middleware successfully requires more than just technology?

It means that many different influences, including technical, business-oriented, political, and
social to name a few, will impact the process of architecting an embedded design and taking
it to production. The architecture business cycle shown in Figure 1.2 shows a visualization

Quality Ascurance Requinamant

&

Svstem Stakehokders

ity
Arclitrectire Schedule

Business Cyele verkis

Queality

versus
Features

AY
Iadusary Stardard Requirements
AN
Sakes & Marketing Requicomnie | >
*‘"“fﬂ N i

Figure 1.2: Architecture Business Cycle?

Demystifying Middleware in Embedded Systems 7

of this rule in which many different types of influences generate the requirements, the
requirements in turn generate the embedded system’s architecture, this architecture is then
the basis for producing the device, and the resulting embedded system design in turn provides
feedback for requirements and capabilities back to the team.

So, out of the architecture business cycle comes a reflection of what challenges real-world
development teams building a complex middleware-based system face — balancing quality versus
schedule versus features. This is where the other four rules stated at the start of this section come
into play for insuring success. Ultimately, the options embedded teams have to choose from
when targeting to successfully build a complex design are typically some combination of:

* X Option 1: Don’t ship

* X Option 2: Blindly ship on time, with buggy features

e X Option 3: Pressure tired developers to work even longer hours

* X Option 4: Throw more resources at the project

* X Option 5: Let the schedule slip

o 4 Option 6: Healthy Shipping Philosophy: ‘Shipping a very high-quality system on
time.

Not shipping unfortunately happens too often in the industry, and is obviously the option
everyone on the team wants to avoid. ‘No’ products will ultimately lead to ‘no’ team, and in
some cases ‘no’ company. So, moving on to the next option — why ‘shipping a buggy product’
is also to be avoided at all costs is because there are serious liabilities that would result if the
organization is sued for a lot of money, and/or employees going to prison if anyone gets hurt
as a result of the bugs in the deployed design (see Figure 1.3). When developers are forced to
cut corners to meet the schedule relative to design options, are being forced to work overtime
to the point of exhaustion, are undisciplined about using best practices when programming,
code inspections, testing, and so on — this can then result in serious liabilities for the
organization when what is deployed contains serious defects.

Option 3 — ‘pressure tired developers to work even longer hours’ — is also to be avoided.

The key is to ‘not’ panic. Removing calm from an engineering team and pushing exhausted
developers to work even longer overtime hours on a complex system that incorporates
middleware software will only result in more serious problems. Tired, afraid, and/or stressed-
out engineers and developers will result in mistakes being made during development, which
in turn translates to additional costs and delays.

Negative influences on a project, whether financial, political, technical, and/or social in
nature, have the unfortunate ability to negatively harm the cohesiveness of an ordinarily
healthy team within a company — eventually leading to sustaining these stressed software
teams as unprofitable in themselves. Within a team, even a single weak link, such as a team
of exhausted and stressed-out engineers, will be debilitating for an entire project and even an

8 Chapter 1

- Breach of Contract, ..,

o if bug fixes stated in contract are not forthcoming in timely manner

- Breach of Warranty and Implied Warranty, ic.,

o delivering system without promised features

- Strict and Negligence Liability, i..,
o bug causes damage to property
o bug causges injury
o bug causes death

- Malpractice, i,

= customer purchases defective product
- Misrepresentation and Fraud, i,

= product released and sold that doesn’t meet advertised claims

- Based on the chapter “Legal Consequences of Defective Software” by Cem Kaner
Testing Computer Software. 1999

Figure 1.3: Why Not Blindly Ship? - Programming and Engineering Ethics Matter?

entire organization. This is because these types of problems radiate outwards influencing the
entire environment, like waves (Figure 1.4).

The key here is to decrease the interruptions (see Figure 1.5) and stress for a development
team during their most productive programming hours within a normal work week, so that
there is more focus and fewer mistakes.

A

k.
-

a ™
- N
l Executive Leadership |
b 7
-
[Management |
< 7
Sales
I T B /& B [N &
l Soltware Team 1 | | Hardware Team 1 Soltware Team *N° | | Manufacturing Marketing
& 7Y 7 \3 B/ & & J
X, i

Company

Figure 1.4: Problems Radiate and Impact Environment

Demystifying Middleware in Embedded Systems

9

“... developers imprisoned in noisy cubicles, those who had no defense against [requent
interruptions, did poorly. How poorly? The numbers are breathtaking. The best quartile was
300% more productive than the lowest 25%. Yet privacy was the only difference between the
groups.

Think about it — would you like 3x faster development?

It takes your developers 15 minutes, on average, to move from active perception of the office
busyness to being totally and productively engaged in the cyberworld of coding. Yet a mere
11 minutes passes between interruptions [or the average developer. Ever wonder why
firmware costs so much? ..."

- Jack Ganssle. A Boss s Quick-Start to Firmware Engineering.
- DeMarco and Lister. Peopleware.

Figure 1.5: Real World Tidbit, Underpinnings of Software Productivity

Another approach in the industry to avoid a schedule from slipping has been to throw more
and more resources at a project. Throwing more resources ad-hoc at project tasks without
proper planning, training, and team building is the surest way to hurt a team and guarantee a
missed deadline. As indicated in Figure 1.6, productivity crashes with the more people there

are on a project. A limit in the number of communication channels can happen through more

than one (> 1) smaller sub-teams, as long as:

it makes sense for the embedded systems product being designed, i.e.,
* not dozens of developers and several line/project managers for a few MB of code

* not when few have embedded systems experience and/or experience building the product

* not for corporate empire-building! — which results in costly project problems and
delays=bad for business!

300+ 1

2509 i

2004

Comm
Channels

1004

S04
U'wqr’;qﬂlﬂﬂlﬂ | S e i e e R r. T T
1 35 7 9 11 13 15 17 19 21 23 25

Number of people

Figure 1.6: Too Many People*

10 Chapter 1

° in a healthy team environment

° no secretiveness

* no hackers

* Dbest practices and processes not ignored

* team members have sense of professional responsibility, alignment, and trust with
each other, leadership and the organization.

While more related to this discussion will be covered in the last chapter of this book,
ultimately the most powerful way to meet project schedules and successfully take an
embedded system middleware-based solution to production is:

* by shipping a very high-quality product on time

* have a strong technical foundation

» sacrificing less essential features in the first release

o start with skeleton, then hang code off skeleton

* Do not overcomplicate the design!

* Systems integration, testing and verification from Day 1.

The rest of this chapter and most of this book are dedicated to supplying the reader with a
strong, pragmatic technical foundation relative to embedded systems middleware. The last
section of this book will pull it all together to link in what was introduced in this section.

1.3 Why is a Strong Technical Foundation Important
in Middleware Design?

One of the biggest myths propagated by inexperienced team members and mistakes made in
the industry is assuming that the embedded systems programmers of a middleware layer can
afford to think as abstractly as PC developers and/or the application developers using that
middleware layer. There are too many examples of stressed-out engineers, millions of dollars
in project overruns, and failed ventures in the industry that are a result of team members not
understanding the fundamentals relative to utilizing middleware within an embedded system
at the start and throughout the design process of the project. When it comes to understanding
the underlying hardware and system software when designing middleware software, it is
critical that, at the very least, developers understand the entire design at a systems level. In
fact, one of the most common mistakes made on an embedded project that makes it much
tougher to successfully build a complex design is when engineers and programmers on the
team do not investigate or understand the type of embedded system they are trying to build,
the components that can make up the device, and/or the impact individual components have
on each other.

Thus, this book is a springboard from ‘Embedded Systems Architecture: A Practical
Guide for Engineers and Programmers’. This book takes a more detailed and practical

Demystifying Middleware in Embedded Systems 11

approach of discussing all layers relative to the Embedded Systems Model, shown in
Figure 1.1a, when introducing principles and major elements of embedded systems
middleware. This is because it is critical to the success of any project team that
introduces middleware into the architecture that all team members understand all layers
of an embedded system because all layers of an embedded system are impacted by
middleware and vice versa.

Introducing middleware software to an embedded system introduces an additional overhead
that will impact everything from memory requirements to performance, reliability, as well as
scalability, for instance. The goal of this book is not just about introducing some of the most
common types of embedded systems middleware, but more importantly to show the reader
the pattern behind different types of embedded middleware designs and to help teach the
reader an approach to understanding and applying this knowledge to any embedded system’s
middleware component encountered in the future.

The Embedded Systems Model represents the layers in which all components existing within
an embedded system design can reside. This model is a powerful tool utilized within the

scope of this book because it not only provides a clear visual representation of the various
middleware elements of an embedded system, their interrelationships, and functionality — this
model also provides a basis for modular architectural representations that commonly are used to
successfully structure an embedded systems project. At the highest level, there are three layers:

* hardware, which contains all the physical components located on an embedded systems
board

* system software, which is the device’s application-independent software

» application software, which is the device’s application-specific software.

As shown in Figure 1.7, a middleware component — whether it is a file system, database,
or networking protocol — that resides in an embedded system’s middleware software layer
typically resides on top of ‘some’ combination of other middleware, an operating system,
device drivers, and hardware. This means middleware implemented in the system software
layer exists either as:

* middleware that sits on top of the operating system layer, or device driver layer for
systems with no operating system

* middleware that sits on top of other middleware components, for example a Java-based
database or file system that resides over a Java Virtual Machine (JVM)

* middleware that has been tightly integrated and provided with a particular operating
system distribution.

In some embedded systems, there may even be more than one different middleware
component, as well as more than one of the same type of middleware in the embedded device
(see Figure 1.8). In short, whatever the combination of middleware — in co-operation with

12 Chapter 1

Embedded Systems Model
Application Soflware Layer !
Embedded Systems Model e e Embedded Systems Model

---------- e seresre et ey ! Svstem Software Laver :
¢ Application Software Layer | peesemesasecssscscssncsensnenas
: Middleware -
i Systom Softwaro Layer i o i
| peeeeeeececeeceicanieaey : i 1 Other System Middleware | ! : gis siniaatzzad :
E 4 Mddlepure P i i(ic., VM, networking,...) ! S | Middleware | :
: E Operating System / BSP : : : E Operating System / BSP : E i i Operating System / BSP ‘: '
1 Sublayer i P Sublayer b e Sublayer P

Figure 1.7: System Components and the Embedded Systems Model

the underlying embedded software and hardware — these components act as an abstraction
layer that provides various data management functions to the other system software layer
components, application software layer in the system, and even other computer systems that
have remote access to the device.

Embedded Systems Model

3 : File System Middleware
i File System 3 '
P (i.e., dos I'S2) :
» < [File System 2 '
; : (i.e., TRT'S aka. Transactional File System) §
§ ; File System | I
{1 (i.e., TrueFFS aka. True Flash File System)
-
: Hardware Layer Memory Mediums
';; (1.¢., Flash, RAM, elc.)

Figure 1.8: Multiple File Systems in an Embedded System Example

Demystifying Middleware in Embedded Systems 13

1.4 Summary

Middleware is increasingly becoming a required component in embedded systems designs
due to the increase in the types of complex, distributed embedded systems, the number of
applications found on embedded systems, and the desire for customizable embedded software
applications for embedded devices. In this chapter, middleware was defined relative to the
Embedded Systems Model, and the types of middleware introduced in this book were also
discussed. Finally, some initial guidelines of whether using middleware within an embedded
systems design should even be entertained as an option are discussed.

Chapters 4—7 cover core middleware components, specifically file systems, networking,
and databases. Chapters 3, 8 and 9 go on to discuss middleware that builds on the core
components, as well as pulls all the concepts together in discussing overall design
implementations, approaches, and risk mitigation for utilizing middleware in real-world
embedded designs.

The next chapter of this book introduces core components that underlie middleware
commonly found in embedded systems. Chapter 2, specifically, introduces the hardware and
underlying system software required by core middleware.

1.5 End Notes

1 Systems Architecture, Noergaard, 2005. Elsevier.

2 The six stages of creating an architecture outlined and applied to embedded systems in this book are inspired
by the Architecture Business Cycle developed by SEI. For more on this brainchild of SEI, read ‘Software
Architecture in Practice,” by Bass, Clements, and Kazman.

3 Based on the chapter ‘Legal Consequences of Defective Software” by Cem Kaner. Testing Computer Software.
1999.

4 ‘Better Firmware, Faster’. Jack Ganssle. 2007.

This page intentionally left blank

The Foundation

Chapter Points
e Defines what components are required and underlie middleware
e Introduces fundamental hardware concepts and terminology

e Identifies the major elements of most underlying system software designs

Regardless of what middleware is in an embedded system, one of the most powerful
approaches is to take the systems approach. This means having a solid technical foundation
via defining and understanding all required components that underlie the particular
middleware software. Meaning:

1. Understanding the hardware. If the reader comprehends the hardware, it is easier to
understand why a particular middleware component implements functionality in a certain
way relative to the storage medium, as well as the hardware requirements of a particular
middleware implementation.

2. Defining and understanding the specific underlying system software components, such as
the available device drivers supporting the storage medium(s) and the operating system
API. Underlying system software will be discussed later in this chapter.

Why start with understanding the hardware? Because some of the most common mistakes
programmers designing complex embedded systems make that lead to costly delays and
problems include:

* Dbeing intimidated by the embedded hardware and tools

* treating all embedded hardware like it is a PC-Windows Desktop

e waiting for the hardware

* using PCs in place of ‘available’ embedded systems target hardware to do development
and testing

e NOT using embedded hardware similar to production hardware, mainly similar I/O,
processing power, and memory.

Demystifying Embedded Systems Middl e. DOI: 10.1016/B978-0-7506-8455-2.00002-9

15

16 Chapter 2

1EEE 1284,
Shased RAM,
Haputer-
10Base-T Thanoo 1V 1008 a-T' Senal ode
HH * Mmster Processor: Met+ ARM ARMT
16646 + Memory: Flash, RAM

« InpuvOutput Deviees: 10Base-T rans-
cefver, Thinns ransceiver, 100Base.T
transceiver, RS-232 transceiver, 16646
transcaiver , ...

+ Biunses: System Bus, MIL,

Figure 2.1a: Net Silicon ARM7 Reference Board'

Master Processor: Geode

Das gt s GXLV (x86)
e —
AdmeCunral . - |] = Memory: ROM (BIOS is
s X 950 LW Anung ek lecated in), SDRAM
Frocence ————
Input/Ouipat Deviees:

PCL3Y

| - C85530. C89210. AC9T. ..

I‘ Tuses: [CA, PCT, .
LaMH Chak Syaem Frpr
{ cererwse | o S | e

| usrnn'}‘.“ | AMED Guadr™!
csans ICTRN Pt IDE Heider
Companus (4dpla. Tmay
Lo Ot : i o Tavke s
Headphone Oul o
Micmjhess a4+ E

Figure 2.1b: AMD Geode Reference Board?

Developing software for embedded hardware is not the same as developing software for a

PC or a larger computer system — especially when it comes to including the additional layer
of complexity when introducing a middleware component. The embedded systems boards
shown in Figures 2.1a—d demonstrate this point of how drastically embedded boards can vary
in design.

This means each of the boards shown widely varies in terms of the software that can be
supported because the major hardware components are different, from the type of master
processor to the available memory to the I/O (input/output) devices. Target system hardware
requirements depend on the software, especially complex systems that contain an operating
system, middleware components, in addition to the overlying application software. So,
middleware developers must learn to read the hardware schematics and datasheets to

The Foundation

[| = Master Processor: Encore M3
Au 1500 Kl
) =) {Aul500-based) processor

e — + Memory: Flash, SODIMM
« Input/Output Devices: Super 1/0....

Flah Memeey i)
@‘_‘ lntesface Paral el Bam + Ruses: PCT, ...
Eiherna

Ports (21

FC1 Host
Coniroller

ScathBricdge Kaybourd &
{Super L) Meuse Paets

Pevipheral DA
| Serial Pore (1) o
] Sl Purts (2 |
2
USH Ports (2)
EJTAG Pect (1)
e

Figure 2.1c: Ampro MIPS Reference Board®

Mosceal MPCI245 VA VTBICESR
ey = 1
Cpu

Poaves PCTH = Master Frocessor: MPCE2Z40

1—"‘| [DE [ekerfaze
A% cope foe] Theost + Memory: Flash, SODIMM
1, Panallel Pect

@-—- L= &sc';"’ Wn * Tnput/Cusipud Deviees: Super T
iEauthbridps)

82559 Transcalver, ...
Flask by P
M_,,.J‘ *| Conuller | Brudge

» Buses: PCL ...

Iei

Serial e—v| USE Port (4)
Disbeg Peat -
—
Miscellanscas
Cibernst Peet
[l 5253960
Clode
32 MHz

Power
Supply

Figure 2.1d: Ampro PowerPC Reference Board*

understand and verify all the major components found on an embedded board. This is to
insure that the processor design is powerful enough to support the requirements of the
software stack, the embedded hardware contains the required I/O, and the hardware has
enough of the right type of memory.

2.1 A Middleware Programmer’s Viewpoint -
Why Care about Processor Design and 1/0O?

From the middleware programmer’s point of view, it is critical to care about the processor
design and I/O on the target hardware. In the case of processors (whether they are master
and/or slave I/0O CPUs), there are literally thousands of embedded processors that are
differentiated according to their ISAs (instruction set architectures). A processor’s ISA
defines everything from the available operations to the operands to addressing modes to

18 Chapter 2

interrupt handling, for example. Most embedded processors fall under one of three ISA
models:

Application-specific, such as controller, datapath, finite state machine w/datapath
(FSMD), and Java virtual machine (JVM)

General purpose, such as complex instruction set computing (CISC) and reduced
instruction set computing (RISC)

Instruction-level parallelism, such as single instruction multiple data (SIMD), superscalar
machine, very long instruction word computing (VLIW).

It is important for programmers to understand the processors and the ISA design they are
based upon. This is because the ability to support a complex middleware solution, and the
time it takes to design and develop it, will be impacted by the ISA in terms of available
functionality, the cost of the chip, and most importantly the performance of the processor. For
example, a programmer’s ability to understand processor performance, and what to look for
in a processor’s design according to what needs to be accomplished via software. Processor
performance is most commonly defined as some combination of the following:

Responsiveness, length of elapsed time the processor takes to respond to some event, a.k.a
latency

Availability, the amount of time the processor runs normally without failure

Reliability, the average time between failures, a.k.a. the MTBF (mean time between
failures)

Recoverability, the average time the processor takes to recover from failure, a.k.a. the
MTTR (mean time to recover)

Throughput, the amount of work the processor completes in a given period of time, a.k.a.
the average execution rate (Figure 2.2).

CPU throughput = 1/ CPU execution time
CPU execution time = (total number of instructions) * (CP1} * (clock period) = ((instruction count) * (CP1} / (clock rate)

i.e., Performance (Processor “A") / Performance (Processor “B")
= Execution Time (Processor “B") / Execution Time (Processor “A”)
="X", lherelore, Processor "A” is "X limes [asler than Processor "B”

CPU throughput = bytes/sec or MB/sec
CPU execution time = seconds per total # bytes
CPl = number of cycle cycles/instruction
clock period = seconds per cycle

| krale = MHz

Figure 2.2: Processor Performance and Throughput

The Foundation 19

So, for example, given processor performance relative to throughput and managing
instruction processing — specifically, the number of clock cycles per second (clock rate),

as well as the number of cycle per instruction (CPI). Any internal processor design feature
that allows for either an increase in the clock rate or decrease in the CPI will increase the
overall performance of a processor. This could include anything from pipelining within the
processor’s ALU to selecting a processor based on the instruction-level parallelism ISA
model.

In the case of 10 subsystems consisting of some combination of transmission medium, ports
and interfaces, IO controllers, buses, and the master processor integrated I/O — I/O subsystem
performance in terms of throughput, execution time, and response time is key. Programmers
need to pay attention not only to the speed of the master processor, but the data rates of the
I/O devices, how to synchronize the speed of the master processor to the speeds of I/O, and
how I/O and the master processor communicate. Programmers even need to pay attention to
buses, meaning from a developer’s viewpoint bus arbitration, handshaking, signal lines, and
timing. Bus performance is typically measured via bandwidth where both physical design and
associated protocols matter. For example:

* the simpler the bus handshaking scheme, the higher the bandwidth

» the shorter the bus, the fewer connected devices, and the more data lines typically means
the faster the bus and the higher its bandwidth.

* more bus lines means the more data that can be physically transmitted at any one time, in
parallel

* the bigger the bus width means the fewer the delays, and the greater the bandwidth.

Finally, benchmarks, such as EEMBC (Embedded Microprocessor Benchmark Consortium),
Whetstone, and Dhrystone programs, are commonly used in the embedded space to provide
some measure of processor performance such as determining latency and efficiency of
individual features. Benchmarks typically report MIPS (Millions of Instructions per
Second) =Instruction Count/(CPU execution time x 10%) =Clock Rate/(CPI x 10°).

The key for middleware programmers to remember is the importance of understanding what
the benchmarks being executed are, and to use these benchmarks wisely.

This means that benchmarks give the illusion that faster CPUs have higher MIPS, because

the MIPS formula is inversely proportional to execution time. MIPS cannot compare

different ISAs, because instruction complexity and functionality are not considered in the
formula. MIPS will also vary on the same CPU with different programs made up of different
instructions. So, in short, ask the right questions and interpret benchmarks accurately to
understand exactly what is being run and measured. Benchmarks are suitable in some cases as
a starting point, but at the end of the day it is better for middleware programmers to use real
embedded programs to measure a processor’s performance in this regard.

20 Chapter 2

2.2 The Memory Map, Storage Mediums, and Middleware

It is critical for middleware programmers to define and understand the board’s memory map,
specifically:

* Amount of memory matters (i.e., is there enough for run time needs?)
* Location of memory and how to reserve it

e Performance matters (gap between processor and memory speeds)

e Internal design of memory matters

* Type of memory matters (i.e., Flash versus RAM).

Why should a middleware programmer care? Take memory and performance, for example.
Memory impacts board performance when memory has lower bandwidth than master CPU,
thus it is important for programmers to understand memory timing parameters (performance
indicators) such as memory access times and refresh cycle times. Memory performance can
be better based on the internal design, such as:

* utilizing independent instruction and data memory buffers and ports

* integrating bus signals into one line to decrease the time it takes to arbitrate the memory
bus to access memory

* having more memory interface connections (pins), increasing transfer bandwidth

* having a higher signaling rate on memory interface connections (pins)

* implementing a memory hierarchy, with multiple levels of cache.

Another example is that while middleware that utilizes different hardware storage devices is
transparent to middleware users and higher layers of software, the underlying hardware of the
different storage mediums available today is often quite different in terms of how they work,

their performance, and how they physically store the data. Thus, it is important for embedded
developers to understand the differences in the hardware in order to understand the implementation
of a middleware component on these various underlying technologies. In other words, hardware
features, quirks and/or limitations will dictate the type of file system(s) required and/or what
modifications must be implemented in a particular middleware design to support this hardware.

If a programmer learns the features of the various hardware storage mediums available,

then it will be much simpler for the programmer to understand a particular middleware
implementation, how to modify a particular middleware design in support of a storage
medium, as well as determine which middleware is the best ‘fit’ for the device. In short,

it is important for the reader to understand the middleware relevant features of a storage
medium(s) — and use this understanding when analyzing the middleware implementation that
needs to support the particular storage medium.

In terms of hardware storage mediums used by middleware in the embedded systems arena,
essentially if data can be stored on a hardware component, middleware can be designed and

The Foundation 21

USB Flash Memory Stick!?! cpldl Smart Cards!!]

Figure 2.3: Examples of Embedded System Hardware Storage Mediums Used To Store Data

configured to use that storage medium. Examples of hardware storage mediums used by embedded
middleware, such as file systems and databases today, are shown in Figure 2.3. Examples of
hardware supported include hard drives, RAM, Flash, tape, CD, and floppy to name just a few.

As shown in Figure 2.4, middleware, like file systems, typically view and refer to physical
hardware storage mediums as raw devices, drives, and/or disks. At the highest level, a raw

Raw Device, Disk or Drive (The Hardware Storage Medinm)

Raw Device Blacks, Seetors, and/or Tracks

Volume, Cluster, or Block

partition partition partition

Volume, Cluster, or Block

I partition partition] |

Volume, Cluster, or Block

partition I partifion] | partition] |]

Valume, Cluater, or Block

-

partition partition] | partition

Figure 2.4: Hardware Storage Medium

22 Chapter 2

device is then broken down into some combination of blocks, tracks, and/or sectors, terms
used to represent addressable storage units on a raw device, disk, or drive. Middleware logical
units, such as file system volumes or clusters, then reside within these storage units.

The next few hardware examples demonstrate some relevant differences between storage
mediums that can be found in embedded system designs today. The reader can use these
examples to understand the importance of learning about different hardware storage
mediums, the differences between middleware software supporting various storage mediums,
what is required to port a type of middleware to these various hardware storage elements,
and/or to understand features of a storage medium that are relevant to middleware software.
The reader can then apply this process of thinking to working with different hardware storage
components and middleware software in the future.

2.2.1 Example of Hard Disk Hardware

While there are several different types of hard disk technologies on the market today, such
as SCSI (Small Computer Systems Interface) and ATA (Advanced Technology Attachment)
types of hard disk drives to name a few, in general many internals of traditional hard disks
deployed today are similar. As shown in Figure 2.5a, most hard drives on the market are
made up of platters, circular disks made from metal and covered with a magnetic material.
This film of magnetic material is one of the main components that allows data to be recorded
on a hard disk’s platter. A hard disk’s head is a type of electromagnet to process the data
located on the associated platter. An arm supports each head, and the arm(s) is (are) attached
to an actuator which is responsible for arm and head movement to the desired location on

a platter to process data. The number of platters, associated heads, and arms in a hard drive
is dependent on the size of the hard disk, meaning the larger the drive the more platters,
associated heads, and arms exist.

Hea d Arm

e ———— ————-—-_,___ ; -&----Aciualor

Platters ----4:

-
.

Figure 2.5a: Internals of a Hard Disk Drive®

The Foundation 23

Inner T'rack (Highest) =-===-==--=cfacf--f-- -

Outer Track (Lowest — Track 0) ------------

--===----Reclor

Figure 2.5b: Hard Disk Drive Platter®

A low-level format (LLF) creates tracks, cylinders, and sectors on each platter (see Figure 2.5b).
An LLF is performed on most modern hard disks by the manufacturer before the hard disks are
deployed into the field. Some hard drive manufacturers also provide tools to do an LLF in cases
where everything needs to be removed from a hard disk without damage to the boot sector, such
as when installing a new operating system or removing virus infection.

Tracks are concentric rings located on each platter that subdivide a platter for data
recording. As shown in Figure 2.5c¢, a cylinder is a logical cross-section of tracks across

all the hard disk’s platters. Tracks are further broken down into sectors, which are data
blocks on a platter that allow for simultaneous access to multiple tracks for data processing.

Head Arm

—_— : : «----Actuator

J

a@
s

Platters ----3

|
|

!

v.
" Cylinder

Figure 2.5c: Hard Disk Drive Cylinder

24 Chapter 2

Accessing a data block on a hard disk is done via specifying the CHS, cylinder, head, and
sector numbers.

Refer to a hard disk manufacturer’s datasheet to determine detailed information of a particular
hard disk’s specifications. The real-world hard disk datasheets shown in Figures 2.6a and 2.6b
are examples of how to find some of the hardware specification information that is useful for
developers to know regarding hard disks (see highlighted portions of datasheets).

Helpful Hint

A datasheet is always a good starting point for understanding any hardware’s general functions
and features, but keep in mind this type of document is typically used for sales and marketing
of the device as well. So it is always a good idea to review any available highly technical and in-
depth users’ guides and specifications for the particular storage medium to review specifics.

2.2.2 Example of USB Flash Memory

USB flash memory is simply a data storage device that contains non-volatile flash memory
and an integrated USB interface. Relative to middleware, some of the key features of interest
regarding USB Flash memory include:

e Capacity. The size of the USB flash memory.

* Operating System (Device Driver) Support. What operating system distributions
include device drivers for the USB Flash memory. If the embedded system’s operating
system is not on that list, then a device driver will need to be created/ported and
integrated.

* Formatted. Does the USB Flash memory come pre-formatted, in support of a
particular file system, for example. The USB Flash memory may need to be erased and
reprogrammed, as necessary, in support of a particular middleware.

* Sector Size. The smallest block of Flash that can be erased and/or programmed. The
reader should also note whether there are any restrictions when reading the Flash.

Author Note

USB Flash memory can also be referred to by other names in the field, such as USB Flash
Memory Keys, USB Flash Memory Drives, USB Flash Memory Sticks, and USB Flash Memory Pen
Drives to name a few. If it is Flash memory that is hot-swappable into a USB port, then it falls
under this category of USB Flash memory hardware.

As shown in Figure 2.7a, USB Flash memory is a small PCB (printed circuit board) that is
enclosed in a durable chassis, and is powered via the connection to the embedded system’s
USB port. A standard USB interface that adheres to the industry standard USB specification,

The Foundation 25

Figure 2.6a: Western Digital Hard Disk Datasheet Example®

www.newnespress.com

26 Chapter 2

Mobile Hard Drives

‘DII‘\.‘I' Specilicalions

i HGE L] HGE 100 GB 120CB 160 GB

EIDE Hand Dvives

Perdommance Specilications

SATA Hard Dvives EIDE Hard Drives

apn gmamey

Zomrmes aspns 37, Al

For yervioe and [ibwssture:

2 i imaregfin seie of

Figure 2.6a continued: Western Digital Hard Disk Datasheet Example

The Foundation 27

Seagate @\

Wiy e il

Barracuda 7200.8
High-capacity Ultra ATA and Serial ATA deskiop drives

Reliable, Top-Performing
Storage for High-End
PCs and Advanced

Applications, Including
Entry-Level RAID Server
and Gaming Systems

400, 300, 250 and 200 Gbytes = 7200 RPM = SATA/150 NCQ and Ultra ATAV100

Key Advantages

 Higheet available capacity—up 1o 400 Ghytes, snabling OCRs andd system bullders to qualify ene family of drives for & wids rangs of parsonal storegs,
entry-kenl sarver and fimd-contant storags appliestions

 Mativs SATA imerfaca with Natiwe Command Ouacing (INCD) anahlas fast data tranasar rates for high-parfumiing,
lomw-eat setwers and hot-iod gaming systems

= A prowsn design for shortss qualification tines s tp i=halility

 Irmapdibls acoustica with seund bamiar tachonkogy (COT), inclucing the Seagets “ssaclusive Softfecic™ motor

*+ ReHé-oompliam—okgnificanty redueed kvels of kad v comply with all emirenmemal legisknion

Dest Fit Applications

* Mainstizam and high-perommanca Pls

» Smell workgroup servars in bosinessas, education and govemment

& Vi, diginal proto and e-mal storags on PU-bassd home meadia sanves

& Storage of fsd-cortent mformation thal is sctivaly referenced but changed ifrsquently dmedical rcords,
acthve data archives, financial statemants, videos, digital photos)

= Ple optimizad for gaming

Figure 2.6b: Seagate Hard Disk Datasheet Example’

www.newnespress.com

28 Chapter 2

Seagate @
W turm on idens
Barracuda 7200.8
High-capacity, high-speed ATA drives for PCs and advanced storage applications
Seagate Makes the Best Even Better
WIRLE Diear Wavens Specifications |400GB' | 300GB" | 250GB" | 2006B"
Saagate offers the industry's leading warranty 1o demonstrate
ourcommitmert o product refiabiity and our custamers” Wedt] Numbar STIIZIZAS | SITMONAS | STIZSVSINS | 51 TANETEAS
supeess. Every Seagate intarnal hard drive for PCs, notabook STANAIZA | STION0AMA | STI2S0R0I4
Imartae Erarnal Transfe: Rate
computers and entry-level servers is covered under our (eanso) e e Lariinaiion | siianiis | sevisins
unprecedented five-year wamranty, Ulro AIANC0 | Ul ATAI00 | Uhirn ATA 00
Parformanc &
Sea gate Trancfer Rote
5-Year Waaimum ismmal (Mbyesiesc) a5 9 @ o
Warranty Mairnum External (Mbstes foaci 1507100 150000 1501100 150
Susts ned rsster Rat CO Mbyteaisac | 89 8 B [
Tlachs, Mibisoqmented (Mhyter) it [[W
Aversge Seek (miec) [} [] 8]
Highest Available Capacity Enables New :;m:"‘l;'“@f;"mi :“3 ;‘"3 :;‘3 418
indls Spead Ay Pl 200 (] Fon
Opportunities i mw“_id P
* Industry's highest aresl density lowerscost per Glyte of | Awibable Sectors TeldzzTes | w8072 %8 | 45337168 | 390721888
slorags i Bytos pur Soctor 512 512 512 612
- i Logical OHS 16NENT | 1631687 | 1B.3mNeet
* High capacity cemand cominues 1 Nerease 85 SMOFAE | Boru g Mool oo ETRAMLIAENT | EREL GAT, L ECRAL 180 |
meods profforae Reliability/Dala integrily
* Increazed demand coming from users requiring more slorsge Contact StanSteps 30,000 59,000 4,000 50,000
capacity o thelr PCs ard srall busnessss implmenting e — “"‘::“' per 6t Raed MBS ¢ TS § SESS A
—Limtad Wareantyive
RAID gervers Power Management .
+ Varlous-sized enterprises are replacing tape with hgh- +12V0C 2108 famps pask) 28 28 28 28
] P M 1 v
capacity 1D0s in ow-Cost backup or Meed content "':"-""h g) T i i 2
applications “OpmetngArg 12.6 128 128 120
Idie Ay 72 72 7z 72
Nalive Serlal ATA Interface With Native _ Stindby g (SATAPATA) 1408 1408 1408 1408
Command Gueuing (NCQ) Envirenmental
. . [(Operating (T} O b BT W70 b B OPL o RO 07T b BAPT:
+ HNative S\‘[A.lnterfn-:e with NGO and support for iatest PC Temperature, Noacperste] ['C) 0070 T 1070 10070
teehnology, including ntel Hype -Thieading Shack, Oparating ? msaa (A1) &8 /% i a8
« Fomnt-lo-pont ntertace elim nates need for pumper ssthng Shook, onogerwiag:2 mmeo (i) 300 a0 =00 i
s Easy-to-use onnectors for simple installation i) 28 - 25 28
*+ 100 percent software compatib e with existing PCs e:ll;:@lm:;ﬂriﬂ_im :2?‘ :2 g,z s:-.§
7 7 i
« Thinner, longer cable provides improved system aiflow —roocnonds Sesk bele—stund power 2 :
Haight {infin i} 12BN 120N 18N VBT
World-Class Technical Support Wt (o) s s N a8
Dapth finmrd STIAIGE0 | 57074000 | 57004500 | 67044000
* canmfﬂ. SEpAiancat uppor sl:m' Wit (gl 14838 14538 | 4838 1453
* Fated "Above Average to Excellent ! Dupsasity sxdaulatiad v 1 Bl = 10° bytes
& Support lines with shotest wait times
» Inelividhally archived casa histories
o Web-based 4A torum and autereply e-mail
+ Zeagate Design Senvice Centzrs (DSC) o help companies
transform innowative ideas into viable products MR Sangds Totmobgy e 535 o St o, bl 063 Wb S, 61 L3640
ASATGAE Bawpde % 4 Shygagane MR, A5A40R1 08
AURPE MDIE EXSTAND KR Sangts Rarmohogy 32 130.136, ws 05 54y, zmmmm Frams, 2141 B 10 00
WwWWw.seaga tE‘CDm @ NGSHF Nﬂlml.l.\. Wi el Frirfad o Iﬂlmml Tlﬂﬂa« wam m
Bmll A rasY
1-800-732-4283 (1-800-SEAQGATE) “'"“"""‘"‘"""‘"“"‘"""""“

Figure 2.6b continued: Seagate Hard Disk Datasheet Example

www.newnespress.com

The Foundation 29

Strap/key-ring loop \ /7 USR interface
e ——— -
N |

Write/erage look Read/write LED

Figure 2.7a: BabyUSB USB Flash Memory Stick®

such as USB 1.1 or USB 2.0, extends from this small chassis that allows the stick to be
plugged into a board’s USB drive port as shown in Figure 2.7b. This device is typically
smaller than other portable storage mediums, and is hot-swappable into a board’s USB port
that has device driver support for the particular type of USB Flash memory.

The real-world USB Flash memory datasheets shown in Figures 2.8a and 2.8b show some
additional flash specification information that is useful for programmers to know regarding
support of Flash types of storage mediums (see highlighted portions of datasheets).

2.3 Device Drivers and Middleware

Software that directly interfaces with the hardware in an embedded system is commonly
referred to as a device driver. With some embedded operating systems that provide device
drivers with their distributions, particular storage-medium-specific drivers can be referred

to by other names, such as some Flash driver codes can be commonly referred to as MTDs
(memory technology drivers). In the case of Flash, for example, MTDs are device drivers
responsible for low-level mapping, reading, writing, and erasing of Flash. In short, as shown
in Figure 2.9a, device drivers — including MTDs or whatever the particular device driver
libraries are called in a distribution — manage the hardware and act as the interface to the
hardware for higher layers of software.

For any embedded system that requires software, including higher-level software access to the
hardware, these devices all have some type of device driver library. What is very important

to remember as a programmer when trying to understand middleware support for a particular
storage medium and its associated device driver library is that:

1. Different types of storage mediums will have different device driver requirements that
need to be met

30 Chapter 2

Figure 2.7b: USB Flash Memory Stick and Embedded Board Example’

www.newnespress.com

The Foundation 31

.
l’
. 1
“
¥ &
2 IRy
X !
» - j"
DATA SHEET-
Interface USE 1.0; 1.1 and 2.0 (Universal Serial Bus 1.0; 1.1; and 2.0)
Power Supply USB bus power (no external power supply needed) Power Save Mode implemented to reduce power
PP consumption when used with mobile equipment.
Memory type MAND based Flash Memory for high speed programming’ erasing and size
Capacity 16MB, 32 MB, 64MB, 128MB, 256MB, 512MB, 1 GB & 2GB

Windows XP, Windows 2000, Windows Me, Windows 98 (must use included drivers), Mac 8.6 and
higher, Linux kernel 2.4.0 and higher.

Main unil {wilh cap), Operaling Inslructions, lanyard, extension cord and cradle (included with 64MB
model and higher) LED indicator when the drive is in use. 1 year warranty

Compalible OS:

Accessaries

Pen Drive 1.1 - up to read: 750KBytes/s
Transfer rate 12Mbps max (1.5MB/s) g
max. for USB interface; Write: 450KBytes/s
Pen Drive '
Transter rate Fiast)]] read: 7000KByte/s
20 (Frastiy) write: 2500KByte/s

Secure Pen Drive: Total memory is protected with optional password function
All Pen Drives include Read/Wrile protection swilch
External dimensions LxWxH 85mmx 28mmx 15mm (3.9" x 1.1" x 0.6")

Security option

Weight 219/ 0.8 Oz
Data Relention 10 years
Shock resistance 1000G

Figure 2.8a: PSI USB Flash Memory Pen Datasheet Example'®

2. Even the same type of storage medium, such as USB Flash memory, that is created by
different manufacturers can require different device drivers in support.

The reader must always check the details about the particular hardware if the part is not 100%
identical to what is currently supported by the device, and not assume existing device drivers
in the embedded system will be compatible for a particular storage medium part — even if the
hardware is the same type of storage medium that the embedded device currently supports!

32 Chapter 2

Figure 2.8b: Corsair Flash Memory Datasheet Example'’

www.newnespress.com

The Foundation 33

System Sollware Layer

vxWorks Operating System

prmm ey} i o o Vo i

o
o
o

Hardware Layer
Flash ! | HardDisk i i CD i RAM | Tape i i Floppy

Figure 2.9a: Device Drivers and vxWorks Example'?

At a systems level, what specific middleware components exist and how they interface to the
hardware will vary depending on the underlying device driver API for the particular storage
medium(s). While, of course, libraries will vary between systems, in general hardware storage
medium drivers will include some combination of:

* Storage Medium Installation, code that creates support of a storage medium in the
embedded system

* Storage Medium Uninstall, code for removing the support of a storage medium in the
embedded system

* Storage Medium Startup, initialization code for the storage medium upon reset and/or
power-on

* Storage Medium Shutdown, termination code for the storage medium for entering into a
power-off state

* Storage Medium Enable, code for enabling of the storage medium

* Storage Medium Disable, code for disabling the storage medium

e Storage Medium Acquire, code that provides other system software access to the storage
medium

34 Chapter 2

* Storage Medium Release, code that provides other system software the ability to free the
storage medium

* Storage Medium Read, code that provides other system software the ability to read data
from the storage medium

e Storage Medium Write, code that provides other system software the ability to write
data to the storage medium

* Storage Medium Mapping, code for address mapping to and from the storage medium
when reading, writing, and/or deleting data

e Storage Medium Unmapping, code for unmapping (removing) blocks of data in the
storage medium.

Reminder

Different device driver libraries may have additional functions, but most device drivers in
support of storage mediums will include some combination of the above functionality.

Figures 2.9b, 2.9¢ and 2.9d are real-world examples of device driver APIs for Flash and ATA
storage mediums that demonstrate the type of functionality introduced above and found in
device driver libraries for these particular storage mediums. Later sections of this chapter will
demonstrate examples of how these device drivers are utilized for implementing a middleware
in an embedded device.

Note: please refer to the CD that accompanies this text or the Elsevier website link for this
book (if no CD has been included) to see all open-source files for Linux Flash examples
referenced in Figures 2.9b and 2.9c. Also, remember that the JFS implementation is just an
open-source reference, and that to support a particular hardware platform requires updating
and/or replacing the reference JFS device driver-specific calls with the required device driver-
specific calls of a particular platform throughout the JES source.

2.4 The Role of an Embedded System’s Operating System
and Middleware-specific Code

The purpose of an embedded operating system is:

* toinsure the embedded system operates in an efficient and reliable manner by managing
hardware and software resources

* to provide an abstraction layer to simplify the process of developing higher layers of
software

* to act as a partitioning tool.

The embedded OS (operating system) achieves these functions via a kernel that includes,
at a minimum: process management, memory management, and I/O system management
components (Figure 2.10).

The Foundation 35

/*
* §Id: pcmciamtd.c,v 1.59 2006/03/29 08:31:11 dwmw2 Exp $§
*

* pcmciamtd.c = MTD driver for PCMCIA flash memory cards
Author: Simon Evans <spsefisecret.org.uk>
* Copyright (C) 2002 Simon Evans
* Licence: GPL
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as

published by the Free Software Foundation.

wamtd.c { St
Be Edt Ven (s Todk Mindm Cpwmnty Hep
.o gHd stan9-c-0-5) - | [daeny ARt b 0 R
BN I - SR Fge S R R, S e

#define ss'z'vm_n!éc "EQHCIA Tlesh pemcry casd driwves®
#define DRIVER VERSICH “iRevisien: 1.59 &0

/* Size of she PCMCIA add spacer Z€ bits = 640 +f

fdefine HAX_POHCTA_ADOR Gndlioooo
:|

[atasic caddr © remap windew(struct mAp info *map, uesigmed lang ta)
[va%ic map_Word pamcia _Teadf_Temapiatruct map_info map, wnaigned long ofE)
Batatic nap word pemeias 16 zemip(struct map info *mep, unsigred g ofs)
map info *map, void *to, unsigeed 1

o ong from, ssize v l=o) |
B smatic yoid pemcia_writel semap(s . map_info *sap, nep word d, unaigred lnng adr) |
2 atatie void pemets writelf remap(=ap iefe *map, map word d, 4 long adz)

L veid pomcle_CUpy_to_semep(Iiiuct asp Jefo *sap, wwsigoed logg e, cosat veld *fiom, ssiis bt lea)

*map, void *es, unaigned loeg l:a, asize t lea)|
'mep, 08 4, cosigned leng ade)

void pomeds w;.i..cE i2

vaid pomeis writelé|et ®map anfs "aap, ulé 4, © -

void pomcia_copy_tolstruct map infc *map, uoeigmed 1 cid *frcs, ssize_t lea)
void pomciantd seT_YDp(sTruct map Info *aap, it oa)f

msd pc-:i.m-_d celease (dev_link t -um{

vold card settings 2 pcl.-_in:ltd ey *aev, :u:r link totli

ink, int *new pame)

iniz iniz pemciamzdivoid) i

Bacetic w:d _exit mvjtncmndi-n*ﬂ

Fuady in %7 Cd&2 thi

36 Chapter 2

MID map driwver for AMD compatible flash chips (non-CFI)

* o o+

Author: Jonas Holmberg <jonas.holmbergfaxis.com>

* $Id: amd flash.c,v 1.29 2006/03/29 08:31:10 dwmw2 Exp
*
* Copyright (c) 2001 Axis Communications AB
*

* This file is under GFL.

o
b i
i Fe Bt Ven Déhy Tods Wdw Comenty K
. ..il',-r;é.gg bamia.0. 8.0 L) -8 gemnty b7 1 o JES RS
" - e LR | p d
E .-::_;._1&": EE 3!3 3 43 @A ie
& static inline _u32 wide Tesd{struct mep info *zap, _ ui2 addr)| | 1]
g static n2 void wide write(struct map info *map, n!! val, u!l aﬁ!l
Batatic inline _ 132 aske cmd(struct map info *map, _ w32 cad) [...
Hatatic inlipe void sead unlock(stzuct map iafo *map, unsigoed lung bn-l o'}]
Fatatis inliee void send emd(scruet map info *map, umaigmed leng base, __u.iz ﬂi] | ..
static inline void send cad to hddr(struct map infd *map, unsigned loag base,
B _ 482 cad, unsigred long addr) [.
stacic inline int flash is busy{struct map info *zap, unsigned long adde,
g int iatesleave)| i |
atatic inline void uoleck sector| ?m; info *mep, unsigmed long sect addr,
B int unleck)
shatic inline Lob 2y sector locked(slzuct map in
= unaigned long aser addr)|
static int amd flash do unlock(struct atd dafo *atd, loff t ofs, size t len,
lov iz unloc
e ine amd flask unleck|struet med | lufe *ned, loff t ofs, aize ¢ len)
£ amd flash lsck(struce med infe *med, leff © ofs, sise t lam) |
int probe new chip(struct xd_ln.f: *med, _'132 bams,
struct Flemip “chips,
struct aed flash private *private,
2 conat atroet amd flash info *zable, inc able alee)) |
Bstatic ot mtd_info temd flash poche(stioct map iafo tmap) |
static inlipe int xnd. one chip(struct map info *zap, stroct ﬂdup *chip,
g B lafe v adr, size T lsn, u ehar *pat) |
. static int and flash read(stzuct mtd infc *acd, loff © frca, n’:e_: len,
+: 7] .uae:'::..lu:, u_char ouf)| { ... b
. static int write coe word(struct map info *map, struct flchip *chip,
) a8 unsigred leng adr, _ usl datum)
T stacie int amd flash vrite(scruce med info ‘mcd, loff © to , size T len,
2 s128 t “retler, const u_char 'la:tl
* static inline int ersse one block{struct map info "map, stzuct flchip “chip,
i g unaigned leeg adr, u leng atee) (... 1]
E SAoann end Ilesh ecsssfetioct mod lafo tmed, stouct enmse LuIootlnstn) L
o Setatic void and flask ayne(svsuct md iafe ‘med) !
ki g aranic inc amd flash suspand(scruzc med info =med)|
“atatic woid ARd Tlash zesume|struct =04 1nfn mtd)
. Fatatic void amd Llash deatzuy(sic
i _ dnic and flash inie(veid)| {
3 _ st and flask exitivond)
L E
HLEIEL
o 0 B4 -
£ zxcion 11 Erd Vs,

Figure 2.9c: Example of AMD Flash Device Driver Code'

www.newnespress.com

The Foundation 37

VxWorks API Reference : Driver Libraries

2 ataDrv
2.1.1.1 NAME
ataDrv - ATA/IDE and ATAPI CDROM (LOCAL and PCMCIA) disk device driver

ROUTINES

ataDrivelnit() - imtialize ATA drive
ataDrv() - initialize the ATA driver
ataDevCreate() - create a device for a ATA/IDE disk

ataRawio() - do raw /0 access
DESCRIPTION

This is a driver for ATA/IDE and ATAPI CDROM devices on PCMCTA, ISA, and other buses. The driver can be customized
Vi varous macros (o run on a vanety of boards and both big-endian, and hitile endian CPUs.

ataDrivelnit()

NAME

ataDrivelnit() - initialize ATA drive
SYNOPSIS

STATUS ataDrivelnit

i
\

int ctrl,

int drive

)
DESCRIPTION

This routine checks the drive presents, identifies its type, initializes the drive controller and driver control structures.

RETURNS

OK if drive was initialized successfully, or ERROR.

Figure 2.9d: Example of ATA Device Driver Public APIs under vxWorks'?

38 Chapter 2

2 ataDrv()

4.1.1.1 NAME

ataDrv() - initialize the ATA dnver

SYNOPSIS
STATUS ataDrv
{
int ctrl, /* controller no. */
int drives, /* number of drives */
int vector, /* interrupt vector */
int level, /* interrupt level */
int configType, /* configuration type */
int semTimeout, /* timeout seconds for sync semaphore */
int wdgTimeoubt /* timeout seconds for watch daog */
)
DESCRIPTION

This routine initializes the ATATDE/ATAPT CDROM driver, sets up interrupt vectors, and performs hardware initialization of
the ATA/IDE chip. This routine must be called exactly once, before any reads, wnites, or calls to ataDevCreate(). Normally, it is
called by usrRoot() in usrConfig.c.

RETURNS

OK, or ERROR il initialization fails.
ataDevCreate()

NAME

ataDevCreate() - creale a device for a ATAIDE disk

SYNOPSIS

BELK DEV *ataDevCreate
{
int ectrl, /* ATA controller number, 0 is the primary controller */
int drive, /* ATA drive number, 0 is the master drive */
int nBlocks, /* number of blocks on device, 0 = use entire disc */
int blkOffset /* offset BLK DEV nBlocks from the start of the drive */
)

DESCRIPTION

This routine creates a device for a specified ATAIDE or ATAPI CDROM disk. crrl is a controller number for the ATA
controller; the primary controller is (1. The maximum is specified vin ATA._MAX_CTRLS. drive is the drive number for the
ATA hard drive; the master drive is (0. The maximum is specified via ATA_MAX_DRIVES. The nBlocks parameter specifies the
size of the device in blocks. If nBlocks is zero, the whole disk is used. The bIkOffser parameter specifics an offset, in blocks, from
the start of the device to be used when wriling or reading the hand disk. This ofTsel 15 added to the block numbers passed by the
file system during disk accesses. (VxWorks file systems always use block numbers beginning at zero for the start of a device.)

RETURNS

A pointer to a block device structure (BLK. DEV) or NULL if memory cannot be allocated for the device structure.

Figure 2.9d continued: Example of ATA Device Driver Public APls under vxWorks

www.newnespress.com

The Foundation

39

] ataDevCreate()

6.1.1.1 NAME

ataDevCreate() - create a device for a ATA/IDE disk
SYNOPSIS

BLE_DEV *ataDevCreate

[
int ctrl,

= a %/
= /

int drive, the master dri

v
/
!

int nBlocks, on device, 0 = use *
int blkOffset V nBlocks from the start of */
)

DESCRIPTION

This routine creates a device for a specified ATA/IDE or ATAPI CDROM disk. etrf 15 a controller number for the ATA
controller; the primary controller 15 0. The maximum 1s specified via ATA MAX CTRLS. drive 15 the dnve number for the

ATA hard drive; the master drive 1s 0. The maximum 1s specified via ATA MAX DRIVES. The nBlocks parameter specifies the
size of the device in blocks. If nBlocks is zero, the whole disk 15 used. The bikOffer parameter specifics an offset, in blocks, from

the start of the device to be used when writing or reading the hard disk. This offset 1s added to the block numbers passed by the
file system during disk accesses. (VxWorks file systems always use block numbers beginning at zero for the start of a device.)

RETURNS
A pomnter to a block device structure (RLK_DEV) or NULL if memory eannot be allocated for the device structure.

ataRawio()

Figure 2.9d continued: Example of ATA Device Driver Public APIs under vxWorks

A kernel’s process management mechanisms are what provide the functionality that secures

the illusion of simultaneous multitasking over a single processor. Kernel functionality that

is relevant to middleware development ranges from task implementation to scheduling to
synchronization to intertask communication. Middleware programmers need to note that

embedded operating systems, and even different versions of the same embedded operating
system, will vary widely in their process management schemes. For example, the types and

number of operating system tasks:

WindRiver’s vxWorks 6.4 (1)

* one type of task that implements one ‘thread of execution’ (task’s Program Counter)

WindRiver’s vxWorks 653 (1)

e core OS vThreads based on vxWorks 5.5 multithreading, like vxWorks 6.4 one type

Timesys Linux (2)
¢ Linux fork
* Periodic task

40 Chapter 2

e _

MidBowireLayor

PR S

Figure 2.10: Embedded Operating Systems

e Esmertec’s Jbed (6)
* OneshotTimer Task, task that is run only once
* PeriodicTimer Task, task that is run after a particular set time interval
* HarmonicEvent Task, task that runs alongside a periodic timer task
* JoinEvent Task, task that is set to run when an associated task completes
* InterruptEvent Task, task that is run when a hardware interrupt occurs
* UserEvent Task, task that is explicitly triggered by another task.

It comes down to balancing between utilizing the system’s resources (i.e., keeping the CPU,
I/0, etc. as busy as possible) — with task throughput to process as many tasks as possible

in a given amount of time — with fairness and ensuring that task starvation does not occur
when trying to achieve a maximum task throughput. The key for developers to note relative
to embedded operating systems is what impacts effectiveness and performance, and not

to underestimate the impact of an embedded OS’s internal design. The key differentiators
between embedded operating systems in this regard are:

1. Memory Management Scheme, i.c., virtual memory swapping scheme and page faults
Scheduling Scheme, i.c., throughput, execution time, and wait time
3. Performance,i.c.,
* Response time, to make the context switch to a ready task and waiting time of task in
ready queue
* Turnaround time, how long a process takes to complete running
* Overhead, the time and data needed to determine which tasks will run next
* Fairness, what are the determining factors as to which processes get to run.

www.newnespress.com

The Foundation 41

The key questions middleware developers need to ask of embedded OS support include:
What hardware can this support? Are there any performance limitations? How about memory
footprint? Middleware that resides on an OS needs an embedded OS that has been stably
ported and is supporting the hardware.

How about what features you need given cost, schedule, requirements, etc.? Do you just need
a kernel or more? How scalable should the embedded OS be? This is because in addition to

a kernel, embedded OS distributions may also provide additional integrated components,
such as networking, file system, and database support. These components allow the overlying
middleware layers to be ported to the OS kernel design, as well as the underlying system
software and hardware (see examples in Figures 2.11a and 2.11b).

For example, a file system interface is some subset of OS functionality that can be utilized

by the ported file system. When porting a file system to a different OS, it is important to
understand what (if any) interfaces are available to the file system since the OS APIs available
to a file system will vary from one OS to another, and what APIs a file system requires will
differ from one file system implementation to another. For example, in Figure 2.11c, the

JES open-source file system provided on this textbook’s CD utilizes several different Linux-
specific files (see source code on CD for complete overview of all required Linux APIs for
JES). To port JES to an unsupported OS requires replacing the current OS-specific calls,

such as the Linux-specific code shown in Figure 2.11c, with the new OS-specific file system
interface calls throughout the JFS source.

2.5 Operating Systems and Device Driver Access for Middleware

While middleware can access device drivers directly, as introduced in the previous section, an
embedded OS can also include an abstraction layer API that allows for device driver access.
When providing device access, or any type of I/O access to middleware, most OS APIs
categorize their associated device drivers as some combination of:

e Character, a driver that allows hardware access via a (character) byte stream

* Block, a driver that allows hardware access via some smallest addressable set of bytes at
any given time

* Network, a driver that allows hardware access via data in the form of networking packets

e Virtual, a driver that allows I/O access to virtual (software) devices

* Miscellaneous Monitor and Control, a driver that allows I/O access to hardware that is
not accessible via the other categories above.

For an example of an OS block device interface, vxWorks provides an I/O interface, called
CBIO (cache blocked input output), that allows different file systems, such as JFS, dosFS,
etc., to be ported to one standard vxWorks interface regardless of the underlying hardware
storage medium (see Figures 2.11d and 2.11e). As stated in the previous section, to port

42 Chapter 2

Embedded Systems Model

[
: System Software Layer :

. Middleware Sublayer
P Operating System / P
{ i (optional) BSP Sublayer | 1

Device Driver Sublayer E

: System Software Layer

E : Middleware E
Popeeeeeen e, i
' Operating System /

: (optional) BSP Sublayer

'

Application Software Layer

: System Software Layer :
. : Middleware :

Lo Operating System /

: 1 (optional) BSP Sublayer
: Yen -t Device Driver ¥

: : Sublayer :

Figure 2.11a: Example OS Permutations

www.newnespress.com

The Foundation 43

Middleware

Embedded OS

i Kemnel

T

58 Management gement

SEELLE

smemmmaeaas
Management

Embedided (8

[SIRSSteSsAsSAIASSSSIARSS MiASItmastessrssastesnAni GRASSsennes
: File System Networking ;o o
................................ . L et E

prissssssasssasassases grrssssssasssssassarnssans

peresseeses

Embedded OS

Board Support Package

Fesedeseisssisscisscs pesessssssscasssassas sesssssssasss,

Sy

Figure 2.11b: Example OS Components

www.newnespress.com

44 Chapter 2

/* super.c

*

* Copyright (C) International Business Machines Corp., 2000-2003

* Portions Copyright (C) Christoph Hellwig, 2001-2002

w

b This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Boftware Foundation; either version 2 of the License, or

¥ (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY: without even the implied warranty of

= MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See

3 the GNU General Public License for more details.

&

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 5% Temple Place, Suite 330, Boston, MA 02111-1307 USA
*

dinclude <asm/uaccess.h>
#include "jfs_incore.h"
#include "jfs filsys.h"
#include "jfs_metapage.h"
#include "jfs_superblock.h"
#include "jfs dmap.h"
#include "jfs imap.h"
finclude "jis debug.h"

Figure 2.11c: Example of JFS Usage of Linux File System Interface

www.newnespress.com

The Foundation 45

System Sofltware Layer

dosls, rawFs, tapelis cdromFs, ...

CBIO (Cache Blocked Inpul Ouiput) Sublayers

TrueFFS or Block Driver (i.e., ATA, Floppy, elc.)

Floppy
Dniver

CD ii RAM i i Tape

o
mammny

Cameas

Figure 2.11d: Example of vxWorks File System Interface

www.newnespress.com

46 Chapter 2

VxWaorks APl Reference @ O8 Libraries
chioLib
NAME
cbioLib - Cached Block IO library

ROUTINES

chioLibInit{ } - Initialize CBIO Library
cbioBIKRWY{ } - transfer blocks to or from memory
chioByiesRW() - transler byles to or from memaory
chioBIKCopy(} - block to block (sector to sector) transfer routine
chioloctl() - perform inctl operation on device
chioModeGet() - return the mode setting lor CBIO device
chinModeSet() - set mode for CRIO device
chioRdvChgdGet() - determine ready status of CBIO device
chioRdyChgdSel() - force a change in ready status of CBIO device
chioLock() - cbtain CBIO device semaphore,
chiolinlock() - release CBIO device semaphore.
chioParamsGel() - fill in CBIO PARAMS structure with CBIO device parameters
chinShow() - print information about a CBIO device
chioDevVerifv() - verify CBIO_DEV_ID
chioWrapBIkDev() - create CRIO wrapper atop a BLK_DEV device
chioDevCreate() - Initialize a CBIO device (Generic)

DESCRIPTION

This library provides the Cached Block Input Output Application Programmers Interface (CBIO API). Libraries such as
dosFsLib, rawFsLib, and usr FdiskPartLib use the CBIO API for IO operations to underlying devices.

This library also provides generic services for CBIO modules. The libraries dpartCbio, deacheCbio, and ramDiskCbio are
examples of CBIO modules that make use of these generic services.

This library also provides a CBIO module that converts blklo dnver BLK_DEV (blklo.h) interface into CBIO A PI compliant
interface using minimal memory overhead. This lean module is known as the basic BLK_DEV to CBIO wrapper module,

CBIO MODULES AND DEVICES

A CBIO module containg code for supporting CBIO deviees. The libraries ebioLib, deacheChio, dpartChio, and ramDiskChio
are examples of CB10 modules.

A CBIO device is a software layer that provide its master control of IO to it subordinate. CBIO device layers typically reside
logically below a file system and above a storage device. CBIO devices conform to the CBIO APl on their master (upper)
interface.

CBIO modules provide a CBIO device creation routine used to instantiate a CBIO device. The CBIO modules device creation
routine returns a CBIO_DEV_ID handle. The CBIO_DEV_ID handle is used to uniquely identify the CBIO device layer
instance. The user of the CBIQ device passes this handle to the CBIO API routines when accessing the device.

The hibraries dosFsLib, rawFsLib, and vsrFdiskPariLib are considered users ol CRIO devices because
they use the CBIO API on their subordinate (lower) interface. They do not conform to the CBIO APT on

their master interface, therefore they are not CBIO modules. They are users of CBIO devices and always
reside above CBIO deviees in the logical stack.

Figure 2.11e: vxWorks CBIO Library'?

www.newnespress.com

The Foundation 47

e e e e e e e e e

System Software [ayer

dosFs, rawkFs, tapeFs cdromFs, ...

CBIO (Cache Blocked Input Output) Sublayers

CBIO Device Cache Layer to CBIO Device Parition Layer (dpartChio)

: CBIO Wrapper Device Layer to CBIO Device Cache Layer (deacheCbio) :

BLE DEV to basic CBIO Wrapper Device (¢bioLib)

BLK_DEV API device driver. scsil.ib, ataDry, [dDrv.elc

i vxWorks Operating System
¥ BSP
i at e Ao sty 25 gk koo b b ofde s o bk it e e bbb e g dof oottt il bt i
Device Driver Sublayer H
Flash MTD :
Hard Disk CDh RAM Tape Floppy
Driver Driver Driver Prver Prver

Hardware Layer
fRssdussstssssustiissced pussmisossssessiad’ passsossscias A jEsmiesiioness 5 passssmmsdaon ek e & gasasscssssssizad 1
: Tlash ;i HadDisk | : CD {: RAM | i Tape | [Tloppy ; : ;

Figure 2.11f: Logical Layers of CBIO-based vxWorks System'

JES to an unsupported OS, such as vxWorks in this case, requires replacing the current
OS-specific calls, such as the Linux-specific code shown in Figure 2.11c, with the vxWorks
specific code and utilizing the CBIO library throughout the JFS source.

In vxWorks, calling some of the CBIO APIs is part of the process of setting up a file system,
such as dosFS on a hard disk, floppy drive or any other storage medium accessed as a block

device under vxWorks.

48 Chapter 2

As shown in Figure 2.11f, when utilizing the CBIO APIs in vxWorks an example process is
as follows:

Step 1. Configure vxWorks to support the:

e Block Device

e CBIO Library

e File System, i.e., dosFS.

< From vxWorks Programmer’s Guide 5.5>
5.2.2 Configuring Your System
To include dosFs mn your VxWorks-based system, configure the kernel with the appropnate components for the dosFs
file system.
Required Components
The following components are required:
* INCLUDE_DOSFS_MAIN.
dosFsLib (2)
L INCLUDE_DOSFS_FAT.
dosFs FAT12/16/32 FAT handler
L INCLUDE_CBIO.
CBIO APT module
And, either one or both of the following components are required:
* INCLUDE_DOSFS_DIR_VFAT.

Microsofi VEAT direct handler
L INCLUDE_DOSFS_DIR_FIXED.
Sinet 8.3 & VxLongNames direclory handler

In addition, you need to include the appropriate component for your block device; for example, INCLUDE_SCSI or
INCLUDE_ATA. Finally, add any related components that are required for your particular system.

Figure 2.11g: Example of Configuring vxWorks'?

The Foundation 49

Optional dosFs Components

Optional dosFs components are:
co INCLUDE_DOSFS. usrDosFsOld.c wrapper layer
co INCLUDE_DOSFS_FMT. dosFs2 file system formatting module
co INCLUDE_DOSFS_CHKDSK. file system integrity checking
oo INCLUDE_DISK_UTIL. standard filc system operations. such as Is. cd. mkdir. xcopy. and so on

co INCLUDE_TAR. the tar utility

Optional CBIO Components

Optional CBIO components are:
<= [NCLUDE_DISK_CACHE. CBIO API disk caching laver
< INCLUDE_DISK_PART. disk partition handling code

> INCLUDE_RAM_DISK. CBIO APIRAM disk driver

Figure 2.11g continued: Example of Configuring vxWorks

Step 2. Create the Block Device.

< From vxWorks Programmer’s Guide 5.5~
5.2.4 Creating Block Device

Next, create one or more block devices. To create the device, call the routine appropriate for that device driver. The
format for this routine is ;o DevCreate() where xoox represents the device driver type: for example, scsiBlkDevCreate()
or ataDevCreate().

The driver routine refurns a pointer to a block device descriptor structure, BLK_DEV. This structure describes the
physical attribules of the deviee and specifies the routines that the device driver provides to a file system.

Figure 2.11h: Example of Creating Block Device in vxWorks'?

50 Chapter 2

Step 3. Create the CBIO Block Driver Wrapper. The CBIO block driver wrapper layer wraps
the block driver with a CBIO API compatible layer using the cbioWrapBlkDev()
function.

chioWrapBIlkDev()

NAME

chioWrapBIkDev() - create CBIO wrapper atop a BLK_DEYV device

SYNOPSIS

CBIO DEV ID cbhbioWrapBlkDev
{
BLK_DEV * pDevice /* BLK_DEV * device pointer */
)

DESCRIPTION

The purpose of this function is to make a blklo (BLK DEV) device comply with the CBIO interface via a wrapper.

The device handle provided to this function, device 1s venified to be a blklo device. A lean CBIO (o BLK._DEV wrapper is
then created for a valid blklo device. The returned CBIO_DEV_ID device handle may be used with dosFsDevCreate(),
deacheDevCreate(), and any other rouline expeciing a valid CBIO DEV 1D handle.

To verify a blklo pointer we see that all mandatory functions are not NULL.

Note that if a valid CBIO_DEV_ID is passed to this function, it will simply be returned without modification.

The dosFsLib, deacheCbio, and dpartChio CBIO modules use this function internally, and therefore this function need not be
otherwise invoked when using those CBIO modules,

RETURNS

a CBIO device pointer, or NULL if not a blklo device

Figure 2.11i: CBIO Block Device Wrapper in vxWorks'

The Foundation 51

Step 4. Create the CBIO Cache Layer.

dcacheChio
NAME

deacheCblo - Disk Cache Driver
ROUTINES

deacheDevCreate() - Create a disk cache

deacheDey Disable() - Disable the disk cache for thus device
deacheDevEnable() - Reenable the disk cache
deacheDevTune() - modify unable disk cache parameters
deacheDevMemBResize() - sel anew size to a disk cache device
deacheShow() - print information about disk cache
deachellashTest() - test hash table integrity

DESCRIPTION

This module mplements a disk cache mechanism via the CBIO APL This is intended for use by the VxWorks DOS [ile system,
to store frequently used disk blocks in memory. The disk cache 15 unaware of the particular Nile system Format on the disk, and
handles the disk as a collection of blocks ol a lixed swee, typically the sector size of 512 bytes.

The disk cache may be used with SCSI, IDE, ATA., Floppy or any other type of disk controllers. The underlying device driver
may be either comply with the CBIO API or with the older block device APL

This library interfaces to device drivers implementing the block device APT via the basic CBIO BLK_DEV wrapper provided by
ebloLib.

Because the disk cache complies with the CBIO programming interface on both 1ts upper and lower layers, it 18 both an optional
and a stackable module. It can be used or omitted depending on resources available and performance required.

The disk cache module implements the CBIO APL which is used by the file system module to access the disk blocks, or to access
bytes within a particular disk block. This allows the file system to use the disk cache to store file data as well as Directory and
File Allocation Table blocks, on a Most Recently Used basis, thus keepmg a controllable subset of these disk structures m

ry. This Its in minimized Iy requir ts for the file system, while avoiding any significant performance
depradation.

The size of the disk cache, and thus the memory consumption of the disk subsystem, 15 configured at the time of mitmhzation (see
deacheDevCreate(), allowmng the user to trade-olT memory consumphion versus performance. Additional performance tuning
capabilities are available through deacheDev Tune().

Briefly, here are the main techmiques deployed by the disk cache:

. Least Recently Used block re-use policy

* Read-ahead

* Wrle-behind with sorting and grouping

. Hidden writes

* Disk cache bypass for large requests

+ Background disk updating (flushing changes to disk) with an adjustable update period (ioctl flushes oceur without
delay.)

Figure 2.11j: CBIO Cache Layer Using vxWorks CBIO Library

52 Chapter 2

Step 5. Implement CBIO Partition Manager.

dpartCbio

NAME

dpartChio - generic disk partition manager
ROUTINES

dpartDevCreate() - Initialize a partitioned disk
dpartPartGet() - retrieve handle for a partition

DESCRIPTION

This module implements a generic partition manager using the CBIO API (see ¢bioLily) It supporis crealing a separale file system
device for cach of its partitions,

This partition manager depends upon an external hbrary to decode a particular dhsk partition table format, and report the resultmg
partition layout information back to this module. This module is responsible for maintaining the partition logic during operation.

When using this module with the deacheCbio module, it is recommended this module be the master CBIO device. This module
should be above the cache CBIO module Eayer. This is because the cache layer 1s optimizad to function efficiently atop a single
physical disk drive. One should call dcacheDevCreate before dpartDevCreate.

An implementation of the de-facto standard partition table format which is created by the MSDOS FDISK program is provided
with the usrFdiskPartLib module, which should be used to handle FC-style partitioned hard or removable drives.

EXAMPLE

The following code will initialize a disk which is expected to have up to 4 partitions:

usrPartDiskFsIinic(BLK_DEV * blkDevid)
[
const char * devNames[] = | "/sd0a", "/sdOb", "/sd0c", "/sd0d" |;
CBIO DEV ID chioCache;
CBIO_DEV_ID cbioParts;
/* create a disk cache atop the entire BLK_DEV */
chioCache = dcachalavlreatse (blkDevid, NULL, 0, "/sd0");

if {(NULL == cbioCache}

|
return (ERRCR);
}

/* create a partition manager with a FDISK style decoder */
cbhbioParts = dpartDevCreate(cbicCache, 4, usrFdiskPartRead);

if (NULL == cbicParts)
|
return (ERROR) ;

}

Figure 2.11k: CBIO Partition Layer Using vxWorks CBIO Library'?

www.newnespress.com

The Foundation 53

/* create file systems atop each partition */

dosFsDevCreate (devNames [0], dpartPartGet (cbhioParts,0}, 0x10, NONE);
dosFsDevCreate(devNames(l), dpartPartGet (cbioParts,l), 0xl0, NONE):
dosFsDevCreate { devNames([2], dpartPartGet (cbicParts,2), 0x10, NONE};
dosFsDevCreate (devlNames[3], dpartPartGet (cbioParts,3), 0x10, NONE);
}
Because this module complies with the CBIO programming interface on both its upper and lower layers, it is both an optional
and a stackable module.

SEE ALSO

deacheLib, dosIFsLib, usrlidiskPartLib

Figure 2.11k continued: CBIO Partition Layer Using vxWorks CBIO Library

An example of source code using the CBIO APIs in vxWorks is shown in Figure 2.111.

STATUS sampleAtaHardDriveConfig

(

inkt address, // primary or secondary address (0 or 1)
int driveNumbar, // hard drive number (0 or 1)

char *driveNama // partition (s) mount point (s)

)

|

BLE_DEV *pointerBlockDrive;

CBIO DEV_ID chioDevice;

CBIO DEV ID masterChicDevice;

int ataCacheSize = ATA_CACHE_SIZE;

// Step 2. block device creation

pointerBlockDrive = ataDevCreate (address, driveMumber, 0, 0);

if (pointerBlockDrive == (BLK_DEV *)null)

{
printf (“sampleAtaHardDriveConfiq : Error Creating Block Device \n"):
return (ERROR);

|

// Step 3. block device in a CBIO wrapper

cbhicoDevice = chbioWrapBlkDev (pointerBlockDrive);

1f (cbhicDevice == null)

{
printf (“sampleAtaHardDriveConfig : Error Creating CBIO Wrapper \n");
return (ERRCR);

)

// Step 4. disk cache creation
chioDevice = dcacheDevCreate ((CBIO_DEV_ID] cbicDevice,
NULL,
ataCacheSize,
driveName) ;
1f (cbioDevice == null)
{
printf (“sampleAtaHardDriveConfiq : Error Creating CBIO Disk Cache \n"};
return (ERROR) ;

Figure 2.111: vxWorks CBIO APIs Source Code Example

www.newnespress.com

54 Chapter 2

// Step 5. partition manager creation

masterCbhioblDevice dpartDevCreate (cbhioDevice,4, usrFdiskPartRead);

if (masterChbicDevice == null)

{
printf (“sampleAtaHardDriveConfig : Error Creating CEI0 Partition Manager \n");
return (ERROR) ;

return (OK):

}

Figure 2.11] continued: vxWorks CBIO APIs Source Code Example

2.6 A Brief Comment on Multiple Middleware Components

There is middleware that requires other middleware components in the embedded device in
order to function. In the case of a network file system, for example, since it is a file system
scheme that allows for access to files, a.k.a. file sharing, across networked computer systems
it requires compatible, underlying networking protocols in support of file management and
transmission (see Figure 2.12a).

Another example, shown in Figures 2.12b and 2.12c, is in the instance in which some

type of virtual machine is integrated in the system software in support middleware, such as a
database or file system, written in a non-native language such as C# or Java. Refer to the chapter
discussing the particular middleware components in these examples for more information.

2.7 Summary

In order to understand a particular middleware design, to determine which middleware design
is the right choice for an embedded device, as well as understand the impact of middleware
software on a particular device, it is important to first understand the foundation that underlies
the middleware. This foundation includes some combination of the hardware, as well as
device drivers, operating systems, and other required middleware components. The reader
can then apply these fundamentals to analyzing what would be required to get a particular
middleware component running in an embedded system, to determine which middleware
design is the right one for a particular system, as well as the impact of the file system on the
embedded device.

The Foundation 55

H Device Driver Sublayer
i Flash MTD.

Hard Disk D
Dnver Drver

Floppy . Ethernet &

Drnver

I Sockel Drver

—
3
z
g
:
2

e
pmmmm

Figure 2.12a: Example of Underlying Networking Middleware for a Network File System

Chapter 3 introduces middleware standards and the importance of these standards within the
context of any design.

2.8 Problems

1. Name three underlying components that could act as a foundation to an embedded system
with middleware. Draw an example.

2. Middleware can reside directly over device driver software (True/False).

3. Why is it important for middleware programmers to understand the hardware of an em-
bedded system?

4. One or more middleware component can be implemented in an embedded system (True/
False).

5. How does middleware view the hardware storage medium? Draw an example.

www.newnespress.com

56 Chapter 2

‘Network File

Java Virtual Machi

Device Driver Sublayer

. - = CD ~ Tape @& Floppy
e Socket Driver 3% Driver £ Driver Driver

Hardware Layer

i Flash i HadDisk i{ €D |} RAM | i Tape | i Floppy | | Eihernet
P B T T e —— TR

Figure 2.12b: Example of Underlying JVM Middleware for a Java-based File System

6. Middleware can manage data on the following hardware:
RAM
CD
Smart card
Only B and C
. All of the above.
7. List and describe six types of device driver API functionality typically found in hardware
storage medium device drivers.
8. What is the difference between an operating system character device and a block device?
9. Middleware never requires other underlying middleware components (True/False).
10. Draw a high-level diagram of a type of middleware that requires a Java Virtual Machine
JVM).

www.newnespress.com

™o 0w >

The Foundation 57

System Software Layer

Hard Disk #8% > o . Uloppy & [Etherner
Driver _ . ' ' Driver Driver

Hardware Layer
: Mash | | HadDisk | | CD i i RAM i i T ! i Fo i i Fthemet |
: L | O - ape : ~ lloppy B :

Figure 2.12c: Example of Underlying. NET Middleware for a C#-based Database

2.9 End Notes

1 Microsoft Extensible Firmware Initiative FAT32 File System Specification. Version 1.03, December 6, 2000.
Microsoft Corporation.

http://redhat.brandfuelstores.com/.

www.microsoft.com.

http://shop.cxtreme.de

‘Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers’. T. Noergaard.
Elsevier 2005, p. 245.

http://www.westerndigital.com/en/products/Products.asp?DriveID=104
http://www.seagate.com/cda/products/discsales/marketing/detail/0,1081,771,00.html
http://www.babyusb.com/flashspecs2.htm

‘XScale Lite Datasheet” RLC Enterprises, Inc.

10 http://www.psism.com/pendrive.htm

11 ‘Corsair USB Flash Memory Datasheet’. Corsair.

12 http://www.linux-mtd.infradead.org/archive/

13 ‘vxWorks API Reference Guide : Device Drivers’. Version 5.5.

14 National Semiconductor, ‘Geode User Manual,” Rev. 1, p. 13.

15 Net Silicon, ‘Net+ ARM40 Hardware Reference Guide,” pp. 1-5.

16 ‘EnCore M3 Embedded Processor Reference Manual,” Revision A, p. 8.

17 ‘EnCore PP1 Embedded Processor Reference Manual,” Revision A, p. 9.

(S RS)

ol o

e

www.newnespress.com

http://redhat.brandfuelstores.com/
http://www.microsoft.com/
http://shop.cxtreme.de/
http://www.westerndigital.com/en/products/Products.asp%3FDriveID=104
http://www.seagate.com/cda/products/discsales/marketing/detail/0,1081,771,00.html
http://www.babyusb.com/flashspecs2.htm
http://www.psism.com/pendrive.htm
http://www.linux-mtd.infradead.org/archive/

This page intentionally left blank

Middleware and Standards
in Embedded Systems

Chapter Points
e Defining what middleware standards are
e Listing examples of different types of middleware standards

* Providing examples of middleware standards that derive embedded components

3.1 What are Standards for Middleware Software?

One of the first steps to understanding an embedded middleware solution is to, first, know
your standards! Standards are documented methodologies that can define some of the most
important, as well as required, components within an embedded system. Embedded systems
that share similar end-user and/or technical characteristics are typically grouped into market-
specific categories within the embedded systems industry. Thus, there exists middleware that
is utilized for a particular market category of embedded devices.

In short, middleware standards can either exist for a particular market category of embedded
devices, whereas other standards are utilized across all market segments. The most common

types of middleware standards in the embedded systems arena can typically fall under one or
some combination of the following categories:

* Emergency Services, Police, and Defense, middleware standards which are
implemented within embedded systems used by the police or military, such
as within ‘smart” weapons, police patrol, ambulances, and radar systems to name
a few.

* Aerospace and Space, middleware standards which are implemented within aircrafts,
as well as embedded systems that must function in space, such as on a space station
or within an orbiting satellite.

Demystifying Embedded Systems Middl e. DOI: 10.1016/B978-0-7506-8455-2.00003-0

59

60 Chapter 3

* Automotive, middleware standards that are implemented within cars, trucks, vans,
and so on. This can include anything from security and engineer controls to a DVD
entertainment center.

e Commercial and Home Office Automation, middleware standards that are implemented
in appliances used in professional corporate and home offices, such as: fax machines,
scanners, and printers, for example.

* Consumer Electronics, middleware standards that are implemented in devices used
by consumers in everyday personal activities, such as in kitchen appliances, washing
machines, televisions, and set top boxes.

* Energy and Oil, middleware standards implemented within embedded systems used in
the power and energy industries, such as control systems within power plant ecosystems
for wind turbine generators and solar, for example.

* Industrial Automation and Control, middleware standards implemented within robotic
devices typically used in the manufacturing industries to execute cyclic work processes
on an assembly line.

* Medical, middleware standards implemented in devices used to aid in providing medical
treatments, such as infusion pumps, prosthetics, dialysis machines, and drug-delivery
devices to name a few.

* Networking and Communications, middleware standards implemented in audio/video
communication devices, such as cell phones and pagers, middleware standards used
within network-specific devices, such as in hubs and routers, as well as the standards used
in any embedded device to implement network connectivity.

e General Purpose, middleware standards that are generically utilized within any type of
embedded system, and are even implemented or have originated in non-embedded computer
systems, such as standards for programming languages and virtual machines, for example.

Embedded system market segments and their associated devices are always changing as new
devices emerge and other devices are phased out. The market definitions can also vary from
company to company semantically as well as how the devices are grouped by market segment.
Remember, this does not mean that any middleware that falls under a market-specific category
can never be utilized in other types of devices, or cannot be adapted to another type of design
that falls under a different market; only that there is a lot of middleware that has been designed
and intended to target a particular type of device with certain types of requirements.

3.2 Real-world Middleware Standards Implemented in Embedded
Systems

As shown in Figure 3.1, functionality defined in standards can be specific to a particular layer,
reside across multiple layers, as well as indirectly derive what additional components are
required to allow for successful integration.

Middleware and Standards in Embedded Systems 61

Application Software :
General a Market

Purpose Standards " Specific Standards
Java TCP/IP MIIP
CHUTTP i FDA
System Software POSIX Ethernet ARINC 653

s NAT ATSC

Hardware

Figure 3.1: General Standards Diagram

Table 3.1 contains a list of some standards organizations, commonly utilized real-world
standards in the embedded market space, as well as a general description of the purposes the
standards and organizations serve. Keep in mind that Table 3.1 is a dynamic table meant as a
guideline for the reader to start with and includes standards relevant to the different layers of
an embedded system’s architecture. It is important for the reader to think of the overall device
when thinking of what standards are relevant, because, for example, other computer systems
the embedded device needs to network successfully with, as well as standards explicitly
required within the embedded system, itself will implicitly derive what middleware standards
need to be adhered to within the design. Also, the embedded market is always changing, so
the reader should take the time to research, in addition to starting with Table 3.1, in order to
stay up-to-date on what those changes are relative to the required standards to be adhered to.

Note that some market-specific standards in Table 3.1 have been adopted, and may even have
originated, within other market segments. Moreover, note that for the same type of device,
different standards can exist depending on the country and even the region within a country.
There are also industries in which multiple competing standards exist, each supported by
competing business interests. So, it is recommended that the readers do their research to
determine what standards are out there, who supports them and why, as well as how they differ.

At this time, there is not one single middleware software standards organization that defines and
manages middleware standards within the embedded systems space. Thus, it is recommended that
the reader research what middleware standards are out there via any means available, such as:

* using the Internet to google the various standards bodies and access their documentation

* looking up within published trade magazines, datasheets and manuals of the relevant
industry and device

* Dby attending industry-specific tradeshows, seminars, and/or conferences. For example, the
Embedded Systems Conference (ESC), Real-time Embedded Computing Conference, and
Java One to name a few.

Table 3.1: Examples of Real-world Standards Organizations and Middleware Standards in Embedded Systems Market

Standard type

Standard

General description

Aerospace and

Aerospace Industries, Association of

Association representing the nation’s major aerospace and defense manufacturers,

Defense America, Inc. (AIA/NAS) helping to establish industry goals, strategies, and standards. Related to national and
homeland security, civil aviation, and space (www.aia-aerospace.org)
ARINC (Avionics Application Standard | ARINC standards specify air transport avionics equipment and systems used by
Software Interface) commercial and military aircraft worldwide (www.arinc.com)
DOD (Department of Defense) - JTA | DOD initiative that supports the smooth flow of information via standards, necessary
(Joint Technical Architecture) to achieve military interoperability (www.disa.mil)
Multiple Independent Levels of Middleware framework for creating security-related and safety critical embedded
Security/Safety (MILS) systems
SAE (Society of Automotive Engineers) | Defining aerospace standards, reports, and recommended practices (www.sae.org)
Automotive Federal Motor Vehicle Safety The Code of Federal Regulations are regulations issued by various agencies within the

Standards (FMVSS)

US Federal government (http://www.nhtsa.dot.gov/cars/rules/standards/)

Ford Standards

From the engineering material specifications and laboratory test methods volumes,
the approved source list collection, global manufacturing standards, non-production
material specifications, and the engineering material specs and lab test methods
handbook (www.ihs.com/standards/index.html)

GM Global

Used in the design, manufacturing, quality control, and assembly of General Motors
automotives (www.ihs.com/standards/index.html)

ISO/TS 16949 - The Harmonized
Standard for the Automotive Supply
Chain

Developed by the International Automotive Task Force (IATF), based on 1ISO9000,
AVSQ (Italy), EAQF (France), QS-9000 (USA), and VDA6.1 (Germany), for example
(www.iaob.org)

Jaguar Procedures and Standards
Collection

Contains Jaguar standards including Jaguar-Test Procedures Collection, Jaguar-Engine
and Fastener Standards Collection, for example (www.ihs.com/standards/index.html)

Commercial and
Home Office
Automation

ANSI/AIM BC3-1995, Uniform
Symbology Specification for Bar
Codes

Specifies encoding general purpose all-numeric types of data, reference decode
algorithm, and optional character calculation. This standard is intended to be
identical to the CEN (commission for European normalization) specification (www.

aimglobal.org/standards/)

IEEE Std 1284.1-1997 IEEE Standard

for Information Technology Transport
Independent Printer/System Interface
(TIP/SI)

Standard defining a protocol for printer manufacturers, software developers, and
computer vendors that defines how data should be exchanged between printers and
other devices (www.ieee.org)

€491dvy> z9

http://www.aia-aerospace.org/
http://www.arinc.com/
http://www.disa.mil/
http://www.sae.org/
http://www.nhtsa.dot.gov/cars/rules/standards/
http://www.ihs.com/standards/index.html
http://www.ihs.com/standards/index.html
http://www.iaob.org/
http://www.ihs.com/standards/index.html
http://www.aimglobal.org/standards/
http://www.aimglobal.org/standards/
http://www.ieee.org/

Table 3.1: Examples of Real-world Standards Organizations and Middleware Standards in Embedded Systems Market continued

Standard type

Standard

General description

Commercial and
Home Office
Automation

Postscript

Major printer manufacturers make their printers to support postscript printing and
imaging standard (www.adobe.com)

Consumer
Electronics

ARIB-BML (Association of Radio
Industries and Business of Japan)

Responsible for establishing standards in the telecommunications and broadcast
arena in Japan® (http://www.arib.or.jp/english/)

ATSC (Advanced Television Standards
Committee) DASE (Digital TV
Application Software Environment)

Defines middleware that allows programming content and applications to run
on DTV receivers. This environment provides content creators the specifications
necessary to ensure that their applications and data will run uniformly on all
hardware platforms and operating systems for receivers’ (www.atsc.org)

ATVEF (Advanced Television
Enhancement Forum) - SMPTE
(Society of Motion Picture and
Television Engineers) DDE-1

The Advanced Television Enhancement Forum (ATVEF) is a cross-industry group that
created an enhanced content specification defining fundamentals necessary to enable
creation of HTML-enhanced television content. The ATVEF specification for enhanced
television programming delivers enhanced TV programming over both analog and
digital video systems using terrestrial, cable, satellite and Internet networks’ (http://
www.atvef.com/)

CEA (Consumer Electronics
Association)

An association for the CE industry that develops essential industry standards and technical
specifications to enable interoperability between new products and existing devices®
-Audio and Video Systems Committee

-Television Data Systems Subcommittee

-DTV Interface Subcommittee

-Antennas Committee

-Mobile Electronics Committee

-Home Network Committee

-HCS1 Subcommittee

-Cable Compatibility Committee

-Automatic Data Capture Committee (www.ce.org)

DTVIA (Digital Television Alliance of
China)

An organization made up of broadcasting academics, research organizations, and TV
manufacturers targeting technology and standards within the TV industry in China
(htep://www.dtvia.org.cn/)

DVB (Digital Video Broadcasting) -
MHP (Multimedia Home Platform)

The collective name for a compatible set of Java-based open middleware
specifications developed by the DVB Project, designed to work across all DVB
transmission technologies (see www.mhp.org)

GEM (Globally Executable MHP)

A core of MHP APIs, where the DVB-transmission-specific elements were removed.
This allows other content delivery platforms that use other transmission systems to

adopt MHP middleware (see www.mhp.org)

(continued)

SWiagsAs pappaquig ul spippupis pup aipmajppiN

€9

http://www.adobe.com/
http://www.arib.or.jp/english/
http://www.atsc.org/
http://www.atvef.com/
http://www.atvef.com/
http://www.ce.org/
http://www.dtvia.org.cn/
http://www.mhp.org/
http://www.mhp.org/

Table 3.1: Examples of Real-world Standards Organizations and Middleware Standards in Embedded Systems Market continued

Standard type

Standard

General description

Consumer
Electronics

HAVi (Home Audio Video Initiative)

Digital AV home networking software specification for seamless interoperability
among home entertainment products. HAVi has been designed to meet the
particular demands of digital audio and video by defining an operating-system-
neutral middleware that manages multidirectional AV streams, event schedules,
and registries, while providing APIs for the creation of a new generation of software
applications® (www.havi.org)

ISO/IEC 16500 DAVIC (Digital Audio
Visual Council)

Open interfaces and protocols that maximize interoperability, not only across
geographical boundaries but also across diverse of interactive digital audio-visual
applications and services (www.davic.org)

JavaTV

Java-based API for developing interactive TV applications within digital television
receivers. Functionality provided via the JavaTV API includes audio/video streaming,
conditional access, access to in-band/out-of-band data channels, access to service
information, tuner control for channel changing, on-screen graphics control, media
synchronization, and control of the application life-cycle, for example?

(see java.sun.com)

MicrosoftTV

Interactive TV systems software layer that contains middleware that provides a
standard which combines analog TV, digital TV, and internet functionality
(http://www.microsoft.com/tv/default.mspx)

OCAP (OpenCable Application
Forum)

System software, middleware layer that provides a standard that allows for
application portability over different platforms. OCAP is built on the DVB-MHP
Java-based standard, with some modifications and enhancements to MHP
(www.opencable.com)

OpenTV

DVB compliant system software, middleware standard and software for interactive
digital television receivers. Based on the DVB-MHP specification with additional
available enhancements (www.opentv.com)

OSGi (Open Services Gateway
Initiative)

OSGi provides Universal Middleware for service-oriented, component-based
environments across a range of markets (www.osgi.org)

€ 491dvy> 9

http://www.havi.org/
http://www.davic.org/
http://www.microsoft.com/tv/default.mspx
http://www.opencable.com/
http://www.opentv.com/
http://www.osgi.org/

Table 3.1: Examples of Real-world Standards Organizations and Middleware Standards in Embedded Systems Market continued

Standard type

Standard

General description

Energy and Oil

AWEA (American Wind Energy
Association)

Organization that develops standards for the USA wind turbine market
(www.awea.org)

International Electrotechnical
Commission (IEC)

One of the world’s leading organizations that prepares and publishes international
standards for all electrical, electronic and related technologies - such as in the wind
turbine generator arena (www.iec.ch)

International Standards Organization
(1sO)

One of the world’s leading organizations that prepares and publishes international
standards for energy and oil systems - such as in the nuclear energy arena
(www.iso.org)

Industrial
Automation and
Control

International Electrotechnical
Commission (IEC)

One of the world’s leading organizations that prepares and publishes international
standards for all electrical, electronic and related technologies - including in
industrial machinery and robotics (www.iec.ch)

International Standards Organization
(1sO)

One of the world’s leading organizations that prepares and publishes international
standards for energy and oil systems - including in industrial machinery and robotics
(www.iso.org)

Object Management Group (OMG)

An international, open membership consortium developing middleware standards
and profiles that are based on the Common Object Request Broker Architecture
(CORBA®) and support a wide variety of industries, including for the field of robotics
via the OMG Robotics Domain Special Interest Group (DSIG) (www.omg.org)

Medical

Department of Commerce, USA -
Office of Microelectronics, Medical
Equipment and Instrumentation

Website that lists the medical device regulatory requirements for various countries
(www.ita.doc.gov/td/mdequip/regulations.html)

Digital Imaging and Communications
in Medicine (DICOM)

Standard for transferring images and data between devices used in the medical
industry (medical.nema.org)

Food and Drug Administration (FDA)
USA

Among other standards, includes US government standards for medical devices,
including class | non-life sustaining, class Il more complex non-life sustaining, and
class Il life sustaining and life support devices (www.fda.gov)

IEEE1073 Medical Device
Communications

Standard for medical device communication for plug-and-play interoperability for
point-of-care/acute care environments (www.ieee1073.0rg)

Medical Devices Directive (EU)

Standards for medical devices for EU states for various classes of devices

(europa.eu.int)

(continued)

SWiagsAs pappaquig ul spippupis pup aipmajppiN

s9

http://www.awea.org/
http://www.iec.ch/
http://www.iso.org/
http://www.iec.ch/
http://www.iso.org/
http://www.omg.org/
http://www.ita.doc.gov/td/mdequip/regulations.html
http://www.fda.gov/
http://www.ieee1073.org/

Table 3.1: Examples of Real-world Standards Organizations and Middleware Standards in Embedded Systems Market continued

Standard type

Standard

General description

Networking and
Communication

Cellular

Networking standards implemented for cellular phones (www.cdg.org and www.
tiaonline.org)

IP (Internet Protocol)

OSI Network layer protocol implemented within various network devices based on
RFC 791 (www.fags.org/rfcs)

TCP (Transport Control Protocol)

OSl Transport layer protocol implemented within various network devices based on
RFC 793 (www.fags.org/rfcs)

Bluetooth

Standards developed by the Bluetooth Special Interest Group (SIG) which allows
for developing applications and services that are interactive via interoperable radio
modules and data communication protocols (www.bluetooth.org)

UDP (User Datagram Protocol)

OSI Transport layer protocol implemented within various network devices based on
RFC 768 (www.fags.org/rfcs)

HTTP (Hypertext Transfer Protocol)

A WWW (world wide web) standard defined via a number of RFC (request for
comments), such as RFC2616, 2016, 2069 to name a few (www.w3c.org/Protocols/

Specs.html)

DCE (Distributed Computing
Environment)

Defined by the Open Group, the Distributed Computing Environment is a framework
that includes RPC (remote procedure call), various services (naming, time,
authentication), and a file system to name a few (http://www.opengroup.org/dce/)

SOAP (Simple Object Access Protocol)

WWW Consortium specification that defines an XML-based networking protocol
for exchange of information in a decentralized, distributed environment (http://www.

w3.org/TR/soap/)

€ 491dvy> 99

http://www.cdg.org%20and%20www.tiaonline.org/
http://www.cdg.org%20and%20www.tiaonline.org/
http://www.faqs.org/rfcs
http://www.faqs.org/rfcs
http://www.bluetooth.org/
http://www.faqs.org/rfcs
http://www.w3c.org/Protocols/Specs.html
http://www.w3c.org/Protocols/Specs.html
http://www.opengroup.org/dce/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/

Table 3.1: Examples of Real-world Standards Organizations and Middleware Standards in Embedded Systems Market continued

Standard type

Standard

General description

General Purpose

Networking and Communication
Standards

TCP, Bluetooth, IP, etc.

C# and .NET Compact Framework

Microsoft-based standard and middleware system for portable application
development. Evolution of COM (www.microsoft.com)

HTML (Hyper Text Markup Language)

A WWW (world wide web) standard for a scripting language processed by an
interpreter on the device (www.w3c.org)

Java and the Java Virtual Machine

Various standards and middleware systems from Sun Microsystems targeted for
application development in different types of embedded devices (java.sun.com)
Personal Java (pJava)

Embedded Java, Java 2 Micro Edition (J2ME)

The Real Time Specification for Java

From J Consortium

Real Time Core Specification

SSL (Secure Socket Layer) 128-bit
encryption

Security standard providing data encryption, server authentication, and message
integrity, for example for a TCP/IP-based device (wp.netscape.com)

Filesystem Hierarchy Standard

Standard that defines a file system directory structure hierarchy (http://www.
linuxfoundation.org/)

COM (Component Object Model)

Originally from Microsoft, a standard that allows for interprocess communication
and dynamic object creation independent of underlying hardware and system
software

DCOM (Distributed COM)

Based on DCE-RPC and COM, that allows for interprocess communication and
dynamic object creation across networked devices

SWiagsAs pappaquig ul spippupis pup aipmajppiN

49

http://www.microsoft.com/
http://www.w3c.org/
http://www.linuxfoundation.org/
http://www.linuxfoundation.org/

68 Chapter 3

3.3 The Contribution of Standards to an Embedded System

This section illustrates that to begin the process of demystifying the software within

an embedded device, it is useful to simply derive from the standards what the system
requirements would be and then determine where in the architecture of the embedded device
these components belong. To demonstrate how middleware standards can define some of the
most critical components of an embedded system software design, examples of:

e an operating system standard
* programming language standards
* industry-specific standards

are introduced in the next sections of this chapter.
3.3.1 Why have a POSIX Middleware Layer?

Middleware developers who want the flexibility of porting and utilizing their stack on more
than one embedded operating system commonly take the approach of creating a middleware
layer that abstracts out the operating system APIs commonly used by overlying libraries. These
APIs include process management (i.e., creating and deleting tasks), memory management,
and I/0O management functionality. This middleware layer is implemented by wrapping

an embedded OS’s functions in a common API that overlying software uses instead of the
functions provided by an embedded OS directly. Many off-the-shelf embedded OSs today
support such an abstraction layer called the portable operating system interface (POSIX),
summarized in Table 3.2 and in the real-world implementation of POSIX in Figure 3.2.

Additional custom POSIX wrappers can also be useful to extend and to abstract out device
driver libraries for overlying software layers that need access to managing the hardware
(Figure 3.3). For example, if higher-level middleware and/or application software requires
access to low-level driver Flash routines to read/write data to Flash directly, then POSIX
wrappers can be added to abstract out device driver APIs when porting from one target to
another with vastly different BSPs (and internal functions).

It is also useful when designing to use an embedded operating system that implements

a partitioning protection scheme for mission critical-type devices (such as vxWorks653
shown in Figure 3.4). These types of OSs require that there be some type of middleware
abstraction layer for ‘protected’ partitions that contain software that can access to lower level
drivers directly.

3.3.2 When the Programming Language Impacts the Middleware Layer

Relative to programming languages, standards, and middleware there is not one
programming language that is a perfect fit for all embedded systems designs, and this reality

Table 3.2: Example of POSIX Functionality'?

OS Subsystem Function Definition
Process Threads Functionality to support multiple flows of control within a process. These flows of control are called
Management threads and they share their address space and most of the resources and attributes defined in the
operating system for the owner process. The specific functional areas included in threads support are:
e Thread Management: the creation, control, and termination of multiple flows of control that share a
common address space.
« Synchronization primitives optimized for tightly coupled operation of multiple control flows in a
common, shared address space.
Semaphores A minimum synchronization primitive to serve as a basis for more complex synchronization mechanisms
to be defined by the application program.
Priority scheduling | A performance and determinism improvement facility to allow applications to determine the order in
which threads that are ready to run are granted access to processor resources.
Real-time signal A determinism improvement facility to enable asynchronous signal notifications to an application to be
extension queued without impacting compatibility with the existing signal functions.
Timers A mechanism that can notify a thread when the time as measured by a particular clock has reached or
passed a specific value, or when a specified amount of time has passed.
IPC A functionality enhancement to add a high-performance, deterministic interprocess communication
facility for local communication.
Memory Process memory A performance improvement facility to bind application programs into the high-performance random
Management locking access memory of a computer system. This avoids potential latencies introduced by the operating

system in storing parts of a program that were not recently referenced on secondary memory devices.

Memory mapped
files

A facility to allow applications to access files as part of the address space.

Shared memory
objects

An object that represents memory that can be mapped concurrently into the address space of more
than one process.

I/O Management

Synchronionized
I/O

A determinism and robustness improvement mechanism to enhance the data input and output
mechanisms, so that an application can ensure that the data being manipulated is physically presented
on secondary mass storage devices.

Asynchronous 1/O

A functionality enhancement to allow an application process to queue data input and output
commands with asynchronous notification of completion.

SWiagsAs pappaquig ul spippupis pup aipmajppiN

69

70 Chapter 3

1 posixSclLib

LLLL NAME
posixScLib - POSIX message queue and semaphore system call documentation

1.1.1.2 ROUTINES

pxOpen() - open a POSIX semaphore or message quene (syseall)

paClose() - close a reference to a POSIX semaphore or message queue (syscall)
palnlink() - unlink the name of a POSIX semaphore or message queue (syscall)
paMyReeeive() - receive a message from a POSIX message queue (syseall)
pxMySend() - send o message to a POSIX message queue (syscall)

pasemPost() - post a POSIX semaphore (syscall)

pxSemWait() - wait for a POSIX semaphore (syscall)

pxCil) - control operations on POSIX semaphores and message quenes (syscall)

LLL3 DESCRIPTION

This modul s system call d ion for POSIX ge quene and phore system calls.
2 pxOpen()

2111 NAME

pxOpen() - open a POSIX semaphore or message queue (syscall)
21.1.2 SYNOPSIS
OBRJ_HANDLE pxOpen

PX_OBJ TYPE type,

const char * name,

int mode,

void * attr

)

2113 DESCRIPTION

This routine opens a POSIX object

3 pxClose()

3L NAME
pxClose() - close a reference 1o a POSIX semaphore or message queue (syscall)

3112 SYNOPSIS

int pxClose |(
OBJ_HANDLE handle)

3.1.1.3 DESCRIPTION

This routine closes the specificd fandle 1o the underlying POSIX abject I the handle refers o an unnamed semaphore, then the abjeet is deleed,
pravided no 1ask is blacked on it If tasks are blacked on the phare then this function retums ERROR with EBUSY errno.

Figure 3.2: POSIX Functionality and vxWorks'

www.newnespress.com

Middleware and Standards in Embedded Systems

71

B Diners Pl st Archescare
Direery
£rmaM i i

Clogke & Timers

7

MML

=]

Partition OS5

~

\

Lowe Lewed
Cmvic Criver
Luyer

\

General Driver Library

O Installation, coda that ereates support of a
hardware in the embedded system.

& Uninstall, code for removing the support of
harcemrs in the ambaddad systam

0 Startup, imtialiration code for the hardware
upan resslipawsr-on

4 hutdown, Lermination codw for the hardware
for entering into a power-off state.

& Enable, code for enabling of the hardware,
0 Disable, cads for disabling tha hardwars

o Acquire, eods that provides othar system
software access to the hardware.

O Release, codw thel provides other syslem
sofware the ability to fee the hardwara.

0 Réatl, code that provides ather system
software the abilty o read data from the
hardware,

& Write, code that provides other system
softwars the abilty to writs data to the
hardware.

© Mapping. code for address mapping to and
from the hardware when reading writing,
and/or deleting data.

o 0, code for
blecks of data in m Mm

Module OS

Figure 3.4: vxWorks653 Protected Application within Partitions'®

is reflected by the fact that different languages are used in designing various embedded
systems today. In many real-world embedded devices, more than one programming language

has been utilized.

Typically, it is a fourth-generation or higher type of programming language standard (see
Table 3.3) that can introduce this additional middleware element within an embedded

system’s architecture design. Of course, languages like C, a third-generation language, can

72 Chapter 3

Table 3.3: General Evolution of Programming Languages*

Language Details

5% Generation Natural languages Programming languages similar to conversational
languages typically used for Al (artificial intelligence)
programming and design

4th Generation Very high level (VHLL) and | Very high level languages that are object-oriented, like
non-procedural languages C++, C#, and Java, scripting languages, such as Perl and
HTML - as well as database query languages, like SQL,

for example
34 Generation High-order (HOL) and High-level programming languages with more English-
procedural languages, corresponding phrases. More portable than 2™ and 1%
such as C and Pascal for generation languages
example
274 Generation Assembly language Hardware dependent, representing machine code
1 Generation Machine code Hardware dependent, binary zeros (0s) and ones (1s)

be based on standards such as ANSI C or Kernighan and Ritchie C, for example — but these
types of standards usually do not introduce an additional middleware component when using
a language based on them in an embedded system design.

To support a fourth-generation language like Java within an embedded system, for example,
requires that a JVM (Java virtual machine) reside within the deployed device. As shown in
Figure 3.5a, real-world embedded systems currently contain JVMs in their hardware layer, as
middleware within their system software layer, or within their application layer.

So, where standards make a difference relative to a JVM, for instance, are with the JVM
classes. These classes are compiled libraries of Java byte code, commonly referred to

as Java APIs (application program interfaces). Java APIs are application-independent
libraries provided by the JVM to, among other things, allow programmers to execute system
functions and reuse code. Java applications require the Java API classes, in addition to their
own code, to successfully execute. The size, functionality, and constraints provided by these
APIs differ according to the Java specification they adhere to, but can include memory
management features, graphics support, networking support, and so forth. Different standards
with their corresponding APIs are intended for different families of embedded devices

(see Figure 3.5b).

In the embedded market, recognized embedded Java standards include J Consortium’s Real-
Time Core Specification, and Personal Java (pJava), Embedded Java, Java 2 Micro Edition
(J2ME) and The Real-Time Specification for Java from Sun Microsystems. Figure 3.5¢ shows
the differences between the APIs of two different embedded Java standards.

Middleware and Standards in Embedded Systems 73

Application Layer Application Layer Application Layer
System Software Layer System Software Layer Java Virtual Machine
Java Application
Middleware

Java Virtual Machine

Operating System Middleware System Software Layer
: Operating System Middleware
JVM Processor Support
Device Drivers Device Driver Layer Operating System

Device Driver Layer
Hardware Layer
Java Processor
Hardware Layver Hardware Layer
Figure 3.5a: JVMs in an Embedded System
: \ /- : :
])] "
L} i]
" " , u
"] F L]
Ll " L]
L} 1] L]
1 1 L]
" ™] (]
' L " i .
Ll 1 L]
ol 3 T S — 1
' Fobotic = 1 Cell Phone "
1 Set-Top Box ! .
1l 1l L]
Al Ll L]
Java 2 Micro Edition

C | Device Conlig 1on (CDC) | Connected Limited Device Configuration (CLDC) Il

-
CVM (Larger JVM based on “C" for Compact) | KVM (Smaller IVM hased on “K* for Kilo)

3 kB RAMI

TOMBRAM oo osss s sh et b i S sl 161
64-bit Architecture Architecmire

Figure 3.5b: J2ME Devices'

For another fourth-generation language, C#, regarding supporting of its usage on an
embedded WinCE device — Microsoft, for example, supplies a .NET Compact Framework
(see Figure 3.6) to be included in the middleware layer of an embedded system similar to
the manner in which a JVM can be integrated into an embedded device’s system software
layer.

www.newnespress.com

74 Chapter 3

plava JVM APIs ~
Javajo Javamath Java security
{Supports inputioutput streaming) (For integer and Moating point athmetic) (Manages Java application and VM sécurity)
Javaapplet Javanet Javasql
(Java program usually running in browser) {Networking protocols) (Implements Java database connectivity [JDBCT)
> Java APls
Javaawt Javarmi Javatent
{Abstract Windowing Toolkit for graphics) iRemote method Invocation) {For internationalization
Javalang Javounil Java beans
(lava language components) (Generl-parpose otilities) (Framework 1o creale reusable, embeddable,
modular software components}
-~
JI2ME JVM
Javaio Javax microedition ledui
(Supy inputfoutput (User interface)

Java microedition rms
(Mobile information device peofile for MIDlets

U
U .
J

Java lang
(Java language components)

Javaul
(General-purpose utilities)

Java microedition midle
(Defines mobile information device profile
applications and related functions)

Java.microedition.io
(Networking protocols)

— N

Javaio
(Additional ing I ing libraries)

CLDC APIs | Java lang

(Add 1 Java languag I J

MIDP APls

Figure 3.5c: pJava versus J2ME Sample APIsl>"]

3.4 Market-specific Middleware and the MHP (Multimedia Home
Platform) Standard Example

In complex embedded devices, such as the digital television (DTV) receiver shown in Figure
3.7 for example, several standards serve to define what components will be residing within
the middleware software stack. While there are several types of DTV receivers on the market
today, from enhanced broadcast receivers that provide traditional broadcast television to
interactive broadcast receivers providing services including video-on-demand, web browsing,
and email, a DTV receiver serves as a good example of an embedded system that can require
some subset of multiple general-purpose and market-specific standards (see Table 3.4) and
how these standards can be used to derive what components are required within the device.

Analog TVs process incoming analog signals of traditional TV video and audio content,
whereas digital TVs (DTVs) process both incoming analog and digital signals of TV video/
audio content, as well as application data content that is embedded within the entire digital
data stream (a process called data broadcasting or data casting). This application data can

Middleware and Standards in Embedded Systems

75

| Application Layer

Application Layer

i MSIL Application Classes £

Systemn Software Layer

Execution |

Just-in-Time (JIT)
Execution Cngine

........... ol Garbage Callector

NET Compact Framework

L 4

v

System Software Layer

[xecution Engine

v

| WinCE Operating System ‘ ‘ Embedded Operating System |
i Device Driver Layer ‘ ‘ Device Driver Layer |
Hardware Layer Hardware Layer

Figure 3.6: NET Compact Framework vs. Java Virtual Machine in an Embedded System

either be unrelated to the video/audio TV content (non-coupled), related to video/audio TV
content in terms of content but not in time (loosely coupled), or entirely synchronized with

TV audio/video (tightly coupled).

The type of application data embedded is dependent on the capabilities of the DTV receiver
itself. While there are a wide variety of DTV receivers, most fall under one of three categories:

e enhanced broadcast receivers, which provide traditional broadcast TV enhanced with
graphics controlled by the broadcast programming

* interactive broadcast receivers, capable of providing e-commerce, video-on-demand,
email, and so on through a return channel on top of ‘enhanced’ broadcasting

* multinetwork receivers that include internet and local telephony functionality on top of

interactive broadcast functionality.

www.newnespress.com

76 Chapter 3

Application Layer

DTV Middleware Layer

OCAP

DASE ARIB- ATVEF Microsoft MHP
BML TV
DTVIA 056 Open
o . -
¥ HAVI Tova DAVIC DVE
™V
M
TCP unr

Embedded Operating System

Device Driver Layer

System Sofiware Layer

Hardware Layer

Figure 3.7: DTV Receiver Example of Several Middleware Standards

Depending on the type of receiver, DTVs can implement general-purpose, market-specific,
and/or application-specific standards all into one DTV/set-top box (STB) system architecture
design (shown in Table 3.4). These standards then can define several of the major components
that are implemented in all layers of the DTV Embedded Systems Model, as shown in Figure
3.7. The Digital Video Broadcasting (DVB) — Multimedia Home Platform (MHP) platform is
one example of real-world market-specific middleware software that is targeted for the DTV
embedded systems market, and used as the real-world example in this chapter.

MHP is a Java-based middleware solution based upon the Digital Video Broadcasting
(DVB) — Multimedia Home Platform (MHP) Specification. MHP implementations in digital
television are a powerful example to learn from when designing or using just about any

Middleware and Standards in Embedded Systems

77

Table 3.4: Examples of Digital Television (DTV) Receiver Standards

Standard Type

Standards

Market Specific

ATVEF (Advanced Television Enhancement Forum)

ATSC (Advanced Television Standards Committee)/DASE (Digital TV
Applications Software Environment)

ARIB-BML (Association of Radio Industries and Business of Japan)

DAVIC (Digital Audio Video Council)

DTVIA (Digital Television Industrial Alliance of China)

DVB (Digital Video Broadcasting)/MHP (Multimedia Home Platform)

HAVi (Home Audio Video Interoperability)

JavaTV

MicrosoftTV

OCAP (OpenLabs Opencable Application Platform)

OSGi (Open Services Gateway Initiative)

OpenTV

General Purpose

Java

Networking (TCP/IP over terrestrial, cable, and satellite, for example)

market-specific middleware solution, because it incorporates many complex concepts and

challenges that must be addressed in its approach.

3.4.1 Initial Steps: Understanding Underlying MHP System Requirements

In general, as shown in Figure 3.8, hardware boards that support MHP include:

* Master processor

e Memory subsystem
* System buses

* I/O subsystem

* tuner/demodulator

* de-multiplexer

e decoders/encoders
e graphics processor
° communication interface/modem
* Conditional Access (CA) module
* aremote control receiver module.

Of course, there can be additional components, and these components will differ in design

from board to board, but these elements are generally what are found on most boards targeted

78 Chapter 3

= Remote
Keypad) Antenna Control
T Wireless LED @ -1
- Sterec Line In
o -1 8
.lnl.-rlrl 1 m’ & 3 = R R
m uE g -] ﬂ || Stereo Spesker
cae E 2 Pl vt s il
Satellite
He 12¢ ; » i) stereo Speaker
RS & | ——
NTSC PO Intarface commms - —— Cable
e 5}
SECAM Vides Timing TR
CVBS E Port
S-VIDED]
31 | i > ®-wrsc
¥YPiPb H g o) — PAL
oY © $-Video
k 3 * & - varch
(=]
+ Timing Source Drivers
Control E
=
I LED Display
%
2
COFL Backlight Unit
RF/Tuner DsP Analeg/Digital
Analag Supply Microcontroller vo
Plug o= e
=0 | Acocsely | | w00 o \ M.wm _ Controller l-& LEGEND
A " - ' - . & Processor
aSsin LED Lco CCFL Backlight 60 interface
Unit Main Supply E e
[mascpennin) 3 . o Logic
; 3 ADC/DAC
Clocks
Power Management B Other
—_

Figure 3.8: Texas Instruments DTV Block Diagram 3!

for this market. MHP and associated system software APIs typically require a minimum of
16 MB of RAM, 8-16 MB of Flash, and depending on how the JVM and OS are implemented
and integrated can require a 150-250+ MHz CPU to run in a practical manner. Keep in

mind that depending on the type of applications that will be run over the system software
stack, memory and processing power requirements for these applications need to be taken
into consideration, thus they may require a change to this ‘minimum’ baseline memory and
processing power requirements for running MHP.

The flow of video data originates with some type of input source. As shown in Figure 3.9,
in the case of an analog video input source, for example, each is routed to the analog video
decoder. The decoder then selects one of three active inputs and quantizes the video signal,
which is then sent to some type of MPEG-2 subsystem. An MPEG-2 decoder is responsible

www.newnespress.com

Middleware and Standards in Embedded Systems 79

Analog Drigital Analog

t

Lumag ———p
S-Video
Chroma —p

Video MPEG-2 Video
Decoder Decoder Encoder : ,
Composile ™ —» —» Filter ——» Video Out
Video —_—
NIM Video —_—

Analog Tuner ’ I

Figure 3.9: Example of Video Data Path in DTV

for processing the video data received to allow for either standard-definition or high-definition
output. In the case of standard-definition video output, it is encoded as either S-video

or composite video using an external video encoder. No further encoding or decoding is
typically done to the high-definition output coming directly from the MPEG-2 subsystem.

The flow of transport data originating from some type of input source is passed to the
MPEG-2 decoder subsystem (see Figure 3.10). The output information from this can be
processed and displayed.

In the case of audio data flow it originates at some type of analog source such as the analog audio
input sources shown in Figure 3.11. The MPEG-2 subsystem receives analog data from the A/D
converters that translated the incoming analog sources. Audio data can be merged with other data,
or transmitted as-is to D/A converters to be then routed to some type of audio output ports.

MPEG Decoder Transport In
Hard NIM Module
Disk

DTV-MIIP Board

Figure 3.10: Example of Transport Data Path in DTV

80 Chapter 3

Analog Digital Analog
; L A
Audiom R ——p D/A _ Filler ~—— Audio Oul
Audioln[. ——» AD
MPEG-2
Desoiss /A Filter —— Audio Out
NIMAuwdR — —
NIMAuwdL — p AD | _
DIA Filter —— Audio Out

Analog Tuner | I

e

Figure 3.11: Example of Audio Data Path in DTV

An MHP hardware subsystem will then require some combination of device driver libraries
to be developed, tested, and verified within the context of the overlying MHP compliant
software platform. Like the hardware, these low-level device drivers generally will fall under
general master processor-related device drivers (see Figure 3.12), memory and bus device
drivers (see Figure 3.13), and I/O subsystem drivers.

Evomple of ClockTimer Drivers Exvample of Interrupt Controfler Drivers
enableClock. for enabling system clock inerrupis initiliazelnterrup ller, interrupt lerinitialization. — §
disableClock, for disabling system clock interrupts, endOflnterrupt, for sending an EOlend of interrupt) signal af the
refurnClockRate, for returning the interrupt rte of the system clock (number of ticks per emnd of the miterrupt handler.
second), lisablel piC ller, for disabling a specified intermupt
connectClock. for specifying the interrupt handler ealled m each system clock interrupt. level
handleClockinterrupt. for calling routines that handle the system clock interrupt enablelnterruptController, for enabling o specified mterrupt level
enableTimestampEnable, for resetng the counter and enablung tumestamp timer returninteruptLevel, for returmng an iterrupt level i service
interrupis, [rom some type of miermupt service regisien
disableT p. for disabling p timer i P InekInterrupt, for saving the mask and locking out interrupt
connect Timestamp, for specifving which user interrupt routine is called with cach controller intermupts
timestamp timer mterropt, unlocklnterrupt, for restorimg the mask and unlocking miermupt
timestampPeriod, lor returning the tmestamp tmer period (ticks) conueller iterrupts
ey, for ing the timer’s freque ney (ticks per second)

cnrmanimﬂthp.‘l'ﬂ' returning the current value of the timestamp timer tick counter.
lockTimestamp, for stopping/reading the timer tck counter and locking mterrupts

Master-specific Architecture Hardware Layer

Clocks! Memory Subsystem Interrupt
Timers Handlig

Cache MMU Memory

Figure 3.12: Example of General Architecture Device Drivers on MHP Platform

www.newnespress.com

Middleware and Standards in Embedded Systems 81

Example of Flash Drivers Example of PCT Drivers
returnFlash Type, returns the device type of flash memory peiRegisterWrite, to write data to the PCT memory apace o "
eraseFlash, crases the contents of Nash memory peiRegister Read, to read data from the PUL memory space.
eraseFlashSector, erases the contents of a flash memory sector peiControllerPowerOn , 1o initialize PCT devices/controller during power on/ resets.
MashWrite, wnics data to [lash memory peiController Power Ol 1o conligure the PCT dovices'controller to power ol
MashSector Write, writes data 1o a [lash memory sector peiControllerSetType, scarches lor types of cards present on the bus,
poliFlash, polls flash address waiting for the operation to complete peiControllerFind, searches for o card.
of time out peiControllerInitilization, mitializes the PCI controller.
e peiDevicelnitializtion, inivalizes devices 1 1o PCT bus,
peiDeviceEnable, 1o enable a device connected 1o PCT bus
peiDeviceDisable, to disable device connected to PCI bus.

Memory and Bus Hardware Layer

Memory Subsystem

12e PCl

H i
) i

Flash § | SDRAM | ! D

Figure 3.13: Example of Memory and Bus Device Drivers on MHP Platform

The 1/O subsystem drivers include Ethernet, keyboard/mouse, video subsystem, and audio
subsystem drivers to name a few. Figures 3.14a—c show a few examples of MHP 1/O
subsystem device drivers.

Because MHP is Java-based, as the previous section of this chapter indicated and shown in
Figure 3.15, a Java Virtual Machine (JVM) and ported operating system must then reside
on the embedded system that implements an MHP stack and underlie this MHP stack. This
JVM must meet the Java API specification required by the particular MHP implementation,
meaning the underlying Java functions that the MHP implementation calls down for must
reside in some form in the JVM that the platform supports.

Example of Ethernet Drivers Evample of Keybourd Mouse Drivers
loadEthernetCard, initializes the Ethernet driver and the device petKMEvent, reads keyboard or mouse events from quenc,
unleadEthernetCard, removes the Ethernet diver and the device, putKMEvent, puts kevboard or mouse events onlo gqueue,
initializeEthernetMemory, initializes required memory. processMouse, tkes mouse input and p ent in quene

start EthernetCard, starts the device as running and enables related iterrupis findMouseMave, finds a mouse move event i the quene
stopEthernetCard, shuts down device and disables interrupts,
restartEthernetCard, restants a stopped device after cleaning up the receive/transmit queves.
parseEthernetCardinput, parscs the mput string (o retnicve data,
transmitEthernetData, transmits data over Ethernet
Receive, p i ing data over Ethemnet.

General 10 Hardware Layer

Seal § i Keyboad | I Mouse

Figure 3.14a: Example of MHP General 1/O Device Drivers

82

Chapter 3

FastFor IVides, ling over) dmdnuol‘"n“ frames,
sl MPEG2Viden, repeats decoding frames

5 e A e i e e e
: Digital Video Subsystem
]
I
]
I
]
] Digital MPEG-2 Video Decoder Dhsplay
1 Video Processar
: Fncoder
i NIM BRI Direct
: 3 Transport
]
I

Example of MPEG-2 Video Decoder Drivers

apenMPEG2Video, opent a MPEG2 video deviee for use
loseMPEGIVideo, closes a MPEG video devies.
write MPEGViden, writes data 1o MPY conirol regrstens
resd MPEG2Vidon, reads (e status registers of the MPEGD devoder
selectMPEGISource, nmsmits inpul source 10 the mpep decoder,
iden, stops the current video stream.
start MPEG2Vidden, starts playing video strcam
Treeae MPEG2Video, frocaes video dream being played.
restart MPEG2Video, restants frozen video stream.

Example of NTSC Video Decoder Drivers

[NTSCDecoder. initializes decoder control POWET o OF fesel
Mwmm wconfigures the dovoiker inio powsr off stme,
oonfigure N TSCDecnder, confipures the decoders control register fields.
slatus ReturnNTSCDecader, returns the decoder’s status |-:.gull¢(walues
caleulatePieture NTSC, l\:vjsm
caleulateCalor NTSC, calculates colur valwand trunsmits o control register
cabenlate HueNTSC, caloulstes hue vabie and transmits b control register.

Ilank MPEG2Viden, blanking oul vadon
ld\vl['F.t"ﬂ"allI acit the video formal.

Video 10 Hardware Layer

PALNTSE

Vidon Decader

PALNTSI

LD
Diisplay
Controller

Analog i g
Thamer Thermax i H

Figure 3.14b: Example of MHP Video 1/O Device Drivers

Example of MPEG2 Andio Drivers

apenMPEG2audio, opens an MPEG2 andio deviee for use.
closeMPEG2ZAudio, closes an MPEG2 audio devive,
soureeMPEG2Audio, ransmits audio inpur dat source 10 MPEG2 audio
decoder.
writeMPEG2Audiv, ransmits data o MPEG2 audio decoder’s control
Tegislers
read MPEG2Audio, reads the values of the status registers of the MPEG2
audio decoder
stopMPEG2Audio, instructs decoder 1o stop playing the current audio siream,
playMPEG2Aundio, mnstructs decoder to start plaving an audio stream from an
NpuL seuTce,
pauseMPEG2Audio, instruets decoder 1o pause (frecze) in playing the current
audio stream.
muteMPEG2Audio, mutes the sound of an audio stream currently playing.
setChan 2Andio, sclecis a specific audio channcl
setVSyneMPEG2ZAudio, mstructs the audio decoder how to set AV

Example of Amatog Audio Controller Drivers

powerONAudio , initializes an audio ‘s control reg ar powier
on'reset
powerOFFAudio , configures the audio processor’s comirel registers 1o
power off state

seml IhIIAIIdh 1nmam|ln data o control register fichds in audio processor.
Ieulates volume using the audio volume
equation and user “volume™ configuranion and transmits the value to the
audio processor’s “volume” control register licld.
calculateToneAudio, caleulates bass and reble tone using the audio tone
equations and user “hass™ or “treble” configuration and transmits the value
T the audio processor’s control register bass and treble Delds.
surroundONAudio, enables the stereo 1 using user confi
and transmits the value to the processor’s control register related sterco
surround [eld
surroundQFFAudio | disables the stereo surround using user configumtion
and transouits the value to the processor'’s control register related stereo

synchronization. sirsound fHald
Digital and Analog Audio 10 Hardware Layer
g Audio Receiver Audio Andio External Tuner
o AD D/A Audio s
Convert Couvert luputs

Figure 3.14c: Example of MHP Audio 1/O Device Drivers

www.newnespress.com

Middleware and Standards in Embedded Systems

83

T e S == = i e e ="
1 ongdavic” : | onehavi.® : : orgdvb® ! 1 javax.media.® : L T :
T (1R 1 I : __________ h] :._ S
OpenMHP
| e b e e s e e e e e e e e |
1 APls 1
1 1
I 1
: javaawt javaio java lang javanet :
1 1
[l 1
L ¥ S}r‘r‘tem Software Layer
Fmmmmmm——mm mmm—m——e————on
: Class Loader I : Execution Engine Java Virtual Machine
b - I mmm -
TCP LDe
14
PRP
Embedded Operating System (kernel)

Modem Smart Card Audio Video Keyboard Ethernet

Driver Driver Drivers Drivers & Mouse Driver

Drivers
Hardware Layer
Vag Smart Card Audio Video Keyboard Ethernet
i Subsystem Subsystem & Mouse

Figure 3.15: MHP-based System Architecture

The open source example, openMHP, shows how some JVM APIs in its implementation,
such as the org.havi.ui library translate, into source code in this particular package

(see Figure 3.16).

3.4.2 Understanding MHP Components, MHP Services,

and Building Applications

As shown in Figure 3.17, the MHP standard is made up of a number of different sub-standards
which contribute to the APIs, including:

84 Chapter 3

package org.dvb.uis

/* Copyright 2000-2003 by HAV, Inc. Java is a trademark of Sun Microsystems, Inc, All nghts reserved. This program is free soflwane; you can redistribute il and'or modily

* it under the terms of the GNU General Public License as published by the Free Software Foundation; cither version 2 of the License, or (s your option) any Liter version.

* This program is distributed m the bope that it will be uselul, but WITHOUT ANY WARRANTY, without even the implicd warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE, Sev the GNU General Public License for more details,

* You should have received 4 copy of the GNTI General Public License along with this program ; if not, write to the Free Software Foundation, Ine., 59 Temple Place, Snite 330,
* Boston, MA 021111307 USA */

import java.awt.Graphics2D;

import jove.awt.Graphics;

import java.awt.Dimension:

import javax.media. Clock;

import javax. media. Time;

import javax media. Incompatible Time Baselxception :

/4% A <gode-Bullered Animation="gode== is an AWT component that maintains a queve of one or more image bullers, This permits eMcient Micker-free animation by allowing a
* caller to draw to an off-sereen bufier, which the system then copics to the framebufler in coordination with the video output subsydtem. This elass also allows an application

* 1o request a series of bufTers, so that it can get a small number of Trames alead in o animation. This allows an application o be robust in the presence of short delays, e.g. from
* garbage collection. A relatively small number of buffers is m:ﬂmmcndcd. perhaps three or four. A BufferedAnimation with one butter provides lintle or no protection
® [rom pauses, bul does provide double-bullered animation. ... **/

public class BufferedAnimation extends javaawt.Component |

e
* Conatant rey ing videw fi PProxi Ty 23.98 frames per second, and equal to <code=2400007 1001 F=feode=
-

* (alsee Mgetlramerate()

* @see fsetFramerate((loat)

-

static public Mloal FRAME 23 98 < 2400010011,

Bl

* Constant Ing i video equal to <code~241=/code~,
-

* e HgetFrumernte()
* @see HsetFramerate(float)

static public float FRAME 24 = 24f;
.

* Constant
.

T ing A videw equal lo <gode=25</vode,

* {asee #getFramenated)

* @osee fsetFromente(foat)

.y

static public floal FRAME 25 = 250
e

* Constant representing a common video framerate, approximately 29.97 frames per second, and equal to<code=300000'1001 f</code==,

* fulsee #getbramerate])
* f@see FsetFrimemted{float)

s

static public float FRAME_29_97 - 30000010015

.
* Consunt rey ing a video 1 equal 1o <code=S0f</code=,
.

* (@see figeFramerated)

* gsee FsetFromerte(foat)
.

static public float FRAME_50 - 501

-
* Constant re ing i video [T pprosimately $9.94 frames per second, and equal to=code=60000071001 (</cod ¢,
* see HgetFramenatel)

* @see fisetFramerate(float)
-

static public loat FRAME 59 94 = 50.94(;

Figure 3.16: openMHP org.havi.ui Source Example'®

www.newnespress.com

Middleware and Standards in Embedded Systems 85

[
javax.media* 1]
! Decoder Extended Graphics
E“gins " Sysm
e i

1
_________ L
CA Preferences Persistent Storage Interface .
eainy
1

-------- 1
orp.davie.* E SI/AIT Parser Demux Applieation Manager

e .. =ams Data/Object Tuner Resource Manager
org.havi.* ! Carousel Decoder -
|

e ! Return Channel
rg.dvb. A » : Streamed Media Networking
---------] Controller

Figure 3.17: MHP APIs

Core MHP (varies between implementations)

DSMCC
BIOP
Security

HAVi Ul

HAVi Level 2 User Interface (org.havi.ui)
HAVi Level 2 User Interface Event (org.havi.ui.event)

DVB

Application Listing and Launching (org.dvb.application)
Broadcast Transport Protocol Access (org.dvb.dsmcc)
DVB-J Events (org.dvb.event)

Inter-application Communication (org.dvb.io.ixc)
DVB-J Persistent Storage (org.dvb.io.persistent)

DVB-J Fundamental (org.dvb.lang)

Streamed Media API Extensions (org.dvb.media)
Datagram Socket Buffer Control (org.dvb.net)
Permissions (org.dvb.net.ca and org.dvb.net.tuning)
DVB-J Return Connection Channel Management (org.dvb.net.rc)
Service Information Access (org.dvb.si)

Test Support (org.dvb.test)

Extended Graphics (org.dvb.ui)

User Settings and Preferences (org.dvb.user)

www.newnespress.com

86 Chapter 3

e JavaTV

* DAVIC

e Return Path

e Application Management

* Resource Management

e Security

* Persistent Storage

* User Preferences

* Graphics and Windowing System

* DSM-CC Object and Data Carousel Decoder

* SI Parser

e Tuning, MPEG Section Filter

* Streaming Media Control

* Return Channel Networking

* Application Manager and Resource Manager Implementation
* Persistent Storage Control

* Conditional Access support and Security Policy Management
e User Preference Implementations.

Within the MHP world, content of the end-user of the system it interacts with is grouped
and managed as services. Content that makes up a service can fall under several different
types, such as applications, service information, and data/audio/video streams to name a
few. In addition to platform-specific requirements and end-user preferences, the different
types of content in services are used to manage data. For example, when a digital TV allows
support for more than one type of different video stream, service information can be used to
determine which stream actually gets displayed.

MHP applications can range from browsers to email to games to EPGs (electronic program
guides) to advertisements, to name a few. At the general level, all these different types of
MHP applications will typically fall under one of three general types of profile:

* Enhanced broadcasting, where the digital broadcast contains a combination of audio
services, video services, and executable applications to allow end-users to interact with
the system locally

» Interactive broadcasting, where the digital broadcast contains a combination of audio
services, video services, executable applications, as well as interactive services and channels
that allow end-users to interact with residing applications remotely to their digital TV device

* Internet access, where the system implements functionality that allows access to the internet.

An important note is that while MHP is Java-based, the MHP DVB-J type of applications
are not regular Java applications, but are executed within the context of a Java servlet (Xlet)
similar to the concept behind the Java applet. MHP applications communicate and interact
with their external environment via the Xlet context. For example, Figures 3.18a and 3.18b

Middleware and Standards in Embedded Systems 87

Multimedia Home Flatform (MHEF)

JavaTV APls :
I
Caronsel Ciraphica Lacator Titilities Bervice Navigation :
1
1
I
Medin/Media Protocol Networkang Service Service Guide]
|
I
. !
: : ; B Z
=== Tl == = = ey Serviet Service Transport Service Selection i
I HAVIAPE | 1 IVBAPE | 1 DAVICAPEE : s |
1 !)

Java Virtual Machine (1VM)

e 1 PR e e b Tt T LT [T |
I Math ! 1 Craphice | 1 Nemworking § 1 Langunage | | Secumity | | Dambase
o A BRI (L5 T i VO (IR g R '
Femmmmy pemsmesm—m—en Femm————
1] 1y Text Formatting Remaote Method Tnvocation 1 Ima Beans
1 1]]
)
e mmmmmmmmmmmmmm =] mmmmmmme e ————

B T I T L

Operating System Kemel

1 I i
\ Process Managernent | 1 Memory Managensent : P10 Systew Managenent |

--------------I l—-----n----—l -

P e T

(Video Subsystem) Display Drivers

I
' |
I
T et I = N !
1 Memory I v ASIC 1, Universal Graphics Layer |
! Subsystem i ' Drivers ! !
P Drwen 1 Drisers 1 o ! !]
: Sealer De-interlar :
]]
I I
] I
1 Thisplay Controller :
)
| 1
Devioe Dinvers T e |
1 Aundio : Memary : (Video Subaysten) Display
I Suhaysem Suhsystem Controller
! 1
L N [| [P e -———————- -—-———

Figure 3.18a: Simple Xlet Flow Example™

www.newnespress.com

88 Chapter 3

import javax. tvxler*;

£ The men class of every MHP Xlet must implement thus interface
public ¢lass Xlethxample implements javaxs.tv.xlet. Xlat

A Every Xlet has an Xlet context, created by the MHP middleware and passed i to the Xlet as a parmuneter to the imnitXlew) method.
private javax v xlet XletContext context;

i A private field to hold the current state. This iz needed because the startXlet() method 12 called both start the Xlet for the first time and al2o to make the Xlet resume from /'
the paused state. This filed lets us keep track of whether we're starting for the first time.
private boolean hasBeenStrted;

Every Xlet should have a default constrictor that takes no arguments. The constrietor should contain nothing. Any initialization should be done in the initXlet) methad, 1/
or in the strtXlet method ifit's tme- or resource-intensive. That way, the MHP middleware can control when the initi on happens in s much more prediciable way

I lizing the Xlet.

public XletExample()

// s1ore a reference to the Xlet context that the Xlet is executing in this .context = context;
public void mtXlet{javax.tv.xlet. XletContext context) throws javax.tv.xlet XletState ChangeException

#°The Xlet has not yel been started for the first time, so set Uus vanable to false,
hasBeenStarted = false;

#f Start the Xlet. At this point the Xlet can display itself on the screen and start interacting with the user, or do any resource-intensive tasks.
public vord startXlei() throws javax.iv.xlet XletStateChangeException
1

if (hasBeenStarted)
i

System.out.println (" The startXlet() method has been called to resume the Xlet after it's been paused. Hello again, world!");
i

else

i1

System.out. priniin(“The starcXlet() method has been called to swrt the Xlet for the first time. Hello, world!™);

/' set the variable that tells us we have actually been started
hasBeenStarted = true;

]

}

A Pause the Xlet and free any scarce resources that it's using, stop any unneeessary threads and remove itsel§ from the sereen,
public void pauseXlet()

System.out. printlng" The pauseXlet j method has been called. to pause the Xiet. "),
|

1 Srop the Xlet.
public void destroyXlet{bool di 1) throws javax.iv.xl et XletStateChange Exception

il (unconditional)

!‘iyslm.wl.prinllni"l'[w destroyXlet() method has been called to unconditionally destroy the Xlet™ "),

311:«:

!‘\'ym'ul,wl,plillﬂnf"lhu destroyXlet() method has been called requesting that the Xlet stop, but giving it the choice, Not Stopping.”)
throw new XletStateChange Exception{”Xlet Mot Stopped”);

'.‘l

**apphication example based upon MHP epen source by Steven Morms available for d 1 at www.i etvwebone

Figure 3.18b: Simple Xlet Source Example'?

www.newnespress.com

Middleware and Standards in Embedded Systems 89

Mitltimedia omie Plafonm (M)
P S R e T S A T et I e ey U R e R]
" JweaTV APTs 1
e ——————] I
] HAVI APls : { Carpusel Uraptics Locator Lhilities Service Navigation :
: I | !
| Level2 U1 | ' :
! { MediaMedla Protocel Networking Service Service Guide 1l
I
I ! I
1
I
I Level2 Ul Hlaegeae wodaas ' i
; i ! : VB : : DAVIC : 1 Serviet Service Transpot Service Sebection 4
| (5 AP (B, APy [- :
I 1
b e L p - - e e 1
R e i P e e e e e e e i
1 MHP Core APLs 1
B e e o e Al [e e e g e BN (. I

7 o w2y e e i
1 Process Management | 1 Memory Management : : 10 Sydem Management "
_____________ e e i

i
PP TS ———
1 (VideoSubsystem) Display Drivers |
]
e —— 1 e, ol i, 7 IR !
i Audio 1 Memory L1 ASIE niversal Graghics Layer I
i Submystem Vo) Subsystem y 1 Drivers o :
| Drvers 1 Drtvers P il]
——————— LRt e, | H
1 Scaler The-inter kacer 1
] 1
I [}
1
: Displiy Controllér N
1
I
Device Drivers I]
R T - O b A | e oo i 3
y Auwdio 1 Memory) e '[(Video Subsystem) Display
Subsystem) Subsystem - Controller
! P! —t SIC o

Figure 3.19a: Simple MHP HAVi Xlet Flow Example

show an application example where a simple Xlet is created, initialized, and can be paused or
destroyed via an MHP Java TV API package ‘javax.tv.xlet’.

The next example shown in Figures 3.19a and 3.19b is a sample application which uses the

e JVM packages java.io, java.awt, and java.awt.event
e MHP Java TV API package ‘javax.tv.xlet’

90 Chapter 3

mwuwmmwm
g -—ll-‘lﬂ'fl-ﬂ-'!r-l-—
vagmal o b :-'\'nl-l o |

Vi m el BEHF CFH packogs
gt g i 4

Vi Wﬂd“mﬂﬁrﬁﬁﬂ

o Tem Sk il b el o poworms, v e cvirpd g S i Howngpone i nd v el prporsces prove LS ey nsicreoy o o
~ form thing = m ey Foel g B g Ak
EhlE o AL e ek i B

 Fawi i Skl
bl vobd oS n s e | e recie Nk wieCh g s ogprdons
£

o il b whowid e bl for b by
m‘lh:'?bwﬂ-—']hml-m
;ul'lh'-ﬂ'_d.l-l]:

BLT T
pablic vobd pu s ke
£

& ookl s el e e pamie e K
dn b
]

el e Wi

pebbn wrad devireplci bt macwsl frw | deres o osied ¥ oS agrEerpies
:I.r|-nld.hnnl|

1

o Lol i m ol T it

dnlerinny

I

1=

|

¢ Cowdboom] Toruatics

o sy Neferes g D opdond™ hrmindm o Fag e 1
1

I

' Beioe v ca e vl cwam, g nd o H S e ke s, The e ool ke b o welieoncs w e Blaors
pirrik B e

 Her wuage i we B b
previc e rege

T e il g gt il T s o e e o it K
FreTe Seng g

o thes ekl B alpba T rmipaEes T Kl e ww el pmg
P i ks

ik g 1 s b B o e b e
preas e PR—

T e ol] g e s e |
b o]
]

o T wriedl - b e s heioss v oo nan doing arniEEg
g e i |

1w cormprmert shonkd tiom for YA ey ooty w0 i § pon woepond i o
Rk

o Tl ke s (o [Tia in B
ks .—.pl.u iy Prapin sl i oD aad i8 laabgras] S

o T by feve 18 shewn 0 e grpi e
:l-.nmﬂr-{:

Figure 3.19b: Simple MHP HAVi Xlet Source Example'?

www.newnespress.com

Middleware and Standards in Embedded Systems 91

e MHP HAVi packages org.havi.ui and org.havi.ui.event
e MHP DVB package org.dvb.ui.

Finally, an application manager within an MHP system manages all MHP applications
residing on the device both from information input from the end-user, as well as via the AIT
(application information table) data within the MHP broadcast stream transmitted to the
system. AIT data simply instructs the application manager as to what applications are actually
available to the end-user of the device, and the technical details of controlling the running of
the application.

3.5 Summary

Chapter 3 demonstrated the importance of understanding middleware standards relative to an
embedded systems design. The different types and examples of middleware standards were
defined according to industries, as well as general purpose standards that are utilized in a wide
variety of embedded systems. General examples relative to programming languages and a digital
television receiver were used to demonstrate that middleware standards can define important
components within an embedded system’s software stack. Only general examples were used

in this chapter since a later chapter of this book continues with a more detailed discussion of
programming languages that introduce middleware elements within an embedded system design.

The next section of this book, Section II, begins the detailed discussion of core middleware
commonly found in embedded systems as well as being the foundation of more complex
middleware software.

3.6 Problems

1. Which standard is not a standard typically implemented within an embedded system?

MHP — Multimedia Home Platform

HTTP — Hypertext Transfer Protocol

J2EE — Java 2 Enterprise Edition

FTP - File Transfer Protocol

. None of the above.

2. Give three examples of middleware standards implemented in embedded systems today.

How can middleware standards be classified?

4. Name and define four types of general purpose middleware standards implemented within
embedded systems today.

5. Give three examples of standards that fall under the following markets:
A. Consumer Electronics
B. Networking and Communications.

6. Name two examples of standards which introduce middleware component(s) within an
embedded system, and list what those middleware components are.

Mo 0w

»

92 Chapter 3

7.

HTTP is an application layer standard that does not implicitly require any particular
underlying middleware (True/False).

Give an example of an embedded device which adheres to standards that introduce
several middleware components into the design. Draw the high-level diagram of an
example of such a device.

Which middleware standards below are Java-based:

HTML - Hypertext Markup Language

CLDC - Connected Limited Device Configuration

MHP — Multimedia Home Platform

A and B only

B and C only

All of the above.

mmoaw

3.7 End Notes

—_
— O 0 001NN R W=

—_
[\

—_ =
(S I S ON)

Embedded Systems Architecture, Noergaard, 2005. Elsevier.
http://java.sun.com/products/javatv/overview.html

http://www.havi.org/

System Analysis and Design. Harris, David. page 17.

http://www.arib.or.jp/english/

www.atsc.org

http://www.atvef.com/

http://www.ce.org/

http://focus.ti.com/docs/solution/folders/print/327.html

openMHP API Documentation and Source Code.

Digital Video Broadcasting (DVB); Multimedia Home Platform (MHP) Specification 1.1.2. European
Broadcasting Union.

Application examples based upon MHP open source by Steven Morris available for download at
www.interactivetvweb.org

http://www.pasc.org/

WindRiver vxWorks API Reference Guide.

WindRiver vxWorks653 Datasheet.

http://java.sun.com/products/javatv/overview.html
http://www.arib.or.jp/english/
http://www.arib.or.jp/english/
http://www.atsc.org/
http://www.atvef.com/
http://www.ce.org/
http://focus.ti.com/docs/solution/folders/print/327.html
http://www.interactivetvweb.org/
http://www.pasc.org/

The Fundamentals in Understanding
Networking Middleware

Chapter Points
e Introduce fundamental networking concepts
e Discuss the OSI model relevance to networking middleware

e Show examples of real-world networking middleware protocols

By definition, two or more devices that are connected in some fashion to allow for the
transmission and/or reception of data are a network. To successfully communicate, each system
within a network must implement some set of compatible networking elements (Figure 4.1).
Some of these mechanisms are implemented in the middleware layer of an embedded system, and
many are based upon industry standards — typically referred to as networking protocols. In fact,
one of the most commonly included types of middleware in an embedded system is networking
protocols, even if this code in the embedded device is only executed when connecting to a host at
development time for developing and debugging the software on the device.

The first steps to learning about networking middleware within an embedded systems
design include:

Step 1. Reviewing and using standard industry networking models, such as the Open Systems
Interconnection (OSI) networking model, as tools to define and understand what
internal networking components would be required by an embedded system to
successfully function within a particular network.

Step 2. Having a clear understanding of the overall network an embedded device will be
required to function properly within, specifically:

e The distance between the devices connected on the network
* The physical medium that connects the embedded device to the network
e The overall architecture (structure) of the network.
Step 3. Understanding the underlying hardware and system software layers, specifically:

Demystifying Embedded Systems Middl e. DOI: 10.1016/B978-0-7506-8455-2.00004-2

93

94 Chapter 4

Application
Layer
Browser

Middlewsare

System o O5F
Software
Layer s

Cperating System

Ethernet

Device Drivers

Hardware Layer

100 Pevsonal Computer

Embedded Sysem 1 1

: A Network

Embedded System 2

Nolebook]
iPersanal Computer)

Figure 4.1: What is a Network?

* Know your networking-specific standards (introduced in Chapter 3).

e Understand the hardware (see Chapter 2). If the reader comprehends the hardware, it
will be easier to understand the functionality of the overlying networking components.

* Define and understand the specific underlying system software components, such
as the available device drivers supporting the networking hardware and the

operating system API (Chapter 2).

Step 4. Using a networking model, such as OSI, define and understand what type of function-
ality and data exists at the middleware layer for a particular device and protocol stack.

Step 5. Define and understand different types of networking application requirements and
corresponding protocols in order to ultimately be able to understand what middleware
components are necessary within a particular system to support the overlying soft-

ware layers.

4.1 Step 1 to Understanding Networking Middleware:

Networking Models

The International Organization for Standardization’s OSI (open systems interconnection)
reference model from the early 1980s is a representation of what types of hardware and
software networking components can be found in any computer system. Of the seven layers
of the OSI model, protocols at the upper data-link, network and transport layers are typically
implemented within some form of middleware software (see Figure 4.2).

The Fundamentals in Understanding Networking Middleware 95

Layer 7 - APPLICATION
[application protocols used in other applications, as well as end-user
applications in themselves|

Layer 6 - PRESENTATION Application
[software that handles the translation of data from one format to Layer
another for applications to process, such as data encryption and
decryption, compression and decompression, and data coiversions]

Layer 5 - SESSION
[software that establishes, manages, and terminates the connections
between applications on different devices |

Layer 4 - TRANSPORT
[source to destination (end-to-end) packet delivery management
software, including error recovery and flow conirol |

Sysiem Soltware
Layer

Layer 3 - NETWORK
[switching and routing node-io-node packet delivery sofiware |

Networking
Middleware

/s 'r encod and e’s-‘b:"nro frames,

Tayer 1 - PHYSICAT
[networking hardware] Hardware Layer

Figure 4.2: The OSI (Open Systems Interconnection) Model and Middleware

www.newnespress.com

96 Chapter 4

APPLICATION

APPLICATION o >

Applicati i PRT‘;I":’.\'-T ATION Apphecation
pplication — TSER b, ay
Layer PRESENTATION > ! Layer
SESSION A o SESSI0
o »-
TRANSPORT - o TRANSPORT

T L

Y- System Software
5 5S¢ NETWORK

System Software NETWORK E e Layer

Layer < >

5 DATA -LINK

DATA -LINK < »
~ PHYSICAL Hardware Layer

Hardware Layer PHYSICAL < »

Physical Transmisgion Medium
< cting, networked devi
OS] Model

031 Model

Figure 4.3: The OSI (Open Systems Interconnection) Model and the Embedded Systems Model

To fundamentally understand the purpose of each OSI layer in networked devices, it is
important to understand that data are transmitted to be processed by peer OSI layers in other
devices (see Figure 4.3).

Within the scope of the OSI model, a networking connection is triggered with data
originating at the application layer of a device. These data, then, flow downward through

all seven layers. Except for the physical and application layers every other layer appends
additional information, called a header, to the data being transmitted down the stack. Via the
transmission medium, data are transmitted over to the physical layer of another networked
device, then up through the OSI layers of the receiving device. As the data flow upward, peer
layers in receiving devices strip these headers, unwrapping the data for processing. Figure 4.4
provides a visual overview of data flowing up and down an OSI networking stack.

While the OSI model is a powerful tool that can be used by the reader to demystify
networking fundamentals, keep in mind that it is not always the case that embedded devices
contain ‘exactly’ seven ‘distinct’ networking layers. Meaning, in many real-world networking
stacks, sometimes the functionality of more than one OSI layer is integrated into fewer layers,
and/or the functionality of one OSI layer is split out to more than one layer. As an example,

The Fundamentals in Understanding Networking Middleware 97

.....

Apglication Mcssage

|||||

Presentation Measage

[— Sersion MSG/ Packet

] Trangport Packet

e Metwork Datagram

Doata-Link Frame

lransmission
Medinm

Figure 4.4: The OSI (Open Systems Interconnection) Model and Data

one of the most common real-world networking protocol stacks which deviates from the
standard OSI model is the four-layer TCP/IP (Transmission Control Protocol/Internet
Protocol) model shown in Figure 4.5. Under the TCP/IP model, OSI layers one and two
are integrated into the TCP/IP network access layer, and OSI layers five, six, and seven are
incorporated into the TCP/IP application layer.

In short, the important thing to note is that regardless of how a networking stack is implemented
in the real world, once the reader can visualize and understand from the OSI model:

1. what is required to implement networking functionality within an embedded device
2. where these components can be located in the particular device
3. the purpose of networking protocols at various layers

the reader can then apply this fundamental understanding to any embedded system design —
regardless of how many layers this functionality is implemented within a particular device or
what these layers are called within a particular embedded design.

98 Chapter 4

<< 051 Model > << TCHIP Model ==

Application
Layer 7 « APPLICAT ION Layer
[upplication protocols used within both other applications, aywellay oo

entd-tver agplication in themselves|

Layer 6 - PRESENTATION

[software that handles the translation of data from one format to Layer 4 — APPLICATION)
another for applications 1o process, such as data encryprion and = (Functionality of QST Layers 5 throngh 7 Combined |
decryption, compression and decomy and data ¢]
Layer 5 - SESSION
[raf that establishes, manages, and w Hre comections

Detween applications on different devices|

System Soltware Layer

Layer 4 - TRANSPORT

; ; i = Layer 3 - TRANSPORT
[Fource to destination (and-te-od) packet delivery »> Fm‘ri.rril'mﬁ'irvufi’).w Layer 4]
software, including ervor recovery and flow control | M :
Layer 3 - NETWORK Layer 2 - INTERNE]
[awitching and routing node-to-nede packet delivery software] s R [owitching and renting node-t de packet delivery software]
Layer2 - DATA LINK
s Layer | - NETWORK ACCESS
[netwarking hardware and software device drivers accessing
networking hardvware divectly]
Layer 1 « PHYSICAL
[networking fardware]
Hardware Layer

Figure 4.5: The OSI Model and TCP/IP

4.2 Step 2 to Understanding Networking Middleware:
Understanding the Overall Network

In addition to software and/or hardware limitations dictated by the embedded device itself,
the overall network the embedded device is a part of is what determines which middleware
elements need to be implemented within the embedded system. Relative to this, as shown in
Figure 4.6, there are at least three key features about the network that the reader needs to be
familiar with at the start:

¢ The distance between the devices connected on the network
* The physical medium that connects the embedded device to the network
e The overall architecture (structure) of the network.

The Fundamentals in Understanding Networking Middleware 99

Network's Overall Architochure

Pees 1o Fews Nedwork Architectue Client Server Network Aschitecture
Enberkded System | Notcbouk Babedded Syatem |
: (Personal Compriter)
Notebock . A
(Rvrvonal Compuser) Networting : - 4 Vewcking
Cnmponents Hetworking [
Networking <
Compomuts
 Distance Between Deviees
4 ¥ '3 ‘-w.,.m.l
Tranem ixsdon Medim DeshtopTernomal H iy
Catipaiter)
Networking
Compants
Desktop
(Persoual Coaguiter)
Hetwering
[I——

Figure 4.6: Features of an Embedded System’s Network®

4.2.1 WAN versus LAN: The Distance Between Networked Systems

In terms of where devices are geographically located within a network, at the highest level
networks can be divided into two types: local area networks (LANS) or wide area networks
(WANSs). LANs are networks with connected devices that are located within close proximity
to each other, such as within the scope of the same building and/or the same room. WANs, on
the other hand, are networks with connected devices that are geographically located outside
the scope of the same building, such as across multiple buildings, across a city, and/or across
the globe for example. Despite the endless acronyms used to refer to the different types of
networks in the field, inherently all networks are either WANs, LANs, or some interconnected
hybrid combination of both.

Within an embedded device, whether or not a device will be connected within an LAN and/or
WAN will drive what networking technologies can be implemented within (see Figure 4.7).
Given the compatible LAN or WAN physical layer hardware, overlying protocols in support
of the physical layer are then implemented in the above software layers including any
required middleware components.

4.2.2 Wired vs. Wireless: The Transmission Medium

In general, the transmission medium connecting devices in a network can be categorized
as one of two possible types: bound (wired) and unbound (wireless). Bound transmission

100 Chapter 4

Syetem Software Layer

IEEE 802.2 LLC/SMAP FrE
IEEE 802,11 MAC NS
IEEE 802.5 Token Ring HDLC
LAN Bluctooth LM ATM i
FDDI SLIP
ARUNet X.25 PSTN LAFDB

Hardware layer

IRE 802.3 B
IBEE 802.3 Ethernet ATM
IEEE 502.5 Token Ring
X.21
IEEE 802.11 Wireless Radio & IR
CDMA
LAN Bluctooth
TDMA WAN
EIA/TIA 232 (R5-232)
GFRS
ELASTIA 444 (RS-4449)
GEM

Figure 4.7: Examples of LAN versus WAN Networking Protocols

mediums interconnect devices via some type of physical cabling which guides
electromagnetic waves along the physical path of the wires within the cable.

Unbound transmission mediums are mediums in which devices are not connected via any
physical cable. Wireless transmission mediums utilize transmitted electromagnetic waves
which are not guided by a physical path of wiring, but via mediums such as water, air, and/or
a vacuum, to name a few.

Within an embedded device, whether or not a device will be connected via a wired versus
wireless transmission medium will also drive what networking technologies can be
implemented within (see Figure 4.8) as well as what performance can be expected. As stated
within the previous section, networking software protocols that are implemented within a device
need to be compatible with the underlying wired and/or wireless physical layer hardware.

The Fundamentals in Understanding Networking Middleware 101

[v | System Seftware Layer
, s ,] T L ,
v Y ¥ y L] ¥
I 1 :
Mihunicrsch LAEP i IFRRA12. S Tukian Rling i M i ATM
FOOI 035aP XIS PSTH LAFD
IFERBD.2 LLCYRNAP H ARCHa (o . B
IEEE I 11 PEE BOLG
IPEE 8002 LLORMAD H i RFEMM st
IEFE 8.3 Fihmenst
Wil 2
Wirelea i Wire
Wi
Hurdwere lyyer
................ :
A 4 Y. Y. ¥
1 i 1 f
MEIH B0 Brbvarcet HERE 80011 Wieedus Rado & (K ; ChMA i .E ATM (SOMET, ..}
i
IFEE 8 5 T Rng T, i TOMA
xai
BLATIA 282 (K225 gtk
RIASTLA 440 (K3 4a9) 3BM
Wil Whele Wielus Wired

Figure 4.8: Examples of Wireless versus Wired Networking Protocols

4.2.3 Peer-to-Peer vs. Client—Server: The Network’s Overall Architecture

A network’s architecture essentially defines the relationship between devices on the network.
To date, the most common types of structures are modeled after client—server architectures,
peer-to-peer architectures, or some hybrid combination of both architectures.

A client-server architecture is a model in which one centralized device on the network

has control in managing the network in terms of resources, security, and functions, for
example. This centralized device is referred to as the server of the network. All other devices
connected to the network are referred to as clients. Servers can manage clients’ requests either
iteratively, one at a time, or concurrently where more than one client request can be handled
in parallel. A client contains fewer resources than the server, and it accesses the server to
utilize additional resources and functionality.

On the flip-side, with a peer-to-peer architecture network implementation there is not
one centralized device in control. Devices in a peer-to-peer network are more functionally
independent and are responsible for managing themselves as equals.

Hybrid networks are networks that are structured on some combination of both peer-to-peer
and client—server models. LANs and WANSs can be based on either client—server or hybrid

102 Chapter 4

Peer 10 Peer Network Architecture
Embedded System |
Netcbook e 4
{Personal Computer) Netwarking
Componculs
Metwerkmng
7 Dstance Betwoen Devices
§
7 ’
Tramsmission Medium Desktop(Personal
Conpuiter)
Networking
Components
Client-Server Metwork Architecture
Moke bk Umbedded Sysem 1
Mersomal Computer)
4 Norvarkng
Compeaens
Server
Hemering
Cumpinu
Deiktop
{Rersonal Computer)

Hetworh ng
Cunpoets

Feer
(Emibed ded Systcin)

MNetwork 1

Powr — Neawork 1
Client = Network 7
(Personal Computer)

Pirtuang

Hybrid Architechare

Peer
(Embedded Sysem)
Metwarkng
Gom e
Cliemt 1
(Fmbedded System)
Neweckng
Mp.an-u
Server
Hetmrking Network
Composests
Client 2
(Personal Computery
Hetweek

Figure 4.9: Network’s Overall Architecture

architectures. Peer-to-peer networks, on the other hand, typically pose additional security
and performance challenges that make them more likely to be implemented in LANS rather

than WAN:Ss.

4.3 Step 3 to Understanding Networking Middleware:
Understanding the Underlying Hardware and System Software Layers

Networking protocols implemented in an embedded system’s middleware software layer
typically reside on top of some combination of other middleware, an operating system, device
drivers, and hardware (see Figure 4.10). Specifically, a networking protocol implemented as
middleware in the system software layer exists either as:

www.newnespress.com

The Fundamentals in Understanding Networking Middleware

103

Embedded Systems Model

Embedded Systems Model

Application Soltware Layer

Application Software Layer

System Software Layer

System Software Layer

Networking
Middl

Embedded Systems Model

Application Software Layer

Networking Middleware

Java Virtual Machine

Operating System / BSP
Sublayer

COperating System / BSP
Sublayer

Device Driver Sublayer

Device Driver Sublayer

System Soltware Layer

Networking
................ Middleware

Operating System/BSP
Sublayer

Device Driver Sublayer

Hardware [.ayer

Hardware Layer

Hardware [.ayer

Figure 4.10: Networking System Components the Embedded Systems Model

* Independent middleware components that sit on top of the operating system layer, or
directly over device drivers in a system with no operating system.

* Middleware that sits on top of and/or is integrated with other middleware components.
For example, a networking stack integrated with an embedded Java Virtual Machine
(JVM) distribution from a vendor.

* Middleware that has been tightly integrated and provided with a particular operating
system distribution from a vendor.

As shown in Figure 4.11, in some embedded systems the system software can be a little more
complex because of more than one implemented networking protocol stack in the embedded
device, such as in support of different physical layers, for example.

4.3.1 About the Networking (Physical Layer) Hardware

Why Understand Networking Hardware?

Networking protocols residing at the higher layers of the OSI model view lower software layers
that execute over different physical layer hardware as transparent. However, the underlying
networking hardware available today is often quite different in terms of how it works. Thus, it
is important for embedded developers to understand the differences in the hardware, in order
to understand the implementation of a networking stack on which these various technologies
reside. In other words, hardware features, quirks, and/or limitations will ultimately impact
the type of networking library required and/or what modifications must be implemented in a
particular networking stack to support this hardware.

Continued

104 Chapter 4

In other words, when a programmer learns about the networking hardware of a device, then it
will be much simpler for the programmer to understand a particular networking protocol
implementation, how to modify a particular protocol in support of underlying technologies, as
well as determine which middleware networking protocol is the best ‘fit’ for the device. In short, it
is important for the reader to understand the networking relevant features of the hardware - and
to use this understanding when analyzing the networking stack implementation that needs to
support the particular underlying technology.

Networking hardware on a board falls under a type of I/O (input/output) hardware, and is
responsible for transmitting data into and out of the device. At the highest level, I/O networking
hardware can be classified according to how the hardware manages the transmission and
reception of data, specifically whether the physical layer manages data in serial, in parallel,

HrTP SSL
Application
Laver
Browser
Middleware
Svstem TCF UDP
Software
Layer pr——
12
Operating System
1EEE 8022 LLC/SNAP
TERE 8023 Ethernet 1EEE 802,11 MAC
Device Drivers
IEEE 8023 Ethernet 802.11 Wireless Radio & TR
Hardware Laver

Figure 4.11: Example of Multiple Networking Protocol in an Embedded System

The Fundamentals in Understanding Networking Middleware 105

or some hybrid combination of both. Networking hardware that is classified as serial, such as
EIA/RS-232, manages incoming and outgoing data one bit at a time. Hardware that can manage
data in parallel is a physical layer which has the ability to manage multiple bits simultaneously.
Hardware such as that based on IEEE 802.3 Ethernet has the capability of supporting both
serial and parallel communication and can be configured to manage data either way.

Be it hardware that supports serial communication, parallel communication, or both — as
shown in the example of real-world hardware in Figure 4.12 with RS-232 and Ethernet
support — an I/0O networking hardware subsystem on an embedded systems board is typically
made up of some combination of the following six logical units:

e the transmission medium, as described in Section 4.2, wireless or wired medium(s) that
connect the embedded system to a network

* the communication (COM) port, the component(s) on the embedded board in which a
wired medium connects to or that receives the signal of a wireless transmission medium

* the network controller, a slave processor that manages the networking communication
from the other logical units on the board

* the master processor’s integrated networking I/0, master processor-specific networking
components

» the communication interface, which manages data communication and the encoding/
decoding of data. It can be integrated into the master processor or another IC (integrated
circuit) on the board

* the 1/O bus, connects master processor to other networking 1/O logical units on the board.

Given a serial networking subsystem, for example, that hardware would be made up of some
combination of the above logical units, including a ‘serial” interface and ‘serial’ port. A
parallel networking subsystem would, instead, have a ‘parallel” interface and a ‘parallel’ port.

L 3
| i]) W e

BEUCI R
&
'
TAF FELCW uoHTCE
TP 10 CF w1

{ PG iy

SET DEBSY UTUTY [
e (R

Figure 4.12: Embedded Planet PPC823 Simplified Block Diagram?

106 Chapter 4

4.3.2 More on Serial versus Parallel Networking I/O

Whether or not a serial interface (shown in Figure 4.13) is integrated within the master
processor or residing as a separate component on the target board, it is this interface that
ultimately determines the serial handshaking involved in the transmission and reception of bits
between connected devices. Serial handshaking is typically based upon one of three schemes:

* Simplex, where bits can only be transmitted and received in one direction, such as shown
in Figure 4.13

* Half Duplex, where bits can be transmitted and received in either direction, but only
specifically in one direction at any given time (see Figure 4.14)

* Duplex, where bits can be transmitted and received in either direction at any given time
(see Figure 4.15).

Within the serial data stream itself, bits can be transmitted either asynchronously or
synchronously depending on the hardware. With asynchronous data transmission, bits

are transmitted at irregular intervals, randomly and intermittently. With synchronous data
transmission, data transmission is regulated by a CPU clock resulting in a continuous and
steady data stream transmission at regular intervals.

Asynchronous transmission requires that the data being transmitted be divided into groups,
referred to as packets, of 4-8 bits per character or 5-9 bits per character, for example. These
packets are encapsulated into frames that append START bit to indicate the start of the packet
and one, one and a half, or two STOP bit(s) to indicate the end of the packet. An optional
parity bit can also be appended to the packet for basic error checking, with values of either:

* NONE, meaning no parity bit appended
* ODD, meaning excluding the START and STOP bits, for transmission to be considered
successful — the total number of bits set to one must be an odd number

Embedded System Embedded System

Serial Interface Serial Interface

1
1
Transfer Data | P"“"f F'-'-'-' . Transfer Data
[TxDuta] .‘_’" Seral ,‘ - Seml :'I—’ [RxData]

i n Port I 1] Port I
' ! 1 1y I Iy L
i Gronund | u Iy M I ' Ground i
: 58 j—) A— 1ol -

Figure 4.13: Example of Simplex Serial Networking 1/O Block Diagram*

The Fundamentals in Understanding Networking Middleware

107

Embedded Systemn

Serial Interface

‘Transfer Data

|'TxData]

RTs

Banal | I gann
Fant TR

Receive Data | I

Embedded System

Serial Interface

‘Transfer Data
| TxLxata]

Recenve Data

[RxlJata) ——— I ——— [ExData]
Ciround Ciround
[Gind] [Gind]

Figure 4.14: Example of Half-Duplex Serial Networking 1/O Block Diagram*

Embedded System

Serial Interface

Transfer Data
(1xData) —p

Receive Dala

[RxData) St i -
4w |

Embedded System

Senal Interface

Transfer Data
<4 row

0 ’ . Receive Data
0 [RxData)

Crround
[Cind]

Ground
[Gind]

Figure 4.15: Example of Duplex Serial Networking 1/O Block Diagram*

* EVEN, meaning excluding the START and STOP bits, for transmission to be considered
successful — the total number of bits set to one must be an even number.

The key to successful asynchronous serial communication is that the bit rate of the transmitter

and receiver must be synchronized, where

Bit Rate (bandwidth) = Baud Rate*(# of actual data bits per frame/total # of bits per frame)

and

Baud Rate = total # of bits per unit time (i.e., kbits/s, Mbits/s, etc.)

108 Chapter 4

The serial interfaces within the transmitter and receiver then synchronize their transmissions
to their own independent bit-rate clocks. When there is no transmission of data, the
communication channel is in an idle state. The UART (universal asynchronous receiver-
transmitter) is an example of a real-world serial interface that, as its name implies, supports
asynchronous serial transmission.

With synchronous serial transmission, the data transmitter and receiver also must be in

sync — however, this is done off one common clock for both. Since this common clock does
not start or stop between data transmissions, data are not encapsulated with START and
STOP bits with synchronous communication. In some subsystems, the clock signal may be
transmitted within the data stream, whereas in others there may be an entirely independent
clock signal line. A serial peripheral interface (SPI), such as the one shown in Figure 4.12, is
an example of a real-world serial interface that supports synchronous transmission.

On a final note regarding parallel networking I/O — as with serial schemes — parallel
communication schemes include simplex, half-duplex, duplex, as well as synchronous and
asynchronous data transmission. It is because multiple bits can be transmitted and received
simultaneously over parallel networking I/O which allows this hardware to have a greater
bandwidth transmission capacity over serial hardware.

4.3.3 Device Drivers and Networking

As shown in Figure 4.16, I/O networking device drivers reside in the lower data-link layer of
the OSI model. At the very least, the responsibility of the data-link layer includes receiving
data bits from the physical layer hardware and formatting these bits into groups, called
data-link frames, for later processing and transmission to higher layers of software. While
data-link standards differ from protocol to protocol, in general the data-link layer reads in and
processes the bits as frames to process the header to:

* insure data received are complete, free of errors, and not corrupted

e compare relevant frame bit field to the physical networking address retrieved from the
hardware to determine if the data are intended for that device

e determine who transmitted the frame.

If the data are indeed intended for the device, the data-link header is stripped from the frame.

The remaining data bits, commonly referred to as a datagram, are transmitted up the stack.

With a datagram coming down the stack to the data-link layer, a data-link header with the

above information is appended to the datagram, creating the data-link frame. The relevant I/O
networking device drivers then transmit this frame to the I/O networking hardware (physical layer)
for transmission outside the device. Figure 4.17 shows a high-level block diagram of this flow.

A lot of I/O networking hardware integrated in the master processor, as well as networking
controllers that can reside independently on the embedded systems board, require some set of

The Fundamentals in Understanding Networking Middleware 109

Layer 7 - APPLICATION
[nenwarking protocols integrated in ather applications, as well as used
as end-user applications in themselves|

Layer 6 - PRESENTATION Application
[software thut hurdlles the translation of duta from one format 1o Layer
anather for applications to process, such as data encryption and

decryption, compression and decompression, and data conversions]

Layer 5 - SESSION
[zafr that hlishes, ges, and terminates the connections
; fications on diffe devicesf
app iff rvices

Laver 4 - TRANSPORT
[sotaree 1o destination (end-to-end) packet delivery meanagement
software, including error recovery and flow conirael |
System Software
Layer
Layer 3 - NETWORK
[switching and routing node-to-node packel delivery software]
Layer 2 - DATALINK
| LLC | | PPP |
T :
Layer 1 - PHYSICAL
[nenvarking havdwaref Hardware Laver

Figure 4.16: The OSI Model and Device Drivers

software functionality to function. Depending on the I/O networking subsystem, the device
driver library will generally include some combination of:

* I/O Networking Installation, code that allows for on-the-fly support of I/O networking
hardware in the embedded system

e 1/O Networking Uninstall, code for removing the support of I/O networking hardware in
the embedded system

* I/O Networking Startup, initialization code for the I/O networking hardware upon reset
and/or power-on

110 Chapter 4

Network Layer

Datagram
P s —
[daa] Ij
A
Data-link Headers Stripped Data-link Headers Appended
i 1o DataFicld
v
[start of framejjsource addrj{dest addr]jadminj{daa]crror chkj[end of frame] ata-link Frame
Frame

wird,

Physical Layer

Figure 4.17: High-level Block Diagram of Data-link Layer Data Flow

* I/O Networking Shutdown, termination code for the I/O networking hardware for
entering into a power-off state

* 1/O Networking Enable, code for enabling of the I/O networking hardware

* I/O Networking Disable, code for disabling the I/0O networking hardware

* 1/O Networking Acquire, code that provides other system software access to the I/O
networking hardware

* I/O Networking Release, code that provides other system software the ability to free the
1/0 networking hardware

* 1/O Networking Read, code that provides other system software the ability to read data
from the I/O networking hardware

* 1/O Networking Write, code that provides other system software the ability to write data
to the I/O networking hardware.

Reminder

Different device driver libraries may have additional functions, but most device drivers in
support of I/O networking hardware will include some combination of the above functionality.

The device driver libraries are also the foundation on which the middleware functionality is
built upon, so it is very important for the reader to insure the existence and stability of any
networking device driver functionality the networking middleware requires. Figure 4.18 shows
an example of a real-world, open-source Ethernet library and a snippet of some associated
device driver function source code for reading and writing to the hardware layer. Overlying

The Fundamentals in Understanding Networking Middleware 111

middleware layers then utilize functions, such as these types of function for reading, writing,
etc. in addition to any other functions included in the device driver library for that particular
hardware, to process and manage incoming and outgoing networking data.

4.4 An Embedded OS and Networking 1/O APIs

A common method of providing an abstraction layer to simplify software development,
managing an embedded device’s hardware and software resources, as well as insuring
efficient and reliable operation, is the utilization of an embedded operating system (OS)
within a design. In addition to processes, memory, and I/O system management components
within its kernel, an embedded OS may also provide additional I/O system management
functionality for networking protocol libraries (see Figures 4.19a and 4.19b).

While networking middleware code can of course be written to access device driver
functionality directly, an embedded OS can also include an abstraction layer API that allows
for device driver access by middleware software. When providing device access, or any type
of I/0O access to overlying networking libraries, many OS APIs categorize and abstract their
associated underlying device drivers as some combination of:

* Character, a driver that allows hardware access via a (character) byte stream

* Block, a driver that allows hardware access via some smallest addressable set of bytes at
any given time

* Network, a driver that allows hardware access via data in the form of networking packets

[*

* Copyright () 2008 by egnite GmbH. All rights
reserved.

* Copyright (C) 2003-2005 by egnite Sofiware
GmbH. All rights reserved.

*

* Redistribution and use in source and binary forms,
with or without

* modification, are permitted provided that the
following conditions

* are mel:

*

* 1. Redistributions of source code must retain the
above copyright

* notice, this list of conditions and the following
disclaimer.

* 2. Redistributions in binary [orm must reproduce
the above copyright

* notice, this list of conditions and the following
disclaimer in the

Figure 4.18: Open Source Ethernet Driver Library®

112 Chapter 4

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.

* For additional information see hupe/www.ethernur.de/
.

*

il

+\brief Read contents of PITY register.
*\param reg PIHY register number,
-

*\return Contents of the specified register,
"
static u_shon phy_inw(u_char reg)

{
* Select PHY register */
mie outb{ NIC EPAR, 0x40 | reg);

/™ PHY read command, =/
nie_outh{ NIC_EPCR, 0x0C);
NutDelay{ 1)

nic_ouwth{ NIC_EPCR. 0x00):

/* Gt data from PHY datn register, */
returm ({u_short) nic b NIC EPDRH) <= 8} | {u_short) nic inl{NIC_EPDRL);
)

™
*\briet Write value to PHY register.
*

*inote NIC interrupts must have been disabled before calling this routine.
*

* \param reg PHY register nuniber.
*\param val Value to write,
*

static void phy_outw(u_char reg. u_shon val)

{
/* Select PHY register */
nic_outh{ NIC_EPAR, 0x40 | reg);

/* Store value in PIY data register. */
nie_oulb{NIC_EPDRL, (u_char) val);
nic_outh{ NIC_EPDRIL, (u_char) (val > 8));

/= PITY write command. */
nic_outb{NIC_EPCR, 0x0A)
NutDelay(1);
nic_outb{NIC_EPCR. 0x00);
!

I
*briel Reset the Ethernet controller.
*

*\return 0 on success, -1 otherwise,
+
static inl NicResel(void)

J* Hardware reset, ¥/

#ifder undet NIC_RESET_BIT

s(NIC RESET DDR. NIC RESET BIT)
hi(NIC_RESET PORT, NIC_RESET _BIT);
NutDelay(WAIT100),

chifNIC_RESET _PORT, NIC_RESET BIT):
NutDelay{ WAITZ50);

NutDelay{WATT230):

Helse

/* Software reset. =/

nie_outb{NIC NCR, NIC NCR RST | NIC NCR_LBMAC)
NutDelay(1)

I FIXME: Delay required, */

fendif’

return NiePhylnit();
H

Figure 4.18 continued: Open Source Ethernet Driver Library

www.newnespress.com

The Fundamentals in Understanding Networking Middleware

Embedded Systems Model

Application Soltware Layer

System Software Layer

| Middleware Sublayer

Ciperating System /
(optional) BSP Sublayer

Device Driver Sublayer

Hardware Layer

Embedded Systems Model

Application Software Layer

System Sollware Layer

Operating System /
(optional) BSP Sublayer

Device Driver Sublayer

Hardware Layer

Embedded Systems Model

Application Software Layer

System Sollware Layer

Middleware

Operating System /
(optional) BSP Sublayer

pRe Device Drivor. Jeam i
Sublayer

Hardware Layer

Figure 4.19a: Example OS Permutations

Embedded OS

113

File System Networking Database

Embedded O8

Kemel

File System Networking

File System Interface Networking Interface

Kernel

O o e

File System Networking

File System Interface

Networking Interface

Kernel

| Fiwcess M ot | Memory Ma

agcn :
Y

[10 Sysfem Management
U

Board Support Package

Flash Driver Fthernet Diriver

Figure 4.19b: Example OS Components

www.newnespress.com

114 Chapter 4

Virtual, a driver that allows I/O access to virtual (software) devices
Miscellaneous Monitor and Control, a driver that allows I/O access to hardware that is
not accessible via the other categories above.

Figure 4.20 shows an example of a vxWorks network device interface library available

to middleware for usage — this example is a subset of vxWorks available functionality for
network interfacing, buffering, and monitoring. Overlying middleware software layers then
have the option of utilizing functions, such as these types of functions provided by the OS
layer, to process and manage incoming and outgoing networking data.

Vs Works APL Reference . Q8 Libraries

netLib

NAME

netldb - network interface Library

ROUTINES
netlibGeneral Inii]) - initinlize the varions network code
netLibluit{) - mitialize the network package

netTask() - network task entry point

DESCRIPTION

This libeary containg the network task that nms low-level network inferface rontings in a task confest. The nefwork task execntes and removes rontines that wiere added 1o the job
queve. This facility 15 used by network interfaces in order to have interrupt-level processing at task level.

The routine getLAbIpli() imidalizes the network and spawns the network tsk gelTask(). Thisiz done automatically when INCLUDE NET LIB is defined

Figure 4.20: Example of Ethernet Device Driver Public Library under VxWorks’

The Fundamentals in Understanding Networking Middleware 115

The rowtine pettlcpl) in psrlib displays a summary of the network facilities available from the ViWarks shell

INCLUDE FILES

netLibh

SEE ALSO

Loutelib. hostLib. netdey. netkein).

28 Librariex - Rowsines

netLibGansrallnit|)

NAME

netLibGenerallodt) - imtialize the vanious network code

SYNOPSIS
STATUS netlibGaneralInit (waid)

DESCRIFTION

This code use to be in netLibinil. With virnal siscks, we need these specific routines to be execued on a per viml stack bases.

RETURNS

OK/ERROR

SEE ALSO

28 Labravics : Rewtines

netLibinit()

NAME

nelLibinit]) - iitialize the network package

SYNOPSIS
STATUS netLibTnit [void)

DESCRIFTION

This cremtes the network sk job quene. and spawns the network insk pedTask(). It should be called once to initinlize the network. This is done autommtically when
INCLUDE NET LIB is defined.

PROTECTION DOMAINS

Thig function can only be called from within the kermnel protection domain

RETURNS

OF, or ERROR if network support cannat be initialized.

Figure 4.20 continued: Example of Ethernet Device Driver Public Library under VxWorks

www.newnespress.com

116 Chapter 4

SEE ALSO

netlib, usrConflg, netlask()

8 Dibwvarres © Rinsfones

netTask()

NAME

netTask() - network task entry pount

BYNOFPSIS

void netTask (void)

DESCRIPTION

This rowdine is e VaWorks network support task, Most of' the VxWorks network muns in this task's context.

NOTE

To prevent an application task from monopolizing the CPU if it is in an infinite loop or is never blocked, the priority of net Tasky) relative to an application may need to be adjusted.
Network commurication may be bost il nel Task() is "starved™ of CPU time. The default task prionty of nel Task() is 50, Use task PriorilySel]) to change the prionty of a task.

Thus task 1s spawned by netLiblnlt().

FPROTECTION DOMAINS

Thiz function can only be called from within the kemel protection dormain.

RETURNS

SEE ALSO

nelLib, nelLibluii{ }

Figure 4.20 continued: Example of Ethernet Device Driver Public Library under VxWorks

4.5 Step 4: Networking Middleware

As shown in Figure 4.21, within the scope of this book, networking protocols that reside within the:

e upper data-link layer
* network layer
e transport layers

are defined as middleware software components.

The Fundamentals in Understanding Networking Middleware 117

Network
Middleware

Layer 7 - APPLICATION
lapplication protocols used in other applications, as well as end-user
applications in themselves]

Layer 6 - PRESENTATION Application
[software that handles the translation of data from one format o Layer
another for applications to process, such as data encryption and
decryption, compression and decompression, and data conversions|

Layer 5 - SESSION
[sofiware that establishes, manages, and terminates the connections
berween applications on different devices]

—

Layer 4 - TRANSPORT
[source to destination (end-to-end) packet delivery management
software, including ervor recovery and flow control |
System Software
: Layer
Layer 3 - NETWORK
/ [switching and routing node-to-node packet delivery software |
Layer 2 - DATA LINK
ogical Link Control (LLC
[software that encodes and decodes bits into frames,
handling synchronization, flow control, and error checkin g/
T e ——
[device driver software accessing network ing havdware divectly to
transmit and receive dataf
Layer 1 - PHYSICAL
[networking hardware| Hardware Layer

Figure 4.21: Middleware and the OSI Model

118 Chapter 4

4.5.1 Upper Data-link Layer Middleware’

As shown in Figure 4.22, the data-link layer is the software closest to the hardware — the
physical layer in OSI model terms. Thus, it includes, among other functions, any software
needed to access, control, and manage the hardware. Bridging also occurs at this layer to
allow networks interconnected with different physical layer protocols — for example, Ethernet
LAN and an 802.11 LAN - to interconnect.

Like physical layer protocols, data-link layer protocols are classified as either LAN protocols,
WAN protocols, or protocols that can be used for both LANs and WANSs. Data-link layer
protocols that are reliant on a specific physical layer may be limited to the transmission
medium involved, but in some cases (for instance, PPP over RS-232 or PPP over Bluetooth’s
RFCOMM), data-link layer protocols can be ported to very different mediums if there is a
layer that simulates the original medium the protocol was intended for, or if the protocol
supports hardware-independent upper-data-link functionality.

The data-link layer is responsible for receiving data bits from the physical layer and
formatting these bits into groups, called data-link frames. Different data-link standards
have varying data-link frame formats and definitions, but in general this layer reads the bit
fields of these frames to ensure that entire frames are received, that these frames are error

Application Software Layver

e System Software Layer _i

| H H i
Y 1 L) +
| Wirdess i | Wired | Wirdess | | Wirad |
P . =
[1EEER022 LI.EMﬂ [EeE im.zu.cax.wﬂ | NS | X.25PSTNLAFE |j
= = = —
| mEEEsm MAC | 1EEEse.: Emema I:I | BSSGP [I/] —| FFF ﬁ
i | HDLC IJ
- 7 H H
| o| Blustcoth IMP, ARCo —I-I e ! ".'l SLIP IQ
1 3
LICAR Bascbond . |) |, — ! [- T
"'l I) 1EEE 8005 Token Ring .
[L ——
Hardware Layer
I Phyacal Layer

Figure 4.22: Data-link Layer Protocols

The Fundamentals in Understanding Networking Middleware 119

free, that the frame is meant for this device by using the physical address retrieved from the
networking hardware on the device, and where this frame came from. If the data are meant
for the device, then all data-link layer headers are stripped from the frame, and the remaining
data field, called a datagram, is passed up to the networking layer. These same header fields
are appended to data coming down from upper layers by the data-link layer, and then the full
data-link frame is passed to the physical layer for transmission (see Figure 4.23).

As shown in Figure 4.21, within the scope of the OSI model the data-link layer is logically
split into two sublayers, a lower sublayer referred to as the media access control (MAC) and
the upper sublayer called the logical link control (LLC). The upper data-link LL.C sublayer is
what is typically found at the middleware software layer, and can provide various functions
depending on the protocol, including some combination of:

* multiplexing protocols overlaying the data-link layer

* managing the physical (MAC) addressing between systems and being passed to upper
layers for translation to network addresses

* managing data flow and providing flow control of frames

e synchronization of data

* managing communication that is connectionless and/or connection-oriented (with
acknowledgments of received frames)

* error recovery

data-link addressing and control.

Network Laysy Tapet 3
| Datagram
Data-link Layer e .
([data] U
Daca-link Headers Siripped T l Data-link Headers Appended to Data
Field Layer2
ata-li -3 MO 10} 1] LI [r||1| 1M M)
Data ink Frame | - L} o] [oburca addejfaest Al s dmiardatan T arrer chiglcad of frame]
1
1
1
<]
1
Fhyskeal Layer Layer |

Figure 4.23: Data-link Layer Data Flow Block Diagram

120 Chapter 4

4.5.2 Point-to-Point Protocol Example’

PPP (point-to-point protocol) is a common OSI data-link (or network access layer under the
TCP/IP model) protocol that can encapsulate and transmit data to higher layer protocols, such
as IP, over a physical serial transmission medium (see Figure 4.24). PPP provides support for
both asynchronous (irregular interval) and synchronous (regular interval) serial communication.

PPP is responsible for processing data passing through it as frames. When receiving data
from a lower layer protocol, for example, PPP reads the bit fields of these frames to insure
that entire frames are received, that these frames are error free, that the frame is meant for this
device (using the physical address retrieved from the networking hardware on the device), and
to determine where this frame came from. If the data are meant for the device, then PPP strips
all data-link layer headers from the frame, and the remaining data field, called a datagram, is
passed up to a higher layer. These same header fields are appended to data coming down from
upper layers by PPP for transmission outside the device.

In general, PPP software is defined via a combination of four submechanisms:

e The PPP encapsulation mechanism (in RFC1661) such as the high-level data-link control
(HDLC) framing in RFC1662 or the link control protocol (LCP) framing defined in
RFC1661 to process (i.e., demultiplex, create, verify checksum, etc.)

* Data-link protocol handshaking, such as the link control protocol (LCP) handshaking
defined in RFC1661, responsible for establishing, configuring, and testing the data-link
connection

* Authentication protocols, such as PAP (PPP authentication protocol) in RFC1334, used to
manage security after the PPP link is established

Application Software Laver

Syslem Software Layer
Data-linkiN etwork Access Laver

| - . :
Middleware Protocols

hJ]
RS-232 |,

Hardware Laver

Figure 4.24: Data-link Middleware

The Fundamentals in Understanding Networking Middleware 121

Table 4.1: Phase Table®

Phase Description

Link Dead The link necessarily begins and ends with this phase. When an external event (such as
carrier detection or network administrator configuration) indicates that the physical layer
is ready to be used, PPP proceeds to the Link Establishment phase. During this phase, the
LCP automaton (described later in this chapter) will be in the Initial or Starting states.
The transition to the Link Establishment phase signals an Up event (discussed later in this
chapter) to the LCP automaton.

Establish Link | The link control protocol (LCP) is used to establish the connection through an exchange
of configuration packets. An Establish Link phase is entered once a Configure-Ack packet
(described later in this chapter) has been both sent and received.

Authentication | Authentication is an optional PPP mechanism. If it does take place, it typically does so
soon after the Establish Link phase.

Network Layer | Once PPP has completed the establish or authentication phases, each Network Layer
Protocol Protocol (such as IP, IPX, or AppleTalk) MUST be separately configured by the appropriate
Network Control Protocol (NCP).

Link PPP can terminate the link at any time, after which PPP should proceed to the Link Dead
Termination phase.

e Network control protocols (NCP), such as IPCP (Internet protocol control protocol) in
RFC1332, that establish and configure upper-layer protocol (i.e., OP, IPX, etc.) settings.

These submechanisms work together in the following manner: a PPP communication link,
connecting both devices, can be in one of five possible phases at any given time, as shown
in Table 4.1. The current phase of the communication link determines which mechanism —
encapsulation, handshaking, authentication, and so on — is executed.

How these phases interact to configure, maintain, and terminate a point-to-point link is shown
in Figure 4.25.

As defined by PPP layer 1 (i.e., RFC1662), data are encapsulated within the PPP frame, an
example of which is shown in Figure 4.26.

The flag bytes mark the beginning and end of a frame, and are each set to Ox7E. The
address byte is a high-level data-link control (HDLC) broadcast address and is always set to
OxFF, since PPP does not assign individual device addresses. The control byte is an HDLC
command for UI (unnumbered information) and is set to 0x03. The protocol field defines
the protocol of the data within the information field (i.e., 0x0021 means the information
field contains IP datagram, 0xC021 means the information field contains link control data,
0x8021 means the information field contains network control data — see Table 4.2). Finally,
the information field contains the data for higher-level protocols, and the FCS (frame check
sequence) field contains the frame’s checksum value.

122 Chapter 4

opened
: I i~ L Success

Establish S— sl - .

— Sucoss’ NG Rl
Dead _ False
Terminate Network:
Figure 4.25: PPP Phases®

Flag Address Control Protocol Information FCS Flag
1 byte 1 byte 1 byte 2 bytes Variable 2 byles 1 byte

Figure 4.26: PPP HDLC-like Frame®

Table 4.2: Protocol Information®

Value (in hex)

Protocol Name

0001

Padding Protocol

0003 to 001 f

Reserved (transparency inefficient)

007d Reserved (Control Escape)

00cf Reserved (PPP NLPID)

0off Reserved (compression inefficient)
8001 to 801 f Unused

807d Unused

80cf Unused

80ff Unused

c021 Link Control Protocol

c023 Password Authentication Protocol
c025 Link Quality Report

c223 Challenge Handshake Authentication Protocol

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 123

Code Identifier Length Data [vanable in size]

r
I
I
|

1 byte 1 byte 2 bytes Type

1
]
Length 1 Data

Figure 4.27: LCP Frame®

The data-link protocol may also define a frame format. An LCP frame, for example, is as
shown in Figure 4.27.

The data field contains the data intended for higher networking layers, and is made up of
information (type, length, and data). The length field specifies the size of the entire LCP frame.
The identifier is used to match client and server requests and responses. Finally, the code field
specifies the type of LCP packet (indicating the kind of action being taken); the possible codes
are summarized in Table 4.3. Frames with codes 1-4 are called link configuration frames,

5 and 6 are link termination frames, and the rest are link management packets.

The LCP code of an incoming LCP datagram determines how the datagram is processed, as
shown in the pseudocode example below.

if (LCPCode)
{

= CONFREQ:
RCR(...); see table 4-29
end CONFREQ;

= CONFACK:
RCAL); Msee table 4-29
end CONFACK:

= CONFNAK or CONFREI:
RCN(...); /see table 4-29
end CONFNAK or CONTFREI;
= TERMREQ:
event(RTIR);
end TERMREQ;

= TERMACK:

In order for two devices to be able to establish a PPP link, each must transmit a data-

link protocol frame, such as LCP frames, to configure and test the data-link connection.

As mentioned, LCP is one possible protocol that can be implemented for PPP, to handle
PPP handshaking. After the LCP frames have been exchanged (and thereby a PPP link
established), authentication can then occur. It is at this point where authentication protocols,
such as PPP Authentication Protocol or PAP, can be used to manage security, through
password authentication and so forth. Finally, Network Control Protocols (NCP) such as

124 Chapter 4

Table 4.3: LCP Codes®

Code Definition

| Configure-Request

Configure-Ack

Configure-Nak

Configure-Reject

Terminate-Request

Terminate-Ack

Code-Reject

Protocol-Reject

O |0 | N[O | |||

Echo-Request

Y
o

Echo-Reply

—_
—_

Discard-Request

—_
N

Link Quality Report

IPCP (Internet Protocol Control Protocol) establish and configure upper-layer protocols in the
network layer protocol settings, such as IP and IPX.

At any given time, a PPP connection on a device is in a particular sfate, as shown in Figure 4.28;
the PPP states are outlined in Table 4.4.

Events (also shown in Figure 4.28) are what cause a PPP connection to transition from state
to state. The LCP codes (from the RFC1661 spec) in Table 4.5 define the types of events that
cause a PPP state transition.

As PPP connections transition from state to state, certain actions are taken stemming from
these events, such as the transmission of packets and/or the starting or stopping of the Restart
timer, as outlined in Table 4.6.

PPP states, actions, and events are usually created and configured by the platform-specific
code at boot-time, some of which is shown in pseudocode form on the next several

pages. A PPP connection is in an initial state upon creation; thus, among other things, the
‘initial’ state routine is executed. This code can be called later at runtime to create and
configure PPP, as well as respond to PPP runtime events (i.e., as frames are coming in
from lower layers for processing). For example, after PPP software demuxes a PPP frame
coming in from a lower layer, and the checksum routine determines the frame is valid, the
appropriate field of the frame can then be used to determine what state a PPP connection

The Fundamentals in Understanding Networking Middleware 125

Table 4.4: PPP States®

States

Definition

Initial

PPP link is in the Initial state, the lower layer is unavailable (Down), and no Open event
has occurred. The Restart timer is not running in the Initial state.

Starting

The Starting state is the Open counterpart to the Initial state. An administrative Open
has been initiated, but the lower layer is still unavailable (Down). The Restart timer

is not running in the Starting state. When the lower layer becomes available (Up), a
Configure-Request is sent.

Stopped

The Stopped state is the Open counterpart to the Closed state. It is entered
when the automaton is waiting for a Down event after the This-Layer-Finished
action, or after sending a Terminate-Ack. The Restart timer is not running in the
Stopped state.

Closed

In the Closed state, the link is available (Up), but no Open has occurred. The Restart
timer is not running in the Closed state. Upon reception of Configure-Request
packets, a Terminate-Ack is sent. Terminate-Acks are silently discarded to avoid
creating a loop.

Stopping

The Stopping state is the Open counterpart to the Closing state. A Terminate-Request
has been sent and the Restart timer is running, but a Terminate-Ack has not yet been
received.

Closing

In the Closing state, an attempt is made to terminate the connection. A Terminate-
Request has been sent and the Restart timer is running, but a Terminate-Ack has not
yet been received. Upon reception of a Terminate-Ack, the Closed state is entered.
Upon the expiration of the Restart timer, a new Terminate-Request is transmitted, and
the Restart timer is restarted. After the Restart timer has expired Max-Terminate times,
the Closed state is entered.

Request-Sent

In the Request-Sent state an attempt is made to Configure the connection. A
Configure-Request has been sent and the Restart timer is running, but a Configure-Ack
has not yet been received nor has one been sent.

Ack-Sent In the Ack-Received state, a Configure-Request has been sent and a Configure-Ack has
been received. The Restart timer is still running, since a Configure-Ack has not yet been
sent.

Opened In the Opened state, a Configure-Ack has been both sent and received. The Restart

timer is not running. When entering the Opened state, the implementation SHOULD
signal the upper layers that it is now Up. Conversely, when leaving the Opened state,
the implementation SHOULD signal the upper layers that it is now Down.

is in and thus what associated software state, event, and/or action function needs to be
executed. If the frame is to be passed to a higher layer protocol, then some mechanism is
used to indicate to the higher layer protocol that there are data to receive (IPReceive for

IP, for example).

126 Chapter 4

RCN, TO+/scr RCN, TO+iscr

RCR+scn

RCE+'sca

Figure 4.28: PPP Connection States and Events®

Table 4.5: PPP Events®

Event Event Description
Label
Up lower layer is Up | This event occurs when a lower layer indicates that it is ready to carry packets.
Down | lower layer is This event occurs when a lower layer indicates that it is no longer ready to carry
Down packets.
Open | administrative This event indicates that the link is administratively available for traffic; that is,
open the network administrator (human or program) has indicated that the link is
allowed to be Opened. When this event occurs, and the link is not in the Opened
state, the automaton attempts to send configuration packets to the peer.
Close | administrative This event indicates that the link is not available for traffic; that is, the network
close administrator (human or program) has indicated that the link is not allowed to
be Opened. When this event occurs, and the link is not in the Closed state, the
automaton attempts to terminate the connection. Further attempts to re-configure
the link are denied until a new Open event occurs.

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 127

Table 4.5 continued: PPP Events

Event Event Description
Label
TO+ timeout with This event indicates the expiration of the Restart timer.
counter>0
To- timeout with The Restart timer is used to time.resPonses to Configure-Request and Tgrmimate-
counter expired Request packets. The TO+ event indicates that the Re§tart counter continues
to be greater than zero, which triggers the corresponding Configure-Request or
Terminate-Request packet to be retransmitted.
The TO- event indicates that the Restart counter is not greater than zero, and no
more packets need to be retransmitted.
RCR+ | receive configure | An implementation wishing to open a connection MUST transmit a Configure-
request good Request. The Options field is filled with any desired changes to the link defaults.
Configuration Options SHOULD NOT be included with default values.
RCR- | receive configure
request bad
RCA receive configure | This event occurs when a valid Configure-Ack packet is received from the peer. The
ack Configure-Ack packet is a positive response to a Configure-Request packet. An out of
sequence or otherwise invalid packet is silently discarded.
If every Configuration Option received in a Configure-Request is recognizable
and all values are acceptable, then the implementation MUST transmit a
Configure-Ack. The acknowledged Configuration Options MUST NOT be
reordered or modified in any way.
On reception of a Configure-Ack, the Identifier field MUST match that of the
last transmitted Configure-Request. Additionally, the Configuration Options in
a Configure-Ack MUST exactly match those of the last transmitted Configure-
Request. Invalid packets are silently discarded.
RCN receive configure | This event occurs when a valid Configure-Nak or Configure-Reject packet is
nak/rej received from the peer. The Configure-Nak and Configure-Reject packets are
negative responses to a Configure-Request packet. An out of sequence or
otherwise invalid packet is silently discarded.
RTR receive terminate | This event occurs when a Terminate-Request packet is received. The Terminate-Request
request packet indicates the desire of the peer to close the connection.
RTA receive terminate | This event occurs when a Terminate-Ack packet is received from the peer. The
ack Terminate-Ack packet is usually a response to a Terminate-Request packet. The
Terminate-Ack packet may also indicate that the peer is in Closed or Stopped states,
and serves to re-synchronize the link configuration.
RUC receive unknown | This event occurs when an uninterpretable packet is received from the peer. A

code

Code-Reject packet is sent in response.

(continued)

128 Chapter 4

Table 4.5 continued: PPP Events

Event Event Description
Label
RXJ+ | receive code This event occurs when a Code-Reject or a Protocol-Reject packet is received
reject permitted | from the peer. The RXJ+ event arises when the rejected value is acceptable, such
or receive as a Code-Reject of an extended code, or a Protocol-Reject of an NCR. These are
protocol reject | within the scope of normal operation. The implementation MUST stop sending the
RX)- receive code reject offending packet type. The RXJ- event arises when the rejected value is catastrophic,
. such as a Code-Reject of Configure-Request, or a Protocol-Reject of LCP! This
catastrophic or ; . .
. event communicates an unrecoverable error that terminates the connection.
receive protocol
reject
RXR receive echo This event occurs when an Echo-Request, Echo-Reply or Discard-Request packet
request, receive is received from the peer. The Echo-Reply packet is a response to an Echo-
echo reply, or Request packet. There is no reply to an Echo-Reply or Discard-Request packet.
receive discard
request
Table 4.6: PPP Actions®
Action Label Action Definition
tlu this layer up | This action indicates to the upper layers that the automaton is entering the
Opened state. Typically, this action is used by the LCP to signal the Up event
to an NCP, Authentication Protocol, or Link Quality Protocol, or MAY be
used by an NCP to indicate that the link is available for its network layer
traffic.
tld this layer This action indicates to the upper layers that the automaton is leaving the
down Opened state. Typically, this action is used by the LCP to signal the Down
event to an NCP, Authentication Protocol, or Link Quality Protocol, or MAY
be used by an NCP to indicate that the link is no longer available for its
network layer traflic.
tls this layer This action indicates to the lower layers that the automaton is entering the
started Starting state, and the lower layer is needed for the link. The lower layer
SHOULD respond with an Up event when the lower layer is available. The
results of this action are highly implementation dependent.
tf this layer This action indicates to the lower layers that the automaton is entering the
finished Initial, Closed or Stopped states, and the lower layer is no longer needed
for the link. The lower layer SHOULD respond with a Down event when the
lower layer has terminated. Typically, this action MAY be used by the LCP
to advance to the Link Dead phase, or MAY be used by an NCP to indicate
to the LCP that the link may terminate when there are no other NCPs open.
This results of this action are highly implementation dependent.

The Fundamentals in Understanding Networking Middleware 129

Table 4.6 continued: PPP Actions

Action Label Action Definition
irc initialize This action sets the Restart counter to the appropriate value (Max-
restart count | Terminate or Max-Configure). The counter is decremented for each
transmission, including the first.
zrc zero restart This action sets the Restart counter to zero.
count
scr send Configure-Request packet is transmitted. This indicates the desire to open
configure a connection with a specified set of Configuration Options. The Restart
request timer is started when the Configure-Request packet is transmitted, to
guard against packet loss. The Restart counter is decremented each time a
Configure-Request is sent.
sca send A Configure-Ack packet is transmitted. This acknowledges the reception of a
configure ack | Configure-Request packet with an acceptable set of Configuration Options.
scn send A Configure-Nak or Configure-Reject packet is transmitted, as appropriate.
configure This negative response reports the reception of a Configure-Request packet
nak/rej with an unacceptable set of Configuration Options, Configure-Nak packets are
used to refuse a Configuration Option value, and to suggest a new, acceptable
value, Configure-Reject packets are used to refuse all negotiation about a
Configuration Option, typically because it is not recognized or implemented.
The use of Configure-Nak versus Configure-Reject is more fully described in the
chapter on LCP Packet Formats.
str send A Terminate-Request packet is transmitted. This indicates the desire to close
terminate a connection. The Restart timer is started when the Terminate-Request
request pocket is transmitted, to guard against packet loss. The Restart counter is
decremented each time a Terminate-Request is sent.
sta send A Terminate-Ack packet is transmitted. This acknowledges the reception
terminate ack | of a Terminate-Request packet or otherwise serves to synchronize the
automatons.
sCj send code A Code-Reject packet is transmitted. This indicates the reception of an
reject unknown type of packet.
ser send echo An Echo-Reply packet is transmitted. This acknowledges the reception of an

reply

Echo-Request packet.

130 Chapter 4

initialiy { PPP(LCP) Action Psaedocode

if (event) |

=UP: ol
transition{CLOSED): /ftransition 1o closed state evear(UIP: ff UIP event triggered
end UP: event(CPEN . AOPEN avent iriggered

= OPEN: J

lsih; ffaction iy |
transition{STARTING); #transition to starting state 3
end OPEN: 'm (DOWNY, ADOWN event viggered

=CLOSE:) |

end CLOSE: //no action or state transition %
ey,

= any other event: i,

wrongEvent; /findicate that when PPP in initial state
no other event is processed

event (ol even)

i (restartingl) && (event=DCWN 1 return; HSKIP

event{OPEN), HOPEN evenl triggered
]

s

‘event{OPEN), AOPEN event liggeed
I

i |
event(CLOSE): Hclose event triggenad
)

ire(int event) |

if fevent = UP, DOWN, OPEN, CLOSE, RUC, R34+, RX)-, cr RXR) |
redan cotater sMas termiaate;

if istare) |] else |
= vestart counter =Max Configure,
itial y: ffeall initial e ate woutine]
end INTTIAL: |
= STARTING .
nm;?r. fcall staming state iouting 2ottt) |
ond STARTING: restant counter =0,
= CLCH, PPPTumer = time:
<lomedi) feall closed state routing]
end CLOSEDY
= STOPPED: sl |
Soppedlcicall Mopped Has Ui
wnd STOPPED: PPPSend ViaLCP (CONFACK Y,
= CLOSING:
loangd iufcall closiag state oating 1
end CLOSING:
= STOPPING a0 [
Ao) Seall stopping sabe routine
ond STOPPING. if (refamiag all Coafiguration Option negs thea |
= : PPPSend Vial CP (CONFNAKY
et feall vegsent sate soutine Joelse |
ond REQSENT;
= ACKRCVD: PPPSendVial.CP (CONFRET:
kel e all sckacwd state outios]
and ACKRCVD: o
= ACK: : |
ackseol (1ficall acksent gate routioe
&ind ACKSENT:
opened{ jficall npened state soutine
end OPENED:
= auy cher Mate:
‘wrona State: sy obar state Is cossidered invald

Figure 4.29 Initial LCP State

4.5.3 Point-to-Point LCP Pseudocode Example®

Initial: PPP link is in the Initial state, the lower layer is unavailable (Down), and no Open
event has occurred. The Restart timer is not running in the Initial state.?

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 131

Starting: The Starting state is the Open counterpart to the Initial state. An administrative
Open has been initiated, but the lower layer is still unavailable (Down). The Restart timer is
not running in the Starting state. When the lower layer becomes available (Up), a Configure-
Request is sent.®

starting() {
il (event) {

=UP:

irc{event); Mfaction

scr(true); /faction

transition(REQSEN'T): //transition to REQSEN'T state
end UP;
= OPEN:

end OPEN; /fno action or stale transition

= CLOSE:

UF(y; Maction

transition(INITIAL); /Mransition to initial state
end CLOSE;

= any other event :
wrongEvent++; /ndicate that when PPP in slarting state no other event is processed

Closed: In the Closed state, the link is available (Up), but no Open has occurred. The
Restart timer is not running in the Closed state. Upon reception of Configure-Request
packets, a Terminate-Ack is sent. Terminate-Acks are silently discarded to avoid creating a
loop.?

132 Chapter 4

closed ()
if (event) {
= DOWN :
transition(INITIALD) ; Mransition to initial state
end DOWN;

= QPEN:

irc(event); Maction

scr{true); Maction

transition{REQSENT); /transition to REQSEN'T state
end OPEN;

= RCRP, RCRN, RCA, RCN, or RTR:
staf...); Maction

end EVENT:

= RTA, RXJP, RXR, CL.LOSE :
end EVENT: //mo action or state transition

= RUC:
s¢j(...); Maction
end RUC;

= RXIN:
UI(y; Maction
end RXJIN;

= any other event :
wrongBEvent; /indicate that when PPP in closed state no other event is processed

}

Stopped: The Stopped state is the Open counterpart to the Closed state. It is entered when the
automaton is waiting for a Down event after the This-Layer-Finished action, or after sending
a Terminate-Ack. The Restart timer is not running in the Stopped state.®

The Fundamentals in Understanding Networking Middleware 133

stopped ()
il (event) {
= DOWN :(ls(); Maction
transition(STARTING) ; /ftransition to starting state
end DOWN;

= OPLN : initialize Link(); /initialize variables
end OPEN;

= CLOSL : transition(CLOSLED) ; /iransition to closed state
end CLOSE;

= RCRP : iwre{event); Haction

scr(true); /action

scal...); Maction

transition(ACKSENT) ; /Mransition to ACKSEN'T state
end RCRIY;

= RCRN :ir¢{event); //action

scr(true); Mfaction

sen(...); Maction

transition(REQSENT) : /Mransition to REQSENT state
end RCRN;

= RCA ,RCN or RTR : sta(...): //action
end EVENT;

= RTA, RXIP, or RXR :
end EVENT:

= RUC : s¢j(...); Maction
end RUC;

= RXIN : df(); Haction
end RXIN:

= any other event :
wrongEvent; Mindicate that when PPP in stopped state no other event is processed

Closing: In the Closing state, an attempt is made to terminate the connection. A Terminate-
Request has been sent and the Restart timer is running, but a Terminate-Ack has not yet

been received. Upon reception of a Terminate-Ack, the Closed state is entered. Upon the
expiration of the Restart timer, a new Terminate-Request is transmitted, and the Restart timer
is restarted. After the Restart timer has expired Max-Terminate times, the Closed state is
entered.®

134 Chapter 4

closing ()
if (event) {
=DOWN : transition(INITIAL) ; /trangition to initial state
end DOWN;

= OPEN : transition(S TOPPING); /firansition to stopping state
initializeLink(); Minitialize variables

end OPEN;

=TOP : str(...)y Haction
initialize PPPTimer; Minitialize PPP Timer variable
end TOP;

= TON :1f(); /faction
miiahzePPPTimer; /imtalize PPP Timer varable
transition(CLOSED); Mransition to CLOSED state
end TON:
= RTR : sta(...); ffaction
end RTR;

= CLOSE, RCRP, RCRN, RCA RCN, RXR, or RXJP:
end EVENT; //no action or state transition

= RTA : df(); Mfaction
transition(CLOSEDY); fransition to CLOSED stsate
end RTA;

= RUC : s¢j(...); Haction
end RUC;

= RXIJIN : Uf(); faction
end RXIN;

= any other event :
wrongEvent; findicate that when PPP in closing state no other event is processed
)

Stopping: The Stopping state is the Open counterpart to the Closing state. A Terminate-
Request has been sent and the Restart timer is running, but a Terminate-Ack has not yet been
received.®

The Fundamentals in Understanding Networking Middleware 135

stopping (){
if (event) {
= DOWN : transition(STARTING) ; /transition to STARTING state
end DOWN;

= OPEN : initialize Link(); /Anitialize variables
end OPEN;

= CLOSE : transiton(CLOSING); Mransion o CLOSE stale
end CLOSE:

="TOP : str(....); action
imtalize PPPTimer(); finitialize PPP timer
end TOP;

= TON : tf(); /faction
intialize PPPTimer(); /initalize PPP timer
transition{S TOPPED); /transition to STOPPED state
end TON;

= RCRP, RCRN, RCA , RCN, RXJP, RXR : end EVENT; // no action or state transition

= RTR :sta(...); /faction
end RTR;

= RTA : (lf(); Yaction
transition(STOPPED); /ftransition to STOPPED state
end RTA;

= RUC : s¢j(...); Maction
end RUC;

= RXJIN tf(); faction
transition (5 TOPPEL); /ransition 1o S TOPPEL state
end RXIN;

= any other event : wrongEvent; findicale that when PPP in stopping stale no other event is
/lprocessed

Request-Sent: In the Request-Sent state an attempt is made to configure the connection. A
Configure-Request has been sent and the Restart timer is running, but a Configure-Ack has
not yet been received nor has one been sent.®

136 Chapter 4

regsent ()
if {event) {
= DOWN : transiion{S TARTING }; /Mransition (o STARTING state
end DOWN;

= OPEN : transition(REQSENT); /ftransition to REQSENT state
end OPEN;

= CLOSE : irc{event); Maction

str(...); /action

transition(CLOSING); Mtransition to closing state
end CLOSE;

= TOP : scr(false); /faction
initialize PPPTimer(); /finitialize PPP timer
end TOP;

=TON, RTA, RXJP, or RXR : end EVENT; //no action or state transition

= RCRP: sca(...); faction
if (PAL* = Server) {
tlu(y; Maction
transition{OPENED); /ftransition to OPENLEID state
} else { /client
transiion(ACKSENT); /transition to ACKSENT state

)
end RCRP;

= RCEN : sen(...); Maction
end RCRN;

= RCA 1 if (PAP = Server) {
thu(); /action
transition{OPENED); Mransition o OPENED state
} else { /ichent
irc(event); /faction
transition(ACKRCY D); Mransition to ACKRCVD state

}
end RCA;

= RCN :irc(event); Jaction

scr(lalse); ffaction

transition(REQSENT); /ransition to REQSENT state
end RUN:

= RTR : sta(...); ffaction
end RTR;

= RUC : s¢j(..); Maction
break;

= RXIN : tf (); Haction
transition(S TOPPED); //transition to STOPPED state
end RXIN;

= any other event : wrongEvent; findicate that when PPP in reqsent state no other evenl is
fiprocessed

Ack-Received: In the Ack-Received state, a Configure-Request has been sent and a Configure-
Ack has been received. The Restart timer is still running, since a Configure-Ack has not yet
been sent.?

The Fundamentals in Understanding Networking Middleware 137

ackrevd (Of
if (event) {
= DOWN : transiton{STARTING); Mransition lo STARTING stale
end DOWN;

= OPEN, TON, or RXR: end EVENT; //no action or state transition
= CLOSE : irc(event); Haction

str(...); Mfaction
transition(CLOSING); /iransition to CLOSING state
end CLOSE:

="TOP: scr(false); //faction
transition(REQSENT); Mransition to REQSENT state
end TOP;

= RCRP : sca(...):; faction

thu(); Haction

transition(OPENED); /transition to OPENED state
end RCRP;

= RCRN :sen(...); action
end RCRN;

= RCA or RCN : scrifalse); /faction
transition(REQSENT); Mransition to REQSENT state
end EVENT;

= RTR : sta(...); faction
transition(REQSENT); /Mransition to REQSENT state
end RTR;
= RTA or RXJP : transition(REQSENTY); /Aransition to REQSENT state
end EVENT;

= RUC : 5¢)(....); Maction
end RUC;

= RXIN - Uf(); Vaction
transition(STOPPED); /fevent
end RXIN;

= any other event : wrongBivent; //indicate that when PPP in ackrevd state no other event is
liprocessed

Ack-Sent: In the Ack-Sent state, a Configure-Request and a Configure-Ack have both been
sent, but a Configure-Ack has not yet been received. The Restart timer is running, since a
Configure-Ack has not yet been received.®

138 Chapter 4

acksent (){
if (event) {
= DOWN : transition(STARTING);
end DOWN;

= OPEN, RTA, RXJP, TON, or RXR : end EVENT; /fno action or state transition
= CLOSE: irc(event); /faction
str(. ..); Maction
transition(CLOSING); /transition to CLOSING state
end CLOSE:
= TOP : ser(false): faction
transition(ACKSENT); /itransition to ACKSEN'T state
end TOP;

= RCRP : sca(...); ffaction
end RCRP;

= RCRN : send...): ffaction
transiion{REQSENT); Mransibon to REQSENT state
end RCRN;

= RCA :irc(event); faction

tlu(); //action

transition{OPENED); /ftransition to OPENED state
end RCA;

RCN :irc(event); /action
scr(false); faction
transition{ ACKSENT); /Mransition to ACKSENT state
end RCN;

= RTR: sta(...) /faction
transition(REQSENT); Mransition to REQSENT state
end RTR;

=RUC : s¢j(...): Haction
end RUC;
= RXIN 1 tf(): /faction
transiion(STOPPED); Mransition to STOPPED state
end RXIN;

= any other event : wrongEvent; /indicate that when PPP in acksent state no other evenl is
lfprocessed

Opened: In the Opened state, a Configure-Ack has been both sent and received. The Restart
timer is not running. When entering the Opened state, the implementation SHOULD

signal the upper layers that it is now Up. Conversely, when leaving the Opened state, the
implementation SHOULD signal the upper layers that it is now Down.?

The Fundamentals in Understanding Networking Middleware 139

opened (){
if (event) §
=DOWN :
tld(); /faction
transition(STARTING), /transition to STARTING state
end DOWN;,

= QOPEN : initializeLink(); /initialize variables
end OPEN,

= CLOSE - tld(); //action

irc(event); /action

str(...), /faction

transition(CLOSING). /ftransition to CLOSING state
end CLOSE,

= RCRIP : tld(): //action
ser(true); //action
scal...), /faction
transition{ ACKSENT), //transition to ACKSENT state

end RCRP;

= RCRN - tld(); /action

scr(true); /faction

sen(...), /faction

transition(REQSENT); /transition to RCRN state
end RCRN:

= RCA : td(): Vaction

ser(true);, //action

transition(REQSENTY); /transition to REQSENT state
end RCA;

=RCN : Ud(); //action

ser(true), /Jaction

transition(REQSENT), //transition to REQSENT state
end RCN;

=RTR : tld(});, //action

zre(PPPTimeoutTime), /faction

stal...), /faction

transition(STOPPING), // transition to 3TOPPING state
end RTR,;

= RTA : tld(), Maction
ser(true);, //action
transition(REQSENT), / transition to REQSENT state
end RTA,
= RUC : sep(. .), //action
end RUC,

= RXJP : end RXJP; //no action or state transition

= RXIN - td(), Mfaction

ire{event), /faction

str(.), //action

transition(STOPPING), Nransition to STOPPING state
end RXIN;

= RXR : ser(...}, /faction
end RXR;

any other event - wrongEvent; //indicate that when PPP 1n opened state no other event 15
fprocessed

www.newnespress.com

140 Chapter 4

4.5.4 Network Layer Middleware®

At the network layer, networks can be broken down further into segments, smaller sub-
networks. Interconnected devices located within the same segment can communicate via
their physical addresses. Devices located on different segments communicate via a different
type of address, referred to as a network address. Conversions between a device’s physical
and network address can occur both within the higher data-link layer, as well as in a network
layer protocol. Through the networking address scheme, network layer protocols typically
manage:

* data transmitted at the segment level
* datagram traffic
* any routing from the current device to another device.

Like the data-link layer, if the data are meant for the device, then all network layer
headers are stripped from the datagram. The remaining data field, called a packet, is
passed up to the transport layer. If the data are not meant for the device, this layer can
also act as a router and transmit the data back down the stack to be forwarded to another
system.

These same header fields are appended to data coming down from upper layers by the network
layer, and then the full network layer datagram is passed to the data-link layer for further
processing (see Figure 4.30). Note that the term ‘packet’ is sometimes used to discuss data
transmitted over a network, in general, in addition to data processed at the transport layer.

Transport Layer

Netwark Layer

Metwork Headers Appended
i toData Field

v

Network Headers Stripped

[IF Version||Header Len][Frag Info][# Hops || Upper Lay er][Cnecksum |{ Source iP][Dest IP][Data] Netwaork Datagram

Datal-link Layer

Figure 4.30: Network Layer Data-flow Diagram

The Fundamentals in Understanding Networking Middleware 141

4.5.5 Internet Protocol (IP) Example’

The networking layer protocol called the Internet Protocol, or IP, is based upon DARPA
standard RFC791, and is mainly responsible for implementing addressing and fragmentation
functionality (see Figure 4.31).

While the IP layer receives data as packets from upper layers and frames from lower layers,
the IP layer actually views and processes data in the form of datagrams, whose format is
shown in Figure 4.32.

The entire IP datagram is what is received by IP from lower layers. The last field alone within
the datagram, the data field, is the packet that is sent to upper layers after processing by IP.
The remaining fields are stripped or appended, depending on the direction the data are going,
to the data field after IP has finished processing. It is these fields that support IP addressing
and fragmentation functionality.

Application Software Layer

System Software Layer

-

Intemet Layer
Middleware Protooenls 1P

Addressing

i

Fragmeniation

s *

L1LC FPP

Ethemel

Hardware Layer
¥ _ ¥

Ethemet RS-232

Figure 4.31: IP Functionality

142

Chapter 4
0 4 8 16 1o 3
Version | THL | Typeof Service Total Length
Identification Flags Fragment Offsat
Tune To Live | Protocol Header Checksum
Source IP Address
Destination TP Address
Options | Padding
Data
Figure 4.32: IP Datagram’
1001101124 1.1 — 01100100 | |00000000 |. (00011000 |. | 00000001

4 sets of 8-bit decimal numbers separated by “dots”

The source and destination IP address fields are the networking addresses, also commonly
referred to as the Internet or IP address, processed by the IP layer. In fact, it is here that one of
the main purposes of the IP layer, addressing, comes into play. IP addresses are 32 bits long,
in ‘dotted-decimal notation’, meaning they are divided by ‘dots’ into four octets (four 8-bit
decimal numbers between the ranges of 0-255 for a total of 32 bits), as shown in Figure 4.33.

IP address are divided into groups, called classes, to allow for the ability of segments to all
communicate without confusion under the umbrella of a larger network, such as the World-
Wide-Web, or the Internet. As outlined in RFC791, these classes are organized into ranges of

Figure 4.33: IP Address

IP addresses, as shown in Table 4.7.

32-bits : —

Table 4.7: IP Address Classes’®

Class IP Address Range

A 0.0.0.0 127.255.255.255
B 128.0.0.0 191.255.255.255
C 192.0.0.0 223.255.255.255
D 224.0.0.0 239.255.255.255
E 244.0.0.0 255.255.255.255

The Fundamentals in Understanding Networking Middleware 143

Class A ’ i 04 tiv)

Class B N o i (165

Class € IR b it (@ bi)
gamp (Y[R

Class E l L : 1?;;;:‘;::

Figure 4.34: IP Classes’

The classes (A, B, C, D, and E) are divided according to the value of the first octet in an IP
address. If the highest order bit in the octet is a ‘0, then the IP address is a class ‘A’ address.
If the highest order bit is a ‘1°, then the next bit is checked for a ‘0’ —if it is, then it’s a class
‘B’ address, and so on.

In classes A, B, and C, following the class bit or set of bits is the network id. The network

id is unique to each segment or device connected to the Internet, and is assigned by Internet
Network Information Center (InterNIC). The host id portion of an IP address is then left
up to the administrators of the device or segment. Class D addresses are assigned for groups
of networks or devices, called host groups, and can be assigned by the InterNIC or the IJANA
(Internet Assigned Numbers Authority). As noted in Figure 4.34, Class E addresses have
been reserved for future use.

4.5.6 Internet Protocol (IP) Fragmentation Mechanism®

Fragmentation of an IP datagram is done for devices that can only process smaller amounts
of networking data at any one time. The IP procedure for fragmenting and reassembling
datagrams is a design that supports unpredictability in networking transmissions. This means
that IP provides support for a variable number of datagrams containing fragments of data
that arrive for reassembly in an arbitrary order, and not necessarily the same order in which
they were fragmented. Even fragments of differing datagrams can be handled. In the case of

144 Chapter 4

fragmentation, most of the fields in the first 20 bytes of a datagram, called the header, are
used in the fragmentation and reassembling process.

The version field indicates the version of IP being transmitted (i.e., [Pv4 is version 4).
The IHL (internet header length) field is the length of the IP datagram’s header. The total
length field is a 16-bit field in the header which specifies the actual length in octets of the
entire datagram including the header, options, padding, and data. The implication behind
the size of the total length field is that a datagram can be up to 65 536 (216) octets in size.

When fragmenting a datagram, the originating device splits a datagram ‘N’ ways, and

copies the contents of the header of the original datagram into all of the smaller datagram
headers. The Internet Identification (ID) field is used to identify which fragments belong to
which datagrams. Under the IP protocol, the data of a larger datagram must be divided into
fragments, of which all but the last fragment must be some integral multiple of 8 octet blocks
(64 bits) in size.

The fragment offset field is a 13-bit field that indicates where in the entire datagram the
fragment actually belongs. Data are fragmented into subunits of up to 8192 (213) fragments
of 8 octets (64 bits) each — which is consistent with the total length field being 65 536 octets
in size — dividing by 8 for 8 octet groups = 8192. The fragment offset field for the first
fragment would be ‘0’, but for other fragments of the same datagram it would be equal to the
total length (field) of that datagram fragment plus the number of 8 octet blocks.

The flag fields (shown in Figure 4.35) indicate whether or not a datagram is a fragment
of a larger piece. The MF (More Fragments) flag of the flag field is set to indicate that the

1] 4 B 16 19 51
Version | HL | Type of Service Total Length
Ideatification Flags | Fragmeat Offset
Time ToLive | DProtocol Header Checksum
Padding

Figure 4.35: Flags®

The Fundamentals in Understanding Networking Middleware 145

fragment is the last (the end piece) of the datagram. Of course, some systems do not have the
capacity to reassemble fragmented datagrams. The DF (Don’t Fragment) flag of the flag field
indicates whether or not a device has the resources to assemble fragmented datagrams. It is
used by one device’s IP layer to inform another that it doesn’t have the capacity to reassemble
data fragments transmitted to it. Reassembly simply involves taking datagrams with the same
ID, source address, destination address, and protocol fields, and using the fragment offset
field and MF flags to determine where in the datagram the fragment belongs.

The remaining fields in an IP datagram are summarized as follows:

* Time to live (which indicates the datagram’s lifetime)

e Checksum (datagram integrity verification)

* Options field (provides for control functions needed or useful in some situations but
unnecessary for the most common communications (i.e., provisions for timestamps,
security, and special routing))

* Type of service (used to indicate the quality of the service desired. The type of service
is an abstract or generalized set of parameters which characterize the service choices
provided in the networks that make up the internet)

* Padding (internet header padding is used to insure that the internet header ends on a 32-
bit boundary. The padding is zero)

* Protocol (indicates the next level protocol used in the data portion of the internet
datagram. The values for various protocols are specified in ‘Assigned Numbers’ RFC790,
as shown in Table 4.8).

Table 4.8: Flags®

Decimal Octal Protocol Numbers
0 0 Reserved

1 1 ICMP

2 2 Unassigned

3 3 Gateway-to-Gateway

4 4 CMCC Gateway Monitoring Message
5 5 ST

6 6 TCP

7 7 ucCL

8 10 Unassigned

9 11 Secure

10 12 BBN RCC Monitoring

11 13 NVP

(continued)

146 Chapter 4

Table 4.8 continued: Flags®

Decimal Octal Protocol Numbers
12 14 PUP

13 15 Pluribus

14 16 Telenet

15 17 XNET

16 20 Chaos

17 21 User Datagram

18 22 Multiplexing

19 23 DCN

20 24 TAC Monitoring

21-62 25-76 Unassigned

63 77 Any local network

64 100 SATNET and Backroom EXPAK
65 101 MIT Subnet Support

66-68 102-104 Unassigned

69 105 SATNET Monitoring

70 106 Unassigned

71 107 Internet Packet Core Utility
72-75 110-113 Unassigned

76 114 Backroom SATNET Monitoring
77 115 Unassigned

78 116 WIDEBAND Monitoring

79 117 WIDEBAND EXPAK

80-254 120-376 Unassigned

255 377 Reserved

In Figure 4.36 are open source examples for sending and receiving processing routines

for a datagram at the IP layer. Lower layer protocols (i.e., PPP, Ethernet, SLIP, and so on)
call some type of ‘IPReceive’ routine such as the ‘void NutlpInput(NUTDEVICE * dev,
NETBUF * nb)’ in the open source snippet below to indicate to this layer to receive the
datagram to disassemble. Higher layer protocols (such as TCP or UDP) call some type of
‘IPSend’ routine such as the ‘int NutlpOutput(u_char proto, u_long dest, NETBUF * nb)’
shown in the open source snippet below to transmit the datagram. Within the ‘NutIpOutput
below is an example of how an IP header, like that which was shown in Figure 4.32, can

be populated.

www.newnespress.com

bl

The Fundamentals in Understanding Networking Middleware 147

1*
* Copyright (C) 2001-2007 by egnite Software GmbH. All rights reserved.
*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

* 1. Redistributions of source code must retain the above copyright

* notice, this hst of conditions and the following disclmmer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. Neither the name of the copyright holders nor the names of

* contributors may be used to endorse or promote products derived

* from this software without specific prior written permission.

.

*THIS SOFTWARE 1S PROVIDED BY EGNITE SOFTWARE GMBH AND CONTRIBUTORS

*TASTST AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTARBILITY AND FITNESS

* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL EGNITE

* SOFTWARE GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
*OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

* OR TORT (INCLUDING NEGLIGENCE OR OTITERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN [F ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGLE.

*

* For additional information see http://www.ethermut.de/
®

Ll

* Portions Copyright (C) 2000 David J. Hudson <dave@humbug . demon.co.uk>
*

* This file 15 distributed in the hope that it will be useful, but WITHOUT

*ANY WARRANTY; without even the implied warranty of MERCTTANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.

v

* You can redistribute this file and/or modify it under the terms of the GNU

* (Gieneral Public License (GPL) as pubhished by the Free Software Foundation;
* either version 2 of the License, or (at your discretion) any later version.

* See the accompanying file "copying-gpl.txt” for more details.

*

* As aspecial exception to the GPL, permission is granted for additional

* uses of the text contamed m this hile. See the accompanying file

* "copying-liquorice.txt"” for details.

%

* Portions Copyright (c) 1983, 1993 by

* The Regents of the University of California. All rights reserved.

.

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the disinbunion.

* 3. Neither the name of the University nor the names of its contributors

* may be used to endorse or promote products derived from this software

* without specific prior written permission.

®

*THIS SOFTWARE 1S PROVIDED BY THE REGENTS AND CONTRIBUTORS 7AS 18" AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE

Figure 4.36: Open Source Example®

www.newnespress.com

148 Chapter 4

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

=

* Portions Copyright (¢) 1993 by Digital Equipment Corporation.
L]

* Permission to use, copy, modify, and distribute this software for any

* purpose with or without fee is hereby granted, provided that the above

* copyright notice and this permission notice appear in all copies, and that

* the name of Digital Equipment Corporation not be used in advertising or

* publicity pertaining to distribution of the document or software without

* specific, written prior permission.

-

* THE SOFTWARE I8 PROVIDED "AS I8" AND DIGITAL EQUIPMENT CORP. DISCLAIMS ALL

* WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLTED WARRANTIES
* OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL DIGITAL EQUIPMENT

* CORPORATION BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL

2 DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR

* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
2 BOFTWARE.

*

Hinclude <clgfip.h>

#include <netroute,h>
Hinclude <netinet/in.h>
#include <netinet/ip.h=
#include <netinet/icmp.h>
Hinclude <netinet/ip_icmp.h>
#include <netinet/igmp h=
#include <netinet/udp.h>
#include <sys/socket.h=
#include <arpa/inet.h>

"

*\addiogroup xglP
*

@

static NutIpFilterFune NutpFilter;

/>t

* \brief Set filter function for incoming IP datagrams.

*

* The callbackFune is called by the IP layer on every incoming IP
* datagram. Thus it must not block, The implementer returns 0 for
* allow, -1 for deny.

-

* It is recommended to set the fler after DHCP has done its thing,
* just in case your DHCP server is on a different subnet for example.

* \param callbackFune Pointer to callback function to filter IP packets.
* Set to 0 to disable the filter again.

*f

void MNutlpSetInputFilter NutIpFilterFune callbackFune)

{
NutIpFilter = callbackFunc;
H

1

* \brief Process incoming 1P datagrams.
*

* Datagrams addressed to other destinations and datagrams
* whaose version number is not 4 are silently disearded.

Figure 4.36 continued: Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 149

* \note This routine is called by the Ethernet layer on

* incoming IT datagrams. Applications typically do

* not call this function.

L

* \param dev Identifies the device that received this datagram.
*\param nb The network buffer reccived.

"/

void NutlpInput NUTDEVICE * dev, NETBUF * nby)

IPHDR *ip;
u_short ip_hdrlen;
u_long dst;
uint_fast®_t beast;
IFNET *nif;

ip = nh-=nh_nw.vp;

‘f‘

* Silently discard daragrams of different TP version as well as

* fragmented or filtered datagrams.

wf

if(ip->ip v != IPVERSION || /* Version check. */

(ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0 || /* Fragmentation. */
(NutIpFilter && NutlpFilter(ip-=ip_src))) { /* Filter, */
NutMetBuflree(nb);

refurn;

H

l.’l

* IP header length is given in 32-bit ficlds. Caleulate the size in
* bytes and make sure that the header we know will fit in,

*

ip_hdrlen = ip-=ip_hl * 4;

if (ip_hdrlen < sizeof{ IPHIDR)) {

NutNetBufFree(nb);

refurn;

H
&

* No checksum calculation on incoming datagrams!
*

*

* Check for broadeast.
&/

dst = ip->ip_dst;

nif = dev->dev_icb;

if (dst == INADDR_BROADCAST ||

(nif-=if_local_ip && nif-=if_mask '= INADDR_BROADCAST && (dst | nif-=if_mask) == INADDR_BROADCASTY)) {
beast = 1;

i

lfl

* Check for multicast.

*f

else if (IN MULTICAST(dst)) {
MCASTENTRY *mea;

for (mca = nif-=if_mecast; mea; mea = mea->mea_next) §
if (dst == mea-=mea_ip) {

break;
i
}

if(mea == NULL) {
NutNetBufFree(nb);

relum;

H

beast = 2;

Figure 4.36 continued: Open Source Example

www.newnespress.com

150 Chapter 4

‘."

* Packet is unicast.
*/

else §

beast = (;

#ifdef NUTIPCONF _ICMP_ARPMETHOD

‘f'

* Silently discard datagrams for other destinations.

* However, if we haven't got an IP address yet, we

* allow ICMP datagrams to support dynamic 1P ARP method,

* 1l this option had been enabled.

./

if (nif->if local_ip == 0 && ip->ip_p == [PPROTO_ICMP && (dst & 0xfO00000) 1= 0XfIO00000 & (dst & OXFVO0000) 1= 0) {
NutNetIfSetup(dev, dst, 0, 0);

i

#endif

if(mif==ifl local ip &d& (dst == 0 || dst t= nif->if local ip)) §
NutNetBufFree(nb);

return;

;

¥

nb-=nb_nw.sz = ip_hdrlen;
nb-=nb_tp.vp = ((u_char *) ip) + (ip_hdrlen);
nb->nb_tp.sz = htons(ip-=ip_len) - (ip_ldrlen);

switch (ip-=ip _p) {

case IPPROTO_ICMP:
Nutlemplnputidev, nb);

break;

case IPPROTO_UDP:
NutUdplnput(nb, beast),

break;

case IPPROTO_TCP:

I

* Silently discard TCP broadeasts,
*/

il (beast)

NutNetBufFree(nb);

else

NutTepInput(nb);

break;

case IPPROTO_IGMP:
NutlgmpInput{dev, nk);

break;

default:

/* Unkown protocol, send ICMP destination (protocol)
* unreachable message.

&/

if (beast || INutlempResponse(ICMP_UNREACT, ICMP_UNREACH_PROTOCOL, 0, nb))
NutNetBulFree(nb);

break;

;

H

[l
*brief Send 11 datagram.
w

* Route an TP datagram to the proper interface.

*

* The function will not return until the data has been stored

* in the network device hardware for transmission. If the

* device is not ready for transmitting 2 new packet, the

* calling thread will be suspended until the device becomes

* ready again. IT the hardware address of the target host necds
* to be resolved the function will be suspended too.

*

* \param prote Protocol type.

* \param dest Destination IP address. The function will determine
* the proper network interface by checking the ronting

Figure 4.36 continued: Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 151

* table. It will also perform any neccessary hardware

* address resolution.

*\param nb Network buffer structure containing the datagram.
* This buffer will be released if the function returns

* an ¢rror.

-

*\return (} on success, -1 otherwise.

&*

* \bug Broadcasts to multiple network devices will fail after the
* first device returns an error.

*f
int NutlpQutput(u_char proto, u_long dest, NETBUF * nb)
{

u_char hal6];

IPHDR *ip;

NUTDEVICE *dev;

IFNET *mif}

u_long gate;

int re;

if((nb = NutNetBufAlloc(nb, NBAF_NETWORK, sizeoff IPHDR))) == 0
return -1,

.
* Set those items in the [P header, which are common for

* all interfoces:

"

ip = nb->nb. nw.vp;

Iy =4;

ip-=ip_hl = sizeof{ IPHDR) / 4:

ip-*ip _tos =0}

ip-=ip len— htonsinb-=nb_now.sz+ nh->nb_tpsz '+ nb->nb_ ap.sz):
ip-~ip_off=0;

if (proto == IPPROTO_IGMP) §

ip-=ipttl = 1;
ip-=ip 1l = Ox40;
|

ip->ip_p = proto;

ip->ip_dst = dest;

Jr-

* Broadcasts are sent on all network interfaces.
*

if' (dest == Ox M) §

memset(ha, 0xfF, sizeof(ha));

for (dev = nutDeviceList, re = 0; dev && re == 0; dev = dev->dev_next) {
if (dev->dev_type == IFTYP_NET) {

™

* Set remaining IP* header items and caleulate the checksum.
+

mf = dev->dev_ich;

ip-+ip_id = htons(nif-+if_pkt_id++);

ip->ip_sre = nif->if local ip;

1p-ip_sum =

ip->ip_sum = NutlpChkSum(0, nb->nb_nw.vp, nb->nb_nw.sz);
ll"‘

* TODO: We must clone the NETBUF!!!

b 4

if (nif-=if_type = IFT_ETHER)

re = (*nif-=il_output) (dev, ETHERTYPE_IP, ha, nb);

clse

r¢ = (*nif-=if_output) (dev, PPP_IP, 0, nb);

1

H

return rc;

1

Figure 4.36 continued: Open Source Example

www.newnespress.com

152 Chapter 4

Ilfi

¥ Get destination's route. This will also return the proper
* interface.

*/

if ((dev = NutlpRouteQuery(dest, &gate)) == 0) {
NutNetBufFree(nb);

return -1;

}

s

* Set remaiming IP header items and calculate the checksum.

=

nif = dev->dev_ich:

ip-=ip_id = htons{nif-=if’_pkt_id++):

ip-=ip_sre = nif-=if_local_ip:

1p-=1p.sum = (0

ip-=ip_sum = NutlpChkSum(0, nb->nb_nw.vp. nb->nb_nw.sz):

,If*

* On Ethernel we query the MAC address of our nex!t hop,
* which might be the destination or the gateway to this

* destination.

»

if (nif-=if_type =— [FI_ETHER) {

*

* Detect directed broadcasts for the local network. In this
* case don't send ARP quenes, but send direetly to MAC broadcast
* address.

*/

if ((gate = 0) && ((dest | nif->1f mask) = OxITONTL)) {
memset(ha, Oxft, sizeof(ha));

1 else il (NutArpCacheQuery(dev, gate 7 gale : dest, ha)) {
/* Note, that a failed ARP request is not considered a
transmission error. It might be caused by a simple

packet loss, */

return 0;

}

return (*nif==if_output) (dev, ETHERTYPE_IP, ha, nb);

1 else il (ml=>1 type =— IFT PPP)

return (*nif->if output) (dev, PPP_IP. 0, nb);

NutNetBulTree(nb);
return -1;

}

Figure 4.36 continued: Open Source Example

4.5.7 Transport Layer Middleware

Transport layer protocols (see Figure 4.37) are typically responsible for point-to-
point communication, which means this code is managing, establishing, and closing
communication between two specific networked devices. Essentially, this layer is
what allows multiple networking applications that reside above the transport layer

The Fundamentals in Understanding Networking Middleware 153

Application Software Layer

POP3 IMAP SMTP HIML HTIP

O8I Transport Layer

TCP ubpp BESMAP LTAP wDe

OSI Network Layer

OS] Data-link Layer

System Soliware Layer

Hardware Layer

Figure 4.37: Transport Middleware Layer Protocols

to establish client—server, point-to-point communication links to another device via
functionality such as:

* flow control that insures packets are transmitted and received at a supportable rate
* insuring packets transmitted have been received and assembled in the correct order
* providing acknowledgments to transmitter upon reception of error-free packet

* requesting re-transmission to transmitter upon reception of defective packet.

As shown in Figure 4.38, generally, data received from the underlying network layer are
stripped of the transport header and processed, then transmitted as messages to upper layers.
When a transport layer receives a message from an upper layer, the message is processed and
a transport header appended to the message before being passed down to underlying layers
for further processing for transmission.

The core communication mechanism used when establishing and managing communication
between two devices at the transport layer is called a socket. Basically, any device that
wants to establish a transport layer connection to another device must do so via a socket.
So, there is a socket on either end of the point-to-point communication channel for two
devices to transmit and receive data. There are several different types of sockets, such as
raw, datagram, stream, and sequenced packet for example, depending on the transport layer
protocol.

www.newnespress.com

154 Chapter 4

Session Layer

Transport Layer

Transport Headers Stripped Transport Headers Appended
: i to Data Field

\/

[sre port][dest port|[seq #)(ack #][l len)[res][utlag)(pflag](rflag](sflag][fflag)[winsz][chksum]| data] Transport Packet

Network Layer

Figure 4.38: Transport Layer Data-flow Diagram

Because one transport layer can manage multiple overlying applications, sockets are bound to
ports with unique port numbers that have been assigned to each application either by default
via industry standard or by the developer. For example, an FTP client being assigned ports 20
or 21, an email/SMTP client being assigned port 23, and an HTTP client being assigned port
80 to name a few. Each device has ports ‘0’ through ‘65535’ available for use, because ports
are defined as 16-bit unsigned integers.

As shown in Figure 4.39, in general, transport layer handshaking involves the server
waiting for a client-side application to initiate a connection by ‘listening’ to the relative
transport layer socket. Incoming data to the server socket are processed and the IP address,
as well as port number, is utilized to determine if the received packet is addressed to

an overlying application on the server. Given a successful connection to a client for
communication, the server then establishes another independent socket to continue
‘listening’ for other clients.

4.5.8 Transport Layer Example’: User Datagram Protocol (UDP)
versus Transmission Control Protocol (TCP)

RFC793 — Transmission Control Protocol (TCP) and RFC768 — User Datagram Protocol
(UDP) are two of the more common transport layer (middleware) protocols implemented
within an embedded system residing over the networking layer protocol IP (internet protocol).
Figure 4.40 is an open source example of UDP functions that utilize lower IP and ICMP
middleware layer software.

The Fundamentals in Understanding Networking Middleware 155

Server Client
Pl — '
. Port : > Port :
—— Client Connection "

Request

Server Chent
: Port : 1 Port |
i | Connection FEstablished [F——
7 1

Port -
4]
L —

Figure 4.39: Transport Layer Client-Server Handshaking

UDP establishes and dissolves point-to-point unreliable connections via a datagram socket.
This means that the UDP protocol does not provide acknowledgment functionality relative to
a UDP packet (see Figure 4.41), and overlying software layers are responsible for managing
reliability of transmitted data.

TCP, on the other hand, establishes and dissolves point-to-point reliable connections via a
datagram socket. Like UDP, TCP transfers and receives data packaged as segments, via a
socket handling scheme that handles data one message segment at a time. However, TCP
provides an acknowledgment at the core of its handshaking scheme and uses a packet
structure that differs from UDP (see Figure 4.42).

In addition to the actual data, both UDP and TCP headers contain source and destination
port number fields. Both UDP and TCP headers also contain a checksum field to allow both
protocols to help insure that data were transmitted without errors. As shown in Table 4.9,
TCP headers then provide additional fields to support the additional functionality relative to
reliability and handshaking provided by TCP over UDP.

Events are triggered by data within sender and receiver packets, such as user calls (i.e.,
OPEN, SEND, RECEIVE, CLOSE, ABORT, and STATUS), incoming segments and their
relative flags in the case of TCP (SYN, ACK, RST and FIN), and/or timeouts to name a few.

156 Chapter 4

."’-
* Copyright I 2001-2003 by egnite Software GmbIL. All rights reserved.

* Rechstribution and use in source and binary lorms, with or without
* modification, are permitted provided that the following conditions

* are met:

-

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclamer.

* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of

* contnbutors may be used to endorse or promote products derived

* from this sofrware without specific prior written permission.

-

* THIS SOFTWARE IS PROVIDED BY EGNITE SOFTWARE GMBH AND CONTRIBUTORS

* TAS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUTNOT

* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

T FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL EGNITE

* SOFTWARE GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

¥ SUCH DAMAGE.

-
* For additional information see hittp://'www etherput de/
-

* Portions Copyright 1 2000 David J. Hudson <dave@humbug.demon.co.uk==
-

* This file is distributed in the hope that it will be useful, but WITHOUT

*ANY WARRANTY ; withoul even the imphied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE.

.

* You can redistribute this file and/or modify it under the terms of the GNU

* General Public License (GPL) as published by the Free Software Foundation;

* either version 2 of the License, or (al your discretion) any later version.

* See the accompanying file “copying-gpl.txt™ for more details.

* As a special excephion to the GPL, permission 1s granted for addibonal
* uscs of the text contained in this file. See the accompanying file

* “copying-liquorice.txt” for details,

-

* Partions Copyright 1 1983, 1993 by
* The Regents of the University of California. All rights reserved.
-

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclamer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. Neither the name of the University nor the names of its contributors

* may be used to endorse or promote products derived from this software

* without specific prior written permission.

-

* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS A8 18" AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLATMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE

Figure 4.40: UDP Open Source Example'

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 157

¥ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES: LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
*HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
*OUT OF THE USE OF THIS SOFTWARE, EVEN 1 F ADWISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*

¥ Portions Copyright [1993 by Digital Equipment Corporation.
-

* Permission to use, copy, modify, and distribute this software for any

* purpose with or without fee is hereby granted, provided that the above

* copyright notice and this permission notice appear in all copies, and that

* the name of Digital Equipment Corporation not be used in advertising or

* publicity pertaining to distribution of the document or software without

* specific, wrilten prior permission.

L d

*THE SOFTWARE 1S PROVIDED “AS 18" AND DIGITAL EQUIPMENT CORP DISCLAIMS ALL

* WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS, INNO EVENT SHALL DIGITAL EQUIPMENT

* CORPORATION BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL

* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR

* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS

* ACTION, ARISING QUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.

*

Iln’-

* $Log: udpin.c,v ¥

¥ Revision 1.7 2008/04/18 13:13:11 haraldkipp
* Using fast ints.

-

* Revision 1.6 2006/10/08 16:48:22 haraldkipp
* Documentation fixed
-

* Revision 1.5 2005/06/05 16:48:32 haraldkipp
* Additional parameter enables NutlUdpInput() o avoid responding to UDP

¥ broadeasts with ICMP unreachable messages. Fixes bug #1215192.
-

* Revision 1.4 2005/05/26 11:47:24 drsung
* [CMP unreachable will be sent on incoming udp packets with no local peer port.
-

* Revision 1.3 2005/02/02 16:22:35 haraldkipp

* Do not wake up waiting threads if the incoming datagram
* doesn’t fit in the bufTer.

L]

* Revision 1.2 2003/11/24 21:01:04 drsung
* Packet queue added for UDP sockets.
-

¥ Revision 1.1.1.1 2003/05/09 14:41:45 haraldkipp
* Initial using 3.2.1
.

* Revision 1,10 2003/02/04 18:14:57 harald

¥ Version 3 released
-

* Revision 1.9 2002/06/26 17:29:36 harald
* First pre-release with 2.4 slack
*

)
#include <sys/eventh>

Hinclude <netinet/udp h=
#include <sys/socketh>
#include <netinet/ip_icmp.h>
#include <netinet/icmp.h=

*
*\addtogroup xgUDP
M

M

Figure 4.40 continued: UDP Open Source Example

www.newnespress.com

158 Chapter 4

"1

*\brief Handle incoming UDP packets.

* \note This routine is called by the IP Layer on

* incoming UDP packets. Applications typically do

* not call this function.

*

* \param nb Network buffer structure containing the UDP packet.
* \param beast Broadcast flag,

*f

/* @@ 2003-10-24: modificd by OS for udp packet queue */

void NutUdpInput(tNETBUF * nb, uint_fast8_t beast)

{
UDPHDR *uh;
UDPSOCKET *sock;

uh=(UDPHDR *) nb->nb_tp.vp;
nb->nb_ap.vp=uh+ 1;

nb->nb_ap.sz = nb->nb_tp.sz — sizeofi UDPHDR),
nb-=nb_tp. izeofi UDPHDR);

* Find a port. [none exists and if this datngram hasn't been

* broadcasted, return an [CMP unreachable.

.

if ((sock = NutUdpFindSocket(uh-uh_dport)) = (1) |

if (beast || NutlempResponse(ICMP_ UNREACH, ICMP. UNREACIH PORT, 0, nb) == (1) {
NutNetBufkree(nb);

i
i

relur,

1
i

* if buffer size is defined, use packet queue */

il (sock->s0_rx_bsz) {

/% New packet fits into the buffer? */

if (sock->so_mx_cnt + nb->nb_ap.sz > sock->so_rx_bsz) {
/% No, so discard it #/

NutNetBufFree(nb);

return;

telsef

/*ifa first packel is already in the queue, find the end

— and add the new packet */
if' (sock-=so_rx_nb) {
NETBUT *snb;
for (snb = sock-=so_rx_nb; snb->nb_next != 0; snb = snb->nb_next);
snb->nb_next = nb;
telse
sock-=so_rx_nb ~ nb;

/* increment inpul bufler count */
sock-so_rx_ent += nb--nb_ap.sz;
tH
} else § /* no packel queue */

/* 1 a packet 1s stll buffered, discard it */

if (sock-»so_rx_nb) {

NutNetBufFree(sock->so_rx_nb);

H

sock-»so_rx_nb = nb;

sock-=so_rx_cnt = nb->nb_ap.sz; /* set input buffer count to size of new packet */
e

/* post the event only, if one thread is waiting */

il (sock-=s0_rx_rdy)

NutEventPost(&sock->so_rx_rdy);

H

”

*\brief Send a UDP packel.

Figure 4.40 continued: UDP Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware

159

*

* \param sock Sockel descriptor. This pointer must have been

* retrieved by calling NutUdpCreateSocket().

* \param daddr IP address of the remote host in network byle order.
* \param porl Remole port number in host byte order.

* \param nb Network buffer structure containing the datagram.

* This buffer will be released if the function returns

* an error.

*

*\note Applications typically do not call this function but

* use the UDP socket interface.

*

* \return 1} on success, -1 otherwise.

*f

int NutUdpOutput(UDPSOCKET * sock, u_long daddr, u_short port, NETBUF * nb)
i

t

u_long saddr;
u_long csum:
UDPHDR *uh;
NUTDEVICE *dev;
IENET *ml;

if ((nb = NutNetBufAlloc(nh, NBAF_TRANSPORT, sizeoff UDPHDR))) == 0)
return -1;

uh = nb->nb_tp.vp;

uh->uh_sport - sock-=s0_local _port;

uh->uh_dport = htons(port):

uh->uh_ulen = htons({u_short)(nb->nb_1p.sz + nb->nb_ap.sz)):

* Get local address for this destination.
"
if ({(dev = NutlpRouteQuery(daddr, &saddr)) 1= 0) |
il = dev-=dev 1cb;

saddr = nif-=if"_local_ip:

) else

saddr = 0;

uh->uh_sum = 0;

csum = NutlpPsendoChkSumPartial(saddr, daddr, IPPROT O_LIDP, uh -=uh_ulen);
csum — NutlpChkSumPartial(csum, ub, sizeoff UDPHDR));

uh->uh_sum = NutlpChkSum{csum, nb->nb_ap.vp. nb->nb_ap.sz):

return NutlpOutput(IPPROTO_UDP, daddr, nb):

Figure 4.40 continued: UDP Open Source Example

UDP and TCP connections then progress from one state to another depending on these events,
for example under TCP:

LISTEN, waiting for a connection request
ESTABLISHED, normal and open connection in which data can be received
SYN-SENT/SYN-RECEIVED, synchronize connections reception/transmission

of data

160 Chapter 4

0

15 16

3l

|6-bit source port

| 6-hit destination port

Lt-hit UDP length

16-hit UDP checksum

hvtes

data (1f any)

Figure 4.41: UDP Packet Diagram™

* CLOSED, no connection
* CLOSING, waits for a connection termination request acknowledgment

* CLOSE-WAIT, waiting for a connection termination request

* TIME-WAIT, handshaking delay to allow time for remote connection to process
* LAST-ACK, waiting for an acknowledgment of connection termination request

0

0123435

1 2

3

678901234567890123456782901

B et e e e e e e e e e e e e e e et e T S e e e e e T S T et o S 3

Source Port |

Destination Port

B e e Tt Tt S e S e T TP S

Sequence Number

B T e e T e e A e R e e R

Acknowledgment Number

B e e S e S S e e e e [t Tt St T B R

Data |
Offaet

|[o|a|p|R|S|F|
R|C
G|K

Reserved

H|T|N|N]|

s|ls|y|1| Window

e e e e e o e e e e e S e e e e el el T el Tl Sl el et Tt S el el el S S e

Checksum |

Urgent Pointer

BT e e e A e el e e e e e e o o T e)

Options

Padding

B e i s S T T e e e o e S e e S e e S T ot o T e g

data

T e e e e e e o e e e A T o e T e e e e e S e e e

www.newnespress.com

Figure 4.42: TCP Packet Diagram'®

The Fundamentals in Understanding Networking Middleware 161

Table 4.9: Additional TCP Header Fields®

TCP Header Field

Description

Acknowledgment Number

TCP handshaking requires that when a TCP connection is
established, and acknowledgment is always sent. When an
ACK control bit is set, the Acknowledgment Number is the
value of the next sequence number the sender of the segment
is expecting to receive

Control Bits

URG URG: Urgent Pointer field significant

ACK Acknowledgment field significant

PSH Push Function

RST Reset the connection

SYN Synchronize sequence numbers

FIN No more data from sender

Data Offset Contains the location of where data is located within the TCP
message segment, after the TCP header

Options Additional TCP options

End of Option List

Indicates the end of an options list

Maximum Segment Size

Maximum Segment Size

Maximum Segment Size Option Data

This field contains the maximum receive segment size at the
TCP which sends this segment

No-Operation

Miscellanous use in options list

Padding Zeros used to ensure that the TCP header ends, and data start
on a 32-bit boundary
Reserved 0 (Reserved)

Sequence Number

When SYN is not present, this field contains the first data
octet. Otherwise, this field contains the initial sequence
number (ISN) and the first data octet is ISN+1

Urgent Pointer

When the URG control bit is set, this field contains the current
value of the urgent pointer which points to the sequence
number of the octet following the urgent data

Window

The amount of data the sender of the segment can accept

e FIN-WAIT-1, waiting for an acknowledgment or termination request from remote

connection

* FIN-WAIT-2, waiting for termination request from remote connection.

So as shown in the high-level diagram in Figure 4.43, the handshaking scheme under TCP
is based upon connections communicating via these states. The current states are defined by
events contained within the content of the transmitted packets.

162 Chapter 4

TCP SYSTEM 1. TCP SYSTEM IL.
(1) CLOSED LISTEN (1)
_ A
(2) SYN SENT = > > > > SYN_RECEIVED (2)

TCP Packet

A

(3} SYN SENT arsssssasirans e s sessessas - — SYN_REC'EIVED (3}

(4) SYN SENT " * K > LISTEN (4)

TCP Packet

A ; ;
(N-1) SYN-SENT #- i rin E—— - — SYN_RECEIVED (N-1)

TCP Packet

(N) ESTABLISHED ... LA ... "

TCP Packet

ESTABLISHED (N)

¥

Figure 4.43: High-level TCP States and Handshaking Diagram®

4.6 Step 5 Putting it All Together: Tuning the Networking Stack and
the Application Requirements

It is important for middleware developers to understand the overall networking requirements
of their device and tune networking parameters at all layers of software to real-world
performance needs accordingly. Even if the networking components are included as part of
a bundle purchased from an off-the-shelf embedded operating system vendor, middleware
programmers should not ever assume it is configured for their own production-ready
requirements. For example, developers that use vxWorks have the option of purchasing

an additional tightly networking stack with vxWorks. Access to networking parameters
(examples shown in Table 4.10) are provided via the development environment and source
code to developers, so that these components can be tuned to the requirements of the device
and how it must perform within a network.

So, given the TCP/IP stack parameters shown in Table 4.10 and tuning these — an example
to middleware developers is the TCP_MSS_DFLT parameter, which is the TCP Maximum
Segment Size (MSS) that can be tuned by analyzing both IP fragmentation as well as
managing overhead. The underlying IP stack needs to be considered because TCP segments
are repackaged into IP datagrams when data flow down the stack. Thus, the size limitations
of the IP datagrams must be taken into account. This is because fragmentation will occur at
the IP layer if the TCP segment is too big, resulting in a degradation of performance because
more than one datagram must be transmitted at the IP layer for the TCP segment data to be
managed successfully.

The Fundamentals in Understanding Networking Middleware 163

Table 4.10: Tuning Parameters for Networking Components in vxWorks'?

Networking Parameter Description Value
Component
TCP TCP_CON_TIMEO_ Timeout intervals to connect (default 150

DFLT 150=755)

TCP_FLAGS_DFLT Default value of the TCP flags (TCP_DO_RFC1323)

TCP_IDLE_TIMEO_ Seconds without data before dropping 14400

DFLT connection

TCP_MAX_PROBE_ Number of probes before dropping 8

DFLT connection (default 8)

TCP_MSL_CFG TCP Maximum Segment Lifetime in 30

seconds
TCP_MSS_DFLT Initial number of bytes for a segment 512

(default 512)
TCP_RAND_FUNC A random function to use in tcp_init (FUNCPTR)random

TCP_RCV_SIZE_DFLT | Number of bytes for incoming TCP data | 8192
(8192 by default)

TCP_REXMT_THLD_ Number of retransmit attempts before 3

DFLT error (default 3)
TCP_RND_TRIP_DFLT | Initial value for round-trip-time, in 3
seconds

TCP_SND_SIZE_DFLT | Number of bytes for outgoing TCP data | 8192
(8192 by default)

UDP UDP_FLAGS_DFLT Optional UDP features: default enables | (UDP_DO_CKSUM_
checksums SND | UDP_DO_
CKSUM_RCV)
UDP_RCV_SIZE_DFLT | Number of bytes for incoming UDP 41600

data (default 41600)

UDP_SND_SIZE_DFLT | Number of bytes for outgoing UDP data | 9216
(9216 by default)

IP_FLAGS_DFLT Selects otional features of IP layer (IP_DO_FORWARDING |
IP_DO_REDIRECT | IP_
DO_CHECKSUM_SND
| IP_DO_CHECKSUM_

RCV)
IP IP_FRAG_TTL_DFLT Number of slow timeouts (2 per second) | 60
IP_QLEN_DFLT Number of packets stored by receiver 50
IP_TTL_DFLT Default TTL value for IP packets 64
IP_MAX_UNITS Maximum number of interfaces 4

attached to IP layer

164 Chapter 4

Managing the overhead means developers must take into account the TCP and IP headers
that are not part of the data being transmitted but must be transmitted along with the data
for processing by connected devices. Balancing means doing the full analysis, meaning
recognizing that a maximum segment size (MSS) that is lower would reduce fragmentation,
but could prove inefficient due to the overhead if it is too low.

Another example for middleware developers relative to tuning for requirements and
performance is the TCP window sizes. Under the vxWorks example, the provided TCP/IP
implementation includes the TCP socket that receives and sends buffer sizes managed by
parameters TCP_RCV_SIZE_DFLT and TCP_SND_SIZE_DFLT. Socket window size is
used by TCP to inform connections how much data can be managed at any given time by

its sockets. For networking mediums that may require higher window sizes, such as satellite
or ATM communication, these values can be tuned accordingly in the project source files.

In this example when using this real-world networking stack with vxWorks, the general

rules recommended are that these socket buffer sizes should be an even multiple of the
maximum segment size (MSS), and three or more times the MSS value. To target networking
performance goals, these buffer sizes need to accommodate the Bandwidth (bytes per second)
X Round Trip Time (seconds).

4.6.1 The Application Requirements

As shown in Figure 4.21 with the OSI model, networking protocols at the application,
presentation, and session layers are the protocols that utilize any networking middleware
that resides within an embedded device. From the viewpoint of the OSI model, network
communication to another device is initiated via the application layer via end-users of the
device or end-user network applications. These network applications contain the relevant
networking protocols to ‘virtually’ connect to the networking applications residing in the
connected device (see Figure 4.44).

The ‘virtual’ connection between two networking applications is referred to as a session. A
session layer protocol manages all communication associated with each particular session,
such as:

e assigning a port number to each session

* separating and managing the data of independent sessions
* data flow regulation

* error handling

* security for the applications connected.

As shown in Figure 4.45, a message/packet received from the underlying transport layer is
stripped of the session layer header for processing, and the remaining data field is transmitted

The Fundamentals in Understanding Networking Middleware 165

Application Layer

Apglicaiion Taysr
HTTE L L] IMAR EMTE 1n

Prapeniation Layer
56 Mt ssL M50 —
A A A Y Ay
i oS NS wse iy |
A Y A A
T
Dt Tt T .
e A
A

Puwenosar | .

— ——

AR A

il ey
A S A
Hardware Layer

Figure 4.44: Application, Session, and Presentation Layer Protocols

up to the presentation layer protocol. Messages coming down from the presentation layer
are processed and appended with a session layer header before being passed down to an
underlying layer.

Data coming down from the application layer that requires translation into a generic format
for transmission and/or data transmitted from other that requires translation is done via
presentation layer protocols. In general, this includes data on:

* compression

* decompression

* encryption

e decryption

e protocol conversions
* character conversions.

www.newnespress.com

166 Chapter 4

PPresentation Layer

Message

Session Layer

|data]

A

Session Headers Stripped Session Headers Appended
; i toData I'ield
A /
L2CAP (Session) Packet
|length]|destination channel 1d]{data]

..........

MSG/Packet

Transport Layer

Figure 4.45: Session Layer Data-flow Diagram

In short, data received from the overlying application layer or underlying session layer are
translated as required. If data have come from an underlying layer, the presentation layer
header is stripped from the data intended for the application layer before being processed and
transmitted up the stack. For data coming down from the application layer, after any translation
of the data has been completed, a presentation layer header is appended

to the data before being transmitted down the stack to the underlying networking protocol

(see Figure 4.46).

These higher layer networking protocols can then be implemented as standalone applications
with the only responsibility being that of the particular protocol, or within a larger, more-
complex device application — as shown with the FTP (File Transfer Protocol) client, SMTP
(Simple Mail Transfer Protocol), and Hypertext Transfer Protocol (HTTP) high-level diagram
in Figure 4.47.

4.6.2 File Transfer Protocol (FTP) Client Application Example

RFC959, File Transfer Protocol (FTP), is one of the simpler and more common protocols
implemented within an embedded system that is used to securely exchange files over a
network. The FTP protocol is based on a communication model in which there is an FTP

The Fundamentals in Understanding Networking Middleware 167

Application Layer

Message

Presentation Laver

Presentation
Headers Stripped i Presentation Headers
Appended to Data Field
X

()]) Bluetooth (Presentation) Message
[length][destination channel id||data] b

i Message i

Session Layer

Figure 4.46: Presentation Layer Data-flow Diagram

client, also referred to as a user-protocol interpreter (user PI) that initiates a file transfer, and
an FTP server or FTP site that manages and receives FTP connections. As shown in Figure
4.48, the types of connections that exist between an FTP client and server are:

e control connections, which are connections in which commands are transmitted over
e data connections, which are connections in which files are transmitted over.

Application Software Layer

Weh Browser
FTI Client
HTML SSL DOoM S8

s e S i H HITP
i MP3 Player i

FTP Cliont

g P Eumail

POFVIMAR SMIP

Syatem Software Layer

Hardware Layer

Figure 4.47: FTP, SMTP, and HTTP High-level Application Example

168 Chapter 4

System
| MP3 Flayer
System i
i FTP Clicnt :
Sysion #

FIP Server Control
i A
i .

-
" A
Dam

Figure 4.48: FTP Network

FTP clients start FTP sessions by initiating a control connection to a destination system with
an FTP server. This FTP control connection is based on a TCP connection to port 21, because
FTP requires an underlying transport layer protocol that is a reliable, ordered data stream
channel. When FTP client and server communicate over a control connection, they do so via
the interchange of commands and reply codes, such as some of the codes shown in Table 4.11.

Figure 4.49 is an open source example of FTP functions, and how this source code utilizes a
required underlying networking middleware layer such as TCP socket-related function calls.

Table 4.11: Examples of FTP Commands and Reply Codes'’

Type Code Definition
Command DELE Delete. FTP service command
MODE Transfer Mode. Transfer parameter command
PASS Password. Access control command
PORT Data Port. Transfer parameter command
QuUIT Logout. Access control command
TYPE Representation Type. Transfer parameter
command
USER Username. Access control command
Reply Code 110 Restart marker reply
120 Service ready in ‘X’ minutes
125 Data connection already open
150 File status OK
200 Command OK
202 Command NOT implemented
211 System Help

www.newnespress.com

http://www.freesoft.org/CIE/RFC/959/index.htm

The Fundamentals in Understanding Networking Middleware 169

Fid
* Copyright 1 2005 by egnite Software GmbH. All rights reserved.
*

* Redistribution and use in source and binary forms, with or without
* madification, are permitted provided that the following conditions

* are met:

*

* 1. Redistributions of source code must retain the above copyright

* notice, this hist of conditions and the following disclumer

* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distnibution.
* 3. Neither the name of the copyright holders nor the names of

* contributors may he used to endorse or promote products derived

* from this software without specific prior written permission.

-

*THIS SOFTWARE IS PROVIDED BY EGNITE SOFTWARE GMBH AND CONT RIBUTORS
*TASTS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL EGNITE

* SOFTWARE GMBH OR CONTRIBUTORS BE LI ABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SFECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTLE GOODS OR SERVICES; LOSS
* OF USE, DATA, QR PROFTTS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTIHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*

* For additional information see hittpwww ethermut de
&=

fid]

* $Log: fipservev $

* Revision 1,10 2008/01/31 09:38:15 haraldkipp

* Added return statement in main to avoid warnings with latest GCC.
Ld

* Revision 1.9 2006/09/07 09:00:19 haraldkipp

* Dhscovery registration added. Enabled by default on ARM targets only to
* avoid blowing up AVR code.

.

* Revision 1.8 2006/09/05 12:26:35 haraldkipp

* Added support for SAM9 MMC,

* DHCP enabled by delauli.

*

* Revision 1.7 2006/08/31 19:15:30 haraldkipp

* Dummy file system name added to SAM9I260 to let it pass the compiler.
* The application will not yet run on this platform.
.

* Revision 1.6 2006/07/26 11:22:55 haraldkipp

* Added support for ATR1SAMTX -EK.

£

* Revision 1.4 2006/01/22 17:34:38 haraldkipp
* Added support for Ethernut 3, PHAT file system and realtime clock.
L

* Revision 1.3 2005/04/19 08:51:26 haraldkipp
* Warmn if not Ethernut 2

-

* Revision 1.2 2005/02/07 19.05:23 haraldkipp
* Atmega 103 compile errors fixed

&

* Revision 1.1 2005/02/05 20:32:57 haraldkipp
* Iirst release

.

*f

Figure 4.49: FTP Open Source Example'

www.newnespress.com

170 Chapter 4

.'r‘

* Baudrate for debug output.

*f

Hifndef DBG_BAUDRATE
#deline DBG_BAUDRATE 115200
#endif

/%

* Wether we should use DHCP
*

fideline USE_DHCP

l.f‘

* Wether we should run a discovery responder.
&/

#if defined__arm__)

#define UISE_DISCOVERY

#endif

.I"-
* Unique MAC address of the Ethernut Board.
-

* Ignored il EEPROM contains a valid configuration.
*
fidefine MY _MAC { 0x00, 0x06, 0x98, 0x30, 0x00, 0x35 }

llft
* Unique IP address of the Ethernut Board.
-

* Ignored if DHCP is used.
*
#define MY _IPADDR “192.168,192.35"

I‘
* IP network mask of the Ethernut Board.,

* Ignored if DHCP is used.
+f
Hdeline MY _IPMASK “255.255.255.0"

llft
* Gateway IP address for the Ethernut Board.
*

* Ignored if DHCP is used.
*
fidefine MY IPGATE “192.168.192.1"

fLd

= NetBIOS name.

-

* Use a symbolic name with Win32 Explorer.
.

/tdefine MY _WINSNAME “ETHERNUT™

,l"‘

* FTP port number.

*f

fdefine FTP_PORTNUM 21

/%
* TP timeout.
*

* The server will terminate the session, if no new command is received
* within the specified number of milliseconds,
*f

#define FTPD_TIMEOUT 600000

/%

Figure 4.49 continued: FTP Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 171

* TCP bufTer size.
*f
#define TCPIP_BUFSIZ 5840

,f’

* Maximum segment size.

*

* Choose 536 up to 1460, Note, thal segment sizes above 536 may result
* in frapmented packets. Remember, that Ethernut doesn’t support TCP
* fragmentation.

*/

#define TCPIP.MSS 1460

#if defined{ ETHERNUTS)

/* Ethernut 3 file system. */
#define FSDEV devPhat0
#idefine FSDEV_NAME “PHATO"

/* Ethernut 3 block device interface. */
#define BLKDEV devNplMmc0
#define BLKDEV_NAME “MMC0O™

#elif defined(AT91SAMTX_EK)

/* SAMTX-EK file system. */
#define FSDEV devPhat0
#define FSDEV_NAME "PHATO™

/* SAMTX-EK block device interface. */
#define BLEDEV devAt91SpiMme
#define BLKDEV_NAME “MMC0™

#elif defined(AT91SAMY260_EK)

/* SAM9260-EK file system, */
#define FSDEV devPhat0
#delfine FSDEV_NAME “PHATO™

/* SAM9260-EK block device interface. */
#define BLKDEV devAt91Mci0
#define BLEDEV_NAME “MCI0O™

#elif defined{ ETHERNUT2)
*

* Ethernut 2 File system

*/
fdefine FSDEV devPnut
#defme FSDEV_NAME “PNUT™
#else
#define FSDEV_NAME “NONE”
#endif

/*! \brief Local timezone, -1 for Central Europe. */
#define MYTZ -1

/%1 \brief ' address of the host running a time daemon. */
#define MY TIMED “130.149.17.21"

#ifdef ETHERNUTS

/* \brief Defined if X1226 RTC is available. */
#define X12RTC_DEV

#endif

IS
* FTP service.

*

Figure 4.49 continued: FTP Open Source Example

www.newnespress.com

172 Chapter 4

* This function waits for client connect, process es the FTP request
* and disconneets. Nut/Net doesn’t support a server backlog, If one
* client has established a connection, further connect attempts will
* be rejected.

*

* Some FTP cllents, like the Win32 Explorer, open more than one
* connection for background processing. So we run this routine by
* several threads.

*/

void FipService(void)

TCPSOCKET "sock;

i

* Create a socket.
.
if ((sock = NutTe pCreateSocket()) 1=0) {

"

* Set specified socket options

LT

Eifdef TCPIP_MSS

u_short mss = TCPIP_MSS:

NutTepSetSockOptisock, TCP. MAXSEG, &mss, sizeofimss));
1

fendif

Hifde FTPD TIMEOUT

i
u_long tmo = FTPR_TIMEOUT;

NulTepSet SockOptisock, SO_RCVTIMEQ, &tmo, stzeofitmo));
rendif

Aldel" TCPIP._BUFSEZ

i

|

u_short siz=TCPIP BUFSIZ;

NutlepSetSockOptisock, SO_RCVBUE &siz sizeofisiz)),

|

fendif

* Listen on our port. [Fwe return, we got 4 client

-

printfi*nWaiting for an FIP client...”),

1 (Nut'TepAccepl(sock, FTP_PORTNUM))4

printfi“%s connected, %u bytes free\n™, inet_ntoa(sock-=g0_remote_addr), (u_int)NutHeapAvailable());
NutPFtpServer Session(sock);

printft“%es disconnected %ou bytes free'n”, inet_ntoaisock->so_remote_addr), (u_mt)NutHeap Available()):
} else |

puts(“Accept failed™);

|

I,f-
* Close our socket.
*/

NutTepCloseSocket(sock);

}

fi
* FTP serviee thread.
"
THREA DY Ftphread, arg)
{
/* Loop endless for commections. */
for () {
FipService();
¥
i

e

Figure 4.49 continued: FTP Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 173

* Assign stdout to the UART device.
*f

void InitDebugDevice(void)

{

u_long baud = DBG_BAUDRATE;

NulRegisterDevice(&DEV DEBUG, 0, 0):
freopen(DEV_DEBUG NAME, “w", stdout);

1octl(fileno(stdout), UART SETSPEED, &baud);
)

‘f*

* Setup the 80thernet device. Try DHCP first. If this is
* the first time boot with empty EEPROM and no DHCP server
* was found, use hardeoded values.

*f

int InitEthernetDevice(void)

{

u_long ip addr = inet_addeMY IPADDR);

u long ip mask — inet_addoMY IPMASK);

u_long ip_gate = inet_addr(MY _IPGATE);

u_char mac[6] = MY_MAC;

if (NutRegisterDevice(&DEV_ETHER, 0x8300, 5)) {
puts(*No Ethemet Device”);
return -1;

I

printf(“Configure %s...”, DEV_ETHER_NAME);

#ifdel USE DIICP

it (NutDheplfConfig(DEV_ETHER_NAME, 0, 60000) = 0) {
puts(“OK”):

return 0;

}

printf{ “initial boot..."™);

if (NutDhepliConfig(DEV_ETHER_NAME, mac, 60000) = 0) {
puts("OK”);

return 0;

5

!

#endil

printf(“No DHCP...");

NutNetIfConfig(DEV_ETIER _NAME, mac, ip_addr, ip_mask);
/* Without DHCP we had to set the default gateway manually.*/
if{ip_gate) {

printf{“hard coded gate...”);

NutlpRouteAdd(0, 0, ip_gate, &DEV_ETHER);

J
puts(“OK™);

return 0

}
Figure 4.49 continued: FTP Open Source Example

www.newnespress.com

174 Chapter 4

Server
Application Software Layer
Application Software Layer
Email
Email MUA
MUA
MTA
MIA P
g R
y SMT | P POPIIMAPA
POP3IMARY b =t
TCP
ICP - Peat 25 >
- Sydtem
System Sofiware Layer
Software Laver
Hardware Layer
Hardware Layer

Figure 4.50: RFC2821 Email Model

4.6.3 Simple Mail Transfer Protocol (SMTP) and Email Application Example’

RFC2821 for SMTP (Simple Mail Transfer Protocol) is an ASCII-based networking protocol
for implementation within electronic mail (email) applications. It is a protocol for reliable
and efficient transmission and reception of emails between networked devices. As shown in
Figure 4.50, the RFC2821 model reflects an email application with two major elements:

* MUA, a mail user agent which is the interface an email application user uses to generate
emails

* MTA, the mail transfer agent which manages the SMTP communication for exchanging
emails between two devices.

Within the MTA, the SMTP protocol dictates that the transmitter of the email is the SMTP
client, and the receiver of the email is the SMTP server. What SMTP requires of the
underlying networking middleware is a protocol, such as TCP, that provides a reliable,
ordered data stream channel in which SMTP messages can be exchanged. The messages
exchanged between SMTP clients and servers have a message format that includes an email
header (i.e., Reply-To, Date, and From), the body of the email (i.e., the content of the email),
and the envelope (i.e., the addresses of the sender and receiver).

Finally, in order to manage the communication and transmission of messages, the SMTP
communication scheme includes the exchange of SMTP commands, such as those shown in
Table 4.12.

SMTP defines different buffers that can be implemented on a server to include the various
types of data, such as the ‘mail-data’ buffer to hold the body of an email, a ‘forward-path’

The Fundamentals in Understanding Networking Middleware 175

Table 4.12: Examples of SMTP Commands and Reply Codes®

Type Code Definition
Command HELO Data object is a fully qualified domain name of the client host,
which is how a client identifies itself
MAIL Data object is the address of the sender, which identifies the
origins of the message
RCPT (RECIPIENT) Data object is the address of the recipient, which
identifies who the email is for
RSET (RESET) Not a data object. Code aborts the current email

transaction and allows for any related data to be discarded

VRFY (VERIFY) Data object is the email user or mailbox, which allows
the SMTP client to verify the recipient’s email address without
actually transmitting the email to the recipient

Reply Code 211 System Status
214 Help Message
220 Service Ready
221 Service Closing Transmission Channel
250 Requested Mail Action Completed
251 User Not Local, Will Forward
354 Start Mail Input

buffer to hold the addresses of recipients, and ‘reverse-path’ buffer to hold addresses of
senders. This is because data objects that are transmitted can be held pending a confirmation
by the sender that the ‘end of mail data’ has been transmitted by the client device. This ‘end
of mail data’ confirmation (QUIT) is what finalizes a successful email transaction. Finally,
because TCP is a reliable byte stream protocol, checksums are usually not needed in an
SMTP algorithm to verify the integrity of the data.

Figure 4.51 is an example of SMTP pseudocode implemented in an email application on a
client device, and how this source code utilizes an underlying networking middleware layer
such as TCP socket-related function calls.

4.6.4 Hypertext Transfer Protocol (HTTP) Cleint and Server Application Example’

Based upon several RFC standards, and supported by the World Wide Web (WWW)
Consortium, the Hypertext Transfer Protocol (HTTP) 1.1 is the most widely implemented
application layer protocol, used to transmit all types of data over the Internet. Under the
HTTP protocol, these data (referred to as a resource) are identifiable by their URL (Uniform

176 Chapter 4

Email Application Task

Sender = “xx(@xx.com™;

Recipient = “yy(@yy.com™;

SMTPServer = “smtpserver.xxxx.com”

SENDER = “in(@xemcoengineening.com”,;

RECIPIENT = “cn@xansa.com™;

CONTENT = “This 15 a simple ¢-mail senl by SMTP™;
SMTPSend(“Hello!™); // a simple SMTP sample algorithm

)
SMTPSend (string Subject) {
TCPSockel 5= new TCPSocket(SMTPServer,25); // establishing a TCP connection (o port 25 of the

/I destination device

Timeout = 3 seconds; // timeout for establishing connection 3 seconds
Transmission Successful = FATSE;

Time=0;

While (ime < timeout) {
read in REPLY;
If response from recipient then {
if REPLY not 220 then {
//mot willing to accept e-mail
close TCP connection
time — tuneout;
) else {
transmit to RECIPIENT (“HELO"+hostname); //client identifies itself
read in REPLY:
) else {
transmil (o RECIPIENT (“QUIT™);
read in REPLY;
if REPLY not 221 then {
//service nol closing Iransmission channel
close TCP connection
time = timeout:
} else
close TCP connection;
transmission successful = TRUE;
time = timeout;
} Mend if-then-¢lse “.” REPLY not 221
) /lend il-then-else " REPLY not 250
} /lend if-then-else REPLY not 354
) // end if-then-else RCPT TO REPLY not 250
} /l end if-then-clse MAIL FROM REPLY not 250
)/l end if-then-else HELO REPLY not 250
} /1 end if-then-clse REPLY not 220
1 else {
fime = time + 1;
1 // end if-then-else response from recipient
} /1 end while (time < timeout)
} I/ end STMPTask

Figure 4.51: SMTP Pseudocode Example®

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 177

Request Message Response Message
emethod= <request-URL=eversions eversions <status-cod eocstalus-phrases
<headerss <headerss
“frin” [Rlank linc] “on” [blank linc|
<houdys husdlys

Figure 4.52: Request and Response Message Formats'"

Resource Locator). As with the other two networking examples, HTTP is based upon the
client—server model that requires its underlying transport protocol to be a reliable, ordered
data stream channel, such as TCP. The HTTP transaction starts with the HTTP client opening
a connection to an HTTP server by establishing a TCP connection to default port 80 (for
example) of the server. The HTTP client then sends a request message for a particular
resource to the HTTP server. The HTTP server responds by sending a response message to
the HTTP client with its requested resource (if available). After the response message is sent,
the server closes the connection.

The syntax of request and response messages both have headers that contain message Attribute
information that varies according to the message owner, and a body that contains optional
data, where the header and body are separated by an empty line. As shown in Figure 4.52,

they differ according to the first line of each message — where a request message contains

the method (command made by client specifying the action the server needs to perform), the
request-URL (address of resource requested), and version (of HTTP) in that order, and the first
line of a response message contains the version (of HTTP), the status-code (response code to
the client’s method), and the status-phrase (readable equivalent of status-code).

Tables 4.13a and 4.13b list the various methods and reply codes that can be implemented in
an HTTP server.

Table 4.13a: HTTP Methods"’
Method Definition

DELETE The DELETE method requests that the origin server delete the resource identified by
the Request-URI.

GET The GET method means retrieve whatever information (in the form of an entity)

is identified by the Request-URI. The Request-URI refers to a data-producing process,
it is the produced data which shall be returned as the entity in the

response and not the source of the process, unless that text happens to be the
output of the process.

178 Chapter 4

Table 4.13a continued: HTTP Methods

Method

Definition

HEAD

The HEAD method is identical to GET except that the server MUST NOT return a
message-body in the response. The metainformation contained in the HTTP headers
in response to a HEAD request SHOULD be identical to the information sent in
response to a GET request. This method can be used for obtaining metainformation
about the entity implied by the request without transferring the entity-body itself. This
method is often used for testing hypertext links for validity, accessibility, and recent
modification.

OPTIONS

The OPTIONS method represents a request for information about the communication
options available on the request/response chain identified by the Request-URI. This
method allows the client to determine the options and/or requirements associated
with a resource, or the capabilities of a server, without implying a resource action or
initiating a resource retrieval.

POST

The POST method is used to request that the destination server accept the entity

enclosed in the request as a now subordinate of the resource identified by the

Request-URI in the Request-Line. POST is designed to allow a uniform method to

cover the following functions:

* Annotation of existing resources;

* Posting a message to a bulletin board, newsgroup, mailing list, or similar group of
articles;

* Providing a block of data, such as the result of submitting a form, to a data-
handling process;

* Extending a database through an append operation.

PUT

The PUT method requests that the enclosed entity be stored under the supplied
Request-URI. If the Request-URI refers to an already existing resource, the enclosed
entity SHOULD be considered as a modified version of the one residing on the origin
server. If the Request-URI does not point to an existing resource, and that URI is
capable of being defined as a new resource by the requesting user agent, the origin
server can create the resource with that URI.

TRACE

The TRACE method is used to invoke a remote, application-layer loop- back

of the request message. TRACE allows the client to see what is being received
at the other end of the request chain and use that data for testing or diagnostic
information.

Table 4.13b: HTTP Reply Codes™

Code

Definition

200

Ok

400

Bad request

404

Not found

501

Not implemented

The Fundamentals in Understanding Networking Middleware 179

I*
* Copyright T 2001-2004 by egnite Software GmbH. All rights reserved.
.

* Redistnbution and use mn source and bmary forms, with or without
* modification, are permitted provided that the following conditions

* arc met:

»

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer

* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.
¥ 3. Neither the mame of the copyright holders nor the names of

* contributors may be used to endorse or promote products denved

* from this software without specific prior written permission

Ed

* THIS SOFTWARE IS PROVIDED BY EGNITE SOFTWARE GMBI AND CONTRIBUTORS
*UAS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL EGNITE

* SOFTWARE GMBH OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

* INCIDENTAL, SPECTAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* QR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

-

* For additional information see hitp. ‘www ethernut de
*
*f

f‘l* !

* SLog: hitpserv.e,v $

* Revision 1.19 2008/07/25 10:20:12 olereinhardt

* Fixed compiler bug for AVR -1CC and added missing PSTR. macro around
* prog_char sirings

®

* Revision 1.18 2008/07/17 11:56:20 olereinhardt

* Updated the webserver demo to show new webserver functions (different cgi
* pathes with T authentication, SQUERY STRING parameter for ssi

* included CGls)

*

* Revision 1.17 2008/05/13 19:31:34 thiagocorrea

* NutHitpSendHeaderBot 15 marked as depreeated, use NutlltipSendHeaderBottom mstend.
-

* Revision 1.16 2007/07/17 18:29:30 haraldkipp

¥ Server thread names not umque on SAM7X. Fixed by Marti Raudsepp.

*

* Revision 1.15 2006/09/07 (8):011:36 haraldkipp

* Discovery registration added.

* Re-armnged network interface setup to exclude DITCP code from ICCAVR
* builds and make it work with the demo compiler Unfinished.

¥ Added PHAT file system support. Untested.

®

* Revision 1.14 2006/03/02 19:44:03 haraldkipp
* MMC and PHAT enabled.
®

* Revision 1.13 2006/01/11 08:32:57 hwmaier
* Added explicit type casts to silence a few avr-gee 3.4.3 warning messages
*

* Revision 1.12 2005/11/22 (89:14:13 haraldkipp

* Replaced specific device names by generalized macros.
*

¥ Reviston 111 2005/10/16 23:22:20 hwmaier

Figure 4.53: HTTP Open Source Example'?

www.newnespress.com

180 Chapter 4

* Removed unreferenced nutconfig. h melude statement

.
* Revision 1.10 2005/08/05 11:32:50 olereinhardt
* Added 85I and ASP sample

.

* Revision 1.9 2005/04/05 18:04:17 haraldkipp
* Support for ARM7 Wolf Board added.
-

* Revision 1.8 2005/02/23 04:39:26 hwmaier

* no message
-

* Revision 1.7 2005/02/22 02:44:34 hwmaier
* Changes to compile as well for ATYOCANI28 device.
-

* Revision 1.6 2004/12/16 10:17:18 haraldkipp
* Added Mikael Adolfsson’s excellent parameter parsing routines,
-

* Revision 1.5 2004/03/16 16:48:26 haraldkipp
* Added Jan Dubiec’s HE/300 port,

.

* Revision 1.4 2003/11/04 17:46:52 haraldkipp

* Adapted 1o Ethernut 2
*

* Revision 1.3 2003/09/29 16:33:12 haraldkipp
* Using portable striok and striok
*

* Revision 1.2 2003/08/07 08:27:38 haraldkipp
* Bugflix, remote not displayed in socket list

* Revision 1.1 2003/07/20 15:36:14 haraldkipp
* 4 emply log message ***

*f

/"
*\example hitpd/hittpserv.c
-

* Simple multithreaded HTTP daemon
wf

"
* Unigue MAC address of the Ethernut Board.
-

* Ignored if EEPROM contains a valid configuration.
wf
#define MY _MAC “x00'x06\xI8\x30'%00Nx3 5"

Ll
* Unique IP address of the Ethernut Board.
*

* Ignored if DHCP 15 used.
*f
fdefine MY IPADDR “192,168.192.35"

1.
* [P network mask of the Ethernut Board.
-

* Ignored if DHCP is used.

*f

#define MY _IPMASK “255.255.255.0"

.'r‘

* Gateway IP address for the Ethernut Board.
-

* Ignared ir DHCP is used.

v

#define MY _IPGA'TE “192.168.192.1™

/* ICCAVR Demo is limited. Try to use the bare minimum. */
#iftdefined] IMAGECRAFT)

Figure 4.53 continued: HTTP Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 181

/¥ Wether we should use DHCP. */

#define USE_DHCP

/* Wether we should run a discovery responder. */
#define USE_DISCOVERY

/* Wether to use PHAT file system. */

Hildeline USE_PHAT

Hendif /* IMAGECRAFT %/

#ifdef USE_PHAT
#if defined(ETHERNUT3)

/* Ethernut 3 file system. */
fidefine MY _FSDEV devPhat0
#define MY _FSDEV_NAME “PHATO™

/* Ethernut 3 block device interface. */
fidefine MY BLKDEV devNpIMmc0
#define MY_BLKDEV_NAME “MMC0”

#elif defined(AT1SAMTX_EK)

/* SAMTX-EK file system. */
#define MY _FSDEV devPhat()
#define MY_FSDEV_NAME “PHATO"

/* SAMTX-EK block device interface. */
#defime MY_BLEKDEV devAt91S8piMme(}
#define MY_BLKDEV_NAME “MMCO"

#elif defined(ATY1SAMY260_EK)

/* SAM9260-EK file system. */
#define MY _FSDEV devPhat0
fdefine MY _FSDEV _NAME “PITATO"

/* SAM9260-EK block device interface, */
#define MY _BLKDEV devAt?1Mcio
#define MY_BLEDEV_NAME “MCI0”

Hendil
#endif * USE_PHAT %/

#ifndel MY_FSDEV
#define MY_FSDEV devUrom
#endif

#idel MY_FSDEV_NAME
#idefine MY_HTTPROOTMY_FSDEV_NAME “:/
#endif

! i
1 ASPCallback */

foxf

/* This routine must have been registered by */

I* NutRegister AspCallback() and is automatically called by */

P NutHupProcessFileRequest() when the server process a page */

/* with an asp funetion. */

ey

/* Return 0 on suceess, -1 otherwise, */

! !

static int ASPCallback (char *pASPFunction, FILE *stream)
!

Figure 4.53 continued: HTTP Open Source Example

www.newnespress.com

182 Chapter 4

if (stremp(pASPFunction, “nsr_date™) = 0) {
fprintfistream, “Dummy example: 01.01.2005");
return(0);

}

if (stremp(pASPFunction, “usr_time™) == () {
fprintf{stream, “Dummy example: 12:15:02");
return(0);

i

return (-1);
H

I
* CGI Sample: Show request parameters.

* See hitpad.h for REQUEST structure.
*

* This routine must have been registered by NutRegisterCgl() and Is
* automatically called by NutHutpProcessRequest{) when the client
* request the URL “ezi-bin/test.ezi’,

*/
static int ShowQuery(FILE * stream, REQUEST * req)

!

char *cp;

Fid

* This may look a little bit weird if vou are not used to C programming
* for flash microcontrollers. The special type *prog_char’ forces the

* string literals to be placed in flash ROM. This saves us a lot of

¥ precious RAM.

*f
static prog _char head([] = *<HTML=<HEAD=<TITLE=>Paramelers=/TI TL E>=</TEAD==BODY=><H | =Parameters=/T1 1 =";
static prog_char foot[] = “</BODY=</HTML=>";

static prog_char req_fmi[] = “Method: %s<BR=>'w'mVersion: HTTP/%d. %d=BR=r'nContent length: %ld=BR=\r'n™;
static prog_char url_fmt[] = “URL: %s
'r'n";

static prog_char query_fmt[] = “Argument: %s
r'n";

static prog char type_fmt[] = “Content type: %s<BR=\r'\n";

static prog_char cookie_fint[] = *Cookie: %s<BR='r'n";

static prog_char auth_fmt[] = “Auth info: %s
\r'n";

static prog_char agent_fint[] = “User agent: %s
\r'\n";

/* These useful APl calls create a HTTP response for us. %/
NutHitpSendHeader Top(stream, reg, 200, “0k™);
NutHupSendHeaderBottom(stream, req, html_mt, -1);

/* Send HTML header. */
fputs_P(head, stream);

.,"

¥ Send request parameters.
L)

switch (reg->req_method) §
case METHOD GET:

op ~ “GET™;

hreak;

case METHOD _POST:

¢p = “POST";

break;

case METHOD _HEAD:
¢p =“HEAD™;

break;

default:

ep = “UNKNOWN";
break;

}

fprintf_P(stream, req_fmt, ¢p, req->req_version / 10, req->req_version % 10, req->req_length);
if (reg->req_url)

fprintf_P(stream, url_fmt, req->req_url);

il (req-=req query)

fprintf_P(stream, query_fmt, req->req_query);

if (req-=req_type)

Figure 4.53 continued: HTTP Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 183

fprintf_P(stream, type_fint, req-=req_type);

if (req->req_cookic)

fprintf_P(stream, cookie_fint, req->req cookie);
if (reqg-=req_auth)

fprintf_P(stream, auth_fint, reg-=req_auth);

il (req-=req_agent)

fprintf_P(stream, agent_fmt, req->req_agent);

/* Send HTML footer and flush output buffer. */
fputs_Py(foot, stream);
fflush(stream);

return (0}

H

Tl
* CGI Sample: Show list of threads.
*

* This routine must have been registered by NutRegisterCgi() and Is

* automatically called by NutlTupProcessRequest() when the client

* request the URL “ezi-bin/threads.cgi’.

*/

static int ShowThreads(FILE * stream, REQUEST * req)

!

static prog_char head[] = “<HTML><HEAD><TITLE>Threads</TITLE></HEAD=><BODY =<H | >Threads=/H1=\r'n"
“<TABLE
BORDER><TR><TH>Handle</TH><TH>Name</TH><TH>Priority</TH><TH>Status</TH><TH>Event
Quene</ TH><TH>Timer</TH
><TH>Stack-
pointer</TH><TH>Free
Stack </ TH></TR>\r'n";

#if defined(__AVR__)

static prog_char tfint]] =

“<TR =< TR=%04X </ TD =TI =%s</ T=<TD=>%u-</ T =<TD>%s</TD=<TD>%04X </ T =<TD>%04 X</ TD=<TLr=% 04X </ TD=<TI¥>%u</T
De=TD>%s</TD=</TR>\r\n";
Helse

static prog_char tfmt[] =

S TR =T =20 81X </ T T =</ TD =<TD=%u-</TD=><TD=%s</ T =<TIr=%08 I X</ TD =TI =20 8 I </ TD=>=<TD=% 081 X</ TD=<T=%]lu
< TD><TD>%s</TD></TR>\r'n™;

#endif

static prog_char foot[] = “</TABLE></BODY></HTML>";

static char *thread_states[] = { “TRM", “<FONT COLOR=#CC0000=RUN=/FONT=", “<FONT COLOR=#339966=RDY</FONT=", “SLP" },
NUTTHREADINFO *tdp = nut ThreadList;

/* Send HTTP response. */
NutHtipSendieaderTop(stream, req, 200, “0Ok™);
NutHttpSendHeader Bottom(stream, reg, html_mt, -1};

/* Send HTML header. */

fputs P(head, stream);

for (tdp = nut ThreadList; tdp; tdp = tdp->td_next) {

Fprintf P(stream, timt, (uptr_t) tdp, tdp-=td_name, tdp-=td_priority,
thread_states[tdp->td_state], (uptr_t) tdp->td_queue, (uptr_t) tdp->td_timer,
(uptr_t) tdp-=td_sp, (uptr 1) tdp-=td_sp — (uptr_t) tdp-=td_memory,
*((u_long *) tdp->td_memory) |- DEADBEEF ? “Con™ : “OK™);

|

fputs_IY foot, stream);
Mush(stream);

return (0}

}

P
* CGI Sample: Show list of timers.
*

* This routine must have been registered by NutRegisterCgi() and is
* automatically called by NutHttpProcessRequest() when the elient
* request the URL ‘*egi-bin/timers.egi®.

*f

slatic int ShowTimers(FILE * stream, REQUEST * req)

1
static prog_char head[] = “<HTML><HEAD=<TITLE=Timers</TITLE=</HEAD=<BODY<H 1 = Timers</T 1 >\r'n";

Figure 4.53 continued: HTTP Open Source Example

www.newnespress.com

184 Chapter 4

static prog_char thead[] =

“<TABLE BORDER><TR><TH>Handle</TH><TH>Countdown</TH><TH>Tick
Reload</TH><TH>Callback
Address</TH=><TH>Callback
Argument</TH></TR>\r'n";

#if defined AVR

static prog_char tfint]] = “<TR><TD>%04 X</ TD><TD>%lu</TD><TD>% </ TD><TD>%04X </ TD> < TD>%0MX < TD></TR>\r'n";
felse

static prog_char tfmt[] = “<TR><TD>%081X </ TD><TD>%lu</TD><TD>%lu </ TD><TD>%08IX </ TD><TD>%081X </ TD> </ TR>'r'n";
tendif

static prog_char foot]] = “</TABLE></BODY></HTML>";

NITTIMERINFO *inp;

u_long ticks_left;

NutHttpSendHeader Top(stream, req, 200, “Ok™);
NutHttpSendHenderBottom(stream, reg, html_mt, -1);

/* Send ITML header. */

fputs_P(head, stream);

iF((tnp = mitTimerList) [=0) {

fpurs_P(thead, stream);

licks left =0;

while (mp) §

ticks_left += tnp->tn_ticks_left;

fprintf_P(stream, tfmt, (uptr_t) mp, ticks_left, mp->m_ticks, (uptr_t) mp->m_callback, (uptr_t) np->m_arg);
Inp = tnp-=In_nexl;

fputs_P(foot, stream);
fflushistream);

return 0;
H

P
* CGI Sample: Show list of sockets.

* This routine must have been registered by NutRegisterCgi() and is
* automatically called by NutHtipProcessRequest() when the client
* request the URL “egi-bin/sockets.cgl’.

*!

static int ShowSockets(FILE * stream, REQUEST * req)

i” String literals are kept in flash ROM. */

static prog_char head(] = “<HTML><HEAD><TITLE>Sockets</TITLE></HEAD>"
“<BODY=<HI>Sockets</TT1=\r'n"

“<TABLE BORDER><TR><TH>Handle</TH><TH>Type</TH><TH>Local</TH><TH>Remote</TH><TH=>Status</TH></TR>\r'\n"™;
#if defined(__AVR__)

static prog_char tfmtl[] = “<TR><TD>%04X </ TD><TD>TCP</TD><TD>%s:%u</TD>";
flelse

static prog_char tfimt1]] = “<TR><TD>%08IX </ TD><TD>TCP</TD><TD>%s:%u</TD>";
Hendil

static prog_char tfmt2[] = “<TD>%s:%u</TD><TD>";

static prog_char fool[] = “</TABLE==/BODY=></TITML>";

static prog_char st_listen[] = “LISTEN"™;

static prog,_char st_synsent[] = “SYNSENT";

static prog_char st_synrevd[] = "SYNRCVD™,

static prog_char st_estab[] = “ESTABL=/FONT=";

static prog_char st_finwait1[] = “FINWAIT1™;

static prog_char st_finwait2[] = “FINWAIT2";

static prog_char st_closewait[] = “CLOSEWAIT";

static prog_char st_closing[] = “CLOSING™,

static prog_char st_lastack]] = “LASTACK";

static prog_char st_timewnit[] = “TIMEWAIT™;

static prog_char st_closed[] = “CLOSED";

static prog char st_unknown[] = “UNKNOWN";

prog_char *st_P;

extern TCPSOCKET TtepSocketList;

TCPSOCKET *ts;

NutHttpSendHeader Top(stream, req, 200, “Ok™);
NutHttpSendHenderBottom(stream, reg, html_mt, -1);

Figure 4.53 continued: HTTP Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 185

A%, 0 1 t.l'l“'_lv.“_ !n n!\.u. L

Tputs_ Pihend, stream), §

for (18 = tepSocketList; 1318 = 13-230_next) { 1

switeh (1s-=so_state) | i
b S R S g N

st I' = (prog char *) st listen;
break;

case TCPS_SYN_SENT:

st I' = (prog char *) st_synsent;
break;

case TCPS_SYN_RECEIVED:
st_P = (prog_char *) st_synrevd;
break;

case TCPS_ESTABLISHED:
st_P = (prog_char *) st_estab;
break;

case TCPS_FIN_WAIT_1:

st_P = (prog_char *) st_finwait1;
break;

case TCPS_FIN_WAIT_2:

st_P = (prog_char *) st_finwait2;
break;

case TCPS_CLOSE_WAIT:

st_P = (prog_char *) st_closewait;
break;

case TCPS_CLOSING:

st_P = (prog_char *) s1_closing;
break;

case TCPS_LAST_ACK:

st_P = (prog_char *) st_lastack;
break;

case TCPS_TIME_WAIT:

s1_P = (prog_char *) s1_timewnil;
break:

case TCPS_CLOSED:

st_P = (prog_char *) st_closed;
break:

default:

st_P = (prog_char *) st_unknown;
break:

i

,1'-

* Fixed a bug reported by Zhao Weigang.
*

fprint{_P(stream, tint], (uptr_t) ts, inet_ntoa(ts->so_local_addr), ntohs(ts->so_local_port));
fprintf_P(stream, tfmt2, inet_ntoa(ts->30_remote_addr), ntohs(1s-=s0_remote_port));
fputs_P(st_P, stream);

fputs{“</TD></TR>\r'\n", stream);

fflush(stream);

H

fiputs_P(foot, stream);
Mush(stream);

returmn 0;
¥

Ift

* CGI Sample: Processing a form.

-

* This rontine must have been registered by NutRegisterCgi() and is
* automatically called by NutHnpProcessRequest() when the client
* request the URL “egi-bin/form.egi’.

*

* Thanks to Tom Boettger, who provided this sample for ICCAVR.

7

int ShowForm(FILE # strenm, REQUEST * req)

t

static prog_char himl_head]] = *<HTML><BODY=>
<H1>l'orm Result</I11>

";

static prog_char himl_body]| = “

<p><a hre[=\". findex. htmI\">return (o main</a=</BODY =</HTML></p=";

Figure 4.53 continued: HTTP Open Source Example

www.newnespress.com

186 Chapter 4

NutHttpSendHeader Top(stream, reg, 200, “0Ok™);
NutHitpSendHeaderBottom(stream, req, himl_mit, -1);

/* Send HTML header. */
fputs_P(html_head, stream);

if (req-=req_query) {
char *name;

char *value;

int I;

inl count;

count = NutHttpGetParameter Count(req);
/* Extract count parameters. */

for (I=10; I < count; i++) §

name = NutHttpGetParameterName(req, i);
value = NutHttpGetParameterValue(reg, 1);

/* Send the parameters back to the client, */

#fdef _ IMAGECRAFT__

fprintfistream, “%s: %s
\r\n", name, value);
Helse

fprintf_P(stream, PSTR(*%s: %s<BR=\r'n™), name, value);
fendif

h

}

fputs_P(html_body, stream);

Mush(stream);

return 0;

H

'f*

= CGI Sample: Dy i put egi ineluded by ssi.shiml file

*

* This routine must have been registered by NutRegisterCei() and is
* automatically called by NutHttpProcessRequest() when the client
* request the URL *egi-bin/form.cgi’.

L3

* Thanks to Tom Boettger, who provided this sample for ICCAVR.
*f

int S51DemoCGIFILE * stream, REQUEST * reg)

t

if (req-=req_query) {

char *name;

char *valug;

inmI;

inl count;

count = NutHrpGetParameterCount(req);

/* Extract count parameters. */
#ifdef __IMAGECRAFT__
fprintfistream, “CGI ssi-demo.cgi called with parameters: These are the parameters'tn<p>");
Helse
fprintf_P(stream, PSTR(“CGI ssi-demo.cgi called with parameters: These are the parameters\r'n=p="));
#endif
for (I=0; I < count; i++) {
name = NutHttpGetParameterName(req, i);
value = NutllttpGetParameterValue(req, i)

/* Send the parameters back to the client. */
Hifdel IMAGECRAFT

fprint fistream, “%s: %s
\rin", name, value);
#else

fprintl” Pistream, PSTR(*%s: Y%s
\r'\n"), name, value);
Hendil

Figure 4.53 continued: HTTP Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 187

§

+else {
time 1 now;
Im lo¢_time;

/* Called without any parameter, show the current time */
now = time(NULL);

localtime i &now, &loc lime);

#ifdel __IMAGECRAFT__

fprinti{stream, “CG ssi-demo.cgi ealled without any parnmeter.<br=<hr=Current time is: %602d.9502d.%04d - %02d:%02d:9:02d<br=\r'n",
lo¢_time.tm_mday, lo¢_time.tm_mon+1, lo¢ time.tm_year+ 1900, loc_time.tm_hour, loc_time.tm_min, loc_time.tm_sec);

Helse

fprintf_P(stream, PSTR(*CGl ssi-demo.cgi called without any parameter.<br=
=Current time is: %:02d.%602d.%04d —

%a02d:%02d:%02d<hr=\r\n"),

loc_time.tm_mday, loc_time.tm_mon+1, loc_time.tm_year+ 1900, loc_time.tm_hour, loc_time.tm_min, loc_time.tm_sec);

Hendif
|

fflush(stream);

return 0;
H

1*1 \n Service(void *arg)
*\brief HI'TP service thread,
*

* The endless loop In this thread waits for a cllent conneet,

* processes the HTTP request and disconnects, Nut/Net doesn 't
* support a server backlog, If one client has established a

* connection, further connect attempts will be rejected.

* Typleally browsers open more than one conneetion In order
* to load images concurrently. So we run this routine by

* several threads.

*

*f

THREAD(Service, arg)

!

TCPSOCKET "sock;

FILE *strcam;

u_char id = (u_char) ((uptr_t) arg),

‘f'

* Now loop endless lor connections.
*

for () §

I
* Create a socket.

b

if1(sock = NutTopCreateSocket()) — (1) |
prnt[%u] Crenting sockel failedin”, id);
NutSleep(5000);

continue;

i

‘fl

* Listen on port 80, This call will block until we gel a connection

* from a client.

*f

NuwTepAccept(sock, $0);

#if defined(AVR)

printf(*[%n] Connected, %u bytes free'n™, i, NutHeapAvailable());
flelse

printfi“{%u] Connected, %Iu bytes free'n”, id, NutHeapAvailable()):
Hendif

‘f'

* Wait until at least § kByte of free RAM is availabl e, This will
* keep the client connected in low memory siluations,

*f

#if defined{ _AVR_)

Figure 4.53 continued: HTTP Open Source Example

www.newnespress.com

188 Chapter 4

while (NutlleapAvailable() < §192) {
flelse

while (NutHeapAvailable() < 4096) {
Hendif

printf{(*[%u] Low mem'n™, id);
NutSleep(1000);

J*

* Associate a stream with the socket so we can use standard 1/0 calls.
*/

if' ((stream = _fdopen((int) ((upir_t) sock), “r+b7)) == 0) {
printf{“[%u] Creating stream device failed\n”, id);

}else {

J*

* This AP call saves us a lot of work. It will parse the

* ¢client’s HTTP request, send any requested file from the
* registered file system or handle CGI requests by calling
* our registered CGl routine.

*/

NutHttpProcessRequest(stream);

l,fll‘

* Destroy the virtual stream device.
wf

felose(stream);

j

s

i* (lose our socket.

NulTepCloseSockel(sock):

PR T eu | IDISeOnEt T)
;

1

Figure 4.53 continued: HTTP Open Source Example

The open source example in Figure 4.53 demonstrates HTTP implemented in a simple
web server. The reader can then see an example of how this sample open source code uses
underlying TCP (states) in its own HTTP-specific functions.

4.7 Summary

In this chapter, an introduction to core networking concepts and the OSI model was
discussed. Moreover, networking middleware was defined as system software that typically
resides within the upper data-link layer through to the transport layer in an embedded
system. This networking middleware mediates between networking application protocols
and the kernel, and/or networking device driver software, as well as mediates and serves
different networking application protocols. Finally, underlying networking hardware and
system software was explained relative to networking middleware, as well as how to put it all

The Fundamentals in Understanding Networking Middleware 189

together with networking application layer software. Open source examples were used to help
give readers a more clear picture of the implementation of middleware networking protocols
from a programmer’s perspective within a device, as well as allow the reader to download and
utilize these open source examples for themselves.

The next chapter, Chapter 5, introduces database fundamentals relative to their
implementation within a middleware layer.

4.

1.

10.

11.

12.

13

8 Problems®

What is the difference between LANs and WANs?
. What are the two types of transmission mediums that can connect devices?
What is the OSI model?
What are the layers of the OSI model?
Give examples of two protocols under each layer.
Where in the Embedded Systems Model does each layer of the
OSI model fall? Draw it.
. A. How does the OSI model compare to the TCP/IP model?
B. How does the OSI model compare to Bluetooth?
. Where in the OSI model is networking middleware located?
. A. Draw the TCP/IP model layers relative to the OSI model.
B. Which layer would TCP fall under?
. RS-232 related software is middleware (True/False).
. PPP manages data as:
Frames.
Datagrams.
Messages.
All of the above.
None of the above.
Name and describe the four subcomponents that make up PPP software.
What RFCs are associated with each?
What is the difference between a PPP state and a PPP event?
List and describe three examples of each.
What is an IP address?
. What networking protocol processes IP addresses?
Name two examples of application-layer protocols that can either be implemented as
stand-alone applications whose sole function is that protocol, or implemented as a sub-
component of a larger multifunction application.
. A. What is the difference between an FTP client and an FTP server?
B. What type of embedded devices would implement each?

oO0w

TrEWrET>DmOO® >

190 Chapter 4

14. SMTP is a protocol that is typically implemented in:
An email application.
A kernel.
A BSP.
Every application.
E. None of the above.
15. SMTP typically relies on TCP middleware to function (True/False).
16. A. Whatis HTTP?
B. What types of applications would incorporate an HTTP client or server?

oOow

4.9 End Notes

! RFC959 (http://www.freesoft.org/CIE/RFC/959/index.htm).

2 RFC2821(http://www.freesoft.org/CIE/RFC/2821/index.htm).

3 Embedded Planet EPC8xx Datasheet.

4 Embedded Microcomputer Systems, Valvano.

5 Embedded Systems Architecture, Noergaard — RFC 793. ‘Transmission Control Protocol’. DARPA Protocol
Specification.

¢ http://www.ethernut.de/en/download/index.html. Open source examples.

7 VxWorks API Reference Guide: Device Drivers, Version 5.5.

8 RFC1661 (http://www.freesoft.org/CIE/RFC/1661/index.htm), RFC1334 (http://www.freesoft.org/CIE/
RFC/1334/index.htm), RFC1332 (http://www.freesoft.org/CIE/RFC/1332/index.htm)

® RFC791 (http://www.freesoft.org/CIE/RFC/791/index.htm).

10°RFC798 (http://www.freesoft.org/CIE/RFC/798/index.htm).

" www.w3.org/Protocols/

12 WindRiver vxWorks API Documentation and Project.

13 Egnite Open Source.

http://www.freesoft.org/CIE/RFC/959/index.htm
http://www.freesoft.org/CIE/RFC/2821/index.htm
http://www.ethernut.de/en/download/index.html
http://www.freesoft.org/CIE/RFC/1661/index.htm
http://www.freesoft.org/CIE/RFC/1334/index.htm
http://www.freesoft.org/CIE/RFC/1334/index.htm
http://www.freesoft.org/CIE/RFC/1332/index.htm
http://www.freesoft.org/CIE/RFC/791/index.htm
http://www.freesoft.org/CIE/RFC/798/index.htm
http://www.w3.org/Protocols/

File Systems

Chapter Points
e Defines what a file system is and what it manages when utilized as middleware
e Introduces fundamental file system concepts and terminology

e Identifies the major elements of most file system designs

5.1 Whatis a File System?

File system software provides a scheme to manage data on an embedded computer system.

A file system can be accessible and directly utilized by the embedded system’s user, as
middleware software used by other middleware, as middleware software used by applications
in the system to manage data for the application, or some combination of the above.
Regardless, a file system manages data by allowing for some combination of the:

° organization
° storage

e creation

¢ modification
* retrieval

of data from some type of memory medium. Depending on the file system, the memory
medium can be volatile RAM, and/or non-volatile memory such as: Flash, CD, tape, floppy
disk, and hard disk to name a few. Keep in mind that the file system itself, and the data it
manages, may or may not reside on the same device. Meaning, as shown in Figure 5.1, the
data the file system manages can be located on some type of hardware storage medium
located on the embedded system board or located on some other storage medium accessible
to the embedded system (i.e., over a network, on a floppy disk, on a CD, etc.)

Demystifying Embedded Systems Middl e. DOI: 10.1016/B978-0-7506-8455-2.00005-4

191

192 Chapter 5

e

Embedded System Embedded System
B File System B File System i
S L P i
Y Y e, SR, e . 4 _ Y.
RAM Hard Disk | | Flash | : .. ° { Hard Disk : :

/

Network

» File System

Hard Disk

Figure 5.1: File System Access

5.2 How Does a File System Manage Data?

As implied in its name, a file system manages data in a fundamental element called a file. A
file is simply a set of data that has been grouped together and assigned a unique ‘name’. To
maintain its relevance in the embedded device, a file system then must have a reliable and
efficient scheme to create filenames, process filenames, and locate the files this metadata
represents on the storage medium.

Real-world Advice

Know Your Standards!

File systems will adhere to standards for everything from naming scheme and convention (i.e.,
characters, size, encoding, etc.) to I/O APIs. For example, some implementations provide a
standard asynchronous 1/O API to interface to files located on the device that adheres to the
international standard /EEE 1003.7 POSIX (portable operating system interface for computing
environments), regardless of the underlying file system on the device. This asynchronous I/O
APl is a standard interface that is utilized by any embedded application to allow for simpler and
faster portability of applications across different platforms that provide an application
interface that adheres to this specification.

So, keep in mind when trying to understand a particular file system implementation that it may
adhere to proprietary standards, industry specifications, or some combination of both.

File Systems 193

The type of data contained in files is typically NOT constrained by the file system,
meaning that as far as a file system is concerned, files can contain any kind of data

or some combination of different types of data, such as graphics, source code, and/or
document text to name a few. However, while the type of data within a file may not be
relevant to a file system, whether or not data bits need to be structured in a particular
way within a file can vary from file system to file system. Supported file structure types
can range from unstructured, commonly referred to as raw, to rigidly structured data files
of a particular size and format. For example, with file systems that support raw files, the
file system essentially views data within a file as data bit streams comprised of Os and 1s
that can be freely accessed in any form and/or order by other users and/or software using
the file system (see Figure 5.2). In short, a file system needs to support the structure of the
data within a file in order for that particular file to be compatible with the file system.

IR File System

08 File System AP'l Layer

licati] i H H
Apr{.l‘;n = i .m | £ File System Core Layer
M ? 1 Operating,
05 Specific Layer System

User

7 i ; : : i
! . 01101100, ¥, i Driver Interface Layer i
> H E i

A
a

BSP/Device Drivers

v Hardware Storage Medinms

.“l "

ayr

Figure 5.2: Raw Files and File Systems

194 Chapter 5

The first steps to understanding the fundamentals and ultimately any file system
implementation are:

Step 1.

Step 2.

Step 3.

Step 4.

Understand what the purpose of the file system is within the system, and simply keep
this in mind regardless of how complex a particular file system implementation is. As
introduced at the start of this chapter, the purpose of a file system is to manage data
stored on some type of storage medium located within the embedded device and/or
some remotely accessible storage medium.

Understand the APIs that are provided by a file system in support of a file system’s

inherent purpose. These APIs can, of course, differ from file system to file system —

but in general include some combination of:

* Naming and creating files

* Configuring files

* Removing files

* Opening and closing files

* Writing to and reading from files

* Creating and configuring directories for groups of files

* Removing directories

* Reading directories

* Additional/extended functions

* File system creation, mounting, and unmounting

* Symbolic, hard, and/or dynamic links

* Journaling/atomic transactions

Using the Embedded Systems Model, define and understand all required architecture

components that underlie the file system, including:

Step 3.1. Know your file system-specific standards (see Chapter 3).

Step 3.2. Understanding the hardware (see Chapter 2). If the reader comprehends the
hardware, it is easier to understand why a particular file system implements
functionality in a certain way relative to the storage medium, as well as the
hardware requirements of a particular file system implementation.

Step 3.3. Define and understand the specific underlying system software components,
such as the available device drivers supporting the storage medium(s) and
the operating system API (see Chapter 2).

Define the particular file system architecture model based on an understanding of the

generic file system model, and then define and understand what type of functionality

and data exists at each layer. This includes file-system-specific data, such as data
structures and the functions included at each layer. This step will be addressed in
detail in a later section.

File Systems 195

5.3 File System Data and the File System Reference Model

At the file system level, there are two general types of data:

e User Content Data. The data files that belong to the users and/or other software using
the file system. As discussed at the start of this chapter, a file system typically does
not constrain the type of content that can be in a file.

° File-system-specific Data. This includes data structures and metadata that are specific
to that particular file system. Essentially, it is all the data and functionality in the file
system implementation itself.

The key to understanding a file system implementation is by keeping in mind that ‘all’ the
concepts and features provided by a file system are in support of the fundamental abstraction,
the file containing user content data — and ‘everything’ that falls under file-system-specific
data builds upon and revolves around this fundamental file system abstraction.

The components that make up a file system implementation can widely vary between
designs from different vendors. However, to simplify understanding of all file system
implementations it is useful to visualize that, at the highest level, all file systems contain
some combination of the four components shown in the ‘General File System Model’ in
Figure 5.3, specifically:

* a File System Operation API layer which contains the libraries with the defined
file-level operational APIs that file system users, other middleware and applications
can use to create, access, and manage files

* the File System Core layer manages file system data objects, metadata, and RAM
usage by the file system. This layer is responsible for data management and the
translation between the file system’s view of the storage medium to how data are
actually accessed through the device driver interface (i.e., blocks in Flash, sectors
on a hard disk, etc.) and the operating system’s file system interface

* the OS Specific layer is the interface to the embedded system’s operating system

* the Driver Interface layer which is the interface to the hardware storage medium
device drivers.

Remember!

The Model versus Real-world File System Implementations

Remember that what is shown in Figure 5.3 is a reference model, meaning some file systems
may have a subset of these components, others have merged/split some of the functionality

of various layers into fewer/more components, and/or may have additional components.
However, this model is a powerful tool that the reader can use to understand the fundamentals
of just about any file system implemented in an embedded system on the field today.

196 Chapter 5

File System

File System Operation APT Layer

File System Core Layer

OS Specific Layer

Driver Interface Layer

Other (File System Required) Middleware

Operating System

Device Drivers

Hardware Storage Mediums

nI »
uzv‘v

N

Figure 5.3: General File System Reference Model

These file system components work in conjunction with and interface to applications, other
middleware, the embedded system’s operating system and/or device drivers to provide file
system functionality to higher layers of software. The next several sections will outline these
layers in more detail.

5.3.1 Driver Interface Layer

As introduced in Chapter 2, the hardware storage medium(s) that the file system(s) interfaces
(interface) to all require a device driver library to allow access to the hardware by other
software components like the file system. Any file system code that utilizes these device
drivers directly falls under the file system’s device driver layer. Figures 5.4a and 5.4b show
that what specific file system components exist at the driver interface layer and how they are

File Systems 197

i /Jx

(CBIO Dﬂhﬂiﬂn Mﬂ CEIO [isk Cache)

|
Dl Tievice:
(SCSL ATA, RAM Disk, Floppy, ete.)

I !

BEP
(RAM) Memory Flash Device
Levice Drivers

Hardware Storape Medims

. [.. s [5|

Figure 5.4a: File System Device Driver Layer and DOS FS on vxWorks?

File System Operation APl Layer :
1 File System Core Layer i
08 Speeific Layer -

uifs device jovalid | uwgedevsize | ;s dskblocks

Figure 5.4b: JFS File System Device Driver Layer

www.newnespress.com

198 Chapter 5

l o

File System Interface as

I 2 . Services |
Refiance Core
Block Device Buffer
Interface ‘_'J| Manager Datalight
1 Reliance
I
&
i - i
FXLoader !—-—«| Drver Framework }——-:-‘ 0S Services I I
: ; i i Laver i) FlashFx APls
—M i D_UINT32 FfxDriverCompactIdle(FFXDISKHANDLE hDigk);
: ; DEL §| | FEXSTATUS FixDriverCompactionDeinitFFXDISKINTO *pDisk D_UINT32 ulTimeout
H ® : o %
e - H FlashFX Pro : o FEXDRIVERINFO *FfxDriverCreate(const char *pazDriverName);
i [NaND FiM] [NORFIM |3 : : void FixDriverDestroy(FFXDRIVERINFO *pFDI),
v 1 5 H iverDis] “rStat, .' :
L “T:” ' Hooks Ld\rt"l “ CPU Laver l i void FixDriverDiskCompStatsDisplay(FFXSTATS *pStat , D_BOOL [Verbose)

Figure 5.4c: Datalight’s FlashFx High-level Diagram™

integrated into the device will vary depending on the underlying system software. In other
words, relative to a file system’s device driver layer, what compromises the device driver
library will determine what and how hardware is accessible to the file system. The Figure
5.4a example is with a file system ported on a version of vxWorks that includes the CBIO
interface, an underlying middleware component in itself. Any file system code that utilizes
CBIO functions accessing block devices directly would fall under the device interface layer.

Like WindRiver’s CBIO layer, another real-world example that can be utilized by a file
system’s driver interface layer is Datalight’s FlashFx library (shown in Figure 5.4c) that can
underlie FAT or Reliance embedded file systems. As its name implies, FlashFx (and libraries
like it) is created for file systems that reside on Flash memory for the purpose of allowing
overlying layers to transparently utilize Flash as a (block) disk device would be used. Flash
memory is used in many embedded designs because aside from being programmable at run-
time, Flash is considered competitive in terms of power requirements, size, amount of storage
space, and price relative to other types of non-volatile memory. Libraries such as FlashFx also
provide a simpler abstraction layer for overlying software to use that work around some of
Flash memory’s complexities, such as:

* supporting the different types of Flash requires different types of special programming
schemes. This can include having to erase on a sector-by-sector basis, manage and

File Systems 199

optimizing timing for reads, writes, and erases, as well as requirements relative to used
Flash only allowing write operations after a prior erase operation

* Flash memory lifetime is limited by a finite number of write and erase cycles, so any
scheme that optimizes and limits the access of Flash helps insure that the Flash part
will not wear out before the end of the device’s lifecycle

* Flash memory types differ in terms of reliability. They can contain pre-existing
defective blocks, and/or defective blocks can develop over time that require some
type of scheme to manage bad blocks and protect data.

It is then important for middleware developers to understand the overall requirements of their
device, and tune the associated parameters to real-world performance needs accordingly.

For example, developers that use vx Works have the option of using the FlashFx library with
vxWorks with the Reliance file system or some other FAT file system. Access to parameters
(examples shown in Table 5.1) is provided via the development environment and source

Table 5.1: Examples of Datalight’s FlashFx Tuning Parameters'

FlashFx Parameter Description

FFXCONF_(Flash Type) At least one Flash type must be enabled that defines the type of Flash
technologies that the driver will support.

FFXCONF_NANDSUPPORT NAND Flash Support.

FFXCONF_NORSUPPORT NOR Flash Support.

FFXCONF_ISWFSUPPORT Intel Sibley Wireless Flash (ISWF) support.

FFXCONF_BBMSUPPORT Bad Block management (BBM) support.

FFXCONF_(File System Type) The types of file systems that will be overlying FlashFX.

FFXCONF_RELIANCESUPPORT Reliance File System.

FFXCONF_FATSUPPORT FAT File System.

FFXCONF_READAHEADENABLED Disables/Enables the FlashFX adaptive read ahead feature.

FFX_MAX_DEVICES The maximum number of devices which needs to be supported.

FFX_DEVNn_FIMS (n=0 ...max devs) | The FIMs (Flash Interface Modules) which will be associated with the
device.

FFX_DEVN_NTMS (n=0 ...max devs) | Ifa NAND-type of FIM is used, then a list of NTMs (NAND
Technology Modules) associated with the device needs to be

specified.
FFX_DEVn_SETTINGS UnchachedAddress = base address of the Flash array.
(n=0...max devs) ReservedLo, ReservedHi=the amount of Flash at the start and end of

the Flash array which FlashFX does not access.
MaxArraySize = maximum amount of Flash to use in the
Flash array.

FFX_DEVn_BBMFORMAT BBM (Bad Block Management) format settings for the device.
(n=0...max devs)

200 Chapter 5

code to developers, so that these components can be tuned to the functional and performance

requirements for instance.

The example shown in Figure 5.4d is the JFS file system open source with functions that

utilize device driver-level functionality.

5.3.2 OS Specific Layer

File system code that falls under the file system’s OS Specific layer (see Figure 5.5a):

1. makes any OS kernel API calls, such as the Linux calls in the JES source code example

shown in Figure 5.5b.

2. utilizes the functionality provided by the OS interfaces in support of the file system.
For example, in order to manage data files and directories a file system will store

<< devices.c >>
Copyright (¢) Intermational Business Machines Corp., 2000

)

¥ This program 15 free software;
it under the terms of the GNLU General Public License as published

* the Free Software Foundation; either version 2 of the License, or
(at your option) any kter version.

Thiz program i3 distribured in the hope that it will be nsaful,

MERCHATABILITY or FITNESS FOR A PARTICULAR PURPOSE,
the GNU General Public License for more details

You should have received a copy of the GNU General Public License
along with this program,; il not, write 1o the Free Soltwire
Foundation, In¢ . 59 Temple Place, Suite 330, Boston, MA 02111

you can redistnibute it and/or modify

* but WITHOUT ANY WARRANTY; without even the implied warmanty of

#incinda

Hinclude

ya/ioe
il defined (__Dra

#mclude <config.h=
#include <¢rmo h>
#inclnde -<fent] h=
finclude <unistd b=
Hinclude <string.h>
#include <atdio h>
Hinclude <stellib b~
fifdel HAVE_SYS MOUNT_H
#inchde <ayamonmt. h-
Hendif

#inchde “aystypesh>
Hinclude

Hinclude

gonfly)
< *| &/param.h

finclude : ce. h=
#melude <sys/disklabel. h>
#endir

"ite_types.i®

finclude "jis_hlsys.h®
#include "devices h"
Hinelude "debug h"

by

= 1307 LISA

Figure 5.4d: JFS File System Device Driver Layer Function Code

www.newnespress.com

File Systems 201

" NAME: ujfs_ger dev size
* FUNCTION: Uses the device dnver mterface to determme the raw capacity of

* the specified device

" PRE CONDITIONS
® POST CONDITIONS:
* PARAMETERS

device - device

stee Mlled in with stze of device; not modifed i filure oceurs

= NUOTES
* DATA STRUCTURES

* RETURNS: 0 if successful; anything else indicates failures

mt wifs_get dev size(FILE *device, mtG4 t *size)
{

ofl_t Starting_Position;

* posthion willnn Dile/dey
5 ¥l

15€ upoll
5 function. *

: 4 empling
d from

suceessfully

off_t Current_Position = 16777215;

off t Last_Vald_Position - 0;

ead from. *
* firar invalid position we arrempted

off_t Pirst_Invalid_Position;

* o read fromseek Lo, *

it Seek Result; = value returned by s
stze 1 Read_Resul 1=0; * vatlue returned by read. *
it e

shruct stat stal_data;

ml devid = filenoldevice);

¢ = fstatidevid, &stat_data),
if (tre && S_ISREG(stat_data st_mode)) {
“Thisisar ar file N

*size = l:inlé-‘ll_l) ({stat_data.st_size / 1024) * 1024);
return NO_ERROR;

}
difdel” BLKGETSIZEG4

i
wintéd_t 5z;
I (roctl(devid, BLRGETSIZEGSS, &s2) »=1) |
TSl = 52y
return 0
H
)
flenchl
#ifdef BLKGETSIZE
i
umsigned long num_sectors = 0;
I (oeth{devid, BLKGETSIZE, &num_seclors) > =0{
* for now, keep size as F1024, *
" el 312, s elnnmate any odd sectn
=size = PBSIZE * (into4_t) ((mwm,_scctors / 2) * 2);
return - NO_ERROR;
}
H
Hendif

Figure 5.4d continued: JFS File System Device Driver Layer Function Code

www.newnespress.com

202 Chapter 5

fif defmed (_DrogonFly_)
i

st diskalices dis,
strnct digklabel dl;

struct diskslice *shiceinfo;
it shee;

dov tdev = st datagt rdev;

1o ivetl(devfd, DIOCGSLICEINFO, fdss);
if (re<0)

bl =1;

shee = dishee{dev);
sheeinfo = Sdeedss slices]slice],

DBG_TRACE("ujfs_get_deviee_sive: slice = 46d A", slice));

if (sliceinfo) {
if {slice ==WHOLE_DISK_SLICE || shee ==0) {
*size = (imé4_() sliceinlo = ordls_yize * dsvades_secsize;
e { DBG TRACE(("njfe get device size: slice reprerents dick
clse

i (sliceinfo - iz _label) {
DRG_TRACE(("ujfe_get_device_sive: shice has disklahel

il (lre) §
des.dss_secsize;

] else |
}

}

(-1

ool 4
!
DHG TRACE("wife_get_device size: size in bytes = "ald

DBG_TRACE({ "wis_get_device_size. size in
*ize [(1024 * 1024)));

im0

dendil

chied, use 4 busy seash lo

et an error while un

) e partiton does.
drivers may log an ‘access beyond end of deviee’ error

* Save the maning position so that we can remore it when we are
* done! *
ddonie

Starting_Position = fiello(deviee);
it (Starting_Position <)
wium ERROR_SEEK;

i
* We start |
* it is not, then we can not format it as JFS

dis 4
* Seek to the location we wish 10 test. *
1 = feecko(device, Current_Position, SEEK_SET);
i (Seek Result == 0) §
* {an e read from thic location? *
Read_Result = fzetc(d evice);
i (Read_Result 1= EOF) ¢
* The cumrent et poe tion 1 valid
* for fumre reference. *

-k
) H
bowhile ((Seck_Reslt==0) && (Read_Result == 17);

* We have exited the winle loop, which means that Current Posibon is
* beyomd the end of the partigon or w arresdable due o 0 hardware

* problem (bad block). Si ¢ odds of hining a bad block are very
® low, we will ig that condition
* wvailable, then thie vene can be rovianed

L.

et

Thiz works because an lie!

1c = ioctl{devfd, DIDCGDINFO, &di);

(néd_0) ol d_secpenamt ¥

(]

", ®nire));
Yo",

Mate that

s will stant by

Save it

Lags_Valid_Position = Current_Position;
® Lete calenlate the next lacation to test ®

Current_Position = {{Current_Position + 1) * 2)

If time becomes

"k

ot

Figure 5.4d continued: JFS File System Device Driver Layer Function Code

www.newnespress.com

File Systems

203

" Is the ditve greater tlan 19MB7? ™
il (Lagt_Valid_Position == 0} §
* Determine if dnive is readable atall Ifit iz, the dnve
If nae, i "

vly ereated p

* is 1oo small
ed o zene o differen "
"size = 0, * lindicates not readable atall *
Seek_Result = feecko(device, Last_Valid_Postion, SEEK_SET);
il (Seek_Resull— 0) §

* (Zan we read from this locati

Read Hesult= faete(device),

if (Read_Result = EOF)

Y opn = zero inheatos readable, but oo small

iz = 1

i

goto restore;

H

e diwve 15 lunger tun 10MB. Now we st find out exactly how large,
* We now have o point within the partition and one beyond it The end
* of the partition muwt e between the o We will wee a Winary
* wearch to findiL®
* Setup for the binary search. ®
First_Imvalid_Position = Current_Position;

Curremt_Po sition = Lagt_Valid_Position +
((Curren_Position - Last_Valid_Posinon) / 2);
* Tterate unnl the difference berween e lagt valid pogition and the
*® Nt nvalid poertion iz 2 or len
while ((Fiest_Invalid_Position - Last_Valid_Position) = 2) {
* Seek to the location we wigh to tese *
Seek_Result = fseckoldevice, Current_l'osinon, SEEK_SEL);
i (Seck_Result==0) §
* Can we read from this location? *
Read_Result = fgete(device);
if (Read_Result '= FOT) §
¥ The eurrent 1esl posl e valid
* Save it for future ref .
Last_Valid_Postion = Current_Position;
'
¥ Lete caleatlabe the next location o test. I
uld be half way between the current test

* sho
. ittt apwed Uie Liost avalid posation that
* we kmow of.
'
Current_Position = Current_Position +

({ First_lnvalid_Position .
Last_Vahd_Fosttwn) /2

H

} oclae
Read_Result =10,

i (Read_Result '= 1) |

* Ot test pusition 13 beyond the end of the pariton,
* It becom r first kmown imvalid position. *

ﬁm_hwnlid:_ﬁail.im = Current_Position;

il be half way betwesn onr

tom and our current test

* { r new fes
* last kno

* pomition. *
Current_Position =

Last_ Valid_Posinon +

([Cwirrent_Pagition = Last Valid Position) ! 2);

]

* The size of the drive sk
* Laet_Valid_Position i

g = Last Valid Postion + 1;

‘las
¢ of the partiion

* Restore the onginal posnon
il (Beckofdeviee, Starfing, Posiion, SEFK_SET)1=0)
whaoii ERROR_SEEK;

remm NO_ERROR;

Figure 5.4d continued: JFS File System Device Driver Layer Function Code

spress.com

204 Chapter 5

File System Operation API Layer

File System Core Layer

08 Specilic Layer

Hard Disk Device
Drivers

CDROM Device
Dirivers

www.newnespress.com

Figure 5.5a: OS Specific Layer

File Systems 205

Figure 5.5b: JFS Source Example Utilizing Linux Kernel Calls

www.newnespress.com

206 Chapter 5

information, a.k.a. metadata, about each particular file and directory it is responsible for
in some type of data structure typically provided by an operating system’s interface APIL.
The file system itself may then derive its own data structure(s) from the OS provided
structure to be used internally, and in conjunction with the data structure provided by
the operating system. Metadata stored in these data structures will vary from file system
to file system depending on the requirements of the embedded device, but generally
includes such data as:

location of file or directory on hardware storage medium

the size of the file or directory

the type of file

the date the file or directory was created and/or last modified

the file or directory owner

file or directory permissions, such as read-only, read-write, shared, etc.

to name a few. While the semantics will vary as to what this directory/file descriptor data
structure is called in a particular file system implementation, its purpose and the general
type of data it contains are consistent with other file systems. Figures 5.5¢ and 5.5d

-~ JFS File System

i Linux

Figure 5.5c: Example of Inode Data Structure Block Diagram

File Systems 207

progr
fy LT undsr thRe Tarms

ey serust inode |

tlee = genoric Cile openlinode, Cilel))
raturn re;

unsigned Joig i_inostamp: //inode Cileset stamp
unsigned long i_inodenumbar; /fincds serial number
unaigned long i_devrumber://devics id numbar

g, petmissions, ..
3 nlink;/fmmbor of object links
i_uid;//file owner’s user id

1_gid://file owner's greup 14
i_rdev;//apecial file device id

{ nede in

i atime://timestomp of data last aceessed
i_mrime; //vimescamp of data lasc modified
i_ctime: //timestamp of data last changed
i otime; //timestamp of file/dir creation

LU (F_ISAEG|Anodu=>i mode) L6 Chle=>0 mode & FMODE_WRITE &f
(inade->i_siza (18]

steuet jEe_inode_info *ii = JFS_IP(incdels

spin_lock irqiaii-rag_leck); unsigned long i_blksiza;//block aizs

if (ji-ractive ag == -1) | unsigned long i_numblocks;//number of allocated blocks
Ji-Factive_ag = ji-ragnor atrust asmaphore 1_davicesem! //device locking semaphore

atomic inc (&IPS SBT (inode=ri shi-*
tmap=>db_active[{l=>agno]};

stpuct inade_opetat iom
srEuet gupee bleok

opi A file inode atruct Cile operations
i_sby J/JEs-private supecbleck inte

]
spin_unlock_irqleji-»ag_lock):

struct address_space *i mapping://eddress space ocpecations

! SLEUCT dguot *i_0quot [HAXQUOTAS | 4 //algk quote optiony
stowct block device b £ pointer to block device
struct char_device *i_cdev; //pointer to character device

unsigmed Loy i_dnotify mesk; // dicectory notily events
struct dnotify struec *i_dnotify; // for dirscrory notifications

unsigned long i_state;//data related inode unsigned char

fdefine di_xtroot

u._file. u2. xtroot

#define 4i_dxd

u._file._u2._special._d
xd

#datina di_btroot

di_xtroot

Bdafine di_inlinedata

u._file._u2._special._u

fdefine di_rdev

u._file, ud._special._u
._pdev

fdefine di_fastsymlink
_tile._u2._special._u
._fastaymlink

fdefine di_inlineea
u._file._ u2._special._inlincea
} u;

Figure 5.5d: Inode Data Structure JFS and Linux Inode Source Code Example

www.newnespress.com

208 Chapter 5

show a block diagram and sample code of a directory/file descriptor data structure in a
Linux-supported implementation, commonly referred to as an inode, containing metadata
type fields.

It is because of a directory/file descriptor data structure that a file system is able to create the
illusion that a file is a contiguous entity to file system users and applications, even if that is

not how the file is stored in the storage medium. Remember that, at the hardware level, a file
system views the storage device as broken down into smaller-sized addressable storage units.

Depending on the size of a file, the data within a file can comprise one or more of these
addressable storage units. Moreover, these units may or may not be contiguous, thus the need
to track the units that comprise a file in a data structure like a directory/file descriptor data
structure. Then, as shown in Figure 5.5e, a file system utilizes a directory/file descriptor data
structure in order to translate to and from the physical data addresses in order to locate and
manage the data unit(s) that comprise a file.

5.3.3 File System Core Layer

At the heart of any file system’s core layer (see Figure 5.6a) are the directory/file descriptor
data structures utilized to manage the data. This means the functionality included at this level
revolves around these data structures, and at a minimum includes some combination of:

e directory and file descriptor data structure management
* data storage management
e directory management.

5.3.4 Directory and File Descriptor Data Structure Management

The file system core layer includes functionality that manages the set of directory/file
descriptor data structures that represent the various files and directories accessible to the file
system, such as the creation of a descriptor when a file or directory is created, and/or the
management of the file system’s control block (shown in Figure 5.6a). The control block is
an allocated portion of the storage medium for file system-related information storage and
retrieval to/from RAM. JFS, for instance, has a relative control block on the storage medium
it supports, commonly referred to as the superblock in this and some other file system
implementations. The JFS source code example in Figure 5.6b shows an inode operations
library for managing inodes, as well as code to manage inode-related data.

File system implementations, also, may include with their directory/file descriptor data structure
management scheme some additional log management functionality. These logs track file

File Systems 209

File System
Hardware Storage Medium

T s LA S File System Operation API Layer
e

FFFFFABF | :
File 1

prevonn e R ek e P [Block | Start Address OXFFFFFECY, End Address OxFFFFFFO0)

e i [Block 2 Stant Address OXFFFFF2BD), End Address 0xFFFFFGRD]

B T : [Block N Stan Address OXFFPFCERS, Fnd Address 0sPFFFDIRS]

FFFF EEBC

S e i

g File 2

i L
R l:a\HB - [Black | Start Address OxFFFFD2B6, End Address OxFFFFDGES]
[Block 2 Start Addicsss OxFFEFDGRT, End Address OxFFFFDABT]

s | y
: ' _— .] [Block N Start Address OxFFFFF6RE, End Address 0xFFFFFABRE] -

k. File N
- [Block 1 Swart Address 0xFFFFEEEC, End Address OxFFFFF2BC]
i [Block 2 Start Address O<PFFFPABF, End Address OxFFFFPEDF]

s R
R

e by

el -
" . gl 08 Specific Layer

. [Block N Start Address OXFFFFEADB, End Address OXFFFFEEDE]

000 (8 A s s A ooaE o o b A B

v v

Figure 5.5e: General Directory/File Descriptor Data Structure Block General Translation Example

www.newnespress.com

210 Chapter 5

File System

File System Operation APl Layer

=b File System Core Layer
: = - A > Dir/File Descriptor Data Structure
ruaclons
08 Specific Layer :i_!-\c-'.-.-'.'-d,',;'._._l.'_.'_,-_-lll.-l-'-i.'.iAL'.J,_ﬁ_mﬁijé
Dhriver Interface Layer , i!! o L

;i_al-n.- ui '...-x'.1;..4.‘;_2_&';_;::;:@.;—5{_ :

Operating System =

Device Drivers

e Storage Medi

File System
Contral Hlock

Figure 5.6a: File System Reference Model and the File System Core Layer

system operations and data changes to allow for improvement of file system data integrity and
recoverability via utilization of the logs when some type of system failure has occurred. Log
management in these file systems is typically implemented in support of what are commonly
referred to as (atomic) transactional and/or journaling file systems, where by definition these
file systems are intended to be more reliable. Figure 5.6¢ shows a systems-level example of a
transactional file system (TRES) implemented in a vxWorks-based system, whereas

Figures 5.6d and 5.6e show examples of IBM’s JES (journaled file system) log management

library.

www.newnespress.com

File Systems 211

* <inode.gs

* Copyright (<
*

i

Internat al Business Mach 2000-2002

right (¢) Christoph Hellwig, 2001-2002

Portions Copy

* This program is free software; you can redistribute it and/or modify
* it under the terms of the GHU Geperal F i i se as published by
es Software Foundatic the License, or

* (at your option) any later

* This program is distributed in the hope that it will be useful,
* but WIf I ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURFOSE. Sec

the GNU General Public License for more details.

You should have received a copy of the CNU Ceneral Publiec License
along with this gram; Lf not, wrlte Lo the Free 3oltware
* Foundation, Inc., 3 Temple Place, Suite 330, Boston, MA 02111-1307 USA

#include <linux/fs. h=

tinclude "Jfs_incore.h"
#include fs_filsys.h*
#include "jfs_dmap.h"

#include "jfs_imap.h"
#inelude "jfa_sxtent .h"
#include "jfs_unicodae.h"
Finclude "jls_debug.h”

void jfs_clear_inede(struct inode *inode)

(
sbruct jls_inede_info *ji - JFS_IP({incde);
if (ia_bad_inode(inode))
=
* Wa [ree Lhe [s-dependent structure belore making the
* inode bad
Y
return;
Jfa_info("ifa_clear_inode called ip = Oxp", inode);
spin_lock_lrgl&ii-=ag_lock);
if (ji->active ag != -1} {
struect bmap *bmap = JFS5_SBI (inode-»>i_sb)->bmap;
atomic_dec (&bmap-»>db_active|ji-ractive_ag]);
ji-»active ag = -1;
}
apin_unlack_irqg(aji->ag_lock) ;
ASSERT(1list_empty (Rji->anon_inode_list));
if {ji-ratlhead) (
jfs_err("jle_clear inode: inode %p has ancnymous Llocks",
inode) ;
jfa_err(*i_state = Ox%lx, cflag = Ox%1x", inode-»i_atate,
ji-reflag);
1
free_jfs_inode(inode) ;
1

Figure 5.6b: Example of JFS Inode Operations

nespress.co

212 Chapter 5

vold 4fs read inoda(struct inode *inodea)
(
int ré&:

re = alloc_jfs_inode (inode);
it f{re) o

Jfe_warn("In jfz_read_inode, alloc_jfz_inode failed");
» bad_inods;

]
ifs_info(*In jls_read_incde. inode = O0x%p*, incde):

if (diRead (inods))
goto bad_lnods_f{ree;

it (8_TSREG({inode-~i _meda)) |
inoda-»i_op = kjfs_file_inods_operarions;
inode->i fop = &jfe file operations:
inoda->i_mapping-»a_ops = kjfs_aops;
} #lee iL (S_ISDIR(invde->1_mde)) |
inode->1{_op = &ifs_dir_inode_operations;
inode-»i fop = &ifs dir operations;
inode-»>1_mapplng-»a_ops = &)fe_saops;
inode-»i_mapping->qfp_mask = GFP_NOFS;
)} elee if (&_ISLNFK (inodo->1_mode)} (
if (inode->i_=ize >= IDATASIZE) (
incde->1 op = &page symlink incde operations:
inada-»4_mapping-»a_sps = kjfs_aops;

} else
inode->1_op = &jfs_symlink_inode_operations;

} else (

inode->1_op = &jfs_special inode_operations;

init_spacial_inode(incds, inode-»i mode,

kdev_t_to_nr(inode->1_rdev)):

b
return;

bad_fnoda_fras:
Lree_jls_inodelinode);:
bad_inode:
make bad inode(inode);

/* This dafina ig from fs/o R
#define special_file(m) (S_ISCHR(m)||S_1SBLK(m)||S_1SFIFO(m)||S_1SS0CK(m))

* Workhosse of both [eyne & wrlte_lnode

int jfs_conmit_inede(stzuct Inode *inode, Int walt)
{

int ¥¢ = 0;

cid t cid;

static int noisy = 5;

its_info("In jfs_commit_inode, inode = Ox¥p*, inode);

if inede has been coammitted since last belng
* marked direy, ar if ir has Besn dalatad
vy
If (veat_eflag (COMMIT_Nolink, inode) ||
Ttest_ctlag (COMMIT Dirty, incds})
raturn 0;

1f (isReadOnly (inode)) {

/* kernel allows writes £«

* purtliions and may think 1

"/

if (ispacial_filelineda-»>i_mode) k& noisy) [
jfe_err("jfe_commic_lnode(Oxtp) called on *

"read-only wvolume®, inode);

jfe_aerr("Ts ramount racy?*);
noisy==;

1
return 0;

}

tld = txBagin(inoda-»i sb, COMMIT INOLE):

down (LIPS _IP(incde)->commit_sem) ;

re = txCommit (tid, 1, &lnods, walt ? COMMIT SYNC @ 0);
txEnd (rid) ;

up (WJFS_IP (inode) ->commit_sem) ;

raturn re;

Figure 5.6b continued: Example of JFS Inode Operations

www.newnespress.com

File Systems 213

void jfe_write_inode(struct inode *inode, int wait)
{

if (vest_cflag(COMMIT _Nolink, inode))
return;

de isn't

& last change,

if (!test_cflag(COMMIT Dirty, inede)) (
/* Make sure mmitted changes hit the
jfs_flush_journal (JF3_SBI (inede->i_sk)

return;

=k &/

»log, wait);

]

if (jte_commit_inode(inode, wait)) {
Jta_err("jla_write_inode: Jfa_commit_inode falled!");
}
]

void jfs_delete_inode(struct inode *inode)

£
Jfs_info("In jfs_delete_inede, inode = Ox%p", inode);
if (test_cflag(COMMIT Freewmap, inode)
freelerolink(inede) ;
diFres(inode) ;
clear_inede(inoda) ;
1
void jfs_dirty_incdel(struct inode *inode)
(
static int noisy = 5;
if (isReadonly(inode)) {
it (tepecial_file(inode->i_mode) &k noiay) |
/t kernel n read-only
* partiti and may try ty
jfs_err("jfs_dirty inode called on read-only voluma*);
jfe_err("ls remount racy?"):
noisy--;
)
reburn;
}
sat_clflag (COMMIT Dirty, inode):
1

Figure 5.6b continued: Example of JFS Inode Operations

www.newnespress.com

214 Chapter 5

Dovieo Driver Sublayer |

Hard Digk § B Al HY Floppy
1 1 Driver

Sockel Driver Driver

Hardware Layer

Figure 5.6c: Example of Transactional File System (TRFS) and vxWorks

www.newnespress.com

File Systems 215

List_ackd{stilk=:

LOGSINC_UNLOCK {log);

Ian = lmWrltakacord(log, thik, lrd, tleck);

ay:
]=>lsr = l&n;
%G _UNLACE {104}
lan
Iz LtoR i f g v L st thlock * thlk, led * L
tlock * tlck)

Figure 5.6d: Example of JFS Log Manager Utilized for Journaling

www.newnespress.com

216 Chapter 5

Figure 5.6d continued: Example of JFS Log Manager Utilized for Journaling

www.newnespress.com

File Systems

217

{tolk->xflng & (O

“OMMIT DELETE})
it Rt

CELETE}) |1
i

Link, thlz-=ip}));

{thlk-»>xflag & COMMIT FORCE)
rxlipdaradan (thlk) ¢

txRelease{thblk);

{((thle->rlag & thlkGCe LAZY) [t}
txUnlock{thlk);

{k
Jis_lf Llag H
1f5 1p]
ir tm 1)

Thefnd:

Figure 5.6d

continued: Example of JFS Log Manager Utilized for Journaling

www.newnespress.com

218 Chapter 5

* HANE:

N EAn
national Business Machines Corp.. 2000-2004
(¢] Christeph Hellwlg, -2002

Fortlons Copyright

of tware: you can redistribute it and/or medily
Lhe GNU Ganeral > License ax published by
the Freas ndati 2 of the Licenes, or
fat your option) any lacaer
This program 1s distributed in the hope that it will be uselul,
but WITHOUT ATY WARRANTY with implied wa af

HERCHANTABTLTTY
the GNUI Ganeral

&y FITHE TLAR PURPOSE.

& datalls

received a copy
program; if noc.
59 Temple Pl

should have
" this

foware

MA

txCommit ()

and ende with

gtlon starte with txBeglin{}

txtomudt ()

mit the changes to the objeccs specified in
journalled ¢ the

ie by tid.
ure [lushed o
n ot o inoda and indirect
blocks committed [#o blocks newly allocated to Che
segment will be made & part of the seguent atomically) .
all of cha AOIMANTES ﬂr-(.\"‘f‘-'.-i in slise muar ba in

ane Fila my

AmM. ne more than b =

ants Ara naadad

7 USA

to handle all unix svcs

a

i_nlink field (1 disk inode link count)
and the type of inode ie a regul i

Y. O bolic the inode
) length. the truncation is i
af are unaffected uncil

=)

* BARAMETER:

* RETURN:

* serialization:

on antry the inode lock on each segment ls assumed

* to be held

* l/o ercreor:

ot

int ExCommit(tid_t tid, J* transgsction ident -y
int nip, /* nunmber of inodes to commit *
struct inode **iplisc, /* liet of incde Lo commls v/

int flag)

uct ld
int len:
struct inode *ip:

atruct jfa_lnode_info *jfa_ip:
int k, n;
o_t top:

uct super block *sb;

jEa_infa(excommie, vid = wa, flag = wd*, eid, flag):

/* is read-only tile system 7 */
if lisReadOnly(iplist(01)) {

re = -EROFS!:

goto TheBnd:
}

sb » cd.sb = iplisc{d]->i_sb:
cd.tid = tid;

It (cid == 0)
tid = txBeginisb, 0):
thlk = tid_teo_tblock(tid):

Figure 5.6e: Example of JFS Transaction Manager Using JFS Log Manager for Journaling

www.newnespress.co

File Systems 219

* initinlive commit sEruckurse

log = JPS_BBI{sh)->1log;
od.leg = log:

¢ log record descriptor in commlt */

1rd->1ogtid = cpu_to_le3? (thik->logtid);
lrd->backchain = 0;

thlk-=xllag |= flag:

1f (iflag & (COMMLT_FORCE | COMMIT_SYNC)) == O)
Eblk->xflag |= COMMIT_LAZY

journaled objects for commit

Frepare

urnaled [lle
ing non-initlalized disk kils

ed.iplist = iplist;
od.nip = nip;

wrder

of P
* mulciple
tor (k= 0: k < ed.nip: k++) |
top = [od.iplistik]ll==i_ino;
for (o =%k « 1; n < cd.nip; nes) {
ip = cd.lplistin);:
if tip->i_ine = top) {
top = ip-»1_lno:
ecd.iplisc(n] = cd.ipliscik]:
ed.iplisre(k] = ip:

}

ip = ed.ipliecik):
its_ip = JFE_IP(ip) ¢

it (test_and_clear_cflag(COMMIT Syncdata, ip) &k
[{tblk=->flag k& COMMIT DELETE) == 0))
fsyne_inode_data_lbutters(ip);

cloar cElag{COMMIT Dirty, ip):

/* inherit anonymous tl
it (Jts_lp-=atlhead) (
1id_te_tlock(jfa_ip-ratltail)-rnext = chlk->next;
thlk->naXt = JEs_ip rarlhead:
it [ithlk-wlast)
thik=>last = jEs_ip->atltail:
jfx_ip=>atlhead - jfs ip-=atltail - 0;
THN_TOCK () 7
list_deol_initi(tits_ip->anen_inede_list):
TAN_UNLOCK () 1

1
* acqmire transac
* [become tirst

If ({{re = diWrite(tid, ipiind

goto ouk:
1
¢ LxUpdateMap (] resets XAD NEW in XAD.
If ({re = txlogilog. tblk. &edl})

goto TheEnd:

Figure 5.6e continued: Example of JFS Transaction Manager Using JFS Log Manager for Journaling

newnespress.co

220 Chapter 5

* Ensure that ioode fso't reused belforw

* lazy commit thread finiahea proceasing
if (thlk->xflag & (COMMIT CREATE | COMMIT DELETE)) {
atomic_inc(ktblk->ip-~i_count);
/

Avoid a rare deadlock

If the incde im locked, we may be blocked in
jfa_commit inode. If as, we don't want the

lazy commit thread doing the last iput() on the inode
since that may block on the locked incde. Inatead,
commit the transactien synchronously, se the lant iput
will be done by the calling thread (or later)

o/

if (tblk-»ip-»i_atate & I_LOCK)
thlk->xflag &= -COMMIT LAZY;

}

ASSERT((I (thlk->xflag & COMMIT DELETE)) ||
{{thlk=>ip=>i nlink == 0) &&
ltest_oflag(COMMIT Molink, thlk->ip))):

b
* write COMMIT log resord

lrd->type = cpu_to_lel6(LOG_COMMIT);

lrd->length = 0;

R =

NULL) 2

lmCroupCommit(log, thlk);

* - transaction is now committed -

!

fw
* foroe pages in carcful update
* (imap addreaaing atructure update)
if (flag & COMMIT FORCE)
txForce (thlk);

update allocation map.

upcdate inode allocation map and inode:
free pager lock on memory ohject of incde if any.
update block allovation map.

txlpdatedap() reswbs XAD NEW in XAD.
/

ifl {thlk->xflag & COMMIT FORCE)
txUpdateMap(tblk);

/v

/

* fres tranaastion lecka and pagesut/fres pagea
"

txRelease(thlk);

if ((tblk->flag & tblkGC LAZY) == D)
ExUnlock(tblk);

i

* reset in-memory cobject state

v/

tor (k= 0; k < ed.nip; k++) {
ip = cd.iplist|k];
jfa_ip = JFS_IP(ip):

I

* reset in-memory inode state

o

jfa_ip-rbaflag = 0;

Jfn_ip=rblid = 0;

}

out:
if (xc I=s 0)

txabort (tid, 1);

ThaRnd:
ifs_iofo(“txCommit: tid = %d, retwaning ¥d*, tid, ze);
return roj

}

Figure 5.6e continued: Example of JFS Transaction Manager Using JFS Log Manager for Journaling

www.newnespress.com

File Systems 221

5.3.5 Data Storage Management

At the core of a file system’s data management scheme is the ability to locate and manage

the data blocks belonging to each file located on the hardware storage medium(s). The file
descriptor data structure records the blocks that are associated with a particular file, as well as
where to locate these blocks in some type of block map (see Figure 5.6f).

While how a file descriptor data structure records the block data information in its block
map will differ between file systems, the most common algorithms include one or some
combination of:

* Direct Addressing, where the block map contains a list of the data block addresses that
make up the file.

* Indirect Addressing, where the block map contains a pointer to another block, referred
to as the indirect block. The indirect block then contains a list of the data block addresses
that make up the file. This allows for a file system to support larger file sizes over direct
addressing without having to dramatically increase the size of the file descriptor data
structure.

* Double-indirect Addressing, where the block map contains a pointer to another
block, referred to as the double-indirect block. The double-indirect block then
contains a list of indirect blocks. Each indirect block then contains a list of the data
block addresses that make up the file. As with indirect addressing, double-indirect
addressing allows for a file system to support larger file sizes over direct, as well as
over indirect, addressing.

* Extent-based Addressing, where the block map is an extent list made up of addresses
that each represent a range of blocks (data blocks, indirect blocks, and/or double-indirect
blocks). An address in the extent list represents the starting address of a set of blocks, as
well as the number of consecutive blocks in the set in addition to the first block.

Shown in Figure 5.6g is a sample inode that contains the field that supports JES, which uses
extent-based addressing in its data management scheme. Figure 5.6h is a JES sample inode
initialization code which demonstrates some usage by JFS of its extent-based addressing
algorithm.

222 Chapter 5

Figure 5.6f: Management of File Data

www.newnespress.com

File System
File System Operation API Layer
fl: = DirFile Descriptor Data Suruecture
Blocks B < 2 L =
OS Specific Layer : :
Driver Interface Layer : +
Operating System 4 » +
4
Deviee Drivers i
Hardware Storape Mediums e s File File ...
File File . Par il
Dt Dita Ilocks Hilosks
Blocks ks,
Fil: File
Uats Data
Blocks Blocks
File File File
Dhata hara Dhats
Blocks Blocks Blocks

File Systems 223

Figure 5.6g: Example Inode and Extent Addressing

www.newnespress.com

224 Chapter 5

inted_t incext_ad
aggr_block_si

inost

s = fnostar
filesct

fnew inode->di

iinodo
inlineg
INLINE;

affsetaf

nllnedatal);:

I & (newW_Ln

data:

{ (xtpage
DXD

41_DASD)) =>hoader.flag
_LEAF:

inew inoda-»41

{ ixrpage

»dl DASD)) ->xad [XTEK

{new inade->31 DASD)) ->xad [KTENTRYSTART] .ravrd =

RSO) =>

Figure 5.6g continued: Example Inode and Extent Addressing

www.newnespress.co

File Systems 225

-

» o oW

<inode.c»
Copyright (<) International Business Machines Corp., 2000-2002

Thia program ia frees software; you can rediacribute it and/or modify
it under the terms of the CNU Ceneral Public License as published by
the Free Software Foundation; either version 2 of the License, of
(at yeur option) any later version.

This program is distributed in the hope that it will be useful,
but WITHCUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPCSE. See

the GNU General Public License for more detalls.

You should have received a cepy of the GNU General Publie Licenae
along with this program; if not, write to the Free Software
Foundatien, Ine., 59 Temple Place, Suite 330, Bosten, MA 02111-1307 USA

U L I R T R

*

NAME: init_inexle

FIMCTION: Tnitialize inode fialda for an inede with a aingle axtent or inlina
data or a directory inode

PARAMETERS :

new_inods - Pointer to inodes to be initialized

filagar num - Filazar number for inoda

inode_num - Incde number of inode

num_klocks - Humber ©of aggregate blocks allocated to inode
&#ize - Size in byres allocated ro inads

first block - Offset of first block of inode's extent

mode Mode for inode

inade type Indicates the type of inode to be initialized.
Currently supported types are inline data, extenta,

and no data. The other parameters Lo thiz [unction

will provicde the necessary inlormation.

inoext_address - Address of inode extant containing thia inode
aggr_block_size - Aggregate block size

inostamp - Stamp uzed vo identify inode az belonging to fileser

RETURNES: None

A 0% % & F 4 F % 4 % F 4 & 4 & & & & F 4 4 F
—

Figure 5.6h: JFS Source Code and Extent Addressing

newnespress.co

226 Chapter 5

vold init_inode (struct dincde *nev_inode,
int fileset_num,
unzigned inode num,
inté4_t num_blocks,
int64_t size,
int6d_t first_block,
mode_t mode,
ino data type inoda type,
inté4_t incext_address,
int aggr block size,
unsigned inostampl

‘fl‘
* Initialize inocde with where this stuff lives
*f

new_inede->di_inostamp - inostamps
new_inods-»di_fileset = fileset_num:
new_inode-adi_number = inode num;
new_inode->di_gen - 1;

P
naw 1 »dl_r 3 me i
new_inode->di_nblocks - num_blocks;
new_inode-»di_size =« size;
new_inode-»di nlink = 1;
new_inode->di_next_index - 2

gwitch (inode_type] |
casa inlina data:
new_incde-~di_dxd. flag - DXD_INLINE;
pxbDlength{& (new_inode-»di_dxd) ,
sizeot (struct dinode) offsetof (struct dinode,
di_inlinedatal);
DXDaddress (& (new_inode-=di_dxd), o);
broak;
cage extent_data:
cage max_extsnt_data:
{{xtpaga_t *} & (new_inode->di_DASD) } -zheader, [lag
DXD_INDEX | BT ROOT | BT LEAF;
.fi
* Ginee this i3 tha root, wa don't actually usa tha next and
* prev entries. Set Lo 0 in case we decide Lo use this space
* for gomething in the future.
.
/
{{xtpaga_t *} & (new_inc<da->di_DASD)) -zheader.naxt « 0
{{xtpage © *} & (new inode-sdi DASD) }-sheader.prev « 0;
{{xtpage_t *} & (new_incde-»>di_DASD) } ->header.nextindex =
ATENTRYSTART + 1
{{xtpage_r *} & (new_inode-=di_DASD)) -»header.maxentry =
XTROOTHMAXELOT ;
{{xtpags £ *} & (naw incda-s>di DASD) } ->xad (XTENTRYSTART] .flag -

0;
{{xtpage_t *} & (new_inode-»>di_DASD)) -sxad [XTENTRYSTART] .revrd =

o;

¥aDoffzat (& (xtpaga_t *) & (new_imsxde-:di_DASD)) -=
XAd [XTENTRYSTART], 0);

XADlengthis {(xtpage_t *} & (new_incde-»>di_DASD)}-»
xad [XTENTRYSTART] , num_blocksa) ;

¥ADaddress (&((xtpage_t *) & (new_inode-~di DASD})-=
xad [XTENTRYSTART), first_block);

braak:

Figure 5.6h continued: JFS Source Code and Extent Addressing

www.newnespress.com

File Systems 227

vase no_data:
data to be filled in here, don't do anything

f[;Lpdge t *) & (new_inode->di_DASD)) -zheader.flag =
DXD_INDEX | BT_ROQT | BT_LEAF;

[{xtpage t *) & (new_inode->di_DASD))-=header.next = 0;
((xtpage_t *) & (new_inode->di_DASD)) -=hes .prev = 0

({xtpage t *) & (new_inode->di_DASD)) -sheader.nextindex =
XTENTRYSTART;

{{xtpage_t *) & (new_inode-a>di_DASD)) -sheader maxentry =
XTROOTMAXSLOT;

{{xtpage_t *) & (new_inode-»>di_DASD)) - >xad [XTENTRYSTART) .flag =

0;
({xtpage_ t *) & (new inode-»di_DASD)) -=xad [XTENTRYSTART] .rsvrd =
0;
break;
default:
DBG_ERROR((*Internal error: %¥s(%d): Unrecognized inode data type %¥d\n",
__PILE , _ LINE , inode_type))
break;

1
I

new_inode->di_atime.tv_sec = new_inode->di_ctime.tv_sec =
->di_mtime. v ses new inode->di otime.tv sec
2d) time (NULL) ;

Figure 5.6h continued: JFS Source Code and Extent Addressing

5.3.6 Director_y Management

A directory is a mechanism in file systems that allows for one or more files and/or directories
to be grouped under a single name. Essentially the same descriptor data structure used to
represent files in a file system is typically used to represent a directory, where the directory
descriptor data structure is responsible for storing the list of other directory and/or file
descriptor data structures that are assigned to it.

There are several schemes utilized in different file system designs for how directories keep
track of their file and subdirectory names, including: /inear, where file and subdirectory
names are managed as a linear list within the directory descriptor data structure; B-Tree
(i.e., B-Tree, B+Tree, B*¥Tree), which are hierarchical ‘tree’ data structures where file

and subdirectory names are inserted/deleted sorted nodes (parent and/or child); and hash
table data structures, where file and directory names are sorted and used as keys for faster
retrieval — just to name a few.

Figure 5.61 shows an external inode with fields utilized in the directory management scheme
sample code shown in Figure 5.6j.

228 Chapter 5

struct innde |

‘incde [ilesel sLamp
finode serial number
tee id number

i_inostamp:/
i inodenumber;
i devnumber://

tormats, pe
cject
nser
s group
= L

n«s

£
i_miim
1 wtime;
I olime;

timesLan
time mp Of

nocde_operations
file operatfons
struct super_block

acdress_space

/pointer to chara

related inode
ket number

Figure 5.6i: External Linux Inode Sample Source Code

www.newnespress.co

File Systems 229

ip-»1_= i
f2_lp=mnext_index = 2;
peni_ylze DATASISE:

ly-scflsat

lv=2langth = DTROC T:

ttlck->indexii;

= L4fa ip-»1 dtroar:

p->heoader.flag = 0XD IKDEX BT R BT _LEAF)
p-rhoader.nextindex = 0;

slat)

» INDEX (1p))1

Figure 5.6j: JFS B+Tree Directory Scheme Sample Source Code

www.newnespress.com

230 Chapter 5

ndex=-21;

1Dy

xcinlcRoon(nid, ipls

clear eflagil

4IT_Dirtable, ip):

Figure 5.6j continued: JFS B+Tree Directory Scheme Sample Source Code

www.newnespress.co

File Systems 231

5.3.7 Impact of File System Core on Embedded Device

What most differentiates the behavior and performance of one file system over another are the
elements that make up a file system’s core layer, specifically the directory and file descriptor data
structure, data storage management, and directory management schemes implemented within

the file system design (see Figure 5.7). In the case of a directory and file descriptor data structure
design, for example, the maximum file size that can be managed via a file system is determined by
the scheme in which this data structure tracks the data. Furthermore, given the ability to support
larger file sizes, a file system that implements an inefficient scheme may take longer to navigate
the data structure to track down data within a large file. This also holds true for how a directory
(data structure) stores file names and any subdirectory information — tracking down a file or
subdirectory may take longer if an inefficient scheme is implemented to traverse the data structure.

Depending on the file system, the less a file system has to access the hardware storage
medium to retrieve and/or write file system data blocks, the more efficiently it can perform.
So, file systems can have an advantage over other file systems on performance with a storage
management scheme that:

e does as much as possible in (faster) RAM before storing any data back on a (slower)
hardware storage medium. A drawback is hardware storage medium is not always in sync
with the current state of the file system if system failure occurs, thus making recovery of
the file system more difficult and decreasing file system reliability

* supports larger block sizes. A drawback is if the entire block is not utilized then storage
medium space usage is not optimal

e is able to store data blocks compactly and contiguously on the storage medium. A
drawback is that compaction algorithms that resolve fragmentation issues are more
complex to implement over creating larger block sizes, for example.

While a file system can have an advantage, the less it accesses the hardware storage medium
over other file systems, there are other file systems that implement schemes based on constant
storage medium access in order to make the system more reliable, which in some embedded
designs with high reliability requirements would provide an advantage. These file systems,
commonly referred to as journaled or (atomic) transactional file systems, log file system
transactions in some manner to be utilized in a file system recovery in case of some type of
system failure. Drawbacks of a journaled/(atomic) transactional file system will depend on its
internal design, such as if logging data locks up the file system in any way and how logged
data are written/retrieved to/from the storage medium, for example.

232 Chapter 5

File System

File System Operation AP@ Layer

File System Core Layer

» Dir/Tile Deseriptor Data Structure

m R -

| Listofor oioie o FileDir Blocks

08 Specific Layer | FileDir At Pemisions .

Diviver Interface Layer

Operating System - »

Deviee Drivers

Hardware Storage Mediums4

Figure 5.7: File System Reference Model and the File System Core Layer

5.3.8 File System Operation API Layer

While file systems can vary on the API functionality provided in the File System Operation
API Layer (shown in Figure 5.8a), and/or how these operations are implemented, file systems
all provide some universally similar file system operations. As introduced in Section 5.1,
examples of these operations include:

* Creating and Configuring Files, given a directory name and a valid new file name within
the size and character type restrictions provided by the file system, a file descriptor data
structure is created for each new file, and relevant fields filled (i.e., size, permissions, etc.).
The file descriptor data structure is then added to the directory’s descriptor data structure.

* Renaming Files, given a directory name, the old file name, and a new file name — if the
new file name does not already exist as an entry in the directory’s descriptor data structure
and if there is no other software/user accessing the file, then the old file name is updated
to the new file name in some manner.

File Systems 233

File System Operation API Layer

File System Core Layer

0OS Specific Layer

Operating System i

File System Interface I
Kernel

W

(RAM) Memory i Hard Disk Device CDROM Device
Device Drivers ivi Drivers Drivers

Internal Flash Hard Disk

Figure 5.8a: General Embedded System File System Reference Model

www.newnespress.com

234 Chapter 5

* Copying or Moving Files, given a source directory name, a destination directory name,
and the file name — if the file name exists as an entry in the source directory’s descriptor
data structure and it does not exist as an entry in the destination directory’s descriptor
data structure, the file is added to the destination directory. If the file is being moved, it is
then removed from the source directory.

* Removing Files, given the directory name and file name, the file system first finds the
directory’s descriptor data structure and looks up the name of the file to retrieve the serial
number (id) of the file’s descriptor data structure. If the attributes in the file’s descriptor’s
data structure are verified to insure that the file can be deleted by the requesting software/
user, and if there is no other software/user accessing the file, the file system frees the
file’s resources in some manner, including removing any references to the file from its
directory’s descriptor data structure.

* Opening Files, given the directory name and file name, the file system first finds the
directory’s descriptor data structure and looks up the name of the file to retrieve the serial
number (id) of the file’s descriptor data structure. If the attributes in the file descriptor’s
data structure are verified to insure that the file can be opened by the requesting software/
user, then I/O operations are allowed to be performed on the file.

* Writing to Files, given an open file, the data, the data’s size, and location in the file
the data are to be stored at — the file descriptor data structure relevant field is modified
according to the file system’s data storage management scheme (i.e., direct addressing,
indirect addressing, double-indirect addressing, extent addressing, etc.) and then the data
are stored on to the hardware storage medium.

* Reading from Files, given an open file, the data, the data’s size, and location in the file
the data is stored at — the file descriptor data structure relevant field is used to locate the
desired data according to the file system’s data storage management scheme (i.e., direct
addressing, indirect addressing, double-indirect addressing, extent addressing, etc.) and
then the data are loaded from the hardware storage medium.

* Creating Directories, given a new directory name — a directory descriptor data structure
is created for each new directory, and relevant fields filled (i.e., permissions, flags, etc.).
The directory descriptor data structure is then added to the parent directory’s descriptor
data structure.

* Removing Directories, given a parent directory name and the name of the directory
to be removed — the parent directory’s descriptor data structure is used to look up the
name of the directory to be deleted to retrieve the serial number (id) of its descriptor data
structure. If the attributes in the directory’s descriptor data structure are verified to insure
that the directory can be deleted by the requesting software/user, and if there is no other
software/user accessing any contents of the directory, the file system frees the directory
resources in some manner, including removing any references to the directory from its
parent directory’s descriptor data structure.

File Systems 235

* Reading Directories, given a directory name — the directory’s descriptor data structure is
utilized to display its contents (file names and subdirectories).
* Additional/Extended Functions

* Creating and Initializing the File System, where provided parameters and assigned
hardware storage medium block(s), sector(s), or volume(s) are used to create and
initialize a new file system. In general, this includes allocating a file system
control block(s) on the storage medium block(s), sector(s), or volume(s), creating
any necessary directory/file descriptor data structures, and creating an empty root
directory on the assigned storage medium block(s), sector(s), or volume(s).

* File System Verification, where an unmounted file system is checked to determine
if it is ‘clean’, a.k.a. if its metadata information is up to date and no data corruption
has been found. If a file system is ‘dirty’, the verification process has uncovered
inconsistent and/or corrupted data.

° Mounting the File System, where the hardware storage medium is accessed to retrieve
and load file system metadata from the file system’s control block into RAM. The file
system and respective hardware storage medium block(s), sector(s), or volume(s) are
then ready for access and use.

* Unmounting the File System, a proper shutdown of the file system where the
hardware storage medium block(s), sector(s), or volume(s) are put in a ‘clean’ state
by copying the latest file system metadata in RAM back to the file system’s control
block on the hardware storage medium.

* Symbolic, Hard, and/or Dynamic links.

Figure 5.8b shows examples of APIs available under vxWorks, and Figures 5.8c, 5.8d, and
5.8e show examples of how various directory and file operations are implemented in the
open source JFS implementation. While the internal source code of how operations are
implemented will differ between file systems, many file systems have ‘similar’ operations as
those shown in these examples and can give the reader a feel for what to expect.

“xifor cference : OS Libravies
iolib

NAME

ioLib - 'O interface library

ROUTINES

creat() - craate a file

open() - open a file

unlink() - delete a file (POSIN)

remwye() - remove a lile (ANSI)

close]) - close a file

renamey) - change the name of a file

read() - read byvtes from a file or device
write() - write bytes to a file

Toctl() - perform an VO control funchion
Iseek() - st a file read/write pointer
taDefPathSet() - set the current defanlt path
ioDefMathGet() - get the current defilt path

Figure 5.8b: Example vxWorks Operations™

236 Chapter 5

ValPorks Programmer's Guide: 10 Svstem
ehdiry) - set the current default path
getewd() - get the current default path (POSIX)
getwd() - get the current default path
ioGlohalStdSer() - set the file deseriptor for global amndunl mym."uulplu.’emsr
ioGlobalStdGet() - get the lile descriptor for global
inTaskSulSet() - set the file deseriptor for sk standard mpm.fnmuufv:rmr

inTaskStdGet() - get the file deseriptor for task standard mputoutputerror
isatty() - return whether the underlving driver is a tty deviee

DESCRIPTION

This library contains the interface to the basie VO svstem. Itineludes: Inerfices 1o the seven basic driver-provided funetions: ereat(), remove(), apen(), elose(), read(),
write(), and joetl(). Interfaces to several Rle system functions, meluding rename() and Iseek(). Routmes to set and get the current working directory, Routines to assign
task and global standard file deseriptors.

FILE DESCRIPTURS
At the basie 1O level, files are referred to by a file deseriptor. A file deseniplor is a small mteger returned by a eall w gpen() or great(). The other basie 1O calls ke o file
descriptor as a parameter to speeify the intended file. Three file desenplors are reserved and have special meanings:

0 (STD_IN) - standard input

1 (STD_OUT) - standard output

2({STD_ERR) - standard error output

VxWaorks allows two levels of redirection. First, there is a global assignment of the three standard file descriptors. By defoult. new tasks use this global assignment. The
global assig of the three fard file deseriptors is controlled by the routines inGlobalStdSet{) and kv(-lnb-l\td(.el(). Second, mdividual l.asks iy m—crud.c lhc
global assignment of these file deseriptors with their own assignments thn apply only to that sk The nssip of tsk-speeili Inrd file deseny %
b routines o TaskStdSet() and joTaskStdGel().

INCLUDE FILES: joLibh
SEE ALSO: josLib, ansiStdio,

(IS Libranries - Routines
areatli b
NAME
creat() - create 4 file
SYNOPSIS
int creat

const char * pame, /* name ol e Gle o create */
int flag /* () RDONLY, O WRONLY, or O RIYWR */

il

DESCRIPTION

This routine creates a file called name and opens it with a specified fag. This rowine determines on which device to create the file: it then calls the create routine of the
device driver to do most of the work, Therefore, much of what transpires is device/dniver-dependent. The parameter flag is set to O_RDONLY (0), O_WRONLY (1), or
O_RDWR (2) for the duration of time the file is open. To ereate NFS files with a UNIX chmod-tvpe file mode, call apen() with the file mode specified in the third
arganent.

NOTE

For more information about situations when there are no file deseriptors available, see (e manual entry For jusknit().

RETURNS

A file descriptor number, or ERROR if a filename is not specified, the device does not exist, no file deseriptors are available, or the driver retumns ERROR.

SEE ALSO

inLib, apen()

opend }

NAME

apent) - open a file

SYNOPSIS

int open (

const char * name, /* name of the file to open */

int ags, /* O_RDONLY, O_WRONLY, O_RDWR, or O_CREAT */

int mode /* mode of file to create (UNIX chmod style) */)

DESCRIPTION

Ths routine opens a hile for reading, wiiting, or updating, and returms a Gle desenptor For thet file, The arguments w open() are the Glename and the type of aceess.
O_RDONLY (0} (or REAIY - apen for reading only

O_WRONLY (1) (or WRITE) - open lor writmg only.

O_RDWR (2} {or UPDATLE} - open for reading and writing.

O_CREAT (0x02(d)) - ereate o file.

In general, epen() can oaly open pre-existing devices and files, However, for NS network devices only, files can also be created with open) by performing a logical Ol
aperation with O_CREAT and the flags argument Tn this case, the file is ereated with a UNTX chmod-style file mode, as indieated with made. For example: fd = apen
("fusrfmyFile”, O_CREAT | O_RDWE, 0644), Oaly the NFS driver uses the mode argument.

NOTE: For more information about situations when there are no file desenpiors available, see the manual entry for fosInit().

RETURNS: A file deseriptor number, or ERROR if a file name is not specified, the device does not exist, no file desoriptors are available, or the driver retums FRROR.

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

File Systems 237

ERRNO

ELOOP

SEE ALSO

foLib, creat()
VARARGS2

unlinki)

NAMI:

unlink() - delete a file (POSIX)

SYNOPSIS

STATUS unlink

(char * mume /* name of the Gle W remove %/)
DESCRIFTION

This routine deletes a specified fle. 1t performs the same function as remover) and is provided for POSIX compatibility.

RETURNS

OK if there is no delete routine for the deviee or the driver retums OR: ERROR if there is no such deviee or the driver retums ERROR.

SEE ALSO
lolLih. remove()

0N Libwaries ; Houtines

remove()

NAME

remove() - remove a [ile (ANSI)

SYNOPSIS

STATUS remove

{ const char * name /* name of the file o remove *F)
DESCRIPTION

This routine deletes n specified file. 1t ealls the driver for the particular device on which the file is located 10 do the work.

RETURNS

OK i there is no delete rontine for the deviee or the driver retums OK; ERROR i there is no such deviee or the driver retums ERROR.

SEE ALSO

iolLib. Americon Nah { Standard for Infi fron Systems = Prog L « O, ANST V3159 1959 Fpoet Chefpuit steliouj,

close()

NAME

elosel) - elose o file

SYNOPSIS

STATUS close

 mt [d/* file deseniptor (o ¢lose */)
DESCRIPTION

This routime closes the specified Nle and frees the Nle desenptor. It calls te device driver o do the work,

RETURNS
The status of the driver close routine, or ERROR if the file descriptor is imvalid.
SEE ALSO

loLih

O Libwaries ; Routines

remiunel

MNAME

rename() - change te mme of a file

SYNOPSIS

inl rename

{ const char * oldname, /® name of file to renayme */

const char * newname /* name with which to rename file */)
DESCRIPTION

This routine changes the name of a file from aldfile 1o newfile.

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

238 Chapter 5

NOTE

Omly eertain deviees support rename(). To confirm that your deviee supports it, consult the respective XxDrv or xxFs listings to verify that ioc1l FIORENAME exists. For
example, dosks and (U TFs support rename), it petDev and nfsDry do nol,

RETURNS

OK, or ERROR i the file could not be opened or renamed

SEE ALSOD

loLih

read()

NAME

read() - read bytes from a file or device
SYNOPSIS

it resd

int 1i, /* file deseriptor from which to read */
char * bulTer, /* pointer o buller 1o receive bytes %/
size_t maxhytes /* max no. of bytes to read into buffer */

3
DESCRIPTION
Thas routine reads a number of byies (less than or equal to maxbyfes) from a specilied Ole descriptor and places them i buffer. 1t calls the device dnver to do the work.
RETURNS
Ihe number of bvtes read (between | and meaxbvies, U i end of file), or ERROR if the file descriptor does not exist, the driver does not have a read routines, or the driver
retiims ERROR. 17 the driver does not have a read rounine, ermo is set to ENOTSUP
SEE ALSD
inlib

as s - R
writel()
NAME
write() - write bytes 1o a file
SYNOPSIS
int write

(

int fd, /* file deseriptor on which to write */

char ® bufler, /* bufler contammg bytes 1o be wiitten %/
size_t nbytes /* mnmber of bvies to write */

]
DESCRIPTION
This routine writes sfyres byvtes from bugffer o a specified e desenptor & 1t ealls the deviee diiver o do the work,
RETURNS
The number of by tes written (if not equal o sbytes, an emor has oceurred), or ERROR i the file deseriptor does not exist, the driver does not have a wiite routine, or the
driver retums ERROR. IT the driver does nol have a write routine, ermo is sel to ENOTSUT
SEE ALSC

ioLib

O Libraries . Rowtines
Joetl])
NAME
foetl() - perform an 10 control function
SYNOPSIS
int wetl

{

int [, /* file deseriptor *f

it funetion, /* funetion code */

int arg /* arbitrary argument */
]

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

File Systems 239

DESCRIPTION
This routine perf: an /O control

ion on a device. The control fumetions wsed by Vi'Works device drivers are defined in the header file ioLib. b, Most requests are

passed on o the driver for handling, Sinee the y of joetl(¥
dosFsLib, rt11FsLib, and rawFsLib.

The following example renames the file or directory o the string *newname™:
ioct] (fd, FIORENAME, "newname").

s dover-specific, these e

Iy m tyLib, pipeDrv, plsDrv,

Note that the funetion FIOGETNAME is handled by the 10 interface level and is not passed on to the deviee daver itseli” Thus this function eode value should not he used

by customer-wrillen drivers.

RETURNS

The rewm value of the driver, or ERROR i the file deseriptor does not exist

SEE ALSD

ioLib, tvLib, pipeDev, nfsDev, dosFsLib, rtl1FsLib, rawFsLib, elfarks Pragrammer’s Guide: 1O Svstem, Local File Svstems
VARARGS2

Tseek()

NAME

Tseek() - sct a file readfwrite pointer
SYNOPSIS

nt Iseck

(

it {d, /* fAle descriptor */

Tong offsel, * new byie offset o seek 1o %/
int whenee /* relative file position */

)
DESCRIPTION

5 ry ; Routines

This routine s¢ts the file read/write pointer of file i to affser. The arpument whence, which affects the file position pointer, has three values:

SEEK_SET (0)
SEEK _CUR (1} - set to current position plus affses
SEEK_END (2) - set (o the stze of the file plus affser

- sl to offser

This routine calls jogtl() with functions FIOWIERE, FIONREAD, and FIOSEEK.
RETURNS

‘The new offset from the beginning of the file, or ERROR.

ARGSUSED

SEE ALSO joLib

wefFathSet)

MNAME

inDeMPathSel()} - set (he curment defuult path

SYNOPSIS

STATUS inDeMuthSet

(

char * name /* name of the new default device and path */

)
DESCRIPTION

1 his routine sets the default 110 path. All relative pathnames specified to the 120 system will be ded with this 'his

CI8 Fibwaries @ Reoutines

il must be an absolute pathname,

ie., name must begin with an existing device name.

EETURNS

OK, or ERROR it the first component of the pathname is not an existing deviee
SEE ALSD

ioLib, jnDefPathGet(), ehdir(), getewd()

ioDePuthGet()
NAME

ioDefPathGet) - get the current default path
SYNOPSIS

void ioDefPathGer

(

char * pathname /™ where to retum the name */

08 Libwaries - Rowtines

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

240 Chapter 5

DESCRIPTION

This rowtine copies the name of the current default path o path L The g pathy should be MAX_FILENAME_LENGTH characters long
RETURNS

NiA

SEE ALSO

ioLib. joDefPathSet(), chdir(), getewd()

chdur()

MNAME

chdir() - set the current default path
SYNOPSIS

STATUS chdir

{
char * pathname ™ nume of the new default path */

)

DESCRIPTION

This routine sets the default PO pathe All relative pathoames specificd to the FO system will be prepended with this path T'his patl must be an absolule pathname,
i.e., manie must begin with an existing deviee nnme.

TURNS

OK, or ERROR if the {irst component of the pathnmme is not an existing device

SEE ALSO

iaLib, joDefPathSer(), ioDefPathGet(), getewd()

08 Libwaries © Rowtines

getewd()
NAME
getewd() - get the current default path (POSIEX)
SYNOPSIS
char *getewd

{

char * buffer, /* where to retun the pathnome */

int size /* suee i bytes of bufler */

]

DESCRIFTION

This routine copies the name of the eurrent defanlt path to begfer. Tt provides the same functionality as joDefPathGer() and is provided for POSEX compatibility
RETURNS

A pointer to the supplied bufffer, or NULL if size is too small to hold the current default path,

SEE ALSO

ioLib, joDefPathSet(), ioDefPathGet(), chdir()

8 Fibwaries - Rondines
getwdi)
MNAME
petwd() - get the current default path
SYNOPSIS
char *getwd

{
char * pathname /* where 10 rewum the pathmame */
]

DESCRIPTION

This routine copies the name of the current detault path to pathrame, It provides the same functionality as joDefPath Get() and getewd(). It is provided for compatibality
with same older UNIX systems.

The parameter pathrame should be MAX_FILENAME_LENGTH claracters long.

RETURNS

A pomter to the resulting path name

SEE ALSO

inlLib

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

File Systems 241

iodilobal St Sell)
NAMI:

inGlobalStdSet() - set the file deseriptor for global standard input/outputferror

SYNOPSIS
void it lobalSulSer

(
int stdFd, /* st input (0, outpu (1), or error (2) *f
int newkd /® new underlying [ile descriptor ®/

3
DESCRIFTION

OIS [ibwaries : Rowtines

This routine changes the assignment of o specified global standard file deseriptor stdfFd (0, 1, or, 2) to the specified underlving file deseriptor newld. mewFd should be a file
deseniptor open (o the desired device or file, All tasks will use this new assignment when doing 1O W sedfd, unless they have specified a task-specific stndard file

descriptor (see o TaskStdSet()y If stdfd is not 0, 1, or 2, this routine hag no effect,

RETURNS

NiA

SEE ALSO

ioLib, joGlobalStdGet(), i TaskStdSet()

ioGlohalSuG ey)
NAMIE

inGlohalStdGet() - get the file deseriptor for global standard input/ouputierror

SYNOFPSIS
int ioGlabalStdGet

(

it stdFd /* std inpat (0, output (1), or error (2) */
]

DESCRIFTION

This rowtine retums the eurrent
RETURNS

derlying file d

The underlying global file descriptor, or ERROR if sidfd isnot 0, 1, or 2.

SEE ALSD
iaLib, inGlobalStdSety), inTaskStdGet()

for global

d input, owtput, and emor.

s Lil ies o fowtines

wTaskStdSet)
NAME

inTaskStdSet() - set the fle descriptor for task v
SYNOPSIS

void 10T askStdSet

{

int taskld, /* task whose std [/l is (0 be set (0 = self) %/
it stdFd, /% sad input (0, omtpat (1), or error (2) *f
int newFd /* new underlying file deseriptor %/

)
DESCRIPTION

This routine changes the assignment of a specilied task-specific standard file descriplor stdl"d (0, 1, or, 2) 1o the specilicd

08 fibwaries : Routines

Jd. mewlod should be

ing file descri

a file deseriplor open 1o the desired deviee or file. The calling task will use this new assignment when doing IO 10 s, instead of the system-wide global assignment

which is used by default, IF stdf~d is 1ot 0, 1, o 2, this routine has no effect.

MNOTE

This routine has no effect if it 1s called at interrupt level.
RETURNS

WA

SEE ALSO

iy, jnGlobalStdGet(), inTaskSWGel()

o Task SWGen)
NAME

IoTaskStdGerq) - get the file d

for task

3% Lil & e

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

242 Chapter 5

SYNOPSIS
int i TaskStdGer

(
int taskld, /* 11 of desired task (0 = zelf) */
int stdFd /* std input (0), output (1), or ermor (2) */

}
DESCRIPTION

This routine retumns the current underlyving libe descriptor for task-specilic standard mput, output, and error.
RETURNS
The underlving file descniptor, or ERROR if stffof 15 not 0, 1, or 2, or the routine 15 called at intermupt level.
SEE ALSO

ioLib, joGlobalStdGet(), ioTaskStdSet()

O Libwaries ; Rowtines
isatty{)
MNAME
isatty{) = retum whether the underlving draver is a ity device
SYNOPSIS
BOOL isatty
(
int fd /* Nile descriptor o check =/
]
DESCRIPTION
This routine simply invokes the joctl() function FIOISATTY on the specified file deseriptor
RETURNS

TRUE, or FALSE i the driver does not indicate a iy device
SEE ALSO

inLily

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

File Systems

243

L I

*f

struct incde operations jfs dir inode operations = {

fifdef

—

struct

Copyright (C) Intemational Business Machines Corp., 2000-2003
Portions Copyright (C) Christoph Hellwig, 2001-2002

This program is free software; vou can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation: either version 2 of the License, or

(at your option) any later version

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied wamanty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program: if not, write to the Free Software
Foundation, Inc., 39 Temple Place, Suite 330, Boston, MA 02111-1307 USA

aregate
. lookup -
.link -
.unlink =
.symlink

ifs create,
jfs_lookup,
ifs link,

ifs_unlink,
= jfs symlink,

.mkdir -
.rmdir =
.mknod =
« TORAme

JEFS XATTR
.setxattr = 4fs setxartr,
.getxattr = 9fs getxattr,
.listxattr = jfs listxattr,
remaovexattr = jfs_removexattr,

ifs mkdir,
jfs_rmdir,
ifs mknod,
jfs_rename,

endif

file_operations jfs_dir_operations - {
.read = generic read dir,
.readdir = jfs readdir,

.faync = 4fs fayne,

(comments)

Filename : < namei.c >

hfs_create - creates regular file in parent directory

/ifs_lookup - search for filename or directory

Hjfs_link = create object link in parent dircctory

/fs unlink - remove ohject ink from parent directory

Hifs_symlink - creates svmbolic link to object in
dircctory

{fjfs_mkdir - ereate child directory in parent dircctory

jfs_mmdir - remove link to child directory

ij¥s_mknod - create a speeial file/device

ifs_rename - rename file or dircetory

MiTs_setxattr - set extended file/dir attnbutes
ifs_gercanr - get extended file/dir anribute
/jfs_list<attr - list extended file/dir attributes
/ifs_removexattr - remove extended file/dir attribute

Hgenenic_read dir - (not avalable)

/fifs_readdir - sequentially read dircctory entries from offset

fijfs_fsyne - data synchronization with storage medium

Figure 5.8c: JFS File System Directory Operations

www.newnespress.com

244 Chapter 5

i (comments)

* Copvnght (C) International Business Machines Corp., 2000-2003

: Portions Copvright (C) Christoph Hellwig, 2001-2002 Filename : < hile.c >

* This program is free software; vou can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* {at your option) any later version,

L

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY: without ¢ven the implied warranty of

* MERCHANTARBILITY or FITNESS FOR A PARTICULAR PURPOSE. See

* the GNU General Public License for more details.

L4

* You should have reeeived a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc , 59 Temple Place, Suite 33(), Boston, MA 02111-1307 LSA

LS

struct inode_operations jfs_Ale_inode_operations — §
truncate = jfs_truncate, Hifs_truncate - truncate a file

#ifdef JFS_XATTR
setxatir - = jfs setxatir, /ifs_sctxatir - set extended file/dir attributes
getxattr = jfs_getxattr, Hifs_getxattr - get extended file/dir attribute
listxattr = jfs_hstxattr, Hifs_listeanr - list extended file/dir attributes
removexattr =jfs_removexanr, Hifs_removexattr - remove extended file/dir attribute

fendif

|5

struct file_operations jfs_file_operations = { =
open = jfs_open. /fs_open - open a file
Mseck = generie_file_llseck, /fgenerie_file_llseck - (not available)
write = generic_file_write, Mgeneric_file_write - (not available)
read — generic file read, /fgenenic file read - (not available)
mmap = generic file mmap, Hgenerie_file_mmap - (not available)
Tsyne —Is_fsyae, Mfs_fsyne - data synchronization with 2 il
release =jfs_release, /ljfs_release - file release

h

struct inode_operations jfs_special_inode_operations = {

fildel JFS_XATTR
sewatr = jfs_setvartr, Hifs_serxatir - set extended file/dir attributes
getxattr = jfs_getxattr, /fifs_getxattr = get extended file/dir attribute
listsattr = jfs Distxantr, Mifs_hstxattr - hst extended file/dir attnbutes
emovexatr = jfs_removexartr, Hifs_removexater - emove extended file/dir attribute

Hendif

ks

Figure 5.8d: JFS File System File Operations

International Business Machines Corp.. 2000-2003
Portions Copyright (C) Christoph Hellwig, 2001-2002

stribute it and/or modify
bl ished by
nse, or

7 you can redil

General Public License as p

on 2 of the 1

option) any later wversion.

UsA

Figure 5.8e: JFS Operations (Function) Source Code

www.newnespress.com

File Systems 245

winclude <linux/fa.h>
Ninelude "jfa_incera. h”
Ninclude "jfa_auperbleck. he
Winclude "jfa_inode.h"
#include "jfs_dinode.h"
Hinclude "jfs_dmap.h"
Hinclude "jfs_unicode.h"
Hinclude "jfs metapage. h”
Hinclude "jfe_xattr.h"
Hinclude "jfs_debug.h”

* HAME: jfs_createl(dip, dentry, model

* FUNCTION: ereate a regular file in the pareant directory <dips
. Wwith nams = cfrem dsntrys and mode = cmodes
»

* PARAMETER: dip - parent directory vaode

- densry = dentry of new file

" mode - create mode (Dwxrwxrwx)

.

* RETURN: Brrogs [rom subroutines

»

“f

static int jfs_create(struct incde *dip, struct dentry *dentry. int mode)

int re = O;

cid_t tid; /* transacction id *+/
atruect inode *"ip = WULL; /* child directory inoda */
ino t ino;

atruet component name dname; /* child directory nawe */
atruct btatack btatack;

abruct inode *iplisk|2);

struct tblock *tblk;

jfe_info{"jfs_create: dip:0xip name:

. dip, dentry-ad name. name} ;

v/ Lzuvapace
sctory page pianed)

nt directory for ent
* [dtSearch{) rotuzne pazent di

o

if {{rc = get_UCSname (&dname, dentry, JFS_SBI{dip-»i_sbl-»nls_tab})]
goto outl:

i

* Bithar iRllse() or ExBagin() may bleck. Deadlock can occur if we
* black thare while halding dtras page, as we allacate the inade &
* begin the transaction before we ssarch the directory.
7
ip = iallocidip, mode};
if (ip == NULL) {

ro = =ENOSPC;

goto out?;

}
tid = txBegintdip->i_sb, 0);

down (&JFS_IF{dip) - >commit_pem) :
down (&JFS_IF{ip) - scommic_gem} ;

if ((re = duSearchidip, &drame, &ino, sbratack, JFS_CREATE))]
jfa_arr("jfa create: dtSearch reaturned ¥4, re);
gote ouEd;

}

tblk = tid_to_tblock(tid);
tblk-»xflag |= COMMIT CREATE:
thlk-»ip = ip;

iplist (0] = dip;
iplist{l] = ip:

i
* initialize the child XAD tree root in-line in inode

wf

xeInitRoot (tid, iph:

I
* greate entry in parent directory for child directory
* (dtTnaert() ralaases parant directory page)
o
ino = ip=»i_ino;
1f [l¥c = dtInsert(tid, dip, &dname, &ino, &btstacki)) |
jfe_err{"jfs create: dtlnsext returned ¥d", rc);
if [rc == -EIO)
txhbozt (bid,)¢ /* Marks Filewywtom dizty */f
ulse
txAbortitid, 01 f* Filesystem Lull +/
goteo outld;

Figure 5.8e continued: JFS Operations (Function) Source Code

newnespress.co

246 Chapter 5

ip-=1_op = &jfa_file_inode_cperations;
ip->i_fop - &jfa_file_cperaticna;
ip->i_mapping-»a_opa - &jfa_acps;

inserc_inede_hash(ipl:
mark_inode_dircy(ipi:

dip-»i_gtime =~ dip->i_mtime - CURRENT_TIME;
mark_inode_dizty(dip};

re = txCommit (tid, 2, &iplist(s], o0);

ouk3:
ExEnc (tid) ;
up (&TRS_TF (dip) -=commit_sem) ;
up (EJFS_IF (ip) ->commit_senm) ;
if (rel |
1p->1_mlink = 0:
ipuciipi s
} elae
d_instantiate (dentry. ipl:
wuLd:
frew_UCSnume | Rdnase) ;
outl:
jts_infa(*jfs re:wd®, re);
uTH Te;
}
i
* WAME: jfo_mkdiridip, doncry. moda)
.
* FUNCTION: create a ¢hild directory in the parent directory <dips
. with pname - <frowm dentryr and mode - <modes
* PRRRMETER: dip
. dentry -
. meode = create mode |(rwxrwxrwi).
"
¢ RETURN: Errors from subroutinas
N
* note:
* ERCUESS: user noeods search.wrire pormissien on the parenc direcrcory
.t

sratio inc jfo_mkdirictruct inede *dip, struct dentry *dencry, int model

int rg = 0
ead_t cidy f* traneactiom id =/
struct inede sip = NULL; /* <hlld Alzectory inode +/

ino_t ine;

struct component _name dname; [<
struct btstack btstack;

struct inode #iplist(|2];

struct thlock *thlk;

1d directory name */

jrs_info("jts mkdir: dip:0x¥p name:¥s", dip, dentry-=d_name.nama);

/* link eeunt sverflew on pavent dirvectory ? */
if (dip->i nlink =e JFS_LINK_MAX)

¥e = -EMLINK:

goto outls

directory fox entry/freeopace

wrne parent directory page pinned)

it ({re = get UCSname (&dname, dentry, JFS SBT(dip-»i_sb)-»nls_tah))]
gote outl;

i
* pirhey ialloc() o exBagini{) may block. Deadlock can sceour if we
* block there while holding drree page, go we allocare the inode &
* begin the cransaccion before we pcearch the directory.
=y
ip = ialloc({dip, §_IFDIR | moda);
if {ip == MULL} |

e = -ENOSPC;

gote outd;

I
tid = txBegin(dip-=1_sb, 0);

down (BIF5_TRIdip) ->commit_sem)
down (&IFS_IP(1ip) ->commit_sam);

Af ((re = drsecarch(dip, &dname, &ino, shtatack, J¥s_CREATE))) |
Jfc_err{*jfoc_midir: desearch returned vd*, rel:
goto outl;

Figure 5.8e continued: JFS Operations (Function) Source Code

www.newnespress.co

File Systems

247

thlk = tid_te_thlack(tid);
thlk-axflag |= COMMIT_CREATE;
thlk-»ip = ip;

iplist[0] = dip;
iplist(l] = ip;

i
* initialize cthe child directory in-line in incde
L

drInitRoot (tid, ip, dip-»1i_ine);

in parent directory for ild directory

* (dtInse:t() releases parent directory page)

Y

ino = ipe=i_ino;

if (f{re = dtInsert(tid, dip, &dname, &ino, &btotackll) |
jfa_err("jfe_mkdir: dtInsert returned V4", xol:

if (re == -EIO)

txabarcicid, 1); /* Marka Fileayatam dircy */
&laa
txAborti{tid, 0}; /% Filesystam o 4
goto outd;
}
ip-»i_nlink = 2y f* for ',' of

ip-»i_op = &jfs_dir_inode_operations:
ip->1_fop = &jfo_dir_operations;
ip->1i_mapping->a_ops = &jfo_acpo:
ip->i_mapping->gfp _maak = GFP_NUFS;

insart inoade haah(ip);
mark_inode dirty{ip};

/* update parent directory inode =/

dip-»i_nlinkes; /* Loxr '..' Erom <hild directocy */
dip-»i_ctime = dip->1_mtime = CURRENT_TIME;
mark_inode_dirty(dip):

re = txCommit(rid, 2, &ipliae(e], 0);

outdc
txEnd{Eid) ;
Up{&IFS_TP(dip) -=commit_sem) ;
up{&IJFS_IP(ip)->commit sem);
if (zc) {
ip-2i_nlink = 0;
iput (ip) s
} else
d_instanciace (dentry, ipi;

oue:
free UCSname [&dname) ;

outl:

JEs_info("ifs_mkdir: rc:¥d", re);
return ror

HAME: jfa_rmdiridip, dencry)
FUONCTION remove A link to child divectory

PARMMETER : = patent inode

ntry - child direc

vy dentry

RETURN -EINVAL - if name 18 . or ..
-BINVAL if . or .. exist bur are invalid.
errcro from oubroutines

note:

if aother thraada have tha diracl epen whan the lase link

is removad, the "." and ".." it pressnt, are removed bhafore
rmdir{) returns and no new er be created in the directory,
but the dire ¥ is not removed until the last relerence to

the directory is celeased (cl.unliak{) of zegulaz [ile).

R R R R R T
-~

static int jfe_ymdir(struct inode +*dip, struct dentry *dentry)

int re;
tid t tid; /= transactien id =/
atruct inode *ip = dentry-»d_inods;

tno_t ino;

struct component name dname;

atruct inode *iplist[2];

struct tblock *thlk;

jts_info("jfs rmd

dip:0xip name:%s", dip, dentry-ad name.name];

Figure 5.8e continued: JFS Operations (Function) Source Code

newnespress.co

248 Chapter 5

/* directery must be empty te ke removed =/
if (tdtBmptylip)} {
rc = -ENOTEMPTY;

geto outs

I

if (lrec = get_UCSname (&dname, dentry, JFS_SBI (dip-=i_sb}->nls_tab))} |
goto out;

I
tid = txBegin(dip->1i_sb, 01;

down (&JFS_IP (dip) - >commit_sem) ;
down (&JFS_IP (ip) =>commit_sem) ;

iplisc(o] = dip;
iplist(1] = 1p;

thlk - tid to tblock(tid;
thlk->xflag |= COMMIT DELETE;
thlk-»ip = ip;

i
* delete the entry of target directory from parent directory
ap

ino = ip-»i_ino;

if (({rec = dcDelete(tid, dip, adname, aino, JFS_REMOVE})}

jfs_err("jfa _rmdir: driwlete returned td*, rec);
if (rc == -EID)
txhbort (tid, 1);
LxEnd (LLd) ¢
up (&JFS_IP(dip)->commit_cem) ;
up (8JPS_I[P(ip) ->commit_sem) ;

goto out2;

/= update parent directory's link count corresponding
* ko *.." antry of tha target directory deletad

w/

dip->i_nlink--;

dip->i_ctime = dip->i_mtime = CURRENT_TIME;:
mark_incde_dirty{dip!;

=
* D8/2 could have created EA and/or ACL
o[a'
/* free EA from both persistent and working map =/
if (JFS_IP(ip)-»ea.flag & DXD_EXTENT)
/* fres EA pages *f
txBA{tid, ip, &IFS_IPF(ip)-»ea, NULL);

!
JFS_IP(ip)->ea.flag = O

/* freea ACL from bath peraiatent and working map *f
if (JFS_IF!(ip}-»acl.flag & DXD_EXTENT)

/* free ACL pages */

txBA{cid, ip, &IPS_IF(ip!-»acl, WULL):

JFS_IP(ip) ->acl.flag = 0;

f/* mark the target directory as deleted ¢/
ip=>i_nlink = 0;
mark_incde_dirty({ip);

re « txCommirv(rid, 2, &iplisc[o]l, o);
txEnd (Lid);

up{&JFE_IF (dip}->commit_sem} ;

up (RJFS_IP(1p) ->commit_sem) ;

u"'

* Truncating the directory index table is not guaranteed. IL
* may need to be done lteratively

=f

if (teat_cflag(COMMIT Stale, dip)) |

if (dip-»1i_sizZe » 1)
1fs_truncate_neleock{dip, 0);

clear_cflag (COMMIT Stale, dipl:

outl:
free_UCSname (&dname) ;

jfs_info("jfs_rmdir: re:%d", re);
return rc;

Figure 5.8e continued: JFS Operations (Function) Source Code

www.newnespress.co

File Systems 249

5.4 Remembering the Importance of File System Stability and
Reliability

Finally, as with other types of embedded middleware, in order to insure the stability and
the reliability of embedded systems developers should never assume that file systems come
configured out-of-the-box for their own particular needs. Readers should remember to

tune these parameters, then test and verify the file system according to the overall system’s
requirements. It is critical for middleware developers to tune parameters properly in order
to insure that the file system supports the embedded design’s frequency of 1/O file system
operations and the size of relative transactions.

For example, OS-related parameters in the Reliance file system when using this file system
over vxWorks are shown in Table 5.2. So, when taking account memory usage and performance
requirements of the device, an increase in simultaneous (multithreaded) read operations occurs
when increasing the value of TFS_THREAD_LIMIT, but will also increase the latency of the
serialized write operations. Reducing memory usage will occur when decreasing parameters

Table 5.2: Examples of Datalight’s Reliance Tuning Parameters for vxWorks'*

Reliance Parameter Description

TFS_THREAD_WRITE_SIZEKB Maximum amount of Kbytes that is written before
allowing a context switch to higher priority threads
access

TFS_THREAD_LIMIT The number of threads allowed to operate inside the
file system simultaneously
TFS_COORD_CACHE_ENTRIES The number of ‘coordinate’ cache entries that is

responsible for data related to frequently accessed
files/directories

TFS_INDEX_CACHE_ENTRIES The number of ‘index’ cache entries responsible for
storing the location of metadata on the storage
medium

TFS_CACHE_BUFFER_COUNT The number of TFS_MAX_BLOCK_SIZE internal
cache buffers

TFS_CACHE_WRITE_GATHER_KBSIZE Enabling the writes of contiguous dirty buffers in
cache as a single operation

TFS_ENABLE_DISCARD Reports to a block device when sectors are no longer
used

TFS_DISCARD_TABLE_SIZE In bytes, the size of the discard table

TFS_DISCARD_TABLE_GROWTH Enable/disable ability of discard table to dynamically
grow in size

RELFS_DISCARD_SUPPORT_WRSTFFS Enable/disable use of reliance with WindRiver’s True

Flash File System (TFFS)

250 Chapter 5

such as TFS_COORD_CACHE_ENTRIES, TFS_INDEX_CACHE_ENTRIES and TFS_
CACHE_BUFFER_COUNT; however, decreasing these values will also reduce performance.
This means an improvement in performance will result when these parameters are increased, as
long as there is enough of the right type of memory on the target boards.

The reliability of the embedded file system will also depend on the file system’s internal
design. As mentioned earlier in this chapter, many (atomic) transactional and journaling file
systems employ some type of log management scheme as a means of increasing reliability

by decreasing the chances that data will get corrupted or lost during file system transactions,
or at least some type of data-recovery algorithm can be executed when necessary. Other
embedded file systems (i.e., Datalight’s Reliance) take reliability further within their internal
design via the implementation of more complex schemes, such as utilizing transaction points
or some similar mechanism which allows for the preservation of original data until file system
transactions are 100% completed.

In short, Reliance (for example) continuously tracks used versus unused/free data blocks.
This type of file system will then only utilize available storage space, and not overwrite any
‘used’ area on the medium. This is what insures that the state of this file system, prior to the
start of any new transaction, remains safe on the storage media during the current processing
of a current transaction. When the current transaction has completed without problems, then
a transaction point is set. The Reliance file system then uses this transaction point to commit
changes, and free up the data blocks that kept the original state and data safe. This file system
scheme helps insure that if something goes wrong during a current file system transaction, the
integrity of the original data is still preserved (see Figure 5.9).

NEW DATAIS COMMITTED TO DISK AND
TRANSACTION POINT SET ANEW TRANSACTION POINT SET
NEW DATAIS BEING WRITTEN PREVIOUS VALID DATA
EXISTING VALID& UNUSED TO THESE UNUSED BLOCKS NEW VALID & BLOCKS ARE NOW
COMMITTED DATA BLOCKS AND IS NOT YET COMMITTED COMMITTED DATA UNUSED BLOCKS
L 11 1 / [' === Bl ! l
r Il Ea=== v ' 1
= | == | -
L /] _ E=REE= , e |
] [2 | |, | | 1 b | | i
Y v
Time [N
| ¥
L /

Figure 5.9: How Reliance File System Transaction Points Help Insure Reliability™

File Systems 251

Finally, remember that tuning software parameters for components within your design will
not be limited to the file system when this file system is utilized as ‘middleware’ within

an embedded device. The reader needs to insure that ‘overlying’ application software
components that utilize the file system are tuned properly for that particular file system
implementation as well. Take, for instance, an FTP (file transfer protocol) server application
that is configured internally to support some version of an embedded file system with certain
stack requirements in order to support related tasks. The internal FTP server application code
would need to be changed (i.e., size of the task stack increased) for the FTP server process
to have additional stack space after being ported to a different file system to avoid a stack
overflow, if using this other file system with the FTP server application requires more stack
space to function without crashing when using the FTP server application residing on the
embedded device.

For example, with a version of an FTP server application provided by WindRiver with
vxWorks 6.5, the FTP server can be included when adding the component ‘INCLUDE_
IPFTPS’. This FTP server application uses a stack size definition according to the value
defined by IPCOM_PROC_STACK_DEFAULT, i.e.:

snippet from ipftps.c °

if (ipcom_proc_create(session->name, ipftps_session,

IPCOM_PROC_STACK _DEFAULT, &pid) !=
IPCOM_SUCCESS)

This is the FTP server code that would be changed to give the server process more stack
space, i.e.:

(snippet from ipftps.c 1)

If (ipcom_proc_create(session->name, ipftps_session,

IPCOM_PROC_STACK_LARGE, &pid) !=
IPCOM_SUCCESS)

If a stack overflow would occur when using a particular file system with the supplied
definition of ‘IPCOM_PROC_STACK_LARGE’, for example, then modyfing this value to an

252 Chapter 5

even larger value in the corresponding header file (i.e., ipcom_pconfig.h) is necessary within
the FTP server application.

5.5 Summary

As introduced in the various sections of this chapter, there are different file system design
schemes that can be implemented in a particular file system. In order to understand a file
system design, determine which file system design is the right choice for an embedded
device, as well as understand the impact of a file system on a particular device, it is important
to first understand the fundamentals of a file system. These fundamentals, introduced in this
chapter, include what the purpose of a file system is, elements that commonly make up a file
system, and real-world examples of some of the schemes implementing these elements. The
reader can then apply these fundamentals to analyzing file system design features, such as:

* available API operations and/or an API that adheres to some type of industry
standard interface

* maximum amount of memory that is needed by the file system

* non-blocking adherence for file systems implemented in real-time systems

e performance

* support of specific hardware and/or operating system

in order to determine if the file system design is the right one for a particular system, as well
as the impact of the file system on the embedded device.

5.6 File System Problems

1. What is the purpose of a file system?
2. All file systems can only manage files located on the embedded system the file system
resides on (True/False).
3. Afileis:
A. A set of data that has been grouped together and assigned a unique password
B. A set of data that has been grouped together and assigned a unique name
C. A set of names that has been grouped together and assigned a unique password
D. None of the above.
4. What is a raw file? Give an example of a file system that supports raw files.
Outline the four-step model to understanding a file system design.
6. A file system implemented in the system software layer can exist as:
A. Middleware that sits on top of the operating system layer
B. Middleware that sits on top of other middleware components, for example a
Java-based file system that resides on a Java Virtual Machine (JVM)
C. Middleware that has been tightly integrated and provided with a particular operating
system distribution

b

File Systems 253

0

10.

11.
12.
13.
14.
15.

5.

1

D. None of the above

E. All of the above.

One or more file systems can be implemented in an embedded system (True/False).
How do file systems view the hardware storage medium? Draw an example.

A file system can manage files on the following hardware:

A. RAM

CD

Smart card

Only B and C

. All of the above.

List and describe six types of file-system-specific device driver API functionality
typically found in hardware storage medium device drivers.

What is the difference between an operating system character device and a block device?
A file system can require other underlying middleware components (True/False).
Draw and describe the layers of the General File System Model.

How do the design schemes of core elements of a file system impact performance?
Name and describe five examples of file system APIs.

m o0

7 End Notes

Microsoft Extensible Firmware Initiative FAT32 File System Specification. Version 1.03, December 6, 2000.
Microsoft Corporation

http://redhat.brandfuelstores.com/

www.microsoft.com

http://shop.cxtreme.de

“Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers”. T. Noergaard.
Elsevier 2005. p245.

http://www.westerndigital.com/en/products/Products.asp?DrivelD=104
http://www.seagate.com/cda/products/discsales/marketing/detail/0,1081,771,00.html
http://www.babyusb.com/flashspecs2.htm

“Xscale Lite Datasheet” RLC Enterprises, Inc.

http://www.psism.com/pendrive.htm

‘Corsair USB Flash Memory Datasheet’. Corsair.

http://www.linux-mtd.infradead.org/archive/

“vxWorks API Reference Guide: Device Drivers”. Version 5.5

« Ditalight “FlashFx Pro API Guide”

e source code

* configuration files

 Datalight FlashFX® Pro

* “FlashFx Developers Guide for Wind River VxWorks”, V3.10

» “Reliance Developers Guide for Wind River VxWorks”, V3.00

WindRiver sample code for FTP server application

http://redhat.brandfuelstores.com/
http://www.microsoft.com/
http://shop.cxtreme.de/
http://www.westerndigital.com/en/products/Products.asp?DriveID=104
http://www.seagate.com/cda/products/discsales/marketing/detail/0,1081,771,00.html
http://www.seagate.com/cda/products/discsales/marketing/detail/0,1081,771,00.html
http://www.psism.com/pendrive.htm
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/

This page intentionally left blank

Virtual Machines in Middleware

Chapter Points
e Introduces fundamental middleware virtual machine concepts

e Discusses different virtual machine schemes and the major components of a virtual machine’s
architecture

e Shows examples of real-world embedded virtual machine middleware

A powerful approach to understanding what a virtual machine (VM) is and how it works
within an embedded system is by relating in theory to how an embedded operating system
(OS) functions. Simply, a VM implemented as middleware software is a set of software
libraries that provides an abstraction layer for software residing on top of the VM to be less
dependent on hardware and underlying software. Like an OS, a VM can provide functionality
that can perform everything from process management to memory management to 1O system
management depending on the specification it adheres to. What differentiates the inherent
purpose of a VM in an embedded system versus that of an OS is introduced in the next
section of this chapter, and is specifically related to the actual programming languages used
for creating programs overlying a VM.

6.1 The First Step to Understanding a VM Implementation:
The Basics to Programming Languages'

One of the main purposes of integrating a virtual machine (VM) is in relation to programming
languages, thus this section will outline some programming language fundamentals. In
embedded systems design, there is no single language that is the perfect solution for every
system. In addition, many complex embedded systems software layers are inherently based
on some combination of multiple languages. For example, within one embedded device the
device driver layer may be composed of drivers written in assembly and C source code, the
OS and middleware software implemented using C and C++, and different application layer

Demystifying Embedded Systems Middl e. DOI: 10.1016/B978-0-7506-8455-2.00006-6

255

256 Chapter 6

Table 6.1: General Evolution of Programming Languages'

Language Details

5 Generation Natural languages Programming languages similar to conversational
languages typically used for Al (artificial
intelligence) programming and design

4t Generation Very high level (VHLL) and non- | Very high level languages that are object-oriented,
procedural languages like C++, C#, and Java, scripting languages, such
as Perl and HTML - as well as database query
languages, like SQL for example

3 Generation High-order (HOL) and High-level programming languages with more
procedural languages, such as | English-corresponding phrases. More portable than
C and Pascal for example 24 and 1% generation languages

2"¢ Generation Assembly language Hardware-dependent, representing machine code

1% Generation Machine code Hardware-dependent, binary zeros (0s) and ones

(1s)

components implemented in C, C++, and embedded Java. So, let us start with the basics of
programming languages for readers who are unfamiliar with the fundamentals, or would like
a quick refresher.

The hardware components within an embedded system can only directly transmit, store,

and execute machine code, a basic language consisting of ones and zeros. Machine code

was used in earlier days to program computer systems, which made creating any complex
application a long and tedious ordeal. In order to make programming more efficient, machine
code was made visible to programmers through the creation of a hardware-specific set of
instructions, where each instruction corresponded to one or more machine code operations.
These hardware-specific sets of instructions were referred to as assembly language. Over
time, other programming languages, such as C, C++, Java, etc., evolved with instruction sets
that were (among other things) more hardware-independent. These are commonly referred to
as high-level languages because they are semantically further away from machine code, they
more resemble human languages, and are typically independent of the hardware. This is in
contrast to a low-level language, such as assembly language, which more closely resembles
machine code. Unlike high-level languages, low-level languages are hardware-dependent,
meaning there is a unique instruction set for processors with different architectures. Table 6.1
outlines this evolution of programming languages.

Because machine code is the only language the hardware can directly execute, all other
languages need some type of mechanism to generate the corresponding machine code. This
mechanism usually includes one or some combination of preprocessing, translation, and
interpretation. Depending on the language and as shown in Figure 6.1, these mechanisms

Virtual Machines in Middleware 257

A— o ettt e
Host [Development System]
i —— Rpeiadion T xeer '
Application Layer Preprocessor ‘ Compiler l Linker ... l]"" -

System Software Layer !
System Software Layer ’
Hardware Layer ’
Hardware Layer '

Figure 6.1: Programming Languages, Host, and Target'

exist on the programmer’s host system, typically a non-embedded development system, such
as a PC or Sparc station, or the farget system (i.e., the embedded system being developed).

Preprocessing is an optional step that occurs before either the translation or interpretation

of source code, and whose functionality is commonly implemented by a preprocessor. The
preprocessor’s role is to organize and restructure the source code to make translation or
interpretation of this code easier. As an example, in languages like C and C++, it is a pre-
processor that allows the use of named code fragments, such as macros, that simplify code
development by allowing the use of the macro’s name in the code to replace fragments of
code. The preprocessor then replaces the macro name with the contents of the macro during
preprocessing. The preprocessor can exist as a separate entity, or can be integrated within the
translation or interpretation unit.

Many languages convert source code, either directly or after having been preprocessed
through use of a compiler, a program that generates a particular target language — such as
machine code and Java byte code — from the source language (see Figure 6.2).

Source Code

v

Compiler

Preprocessing

v

Compiling

Header File(s) for languages like C and C++

[Y

v

Target Code

Figure 6.2: Compiling Native Code’

258 Chapter 6

A compiler typically ‘translates’ all of the source code to some target code at one time.

As is usually the case in embedded systems, compilers are located on the programmer’s

host machine and generate target code for hardware platforms that differ from the platform
the compiler is actually running on. These compilers are commonly referred to as cross-
compilers. In the case of assembly language, the compiler is simply a specialized cross-
compiler referred to as an assembler, and it always generates machine code. Other high-level
language compilers are commonly referred to by the language name plus the term ‘compiler’,
such as ‘Java compiler’ and ‘C compiler’. High-level language compilers vary widely in terms
of what is generated. Some generate machine code, while others generate other high-level
code, which then requires what is produced to be run through at least one more compiler or
interpreter, as discussed later in this section. Other compilers generate assembly code, which
then must be run through an assembler.

After all the compilation on the programmer’s host machine is completed, the remaining
target code file is commonly referred to as an object file, and can contain anything from
machine code to Java byte code (discussed later as an example in this chapter), depending
on the programming language used. As shown in the C example in Figure 6.3, after linking
this object file to any system libraries required, the object file, commonly referred to as an
executable, is then ready to be transferred to the target embedded system’s memory.

| C Source File (s)]

C Compiler

[Prprocessing] CHeader il
]

| Compiling ‘

| C Object File (s)]
| Linker]¢—4 C System Libraries

| C Executable File]

Host Computer

. Embedded System <

Figure 6.3: Compiling in C Example'

Virtual Machines in Middleware 259

Py Target Code for
Source L1
Source L1
Source L2 Target Code for
Source L2
Source L3
Source L4 | Target Code for
Source L3
Source L5
Sourcc Lb -------------

Figure 6.4: Interpretation of a Language’

6.1.1 Non-native Programming Languages that Impact the Middleware Architecture’

Where a compiler usually translates all of the given source code at one time, an inferpreter
generates (interprets) machine code one source code line at a time (see Figure 6.4).

One of the most common subclasses of interpreted programming languages is scripting
languages, which include PERL, JavaScript, and HTML. Scripting languages are high-level
programming languages with enhanced features, including:

e More platform independence than their compiled high-level language counterparts?

e Late binding, which is the resolution of data types on-the-fly (rather than at compile time)
to allow for greater flexibility in their resolution?

* Importation and generation of source code at runtime, which is then executed
immediately?

* Optimizations for efficient programming and rapid prototyping of certain types of
applications, such as internet applications and graphical user interfaces (GUIs).?

With embedded platforms that support programs written in a scripting language, an
additional component — an interpreter — must be included in the embedded system’s
architecture to allow for ‘on-the-fly’ processing of code. Note that while all scripting
languages are interpreted, not all interpreted languages are scripting languages. For example,
one popular embedded programming language that incorporates both compiling and
interpreting machine code generation methods is Java. On the programmer’s host machine,
Java must go through a compilation procedure that generates Java byte code from Java
source code (see Figure 6.5).

260 Chapter 6

Java Java Source File (s)

b 2

| Java Compiler

y

| .class Java Byte Code File (s)

Figure 6.5: Embedded Java Compiling and Linking'

Java byte code is target code intended to be platform independent. In order for the Java byte
code to run on an embedded system, one of the most commonly known types of virtual
machines in embedded devices and used as the real-world example in this chapter, called a
Java Virtual Machine (JVM), must reside on that system.

Real-world JVMs are currently implemented in an embedded system in one of three ways:
in the hardware, as middleware in the system software layer, or in the application layer (see
Figure 6.6). Within the scope of this chapter, it is when a virtual machine, like a JVM, is
implemented as middleware that is addressed more specifically.

Scripting languages and Java aren’t the only high-level languages that can automatically
introduce an additional component as middleware within an embedded system. A real-world
VM framework, called the .NET Compact Framework from Microsoft, allows applications
written in almost any high-level programming language (such as C#, Visual Basic and
Javascript) to run on any embedded device, independent of hardware or system software
design.

-

Application Layer Application Layer Application Layer

System Software
Layer

System Software

Laycr Java Virtual Machine @

P

Java Virtual Machine

Java Device Drivers ﬂ A

System Software Layer

Hardware Layer
Java Processor g
i JVM part of system layer, i.e., | i JVM complied in application,
o i Skelmir's Cee-J, Esmertec/Insignia’s ; | i.c., Esmertec’s Jbed, Kava KavaVM,
e geam : Jeode and Jbed, Tao's Intent, i IBM's J9

i e S | Kava's KavaVM :
JVM in hardware, i.e., P eeermesssssssssssss s e

ARM’s Gazelle, Alile’s aj100

Figure 6.6: Embedded JVM'

www.newnespress.com

Virtual Machines in Middleware 261

r
Source Code
»
.
.
Y
=
Host < ‘ IL (Intermediate Language) Compiler D
.
.
.
Y
EXE/dlI (IL and Metadata)
.

.
.

| Target

€ = h 4 Class Libraries
Class Loader | [4*** 9 (IL and Metadata)

l JIT Compiler |

M
.
.

Y

Native Code

Figure 6.7: .NET Compact Framework Execution Model’

Applications that fall under the .NET Compact Framework must go through a compilation
and linking procedure that generates a CPU-independent intermediate language file, called
MSIL (Microsoft Intermediate Language), from the original source code file (see Figure
6.7). For a high-level language to be compatible with the .NET Compact Framework, it must
adhere to Microsoft’s Common Language Specification, a publicly available standard that
anyone can use to create a compiler that is .NET compatible.

6.2 Understanding the Elements of a VM’s Architecture'

After understanding the basics of programming languages, the key next steps for the reader in
demystifying VM middleware include:

Step 2. Understand the APIs that are provided by a VM in support of its inherent purpose.
In other words, know your standards relative to VMs that are specific to embedded
devices (as first introduced in Chapter 3).
Step 3. Using the Embedded Systems Model, define and understand all required architecture
components that underlie the virtual machine, including:
Step 3.1. Understanding the hardware (Chapter 2). If the reader comprehends the
hardware, it is easier to understand why a VM implements functionality in

262 Chapter 6

a certain way relative to the hardware, as well as the hardware requirements
of a particular VM implementation.

Step 3.2. Define and understand the specific underlying system software components,
such as the available device drivers supporting the storage medium(s) and
the operating system API (Chapter 2).

Step 4. Define the particular virtual machine or VM-framework architecture model, and then
define and understand what type of functionality and data exists at each layer. This
step will be addressed in the next few pages.

As mentioned at the start of this chapter, a virtual machine (VM) has many similarities in
theory to the functionality provided by an embedded operating system (OS). This means

a VM provides functionality that will perform everything from process management to
memory management to I/O system management in addition to the translation of the higher-
level language supported by the particular VM. Size, speed, and available out-of-the-box
functionality are the technical characteristics of a VM that most impact an embedded system
design, and essentially are the main differentiators of similar VMs provided by competing
vendors. These characteristics are impacted by the internal design of three main subsystems
within the VM, the:

e Loader
e Execution Engine
e API libraries.

As shown in Figure 6.8, for example, the .NET Compact Framework is made up of an
execution engine referred to as a common language runtime (CLR) at the time this book was
written, a class loader, and platform extension libraries. The CLR is made up of an execution
engine that processes the intermediate MSIL code into machine code, and a garbage collector.
The platform extension libraries are within the base class library (BCL), which provides
additional functionality to applications (such as graphics, networking, and diagnostics).

In order to run the intermediate MSIL file on an embedded system, the .NET Compact
Framework must exist on that embedded system.

Another example is embedded JVMs implemented as middleware, which are also made up
of a loader, execution engine, and Java API libraries (see Figure 6.9). While there are several
embedded JVMs available on the market today, the primary differentiators between these
JVMs are the JVM classes included with the JVM, and the execution engine that contains
components needed to successfully process Java code.

6.2.1 The APIs

The APIs (application program interfaces) are application-independent libraries provided
by the VM to, among other things, allow programmers to execute system functions, reuse

Virtual Machines in Middleware 263

.NET Compact Framework

Figure 6.8: Internal .NET Compact Framework Components'

code, and more quickly create overlying software. Overlying applications that use the VM
within the embedded device require the APIs, in addition to their own code, to successfully
execute. The size, functionality, and constraints provided by these APIs differ according to
the VM specification adhered to, but provided functionality can include memory management

Class Loader

Figure 6.9: Internal JVM Components’

www.newnespress.com

264 Chapter 6

L

|
Roboks

EEEEEEEESTTESEESEE

Sel-Top Box
Java 2 Micro Edition
Connected Device Configuration (CDC) Connected Limited Device Configuration (CLDC)
CVM (Larger JVM based on “C" for Compact) KVM (Smaller JIVM based on “K" for Kilo)
32 kB RAMI
10MB RAM e P RS S b . A T + 16bit
&4-bit Architecne Architectre

Figure 6.10: J2ME Devices'

features, graphics support, networking support, to name a few. In short, the type of
applications in an embedded design is dependent on the APIs provided by the VM.

For example, different embedded Java standards with their corresponding APIs are intended
for different families of embedded devices (see Figure 6.10). The type of applications in a
Java-based design is dependent on the Java APIs provided by the JVM. The functionality
provided by these APIs differs according to the Java specification adhered to, such as
inclusion of the Real Time Core Specification from the J Consortium, Personal Java (pJava),
Embedded Java, Java 2 Micro Edition (J2ME), and The Real Time Specification for Java
from Sun Microsystems. Of these embedded Java standards, to date pJava and J2ME
standards have typically been the standards implemented within larger embedded devices.
PJava 1.1.8 was the predecessor of J2ME CDC that Sun Microsystems targeted to be
replaced by J2ME.

Figure 6.11 shows an example of differences between the APIs of two different embedded
Java standards.

There are later editions to 1.1.8 of pJava specifications from Sun, but as mentioned
J2ME standards were intended to completely phase out the pJava standards in the
embedded industry (by Sun) at the time this book was written. However, because the
open source example used in this chapter is the Kaffe JVM implementation that is a clean
room JVM based upon the pJava specification, this standard will be used as one of the
examples to demonstrate functionality that is implemented via a JVM. Using this open
source example, though based upon an older embedded Java standard, allows readers

Virtual Machines in Middleware 265

plava JVM APIs

~
Javaio Java math Ix
(Supports inputioutput streaming) (For integer and foating point athmetic) (Manages Java application and VM security)
Java Javanet Ia
{Java program usually runaing in browser) {Networking protocols) (Implements Java datahase connectivity [JDBC])
= > Java APls
Javaawt Javarmi Javatent
(Abstmct Windowing Toolkit for grog (Remote method Invocation) (For

Javalang Java.util Javabeans

(Java language components) (General -purpose utilities) (Framework 1o create reusable, embeddable,

modular software components)
'
J2ME JVM
lavaio Javax. microedition. ledui [:
S input/outp (User imerface)
Javalang Java microedition rms
(Java language components) (Mobile information device profile for MIDlets
to store and retrieve data) L
Javautil
(General-purpose utilities) Java.microedition. midlet
(Defines mobile information device profile
Java.microedition. io applications and related functions)
(Networking protocals) -
Javaio
(Additional inp r
CLDC APIs T
(Additional Java languag
MIDP APIs

Figure 6.11: J2ME CLDC versus pJava APIs’

to have access to VM source code for hands-on purposes. The key is for the reader to
use this open source example to get a clearer understanding of VM implementation
from a systems-level perspective, regardless of whether the ‘internal’ functions used

to implement one VM versus another differs from another because of the specification
that VM adheres to (i.e., pJava versus J2ME, J2ME CDC versus J2ME CLDC, different
versions of J2ME CLDC, and so on). The reader can use these examples as tools to
understanding any VM implementation encountered, be it home-grown or purchased from

a vendor.

To start, a high-level snapshot of the APIs provided by Sun’s pJava standard are shown
in Figure 6.12. In the case of a pJava JVM implemented in the system software layer,
these libraries would be included (along with the JVM’s loading and execution units) as

middleware components.

Using specific networking APIs in the pJava specification as a more detailed example, shown
in Figure 6.13 is the java.net package. The JVM provides an upper-transport layer API for

www.newnespress.com

266 Chapter 6

java.applet
java.awt
Jjava.awt.datatransfer
Jjava.awt.cvent
Java.awtimage
Java.beans
java.io
javalang
java.lang.reflect
java.math
Jjava.net
Jjava.rmi
Java.rmi.dge
Jjava.rmi.registry
Jjava.rmi.server
java.security
Jjava.security.acl
java.security.interfaces
java.sql
Jjava.text
Jjava.util
Java.util.zip

Figure 6.12: pJava 1.1.8 APl Example®

remote interprocess communication via the client—server model (where the client requests
data, etc., from the server).

The APIs needed for client and servers are different, but the basis for establishing the
network connection via Java is the socket (one at the client end and one at the server
end). As shown in Figure 6.14, Java sockets use transport layer protocols of middleware
networking components, such as TCP/IP discussed in the previous middleware example.
Of the several different types of sockets (raw, sequenced, stream, datagram, etc.),

the pJava JVM provides datagram sockets, in which data messages are read in their
entirety at one time, and stream sockets, where data are processed as a continuous stream
of characters. JVM datagram sockets rely on the UDP transport layer protocol, while
stream sockets use the TCP transport layer protocol. pJava provides support for the client
and server sockets, specifically one class for datagram sockets (called DatagramSocket,
used for either client or server), and two classes for client stream sockets (Socket and
MulticastSocket).

Virtual Machines in Middleware 267

Interfaces
ContentHandlerFactory
FileNameMap
SocketlmplFactory
URLStreamHandlerFactory
Classes
ContentHandler
DatagramPacket
DatagramSocket
DatagramSocketImpl
HitpURLConnection
InetAddress
MulticastSocket
ServerSocket
Socket
SocketImpl
URL
URLConnection
URLEncoder
URLStreamHandler
Exceptions
BindException
ConnectException
MalformedURLException
NoRouteToHostException
ProtocolException
SocketException
UnknownHostException
UnknownServiceException

o |

Figure 6.13: java.net Package APl Example®

A socket is created within a higher-layer application via one of the socket constructor calls,
in the DatagramSocket class for a datagram socket, in the Socket class for a stream socket,
or in the MulticastSocket class for a stream socket that will be multicast over a network

(see Figure 6.15). As shown in the pseudocode example below of a Socket class constructor,
within the pJava API, a stream socket is created, bound to a local port on the client device,
and then connected to the address of the server.

In the J2ME set of standards, there are networking APIs provided by the packages within
the CDC configuration and Foundation profile, as shown in Figure 6.18. In contrast to
the pJava APIs shown in Figure 6.12, J2ME CDC APIs are a different set of libraries that
would be included, along with the JVM’s loading and execution units, as middleware
components.

268 Chapter 6

P _
Application Layer
System Software Layer
=
plava 1.1.8 JVM
java.net Socket AP
TCE upp
P
Hardware Layer

Figure 6.14: Sockets and a JVM'

As shown in Figure 6.16, the CDC provides support for the client sockets. Specifically,
there is one class for datagram sockets (called DatagramSocket and used for either client or
server) under CDC. The Foundation Profile, that sits on top of CDC, provides three classes
for stream sockets, two for client sockets (Socket and MulticastSocket) and one for server
sockets (ServerSocket). A socket is created within a higher-layer application via one of the
socket constructor calls, in the DatagramSocket class for a client or server datagram socket,
in the Socket class for a client stream socket, in the MulticastSocket class for a client stream
socket that will be multicast over a network, or in the ServerSocket class for a server stream
socket, for instance (see Figure 6.16). In short, along with the addition of a server (stream)
socket API in J2ME, a device’s middleware layer changes between pJava and J2ME CDC
implementations in that the same sockets available in pJava are available in J2ME’s network
implementation, just in two different substandards under J2ME as shown in Figure 6.17.

The J2ME connected limited device configuration (CLDC, shown in Figure 6.18) and related
profile standards are geared for smaller embedded systems by the Java community.

Continuing with networking as an example, the CLDC-based Java APIs provided by a
CLDC-based JVM do not provide a .net package, as do the larger JVM implementations (see
Figure 6.19).

Under the CLDC implementation, a generic connection is provided that abstracts networking,
and the actual implementation is left up to the device designers. The Generic Connection

Virtual Machines in Middleware 269

Socket(InetAddress address, boolean stream)
{

X.create(stream); //create stream socket
X..bind(local Address, localPort); //bind stream socket to port

If problem ...
X.close()//iclose socket
else
X.connect(address, port); //connect to server
l
Socket Class Constructor
Socket()

Creates an unconnected socket, with the system-default type of Socketlmpl.
SocketiInetAddress, int)

Creates a stream socket and connects it to the specified port number at the specified 1P address.
Socket(InetAddress, int, boolean)

Creales a socket and connects il o the specified port number at the specified IP address.

Deprecated.
Socket(InetAddress, int, InetAddress, int)

Creates a socket and connects it to the specified remote address on the specified remote port.
Socket(Socketlmpl)

Creates an unconnected Socket with a user-specified Socketlmpl.
Socket(String, int)

Creates a stream socket and connects it to the specified port number on the named host.
Socket(String, int, boolean)

Creates a stream socket and connects it to the specified port number on the named host. Deprecated.
Socket(String, int, InetAddress, int)

Creates a socket and connects it to the specified remote host on the specified remote port.

MulticastSocket Class Constructors

MulticastSocket()

Create a multicast socket.
MulticastSocket(int)

Create a multicast socket and bind it to a specific port.

DatagramSocket Class Constructors

DatagramSocket()

Constructs a datagram socket and binds it to any available port on the local host machine.
DatagramSocketiint)

Constructs a datagram socket and binds it 1o the specified port on the local host machine.
DatagramSocket(int, InetAddress)

Creates a datagram socket, bound to the specified local address.

Figure 6.15: Socket Constructors in Datagram, Multicast, and Socket Classes?

Framework (javax.microedition.io package) consists of one class and seven connection
interfaces:

e Connection — closes the connection

* ContentConnection — provides metadata info

* DatagramConnection — create, send, and receive

e InputConnection — opens input connections

* OutputConnection — opens output connections

e StreamConnection — combines Input and Output

e Stream ConnectionNotifier — waits for connection.

270 Chapter 6

e ik CDC java.net » Foundation Profile Jjava.net
pvaio
java.
m]:s.-t Interfaces Interfaces
pvalangreflec ContentHandlerFactory ContertHandlerFactory
jave.math DatagramSaocketimpliactory DatagramSocketlmpl Fctory
jvam T FileNamneMap Filetame Map
javasecurity SocketOpuons SocketlmplF actory
Java.secunty cen URLSueamHandlecFacuory :
JENR URLSire mHandleFactory
e Classes
Javailjas CornentHandler Classes
J'V_l-l-iw Awthentogion
i DuansgramSocket Conters Handler
Foundaticn Profile g — DatagramPacket
J JarURLConnection DatagramSocketlmpl
_Jiva oy NetPermissica HespURLC ovn ection
) Jvalangrel Soxk 4
dovn URL JaURLConnection
gy URLClasLosder MulticastSacket
l":'ml' URLSueamHaodler NetPecmission
3 PavowordAuthentication
Javasecunty axl]
Javasecurity con E!ccpuom ServerSocket
juvasecurity apec MalformedlURLException Sockeslmpl
Javatent Prosocol Excepricn ILI'II.LS ocke(Pormision
Javaaxil SocketException
_pwunl.]o_t U nknownHos Exception Umﬂfamm .
Javautilzip UnknownServce Exception o m‘“""“'
Jjavat microaditon. io Um &
URLSreaml andler
Peesonal Rasis Profile
Javaawt)
Javaawtcolor Exc 3
pvaawievent P EI 2
Pvaawiunage c ¥ o
Java bears M "'I F' rt.i:-:u-';
Jva i regtry SocketEaception
javax microediion xet UnknownllosiBxception
S o Kletixo UnknowrServiceException
Peesanal Profile
java.applet
Javaaw
java awtcolar
Java.awe datatransfer
Javaawlovent
L e
Java bears
java.math
Javaamu
Java s pegitry
Javamucwedition.alet
Javamroedivon et

Figure 6.16: J2ME CDC 1.0a Package Example*

The Connection class contains one method (Connector.open) that supports the file, socket,
comm, datagram and http protocols, as shown in Figure 6.20.

Another example is located within the Kaffe JVM open source example used in this chapter
that contains its own implementation of a java.awt graphical library. AWT (abstract
window toolkit) is a class library that allows for creating graphical user interfaces in Java.
Figures 6.21a, b and c show a list of some of the java.awt libraries, as well as real-world
source of one of the awt libraries being implemented.

www.newnespress.com

Virtual Machines in Middleware 271

Figure 6.17: Sockets and a J2ME CDC-based JVM'

Figure 6.18: Sockets and a J2ME CLDC-based JVM'

www.newnespress.com

272 Chapter 6

IMECLDC 1.1
Javaio
Jjavalang
Java.lang.ref
Javautl
Javax microedition.io

J2ME MIDP 2.0
javalang
Java.unl
Jjava.microedition. led.ui
java.microedition.lod.ui.game
Java.microedition. midlet
Jjava.microedition.ms
Jjavamicroeditionio
Jjava.microedition.pki
java.microedition.media
Java.microedition.media.control

Figure 6.19: J2ME CLDC APIs*

Hitp Communication :

-Connection he = Connector.open (“http/www.wirelessdevnet.com™);

Stream-based socket communication :

-Connection sc = Connector.open (“socket://localhost:9000");

Datagram-based socket communication:

-Connection dc = Connector.open (“datagram://:9000);

Serial port communication :

6.2.2 Execution Engine

Within an execution engine, there are several components that support process, memory,
and I/O system management — however, the main differentiators that impact the design and

-Connection cc = Connector.open (“comm:0:;baudrate=9000");

Figure 6.20: Example of Connection Class in Use'

performance of VMs that support the same specification are:

* The units within the VM that are responsible for process management and for translating

what is generated on the host into machine code via:

° interpretation

* just-in-time (JIT), an algorithm that combines both compiling and interpreting

e ahead-of-time compilation, such as dynamic adaptive compilers (DAC), ahead-of-
time, way-ahead-of-time (WAT) algorithms to name a few.

www.newnespress.com

Virtual Machines in Middleware 273

A VM can implement one or more of these processing algorithms within its execution engine.

* The memory management scheme that includes a garbage collector (GC), which is
responsible for deallocating any memory no longer needed by the overlying application.

With interpretation in a JVM, shown in Figure 6.22 for example, every time the Java program
is loaded to be executed, every byte code instruction is parsed and converted to native code,
one byte code at a time, by the JVM’s interpreter. Moreover, with interpretation, redundant
portions of the code are reinterpreted every time they are run. Interpretation tends to have

the lowest performance of the three algorithms, but it is typically the simplest algorithm to
implement and to port to different types of hardware.

A JIT compiler (see Figure 6.23), on the other hand, interprets the program once, and then
compiles and stores the native form of the byte code at runtime, thus allowing redundant code
to be executed without having to reinterpret. The JIT algorithm performs better for redundant

code, but it can have additional runtime overhead while converting the byte code into native
code. Additional memory is also used for storing both the Java byte codes and the native
compiled code. Variations on the JIT algorithm in real-world JVMs are also referred to as
translators or dynamic adaptive compilation (DAC).

Kaffe java.awt.*

ActionEvt
AdjustmentEwvt
AWTEvent
BarMenu
Button

Canvas
Checkbox
CheckboxGroup
CheckboxMenultem
Choice
ClassAnalyzer
ClassProperties
Componet
ComponentEvt
Container
ContainerEvt
Cursor

Defaults
DefKeyFilter
Dialog
Dimension
Event
EventDispatchThread

MouseEvt
NativeClipboard

EventQueue
FlowLayout

FocusEvt NativeSelection
Font OpaqueComponent
FontMetrics PaintEvt

Frame Panel

Graphics PopupMenu
GrpahicsLink

PopupWindow
Image e
ImagebFramel.oader
Imagel.oader
limageNativeProducer
Insets
ItemEvt
KeyEvt
Label
List
MediaTracker
Menu
MenuBar
MenuComponent
Menultem
MenuShortcut

Figure 6.21a: Kaffe java.awt APIs®

274 Chapter 6

Constructor Summary

Checkbox |}
Creales a check box with an empty string for its label.

Checkbox (3tring label)
Creates a check box with the specified label.

Checkbox(5tring label, boolean state)
Creates a check box with the specified label and sets the specified state.

Checkbox(String label, boolean state, CheckboxGroup group)
Constructs a Checkbox with the specified label, set 1o the specified siate, and in the specified check box group.

Checkbox (5tring label, ChackboxGroup group, boslean state)
Creates a cheek box with the specificd label, in the specified check box group, and set to the specified st

Method Summary

void |addItemListener(litemListensr 1)

Adds the specificd itlem listener 1o reccive item events from this check box.

void nddHotifzt 1
Creates the peer of the Checkbox.

AccessibleContext |getAccessibleContext(]
Giets the AccessibleContext iated with this Checkb

CheckboxCroup | getCheckboxGroup ()

Determines tns check box's group.

ItemListensr [.] | getltemListeners()
Rewmns an array of all the item listeners regisiered on this checkbox.

String |getLahel ()

Gets the label of this check box.

e -:11 : :’:::2?: getlistenezs (Class<T> listenerType)

———— T R an array of all the objects currently registered as Foolisteners upon this Checkbox,

Chject[] |getSelectedObjects (]
Returns an army (length 1) containing the checkbox label or null if the checkbox is not selected.

beoolean |getState()
Determines whether this check box is in the "on" or "off™ site.

protected Stri neg |paramString()
Remims a string representing the state of this Checkbos.

protected void | processEvent (AWTEvent e}
Processes events on this check box.

protected void |processltemEvent(ItemEvent e)
P ilem events ing on s check box by dispatching them to any registered ItemListener objects.

void | removeltemlistener (ItemListenss 1)
Removes the specified ilem listener so that the item listener no longer receives item events from this check box.

void setCheckboxGroup(Checkicxbroun gl
Sets this check box's group to the specified check box group.

veid | setlabel (String label]
Sets thus check box's label to be the sting argument.

void | setState(boolean state)
Sets the state of this check box 1o the specified siate,

Figure 6.21b: java.awt Checkbox Class API¢

www.newnespress.com

Virtual Machines in Middleware 275

<< Checkbox, java »»

Thia praogram is free software; you ¢an redistribote iz andfor =odiZy
it under the terms &f <he CNU Ceneral [ablic License as pablished by
the sree Soltware Foundation; either version 2 of the License, or
{at. your eptinn) ary later varsioa.

This program is distributed in the hope that it will ke useful,
bul WTTHOUT ANY WARRANTY; wi_houl 1 Lhe i-pliled warranly of
MEICHANTABILITY oy FITHESS FOR A PARTICULAR PURTOSE. Ses

Lhe GNU General Fublic Licease lor wmore delalls.

¥ou skould kave received a copy of the GHU General Public Licenae

along wilh Lkis program; LL nol, wrile Lo Lhe Free Zollaace

Foundation, Tng., 59 Temple lace, Suite 330, Rostsa, MA 92117 =1307 U3A
!

s A R R R e R e

package java.awt;

imporl jova.awl . evenl . FoousFEvan
impart java.awt.event . Focuslistener;
import java.awt.event,ItemEvent;
imporl josa.owl.evenl, TlomTialene g
import jJava.awt.event.KeyEvent:
import java.awt.avent KeylListeser;
import. java.awt.ovent . MouscEvens;
import java.awt.event.Mouselistener;

class Theckbox =

Transvirtual Zechrologies, Inc. All rigass reserved.

Sea ke file "licaras.zer-s
of this file.

*
.
* Copyricht (o) 1996
.
*
= or inforrazion on usage and redistriburion

pub_ic class Checkbox

axtends Uamporent

implements ItomSclectable, Moo
i

seListencr, Foonsh aner, HoyListoner
privata azatic firal lerg sarialVaraizalUID - V27C71£3174508217631;
CanckhoxGroop qropi

iat state;

Strirg label;

ItemLigtener iListeser)

pablic slali . Goanler;
stazie int JHECKED = 1)
stazic int UILIGLTED = 2;

puboic Checkbox) {
this("", false, rull);
¥

pubZic Checkbox | String label) (
Lais(label, false, null):
1

pub_in Crockbox | String label, CRookbDOXGrOUp group, bDoolean stace) {
tais(label, state, group);
}

pub’Zic Checkbox | Gtring label, boclean staze)
tais{ lLabel, state, aulli;
)

pub’ic Checkbox | S.ring labal, bouolean slace, CheckboxGroup group) {
thiz. label = (label == coll) 7 %" ¢ label;
setCheckboxdroup(groupl;
selSlalel slale);
astName ("checkbox" 4 Ccovnterdd);

sebForugroved{ Colur.black);
aatTort{ Defauls.TaxcFont):
addMovsalistenar{ this);
addTocuslistenar{ this);
addieyLiscereri thia):

1

public synchrerized vold addItemlistener | Iterxlistener il |
iListenar = AWTEventMulticaster.add(iListenar, il):}

Figure 6.21c: Kaffe java.awt Checkbox Class Implemented®

nespress.co

276 Chapter 6

void drawButten{ Graphics g, int ext, int x0, int y0)
g.setColor{ ((state & HILIGHTED) > 0) ? Defaults.BtnPeintClr : Defaults.BtnClr):
g.fill3DRect{ %0, y0, ext, ext, true);

if (label.endsWith(" "))
kaffePaintBorder(g7
else {
int d BORDER_WIDTH;
kaffePaintBarder(g, x0-d, y0-d, width-(x0+ext+d), height-(yO+ext+d) };

1

void drawCheckMark(Graphics g, int ext, int =0, int y0) |
g.setColor(Color.black);
g.drawLine (x0+3, yO+4, nOtexc-5, yOtexr-4);
g.drawline (x042, yO+exnt-4, x0+ext-5, y043);

g.8etColor{ Color.white);

g.drawbine{ x0+3, y0+3, x0+ext-4, yl+ext-4);

g.drawbine{ =x0+3, yOtext-4, =0+ext-4, y0+3);
]

public void focusGained { FocusEvent e} |
state |- HILIGHTED:
repaint();

1

public void focuslaat (FocusEvent) |
state 4= ~HILIGHTED;
repaink () ;

]

public CheckboxSroup getCheckboxGroup () |
return group;

}

ClassProperties getClassProperties () |
return ClassAnalyzer.analyzeAll(gerclasa(), troe);
]

public String getLabel () |
return label;
}

public Object(] getSelectedCbiects () |

Object[] oap

if ((state & CHECKED) > 0) |
ca = new Ohject(1);
oa[0] = this;

)

else
oa = new Object[0]:

return oa;

1

public boolean getState () {
return ((state & CHECKED) > 0);
]

public void keyBressed (KeyEvent e) |
1
public void keyReleased (KeyEvent e) {
]

public void keyTyped [KeyEvent e) {
char ¢ = e.getHeyChar ()

switch [<) |
case
case OxA: //ENTER
if { {(state & CHECKED) > 0} && (grouwp != null))
return;
setState ((state & CHECKED) == 0);
break;

¥

public void mouseClicked | MouseEvent e) |

}
public void mouseEntecred (MouseEvent e |

state |= HILIGHTED:?
repaint() s

Figure 6.21c continued: Kaffe java.awt Checkbox Class Implemented

Virtual Machines in Middleware 277

» Byte Code 1

Parsing

vtab h 4
Byte Code 1
Byte Code | Interpreting

Byte Code 2 » Byte Code 2
Parsing

Byte Code 3 e
Byte Code 2
Interpreting

Figure 6.22: Interpretation’

Byte Code | |
Parsingand |
Interpreting
¥ viab

Byte Code |
JIT Compiling Byle Code 1

Compiled Byte Code 1

v

Byte Code 2
Parsing and
Interpreting

v Byte Code 3

Byte Code 2
JIT Compiling

Byte Code 2 Compiled Byte Code 2

’

Compiled Byte Code 3

First Pass of Processing Second and Additional Passes
Byte Code of Processing Byte Code

Figure 6.23: Just-in-Time (JIT)’

Finally, as shown in Figure 6.24, in WAT/AOT compiling all Java byte code is compiled into
the native code at compile time, as with native languages, and no interpretation is done. This
algorithm performs at least as well as the JIT for redundant code and better than a JIT for
non-redundant code, but as with the JIT, there is additional runtime overhead when additional

www.newnespress.com

278 Chapter 6

class File JVM WAT Coxnpilcr| I
Byte Code 1 E
e sesssns’sassssnnsnp Ohjecl]-?ile
Byte Code 2 P
r‘l...lll..ll JVMLiﬂkBr
.
Byte Code 3 E :
- Runtime
E Libraries
\ 4
Executables

Figure 6.24: WAT (Way-Ahead-of-Time) Compiling’

Java classes dynamically downloaded at runtime have to be compiled and introduced to the
system. WAT/AOT can also be a more complex algorithm to implement.

The Kaffe open source example used in this chapter contains a JIT (just-in-time) compiler
called JIT3 (JIT version 3). The translate function shown in Figure 6.25 is the root of Kaffe’s
JIT3.? In general, the Kaffe JIT compiler performs three main functions:’

1. Byte code analysis. A codeinfo structure is generated by the ‘verifyMethod’ function that
contains relevant data including:
a. Stack requirements
b. Local data usage
c. Byte code attributes.
2. Instruction translation and machine code generation. Byte code translation is done at an
individual block level generally as follows:
a. Pass 1. Byte codes are mapped into intermediate functions and macros. A list of
sequence objects containing master architecture-specific data are then generated.
b. Pass 2. The sequence objects are used to generate the architecture-specific native
instruction code.
3. Linking. The generated code is linked into the VM after all blocks have been processed.
The native instruction code is then copied and linked.

6.2.2.1 Tasks versus Threads in Embedded VMs

As with operating systems, VMs manage and view other (overlying) software within the
embedded system via some process management scheme. The complexity of a VM process
management scheme will vary from VM to VM; however, in general the process management
scheme is how a VM differentiates between an overlying program and the execution of that
program. To a VM, a program is simply a passive, static sequence of instructions that could
represent a system’s hardware and software resources. The actual execution of a program

Virtual Machines in Middleware 279

/* machinec
* Translate the Kaffe instruction set to the native one.
-

* Copynght (<) 1996-1990

L Transvirtmal Technologies, Inc. All rights reserved.

-

* Copyright () 2003, 2004

L4 Kaffe.org contributors, See Changelog for details. All ights reserved.
* Cross-langnage profiling changes contributed by

¥ the Flux Rescarch Group, Department of Computer Science,

¥ University of Utah, T Swww.cs. atahoedn/flux/

.

* See the file "license terms” for i ion on nsage and redistributi
* of this file,

L

-

*Translate a method into native code.
*

* Registers are allocated per hasic block, uzing an LRLT algorithm
* Contents of vegisters are spilled al Gre end of basic Wock,

* depending on the edges in the CFG leaving the basic block:

.

* = Ifthere iz an edge from the basic Block to an exception handler,

¥ local vanables are spilled om the stack

-

* - If there is only one non-exception edge, and the target basic

* Hock iz following the enrrent Block immediately, no spills are done
-

* - Otherwise, the local variables and the operand stack are spilled
* onto the stack
L)

Jboolean

i

Method* xmeth, Info* einfo)

Jint low,

Jint high;

Jvalue mopl;

int i
Slotnfo® tmp;
Slotinfo® tmp2;
Slotinfo® mtable:

bytecads® base;

uint32 len,

callInfo cinfo;

fieldinfo finfo;
Hjava_lang_Class* crinfo,
codeinfo® mycodelnle,

nativeCodeInfo neode;
inté<4 g = 0,

inté4 tme;

static bool remvoke = false,
Jjboolean success — true;
lock{lass{ xmethe>class),

if(METHOD_TRANSLATED{xmeth) {
2oto doned;
i

* If this code block is native, then just set it up and return */
if (methodTsNative(xmeth) §
void *fune = native{xmeth, ¢into);
if (fne 1= NULL) §
engine_create_wrapper(xmeth, fime);
KAFFEITT_TO_NATIVE(xmeth);
belse §
success = false;

i
gota dome3;

Figure 6.25: Kaffe JIT ‘Translate’ Function®

www.newnespress.com

280 Chapter 6

/* Scan the code and determine the basic blocks */
success = analyzeMethod(xmeth, &mycodeInfo, ¢info);
if (success == false) |
/* It may happen that we already have translated it
* by implicit recursion in the verifier.
o)

if (METHOD_TRANSLATED(xmeth))
suCcess = true;
goto done3;

I
i

/* Only one in the translator at once. Must check the translation
* hasn't been done by someone else once we get it.
-
’

enterTranslator();
start Timing(& fulljit, "JIT translation”);

if (Kaffe_JavaVM Args.enableVerboselIT) |
tms = currentTime();

¥

globalMethod = xmeth;
codelnfo = mycodelnfo:

/* Handle null calls specially */

if (METHOD_BYTECODE_LEN(xmeth) — | && METHOD_BYTECODE_CODE(xmeth)[0] = RETURN) {
SET_METHOD_NATIVECODE(xmeth, (nativecode*)soft_null_call);
goto done:

i
)

assert(reinvoke == false):
remvoke = true;

maxLocal — xmeth->localsz;
maxStack = xmeth->stacksz;
maxArgs = sizeofSigMethod(xmeth, false);
if (maxArgs =-1) {
goto done;

}
if (xmeth->accflags & ACC_STATIC) |
isStatic = 1;

else |
isStatic = 0;
maxArgs += I;

if (KaffedIT3_sctupExitWithOOM(cinfo))
|

success = false;
£olo oom_error;

i

base = (bytecode*)METHOD_BYTECODE_CODE(xmeth);
len = METHOD_BYTECODE_LEN(xmeth):

Figure 6.25 continued: Kaffe JIT ‘Translate’ Function

www.newnespress.com

Virtual Machines in Middleware 281

!"

* Initialise the translator,

')

imiiFakeCalle();

J* o any hine dependent JIT imtialization =/

suceess - uutlnsnSequence(xmeth-=localsz, xmeth-=stacksz, einfo);
if (snecess = false) §

goto done;
}

JEEEE e www ww wwwww)

/* Next reduce bytecode to native code */

JEEEE e www wwwy

pe=0;

start_Tuncliond)

check_stack_limit);

f (Kafle JavaV'MArgs enableVerboseCall 1= 0) {
softeall_trace(xmeth);

1

monitor_enter();

if (13 STARTOFBASICBLOCK(0)) {
end_basic_black();
success = generatclnsnSequenceleinfo);
il {success == false) {

goto done;

atart_basic_block();

H

for (; pe < len; pe = npe) {

asseri{stackno <= maxStack+maxLocal);
asserl(slackng == 0);

nps = pe + insnLen|base|pe] |

/% Skip over the generation of amy unreachable basic blocks */

if (I8 UNREACHABLE(pe)) {

while (npe < len && !1S_STARTOFBASICBLOCK(npe) & & 'S _STARTOFEXCEPTION(npe)) {
npe = npe + msnLen| baselupe]

H

i (I8_STARTOFBASICBLOCK npe)) {
cnd_basic_block();

start_basic_block();

stackne = STACKPOINTER(npe ki

H

continue;

H

/* Determmine various exception conditions */
checkCanghtExceptions(xmeth, pe);

atarl_inatruction();

/* Note start of exception handling blocks */

if (IS STARTOFEXCEPTION(pe)) {
stackno = xmeth->localsz + xmeth->stacksz - 1;
starl_exception_block();

H

switch (base[pe]) {
defmlt:
prntfi*Unknown bytecode %ed'n”, base[pe])
leaveTranslaton();
unlockClass{ximeth-=class);
postException(einfo, JAVA_LANG(VerifyErrar));
snccess = false;
break;
#include "kaffe def"
}

/* Note maximum number of temp slots used and resetit */
if {tmpslot > maxTemp) {
maxTemp ~ tmpslot;

1
tmpalot = 0;

Figure 6.25 continued: Kaffe JIT ‘Translate’ Function

www.newnespress.com

282 Chapter 6

if (IS_STARTOFBASICBLOCK(npc)) {
end_basic_block(),
suceess = generatelnsnSequence(einto);
il (success = [alse) {
goto done;

start_basic_block():
stackno = STACKPOINTER(np¢):

}

end function(),
makeFakeCalls();

asserl(maxTemp < MAXTEMPS);
il finishInsnSequence(NULL, &ncode, einfo))

installMethodCode(NULL, xmeth, &ncode);

success = false;
goto done;

00IMm_error:;
KaflelIT3 cleanuplnsnSequence();

done:;
KaffelIT3 resetLabels();
KaffeJI'T3 resetConstants():
tidy AnalyzeMethod(&codelnfo);

reinvoke = false;

globalMethod = NULL;

if (Kaffe JavaVMArgs.enableVerbosellT) {

tme = current Time();

jitStats time += (int)(tme - tms);

printf{"<JIT: %s %s%s time %dms (Yodms) (@ %p (Y%p)='n",

CLASS CNAME(xmeth->class),

xmeth-=name->data, METHOD SIGD(xmeth),

(int){ime - tms), jitStats tune,

METHOD NATIVECODE(xmeth), xmeth);
H

stopTiming(& fulljit);
leave Translator();
done3:;

unlockClass(xmeth->class);
return (success);

Figure 6.25 continued: Kaffe JIT ‘Translate’ Function

www.newnespress.com

Virtual Machines in Middleware 283

is an active, dynamic event in which various properties change relative to time and the
instruction being executed. A process (also commonly referred to as a task) is created to
encapsulate all the information that is involved in the executing of a program (i.e., stack, PC,
the source code and data, etc.). This means that a program is only part of a task, as shown in
Figure 6.26a.

Many embedded VMs also provide threads (lightweight processes) as an alternative means
for encapsulating an instance of a program. Threads are created within the context of the OS
task in which the VM is running, meaning all VM threads are bound to the VM task, and is a
sequential execution stream within the task.

Unlike tasks, which have their own independent memory spaces that are inaccessible
to other tasks, threads of a task share the same resources (working directories, files, I/O
devices, global data, address space, program code, etc.), but have their own PCs, stack,
and scheduling information (PC, SP, stack, registers, etc.) to allow for the instructions
they are executing to be scheduled independently. Since threads are created within

the context of the same task and can share the same memory space, they can allow for
simpler communication and coordination relative to tasks. This is because a task can
contain at least one thread executing one program in one address space, or can contain
many threads executing different portions of one program in one address space (see
Figure 6.26b), needing no intertask communication mechanisms. Also, in the case of
shared resources, multiple threads are typically less expensive than creating multiple
tasks to do the same work.

VMs must manage and synchronize tasks (or threads) that can exist simultaneously because,
even when a VM allows multiple tasks (or threads) to coexist, one master processor on

an embedded board can only execute one task or thread at any given time. As a result,
multitasking embedded VMs must find some way of allocating each task a certain amount of
time to use the master CPU, and switching the master processor between the various tasks.
This is accomplished through task implementation, scheduling, synchronization, and inter-
task communication mechanisms.

Task
Program |
lask Registers
Task Stack

h 4

Program P VM

Figure 6.26a: VM Task

284 Chapter 6

Thread 1
s Java Program | H
NMT”"‘ / JavaThread | Registers ;
o L e P UM Registers \ 4
: JVM Stack
"""""""""""""""""" : s Thread 2 Moy
S T I » Progam2 e »
= N 0S b Tusk 2 JavaThread 2 Registers
i o Program | A
VM Task | Registers i
Task 1 Stack Thread 3
Program . i - ereemeeen— oA o Java Program3 o
JavaThread 3 Registers
e Task ...
Program ...
o i Task . Registers
Task .. Stack

Figure 6.26b: VM Threads’

Jbed is a real-world example of a JVM that provides a fask-based process management
scheme that supports a multitasking environment. What this means is that multiple Java-
based tasks are allowed to exist simultaneously, where each Jbed task remains independent of
the others and does not affect any other Java task without the specific programming to do so
(see Figure 6.27).

Jbed, for example, provides six different types of tasks that run alongside threads:
OneshotTimer Task (which is a task that is run only once), PeriodicTimer Task (a task that

is run after a particular set time interval), HarmonicEvent Task (a task that runs alongside

a periodic timer task), JoinEvent Task (a task that is set to run when an associated task
completes), InterruptEvent Task (a task that is run when a hardware interrupt occurs), and
the UserEvent Task (a task that is explicitly triggered by another task). Task creation in Jbed

Task 1
.............................. Program |

Program | Task 1 Registers
Task | Stack

Progran\ 2 U e
M YM b Task 2

| i Program 3
Program 3 fummmnase P Task s Registers
Task 3 Stack

Task ...

Program ...
Task .. Registers
Task .. Stack

Figure 6.27: Multitasking in VMs

Virtual Machines in Middleware 285

Task Creation Jbed Pseudocode

// Define a class that implements the Runnable interface for the software clock
public class ChildTask implements Runnable {

/fchild task program Software Clock
public void run () {
integer seconds;

while (softwareClock is RUNNING) |
seconds = 0;
while (seconds < 60) {
seconds = seconds+1:

// parent task that enables software timer
void parentTask(void)

if sampleSoftware Clock NOT running {

try|
DURATION,
ALLOWANCE,
DEADLINE,
OneshotTimer);

Jeatch(AdmissionFailure error){

Figure 6.28: Jbed Task Creation

is based upon a variation of the spawn model, called spawn threading. Spawn threading is
spawning, but typically with less overhead and with tasks sharing the same memory space.

Figure 6.28 is a pseudocode example of task creation of a OneShot task, one of Jbed’s six
different types of tasks, in the Jbed RTOS where a parent task ‘spawns’ a child task software
timer that runs only one time. The creation and initialization of the Task object is the Jbed
(Java) equivalent of a task control block (TCB) which contains for that particular task data
such as task ID, task state, task priority, error status, and CPU context information to name a
few examples. The task object, along with all objects in Jbed, is located in Jbed’s heap (in a
JVM, there is typically only one heap for all objects). Each task in Jbed is also allocated its
own stack to store primitive data types and object references.

Because Jbed is based upon the JVM model, a garbage collector (introduced in the next
section of this chapter) is responsible for deleting a task and removing any unused code
from memory once the task has stopped running. Jbed uses a non-blocking mark-and-sweep
garbage collection algorithm which marks all objects still being used by the system and
deletes (sweeps) all unmarked objects in memory.

286 Chapter 6

In addition to creating and deleting tasks, a VM will typically provide the ability to suspend
a task (meaning temporarily blocking a task from executing) and resume a task (meaning
any blocking of the task’s ability to execute is removed). These two additional functions are
provided by the VM to support task states. A task’s state is the activity (if any) that is going
on with that task once it has been created, but has not been deleted.

Tasks are usually defined as being in one of three states:

* Ready: The process is ready to be executed at any time, but is waiting for permission to
use the CPU.

* Running: The process has been given permission to use the CPU, and can execute.

* Blocked or Waiting: The process is waiting for some external event to occur before it
can be ‘ready’ to ‘run’.

Based upon these three states (Ready, Blocked, and Running), Jbed (for example) as a
process state transition model is shown in Figure 6.29. In Jbed, some states of tasks are
related to the type of task, as shown in the table and state diagrams below. Jbed also uses
separate queues to hold the task objects that are in the various states.

The Kaffe open source JVM implements priority-preemptive-based ‘jthreads’ on top of
OS native threads. Figure 6.30 shows a snapshot of Kaffe’s thread creation and deletion
scheme.

6.2.2.2 Embedded VMs and Scheduling

VM mechanisms, such as a scheduler within an embedded VM, are one of the main elements
that give the illusion of a single processor simultaneously running multiple tasks or threads
(see Figure 6.31). A scheduler is responsible for determining the order and the duration of
tasks (or threads) to run on the CPU. The scheduler selects which tasks will be in what states
(Ready, Running, or Blocked), as well as loading and saving the information for each task or
thread.

There are many scheduling algorithms implemented in embedded VMs, and every design
has its strengths and tradeoffs. The key factors that impact the effectiveness and performance
of a scheduling algorithm include its response time (time for scheduler to make the context
switch to a ready task and includes waiting time of task in ready queue), turnaround time
(the time it takes for a process to complete running), overhead (the time and data needed to
determine which tasks will run next), and fairness (what are the determining factors as to
which processes get to run). A scheduler needs to balance utilizing the system’s resources —
keeping the CPU, I/O, as busy as possible — with task throughput, processing as many tasks
as possible in a given amount of time. Especially in the case of fairness, the scheduler has
to ensure that task starvation, where a task never gets to run, doesn’t occur when trying to
achieve a maximum task throughput.

Virtual Machines in Middleware 287

State Description

RUNNING For all types of tasks, task is currently executing

READY For all types of tasks, task in READY state

STOP In Oneshot Tasks, task has completed execution

AWAIT TIME For all types of tasks, task in BLOCKED state for a specific time
period

AWAIT EVENT In Interrupt and Joined tasks, BLOCKED while waiting for some
event 1o occur

“This state diagram sh il states fior Interrupt
wmqwukhmmmﬁﬂnﬂa

hardware interript occurs — at which point the Jbed scheduler
moves an Interrupt task into the Ready state 1o await its turn to run.
At any time, the Joined Task can enter a timed waiting period.

mmmﬂmm ,ﬁr Like
uwuhwmaa uMMMMu
Mﬂhﬂdr—w«uﬂﬂk&ﬂ
scheduler moves a Joined task into the Ready state to await its wm to
quM&MMﬂM:MMW

into the Await Time state after every run to await that interval before
being put into the ready state.

for a period of time before actually running.

Figure 6.29: Jbed Kernel and States’

www.newnespress.com

288 Chapter 6

One of the biggest differentiators between the scheduling algorithms implemented within
embedded VMs is whether the algorithm guarantees its tasks will meet execution time
deadlines. Thus, it is important to determine whether the embedded VM implements a
scheduling algorithm that is non-preemptive or preemptive. In preemptive scheduling,
the VM forces a context-switch on a task, whether or not a running task has completed
executing or is cooperating with the context switch. Under non-preemptive scheduling,
tasks (or threads) are given control of the master CPU until they have finished execution,
regardless of the length of time or the importance of the other tasks that are waiting.

If*
* Copyright (c) 1998 The University of Utah. All rights reserved.
*

* See the file "license.terms” for information on usage and
redistribution

* of this file.

-

* Contributed by the Flux Research Group at the University of Utah.
* Authors: Godmar Back, Leigh Stoller
X/

J(t
* This file implements jthreads on top of BeOS native threads and
* was derived from oskit-pthreads/pjthread.c.
*

* Please address BeOS-related questions to alanlb@vt.edu.
»f

if!
* create a new jthread
*
jthread_t
jthread_create(unsigned int pri, void (*func)(void *), int daemon,
void *jlThread, size_t threadStackSize)
{
thread_id ntid;
jthread_t tid;

ffi

* Note that we create the thread in a joinable state, which is the
* default. Our finalizer will join the threads. allowing the

* thread system to free its resources.

*

tid = allocator(sizeof{ *tid)):
assert(tid != 0);

acquire_sem(threadlock);
tid-=j1 Thread = jlThread:
tid->func = func:

tid->nextlive = liveThreads;

Figure 6.30: Kaffe JThread Creation and Deletion®

Virtual Machines in Middleware

289

liveThreads = tid;
tid->status = THREAD_NEWBORN;

ntid = spawn_thread(start_me_up, nameThread(jl Thread),
map_Java_priority(pri),

ud);
tid->native_thread = ntid;
talive++;
if ((tid-=daemon = daemon) != 0) {
tdaemon++;
}
release_sem(threadlock);
/* Check if we can safely save the per-thread info for
* this thread. Yes, I know the per -thread stufl'is lame,
* but let's get this working first, shall we?
*a’
if (NULL == per_thread_info[ntid % MAX_THREADS].jtid) {
resume_thread(ntid);
return (tid);
1
1
else |
kill_thread(ntid): /* stillborn */
deallocator(tid):
return NULL;
H
i
)f‘
* free a thread context
*f
void

Jthread_destroy(jthread_t tid)
i

1
status_t status;

assert(tid);
DRG(JTHREAD, dprintf{"destroying %s\n", THREAD_NAME(tid));)

atomic_and(&tid->stop_allowed, 0);
wait_for_thread(tid-=native_thread, &status);
atomic_or{&tid->stop_allowed, 1);
deallocator(tid);

Figure 6.30 continued: Kaffe JThread Creation and Deletion

Non-preemptive algorithms can be riskier to support since an assumption must be
made that no one task will execute in an infinite loop, shutting out all other tasks from

the master CPU. However, VMs that support non-preemptive algorithms don’t force
a context-switch before a task is ready, and the overhead of saving and restoration of

accurate task information when switching between tasks that have not finished execution

is only an issue if the non-preemptive scheduler implements a cooperative scheduling

mechanism.

290 Chapter 6

............................... Lume
time

Task 1 Task 4 o Task3 Task 2
: : VM

Figure 6.31: Interleaving Threads in VMs

As shown in Figure 6.32, Jbed contains an earliest deadline first (EDF)-based scheduler
where the EDF/Clock Driven algorithm schedules priorities to processes according to three
parameters: frequency (number of times process is run), deadline (when processes execution
needs to be completed), and duration (time it takes to execute the process). While the EDF
algorithm allows for timing constraints to be verified and enforced (basically guaranteed
deadlines for all tasks), the difficulty is defining an exact duration for various processes.
Usually, an average estimate is the best that can be done for each process.

Under the Jbed RTOS, all six types of tasks have the three variables ‘duration’, ‘allowance’,
and ‘deadline’ when the task is created for the EDF scheduler to schedule all tasks (see
Figure 6.33 for the method call).

The Kaffe open source JVM implements a priority-preemptive-based scheme on top of OS
native threads, meaning jthreads are scheduled based upon their relative importance to each
other and the system. Every jthread is assigned a priority, which acts as an indicator of orders

Figure 6.32: EDF Scheduling in Jbed

Virtual Machines in Middleware

291

public Task(_————_
/fnug dumliun.\
long allowance,
~long deadline, -~

R L-'ilml e F, venl evenl)
Throws AdmissionFailure

Public Task (java.lang.String name,
ng duration,
long allowance,)
long deadline,
RetttimeEvent cvent)
Throws AdmissionFailure

Public Task (java.lang.Runnable target,
Javalang String name,

/Tong duration,
long allowance,

A 3 ine
Jong deadline,

ReattimeEvent event)
Throws AdmissionFailure

Figure 6.33: Jbed Method Call for Scheduling Task’

of precedence within the system. The jthreads with the highest priority always preempt
lower-priority processes when they want to run, meaning a running task can be forced to
block by the scheduler if a higher-priority jthread becomes ready to run. Figure 6.34 shows
three jthreads (1, 2, 3 — where jthread 1 is the lowest priority and jthread 3 is the highest, and
jthread 3 preempts jthread 2, and jthread 2 preempts jthread 1).

As with any VM with a priority-preemptive scheduling scheme, the challenges that need to be
addressed by programmers include:

* JThread starvation, where a continuous stream of high-priority threads keeps lower-
priority jthreads from ever running. Typically resolved by aging lower-priority jthreads
(as these jthreads spend more time on queue, increase their priority levels).

“Thread 2

Thrend 2

| = task completion

Thread 1

.
»

Figure 6.34: Kaffe’s Priority-preemptive-based Scheduling

KEY
/ = precmption

292 Chapter 6

i J
7 e]
& v V
#

Time - -

Figure 6.35: Priority Inversion'

* Priority inversion, where higher-priority jthreads may be blocked waiting for lower-
priority jthreads to execute, and jthreads with priorities in between have a higher priority
in running, thus both the lower-priority as well as higher-priority jthreads don’t run (see
Figure 6.35).

* How to determine the priorities of various threads. Typically, the more important
the thread, the higher the priority it should be assigned. For jthreads that are equally
important, one technique that can be used to assign jthread priorities is the Rate
Monotonic Scheduling (RMS) scheme which is also commonly used with relative
scheduling scenerios when using embedded OSs. Under RMS, jthreads are assigned a
priority based upon how often they execute within the system. The premise behind this
model is that, given a preemptive scheduler and a set of jthreads that are completely
independent (no shared data or resources) and are run periodically (meaning run at
regular time intervals), the more often a jthread is executed within this set, the higher its
priority should be. The RMS Theorem says that if the above assumptions are met for a
scheduler and a set of ‘n’ jthreads, all timing deadlines will be met if the inequality
> Ei/Ti £n(21/n — 1) is verified, where

i=periodic jthread
n=number of periodic jthreads
Ti=the execution period of jthread i
Ei=the worst-case execution time of jthread i
Ei/Ti=the fraction of CPU time required to execute jthread i.

So, given two jthreads that have been prioritized according to their periods, where the
shortest-period jthread has been assigned the highest priority, the ‘n(21/n — 1)’ portion

of the inequality would equal approximately 0.828, meaning the CPU utilization of

these jthreads should not exceed about 82.8% in order to meet all hard deadlines. For 100
jthreads that have been prioritized according to their periods, where the shorter period
jthreads have been assigned the higher priorities, CPU utilization of these tasks should

Virtual Machines in Middleware 293

To Benefit Most from a Fixed-Priority Preemptive Scheduling

Whether from either a pure OS or from an overlying VM perspective -- algorithms for assigning priorities to tasks or threads are
typically classified as fived-priority when threads/tasks are assigned priorities at design time, and do not change through the
lifecycle of the thread or task, dynamic-priority when priorities are assigned to threads or tasks at run-time, or some combination
of both algorithms. It must be determined by the reader on a VM to VM basis which scheduling schemes are supported. In the
case of maximizing on the fixed-priority scheduling scheme, the keys to success include:

* to assign the priorities of threads or tasks according to their periods, so that the shorter the periods, the higher the priorities.

* to assign priorities using a fixed-priority algorithm (like the Rate Monotonic Algorithm, the basis of RMS) to assign fixed
priorities to threads or tasks, and as a tool to quickly to determine if a set of threads or tasks is schedulable.

+ to understand that in the case when the inequality of a fixed-priority algorithm, like RMS, is not met, an analysis of the
specific thread or task set is required. RMS is a tool that allows for assuming that deadlines would be met in most cases if
the total CPU utilization is below the limit (“most™ cases meaning there are threads or tasks that are not schedulable via any
fixed-priority scheme). It is possible for a set of threads or tasks to still be schedulable in spite of having a total CPU
utilization above the limit given by the inequality. Thus, an analysis of each thread’s or task’s period and execution time
needs to be done in order to determine if the set can meet required deadlines.

+ to realize that a major constraint of fixed-priority scheduling is that it is not always possible to completely utilize the
master CPU 100%. If the goal is 100% utilization of the CPU when using fixed priorities, then threads or tasks should be
assigned harmonic periods. Meaning, a thread’s period or task’s period should be an exact multiple of all other threads or
tasks with shorter periods.

- Based on the article “Introduction to Rate Monotonic Scheduling” by Michael Barr
Embedded Systems Programming, February 2002

Figure 6.36: Note on Scheduling

not exceed approximately 69.6% (100 x (21/100—1)) in order to meet all deadlines.
See Figure 6.36 for additional notes on this type of scheduling model.

6.2.2.3 VM Memory Management and the Garbage Collector’

A VM’s memory heap space is shared by all the different overlying VM processes — so
access, allocation, and deallocation of portions of the heap space need to be managed. In the
case of VMs, a garbage collector (GC) is integrated within. Garbage collection discussed in
this chapter isn’t necessarily unique to any particular language. A garbage collector (GC) can
be implemented within embedded devices in support of other languages that do not require
VMs, such as C and C++.8 Regardless, when creating a garbage collector to support any
language, it becomes an integral component of an embedded system’s architecture.

Applications written in a language such as Java or C# all utilize the same memory heap

space of the VM and cannot allocate or deallocate memory in this heap or outside this heap
that has been allocated for previous use (as can be done in native languages, such as using
‘free’ in the C language, though as mentioned above, a garbage collector can be implemented
to support any language). In Java, for example, only the GC (garbage collector) can deallocate
memory no longer in use by Java applications. GCs are provided as a safety mechanism for

294 Chapter 6

Java programmers so they do not accidentally deallocate objects that are still in use. While
there are several garbage collection schemes, the most common are based upon the copying,
mark and sweep, and generational GC algorithms.

6.2.2.4 GC Memory Allocator’

Embedded VMs can implement a wide variety of schemes to manage the allocation of the
memory heap, in combination with an underlying operating system’s memory management
scheme. With Kaffe, for example, the GC including a memory allocator for the JVM in
addition to the underlying operating system’s memory management scheme is utilized.
When Kaffe’s memory allocator is used to allocate memory (see Figure 6.37) from the JVMs
heap space, its purpose is to simply determine if there is free memory to allocate — and if so,
returning this memory for use.

6.2.2.5 Garbage Collection’

The copying garbage collection algorithm (shown in Figure 6.38) works by copying
referenced objects to a different part of memory, and then freeing up the original memory
space of unreferenced objects. This algorithm uses a larger memory area in order to work,
and usually cannot be interrupted during the copy (it blocks the system). However, it does
ensure that what memory is used is used efficiently by compacting objects in the new
memory space.

/* ge-mem.c

* The heap manager.

*

* Copyright (c) 1996, 1997

* Transvirtual Technologies, Inc. All rights reserved.

»®

* See the file "license.terms"” for information on usage and redistribution

* of this file.
:ﬁff

[x*
* Allocate a piece of memory.
*

void*

gc_heap_malloc(size_t sz)

{
size_t Inr;
ge_freeobj* mem = NULL:
ge_block™** mptr;
gc_block* blk;
size_t nsz;

Figure 6.37: Kaffe’s GC Memory Allocation Function®

Virtual Machines in Middleware 295

Figure 6.37 continued: Kaffe’s GC Memory Allocation Function

www.newnespress.com

296 Chapter 6

Memory Before GC Memory After GC
Copying Garbage Caollector
Object | . Object 1
Brrssssssnnnnane :. >
Otject 2 Object 2
Otject 3 Object 4
Object 4

Figure 6.38: Copying GC'

The mark and sweep garbage collection algorithm (shown in Figure 6.39) works by ‘marking’
all objects that are used, and then ‘sweeping’ (deallocating) objects that are unmarked. This
algorithm is usually non-blocking, meaning the system can interrupt the garbage collector

to execute other functions when necessary. However, it doesn’t compact memory the way

a copying garbage collector does, leading to memory fragmentation, the existence of small,
unusable holes where deallocated objects used to exist. With a mark and sweep garbage
collector, an additional memory compacting algorithm can be implemented, making it a mark
(sweep) and compact algorithm.

Memory Before GC Memory After GC
Mark and Sweep Garbage Col!ocuors
o Object 1 = Object |
:
P L
Object 2 - \ Object 2
N (Mark)
Object 3
N R R R I RN R R R R R] o
(Sweep)
Object 4 < Obyect 4

Figure 6.39: Mark and Sweep (No Compaction) GC'

Virtual Machines in Middleware 297

=
=

Mark (Sweep) & Compact GC
(AR R AR R R R AR R AR R R R R R R R)

G0 00000000000000000000000000000000000000, BES8sEs000000000000000000000000s00Rss00000ss00.,
. Youngest Generation [Nursery] - Older Generation ’
- L -
. .. .
: - o Memary Aoy OO : : 2 :
. CWGMCGIRWIJ e Mll‘k.SwnplndCﬂnamG-bqecdknulj SR N -
. 1 ~ LR] - -
. et ot | .. et H e | -
. 4 — - — - o — — -
. .. Y -
. . -
L] L P R R R R L) » L desssssnnnannnns -
. .. -
. Ot 2 . -
. - Onpn 2 ae Oy 2 L o 2] -
- L L v L W Ly -
. L [Msck] -
- .. .
. . -
- -

b+ O3 [T a9 Dot 1 -
. .9 [Swmerp) -«
. . -
L L -
. . -
. " -
® L Tyt 4 g . s | (R d g L gt 4 () -
. .. | -
- .e L -
- L -
. e = -
. Y 3 a
. 5 s . . -
. Copying GC .9 H -
- L] - -
L R -
. Moy Adves (00 -

- R] -

-

: PRERESE K :

. -

4 Oboct | a

. -

- -

L -

L] -

. -

. -

. -

. -

. -

L] -

- -

. -

- -

. -

. -

. -

. -

L] -

. -

. -

L] -

Figure 6.40: Generational GC'

Finally, the generational garbage collection algorithm (shown in Figure 6.40) separates
objects into groups, called generations, according to when they were allocated in memory.
This algorithm assumes that most objects that are allocated by a Java program are short-lived,
thus copying or compacting the remaining objects with longer lifetimes is a waste of time.
So, it is objects in the younger-generation group that are cleaned up more frequently than
objects in the older-generation groups. Objects can also be moved from a younger-generation
to an older-generation group. Different generational garbage collectors also may employ
different algorithms to deallocate objects within each generational group, such as the copying
algorithm or mark and sweep algorithms described previously.

The Kaffe open source example used in this chapter implements a version of a mark and
sweep garbage collection algorithm. In short, the garbage collector (GC) within Kaffe will be
invoked when the memory allocator determined more memory is required than free memory
in the heap. The GC then schedules when the garbage collection will occur, and executes the
collection (freeing of memory) accordingly. Figure 6.41 shows Kaffe’s open source example
of a mark and sweep GC algorithm for ‘marking’ data for collection.

298 Chapter 6

/* ge-incremental.c
*The garbage collector.

* The name 1s misleading, GC is non-incremental at this point,
*

* Copyright (c) 1996, 1997
* Transvirtual Technologies, Inc. All rights reserved.

*

* Copynight (¢) 2003, 2004
» Kaffe.org contributors. See ChangeLog for details. All rights reserved.
*

* See the file "license.terms" for information on usage and redistribution
* of this file.

*/

J|I"
* Mark the memory given by an address if it really is an object.
=f
static void
scMark Address(Collector* geif UNUSED, void *ge_info UNUSED, const void* mem)
o 2 g
!
gc_block* info;
gc_unit* unit;

[f#
* First we check to see if the memory 'mem’ is in fact the

* beginning of an object. If not we just return.
=

/* Get block info for this memory - if it exists */
info = pc_mem2block(mem);
unit = UTOUNIT(mem):
if (ge_heap_isobject(info. unit)) {
markObjectDontCheck(unit. info, GCMEM2IDX(info. unit)):
i
i

[*

* Mark an object. Argument is assumed to point to a valid object,
* and never, ever. be null.

&

static void

geMarkObject(Collector* geif UNUSED, void *ge_info UNUSED, const void* objp)
|

gc_unit *unit = UTOUNIT{objp):

ge_block *info = ge_mem2block(unit);

DBG(GCDIAG, assert(ge_heap_isobject(info, unit)));
markObjectDontCheck(unit, info, GCMEM2IDX(info, unit));

|

Figure 6.41: Kaffe GC ‘Mark’ Functions®

6.2.3 VM Memory Management and the Loader

The loader is simply as its name implies. As shown in Figure 6.42a, it is responsible for
acquiring and loading into memory all required code in order to execute the relative program

Virtual Machines in Middleware 299

Class Loader

Figure 6.42a: The Class Loader in a JVM'

overlying the VM. In the case of a JVM like Kaffe, for example (see Figure 6.42b for open
source snapshot), its internal Java class loader loads into memory all required Java classes
required for the Java program to function.

Figure 6.42b: Kaffe Class Loader Function®

www.newnespress.com

300 Chapter 6

if (HoundSlash)
classname2pathname(name, name);

if (foundSlash || (!strnemp (name, "gnu/classpath/”, 14) && strnemp (name, "gnuw/classpath/tools/”,
strlen("gnu/classpath/tools/")))) {
struet Hjava_lang_Throwable *throwable;
throwable = (struct Hjava_lang_Throwable*)
execule java constructor(JAVA TANG(ClassNotFoundException), NULLNULL,
“(Ljava/lang/String;)V", jStr);
throwException (throwable);

)

if{ (¢ = utMRConstFromString(name))){
clazz — loadClass(c, NULL, &info):
if(clazz) {
if{_ processClass(clazz, resolve ? CSTATE_COMPLETE : CSTATE_PREPARED,
&inlo) = false)
{

error — 1;
}
)
else
{
error=1;
ulfBConstRelease(c);
)
else {
postOutOfMemory(&info);
error = 1:
}
ge_[free(name);
ifi error) {

throwError(&info);

return(¢lazz);

Figure 6.42b continued: Kaffe Class Loader Function

6.3 A Quick Comment on Selecting Embedded VMs Relative
to the Application Layer

Writing applications in a higher-level language that requires introducing an underlying VM
in the middleware layer of an embedded system design, for better or worse, will require
additional support relative to increased processing power and memory requirements. This

is opposed to implementing the same applications in native C and/or assembly. So, as with
integrating any type of middleware component, introducing a VM into an embedded system
means planning for any additional hardware requirements and underlying system software
by both the VM and the overlying applications that utilize the underlying VM middleware

Virtual Machines in Middleware 301

component. This is where understanding the fundamentals of the internal design of VMs, like
the material presented in previous sections of this chapter, becomes critical to selecting the
best design that meets your particular device’s requirements.

For example, several factors, such as memory and performance, are impacted by the scheme
a VM utilizes in processing the overlying application code. So, understanding the pros and
cons of using a particular JVM that implements an interpretating byte-code scheme versus a
just-in-time (JIT) compiler versus a way-ahead-of-time (WAT) compiler versus a dynamic
adaptive compiler (DAC) is necessary. This means that, while using a particular JVM with a
certain compilation scheme would introduce significant performance improvements, it may
also introduce requirements for additional memory as well as introduce other limitations.
For instance, pay close attention to the drawbacks to selecting a particular JVM that utilizes
some type of ahead-of-time (AOT) or way-ahead-of-time (WAT) compilation which provides
a big boost in performance when running on your hardware, but lacks the ability to process
dynamically downloaded Java byte-code, whereas this dynamic download capability is
provided by a competing JVM solution based on a slower, interpretating byte-code processing
scheme. If on-the-field dynamic extensibility support is a non-negotiable requirement for the
embedded system being designed, then it means needing to investigate further other options
such as:

* selecting a competing JVM from another vendor that provides this dynamic-download
capability out-of-the-box

* investigating the feasibility of deploying with a JVM based on a different byte-code
processing scheme that runs a bit slower than the faster JVM solution that lacks dynamic
download and extensibility support

* planning the resources, costs, and time to implement this required functionality within the
scope of the project.

Another example would be when having to decide between a JIT implementation of a

JVM versus going with the JIT-based .NET Compact Framework solution of comparable
performance on your particular hardware and underlying system software. In addition to
examining the available APIs provided by the JVM versus .NET Compact Framework
embedded solutions for your application requirements, do not forget to consider the non-
technical aspects of going with either particular solution as well. For example, this means
taking into consideration when selecting between such alternative VM solutions, the
availability of experienced programmers (i.e., Java versus C# programmers for instance). If
there are no programmers available with the necessary skills for application development on
that particular VM, factor in the costs and time involved in finding and hiring new resources,
training current resources, and so on.

Finally do not forget that integrating the right VM in the right manner within the
software stack which optimizes the performance of the solution is not enough to insure

302 Chapter 6

the design makes it to production successfully. To insure success taking an embedded
design that introduces the complexity and stress to underlying components that
incorporating an embedded VM produces, requires programmers to plan carefully how
overlying applications will be written. This means it is not the most elegant nor the most
brilliantly written application code that will insure the success of the design — but simply
programmers that design applications in a manner that properly utilizes the underlying
VM’s powerful strengths and avoids its weaknesses. A Java application, for example,
that is written as a masterpiece by even the cleverest programming guru will not be worth
much, if when it runs on the device it was intended for this application is so slow and/or
consumes so much of the embedded system’s resources that the device simply cannot be
shipped!

In short, the key to selecting which embedded VMs best match the requirements of your
design, and successfully taking this design to production within schedule and costs, includes:

e determining if the VM has been ported to your target hardware’s master CPU’s
architecture in the first place. If not, it means determining how much time, cost, and
resources would be required to port the particular VM to your target hardware and
underlying system software stack

e calculating additional processing power and memory requirements to support the VM
solution and overlying applications

* specifying what additional type of support and/or porting is needed by the VM relative to
underlying embedded OS and/or other middleware system software

* investigating the stability and reliability of the VM implementation on real hardware and
underlying system software

e planning around the availability of experienced developers

e evaluating development and debugging tool support

* checking up on the reputation of vendors

* insuring access to solid technical support for the VM implementation for developers

e writing the overlying applications properly.

6.4 Summary

This chapter introduced embedded VMs, and their function within an embedded device.

A section on programming languages and the higher-level languages that introduce the
requirement of a VM within an embedded system was included in this chapter. The major
components that make up most embedded VMs were discussed, such as an execution engine,
the garbage collector, and loader to name a few. More detailed discussions of process
management, memory management, and I/O system management relative to VMs and

their architectural components were also addressed in this chapter. Embedded Java virtual

Virtual Machines in Middleware 303

machines (JVMs) and the .NET Compact Framework were utilized as real-world examples to
demonstrate concepts.

The next chapter in this section introduces database concepts, as related to embedded systems
middleware.

6.5 Problems

1

D

10.

11

What is a VM? What are the main components that make up a VM’s architecture?

A. In order to run Java, what is required on the target?
B. How can the JVM be implemented in an embedded system?

. Which standards below are embedded Java standards?

pJava — Personal Java

RTSC - Real Time Core Specification
HTML - Hypertext Markup Language
A and B only

. A and C only.

moawp

. What are the main differences between all embedded JVMs?
. Name and describe three of the most common byte processing schemes.

A. What is the purpose of a GC?
B. Name and describe two common GC schemes.

A. Name three qualities that Java and scripting languages have in common.
B. Name two ways that they differ.

A. What is the .NET Compact Framework?
B. How is it similar to Java?
C. How is it different?

. The .NET compact framework is implemented in the device driver layer of the Embedded

Systems Model (True/False).

A. Name three embedded JVM standards that can be implemented in middleware.
B. What are the differences between the APIs of these standards?
C. List two real-world JVMs that support each of the standards.

. VMs do not support process management (True/False).
12.
13.

Define and describe two types of scheduling schemes in VMs.
How does a VM typically perform memory management? Name and describe at least two
components that VMs can contain to perform memory management.

304 Chapter 6

6.6 End Notes

' ‘Embedded Systems Architecture’. Noergaard. 2005 and http://msdn.microsoft.com/en-us/library/w6ah6cw 1
.aspx

Personal Java 1.1.8 API documentation, java.sun.com

‘I/Opener’, Morin and Brown, Sun Expert Magazine, 1998.

Java 2 Micro Edition 1.0 API Documentation, java.sun.com

‘Boehm-Demers-Weiser conservative garbage collector: A garbage collector for C and C++’, Hans Boehm,
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Kaffe Open Source Code Libraries.

pJava 1.1.8 and CLDC Documentation from Sun Microsystems.

Kaffe.jit3 FAQ.

http://download.java.net/jdk7/docs/api/java/awt/Checkbox.html

(7 ST

© ® 2 o

http://download.java.net/jdk7/docs/api/java/awt/Checkbox.html
http://msdn.microsoft.com/en-us/library/w6ah6cw1.aspx
http://msdn.microsoft.com/en-us/library/w6ah6cw1.aspx
http://download.java.net/jdk7/docs/api/java/awt/Checkbox.html
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

An Introduction to the Fundamentals of
Database Systems

Chapter Points
e Introduces fundamental database concepts
* Discusses different database models and relevance to database middleware

e Shows examples of real-world embedded database middleware

7.1 What is a Database System?

Like a file system, a database management system (DBMS), also commonly referred to as simply a
database system, is another scheme that can be used to reliably and efficiently manage data within
an embedded system. A database system can be accessible and directly utilized by the embedded
system’s user, by other middleware software, by applications in the system to manage data for the
application, or some combination of the above. Database systems are commonly used instead of
file systems within a design when using a file system instead of a DBMS would result in a great
deal of redundancy of the ‘same’ data in ‘different’ files. So, when using a file system introduces
the challenge of insuring that redundant data within the system need to be constantly updated to
insure consistency — then a database as an alternative option is commonly considered. A database is
also considered, for example, when managing access to the same data within a file system requires
additional overhead when working to insure reliable and secure access to more than one overlying
software component and/or user to that data, without corrupting that data in the process.

Keep in mind, a particular database design may not 100% eliminate redundant data. In fact, a
database based upon for example the relational model may introduce some redundant data.

A database can be used to ensure that the redundant data remain consistent. For example, an [P
address for a given device can be changed everywhere that IP address is used via an efficient
look up (indexes) scheme. Remember, a database is not intended to be a direct “alternative” to a
file system, and in some DBMS designs is most often implemented on top of the file system. It is
simply an approach commonly used instead of direct manipulation of files within a file system.

Demystifying Embedded Systems Middl e. DOI: 10.1016/B978-0-7506-8455-2.00007-8

305

306 Chapter 7

At the highest level, a database system is made up of two major components: (1) the
database(s) and (2) the overlying middleware and/or application software used to manage the
access to the database(s). Within the database system, a database manages data by allowing for:

* the organization, storage, and management of interrelated data
e querying of data via a query language

* the generation of reports based on data analysis

* data integrity, redundancy, and security.

Thus, in contrast to the wide variety of data that is typically stored in a file system, in the
case of data stored in a database system, simply put the data are interrelated. As with file
systems, data within a database system are not limited to the data belonging to users, other
middleware, and/or applications utilizing the database system. This is because an underlying
infrastructure must be in place to store the data, manipulate these data, insure the integrity of
the data, and provide secure access to these data.

As with file systems, depending on the database the storage medium can be volatile RAM,
and/or non-volatile memory such as: Flash, CD, floppy disk, and hard disk to name a few. Keep
in mind that the database itself and the data it manages may or may not reside on the same device.
This means, as shown in Figure 7.1, the data the database manages can be located on some type
of hardware storage medium located on the embedded system board or located on some other
storage medium accessible to the embedded system (i.e., over a network, on a CD, etc.)

e "™

Embedded System Embedded Sysiem
DBMS > DBMS

‘ | H e I
h 4 h 4 . 4 h 4 4

HardDhsk

Network

PC

DBMS

o
o
™

. HardDisk |

|~

Figure 7.1: Database Access

An Introduction to the Fundamentals of Database Systems 307

Ultimately, managing data within the database is accomplished by utilizing metadata
stored within the database system’s data dictionary region. Metadata is all the additional
components that the database middleware uses to maintain the context, or state, of the
system, for example run-time structures describing active connections, and other “metadata”
components that are specific to the architecture of that particular database. The database’s
data dictionary is simply a region which contains information that describes, for example:

* the type and attributes of data being stored within the database

* the structure and location of the data within the database

* the type(s) of object(s) storing the data

» database features and constraints, such as triggers and referential integrity
* details to manage database users, such as permissions and accounts details.

To be useful in the embedded device, a database system must then have a reliable and
efficient ‘data modeling” scheme to create the components that store data, process data, and
locate the data these metadata describes on the embedded device’s storage medium(s). The
data model drives how the fundamental database subsystems are designed internally, and
ultimately how the user/application data will be managed. There are several types of data
models used in real-world database designs on the market today. However, the most common
schemes implemented within database systems on embedded devices are based upon a
record-based model, an object-based model, or some hybrid combination of both.

7.2 Record-based versus Object-oriented Database Models

Important note

Within the scope of this text, the relational algebra that is an important foundation to
understanding languages like SQL and relational databases in general is kept at a minimum
since this book is intended to be an introduction to database fundamentals.

However, it is useful and necessary to review relational algebra mathematical fundamentals

if the intent of the reader is to do ‘more’ than just selecting/using a database for a particular
design - but planning to do the hardcore design and programming of a relational database code.

A record-based database system structures data as records within the database, and then
relates records to one another via the data contained within the record. Depending on the
internal database design, these records can be fixed-length or variable-length. While there
are several types of record-based database models, one of the most common is the relational
database model — where records are grouped and organized into more complex tables (note:
tables are not more complex than records; they are simply groupings of like records). Each
table within the relational database model has a unique name. Each table then represents a
unique set of relationships, where the data contained within each row represents a relation.

308 Chapter 7

The types of columns that make up the tables within a relational database are the attributes of the
data within that table. In Figure 7.2, attributes include ‘CDId’, ‘CDName’, ‘Genre’, ‘Price’, and
‘NumberInStock” for example. When defining a table and its corresponding attributes, domains

for these attributes are specified that define the allowed type of data. For example, the domain

for ‘CDId’ may be defined to be unique integers assigned to independent compact disks (CDs),
whereas the domain for ‘CDName’ may be defined as a set of CD names of an alphanumeric string
of some ‘n’ maximum length. Thus, tables within a relational database can then be related to other
tables via the shared attributes (keys) within a table, such as the example shown in Figure 7.2.

Overlying middleware software, application software, and/or a user directly communicates with
a database system via some type of programming language (see Figure 7.3a) and via database
system APIs. Basically, every database system has some type of DML (data-manipulation
language) and/or Data Definition Language (DDL) to allow communication. The DML, as its
name implies, is what allows for the manipulation of the data within a database — meaning the
reading, writing, and deleting of these data within the database. DDLs are used to specify a
set of definitions that define the underlying database scheme itself. So, to function within the
embedded device, the database system uses the DML and DDL to translate and understand

all that is required of it. Everything from managing the structure of the database to actually
querying the data contained within is done via communicating through the DML, the DDL, or
a language that acts as some combination of both a DML and DDL.

An example of a common real-world language utilized in many database systems, especially
dominant in the relational database sphere, is based on a common industry standard called
SOL (structured query language). SQL is a type of computer database language, meaning a
language used to create, maintain and control a database. In reality, SQL is much more than
a query language; it has DML, DDL and DCL (data control language) elements within it. For
example, the DML includes INSERTIUPDATE/DELETE statements in addition to SELECT

Tables represent data and their relationships
- Each table is a matrix of record rows and columns that contain some unique set of data.
+ Fields in the table contain data that relate one table to another

[CDId CDName Genre Price NumberlnStock
; 1 Taking the Long W.'ly Cuunlly $21.99 5
2 Home Country $19.99 2
3 I'm Not Dead Rock $15.49 9
4 Up! Country/Pop $19.99 0
5] B'Day R&B/Soul $19.99 1
CDId Artistld Song Artistld Artist Name
1 2 Not Ready to Make Nice 1 Beyonee

2 Traveling Solder 2 Dixie Chicks
3 The One that Got Away 3 Pink
4 Up 4 Shania Twain

ESN LT]

Figure 7.2: Tables

An Introduction to the Fundamentals of Database Systems

309

Embedded System
DDL/DML
Datlabase Syslem
Embedded Operating System
BSP
... Device Driver Sublayer
i i
Hardware Layer
Flash Hard Disk D P RAM Tape Floppy

statements for querying.

Figure 7.3a: Database System Communication

The Perst database system used as a real-world example in this

chapter utilizes a procedural query language based on a derivation of the SQL standard, called

JSQL (see Figure 7.3b).

In general, database query languages are considered either non-procedural (where only the
specific data within the database are specificed) or procedural (where both the data and the
program logic to perform on the data can be specified). Procedural refers to the presence of
logic statements like if-then-else and do-while. Operations are selection, projection, join,

310 Chapter 7

“JSQL is a subset of the SQL language. JSQL uses a notation that is more geared to objects and object-
oriented programming, and can be used to select object instances according to the selection condition. Table
rows are considered as object instances and the table - as a class of these objects. So the result of each query
execulion is a set of objects of one class. The main differences between JSQL and standard SQL are:

1. There are no joins of several tables and nested sub queries. A Query always returns a set of objects
from one table.

2. The standard Java types are used for atomic table columns.

3. There are no null values. only null references.

4. Arrays can be used as record components. A special exists quantor is provided for locating elements in arrays.
5. User methods can be defined for table records (objects) as well as for record components.

6. References between objects are supported, including user-defined reference resolvers.

7. Aslong as the query language is deeply integrated with the Java language. the case sensitive mode
Figure 7.3b: JSQL'

insert, update, and delete. Examples of some of the operations that act as foundations for
procedural query languages are shown in Table 7.1.

SQL itself is composed of a combination of both a DML and DDL. Meaning, SQL is used
for everything from defining and deleting relations fo executing commands for modifyng
the database (deleting data, inserting data, etc.) fo insuring data integrity and security via
specifying access rights o managing overall transactions. For creating the table in Figure
7.XX, the SQL expression is generally based upon the structure ‘create table x (A, D,, A,,
D,, A;,D;, A, D,, {integrity-contsraint;},)’ where ‘x’ is the name of the table, A; define
the attributes of the table, and D, are defining the domains of these attributes. Integrity-
constraint; is how to insure that changes made to the database do not result in some type of
corruption. So, for example, an SQL expression for creating CDTable could be:

create table CDTable (CDId integer not null)
CDName char(30)

Genre char(10)

Price float

NumberInStock integer

check (Genre in (‘Country’, ‘Rock’, ‘Country/Pop’,
‘R&B/Soul’, ‘Opera’, ‘Classical’))

For extracting data, generally, SQL expressions are made up of three parts:

1. select, as described in Table 7.1 for the ‘select’ operation relative to attributes to be copied

(select A,AyLA,, ... A, from -- A, is an attribute).

An Introduction to the Fundamentals of Database Systems

311

Table 7.1: Examples of Procedural Query Language Operations

Operations Descriptions
Assignment Using a temporary relation variable to write a relational expression (allowing for
modification of the database, itself) (<) for deletion, insertion, and updating for
example
Cartesian Returns a relation (table of rows) representing each possible pairing of rows from
Product the original tables specified within the Cartesian product (x)
Division Querying for all rows that contain some specified subset of attributes (+)

Natural Join

Combines into one operation the Cartesian product and selection operations (1<)

Project Selects columns (attributes) from specified tables that satisfy the supplied arguments

Rename Allows for renaming of relations (table of rows) that come from the same table
due to another operation on that table

Select Selects rows from specified tables that satisfy the supplied argument requirements

Set Difference

Results in finding the rows in a specified table that does not exist in other tables (-)

Set Intersection

Returns a relation (table of rows) that contains rows that are in all specified tables
that meet argument requirements (N)

Union

Allows the union of specified tables, that have an equal number of attributes with
identical domains (U)

2. from, the Cartesian product that lists relations to be used (select A;,A,,A,, ... A, from
I,0,05, ... I, Where -- 1; is a relation).

3. where, the selection predicate (select A,,A,, A,

the predicate).

... A, from r,,1,,15,

So, for example, given the table in Figure 7.2, to use SQL to find the names of CDs
(CDName) that cost less than $20 the SQL expression could look as follows:

select CDName
from CDTable
where Price <20

Table 7.2: Example of SQL Query and Table

... T, where P —Pis

CDId CDName Genre Price NumberinStock
1 Taking the Long Way Country $21.99 5
2 Home Country $19.99 2
3 I’m Not Dead Rock $15.49 9
4 Up! Country/Pop $19.99 0
5 B’Day R&B/Soul $19.99 1

312 Chapter 7

and would return all the CDNames listed in Table 7.2 with a price less than $20 (rows two
through five).

For modifying the database, SQL expressions are generally made up of:

1. (type of database modification), i.e., ‘delete from’, ‘insert into’, ‘update’.
2. where, the selection predicate (select A,A,,A,, ... A, from 1,,1,,13, ... r, where P — P is the
predicate).

So, an SQL example could be updating a row into the CDTable (Table 7.3) with the following
SQL expression that would increase the number of CDs in stock for one of the listed CDs:
update CDName set NumberInStock=NumberInStock + 5
where CDId=4

Real-world Advice

Is a database that supports the SQL API the right choice for an embedded design?

Whether or not a database system that supports SQL is the right fit for a particular embedded
system’s requirements will depend on how deterministic the database access needs to be. SQL
is interpreted at run-time, with the actual execution plan determined by the database system’s
SQL optimizer. This makes it difficult for embedded programmers to understand what a
database system is doing when processing SQL statements as opposed to languages embedded
programmers are more familiar with, such as C or C++. So, this increases the likelihood
execution plans leading to unexpected or even inferior performance. However, the ability in SQL
to express complex queries that would otherwise require laborious (and potentially error-prone)
C/C++ programming may outweigh the performance its determinism disadvantages.

In short, any non-deterministic behavior and additional overhead disadvantages of utilizing a
database that supports an SQL API relative to other types of databases needs to be weighed
against the advantage of its simplicity in use relative to supporting complex queries.

Based on the article ‘COTS Databases for Embedded Systems’ by Steve Graves.

Record-based ‘hierarchical’ database systems can also implement frees that use pointers to
define relations between the different records (see Figure 7.4). Another example is a record-
based ‘network’ database model, where records are related via links into arbitrary graphs.

There are several types of object-based models in database system design, from object-
oriented to entity/relationship to semantic. However, all of these object-oriented models are in

Table 7.3: Example of SQL Query and Updating Table

CDId CDName Genre Price NumberInStock
1 Taking the Long Way Country $21.99 5
2 Home Country $19.99 2
3 I’m Not Dead Rock $15.49 9
4 Up! Country/Pop $19.99 5
5 B’Day R&B/Soul $19.99 1

An Introduction to the Fundamentals of Database Systems 313

e Trees represent data and their relationships

wo Each record node in the tree contains some unique set of data

Musie Genre
4 \ 4
Country Rock R&B/Soul
' ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ' k
Shania Twain Dixie Chicks Pink Beyonce
L 4
Come On Over $15.99

Figure 7.4: Trees

general based on object-oriented programming fundamentals where all components within a
database system are considered objects. Within this type of database, all objects encapsulate
state and associated behavior data. Another example is a record-based “network’ database
model, where records are related via links (pointers) into arbitrary graphs.” An object state
is simply some set of parameters that defines the attributes of that object. The behavior of
objects is defined via their methods (functions) that operate on the object’s state data.

The various types of relationships between these objects are defined via their classes as shown
in Figure 7.5. A class is simply a way to group objects that share identical states (attributes)
and behaviors (methods). Basically, objects are created via the relative instantiation of a class.
Via classes then, more complex relationships between data are supported, such as inheritance
for example, which allows new sets of objects (classes) to be derived from a current class.
Objects, and inherently their classes in which they are instantiated from, are the basis in which
database queries are made. In some database systems these queries are implemented via an
existing DML that is expanded to provide object-oriented support, whereas other database
solutions affect queries through an application programming interface (API) that is used within
an objectoriented programming language such as Java or C#.”

Databases can also be implemented with a design that is some hybrid combination of both
object-based and record-based schemes — the most common type being object-relational
databases. Overlying requirements on these types of hybrid databases typically include having
powerful querying capabilities, being able to manage complex data (i.e., CAD or multimedia
data), and decent performance on handling a large number of database accesses. This means that
these hybrid models exist to support requirements that would utilize the best of both worlds.

For example, relational database models support simple data types and the use of the ‘safer’
querying languages (like SQL) that provide better database protection. Object-oriented
models provide the support of more complex data types and offer more flexility via the use

314 Chapter 7

class musicStore class CD
name name
attributes -._":
address genre
inventoryList price
listCDs listPrice -
methods addCDtolnventory listName
deleteCDfromInventory listGenre
v v v v v v
MusicStorel MusicStore2 MusicStore “N™ ’ CDI cD2 CD“N"

Figure 7.5: Classes

of conventional programming languages (e.g. C/C**or Java). The hybrid object-relational
databases provide support for both the simpler and complex data types in synergy with data
querying features typically only found in relational databases in addition to object-oriented
data modeling capabilities. The open source Perst database example, used in this chapter, is a
real-world example based on a hybrid object-relational approach.

7.3 Why Care About The Different Database Models?

It is important for a middleware developer to understand the different database models, since
these different database models created were done to meet different requirements. The model

a particular database design adheres to determines how that database logically organizes data,
defines the constraints on the data, and the inter-relationships supported. Here it is important to
understand a database scheme at the logical level in order to understand how data are represented
and managed. This means understanding whether it is via some set of tables within a relational
(record-based) type of database versus within an object-oriented database’s set of defined classes
and instantiated objects. Furthermore, understanding the type of data structures and relative
operations used to manage within a database design is key, for example, to predicting the type of
performance to expect of the database given the underlying software and hardware components.

An Introduction to the Fundamentals of Database Systems 315

The database system itself then implements the data model, via the syntax provided by

its language. There is not one database solution that fits all embedded systems’ needs. So
developers need to understand the pros and cons of each design to insure the database approach
is one that maximizes the strengths of its internal design. For example, some database
models best support functions that include monitoring inventory and/or managing lists of
sales customers, such as the relational database model, for example. This type of database

is the approach of choice when data management requirements support that the database is
not expected to make major changes too often, and standard operations on data are all that
will typically be required (i.e., create table, update table, and so on). Given these standard
operations, transactions on data are then expected to be atomic and of shorter duration. The
relational database model is also functioning at its best when the data are typically similar in
size and structure, allowing for these data to be managed via smaller, fixed-length records.

Other types of database models, such as the object-oriented approach, better support needs
relative to complex object graphs such as found in social networking, audio/video multimedia
requirements and engineering functions such as CAD (computer-aided design). Object-oriented
databases support the management of more complex objects with more freedom to support
varying types of data. Databases based on this model also provide better support for non-atomic,
asynchronous transactions. Another strength to object-oriented-based database models is
considered to be the ability to manage an object (and associated data) with less risk of impacting
and corrupting other database components. This is because of the underlying messaging scheme
inherent in this approach, where an object’s interface (and associated data) can only be accessed and
manipulated via some set of messages the object will have defined as acceptable for processing.

In short, the goal of any database design is to successfully manage data without unnecessary
redundancy, as well as to insure the integrity of these data, and manage them efficiently. If, given
the specific requirements, a particular database design utilized in a real-world system results in:

e data corruption and/or loss

* unnecessary data redundancy

* inability of the database to manage a particular type of data
* unacceptable degradation in system performance

it is time for the developer to investigate a different approach.

7.4 The Fundamentals of Database Design: The First Steps

The first steps to understanding an embedded database design are as follows:

Step 1. As with any other middleware component — understand what the purpose of the database
is within the system and how it achieves this purpose. Then, simply keep this in mind
regardless of how complex a particular database implementation is. As introduced at the
start of this chapter, the purpose of a database is to manage data stored on some type of

316 Chapter 7

Step 2.

Step 3.

Step 4.

storage medium located within the embedded device and/or some remotely accessible

storage medium, and modern database designs can achieve this in a few different ways.

Understand the APIs that are provided by a DBMS and the associated database in

support of a database’s inherent purpose. These APIs can, of course, differ from data-

base to database, but in general include some set such as the open source example
shown in Figures 7.6a and 7.6b.

Using the Embedded Systems Model, define and understand all required architecture

components that a database requires, specifically:

Step 3.1. Know your database-specific standards, as discussed in Chapter 3.

Step 3.2. Understand the hardware (see Chapter 2). If the reader comprehends the
hardware, it is easier to understand why a particular database implements
functionality in a certain way relative to the storage medium, as well as the
hardware requirements of a particular database implementation.

Step 3.3. Define and understand the specific underlying system software components,
such as the available device drivers supporting the storage medium(s) and
the operating system API (see Chapter 2).

Define the database architecture models on the market today, based on an understand-

ing of the generic database models, and then define and understand what type of

functionality and data exist at each layer. This includes database-specific data, such as
data structures and the functions included at each layer.

Method Summary

boalean |

{addHegord (Java.lang.Class table, lPeraisctent record)

| Add new record o the specified table.

Peciesn | addRenord (IPersiscent record)

i Add new record to the rable

vaid

|peginTransaction()
Begin transaction

=i | pommi tTransaction ()

Commit transaction

|ereateIndox (Java.lang.Class table, java.lang.String key, beole
Add new index to the table.

boolman

maslasn |

|crecataTable (Java.lang.Clasa table)

Create table for the specfied class.

Posied® lgeleteRecord (Java. lang.Class table, IPersistent record)

| Delete record from the specified table.

boslean| ol atalecord (1 Peraiatent record)

| Delete record fom the table.

Eoslesn |

|drapindax(java.lang.Class =able, java.lang.String key)

| Drop index for the specified table and kev,

Boslean | gropTable (1ava.lang.Class table)

| Drop table associated with this class.

Beslesn | pymindaPromindax (Sava.lang.Class sabla, IParaissant rasard, 3

| Exclude record from specified index.

Figure 7.6a: Perst APl Example’

An Introduction to the Fundamentals of Database Systems 317

Step 3. Using the Embedded Systems Model, define and understand all required architecture
components that a database requires, specifically:
Step 3.1. Know your database-specific standards, as discussed in Chapter 3.
Step 3.2, Understand the hardware (see Chapter 2). If the reader comprehends the hardware, it
1s easier (o understand why a particular database implements functionality in a cerlain way
relative to the storage medium, as well as the hardware requirements of a particular database
implementation.
Step 3.3. Define and understand the specific underlying system software components, such as
the available device drivers supporting the storage medium(s) and the operating system API
(see Chapter 2).
Step 4. Define the database architecture models on the market today, based on an understanding
of the generic database models, and then define and understand what type of functionality and
data exist at each layer. This includes database-specific data, such as data structures and the
functions included at each layer.

Figure 7.6b: Open Source Perst APl Source Code Examples'

7.5 Real-world Database System Model

When an application or user initiates communication, then an embedded database system
contains a number of components to process this incoming communication. What these
components are and how these components are designed essentially determine what
underlying system software and hardware requirements need to be met in order to utilize
them successfully within a design. So, to start, it is recommended the reader begin to
familiarize themselves with these components. Figure 7.7 shows a general database systems
model made up of some combination of a

* transaction manager

* query compiler

* execution engine

* resource manager

* storage and buffer manager.

Important note

Remember, real-world database systems may have different names than what is listed above
for the various components, may have split the functions of these components into additional
elements, and/or merged the functionality of various comoponents into other database system
subsystems. The key here is to use the subsystems within the model and examples as a reference
in understanding the fundamentals of any database system design.

An incoming query can impact the data within the database system, as well as trigger actions
that impact the structure of the database itself. Database systems typically group incoming
queries, as well as other database system actions in general, into independent, atomic tasks

318 Chapter 7

System Software Layer

Generie Dalabase Syslem
Query Compiler

Transaction Manager

Embedded Operating System

RSP

Device Driver Sublayer

Hardware Layer

Flash C 1 HawdDisk . €D | RAM

Tape Floppy

Figure 7.7: General Database System Model

called transactions. In order to manage transactions, a transaction manager resides within
the system to support:

1. Scheduling, which manages multiple concurrent, independent transactional database

system tasks. Depending on the database system, an underlying operating system and/or
virtual machine’s scheduler is utilized or an independent scheduler may be implemented

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 319

by the database system’s designers themselves. Scheduling within a Java virtual machine
(JVM), utilized by the open source Java-based Perst example used in the chapter, was
discussed further in Chapter 6.

2. Logging and Recovery, which is responsible for insuring that the database can be
recovered from mid-transactional failures via utilizing logs kept on the transactions
and being able to rollback to a non-corrupted version of the database system.

For database systems based on (or implementing) SQL, the query coming into the database
system is first received and translated by some type of query compiler. This query compiler
is responsible for translating DML (data-manipulation language) and/or Data Definition
Language (DDL) incoming queries for processing. After translation, the query compiler
transmits the result, commonly referred to as the query plan, to the execution engine for
further processing. Some sample code translating JSQL in Perst is shown in Figure 7.8a.

Upon receiving the query plan from the query compiler, the execution engine actually
processes the actions within the plan to manage the data request. The execution engine
communicates and transmits requests to a resource manager that manages the indices, records,
files, and/or objects (depending on the database design) relative to the data being processed.
In the case of the open source Java-based Perst example used in the chapter, the Java virtual
machine’s execution engine is mainly utilized and is discussed further in Chapter 6.

public ¢lazs Queryimpl implements Query {
public Iterator selectiClass ¢ls, Iterator iterator, Strmng query) throws Compile Error
|

tlus.query = query,

buf = query.toCharAmay();
str = new char{buf length];
this.cls = ¢ls;

comple()
retumn execute(iterator);
H

Figure 7.8a: Open Source Perst Query Translation Source Code Example'

320 Chapter 7

public Iterator execute(|terator iterator)

Tterator result = applyIndex(iree);

il (result == null) {

W (storage.listener = null) |

storge. listener seog il hPerf Iuery);
}

resull = new Fillerlteratorthis, lerator, tree);

B

if (order |= mull) {

Array Last hat = new ArrayLast();
while (result.hasNext()) {
hataddiresnlrnext(y);

1

son(list);

retumn list.iterator();

H

retum result;

!

private void sort{ Arvaylist selection) |
int 1, j, k, n;

OrderNode order = this.order;

Obyect top;

if (selection size() == () |

retum;

¥

for (OrderNode ord = arder; ord '= noll; ard = ord next) |
il {ord. fieldName != null) {

ord resolve Name(selection. getiUhgetClass)

]

¥

for (n = selection.size(), i=n/2, j=1; 1>= ;1) {

ke=i;

top = selection.get(k-1):

dol

if(k*2==n|

ordar. I clection.getk*2-1), seleetion get(k2)) = 0)

i
if (order compare(top, selection. get(k=2-1)) >=0) {
break,

)

selection.set(k-1, selection.gen(k*2-1));

k=k=2;

}else {

if (order compare(top, selection. get(k*2)) =— 0y {
break;

}

selection.selik-1. selection.gel(k*2));

k=k*2-1;

}

Fwhule (k==)

seleetion set(k-1, top);

}

forfi=mi>=2; 1) {

top = selection get(i-1);

selection.set(i-1, selection.get(0));

selectionset(D, top),

forfk=1,)=(i-1y2; k<=j) {

F(k*2 i1 ||

order. elaction.getk*2-1), selection.get(k*2)) =0)
i

if {order.compare(top, selection. get(k*2-13) >=0) {
break;

H

selection set(k-1, selection. get(k*2-1));

k=Kk*2;

belse {

il {order compare(top, selection. get(k*2)) == 0) |
breuk;

¥

selection set(k-1, selection gen(k*2));
k=k*2-1;

}

H
selection.sel(k-1, top);
¥

Figure 7.8a continued: Open Source Perst Query Translation Source Code Example

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 321

final void compiled)

pos=0;

vars = iy

tree = check Type{Nede tpBeol, dismctiond));
de

I;
if{lex == tenE:
relum;

i (lex 1= tknOrder) |

throw new CompileFror®ORDER BY expected”, posk;

)

nt tkn,

mt p = pos;

i {scand} 1= tknBy) |

throw new CompileError"BY expected after ORDER", p);
B

do {

P =pos;

i (scan() 1= tknldent) {

throw new Compilekrron"fizld name expected”, ph

i

OrderNode node,

Field £+ ClassDesenipror locateField(els, ident);

if (F == nudl) {

Method m = lookupMethod{cls, ident, defaultProfile);
it {m == null) |

i {1cls.equals{Object class)) |

throw new CompileErmon*MNo field "+ident+" in class "+
cls.getName(), pi;

}

nade = new OrderNoda(ident);

Felse

node = new OrderNodz{m);

i

Jelse |

node = new OrderNode(Class Deseriptor get TypeCode(£ get Type()), 1

H

A (last b=l {

last.next = node;

}else {

order = node;

H

last = node;

p=pos;

tkn = sean();

if {tkn == tknDesc) |

node sscent = false;

1k = senl);

T else if (thn == tknAse) |
kn = senl);

H

1 while (tkn == lknComuma);
if {thn = tknEof) |

throw new CompileErron™,' expected®, p);

}
}

Figure 7.8a continued: Open Source Perst Query Translation Source Code Example

7.5.1 Resource Manager

A resource manager is responsible for keeping track of the data within the data structures of
the database, to allow for efficient retrieval of data from storage via the buffer and storage
manager. Relative to the buffer and storage management (introduced in the next section),
while some database designs will utilize their own scheme for managing data directly on

322 Chapter 7

the hardware, in other database systems the storage and buffer manager is actually the file
system residing on the embedded device, and it is the file system APIs that are utilized by the
overlying database system layers.

This is important because, for example, a relational database that utilizes an underlying file
system will do so by mapping its internal records into files sequentially or some other method
such as some indexing or hashing approach. In this case, how this type of database manages
its records within these files given the underlying hardware, and the file internal design
system itself, will impact how the database performs. Specifically, it is relative to overhead,
meaning computing how much additional compile and runtime memory is required for the
particular scheme to execute efficiently, as well as how much time it takes to locate and
access these records — then add, delete, or modify data within.

There are several indexing and hashing algorithms that can be implemented into a database
design to insure efficiency and avoid overhead when searching for data. Indexing schemes
involve traversing some type of index ‘structure’ to insert, delete, and modify data. Hashing
schemes involve the use of a function to calculate the data’s address in memory directly.

In general, indexing schemes are based upon individual indices being assigned to data —
records and/or objects depending on the type of database (relational, object-oriented, object-
relational hybrid, for example). The indices are essentially the fundamental components used
within indexing resource management schemes to organize and track data. For example, a
B+-tree index is a multilevel index in the form of a tree that is made up of different types

of nodes, specifically some combination of root, non-leaf, and leaf nodes. As shown in
Figure 7.8b, a B+-tree node is typically made up of key values (K,, K,, ... K, ,) and pointers
(P,, P,, ... P,). Key values within a node are the one or more sorted attributes used to search
for another node within the B+-tree or the data itself. Non-leaf node pointers are references
to the child nodes with the relative search key values less than (on the left branch) or greater
than (on the right branch). The number of pointers within a ‘non-leaf’ node are between

‘n/2’ and ‘n’, thus having between ‘n/2’ and ‘n’ number of child nodes. Except for the last
pointer within a leaf node (P,), leaf node pointers P, ...P,, reference the data with the relative
search key value. The last pointer (P,) within a leaf node is used to link to another leaf node.

| » I K |p| K | P |»»mr-n'-

Figure 7.8b: B+-Tree High Level Diagram

An Introduction to the Fundamentals of Database Systems 323

So, traversing a B+-tree for a particular query retrieving all data with the search key value
‘x’, for example, requires traversing the tree from the root to the desired leaf node. This
means starting at the root node of the tree and comparing to search keys K, K,, ... K, to
search key ‘x’. The closest root node search key value that is greater than ‘x’ is whose
pointer is used to traverse to the next level of the tree. This means, if K, < ‘x’ <K;, than it is
the non-leaf node the pointer P, is pointing to that is traversed to. Within the non-leaf nodes,
the comparison of ‘x’ to search key values within the node continues until arriving at a leaf
node that contains the desired search key values.

PersistentResource implements Index {

Figure 7.8c: Open Source Perst B-Tree Source Code Example'

324 Chapter 7

public int nextoid{} {
if (lhasNext()) {

throw new NMoSuchElementException()s

]

StorageImpl b (Broragelmpl) getStorage ()
int poo = posStack(op-1]:

ourrPon = pooy

currPuge = pageStack [up-1];

Fage pg = db.getFage (currfage);

int oid getReference (pg, pos);

if (db.concurrentIterator) |

currkeay = gatCurrantkey(pg, pos);

¥

gotoNextiten(pg, poo)?
return ol

private int getReferance (Page pg, int pos) {

return (type == ClassDescriptor.tp8tring || type == ClassDescriptor.tphrray0fbyte)
? BtreePage. getKeyStroid(py, pos)

i BtreePage.getReference (py, BrtrecBage.maxItems-l-pos):

¥

protected Object getCurrent (Page pg, int pos) [
Storagelmpl b = (Storagelmpl)getStorage()s

return db. lockupdibject (getReterence (pg, pos), null):
¥

protected final void gotoMextItem(Page pg, int pog)
(

Storugelmpl & = (Storugelmpl)getStosuge();
if (type == ClassDescriptor.tpString}l {

it (order == ASCENT ORDER) {

it (Hpos == end) {
while (--sp != D) {
b, pool unfiv(py) ¢
pos = posStack(sp-1];
pg = db.getPage (pagestackiep-111;

if (++poy <= BtreePuge.getnlteszipgll (
pozStack[zp-1] = pos;

do {

int pageld = BtreePage.getHey3trOid(pg, pos);
db.pasl.unfix(pg)

py = do.getPage (pageld) s

end = BireePage.getnltems(pg)?

pagestack[ap] = pageld;

povStack(op] = pos = 07

} while (+tsp < pageStack.length);

breaak;

]

]

b oelse {

possStack(op-1] = poo:

¥

if (wp != 0 &2 till != null &6 -BtresPage.compares$tritill, pg, pos) >= till.iscluwion) |
=p = 0;

b

b else { // descent order

if (--pas < 0) {

while (--sp != 0} (

db. pool.unfix(pg) ¢

poy = pouStack[wp-1]7

pg = db.getPage (pageStuck[wp-11);
if (=-pom »= 0) {

posStack[sp=1] = pos;

da {
int pageld = BtreePage.getHey3trOid(py, pos);
b, pool unEiv(py) ¢

pg = do.getPage(pageld) s
pageStuck lvp] = pugeld;
pouStack[sp] = pon = BtresPuge.getnltemr (pg);
} while {#+sp < pageStack.langth);
posdtack|sp=1] = =-pos;

break;

]

¥

) eloe {

posStack(=p-1] = pos;

}

if (sp I= 0 &% from = null &£& BtreePage.conpareStr(from, pg, pos) >= from.inclusion) {
=p - 0

]

]

} else if (type == ClasaDescriptor.tpArrayOfByte) |
if (order == ASCENT_ORDER) {

if (++poy end) [

while (--sp l= 0} (

db. pool.unfix{pgl;

pos = posltack[=p=1];

pg = db.getPage (pagedtack[sp-1]);

Figure 7.8c continued: Open Source Perst B-Tree Source Code Example

www.newnespress.co

An Introduction to the Fundamentals of Database Systems 325

The Perst open source example, shown in Figure 7.8c, is based on a multilevel indexing-based
B-tree implementation and a partial snapshot of the Perst B+-tree traversing scheme is shown
below.

7.5.2 Buffer and Storage Management

Storage and buffer management is the liaison to underlying system software and manages
retrieval and transmission of data to and from the user and the supported storage mediums,
including RAM and whatever non-volatile memory is supported by the database. This means
it is responsible for managing the requests and the allocation of buffer space in volatile and
non-volatile memory. Because access to non-volatile memory is typically much slower than
accessing data in volatile memory, the storage and buffer manager for a particular database is
based on a scheme that attempts to minimize the number of accesses to non-volatile memory.
However, because there is only a limited amount of ‘faster’ volatile memory available to the
database, some type of data swapping and replacement scheme must be implemented. The
most common types of data swapping and replacement schemes implemented in different
database designs are similar to schemes used in underlying operating systems, such as:

e Optimal, utilizes a future reference time to swap out data that won’t be used in the near
future

* Least recently used (LRU), data that are used the least recently are swapped out

e FIFO (first in, first out), swaps out data that are the oldest, regardless of how often those
data are accessed by the database. FIFO is a simpler algorithm than LRU, but typcially is
much less efficient

* Not recently used (NRU), data that are not used within a certain time period are swapped out

* Second chance, a more-complex FIFO scheme that uses a reference bit that sets to ‘1’
when data access occurs. So, if this bit is ‘0’, then associated data are swapped out.

The storage and buffer manager is also what is responsible for managing data integrity within
the database, in the cases of synchronizing more than one application/user that must access
the database concurrently or recovering system problems, for example. Therefore, some type
of scheme that manages the blocking and unblocking of data writes, as well as the write-
through of data from volatile memory (i.e., cache, DRAM, etc.) to non-volatile memory (i.e.,
Flash, Hard Disk, etc.), falls under this database subsystem.

7.6 Utilizing Embedded Databases in Real-world Designs and the
Application Layer

Embedded targets constrained by limited memory and processing power typically shy away
from the use of a database system to manage data. So, the key is investigating how well the
embedded database solution integrates the overlying applications and data management code

326 Chapter 7

to allow for better performance, including decreasing the amount of required memory and
CPU cycles to process and manage data. When an embedded device can support the costs
of introducing a faster master CPU, more memory, and so on, then utilizing an embedded
database within the architecture is feasible.

In general, utilizing a database over other types of methods to manage data on an embedded
device boils down to the desire for:

* increasing reliability

* improved data management efficiency

* insuring data integrity

* higher availability and operational continuity

e scalability

» predictability and determinism for real-time requirements
e decreasing overlying application development time.

Because the most time-consuming processing relative to a database involves the management
of data relative to the non-volatile storage device (be it Flash, Hard Disk, etc.) it is important
to understand the importance of having enough cache or even volatile main memory on

the target if the team selects an IMDS (in-memory database system) to allow for better
performance when managing data, for example. It is also important to understand the database
write-through scheme that insures all changes made in volatile memory are saved properly

to the non-volatile storage device in the cases of a system failure and power disruptions. This
means understanding a particular database system’s scheme for managing redundant data as
well as managing the transactions and logging that allows for the ability to insure consistent
data and even recover data if a problem occurs with the device.

As with other types of middleware, selecting which embedded database supports the system
requirements means insuring the database implementation supports the underlying platform.
Figure 7.9 shows a sample snapshot of a datasheet of a real-world embedded database, called
eXtremeDB. This datasheet outlines some underlying platform and development tool support
information, as well as the type of complex data types that can be supported by eXtremeDB.
In the case of the version of eXtremeDB referred to in Figure 7.9, the embedded operating
systems that this embedded database has been ported to support include various flavors of
vxWorks, Integrity, QNX, and Nucleus embedded OSs to name a few.

7.7 Summary

There are several different database design schemes that can be implemented in a particular
database system. In order to understand a database system design, determine which database
design is the right choice for an embedded device, as well as understand the impact of

a database on a particular device — it is important to first understand the fundamental

An Introduction to the Fundamentals of Database Systems

327

Supported Platforms
Embedded Plativenes

= VxWorks 5.4,5.5

= INTEGRITY OS

= QNX 4x. QNX b=

= Vanous Beal-Time Linux distribubons
= Lynx OS

= RTXC Quadros, RTXC 3.2

= Microsoft Windows Embedded

= 2008

= Nucleus

Server and Deskiop Platforms:
= Sun Solaris & and Solaris 9
= HP-UX I1x

= SGIAlix
= Linux distnibutions

Developme ot Environments:

= onu wolchain (gec 295 and higher)

s LimenHills Mull
= Microsoft Visual Stdio (C/C++, NET)

Precision Data Management

= Bam hones boards (no operating system required)

connections per duahase: fid

Maximum dotabose s open
simultaneously: 16

Supported Data types

1,2, 4, 8-byle signed/unsigned inlegers
Noat, double

date, Lime

char (fixed lngth)

string (varable lengthy

[nicocks

boolean

enum

fixed-sire amay

variable-length vector

aructs (embedded 1o any deprhy
auloid {auto-ing i ment

wsr=detined object-id and references

= Classic Windows platforms (2&NT 20007XPA ista)

Application |

|Static API| |application Specific (generated) API|

= Tomado 20 and 2.2 (GNU and Diab compilers)

= QNN Momentics IDE (C, C4+, Embedded C++)
= Mebowerks Code Warnion IDE ¢y wivws platlonms)

Paga Manager | Hoaw Managar |

Manager Manager

= o
l Data Layout (record) ‘ Transaction & Queue 1
i

Database memory pool (RAM or shared memo

Mot Mhjeet 11T Phore =1 425 KKE K505
12325 SE<dib Place Faw <1 423 863 6308
Suhe 300 Infedmeebject com

ksaquah, W& 88027 www mochject com

Figure 7.9: MCObject extremeDB Datasheet®

components that make up a database system. These fundamentals, introduced in this chapter,
included what the purpose of a database is, elements that commonly make up a database, and
a real-world example of an object-oriented database system scheme implementing some of
these elements. The reader can then apply these fundamentals to analyzing database design

features, such as:

* available API operations

* maximum amount of memory that is needed by the database system

* performance

* support of specific hardware, operating system, or underlying middleware

in order to determine if the database system design is the right one for a particular system,

as well as the impact of the database system on the embedded device. This chapter has

introduced the basic concepts of database systems design.

www.newnespress.com

328 Chapter 7

The next section of this book will compare different types of middleware, including
discussing how to determine which middleware is the best-fit for particular requirements, as
well as the hardware and system software requirements when using particular middleware
components such as a database system implementation.

7.8 Problems

1.
2.

b

o

10.
11.

12.
13.

What is the purpose of a database system?

All database systems can only manage files located on the embedded system the file

system resides on (True/False).

What does DBMS stand for? What is the difference between a database system and a

DBMS?

A database system can utilize a file system within its design (True/False).

Outline the four-step model to understanding a database system design.

A database system implemented in the system software layer can exist as:

A. Middleware that sits on top of the operating system layer

B. Middleware that sits on top of other middleware components, for example a Java-
based file system that resides on a Java Virtual Machine (JVM)

C. Middleware that has been tightly integrated and provided with a particular operating
system distribution

D. None of the above

E. All of the above.

One or more database systems can be implemented in an embedded system (True/False).

Name and describe three data modeling schemes.

A database system can manage files on the following hardware:

A. RAM

B. CD

C. Smart card

D. Only B and C

E. All of the above.

How does an application communicate with a database system?

A database system will never require other underlying middleware components

(True/False).

Draw and describe the layers of the General Database System Model.

Name and describe five examples of database system APIs.

7.9 End Notes

! Perst API Guide, User’s Guide, and Open Source.
2 http://www.mcobject.com/standardedition.shtml#Shared%20Memory%20Databases
3 MCObject Datasheet, 2010.

4 ‘COTS Databases for Embedded Systems’ Steve Graves.

http://www.mcobject.com/standardedition.shtml%23Shared%2520Memory%2520Databases

Putting It All Together

Complex Messaging, Communication, and Security

Chapter Points
e Identifies the main types of complex messaging, communication, and security middleware
e Defines each of the different types of middleware

e Qutlines the pros and cons of utilizing one model over another

As application requirements increase in complex, distributed embedded systems these
requirements usually impose additional software prerequisites in underlying layers to support
these desirable applications within the device itself. Overlaying complex networking and
communication middleware on top of core middleware is increasingly becoming a popular
approach in embedded systems design to support these additional requirements. There are
several different types of complex networking and communication middleware that build on
the core middleware discussed in the previous chapters. In general, the more complex type of
middleware that is introduced in this chapter falls under some combination of the following:

e Message-oriented and Distributed Messaging, i.e.,
* Message Queues
* Message-oriented Middleware (MOM)
* Java Messaging Service (JMS)
* Message Brokers
* Simple Object Access Protocol (SOAP)
e Distributed Transaction, i.e.,
* Remote Procedure Call (RPC)
¢ Remote Method Invocation (RMI)
* Distributed Component Object Model (DCOM)
* Distributed Computing Environment (DCE)

Demystifying Embedded Systems Middl e. DOI: 10.1016/B978-0-7506-8455-2.00008-X

329

330 Chapter 8

e Transaction Processing (TP), i.e.,
e Java Beans (TP) Monitor
* Object Request Brokers, i.e.,
* Common Object Request Broker Object (CORBA)
* Data Access Object (DAO) Frameworks
* Authentication and Security, i.e.,
* Java Authentication and Authorization Support (JAAS)
* Integration Brokers.

8.1 Message-oriented Middleware and Distributed Transaction

Message-oriented middleware (MOM) is software that provides message passing capabilities
between overlying middleware and/or application software within an embedded system
(Figure 8.1). MOM is typically used when some type of point-to-point and/or autonomous
publish-subscribe messaging scheme is optimal. The APIs and functionality provided by
MOM software allow for simplifying the ability to design overlying software components,
because the APIs abstract out underlying networking protocol details and other underlying
system components for developers. For overlying middleware and application software that
adhere to the supplied APIs, this type of middleware is what allows for the interoperability of
the overlying software components that communicate via these messages.

When MOM software also provides message-passing capabilities between overlying software
of independent devices connected across a network, MOM middleware is further classified as
distributed messaging middleware. In this case, the APIs and functionality provided by this
type of more complex MOM software also aid in the portability of overlying middleware and
application software to other devices with vastly different underlying system software and
hardware components.

MOM middleware is typically based on some hybrid combination of client—server and the peer-
to-peer architecture model of message-passing communication. This means an MOM server

Messaging
Provider

A A
$ Client P }— Msgt P Destination Msg1 P | Client i
|

Send Receive

Figure 8.1: MOM Middleware High-level Diagram'

Putting It All Together 331

has control in managing the MOM clients. MOM clients can pass messages peer-to-peer, not
requiring the centralized MOM server to manage and control all communication. Depending
on the implementation, MOM servers can manage MOM client messages either concurrently
(where more than one MOM client request can be handled in parallel) and/or iteratively (a.k.a.
one-at-a-time). How MOM servers and clients manage communication is ultimately dependent
on whether the messaging scheme is based upon a synchronous message-passing model, an
asynchronous message-passing model, or a model based upon some combination of both.

In general, synchronous message passing is based upon a request-response type of handshaking
scheme. This type of MOM communication requires that an MOM receiver exists in some form
at the time the MOM sender transmits a message, in order to eventually unblock the waiting
sender with a response message. For example, an MOM client that transmits a message to another
MOM client and/or MOM server will block waiting for some type of response message from

the receiver. The advantage of synchronous MOM messaging communication is that it is simpler
and straightforward. On the flip-side, if there are hard real-time scheduling requirements for the
device, it is risky to use MOM software that blocks the system waiting for a response message.

Disadvantages with an underlying synchronous scheme are highlighted in an embedded
device with requirements to support multiple, complex interactions and nested calls between
MOM senders and receivers. There is an increase in connection overhead in relation to

this scheme due to the system resources required to manage the sessions. If some type of
connection pool on an as-needed basis is not implemented, then managing these resources
becomes very expensive and limits to the number of connections allowed are introduced.

In an asynchronous message-passing scheme the transmitter can send a message at

will independent of the availability of the receiver. The receiver can process received
messages when available as well. This means it is a form of non-blocking, connectionless
communication in which the transmitter and/or receiver does not have to wait for the response
from the other to continue to perform other tasks.

Typically, MOMs transmit messages under some combination of a:

* broadcasting messaging scenario
* multicast messaging scheme
* message queuing scheme.

Message-oriented and -distributed messaging middleware that is based on queuing, a.k.a.
message queuing middleware (MQM), implements message queues that can transmit, receive,
store, and forward messages (Figure 8.2). MQM is typically utilized within embedded devices
in which performance is a challenge, as well as within devices that do not have a constant
and/or stable networking access. Given the utilization of message queues, MQM addressed
handshaking and performance goals by allowing the embedded device to process messages
according to available system resources, as well as independent of the networking connections.

332 Chapter 8

queing diagram

queue
enter | diSP“I':"I CPU exit |

Figure 8.2: Message Queues®

pause

What differentiates MQMs are the types of queues supporting the messaging model, as well
as the specific attributes of these message queues. These attributes include everything from
size to naming convention to security access such as public versus private, permanent versus
temporary, journaled versus non-transactional (no back-up copies) to name a few.

While there are many types of message queue model schemes available, one of the most
common is based on some type of the FIFO (First In, First Out) queue model. Under FIFO,

a queue stores ready messages (messages ready to be processed). Messages are added to the
queue at the end of the queue, and are retrieved to be processed from the start of the queue.
In the FIFO queue, all messages are treated equally regardless of their importance or receiver
(Figure 8.3). Variations on an MQM based upon the FIFO queuing scheme include queues in
which messages in the queue are processed in the order in which the smaller-sized messages
are processed first, and/or messages are processed according to their importance (priority) in
the queue for example.

FIFO Queue

Figure 8.3: FIFO Queue®

8.1.1 Building on MOM: Transactional Middleware and RPC

One of the most common types of distributed transaction middleware is the RPC (remote
procedure call). The RFC 5531 ‘RPC: Remote Procedure Call Protocol Specification

Version 2’7 is a common industry standard which defines an RPC model for implementation where
a thread of control logically winds through a caller and receiver task. As shown in Figure 8.4, RPC
middleware simply allows synchronous communication across remote systems, where the caller
on one embedded device can invoke a native language-based routine residing on a remote system
in a manner similar to invoking a local procedure. In general, RPC implements a scheme in which:

Putting It All Together 333

Call Remote Procedure i

Caller is blocking and must
wait for control to return

Remote Procedure Returns

Figure 8.4: RPC Synchronous Communication*

» acaller first sends a message to the receiver task on a remote system
* the caller blocks, waiting for a reply message from the remote system
» after the reply message is received by the caller, the caller’s execution is resumed.

RPC is built upon some type of underlying core networking middleware such as TCP and/or
UDP depending on the type of RPC scheme. RPC is also fundamentally overlying some type
of MOM foundation (see Figure 8.5). RPC also acts as a basis for other types of distributed

transaction middleware found within a variety of computer systems, such as Remote Method

RPC System MOM System RPC System

Messaging
Provider

Destination | ?sgq—

A 4

| BRI

Embedded
Device
l User
Airline PanWorld

flication Airlines

Figure 8.5: RPC-MOM Middleware High-level Diagram’

334 Chapter 8

Invocation (a.k.a RMI,; a variation of RPC but originating in the Java space), Distributed
Component Object Model (DCOM), and Distributed Computing Environment (DCE).

8.1.2 Building on RPC: Object Request Brokers

An Object Request Broker (ORB) provides a layer to allow for creating an individual overlying
middleware and/or application component that resides as multiple objects, on the same device
and/or across more than one device. ORBs are an approach to allow for software
interoperability, since they allow for integration within one individual application or

middleware component — even if the integrated software came from vastly different vendors with
different APIs. As shown in Figure 8.6a, an ORB acts as the foundation to the Common Object
Request Broker Architecture (CORBA), and is based on industry standards from the Object
Management Group (OMG).

A similar philosophy behind using ORBs lies behind the the popularity of using DAO (Data
Access Object) design patterns in embedded systems designs. DAO originated in the

Java space (Figure 8.6b), and has been used as a basis for DAO frameworks in real-world
designs for abstracting, encapsulating, and managing accesses to various heterogeneous
underlying resources in the form of objects.

An ORB handles any translation and transformation (marshalling) of data between
overlying heterogeneous objects to allow for this intercommunication. Each object
within the individual overlying component to an ORB integrates an ORB interface.
It is the ORB interface that allows the objects that make up the overlying application
and/or middleware software to communicate and provide remote invocation access to
functionality.

An overlying ORB object becomes accessible to other overlying ORB objects for remote
invocations over a network. Thus, depending on the implementation, an ORB is built upon
the Internet Inter-ORB Protocol (IIOP) and other underlying core networking middleware
for this support across networked devices. Also, depending on the ORB, more complex
middleware such as RPC components can also act as a foundation.

nterface g5 o)

Figure 8.6a: CORBA High-level Diagram®

www.newnespress.com

Putting It All Together 335

I Data Access Objects (DAO) |

) .

Application Server

———
/ Web container \ EJB container
1

=X

Driven Beans
Web —

| —1

&

:
EE
j

Database
(RDEAMS eiz)

i i Session >E
Application k4 : g

|

Browser (web
client)

&‘/":) =

i C’ o 515 000 g s ot e e 028 25085 o0 -J
g2 S _ _
s 7 Data [Tran<fer Objects (DTO) or Domain Objests (e g Hib) f
! (lransfer information belween ayers !
Al ¥
CLIENT Presentation Resource

mxrqhmnn s optioral, 1 you wie B you COu take u.maﬁzw
Injection (k3 15C) a1t AOP atures Your DAD ciagses may use O-R-M famewsres ite
Hierrale ek sndior JCBC AP

Figure 8.6b: J2EE DAO High-level Diagram’

When an ORB, such as within CORBA, manages the routing requests and responses
between a client and a distributed object, an IDL (Interface Description Language) is used to
describe the transmitted data. As defined by the OMG, IDL interface definitions are stored
in some type of interface repository that the ORB then utilizes for tracking and managing
communication with objects. The ORB then can also activate and deactivate objects by
request, and can provide the types of services such as those shown in Table 8.1.

8.2 Authentication and Security Middleware

Authentication and security middleware is software that is used as a foundation for
implementing security schemes for overlying middleware and application software. This

type of middleware is required in the case of using RPC middleware, for example, in which
without some type of authentication and security middleware component, data are transported
in an insecure manner with the routine call.

In general, authentication and security middleware typically provides at the very least some
type of code security features. Middleware that helps to insure code security, validation, and
verification can be implemented within an embedded device independently, and/or can be
based upon core middleware components such as JVM or .NET components that with their
very implementation and their respective higher-level languages contain this type of support.

336 Chapter 8

Table 8.1: Examples of CORBA Services

ORB Service Type

Description

Concurrency control

Managing data locks in support of multitasking environment

Event

Objects specify what notifications for events are of interest

Externalization

Manages data transmission and translation between ORB objects and
some format of a data stream

Licensing Manages objects that require active licenses for usage from a vendor
Live cycle Definitions for creation, deletion, copying, and moving objects
Naming Searching for objects by name

Persistence

Storage/retrieval of ORB data from non-volatile memory via a file system
and/or database

Properties

Manages ORB object description details

Query

Manages database queries for ORB objects

Transaction

Manages transactions and insuring data integrity

Security

Managing authentication and authorization issues relative to data and

ORB objects

This can include everything from insuring valid type operations are performed, i.e., array
bounds checking, type checks and conversions, to checking for stack integrity (i.e., overflow)
and memory safety. For example, an embedded JVM and associated byte processing scheme
will include support class loading verification and security, as well as garbage collection and
memory management.

When it then comes to securing the actual data managed within an embedded device,
cryptography algorithms are one of the most reliable implementations for insuring security
via a middleware layer. Cryptography schemes utilize some combination of encryption keys,
obfuscator tools, digital signatures, and/or certificates to name a few. This allows the sender
to perform some type of encryption on the data before transmission, to help insure that ‘only
the ‘intended’ receiver can decrypt the data. Again, here core middleware with an embedded
JVM implementation for example can be used as a foundation to include some set of Java-
based APIs for cryptography support for:

B

e algorithms such as AES, DSA, DES, SHA, PKCS#5, and RC4 to name a few
e asymmetric vs. symmetric ciphers
e digital signatures

Putting It All Together 337

e key generators and factories
* message authentication codes
* message digests.

Access control is policy-based and provides support to insure only code that is allowed to
execute on the embedded device is permitted. In this case, specific policies associated with a
particular overlying software component are used to check and to enforce the access control
scheme to provide protection. Evidence-based CAS (Code Access Security) enforces the check
on code for everything from its origin to searching for ‘dangerous’ code within the software
before permitting execution on the device. Again, if utilizing an embedded JVM scheme, then
this can be built upon the pre-existing class loading implementation within the JVM.

Finally, authentication and authorization middleware simply provides functionality to
determine whether an overlying component is what it claims to be. For example, this can
include a scheme for verifying logins and passwords. After authentication, results are passed
on to an authorization scheme that actually executes what is necessary to allow access to the
device’s resources.

8.3 Integration Brokers

The implementation of an integration broker in an embedded system is typically due to the
necessity of integrating vastly different types of overlying middleware and/or applications
that must be able to process each other’s data. This overlying software can reside within the
same device, or across networks within other devices. Figure 8.7 shows an example of such
an ecosystem. Integration brokers allow applications and other middleware to exchange
different formats of data, by managing the translation and transmission of these data.

This means overlying software is not required to concern itself with any communication
requirements of the software receiving the data. To achieve this, integration brokers provide
some set of functionality that supports:

* Auditing and Monitoring

* Connectivity

* Policy Management

* Scalability

* Security and Authentication
e Stability

* Transactional Integrity

* Workflow Management.

Integration brokers inherently support an interoperability interface and communication
scheme that is an alternative to point-to-point with a design in which point-to-point
communication would result in too many connections to be managed and maintained

338 Chapter 8

Legonds
B rom sorvco

SON Intogration & -
Henvice Enging ' Savceigent
W Exvia Protod Suppon | some Flaw

Figure 8.7: Example of Integration Broker Ecosystem®

efficiently. This means the number of connections would decrease when overlying software
utilizes the broker for intercommunication. In this case, dependencies between overlying
software that communicate via the broker are non-existent, leaving only the dependency

of this overlying middleware/application on the definition of the integration broker’s
interoperability interface.

An integration broker is fundamentally built upon other types of middleware, such as ORBs,
RPC, TP monitors, or MOM. Understanding what an integration broker’s middleware foundation
is is important because, for instance, an MOM-based implementation will require overlying
software that use the broker to communicate via messages. An integration broker based on some
type of MOM implementation (via an integrated message broker) could then also include support
for functionality ranging from message routing to message queuing and translation, whereas an
RPC and/or ORB-type of RMI base requires overlying applications and/or middleware to trigger
communication via procedure (RPC)/method (RMI) calls made, for example.

An integration broker is not only made up of some type of underlying communication broker,
be it an MOM, RPC, and so on. At the highest level, as shown in Figure 8.8, an integration
broker is also composed of components that handle the event listening and generation that
resides upon some type of core networking middleware. For example, an integration broker’s
“TCP listener’ component that utilizes underlying TCP sockets, whereas a ‘file listener’
component utilizes an underlying file system. An integration broker’s transformer component
handles any translation of data required as these data pass through the broker on their way

www.newnespress.com

Putting It All Together 339

TERTTITLLY

Integration Broker

Figure 8.8: High-level Integration Broker Diagram®

to the destination. This for example would include an ‘FTP adaptor’ subcomponent that
supports FTP or an ‘HTTP adaptor’ subcomponent that supports HTTP.

8.4 Summary

For embedded devices that have enough memory and processing power, overlaying

complex networking and communication middleware on top of core middleware is
increasingly becoming a popular approach in embedded systems design to support additional
requirements. What was introduced in this chapter included:

* Message-oriented and -distributed Messaging Middleware

* Distributed Transaction and Transaction Processing Middleware
* Object Request Brokers

e Authentication and Security Middleware

* Integration Brokers.

This chapter pulled it all together for the reader relative to demystifying these types of complex
networking and communication middleware, and how they build upon the core middleware
discussed in the previous chapters. The next and final chapter of this book concludes with a
holistic view of demystifying designing an embedded system with middleware.

8.5 Problems

1. What are the three types of complex messaging and communication middleware?
2. RPC middleware is based upon MOM (True/False).

www.newnespress.com

340 Chapter 8

O 00 3 O Lt W

. What do MOM and MQM stand for? What is the difference between MOM and MQM?
. RPC is based upon an asynchronous communication model (True/False).

. Outline the main components that make up an integration broker.

. RPC does not require underlying core networking in an embedded system (True/False).
. What is cryptography?

. What is the difference between authentication and authorization?

. An integration broker cannot be based upon a message broker (True/False).

10.

‘What does FIFO stand for? How is it used in MOM middleware?

8.6 End Notes

' ‘Sun Java System Message Queue 4.1 Technical Overview’. http://docs.sun.com/app/docs/doc/819-7759/
aeraq?a=view

R R T I R R)

Embedded Systems Architecture, Noergaard, 2005. Elsevier.
http://www.opalsoft.net/qos/DS-22.htm

‘Middleware for Communications’. Qusay Mahmoud. P. 2.

RFC 5531. http://tools.ietf.org/html/rfc5531

‘Distributed Computing’. Oliver Mueller.

‘Java/J2EE Job Interview Companion’. K. Arulkumaran & A. Sivayini.
http://www.s-integrator.org/

‘Business Services Orchestration: the hypertier of information technology’. Sadiq & Racca. P. 264.

http://docs.sun.com/app/docs/doc/819-7759/aeraq%3Fa=view
http://docs.sun.com/app/docs/doc/819-7759/aeraq%3Fa=view
http://www.opalsoft.net/qos/DS-22.htm
http://tools.ietf.org/html/rfc5531
http://www.s-integrator.org/
http://www.s-integrator.org/

The Holistic View to
Demystifying Middleware

Chapter Points
e Putting it all together with the holistic approach of demystifying middleware
e Qutline the importance of more then just middleware technology to insure success

* About selecting the ‘best-fit’ middleware software for the design

This book has taken the holistic systems approach to demystifying building an embedded
system with middleware components. The reason for the approach used in this book
corresponds to why systems engineering has been going strong for over 50 years. Because
one of the most powerful methods of insuring the success of a software engineering team is
to accept and address the reality that the successful engineering of a product with the added
complexity of middleware software will be impacted by more than the pure middleware
technology alone.

As introduced in Chapter 1, successfully completing complex embedded designs, such as one
that incorporates middleware software within schedule and costs, means having the wisdom
to recognize that it takes Rule #1 — more than technology. For better or worse, successfully
building an embedded system with middleware requires more than just the technology alone.
It means understanding and planning for both the technical as well as the non-technical
aspects of the project, be they social, political, legal, and/or financial influences in nature.
Developers that recognize this from day one are most likely to reach production, within
deadlines, costs, as well as with the least amount of stress. The key is for the team to identify,
understand, and engage these different project influences from the start and throughout the
life cycle of the project.

Next requires Rule #2 — discipline in following development processes and best practices.
There are various best practices team members need to adhere to in order to avoid costly
mistakes. These best practices can include everything from following programming language-
specific guidelines to doing code inspections to having a hardcore testing strategy, for

Demystifying Embedded Systems Middl e. DOI: 10.1016/B978-0-7506-8455-2.00009-1

341

342 Chapter 9

example. These best practices can be incorporated into any development team’s agreed-upon
process model. Team members not following healthy, disciplined processes and development
practices are one of the most costly mistakes made in complex embedded systems projects
that incorporate middleware software. So, the key questions to start asking are — does the
team follow a common software development process and how well is it really working for
the project? Simply put, if the team is not delivering high-quality code, within budget and on
time — something is wrong!

In the industry, there are several different process models used today, under various ‘names’.
Newer software process schemes and improvements to current process models are also being
introduced constantly. In general, most of the approaches used in embedded design teams are
typically based upon one or some hybrid combination of the following schemes:

* Big-bang, designing with essentially no planning or processes in place before and during
the development of a system.

e Code-and-fix, in which product requirements are defined but no formal processes are in
place before the start of development.

* XP (extreme programming) and TDD (test driven development), development driven by
re-engineering and ad-hoc testing of code over and over until the team gets it right, or the
project runs out of money and/or time.

e Waterfall, where the process for developing a system occurs in steps, and where results
of one step flow into the next step.

* Hybrid Spiral, in which the system is developed in steps, and throughout the various
steps feedback is obtained and incorporated back into the process.

e Hybrid Iterative Models, such as RUP (Rational Unified Process), which is a
framework that allows for adapting different processes for different stages of project.

* Scrum, another framework for adapting different processes for different stages of project,
as well as team members with various roles. Incorporates shorter-term, more stringent
deadlines and continuous communication between team members.

So, how can a team objectively evaluate how well a software development process model
is working for them? Start by doing practical and efficient assessments by first outlining
the software development goals the team wishes to achieve. Then, document what
challenges team members are facing, as well as what existing processes team members are
following. This means objectively investigating and documenting in some fashion software
development:

* one-shot as well as reoccurring activities

» functional roles of team members at various stages of a project

* measuring and metering software development efforts that capture objective snapshots of
what is working versus what is crippling development efforts

e project management, release management, and configuration management efforts

The Holistic View to Demystifying Middleware 343

e testing and verification efforts
e infrastructure and training used to get programmers up and running.

Then, follow through with defining improvements to these existing processes that all
developers on the team must adhere to. This means looking into the different possibilities

of what the development team is ready to implement, in terms of more disciplined, tougher
measures relative to software development efforts. There are standard industry approaches,
such as via CMMI (Capability Maturity Model Integration), that a team can use to introduce
improvements and increase discipline in order to save money, save time, as well as improve
the quality of the software.

In short, what is recommended is Rule #3 — teamwork. Get together with fellow team
members to discuss the various process models, and determine via consensus together what
is the best ‘fit’ for your particular team. This means there is not yet ‘one’ particular process
that has been invented that is the right approach for ‘all’ teams in the industry, or even ‘all’
projects for one particular team. In fact, most likely what works for the team is some hybrid
combination of a few models, and this model will need to be tuned according to the types of
team members and how they function best, the project’s goals, and system requirements.

Then all team members, from junior to the most senior technical members of the team, as
well as leadership, align together to come to an agreed consensus for a process model that
will achieve the business results (Rule #4 — alignment behind leadership). Each team
member then understands the big picture, the part each plays in it, and commits to the
discipline to follow through. If, along the way, it is discovered the process isn’t optimally
working as expected, team members get together again, openly and respectfully discuss
the challenges and frustrations together in a constructive manner, then immediately tune
and adjust the process, with team members each doing their part to improve software
development efforts. Finally, do not forget Rule #5 — strong ethics and integrity among
each and every team member, to continue moving forward as agreed upon fogether towards
success.

9.1 Does using Middleware in your Embedded System Design
Actually ‘Make Sense’?

Software, by its inherent nature, is what makes any embedded system ‘configurable’,
‘portable’, and so on. This could mean swapping in an embedded Linux operating system
versus vxWorks, interchanging device drivers in the BSP — as well as adding more
middleware, whether it is some sort of home-grown C++ framework, a J2ME JVM, .NET
Compact Framework, or using a database instead of the file system alone, for example. So, it
is critical to have the wisdom to remember not to let one particular middleware component
get in the way of the success of the ‘whole’ software design by buying into any ‘ultimate and

344 Chapter 9

only one solution’ illusions being sold by anyone about any particular type of middleware. In
short, one of the main keys to success in taking an embedded system to production is by not
overcomplicating the design!

Remember, the ultimate goal is not to build a particular *. NETCE’ or a ‘DAO’ embedded
device. This is because including particular middleware components, in themselves, does

not insure scalability, reliability, configurability, profitability and more importantly will

not insure success. The key to understanding what is out there and if/when the reader

should use it in an embedded design is to keep in mind the purpose of that middleware to
begin with — and whether using it actually makes sense given the project scope, technology
limitations, schedule, costs, and available resources. So, when determining whether to design
middleware into the architecture of an embedded system, there are a few basic guidelines
shown in Table 9.1.

Whether you are straight out of school or have been in the industry for the last 10-15+ years
or so, it is imperative to ask the right questions for ‘yourself’. So, always do your research,
never be afraid to ask the hard questions out loud with team members, and then make up your
own mind about what answers are discovered. Never be afraid to use your ‘own two eyes’ to
help the team determine better ways to design the software in order to help insure the success
of your team and organization. Remember, using a particular middleware solution is simply

a means to an end — and could be a very good one under the right circumstances. However, if
one approach in the engineering creative process does not work, do not hesitate to investigate
another as soon as possible to insure a win—win!

9.2 Buy an Off-the-shelf Middleware Solution or Do-it-yourself?

When determining whether the team should do-it-yourselves versus buying commercial, it
requires asking:

1. What are the risks to creating the middleware component ourselves in-house versus
purchasing from a vendor?

2. What are the costs to creating the middleware component ourselves in-house versus
purchasing from a vendor?

3. What are the tradeoffs to creating the middleware component ourselves in-house versus
purchasing from a vendor?

4. Does the team have the expertise in-house, money, time, and resources to create and
support this middleware component?

5. [Isthere a commercially available version of this middleware component? If so, why can it
not be used in the design?

When investigating off-the-shelf embedded middleware solutions, one of the most commonly
effective ways of selecting between commercially available components is to build a matrix

The Holistic View to Demystifying Middleware 345

Table 9.1: Guidelines to Asking the Right Questions

What to Think About

When is using middleware
probably not a good idea?

If rather than simplifying the architecture and development of the device,
the middleware is more complicated than the actual requirements of the

device itself - and would actually introduce a greater degree of cost, time,
risk, and stress into the project and team, relative to the benefits

If the reader is constrained by the hardware in any way (i.e., it’s too slow,
not enough RAM, etc.). Basic rule of thumb in developing software for
more limited embedded hardware boards in terms of processing power
and memory is the less software, fewer abstraction layers, etc. the better

When the project team is mainly made up of non-experienced and/or
non-embedded programmers who do not comprehend the importance
of understanding the difference between developing software for an
embedded target with more limited processing power and RAM (for
example) versus developing code for a PC that has GHz of processing
power and gigabytes memory

When might it be a good idea
to replace a current middleware
design and investigate a new
middleware approach?

Hardware support is there, but the project is made up of a bunch of people
who have been trying to rewrite middleware code several times over an
extended period and who still cannot get it to work stably enough to ship
on the embedded hardware

Better technology has emerged on the market

New or changes to project requirements that render decisions relative to
the original middleware design irrelevant

When could a current
middleware solution be too
risky to support?

If the middleware does not work reliably after years and years of
re-engineering, and there is no interest or effort in rethinking,
improvement, or change in how things are done

The middleware is not capable of doing what was promised/intended, and
is being kept hidden as the project deadlines are continuously delayed

Substandard products are delivered to the confusion and anger of
application developers, customers, upper management, and so on, which
essentially renders it an actual liability risk within the design

When there are expensive project cost overruns, the loss of highly-qualified
team members leaving stressful team environment, and/or huge software
liability risks introduced to the whole organization if the product is
deployed

Counter-productive agendas on the project have hijacked the middleware
design, and will not allow for any discussions, questions, are selfish and/or
bullying with their own ideas to the exclusion and detriment of the rest of
the design and team

If the middleware is being bypassed and/or not being used for the
purposes of how it was intended by other developers, i.e., for portability,
performance, stability, etc.

(continued)

346 Chapter 9

Table 9.1: Guidelines to Asking the Right Questions (Continued)
What to Think About

When would using a particular | Hardware and underlying system software will support it, or can be
middleware solution in an modified to support it
embedded design make sense?

Required according to some industry standard, customer requirements,
etc.

Skilled, support team resources to implement the design are there

If it helps insure the success of the project by helping simplify designing the

device

Allows for the dynamic configurability, portability, maintainability, etc. of
the device to make maintaining software for different product variations
better

Table 9.2: Example of Matrix

Requirement Requirement Requirement Requirement Requirement
1 2 3 Occ? ‘N’
Middleware NO NOT YET YES
Product ‘Vendor (in 6 months) (Features ...)
A7
Middleware YES NO NOT YET
Product ‘Vendor | (Features ...) (in 3 months)
B’
Middleware NOT YET YES YES
Product ‘Vendor | (Next Year) (Features ...) (Features ...)
c
Middleware
Product ‘Vendor

(see Table 9.2) of required features for each component. The matrix is then filled with the
vendor’s product information that fulfills the particular requirements. When considering
a third-party commercial solution for a particular middleware component, the types of
questions to be asked (that should be addressed in the matrices) include:

* What is the vendor’s reputation? When can the vendor deliver what you need? Has
the product ever been deployed in another commercially available embedded system
successfully?

* What will it cost to use this middleware component? What is the cost of technical support
from this vendor? Can you buy the source code or is it object code only?

The Holistic View to Demystifying Middleware 347

* How is this middleware software product tested? How reliable is the vendor’s software
in real-world stress conditions? Can you get some type of test plan and report to review?
Can you re-run the vendor’s tests for verification on your system before your own
product deploys?

* What are the specific requirements for the vendor’s middleware component in terms
of underlying hardware and software? How compatible is this vendor’s middleware
product with your hardware, programming language(s), tools, etc.? Will it require special
debugging tools?

* Have you actually seen this middleware component running in a real system and on real
hardware? Or have you just seen the sales pitch and some sexy marketing ‘documentation’?

In short, target the off-the-shelf middleware component that has been stably ported and
supporting the hardware and underlying software. Make sure developers can design and
debug with this third-party commercial middleware component, because without the proper
tool support it will be a nightmare for the team. Finally, if considering more than one off-
the-shelf component, then create more than one matrix representing these different vendors’
components that can then be cross-referenced, and distributed among team members for
review. This helps to insure that all requirements have been addressed, and are ultimately met.

9.2.1 More on Keys to Success with Developing ‘Do-it-yourself’ Middleware
Software...

Once again — do not overcomplicate the design! In other words, start with a skeleton for the
middleware solution, and then hang code off of this skeleton within different phases of the
project. This approach allows for the sacrificing of less essential features in the first (and any
future) release, allowing for the team to ship a high-quality middleware software solution
within the embedded system, on time.

Partitioning the middleware design can be done in many ways including keeping function
sizes within a certain number of LOC (lines of code), by features, top-down decomposition,
via underlying software (such as action via tasks/threads with an operating system), and/or
utilizing additional underlying hardware. Partitioning the middleware solution into smaller
modules with fewer dependencies between modules results in:

* anincreased likelihood that the finished middleware design will meet requirements

* middleware will be completed within time and budget

e application developers know how to plan around a solid and reliable system underlying
middleware solution at every phase of the project

» fewer complex bugs introduced in the middleware software to delay release.

In short, less is more! Maintain control of the middleware design by closely managing the
requirements and features.

348 Chapter 9

Next, do not underestimate the impact of the programming language(s) on the embedded
design. Carefully consider what programming language to implement the in-house embedded
middleware component in. This is because there is not yet one programming language that

is perfect for every embedded system. Objectively weigh the pros and cons of going with
programming language options. The real questions to ask include:

1. How mature and stable is the language specification, the compiler, debugger, and so on
for your particular target hardware? For example, going with a ‘native’ programming
language when implementing a particular middleware solution does mean losing the power
that comes associated with going object-oriented, such as encapsulation, modularity,
polymorphism, and inheritance to name a few. However, it will not matter how many C++
‘wicked-smart’ developers are on the team, if the C++ compiler available from the vendor
for the embedded target hardware is extremely unstable, immature, and/or buggy.

2. Isthere a requirement to support a particular language or language standard? For
example, who needs to brush up on embedded Java to implement an MHP (multimedia
home platform)-compliant STB (set-top box).

3. How complex is the programming language to debug, test, and maintain in-house?

Bad, buggy code can be written in any language. So, once the programming language(s) has
been agreed upon by the team, then embedded developers need to follow the best practices
for that particular programming language. Meaning there are general best practices that are
independent of programming language, such as not using magic numbers hard-coded in

the source code, not manually editing automatically generated code, capturing/handling all
exceptions/errors, and initializing all defined variables for example.

Of course, the cheapest way to debug is to not insert any bugs in the first place. This means
slowing down and using best practice programming language techniques for that language.
Developers need to not be pressured to make rushed source code without investigating
properly, thinking about the changes (a lot), having time and the discipline to spec out in
writing the changes, and then doing it right. As shown with the examples in Table 9.3, it

is important to understand and follow the best practices that exist which are unique to that
particular programming language.

Table 9.3: Examples of Programming Language Best Practices?

Programming Example Best Practice
Language
C Functions Check that the parameters they are passed are workable

Calls provide easily identifiable points of checking the state of the
system allowing early detection of memory corruption or other
unexpected states

Return values from function calls are checked for expected values

The Holistic View to Demystifying Middleware 349

Table 9.3: Examples of Programming Language Best Practices

Continued

Programming
Language

Example

Best Practice

Rules

Non-obvious code that relies on rules of precedence inherent in a
programming language is avoided

Expressions that mix operators from the set >, >=, <, <=, ==,
I=, with operators from the set <<, >> " &, |, &&, || are fully
parenthesized and do not rely on inherent precedence rules

Switch statements

Explicitly list all known cases and have default cases that warn of
unhandled cases

Conditional
statements

Explicitly stated in code that conforms to this standard

Non-Boolean values are not tested as Boolean values and Boolean
values are not tested as non-Boolean values

Value ranges are used when checking real number values to protect
against error introduced due to loss of precision

GOTO

Goto statements are avoided because of difficulty in validating usage

and debugging

C++

Global static
variables

Global static objects should be avoided

If used, an instantiator class which counts references to an object
should be implemented

Errors and
exceptions

Should be specified in the signature of the class method declaration
and definition

Create your own exception hierarchies reflecting the domain and
define relevant exception classes derived from the standard exception
class

Use ASSERT()’s or comparable debugging macros liberally to trap
potential programming errors

Validate all parameters passed to any public, protected, or even
private function

Handle all potentially invalid parameters or environmental conditions
in a graceful, consistent, and documented manner

Java or C#

Classes

Do not make any instance or class variable public, make them private

Methods

Methods should not have more than five arguments. If more than five,
use a structure to pass the data

350 Chapter 9

Once the team is aligned on the middleware design, then do not skimp on the tools. One
of the most common mistakes middleware developers make is not using the appropriate
design and debug tools for implementing complex software solutions such as middleware
software within the embedded design. For instance, editors, compilers, linkers, and
debuggers are essential and non-negotiable, meaning it is impossible to do efficient
development without these tools. Another example for embedded middleware development
is developers who include software design patterns as an integral part of their toolbox for
object-oriented design and development. There are several, different types of software
design patterns that have been published with characteristics that are intended to address
different types of design requirements from the object-oriented point of view.

Specific characteristics of different software design patterns can be used by developers as
models for helping to determine possible design implementations that address their specific
requirements, such as additional encapsulation versus a need for greater flexibility to name a
few. In the case of flexibility, for instance, where underlying hardware, such as the underlying
storage medium, remains unchanged, then, for example, the ‘factory method’ software
design pattern may be a feasible approach. On the flip side, with requirements that include
supporting an underlying storage medium that will change, then, for example, embracing the
‘abstract factory’ software design pattern may be considered as an alternative.

As with any other model, remember not to blindly use any software design pattern within
an embedded systems middleware project. This means developers can start by questioning
why a particular pattern was used in a particular software component, and what were the
resulting pros and cons of the approach. For inherited source code, developers can start to
look for software design patterns within components to help with the reverse-engineering
process in understanding the code. Remember, a software design pattern elegantly and
brilliantly implemented for some type of Java Enterprise server-based system may

not be the best approach for a J2ME (Java 2 Micro Edition)-based embedded systems
solution or some C++ rework of that same design pattern. The software team needs to
also investigate and think through the fype of system(s) a particular software design
pattern has successfully been implemented for (underlying hardware and system software
differences).

Additional examples of commonly used types of tools by embedded systems developers
are shown in Figure 9.1. In short, embedded developers need a solid software toolbox to
help insure success when building an embedded system that has the added complexity of
middleware components. So, this means asking key questions, such as:

e Will the tool help write better source code, faster?
* Who is actually using what tool?
* Why and how is the tool being used?

The Holistic View to Demystifying Middleware 351

+ Version Control System

o Subversion (hitp://subversion.tigris.org)
o CVS, comparisons of different systems
(better-

sem berhos pari

o PVCS Version Manager
{ WWW_SETEN.COm, PVES.SYTergex.com)

1,

1son.html)

+ Bug Tracking
o JIRA (www.atlassian.com)
o Bugzilla (www.bugzilla.org)

+ Integration & Communication Tools

o Continious Integration Servers

* TeamCity

* CruiseControl

* Apache

o WIKIs

o Trac - open source tool that hyperlinks info

I 1 1on,bug-tracking sofl

and wiki. (http://trac.edgewall.org)

© SCMbug mtegrates Bugalla and Subversion.

il

+ Integrated Development Environment (IDE)

o Development Tools (i.e., Editor, Compiler, ICE, ...)

© Debug Tools (1e., Debugger, Code & Memory Analyzers,
Code Coverage,...)

¢ General Development, Debug, & Tools

o LINT/PC-LINT {PC-LINT gimpel.com)

a PolySpace, verification tool to dynamically simulate code
before compile to give a up front analysis of code's quality
o Splint (splint.org-free)

© Doxygen (www.doxygen.org)

o Enterprise Architect (www.sparxsystems.com)

o DOORS

o Test Frameworks

« BSP Verification Test Suite (VTS)

+ CUnit, Catrunner, ...

* UnitTest++, CxxTest, ...

o Static Analysis Tools

= complexity analyzers
(hup:/www.chris-lott.org/resources/cmetrics/)

= melnes, cyclomatic complexity and some checking against
standards (msquaredtechnologies.com/index html)

« static correctness checkers (www.polyspace.com,
www.coverity.com, www.kloework.com)

+ C++Test checks code against a standard; can configure the
rules.(www.parasoft.com)

+ Programming Research’s QA -C, MISRA & Safe C
checking

Figure 9.1: Examples of Development and Debugging Tools?

www.newnespress.com

352 Chapter 9

9.2.2 Always Ask, Is the Code ‘Good Enough’? — Systems Integration, Testing and
Verification from Day 1

With the complexity that middleware adds to an embedded design, it is important to have

an integration, verification, and test strategy from day one, meaning, as soon as embedded
hardware is available with device drivers to bring up the board, developers not verifying and
even unit testing these available software components guarantees headaches later. Make the
quality of your source code visible along with feature feedback from the start, by executing a
disciplined test strategy as soon as you have any software that you plan to ship the board with
running on the system. Verify and test everything, including the prototype that would be used
as the final design’s foundation.

Plan the different types of testing from the start. It does not matter ‘how’, i.e., whether it’s
via individual responsible engineers that are assigned the role or with a formal test group —
as long as it gets done. This includes everything from unit testing to integration testing to
regression testing to stress and acceptance testing. This also includes planning for not only
test-to-pass scenarios, but more importantly the test-to-fail scenarios. Figure out what the
limits of the design are, to insure that the end system deployed can be expected to function
even under unexpected stress conditions in the field. This allows the team to determine early
on if the hardware is faulty or the foundational source code is buggy. Fix the hardware and/
or source code defects as they are found, and do not defer. Having an unstable system with
unreliable hardware and/or bad code is worse than having ‘no’ system. Track defects and
measure their rate in specific components as they are found. This is in order to monitor these
defects, and insure that highly problematic components are replaced or rewritten — since they
become more expensive to debug than to replace.

A common mistake within embedded design teams is not code inspecting and/or testing
proactively and adequately. It does not matter if this software is home-grown or a BSP,
operating system, and/or networking middleware from an external vendor, for example. Do
not assume that because a particular off-the-shelf software component has come from an
expensive external vendor, it is bug-free and production-ready. More importantly, do not
assume that any software that comes out of the box is tuned to your own embedded system’s
requirements until team members see it running and have verified it with their own eyes. In
fact, many embedded software vendors deliver their software components with additional
configuration files that are accessible to their customers, because the expectation is that their
customers will tune their software to meet the requirements of their particular embedded
device.

To be the most effective, code inspections should be incorporated into the test strategy from
the start, and these code inspections need to do more than look for ‘pretty’ code. Insure
language ‘best practices’ have been followed for particular language and actually look for

The Holistic View to Demystifying Middleware 353

bugs. It is cheaper and faster to do stringent code inspections before testing, and as soon
as source code compiles.! A team’s code inspection process should include some type
of checklist (see Table 9.4) of what is being checked for and where the results are being
documented.

Insure that the right ‘type’ of team members are doing the actual code inspections in order to
be the most effective and most efficient. For example, insuring developers with knowledge

Table 9.4: Example of Code Inspection Checklist for ‘C’ Source

Parameter/Func- Number of Error Type
tion Name Errors

Major | Minor

Code does not meet firmware standards

Header Block

Naming Consistency

Comments

Code Layout and Elements

Recommended Coding Practices

Auto-generated code not manually edited

Don’t use magic numbers hard coded in the source
code, i.e., place constant numerical values directly
into the source

Avoid using global variables

Initialize all defined variables

Function size and complexity unreasonable

Unclear expression of ideas in the code

Poor encapsulation

Data types do not match

Poor logic - won’t function as needed

Exceptions and error conditions not caught
(e.g., return codes from malloc())?

Switch statement without a default case (if only a
subset of the possible conditions used)?

Incorrect syntax - such as proper use of ==, =, &&,
&, etc.

Non-reentrant code in dangerous places

Other ...

354 Chapter 9

and understanding of the ‘hardware’ or even the actual hardware engineers to code inspect
device drivers that manage various hardware components on the target. In general, an
effective code inspection team targets including team members that support the following
type roles:?

1. Moderator, who is responsible for managing the code inspection process and meeting(s)

2. Reader (not the developer that created the source code being inspected), reads out loud
the source code and relative specifications for the operational investigation

3. Recorder, fills in code inspection checklist report, and documents any agreed-upon open
items

4. Author (the developer of the source code being inspected), helps explain source to code
inspection team, to discuss errors found, and future rework that needs to be done.

9.3 Conclusion - See the Pattern Yet?

It is powerful for the team to start with getting the full systems picture via defining the high-
level architectural profile of the embedded system from the top at the application layer and
then work your way down. This is why, for instance, application examples were presented in
previous middleware chapters — because the middleware selected needs to fulfill the needs of
your system’s applications. So, at the application layer, start with describing the applications,
how they will function within the system, interrelationships, and external interfaces.

Then, from the application layer outline what underlying system software and hardware
functionality these applications would explicitly and implicitly require.

Today in the embedded market, there is not ‘one’ middleware solution that supports all
requirements for all systems. Furthermore, many complex embedded designs will require
more than one middleware component to meet various middleware requirements. Thus,
developers must investigate how individual middleware software will be successfully
integrated in order to insure compatibility during the system’s operation. Basically weigh the
pros and cons of utilizing a completely integrated middleware stack from various vendors that
could result in a successful system implementation against what risk is introduced, additional
costs, and potential schedule risk. Compare this to implementing and integrating various
components of the complete stack independently by the team.

For example, larger embedded operating system vendors (such as WindRiver) typically
supply integrated middleware packages with different components that support their
respective embedded OS over various hardware solutions. There are also companies that
supply various middleware packages with integrated core and/or more complex middleware
components that can be ported by customers.

Remember, the idea is to keep things as simple as possible. So, make sure that you have a
solid understanding of core middleware components (Figure 9.2) and how to select between

The Holistic View to Demystifying Middleware 355

Application Layer

Middleware

Middleware Building -on-the -Core

Complex Messaging & Communication Market -Specific

Core Middleware

Networking Virtual File Databascs
Machines Systems

Device Device Device Device Device

Driver Driver Driver Driver Driver

Hardware Layer

Figure 9.2: General Types of Middleware

these. For example, how to select between a using a file system versus a database within

the embedded design, to manage data? While, on one side, a database system may come

with functionality lacking in a file system the team must also investigate the underlying
requirements of a database versus a file system. If the hardware is not powerful enough to
support a more fully featured database system the best approach may be utilizing a file system
and insuring applications are written to meet specific data management requirements. A
database would be considered a better fit than just a file system for the design, for example,

if given the type of data being managed and how applications will utilize these data results

in data managed in a file system becoming:

* inconsistent, where data changes are not updated in all files properly
* insecure, managing access of multiple applications to specific files that application is
permitted to have access to

356 Chapter 9

* corruptible, managing the integrity of the data, especially relative to concurrency of data
access by multiple applications accessing the file simultaneously

* isolated, searching through files for particular data with a specific format

* redundant, where data are duplicated unnecessarily in more than one file.

Finally, take what you learn about different types of embedded middleware and incorporate
that into the ‘big picture’ of how to take an embedded system with this middleware to
production within costs and deadlines. This means, whether successfully designing a piece

of middleware software or building a more complex system with a particular middleware
component, accepting that to win requires more than just the middleware technology alone. In
short, put it all together:

* Demystify what you are trying to build from day one for all team members, i.e.,
programmers need to get comfortable with the hardware/schematics, hardware engineers
understand software requirements (especially those of the middleware components and
overlying layers that utilize them), and so on.

* Understand that design teams forced to work under unhealthy, stressful environments
will make serious mistakes!

* Accept that tired programmers and engineers will make serious mistakes!

* Schedule wisely by identifying clear goals and questioning all assumptions/estimates.

* Do not cheat on the processes and tools.

* Better quality solutions, designed faster can only happen with discipline and teamwork.

* A testing strategy that does not include extensive code inspections is costly.

* Releasing inadequate and/or untested code on the embedded hardware is very risky!

9.4 End Notes

' ‘A Boss’s Quick-Start to Firmware Engineering’. Jack Ganssle.
2 ‘A Guide to Code Inspections’. Jack Ganssle. Code Inspection Process, Wind River Services.
* Embedded Systems Architecture, Noergaard, 2005. Elsevier.

A
A2A
AC
ACK
ACL
A/D
ADC
ALU
AM
AMI
amp
ANSI
AQOT
API
APPC
ARIB-BML
AS
ASCII
ASIC
ASP
ATM
ATMI
ATSC
ATVEF

B
BDM
BER
BIOS
BML

Abbreviations and Acronyms

Application-to-Application

Alternating Current

Acknowledge

Access Control List

Analog-to-Digital

Analog-to-Digital Converter

Arithmetic Logic Unit

Amplitude Modulation

Application Messaging Interface

Ampere

American National Standards Institute
Ahead-of-Time

Application Programming Interface

Advanced Program to Program Communication
Association of Radio Industries and Business of Japan
Address Strobe

American Standard Code for Information Interchange
Application Specific Integrated Circuit

Application Service Provider or Active Server Pages
Asynchronous Transfer Mode, Automated Teller Machine
Application to Transaction Model Interface
Advanced Television Standards Committee
Advanced Television Enhancement Forum

Background Debug Mode
Bit Error Rate

Basic Input/Output System
Broadcast Markup Language

357

Abbreviations and Acronyms

BMP Bean Managed Persistence

BOA Basic Object Adaptor

BOM Bill of Materials

bps Bits per Second

BSP Board Support Package

BSS ‘Block Started by Symbol’, ‘Block Storage Segment’, ‘Blank Storage Space’, ...
BTP Business Transaction Protocol

C

CAD Computer Aided Design

CAE Common Application Environment

CAN Controller Area Network

CAS Column Address Select

CASE Computer Aided Software Engineering
CBIC Cell-Based IC or Cell-Based ASIC

CBQ Class Based Queuing

CCF Common Connector Framework

CCI Common Client Interface

CCM Common CORBA Model

CDC Connected Device Configuration

CDN Content Delivery Network

CEA Consumer Electronics Association

CEN European Committee for Standardization
CGI Common Gateway Interface

CIDL Component Implementation Definition Language
CISC Complex Instruction Set Computer
CLDC Connected Limited Device Configuration
CLI Call Level Interface

CLR Common Language Runtime

CLS Common Language Specification

CMI Common Messaging Interface

CMOS Complementary Metal Oxide Silicon
CMP Container Managed Persistence

COFF Common Object File Format

COM Component Object Model

COPS Common Open Policy Service

CORBA Common Object Request Broker Architecture
CPI Container Provided Interface

CPLD Complex Programmable Logic Device
CPU Central Processing Unit

358

Abbreviations and Acronyms

CRT Cathode Ray Tube

CTG CICS Transaction Gateway

CTS Clear-to-Send

D

DAC Digital-to-Analog Converter

DAD Document Access Definition

DAG Data Address Generator

DASE Digital TV Applications Software Environment
DAVIC Digital Audio Visual Council

dB Decibel

DC Direct Current

D-Cache Data Cache

DCE Data Communications Equipment or Distributed Computing Environment
DCOM Distributed Component Object Model

DDL Data Definition Language

Demux Demultiplexor

DHCP Dynamic Host Configuration Protocol

DII Dynamic Invocation Interface

DIMM Dual Inline Memory Module

DIP Dual Inline Package

DLL Dynamic Link Library

DMA Direct Memory Access

DNS Domain Name Server, Domain Name System, Domain Name Service
DOM Document Object Model

DPRAM Dual Port RAM

DRAM Dynamic Random Access Memory

DRDA Distributed Relational Database Architecture
DSL Digital Subscriber Line

DSP Digital Signal Processor

DTD Data Type Definition

DTE Data Terminal Equipment

DTP Distributed Transaction Processing

DTVIA Digital Television Industrial Alliance of China
DVB Digital Video Broadcasting

E

ECI External Call Interface

EDA Electronic Design Automation

359

Abbreviations and Acronyms

EDF
EDI
EDO
EEMBC
EEPROM
EIA
ELF
EMI
EPROM
ESD

EU

F
FAT
FCFS
FDA
FDMA
FET
FIFO
FFS
FM
FPGA
FPU
FSM
FTP

GB
Gbit
GCC
GDB
GHz
GND
GPS
GUI

HAVi
HDL
HL7

Earliest Deadline First

Electronic Data Interchange

RAM Extended Data Out Random Access Memory
Embedded Microprocessor Benchmarking Consortium
Electrically Erasable Programmable Read Only Memory
Electronic Industries Alliance

Extensible Linker Format

Electromagnetic Interference

Erasable Programmable Read Only Memory
Electrostatic Discharge

European Union

File Allocation Table

First Come First Served

Food and Drug Administration — USA
Frequency Division Multiple Access
Field Effect Transistor

First In First Out

Flash File System

Frequency Modulation

Field Programmable Gate Array
Floating Point Unit

Finite State Machine

File Transfer Protocol

Gigabyte

Gigabit

GNU C Compiler

GNU Debugger

Gigahertz

Ground

Global Positioning System
Graphical User Interface

Home Audio/Video Interoperability
Hardware Description Language
Health Level Seven

360

Abbreviations and Acronyms

HLDA
HLL
HTML
HTTP
Hz

I

IC
L,C
I-Cache
ICE
ICMP
IDE
IEC
IEEE
IETF
IGMP
INT
1/0

1P
IPC
IR
IRQ
ISA
ISA
ISO
ISP
ISR
ISS
ITU

J

JIT
J2ME
JTAG
VM

kB
kbit

Hold Acknowledge
High-Level Language
HyperText Markup Language
HyperText Transport Protocol
Hertz

Integrated Circuit

Inter Integrated Circuit Bus

Instruction Cache

In-Circuit Emulator

Internet Control Message Protocol
Integrated Development Environment
International Engineering Consortium
Institute of Electrical and Electronics Engineers
Internet Engineering Task Force
Internet Group Management Protocol
Interrupt

Input/Output

Internet Protocol

Interprocess Communication

Infrared

Interrupt ReQuest

Instruction Set Architecture

Bus Industry Standard Architecture Bus
International Standards Organization
In-System Programming

Interrupt Service Routine

Instruction Set Simulator

International Telecommunication Union

Just-In-Time

Java 2 MicroEdition
Joint Test Access Group
Java Virtual Machine

Kilobyte
Kilobit

361

Abbreviations and Acronyms

kbps
kHz
KVM

L
LA
LAN
LCD
LED
LIFO
LSb
LSB
LSI

M
mQ)
MQ
MAN
MCU
MHP
MIDP
MIPS

MMU
MOSFET
MPSD
MPU
MSb
MSB
MSI
MTU
MUTEX

N
NAK
NAT
NCCLS
NFS
NIST

Kilobits per second
Kilohertz
K Virtual Machine

Logic Analyzer

Local Area Network
Liquid Crystal Display
Light Emitting Diode
Last In First Out

Least Significant Bit
Least Significant Byte
Large Scale Integration

Milliohm

Megaohm

Metropolitan Area Network
Microcontroller

Multimedia Home Platform

Mobile Information Device Profile
Millions of Instructions per Second, Microprocessor without Interlocked
Pipeline Stages

Memory Management Unit

Metal Oxide Silicon Field Effect Transistor
Modular Port Scan Device

Microprocessor

Most Significant Bit

Most Significant Byte

Medium Scale Integration

Maximum Transfer Unit

Mutual Exclusion

NotAcKnowledged

Network Address Translation

National Committee for Clinical Laboratory Standards
Network File System

National Institute of Standards and Technology

362

Abbreviations and Acronyms

NMI
nsec
NTSC
NVRAM

OCAP
OCD
OEM
60)
oop
oS
OSGi
OSI
OTP

PAL
PAN
PC
PCB
PCI
PCP
PDA
PDU
PE
PID
PIO
PIP
PLC
PLD
PLL
POSIX
POTS
PPC
PPM
PPP
PROM
PSK

Non-Maskable Interrupt

Nanosecond

National Television Standards Committee
Non-Volatile Random Access Memory

Open Cable Application Forum
On Chip Debugging

Original Equipment Manufacturer
Object Oriented

Object-Oriented Programming
Operating System

Open Systems Gateway Initiative
Open Systems Interconnection
One Time Programmable

Programmable Array Logic, Phase Alternating Line
Personal Area Network

Personal Computer

Printed Circuit Board

Peripheral Component Interconnect

Priority Ceiling Protocol

Personal Data Assistant

Protocol Data Unit

Presentation Engine, Processing Element
Proportional Integral Derivative

Parallel Input/Output

Priority Inheritance Protocol, Picture-In-Picture
Programmable Logic Controller, Program Location Counter
Programmable Logic Device

Phase Locked Loop

Portable Operating System Interface X

Plain Old Telephone Service

PowerPC

Parts Per Million

Point-to-Point Portocol

Programmable Read Only Memory

Phase Shift Keying

363

Abbreviations and Acronyms

PSTN
PTE
PWM

Q
QA

R
RAM
RARP
RAS
RF
RFC
RFI
RISC
RMA
RMS
ROM
RPM
RPU
RTC
RTOS
RTS
RTSJ

SBC
SCC
SECAM
SEI
SIMM
SIO
SLD
SLIP
SMPTE
SMT
SNAP
SNR

Public Switched Telephone Network
Process Table Entry
Pulse Width Modulation

Quality Assurance

Random Access Memory

Reverse Address Resolution Protocol
Row Address Select

Radio Frequency

Request For Comments

Radio Frequency Interference
Reduced Instruction Set Computer
Rate Monotonic Algorithm

Root Mean Square

Read Only Memory

Revolutions Per Minute
Reconfigurable Processing Unit
Real Time Clock

Real Time Operating System
Request To Send

Real Time Specification for Java
Read/Write

Single Board Computer

Serial Communications Controller

Systeme Electronique pour Couleur avec Mémoire
Software Engineering Institute

Single Inline Memory Module

Serial Input/Output

Source Level Debugger

Serial Line Internet Protocol

Society of Motion Picture and Television Engineers
Surface Mount

Scalable Node Address Protocol

Signal-to-Noise Ratio

364

Abbreviations and Acronyms

SoC System-on-Chip

SOIC Small Outline Integrated Circuit
SPDT Single Pole Double Throw

SPI Serial Peripheral Interface
SPST Single Pole Single Throw
SRAM Static Random Access Memory
SSB Single Sideband Modulation
SSI Small Scale Integration

T

TC Technical Committee

TCB Task Control Block

TCP Transmission Control Protocol
TDM Time Division Multiplexing
TDMA Time Division Multiple Access
TFTP Trivial File Transfer Protocol
TLB Translation Lookaside Buffer
TTL Transistor—Transistor Logic

U

UART Universal Asynchronous Receiver/Transmitter
UDM Universal Design Methodology
UDP User Datagram Protocol

ULSI Ultra Large Scale Integration
UML Universal Modeling Language
UPS Uninterruptible Power Supply
USA United States of America
USART Universal Synchronous—Asynchronous Receiver—Transmitter
USB Universal Serial Bus

UTP Untwisted Pair

\Y

VHDL Very High Speed Integrated Circuit Hardware Design Language
VLIW Very Long Instruction Word
VLSI Very Large Scale Integration
VME VersaModule Eurocard

VoIP Voice Over Internet Protocol
VPN Virtual Private Network

365

Abbreviations and Acronyms

Al
WAN
WAT
WDT
WLAN
WML
WOM

XCVR
XHTML
XML

Wide Area Network
Way-Ahead-of-Time
Watchdog Timer

Wireless Local Area Network
Wireless Markup Language
Write Only Memory

Transceiver
eXtensible HyperText Markup Language
eXtensible Markup Language

366

Embedded Systems Glossary

A

Absolute Memory Address The physical address of a specific memory cell.

Accumulator A special processor register used in arithmetic and logical operations to store
an operand used in the operation, as well as the results of the operation.

Acknowledge (ACK) A signal used in bus and network ‘handshaking’ protocols as an
acknowledgment of data reception from another component on the bus (on an embedded
board for bus handshaking) or from another embedded system via some networking
transmission medium (for network handshaking).

Active High Where a logic value of ‘1’ is a higher voltage than a logic value of ‘0’ in a circuit.

Active Low Where a logic value of ‘0’ is a higher voltage than a logic value of ‘1’ in
a circuit.

Actuator A device used for converting electrical signals into physical actions, commonly
found in flow-control valves, motors, pumps, switches, relays and meters.

Adder A hardware component that can be found in a processor’s CPU that adds two
numbers.

Address Bus An address bus carries the addresses (of a memory location, or of particular
status/control registers) between board components. An address bus can connect processors
to memory, as well as processors to each other.

Ahead-of-Time Compiler (AOT) See Way-Ahead-of-Time Compiler.

Alternating Current (AC) An electric current whose voltage source changes polarity of its
terminals over time, causing the current to change direction with every polarity change.

367

Embedded Systems Glossary

Ammeter A measurement device that measures the electrical current in a circuit.

Ampere The standard unit for measuring electrical current, defined as the charge per unit
time (meaning the number of coulombs that pass a particular point per second).

Amplifier A device that magnifies a signal. There are many types of amplifiers (log, linear,
differential, etc.), all differing according to how they modify the input signal.

Amplitude A signal’s size. For an AC signal it can be measured via the high point of an AC
wave from the equilibrium point (center) to the wave’s highest peak or by performing the
RMS (root mean square) mathematical scheme — which is by 1) finding the square of the
waveform function, 2) averaging the value of the result of step (1) over time, and 3) taking
the square root of the results of step (2). For a DC signal, it is its voltage level.

Amplitude Modulation (AM) The transmission of data signals via modifying (modulating)
the amplitude of a waveform to reflect the data (i.e., a ‘1’ bit being a wave of some amplitude,
and a ‘0’ bit being a wave with a different amplitude).

Analog Data signals represented as a continuous stream of values.

Analog-to-Digital Converter (A/D Converter) A device that converts analog signals to
digital signals.

AND Gate A gate whose output is 1 when both inputs are 1.

Anion A negative ion, meaning an atom that gains electrons.

Anode (1) The negatively charged pole (terminal) of a voltage source. (2) The positively
charged electrode of a device (i.e., diode), which accepts electrons (allowing a current to flow

through the device).

Antenna A transducer made up of conductive material (wires, metal rod, etc.) used to
transmit and receive wireless signals (radio waves, IR, etc.).

Antialiased Fonts Fonts in which a pixel color is the average of the colors of surrounding
pixels. It is a commonly used technique in digital televisions for evening (smoothing)

displayed graphical data.

Application Layer The layer within various models (OSI, TCP/IP, Embedded Systems
Model, etc.), which contains the application software of an embedded device.

368

Embedded Systems Glossary

Application Programming Interface (API) A set of subroutine calls that provide an
interface to some type of component (usually software) within an embedded device (OS
APIs, Java APIs, MHP APIs, etc.).

Application Server Middleware Middleware that allows access to legacy software via a browser.
Application-Specific Integrated Circuit (ASIC) An application-specific ISA-based IC that is
customized for a particular type of embedded system or in support of a particular application
within an embedded system. There are mainly full-custom, semi-custom, or programmable
types of ASICs. PLDs and FPGAs are popular examples of (programmable) ASICs.

Architecture See Embedded Systems Architecture or Instruction Set Architecture.

Arithmetic Logic Unit (ALU) The component within a processor’s CPU which executes
logical and mathematical operations.

Aspect Ratio A ratio of width to height (in memory the number of bits per address to the
total number of memory addresses, the size or resolution of a display, etc.).

Assembler A compiler that translates assembly language into machine code.
Astable Multivibrator A sequential circuit in which there is no state it can hold stable in.

Asynchronous A signal or event that is independent of, unrelated to, and uncoordinated with
a clock signal.

Attenuator A device that reduces (attenuates) a signal (the opposite of what an amplifier
does).

Automatic Binding When an RPC client automatically locates and selects a specific server.

Autovectoring The process of managing interrupts via priority levels rather than relying on
an external vector source.

B

Background Debug Mode (BDM) Components used in debugging an embedded system.
BDM components include BDM hardware on the board (a BDM port and an integrated debug
monitor in the master CPU), and debugger on the host (connected via a serial cable to BDM
port). BDM debugging is sometimes referred to as On-Chip Debugging (OCD).

369

Embedded Systems Glossary

Bandwidth On any given transmission medium, bus, or circuitry — the frequency range of an
analog signal (in hertz, the number of cycles of change per second) or digital signal (in bps,
the number of bits per second) traveling through it (as in the case of a bus or transmission
medium) or being processed by it (as in the case of a processor).

Basic Input/Output System (BIOS) Originally the boot-up firmware on x86-based PCs,
now available for many off-the-shelf embedded x86-based boards and a variety of embedded
OS:s.

Battery A voltage source where voltage is created through a chemical reaction within it. A
battery is made up of two metals submerged within a chemical solution, called an electrolyte,
that is in liquid (wet cell) or paste (dry cell) form. Basically, the two metals respond with
different ionic state after they are exposed to the electrolyte. Wet cells are used in automobiles
(car batteries), and dry cells are used in many different types of portable embedded systems
(radios, toys, etc.).

Baud Rate The total number of bits per some unit of time (kbits/sec, Mbits/sec, etc.) that can
be transmitted over some serial transmission link.

Bias An offset (such as voltage or current) applied to a circuit or electrical element to modify
the behavior of the circuit or element.

Big Endian A method of formatting data in which the lowest-order bytes (or bits) are stored
in the highest bytes (or bits). For example, if the highest-order bits are from left to right in
descending order in a particular 8-bit ISA, big endian mode in this ISA would mean that bit O of
the data would be stored from left to right in ascending order (the value of ‘B3h/10110011b’
would be stored as ‘11001101b’). In a 32-bit ISA, for instance, where the highest-order bytes
are stored from left to right in descending order, big endian mode in this ISA would mean

that byte O of the data is stored from left to right in the word in ascending order (i.e., the value
of ‘B3A0FF11h’ would be stored as ‘11FFAOB3h’).

Binary A base-2 number system used in computer systems, meaning the only two symbols
are a ‘0’ or ‘1’. These symbols are used in a variety of combinations to represent all data.

Bit Error Rate (BER) The rate at which a serial communication stream loses and/or
transfers incorrect data bits.

Bit Rate The (number of actual data bits transmitted / total number of bits that can be
transmitted) X the baud rate of the communications channel.

370

Embedded Systems Glossary

Black-Box Testing Testing that occurs with a tester that has no visibility into the internal
workings of the system (no schematics, no source code, etc.) and is basing testing on general
product requirements documentation.

Blocking Communication When communication between receiver and transmitter is
blocked until response is received in synchronous messaging communication scheme.

Block Started by Symbol (BSS) BSS is several different things depending on the context
and who is asked, including ‘Block Started by Symbol’, ‘Block Storage Segment’, and ‘Blank
Storage Space’. The term ‘BSS’ originated from the 1960s, and while not everyone agrees on
what the BSS abbreviation stands for, it is generally agreed upon that BSS is a statically
allocated memory space containing the source code’s uninitialized variables (data).

Board Support Package (BSP) A software provided by many embedded off-the-shelf OS
vendors that allow their OSs to be ported more easily over various boards and architectures.
BSPs contain the board and architecture-specific libraries required by the OS, and allow for

the device drivers to be integrated more easily for use by the OS through BSP APIs.

Bootloader Firmware in an embedded system that initializes the system’s hardware and
system software components.

Breakpoint A debugging mechanism (hardware or software) which stops the CPU from
executing code.

Bridge A component on an embedded board that interconnects and interfaces two different buses.
Buffered Queue RAM resident message queue.

Bus A collection of wires that interconnect components on an embedded board.

Byte A byte is defined as being some 8-bit value.

Byte Code Byte (8-bit) size opcodes that have been created as a result of high-level source
code (such as Java or C#) being compiled by a compiler (a Java or some Intermediate
Language (IL) compiler) on a host development machine. It is byte code that is translated by
a Virtual Machine (VM), such as: the Java Virtual Machine (JVM) or an.NETCE Compact

Framework virtual machine, for example.

Byte Order How data bits and/or bytes are represented and stored in a particular component
of a computer system.

371

Embedded Systems Glossary
C

Cache Very fast memory that holds copies of a subset of main memory, to allow for faster
CPU access to data and instructions typically stored in main memory.

Capacitor Used to store electrostatic energy, a capacitor is basically made up of conductors
(two parallel metal plates), separated by an insulator (a dielectric such as: air, ceramic,
polyester, mica, etc.). The energy itself is stored in an electric field created between the

two plates given the right environment.

Cathode (1) The positively charged pole (terminal) of a voltage source. (2) The negatively
charged electrode of a device (diode) that acts as an electron source.

Cation A positive ion, meaning an atom that has lost electrons.

Cavity Resonator A component that contains and maintains an oscillating electromagnetic
field.

Central Processing Unit (CPU) (1) The master/main processor on the board. (2) The
processing unit within a processor that is responsible for executing the indefinite cycle of

fetching, decoding, and executing instructions while the processor has power.

Checksum A numerical value calculated from some set of data to verify the integrity of that
data, commonly used for data transmitted via a network.

Chip See Integrated Circuit (IC).
Circuit A closed system of electronic components in which a current can flow.

Circuit Breaker An electrical component that insures that a current load doesn’t get too large
by shutting down the circuit when its overheat sensor senses there is too much current.

Class Used in object-oriented schemes and languages to create objects, a class is a prototype
(type description) that is made up of some combination of interfaces, functions (methods),
and variables.

Clear-Box Testing See White-Box Testing.

Clock An oscillator that generates signals resulting in some type of waveform. Most
embedded boards include a digital clock that generates a square waveform.

372

Embedded Systems Glossary

Coaxial Cable A type of cabling made up of two layers of physical wire, one center wire
and one grounded wire shielding. Coaxial cables also include two layers of insulation, one
between the wire shielding and center wire, and one layer above the wire shielding. The
shielding allows for a decrease in interference (electrical, RF, etc.).

Compiler A software tool that translates source code into assembly code, an intermediary
language opcode, or into a processor’s machine code directly.

Complex Instruction Set Computer (CISC) A general-purpose ISA which typically is made
up of many, more complex operations and instructions than other general-purpose ISAs.

Computer Aided Design (CAD) Tools Tools used to create technical drawings and
documentation of the hardware, such as schematic diagrams.

Computer Aided Software Engineering (CASE) Tools Design and development tools

that aid in creating an architecture and implementing a system, such as UML tools and code
generators.

Conductor A material that has fewer impediments to an electric current (meaning it more
easily loses/gains valence electrons) allowing for an electrical current to flow more easily
through them than other types of materials. Conductors typically have < 3 valence electrons.
Connector An electrical component that interconnects different types of subsystems.

Context The current state of some component within the system (registers, variables, flags, etc.).

Context Switch The process in which a system component (interrupts, an OS task, etc.)
switches from one state to another.

Coprocessor A slave processor that supports the master CPU by providing additional
functionality, and that has the same ISA as the master processor.

Coulomb In electronics, the charge of one electron is too small to be of practical use, so in
electronics, the unit for measuring charges is called a coulomb (named after Charles
Coulomb who founded Coulomb’s law), and is equal to that of 6.28 X 10'8 electrons.

Critical Section A set of instructions that are flagged to be executed without interruption.

Cross Compiler A compiler that generates machine code for hardware platforms that differs
from the hardware platform the compiler is actually residing and running on.

373

Embedded Systems Glossary

Crystal An electrical component that determines an oscillator’s frequency. A crystal is
typically made up of two metal plates separated by quartz, with two terminals attached to
each plate. The quartz within a crystal vibrates when current is applied to the terminals,
and it is this frequency that impacts the frequency at which the oscillator operates.

Current A directed flow of moving electrons.

D

Daisy Chain A type of digital circuit in which components are connected in series (in a
‘chain-like’ structure), and where signals pass through each of the components down through
the entire chain. Components at the top of the chain essentially can impact (slow down, block,
etc.) a signal for being received by components further down in the chain.

Data Communications Equipment (DCE) The device that the DTE wants to serially
communicate with, such as an I/O device connected to the embedded board.

Datagram What the networking data received and processed by the networking layer of the
OSI model or corresponding layer in other networking models (the Internet layer in the

TCP/IP model) is called.

Data Terminal Equipment (DTE) The initiator of a serial communication, such as a PC or
embedded board.

Deadlock An undesired result related to the use of an operating system, in which a set of
tasks are blocked, awaiting an event to unblock that is controlled by one of the tasks in the
blocked set.

Debugger A software tool used to test for, track down, and fix bugs.

Decimal A base-10 number system, meaning there are 10 symbols (0-9), used in a variety of
combinations to represent data.

Decoder A circuit or software that translates encoded data into the original format of the data.
Delay Line An electrical component that delays the transmission of a signal.

Demodulation Extracting data from a signal that was modified upon transmission to include
a carrier signal and the added transmitted data signal.

374

Embedded Systems Glossary

Demultiplexor (Demux) A circuit which connects one input to more than one output, where
the value of the input determines which output is selected.

Device Driver Software that directly interfaces with and controls hardware.
Dhrystone A benchmarking application which simulates generic systems programming
applications on processors, used to derive the MIPS (Millions of Instructions per Second)

value of a processor.

Die The portion of an integrated circuit that is made of silicon, that can either be enclosed in
some type of packaging or connected directly to a board.

Dielectric An insulative layer of material found in some electrical components, such as
capacitors.

Differentiator A circuit that calculates a mathematical (calculus) derivative output based on
a given input.

Digital A signal that is expressed as some combination of one of two states, a ‘0’ or ‘1°.

Digital Signal Processor (DSP) A type of processor that implements a datapath ISA, and is
typically used for repeatedly performing fixed computations on different sets of data.

Digital Subscriber Line (DSL) A broadband networking protocol that allows for the direct
digital transmission of data over twisted pair wired (POTS) mediums.

Digital-to-Analog Converter (DAC) A device that converts digital signals to analog signals.

Diode A two-terminal semiconductor device that allows current flow in one direction, and
blocks current which flows in the opposite direction.

Direct Current (DC) Current that flows constantly in the same direction in a circuit. DC
current is defined by two variables: polarity (the direction of the circuit) and magnitude

(the amount of current).

Direct Memory Access (DMA) A scheme in which data is exchanged between I/O and memory
components on a board with minimal interference from and use of the master processor.

Disassembler Software that reverse-compiles the code, meaning machine language is
translated into assembly language.

375

Embedded Systems Glossary

Domain Name Service (DNS) An OSI model session layer networking protocol that
converts domain names into internet (network layer) addresses.

Dual Inline Memory Module (DIMM) A type of packaging in which memory ICs can come
in, specifically a mini-module (PCB) that can hold several ICs. A DIMM has protruding pins
from one side (both on the front and back) of the module that connect into a main embedded
motherboard, and where opposing pins (on the front and back of the DIMM) are each
independent contacts.

Dual Inline Package (DIP) A type of packaging that encloses a memory IC, made up of
ceramic or plastic material, with pins protruding from two opposing sides of the package.

Dual Port Random Access Memory (DPRAM) RAM that can connect to two buses
allowing for two different components to access this memory simultaneously.

Dynamic Host Configuration Protocol (DHCP) A networking layer networking protocol
that provides a framework for passing configuration information to hosts on a TCP/IP-based
network.

Dynamic Random Access Memory (DRAM) RAM whose memory cells are circuits with
capacitors that hold a charge in place (the charges or lack thereof reflecting the data).

E

Earliest Deadline First (EDF) A real-time, preemptive OS scheduling scheme in which
tasks are scheduled according to their deadline, duration, and frequency.

Effective Address The memory address generated by the software. This is the address that is
then translated into the physical address of the actual hardware.

Electrically Erasable Programmable Read Only Memory (EEPROM) A type of ROM
which can be erased and reprogrammed more than once, the number of times of erasure and
re-use depending on the EEPROM. The contents of EEPROM can be written and erased ‘in
bytes’ without using any special devices. This means the EEPROM can stay on its residing
board, and the user can connect to the board interface to access and modify EEPROM.

Electricity Energy generated by the flow of electrons through a conductor.

Electron A negatively charged subatomic particle.

376

Embedded Systems Glossary

Emitter One of three terminals of a bipolar transistor.
Encoder A device that encodes (translates) a set of data into another set of data.
Endianness See Byte Order.

Energy The amount of work performed that can be measured in units of joules (J) or
watts X time.

Erasable Programmable Read Only Memory (EPROM) A type of ROM that can be
erased more than one time using other devices that output intense short wavelength,
ultraviolet light into the EPROM package’s built-in transparent window.

Ethernet One of the most common LAN protocols, implemented at physical and data-link
layers of the OSI model.

Extended Data Out Random Access Memory (EDO RAM) A type of RAM commonly
used as main and/or video memoryj; it is a faster type of RAM that can send a block of data
and fetch the next block of data simultaneously.

F

Farad The unit of measurement in which capacitance is measured.

Field Programmable Gate Array (FPGA) A type of programmable ASIC implementing the
application-specific ISA model.

Firmware Any software stored on ROM.

Flash Memory A CMOS-based faster and cheaper variation of EEPROM. Flash can be
written and erased in blocks or sectors (a group of bytes). Flash can also be erased
electrically, while still residing in the embedded device.

Flip-Flop One of the most commonly used types of latches in processors and memory circuitry.
Flip-flops are sequential circuits that are called such because they function by alternating
(flip-flopping) between both states (0 and 1), and the output is then switched (such as from

0 to 1 or from 1 to O, for example). There are several types of flip-flops, but all essentially fall
under either the asynchronous or synchronous categories.

377

Embedded Systems Glossary

Fuse An electrical component that protects a circuit from too much current by breaking the
circuit when a high enough current passes through it. Fuses can also be used in some types of
ROMs as the mechanism to store data.

G

Galvanometer A measurement device that measures smaller amounts of current in a circuit.

Garbage Collector A language-related mechanism that is responsible for deallocating
unused memory at runtime.

Gate A more complex type of electronic switching circuit designed to perform logical binary
operations, such as AND, OR, NOT, NOR, NAND, XOR, and so on.

Glass-Box Testing See White-Box Testing.

Ground In a circuit, the negative reference point for all signals.
H

Half Duplex An I/O communications scheme in which a data stream can be transmitted and
received in either direction, but in only one direction at any one time.

Handshaking The process in which protocols are adhered to by components on a board or
devices over a network that want to initiate and/or terminate communication.

Hard Real Time Describes a situation in which timing deadlines are always met.
Hardware All of the physical components of an embedded system.

Harvard Architecture A variation of the von Neumann model of computer systems, which
differs from von Neumann in that it defines separate memory spaces for data and instructions.

Heap A portion of memory used by software for dynamic allocation of memory space.

Heat Sink A component on a board that extracts and dissipates heat generated by other board
components.

Henry The unit of measurement for inductance.

Hertz The unit of measurement for frequency in terms of cycles per second.

378

Embedded Systems Glossary

High-Level Language A programming language that is semantically further away from
machine language, more resembles human language, and is typically independent of the
hardware.

Hit Rate A cache memory term indicating how often desired data are located in cache
relative to the total number of times cache is searched for data.

Host The computer system used by embedded developers to design and develop embedded
software; it can be connected to the embedded device and/or other intermediary devices for
downloading and debugging the embedded system.

Hysteresis The amount of delay in a device’s response to some change in input.

I

In-Circuit Emulator (ICE) A device used in the development and debugging of an
embedded system which emulates the master processor on an embedded board.

Inductance The storage of electrical energy within a magnetic field.

Inductor An electrical component made up of coiled wire surrounding some type of core
(air, iron, etc.). When a current is applied to a conductor, energy is stored in the magnetic
field surrounding the coil allowing for a energy storing and filtering effect.

Infrared (IR) Light in the THz (1000GHz, 2 X 10! Hz — 2 X 10"Hz) range of frequencies.
Instruction Set Architecture (ISA) The features that are built into an architecture’s
instruction set, including the types of operations, types of operands, and addressing modes,
to name a few.

Insulator A type of component or material which impedes the movement of an electric current.
Integrated Circuit (IC) An electrical device made up of several other discrete electrical
active elements, passive elements, and devices (transistors, resistors, etc.) — all fabricated

and interconnected on a continuous substrate (chip).

Interpreter A mechanism that translates higher-level source code into machine code, one
line or one byte code at a time.

Interrupt An asynchronous electrical signal.

379

Embedded Systems Glossary

Interrupt Handler The software that handles (processes) the interrupt, and is executed after
the context switch from the main instruction stream as a response to the interrupt.

Interrupt Service Routine (ISR) See Interrupt Handler:
Interrupt Vector An address of an interrupt handler.

Inverter A NOT gate that inverts a logical level input, such as from HIGH to a LOW or vice versa.

J

Jack An electrical device designed to accept a plug. There are many types of jacks, including
coaxial, two-plug, three-plug, and phono, just to name a few.

Joint Test Access Group (JTAG) A serial port standard that defines an external interface to
ICs for debugging and testing.

Just-In-Time (JIT) Compiler A higher-level language compiler that translates code via
interpretation in the first pass, and then compiles into machine code that same code to be
executed for additional passes.

K

Kernel The component within all operating systems that contains the main functionality of
the OS, such as process management, memory management, and I/O system management.

L

Lamp An electrical device that produces light. There are many types of lamps used on
different types of embedded devices, including neon (via neon gas), incandescent (producing
light via heat), and xenon flash lamps (via some combination that includes high voltage, gas,
and electrodes), to name a few.

Large Scale Integration (L.SI) A reference to the number of electronic components in an IC.
An LSI chip is an IC containing 3000-100,000 electronic components per chip.

Latch A bistable multivibrator that has signals from its output fed back into its inputs, and

can hold stable at only one of two possible output states: O or 1. Latches come in several
different subtypes, including S-R, Gated S-R, and D.

380

Embedded Systems Glossary

Latency The length of elapsed time it takes to respond to some event.
Least Significant Bit (LSb) The bit furthest to the right of any binary version of a number.

Least Significant Byte (LSB) The 8 bits furthest to the right of any binary version of a
number; for example, the two digits furthest to the right of any hexadecimal version of a
number larger than a byte.

Light Emitting Diode (LED) Diodes that are designed to emit visible or infrared (IR) light
when in forward bias in a circuit.

Lightweight Process See Thread.
Linker A software development tool used to convert object files into executable files.

Little Endian Data represented or stored in such a way that the LSB and/or the LSb is stored
in the lowest memory address.

Loader A software tool that relocates developed software into some location in memory.

Local Area Network (LAN) A network in which all devices are within close proximity to
each other, such as in the same building or room.

Logical Memory Physical memory as referenced from the software’s point of view, as a
one-dimensional array. The most basic unit of logical memory is the byte. Logical memory is
made up of all the physical memory (registers, ROM, and RAM) in the entire embedded system.

Loudspeaker See Speaker.
Low-Level Language A programming language which more closely resembles machine

language. Unlike high-level languages, low-level languages are hardware dependent, meaning
there is typically a unique instruction set for processors with different architectures.

M

MAC Address The networking address located on networking hardware. MAC addresses
are internationally unique due to the management of allocation of the upper 24 bits of these
addresses by the IEEE organization.

Machine Language A basic language consisting of ones and zeros that hardware components
within an embedded system directly transmit, store, and/or execute.

381

Embedded Systems Glossary

Medium Scale Integration (MSI) A reference to the number of electronic components in an
IC. An MSI chip is an IC containing 100-3000 electronic components per chip.

Memory Cell Physical memory circuit that can store one bit of memory.

Memory Management Unit (MMU) A circuit used to translate logical addresses into physical
addresses (memory mapping), as well as handling memory security, controlling cache, handling
bus arbitration between the CPU and memory, and generating appropriate exceptions.

Meter A measurement device that measures some form of electrical energy, such as voltage,
current, or power.

Microcontroller Processors that have most of the system memory and peripherals integrated
on the chip.

Microphone A type of transducer that converts sound waves into electrical current. There
are many types of microphones used on embedded boards, including condenser microphones
which use changes in capacitance in proportion to changes in sound waves to produce their
conversions, dynamic microphones which use a coil that vibrates to sound waves, and a
magnetic field to generate a voltage that varies in proportion to sound variations, to

name a few.

Microprocessor Processors that contain a minimal set of integrated memory and I/O peripherals.
Most Significant Bit (MSb) The bit furthest to the left of any binary version of a number.
Most Significant Byte (MSB) The 8 bits furthest to the left of any binary version of a
number; for example, the two digits furthest to the left of any hexadecimal version of

a number larger than a byte.

Multitasking The execution of multiple tasks in parallel.

Multivibrator A type of sequential logical circuit designed so that one or more of its outputs
are fed back as input.

N
NAND Gate A gate whose output is O when both inputs are 1.

Noise Any unwanted signal alteration from an input source, or any part of the input signal
generated from something other then a sensor.

382

Embedded Systems Glossary

Non-Volatile Memory (NVM) Memory that contains data or instructions that remain even
when there is no power in the system.

NOR Gate A gate whose output is 0 if either of the inputs are 1.

NOT Gate See Inverter.

O

On-Chip Debugging (OCD) Refers to debugging schemes in which debugging capabilities
are built into the board and master processor.

One Time Programmable (OTP) A type of ROM that can only be programmed
(permanently) one time outside the manufacturing factory, using a ROM burner. OTPs are
based upon bipolar transistors, in which the ROM burner burned out fuses of cells to program
them to ‘1’ using high voltage/current pulses.

Operating System (OS) A set of software libraries that serve two main purposes in an
embedded system: providing an abstraction layer for software on top of the OS to be less
dependent on hardware (making the development of middleware and applications that sit on
top of the OS easier), and managing the various system hardware and software resources to
ensure the entire system operates efficiently and reliably.

OR Gate A gate whose output is 1 if either of the inputs are 1.

P

Packet A unit to describe some set of data being transmitted over a network at one time.
Parallel Port An I/O channel that can transmit or receive multiple bits simultaneously.

Plug An electrical component used to connect one subsystem into the jack of another subsystem.
There are many types of plugs, such as two-conductor, three-conductor, and
phono/RCA.

Polling Repeatedly reading a mechanism (such as a register, flag, or port) to determine if
some event has occurred.

Printed Circuit Board (PCB) Thin sheets of fiberglass in which all the electronics within
the circuit sit on. The electric path of the circuit is printed in copper, which carries the
electrical signals between the various components connected on the board.

383

Embedded Systems Glossary

Process A creation of the OS that encapsulates all the information that is involved in the
execution of a program, such as a stack, PC, the source code and data.

R

Random Access Memory (RAM) Volatile memory in which any location within it can be
accessed directly (randomly, rather than sequentially from some starting point), and whose
content can be changed more than once (the number depending on the hardware).

Read Only Memory (ROM) A type of non-volatile memory that can be used to store data on
an embedded system permanently.

Real Time Operating System (RTOS) An OS in which tasks meet their deadlines, and
related execution times are predictable (deterministic).

Rectifier An electronic component that allows current to flow in only one direction.

Reduced Instruction Set Computer (RISC) An ISA that usually defines simpler operations
made up of fewer instructions.

Register A combination of various flip-flops that can be used to temporarily store data or
delay signals.

Relay An electromagnetic switch. There are many types of relays, including the DPDT
(Double Pole Double Throw) relay which contains two contacts that can be toggled both ways
(on and off), a DPST (Double Pole Single Throw) relay which contains two contacts that can
only be switched on or off, an SPDT (Single Pole Double Throw) relay which contains one
contact that can be toggled both ways (on and off), and an SPST (Single Pole Single Throw)
relay which contains one set of contacts and can only be switched one way (on or off).

Resistor An electronic device made up of conductive materials that have had their conductivity
altered in some fashion in order to allow for an increase in resistance.

Romizer A device used to write data to EPROMs.

S

Scheduler A mechanism within the OS that is responsible for determining the order and the
duration of tasks to run on the CPU.

384

Embedded Systems Glossary

Semaphore A mechanism within the OS which can be used to lock access to shared memory
(mutual exclusion), as well as can be used to coordinate running processes with outside
events (synchronization).

Semiconductor Material or electrical component whose base elements have a conductive
nature that can be altered by introducing other elements into their structure, meaning it has
the ability to behave both as a conductor (conducting part of the time) and as an insulator
(blocking current part of the time).

Serial Port An I/O channel that can transmit or receive one bit at any given time.
Speaker A type of transducer that converts variations of electrical current into sound waves.

Switch An electrical device used to turn an electrical current flow on or off.

T

Target The embedded system platform, connected to the host, being developed.
Task See Process.

Thermistor A resistor with a resistance changes on-the-fly depending on the temperature the
thermistor is exposed to. A thermistor’s resistor typically decreases as temperature increases.

Thermocouple An electronic circuit that relays temperature differences via current flowing
through two wires joined at either end. Each wire is made of different materials with one
junction of the connected wires at the stable lower temperature, while the other junction is
connected at the temperature to be measured.

Thread A sequential execution stream within a task. Threads are created within the context
of a task, meaning a thread is bound to a task. Depending on the OS, a task can also own one
or more threads. Unlike tasks, threads of a task share the same resources, such as working
directories, files, I/O devices, global data, address space, and program code.

Throughput The amount of work completed in a given period of time.

Tolerance Represents at any one time how much more or less precise the parameters of an
electrical component are at any given time based on its actual labeled parameter value.
The actual values should not exceed plus (+) or minus (—) the labeled tolerance.

Transceiver A physical device which receives and transmits data bits over a networking
transmission medium.

385

Embedded Systems Glossary

Transducer An electrical device that transforms one type of energy into another type of
energy.

Transformer A type of inductor that can increase or decrease the voltage of an AC signal.
Transistor Some combination of P-type and N-type semiconductor material, typically with
three terminals connecting to one type of each material. Depending on the type of transistor,
they can be used for a variety of purposes, such as current amplifiers (amplification), in
oscillators (oscillation), in high-speed integrated circuits, and/or in switching circuits

(DIP switches and push buttons commonly found on off-the-shelf reference boards).

Translation Lookaside Buffer (TLB) A portion of cache used by an MMU for allocating
buffers that store address translations.

Trap Software and internal hardware interrupts that are raised by some internal event to the
master processor.

Truth Table A table that outlines the possible input(s) of a logic circuit or Boolean equation,
and the relative output(s) to the input(s).

Twisted Pair A pair of tightly interwrapped wires used for digital and analog data transmission.

U

Ultra Large Scale Integration (ULSI) A reference to the number of electronic components
in an IC. A ULSI chip is an IC containing over 1,000,000 electronic components per chip.

Universal Asynchronous Receiver Transmitter (UART) A serial interface that supports
asynchronous serial transmission.

Universal Synchronous Asynchronous Receiver Transmitter (USART) A serial interface
that supports both synchronous and asynchronous serial transmission.

Untwisted Pair (UTP) A pair of parallel wires used for digital and analog data transmission.

\Y%

Very Large Scale Integration (VLSI) A reference to the number of electronic components in
an IC. A VLSI chip is an IC containing 100,000-1,000,000 electronic components per chip.

386

Embedded Systems Glossary

Virtual Address A memory location based upon a logical address that allows for the
expansion of the physical memory space.

Voltage Divider An electrical circuit made up of a few or more resistors that can decrease
the input voltage of a signal.

Voltmeter A measurement device that measures voltage.

\u4

Wattmeter A measurement device that measures power.

Way-Ahead-of-Time (WAT) Compiler A compiler that translates higher-level code directly
into machine code.

White-Box Testing Testing that occurs with a tester that has visibility into the system’s
interworkings, such as having access to source code and schematics information.

Wire A component made up of conductive material that carries signals between components
on a board (i.e., bus wires) or between devices (i.e., wired transmission mediums).

X

XOR Gate A gate whose output is 1 (or on, or high) if only one input (but not both) is 1.

387

This page intentionally left blank

A

A Boss’s Quick-Start to Firmware
Engineering 9
abbreviations 357-66
Abstract window toolkit (AWT)
270
access (database system) 306
acronyms 357-66
actions (point-to-point protocols)
128-9
adaptive (goals for middleware) 2
Advanced Technology Attachment
(ATA) 22
aerospace standards and
middleware 59, 62
ahead-of-time (AOT)
algorithm 277-8
compiler 301
AMD
Flash Device Driver
Code 36
Geode Reference Board 16
Ampro
MIPS Reference Board 17
PowerPC Reference Board 17
analog television 74
application manager (MHP) 91
Application Programming
Interfaces (APIs)
CBIO 47,534
cryptography 336
databases 307, 315, 327
file systems 192, 250-1
Java 72
JVM versus .NET Compact
Framework 301
libraries 68, 262
message oriented middleware
330

MHP 81, 83
operating system 41, 68
OS and file systems 200
pJava 265-6, 267
TCP/IP 266
virtual machine 261,
262-72
vxWorks 235, 23642, 244-8
application software and embedded
middleware 11
application-specific ISA 18
architecture business cycle 6
arithmetic logic unit (ALU) 19
assembly (programming language)
256, 258, 300
asynchronous serial communication
106, 120
ATA Device Driver Public APL
(vxWorks) 37-9
atomic transactional file systems
250
attributes (relational database
model) 307
audio data path (digital televisions)
80
audio device drivers (MHP) 82
authentication and security
Code Access Security 337
cryptography algorithms 336
integration brokers 337-9
Java Virtual Machines 335-7
middleware 5, 328
protocols 120-1
remote procedure call 333,
338
summary 339
author (team member) 354
automotive standards and
middleware 60, 62

389

Index

availability and processor
performance 18

B
B+ tree
directory sample source code
227,229,230
high level index and databases
322-3

Baby USB Memory Stick 29
base class library (BCL) 262
behavior (databases) 312
benchmarks for processor
performance 19
block device (Flash) 197
block map (data storage
management) 221
blocks
device drivers 41, 49-50
hardware storage mediums 22
Bluetooth RFCOMM 118
body (email) 174
book summary 4-5, 12
bound (wired) networks 99-100
buffer and storage management
(real-world database system
model) 325
building a complex middleware
solution
alignment behind leadership 6
architecture business cycle 7
discipline in development 6
people 9
shipping 7-8
software productivity 8-9
strong ethics 6
teamwork 6-7
technology 6
bus device drivers (MHP) 81

Index

C

C (programming language) 71,
255-7,293, 300, 312, 348,
353
C# (programming language) 73,
260, 293, 301
C++ (programming language)
256-7,293, 312, 348-51
cache blocked input/output (CBIO)
API 47,534
cache layer 51
description 41
library (vxWorks) 46-7, 51-2
partition layer 52-3
Capability Maturity Model
Integration (CMMI) 343
central processing unit (CPU)
embedded databases 326
jthreads 292-3
MIPS 19
non-preemptive scheduling
algorithm 288-9
scheduler 286
tasks 285
throughput 18
VM design choice 301
character (device driver) 41
classes
[P addresses 141
record-based databases
313-14
client-server architecture 101
clients and networks 101
Code Access Security (CAS) 337
code inspections (systems
integration, testing and
verification) 353-4
commercial standards and
middleware 60, 62-3
common language runtime (CLR)
262
Common Language Specification
261
Common Object Request Broker
Architecture (CORBA) 5,
330, 334-6
communication (COM) port (I/0
subsystems for networks) 105
compilers
ahead-of-time 301

C++ 348
cross 258
just-in-time 273, 278, 279-82
programming 257-8
query 317,319
way-ahead-of-time 277-8, 301
see also dynamic adaptive
compiler
components
Embedded Systems Model
11-12
operating system 111, 113-14
Computer Aided Design (CAD)
313,315
configuration (vxWorks) 48-9
Connected Device Configuration
(CDC), J2ME 268-71
Connected Limited Device
Configuration (CLDC)
Generic Connected
Framework 268-9
J2ME 268
Connection class (Generic
Connection Framework) 270,
272
connectivity/intercommunication
(goals for middleware) 2
consumer electronics standards and
middleware 60, 63—4
context-switch (scheduling)
288-9
control bytes 121
copying files 234
core components for middleware
355-6
core layer (file systems) 208, 233
creating directories 234
creating/configuring files 232
cross-compilers (programming
language) 258
cryptography
algorithms 336
Application Programming
Interfaces 336
cycle per instruction (CPI) 19

DARPA standard RFC791 141
Data Access Object (DAO)
Frameworks 5, 330, 334

390

Data Definition Language (DDL)
308-9, 319
data management in file systems
221
data swapping (databases)
first in first out 325
least recently used 325
no recently used 325
optimal 325
second chance 325
data-link frames 108
data-link layer
data block flow diagram 119
data flow 108, 110
logical link control 117
media access control 117
middleware 116, 119
protocols 118, 120
upper 118-19
data-manipulation language (DML)
308-9, 313, 319
database design
APIs 316, 327
architecture models 316-17
database-specific standards
316
DBMS 316
embedded 325-6
extremeDB 326-7
hardware 316, 327
Integrity OS 326
memory 327
Nucleus OS 326
performance 327
Perst 316-17
purpose 315-16
QNX OS 326
software components 316
summary 326-8
vxWorks OS 326
database management system
(DBMS)
access 306
application software 306
data modeling 307
database design 315-17
description 305
functions 305-6
metadata 307
models 314-15

Index

real-world database system
model 317-25
record-based
object-oriented database
307-14
relational database 307
storage media 306-7
system communication 308-9
database-specific standards 316
databases
data swapping 325
description 311
design 315
hardware 355-6
object-oriented 312-13, 315
Perst 316-17, 319
real-world
the application layer
325-6
system model 317-25
record-based 307-14
relational 322
datagrams
Internet Protocol 141, 144,
145-50
middleware 113
socket 153
DatagramSockets 266, 268
Datalight FlashFx
high-level diagram 198
tuning parameters 199
deadline (earliest deadline first)
290
defense standards and middleware
59, 62
description of embedded systems
and middleware 1-5
device drivers
access by middleware software
111
AMD Flash Code 36
ATA Public API (vxWorks)
37-9
block 41
character 41
Datalight FlashFx high-level
diagram 198
JFS file systems open source
200-203
layer (file systems) 1967

libraries
Ethernet 113, 116
networks 109-11
MHP standard 80-2
miscellaneous monitor/control
41
networks 41, 108-11
operating system 41-54
OSI model 108-9
PCMCIA Flash Memory Card
35
POSIX 71
virtual 41
Dhrystone programs 19
digital televisions (DTVs)
audio data path 80
embedded device 74
set-top box 76
standards 76, 77
transport data path 79
video data path 79
Digital Video Broadcasting (DVB)
76
direct addressing (file systems) 221
directories
creating 232
removing 234
vxWorks 235
disks (hardware storage medium) 21
distributed component object model
(DCOM) 5, 329, 334
distributed computing environment
(DCE) 5,329,334
distributed transaction
message oriented middleware
5, 330-5
message oriented/distributed
messaging 329
summary 339
do-it-yourself middleware software
best practices 348-9
complication of design 347
features 347
lines of code 347
programming language 347
software design patterns 350
double-indirect addressing (file
system) 221
double-indirect block 221
driver interface layer 195, 196-200

391

drives (hardware storage medium)
20

Duplex serial handshaking 1067

duration (earliest deadline first) 290

dynamic adaptive compiler (DAC)
272,273, 301

E

earliest deadline first (EDF)
scheduler 290

electromagnetic waves (unbound
medium) 100

electronic program guides (EPGs) 86

email
body 174
envelope 174
header 174

embedded compiling (Java) 259-60

Embedded Microprocessor
Benchmark Consortium
(EEMBC) 19

embedded middleware software
1,11

embedded system design
(middleware and ‘ making
sense’) 343-4

Embedded Systems Conference
(ESC) 61

Embedded Systems Model
components 11-12
database design 316
file systems 192
virtual machine 261

Embedded Systems Architecture:...
10

emergency services standards and
middleware 59

‘end of mail data’ (QUIT) 175

energy and oil standards and
middleware 60, 65

enhanced broadcasting MHP
standard 86

envelope (email) 174

Ethernet device driver public
library (vxWorks) 114, 116

events (point-to-point protocols)
124-6

executable object file 258

execution engine
query compiler 319

Index

real-world database system
model 317
virtual machine 262
extent list (file systems) 221
extent-based addressing (file
system) 221
external Linux inode sample source
code (file systems) 228
extremeDB (database) 326-7

F

fairness (scheduling algorithm)
286
File System Operation API layer
195, 232
File Allocation Table (FAT) 198
file definition 191
file system core layer 195
file system operation (API) 195
file system-specific data 194
file systems
access 191-2
Application Programming
Interfaces 192
architecture model 194
atomic transactional 250
control block 208
data
core layer 208, 232
cores and embedded
devices 231-2
directories 208-20,
227-30
driver interface layer
196-200
file descriptor structure
management
208-20
management 195, 208,
221
operation API layer 232
operations 232
OS specific layer
200-208
storage management
221-7,234
Datalight Reliance 249
description 199
device driver layer (vxWorks)
196

double-indirect block 221
driver interface layer 193,
195-200

Embedded Systems Model 194

extent list 221

external Linux inode source
code 207,228

indirect block 221

inode data structure 2067

Linux and JFS 44

log management 208, 210

metadata 206, 208

OS specific layer 200-208

purpose 194

raw (unstructured) files 193

reference model 210, 232

reliability 249-52

stability 249-52

standards 192

structured data files 193

summary 252

vxWorks 45

see also JES (journaled file
system)

File Transfer Protocol (FTP)
commands/reply codes 168
high level 166, 167
integration brokers 339
network 166-7
open source example 168
ports 154
RFC959 166
server application 251, 252
standalone application 166

first in first out (FIFO)
data swapping 325
queues 332

flag bytes 121

flag field (IP fragmentation) 144-5

flags (IP fragmentation) 144-5

FlashFx libraries 198-9

flexibility/scalability (goals for
middleware) 2

formatted USB flash memory 24

fragment offset field (IP
fragmentation) 144

frame check sequence (FCS) 121

frames (data-link) 108

frequency (earliest deadline first)
290

392

G

Ganssle, Jack 9
garbage collector (GC)
algorithm 297
collection 297
Java 2934
memory allocator 294
.NET Compact Framework
262
virtual machine 273, 293-8
general database system model
317-18
General File System Model 195
general purpose
ISA 18
standards and middleware
60, 67
generational garbage collection
algorithm 297
Generic Connection Framework
CLDC 268
connection class 270, 272
glossary 367-87
goals for middleware
adaptive 2
connectivity/
intercommunication 2
flexibility/scalability 2
portability 2
security 2
graphical user interfaces (GUIs)
259
Graves, Steve 312

H

Half Duplex serial handshaking
106-8
hard disks
hardware 22-4
heads 22
low level format 23
platters 22
Seagate 27-8
tracks 23
Western Digital 25-6
hardware
database design 315-16, 327
databases 355
delays/problems 15
embedded middleware 11

Index

hard disks 224
input/output 17-19, 108-9
Java Virtual Machines 301
memory 17
.NET Compact Framework 301
networks
input/output 104-5,
108-11
physical layer 103-8
serial v. parallel I/O
106-8
operating system 41
physical layer 103-5, 108
processor design 17-19
storage differences 20-2
systems software 15, 102-11
understanding 15
USB flash memory 24-9
virtual machines 261-2
hardware storage mediums
blocks 22
disks 21
drives 21
raw files 21
sectors 22
tracks 22
HarmonicEvent Task 284
hash-table structure (directories) 227
hashing algorithms (databases) 322
Havi XLet
flow example (MHP) 89
source example (MHP) 90
headers
email 174
OSI network models 96
heads (hard disks) 22
high-level data-link control
(HDLC) 120
high-level integration broker 339
high-level message-oriented
middleware 330
high-level programming language
256, 260, 300
holistic view to demystifying
middleware
alignment behind leadership
343
big-bang 342
Capability Maturity Model
Integration 343

code-and-fix 342
conclusions 354-6
discipline in development
341-2
hybrid iterative methods 342
hybrid spiral 342
integrity in team 343
making sense 343—4
more than technology 341
off-the shelf middleware or
do-it-yourself? 344-54
rational unified process 342
scrum 342
software development 342-3
strong ethics 343
systems integration, testing
and verification 3524
teamwork 343
test driven development 342
waterfall 342
XP 342
home office automation standards
and middleware 60, 63
host groups (IP address) 143
host system (programming) 257
‘HTTP adaptor’ and integration
brokers 339
hybrid networks 101-2
Hypertext Transfer Protocol
(HTTP)
1.1 protocol 175
client and server application
175-88
methods 177-8
open source example 179-88
ports 154
programming language 256
reply codes 175
standalone application 166
Transmission Control Protocol

177, 188
I
in-memory database system
(IMDS) 326

indexing algorithms (databases)
322

indirect addressing (file systems)
221

indirect block (file systems) 221

393

industrial automation and control
standards and middleware 60,
65
industry-specific standards 68
information field 121
inheritance classes (record-based
databases) 313
input/output (I/O)
APIs and networks 111-16
boards 16
bus (subsystems for networks)
105
device drivers (MHP) 81
hardware 17-19, 104
parallel networks 108
subsystems 19
see also cache blocked input/
output
input/output (I/O) network codes
acquire 110
disable 110
enable 110
installation 109
read 110
release 110
shutdown 110
startup 109
uninstall 109
write 110
Instruction Set Architecture (ISA)
application-specific 18
general purpose 18
instruction-level parallelism 18
MIPS 19
instruction-level parallelism, ISA 18
integration broker
authentication and security
337-9
ecosystem 337-8
file transfer protocol 339
high level 338
HTTP adaptor 339
message-oriented middleware
4,330, 338
Object Request Brokers 339
summary 339
TCP listener 338
interactive (MHP standard) 86
Interface Description Language
(IDL) 335

Index

internet access (MHP standard) 86
Internet Assigned Number
Authority (IANA) 143
internet header length (IHL) 144
internet identification (ID) 144
Internet Inter-ORB Protocol (IIOP)
334
Internet Network Information
Center (InterNIC) 143
Internet Protocol Control Protocol
(IPCP) 124
Internet Protocol (IP)
addresses
classes 142
description 142
host groups 143
fragmentation mechanism
143-52
networks 141-3
open source example 146,
147-52
interpretation (programming
language) 259
interpreter (scripting languages) 259
InterruptEvent Task 284

J

Java 2 Micro Edition (J2ME)
CDC
networking APIs 267-8
package example 268, 270
sockets and JVM 268, 271
CLDC
APIs 266-7, 268, 272
embedded systems 268
pJava APIs 265
sockets and JVM 268, 271
devices 73
software design pattern 352
virtual machines 264-5
Java
API libraries 72, 262, 264
APIs 72,81, 83
application 302
embedded compiling 259-60
garbage collection 293-4, 297
One (tradeshow) 61
programming language 348-9
APIs 72
garbage collector 293

high-level 256
machine code 259
programmers 301
WAT/AOT 277
servlet (Xlet) 86
standards 72
tasks 284
virtual machine 260
Java Authentication and
authorization support (JAAS)
5,330
Java Beans (TP) Monitor 5, 330
Java messaging services (JMS) 4,
329
Java Virtual Machines (JVMs)
authentication and security
335-7
byte-code interpretation 301
embedded 2-3, 73, 262
hardware 301
implementation 260
internal components 262-3
Jbed 285
loader 298-300
MHP standard 81
middleware 2-3, 11
Net Compact Framework 73,
75
network protocols 103
plava 265-6
programming language 72
scheduling 319
sockets 266, 268
summary 302-3
system software 73
java.awt graphical library 270
java.net API 265-7
Javascript (programming language)
259,260
Jbed
earliest deadline first 290
Java Virtual Machines 285
kernel and states 287
real time operating system 285,
290
scheduling 290
tasks 284-5, 290
JFS (journaled file system)
B+ tree directory source code
229,230

394

device driver layer 195,
198-201
directory operations 235, 243-5
IBM 210
inode
extent addressing 224,
226-7
operations 208-13
log manager 215-20
open source 200, 235
source code and extent
addressing 225
source example with Linux
kernel cells 204-5
Usage and Linux File System
Interface 44
JoinEvent Task 284
JSQL (programming language) 309,
310, 319
jthreads
central processing unit 292-3
Kaffe open source JVM 286,
288, 290-1
priority inversion 292
priority and RMS 292-3
starvation 291
just-in-time (JIT)
algorithm 272, 277
compiler 273, 278, 301
Kaffe compiler 278, 279-82

K

Kaffe

class loader 299-300

GC memory allocation 294-5

java.awt APIs 270, 273-6

JIT compiler
byte code analysis 278
instruction translation 278
linking 278
translate function 278,

279-82

jthreads 286, 288

JVM open source 264,270

mark and sweep garbage
collection algorithm 297

open source JVM and threads
290

priority-preemptive scheduling
290, 291

Index

kernel and operating system 34,
39,41, 111

L

least recently used (LRU) and data
swapping 325
length field (LCP frame) 123
libraries
base class 262
device drivers 110-13, 116
Ethernet 110-12, 113,116
file system operation API layer
195
FlashFx 198-9
Java APIs 72,262, 264
OS and protocols 111-16
VM and APIs 262
linear names (directories) 227
lines of code (LOC) and do-it-
yourself middleware software
347
link control protocols (LCP) 120,
121, 123
Linux File System Interface (JFS
Usage) 44
loader (virtual machine) 262,
298-300
local area networks (LAN)
description 99
hybrid networks 101-2
protocols 99-100, 116
WAN comparison 99-100
log management
file systems 209-10
JES 243
logical link control (LLC) 119
low level format (LLF), hard disks
23

M

machine code (programming
language) 256, 258

macros (programming language)
257

mail transfer agent (MTA) 174

mail user agent MUA) 174

‘making sense’ of middleware
344-7

manipulation (databases) 308

mark and sweep garbage collection

algorithm 296-7
no compaction 296
market-specific middleware (MHP
standard) 74-91
master processor’s integrated
network (I/O subsystems) 105
maximum segment size (MSS)
160, 162
media access control (MAC) 119
medical standards and middleware
60, 65
memory
database design 327
device drivers (MHP) 81
hardware 17
management scheme
(operating system) 40
MHP standard 78
virtual machine 293-4,
298-300
memory map
amount of memory 20
design 20
location of memory 20
performance 20
type 20
message
brokers 4, 329
oriented middleware 329
queues 4, 329
message oriented/distributed
messaging
authentication/security 330
common object request
brokers 330
Data Access Object
Frameworks 5, 330
distributed
component object model
329
computing environment
329
transaction 329
integration brokers 330
Java
Authentication and
Authorization
Service 330
Beans Monitor 5, 330
messaging services 4, 329

395

message
brokers 329
oriented middleware 329
queues 329
message queuing middleware
331
middleware 4
object request brokers 5, 330
remote method invocation 333
remote procedure call 329
simple object access protocol
329
summary 339
transaction processing 329
message queuing middleware
MQM) 331-2
message-oriented middleware
(MOM)
APIs 330
client server/peer-to-peer
architecture 330
communication 330
distributed transaction 330-5
high-level diagram 330
integration brokers 338-9
message transmission 330
middleware 329
transactional middleware and
RPC 3324
metadata (database system) 307
Microsoft (Common Language
Specification) 261
Microsoft Intermediate Language
(MSIL) 261-2
millions of instructions per second
(MIPS) 19
miscellaneous monitor/control for
device drivers 41
models for networks 94-8, 102-3
moderator (team member) 354
moving files 234
MulticastSockets 266—8
multimedia home platform (MHP)
standard
APIs 83, 85
application manager 91
components 83-91
device drivers 80-2
Digital Video Broadcasting 76
embedded Java 348

Index

enhanced broadcasting 86

interactive 86

internet access 86

memory 78

power 78

services 86

sub-standards 83-6

system requirements 77-83
multiple file systems in embedded

systems 11-12
multiple middleware components 54
multitasking (virtual machine) 284

N
.NET Compact Framework
common language runtime
262

framework components 263
hardware 301
Java Virtual Machine 73, 75
summary 302-3
virtual machine 260-1
net Silicon ARM 7 reference board
16
network control protocols (NCP)
121, 123
network id 143
networks
clients 101
controller (I/O subsystems)
105
description 93-4
device drivers 41, 108-11
embedded systems model
102-3
File Transfer Protocol 166—7
hardware 102-11
HTTP client and server
application 173-88
hybrid 101-2
I/0
APIs 111-13
subsystems 108-9
Internet protocol 141-3
LAN v. WAN 99
layer middleware 140
middleware 54
models 94-8
open systems interconnection
94-8

OS and protocol libraries
111-13

overall architecture 98-102

peer-to-peer v. client-server
101-2

physical medium connecting
embedded device 98

point-to-point
protocols 120-30
pseudocode example

130-39

protocols 93, 100-1, 1024

serial v. parallel /O 106-8

servers 101

session layer 164-5

Simple Mail Transfer Protocol
and Email 174-5

stacks and applications 160-88

standards and middleware
60, 66

summary 188-9

system software 102-11

transport layer middleware
1524

UDP v. TCP 154-62

upper data-link layer 118-19

wired v. wireless 99-101

non-preemptive scheduling
algorithm 288
not recently used (NRU) and data
swapping 325

(0]

object files (execution) 258
Object Management Group (OMG)
334
Object Request Brokers (ORB)
integration brokers 337-9
message-oriented middleware
4,330-2
summary 339
object-oriented databases 307-14
object-relational databases 313
objects (databases) 313
off-the shelf middleware or do-it-
yourself?
holistic view 344-7
keys to success 347-51
systems integration, testing
and verification 3524

396

OneshotTimer Task 284-5
Open Systems Interconnection
(OSI) network
distance between devices 98,
99
models
data 97
device drivers 108-11
embedded systems 96
headers 96
middleware 94-5, 116,
117
TCP/IP 97-8, 120
tools 93
summary 188-9
WAN v. LAN 99
open-source
Ethernet driver library
111-12, 114
Perst B+ tree source code
3234
Perst query translation source
code 319-21
opening files 234
openMHP org.havi.ui source 834
operating system (OS)
APIs 68,111
APIs and device drivers 111
application programming
interface 41
components 41,43, 111, 116,
162
device drivers 41-54
embedded systems 34-41,
111
file systems/specific layer
200-8
hardware 41
interface 41
internal design 40-1
kernel 34,39,41, 111
layer 195
networks
/O APIs 111-13
protocol libraries 111-13
permutations 113
POSIX 68
purpose 34
standards 68
tasks 39-40

Index

USB flash memory 24
virtual machines 255
vxWorks 114, 115

overhead (scheduling algorithm) 286

P

packet
asychronous transmission 106
term 140

parallel data and physical layer
(hardware for networks)
104-5
parallel networks I/O 108
partition layer in CBIO 52-3
PCMCIA Flash Memory Card
device driver 35
peer-to-peer
architecture 101-2, 334
client-server comparison 101-2
Peopleware 9
performance
database design 326
operating system 40
PeriodicTimer Task 284
PERL (programming language)
259
Perst
database 314, 316-17, 319
open-source
B+ tree source code 3234
query translation source
code 319-21
physical cabling (bound wiring)
99-100
physical layer and hardware
1034, 108
pJava (Personal Java)
Application Programming
Interface 267
client/server sockets 266
J2ME sample APIs 72, 74
Java Virtual Machines 265-6
Real Time Core Specification
264
software and JVMs 264-5
platters in hard disks 22
point-to-point communication 152
point-to-point (PTP) protocols
120-30
actions 128-9

authentication protocols 120
data-link protocol handshaking
120
encapsulation mechanism 120
events 124, 126-8
LCP pseudocode
ACK-received 136
ACK-sent 137
closed 131
closing 133
initial 130
opened 138-9
request-sent 135
starting 131
stopped 132
stopping 134
network control protocols 121
phase table 121
state 124-5
police standards and middleware 59
portability (goals for middleware)
2
portable operating system interface
(POSIX)
device drivers 71
standards 68-70
vxWorks 70
ports
File Transfer Protocol 154
Hypertext Transfer Protocol
154
sockets 154
power (MHP standard) 78
preemptive scheduling algorithm
288
preprocessing (programming) 257
presentation layer, protocols 164-5
priority inversion 292
priority-preemptive scheduling
JThread starvation 291
priority inversion 292
thread priority 292
virtual machine 291
process (virtual machine) 283
processor design 17-19
processor performance
availability 18
benchmarks 19
recoverability 18
reliability 18

397

responsiveness 18
throughput 18
program (virtual machine) 283
programming language
assembly 256, 258, 300
C 71, 255-7, 293, 300, 312,
348, 351
C# 73,260, 293, 301
C++ 256-7,312, 348
compilers 257-8
cross-compilers 258
debugging in house 349, 351
do-it-yourself middleware
software 347
evolution 72, 256
high-level 256, 260
higher-level 300
HTTP 256
interpretation 259
Java 72, 256, 259, 277, 293,
301, 349, 350
Javascript 260
JSQL 319
low-level 256
machine code 256, 258
macros 257
Microsoft Intermediate
Language 261
PERL 259
preprocessors 257
scripting 259
SQL 256, 307, 312
standards 68, 71-2
virtual machines 255-9, 261
Visual Basic 260
programming middleware 17-19
protocol field 120
protocols
data-link layer 115, 118
local area networks 118
networks 93, 100-1, 1024
point-to-point 120-30
presentation layer 165-6
transport layer middleware
1524
wide area networks 118

Q

query compiler
execution engine 319

Index

real-world database system
model 317,319
query language 308, 310
queues
first in first out 332
message 4, 329

R

RAM
database system 306
file systems 191
storage management 221
Rate Monotonic Scheduling (RMS)
292-3
raw files
hardware storage mediums 21
unstructured 193
reader (team member) 354
reading
directories
creating/initializing file
systems 235
file system verification
235
mounting the file system
235
unmounting the file
system 235
files 232
Real-time Embedded Systems
Conference 61
real-world database system model
buffer/storage management
317,325
execution engine 317
general database system
317-18
Perst open-source query
translation source code
319-21
query compiler 317,319
resource manager 317, 321-5
transaction manager 317-18
real-world designs and application
layer (databases) 325-6
record-based databases
hierarchical 312
object-oriented comparison
307-14
Perst database 314

trees 312-13
recoverability (processor
performance) 18
relational databases
model 307,313
underlying file system 322
reliability
file systems 249-52
processor performance 18
reliable connections 155
Reliance embedded file system
(Datalight) 198
Remote Method Invocation 329
remote method invocation (RMI)
message oriented messaging
4,329
message oriented middleware
330-2
object request brokers 334-5
remote procedure call (RPC) 5, 329
authentication and security
337,339
removal
directories 234
files 234
renaming files 232
request message (HTTP client) 177
resource manager (real-world
database system model) 317,
321-5
response message (HTTP server)
177
response time (scheduling
algorithm) 286
responsiveness (processor
performance) 18
resume task (virtual machine) 286
RFC768 User Datagram Protocol
154
RFC793 Transmission Control
Protocol 154
RFC959 File Transfer Protocol 166—7
RFC2821 Simple Mail Transfer
Protocol 174-5
RFC5531 Remote Procedure Call
Protocol 3324

S

scheduling
algorithm 286, 288

398

earliest deadline first (EDF)
290
Java Virtual Machines 319
notes 293
operating system 40
real-world database system
model 317-25
scripting languages
HTML 259
interpreted programming
language 259
interpreter 259
Javascript 259
PERL 259
properties 259
Seagate Hard Disk 27-8
second chance and data swapping
325
sectors
hardware storage mediums 22
USB flash memory 24
security (goals for middleware) 2
segments (data) 155
serial data and physical layer
104-5
serial handshaking
Duplex 106
Half Duplex 106
Simplex 106
serial peripheral interface (SPI) 108
serial v. parallel networks I/O
106-8
servers and networks 101
ServerSockets 268
services MHP standard 86
servlet (XLet)
flow example 87
Havi flow example 89
Havi source example 90
source example 88
session layer, networks 164
set-top box (STB) 76, 348
Simple Mail Transfer Protocol
(SMTP)
commands/reply codes 174
email 174
pseudocode example 175
standalone applications 166
simple object access protocol
(SOAP) 4,329

Index

Simplex (serial handshaking) 106
Small Computer Systems Interface
(SCI) 22
socket (core communication
mechanism) 1534
sockets
constructors 267, 269
DatagramSockets 266—8
J2ME CDC-based JVM 268,
271
ServerSockets 268
stream 267-8
software design patterns
do-it-yourself middleware
software 347-51
Java 2 Micro edition 350
space standards and middleware 59
spawn threading 285
SQL (structured query language)
programming language 256
query and table 311
relational algebra 307
relational database model 313
stability of file systems 249-52
standards
digital televisions 76, 77
embedded systems 68-74
file systems 191
industry-specific 68
Java 72
multimedia home platform
74-91
operating system 68
POSIX middleware layer
68-9
programming language 68-74
space 59
standards and middleware
aerospace 59, 62
automotive 60, 62
commercial 60, 62-3
consumer electronics 60, 63—4
defense 59, 62
emergency services 59
energy and oil 60, 65
general purpose 60, 67
home office automation 60,
62-3
industrial automation and
control 60, 65

medical 60, 65
networking and
communication 60, 66
police 59
space 59
starvation (scheduling algorithm)
286
states
databases 312, 313
point-to-point protocols
120-30
virtual machine 286
storage and buffer manager (real-
world database system) 317,
325
storage differences in hardware
20-1
stream sockets 267-8
structured data files 193
structured query language (SQL)
312
Sun Microsystems
pJava 1.1.8 264
pJava standards 264-5
Real Time specification for
Java 264
suspend task (virtual machine) 286
synchronous serial communication
108, 120
systems integration, testing and
verification
code inspections 353—4
development/debugging tools
351
team members 3534
systems software
Embedded Systems Model 11
hardware 15, 102-11

T

tables (relational database model)
307-8
target system (programming) 257
task control block (TCB) 285
tasks
blocked/waiting state 286
JBed 290
ready state 286
running state 286
virtual machine 283

399

“TCP listener’ and integration
brokers 338
team members (systems integration,
testing and verification)
3534
technical foundation for
middleware 10-12, 15-54
Texas Instruments digital television
78
threads
Kaffe open source JVM 286,
290
virtual machine 283—4
throughput
central processing unit 17
processor performance 18
scheduling algorithm 286
total length (version field) 144
tracks
hard disks 23
hardware storage mediums 22
transaction manager (real-world
database model) 317-18
transaction processing (TP) 5, 330
transactional file system (TRES)
210,214
Transmission Control Protocol
(TCP)
header fields 161
Hypertext Transfer Protocol
175, 186
I/0 model 104, 120
Internet Protocol (TCP/IP)
97-8
IP stack 162
packet diagram 160
RFC793 154-5
Simple Mail Transfer Protocol
174
states and handshaking
diagram 162
transport layer protocol 266
window sizes 164
transmission medium for networks
1/0O subsystems 108
wired v. wireless 99-101
transmission protocol (TP),
monitors 338
transport data path (digital
televisions) 79

Index

transport layer
data-flow 154
networks 152
UDP v. TCP 154-62
trees (record-based databases)
312-13
turnaround time (scheduling
algorithm) 286

U

unbound (wireless) networks
99-100
Uniform Resource Locator (URL)
175,177
unreliable connections 155
unstructured (raw) file systems 193
upper data-link layer 116, 118
USB flash memory
Baby USB Memory Stick 29
capacity 24
formatted 24
hardware 24, 29
operating system 24
other names 24
sector size 24
user content data 195
User Datagram Protocol (UDP)
open source example 154-7
packet diagram 160
RFC768 154-5
TCP comparison 154-62
transport layer protocol 266
UserEvent Task 284

\Y%

version field 144

video data path (digital televisions)
79

video device drivers (MHP) 82

virtual device drivers 41

virtual machine (VM)
API 261, 262-72
architecture 261-300
design choices 301
embedded operating system

262

embedded relative to
application layer 300-2
Embedded Systems Model 261
execution engine
embedded/scheduling
286-93
garbage collector 273
multitasking 284
process 283
program 283
resume task 286
scheduler 286
states 286
suspend task 286
task 283
tasks v. threads 278-86
threads 283
garbage collector 2934
hardware 261-2
Java 2 Micro Edition 264
Kaffe JVM open source 264
loaders 262
memory management
garbage collector 2934
loader 298-300
middleware 255-303
NET Compact Framework
73,75, 260-3
operation system 255
performance optimization
301-2
priority-preemptive scheduling
291
programming language 255-61
software 262
summary 302-3
threads 286, 290
Visual Basic (programming
language) 260
vxWorks653
protracted application with
partitions 71
Application Programming
Interfaces 235
ATA Deyvice Driver Public API
37-9

400

block device driver 49-50
CBIO
1/0 interface 41
interface 195-6
library 46-7, 51
configuration 48
databases 325-6
directories 235
Ethernet device driver public
library 113, 116
file system
device driver layer 195
interface 45
FlashFx libraries 198
networking stack 162
networks component
parameters 162
operating system 113, 116
POSIX 70
Reliance embedded file system
(Datalight) 250
transactional file system 214

W
way-ahead-of-time (WAT)
algorithm 272, 277-8
compiler 278, 301
Western Digital Hard Disk 25-6
Whetstone programs 19
wide area networks (WAN)
description 99
hybrid networks 101-2
LAN comparison 99
protocols 99-100, 118
WinCE device 73
WindRiver
CBIO layer 197
embedded operating systems
355
server application 251
wired v. wireless networks
protocols 99-101
transmission medium 99-101
World Wide Web (WWW)
Consortium 175
writing to files 234

	Demystifying Embedded Systems Middleware
	Copyright
	Contents
	About the Author
	Chapter 1 - Demystifying Middleware in Embedded Systems
	Chapter Points
	1.1 - What is the Middleware of an Embedded System?
	1.2 - How to Begin When Building a Complex Middleware-based Solution
	1.3 - Why is a Strong Technical Foundation Important in Middleware Design?
	1.4 - Summary
	1.5 - End Notes

	Chapter 2 - The Foundation
	Chapter Points
	2.1 - A Middleware Programmer’s Viewpoint – Why Care about Processor Design and I/O?
	2.2 - The Memory Map, Storage Mediums, and Middleware
	2.3 - Device Drivers and Middleware
	2.4 - The Role of an Embedded System’s Operating System and Middleware-specific Code
	2.5 - Operating Systems and Device Driver Access for Middleware
	2.6 - A Brief Comment on Multiple Middleware Components
	2.7 - Summary
	2.8 - Problems
	2.9 - End Notes

	Chapter 3 - Middleware and Standards in Embedded Systems
	Chapter Points
	3.1 - What are Standards for Middleware Software?
	3.2 - Real-world Middleware Standards Implemented in Embedded Systems
	3.3 - The Contribution of Standards to an Embedded System
	3.4 - Market-specific Middleware and the MHP (Multimedia Home Platform) Standard Example
	3.5 - Summary
	3.6 - Problems
	3.7 - End Notes

	Chapter 4 - The Fundamentals in Understanding Networking Middleware
	Chapter Points
	4.1 - Step 1 to Understanding Networking Middleware: Networking Models
	4.2 - Step 2 to Understanding Networking Middleware: Understanding the Overall Network
	4.3 - Step 3 to Understanding Networking Middleware: Understanding the Underlying Hardware and System Software Layers
	4.4 - An Embedded OS and Networking I/O APIs
	4.5 - Step 4: Networking Middleware
	4.6 - Step 5 Putting it All Together: Tuning the Networking Stack and the Application Requirements
	4.7 - Summary
	4.8 - Problems5
	4.9 - End Notes

	Chapter 5 - File Systems
	Chapter Points
	5.1 - What is a File System?
	5.2 - How Does a File System Manage Data?
	5.3 - File System Data and the File System Reference Model
	5.4 - Remembering the Importance of File System Stability and Reliability
	5.5 - Summary
	5.6 - File System Problems
	5.7 - End Notes

	Chapter 6 - Virtual Machines in Middleware
	Chapter Points
	6.1 - The First Step to Understanding a VM Implementation: The Basics to Programming Languages1
	6.2 - Understanding the Elements of a VM’s Architecture1
	6.3 - A Quick Comment on Selecting Embedded VMs Relative to the Application Layer
	6.4 - Summary
	6.5 - Problems
	6.6 - End Notes

	Chapter 7 - An Introduction to the Fundamentals of Database Systems
	Chapter Points
	7.1 - What is a Database System?
	7.2 - Record-based versus Object-oriented Database Models
	7.3 - Why Care About The Different Database Models?
	7.4 - The Fundamentals of Database Design: The First Steps
	7.5 - Real-world Database System Model
	7.6 - Utilizing Embedded Databases in Real-world Designs and the Application Layer
	7.7 - Summary
	7.8 - Problems
	7.9 - End Notes

	Chapter 8 - Putting It All Together
	Chapter Points
	8.1 - Message-oriented Middleware and Distributed Transaction
	8.2 - Authentication and Security Middleware
	8.3 - Integration Brokers
	8.4 - Summary
	8.5 - Problems
	8.6 - End Notes

	Chapter 9 - The Holistic View to Demystifying Middleware
	Chapter Points
	9.1 - Does using Middleware in your Embedded System Design Actually ‘Make Sense’?
	9.2 - Buy an Off-the-shelf Middleware Solution or Do-it-yourself?
	9.3 - Conclusion – See the Pattern Yet?
	9.4 - End Notes

	Appendix A - Abbreviations and Acronyms
	Appendix B - Embedded Systems Glossary
	Index

