

Demystifying Embedded
Systems Middleware

Dedication

In loving memory of my father, who gave me the inspiration to write this book
before he passed away,

&
for the team at Elsevier, all of my family, friends, and colleagues that I am lucky

enough to still have in my life today and who continue to inspire me ….

Demystifying Embedded
Systems Middleware

Tammy Noergaard

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

First edition 2011

Copyright © 2011 Elsevier Inc. All rights reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means electronic, mechanical, photocopying, recording or otherwise without the
prior written permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions@elsevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material
herein. Because of rapid advances in the medical sciences, in particular, independent
verification of diagnoses and drug dosages should be made

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is availabe from the Library of Congress

ISBN–13: 978-0-7506-8455-2

For information on all Newnes publications
visit our web site at books.elsevier.com

Printed and bound in USA

10 11 12 13 14 10 9 8 7 6 5 4 3 2 1

mailto:permissions@elsevier.com
http://elsevier.com/locate/permissions
http://www.books.elsevier.com/

v

Contents

About the Author ... vii

Chapter 1: Demystifying Middleware in Embedded Systems 1

Chapter 2: The Foundation .. 15

Chapter 3: Middleware and Standards in Embedded Systems 59

Chapter 4: The Fundamentals in Understanding Networking Middleware 93

Chapter 5: File Systems ... 191

Chapter 6: Virtual Machines in Middleware ... 255

Chapter 7: An Introduction to the Fundamentals of Database Systems 305

Chapter 8: Putting It All Together: Complex Messaging,
Communication, and Security ... 329

Chapter 9: The Holistic View to Demystifying Middleware 341

Appendix A: Abbreviations and Acronyms .. 357

Appendix B: Embedded Systems Glossary .. 367

Index ... 389

This page intentionally left blank

vii

About the Author

Tammy Noergaard is uniquely qualified to write about all aspects of embedded systems.
Since beginning her career, she has wide experience in product development, system design
and integration, operations, sales, marketing, and training. She has design experience using
many hardware platforms, operating systems, middleware, and languages. She worked for
Sony as a lead software engineer developing and testing embedded software for analog
TVs, and also managed and trained new embedded engineers and programmers. The
televisions she helped to develop in Japan and California were critically acclaimed and rated
#1 in Consumer Reports magazines. She has consulted internationally for many years, for
companies including Esmertec and WindRiver, and has been a guest lecturer in engineering
classes at the University of California at Berkeley, Stanford University, as well as giving
technical talks at the invitation of Aarhus University for professionals and students in
Denmark. She has also given professional talks at the Embedded Internet Conference and the
Java User’s Group in San Jose over the years. Most recently, her experience has been utilized
in Denmark to help insure the success of fellow team members and organizations in building
best-in-class embedded systems.

This page intentionally left blank

1
Demystifying Embedded Systems Middleware. DOI: 10.1016/B978-0-7506-8455-2.00001-7

ChaptEr 1

Demystifying Middleware in Embedded
Systems

Chapter points

•	 Middleware	is	introduced	in	reference	to	the	Embedded	Systems	Model

•	 Outline	why	understanding	middleware	is	important

•	 Identifying	common	types	of	middleware	in	the	embedded	space

1.1 What is the Middleware of an Embedded System?

With the increase in the types and profitability of complex, distributed embedded systems,
an approach common in the industry is designing and customizing these types of embedded
systems in some manner that is independent of the underlying low-level system software
and hardware components. To successfully achieve desired results within cost, schedule, and
complexity goals many engineering teams base their approach on architecting various higher-
level middleware software components into their embedded systems designs.

Currently within the embedded systems industry, there is no formal consensus on how
embedded systems middleware should be defined. Thus, until such time as there is a
consensus, this book takes the pragmatic approach of defining what middleware is and how
different types of middleware can be categorized. Simply put, middleware is an abstraction
layer that acts as an intermediary. Middleware manages interactions between application
software and the underlying system software layers, such as the operating system and device
driver layers. Middleware also can manage interactions between multiple applications residing
within the embedded device, as well as applications residing across networked devices.

Middleware is simply software, like any other, that in combination with the embedded
hardware and other types of embedded software is a means to an end to achieving some
combination of the desirable goals shown in Table 1.1.

www.newnespress.com

2 Chapter 1

As shown in Figure 1.1a, middleware resides in the system software layer of an embedded
system and is any software that is not a device driver, an operating system kernel, or an
application. Middleware components can exist within various permutations of a real-world
software stack: such as directly over device drivers, residing above an operating system,
tightly coupled with an operating system package from an off-the-shelf vendor, residing
above other middleware components, or some combination of the above, for example.

Keep in mind that what determines if a piece of software is ‘middleware’ is by where it
resides within the embedded system’s architecture, and not only because of its inherent
purpose within the system alone. For example, as shown in Figure 1.1b, embedded Java
virtual machines (JVMs) are currently implemented in an embedded system in one of three
ways: in the hardware, in the system software layer, or in the application layer. When a JVM
is implemented within the system software layer and resides on an operating system kernel is
an example when a JVM is classified as middleware.

table 1.1: Examples of Desirable requirements for Middleware to Meet

requirement Description

Adaptive Middleware that enables overlying middleware and/or embedded
applications to adapt to changing availability of system resources

Flexibility and
Scalability

Middleware that allows overlying middleware and/or embedded
applications to be configurable and customizable in terms of functionality
that can be scaled in or out depending on application requirements, over
all device requirements, and underlying system software and hardware
limitations

Security Middleware that insures the overlying middleware and/or embedded
applications (and the users using them) have authorized access to
resources

Portability The ‘write-once’, ‘run-anywhere’ mantra. Middleware that allows overlying
middleware and/or embedded applications to run on different types of
embedded devices with different underlying system software and hardware
layers. To avoid requiring time-consuming and expensive rewrites of the
application code, middleware can mask the differences in underlying layers
within different types of embedded systems, programming languages, and
even implementations of the same standard produced by different design
teams

Connectivity
and Inter-
Communication

Middleware that provides overlying middleware and/or embedded
applications the ability to transparently communicate with other
applications on a remote device through some user-friendly, standardized
interface. Essentially, communication interfaces abstracted to level of local
procedure call or method invocation

www.newnespress.com

Demystifying Middleware in Embedded Systems 3

Figure 1.1c shows a high-level block diagram of different types of middleware utilized in
embedded devices today. Within the scope of this text, at the most general level, middleware
is divided into two categories: core middleware and middleware that builds on these core
components. Within each category, middleware can be further broken down into types, such as file
systems, networking middleware, databases, and virtual machines to name a few. Open source and

Figure 1.1a: Middleware and the Embedded Systems Model1

Figure 1.1b: Embedded JVMs in the architecture1

www.newnespress.com

4 Chapter 1

real-world examples of these types of middleware will be used when possible throughout this book
to demonstrate the technical concepts. Examples of building real-world designs based on these
types of middleware will be provided, and the challenges and risks to be aware of when utilizing
middleware in embedded systems will also be addressed in this text.

Core middleware is software that is most commonly found in embedded systems designs
today that do incorporate a middleware layer, and is the type of software that is most
commonly used as the foundation for more complex middleware software. By understanding
the different types of core middleware, the reader will have a strong foundation to
understanding and designing any middleware component successfully. The four types of core
middleware discussed in this book are:

•	 Chapter 4. Networking
•	 Chapter 5. File systems
•	 Chapter 6. Virtual machines
•	 Chapter 7. Databases.

Middleware that builds on the core components varies widely from market to market
and device to device. In general, this more complex type of middleware falls under some
combination of the following:

•	 Message	Oriented	and	Distributed	Messaging,	i.e.,
•	 Message Oriented Middleware (MOM)
•	 Message Queues
•	 Java Messaging Service (JMS)
•	 Message Brokers
•	 Simple Object Access Protocol (SOAP)

Figure 1.1c: types of Middleware in Embedded Systems

www.newnespress.com

Demystifying Middleware in Embedded Systems 5

•	 Distributed	Transaction,	i.e.,
•	 Remote Procedure Call (RPC)
•	 Remote Method Invocation (RMI)
•	 Distributed Component Object Model (DCOM)
•	 Distributed Computing Environment (DCE)

•	 Transaction	Processing,	i.e.,
•	 Java Beans (TP) Monitor

•	 Object	Request	Brokers,	i.e.,
•	 Common Object Request Broker Object (CORBA)
•	 Data Access Object (DAO) Frameworks

•	 Authentication	and	Security,	i.e.,
•	 Java Authentication and Authorization Support (JAAS)

•	 Integration	Brokers.

At the highest level, these more complex types of middleware will be subcategorized and
discussed under the following two chapters:

•	 Chapter 3. Market-specific Complex Middleware
•	 Chapter 8. Complex Messaging and Communication Middleware.

This book introduces the main concepts of different types of middleware and provides snap-
shots of open-source to help illustrate the main points. When introducing the fundamentals
of various middleware components within the relative chapters, this book takes a multistep
approach that includes:

•	 discussing	the	importance	of	understanding	the	standards,	underlying	hardware,	and	
system software layers

•	 defining	the	purpose	of	the	particular	middleware	component	within	the	system,	and	
examples of the APIs provided with a particular middleware component

•	 introducing	middleware	models	and	open-source	software	examples	that	would	make	
understanding the middleware software architecture much simpler

•	 providing	some	examples	of	how	overlying	layers	utilize	various	middleware	components	
to apply some of what the reader has read.

The final chapter pulls it all together with pros and cons of utilizing the different types of
middleware in embedded systems designs. As this book will demonstrate, there are several
different types of embedded systems middleware on the market today, in addition to the
countless homegrown solutions. Note that these embedded systems middleware solutions can
be further categorized as other types of middleware depending on the field – such as being
proprietary versus open-source, for example. In short, the key is for the reader to pick up on
the high-level concepts and the patterns in embedded middleware software – and to recognize
that these endless permutations of middleware solutions in the embedded space exist, because
there is not ‘one’ solution that is perfect for all types of embedded designs.

www.newnespress.com

6 Chapter 1

1.2 how to Begin When Building a Complex Middleware-based Solution

For better or worse, successfully building an embedded system with middleware requires more
than just solid technology alone. Engineers and programmers who recognize this wisdom from day
one are most likely to reach production within quality standards, deadlines, and costs. In fact, the
most common mistakes that kill complex embedded systems projects, especially those that utilize
middleware components, are unrelated to the middleware technology itself. It is because team
members did not recognize that successfully completing complex embedded designs requires:

•	 Rule #1: more than technology
•	 Rule #2: discipline in following development processes and best practices
•	 Rule #3: teamwork
•	 Rule #4: alignment behind leadership
•	 Rule #5: strong ethics and integrity among each and every team member.

So, what does this book mean by Rule 1 – that building an embedded system with
middleware successfully requires more than just technology?

It means that many different influences, including technical, business-oriented, political, and
social to name a few, will impact the process of architecting an embedded design and taking
it to production. The architecture business cycle shown in Figure 1.2 shows a visualization

Figure 1.2: architecture Business Cycle2

www.newnespress.com

Demystifying Middleware in Embedded Systems 7

of this rule in which many different types of influences generate the requirements, the
requirements in turn generate the embedded system’s architecture, this architecture is then
the basis for producing the device, and the resulting embedded system design in turn provides
feedback for requirements and capabilities back to the team.

So, out of the architecture business cycle comes a reflection of what challenges real-world
development teams building a complex middleware-based system face – balancing quality versus
schedule versus features. This is where the other four rules stated at the start of this section come
into play for insuring success. Ultimately, the options embedded teams have to choose from
when targeting to successfully build a complex design are typically some combination of:

•	 X Option 1: Don’t ship
•	 X Option 2: Blindly ship on time, with buggy features
•	 X Option 3: Pressure tired developers to work even longer hours
•	 X Option 4: Throw more resources at the project
•	 X Option 5: Let the schedule slip
•	 √ Option 6: Healthy Shipping Philosophy: ‘Shipping a very high-quality system on

time.’

Not shipping unfortunately happens too often in the industry, and is obviously the option
everyone on the team wants to avoid. ‘No’ products will ultimately lead to ‘no’ team, and in
some cases ‘no’ company. So, moving on to the next option – why ‘shipping a buggy product’
is also to be avoided at all costs is because there are serious liabilities that would result if the
organization is sued for a lot of money, and/or employees going to prison if anyone gets hurt
as a result of the bugs in the deployed design (see Figure 1.3). When developers are forced to
cut corners to meet the schedule relative to design options, are being forced to work overtime
to the point of exhaustion, are undisciplined about using best practices when programming,
code inspections, testing, and so on – this can then result in serious liabilities for the
organization when what is deployed contains serious defects.

Option 3 – ‘pressure tired developers to work even longer hours’ – is also to be avoided.
The key is to ‘not’ panic. Removing calm from an engineering team and pushing exhausted
developers to work even longer overtime hours on a complex system that incorporates
middleware software will only result in more serious problems. Tired, afraid, and/or stressed-
out engineers and developers will result in mistakes being made during development, which
in turn translates to additional costs and delays.

Negative influences on a project, whether financial, political, technical, and/or social in
nature, have the unfortunate ability to negatively harm the cohesiveness of an ordinarily
healthy team within a company – eventually leading to sustaining these stressed software
teams as unprofitable in themselves. Within a team, even a single weak link, such as a team
of exhausted and stressed-out engineers, will be debilitating for an entire project and even an

www.newnespress.com

8 Chapter 1

entire organization. This is because these types of problems radiate outwards influencing the
entire environment, like waves (Figure 1.4).

The key here is to decrease the interruptions (see Figure 1.5) and stress for a development
team during their most productive programming hours within a normal work week, so that
there is more focus and fewer mistakes.

Figure 1.4: problems radiate and Impact Environment

Figure 1.3: Why Not Blindly Ship? – programming and Engineering Ethics Matter3

www.newnespress.com

Demystifying Middleware in Embedded Systems 9

Another approach in the industry to avoid a schedule from slipping has been to throw more
and more resources at a project. Throwing more resources ad-hoc at project tasks without
proper planning, training, and team building is the surest way to hurt a team and guarantee a
missed deadline. As indicated in Figure 1.6, productivity crashes with the more people there
are on a project. A limit in the number of communication channels can happen through more
than one (>1) smaller sub-teams, as long as:
•	 it	makes	sense	for	the	embedded	systems	product	being	designed,	i.e.,

•	 not dozens of developers and several line/project managers for a few MB of code
•	 not when few have embedded systems experience and/or experience building the product
•	 not for corporate empire-building! – which results in costly project problems and

delays = bad for business!

Figure 1.5: real World tidbit, Underpinnings of Software productivity

Figure 1.6: too Many people4

www.newnespress.com

10 Chapter 1

•	 in a healthy team environment
•	 no secretiveness
•	 no hackers
•	 best practices and processes not ignored
•	 team members have sense of professional responsibility, alignment, and trust with

each other, leadership and the organization.

While more related to this discussion will be covered in the last chapter of this book,
ultimately the most powerful way to meet project schedules and successfully take an
embedded system middleware-based solution to production is:

•	 by	shipping	a	very	high-quality	product	on	time
•	 have	a	strong	technical	foundation
•	 sacrificing	less	essential	features	in	the	first	release
•	 start	with	skeleton,	then	hang	code	off	skeleton
•	 Do	not	overcomplicate	the	design!
•	 Systems	integration,	testing	and	verification	from	Day	1.

The rest of this chapter and most of this book are dedicated to supplying the reader with a
strong, pragmatic technical foundation relative to embedded systems middleware. The last
section of this book will pull it all together to link in what was introduced in this section.

1.3 Why is a Strong technical Foundation Important
in Middleware Design?

One of the biggest myths propagated by inexperienced team members and mistakes made in
the industry is assuming that the embedded systems programmers of a middleware layer can
afford to think as abstractly as PC developers and/or the application developers using that
middleware layer. There are too many examples of stressed-out engineers, millions of dollars
in project overruns, and failed ventures in the industry that are a result of team members not
understanding the fundamentals relative to utilizing middleware within an embedded system
at the start and throughout the design process of the project. When it comes to understanding
the underlying hardware and system software when designing middleware software, it is
critical that, at the very least, developers understand the entire design at a systems level. In
fact, one of the most common mistakes made on an embedded project that makes it much
tougher to successfully build a complex design is when engineers and programmers on the
team do not investigate or understand the type of embedded system they are trying to build,
the components that can make up the device, and/or the impact individual components have
on each other.

Thus, this book is a springboard from ‘Embedded Systems Architecture: A Practical
Guide for Engineers and Programmers’. This book takes a more detailed and practical

www.newnespress.com

Demystifying Middleware in Embedded Systems 11

approach of discussing all layers relative to the Embedded Systems Model, shown in
Figure 1.1a, when introducing principles and major elements of embedded systems
middleware. This is because it is critical to the success of any project team that
introduces middleware into the architecture that all team members understand all layers
of an embedded system because all layers of an embedded system are impacted by
middleware and vice versa.

Introducing middleware software to an embedded system introduces an additional overhead
that will impact everything from memory requirements to performance, reliability, as well as
scalability, for instance. The goal of this book is not just about introducing some of the most
common types of embedded systems middleware, but more importantly to show the reader
the pattern behind different types of embedded middleware designs and to help teach the
reader an approach to understanding and applying this knowledge to any embedded system’s
middleware component encountered in the future.

The Embedded Systems Model represents the layers in which all components existing within
an embedded system design can reside. This model is a powerful tool utilized within the
scope of this book because it not only provides a clear visual representation of the various
middleware elements of an embedded system, their interrelationships, and functionality – this
model also provides a basis for modular architectural representations that commonly are used to
successfully structure an embedded systems project. At the highest level, there are three layers:

•	 hardware, which contains all the physical components located on an embedded systems
board

•	 system software, which is the device’s application-independent software
•	 application software, which is the device’s application-specific software.

As shown in Figure 1.7, a middleware component – whether it is a file system, database,
or networking protocol – that resides in an embedded system’s middleware software layer
typically resides on top of ‘some’ combination of other middleware, an operating system,
device drivers, and hardware. This means middleware implemented in the system software
layer exists either as:

•	 middleware	that	sits	on	top	of	the	operating	system	layer,	or	device	driver	layer	for	
systems with no operating system

•	 middleware	that	sits	on	top	of	other	middleware	components,	for	example	a	Java-based	
database or file system that resides over a Java Virtual Machine (JVM)

•	 middleware	that	has	been	tightly	integrated	and	provided	with	a	particular	operating	
system distribution.

In some embedded systems, there may even be more than one different middleware
component, as well as more than one of the same type of middleware in the embedded device
(see Figure 1.8). In short, whatever the combination of middleware – in co-operation with

www.newnespress.com

12 Chapter 1

the underlying embedded software and hardware – these components act as an abstraction
layer that provides various data management functions to the other system software layer
components, application software layer in the system, and even other computer systems that
have remote access to the device.

Figure 1.7: System Components and the Embedded Systems Model

Figure 1.8: Multiple File Systems in an Embedded System Example

www.newnespress.com

Demystifying Middleware in Embedded Systems 13

1.4 Summary

Middleware is increasingly becoming a required component in embedded systems designs
due to the increase in the types of complex, distributed embedded systems, the number of
applications found on embedded systems, and the desire for customizable embedded software
applications for embedded devices. In this chapter, middleware was defined relative to the
Embedded Systems Model, and the types of middleware introduced in this book were also
discussed. Finally, some initial guidelines of whether using middleware within an embedded
systems design should even be entertained as an option are discussed.

Chapters 4–7 cover core middleware components, specifically file systems, networking,
and databases. Chapters 3, 8 and 9 go on to discuss middleware that builds on the core
components, as well as pulls all the concepts together in discussing overall design
implementations, approaches, and risk mitigation for utilizing middleware in real-world
embedded designs.

The next chapter of this book introduces core components that underlie middleware
commonly found in embedded systems. Chapter 2, specifically, introduces the hardware and
underlying system software required by core middleware.

1.5 End Notes
1 Systems Architecture, Noergaard, 2005. Elsevier.
2 The six stages of creating an architecture outlined and applied to embedded systems in this book are inspired

by the Architecture Business Cycle developed by SEI. For more on this brainchild of SEI, read ‘Software
Architecture in Practice,’ by Bass, Clements, and Kazman.

3 Based on the chapter ‘Legal Consequences of Defective Software’ by Cem Kaner. Testing Computer Software.
1999.

4 ‘Better Firmware, Faster’. Jack Ganssle. 2007.

This page intentionally left blank

15
Demystifying Embedded Systems Middleware. DOI: 10.1016/B978-0-7506-8455-2.00002-9

ChaptEr 2

The Foundation

Regardless of what middleware is in an embedded system, one of the most powerful
approaches is to take the systems approach. This means having a solid technical foundation
via defining and understanding all required components that underlie the particular
middleware software. Meaning:

1. Understanding the hardware. If the reader comprehends the hardware, it is easier to
understand why a particular middleware component implements functionality in a certain
way relative to the storage medium, as well as the hardware requirements of a particular
middleware implementation.

2. Defining and understanding the specific underlying system software components, such as
the available device drivers supporting the storage medium(s) and the operating system
API. Underlying system software will be discussed later in this chapter.

Why start with understanding the hardware? Because some of the most common mistakes
programmers designing complex embedded systems make that lead to costly delays and
problems include:

•	 being	intimidated	by	the	embedded	hardware	and	tools
•	 treating	all	embedded	hardware	like	it	is	a	PC-Windows	Desktop
•	 waiting	for	the	hardware
•	 using	PCs	in	place	of	‘available’	embedded	systems	target	hardware	to	do	development	

and testing
•	 NOT	using	embedded	hardware	similar	to	production	hardware,	mainly	similar	I/O,	

processing power, and memory.

Chapter points

•	 Defines	what	components	are	required	and	underlie	middleware

•	 Introduces	fundamental	hardware	concepts	and	terminology

•	 Identifies	the	major	elements	of	most	underlying	system	software	designs

www.newnespress.com

16 Chapter 2

Developing software for embedded hardware is not the same as developing software for a
PC or a larger computer system – especially when it comes to including the additional layer
of complexity when introducing a middleware component. The embedded systems boards
shown in Figures 2.1a–d demonstrate this point of how drastically embedded boards can vary
in design.

This means each of the boards shown widely varies in terms of the software that can be
supported because the major hardware components are different, from the type of master
processor to the available memory to the I/O (input/output) devices. Target system hardware
requirements depend on the software, especially complex systems that contain an operating
system, middleware components, in addition to the overlying application software. So,
middleware developers must learn to read the hardware schematics and datasheets to

Figure 2.1b: aMD Geode reference Board2

Figure 2.1a: Net Silicon arM7 reference Board1

www.newnespress.com

The Foundation 17

understand and verify all the major components found on an embedded board. This is to
insure that the processor design is powerful enough to support the requirements of the
software stack, the embedded hardware contains the required I/O, and the hardware has
enough of the right type of memory.

2.1 a Middleware programmer’s Viewpoint –
Why Care about processor Design and I/O?

From the middleware programmer’s point of view, it is critical to care about the processor
design and I/O on the target hardware. In the case of processors (whether they are master
and/or slave I/O CPUs), there are literally thousands of embedded processors that are
differentiated according to their ISAs (instruction set architectures). A processor’s ISA
defines everything from the available operations to the operands to addressing modes to

Figure 2.1c: ampro MIpS reference Board3

Figure 2.1d: ampro powerpC reference Board4

www.newnespress.com

18 Chapter 2

interrupt handling, for example. Most embedded processors fall under one of three ISA
models:

•	 Application-specific, such as controller, datapath, finite state machine w/datapath
(FSMD), and Java virtual machine (JVM)

•	 General purpose, such as complex instruction set computing (CISC) and reduced
instruction set computing (RISC)

•	 Instruction-level parallelism, such as single instruction multiple data (SIMD), superscalar
machine, very long instruction word computing (VLIW).

It is important for programmers to understand the processors and the ISA design they are
based upon. This is because the ability to support a complex middleware solution, and the
time it takes to design and develop it, will be impacted by the ISA in terms of available
functionality, the cost of the chip, and most importantly the performance of the processor. For
example, a programmer’s ability to understand processor performance, and what to look for
in a processor’s design according to what needs to be accomplished via software. Processor
performance is most commonly defined as some combination of the following:

•	 Responsiveness, length of elapsed time the processor takes to respond to some event, a.k.a
latency

•	 Availability, the amount of time the processor runs normally without failure
•	 Reliability, the average time between failures, a.k.a. the MTBF (mean time between

failures)
•	 Recoverability, the average time the processor takes to recover from failure, a.k.a. the

MTTR (mean time to recover)
•	 Throughput, the amount of work the processor completes in a given period of time, a.k.a.

the average execution rate (Figure 2.2).

Figure 2.2: processor performance and throughput

www.newnespress.com

The Foundation 19

So, for example, given processor performance relative to throughput and managing
instruction processing – specifically, the number of clock cycles per second (clock rate),
as well as the number of cycle per instruction (CPI). Any internal processor design feature
that allows for either an increase in the clock rate or decrease in the CPI will increase the
overall performance of a processor. This could include anything from pipelining within the
processor’s ALU to selecting a processor based on the instruction-level parallelism ISA
model.

In the case of IO subsystems consisting of some combination of transmission medium, ports
and interfaces, IO controllers, buses, and the master processor integrated I/O – I/O subsystem
performance in terms of throughput, execution time, and response time is key. Programmers
need to pay attention not only to the speed of the master processor, but the data rates of the
I/O devices, how to synchronize the speed of the master processor to the speeds of I/O, and
how I/O and the master processor communicate. Programmers even need to pay attention to
buses, meaning from a developer’s viewpoint bus arbitration, handshaking, signal lines, and
timing. Bus performance is typically measured via bandwidth where both physical design and
associated protocols matter. For example:

•	 the	simpler	the	bus	handshaking	scheme,	the	higher	the	bandwidth
•	 the	shorter	the	bus,	the	fewer	connected	devices,	and	the	more	data	lines	typically	means	

the faster the bus and the higher its bandwidth.
•	 more	bus	lines	means	the	more	data	that	can	be	physically	transmitted	at	any	one	time,	in	

parallel
•	 the	bigger	the	bus	width	means	the	fewer	the	delays,	and	the	greater	the	bandwidth.

Finally, benchmarks, such as EEMBC (Embedded Microprocessor Benchmark Consortium),
Whetstone, and Dhrystone programs, are commonly used in the embedded space to provide
some measure of processor performance such as determining latency and efficiency of
individual features. Benchmarks typically report MIPS (Millions of Instructions per
Second) = Instruction Count/(CPU execution time × 106) = Clock Rate/(CPI × 106).

The key for middleware programmers to remember is the importance of understanding what
the benchmarks being executed are, and to use these benchmarks wisely.

This means that benchmarks give the illusion that faster CPUs have higher MIPS, because
the MIPS formula is inversely proportional to execution time. MIPS cannot compare
different ISAs, because instruction complexity and functionality are not considered in the
formula. MIPS will also vary on the same CPU with different programs made up of different
instructions. So, in short, ask the right questions and interpret benchmarks accurately to
understand exactly what is being run and measured. Benchmarks are suitable in some cases as
a starting point, but at the end of the day it is better for middleware programmers to use real
embedded programs to measure a processor’s performance in this regard.

www.newnespress.com

20 Chapter 2

2.2 the Memory Map, Storage Mediums, and Middleware

It is critical for middleware programmers to define and understand the board’s memory map,
specifically:

•	 Amount	of	memory	matters	(i.e.,	is	there	enough	for	run	time	needs?)
•	 Location	of	memory	and	how	to	reserve	it
•	 Performance	matters	(gap	between	processor	and	memory	speeds)
•	 Internal	design	of	memory	matters
•	 Type	of	memory	matters	(i.e.,	Flash	versus	RAM).

Why should a middleware programmer care? Take memory and performance, for example.
Memory impacts board performance when memory has lower bandwidth than master CPU,
thus it is important for programmers to understand memory timing parameters (performance
indicators) such as memory access times and refresh cycle times. Memory performance can
be better based on the internal design, such as:

•	 utilizing	independent	instruction	and	data	memory	buffers	and	ports
•	 integrating	bus	signals	into	one	line	to	decrease	the	time	it	takes	to	arbitrate	the	memory	

bus to access memory
•	 having	more	memory	interface	connections	(pins),	increasing	transfer	bandwidth
•	 having	a	higher	signaling	rate	on	memory	interface	connections	(pins)
•	 implementing	a	memory	hierarchy,	with	multiple	levels	of	cache.

Another example is that while middleware that utilizes different hardware storage devices is
transparent to middleware users and higher layers of software, the underlying hardware of the
different storage mediums available today is often quite different in terms of how they work,
their performance, and how they physically store the data. Thus, it is important for embedded
developers to understand the differences in the hardware in order to understand the implementation
of a middleware component on these various underlying technologies. In other words, hardware
features, quirks and/or limitations will dictate the type of file system(s) required and/or what
modifications must be implemented in a particular middleware design to support this hardware.

If a programmer learns the features of the various hardware storage mediums available,
then it will be much simpler for the programmer to understand a particular middleware
implementation, how to modify a particular middleware design in support of a storage
medium, as well as determine which middleware is the best ‘fit’ for the device. In short,
it is important for the reader to understand the middleware relevant features of a storage
medium(s) – and use this understanding when analyzing the middleware implementation that
needs to support the particular storage medium.

In terms of hardware storage mediums used by middleware in the embedded systems arena,
essentially if data can be stored on a hardware component, middleware can be designed and

www.newnespress.com

The Foundation 21

configured to use that storage medium. Examples of hardware storage mediums used by embedded
middleware, such as file systems and databases today, are shown in Figure 2.3. Examples of
hardware supported include hard drives, RAM, Flash, tape, CD, and floppy to name just a few.

As shown in Figure 2.4, middleware, like file systems, typically view and refer to physical
hardware storage mediums as raw devices, drives, and/or disks. At the highest level, a raw

Figure 2.3: Examples of Embedded System hardware Storage Mediums Used to Store Data

Figure 2.4: hardware Storage Medium

www.newnespress.com

22 Chapter 2

device is then broken down into some combination of blocks, tracks, and/or sectors, terms
used to represent addressable storage units on a raw device, disk, or drive. Middleware logical
units, such as file system volumes or clusters, then reside within these storage units.

The next few hardware examples demonstrate some relevant differences between storage
mediums that can be found in embedded system designs today. The reader can use these
examples to understand the importance of learning about different hardware storage
mediums, the differences between middleware software supporting various storage mediums,
what is required to port a type of middleware to these various hardware storage elements,
and/or to understand features of a storage medium that are relevant to middleware software.
The reader can then apply this process of thinking to working with different hardware storage
components and middleware software in the future.

2.2.1 Example of Hard Disk Hardware

While there are several different types of hard disk technologies on the market today, such
as SCSI (Small Computer Systems Interface) and ATA (Advanced Technology Attachment)
types of hard disk drives to name a few, in general many internals of traditional hard disks
deployed today are similar. As shown in Figure 2.5a, most hard drives on the market are
made up of platters, circular disks made from metal and covered with a magnetic material.
This film of magnetic material is one of the main components that allows data to be recorded
on a hard disk’s platter. A hard disk’s head is a type of electromagnet to process the data
located on the associated platter. An arm supports each head, and the arm(s) is (are) attached
to an actuator which is responsible for arm and head movement to the desired location on
a platter to process data. The number of platters, associated heads, and arms in a hard drive
is dependent on the size of the hard disk, meaning the larger the drive the more platters,
associated heads, and arms exist.

Figure 2.5a: Internals of a hard Disk Drive5

www.newnespress.com

The Foundation 23

A low-level format (LLF) creates tracks, cylinders, and sectors on each platter (see Figure 2.5b).
An LLF is performed on most modern hard disks by the manufacturer before the hard disks are
deployed into the field. Some hard drive manufacturers also provide tools to do an LLF in cases
where everything needs to be removed from a hard disk without damage to the boot sector, such
as when installing a new operating system or removing virus infection.

Tracks are concentric rings located on each platter that subdivide a platter for data
recording. As shown in Figure 2.5c, a cylinder is a logical cross-section of tracks across
all the hard disk’s platters. Tracks are further broken down into sectors, which are data
blocks on a platter that allow for simultaneous access to multiple tracks for data processing.

Figure 2.5b: hard Disk Drive platter5

Figure 2.5c: hard Disk Drive Cylinder

www.newnespress.com

24 Chapter 2

Accessing a data block on a hard disk is done via specifying the CHS, cylinder, head, and
sector numbers.

Refer to a hard disk manufacturer’s datasheet to determine detailed information of a particular
hard disk’s specifications. The real-world hard disk datasheets shown in Figures 2.6a and 2.6b
are examples of how to find some of the hardware specification information that is useful for
developers to know regarding hard disks (see highlighted portions of datasheets).

2.2.2 Example of USB Flash Memory

USB flash memory is simply a data storage device that contains non-volatile flash memory
and an integrated USB interface. Relative to middleware, some of the key features of interest
regarding USB Flash memory include:

•	 Capacity. The size of the USB flash memory.
•	 Operating System (Device Driver) Support. What operating system distributions

include device drivers for the USB Flash memory. If the embedded system’s operating
system is not on that list, then a device driver will need to be created/ported and
integrated.

•	 Formatted. Does the USB Flash memory come pre-formatted, in support of a
particular file system, for example. The USB Flash memory may need to be erased and
reprogrammed, as necessary, in support of a particular middleware.

•	 Sector Size. The smallest block of Flash that can be erased and/or programmed. The
reader should also note whether there are any restrictions when reading the Flash.

As shown in Figure 2.7a, USB Flash memory is a small PCB (printed circuit board) that is
enclosed in a durable chassis, and is powered via the connection to the embedded system’s
USB port. A standard USB interface that adheres to the industry standard USB specification,

helpful hint

A datasheet is always a good starting point for understanding any hardware’s general functions
and features, but keep in mind this type of document is typically used for sales and marketing
of the device as well. So it is always a good idea to review any available highly technical and in-
depth users’ guides and specifications for the particular storage medium to review specifics.

author Note

USB Flash memory can also be referred to by other names in the field, such as USB Flash
Memory Keys, USB Flash Memory Drives, USB Flash Memory Sticks, and USB Flash Memory Pen
Drives to name a few. If it is Flash memory that is hot-swappable into a USB port, then it falls
under this category of USB Flash memory hardware.

www.newnespress.com

The Foundation 25

Figure 2.6a: Western Digital hard Disk Datasheet Example6

www.newnespress.com

26 Chapter 2

Figure 2.6a continued: Western Digital hard Disk Datasheet Example

www.newnespress.com

The Foundation 27

Figure 2.6b: Seagate hard Disk Datasheet Example7

www.newnespress.com

28 Chapter 2

Figure 2.6b continued: Seagate hard Disk Datasheet Example

www.newnespress.com

The Foundation 29

such as USB 1.1 or USB 2.0, extends from this small chassis that allows the stick to be
plugged into a board’s USB drive port as shown in Figure 2.7b. This device is typically
smaller than other portable storage mediums, and is hot-swappable into a board’s USB port
that has device driver support for the particular type of USB Flash memory.

The real-world USB Flash memory datasheets shown in Figures 2.8a and 2.8b show some
additional flash specification information that is useful for programmers to know regarding
support of Flash types of storage mediums (see highlighted portions of datasheets).

2.3 Device Drivers and Middleware

Software that directly interfaces with the hardware in an embedded system is commonly
referred to as a device driver. With some embedded operating systems that provide device
drivers with their distributions, particular storage-medium-specific drivers can be referred
to by other names, such as some Flash driver codes can be commonly referred to as MTDs
(memory technology drivers). In the case of Flash, for example, MTDs are device drivers
responsible for low-level mapping, reading, writing, and erasing of Flash. In short, as shown
in Figure 2.9a, device drivers – including MTDs or whatever the particular device driver
libraries are called in a distribution – manage the hardware and act as the interface to the
hardware for higher layers of software.

For any embedded system that requires software, including higher-level software access to the
hardware, these devices all have some type of device driver library. What is very important
to remember as a programmer when trying to understand middleware support for a particular
storage medium and its associated device driver library is that:

1. Different types of storage mediums will have different device driver requirements that
need to be met

Figure 2.7a: BabyUSB USB Flash Memory Stick8

www.newnespress.com

30 Chapter 2

Figure 2.7b: USB Flash Memory Stick and Embedded Board Example9

www.newnespress.com

The Foundation 31

2. Even the same type of storage medium, such as USB Flash memory, that is created by
different manufacturers can require different device drivers in support.

The reader must always check the details about the particular hardware if the part is not 100%
identical to what is currently supported by the device, and not assume existing device drivers
in the embedded system will be compatible for a particular storage medium part – even if the
hardware is the same type of storage medium that the embedded device currently supports!

Figure 2.8a: pSI USB Flash Memory pen Datasheet Example10

www.newnespress.com

32 Chapter 2

Figure 2.8b: Corsair Flash Memory Datasheet Example11

www.newnespress.com

The Foundation 33

At a systems level, what specific middleware components exist and how they interface to the
hardware will vary depending on the underlying device driver API for the particular storage
medium(s). While, of course, libraries will vary between systems, in general hardware storage
medium drivers will include some combination of:

•	 Storage Medium Installation, code that creates support of a storage medium in the
embedded system

•	 Storage Medium Uninstall, code for removing the support of a storage medium in the
embedded system

•	 Storage Medium Startup, initialization code for the storage medium upon reset and/or
power-on

•	 Storage Medium Shutdown, termination code for the storage medium for entering into a
power-off state

•	 Storage Medium Enable, code for enabling of the storage medium
•	 Storage Medium Disable, code for disabling the storage medium
•	 Storage Medium Acquire, code that provides other system software access to the storage

medium

Figure 2.9a: Device Drivers and vxWorks Example12

www.newnespress.com

34 Chapter 2

•	 Storage Medium Release, code that provides other system software the ability to free the
storage medium

•	 Storage Medium Read, code that provides other system software the ability to read data
from the storage medium

•	 Storage Medium Write, code that provides other system software the ability to write
data to the storage medium

•	 Storage Medium Mapping, code for address mapping to and from the storage medium
when reading, writing, and/or deleting data

•	 Storage Medium Unmapping, code for unmapping (removing) blocks of data in the
storage medium.

Figures 2.9b, 2.9c and 2.9d are real-world examples of device driver APIs for Flash and ATA
storage mediums that demonstrate the type of functionality introduced above and found in
device driver libraries for these particular storage mediums. Later sections of this chapter will
demonstrate examples of how these device drivers are utilized for implementing a middleware
in an embedded device.

Note: please refer to the CD that accompanies this text or the Elsevier website link for this
book (if no CD has been included) to see all open-source files for Linux Flash examples
referenced in Figures 2.9b and 2.9c. Also, remember that the JFS implementation is just an
open-source reference, and that to support a particular hardware platform requires updating
and/or replacing the reference JFS device driver-specific calls with the required device driver-
specific calls of a particular platform throughout the JFS source.

2.4 the role of an Embedded System’s Operating System
and Middleware-specific Code

The purpose of an embedded operating system is:

•	 to	insure	the	embedded	system	operates	in	an	efficient	and	reliable	manner	by	managing	
hardware and software resources

•	 to	provide	an	abstraction	layer	to	simplify	the	process	of	developing	higher	layers	of	
software

•	 to	act	as	a	partitioning	tool.

The embedded OS (operating system) achieves these functions via a kernel that includes,
at a minimum: process management, memory management, and I/O system management
components (Figure 2.10).

reminder

Different device driver libraries may have additional functions, but most device drivers in
support of storage mediums will include some combination of the above functionality.

www.newnespress.com

The Foundation 35

Figure 2.9b: Example of pCMCIa Flash Memory Card Device Driver Functions13

www.newnespress.com

36 Chapter 2

Figure 2.9c: Example of aMD Flash Device Driver Code13

www.newnespress.com

The Foundation 37

Figure 2.9d: Example of ata Device Driver public apIs under vxWorks12

www.newnespress.com

38 Chapter 2

Figure 2.9d continued: Example of ata Device Driver public apIs under vxWorks

www.newnespress.com

The Foundation 39

A kernel’s process management mechanisms are what provide the functionality that secures
the illusion of simultaneous multitasking over a single processor. Kernel functionality that
is relevant to middleware development ranges from task implementation to scheduling to
synchronization to intertask communication. Middleware programmers need to note that
embedded operating systems, and even different versions of the same embedded operating
system, will vary widely in their process management schemes. For example, the types and
number of operating system tasks:

•	 WindRiver’s	vxWorks	6.4	(1)
•	 one type of task that implements one ‘thread of execution’ (task’s Program Counter)

•	 WindRiver’s	vxWorks	653	(1)
•	 core OS vThreads based on vxWorks 5.5 multithreading, like vxWorks 6.4 one type

•	 Timesys	Linux	(2)
•	 Linux fork
•	 Periodic task

Figure 2.9d continued: Example of ata Device Driver public apIs under vxWorks

www.newnespress.com

40 Chapter 2

•	 Esmertec’s	Jbed	(6)
•	 OneshotTimer Task, task that is run only once
•	 PeriodicTimer Task, task that is run after a particular set time interval
•	 HarmonicEvent Task, task that runs alongside a periodic timer task
•	 JoinEvent Task, task that is set to run when an associated task completes
•	 InterruptEvent Task, task that is run when a hardware interrupt occurs
•	 UserEvent Task, task that is explicitly triggered by another task.

It comes down to balancing between utilizing the system’s resources (i.e., keeping the CPU,
I/O, etc. as busy as possible) – with task throughput to process as many tasks as possible
in a given amount of time – with fairness and ensuring that task starvation does not occur
when trying to achieve a maximum task throughput. The key for developers to note relative
to embedded operating systems is what impacts effectiveness and performance, and not
to underestimate the impact of an embedded OS’s internal design. The key differentiators
between embedded operating systems in this regard are:

1. Memory Management Scheme, i.e., virtual memory swapping scheme and page faults
2. Scheduling Scheme, i.e., throughput, execution time, and wait time
3. Performance, i.e.,

•	 Response time, to make the context switch to a ready task and waiting time of task in
ready queue

•	 Turnaround time, how long a process takes to complete running
•	 Overhead, the time and data needed to determine which tasks will run next
•	 Fairness, what are the determining factors as to which processes get to run.

Figure 2.10: Embedded Operating Systems

www.newnespress.com

The Foundation 41

The key questions middleware developers need to ask of embedded OS support include:
What hardware can this support? Are there any performance limitations? How about memory
footprint? Middleware that resides on an OS needs an embedded OS that has been stably
ported and is supporting the hardware.

How about what features you need given cost, schedule, requirements, etc.? Do you just need
a kernel or more? How scalable should the embedded OS be? This is because in addition to
a kernel, embedded OS distributions may also provide additional integrated components,
such as networking, file system, and database support. These components allow the overlying
middleware layers to be ported to the OS kernel design, as well as the underlying system
software and hardware (see examples in Figures 2.11a and 2.11b).

For example, a file system interface is some subset of OS functionality that can be utilized
by the ported file system. When porting a file system to a different OS, it is important to
understand what (if any) interfaces are available to the file system since the OS APIs available
to a file system will vary from one OS to another, and what APIs a file system requires will
differ from one file system implementation to another. For example, in Figure 2.11c, the
JFS open-source file system provided on this textbook’s CD utilizes several different Linux-
specific files (see source code on CD for complete overview of all required Linux APIs for
JFS). To port JFS to an unsupported OS requires replacing the current OS-specific calls,
such as the Linux-specific code shown in Figure 2.11c, with the new OS-specific file system
interface calls throughout the JFS source.

2.5 Operating Systems and Device Driver access for Middleware

While middleware can access device drivers directly, as introduced in the previous section, an
embedded OS can also include an abstraction layer API that allows for device driver access.
When providing device access, or any type of I/O access to middleware, most OS APIs
categorize their associated device drivers as some combination of:

•	 Character, a driver that allows hardware access via a (character) byte stream
•	 Block, a driver that allows hardware access via some smallest addressable set of bytes at

any given time
•	 Network, a driver that allows hardware access via data in the form of networking packets
•	 Virtual, a driver that allows I/O access to virtual (software) devices
•	 Miscellaneous Monitor and Control, a driver that allows I/O access to hardware that is

not accessible via the other categories above.

For an example of an OS block device interface, vxWorks provides an I/O interface, called
CBIO (cache blocked input output), that allows different file systems, such as JFS, dosFS,
etc., to be ported to one standard vxWorks interface regardless of the underlying hardware
storage medium (see Figures 2.11d and 2.11e). As stated in the previous section, to port

www.newnespress.com

42 Chapter 2

Figure 2.11a: Example OS permutations

www.newnespress.com

The Foundation 43

Figure 2.11b: Example OS Components

www.newnespress.com

44 Chapter 2

Figure 2.11c: Example of JFS Usage of Linux File System Interface

www.newnespress.com

The Foundation 45

Figure 2.11d: Example of vxWorks File System Interface

www.newnespress.com

46 Chapter 2

Figure 2.11e: vxWorks CBIO Library13

www.newnespress.com

The Foundation 47

JFS to an unsupported OS, such as vxWorks in this case, requires replacing the current
OS-specific calls, such as the Linux-specific code shown in Figure 2.11c, with the vxWorks
specific code and utilizing the CBIO library throughout the JFS source.

In vxWorks, calling some of the CBIO APIs is part of the process of setting up a file system,
such as dosFS on a hard disk, floppy drive or any other storage medium accessed as a block
device under vxWorks.

Figure 2.11f: Logical Layers of CBIO-based vxWorks System13

www.newnespress.com

48 Chapter 2

As shown in Figure 2.11f, when utilizing the CBIO APIs in vxWorks an example process is
as follows:
Step 1. Configure vxWorks to support the:
•	 Block	Device
•	 CBIO	Library
•	 File System, i.e., dosFS.

Figure 2.11g: Example of Configuring vxWorks12

www.newnespress.com

The Foundation 49

Figure 2.11g continued: Example of Configuring vxWorks

Step 2. Create the Block Device.

Figure 2.11h: Example of Creating Block Device in vxWorks12

www.newnespress.com

50 Chapter 2

Step 3. Create the CBIO Block Driver Wrapper. The CBIO block driver wrapper layer wraps
the block driver with a CBIO API compatible layer using the cbioWrapBlkDev()
function.

Figure 2.11i: CBIO Block Device Wrapper in vxWorks1

Step 4. Create the CBIO Cache Layer.

www.newnespress.com

The Foundation 51

Figure 2.11j: CBIO Cache Layer Using vxWorks CBIO Library

Step 4. Create the CBIO Cache Layer.

www.newnespress.com

52 Chapter 2

Step 5. Implement CBIO Partition Manager.

Figure 2.11k: CBIO partition Layer Using vxWorks CBIO Library12

www.newnespress.com

The Foundation 53

Figure 2.11k continued: CBIO partition Layer Using vxWorks CBIO Library

An example of source code using the CBIO APIs in vxWorks is shown in Figure 2.11l.

Figure 2.11l: vxWorks CBIO apIs Source Code Example

www.newnespress.com

54 Chapter 2

2.6 a Brief Comment on Multiple Middleware Components

There is middleware that requires other middleware components in the embedded device in
order to function. In the case of a network file system, for example, since it is a file system
scheme that allows for access to files, a.k.a. file sharing, across networked computer systems
it requires compatible, underlying networking protocols in support of file management and
transmission (see Figure 2.12a).

Another example, shown in Figures 2.12b and 2.12c, is in the instance in which some
type of virtual machine is integrated in the system software in support middleware, such as a
database or file system, written in a non-native language such as C# or Java. Refer to the chapter
discussing the particular middleware components in these examples for more information.

2.7 Summary

In order to understand a particular middleware design, to determine which middleware design
is the right choice for an embedded device, as well as understand the impact of middleware
software on a particular device, it is important to first understand the foundation that underlies
the middleware. This foundation includes some combination of the hardware, as well as
device drivers, operating systems, and other required middleware components. The reader
can then apply these fundamentals to analyzing what would be required to get a particular
middleware component running in an embedded system, to determine which middleware
design is the right one for a particular system, as well as the impact of the file system on the
embedded device.

Figure 2.11l continued: vxWorks CBIO apIs Source Code Example

www.newnespress.com

The Foundation 55

Chapter 3 introduces middleware standards and the importance of these standards within the
context of any design.

2.8 problems
 1. Name three underlying components that could act as a foundation to an embedded system

with middleware. Draw an example.
 2. Middleware can reside directly over device driver software (True/False).
 3. Why is it important for middleware programmers to understand the hardware of an em-

bedded system?
 4. One or more middleware component can be implemented in an embedded system (True/

False).
 5. How does middleware view the hardware storage medium? Draw an example.

Figure 2.12a: Example of Underlying Networking Middleware for a Network File System

www.newnespress.com

56 Chapter 2

 6. Middleware can manage data on the following hardware:
A. RAM
B. CD
C. Smart card
D. Only B and C
E. All of the above.

 7. List and describe six types of device driver API functionality typically found in hardware
storage medium device drivers.

 8. What is the difference between an operating system character device and a block device?
 9. Middleware never requires other underlying middleware components (True/False).
10. Draw a high-level diagram of a type of middleware that requires a Java Virtual Machine

(JVM).

Figure 2.12b: Example of Underlying JVM Middleware for a Java-based File System

www.newnespress.com

The Foundation 57

2.9 End Notes
 1 Microsoft Extensible Firmware Initiative FAT32 File System Specification. Version 1.03, December 6, 2000.

Microsoft Corporation.
 2 http://redhat.brandfuelstores.com/.
 3 www.microsoft.com.
 4 http://shop.cxtreme.de
 5 ‘Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers’. T. Noergaard.

Elsevier 2005, p. 245.
 6 http://www.westerndigital.com/en/products/Products.asp?DriveID=104
 7 http://www.seagate.com/cda/products/discsales/marketing/detail/0,1081,771,00.html
 8 http://www.babyusb.com/flashspecs2.htm
 9 ‘XScale Lite Datasheet’ RLC Enterprises, Inc.
10 http://www.psism.com/pendrive.htm
11 ‘Corsair USB Flash Memory Datasheet’. Corsair.
12 http://www.linux-mtd.infradead.org/archive/
13 ‘vxWorks API Reference Guide : Device Drivers’. Version 5.5.
14 National Semiconductor, ‘Geode User Manual,’ Rev. 1, p. 13.
15 Net Silicon, ‘Net + ARM40 Hardware Reference Guide,’ pp. 1–5.
16 ‘EnCore M3 Embedded Processor Reference Manual,’ Revision A, p. 8.
17 ‘EnCore PP1 Embedded Processor Reference Manual,’ Revision A, p. 9.

Figure 2.12c: Example of Underlying. NEt Middleware for a C#-based Database

http://redhat.brandfuelstores.com/
http://www.microsoft.com/
http://shop.cxtreme.de/
http://www.westerndigital.com/en/products/Products.asp%3FDriveID=104
http://www.seagate.com/cda/products/discsales/marketing/detail/0,1081,771,00.html
http://www.babyusb.com/flashspecs2.htm
http://www.psism.com/pendrive.htm
http://www.linux-mtd.infradead.org/archive/

This page intentionally left blank

59
Demystifying Embedded Systems Middleware. DOI: 10.1016/B978-0-7506-8455-2.00003-0

ChaptEr 3

Middleware and Standards
in Embedded Systems

Chapter points

•	 Defining	what	middleware	standards	are

•	 Listing	examples	of	different	types	of	middleware	standards

•	 Providing	examples	of	middleware	standards	that	derive	embedded	components

3.1 What are Standards for Middleware Software?

One of the first steps to understanding an embedded middleware solution is to, first, know
your standards! Standards are documented methodologies that can define some of the most
important, as well as required, components within an embedded system. Embedded systems
that share similar end-user and/or technical characteristics are typically grouped into market-
specific categories within the embedded systems industry. Thus, there exists middleware that
is utilized for a particular market category of embedded devices.

In short, middleware standards can either exist for a particular market category of embedded
devices, whereas other standards are utilized across all market segments. The most common
types of middleware standards in the embedded systems arena can typically fall under one or
some combination of the following categories:

•	 Emergency Services, Police, and Defense, middleware standards which are
implemented within embedded systems used by the police or military, such
as within ‘smart’ weapons, police patrol, ambulances, and radar systems to name
a few.

•	 Aerospace and Space, middleware standards which are implemented within aircrafts,
as well as embedded systems that must function in space, such as on a space station
or within an orbiting satellite.

www.newnespress.com

60 Chapter 3

•	 Automotive, middleware standards that are implemented within cars, trucks, vans,
and so on. This can include anything from security and engineer controls to a DVD
entertainment center.

•	 Commercial and Home Office Automation, middleware standards that are implemented
in appliances used in professional corporate and home offices, such as: fax machines,
scanners, and printers, for example.

•	 Consumer Electronics, middleware standards that are implemented in devices used
by consumers in everyday personal activities, such as in kitchen appliances, washing
machines, televisions, and set top boxes.

•	 Energy and Oil, middleware standards implemented within embedded systems used in
the power and energy industries, such as control systems within power plant ecosystems
for wind turbine generators and solar, for example.

•	 Industrial Automation and Control, middleware standards implemented within robotic
devices typically used in the manufacturing industries to execute cyclic work processes
on an assembly line.

•	 Medical, middleware standards implemented in devices used to aid in providing medical
treatments, such as infusion pumps, prosthetics, dialysis machines, and drug-delivery
devices to name a few.

•	 Networking and Communications, middleware standards implemented in audio/video
communication devices, such as cell phones and pagers, middleware standards used
within network-specific devices, such as in hubs and routers, as well as the standards used
in any embedded device to implement network connectivity.

•	 General Purpose, middleware standards that are generically utilized within any type of
embedded system, and are even implemented or have originated in non-embedded computer
systems, such as standards for programming languages and virtual machines, for example.

Embedded system market segments and their associated devices are always changing as new
devices emerge and other devices are phased out. The market definitions can also vary from
company to company semantically as well as how the devices are grouped by market segment.
Remember, this does not mean that any middleware that falls under a market-specific category
can never be utilized in other types of devices, or cannot be adapted to another type of design
that falls under a different market; only that there is a lot of middleware that has been designed
and intended to target a particular type of device with certain types of requirements.

3.2 real-world Middleware Standards Implemented in Embedded
Systems

As shown in Figure 3.1, functionality defined in standards can be specific to a particular layer,
reside across multiple layers, as well as indirectly derive what additional components are
required to allow for successful integration.

www.newnespress.com

Middleware and Standards in Embedded Systems 61

Table 3.1 contains a list of some standards organizations, commonly utilized real-world
standards in the embedded market space, as well as a general description of the purposes the
standards and organizations serve. Keep in mind that Table 3.1 is a dynamic table meant as a
guideline for the reader to start with and includes standards relevant to the different layers of
an embedded system’s architecture. It is important for the reader to think of the overall device
when thinking of what standards are relevant, because, for example, other computer systems
the embedded device needs to network successfully with, as well as standards explicitly
required within the embedded system, itself will implicitly derive what middleware standards
need to be adhered to within the design. Also, the embedded market is always changing, so
the reader should take the time to research, in addition to starting with Table 3.1, in order to
stay up-to-date on what those changes are relative to the required standards to be adhered to.

Note that some market-specific standards in Table 3.1 have been adopted, and may even have
originated, within other market segments. Moreover, note that for the same type of device,
different standards can exist depending on the country and even the region within a country.
There are also industries in which multiple competing standards exist, each supported by
competing business interests. So, it is recommended that the readers do their research to
determine what standards are out there, who supports them and why, as well as how they differ.

At this time, there is not one single middleware software standards organization that defines and
manages middleware standards within the embedded systems space. Thus, it is recommended that
the reader research what middleware standards are out there via any means available, such as:

•	 using	the	Internet	to	google	the	various	standards	bodies	and	access	their	documentation
•	 looking	up	within	published	trade	magazines,	datasheets	and	manuals	of	the	relevant	

industry and device
•	 by	attending	industry-specific	tradeshows,	seminars,	and/or	conferences.	For	example,	the	

Embedded Systems Conference (ESC), Real-time Embedded Computing Conference, and
Java One to name a few.

Figure 3.1: General Standards Diagram

w
w

w
.new

nespress.com

62
C

hapter 3

table 3.1: Examples of real-world Standards Organizations and Middleware Standards in Embedded Systems Market

Standard type Standard General description

Aerospace and
Defense

Aerospace Industries, Association of
America, Inc. (AIA/NAS)

Association representing the nation’s major aerospace and defense manufacturers,
helping to establish industry goals, strategies, and standards. Related to national and
homeland security, civil aviation, and space (www.aia-aerospace.org)

ARINC (Avionics Application Standard
Software Interface)

ARINC standards specify air transport avionics equipment and systems used by
commercial and military aircraft worldwide (www.arinc.com)

DOD (Department of Defense) – JTA
(Joint Technical Architecture)

DOD initiative that supports the smooth flow of information via standards, necessary
to achieve military interoperability (www.disa.mil)

Multiple Independent Levels of
Security/Safety (MILS)

Middleware framework for creating security-related and safety critical embedded
systems

SAE (Society of Automotive Engineers) Defining aerospace standards, reports, and recommended practices (www.sae.org)

Automotive Federal Motor Vehicle Safety
Standards (FMVSS)

The Code of Federal Regulations are regulations issued by various agencies within the
US Federal government (http://www.nhtsa.dot.gov/cars/rules/standards/)

Ford Standards From the engineering material specifications and laboratory test methods volumes,
the approved source list collection, global manufacturing standards, non-production
material specifications, and the engineering material specs and lab test methods
handbook (www.ihs.com/standards/index.html)

GM Global Used in the design, manufacturing, quality control, and assembly of General Motors
automotives (www.ihs.com/standards/index.html)

ISO/TS 16949 – The Harmonized
Standard for the Automotive Supply
Chain

Developed by the International Automotive Task Force (IATF), based on ISO9000,
AVSQ (Italy), EAQF (France), QS-9000 (USA), and VDA6.1 (Germany), for example
(www.iaob.org)

Jaguar Procedures and Standards
Collection

Contains Jaguar standards including Jaguar-Test Procedures Collection, Jaguar-Engine
and Fastener Standards Collection, for example (www.ihs.com/standards/index.html)

Commercial and
Home Office
Automation

ANSI/AIM BC3-1995, Uniform
Symbology Specification for Bar
Codes

Specifies encoding general purpose all-numeric types of data, reference decode
algorithm, and optional character calculation. This standard is intended to be
identical to the CEN (commission for European normalization) specification (www.
aimglobal.org/standards/)

IEEE Std 1284.1-1997 IEEE Standard
for Information Technology Transport
Independent Printer/System Interface
(TIP/SI)

Standard defining a protocol for printer manufacturers, software developers, and
computer vendors that defines how data should be exchanged between printers and
other devices (www.ieee.org)

http://www.aia-aerospace.org/
http://www.arinc.com/
http://www.disa.mil/
http://www.sae.org/
http://www.nhtsa.dot.gov/cars/rules/standards/
http://www.ihs.com/standards/index.html
http://www.ihs.com/standards/index.html
http://www.iaob.org/
http://www.ihs.com/standards/index.html
http://www.aimglobal.org/standards/
http://www.aimglobal.org/standards/
http://www.ieee.org/

w
w

w
.new

nespress.com

M
iddlew

are and Standards in Em
bedded System

s
63

table 3.1: Examples of real-world Standards Organizations and Middleware Standards in Embedded Systems Market continued

(continued)

Standard type Standard General description

Commercial and
Home Office
Automation

Postscript Major printer manufacturers make their printers to support postscript printing and
imaging standard (www.adobe.com)

Consumer
Electronics

ARIB-BML (Association of Radio
Industries and Business of Japan)

Responsible for establishing standards in the telecommunications and broadcast
arena in Japan5 (http://www.arib.or.jp/english/)

ATSC (Advanced Television Standards
Committee) DASE (Digital TV
Application Software Environment)

Defines middleware that allows programming content and applications to run
on DTV receivers. This environment provides content creators the specifications
necessary to ensure that their applications and data will run uniformly on all
hardware platforms and operating systems for receivers6 (www.atsc.org)

ATVEF (Advanced Television
Enhancement Forum) – SMPTE
(Society of Motion Picture and
Television Engineers) DDE-1

The Advanced Television Enhancement Forum (ATVEF) is a cross-industry group that
created an enhanced content specification defining fundamentals necessary to enable
creation of HTML-enhanced television content. The ATVEF specification for enhanced
television programming delivers enhanced TV programming over both analog and
digital video systems using terrestrial, cable, satellite and Internet networks7 (http://
www.atvef.com/)

CEA (Consumer Electronics
Association)

An association for the CE industry that develops essential industry standards and technical
specifications to enable interoperability between new products and existing devices8

–Audio and Video Systems Committee
–Television Data Systems Subcommittee
–DTV Interface Subcommittee
–Antennas Committee
–Mobile Electronics Committee
–Home Network Committee
–HCS1 Subcommittee
–Cable Compatibility Committee
–Automatic Data Capture Committee (www.ce.org)

DTVIA (Digital Television Alliance of
China)

An organization made up of broadcasting academics, research organizations, and TV
manufacturers targeting technology and standards within the TV industry in China
(http://www.dtvia.org.cn/)

DVB (Digital Video Broadcasting) –
MHP (Multimedia Home Platform)

The collective name for a compatible set of Java-based open middleware
specifications developed by the DVB Project, designed to work across all DVB
transmission technologies (see www.mhp.org)

GEM (Globally Executable MHP) A core of MHP APIs, where the DVB-transmission-specific elements were removed.
This allows other content delivery platforms that use other transmission systems to
adopt MHP middleware (see www.mhp.org)

http://www.adobe.com/
http://www.arib.or.jp/english/
http://www.atsc.org/
http://www.atvef.com/
http://www.atvef.com/
http://www.ce.org/
http://www.dtvia.org.cn/
http://www.mhp.org/
http://www.mhp.org/

w
w

w
.new

nespress.com

64
C

hapter 3

Standard type Standard General description

Consumer
Electronics

HAVi (Home Audio Video Initiative) Digital AV home networking software specification for seamless interoperability
among home entertainment products. HAVi has been designed to meet the
particular demands of digital audio and video by defining an operating-system-
neutral middleware that manages multidirectional AV streams, event schedules,
and registries, while providing APIs for the creation of a new generation of software
applications3 (www.havi.org)

ISO/IEC 16500 DAVIC (Digital Audio
Visual Council)

Open interfaces and protocols that maximize interoperability, not only across
geographical boundaries but also across diverse of interactive digital audio-visual
applications and services (www.davic.org)

JavaTV Java-based API for developing interactive TV applications within digital television
receivers. Functionality provided via the JavaTV API includes audio/video streaming,
conditional access, access to in-band/out-of-band data channels, access to service
information, tuner control for channel changing, on-screen graphics control, media
synchronization, and control of the application life-cycle, for example2
(see java.sun.com)

MicrosoftTV Interactive TV systems software layer that contains middleware that provides a
standard which combines analog TV, digital TV, and internet functionality
(http://www.microsoft.com/tv/default.mspx)

OCAP (OpenCable Application
Forum)

System software, middleware layer that provides a standard that allows for
application portability over different platforms. OCAP is built on the DVB-MHP
Java-based standard, with some modifications and enhancements to MHP
(www.opencable.com)

OpenTV DVB compliant system software, middleware standard and software for interactive
digital television receivers. Based on the DVB-MHP specification with additional
available enhancements (www.opentv.com)

OSGi (Open Services Gateway
Initiative)

OSGi provides Universal Middleware for service-oriented, component-based
environments across a range of markets (www.osgi.org)

table 3.1: Examples of real-world Standards Organizations and Middleware Standards in Embedded Systems Market continued

http://www.havi.org/
http://www.davic.org/
http://www.microsoft.com/tv/default.mspx
http://www.opencable.com/
http://www.opentv.com/
http://www.osgi.org/

w
w

w
.new

nespress.com

M
iddlew

are and Standards in Em
bedded System

s
65

Standard type Standard General description

Energy and Oil AWEA (American Wind Energy
Association)

Organization that develops standards for the USA wind turbine market
(www.awea.org)

International Electrotechnical
Commission (IEC)

One of the world’s leading organizations that prepares and publishes international
standards for all electrical, electronic and related technologies – such as in the wind
turbine generator arena (www.iec.ch)

International Standards Organization
(ISO)

One of the world’s leading organizations that prepares and publishes international
standards for energy and oil systems – such as in the nuclear energy arena
(www.iso.org)

Industrial
Automation and
Control

International Electrotechnical
Commission (IEC)

One of the world’s leading organizations that prepares and publishes international
standards for all electrical, electronic and related technologies – including in
industrial machinery and robotics (www.iec.ch)

International Standards Organization
(ISO)

One of the world’s leading organizations that prepares and publishes international
standards for energy and oil systems – including in industrial machinery and robotics
(www.iso.org)

Object Management Group (OMG) An international, open membership consortium developing middleware standards
and profiles that are based on the Common Object Request Broker Architecture
(CORBA®) and support a wide variety of industries, including for the field of robotics
via the OMG Robotics Domain Special Interest Group (DSIG) (www.omg.org)

Medical Department of Commerce, USA –
Office of Microelectronics, Medical
Equipment and Instrumentation

Website that lists the medical device regulatory requirements for various countries
(www.ita.doc.gov/td/mdequip/regulations.html)

Digital Imaging and Communications
in Medicine (DICOM)

Standard for transferring images and data between devices used in the medical
industry (medical.nema.org)

Food and Drug Administration (FDA)
USA

Among other standards, includes US government standards for medical devices,
including class I non-life sustaining, class II more complex non-life sustaining, and
class III life sustaining and life support devices (www.fda.gov)

IEEE1073 Medical Device
Communications

Standard for medical device communication for plug-and-play interoperability for
point-of-care/acute care environments (www.ieee1073.org)

Medical Devices Directive (EU) Standards for medical devices for EU states for various classes of devices
(europa.eu.int)

table 3.1: Examples of real-world Standards Organizations and Middleware Standards in Embedded Systems Market continued

(continued)

http://www.awea.org/
http://www.iec.ch/
http://www.iso.org/
http://www.iec.ch/
http://www.iso.org/
http://www.omg.org/
http://www.ita.doc.gov/td/mdequip/regulations.html
http://www.fda.gov/
http://www.ieee1073.org/

w
w

w
.new

nespress.com

66
C

hapter 3

Standard type Standard General description

Networking and
Communication

Cellular Networking standards implemented for cellular phones (www.cdg.org and www.
tiaonline.org)

IP (Internet Protocol) OSI Network layer protocol implemented within various network devices based on
RFC 791 (www.faqs.org/rfcs)

TCP (Transport Control Protocol) OSI Transport layer protocol implemented within various network devices based on
RFC 793 (www.faqs.org/rfcs)

Bluetooth Standards developed by the Bluetooth Special Interest Group (SIG) which allows
for developing applications and services that are interactive via interoperable radio
modules and data communication protocols (www.bluetooth.org)

UDP (User Datagram Protocol) OSI Transport layer protocol implemented within various network devices based on
RFC 768 (www.faqs.org/rfcs)

HTTP (Hypertext Transfer Protocol) A WWW (world wide web) standard defined via a number of RFC (request for
comments), such as RFC2616, 2016, 2069 to name a few (www.w3c.org/Protocols/
Specs.html)

DCE (Distributed Computing
Environment)

Defined by the Open Group, the Distributed Computing Environment is a framework
that includes RPC (remote procedure call), various services (naming, time,
authentication), and a file system to name a few (http://www.opengroup.org/dce/)

SOAP (Simple Object Access Protocol) WWW Consortium specification that defines an XML-based networking protocol
for exchange of information in a decentralized, distributed environment (http://www.
w3.org/TR/soap/)

table 3.1: Examples of real-world Standards Organizations and Middleware Standards in Embedded Systems Market continued

http://www.cdg.org%20and%20www.tiaonline.org/
http://www.cdg.org%20and%20www.tiaonline.org/
http://www.faqs.org/rfcs
http://www.faqs.org/rfcs
http://www.bluetooth.org/
http://www.faqs.org/rfcs
http://www.w3c.org/Protocols/Specs.html
http://www.w3c.org/Protocols/Specs.html
http://www.opengroup.org/dce/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/

w
w

w
.new

nespress.com

M
iddlew

are and Standards in Em
bedded System

s
67

Standard type Standard General description

General Purpose Networking and Communication
Standards

TCP, Bluetooth, IP, etc.

C# and .NET Compact Framework Microsoft-based standard and middleware system for portable application
development. Evolution of COM (www.microsoft.com)

HTML (Hyper Text Markup Language) A WWW (world wide web) standard for a scripting language processed by an
interpreter on the device (www.w3c.org)

Java and the Java Virtual Machine Various standards and middleware systems from Sun Microsystems targeted for
application development in different types of embedded devices (java.sun.com)
Personal Java (pJava)
Embedded Java, Java 2 Micro Edition (J2ME)
The Real Time Specification for Java
From J Consortium
Real Time Core Specification

SSL (Secure Socket Layer) 128-bit
encryption

Security standard providing data encryption, server authentication, and message
integrity, for example for a TCP/IP-based device (wp.netscape.com)

Filesystem Hierarchy Standard Standard that defines a file system directory structure hierarchy (http://www.
linuxfoundation.org/)

COM (Component Object Model) Originally from Microsoft, a standard that allows for interprocess communication
and dynamic object creation independent of underlying hardware and system
software

DCOM (Distributed COM) Based on DCE-RPC and COM, that allows for interprocess communication and
dynamic object creation across networked devices

table 3.1: Examples of real-world Standards Organizations and Middleware Standards in Embedded Systems Market continued

http://www.microsoft.com/
http://www.w3c.org/
http://www.linuxfoundation.org/
http://www.linuxfoundation.org/

www.newnespress.com

68 Chapter 3

3.3 the Contribution of Standards to an Embedded System

This section illustrates that to begin the process of demystifying the software within
an embedded device, it is useful to simply derive from the standards what the system
requirements would be and then determine where in the architecture of the embedded device
these components belong. To demonstrate how middleware standards can define some of the
most critical components of an embedded system software design, examples of:

•	 an	operating	system	standard
•	 programming	language	standards
•	 industry-specific	standards

are introduced in the next sections of this chapter.

3.3.1 Why have a POSIX Middleware Layer?

Middleware developers who want the flexibility of porting and utilizing their stack on more
than one embedded operating system commonly take the approach of creating a middleware
layer that abstracts out the operating system APIs commonly used by overlying libraries. These
APIs include process management (i.e., creating and deleting tasks), memory management,
and I/O management functionality. This middleware layer is implemented by wrapping
an embedded OS’s functions in a common API that overlying software uses instead of the
functions provided by an embedded OS directly. Many off-the-shelf embedded OSs today
support such an abstraction layer called the portable operating system interface (POSIX),
summarized in Table 3.2 and in the real-world implementation of POSIX in Figure 3.2.

Additional custom POSIX wrappers can also be useful to extend and to abstract out device
driver libraries for overlying software layers that need access to managing the hardware
(Figure 3.3). For example, if higher-level middleware and/or application software requires
access to low-level driver Flash routines to read/write data to Flash directly, then POSIX
wrappers can be added to abstract out device driver APIs when porting from one target to
another with vastly different BSPs (and internal functions).

It is also useful when designing to use an embedded operating system that implements
a partitioning protection scheme for mission critical-type devices (such as vxWorks653
shown in Figure 3.4). These types of OSs require that there be some type of middleware
abstraction layer for ‘protected’ partitions that contain software that can access to lower level
drivers directly.

3.3.2 When the Programming Language Impacts the Middleware Layer

Relative to programming languages, standards, and middleware there is not one
programming language that is a perfect fit for all embedded systems designs, and this reality

w
w

w
.new

nespress.com

M
iddlew

are and Standards in Em
bedded System

s
69

table 3.2: Example of pOSIX Functionality13

OS Subsystem Function Definition

Process
Management

Threads Functionality to support multiple flows of control within a process. These flows of control are called
threads and they share their address space and most of the resources and attributes defined in the
operating system for the owner process. The specific functional areas included in threads support are:

• Thread Management: the creation, control, and termination of multiple flows of control that share a
common address space.

• Synchronization primitives optimized for tightly coupled operation of multiple control flows in a
common, shared address space.

Semaphores A minimum synchronization primitive to serve as a basis for more complex synchronization mechanisms
to be defined by the application program.

Priority scheduling A performance and determinism improvement facility to allow applications to determine the order in
which threads that are ready to run are granted access to processor resources.

Real-time signal
extension

A determinism improvement facility to enable asynchronous signal notifications to an application to be
queued without impacting compatibility with the existing signal functions.

Timers A mechanism that can notify a thread when the time as measured by a particular clock has reached or
passed a specific value, or when a specified amount of time has passed.

IPC A functionality enhancement to add a high-performance, deterministic interprocess communication
facility for local communication.

Memory
Management

Process memory
locking

A performance improvement facility to bind application programs into the high-performance random
access memory of a computer system. This avoids potential latencies introduced by the operating
system in storing parts of a program that were not recently referenced on secondary memory devices.

Memory mapped
files

A facility to allow applications to access files as part of the address space.

Shared memory
objects

An object that represents memory that can be mapped concurrently into the address space of more
than one process.

I/O Management Synchronionized
I/O

A determinism and robustness improvement mechanism to enhance the data input and output
mechanisms, so that an application can ensure that the data being manipulated is physically presented
on secondary mass storage devices.

Asynchronous I/O A functionality enhancement to allow an application process to queue data input and output
commands with asynchronous notification of completion.

www.newnespress.com

70 Chapter 3

Figure 3.2: pOSIX Functionality and vxWorks14

www.newnespress.com

Middleware and Standards in Embedded Systems 71

is reflected by the fact that different languages are used in designing various embedded
systems today. In many real-world embedded devices, more than one programming language
has been utilized.

Typically, it is a fourth-generation or higher type of programming language standard (see
Table 3.3) that can introduce this additional middleware element within an embedded
system’s architecture design. Of course, languages like C, a third-generation language, can

Figure 3.4: vxWorks653 protected application within partitions15

Figure 3.3: Device Drivers and pOSIX Functionality

www.newnespress.com

72 Chapter 3

be based on standards such as ANSI C or Kernighan and Ritchie C, for example – but these
types of standards usually do not introduce an additional middleware component when using
a language based on them in an embedded system design.

To support a fourth-generation language like Java within an embedded system, for example,
requires that a JVM (Java virtual machine) reside within the deployed device. As shown in
Figure 3.5a, real-world embedded systems currently contain JVMs in their hardware layer, as
middleware within their system software layer, or within their application layer.

So, where standards make a difference relative to a JVM, for instance, are with the JVM
classes. These classes are compiled libraries of Java byte code, commonly referred to
as Java APIs (application program interfaces). Java APIs are application-independent
libraries provided by the JVM to, among other things, allow programmers to execute system
functions and reuse code. Java applications require the Java API classes, in addition to their
own code, to successfully execute. The size, functionality, and constraints provided by these
APIs differ according to the Java specification they adhere to, but can include memory
management features, graphics support, networking support, and so forth. Different standards
with their corresponding APIs are intended for different families of embedded devices
(see Figure 3.5b).

In the embedded market, recognized embedded Java standards include J Consortium’s Real-
Time Core Specification, and Personal Java (pJava), Embedded Java, Java 2 Micro Edition
(J2ME) and The Real-Time Specification for Java from Sun Microsystems. Figure 3.5c shows
the differences between the APIs of two different embedded Java standards.

table 3.3: General Evolution of programming Languages4

Language Details

5th Generation Natural languages Programming languages similar to conversational
languages typically used for AI (artificial intelligence)
programming and design

4th Generation Very high level (VHLL) and
non-procedural languages

Very high level languages that are object-oriented, like
C++, C#, and Java, scripting languages, such as Perl and
HTML – as well as database query languages, like SQL,
for example

3rd Generation High-order (HOL) and
procedural languages,
such as C and Pascal for
example

High-level programming languages with more English-
corresponding phrases. More portable than 2nd and 1st
generation languages

2nd Generation Assembly language Hardware dependent, representing machine code

1st Generation Machine code Hardware dependent, binary zeros (0s) and ones (1s)

www.newnespress.com

Middleware and Standards in Embedded Systems 73

For another fourth-generation language, C#, regarding supporting of its usage on an
embedded WinCE device – Microsoft, for example, supplies a .NET Compact Framework
(see Figure 3.6) to be included in the middleware layer of an embedded system similar to
the manner in which a JVM can be integrated into an embedded device’s system software
layer.

Figure 3.5b: J2ME Devices1

Figure 3.5a: JVMs in an Embedded System

www.newnespress.com

74 Chapter 3

3.4 Market-specific Middleware and the Mhp (Multimedia home
platform) Standard Example

In complex embedded devices, such as the digital television (DTV) receiver shown in Figure
3.7 for example, several standards serve to define what components will be residing within
the middleware software stack. While there are several types of DTV receivers on the market
today, from enhanced broadcast receivers that provide traditional broadcast television to
interactive broadcast receivers providing services including video-on-demand, web browsing,
and email, a DTV receiver serves as a good example of an embedded system that can require
some subset of multiple general-purpose and market-specific standards (see Table 3.4) and
how these standards can be used to derive what components are required within the device.

Analog TVs process incoming analog signals of traditional TV video and audio content,
whereas digital TVs (DTVs) process both incoming analog and digital signals of TV video/
audio content, as well as application data content that is embedded within the entire digital
data stream (a process called data broadcasting or data casting). This application data can

Figure 3.5c: pJava versus J2ME Sample apIs[3-1]

www.newnespress.com

Middleware and Standards in Embedded Systems 75

either be unrelated to the video/audio TV content (non-coupled), related to video/audio TV
content in terms of content but not in time (loosely coupled), or entirely synchronized with
TV audio/video (tightly coupled).

The type of application data embedded is dependent on the capabilities of the DTV receiver
itself. While there are a wide variety of DTV receivers, most fall under one of three categories:

•	 enhanced	broadcast	receivers,	which	provide	traditional	broadcast	TV	enhanced	with	
graphics controlled by the broadcast programming

•	 interactive	broadcast	receivers,	capable	of	providing	e-commerce,	video-on-demand,	
email, and so on through a return channel on top of ‘enhanced’ broadcasting

•	 multinetwork	receivers	that	include	internet	and	local	telephony	functionality	on	top	of	
interactive broadcast functionality.

Figure 3.6: NEt Compact Framework vs. Java Virtual Machine in an Embedded System

www.newnespress.com

76 Chapter 3

Depending on the type of receiver, DTVs can implement general-purpose, market-specific,
and/or application-specific standards all into one DTV/set-top box (STB) system architecture
design (shown in Table 3.4). These standards then can define several of the major components
that are implemented in all layers of the DTV Embedded Systems Model, as shown in Figure
3.7. The Digital Video Broadcasting (DVB) – Multimedia Home Platform (MHP) platform is
one example of real-world market-specific middleware software that is targeted for the DTV
embedded systems market, and used as the real-world example in this chapter.

MHP is a Java-based middleware solution based upon the Digital Video Broadcasting
(DVB) – Multimedia Home Platform (MHP) Specification. MHP implementations in digital
television are a powerful example to learn from when designing or using just about any

Figure 3.7: DtV receiver Example of Several Middleware Standards

www.newnespress.com

Middleware and Standards in Embedded Systems 77

market-specific middleware solution, because it incorporates many complex concepts and
challenges that must be addressed in its approach.

3.4.1 Initial Steps: Understanding Underlying MHP System Requirements

In general, as shown in Figure 3.8, hardware boards that support MHP include:

•	 Master	processor
•	 Memory	subsystem
•	 System	buses
•	 I/O	subsystem

•	 tuner/demodulator
•	 de-multiplexer
•	 decoders/encoders
•	 graphics processor
•	 communication interface/modem
•	 Conditional Access (CA) module
•	 a remote control receiver module.

Of course, there can be additional components, and these components will differ in design
from board to board, but these elements are generally what are found on most boards targeted

table 3.4: Examples of Digital television (DtV) receiver Standards

Standard type Standards

Market Specific ATVEF (Advanced Television Enhancement Forum)

ATSC (Advanced Television Standards Committee)/DASE (Digital TV
Applications Software Environment)

ARIB-BML (Association of Radio Industries and Business of Japan)

DAVIC (Digital Audio Video Council)

DTVIA (Digital Television Industrial Alliance of China)

DVB (Digital Video Broadcasting)/MHP (Multimedia Home Platform)

HAVi (Home Audio Video Interoperability)

JavaTV

MicrosoftTV

OCAP (OpenLabs Opencable Application Platform)

OSGi (Open Services Gateway Initiative)

OpenTV

General Purpose Java

Networking (TCP/IP over terrestrial, cable, and satellite, for example)

www.newnespress.com

78 Chapter 3

for this market. MHP and associated system software APIs typically require a minimum of
16 MB of RAM, 8–16 MB of Flash, and depending on how the JVM and OS are implemented
and integrated can require a 150–250+ MHz CPU to run in a practical manner. Keep in
mind that depending on the type of applications that will be run over the system software
stack, memory and processing power requirements for these applications need to be taken
into consideration, thus they may require a change to this ‘minimum’ baseline memory and
processing power requirements for running MHP.

The flow of video data originates with some type of input source. As shown in Figure 3.9,
in the case of an analog video input source, for example, each is routed to the analog video
decoder. The decoder then selects one of three active inputs and quantizes the video signal,
which is then sent to some type of MPEG-2 subsystem. An MPEG-2 decoder is responsible

Figure 3.8: texas Instruments DtV Block Diagram [3-9]

www.newnespress.com

Middleware and Standards in Embedded Systems 79

for processing the video data received to allow for either standard-definition or high-definition
output. In the case of standard-definition video output, it is encoded as either S-video
or composite video using an external video encoder. No further encoding or decoding is
typically done to the high-definition output coming directly from the MPEG-2 subsystem.

The flow of transport data originating from some type of input source is passed to the
MPEG-2 decoder subsystem (see Figure 3.10). The output information from this can be
processed and displayed.

In the case of audio data flow it originates at some type of analog source such as the analog audio
input sources shown in Figure 3.11. The MPEG-2 subsystem receives analog data from the A/D
converters that translated the incoming analog sources. Audio data can be merged with other data,
or transmitted as-is to D/A converters to be then routed to some type of audio output ports.

Figure 3.9: Example of Video Data path in DtV

Figure 3.10: Example of transport Data path in DtV

www.newnespress.com

80 Chapter 3

An MHP hardware subsystem will then require some combination of device driver libraries
to be developed, tested, and verified within the context of the overlying MHP compliant
software platform. Like the hardware, these low-level device drivers generally will fall under
general master processor-related device drivers (see Figure 3.12), memory and bus device
drivers (see Figure 3.13), and I/O subsystem drivers.

Figure 3.11: Example of audio Data path in DtV

Figure 3.12: Example of General architecture Device Drivers on Mhp platform

www.newnespress.com

Middleware and Standards in Embedded Systems 81

The I/O subsystem drivers include Ethernet, keyboard/mouse, video subsystem, and audio
subsystem drivers to name a few. Figures 3.14a–c show a few examples of MHP I/O
subsystem device drivers.

Because MHP is Java-based, as the previous section of this chapter indicated and shown in
Figure 3.15, a Java Virtual Machine (JVM) and ported operating system must then reside
on the embedded system that implements an MHP stack and underlie this MHP stack. This
JVM must meet the Java API specification required by the particular MHP implementation,
meaning the underlying Java functions that the MHP implementation calls down for must
reside in some form in the JVM that the platform supports.

Figure 3.13: Example of Memory and Bus Device Drivers on Mhp platform

Figure 3.14a: Example of Mhp General I/O Device Drivers

www.newnespress.com

82 Chapter 3

Figure 3.14b: Example of Mhp Video I/O Device Drivers

Figure 3.14c: Example of Mhp audio I/O Device Drivers

www.newnespress.com

Middleware and Standards in Embedded Systems 83

The open source example, openMHP, shows how some JVM APIs in its implementation,
such as the org.havi.ui library translate, into source code in this particular package
(see Figure 3.16).

3.4.2 Understanding MHP Components, MHP Services,
and Building Applications

As shown in Figure 3.17, the MHP standard is made up of a number of different sub-standards
which contribute to the APIs, including:

Figure 3.15: Mhp-based System architecture

www.newnespress.com

84 Chapter 3

Figure 3.16: openMhp org.havi.ui Source Example10

www.newnespress.com

Middleware and Standards in Embedded Systems 85

•	 Core	MHP	(varies	between	implementations)
•	 DSMCC
•	 BIOP
•	 Security

•	 HAVi	UI
•	 HAVi Level 2 User Interface (org.havi.ui)
•	 HAVi Level 2 User Interface Event (org.havi.ui.event)

•	 DVB
•	 Application Listing and Launching (org.dvb.application)
•	 Broadcast Transport Protocol Access (org.dvb.dsmcc)
•	 DVB-J Events (org.dvb.event)
•	 Inter-application Communication (org.dvb.io.ixc)
•	 DVB-J Persistent Storage (org.dvb.io.persistent)
•	 DVB-J Fundamental (org.dvb.lang)
•	 Streamed Media API Extensions (org.dvb.media)
•	 Datagram Socket Buffer Control (org.dvb.net)
•	 Permissions (org.dvb.net.ca and org.dvb.net.tuning)
•	 DVB-J Return Connection Channel Management (org.dvb.net.rc)
•	 Service Information Access (org.dvb.si)
•	 Test Support (org.dvb.test)
•	 Extended Graphics (org.dvb.ui)
•	 User Settings and Preferences (org.dvb.user)

Figure 3.17: Mhp apIs

www.newnespress.com

86 Chapter 3

•	 JavaTV
•	 DAVIC
•	 Return	Path
•	 Application	Management
•	 Resource	Management
•	 Security
•	 Persistent	Storage
•	 User	Preferences
•	 Graphics	and	Windowing	System
•	 DSM-CC	Object	and	Data	Carousel	Decoder
•	 SI	Parser
•	 Tuning,	MPEG	Section	Filter
•	 Streaming	Media	Control
•	 Return	Channel	Networking
•	 Application	Manager	and	Resource	Manager	Implementation
•	 Persistent	Storage	Control
•	 Conditional	Access	support	and	Security	Policy	Management
•	 User	Preference	Implementations.

Within the MHP world, content of the end-user of the system it interacts with is grouped
and managed as services. Content that makes up a service can fall under several different
types, such as applications, service information, and data/audio/video streams to name a
few. In addition to platform-specific requirements and end-user preferences, the different
types of content in services are used to manage data. For example, when a digital TV allows
support for more than one type of different video stream, service information can be used to
determine which stream actually gets displayed.

MHP applications can range from browsers to email to games to EPGs (electronic program
guides) to advertisements, to name a few. At the general level, all these different types of
MHP applications will typically fall under one of three general types of profile:

•	 Enhanced broadcasting, where the digital broadcast contains a combination of audio
services, video services, and executable applications to allow end-users to interact with
the system locally

•	 Interactive broadcasting, where the digital broadcast contains a combination of audio
services, video services, executable applications, as well as interactive services and channels
that allow end-users to interact with residing applications remotely to their digital TV device

•	 Internet access, where the system implements functionality that allows access to the internet.

An important note is that while MHP is Java-based, the MHP DVB-J type of applications
are not regular Java applications, but are executed within the context of a Java servlet (Xlet)
similar to the concept behind the Java applet. MHP applications communicate and interact
with their external environment via the Xlet context. For example, Figures 3.18a and 3.18b

www.newnespress.com

Middleware and Standards in Embedded Systems 87

Figure 3.18a: Simple Xlet Flow Example11

www.newnespress.com

88 Chapter 3

Figure 3.18b: Simple Xlet Source Example12

www.newnespress.com

Middleware and Standards in Embedded Systems 89

show an application example where a simple Xlet is created, initialized, and can be paused or
destroyed via an MHP Java TV API package ‘javax.tv.xlet’.

The next example shown in Figures 3.19a and 3.19b is a sample application which uses the

•	 JVM	packages	java.io,	java.awt,	and	java.awt.event
•	 MHP	Java	TV	API	package	‘javax.tv.xlet’

Figure 3.19a: Simple Mhp haVi Xlet Flow Example11

www.newnespress.com

90 Chapter 3

Figure 3.19b: Simple Mhp haVi Xlet Source Example12

www.newnespress.com

Middleware and Standards in Embedded Systems 91

•	 MHP	HAVi	packages	org.havi.ui	and	org.havi.ui.event
•	 MHP	DVB	package	org.dvb.ui.

Finally, an application manager within an MHP system manages all MHP applications
residing on the device both from information input from the end-user, as well as via the AIT
(application information table) data within the MHP broadcast stream transmitted to the
system. AIT data simply instructs the application manager as to what applications are actually
available to the end-user of the device, and the technical details of controlling the running of
the application.

3.5 Summary

Chapter 3 demonstrated the importance of understanding middleware standards relative to an
embedded systems design. The different types and examples of middleware standards were
defined according to industries, as well as general purpose standards that are utilized in a wide
variety of embedded systems. General examples relative to programming languages and a digital
television receiver were used to demonstrate that middleware standards can define important
components within an embedded system’s software stack. Only general examples were used
in this chapter since a later chapter of this book continues with a more detailed discussion of
programming languages that introduce middleware elements within an embedded system design.

The next section of this book, Section II, begins the detailed discussion of core middleware
commonly found in embedded systems as well as being the foundation of more complex
middleware software.

3.6 problems
1. Which standard is not a standard typically implemented within an embedded system?

A. MHP – Multimedia Home Platform
B. HTTP – Hypertext Transfer Protocol
C. J2EE – Java 2 Enterprise Edition
D. FTP – File Transfer Protocol
E. None of the above.

2. Give three examples of middleware standards implemented in embedded systems today.
3. How can middleware standards be classified?
4. Name and define four types of general purpose middleware standards implemented within

embedded systems today.
5. Give three examples of standards that fall under the following markets:

A. Consumer Electronics
B. Networking and Communications.

6. Name two examples of standards which introduce middleware component(s) within an
embedded system, and list what those middleware components are.

www.newnespress.com

92 Chapter 3

7. HTTP is an application layer standard that does not implicitly require any particular
underlying middleware (True/False).

8. Give an example of an embedded device which adheres to standards that introduce
several middleware components into the design. Draw the high-level diagram of an
example of such a device.

9. Which middleware standards below are Java-based:
A. HTML – Hypertext Markup Language
B. CLDC – Connected Limited Device Configuration
C. MHP – Multimedia Home Platform
D. A and B only
E. B and C only
F. All of the above.

3.7 End Notes
 1 Embedded Systems Architecture, Noergaard, 2005. Elsevier.
 2 http://java.sun.com/products/javatv/overview.html
 3 http://www.havi.org/
 4 System Analysis and Design. Harris, David. page 17.
 5 http://www.arib.or.jp/english/
 6 www.atsc.org
 7 http://www.atvef.com/
 8 http://www.ce.org/
 9 http://focus.ti.com/docs/solution/folders/print/327.html
10 openMHP API Documentation and Source Code.
11 Digital Video Broadcasting (DVB); Multimedia Home Platform (MHP) Specification 1.1.2. European

Broadcasting Union.
12 Application examples based upon MHP open source by Steven Morris available for download at

www.interactivetvweb.org
13 http://www.pasc.org/
14 WindRiver vxWorks API Reference Guide.
15 WindRiver vxWorks653 Datasheet.

http://java.sun.com/products/javatv/overview.html
http://www.arib.or.jp/english/
http://www.arib.or.jp/english/
http://www.atsc.org/
http://www.atvef.com/
http://www.ce.org/
http://focus.ti.com/docs/solution/folders/print/327.html
http://www.interactivetvweb.org/
http://www.pasc.org/

93
Demystifying Embedded Systems Middleware. DOI: 10.1016/B978-0-7506-8455-2.00004-2

ChaptEr 4

The Fundamentals in Understanding
Networking Middleware

Chapter points

•	 Introduce	fundamental	networking	concepts

•	 Discuss	the	OSI	model	relevance	to	networking	middleware

•	 Show	examples	of	real-world	networking	middleware	protocols

By definition, two or more devices that are connected in some fashion to allow for the
transmission and/or reception of data are a network. To successfully communicate, each system
within a network must implement some set of compatible networking elements (Figure 4.1).
Some of these mechanisms are implemented in the middleware layer of an embedded system, and
many are based upon industry standards – typically referred to as networking protocols. In fact,
one of the most commonly included types of middleware in an embedded system is networking
protocols, even if this code in the embedded device is only executed when connecting to a host at
development time for developing and debugging the software on the device.

The first steps to learning about networking middleware within an embedded systems
design include:

Step 1. Reviewing and using standard industry networking models, such as the Open Systems
Interconnection (OSI) networking model, as tools to define and understand what
internal networking components would be required by an embedded system to
successfully function within a particular network.

Step 2. Having a clear understanding of the overall network an embedded device will be
required to function properly within, specifically:
•	 The	distance	between	the	devices	connected	on	the	network
•	 The	physical	medium	that	connects	the	embedded	device	to	the	network
•	 The	overall	architecture	(structure)	of	the	network.

Step 3. Understanding the underlying hardware and system software layers, specifically:

www.newnespress.com

94 Chapter 4

•	 Know	your	networking-specific	standards	(introduced	in	Chapter 3).
•	 	Understand	the	hardware	(see	Chapter	2).	If	the	reader	comprehends	the	hardware,	it	

will be easier to understand the functionality of the overlying networking components.
•	 	Define	and	understand	the	specific	underlying	system	software	components,	such	

as the available device drivers supporting the networking hardware and the
operating system API (Chapter 2).

Step 4. Using a networking model, such as OSI, define and understand what type of function-
ality and data exists at the middleware layer for a particular device and protocol stack.

Step 5. Define and understand different types of networking application requirements and
corresponding protocols in order to ultimately be able to understand what middleware
components are necessary within a particular system to support the overlying soft-
ware layers.

4.1 Step 1 to Understanding Networking Middleware:
Networking Models

The International Organization for Standardization’s OSI (open systems interconnection)
reference model from the early 1980s is a representation of what types of hardware and
software networking components can be found in any computer system. Of the seven layers
of the OSI model, protocols at the upper data-link, network and transport layers are typically
implemented within some form of middleware software (see Figure 4.2).

Figure 4.1: What is a Network?

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 95

 Figure 4.2: the OSI (Open Systems Interconnection) Model and Middleware

www.newnespress.com

96 Chapter 4

To fundamentally understand the purpose of each OSI layer in networked devices, it is
important to understand that data are transmitted to be processed by peer OSI layers in other
devices (see Figure 4.3).

Within the scope of the OSI model, a networking connection is triggered with data
originating at the application layer of a device. These data, then, flow downward through
all seven layers. Except for the physical and application layers every other layer appends
additional information, called a header, to the data being transmitted down the stack. Via the
transmission medium, data are transmitted over to the physical layer of another networked
device, then up through the OSI layers of the receiving device. As the data flow upward, peer
layers in receiving devices strip these headers, unwrapping the data for processing. Figure 4.4
provides a visual overview of data flowing up and down an OSI networking stack.

While the OSI model is a powerful tool that can be used by the reader to demystify
networking fundamentals, keep in mind that it is not always the case that embedded devices
contain ‘exactly’ seven ‘distinct’ networking layers. Meaning, in many real-world networking
stacks, sometimes the functionality of more than one OSI layer is integrated into fewer layers,
and/or the functionality of one OSI layer is split out to more than one layer. As an example,

Figure 4.3: the OSI (Open Systems Interconnection) Model and the Embedded Systems Model

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 97

one of the most common real-world networking protocol stacks which deviates from the
standard OSI model is the four-layer TCP/IP (Transmission Control Protocol/Internet
Protocol) model shown in Figure 4.5. Under the TCP/IP model, OSI layers one and two
are integrated into the TCP/IP network access layer, and OSI layers five, six, and seven are
incorporated into the TCP/IP application layer.

In short, the important thing to note is that regardless of how a networking stack is implemented
in the real world, once the reader can visualize and understand from the OSI model:

1. what is required to implement networking functionality within an embedded device
2. where these components can be located in the particular device
3. the purpose of networking protocols at various layers

the reader can then apply this fundamental understanding to any embedded system design –
regardless of how many layers this functionality is implemented within a particular device or
what these layers are called within a particular embedded design.

Figure 4.4: the OSI (Open Systems Interconnection) Model and Data

www.newnespress.com

98 Chapter 4

4.2 Step 2 to Understanding Networking Middleware:
Understanding the Overall Network

In addition to software and/or hardware limitations dictated by the embedded device itself,
the overall network the embedded device is a part of is what determines which middleware
elements need to be implemented within the embedded system. Relative to this, as shown in
Figure 4.6, there are at least three key features about the network that the reader needs to be
familiar with at the start:

•	 The	distance	between	the	devices	connected	on	the	network
•	 The	physical	medium	that	connects	the	embedded	device	to	the	network
•	 The	overall	architecture	(structure)	of	the	network.

Figure 4.5: the OSI Model and tCp/Ip

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 99

4.2.1 WAN versus LAN: The Distance Between Networked Systems

In terms of where devices are geographically located within a network, at the highest level
networks can be divided into two types: local area networks (LANs) or wide area networks
(WANs). LANs are networks with connected devices that are located within close proximity
to each other, such as within the scope of the same building and/or the same room. WANs, on
the other hand, are networks with connected devices that are geographically located outside
the scope of the same building, such as across multiple buildings, across a city, and/or across
the globe for example. Despite the endless acronyms used to refer to the different types of
networks in the field, inherently all networks are either WANs, LANs, or some interconnected
hybrid combination of both.

Within an embedded device, whether or not a device will be connected within an LAN and/or
WAN will drive what networking technologies can be implemented within (see Figure 4.7).
Given the compatible LAN or WAN physical layer hardware, overlying protocols in support
of the physical layer are then implemented in the above software layers including any
required middleware components.

4.2.2 Wired vs. Wireless: The Transmission Medium

In general, the transmission medium connecting devices in a network can be categorized
as one of two possible types: bound (wired) and unbound (wireless). Bound transmission

Figure 4.6: Features of an Embedded System’s Network5

www.newnespress.com

100 Chapter 4

mediums interconnect devices via some type of physical cabling which guides
electromagnetic waves along the physical path of the wires within the cable.

Unbound transmission mediums are mediums in which devices are not connected via any
physical cable. Wireless transmission mediums utilize transmitted electromagnetic waves
which are not guided by a physical path of wiring, but via mediums such as water, air, and/or
a vacuum, to name a few.

Within an embedded device, whether or not a device will be connected via a wired versus
wireless transmission medium will also drive what networking technologies can be
implemented within (see Figure 4.8) as well as what performance can be expected. As stated
within the previous section, networking software protocols that are implemented within a device
need to be compatible with the underlying wired and/or wireless physical layer hardware.

Figure 4.7: Examples of LaN versus WaN Networking protocols

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 101

4.2.3 Peer-to-Peer vs. Client–Server: The Network’s Overall Architecture

A network’s architecture essentially defines the relationship between devices on the network.
To date, the most common types of structures are modeled after client–server architectures,
peer-to-peer architectures, or some hybrid combination of both architectures.

A client–server architecture is a model in which one centralized device on the network
has control in managing the network in terms of resources, security, and functions, for
example. This centralized device is referred to as the server of the network. All other devices
connected to the network are referred to as clients. Servers can manage clients’ requests either
iteratively, one at a time, or concurrently where more than one client request can be handled
in parallel. A client contains fewer resources than the server, and it accesses the server to
utilize additional resources and functionality.

On the flip-side, with a peer-to-peer architecture network implementation there is not
one centralized device in control. Devices in a peer-to-peer network are more functionally
independent and are responsible for managing themselves as equals.

Hybrid networks are networks that are structured on some combination of both peer-to-peer
and client–server models. LANs and WANs can be based on either client–server or hybrid

Figure 4.8: Examples of Wireless versus Wired Networking protocols

www.newnespress.com

102 Chapter 4

architectures. Peer-to-peer networks, on the other hand, typically pose additional security
and performance challenges that make them more likely to be implemented in LANs rather
than WANs.

4.3 Step 3 to Understanding Networking Middleware:
Understanding the Underlying hardware and System Software Layers

Networking protocols implemented in an embedded system’s middleware software layer
typically reside on top of some combination of other middleware, an operating system, device
drivers, and hardware (see Figure 4.10). Specifically, a networking protocol implemented as
middleware in the system software layer exists either as:

Figure 4.9: Network’s Overall architecture

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 103

•	 Independent	middleware	components	that	sit	on	top	of	the	operating	system	layer,	or	
directly over device drivers in a system with no operating system.

•	 Middleware	that	sits	on	top	of	and/or	is	integrated	with	other	middleware	components.	
For example, a networking stack integrated with an embedded Java Virtual Machine
(JVM) distribution from a vendor.

•	 Middleware	that	has	been	tightly	integrated	and	provided	with	a	particular	operating	
system distribution from a vendor.

As shown in Figure 4.11, in some embedded systems the system software can be a little more
complex because of more than one implemented networking protocol stack in the embedded
device, such as in support of different physical layers, for example.

4.3.1 About the Networking (Physical Layer) Hardware

Why Understand Networking hardware?

Networking protocols residing at the higher layers of the OSI model view lower software layers
that execute over different physical layer hardware as transparent. However, the underlying
networking hardware available today is often quite different in terms of how it works. Thus, it
is important for embedded developers to understand the differences in the hardware, in order
to understand the implementation of a networking stack on which these various technologies
reside. In other words, hardware features, quirks, and/or limitations will ultimately impact
the type of networking library required and/or what modifications must be implemented in a
particular networking stack to support this hardware.

Figure 4.10: Networking System Components the Embedded Systems Model

Continued

www.newnespress.com

104 Chapter 4

Networking hardware on a board falls under a type of I/O (input/output) hardware, and is
responsible for transmitting data into and out of the device. At the highest level, I/O networking
hardware can be classified according to how the hardware manages the transmission and
reception of data, specifically whether the physical layer manages data in serial, in parallel,

In other words, when a programmer learns about the networking hardware of a device, then it
will be much simpler for the programmer to understand a particular networking protocol
implementation, how to modify a particular protocol in support of underlying technologies, as
well as determine which middleware networking protocol is the best ‘fit’ for the device. In short, it
is important for the reader to understand the networking relevant features of the hardware – and
to use this understanding when analyzing the networking stack implementation that needs to
support the particular underlying technology.

Figure 4.11: Example of Multiple Networking protocol in an Embedded System

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 105

or some hybrid combination of both. Networking hardware that is classified as serial, such as
EIA/RS-232, manages incoming and outgoing data one bit at a time. Hardware that can manage
data in parallel is a physical layer which has the ability to manage multiple bits simultaneously.
Hardware such as that based on IEEE 802.3 Ethernet has the capability of supporting both
serial and parallel communication and can be configured to manage data either way.

Be it hardware that supports serial communication, parallel communication, or both – as
shown in the example of real-world hardware in Figure 4.12 with RS-232 and Ethernet
support – an I/O networking hardware subsystem on an embedded systems board is typically
made up of some combination of the following six logical units:

•	 the	transmission medium, as described in Section 4.2, wireless or wired medium(s) that
connect the embedded system to a network

•	 the	communication (COM) port, the component(s) on the embedded board in which a
wired medium connects to or that receives the signal of a wireless transmission medium

•	 the	network controller, a slave processor that manages the networking communication
from the other logical units on the board

•	 the	master processor’s integrated networking I/O, master processor-specific networking
components

•	 the	communication interface, which manages data communication and the encoding/
decoding of data. It can be integrated into the master processor or another IC (integrated
circuit) on the board

•	 the	I/O bus, connects master processor to other networking I/O logical units on the board.

Given a serial networking subsystem, for example, that hardware would be made up of some
combination of the above logical units, including a ‘serial’ interface and ‘serial’ port. A
parallel networking subsystem would, instead, have a ‘parallel’ interface and a ‘parallel’ port.

Figure 4.12: Embedded planet ppC823 Simplified Block Diagram3

www.newnespress.com

106 Chapter 4

4.3.2 More on Serial versus Parallel Networking I/O

Whether or not a serial interface (shown in Figure 4.13) is integrated within the master
processor or residing as a separate component on the target board, it is this interface that
ultimately determines the serial handshaking involved in the transmission and reception of bits
between connected devices. Serial handshaking is typically based upon one of three schemes:

•	 Simplex, where bits can only be transmitted and received in one direction, such as shown
in Figure 4.13

•	 Half Duplex, where bits can be transmitted and received in either direction, but only
specifically in one direction at any given time (see Figure 4.14)

•	 Duplex, where bits can be transmitted and received in either direction at any given time
(see Figure 4.15).

Within the serial data stream itself, bits can be transmitted either asynchronously or
synchronously depending on the hardware. With asynchronous data transmission, bits
are transmitted at irregular intervals, randomly and intermittently. With synchronous data
transmission, data transmission is regulated by a CPU clock resulting in a continuous and
steady data stream transmission at regular intervals.

Asynchronous transmission requires that the data being transmitted be divided into groups,
referred to as packets, of 4–8 bits per character or 5–9 bits per character, for example. These
packets are encapsulated into frames that append START bit to indicate the start of the packet
and one, one and a half, or two STOP bit(s) to indicate the end of the packet. An optional
parity bit can also be appended to the packet for basic error checking, with values of either:

•	 NONE,	meaning	no	parity	bit	appended
•	 ODD,	meaning	excluding	the	START	and	STOP	bits,	for	transmission	to	be	considered	

successful – the total number of bits set to one must be an odd number

Figure 4.13: Example of Simplex Serial Networking I/O Block Diagram4

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 107

•	 EVEN,	meaning	excluding	the	START	and	STOP	bits,	for	transmission	to	be	considered	
successful – the total number of bits set to one must be an even number.

The key to successful asynchronous serial communication is that the bit rate of the transmitter
and receiver must be synchronized, where

Bit Rate (bandwidth) = Baud Rate*(# of actual data bits per frame/total # of bits per frame)
and

 Baud Rate = total # of bits per unit time (i.e., kbits/s, Mbits/s, etc.)

Figure 4.15: Example of Duplex Serial Networking I/O Block Diagram4

Figure 4.14: Example of half-Duplex Serial Networking I/O Block Diagram4

www.newnespress.com

108 Chapter 4

The serial interfaces within the transmitter and receiver then synchronize their transmissions
to their own independent bit-rate clocks. When there is no transmission of data, the
communication channel is in an idle state. The UART (universal asynchronous receiver-
transmitter) is an example of a real-world serial interface that, as its name implies, supports
asynchronous serial transmission.

With synchronous serial transmission, the data transmitter and receiver also must be in
sync – however, this is done off one common clock for both. Since this common clock does
not start or stop between data transmissions, data are not encapsulated with START and
STOP bits with synchronous communication. In some subsystems, the clock signal may be
transmitted within the data stream, whereas in others there may be an entirely independent
clock signal line. A serial peripheral interface (SPI), such as the one shown in Figure 4.12, is
an example of a real-world serial interface that supports synchronous transmission.

On a final note regarding parallel networking I/O – as with serial schemes – parallel
communication schemes include simplex, half-duplex, duplex, as well as synchronous and
asynchronous data transmission. It is because multiple bits can be transmitted and received
simultaneously over parallel networking I/O which allows this hardware to have a greater
bandwidth transmission capacity over serial hardware.

4.3.3 Device Drivers and Networking

As shown in Figure 4.16, I/O networking device drivers reside in the lower data-link layer of
the OSI model. At the very least, the responsibility of the data-link layer includes receiving
data bits from the physical layer hardware and formatting these bits into groups, called
data-link frames, for later processing and transmission to higher layers of software. While
data-link standards differ from protocol to protocol, in general the data-link layer reads in and
processes the bits as frames to process the header to:

•	 insure	data	received	are	complete,	free	of	errors,	and	not	corrupted
•	 compare	relevant	frame	bit	field	to	the	physical	networking	address	retrieved	from	the	

hardware to determine if the data are intended for that device
•	 determine	who	transmitted	the	frame.

If the data are indeed intended for the device, the data-link header is stripped from the frame.
The remaining data bits, commonly referred to as a datagram, are transmitted up the stack.
With a datagram coming down the stack to the data-link layer, a data-link header with the
above information is appended to the datagram, creating the data-link frame. The relevant I/O
networking device drivers then transmit this frame to the I/O networking hardware (physical layer)
for transmission outside the device. Figure 4.17 shows a high-level block diagram of this flow.

A lot of I/O networking hardware integrated in the master processor, as well as networking
controllers that can reside independently on the embedded systems board, require some set of

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 109

software functionality to function. Depending on the I/O networking subsystem, the device
driver library will generally include some combination of:

•	 I/O Networking Installation, code that allows for on-the-fly support of I/O networking
hardware in the embedded system

•	 I/O Networking Uninstall, code for removing the support of I/O networking hardware in
the embedded system

•	 I/O Networking Startup, initialization code for the I/O networking hardware upon reset
and/or power-on

Figure 4.16: the OSI Model and Device Drivers

www.newnespress.com

110 Chapter 4

•	 I/O Networking Shutdown, termination code for the I/O networking hardware for
entering into a power-off state

•	 I/O Networking Enable, code for enabling of the I/O networking hardware
•	 I/O Networking Disable, code for disabling the I/O networking hardware
•	 I/O Networking Acquire, code that provides other system software access to the I/O

networking hardware
•	 I/O Networking Release, code that provides other system software the ability to free the

I/O networking hardware
•	 I/O Networking Read, code that provides other system software the ability to read data

from the I/O networking hardware
•	 I/O Networking Write, code that provides other system software the ability to write data

to the I/O networking hardware.

reminder

Different device driver libraries may have additional functions, but most device drivers in
support of I/O networking hardware will include some combination of the above functionality.

The device driver libraries are also the foundation on which the middleware functionality is
built upon, so it is very important for the reader to insure the existence and stability of any
networking device driver functionality the networking middleware requires. Figure 4.18 shows
an example of a real-world, open-source Ethernet library and a snippet of some associated
device driver function source code for reading and writing to the hardware layer. Overlying

Figure 4.17: high-level Block Diagram of Data-link Layer Data Flow

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 111

middleware layers then utilize functions, such as these types of function for reading, writing,
etc. in addition to any other functions included in the device driver library for that particular
hardware, to process and manage incoming and outgoing networking data.

4.4 an Embedded OS and Networking I/O apIs

A common method of providing an abstraction layer to simplify software development,
managing an embedded device’s hardware and software resources, as well as insuring
efficient and reliable operation, is the utilization of an embedded operating system (OS)
within a design. In addition to processes, memory, and I/O system management components
within its kernel, an embedded OS may also provide additional I/O system management
functionality for networking protocol libraries (see Figures 4.19a and 4.19b).

While networking middleware code can of course be written to access device driver
functionality directly, an embedded OS can also include an abstraction layer API that allows
for device driver access by middleware software. When providing device access, or any type
of I/O access to overlying networking libraries, many OS APIs categorize and abstract their
associated underlying device drivers as some combination of:

•	 Character, a driver that allows hardware access via a (character) byte stream
•	 Block, a driver that allows hardware access via some smallest addressable set of bytes at

any given time
•	 Network, a driver that allows hardware access via data in the form of networking packets

Figure 4.18: Open Source Ethernet Driver Library6

www.newnespress.com

112 Chapter 4

Figure 4.18 continued: Open Source Ethernet Driver Library

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 113

Figure 4.19b: Example OS ComponentsFigure 4.19a: Example OS permutations

www.newnespress.com

114 Chapter 4

•	 Virtual, a driver that allows I/O access to virtual (software) devices
•	 Miscellaneous Monitor and Control, a driver that allows I/O access to hardware that is

not accessible via the other categories above.

Figure 4.20 shows an example of a vxWorks network device interface library available
to middleware for usage – this example is a subset of vxWorks available functionality for
network interfacing, buffering, and monitoring. Overlying middleware software layers then
have the option of utilizing functions, such as these types of functions provided by the OS
layer, to process and manage incoming and outgoing networking data.

Figure 4.20: Example of Ethernet Device Driver public Library under VxWorks7

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 115

Figure 4.20 continued: Example of Ethernet Device Driver public Library under VxWorks

www.newnespress.com

116 Chapter 4

4.5 Step 4: Networking Middleware

As shown in Figure 4.21, within the scope of this book, networking protocols that reside within the:

•	 upper	data-link	layer
•	 network	layer
•	 transport	layers

are defined as middleware software components.

Figure 4.20 continued: Example of Ethernet Device Driver public Library under VxWorks

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 117

Figure 4.21: Middleware and the OSI Model

www.newnespress.com

118 Chapter 4

4.5.1 Upper Data-link Layer Middleware5

As shown in Figure 4.22, the data-link layer is the software closest to the hardware – the
physical layer in OSI model terms. Thus, it includes, among other functions, any software
needed to access, control, and manage the hardware. Bridging also occurs at this layer to
allow networks interconnected with different physical layer protocols – for example, Ethernet
LAN and an 802.11 LAN – to interconnect.

Like physical layer protocols, data-link layer protocols are classified as either LAN protocols,
WAN protocols, or protocols that can be used for both LANs and WANs. Data-link layer
protocols that are reliant on a specific physical layer may be limited to the transmission
medium involved, but in some cases (for instance, PPP over RS-232 or PPP over Bluetooth’s
RFCOMM), data-link layer protocols can be ported to very different mediums if there is a
layer that simulates the original medium the protocol was intended for, or if the protocol
supports hardware-independent upper-data-link functionality.

The data-link layer is responsible for receiving data bits from the physical layer and
formatting these bits into groups, called data-link frames. Different data-link standards
have varying data-link frame formats and definitions, but in general this layer reads the bit
fields of these frames to ensure that entire frames are received, that these frames are error

Figure 4.22: Data-link Layer protocols

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 119

free, that the frame is meant for this device by using the physical address retrieved from the
networking hardware on the device, and where this frame came from. If the data are meant
for the device, then all data-link layer headers are stripped from the frame, and the remaining
data field, called a datagram, is passed up to the networking layer. These same header fields
are appended to data coming down from upper layers by the data-link layer, and then the full
data-link frame is passed to the physical layer for transmission (see Figure 4.23).

As shown in Figure 4.21, within the scope of the OSI model the data-link layer is logically
split into two sublayers, a lower sublayer referred to as the media access control (MAC) and
the upper sublayer called the logical link control (LLC). The upper data-link LLC sublayer is
what is typically found at the middleware software layer, and can provide various functions
depending on the protocol, including some combination of:

•	 multiplexing	protocols	overlaying	the	data-link	layer
•	 managing	the	physical	(MAC)	addressing	between	systems	and	being	passed	to	upper	

layers for translation to network addresses
•	 managing	data	flow	and	providing	flow	control	of	frames
•	 synchronization	of	data
•	 managing	communication	that	is	connectionless	and/or	connection-oriented	(with	

acknowledgments of received frames)
•	 error	recovery
•	 data-link	addressing	and	control.

Figure 4.23: Data-link Layer Data Flow Block Diagram

www.newnespress.com

120 Chapter 4

4.5.2 Point-to-Point Protocol Example5

PPP (point-to-point protocol) is a common OSI data-link (or network access layer under the
TCP/IP model) protocol that can encapsulate and transmit data to higher layer protocols, such
as IP, over a physical serial transmission medium (see Figure 4.24). PPP provides support for
both asynchronous (irregular interval) and synchronous (regular interval) serial communication.

PPP is responsible for processing data passing through it as frames. When receiving data
from a lower layer protocol, for example, PPP reads the bit fields of these frames to insure
that entire frames are received, that these frames are error free, that the frame is meant for this
device (using the physical address retrieved from the networking hardware on the device), and
to determine where this frame came from. If the data are meant for the device, then PPP strips
all data-link layer headers from the frame, and the remaining data field, called a datagram, is
passed up to a higher layer. These same header fields are appended to data coming down from
upper layers by PPP for transmission outside the device.

In general, PPP software is defined via a combination of four submechanisms:

•	 The	PPP encapsulation mechanism (in RFC1661) such as the high-level data-link control
(HDLC) framing in RFC1662 or the link control protocol (LCP) framing defined in
RFC1661 to process (i.e., demultiplex, create, verify checksum, etc.)

•	 Data-link protocol handshaking, such as the link control protocol (LCP) handshaking
defined in RFC1661, responsible for establishing, configuring, and testing the data-link
connection

•	 Authentication protocols, such as PAP (PPP authentication protocol) in RFC1334, used to
manage security after the PPP link is established

Figure 4.24: Data-link Middleware

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 121

•	 Network control protocols (NCP), such as IPCP (Internet protocol control protocol) in
RFC1332, that establish and configure upper-layer protocol (i.e., OP, IPX, etc.) settings.

These submechanisms work together in the following manner: a PPP communication link,
connecting both devices, can be in one of five possible phases at any given time, as shown
in Table 4.1. The current phase of the communication link determines which mechanism –
encapsulation, handshaking, authentication, and so on – is executed.

How these phases interact to configure, maintain, and terminate a point-to-point link is shown
in Figure 4.25.

As defined by PPP layer 1 (i.e., RFC1662), data are encapsulated within the PPP frame, an
example of which is shown in Figure 4.26.

The flag bytes mark the beginning and end of a frame, and are each set to 0x7E. The
address byte is a high-level data-link control (HDLC) broadcast address and is always set to
0xFF, since PPP does not assign individual device addresses. The control byte is an HDLC
command for UI (unnumbered information) and is set to 0x03. The protocol field defines
the protocol of the data within the information field (i.e., 0x0021 means the information
field contains IP datagram, 0xC021 means the information field contains link control data,
0x8021 means the information field contains network control data – see Table 4.2). Finally,
the information field contains the data for higher-level protocols, and the FCS (frame check
sequence) field contains the frame’s checksum value.

table 4.1: phase table8

phase Description

Link Dead The link necessarily begins and ends with this phase. When an external event (such as
carrier detection or network administrator configuration) indicates that the physical layer
is ready to be used, PPP proceeds to the Link Establishment phase. During this phase, the
LCP automaton (described later in this chapter) will be in the Initial or Starting states.
The transition to the Link Establishment phase signals an Up event (discussed later in this
chapter) to the LCP automaton.

Establish Link The link control protocol (LCP) is used to establish the connection through an exchange
of configuration packets. An Establish Link phase is entered once a Configure-Ack packet
(described later in this chapter) has been both sent and received.

Authentication Authentication is an optional PPP mechanism. If it does take place, it typically does so
soon after the Establish Link phase.

Network Layer
Protocol

Once PPP has completed the establish or authentication phases, each Network Layer
Protocol (such as IP, IPX, or AppleTalk) MUST be separately configured by the appropriate
Network Control Protocol (NCP).

Link
Termination

PPP can terminate the link at any time, after which PPP should proceed to the Link Dead
phase.

www.newnespress.com

122 Chapter 4

Figure 4.26: ppp hDLC-like Frame8

Figure 4.25: ppp phases8

table 4.2: protocol Information8

Value (in hex) protocol Name

0001 Padding Protocol

0003 to 001 f Reserved (transparency inefficient)

007d Reserved (Control Escape)

00cf Reserved (PPP NLPID)

00ff Reserved (compression inefficient)

8001 to 801 f Unused

807d Unused

80cf Unused

80ff Unused

c021 Link Control Protocol

c023 Password Authentication Protocol

c025 Link Quality Report

c223 Challenge Handshake Authentication Protocol

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 123

The data-link protocol may also define a frame format. An LCP frame, for example, is as
shown in Figure 4.27.

The data field contains the data intended for higher networking layers, and is made up of
information (type, length, and data). The length field specifies the size of the entire LCP frame.
The identifier is used to match client and server requests and responses. Finally, the code field
specifies the type of LCP packet (indicating the kind of action being taken); the possible codes
are summarized in Table 4.3. Frames with codes 1–4 are called link configuration frames,
5 and 6 are link termination frames, and the rest are link management packets.

The LCP code of an incoming LCP datagram determines how the datagram is processed, as
shown in the pseudocode example below.

In order for two devices to be able to establish a PPP link, each must transmit a data-
link protocol frame, such as LCP frames, to configure and test the data-link connection.
As mentioned, LCP is one possible protocol that can be implemented for PPP, to handle
PPP handshaking. After the LCP frames have been exchanged (and thereby a PPP link
established), authentication can then occur. It is at this point where authentication protocols,
such as PPP Authentication Protocol or PAP, can be used to manage security, through
password authentication and so forth. Finally, Network Control Protocols (NCP) such as

Figure 4.27: LCp Frame8

www.newnespress.com

124 Chapter 4

IPCP (Internet Protocol Control Protocol) establish and configure upper-layer protocols in the
network layer protocol settings, such as IP and IPX.

At any given time, a PPP connection on a device is in a particular state, as shown in Figure 4.28;
the PPP states are outlined in Table 4.4.

Events (also shown in Figure 4.28) are what cause a PPP connection to transition from state
to state. The LCP codes (from the RFC1661 spec) in Table 4.5 define the types of events that
cause a PPP state transition.

As PPP connections transition from state to state, certain actions are taken stemming from
these events, such as the transmission of packets and/or the starting or stopping of the Restart
timer, as outlined in Table 4.6.

PPP states, actions, and events are usually created and configured by the platform-specific
code at boot-time, some of which is shown in pseudocode form on the next several
pages. A PPP connection is in an initial state upon creation; thus, among other things, the
‘initial’ state routine is executed. This code can be called later at runtime to create and
configure PPP, as well as respond to PPP runtime events (i.e., as frames are coming in
from lower layers for processing). For example, after PPP software demuxes a PPP frame
coming in from a lower layer, and the checksum routine determines the frame is valid, the
appropriate field of the frame can then be used to determine what state a PPP connection

table 4.3: LCp Codes8

Code Definition

I Configure-Request

2 Configure-Ack

3 Configure-Nak

4 Configure-Reject

5 Terminate-Request

6 Terminate-Ack

7 Code-Reject

8 Protocol-Reject

9 Echo-Request

10 Echo-Reply

11 Discard-Request

12 Link Quality Report

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 125

is in and thus what associated software state, event, and/or action function needs to be
executed. If the frame is to be passed to a higher layer protocol, then some mechanism is
used to indicate to the higher layer protocol that there are data to receive (IPReceive for
IP, for example).

table 4.4: ppp States8

States Definition

Initial PPP link is in the Initial state, the lower layer is unavailable (Down), and no Open event
has occurred. The Restart timer is not running in the Initial state.

Starting The Starting state is the Open counterpart to the Initial state. An administrative Open
has been initiated, but the lower layer is still unavailable (Down). The Restart timer
is not running in the Starting state. When the lower layer becomes available (Up), a
Configure-Request is sent.

Stopped The Stopped state is the Open counterpart to the Closed state. It is entered
when the automaton is waiting for a Down event after the This-Layer-Finished
action, or after sending a Terminate-Ack. The Restart timer is not running in the
Stopped state.

Closed ln the Closed state, the link is available (Up), but no Open has occurred. The Restart
timer is not running in the Closed state. Upon reception of Configure-Request
packets, a Terminate-Ack is sent. Terminate-Acks are silently discarded to avoid
creating a loop.

Stopping The Stopping state is the Open counterpart to the Closing state. A Terminate-Request
has been sent and the Restart timer is running, but a Terminate-Ack has not yet been
received.

Closing In the Closing state, an attempt is made to terminate the connection. A Terminate-
Request has been sent and the Restart timer is running, but a Terminate-Ack has not
yet been received. Upon reception of a Terminate-Ack, the Closed state is entered.
Upon the expiration of the Restart timer, a new Terminate-Request is transmitted, and
the Restart timer is restarted. After the Restart timer has expired Max-Terminate times,
the Closed state is entered.

Request-Sent In the Request-Sent state an attempt is made to Configure the connection. A
Configure-Request has been sent and the Restart timer is running, but a Configure-Ack
has not yet been received nor has one been sent.

Ack-Sent In the Ack-Received state, a Configure-Request has been sent and a Configure-Ack has
been received. The Restart timer is still running, since a Configure-Ack has not yet been
sent.

Opened In the Opened state, a Configure-Ack has been both sent and received. The Restart
timer is not running. When entering the Opened state, the implementation SHOULD
signal the upper layers that it is now Up. Conversely, when leaving the Opened state,
the implementation SHOULD signal the upper layers that it is now Down.

www.newnespress.com

126 Chapter 4

table 4.5 continued: ppp Events

Figure 4.28: ppp Connection States and Events8

table 4.5: ppp Events8

Event
Label

Event Description

Up lower layer is Up This event occurs when a lower layer indicates that it is ready to carry packets.

Down lower layer is
Down

This event occurs when a lower layer indicates that it is no longer ready to carry
packets.

Open administrative
open

This event indicates that the link is administratively available for traffic; that is,
the network administrator (human or program) has indicated that the link is
allowed to be Opened. When this event occurs, and the link is not in the Opened
state, the automaton attempts to send configuration packets to the peer.

Close administrative
close

This event indicates that the link is not available for traffic; that is, the network
administrator (human or program) has indicated that the link is not allowed to
be Opened. When this event occurs, and the link is not in the Closed state, the
automaton attempts to terminate the connection. Further attempts to re-configure
the link are denied until a new Open event occurs.

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 127

Event
Label

Event Description

TO+ timeout with
counter > 0

This event indicates the expiration of the Restart timer.

The Restart timer is used to time responses to Configure-Request and Termimate-
Request packets. The TO+ event indicates that the Restart counter continues
to be greater than zero, which triggers the corresponding Configure-Request or
Terminate-Request packet to be retransmitted.
The TO− event indicates that the Restart counter is not greater than zero, and no
more packets need to be retransmitted.

TO− timeout with
counter expired

RCR+ receive configure
request good

An implementation wishing to open a connection MUST transmit a Configure-
Request. The Options field is filled with any desired changes to the link defaults.
Configuration Options SHOULD NOT be included with default values.

RCR− receive configure
request bad

RCA receive configure
ack

This event occurs when a valid Configure-Ack packet is received from the peer. The
Configure-Ack packet is a positive response to a Configure-Request packet. An out of
sequence or otherwise invalid packet is silently discarded.
If every Configuration Option received in a Configure-Request is recognizable
and all values are acceptable, then the implementation MUST transmit a
Configure-Ack. The acknowledged Configuration Options MUST NOT be
reordered or modified in any way.
On reception of a Configure-Ack, the Identifier field MUST match that of the
last transmitted Configure-Request. Additionally, the Configuration Options in
a Configure-Ack MUST exactly match those of the last transmitted Configure-
Request. Invalid packets are silently discarded.

RCN receive configure
nak/rej

This event occurs when a valid Configure-Nak or Configure-Reject packet is
received from the peer. The Configure-Nak and Configure-Reject packets are
negative responses to a Configure-Request packet. An out of sequence or
otherwise invalid packet is silently discarded.

RTR receive terminate
request

This event occurs when a Terminate-Request packet is received. The Terminate-Request
packet indicates the desire of the peer to close the connection.

RTA receive terminate
ack

This event occurs when a Terminate-Ack packet is received from the peer. The
Terminate-Ack packet is usually a response to a Terminate-Request packet. The
Terminate-Ack packet may also indicate that the peer is in Closed or Stopped states,
and serves to re-synchronize the link configuration.

RUC receive unknown
code

This event occurs when an uninterpretable packet is received from the peer. A
Code-Reject packet is sent in response.

table 4.5 continued: ppp Events

(continued)

www.newnespress.com

128 Chapter 4

table 4.6: ppp actions8

action Label action Definition

tlu this layer up This action indicates to the upper layers that the automaton is entering the
Opened state. Typically, this action is used by the LCP to signal the Up event
to an NCP, Authentication Protocol, or Link Quality Protocol, or MAY be
used by an NCP to indicate that the link is available for its network layer
traffic.

tld this layer
down

This action indicates to the upper layers that the automaton is leaving the
Opened state. Typically, this action is used by the LCP to signal the Down
event to an NCP, Authentication Protocol, or Link Quality Protocol, or MAY
be used by an NCP to indicate that the link is no longer available for its
network layer traflic.

tls this layer
started

This action indicates to the lower layers that the automaton is entering the
Starting state, and the lower layer is needed for the link. The lower layer
SHOULD respond with an Up event when the lower layer is available. The
results of this action are highly implementation dependent.

tlf this layer
finished

This action indicates to the lower layers that the automaton is entering the
Initial, Closed or Stopped states, and the lower layer is no longer needed
for the link. The lower layer SHOULD respond with a Down event when the
lower layer has terminated. Typically, this action MAY be used by the LCP
to advance to the Link Dead phase, or MAY be used by an NCP to indicate
to the LCP that the link may terminate when there are no other NCPs open.
This results of this action are highly implementation dependent.

Event
Label

Event Description

RXJ+ receive code
reject permitted
or receive
protocol reject

This event occurs when a Code-Reject or a Protocol-Reject packet is received
from the peer. The RXJ+ event arises when the rejected value is acceptable, such
as a Code-Reject of an extended code, or a Protocol-Reject of an NCR. These are
within the scope of normal operation. The implementation MUST stop sending the
offending packet type. The RXJ− event arises when the rejected value is catastrophic,
such as a Code-Reject of Configure-Request, or a Protocol-Reject of LCP! This
event communicates an unrecoverable error that terminates the connection.

RXJ− receive code reject
catastrophic or
receive protocol
reject

RXR receive echo
request, receive
echo reply, or
receive discard
request

This event occurs when an Echo-Request, Echo-Reply or Discard-Request packet
is received from the peer. The Echo-Reply packet is a response to an Echo-
Request packet. There is no reply to an Echo-Reply or Discard-Request packet.

table 4.5 continued: ppp Events

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 129

action Label action Definition

irc initialize
restart count

This action sets the Restart counter to the appropriate value (Max-
Terminate or Max-Configure). The counter is decremented for each
transmission, including the first.

zrc zero restart
count

This action sets the Restart counter to zero.

scr send
configure
request

Configure-Request packet is transmitted. This indicates the desire to open
a connection with a specified set of Configuration Options. The Restart
timer is started when the Configure-Request packet is transmitted, to
guard against packet loss. The Restart counter is decremented each time a
Configure-Request is sent.

sca send
configure ack

A Configure-Ack packet is transmitted. This acknowledges the reception of a
Configure-Request packet with an acceptable set of Configuration Options.

scn send
configure
nak/rej

A Configure-Nak or Configure-Reject packet is transmitted, as appropriate.
This negative response reports the reception of a Configure-Request packet
with an unacceptable set of Configuration Options, Configure-Nak packets are
used to refuse a Configuration Option value, and to suggest a new, acceptable
value, Configure-Reject packets are used to refuse all negotiation about a
Configuration Option, typically because it is not recognized or implemented.
The use of Configure-Nak versus Configure-Reject is more fully described in the
chapter on LCP Packet Formats.

str send
terminate
request

A Terminate-Request packet is transmitted. This indicates the desire to close
a connection. The Restart timer is started when the Terminate-Request
pocket is transmitted, to guard against packet loss. The Restart counter is
decremented each time a Terminate-Request is sent.

sta send
terminate ack

A Terminate-Ack packet is transmitted. This acknowledges the reception
of a Terminate-Request packet or otherwise serves to synchronize the
automatons.

scj send code
reject

A Code-Reject packet is transmitted. This indicates the reception of an
unknown type of packet.

ser send echo
reply

An Echo-Reply packet is transmitted. This acknowledges the reception of an
Echo-Request packet.

table 4.6 continued: ppp actions

www.newnespress.com

130 Chapter 4

4.5.3 Point-to-Point LCP Pseudocode Example5

Initial: PPP link is in the Initial state, the lower layer is unavailable (Down), and no Open
event has occurred. The Restart timer is not running in the Initial state.8

Figure 4.29 Initial LCp State

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 131

Starting: The Starting state is the Open counterpart to the Initial state. An administrative
Open has been initiated, but the lower layer is still unavailable (Down). The Restart timer is
not running in the Starting state. When the lower layer becomes available (Up), a Configure-
Request is sent.8

Closed: In the Closed state, the link is available (Up), but no Open has occurred. The
Restart timer is not running in the Closed state. Upon reception of Configure-Request
packets, a Terminate-Ack is sent. Terminate-Acks are silently discarded to avoid creating a
loop.8

www.newnespress.com

132 Chapter 4

Stopped: The Stopped state is the Open counterpart to the Closed state. It is entered when the
automaton is waiting for a Down event after the This-Layer-Finished action, or after sending
a Terminate-Ack. The Restart timer is not running in the Stopped state.8

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 133

Closing: In the Closing state, an attempt is made to terminate the connection. A Terminate-
Request has been sent and the Restart timer is running, but a Terminate-Ack has not yet
been received. Upon reception of a Terminate-Ack, the Closed state is entered. Upon the
expiration of the Restart timer, a new Terminate-Request is transmitted, and the Restart timer
is restarted. After the Restart timer has expired Max-Terminate times, the Closed state is
entered.8

www.newnespress.com

134 Chapter 4

Stopping: The Stopping state is the Open counterpart to the Closing state. A Terminate-
Request has been sent and the Restart timer is running, but a Terminate-Ack has not yet been
received.8

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 135

Request-Sent: In the Request-Sent state an attempt is made to configure the connection. A
Configure-Request has been sent and the Restart timer is running, but a Configure-Ack has
not yet been received nor has one been sent.8

www.newnespress.com

136 Chapter 4

Ack-Received: In the Ack-Received state, a Configure-Request has been sent and a Configure-
Ack has been received. The Restart timer is still running, since a Configure-Ack has not yet
been sent.8

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 137

Ack-Sent: In the Ack-Sent state, a Configure-Request and a Configure-Ack have both been
sent, but a Configure-Ack has not yet been received. The Restart timer is running, since a
Configure-Ack has not yet been received.8

www.newnespress.com

138 Chapter 4

Opened: In the Opened state, a Configure-Ack has been both sent and received. The Restart
timer is not running. When entering the Opened state, the implementation SHOULD
signal the upper layers that it is now Up. Conversely, when leaving the Opened state, the
implementation SHOULD signal the upper layers that it is now Down.8

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 139

www.newnespress.com

140 Chapter 4

4.5.4 Network Layer Middleware5

At the network layer, networks can be broken down further into segments, smaller sub-
networks. Interconnected devices located within the same segment can communicate via
their physical addresses. Devices located on different segments communicate via a different
type of address, referred to as a network address. Conversions between a device’s physical
and network address can occur both within the higher data-link layer, as well as in a network
layer protocol. Through the networking address scheme, network layer protocols typically
manage:

•	 data	transmitted	at	the	segment	level
•	 datagram	traffic
•	 any	routing	from	the	current	device	to	another	device.

Like the data-link layer, if the data are meant for the device, then all network layer
headers are stripped from the datagram. The remaining data field, called a packet, is
passed up to the transport layer. If the data are not meant for the device, this layer can
also act as a router and transmit the data back down the stack to be forwarded to another
system.

These same header fields are appended to data coming down from upper layers by the network
layer, and then the full network layer datagram is passed to the data-link layer for further
processing (see Figure 4.30). Note that the term ‘packet’ is sometimes used to discuss data
transmitted over a network, in general, in addition to data processed at the transport layer.

Figure 4.30: Network Layer Data-flow Diagram

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 141

4.5.5 Internet Protocol (IP) Example5

The networking layer protocol called the Internet Protocol, or IP, is based upon DARPA
standard RFC791, and is mainly responsible for implementing addressing and fragmentation
functionality (see Figure 4.31).

While the IP layer receives data as packets from upper layers and frames from lower layers,
the IP layer actually views and processes data in the form of datagrams, whose format is
shown in Figure 4.32.

The entire IP datagram is what is received by IP from lower layers. The last field alone within
the datagram, the data field, is the packet that is sent to upper layers after processing by IP.
The remaining fields are stripped or appended, depending on the direction the data are going,
to the data field after IP has finished processing. It is these fields that support IP addressing
and fragmentation functionality.

Figure 4.31: Ip Functionality

www.newnespress.com

142 Chapter 4

The source and destination IP address fields are the networking addresses, also commonly
referred to as the Internet or IP address, processed by the IP layer. In fact, it is here that one of
the main purposes of the IP layer, addressing, comes into play. IP addresses are 32 bits long,
in ‘dotted-decimal notation’, meaning they are divided by ‘dots’ into four octets (four 8-bit
decimal numbers between the ranges of 0–255 for a total of 32 bits), as shown in Figure 4.33.

IP address are divided into groups, called classes, to allow for the ability of segments to all
communicate without confusion under the umbrella of a larger network, such as the World-
Wide-Web, or the Internet. As outlined in RFC791, these classes are organized into ranges of
IP addresses, as shown in Table 4.7.

Figure 4.32: Ip Datagram9

Figure 4.33: Ip address

table 4.7: Ip address Classes9

Class Ip address range

A 0.0.0.0 127.255.255.255

B 128.0.0.0 191.255.255.255

C 192.0.0.0 223.255.255.255

D 224.0.0.0 239.255.255.255

E 244.0.0.0 255.255.255.255

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 143

The classes (A, B, C, D, and E) are divided according to the value of the first octet in an IP
address. If the highest order bit in the octet is a ‘0’, then the IP address is a class ‘A’ address.
If the highest order bit is a ‘1’, then the next bit is checked for a ‘0’ – if it is, then it’s a class
‘B’ address, and so on.

In classes A, B, and C, following the class bit or set of bits is the network id. The network
id is unique to each segment or device connected to the Internet, and is assigned by Internet
Network Information Center (InterNIC). The host id portion of an IP address is then left
up to the administrators of the device or segment. Class D addresses are assigned for groups
of networks or devices, called host groups, and can be assigned by the InterNIC or the IANA
(Internet Assigned Numbers Authority). As noted in Figure 4.34, Class E addresses have
been reserved for future use.

4.5.6 Internet Protocol (IP) Fragmentation Mechanism5

Fragmentation of an IP datagram is done for devices that can only process smaller amounts
of networking data at any one time. The IP procedure for fragmenting and reassembling
datagrams is a design that supports unpredictability in networking transmissions. This means
that IP provides support for a variable number of datagrams containing fragments of data
that arrive for reassembly in an arbitrary order, and not necessarily the same order in which
they were fragmented. Even fragments of differing datagrams can be handled. In the case of

Figure 4.34: Ip Classes9

www.newnespress.com

144 Chapter 4

fragmentation, most of the fields in the first 20 bytes of a datagram, called the header, are
used in the fragmentation and reassembling process.

The version field indicates the version of IP being transmitted (i.e., IPv4 is version 4).
The IHL (internet header length) field is the length of the IP datagram’s header. The total
length field is a 16-bit field in the header which specifies the actual length in octets of the
entire datagram including the header, options, padding, and data. The implication behind
the size of the total length field is that a datagram can be up to 65 536 (216) octets in size.

When fragmenting a datagram, the originating device splits a datagram ‘N’ ways, and
copies the contents of the header of the original datagram into all of the smaller datagram
headers. The Internet Identification (ID) field is used to identify which fragments belong to
which datagrams. Under the IP protocol, the data of a larger datagram must be divided into
fragments, of which all but the last fragment must be some integral multiple of 8 octet blocks
(64 bits) in size.

The fragment offset field is a 13-bit field that indicates where in the entire datagram the
fragment actually belongs. Data are fragmented into subunits of up to 8192 (213) fragments
of 8 octets (64 bits) each – which is consistent with the total length field being 65 536 octets
in size – dividing by 8 for 8 octet groups = 8192. The fragment offset field for the first
fragment would be ‘0’, but for other fragments of the same datagram it would be equal to the
total length (field) of that datagram fragment plus the number of 8 octet blocks.

The flag fields (shown in Figure 4.35) indicate whether or not a datagram is a fragment
of a larger piece. The MF (More Fragments) flag of the flag field is set to indicate that the

Figure 4.35: Flags9

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 145

fragment is the last (the end piece) of the datagram. Of course, some systems do not have the
capacity to reassemble fragmented datagrams. The DF (Don’t Fragment) flag of the flag field
indicates whether or not a device has the resources to assemble fragmented datagrams. It is
used by one device’s IP layer to inform another that it doesn’t have the capacity to reassemble
data fragments transmitted to it. Reassembly simply involves taking datagrams with the same
ID, source address, destination address, and protocol fields, and using the fragment offset
field and MF flags to determine where in the datagram the fragment belongs.

The remaining fields in an IP datagram are summarized as follows:

•	 Time	to	live	(which	indicates	the	datagram’s	lifetime)
•	 Checksum	(datagram	integrity	verification)
•	 Options	field	(provides	for	control	functions	needed	or	useful	in	some	situations	but	

unnecessary for the most common communications (i.e., provisions for timestamps,
security, and special routing))

•	 Type	of	service	(used	to	indicate	the	quality	of	the	service	desired.	The	type	of	service	
is an abstract or generalized set of parameters which characterize the service choices
provided in the networks that make up the internet)

•	 Padding	(internet	header	padding	is	used	to	insure	that	the	internet	header	ends	on	a	32-
bit boundary. The padding is zero)

•	 Protocol	(indicates	the	next	level	protocol	used	in	the	data	portion	of	the	internet	
datagram. The values for various protocols are specified in ‘Assigned Numbers’ RFC790,
as shown in Table 4.8).

table 4.8: Flags9

Decimal Octal protocol Numbers

0 0 Reserved

1 1 ICMP

2 2 Unassigned

3 3 Gateway-to-Gateway

4 4 CMCC Gateway Monitoring Message

5 5 ST

6 6 TCP

7 7 UCL

8 10 Unassigned

9 11 Secure

10 12 BBN RCC Monitoring

11 13 NVP

(continued)

www.newnespress.com

146 Chapter 4

In Figure 4.36 are open source examples for sending and receiving processing routines
for a datagram at the IP layer. Lower layer protocols (i.e., PPP, Ethernet, SLIP, and so on)
call some type of ‘IPReceive’ routine such as the ‘void NutIpInput(NUTDEVICE * dev,
NETBUF * nb)’ in the open source snippet below to indicate to this layer to receive the
datagram to disassemble. Higher layer protocols (such as TCP or UDP) call some type of
‘IPSend’ routine such as the ‘int NutIpOutput(u_char proto, u_long dest, NETBUF * nb)’
shown in the open source snippet below to transmit the datagram. Within the ‘NutIpOutput’
below is an example of how an IP header, like that which was shown in Figure 4.32, can
be populated.

Decimal Octal protocol Numbers

12 14 PUP

13 15 Pluribus

14 16 Telenet

15 17 XNET

16 20 Chaos

17 21 User Datagram

18 22 Multiplexing

19 23 DCN

20 24 TAC Monitoring

21–62 25–76 Unassigned

63 77 Any local network

64 100 SATNET and Backroom EXPAK

65 101 MIT Subnet Support

66–68 102–104 Unassigned

69 105 SATNET Monitoring

70 106 Unassigned

71 107 Internet Packet Core Utility

72–75 110–113 Unassigned

76 114 Backroom SATNET Monitoring

77 115 Unassigned

78 116 WIDEBAND Monitoring

79 117 WIDEBAND EXPAK

80–254 120–376 Unassigned

255 377 Reserved

table 4.8 continued: Flags8

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 147

Figure 4.36: Open Source Example6

www.newnespress.com

148 Chapter 4

Figure 4.36 continued: Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 149

Figure 4.36 continued: Open Source Example

www.newnespress.com

150 Chapter 4

Figure 4.36 continued: Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 151

Figure 4.36 continued: Open Source Example

www.newnespress.com

152 Chapter 4

4.5.7 Transport Layer Middleware

Transport layer protocols (see Figure 4.37) are typically responsible for point-to-
point communication, which means this code is managing, establishing, and closing
communication between two specific networked devices. Essentially, this layer is
what allows multiple networking applications that reside above the transport layer

Figure 4.36 continued: Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 153

to establish client–server, point-to-point communication links to another device via
functionality such as:

•	 flow	control	that	insures	packets	are	transmitted	and	received	at	a	supportable	rate
•	 insuring	packets	transmitted	have	been	received	and	assembled	in	the	correct	order
•	 providing	acknowledgments	to	transmitter	upon	reception	of	error-free	packet
•	 requesting	re-transmission	to	transmitter	upon	reception	of	defective	packet.

As shown in Figure 4.38, generally, data received from the underlying network layer are
stripped of the transport header and processed, then transmitted as messages to upper layers.
When a transport layer receives a message from an upper layer, the message is processed and
a transport header appended to the message before being passed down to underlying layers
for further processing for transmission.

The core communication mechanism used when establishing and managing communication
between two devices at the transport layer is called a socket. Basically, any device that
wants to establish a transport layer connection to another device must do so via a socket.
So, there is a socket on either end of the point-to-point communication channel for two
devices to transmit and receive data. There are several different types of sockets, such as
raw, datagram, stream, and sequenced packet for example, depending on the transport layer
protocol.

Figure 4.37: transport Middleware Layer protocols

www.newnespress.com

154 Chapter 4

Because one transport layer can manage multiple overlying applications, sockets are bound to
ports with unique port numbers that have been assigned to each application either by default
via industry standard or by the developer. For example, an FTP client being assigned ports 20
or 21, an email/SMTP client being assigned port 23, and an HTTP client being assigned port
80 to name a few. Each device has ports ‘0’ through ‘65535’ available for use, because ports
are defined as 16-bit unsigned integers.

As shown in Figure 4.39, in general, transport layer handshaking involves the server
waiting for a client-side application to initiate a connection by ‘listening’ to the relative
transport layer socket. Incoming data to the server socket are processed and the IP address,
as well as port number, is utilized to determine if the received packet is addressed to
an overlying application on the server. Given a successful connection to a client for
communication, the server then establishes another independent socket to continue
‘listening’ for other clients.

4.5.8 Transport Layer Example5: User Datagram Protocol (UDP)
versus Transmission Control Protocol (TCP)

RFC793 – Transmission Control Protocol (TCP) and RFC768 – User Datagram Protocol
(UDP) are two of the more common transport layer (middleware) protocols implemented
within an embedded system residing over the networking layer protocol IP (internet protocol).
Figure 4.40 is an open source example of UDP functions that utilize lower IP and ICMP
middleware layer software.

Figure 4.38: transport Layer Data-flow Diagram

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 155

UDP establishes and dissolves point-to-point unreliable connections via a datagram socket.
This means that the UDP protocol does not provide acknowledgment functionality relative to
a UDP packet (see Figure 4.41), and overlying software layers are responsible for managing
reliability of transmitted data.

TCP, on the other hand, establishes and dissolves point-to-point reliable connections via a
datagram socket. Like UDP, TCP transfers and receives data packaged as segments, via a
socket handling scheme that handles data one message segment at a time. However, TCP
provides an acknowledgment at the core of its handshaking scheme and uses a packet
structure that differs from UDP (see Figure 4.42).

In addition to the actual data, both UDP and TCP headers contain source and destination
port number fields. Both UDP and TCP headers also contain a checksum field to allow both
protocols to help insure that data were transmitted without errors. As shown in Table 4.9,
TCP headers then provide additional fields to support the additional functionality relative to
reliability and handshaking provided by TCP over UDP.

Events are triggered by data within sender and receiver packets, such as user calls (i.e.,
OPEN, SEND, RECEIVE, CLOSE, ABORT, and STATUS), incoming segments and their
relative flags in the case of TCP (SYN, ACK, RST and FIN), and/or timeouts to name a few.

Figure 4.39: transport Layer Client–Server handshaking

www.newnespress.com

156 Chapter 4

Figure 4.40: UDp Open Source Example13

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 157

Figure 4.40 continued: UDp Open Source Example

www.newnespress.com

158 Chapter 4

Figure 4.40 continued: UDp Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 159

UDP and TCP connections then progress from one state to another depending on these events,
for example under TCP:

•	 LISTEN, waiting for a connection request
•	 ESTABLISHED, normal and open connection in which data can be received
•	 SYN-SENT/SYN-RECEIVED, synchronize connections reception/transmission

of data

Figure 4.40 continued: UDp Open Source Example

www.newnespress.com

160 Chapter 4

•	 CLOSED, no connection
•	 CLOSING, waits for a connection termination request acknowledgment
•	 CLOSE-WAIT, waiting for a connection termination request
•	 TIME-WAIT, handshaking delay to allow time for remote connection to process
•	 LAST-ACK, waiting for an acknowledgment of connection termination request

Figure 4.41: UDp packet Diagram10

Figure 4.42: tCp packet Diagram10

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 161

•	 FIN-WAIT-1, waiting for an acknowledgment or termination request from remote
connection

•	 FIN-WAIT-2, waiting for termination request from remote connection.

So as shown in the high-level diagram in Figure 4.43, the handshaking scheme under TCP
is based upon connections communicating via these states. The current states are defined by
events contained within the content of the transmitted packets.

table 4.9: additional tCp header Fields5

tCp header Field Description

Acknowledgment Number TCP handshaking requires that when a TCP connection is
established, and acknowledgment is always sent. When an
ACK control bit is set, the Acknowledgment Number is the
value of the next sequence number the sender of the segment
is expecting to receive

Control Bits

 URG URG: Urgent Pointer field significant

 ACK Acknowledgment field significant

 PSH Push Function

 RST Reset the connection

 SYN Synchronize sequence numbers

 FIN No more data from sender

Data Offset Contains the location of where data is located within the TCP
message segment, after the TCP header

 Options Additional TCP options

 End of Option List Indicates the end of an options list

 Maximum Segment Size Maximum Segment Size

 Maximum Segment Size Option Data This field contains the maximum receive segment size at the
TCP which sends this segment

 No-Operation Miscellanous use in options list

Padding Zeros used to ensure that the TCP header ends, and data start
on a 32-bit boundary

Reserved 0 (Reserved)

Sequence Number When SYN is not present, this field contains the first data
octet. Otherwise, this field contains the initial sequence
number (ISN) and the first data octet is ISN+1

Urgent Pointer When the URG control bit is set, this field contains the current
value of the urgent pointer which points to the sequence
number of the octet following the urgent data

Window The amount of data the sender of the segment can accept

www.newnespress.com

162 Chapter 4

4.6 Step 5 putting it all together: tuning the Networking Stack and
the application requirements

It is important for middleware developers to understand the overall networking requirements
of their device and tune networking parameters at all layers of software to real-world
performance needs accordingly. Even if the networking components are included as part of
a bundle purchased from an off-the-shelf embedded operating system vendor, middleware
programmers should not ever assume it is configured for their own production-ready
requirements. For example, developers that use vxWorks have the option of purchasing
an additional tightly networking stack with vxWorks. Access to networking parameters
(examples shown in Table 4.10) are provided via the development environment and source
code to developers, so that these components can be tuned to the requirements of the device
and how it must perform within a network.

So, given the TCP/IP stack parameters shown in Table 4.10 and tuning these – an example
to middleware developers is the TCP_MSS_DFLT parameter, which is the TCP Maximum
Segment Size (MSS) that can be tuned by analyzing both IP fragmentation as well as
managing overhead. The underlying IP stack needs to be considered because TCP segments
are repackaged into IP datagrams when data flow down the stack. Thus, the size limitations
of the IP datagrams must be taken into account. This is because fragmentation will occur at
the IP layer if the TCP segment is too big, resulting in a degradation of performance because
more than one datagram must be transmitted at the IP layer for the TCP segment data to be
managed successfully.

Figure 4.43: high-level tCp States and handshaking Diagram5

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 163

table 4.10: tuning parameters for Networking Components in vxWorks12

Networking
Component

parameter Description Value

TCP TCP_CON_TIMEO_
DFLT

Timeout intervals to connect (default
150 = 75 s)

150

TCP_FLAGS_DFLT Default value of the TCP flags (TCP_DO_RFC1323)

TCP_IDLE_TIMEO_
DFLT

Seconds without data before dropping
connection

14400

TCP_MAX_PROBE_
DFLT

Number of probes before dropping
connection (default 8)

8

TCP_MSL_CFG TCP Maximum Segment Lifetime in
seconds

30

TCP_MSS_DFLT Initial number of bytes for a segment
(default 512)

512

TCP_RAND_FUNC A random function to use in tcp_init (FUNCPTR)random

TCP_RCV_SIZE_DFLT Number of bytes for incoming TCP data
(8192 by default)

8192

TCP_REXMT_THLD_
DFLT

Number of retransmit attempts before
error (default 3)

3

TCP_RND_TRIP_DFLT Initial value for round-trip-time, in
seconds

3

TCP_SND_SIZE_DFLT Number of bytes for outgoing TCP data
(8192 by default)

8192

UDP UDP_FLAGS_DFLT Optional UDP features: default enables
checksums

(UDP_DO_CKSUM_
SND | UDP_DO_
CKSUM_RCV)

UDP_RCV_SIZE_DFLT Number of bytes for incoming UDP
data (default 41600)

41600

UDP_SND_SIZE_DFLT Number of bytes for outgoing UDP data
(9216 by default)

9216

IP_FLAGS_DFLT Selects otional features of IP layer (IP_DO_FORWARDING |
IP_DO_REDIRECT | IP_
DO_CHECKSUM_SND
| IP_DO_CHECKSUM_
RCV)

IP IP_FRAG_TTL_DFLT Number of slow timeouts (2 per second) 60

IP_QLEN_DFLT Number of packets stored by receiver 50

IP_TTL_DFLT Default TTL value for IP packets 64

IP_MAX_UNITS Maximum number of interfaces
attached to IP layer

4

www.newnespress.com

164 Chapter 4

Managing the overhead means developers must take into account the TCP and IP headers
that are not part of the data being transmitted but must be transmitted along with the data
for processing by connected devices. Balancing means doing the full analysis, meaning
recognizing that a maximum segment size (MSS) that is lower would reduce fragmentation,
but could prove inefficient due to the overhead if it is too low.

Another example for middleware developers relative to tuning for requirements and
performance is the TCP window sizes. Under the vxWorks example, the provided TCP/IP
implementation includes the TCP socket that receives and sends buffer sizes managed by
parameters TCP_RCV_SIZE_DFLT and TCP_SND_SIZE_DFLT. Socket window size is
used by TCP to inform connections how much data can be managed at any given time by
its sockets. For networking mediums that may require higher window sizes, such as satellite
or ATM communication, these values can be tuned accordingly in the project source files.
In this example when using this real-world networking stack with vxWorks, the general
rules recommended are that these socket buffer sizes should be an even multiple of the
maximum segment size (MSS), and three or more times the MSS value. To target networking
performance goals, these buffer sizes need to accommodate the Bandwidth (bytes per second)
× Round Trip Time (seconds).

4.6.1 The Application Requirements

As shown in Figure 4.21 with the OSI model, networking protocols at the application,
presentation, and session layers are the protocols that utilize any networking middleware
that resides within an embedded device. From the viewpoint of the OSI model, network
communication to another device is initiated via the application layer via end-users of the
device or end-user network applications. These network applications contain the relevant
networking protocols to ‘virtually’ connect to the networking applications residing in the
connected device (see Figure 4.44).

The ‘virtual’ connection between two networking applications is referred to as a session. A
session layer protocol manages all communication associated with each particular session,
such as:

•	 assigning	a	port	number	to	each	session
•	 separating	and	managing	the	data	of	independent	sessions
•	 data	flow	regulation
•	 error	handling
•	 security	for	the	applications	connected.

As shown in Figure 4.45, a message/packet received from the underlying transport layer is
stripped of the session layer header for processing, and the remaining data field is transmitted

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 165

up to the presentation layer protocol. Messages coming down from the presentation layer
are processed and appended with a session layer header before being passed down to an
underlying layer.

Data coming down from the application layer that requires translation into a generic format
for transmission and/or data transmitted from other that requires translation is done via
presentation layer protocols. In general, this includes data on:

•	 compression
•	 decompression
•	 encryption
•	 decryption
•	 protocol	conversions
•	 character	conversions.

Figure 4.44: application, Session, and presentation Layer protocols

www.newnespress.com

166 Chapter 4

In short, data received from the overlying application layer or underlying session layer are
translated as required. If data have come from an underlying layer, the presentation layer
header is stripped from the data intended for the application layer before being processed and
transmitted up the stack. For data coming down from the application layer, after any translation
of the data has been completed, a presentation layer header is appended
to the data before being transmitted down the stack to the underlying networking protocol
(see Figure 4.46).

These higher layer networking protocols can then be implemented as standalone applications
with the only responsibility being that of the particular protocol, or within a larger, more-
complex device application – as shown with the FTP (File Transfer Protocol) client, SMTP
(Simple Mail Transfer Protocol), and Hypertext Transfer Protocol (HTTP) high-level diagram
in Figure 4.47.

4.6.2 File Transfer Protocol (FTP) Client Application Example

RFC959, File Transfer Protocol (FTP), is one of the simpler and more common protocols
implemented within an embedded system that is used to securely exchange files over a
network. The FTP protocol is based on a communication model in which there is an FTP

Figure 4.45: Session Layer Data-flow Diagram

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 167

client, also referred to as a user-protocol interpreter (user PI) that initiates a file transfer, and
an FTP server or FTP site that manages and receives FTP connections. As shown in Figure
4.48, the types of connections that exist between an FTP client and server are:

•	 control connections, which are connections in which commands are transmitted over
•	 data connections, which are connections in which files are transmitted over.

Figure 4.46: presentation Layer Data-flow Diagram

Figure 4.47: Ftp, SMtp, and http high-level application Example

www.newnespress.com

168 Chapter 4

FTP clients start FTP sessions by initiating a control connection to a destination system with
an FTP server. This FTP control connection is based on a TCP connection to port 21, because
FTP requires an underlying transport layer protocol that is a reliable, ordered data stream
channel. When FTP client and server communicate over a control connection, they do so via
the interchange of commands and reply codes, such as some of the codes shown in Table 4.11.

Figure 4.49 is an open source example of FTP functions, and how this source code utilizes a
required underlying networking middleware layer such as TCP socket-related function calls.

Figure 4.48: Ftp Network

table 4.11: Examples of Ftp Commands and reply Codes1

type Code Definition

Command DELE Delete. FTP service command

MODE Transfer Mode. Transfer parameter command

PASS Password. Access control command

PORT Data Port. Transfer parameter command

QUIT Logout. Access control command

TYPE Representation Type. Transfer parameter
command

USER Username. Access control command

Reply Code 110 Restart marker reply

120 Service ready in ‘x’ minutes

125 Data connection already open

150 File status OK

200 Command OK

202 Command NOT implemented

211 System Help1 RFC959 (http://www.freesoft.org/CIE/RFC/959/index.htm).

http://www.freesoft.org/CIE/RFC/959/index.htm

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 169

Figure 4.49: Ftp Open Source Example13

www.newnespress.com

170 Chapter 4

Figure 4.49 continued: Ftp Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 171

Figure 4.49 continued: Ftp Open Source Example

www.newnespress.com

172 Chapter 4

Figure 4.49 continued: Ftp Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 173

Figure 4.49 continued: Ftp Open Source Example

www.newnespress.com

174 Chapter 4

4.6.3 Simple Mail Transfer Protocol (SMTP) and Email Application Example5

RFC2821 for SMTP (Simple Mail Transfer Protocol) is an ASCII-based networking protocol
for implementation within electronic mail (email) applications. It is a protocol for reliable
and efficient transmission and reception of emails between networked devices. As shown in
Figure 4.50, the RFC2821 model reflects an email application with two major elements:

•	 MUA,	a	mail user agent which is the interface an email application user uses to generate
emails

•	 MTA,	the	mail transfer agent which manages the SMTP communication for exchanging
emails between two devices.

Within the MTA, the SMTP protocol dictates that the transmitter of the email is the SMTP
client, and the receiver of the email is the SMTP server. What SMTP requires of the
underlying networking middleware is a protocol, such as TCP, that provides a reliable,
ordered data stream channel in which SMTP messages can be exchanged. The messages
exchanged between SMTP clients and servers have a message format that includes an email
header (i.e., Reply-To, Date, and From), the body of the email (i.e., the content of the email),
and the envelope (i.e., the addresses of the sender and receiver).

Finally, in order to manage the communication and transmission of messages, the SMTP
communication scheme includes the exchange of SMTP commands, such as those shown in
Table 4.12.

SMTP defines different buffers that can be implemented on a server to include the various
types of data, such as the ‘mail-data’ buffer to hold the body of an email, a ‘forward-path’

Figure 4.50: rFC2821 Email Model

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 175

buffer to hold the addresses of recipients, and ‘reverse-path’ buffer to hold addresses of
senders. This is because data objects that are transmitted can be held pending a confirmation
by the sender that the ‘end of mail data’ has been transmitted by the client device. This ‘end
of mail data’ confirmation (QUIT) is what finalizes a successful email transaction. Finally,
because TCP is a reliable byte stream protocol, checksums are usually not needed in an
SMTP algorithm to verify the integrity of the data.

Figure 4.51 is an example of SMTP pseudocode implemented in an email application on a
client device, and how this source code utilizes an underlying networking middleware layer
such as TCP socket-related function calls.

4.6.4 Hypertext Transfer Protocol (HTTP) Cleint and Server Application Example5

Based upon several RFC standards, and supported by the World Wide Web (WWW)
Consortium, the Hypertext Transfer Protocol (HTTP) 1.1 is the most widely implemented
application layer protocol, used to transmit all types of data over the Internet. Under the
HTTP protocol, these data (referred to as a resource) are identifiable by their URL (Uniform

table 4.12: Examples of SMtp Commands and reply Codes2

type Code Definition

Command HELO Data object is a fully qualified domain name of the client host,
which is how a client identifies itself

MAIL Data object is the address of the sender, which identifies the
origins of the message

RCPT (RECIPIENT) Data object is the address of the recipient, which
identifies who the email is for

RSET (RESET) Not a data object. Code aborts the current email
transaction and allows for any related data to be discarded

VRFY (VERIFY) Data object is the email user or mailbox, which allows
the SMTP client to verify the recipient’s email address without
actually transmitting the email to the recipient

Reply Code 211 System Status

214 Help Message

220 Service Ready

221 Service Closing Transmission Channel

250 Requested Mail Action Completed

251 User Not Local, Will Forward

354 Start Mail Input

www.newnespress.com

176 Chapter 4

Figure 4.51: SMtp pseudocode Example5

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 177

Resource Locator). As with the other two networking examples, HTTP is based upon the
client–server model that requires its underlying transport protocol to be a reliable, ordered
data stream channel, such as TCP. The HTTP transaction starts with the HTTP client opening
a connection to an HTTP server by establishing a TCP connection to default port 80 (for
example) of the server. The HTTP client then sends a request message for a particular
resource to the HTTP server. The HTTP server responds by sending a response message to
the HTTP client with its requested resource (if available). After the response message is sent,
the server closes the connection.

The syntax of request and response messages both have headers that contain message Attribute
information that varies according to the message owner, and a body that contains optional
data, where the header and body are separated by an empty line. As shown in Figure 4.52,
they differ according to the first line of each message – where a request message contains
the method (command made by client specifying the action the server needs to perform), the
request-URL (address of resource requested), and version (of HTTP) in that order, and the first
line of a response message contains the version (of HTTP), the status-code (response code to
the client’s method), and the status-phrase (readable equivalent of status-code).

Tables 4.13a and 4.13b list the various methods and reply codes that can be implemented in
an HTTP server.

Figure 4.52: request and response Message Formats11

table 4.13a: http Methods11

Method Definition

DELETE The DELETE method requests that the origin server delete the resource identified by
the Request-URI.

GET The GET method means retrieve whatever information (in the form of an entity)
is identified by the Request-URI. The Request-URI refers to a data-producing process,
it is the produced data which shall be returned as the entity in the
response and not the source of the process, unless that text happens to be the
output of the process.

www.newnespress.com

178 Chapter 4

Method Definition

HEAD The HEAD method is identical to GET except that the server MUST NOT return a
message-body in the response. The metainformation contained in the HTTP headers
in response to a HEAD request SHOULD be identical to the information sent in
response to a GET request. This method can be used for obtaining metainformation
about the entity implied by the request without transferring the entity-body itself. This
method is often used for testing hypertext links for validity, accessibility, and recent
modification.

OPTIONS The OPTIONS method represents a request for information about the communication
options available on the request/response chain identified by the Request-URI. This
method allows the client to determine the options and/or requirements associated
with a resource, or the capabilities of a server, without implying a resource action or
initiating a resource retrieval.

POST The POST method is used to request that the destination server accept the entity
enclosed in the request as a now subordinate of the resource identified by the
Request-URI in the Request-Line. POST is designed to allow a uniform method to
cover the following functions:

•Annotation of existing resources;

•�Posting a message to a bulletin board, newsgroup, mailing list, or similar group of
articles;

•�Providing a block of data, such as the result of submitting a form, to a data-
handling process;

•Extending a database through an append operation.

PUT The PUT method requests that the enclosed entity be stored under the supplied
Request-URI. If the Request-URI refers to an already existing resource, the enclosed
entity SHOULD be considered as a modified version of the one residing on the origin
server. If the Request-URI does not point to an existing resource, and that URI is
capable of being defined as a new resource by the requesting user agent, the origin
server can create the resource with that URI.

TRACE The TRACE method is used to invoke a remote, application-layer loop- back
of the request message. TRACE allows the client to see what is being received
at the other end of the request chain and use that data for testing or diagnostic
information.

table 4.13a continued: http Methods

table 4.13b: http reply Codes11

Code Definition

200 Ok

400 Bad request

404 Not found

501 Not implemented

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 179

Figure 4.53: http Open Source Example13

www.newnespress.com

180 Chapter 4

Figure 4.53 continued: http Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 181

Figure 4.53 continued: http Open Source Example

www.newnespress.com

182 Chapter 4

Figure 4.53 continued: http Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 183

Figure 4.53 continued: http Open Source Example

www.newnespress.com

184 Chapter 4

Figure 4.53 continued: http Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 185

Figure 4.53 continued: http Open Source Example

www.newnespress.com

186 Chapter 4

Figure 4.53 continued: http Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 187

Figure 4.53 continued: http Open Source Example

www.newnespress.com

188 Chapter 4

The open source example in Figure 4.53 demonstrates HTTP implemented in a simple
web server. The reader can then see an example of how this sample open source code uses
underlying TCP (states) in its own HTTP-specific functions.

4.7 Summary

In this chapter, an introduction to core networking concepts and the OSI model was
discussed. Moreover, networking middleware was defined as system software that typically
resides within the upper data-link layer through to the transport layer in an embedded
system. This networking middleware mediates between networking application protocols
and the kernel, and/or networking device driver software, as well as mediates and serves
different networking application protocols. Finally, underlying networking hardware and
system software was explained relative to networking middleware, as well as how to put it all

Figure 4.53 continued: http Open Source Example

www.newnespress.com

The Fundamentals in Understanding Networking Middleware 189

together with networking application layer software. Open source examples were used to help
give readers a more clear picture of the implementation of middleware networking protocols
from a programmer’s perspective within a device, as well as allow the reader to download and
utilize these open source examples for themselves.

The next chapter, Chapter 5, introduces database fundamentals relative to their
implementation within a middleware layer.

4.8 problems5

 1. What is the difference between LANs and WANs?
 2. What are the two types of transmission mediums that can connect devices?
 3. A. What is the OSI model?

B. What are the layers of the OSI model?
C. Give examples of two protocols under each layer.
D. Where in the Embedded Systems Model does each layer of the
 OSI model fall? Draw it.

 4. A. How does the OSI model compare to the TCP/IP model?
B. How does the OSI model compare to Bluetooth?

 5. Where in the OSI model is networking middleware located?
 6. A. Draw the TCP/IP model layers relative to the OSI model.

B. Which layer would TCP fall under?
 7. RS-232 related software is middleware (True/False).
 8. PPP manages data as:

A. Frames.
B. Datagrams.
C. Messages.
D. All of the above.
E. None of the above.

 9. A. Name and describe the four subcomponents that make up PPP software.
B. What RFCs are associated with each?

10. A. What is the difference between a PPP state and a PPP event?
B. List and describe three examples of each.

11. A. What is an IP address?
B. What networking protocol processes IP addresses?

12. Name two examples of application-layer protocols that can either be implemented as
stand-alone applications whose sole function is that protocol, or implemented as a sub-
component of a larger multifunction application.

13. A. What is the difference between an FTP client and an FTP server?
B. What type of embedded devices would implement each?

www.newnespress.com

190 Chapter 4

14. SMTP is a protocol that is typically implemented in:
A. An email application.
B. A kernel.
C. A BSP.
D. Every application.
E. None of the above.

15. SMTP typically relies on TCP middleware to function (True/False).
16. A. What is HTTP?

B. What types of applications would incorporate an HTTP client or server?

4.9 End Notes
 1 RFC959 (http://www.freesoft.org/CIE/RFC/959/index.htm).
 2 RFC2821(http://www.freesoft.org/CIE/RFC/2821/index.htm).
 3 Embedded Planet EPC8xx Datasheet.
 4 Embedded Microcomputer Systems, Valvano.
 5 Embedded Systems Architecture, Noergaard – RFC 793. ‘Transmission Control Protocol’. DARPA Protocol

Specification.
 6 http://www.ethernut.de/en/download/index.html. Open source examples.
 7 VxWorks API Reference Guide: Device Drivers, Version 5.5.
 8 RFC1661 (http://www.freesoft.org/CIE/RFC/1661/index.htm), RFC1334 (http://www.freesoft.org/CIE/

RFC/1334/index.htm), RFC1332 (http://www.freesoft.org/CIE/RFC/1332/index.htm)
 9 RFC791 (http://www.freesoft.org/CIE/RFC/791/index.htm).
10 RFC798 (http://www.freesoft.org/CIE/RFC/798/index.htm).
11 www.w3.org/Protocols/
12 WindRiver vxWorks API Documentation and Project.
13 Egnite Open Source.

http://www.freesoft.org/CIE/RFC/959/index.htm
http://www.freesoft.org/CIE/RFC/2821/index.htm
http://www.ethernut.de/en/download/index.html
http://www.freesoft.org/CIE/RFC/1661/index.htm
http://www.freesoft.org/CIE/RFC/1334/index.htm
http://www.freesoft.org/CIE/RFC/1334/index.htm
http://www.freesoft.org/CIE/RFC/1332/index.htm
http://www.freesoft.org/CIE/RFC/791/index.htm
http://www.freesoft.org/CIE/RFC/798/index.htm
http://www.w3.org/Protocols/

191
Demystifying Embedded Systems Middleware. DOI: 10.1016/B978-0-7506-8455-2.00005-4

ChaptEr 5

File Systems

Chapter points

•	 Defines	what	a	file	system	is	and	what	it	manages	when	utilized	as	middleware

•	 Introduces	fundamental	file	system	concepts	and	terminology

•	 Identifies	the	major	elements	of	most	file	system	designs

5.1 What is a File System?

File system software provides a scheme to manage data on an embedded computer system.
A file system can be accessible and directly utilized by the embedded system’s user, as
middleware software used by other middleware, as middleware software used by applications
in the system to manage data for the application, or some combination of the above.
Regardless, a file system manages data by allowing for some combination of the:

•	 organization
•	 storage
•	 creation
•	 modification
•	 retrieval

of data from some type of memory medium. Depending on the file system, the memory
medium can be volatile RAM, and/or non-volatile memory such as: Flash, CD, tape, floppy
disk, and hard disk to name a few. Keep in mind that the file system itself, and the data it
manages, may or may not reside on the same device. Meaning, as shown in Figure 5.1, the
data the file system manages can be located on some type of hardware storage medium
located on the embedded system board or located on some other storage medium accessible
to the embedded system (i.e., over a network, on a floppy disk, on a CD, etc.)

www.newnespress.com

192 Chapter 5

5.2 how Does a File System Manage Data?

As implied in its name, a file system manages data in a fundamental element called a file. A
file is simply a set of data that has been grouped together and assigned a unique ‘name’. To
maintain its relevance in the embedded device, a file system then must have a reliable and
efficient scheme to create filenames, process filenames, and locate the files this metadata
represents on the storage medium.

real-world advice

Know Your Standards!
File systems will adhere to standards for everything from naming scheme and convention (i.e.,
characters, size, encoding, etc.) to I/O APIs. For example, some implementations provide a
standard asynchronous I/O API to interface to files located on the device that adheres to the
international standard IEEE 1003.1 POSIX (portable operating system interface for computing
environments), regardless of the underlying file system on the device. This asynchronous I/O
API is a standard interface that is utilized by any embedded application to allow for simpler and
faster portability of applications across different platforms that provide an application
interface that adheres to this specification.
So, keep in mind when trying to understand a particular file system implementation that it may
adhere to proprietary standards, industry specifications, or some combination of both.

Figure 5.1: File System access

www.newnespress.com

File Systems 193

The type of data contained in files is typically NOT constrained by the file system,
meaning that as far as a file system is concerned, files can contain any kind of data
or some combination of different types of data, such as graphics, source code, and/or
document text to name a few. However, while the type of data within a file may not be
relevant to a file system, whether or not data bits need to be structured in a particular
way within a file can vary from file system to file system. Supported file structure types
can range from unstructured, commonly referred to as raw, to rigidly structured data files
of a particular size and format. For example, with file systems that support raw files, the
file system essentially views data within a file as data bit streams comprised of 0s and 1s
that can be freely accessed in any form and/or order by other users and/or software using
the file system (see Figure 5.2). In short, a file system needs to support the structure of the
data within a file in order for that particular file to be compatible with the file system.

Figure 5.2: raw Files and File Systems

www.newnespress.com

194 Chapter 5

The first steps to understanding the fundamentals and ultimately any file system
implementation are:

Step 1. Understand what the purpose of the file system is within the system, and simply keep
this in mind regardless of how complex a particular file system implementation is. As
introduced at the start of this chapter, the purpose of a file system is to manage data
stored on some type of storage medium located within the embedded device and/or
some remotely accessible storage medium.

Step 2. Understand the APIs that are provided by a file system in support of a file system’s
inherent purpose. These APIs can, of course, differ from file system to file system –
but in general include some combination of:
•	 Naming and creating files
•	 Configuring files
•	 Removing files
•	 Opening and closing files
•	 Writing to and reading from files
•	 Creating and configuring directories for groups of files
•	 Removing directories
•	 Reading directories
•	 Additional/extended functions
•	 File system creation, mounting, and unmounting
•	 Symbolic, hard, and/or dynamic links
•	 Journaling/atomic transactions

Step 3. Using the Embedded Systems Model, define and understand all required architecture
components that underlie the file system, including:
Step 3.1. Know your file system-specific standards (see Chapter 3).
Step 3.2. Understanding the hardware (see Chapter 2). If the reader comprehends the

hardware, it is easier to understand why a particular file system implements
functionality in a certain way relative to the storage medium, as well as the
hardware requirements of a particular file system implementation.

Step 3.3. Define and understand the specific underlying system software components,
such as the available device drivers supporting the storage medium(s) and
the operating system API (see Chapter 2).

Step 4. Define the particular file system architecture model based on an understanding of the
generic file system model, and then define and understand what type of functionality
and data exists at each layer. This includes file-system-specific data, such as data
structures and the functions included at each layer. This step will be addressed in
detail in a later section.

www.newnespress.com

File Systems 195

5.3 File System Data and the File System reference Model

At the file system level, there are two general types of data:

•	 User Content Data. The data files that belong to the users and/or other software using
the file system. As discussed at the start of this chapter, a file system typically does
not constrain the type of content that can be in a file.

•	 File-system-specific Data. This includes data structures and metadata that are specific
to that particular file system. Essentially, it is all the data and functionality in the file
system implementation itself.

The key to understanding a file system implementation is by keeping in mind that ‘all’ the
concepts and features provided by a file system are in support of the fundamental abstraction,
the file containing user content data – and ‘everything’ that falls under file-system-specific
data builds upon and revolves around this fundamental file system abstraction.

The components that make up a file system implementation can widely vary between
designs from different vendors. However, to simplify understanding of all file system
implementations it is useful to visualize that, at the highest level, all file systems contain
some combination of the four components shown in the ‘General File System Model’ in
Figure 5.3, specifically:

•	 a File System Operation API layer which contains the libraries with the defined
file-level operational APIs that file system users, other middleware and applications
can use to create, access, and manage files

•	 the File System Core layer manages file system data objects, metadata, and RAM
usage by the file system. This layer is responsible for data management and the
translation between the file system’s view of the storage medium to how data are
actually accessed through the device driver interface (i.e., blocks in Flash, sectors
on a hard disk, etc.) and the operating system’s file system interface

•	 the OS Specific layer is the interface to the embedded system’s operating system
•	 the Driver Interface layer which is the interface to the hardware storage medium

device drivers.

remember!

The Model versus Real-world File System Implementations
Remember that what is shown in Figure 5.3 is a reference model, meaning some file systems
may have a subset of these components, others have merged/split some of the functionality
of various layers into fewer/more components, and/or may have additional components.
However, this model is a powerful tool that the reader can use to understand the fundamentals
of just about any file system implemented in an embedded system on the field today.

www.newnespress.com

196 Chapter 5

These file system components work in conjunction with and interface to applications, other
middleware, the embedded system’s operating system and/or device drivers to provide file
system functionality to higher layers of software. The next several sections will outline these
layers in more detail.

5.3.1 Driver Interface Layer

As introduced in Chapter 2, the hardware storage medium(s) that the file system(s) interfaces
(interface) to all require a device driver library to allow access to the hardware by other
software components like the file system. Any file system code that utilizes these device
drivers directly falls under the file system’s device driver layer. Figures 5.4a and 5.4b show
that what specific file system components exist at the driver interface layer and how they are

Figure 5.3: General File System reference Model

www.newnespress.com

File Systems 197

Figure 5.4a: File System Device Driver Layer and DOS FS on vxWorks8

Figure 5.4b: JFS File System Device Driver Layer

www.newnespress.com

198 Chapter 5

integrated into the device will vary depending on the underlying system software. In other
words, relative to a file system’s device driver layer, what compromises the device driver
library will determine what and how hardware is accessible to the file system. The Figure
5.4a example is with a file system ported on a version of vxWorks that includes the CBIO
interface, an underlying middleware component in itself. Any file system code that utilizes
CBIO functions accessing block devices directly would fall under the device interface layer.

Like WindRiver’s CBIO layer, another real-world example that can be utilized by a file
system’s driver interface layer is Datalight’s FlashFx library (shown in Figure 5.4c) that can
underlie FAT or Reliance embedded file systems. As its name implies, FlashFx (and libraries
like it) is created for file systems that reside on Flash memory for the purpose of allowing
overlying layers to transparently utilize Flash as a (block) disk device would be used. Flash
memory is used in many embedded designs because aside from being programmable at run-
time, Flash is considered competitive in terms of power requirements, size, amount of storage
space, and price relative to other types of non-volatile memory. Libraries such as FlashFx also
provide a simpler abstraction layer for overlying software to use that work around some of
Flash memory’s complexities, such as:

•	 supporting the different types of Flash requires different types of special programming
schemes. This can include having to erase on a sector-by-sector basis, manage and

Figure 5.4c: Datalight’s FlashFx high-level Diagram14

www.newnespress.com

File Systems 199

optimizing timing for reads, writes, and erases, as well as requirements relative to used
Flash only allowing write operations after a prior erase operation

•	 Flash memory lifetime is limited by a finite number of write and erase cycles, so any
scheme that optimizes and limits the access of Flash helps insure that the Flash part
will not wear out before the end of the device’s lifecycle

• Flash memory types differ in terms of reliability. They can contain pre-existing
defective blocks, and/or defective blocks can develop over time that require some
type of scheme to manage bad blocks and protect data.

It is then important for middleware developers to understand the overall requirements of their
device, and tune the associated parameters to real-world performance needs accordingly.
For example, developers that use vxWorks have the option of using the FlashFx library with
vxWorks with the Reliance file system or some other FAT file system. Access to parameters
(examples shown in Table 5.1) is provided via the development environment and source

table 5.1: Examples of Datalight’s FlashFx tuning parameters14

FlashFx parameter Description

FFXCONF_(Flash Type) At least one Flash type must be enabled that defines the type of Flash
technologies that the driver will support.

FFXCONF_NANDSUPPORT NAND Flash Support.

FFXCONF_NORSUPPORT NOR Flash Support.

FFXCONF_ISWFSUPPORT Intel Sibley Wireless Flash (ISWF) support.

FFXCONF_BBMSUPPORT Bad Block management (BBM) support.

FFXCONF_(File System Type) The types of file systems that will be overlying FlashFX.

FFXCONF_RELIANCESUPPORT Reliance File System.

FFXCONF_FATSUPPORT FAT File System.

FFXCONF_READAHEADENABLED Disables/Enables the FlashFX adaptive read ahead feature.

FFX_MAX_DEVICES The maximum number of devices which needs to be supported.

FFX_DEVn_FIMS (n = 0 …max devs) The FIMs (Flash Interface Modules) which will be associated with the
device.

FFX_DEVn_NTMS (n = 0 …max devs) If a NAND-type of FIM is used, then a list of NTMs (NAND
Technology Modules) associated with the device needs to be
specified.

FFX_DEVn_SETTINGS
(n = 0 …max devs)

UnchachedAddress = base address of the Flash array.
ReservedLo, ReservedHi = the amount of Flash at the start and end of
the Flash array which FlashFX does not access.
MaxArraySize = maximum amount of Flash to use in the
Flash array.

FFX_DEVn_BBMFORMAT
(n = 0 …max devs)

BBM (Bad Block Management) format settings for the device.

www.newnespress.com

200 Chapter 5

code to developers, so that these components can be tuned to the functional and performance
requirements for instance.

The example shown in Figure 5.4d is the JFS file system open source with functions that
utilize device driver-level functionality.

5.3.2 OS Specific Layer

File system code that falls under the file system’s OS Specific layer (see Figure 5.5a):

1. makes any OS kernel API calls, such as the Linux calls in the JFS source code example
shown in Figure 5.5b.

2. utilizes the functionality provided by the OS interfaces in support of the file system.
For example, in order to manage data files and directories a file system will store

Figure 5.4d: JFS File System Device Driver Layer Function Code

www.newnespress.com

File Systems 201

Figure 5.4d continued: JFS File System Device Driver Layer Function Code

www.newnespress.com

202 Chapter 5

Figure 5.4d continued: JFS File System Device Driver Layer Function Code

www.newnespress.com

File Systems 203

Figure 5.4d continued: JFS File System Device Driver Layer Function Code

www.newnespress.com

204 Chapter 5

Figure 5.5a: OS Specific Layer

www.newnespress.com

File Systems 205

Figure 5.5b: JFS Source Example Utilizing Linux Kernel Calls

www.newnespress.com

206 Chapter 5

information, a.k.a. metadata, about each particular file and directory it is responsible for
in some type of data structure typically provided by an operating system’s interface API.
The file system itself may then derive its own data structure(s) from the OS provided
structure to be used internally, and in conjunction with the data structure provided by
the operating system. Metadata stored in these data structures will vary from file system
to file system depending on the requirements of the embedded device, but generally
includes such data as:
•	 location of file or directory on hardware storage medium
•	 the size of the file or directory
•	 the type of file
•	 the date the file or directory was created and/or last modified
•	 the file or directory owner
•	 file or directory permissions, such as read-only, read-write, shared, etc.

 to name a few. While the semantics will vary as to what this directory/file descriptor data
structure is called in a particular file system implementation, its purpose and the general
type of data it contains are consistent with other file systems. Figures 5.5c and 5.5d

Figure 5.5c: Example of Inode Data Structure Block Diagram

www.newnespress.com

File Systems 207

Figure 5.5d: Inode Data Structure JFS and Linux Inode Source Code Example

www.newnespress.com

208 Chapter 5

show a block diagram and sample code of a directory/file descriptor data structure in a
Linux-supported implementation, commonly referred to as an inode, containing metadata
type fields.

It is because of a directory/file descriptor data structure that a file system is able to create the
illusion that a file is a contiguous entity to file system users and applications, even if that is
not how the file is stored in the storage medium. Remember that, at the hardware level, a file
system views the storage device as broken down into smaller-sized addressable storage units.

Depending on the size of a file, the data within a file can comprise one or more of these
addressable storage units. Moreover, these units may or may not be contiguous, thus the need
to track the units that comprise a file in a data structure like a directory/file descriptor data
structure. Then, as shown in Figure 5.5e, a file system utilizes a directory/file descriptor data
structure in order to translate to and from the physical data addresses in order to locate and
manage the data unit(s) that comprise a file.

5.3.3 File System Core Layer

At the heart of any file system’s core layer (see Figure 5.6a) are the directory/file descriptor
data structures utilized to manage the data. This means the functionality included at this level
revolves around these data structures, and at a minimum includes some combination of:

•	 directory	and	file	descriptor	data	structure	management
•	 data	storage	management
•	 directory	management.

5.3.4 Directory and File Descriptor Data Structure Management

The file system core layer includes functionality that manages the set of directory/file
descriptor data structures that represent the various files and directories accessible to the file
system, such as the creation of a descriptor when a file or directory is created, and/or the
management of the file system’s control block (shown in Figure 5.6a). The control block is
an allocated portion of the storage medium for file system-related information storage and
retrieval to/from RAM. JFS, for instance, has a relative control block on the storage medium
it supports, commonly referred to as the superblock in this and some other file system
implementations. The JFS source code example in Figure 5.6b shows an inode operations
library for managing inodes, as well as code to manage inode-related data.

File system implementations, also, may include with their directory/file descriptor data structure
management scheme some additional log management functionality. These logs track file

www.newnespress.com

File Systems 209

Figure 5.5e: General Directory/File Descriptor Data Structure Block General translation Example

www.newnespress.com

210 Chapter 5

system operations and data changes to allow for improvement of file system data integrity and
recoverability via utilization of the logs when some type of system failure has occurred. Log
management in these file systems is typically implemented in support of what are commonly
referred to as (atomic) transactional and/or journaling file systems, where by definition these
file systems are intended to be more reliable. Figure 5.6c shows a systems-level example of a
transactional file system (TRFS) implemented in a vxWorks-based system, whereas
Figures 5.6d and 5.6e show examples of IBM’s JFS (journaled file system) log management
library.

Figure 5.6a: File System reference Model and the File System Core Layer

www.newnespress.com

File Systems 211

Figure 5.6b: Example of JFS Inode Operations

www.newnespress.com

212 Chapter 5

Figure 5.6b continued: Example of JFS Inode Operations

www.newnespress.com

File Systems 213

Figure 5.6b continued: Example of JFS Inode Operations

www.newnespress.com

214 Chapter 5

Figure 5.6c: Example of transactional File System (trFS) and vxWorks

www.newnespress.com

File Systems 215

Figure 5.6d: Example of JFS Log Manager Utilized for Journaling

www.newnespress.com

216 Chapter 5

Figure 5.6d continued: Example of JFS Log Manager Utilized for Journaling

www.newnespress.com

File Systems 217

Figure 5.6d continued: Example of JFS Log Manager Utilized for Journaling

www.newnespress.com

218 Chapter 5

Figure 5.6e: Example of JFS transaction Manager Using JFS Log Manager for Journaling

www.newnespress.com

File Systems 219

Figure 5.6e continued: Example of JFS transaction Manager Using JFS Log Manager for Journaling

www.newnespress.com

220 Chapter 5

Figure 5.6e continued: Example of JFS transaction Manager Using JFS Log Manager for Journaling

www.newnespress.com

File Systems 221

5.3.5 Data Storage Management

At the core of a file system’s data management scheme is the ability to locate and manage
the data blocks belonging to each file located on the hardware storage medium(s). The file
descriptor data structure records the blocks that are associated with a particular file, as well as
where to locate these blocks in some type of block map (see Figure 5.6f).

While how a file descriptor data structure records the block data information in its block
map will differ between file systems, the most common algorithms include one or some
combination of:

•	 Direct Addressing, where the block map contains a list of the data block addresses that
make up the file.

•	 Indirect Addressing, where the block map contains a pointer to another block, referred
to as the indirect block. The indirect block then contains a list of the data block addresses
that make up the file. This allows for a file system to support larger file sizes over direct
addressing without having to dramatically increase the size of the file descriptor data
structure.

•	 Double-indirect Addressing, where the block map contains a pointer to another
block, referred to as the double-indirect block. The double-indirect block then
contains a list of indirect blocks. Each indirect block then contains a list of the data
block addresses that make up the file. As with indirect addressing, double-indirect
addressing allows for a file system to support larger file sizes over direct, as well as
over indirect, addressing.

•	 Extent-based Addressing, where the block map is an extent list made up of addresses
that each represent a range of blocks (data blocks, indirect blocks, and/or double-indirect
blocks). An address in the extent list represents the starting address of a set of blocks, as
well as the number of consecutive blocks in the set in addition to the first block.

Shown in Figure 5.6g is a sample inode that contains the field that supports JFS, which uses
extent-based addressing in its data management scheme. Figure 5.6h is a JFS sample inode
initialization code which demonstrates some usage by JFS of its extent-based addressing
algorithm.

www.newnespress.com

222 Chapter 5

Figure 5.6f: Management of File Data

www.newnespress.com

File Systems 223

Figure 5.6g: Example Inode and Extent addressing

www.newnespress.com

224 Chapter 5

Figure 5.6g continued: Example Inode and Extent addressing

www.newnespress.com

File Systems 225

Figure 5.6h: JFS Source Code and Extent addressing

www.newnespress.com

226 Chapter 5

Figure 5.6h continued: JFS Source Code and Extent addressing

www.newnespress.com

File Systems 227

5.3.6 Directory Management

A directory is a mechanism in file systems that allows for one or more files and/or directories
to be grouped under a single name. Essentially the same descriptor data structure used to
represent files in a file system is typically used to represent a directory, where the directory
descriptor data structure is responsible for storing the list of other directory and/or file
descriptor data structures that are assigned to it.

There are several schemes utilized in different file system designs for how directories keep
track of their file and subdirectory names, including: linear, where file and subdirectory
names are managed as a linear list within the directory descriptor data structure; B-Tree
(i.e., B-Tree, B+Tree, B*Tree), which are hierarchical ‘tree’ data structures where file
and subdirectory names are inserted/deleted sorted nodes (parent and/or child); and hash
table data structures, where file and directory names are sorted and used as keys for faster
retrieval – just to name a few.

Figure 5.6i shows an external inode with fields utilized in the directory management scheme
sample code shown in Figure 5.6j.

Figure 5.6h continued: JFS Source Code and Extent addressing

www.newnespress.com

228 Chapter 5

Figure 5.6i: External Linux Inode Sample Source Code

www.newnespress.com

File Systems 229

Figure 5.6j: JFS B+tree Directory Scheme Sample Source Code

www.newnespress.com

230 Chapter 5

Figure 5.6j continued: JFS B+tree Directory Scheme Sample Source Code

www.newnespress.com

File Systems 231

5.3.7 Impact of File System Core on Embedded Device

What most differentiates the behavior and performance of one file system over another are the
elements that make up a file system’s core layer, specifically the directory and file descriptor data
structure, data storage management, and directory management schemes implemented within
the file system design (see Figure 5.7). In the case of a directory and file descriptor data structure
design, for example, the maximum file size that can be managed via a file system is determined by
the scheme in which this data structure tracks the data. Furthermore, given the ability to support
larger file sizes, a file system that implements an inefficient scheme may take longer to navigate
the data structure to track down data within a large file. This also holds true for how a directory
(data structure) stores file names and any subdirectory information – tracking down a file or
subdirectory may take longer if an inefficient scheme is implemented to traverse the data structure.

Depending on the file system, the less a file system has to access the hardware storage
medium to retrieve and/or write file system data blocks, the more efficiently it can perform.
So, file systems can have an advantage over other file systems on performance with a storage
management scheme that:

•	 does	as	much	as	possible	in	(faster)	RAM	before	storing	any	data	back	on	a	(slower)	
hardware storage medium. A drawback is hardware storage medium is not always in sync
with the current state of the file system if system failure occurs, thus making recovery of
the file system more difficult and decreasing file system reliability

•	 supports	larger	block	sizes.	A	drawback	is	if	the	entire	block	is	not	utilized	then	storage	
medium space usage is not optimal

•	 is	able	to	store	data	blocks	compactly	and	contiguously	on	the	storage	medium.	A	
drawback is that compaction algorithms that resolve fragmentation issues are more
complex to implement over creating larger block sizes, for example.

While a file system can have an advantage, the less it accesses the hardware storage medium
over other file systems, there are other file systems that implement schemes based on constant
storage medium access in order to make the system more reliable, which in some embedded
designs with high reliability requirements would provide an advantage. These file systems,
commonly referred to as journaled or (atomic) transactional file systems, log file system
transactions in some manner to be utilized in a file system recovery in case of some type of
system failure. Drawbacks of a journaled/(atomic) transactional file system will depend on its
internal design, such as if logging data locks up the file system in any way and how logged
data are written/retrieved to/from the storage medium, for example.

www.newnespress.com

232 Chapter 5

5.3.8 File System Operation API Layer

While file systems can vary on the API functionality provided in the File System Operation
API Layer (shown in Figure 5.8a), and/or how these operations are implemented, file systems
all provide some universally similar file system operations. As introduced in Section 5.1,
examples of these operations include:
•	 Creating and Configuring Files, given a directory name and a valid new file name within

the size and character type restrictions provided by the file system, a file descriptor data
structure is created for each new file, and relevant fields filled (i.e., size, permissions, etc.).
The file descriptor data structure is then added to the directory’s descriptor data structure.

•	 Renaming Files, given a directory name, the old file name, and a new file name – if the
new file name does not already exist as an entry in the directory’s descriptor data structure
and if there is no other software/user accessing the file, then the old file name is updated
to the new file name in some manner.

Figure 5.7: File System reference Model and the File System Core Layer

www.newnespress.com

File Systems 233

Figure 5.8a: General Embedded System File System reference Model

www.newnespress.com

234 Chapter 5

•	 Copying or Moving Files, given a source directory name, a destination directory name,
and the file name – if the file name exists as an entry in the source directory’s descriptor
data structure and it does not exist as an entry in the destination directory’s descriptor
data structure, the file is added to the destination directory. If the file is being moved, it is
then removed from the source directory.

•	 Removing Files, given the directory name and file name, the file system first finds the
directory’s descriptor data structure and looks up the name of the file to retrieve the serial
number (id) of the file’s descriptor data structure. If the attributes in the file’s descriptor’s
data structure are verified to insure that the file can be deleted by the requesting software/
user, and if there is no other software/user accessing the file, the file system frees the
file’s resources in some manner, including removing any references to the file from its
directory’s descriptor data structure.

•	 Opening Files, given the directory name and file name, the file system first finds the
directory’s descriptor data structure and looks up the name of the file to retrieve the serial
number (id) of the file’s descriptor data structure. If the attributes in the file descriptor’s
data structure are verified to insure that the file can be opened by the requesting software/
user, then I/O operations are allowed to be performed on the file.

•	 Writing to Files, given an open file, the data, the data’s size, and location in the file
the data are to be stored at – the file descriptor data structure relevant field is modified
according to the file system’s data storage management scheme (i.e., direct addressing,
indirect addressing, double-indirect addressing, extent addressing, etc.) and then the data
are stored on to the hardware storage medium.

•	 Reading from Files, given an open file, the data, the data’s size, and location in the file
the data is stored at – the file descriptor data structure relevant field is used to locate the
desired data according to the file system’s data storage management scheme (i.e., direct
addressing, indirect addressing, double-indirect addressing, extent addressing, etc.) and
then the data are loaded from the hardware storage medium.

•	 Creating Directories, given a new directory name – a directory descriptor data structure
is created for each new directory, and relevant fields filled (i.e., permissions, flags, etc.).
The directory descriptor data structure is then added to the parent directory’s descriptor
data structure.

•	 Removing Directories, given a parent directory name and the name of the directory
to be removed – the parent directory’s descriptor data structure is used to look up the
name of the directory to be deleted to retrieve the serial number (id) of its descriptor data
structure. If the attributes in the directory’s descriptor data structure are verified to insure
that the directory can be deleted by the requesting software/user, and if there is no other
software/user accessing any contents of the directory, the file system frees the directory
resources in some manner, including removing any references to the directory from its
parent directory’s descriptor data structure.

www.newnespress.com

File Systems 235

•	 Reading Directories, given a directory name – the directory’s descriptor data structure is
utilized to display its contents (file names and subdirectories).

•	 Additional/Extended Functions
•	 Creating and Initializing the File System, where provided parameters and assigned

hardware storage medium block(s), sector(s), or volume(s) are used to create and
initialize a new file system. In general, this includes allocating a file system
control block(s) on the storage medium block(s), sector(s), or volume(s), creating
any necessary directory/file descriptor data structures, and creating an empty root
directory on the assigned storage medium block(s), sector(s), or volume(s).

•	 File System Verification, where an unmounted file system is checked to determine
if it is ‘clean’, a.k.a. if its metadata information is up to date and no data corruption
has been found. If a file system is ‘dirty’, the verification process has uncovered
inconsistent and/or corrupted data.

•	 Mounting the File System, where the hardware storage medium is accessed to retrieve
and load file system metadata from the file system’s control block into RAM. The file
system and respective hardware storage medium block(s), sector(s), or volume(s) are
then ready for access and use.

•	 Unmounting the File System, a proper shutdown of the file system where the
hardware storage medium block(s), sector(s), or volume(s) are put in a ‘clean’ state
by copying the latest file system metadata in RAM back to the file system’s control
block on the hardware storage medium.

•	 Symbolic, Hard, and/or Dynamic links.

Figure 5.8b shows examples of APIs available under vxWorks, and Figures 5.8c, 5.8d, and
5.8e show examples of how various directory and file operations are implemented in the
open source JFS implementation. While the internal source code of how operations are
implemented will differ between file systems, many file systems have ‘similar’ operations as
those shown in these examples and can give the reader a feel for what to expect.

Figure 5.8b: Example vxWorks Operations13

www.newnespress.com

236 Chapter 5

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

File Systems 237

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

238 Chapter 5

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

File Systems 239

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

240 Chapter 5

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

File Systems 241

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

242 Chapter 5

Figure 5.8b continued: Example vxWorks Operations

www.newnespress.com

File Systems 243

Figure 5.8c: JFS File System Directory Operations

www.newnespress.com

244 Chapter 5

Figure 5.8d: JFS File System File Operations

Figure 5.8e: JFS Operations (Function) Source Code

www.newnespress.com

File Systems 245

Figure 5.8e continued: JFS Operations (Function) Source Code

www.newnespress.com

246 Chapter 5

Figure 5.8e continued: JFS Operations (Function) Source Code

www.newnespress.com

File Systems 247

Figure 5.8e continued: JFS Operations (Function) Source Code

www.newnespress.com

248 Chapter 5

Figure 5.8e continued: JFS Operations (Function) Source Code

www.newnespress.com

File Systems 249

5.4 remembering the Importance of File System Stability and
reliability

Finally, as with other types of embedded middleware, in order to insure the stability and
the reliability of embedded systems developers should never assume that file systems come
configured out-of-the-box for their own particular needs. Readers should remember to
tune these parameters, then test and verify the file system according to the overall system’s
requirements. It is critical for middleware developers to tune parameters properly in order
to insure that the file system supports the embedded design’s frequency of I/O file system
operations and the size of relative transactions.

For example, OS-related parameters in the Reliance file system when using this file system
over vxWorks are shown in Table 5.2. So, when taking account memory usage and performance
requirements of the device, an increase in simultaneous (multithreaded) read operations occurs
when increasing the value of TFS_THREAD_LIMIT, but will also increase the latency of the
serialized write operations. Reducing memory usage will occur when decreasing parameters

table 5.2: Examples of Datalight’s reliance tuning parameters for vxWorks14

reliance parameter Description

TFS_THREAD_WRITE_SIZEKB Maximum amount of Kbytes that is written before
allowing a context switch to higher priority threads
access

TFS_THREAD_LIMIT The number of threads allowed to operate inside the
file system simultaneously

TFS_COORD_CACHE_ENTRIES The number of ‘coordinate’ cache entries that is
responsible for data related to frequently accessed
files/directories

TFS_INDEX_CACHE_ENTRIES The number of ‘index’ cache entries responsible for
storing the location of metadata on the storage
medium

TFS_CACHE_BUFFER_COUNT The number of TFS_MAX_BLOCK_SIZE internal
cache buffers

TFS_CACHE_WRITE_GATHER_KBSIZE Enabling the writes of contiguous dirty buffers in
cache as a single operation

TFS_ENABLE_DISCARD Reports to a block device when sectors are no longer
used

TFS_DISCARD_TABLE_SIZE In bytes, the size of the discard table

TFS_DISCARD_TABLE_GROWTH Enable/disable ability of discard table to dynamically
grow in size

RELFS_DISCARD_SUPPORT_WRSTFFS Enable/disable use of reliance with WindRiver’s True
Flash File System (TFFS)

www.newnespress.com

250 Chapter 5

such as TFS_COORD_CACHE_ENTRIES, TFS_INDEX_CACHE_ENTRIES and TFS_
CACHE_BUFFER_COUNT; however, decreasing these values will also reduce performance.
This means an improvement in performance will result when these parameters are increased, as
long as there is enough of the right type of memory on the target boards.

The reliability of the embedded file system will also depend on the file system’s internal
design. As mentioned earlier in this chapter, many (atomic) transactional and journaling file
systems employ some type of log management scheme as a means of increasing reliability
by decreasing the chances that data will get corrupted or lost during file system transactions,
or at least some type of data-recovery algorithm can be executed when necessary. Other
embedded file systems (i.e., Datalight’s Reliance) take reliability further within their internal
design via the implementation of more complex schemes, such as utilizing transaction points
or some similar mechanism which allows for the preservation of original data until file system
transactions are 100% completed.

In short, Reliance (for example) continuously tracks used versus unused/free data blocks.
This type of file system will then only utilize available storage space, and not overwrite any
‘used’ area on the medium. This is what insures that the state of this file system, prior to the
start of any new transaction, remains safe on the storage media during the current processing
of a current transaction. When the current transaction has completed without problems, then
a transaction point is set. The Reliance file system then uses this transaction point to commit
changes, and free up the data blocks that kept the original state and data safe. This file system
scheme helps insure that if something goes wrong during a current file system transaction, the
integrity of the original data is still preserved (see Figure 5.9).

Figure 5.9: how reliance File System transaction points help Insure reliability14

www.newnespress.com

File Systems 251

Finally, remember that tuning software parameters for components within your design will
not be limited to the file system when this file system is utilized as ‘middleware’ within
an embedded device. The reader needs to insure that ‘overlying’ application software
components that utilize the file system are tuned properly for that particular file system
implementation as well. Take, for instance, an FTP (file transfer protocol) server application
that is configured internally to support some version of an embedded file system with certain
stack requirements in order to support related tasks. The internal FTP server application code
would need to be changed (i.e., size of the task stack increased) for the FTP server process
to have additional stack space after being ported to a different file system to avoid a stack
overflow, if using this other file system with the FTP server application requires more stack
space to function without crashing when using the FTP server application residing on the
embedded device.

For example, with a version of an FTP server application provided by WindRiver with
vxWorks 6.5, the FTP server can be included when adding the component ‘INCLUDE_
IPFTPS’. This FTP server application uses a stack size definition according to the value
defined by IPCOM_PROC_STACK_DEFAULT, i.e.:

snippet from ipftps.c 15

….

if (ipcom_proc_create(session->name, ipftps_session,

IPCOM_PROC_STACK_DEFAULT, &pid) !=

IPCOM_SUCCESS)

…..

This is the FTP server code that would be changed to give the server process more stack
space, i.e.:

(snippet from ipftps.c 15)

….

If (ipcom_proc_create(session->name, ipftps_session,

IPCOM_PROC_STACK_LARGE, &pid) !=

IPCOM_SUCCESS)

….

If a stack overflow would occur when using a particular file system with the supplied
definition of ‘IPCOM_PROC_STACK_LARGE’, for example, then modyfing this value to an

www.newnespress.com

252 Chapter 5

even larger value in the corresponding header file (i.e., ipcom_pconfig.h) is necessary within
the FTP server application.

5.5 Summary

As introduced in the various sections of this chapter, there are different file system design
schemes that can be implemented in a particular file system. In order to understand a file
system design, determine which file system design is the right choice for an embedded
device, as well as understand the impact of a file system on a particular device, it is important
to first understand the fundamentals of a file system. These fundamentals, introduced in this
chapter, include what the purpose of a file system is, elements that commonly make up a file
system, and real-world examples of some of the schemes implementing these elements. The
reader can then apply these fundamentals to analyzing file system design features, such as:

•	 available API operations and/or an API that adheres to some type of industry
standard interface

•	 maximum amount of memory that is needed by the file system
•	 non-blocking adherence for file systems implemented in real-time systems
•	 performance
•	 support of specific hardware and/or operating system

in order to determine if the file system design is the right one for a particular system, as well
as the impact of the file system on the embedded device.

5.6 File System problems
1. What is the purpose of a file system?
2. All file systems can only manage files located on the embedded system the file system

resides on (True/False).
3. A file is:

A. A set of data that has been grouped together and assigned a unique password
B. A set of data that has been grouped together and assigned a unique name
C. A set of names that has been grouped together and assigned a unique password
D. None of the above.

4. What is a raw file? Give an example of a file system that supports raw files.
5. Outline the four-step model to understanding a file system design.
6. A file system implemented in the system software layer can exist as:

A. Middleware that sits on top of the operating system layer
B. Middleware that sits on top of other middleware components, for example a

Java-based file system that resides on a Java Virtual Machine (JVM)
C. Middleware that has been tightly integrated and provided with a particular operating

system distribution

www.newnespress.com

File Systems 253

D. None of the above
E. All of the above.

7. One or more file systems can be implemented in an embedded system (True/False).
8. How do file systems view the hardware storage medium? Draw an example.
9. A file system can manage files on the following hardware:

A. RAM
B. CD
C. Smart card
D. Only B and C
E. All of the above.

10. List and describe six types of file-system-specific device driver API functionality
typically found in hardware storage medium device drivers.

11. What is the difference between an operating system character device and a block device?
12. A file system can require other underlying middleware components (True/False).
13. Draw and describe the layers of the General File System Model.
14. How do the design schemes of core elements of a file system impact performance?
15. Name and describe five examples of file system APIs.

5.7 End Notes
 1 Microsoft Extensible Firmware Initiative FAT32 File System Specification. Version 1.03, December 6, 2000.

Microsoft Corporation
 2 http://redhat.brandfuelstores.com/
 3 www.microsoft.com
 4 http://shop.cxtreme.de
 5 “Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers”. T. Noergaard.

Elsevier 2005. p245.
 6 http://www.westerndigital.com/en/products/Products.asp?DriveID=104
 7 http://www.seagate.com/cda/products/discsales/marketing/detail/0,1081,771,00.html
 8 http://www.babyusb.com/flashspecs2.htm
 9 “Xscale Lite Datasheet” RLC Enterprises, Inc.
10 http://www.psism.com/pendrive.htm
11 ‘Corsair USB Flash Memory Datasheet’. Corsair.
12 http://www.linux-mtd.infradead.org/archive/
13 “vxWorks API Reference Guide: Device Drivers”. Version 5.5
14 •	 Ditalight	“FlashFx	Pro	API	Guide”
	 •	 source	code
	 •	 configuration	files
	 •	 Datalight	FlashFX®	Pro
	 •	 “FlashFx	Developers	Guide	for	Wind	River	VxWorks”,	V3.10

	 •	 “Reliance	Developers	Guide	for	Wind	River	VxWorks”,	V3.00
15 WindRiver sample code for FTP server application

http://redhat.brandfuelstores.com/
http://www.microsoft.com/
http://shop.cxtreme.de/
http://www.westerndigital.com/en/products/Products.asp?DriveID=104
http://www.seagate.com/cda/products/discsales/marketing/detail/0,1081,771,00.html
http://www.seagate.com/cda/products/discsales/marketing/detail/0,1081,771,00.html
http://www.psism.com/pendrive.htm
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/
http://www.linux-mtd.infradead.org/archive/

This page intentionally left blank

255
Demystifying Embedded Systems Middleware. DOI: 10.1016/B978-0-7506-8455-2.00006-6

ChaptEr 6

Virtual Machines in Middleware

Chapter points

•	 Introduces	fundamental	middleware	virtual	machine	concepts

•	 	Discusses	different	virtual	machine	schemes	and	the	major	components	of	a	virtual	machine’s	
architecture

•	 Shows	examples	of	real-world	embedded	virtual	machine	middleware

A powerful approach to understanding what a virtual machine (VM) is and how it works
within an embedded system is by relating in theory to how an embedded operating system
(OS) functions. Simply, a VM implemented as middleware software is a set of software
libraries that provides an abstraction layer for software residing on top of the VM to be less
dependent on hardware and underlying software. Like an OS, a VM can provide functionality
that can perform everything from process management to memory management to IO system
management depending on the specification it adheres to. What differentiates the inherent
purpose of a VM in an embedded system versus that of an OS is introduced in the next
section of this chapter, and is specifically related to the actual programming languages used
for creating programs overlying a VM.

6.1 the First Step to Understanding a VM Implementation:
the Basics to programming Languages1

One of the main purposes of integrating a virtual machine (VM) is in relation to programming
languages, thus this section will outline some programming language fundamentals. In
embedded systems design, there is no single language that is the perfect solution for every
system. In addition, many complex embedded systems software layers are inherently based
on some combination of multiple languages. For example, within one embedded device the
device driver layer may be composed of drivers written in assembly and C source code, the
OS and middleware software implemented using C and C++, and different application layer

www.newnespress.com

256 Chapter 6

components implemented in C, C++, and embedded Java. So, let us start with the basics of
programming languages for readers who are unfamiliar with the fundamentals, or would like
a quick refresher.

The hardware components within an embedded system can only directly transmit, store,
and execute machine code, a basic language consisting of ones and zeros. Machine code
was used in earlier days to program computer systems, which made creating any complex
application a long and tedious ordeal. In order to make programming more efficient, machine
code was made visible to programmers through the creation of a hardware-specific set of
instructions, where each instruction corresponded to one or more machine code operations.
These hardware-specific sets of instructions were referred to as assembly language. Over
time, other programming languages, such as C, C++, Java, etc., evolved with instruction sets
that were (among other things) more hardware-independent. These are commonly referred to
as high-level languages because they are semantically further away from machine code, they
more resemble human languages, and are typically independent of the hardware. This is in
contrast to a low-level language, such as assembly language, which more closely resembles
machine code. Unlike high-level languages, low-level languages are hardware-dependent,
meaning there is a unique instruction set for processors with different architectures. Table 6.1
outlines this evolution of programming languages.

Because machine code is the only language the hardware can directly execute, all other
languages need some type of mechanism to generate the corresponding machine code. This
mechanism usually includes one or some combination of preprocessing, translation, and
interpretation. Depending on the language and as shown in Figure 6.1, these mechanisms

table 6.1: General Evolution of programming Languages1

Language Details

5th Generation Natural languages Programming languages similar to conversational
languages typically used for AI (artificial
intelligence) programming and design

4th Generation Very high level (VHLL) and non-
procedural languages

Very high level languages that are object-oriented,
like C++, C#, and Java, scripting languages, such
as Perl and HTML – as well as database query
languages, like SQL for example

3rd Generation High-order (HOL) and
procedural languages, such as
C and Pascal for example

High-level programming languages with more
English-corresponding phrases. More portable than
2nd and 1st generation languages

2nd Generation Assembly language Hardware-dependent, representing machine code

1st Generation Machine code Hardware-dependent, binary zeros (0s) and ones
(1s)

www.newnespress.com

Virtual Machines in Middleware 257

exist on the programmer’s host system, typically a non-embedded development system, such
as a PC or Sparc station, or the target system (i.e., the embedded system being developed).

Preprocessing is an optional step that occurs before either the translation or interpretation
of source code, and whose functionality is commonly implemented by a preprocessor. The
preprocessor’s role is to organize and restructure the source code to make translation or
interpretation of this code easier. As an example, in languages like C and C++, it is a pre-
processor that allows the use of named code fragments, such as macros, that simplify code
development by allowing the use of the macro’s name in the code to replace fragments of
code. The preprocessor then replaces the macro name with the contents of the macro during
preprocessing. The preprocessor can exist as a separate entity, or can be integrated within the
translation or interpretation unit.

Many languages convert source code, either directly or after having been preprocessed
through use of a compiler, a program that generates a particular target language – such as
machine code and Java byte code – from the source language (see Figure 6.2).

Figure 6.1: programming Languages, host, and target1

Figure 6.2: Compiling Native Code1

www.newnespress.com

258 Chapter 6

A compiler typically ‘translates’ all of the source code to some target code at one time.
As is usually the case in embedded systems, compilers are located on the programmer’s
host machine and generate target code for hardware platforms that differ from the platform
the compiler is actually running on. These compilers are commonly referred to as cross-
compilers. In the case of assembly language, the compiler is simply a specialized cross-
compiler referred to as an assembler, and it always generates machine code. Other high-level
language compilers are commonly referred to by the language name plus the term ‘compiler’,
such as ‘Java compiler’ and ‘C compiler’. High-level language compilers vary widely in terms
of what is generated. Some generate machine code, while others generate other high-level
code, which then requires what is produced to be run through at least one more compiler or
interpreter, as discussed later in this section. Other compilers generate assembly code, which
then must be run through an assembler.

After all the compilation on the programmer’s host machine is completed, the remaining
target code file is commonly referred to as an object file, and can contain anything from
machine code to Java byte code (discussed later as an example in this chapter), depending
on the programming language used. As shown in the C example in Figure 6.3, after linking
this object file to any system libraries required, the object file, commonly referred to as an
executable, is then ready to be transferred to the target embedded system’s memory.

Figure 6.3: Compiling in C Example1

www.newnespress.com

Virtual Machines in Middleware 259

6.1.1 Non-native Programming Languages that Impact the Middleware Architecture1

Where a compiler usually translates all of the given source code at one time, an interpreter
generates (interprets) machine code one source code line at a time (see Figure 6.4).

One of the most common subclasses of interpreted programming languages is scripting
languages, which include PERL, JavaScript, and HTML. Scripting languages are high-level
programming languages with enhanced features, including:

•	 More	platform	independence	than	their	compiled	high-level	language	counterparts2

•	 Late	binding,	which	is	the	resolution	of	data	types	on-the-fly	(rather	than	at	compile	time)	
to allow for greater flexibility in their resolution2

•	 Importation	and	generation	of	source	code	at	runtime,	which	is	then	executed	
immediately2

•	 Optimizations	for	efficient	programming	and	rapid	prototyping	of	certain	types	of	
applications, such as internet applications and graphical user interfaces (GUIs).2

With embedded platforms that support programs written in a scripting language, an
additional component – an interpreter – must be included in the embedded system’s
architecture to allow for ‘on-the-fly’ processing of code. Note that while all scripting
languages are interpreted, not all interpreted languages are scripting languages. For example,
one popular embedded programming language that incorporates both compiling and
interpreting machine code generation methods is Java. On the programmer’s host machine,
Java must go through a compilation procedure that generates Java byte code from Java
source code (see Figure 6.5).

Figure 6.4: Interpretation of a Language1

www.newnespress.com

260 Chapter 6

Java byte code is target code intended to be platform independent. In order for the Java byte
code to run on an embedded system, one of the most commonly known types of virtual
machines in embedded devices and used as the real-world example in this chapter, called a
Java Virtual Machine (JVM), must reside on that system.

Real-world JVMs are currently implemented in an embedded system in one of three ways:
in the hardware, as middleware in the system software layer, or in the application layer (see
Figure 6.6). Within the scope of this chapter, it is when a virtual machine, like a JVM, is
implemented as middleware that is addressed more specifically.

Scripting languages and Java aren’t the only high-level languages that can automatically
introduce an additional component as middleware within an embedded system. A real-world
VM framework, called the .NET Compact Framework from Microsoft, allows applications
written in almost any high-level programming language (such as C#, Visual Basic and
Javascript) to run on any embedded device, independent of hardware or system software
design.

Figure 6.6: Embedded JVM1

Figure 6.5: Embedded Java Compiling and Linking1

www.newnespress.com

Virtual Machines in Middleware 261

Applications that fall under the .NET Compact Framework must go through a compilation
and linking procedure that generates a CPU-independent intermediate language file, called
MSIL (Microsoft Intermediate Language), from the original source code file (see Figure
6.7). For a high-level language to be compatible with the .NET Compact Framework, it must
adhere to Microsoft’s Common Language Specification, a publicly available standard that
anyone can use to create a compiler that is .NET compatible.

6.2 Understanding the Elements of a VM’s architecture1

After understanding the basics of programming languages, the key next steps for the reader in
demystifying VM middleware include:

Step 2. Understand the APIs that are provided by a VM in support of its inherent purpose.
In other words, know your standards relative to VMs that are specific to embedded
devices (as first introduced in Chapter 3).

Step 3. Using the Embedded Systems Model, define and understand all required architecture
components that underlie the virtual machine, including:
Step 3.1. Understanding the hardware (Chapter 2). If the reader comprehends the

hardware, it is easier to understand why a VM implements functionality in

Figure 6.7: .NEt Compact Framework Execution Model1

www.newnespress.com

262 Chapter 6

a certain way relative to the hardware, as well as the hardware requirements
of a particular VM implementation.

Step 3.2. Define and understand the specific underlying system software components,
such as the available device drivers supporting the storage medium(s) and
the operating system API (Chapter 2).

Step 4. Define the particular virtual machine or VM-framework architecture model, and then
define and understand what type of functionality and data exists at each layer. This
step will be addressed in the next few pages.

As mentioned at the start of this chapter, a virtual machine (VM) has many similarities in
theory to the functionality provided by an embedded operating system (OS). This means
a VM provides functionality that will perform everything from process management to
memory management to I/O system management in addition to the translation of the higher-
level language supported by the particular VM. Size, speed, and available out-of-the-box
functionality are the technical characteristics of a VM that most impact an embedded system
design, and essentially are the main differentiators of similar VMs provided by competing
vendors. These characteristics are impacted by the internal design of three main subsystems
within the VM, the:

•	 Loader
•	 Execution	Engine
•	 API	libraries.

As shown in Figure 6.8, for example, the .NET Compact Framework is made up of an
execution engine referred to as a common language runtime (CLR) at the time this book was
written, a class loader, and platform extension libraries. The CLR is made up of an execution
engine that processes the intermediate MSIL code into machine code, and a garbage collector.
The platform extension libraries are within the base class library (BCL), which provides
additional functionality to applications (such as graphics, networking, and diagnostics).
In order to run the intermediate MSIL file on an embedded system, the .NET Compact
Framework must exist on that embedded system.

Another example is embedded JVMs implemented as middleware, which are also made up
of a loader, execution engine, and Java API libraries (see Figure 6.9). While there are several
embedded JVMs available on the market today, the primary differentiators between these
JVMs are the JVM classes included with the JVM, and the execution engine that contains
components needed to successfully process Java code.

6.2.1 The APIs

The APIs (application program interfaces) are application-independent libraries provided
by the VM to, among other things, allow programmers to execute system functions, reuse

www.newnespress.com

Virtual Machines in Middleware 263

code, and more quickly create overlying software. Overlying applications that use the VM
within the embedded device require the APIs, in addition to their own code, to successfully
execute. The size, functionality, and constraints provided by these APIs differ according to
the VM specification adhered to, but provided functionality can include memory management

Figure 6.8: Internal .NEt Compact Framework Components1

Figure 6.9: Internal JVM Components1

www.newnespress.com

264 Chapter 6

features, graphics support, networking support, to name a few. In short, the type of
applications in an embedded design is dependent on the APIs provided by the VM.

For example, different embedded Java standards with their corresponding APIs are intended
for different families of embedded devices (see Figure 6.10). The type of applications in a
Java-based design is dependent on the Java APIs provided by the JVM. The functionality
provided by these APIs differs according to the Java specification adhered to, such as
inclusion of the Real Time Core Specification from the J Consortium, Personal Java (pJava),
Embedded Java, Java 2 Micro Edition (J2ME), and The Real Time Specification for Java
from Sun Microsystems. Of these embedded Java standards, to date pJava and J2ME
standards have typically been the standards implemented within larger embedded devices.
PJava 1.1.8 was the predecessor of J2ME CDC that Sun Microsystems targeted to be
replaced by J2ME.

Figure 6.11 shows an example of differences between the APIs of two different embedded
Java standards.

There are later editions to 1.1.8 of pJava specifications from Sun, but as mentioned
J2ME standards were intended to completely phase out the pJava standards in the
embedded industry (by Sun) at the time this book was written. However, because the
open source example used in this chapter is the Kaffe JVM implementation that is a clean
room JVM based upon the pJava specification, this standard will be used as one of the
examples to demonstrate functionality that is implemented via a JVM. Using this open
source example, though based upon an older embedded Java standard, allows readers

Figure 6.10: J2ME Devices1

www.newnespress.com

Virtual Machines in Middleware 265

to have access to VM source code for hands-on purposes. The key is for the reader to
use this open source example to get a clearer understanding of VM implementation
from a systems-level perspective, regardless of whether the ‘internal’ functions used
to implement one VM versus another differs from another because of the specification
that VM adheres to (i.e., pJava versus J2ME, J2ME CDC versus J2ME CLDC, different
versions of J2ME CLDC, and so on). The reader can use these examples as tools to
understanding any VM implementation encountered, be it home-grown or purchased from
a vendor.

To start, a high-level snapshot of the APIs provided by Sun’s pJava standard are shown
in Figure 6.12. In the case of a pJava JVM implemented in the system software layer,
these libraries would be included (along with the JVM’s loading and execution units) as
middleware components.

Using specific networking APIs in the pJava specification as a more detailed example, shown
in Figure 6.13 is the java.net package. The JVM provides an upper-transport layer API for

Figure 6.11: J2ME CLDC versus pJava apIs1

www.newnespress.com

266 Chapter 6

remote interprocess communication via the client–server model (where the client requests
data, etc., from the server).

The APIs needed for client and servers are different, but the basis for establishing the
network connection via Java is the socket (one at the client end and one at the server
end). As shown in Figure 6.14, Java sockets use transport layer protocols of middleware
networking components, such as TCP/IP discussed in the previous middleware example.
Of the several different types of sockets (raw, sequenced, stream, datagram, etc.),
the pJava JVM provides datagram sockets, in which data messages are read in their
entirety at one time, and stream sockets, where data are processed as a continuous stream
of characters. JVM datagram sockets rely on the UDP transport layer protocol, while
stream sockets use the TCP transport layer protocol. pJava provides support for the client
and server sockets, specifically one class for datagram sockets (called DatagramSocket,
used for either client or server), and two classes for client stream sockets (Socket and
MulticastSocket).

Figure 6.12: pJava 1.1.8 apI Example3

www.newnespress.com

Virtual Machines in Middleware 267

A socket is created within a higher-layer application via one of the socket constructor calls,
in the DatagramSocket class for a datagram socket, in the Socket class for a stream socket,
or in the MulticastSocket class for a stream socket that will be multicast over a network
(see Figure 6.15). As shown in the pseudocode example below of a Socket class constructor,
within the pJava API, a stream socket is created, bound to a local port on the client device,
and then connected to the address of the server.

In the J2ME set of standards, there are networking APIs provided by the packages within
the CDC configuration and Foundation profile, as shown in Figure 6.18. In contrast to
the pJava APIs shown in Figure 6.12, J2ME CDC APIs are a different set of libraries that
would be included, along with the JVM’s loading and execution units, as middleware
components.

Figure 6.13: java.net package apI Example3

www.newnespress.com

268 Chapter 6

As shown in Figure 6.16, the CDC provides support for the client sockets. Specifically,
there is one class for datagram sockets (called DatagramSocket and used for either client or
server) under CDC. The Foundation Profile, that sits on top of CDC, provides three classes
for stream sockets, two for client sockets (Socket and MulticastSocket) and one for server
sockets (ServerSocket). A socket is created within a higher-layer application via one of the
socket constructor calls, in the DatagramSocket class for a client or server datagram socket,
in the Socket class for a client stream socket, in the MulticastSocket class for a client stream
socket that will be multicast over a network, or in the ServerSocket class for a server stream
socket, for instance (see Figure 6.16). In short, along with the addition of a server (stream)
socket API in J2ME, a device’s middleware layer changes between pJava and J2ME CDC
implementations in that the same sockets available in pJava are available in J2ME’s network
implementation, just in two different substandards under J2ME as shown in Figure 6.17.

The J2ME connected limited device configuration (CLDC, shown in Figure 6.18) and related
profile standards are geared for smaller embedded systems by the Java community.

Continuing with networking as an example, the CLDC-based Java APIs provided by a
CLDC-based JVM do not provide a .net package, as do the larger JVM implementations (see
Figure 6.19).

Under the CLDC implementation, a generic connection is provided that abstracts networking,
and the actual implementation is left up to the device designers. The Generic Connection

Figure 6.14: Sockets and a JVM1

www.newnespress.com

Virtual Machines in Middleware 269

Framework (javax.microedition.io package) consists of one class and seven connection
interfaces:

•	 Connection	–	closes	the	connection
•	 ContentConnection	–	provides	metadata	info
•	 DatagramConnection	–	create,	send,	and	receive
•	 InputConnection	–	opens	input	connections
•	 OutputConnection	–	opens	output	connections
•	 StreamConnection	–	combines	Input	and	Output
•	 Stream	ConnectionNotifier	–	waits	for	connection.

Figure 6.15: Socket Constructors in Datagram, Multicast, and Socket Classes3

www.newnespress.com

270 Chapter 6

The Connection class contains one method (Connector.open) that supports the file, socket,
comm, datagram and http protocols, as shown in Figure 6.20.

Another example is located within the Kaffe JVM open source example used in this chapter
that contains its own implementation of a java.awt graphical library. AWT (abstract
window toolkit) is a class library that allows for creating graphical user interfaces in Java.
Figures 6.21a, b and c show a list of some of the java.awt libraries, as well as real-world
source of one of the awt libraries being implemented.

Figure 6.16: J2ME CDC 1.0a package Example4

www.newnespress.com

Virtual Machines in Middleware 271

Figure 6.18: Sockets and a J2ME CLDC-based JVM1

Figure 6.17: Sockets and a J2ME CDC-based JVM1

www.newnespress.com

272 Chapter 6

6.2.2 Execution Engine

Within an execution engine, there are several components that support process, memory,
and I/O system management – however, the main differentiators that impact the design and
performance of VMs that support the same specification are:

•	 The	units	within	the	VM	that	are	responsible	for	process	management	and	for	translating	
what is generated on the host into machine code via:
•	 interpretation
•	 just-in-time (JIT), an algorithm that combines both compiling and interpreting
•	 ahead-of-time compilation, such as dynamic adaptive compilers (DAC), ahead-of-

time, way-ahead-of-time (WAT) algorithms to name a few.

Figure 6.19: J2ME CLDC apIs4

Figure 6.20: Example of Connection Class in Use1

www.newnespress.com

Virtual Machines in Middleware 273

A VM can implement one or more of these processing algorithms within its execution engine.

•	 The	memory	management	scheme	that	includes	a	garbage collector (GC), which is
responsible for deallocating any memory no longer needed by the overlying application.

With interpretation in a JVM, shown in Figure 6.22 for example, every time the Java program
is loaded to be executed, every byte code instruction is parsed and converted to native code,
one byte code at a time, by the JVM’s interpreter. Moreover, with interpretation, redundant
portions of the code are reinterpreted every time they are run. Interpretation tends to have
the lowest performance of the three algorithms, but it is typically the simplest algorithm to
implement and to port to different types of hardware.

A JIT compiler (see Figure 6.23), on the other hand, interprets the program once, and then
compiles and stores the native form of the byte code at runtime, thus allowing redundant code
to be executed without having to reinterpret. The JIT algorithm performs better for redundant
code, but it can have additional runtime overhead while converting the byte code into native
code. Additional memory is also used for storing both the Java byte codes and the native
compiled code. Variations on the JIT algorithm in real-world JVMs are also referred to as
translators or dynamic adaptive compilation (DAC).

Figure 6.21a: Kaffe java.awt apIs5

www.newnespress.com

274 Chapter 6

Figure 6.21b: java.awt Checkbox Class apI6

www.newnespress.com

Virtual Machines in Middleware 275

Figure 6.21c: Kaffe java.awt Checkbox Class Implemented5

www.newnespress.com

276 Chapter 6

Figure 6.21c continued: Kaffe java.awt Checkbox Class Implemented

www.newnespress.com

Virtual Machines in Middleware 277

Finally, as shown in Figure 6.24, in WAT/AOT compiling all Java byte code is compiled into
the native code at compile time, as with native languages, and no interpretation is done. This
algorithm performs at least as well as the JIT for redundant code and better than a JIT for
non-redundant code, but as with the JIT, there is additional runtime overhead when additional

Figure 6.22: Interpretation1

Figure 6.23: Just-in-time (JIt)1

www.newnespress.com

278 Chapter 6

Java classes dynamically downloaded at runtime have to be compiled and introduced to the
system. WAT/AOT can also be a more complex algorithm to implement.

The Kaffe open source example used in this chapter contains a JIT (just-in-time) compiler
called JIT3 (JIT version 3). The translate function shown in Figure 6.25 is the root of Kaffe’s
JIT3.3 In general, the Kaffe JIT compiler performs three main functions:7

1. Byte code analysis. A codeinfo structure is generated by the ‘verifyMethod’ function that
contains relevant data including:
a. Stack requirements
b. Local data usage
c. Byte code attributes.

2. Instruction translation and machine code generation. Byte code translation is done at an
individual block level generally as follows:
a. Pass 1. Byte codes are mapped into intermediate functions and macros. A list of

sequence objects containing master architecture-specific data are then generated.
b. Pass 2. The sequence objects are used to generate the architecture-specific native

instruction code.
3. Linking. The generated code is linked into the VM after all blocks have been processed.

The native instruction code is then copied and linked.

6.2.2.1 Tasks versus Threads in Embedded VMs
As with operating systems, VMs manage and view other (overlying) software within the
embedded system via some process management scheme. The complexity of a VM process
management scheme will vary from VM to VM; however, in general the process management
scheme is how a VM differentiates between an overlying program and the execution of that
program. To a VM, a program is simply a passive, static sequence of instructions that could
represent a system’s hardware and software resources. The actual execution of a program

Figure 6.24: Wat (Way-ahead-of-time) Compiling1

www.newnespress.com

Virtual Machines in Middleware 279

Figure 6.25: Kaffe JIt ‘translate’ Function8

www.newnespress.com

280 Chapter 6

Figure 6.25 continued: Kaffe JIt ‘translate’ Function

www.newnespress.com

Virtual Machines in Middleware 281

Figure 6.25 continued: Kaffe JIt ‘translate’ Function

www.newnespress.com

282 Chapter 6

Figure 6.25 continued: Kaffe JIt ‘translate’ Function

www.newnespress.com

Virtual Machines in Middleware 283

is an active, dynamic event in which various properties change relative to time and the
instruction being executed. A process (also commonly referred to as a task) is created to
encapsulate all the information that is involved in the executing of a program (i.e., stack, PC,
the source code and data, etc.). This means that a program is only part of a task, as shown in
Figure 6.26a.

Many embedded VMs also provide threads (lightweight processes) as an alternative means
for encapsulating an instance of a program. Threads are created within the context of the OS
task in which the VM is running, meaning all VM threads are bound to the VM task, and is a
sequential execution stream within the task.

Unlike tasks, which have their own independent memory spaces that are inaccessible
to other tasks, threads of a task share the same resources (working directories, files, I/O
devices, global data, address space, program code, etc.), but have their own PCs, stack,
and scheduling information (PC, SP, stack, registers, etc.) to allow for the instructions
they are executing to be scheduled independently. Since threads are created within
the context of the same task and can share the same memory space, they can allow for
simpler communication and coordination relative to tasks. This is because a task can
contain at least one thread executing one program in one address space, or can contain
many threads executing different portions of one program in one address space (see
Figure 6.26b), needing no intertask communication mechanisms. Also, in the case of
shared resources, multiple threads are typically less expensive than creating multiple
tasks to do the same work.

VMs must manage and synchronize tasks (or threads) that can exist simultaneously because,
even when a VM allows multiple tasks (or threads) to coexist, one master processor on
an embedded board can only execute one task or thread at any given time. As a result,
multitasking embedded VMs must find some way of allocating each task a certain amount of
time to use the master CPU, and switching the master processor between the various tasks.
This is accomplished through task implementation, scheduling, synchronization, and inter-
task communication mechanisms.

Figure 6.26a: VM task

www.newnespress.com

284 Chapter 6

Jbed is a real-world example of a JVM that provides a task-based process management
scheme that supports a multitasking environment. What this means is that multiple Java-
based tasks are allowed to exist simultaneously, where each Jbed task remains independent of
the others and does not affect any other Java task without the specific programming to do so
(see Figure 6.27).

Jbed, for example, provides six different types of tasks that run alongside threads:
OneshotTimer Task (which is a task that is run only once), PeriodicTimer Task (a task that
is run after a particular set time interval), HarmonicEvent Task (a task that runs alongside
a periodic timer task), JoinEvent Task (a task that is set to run when an associated task
completes), InterruptEvent Task (a task that is run when a hardware interrupt occurs), and
the UserEvent Task (a task that is explicitly triggered by another task). Task creation in Jbed

Figure 6.26b: VM threads1

Figure 6.27: Multitasking in VMs

www.newnespress.com

Virtual Machines in Middleware 285

is based upon a variation of the spawn model, called spawn threading. Spawn threading is
spawning, but typically with less overhead and with tasks sharing the same memory space.

Figure 6.28 is a pseudocode example of task creation of a OneShot task, one of Jbed’s six
different types of tasks, in the Jbed RTOS where a parent task ‘spawns’ a child task software
timer that runs only one time. The creation and initialization of the Task object is the Jbed
(Java) equivalent of a task control block (TCB) which contains for that particular task data
such as task ID, task state, task priority, error status, and CPU context information to name a
few examples. The task object, along with all objects in Jbed, is located in Jbed’s heap (in a
JVM, there is typically only one heap for all objects). Each task in Jbed is also allocated its
own stack to store primitive data types and object references.

Because Jbed is based upon the JVM model, a garbage collector (introduced in the next
section of this chapter) is responsible for deleting a task and removing any unused code
from memory once the task has stopped running. Jbed uses a non-blocking mark-and-sweep
garbage collection algorithm which marks all objects still being used by the system and
deletes (sweeps) all unmarked objects in memory.

Figure 6.28: Jbed task Creation

www.newnespress.com

286 Chapter 6

In addition to creating and deleting tasks, a VM will typically provide the ability to suspend
a task (meaning temporarily blocking a task from executing) and resume a task (meaning
any blocking of the task’s ability to execute is removed). These two additional functions are
provided by the VM to support task states. A task’s state is the activity (if any) that is going
on with that task once it has been created, but has not been deleted.

Tasks are usually defined as being in one of three states:

•	 Ready: The process is ready to be executed at any time, but is waiting for permission to
use the CPU.

•	 Running: The process has been given permission to use the CPU, and can execute.
•	 Blocked or Waiting: The process is waiting for some external event to occur before it

can be ‘ready’ to ‘run’.

Based upon these three states (Ready, Blocked, and Running), Jbed (for example) as a
process state transition model is shown in Figure 6.29. In Jbed, some states of tasks are
related to the type of task, as shown in the table and state diagrams below. Jbed also uses
separate queues to hold the task objects that are in the various states.

The Kaffe open source JVM implements priority-preemptive-based ‘jthreads’ on top of
OS native threads. Figure 6.30 shows a snapshot of Kaffe’s thread creation and deletion
scheme.

6.2.2.2 Embedded VMs and Scheduling
VM mechanisms, such as a scheduler within an embedded VM, are one of the main elements
that give the illusion of a single processor simultaneously running multiple tasks or threads
(see Figure 6.31). A scheduler is responsible for determining the order and the duration of
tasks (or threads) to run on the CPU. The scheduler selects which tasks will be in what states
(Ready, Running, or Blocked), as well as loading and saving the information for each task or
thread.

There are many scheduling algorithms implemented in embedded VMs, and every design
has its strengths and tradeoffs. The key factors that impact the effectiveness and performance
of a scheduling algorithm include its response time (time for scheduler to make the context
switch to a ready task and includes waiting time of task in ready queue), turnaround time
(the time it takes for a process to complete running), overhead (the time and data needed to
determine which tasks will run next), and fairness (what are the determining factors as to
which processes get to run). A scheduler needs to balance utilizing the system’s resources –
keeping the CPU, I/O, as busy as possible – with task throughput, processing as many tasks
as possible in a given amount of time. Especially in the case of fairness, the scheduler has
to ensure that task starvation, where a task never gets to run, doesn’t occur when trying to
achieve a maximum task throughput.

www.newnespress.com

Virtual Machines in Middleware 287

Figure 6.29: Jbed Kernel and States1

www.newnespress.com

288 Chapter 6

One of the biggest differentiators between the scheduling algorithms implemented within
embedded VMs is whether the algorithm guarantees its tasks will meet execution time
deadlines. Thus, it is important to determine whether the embedded VM implements a
scheduling algorithm that is non-preemptive or preemptive. In preemptive scheduling,
the VM forces a context-switch on a task, whether or not a running task has completed
executing or is cooperating with the context switch. Under non-preemptive scheduling,
tasks (or threads) are given control of the master CPU until they have finished execution,
regardless of the length of time or the importance of the other tasks that are waiting.

Figure 6.30: Kaffe Jthread Creation and Deletion8

www.newnespress.com

Virtual Machines in Middleware 289

Non-preemptive algorithms can be riskier to support since an assumption must be
made that no one task will execute in an infinite loop, shutting out all other tasks from
the master CPU. However, VMs that support non-preemptive algorithms don’t force
a context-switch before a task is ready, and the overhead of saving and restoration of
accurate task information when switching between tasks that have not finished execution
is only an issue if the non-preemptive scheduler implements a cooperative scheduling
mechanism.

Figure 6.30 continued: Kaffe Jthread Creation and Deletion

www.newnespress.com

290 Chapter 6

As shown in Figure 6.32, Jbed contains an earliest deadline first (EDF)-based scheduler
where the EDF/Clock Driven algorithm schedules priorities to processes according to three
parameters: frequency (number of times process is run), deadline (when processes execution
needs to be completed), and duration (time it takes to execute the process). While the EDF
algorithm allows for timing constraints to be verified and enforced (basically guaranteed
deadlines for all tasks), the difficulty is defining an exact duration for various processes.
Usually, an average estimate is the best that can be done for each process.

Under the Jbed RTOS, all six types of tasks have the three variables ‘duration’, ‘allowance’,
and ‘deadline’ when the task is created for the EDF scheduler to schedule all tasks (see
Figure 6.33 for the method call).

The Kaffe open source JVM implements a priority-preemptive-based scheme on top of OS
native threads, meaning jthreads are scheduled based upon their relative importance to each
other and the system. Every jthread is assigned a priority, which acts as an indicator of orders

Figure 6.31: Interleaving threads in VMs

Figure 6.32: EDF Scheduling in Jbed

www.newnespress.com

Virtual Machines in Middleware 291

of precedence within the system. The jthreads with the highest priority always preempt
lower-priority processes when they want to run, meaning a running task can be forced to
block by the scheduler if a higher-priority jthread becomes ready to run. Figure 6.34 shows
three jthreads (1, 2, 3 – where jthread 1 is the lowest priority and jthread 3 is the highest, and
jthread 3 preempts jthread 2, and jthread 2 preempts jthread 1).

As with any VM with a priority-preemptive scheduling scheme, the challenges that need to be
addressed by programmers include:

•	 JThread	starvation,	where	a	continuous	stream	of	high-priority	threads	keeps	lower-
priority jthreads from ever running. Typically resolved by aging lower-priority jthreads
(as these jthreads spend more time on queue, increase their priority levels).

Figure 6.33: Jbed Method Call for Scheduling task1

Figure 6.34: Kaffe’s priority-preemptive-based Scheduling

www.newnespress.com

292 Chapter 6

•	 Priority	inversion,	where	higher-priority	jthreads	may	be	blocked	waiting	for	lower-
priority jthreads to execute, and jthreads with priorities in between have a higher priority
in running, thus both the lower-priority as well as higher-priority jthreads don’t run (see
Figure 6.35).

•	 How	to	determine	the	priorities	of	various	threads.	Typically,	the	more	important	
the thread, the higher the priority it should be assigned. For jthreads that are equally
important, one technique that can be used to assign jthread priorities is the Rate
Monotonic Scheduling (RMS) scheme which is also commonly used with relative
scheduling scenerios when using embedded OSs. Under RMS, jthreads are assigned a
priority based upon how often they execute within the system. The premise behind this
model is that, given a preemptive scheduler and a set of jthreads that are completely
independent (no shared data or resources) and are run periodically (meaning run at
regular time intervals), the more often a jthread is executed within this set, the higher its
priority should be. The RMS Theorem says that if the above assumptions are met for a
scheduler and a set of ‘n’ jthreads, all timing deadlines will be met if the inequality
O Ei/Ti ≤ n(21/n – 1) is verified, where

 i = periodic jthread
 n = number of periodic jthreads
 Ti = the execution period of jthread i
 Ei = the worst-case execution time of jthread i
Ei/Ti = the fraction of CPU time required to execute jthread i.

 So, given two jthreads that have been prioritized according to their periods, where the
shortest-period jthread has been assigned the highest priority, the ‘n(21/n – 1)’ portion
of the inequality would equal approximately 0.828, meaning the CPU utilization of
these jthreads should not exceed about 82.8% in order to meet all hard deadlines. For 100
jthreads that have been prioritized according to their periods, where the shorter period
jthreads have been assigned the higher priorities, CPU utilization of these tasks should

Figure 6.35: priority Inversion1

www.newnespress.com

Virtual Machines in Middleware 293

not exceed approximately 69.6% (100 × (21/100 − 1)) in order to meet all deadlines.
See Figure 6.36 for additional notes on this type of scheduling model.

6.2.2.3 VM Memory Management and the Garbage Collector1

A VM’s memory heap space is shared by all the different overlying VM processes – so
access, allocation, and deallocation of portions of the heap space need to be managed. In the
case of VMs, a garbage collector (GC) is integrated within. Garbage collection discussed in
this chapter isn’t necessarily unique to any particular language. A garbage collector (GC) can
be implemented within embedded devices in support of other languages that do not require
VMs, such as C and C++.8 Regardless, when creating a garbage collector to support any
language, it becomes an integral component of an embedded system’s architecture.

Applications written in a language such as Java or C# all utilize the same memory heap
space of the VM and cannot allocate or deallocate memory in this heap or outside this heap
that has been allocated for previous use (as can be done in native languages, such as using
‘free’ in the C language, though as mentioned above, a garbage collector can be implemented
to support any language). In Java, for example, only the GC (garbage collector) can deallocate
memory no longer in use by Java applications. GCs are provided as a safety mechanism for

Figure 6.36: Note on Scheduling

www.newnespress.com

294 Chapter 6

Java programmers so they do not accidentally deallocate objects that are still in use. While
there are several garbage collection schemes, the most common are based upon the copying,
mark and sweep, and generational GC algorithms.

6.2.2.4 GC Memory Allocator1

Embedded VMs can implement a wide variety of schemes to manage the allocation of the
memory heap, in combination with an underlying operating system’s memory management
scheme. With Kaffe, for example, the GC including a memory allocator for the JVM in
addition to the underlying operating system’s memory management scheme is utilized.
When Kaffe’s memory allocator is used to allocate memory (see Figure 6.37) from the JVMs
heap space, its purpose is to simply determine if there is free memory to allocate – and if so,
returning this memory for use.

6.2.2.5 Garbage Collection1

The copying garbage collection algorithm (shown in Figure 6.38) works by copying
referenced objects to a different part of memory, and then freeing up the original memory
space of unreferenced objects. This algorithm uses a larger memory area in order to work,
and usually cannot be interrupted during the copy (it blocks the system). However, it does
ensure that what memory is used is used efficiently by compacting objects in the new
memory space.

Figure 6.37: Kaffe’s GC Memory allocation Function8

www.newnespress.com

Virtual Machines in Middleware 295

Figure 6.37 continued: Kaffe’s GC Memory allocation Function

www.newnespress.com

296 Chapter 6

The mark and sweep garbage collection algorithm (shown in Figure 6.39) works by ‘marking’
all objects that are used, and then ‘sweeping’ (deallocating) objects that are unmarked. This
algorithm is usually non-blocking, meaning the system can interrupt the garbage collector
to execute other functions when necessary. However, it doesn’t compact memory the way
a copying garbage collector does, leading to memory fragmentation, the existence of small,
unusable holes where deallocated objects used to exist. With a mark and sweep garbage
collector, an additional memory compacting algorithm can be implemented, making it a mark
(sweep) and compact algorithm.

Figure 6.38: Copying GC1

Figure 6.39: Mark and Sweep (No Compaction) GC1

www.newnespress.com

Virtual Machines in Middleware 297

Finally, the generational garbage collection algorithm (shown in Figure 6.40) separates
objects into groups, called generations, according to when they were allocated in memory.
This algorithm assumes that most objects that are allocated by a Java program are short-lived,
thus copying or compacting the remaining objects with longer lifetimes is a waste of time.
So, it is objects in the younger-generation group that are cleaned up more frequently than
objects in the older-generation groups. Objects can also be moved from a younger-generation
to an older-generation group. Different generational garbage collectors also may employ
different algorithms to deallocate objects within each generational group, such as the copying
algorithm or mark and sweep algorithms described previously.

The Kaffe open source example used in this chapter implements a version of a mark and
sweep garbage collection algorithm. In short, the garbage collector (GC) within Kaffe will be
invoked when the memory allocator determined more memory is required than free memory
in the heap. The GC then schedules when the garbage collection will occur, and executes the
collection (freeing of memory) accordingly. Figure 6.41 shows Kaffe’s open source example
of a mark and sweep GC algorithm for ‘marking’ data for collection.

Figure 6.40: Generational GC1

www.newnespress.com

298 Chapter 6

6.2.3 VM Memory Management and the Loader
The loader is simply as its name implies. As shown in Figure 6.42a, it is responsible for
acquiring and loading into memory all required code in order to execute the relative program

Figure 6.41: Kaffe GC ‘Mark’ Functions8

www.newnespress.com

Virtual Machines in Middleware 299

overlying the VM. In the case of a JVM like Kaffe, for example (see Figure 6.42b for open
source snapshot), its internal Java class loader loads into memory all required Java classes
required for the Java program to function.

Figure 6.42a: the Class Loader in a JVM1

Figure 6.42b: Kaffe Class Loader Function8

www.newnespress.com

300 Chapter 6

6.3 a Quick Comment on Selecting Embedded VMs relative
to the application Layer

Writing applications in a higher-level language that requires introducing an underlying VM
in the middleware layer of an embedded system design, for better or worse, will require
additional support relative to increased processing power and memory requirements. This
is opposed to implementing the same applications in native C and/or assembly. So, as with
integrating any type of middleware component, introducing a VM into an embedded system
means planning for any additional hardware requirements and underlying system software
by both the VM and the overlying applications that utilize the underlying VM middleware

Figure 6.42b continued: Kaffe Class Loader Function

www.newnespress.com

Virtual Machines in Middleware 301

component. This is where understanding the fundamentals of the internal design of VMs, like
the material presented in previous sections of this chapter, becomes critical to selecting the
best design that meets your particular device’s requirements.

For example, several factors, such as memory and performance, are impacted by the scheme
a VM utilizes in processing the overlying application code. So, understanding the pros and
cons of using a particular JVM that implements an interpretating byte-code scheme versus a
just-in-time (JIT) compiler versus a way-ahead-of-time (WAT) compiler versus a dynamic
adaptive compiler (DAC) is necessary. This means that, while using a particular JVM with a
certain compilation scheme would introduce significant performance improvements, it may
also introduce requirements for additional memory as well as introduce other limitations.
For instance, pay close attention to the drawbacks to selecting a particular JVM that utilizes
some type of ahead-of-time (AOT) or way-ahead-of-time (WAT) compilation which provides
a big boost in performance when running on your hardware, but lacks the ability to process
dynamically downloaded Java byte-code, whereas this dynamic download capability is
provided by a competing JVM solution based on a slower, interpretating byte-code processing
scheme. If on-the-field dynamic extensibility support is a non-negotiable requirement for the
embedded system being designed, then it means needing to investigate further other options
such as:

•	 selecting	a	competing	JVM	from	another	vendor	that	provides	this	dynamic-download	
capability out-of-the-box

•	 investigating	the	feasibility	of	deploying	with	a	JVM	based	on	a	different	byte-code	
processing scheme that runs a bit slower than the faster JVM solution that lacks dynamic
download and extensibility support

•	 planning	the	resources,	costs,	and	time	to	implement	this	required	functionality	within	the	
scope of the project.

Another example would be when having to decide between a JIT implementation of a
JVM versus going with the JIT-based .NET Compact Framework solution of comparable
performance on your particular hardware and underlying system software. In addition to
examining the available APIs provided by the JVM versus .NET Compact Framework
embedded solutions for your application requirements, do not forget to consider the non-
technical aspects of going with either particular solution as well. For example, this means
taking into consideration when selecting between such alternative VM solutions, the
availability of experienced programmers (i.e., Java versus C# programmers for instance). If
there are no programmers available with the necessary skills for application development on
that particular VM, factor in the costs and time involved in finding and hiring new resources,
training current resources, and so on.

Finally do not forget that integrating the right VM in the right manner within the
software stack which optimizes the performance of the solution is not enough to insure

www.newnespress.com

302 Chapter 6

the design makes it to production successfully. To insure success taking an embedded
design that introduces the complexity and stress to underlying components that
incorporating an embedded VM produces, requires programmers to plan carefully how
overlying applications will be written. This means it is not the most elegant nor the most
brilliantly written application code that will insure the success of the design – but simply
programmers that design applications in a manner that properly utilizes the underlying
VM’s powerful strengths and avoids its weaknesses. A Java application, for example,
that is written as a masterpiece by even the cleverest programming guru will not be worth
much, if when it runs on the device it was intended for this application is so slow and/or
consumes so much of the embedded system’s resources that the device simply cannot be
shipped!

In short, the key to selecting which embedded VMs best match the requirements of your
design, and successfully taking this design to production within schedule and costs, includes:

•	 determining	if	the	VM	has	been	ported	to	your	target	hardware’s	master	CPU’s	
architecture in the first place. If not, it means determining how much time, cost, and
resources would be required to port the particular VM to your target hardware and
underlying system software stack

•	 calculating	additional	processing	power	and	memory	requirements	to	support	the	VM	
solution and overlying applications

•	 specifying	what	additional	type	of	support	and/or	porting	is	needed	by	the	VM	relative	to	
underlying embedded OS and/or other middleware system software

•	 investigating	the	stability	and	reliability	of	the	VM	implementation	on	real	hardware	and	
underlying system software

•	 planning	around	the	availability	of	experienced	developers
•	 evaluating	development	and	debugging	tool	support
•	 checking	up	on	the	reputation	of	vendors
•	 insuring	access	to	solid	technical	support	for	the	VM	implementation	for	developers
•	 writing	the	overlying	applications	properly.

6.4 Summary

This chapter introduced embedded VMs, and their function within an embedded device.
A section on programming languages and the higher-level languages that introduce the
requirement of a VM within an embedded system was included in this chapter. The major
components that make up most embedded VMs were discussed, such as an execution engine,
the garbage collector, and loader to name a few. More detailed discussions of process
management, memory management, and I/O system management relative to VMs and
their architectural components were also addressed in this chapter. Embedded Java virtual

www.newnespress.com

Virtual Machines in Middleware 303

machines (JVMs) and the .NET Compact Framework were utilized as real-world examples to
demonstrate concepts.

The next chapter in this section introduces database concepts, as related to embedded systems
middleware.

6.5 problems

 1. What is a VM? What are the main components that make up a VM’s architecture?
 2.

A. In order to run Java, what is required on the target?
B. How can the JVM be implemented in an embedded system?

 3. Which standards below are embedded Java standards?
A. pJava – Personal Java
B. RTSC – Real Time Core Specification
C. HTML – Hypertext Markup Language
D. A and B only
E. A and C only.

 4. What are the main differences between all embedded JVMs?
 5. Name and describe three of the most common byte processing schemes.
 6.

A. What is the purpose of a GC?
B. Name and describe two common GC schemes.

 7.
A. Name three qualities that Java and scripting languages have in common.
B. Name two ways that they differ.

 8.
A. What is the .NET Compact Framework?
B. How is it similar to Java?
C. How is it different?

 9. The .NET compact framework is implemented in the device driver layer of the Embedded
Systems Model (True/False).

10.
A. Name three embedded JVM standards that can be implemented in middleware.
B. What are the differences between the APIs of these standards?
C. List two real-world JVMs that support each of the standards.

11. VMs do not support process management (True/False).
12. Define and describe two types of scheduling schemes in VMs.
13. How does a VM typically perform memory management? Name and describe at least two

components that VMs can contain to perform memory management.

www.newnespress.com

304 Chapter 6

6.6 End Notes
1 ‘Embedded Systems Architecture’. Noergaard. 2005 and http://msdn.microsoft.com/en-us/library/w6ah6cw1

.aspx
2 Personal Java 1.1.8 API documentation, java.sun.com
3 ‘I/Opener’, Morin and Brown, Sun Expert Magazine, 1998.
4 Java 2 Micro Edition 1.0 API Documentation, java.sun.com
5 ‘Boehm-Demers-Weiser conservative garbage collector: A garbage collector for C and C++’, Hans Boehm,

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
6 Kaffe Open Source Code Libraries.
7 pJava 1.1.8 and CLDC Documentation from Sun Microsystems.
8 Kaffe.jit3 FAQ.
9 http://download.java.net/jdk7/docs/api/java/awt/Checkbox.html

http://download.java.net/jdk7/docs/api/java/awt/Checkbox.html
http://msdn.microsoft.com/en-us/library/w6ah6cw1.aspx
http://msdn.microsoft.com/en-us/library/w6ah6cw1.aspx
http://download.java.net/jdk7/docs/api/java/awt/Checkbox.html
http://www.hpl.hp.com/personal/Hans_Boehm/gc/

305
Demystifying Embedded Systems Middleware. DOI: 10.1016/B978-0-7506-8455-2.00007-8

ChaptEr 7

An Introduction to the Fundamentals of
Database Systems

Chapter points

•	 Introduces	fundamental	database	concepts

•	 Discusses	different	database	models	and	relevance	to	database	middleware

•	 Shows	examples	of	real-world	embedded	database	middleware

7.1 What is a Database System?

Like a file system, a database management system (DBMS), also commonly referred to as simply a
database system, is another scheme that can be used to reliably and efficiently manage data within
an embedded system. A database system can be accessible and directly utilized by the embedded
system’s user, by other middleware software, by applications in the system to manage data for the
application, or some combination of the above. Database systems are commonly used instead of
file systems within a design when using a file system instead of a DBMS would result in a great
deal of redundancy of the ‘same’ data in ‘different’ files. So, when using a file system introduces
the challenge of insuring that redundant data within the system need to be constantly updated to
insure consistency – then a database as an alternative option is commonly considered. A database is
also considered, for example, when managing access to the same data within a file system requires
additional overhead when working to insure reliable and secure access to more than one overlying
software component and/or user to that data, without corrupting that data in the process.

Keep in mind, a particular database design may not 100% eliminate redundant data. In fact, a
database based upon for example the relational model may introduce some redundant data.
A database can be used to ensure that the redundant data remain consistent. For example, an IP
address for a given device can be changed everywhere that IP address is used via an efficient
look up (indexes) scheme. Remember, a database is not intended to be a direct “alternative” to a
file system, and in some DBMS designs is most often implemented on top of the file system. It is
simply an approach commonly used instead of direct manipulation of files within a file system.

www.newnespress.com

306 Chapter 7

At the highest level, a database system is made up of two major components: (1) the
database(s) and (2) the overlying middleware and/or application software used to manage the
access to the database(s). Within the database system, a database manages data by allowing for:

•	 the	organization,	storage,	and	management	of	interrelated	data
•	 querying	of	data	via	a	query	language
•	 the	generation	of	reports	based	on	data	analysis
•	 data	integrity,	redundancy,	and	security.

Thus, in contrast to the wide variety of data that is typically stored in a file system, in the
case of data stored in a database system, simply put the data are interrelated. As with file
systems, data within a database system are not limited to the data belonging to users, other
middleware, and/or applications utilizing the database system. This is because an underlying
infrastructure must be in place to store the data, manipulate these data, insure the integrity of
the data, and provide secure access to these data.

As with file systems, depending on the database the storage medium can be volatile RAM,
and/or non-volatile memory such as: Flash, CD, floppy disk, and hard disk to name a few. Keep
in mind that the database itself and the data it manages may or may not reside on the same device.
This means, as shown in Figure 7.1, the data the database manages can be located on some type
of hardware storage medium located on the embedded system board or located on some other
storage medium accessible to the embedded system (i.e., over a network, on a CD, etc.)

Figure 7.1: Database access

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 307

Ultimately, managing data within the database is accomplished by utilizing metadata
stored within the database system’s data dictionary region. Metadata is all the additional
components that the database middleware uses to maintain the context, or state, of the
system, for example run-time structures describing active connections, and other “metadata”
components that are specific to the architecture of that particular database. The database’s
data dictionary is simply a region which contains information that describes, for example:

•	 the	type	and	attributes	of	data	being	stored	within	the	database
•	 the	structure	and	location	of	the	data	within	the	database
•	 the	type(s)	of	object(s)	storing	the	data
•	 database	features	and	constraints,	such	as	triggers	and	referential	integrity
•	 details	to	manage	database	users,	such	as	permissions	and	accounts	details.

To be useful in the embedded device, a database system must then have a reliable and
efficient ‘data modeling’ scheme to create the components that store data, process data, and
locate the data these metadata describes on the embedded device’s storage medium(s). The
data model drives how the fundamental database subsystems are designed internally, and
ultimately how the user/application data will be managed. There are several types of data
models used in real-world database designs on the market today. However, the most common
schemes implemented within database systems on embedded devices are based upon a
record-based model, an object-based model, or some hybrid combination of both.

7.2 record-based versus Object-oriented Database Models

A record-based database system structures data as records within the database, and then
relates records to one another via the data contained within the record. Depending on the
internal database design, these records can be fixed-length or variable-length. While there
are several types of record-based database models, one of the most common is the relational
database model – where records are grouped and organized into more complex tables (note:
tables are not more complex than records; they are simply groupings of like records). Each
table within the relational database model has a unique name. Each table then represents a
unique set of relationships, where the data contained within each row represents a relation.

Important note

Within the scope of this text, the relational algebra that is an important foundation to
understanding languages like SQL and relational databases in general is kept at a minimum
since this book is intended to be an introduction to database fundamentals.
However, it is useful and necessary to review relational algebra mathematical fundamentals
if the intent of the reader is to do ‘more’ than just selecting/using a database for a particular
design – but planning to do the hardcore design and programming of a relational database code.

www.newnespress.com

308 Chapter 7

The types of columns that make up the tables within a relational database are the attributes of the
data within that table. In Figure 7.2, attributes include ‘CDId’, ‘CDName’, ‘Genre’, ‘Price’, and
‘NumberInStock’ for example. When defining a table and its corresponding attributes, domains
for these attributes are specified that define the allowed type of data. For example, the domain
for ‘CDId’ may be defined to be unique integers assigned to independent compact disks (CDs),
whereas the domain for ‘CDName’ may be defined as a set of CD names of an alphanumeric string
of some ‘n’ maximum length. Thus, tables within a relational database can then be related to other
tables via the shared attributes (keys) within a table, such as the example shown in Figure 7.2.

Overlying middleware software, application software, and/or a user directly communicates with
a database system via some type of programming language (see Figure 7.3a) and via database
system APIs. Basically, every database system has some type of DML (data-manipulation
language) and/or Data Definition Language (DDL) to allow communication. The DML, as its
name implies, is what allows for the manipulation of the data within a database – meaning the
reading, writing, and deleting of these data within the database. DDLs are used to specify a
set of definitions that define the underlying database scheme itself. So, to function within the
embedded device, the database system uses the DML and DDL to translate and understand
all that is required of it. Everything from managing the structure of the database to actually
querying the data contained within is done via communicating through the DML, the DDL, or
a language that acts as some combination of both a DML and DDL.

An example of a common real-world language utilized in many database systems, especially
dominant in the relational database sphere, is based on a common industry standard called
SQL (structured query language). SQL is a type of computer database language, meaning a
language used to create, maintain and control a database. In reality, SQL is much more than
a query language; it has DML, DDL and DCL (data control language) elements within it. For
example, the DML includes INSERTIUPDATE/DELETE statements in addition to SELECT

Figure 7.2: tables

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 309

statements for querying. The Perst database system used as a real-world example in this
chapter utilizes a procedural query language based on a derivation of the SQL standard, called
JSQL (see Figure 7.3b).

In general, database query languages are considered either non-procedural (where only the
specific data within the database are specificed) or procedural (where both the data and the
program logic to perform on the data can be specified). Procedural refers to the presence of
logic statements like if-then-else and do-while. Operations are selection, projection, join,

Figure 7.3a: Database System Communication

www.newnespress.com

310 Chapter 7

insert, update, and delete. Examples of some of the operations that act as foundations for
procedural query languages are shown in Table 7.1.

SQL itself is composed of a combination of both a DML and DDL. Meaning, SQL is used
for everything from defining and deleting relations to executing commands for modifyng
the database (deleting data, inserting data, etc.) to insuring data integrity and security via
specifying access rights to managing overall transactions. For creating the table in Figure
7.XX, the SQL expression is generally based upon the structure ‘create table x (A1, D1, A2,
D2, A3, D3, … An, Dn, {integrity-contsrainti}, …)’ where ‘x’ is the name of the table, Ai define
the attributes of the table, and Di are defining the domains of these attributes. Integrity-
constrainti is how to insure that changes made to the database do not result in some type of
corruption. So, for example, an SQL expression for creating CDTable could be:

create table CDTable (CDId integer not null)
CDName char(30)
Genre char(10)
Price float
NumberInStock integer
check (Genre in (‘Country’, ‘Rock’, ‘Country/Pop’,
‘R&B/Soul’, ‘Opera’, ‘Classical’))

For extracting data, generally, SQL expressions are made up of three parts:

1. select, as described in Table 7.1 for the ‘select’ operation relative to attributes to be copied
(select A1,A2,A3, … An from …-- Ai is an attribute).

Figure 7.3b: JSQL1

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 311

2. from, the Cartesian product that lists relations to be used (select A1,A2,A3, … An from
r1,r2,r3, … rn where …. -- ri is a relation).

3. where, the selection predicate (select A1,A2, A3, … An from r1,r2,r3, … rn where P – P is
the predicate).

So, for example, given the table in Figure 7.2, to use SQL to find the names of CDs
(CDName) that cost less than $20 the SQL expression could look as follows:

select CDName
from CDTable
where Price < 20

table 7.1: Examples of procedural Query Language Operations

Operations Descriptions

Assignment Using a temporary relation variable to write a relational expression (allowing for
modification of the database, itself) (←) for deletion, insertion, and updating for
example

Cartesian
Product

Returns a relation (table of rows) representing each possible pairing of rows from
the original tables specified within the Cartesian product (x)

Division Querying for all rows that contain some specified subset of attributes (÷)

Natural Join Combines into one operation the Cartesian product and selection operations ()

Project Selects columns (attributes) from specified tables that satisfy the supplied arguments

Rename Allows for renaming of relations (table of rows) that come from the same table
due to another operation on that table

Select Selects rows from specified tables that satisfy the supplied argument requirements

Set Difference Results in finding the rows in a specified table that does not exist in other tables (-)

Set Intersection Returns a relation (table of rows) that contains rows that are in all specified tables
that meet argument requirements (∩)

Union Allows the union of specified tables, that have an equal number of attributes with
identical domains (∪)

table 7.2: Example of SQL Query and table

CDId CDName Genre price NumberInStock

1 Taking the Long Way Country $21.99 5

2 Home Country $19.99 2

3 I’m Not Dead Rock $15.49 9

4 Up! Country/Pop $19.99 0

5 B’Day R&B/Soul $19.99 1

www.newnespress.com

312 Chapter 7

and would return all the CDNames listed in Table 7.2 with a price less than $20 (rows two
through five).

For modifying the database, SQL expressions are generally made up of:

1. (type of database modification), i.e., ‘delete from’, ‘insert into’, ‘update’.
2. where, the selection predicate (select A1,A2,A3, … An from r1,r2,r3, … rn where P – P is the

predicate).

So, an SQL example could be updating a row into the CDTable (Table 7.3) with the following
SQL expression that would increase the number of CDs in stock for one of the listed CDs:

update CDName set NumberInStock=NumberInStock + 5
where CDId = 4

real-world advice

Is a database that supports the SQL API the right choice for an embedded design?
Whether or not a database system that supports SQL is the right fit for a particular embedded
system’s requirements will depend on how deterministic the database access needs to be. SQL
is interpreted at run-time, with the actual execution plan determined by the database system’s
SQL optimizer. This makes it difficult for embedded programmers to understand what a
database system is doing when processing SQL statements as opposed to languages embedded
programmers are more familiar with, such as C or C++. So, this increases the likelihood
execution plans leading to unexpected or even inferior performance. However, the ability in SQL
to express complex queries that would otherwise require laborious (and potentially error-prone)
C/C++ programming may outweigh the performance its determinism disadvantages.
In short, any non-deterministic behavior and additional overhead disadvantages of utilizing a
database that supports an SQL API relative to other types of databases needs to be weighed
against the advantage of its simplicity in use relative to supporting complex queries.
Based on the article ‘COTS Databases for Embedded Systems’ by Steve Graves.

Record-based ‘hierarchical’ database systems can also implement trees that use pointers to
define relations between the different records (see Figure 7.4). Another example is a record-
based ‘network’ database model, where records are related via links into arbitrary graphs.

There are several types of object-based models in database system design, from object-
oriented to entity/relationship to semantic. However, all of these object-oriented models are in

table 7.3: Example of SQL Query and Updating table

CDId CDName Genre price NumberInStock

1 Taking the Long Way Country $21.99 5

2 Home Country $19.99 2

3 I’m Not Dead Rock $15.49 9

4 Up! Country/Pop $19.99 5

5 B’Day R&B/Soul $19.99 1

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 313

general based on object-oriented programming fundamentals where all components within a
database system are considered objects. Within this type of database, all objects encapsulate
state and associated behavior data. Another example is a record-based “network” database
model, where records are related via links (pointers) into arbitrary graphs.” An object state
is simply some set of parameters that defines the attributes of that object. The behavior of
objects is defined via their methods (functions) that operate on the object’s state data.

The various types of relationships between these objects are defined via their classes as shown
in Figure 7.5. A class is simply a way to group objects that share identical states (attributes)
and behaviors (methods). Basically, objects are created via the relative instantiation of a class.
Via classes then, more complex relationships between data are supported, such as inheritance
for example, which allows new sets of objects (classes) to be derived from a current class.
Objects, and inherently their classes in which they are instantiated from, are the basis in which
database queries are made. In some database systems these queries are implemented via an
existing DML that is expanded to provide object-oriented support, whereas other database
solutions affect queries through an application programming interface (API) that is used within
an objectoriented programming language such as Java or C#.”

Databases can also be implemented with a design that is some hybrid combination of both
object-based and record-based schemes – the most common type being object-relational
databases. Overlying requirements on these types of hybrid databases typically include having
powerful querying capabilities, being able to manage complex data (i.e., CAD or multimedia
data), and decent performance on handling a large number of database accesses. This means that
these hybrid models exist to support requirements that would utilize the best of both worlds.

For example, relational database models support simple data types and the use of the ‘safer’
querying languages (like SQL) that provide better database protection. Object-oriented
models provide the support of more complex data types and offer more flexility via the use

Figure 7.4: trees

www.newnespress.com

314 Chapter 7

of conventional programming languages (e.g. C/C++ or Java). The hybrid object-relational
databases provide support for both the simpler and complex data types in synergy with data
querying features typically only found in relational databases in addition to object-oriented
data modeling capabilities. The open source Perst database example, used in this chapter, is a
real-world example based on a hybrid object-relational approach.

7.3 Why Care about the Different Database Models?

It is important for a middleware developer to understand the different database models, since
these different database models created were done to meet different requirements. The model
a particular database design adheres to determines how that database logically organizes data,
defines the constraints on the data, and the inter-relationships supported. Here it is important to
understand a database scheme at the logical level in order to understand how data are represented
and managed. This means understanding whether it is via some set of tables within a relational
(record-based) type of database versus within an object-oriented database’s set of defined classes
and instantiated objects. Furthermore, understanding the type of data structures and relative
operations used to manage within a database design is key, for example, to predicting the type of
performance to expect of the database given the underlying software and hardware components.

Figure 7.5: Classes

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 315

The database system itself then implements the data model, via the syntax provided by
its language. There is not one database solution that fits all embedded systems’ needs. So
developers need to understand the pros and cons of each design to insure the database approach
is one that maximizes the strengths of its internal design. For example, some database
models best support functions that include monitoring inventory and/or managing lists of
sales customers, such as the relational database model, for example. This type of database
is the approach of choice when data management requirements support that the database is
not expected to make major changes too often, and standard operations on data are all that
will typically be required (i.e., create table, update table, and so on). Given these standard
operations, transactions on data are then expected to be atomic and of shorter duration. The
relational database model is also functioning at its best when the data are typically similar in
size and structure, allowing for these data to be managed via smaller, fixed-length records.

Other types of database models, such as the object-oriented approach, better support needs
relative to complex object graphs such as found in social networking, audio/video multimedia
requirements and engineering functions such as CAD (computer-aided design). Object-oriented
databases support the management of more complex objects with more freedom to support
varying types of data. Databases based on this model also provide better support for non-atomic,
asynchronous transactions. Another strength to object-oriented-based database models is
considered to be the ability to manage an object (and associated data) with less risk of impacting
and corrupting other database components. This is because of the underlying messaging scheme
inherent in this approach, where an object’s interface (and associated data) can only be accessed and
manipulated via some set of messages the object will have defined as acceptable for processing.

In short, the goal of any database design is to successfully manage data without unnecessary
redundancy, as well as to insure the integrity of these data, and manage them efficiently. If, given
the specific requirements, a particular database design utilized in a real-world system results in:

•	 data	corruption	and/or	loss
•	 unnecessary	data	redundancy
•	 inability	of	the	database	to	manage	a	particular	type	of	data
•	 unacceptable	degradation	in	system	performance

it is time for the developer to investigate a different approach.

7.4 the Fundamentals of Database Design: the First Steps

The first steps to understanding an embedded database design are as follows:
Step 1. As with any other middleware component – understand what the purpose of the database

is within the system and how it achieves this purpose. Then, simply keep this in mind
regardless of how complex a particular database implementation is. As introduced at the
start of this chapter, the purpose of a database is to manage data stored on some type of

www.newnespress.com

316 Chapter 7

storage medium located within the embedded device and/or some remotely accessible
storage medium, and modern database designs can achieve this in a few different ways.

Step 2. Understand the APIs that are provided by a DBMS and the associated database in
support of a database’s inherent purpose. These APIs can, of course, differ from data-
base to database, but in general include some set such as the open source example
shown in Figures 7.6a and 7.6b.

Step 3. Using the Embedded Systems Model, define and understand all required architecture
components that a database requires, specifically:
Step 3.1. Know your database-specific standards, as discussed in Chapter 3.
Step 3.2. Understand the hardware (see Chapter 2). If the reader comprehends the

hardware, it is easier to understand why a particular database implements
functionality in a certain way relative to the storage medium, as well as the
hardware requirements of a particular database implementation.

Step 3.3. Define and understand the specific underlying system software components,
such as the available device drivers supporting the storage medium(s) and
the operating system API (see Chapter 2).

Step 4. Define the database architecture models on the market today, based on an understand-
ing of the generic database models, and then define and understand what type of
functionality and data exist at each layer. This includes database-specific data, such as
data structures and the functions included at each layer.

Figure 7.6a: perst apI Example1

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 317

7.5 real-world Database System Model

When an application or user initiates communication, then an embedded database system
contains a number of components to process this incoming communication. What these
components are and how these components are designed essentially determine what
underlying system software and hardware requirements need to be met in order to utilize
them successfully within a design. So, to start, it is recommended the reader begin to
familiarize themselves with these components. Figure 7.7 shows a general database systems
model made up of some combination of a

•	 transaction	manager
•	 query	compiler
•	 execution	engine
•	 resource	manager
•	 storage	and	buffer	manager.

An incoming query can impact the data within the database system, as well as trigger actions
that impact the structure of the database itself. Database systems typically group incoming
queries, as well as other database system actions in general, into independent, atomic tasks

Important note

Remember, real-world database systems may have different names than what is listed above
for the various components, may have split the functions of these components into additional
elements, and/or merged the functionality of various comoponents into other database system
subsystems. The key here is to use the subsystems within the model and examples as a reference
in understanding the fundamentals of any database system design.

Figure 7.6b: Open Source perst apI Source Code Examples1

www.newnespress.com

318 Chapter 7

called transactions. In order to manage transactions, a transaction manager resides within
the system to support:
1. Scheduling, which manages multiple concurrent, independent transactional database

system tasks. Depending on the database system, an underlying operating system and/or
virtual machine’s scheduler is utilized or an independent scheduler may be implemented

Figure 7.7: General Database System Model

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 319

by the database system’s designers themselves. Scheduling within a Java virtual machine
(JVM), utilized by the open source Java-based Perst example used in the chapter, was
discussed further in Chapter 6.

2. Logging and Recovery, which is responsible for insuring that the database can be
recovered from mid-transactional failures via utilizing logs kept on the transactions
and being able to rollback to a non-corrupted version of the database system.

For database systems based on (or implementing) SQL, the query coming into the database
system is first received and translated by some type of query compiler. This query compiler
is responsible for translating DML (data-manipulation language) and/or Data Definition
Language (DDL) incoming queries for processing. After translation, the query compiler
transmits the result, commonly referred to as the query plan, to the execution engine for
further processing. Some sample code translating JSQL in Perst is shown in Figure 7.8a.

Upon receiving the query plan from the query compiler, the execution engine actually
processes the actions within the plan to manage the data request. The execution engine
communicates and transmits requests to a resource manager that manages the indices, records,
files, and/or objects (depending on the database design) relative to the data being processed.
In the case of the open source Java-based Perst example used in the chapter, the Java virtual
machine’s execution engine is mainly utilized and is discussed further in Chapter 6.

Figure 7.8a: Open Source perst Query translation Source Code Example1

www.newnespress.com

320 Chapter 7

Figure 7.8a continued: Open Source perst Query translation Source Code Example

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 321

7.5.1 Resource Manager

A resource manager is responsible for keeping track of the data within the data structures of
the database, to allow for efficient retrieval of data from storage via the buffer and storage
manager. Relative to the buffer and storage management (introduced in the next section),
while some database designs will utilize their own scheme for managing data directly on

Figure 7.8a continued: Open Source perst Query translation Source Code Example

www.newnespress.com

322 Chapter 7

the hardware, in other database systems the storage and buffer manager is actually the file
system residing on the embedded device, and it is the file system APIs that are utilized by the
overlying database system layers.

This is important because, for example, a relational database that utilizes an underlying file
system will do so by mapping its internal records into files sequentially or some other method
such as some indexing or hashing approach. In this case, how this type of database manages
its records within these files given the underlying hardware, and the file internal design
system itself, will impact how the database performs. Specifically, it is relative to overhead,
meaning computing how much additional compile and runtime memory is required for the
particular scheme to execute efficiently, as well as how much time it takes to locate and
access these records – then add, delete, or modify data within.

There are several indexing and hashing algorithms that can be implemented into a database
design to insure efficiency and avoid overhead when searching for data. Indexing schemes
involve traversing some type of index ‘structure’ to insert, delete, and modify data. Hashing
schemes involve the use of a function to calculate the data’s address in memory directly.

In general, indexing schemes are based upon individual indices being assigned to data –
records and/or objects depending on the type of database (relational, object-oriented, object-
relational hybrid, for example). The indices are essentially the fundamental components used
within indexing resource management schemes to organize and track data. For example, a
B+-tree index is a multilevel index in the form of a tree that is made up of different types
of nodes, specifically some combination of root, non-leaf, and leaf nodes. As shown in
Figure 7.8b, a B+-tree node is typically made up of key values (K1, K2, … Kn-1) and pointers
(P1, P2, … Pn). Key values within a node are the one or more sorted attributes used to search
for another node within the B+-tree or the data itself. Non-leaf node pointers are references
to the child nodes with the relative search key values less than (on the left branch) or greater
than (on the right branch). The number of pointers within a ‘non-leaf’ node are between
‘n/2’ and ‘n’, thus having between ‘n/2’ and ‘n’ number of child nodes. Except for the last
pointer within a leaf node (Pn), leaf node pointers P1 …Pn-1 reference the data with the relative
search key value. The last pointer (Pn) within a leaf node is used to link to another leaf node.

Figure 7.8b: B+-tree high Level Diagram

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 323

So, traversing a B+-tree for a particular query retrieving all data with the search key value
‘x’, for example, requires traversing the tree from the root to the desired leaf node. This
means starting at the root node of the tree and comparing to search keys K1, K2, … Kn to
search key ‘x’. The closest root node search key value that is greater than ‘x’ is whose
pointer is used to traverse to the next level of the tree. This means, if K2 < ‘x’ < K3, than it is
the non-leaf node the pointer P3 is pointing to that is traversed to. Within the non-leaf nodes,
the comparison of ‘x’ to search key values within the node continues until arriving at a leaf
node that contains the desired search key values.

Figure 7.8c: Open Source perst B-tree Source Code Example1

www.newnespress.com

324 Chapter 7

Figure 7.8c continued: Open Source perst B-tree Source Code Example

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 325

The Perst open source example, shown in Figure 7.8c, is based on a multilevel indexing-based
B-tree implementation and a partial snapshot of the Perst B+-tree traversing scheme is shown
below.

7.5.2 Buffer and Storage Management

Storage and buffer management is the liaison to underlying system software and manages
retrieval and transmission of data to and from the user and the supported storage mediums,
including RAM and whatever non-volatile memory is supported by the database. This means
it is responsible for managing the requests and the allocation of buffer space in volatile and
non-volatile memory. Because access to non-volatile memory is typically much slower than
accessing data in volatile memory, the storage and buffer manager for a particular database is
based on a scheme that attempts to minimize the number of accesses to non-volatile memory.
However, because there is only a limited amount of ‘faster’ volatile memory available to the
database, some type of data swapping and replacement scheme must be implemented. The
most common types of data swapping and replacement schemes implemented in different
database designs are similar to schemes used in underlying operating systems, such as:

•	 Optimal, utilizes a future reference time to swap out data that won’t be used in the near
future

•	 Least recently used (LRU), data that are used the least recently are swapped out
•	 FIFO (first in, first out), swaps out data that are the oldest, regardless of how often those

data are accessed by the database. FIFO is a simpler algorithm than LRU, but typcially is
much less efficient

•	 Not recently used (NRU), data that are not used within a certain time period are swapped out
•	 Second chance, a more-complex FIFO scheme that uses a reference bit that sets to ‘1’

when data access occurs. So, if this bit is ‘0’, then associated data are swapped out.

The storage and buffer manager is also what is responsible for managing data integrity within
the database, in the cases of synchronizing more than one application/user that must access
the database concurrently or recovering system problems, for example. Therefore, some type
of scheme that manages the blocking and unblocking of data writes, as well as the write-
through of data from volatile memory (i.e., cache, DRAM, etc.) to non-volatile memory (i.e.,
Flash, Hard Disk, etc.), falls under this database subsystem.

7.6 Utilizing Embedded Databases in real-world Designs and the
application Layer

Embedded targets constrained by limited memory and processing power typically shy away
from the use of a database system to manage data. So, the key is investigating how well the
embedded database solution integrates the overlying applications and data management code

www.newnespress.com

326 Chapter 7

to allow for better performance, including decreasing the amount of required memory and
CPU cycles to process and manage data. When an embedded device can support the costs
of introducing a faster master CPU, more memory, and so on, then utilizing an embedded
database within the architecture is feasible.

In general, utilizing a database over other types of methods to manage data on an embedded
device boils down to the desire for:

•	 increasing	reliability
•	 improved	data	management	efficiency
•	 insuring	data	integrity
•	 higher	availability	and	operational	continuity
•	 scalability
•	 predictability	and	determinism	for	real-time	requirements
•	 decreasing	overlying	application	development	time.

Because the most time-consuming processing relative to a database involves the management
of data relative to the non-volatile storage device (be it Flash, Hard Disk, etc.) it is important
to understand the importance of having enough cache or even volatile main memory on
the target if the team selects an IMDS (in-memory database system) to allow for better
performance when managing data, for example. It is also important to understand the database
write-through scheme that insures all changes made in volatile memory are saved properly
to the non-volatile storage device in the cases of a system failure and power disruptions. This
means understanding a particular database system’s scheme for managing redundant data as
well as managing the transactions and logging that allows for the ability to insure consistent
data and even recover data if a problem occurs with the device.

As with other types of middleware, selecting which embedded database supports the system
requirements means insuring the database implementation supports the underlying platform.
Figure 7.9 shows a sample snapshot of a datasheet of a real-world embedded database, called
eXtremeDB. This datasheet outlines some underlying platform and development tool support
information, as well as the type of complex data types that can be supported by eXtremeDB.
In the case of the version of eXtremeDB referred to in Figure 7.9, the embedded operating
systems that this embedded database has been ported to support include various flavors of
vxWorks, Integrity, QNX, and Nucleus embedded OSs to name a few.

7.7 Summary

There are several different database design schemes that can be implemented in a particular
database system. In order to understand a database system design, determine which database
design is the right choice for an embedded device, as well as understand the impact of
a database on a particular device – it is important to first understand the fundamental

www.newnespress.com

An Introduction to the Fundamentals of Database Systems 327

components that make up a database system. These fundamentals, introduced in this chapter,
included what the purpose of a database is, elements that commonly make up a database, and
a real-world example of an object-oriented database system scheme implementing some of
these elements. The reader can then apply these fundamentals to analyzing database design
features, such as:

•	 available	API	operations
•	 maximum	amount	of	memory	that	is	needed	by	the	database	system
•	 performance
•	 support	of	specific	hardware,	operating	system,	or	underlying	middleware

in order to determine if the database system design is the right one for a particular system,
as well as the impact of the database system on the embedded device. This chapter has
introduced the basic concepts of database systems design.

Figure 7.9: MCObject extremeDB Datasheet3

www.newnespress.com

328 Chapter 7

The next section of this book will compare different types of middleware, including
discussing how to determine which middleware is the best-fit for particular requirements, as
well as the hardware and system software requirements when using particular middleware
components such as a database system implementation.

7.8 problems
1. What is the purpose of a database system?
2. All database systems can only manage files located on the embedded system the file

system resides on (True/False).
3. What does DBMS stand for? What is the difference between a database system and a

DBMS?
4. A database system can utilize a file system within its design (True/False).
5. Outline the four-step model to understanding a database system design.
6. A database system implemented in the system software layer can exist as:

A. Middleware that sits on top of the operating system layer
B. Middleware that sits on top of other middleware components, for example a Java-

based file system that resides on a Java Virtual Machine (JVM)
C. Middleware that has been tightly integrated and provided with a particular operating

system distribution
D. None of the above
E. All of the above.

7. One or more database systems can be implemented in an embedded system (True/False).
8. Name and describe three data modeling schemes.
9. A database system can manage files on the following hardware:

A. RAM
B. CD
C. Smart card
D. Only B and C
E. All of the above.

10. How does an application communicate with a database system?
11. A database system will never require other underlying middleware components

(True/False).
12. Draw and describe the layers of the General Database System Model.
13. Name and describe five examples of database system APIs.

7.9 End Notes
1 Perst API Guide, User’s Guide, and Open Source.
2 http://www.mcobject.com/standardedition.shtml#Shared%20Memory%20Databases
3 MCObject Datasheet, 2010.
4 ‘COTS Databases for Embedded Systems’ Steve Graves.

http://www.mcobject.com/standardedition.shtml%23Shared%2520Memory%2520Databases

329
Demystifying Embedded Systems Middleware. DOI: 10.1016/B978-0-7506-8455-2.00008-X

ChaptEr 8

Putting It All Together
Complex Messaging, Communication, and Security

Chapter points

•	 Identifies	the	main	types	of	complex	messaging,	communication,	and	security	middleware

•	 Defines	each	of	the	different	types	of	middleware

•	 Outlines	the	pros	and	cons	of	utilizing	one	model	over	another

As application requirements increase in complex, distributed embedded systems these
requirements usually impose additional software prerequisites in underlying layers to support
these desirable applications within the device itself. Overlaying complex networking and
communication middleware on top of core middleware is increasingly becoming a popular
approach in embedded systems design to support these additional requirements. There are
several different types of complex networking and communication middleware that build on
the core middleware discussed in the previous chapters. In general, the more complex type of
middleware that is introduced in this chapter falls under some combination of the following:

•	 Message-oriented	and	Distributed	Messaging,	i.e.,
•	 Message Queues
•	 Message-oriented Middleware (MOM)
•	 Java Messaging Service (JMS)
•	 Message Brokers
•	 Simple Object Access Protocol (SOAP)

•	 Distributed	Transaction,	i.e.,
•	 Remote Procedure Call (RPC)
•	 Remote Method Invocation (RMI)
•	 Distributed Component Object Model (DCOM)
•	 Distributed Computing Environment (DCE)

www.newnespress.com

330 Chapter 8

•	 Transaction	Processing	(TP),	i.e.,
•	 Java Beans (TP) Monitor

•	 Object	Request	Brokers,	i.e.,
•	 Common Object Request Broker Object (CORBA)
•	 Data Access Object (DAO) Frameworks

•	 Authentication	and	Security,	i.e.,
•	 Java Authentication and Authorization Support (JAAS)

•	 Integration	Brokers.

8.1 Message-oriented Middleware and Distributed transaction

Message-oriented middleware (MOM) is software that provides message passing capabilities
between overlying middleware and/or application software within an embedded system
(Figure 8.1). MOM is typically used when some type of point-to-point and/or autonomous
publish-subscribe messaging scheme is optimal. The APIs and functionality provided by
MOM software allow for simplifying the ability to design overlying software components,
because the APIs abstract out underlying networking protocol details and other underlying
system components for developers. For overlying middleware and application software that
adhere to the supplied APIs, this type of middleware is what allows for the interoperability of
the overlying software components that communicate via these messages.

When MOM software also provides message-passing capabilities between overlying software
of independent devices connected across a network, MOM middleware is further classified as
distributed messaging middleware. In this case, the APIs and functionality provided by this
type of more complex MOM software also aid in the portability of overlying middleware and
application software to other devices with vastly different underlying system software and
hardware components.

MOM middleware is typically based on some hybrid combination of client–server and the peer-
to-peer architecture model of message-passing communication. This means an MOM server

Figure 8.1: MOM Middleware high-level Diagram1

www.newnespress.com

Putting It All Together 331

has control in managing the MOM clients. MOM clients can pass messages peer-to-peer, not
requiring the centralized MOM server to manage and control all communication. Depending
on the implementation, MOM servers can manage MOM client messages either concurrently
(where more than one MOM client request can be handled in parallel) and/or iteratively (a.k.a.
one-at-a-time). How MOM servers and clients manage communication is ultimately dependent
on whether the messaging scheme is based upon a synchronous message-passing model, an
asynchronous message-passing model, or a model based upon some combination of both.

In general, synchronous message passing is based upon a request–response type of handshaking
scheme. This type of MOM communication requires that an MOM receiver exists in some form
at the time the MOM sender transmits a message, in order to eventually unblock the waiting
sender with a response message. For example, an MOM client that transmits a message to another
MOM client and/or MOM server will block waiting for some type of response message from
the receiver. The advantage of synchronous MOM messaging communication is that it is simpler
and straightforward. On the flip-side, if there are hard real-time scheduling requirements for the
device, it is risky to use MOM software that blocks the system waiting for a response message.

Disadvantages with an underlying synchronous scheme are highlighted in an embedded
device with requirements to support multiple, complex interactions and nested calls between
MOM senders and receivers. There is an increase in connection overhead in relation to
this scheme due to the system resources required to manage the sessions. If some type of
connection pool on an as-needed basis is not implemented, then managing these resources
becomes very expensive and limits to the number of connections allowed are introduced.

In an asynchronous message-passing scheme the transmitter can send a message at
will independent of the availability of the receiver. The receiver can process received
messages when available as well. This means it is a form of non-blocking, connectionless
communication in which the transmitter and/or receiver does not have to wait for the response
from the other to continue to perform other tasks.

Typically, MOMs transmit messages under some combination of a:

•	 broadcasting messaging scenario
•	 multicast messaging scheme
•	 message	queuing scheme.

Message-oriented and -distributed messaging middleware that is based on queuing, a.k.a.
message queuing middleware (MQM), implements message queues that can transmit, receive,
store, and forward messages (Figure 8.2). MQM is typically utilized within embedded devices
in which performance is a challenge, as well as within devices that do not have a constant
and/or stable networking access. Given the utilization of message queues, MQM addressed
handshaking and performance goals by allowing the embedded device to process messages
according to available system resources, as well as independent of the networking connections.

www.newnespress.com

332 Chapter 8

What differentiates MQMs are the types of queues supporting the messaging model, as well
as the specific attributes of these message queues. These attributes include everything from
size to naming convention to security access such as public versus private, permanent versus
temporary, journaled versus non-transactional (no back-up copies) to name a few.

While there are many types of message queue model schemes available, one of the most
common is based on some type of the FIFO (First In, First Out) queue model. Under FIFO,
a queue stores ready messages (messages ready to be processed). Messages are added to the
queue at the end of the queue, and are retrieved to be processed from the start of the queue.
In the FIFO queue, all messages are treated equally regardless of their importance or receiver
(Figure 8.3). Variations on an MQM based upon the FIFO queuing scheme include queues in
which messages in the queue are processed in the order in which the smaller-sized messages
are processed first, and/or messages are processed according to their importance (priority) in
the queue for example.

8.1.1 Building on MOM: Transactional Middleware and RPC

One of the most common types of distributed transaction middleware is the RPC (remote
procedure call). The RFC 5531 ‘RPC: Remote Procedure Call Protocol Specification
Version 2’5 is a common industry standard which defines an RPC model for implementation where
a thread of control logically winds through a caller and receiver task. As shown in Figure 8.4, RPC
middleware simply allows synchronous communication across remote systems, where the caller
on one embedded device can invoke a native language-based routine residing on a remote system
in a manner similar to invoking a local procedure. In general, RPC implements a scheme in which:

Figure 8.3: FIFO Queue3

Figure 8.2: Message Queues2

www.newnespress.com

Putting It All Together 333

•	 a	caller	first	sends	a	message	to	the	receiver	task	on	a	remote	system
•	 the	caller	blocks,	waiting	for	a	reply	message	from	the	remote	system
•	 after	the	reply	message	is	received	by	the	caller,	the	caller’s	execution	is	resumed.

RPC is built upon some type of underlying core networking middleware such as TCP and/or
UDP depending on the type of RPC scheme. RPC is also fundamentally overlying some type
of MOM foundation (see Figure 8.5). RPC also acts as a basis for other types of distributed
transaction middleware found within a variety of computer systems, such as Remote Method

Figure 8.4: rpC Synchronous Communication4

Figure 8.5: rpC-MOM Middleware high-level Diagram1

www.newnespress.com

334 Chapter 8

Invocation (a.k.a RMI; a variation of RPC but originating in the Java space), Distributed
Component Object Model (DCOM), and Distributed Computing Environment (DCE).

8.1.2 Building on RPC: Object Request Brokers

An Object Request Broker (ORB) provides a layer to allow for creating an individual overlying
middleware and/or application component that resides as multiple objects, on the same device
and/or across more than one device. ORBs are an approach to allow for software
interoperability, since they allow for integration within one individual application or
middleware component – even if the integrated software came from vastly different vendors with
different APIs. As shown in Figure 8.6a, an ORB acts as the foundation to the Common Object
Request Broker Architecture (CORBA), and is based on industry standards from the Object
Management Group (OMG).

A similar philosophy behind using ORBs lies behind the the popularity of using DAO (Data
Access Object) design patterns in embedded systems designs. DAO originated in the
Java space (Figure 8.6b), and has been used as a basis for DAO frameworks in real-world
designs for abstracting, encapsulating, and managing accesses to various heterogeneous
underlying resources in the form of objects.

An ORB handles any translation and transformation (marshalling) of data between
overlying heterogeneous objects to allow for this intercommunication. Each object
within the individual overlying component to an ORB integrates an ORB interface.
It is the ORB interface that allows the objects that make up the overlying application
and/or middleware software to communicate and provide remote invocation access to
functionality.

An overlying ORB object becomes accessible to other overlying ORB objects for remote
invocations over a network. Thus, depending on the implementation, an ORB is built upon
the Internet Inter-ORB Protocol (IIOP) and other underlying core networking middleware
for this support across networked devices. Also, depending on the ORB, more complex
middleware such as RPC components can also act as a foundation.

Figure 8.6a: COrBa high-level Diagram6

www.newnespress.com

Putting It All Together 335

When an ORB, such as within CORBA, manages the routing requests and responses
between a client and a distributed object, an IDL (Interface Description Language) is used to
describe the transmitted data. As defined by the OMG, IDL interface definitions are stored
in some type of interface repository that the ORB then utilizes for tracking and managing
communication with objects. The ORB then can also activate and deactivate objects by
request, and can provide the types of services such as those shown in Table 8.1.

8.2 authentication and Security Middleware

Authentication and security middleware is software that is used as a foundation for
implementing security schemes for overlying middleware and application software. This
type of middleware is required in the case of using RPC middleware, for example, in which
without some type of authentication and security middleware component, data are transported
in an insecure manner with the routine call.

In general, authentication and security middleware typically provides at the very least some
type of code security features. Middleware that helps to insure code security, validation, and
verification can be implemented within an embedded device independently, and/or can be
based upon core middleware components such as JVM or .NET components that with their
very implementation and their respective higher-level languages contain this type of support.

Figure 8.6b: J2EE DaO high-level Diagram7

www.newnespress.com

336 Chapter 8

This can include everything from insuring valid type operations are performed, i.e., array
bounds checking, type checks and conversions, to checking for stack integrity (i.e., overflow)
and memory safety. For example, an embedded JVM and associated byte processing scheme
will include support class loading verification and security, as well as garbage collection and
memory management.

When it then comes to securing the actual data managed within an embedded device,
cryptography algorithms are one of the most reliable implementations for insuring security
via a middleware layer. Cryptography schemes utilize some combination of encryption keys,
obfuscator tools, digital signatures, and/or certificates to name a few. This allows the sender
to perform some type of encryption on the data before transmission, to help insure that ‘only’
the ‘intended’ receiver can decrypt the data. Again, here core middleware with an embedded
JVM implementation for example can be used as a foundation to include some set of Java-
based APIs for cryptography support for:

•	 algorithms	such	as	AES,	DSA,	DES,	SHA,	PKCS#5,	and	RC4	to	name	a	few
•	 asymmetric	vs.	symmetric	ciphers
•	 digital	signatures

table 8.1: Examples of COrBa Services

OrB Service type Description

Concurrency control Managing data locks in support of multitasking environment

Event Objects specify what notifications for events are of interest

Externalization Manages data transmission and translation between ORB objects and
some format of a data stream

Licensing Manages objects that require active licenses for usage from a vendor

Live cycle Definitions for creation, deletion, copying, and moving objects

Naming Searching for objects by name

Persistence Storage/retrieval of ORB data from non-volatile memory via a file system
and/or database

Properties Manages ORB object description details

Query Manages database queries for ORB objects

Transaction Manages transactions and insuring data integrity

Security Managing authentication and authorization issues relative to data and
ORB objects

www.newnespress.com

Putting It All Together 337

•	 key	generators	and	factories
•	 message	authentication	codes
•	 message	digests.

Access control is policy-based and provides support to insure only code that is allowed to
execute on the embedded device is permitted. In this case, specific policies associated with a
particular overlying software component are used to check and to enforce the access control
scheme to provide protection. Evidence-based CAS (Code Access Security) enforces the check
on code for everything from its origin to searching for ‘dangerous’ code within the software
before permitting execution on the device. Again, if utilizing an embedded JVM scheme, then
this can be built upon the pre-existing class loading implementation within the JVM.

Finally, authentication and authorization middleware simply provides functionality to
determine whether an overlying component is what it claims to be. For example, this can
include a scheme for verifying logins and passwords. After authentication, results are passed
on to an authorization scheme that actually executes what is necessary to allow access to the
device’s resources.

8.3 Integration Brokers

The implementation of an integration broker in an embedded system is typically due to the
necessity of integrating vastly different types of overlying middleware and/or applications
that must be able to process each other’s data. This overlying software can reside within the
same device, or across networks within other devices. Figure 8.7 shows an example of such
an ecosystem. Integration brokers allow applications and other middleware to exchange
different formats of data, by managing the translation and transmission of these data.
This means overlying software is not required to concern itself with any communication
requirements of the software receiving the data. To achieve this, integration brokers provide
some set of functionality that supports:

•	 Auditing	and	Monitoring
•	 Connectivity
•	 Policy	Management
•	 Scalability
•	 Security	and	Authentication
•	 Stability
•	 Transactional	Integrity
•	 Workflow	Management.

Integration brokers inherently support an interoperability interface and communication
scheme that is an alternative to point-to-point with a design in which point-to-point
communication would result in too many connections to be managed and maintained

www.newnespress.com

338 Chapter 8

efficiently. This means the number of connections would decrease when overlying software
utilizes the broker for intercommunication. In this case, dependencies between overlying
software that communicate via the broker are non-existent, leaving only the dependency
of this overlying middleware/application on the definition of the integration broker’s
interoperability interface.

An integration broker is fundamentally built upon other types of middleware, such as ORBs,
RPC, TP monitors, or MOM. Understanding what an integration broker’s middleware foundation
is is important because, for instance, an MOM-based implementation will require overlying
software that use the broker to communicate via messages. An integration broker based on some
type of MOM implementation (via an integrated message broker) could then also include support
for functionality ranging from message routing to message queuing and translation, whereas an
RPC and/or ORB-type of RMI base requires overlying applications and/or middleware to trigger
communication via procedure (RPC)/method (RMI) calls made, for example.

An integration broker is not only made up of some type of underlying communication broker,
be it an MOM, RPC, and so on. At the highest level, as shown in Figure 8.8, an integration
broker is also composed of components that handle the event listening and generation that
resides upon some type of core networking middleware. For example, an integration broker’s
‘TCP listener’ component that utilizes underlying TCP sockets, whereas a ‘file listener’
component utilizes an underlying file system. An integration broker’s transformer component
handles any translation of data required as these data pass through the broker on their way

Figure 8.7: Example of Integration Broker Ecosystem8

www.newnespress.com

Putting It All Together 339

to the destination. This for example would include an ‘FTP adaptor’ subcomponent that
supports FTP or an ‘HTTP adaptor’ subcomponent that supports HTTP.

8.4 Summary

For embedded devices that have enough memory and processing power, overlaying
complex networking and communication middleware on top of core middleware is
increasingly becoming a popular approach in embedded systems design to support additional
requirements. What was introduced in this chapter included:

•	 Message-oriented	and	-distributed	Messaging	Middleware
•	 Distributed	Transaction	and	Transaction	Processing	Middleware
•	 Object	Request	Brokers
•	 Authentication	and	Security	Middleware
•	 Integration	Brokers.

This chapter pulled it all together for the reader relative to demystifying these types of complex
networking and communication middleware, and how they build upon the core middleware
discussed in the previous chapters. The next and final chapter of this book concludes with a
holistic view of demystifying designing an embedded system with middleware.

8.5 problems

 1. What are the three types of complex messaging and communication middleware?
 2. RPC middleware is based upon MOM (True/False).

Figure 8.8: high-level Integration Broker Diagram9

www.newnespress.com

340 Chapter 8

 3. What do MOM and MQM stand for? What is the difference between MOM and MQM?
 4. RPC is based upon an asynchronous communication model (True/False).
 5. Outline the main components that make up an integration broker.
 6. RPC does not require underlying core networking in an embedded system (True/False).
 7. What is cryptography?
 8. What is the difference between authentication and authorization?
 9. An integration broker cannot be based upon a message broker (True/False).
10. What does FIFO stand for? How is it used in MOM middleware?

8.6 End Notes
1 ‘Sun Java System Message Queue 4.1 Technical Overview’. http://docs.sun.com/app/docs/doc/819-7759/

aeraq?a=view
2 Embedded Systems Architecture, Noergaard, 2005. Elsevier.
3 http://www.opalsoft.net/qos/DS-22.htm
4 ‘Middleware for Communications’. Qusay Mahmoud. P. 2.
5 RFC 5531. http://tools.ietf.org/html/rfc5531
6 ‘Distributed Computing’. Oliver Mueller.
7 ‘Java/J2EE Job Interview Companion’. K. Arulkumaran & A. Sivayini.
8 http://www.s-integrator.org/
9 ‘Business Services Orchestration: the hypertier of information technology’. Sadiq & Racca. P. 264.

http://docs.sun.com/app/docs/doc/819-7759/aeraq%3Fa=view
http://docs.sun.com/app/docs/doc/819-7759/aeraq%3Fa=view
http://www.opalsoft.net/qos/DS-22.htm
http://tools.ietf.org/html/rfc5531
http://www.s-integrator.org/
http://www.s-integrator.org/

341
Demystifying Embedded Systems Middleware. DOI: 10.1016/B978-0-7506-8455-2.00009-1

ChaptEr 9

The Holistic View to
Demystifying Middleware

Chapter points

•	 Putting	it	all	together	with	the	holistic	approach	of	demystifying	middleware

•	 Outline	the	importance	of	more	then	just	middleware	technology	to	insure	success

•	 About	selecting	the	‘best-fit’	middleware	software	for	the	design

This book has taken the holistic systems approach to demystifying building an embedded
system with middleware components. The reason for the approach used in this book
corresponds to why systems engineering has been going strong for over 50 years. Because
one of the most powerful methods of insuring the success of a software engineering team is
to accept and address the reality that the successful engineering of a product with the added
complexity of middleware software will be impacted by more than the pure middleware
technology alone.

As introduced in Chapter 1, successfully completing complex embedded designs, such as one
that incorporates middleware software within schedule and costs, means having the wisdom
to recognize that it takes Rule #1 – more than technology. For better or worse, successfully
building an embedded system with middleware requires more than just the technology alone.
It means understanding and planning for both the technical as well as the non-technical
aspects of the project, be they social, political, legal, and/or financial influences in nature.
Developers that recognize this from day one are most likely to reach production, within
deadlines, costs, as well as with the least amount of stress. The key is for the team to identify,
understand, and engage these different project influences from the start and throughout the
life cycle of the project.

Next requires Rule #2 – discipline in following development processes and best practices.
There are various best practices team members need to adhere to in order to avoid costly
mistakes. These best practices can include everything from following programming language-
specific guidelines to doing code inspections to having a hardcore testing strategy, for

www.newnespress.com

342 Chapter 9

example. These best practices can be incorporated into any development team’s agreed-upon
process model. Team members not following healthy, disciplined processes and development
practices are one of the most costly mistakes made in complex embedded systems projects
that incorporate middleware software. So, the key questions to start asking are – does the
team follow a common software development process and how well is it really working for
the project? Simply put, if the team is not delivering high-quality code, within budget and on
time – something is wrong!

In the industry, there are several different process models used today, under various ‘names’.
Newer software process schemes and improvements to current process models are also being
introduced constantly. In general, most of the approaches used in embedded design teams are
typically based upon one or some hybrid combination of the following schemes:

•	 Big-bang, designing with essentially no planning or processes in place before and during
the development of a system.

•	 Code-and-fix, in which product requirements are defined but no formal processes are in
place before the start of development.

•	 XP (extreme programming) and TDD (test driven development), development driven by
re-engineering and ad-hoc testing of code over and over until the team gets it right, or the
project runs out of money and/or time.

•	 Waterfall, where the process for developing a system occurs in steps, and where results
of one step flow into the next step.

•	 Hybrid Spiral, in which the system is developed in steps, and throughout the various
steps feedback is obtained and incorporated back into the process.

•	 Hybrid Iterative Models, such as RUP (Rational Unified Process), which is a
framework that allows for adapting different processes for different stages of project.

•	 Scrum, another framework for adapting different processes for different stages of project,
as well as team members with various roles. Incorporates shorter-term, more stringent
deadlines and continuous communication between team members.

So, how can a team objectively evaluate how well a software development process model
is working for them? Start by doing practical and efficient assessments by first outlining
the software development goals the team wishes to achieve. Then, document what
challenges team members are facing, as well as what existing processes team members are
following. This means objectively investigating and documenting in some fashion software
development:

•	 one-shot	as	well	as	reoccurring	activities
•	 functional	roles	of	team	members	at	various	stages	of	a	project
•	 measuring	and	metering	software	development	efforts	that	capture	objective	snapshots	of	

what is working versus what is crippling development efforts
•	 project	management,	release	management,	and	configuration	management	efforts

www.newnespress.com

The Holistic View to Demystifying Middleware 343

•	 testing	and	verification	efforts
•	 infrastructure	and	training	used	to	get	programmers	up	and	running.

Then, follow through with defining improvements to these existing processes that all
developers on the team must adhere to. This means looking into the different possibilities
of what the development team is ready to implement, in terms of more disciplined, tougher
measures relative to software development efforts. There are standard industry approaches,
such as via CMMI (Capability Maturity Model Integration), that a team can use to introduce
improvements and increase discipline in order to save money, save time, as well as improve
the quality of the software.

In short, what is recommended is Rule #3 – teamwork. Get together with fellow team
members to discuss the various process models, and determine via consensus together what
is the best ‘fit’ for your particular team. This means there is not yet ‘one’ particular process
that has been invented that is the right approach for ‘all’ teams in the industry, or even ‘all’
projects for one particular team. In fact, most likely what works for the team is some hybrid
combination of a few models, and this model will need to be tuned according to the types of
team members and how they function best, the project’s goals, and system requirements.

Then all team members, from junior to the most senior technical members of the team, as
well as leadership, align together to come to an agreed consensus for a process model that
will achieve the business results (Rule #4 – alignment behind leadership). Each team
member then understands the big picture, the part each plays in it, and commits to the
discipline to follow through. If, along the way, it is discovered the process isn’t optimally
working as expected, team members get together again, openly and respectfully discuss
the challenges and frustrations together in a constructive manner, then immediately tune
and adjust the process, with team members each doing their part to improve software
development efforts. Finally, do not forget Rule #5 – strong ethics and integrity among
each and every team member, to continue moving forward as agreed upon together towards
success.

9.1 Does using Middleware in your Embedded System Design
actually ‘Make Sense’?

Software, by its inherent nature, is what makes any embedded system ‘configurable’,
‘portable’, and so on. This could mean swapping in an embedded Linux operating system
versus vxWorks, interchanging device drivers in the BSP – as well as adding more
middleware, whether it is some sort of home-grown C++ framework, a J2ME JVM, .NET
Compact Framework, or using a database instead of the file system alone, for example. So, it
is critical to have the wisdom to remember not to let one particular middleware component
get in the way of the success of the ‘whole’ software design by buying into any ‘ultimate and

www.newnespress.com

344 Chapter 9

only one solution’ illusions being sold by anyone about any particular type of middleware. In
short, one of the main keys to success in taking an embedded system to production is by not
overcomplicating the design!

Remember, the ultimate goal is not to build a particular ‘.NETCE’ or a ‘DAO’ embedded
device. This is because including particular middleware components, in themselves, does
not insure scalability, reliability, configurability, profitability and more importantly will
not insure success. The key to understanding what is out there and if/when the reader
should use it in an embedded design is to keep in mind the purpose of that middleware to
begin with – and whether using it actually makes sense given the project scope, technology
limitations, schedule, costs, and available resources. So, when determining whether to design
middleware into the architecture of an embedded system, there are a few basic guidelines
shown in Table 9.1.

Whether you are straight out of school or have been in the industry for the last 10–15+ years
or so, it is imperative to ask the right questions for ‘yourself’. So, always do your research,
never be afraid to ask the hard questions out loud with team members, and then make up your
own mind about what answers are discovered. Never be afraid to use your ‘own two eyes’ to
help the team determine better ways to design the software in order to help insure the success
of your team and organization. Remember, using a particular middleware solution is simply
a means to an end – and could be a very good one under the right circumstances. However, if
one approach in the engineering creative process does not work, do not hesitate to investigate
another as soon as possible to insure a win–win!

9.2 Buy an Off-the-shelf Middleware Solution or Do-it-yourself?

When determining whether the team should do-it-yourselves versus buying commercial, it
requires asking:

1. What are the risks to creating the middleware component ourselves in-house versus
purchasing from a vendor?

2. What are the costs to creating the middleware component ourselves in-house versus
purchasing from a vendor?

3. What are the tradeoffs to creating the middleware component ourselves in-house versus
purchasing from a vendor?

4. Does the team have the expertise in-house, money, time, and resources to create and
support this middleware component?

5. Is there a commercially available version of this middleware component? If so, why can it
not be used in the design?

When investigating off-the-shelf embedded middleware solutions, one of the most commonly
effective ways of selecting between commercially available components is to build a matrix

www.newnespress.com

The Holistic View to Demystifying Middleware 345

table 9.1: Guidelines to asking the right Questions

What to think about

When is using middleware
probably not a good idea?

If rather than simplifying the architecture and development of the device,
the middleware is more complicated than the actual requirements of the
device itself – and would actually introduce a greater degree of cost, time,
risk, and stress into the project and team, relative to the benefits

If the reader is constrained by the hardware in any way (i.e., it’s too slow,
not enough RAM, etc.). Basic rule of thumb in developing software for
more limited embedded hardware boards in terms of processing power
and memory is the less software, fewer abstraction layers, etc. the better

When the project team is mainly made up of non-experienced and/or
non-embedded programmers who do not comprehend the importance
of understanding the difference between developing software for an
embedded target with more limited processing power and RAM (for
example) versus developing code for a PC that has GHz of processing
power and gigabytes memory

When might it be a good idea
to replace a current middleware
design and investigate a new
middleware approach?

Hardware support is there, but the project is made up of a bunch of people
who have been trying to rewrite middleware code several times over an
extended period and who still cannot get it to work stably enough to ship
on the embedded hardware

Better technology has emerged on the market

New or changes to project requirements that render decisions relative to
the original middleware design irrelevant

When could a current
middleware solution be too
risky to support?

If the middleware does not work reliably after years and years of
re-engineering, and there is no interest or effort in rethinking,
improvement, or change in how things are done

The middleware is not capable of doing what was promised/intended, and
is being kept hidden as the project deadlines are continuously delayed

Substandard products are delivered to the confusion and anger of
application developers, customers, upper management, and so on, which
essentially renders it an actual liability risk within the design

When there are expensive project cost overruns, the loss of highly-qualified
team members leaving stressful team environment, and/or huge software
liability risks introduced to the whole organization if the product is
deployed

Counter-productive agendas on the project have hijacked the middleware
design, and will not allow for any discussions, questions, are selfish and/or
bullying with their own ideas to the exclusion and detriment of the rest of
the design and team

If the middleware is being bypassed and/or not being used for the
purposes of how it was intended by other developers, i.e., for portability,
performance, stability, etc.

(continued)

www.newnespress.com

346 Chapter 9

(see Table 9.2) of required features for each component. The matrix is then filled with the
vendor’s product information that fulfills the particular requirements. When considering
a third-party commercial solution for a particular middleware component, the types of
questions to be asked (that should be addressed in the matrices) include:

•	 What	is	the	vendor’s	reputation?	When	can	the	vendor	deliver	what	you	need?	Has	
the product ever been deployed in another commercially available embedded system
successfully?

•	 What	will	it	cost	to	use	this	middleware	component?	What	is	the	cost	of	technical	support	
from this vendor? Can you buy the source code or is it object code only?

What to think about

When would using a particular
middleware solution in an
embedded design make sense?

Hardware and underlying system software will support it, or can be
modified to support it

Required according to some industry standard, customer requirements,
etc.

Skilled, support team resources to implement the design are there

If it helps insure the success of the project by helping simplify designing the
device

Allows for the dynamic configurability, portability, maintainability, etc. of
the device to make maintaining software for different product variations
better

table 9.1: Guidelines to asking the right Questions (Continued)

table 9.2: Example of Matrix

requirement
1

requirement
2

requirement
3

requirement
‘…’

requirement
‘N’

Middleware
Product ‘Vendor
A’

NO NOT YET
(in 6 months)

YES
(Features …)

… …

Middleware
Product ‘Vendor
B’

YES
(Features …)

NO NOT YET
(in 3 months)

… …

Middleware
Product ‘Vendor
C’

NOT YET
(Next Year)

YES
(Features …)

YES
(Features …)

… …

Middleware
Product ‘Vendor
…’

…. …. … … …

www.newnespress.com

The Holistic View to Demystifying Middleware 347

•	 How	is	this	middleware	software	product	tested?	How	reliable	is	the	vendor’s	software	
in real-world stress conditions? Can you get some type of test plan and report to review?
Can you re-run the vendor’s tests for verification on your system before your own
product deploys?

•	 What	are	the	specific	requirements	for	the	vendor’s	middleware	component	in	terms	
of underlying hardware and software? How compatible is this vendor’s middleware
product with your hardware, programming language(s), tools, etc.? Will it require special
debugging tools?

•	 Have	you	actually	seen	this	middleware	component	running	in	a	real	system	and	on	real	
hardware? Or have you just seen the sales pitch and some sexy marketing ‘documentation’?

In short, target the off-the-shelf middleware component that has been stably ported and
supporting the hardware and underlying software. Make sure developers can design and
debug with this third-party commercial middleware component, because without the proper
tool support it will be a nightmare for the team. Finally, if considering more than one off-
the-shelf component, then create more than one matrix representing these different vendors’
components that can then be cross-referenced, and distributed among team members for
review. This helps to insure that all requirements have been addressed, and are ultimately met.

9.2.1 More on Keys to Success with Developing ‘Do-it-yourself ’ Middleware
Software…

Once again – do not overcomplicate the design! In other words, start with a skeleton for the
middleware solution, and then hang code off of this skeleton within different phases of the
project. This approach allows for the sacrificing of less essential features in the first (and any
future) release, allowing for the team to ship a high-quality middleware software solution
within the embedded system, on time.

Partitioning the middleware design can be done in many ways including keeping function
sizes within a certain number of LOC (lines of code), by features, top-down decomposition,
via underlying software (such as action via tasks/threads with an operating system), and/or
utilizing additional underlying hardware. Partitioning the middleware solution into smaller
modules with fewer dependencies between modules results in:

•	 an	increased	likelihood	that	the	finished	middleware	design	will	meet	requirements
•	 middleware	will	be	completed	within	time	and	budget
•	 application	developers	know	how	to	plan	around	a	solid	and	reliable	system	underlying	

middleware solution at every phase of the project
•	 fewer	complex	bugs	introduced	in	the	middleware	software	to	delay	release.

In short, less is more! Maintain control of the middleware design by closely managing the
requirements and features.

www.newnespress.com

348 Chapter 9

Next, do not underestimate the impact of the programming language(s) on the embedded
design. Carefully consider what programming language to implement the in-house embedded
middleware component in. This is because there is not yet one programming language that
is perfect for every embedded system. Objectively weigh the pros and cons of going with
programming language options. The real questions to ask include:

1. How mature and stable is the language specification, the compiler, debugger, and so on
for your particular target hardware? For example, going with a ‘native’ programming
language when implementing a particular middleware solution does mean losing the power
that comes associated with going object-oriented, such as encapsulation, modularity,
polymorphism, and inheritance to name a few. However, it will not matter how many C++
‘wicked-smart’ developers are on the team, if the C++ compiler available from the vendor
for the embedded target hardware is extremely unstable, immature, and/or buggy.

2. Is there a requirement to support a particular language or language standard? For
example, who needs to brush up on embedded Java to implement an MHP (multimedia
home platform)-compliant STB (set-top box).

3. How complex is the programming language to debug, test, and maintain in-house?

Bad, buggy code can be written in any language. So, once the programming language(s) has
been agreed upon by the team, then embedded developers need to follow the best practices
for that particular programming language. Meaning there are general best practices that are
independent of programming language, such as not using magic numbers hard-coded in
the source code, not manually editing automatically generated code, capturing/handling all
exceptions/errors, and initializing all defined variables for example.

Of course, the cheapest way to debug is to not insert any bugs in the first place. This means
slowing down and using best practice programming language techniques for that language.
Developers need to not be pressured to make rushed source code without investigating
properly, thinking about the changes (a lot), having time and the discipline to spec out in
writing the changes, and then doing it right. As shown with the examples in Table 9.3, it
is important to understand and follow the best practices that exist which are unique to that
particular programming language.

table 9.3: Examples of programming Language Best practices2

programming
Language

Example Best practice

C Functions Check that the parameters they are passed are workable

Calls provide easily identifiable points of checking the state of the
system allowing early detection of memory corruption or other
unexpected states

Return values from function calls are checked for expected values

www.newnespress.com

The Holistic View to Demystifying Middleware 349

programming
Language

Example Best practice

Rules Non-obvious code that relies on rules of precedence inherent in a
programming language is avoided

Expressions that mix operators from the set >, >=, <, <=, ==,
!=, with operators from the set <<, >>, ^, &, |, &&, || are fully
parenthesized and do not rely on inherent precedence rules

Switch statements Explicitly list all known cases and have default cases that warn of
unhandled cases

Conditional
statements

Explicitly stated in code that conforms to this standard

Non-Boolean values are not tested as Boolean values and Boolean
values are not tested as non-Boolean values

Value ranges are used when checking real number values to protect
against error introduced due to loss of precision

GOTO Goto statements are avoided because of difficulty in validating usage
and debugging

… …

C++ Global static
variables

Global static objects should be avoided

If used, an instantiator class which counts references to an object
should be implemented

Errors and
exceptions

Should be specified in the signature of the class method declaration
and definition

Create your own exception hierarchies reflecting the domain and
define relevant exception classes derived from the standard exception
class

Use ASSERT()’s or comparable debugging macros liberally to trap
potential programming errors

Validate all parameters passed to any public, protected, or even
private function

Handle all potentially invalid parameters or environmental conditions
in a graceful, consistent, and documented manner

… …

Java or C# Classes Do not make any instance or class variable public, make them private

Methods Methods should not have more than five arguments. If more than five,
use a structure to pass the data

… … …

table 9.3: Examples of programming Language Best practices Continued

www.newnespress.com

350 Chapter 9

Once the team is aligned on the middleware design, then do not skimp on the tools. One
of the most common mistakes middleware developers make is not using the appropriate
design and debug tools for implementing complex software solutions such as middleware
software within the embedded design. For instance, editors, compilers, linkers, and
debuggers are essential and non-negotiable, meaning it is impossible to do efficient
development without these tools. Another example for embedded middleware development
is developers who include software design patterns as an integral part of their toolbox for
object-oriented design and development. There are several, different types of software
design patterns that have been published with characteristics that are intended to address
different types of design requirements from the object-oriented point of view.

Specific characteristics of different software design patterns can be used by developers as
models for helping to determine possible design implementations that address their specific
requirements, such as additional encapsulation versus a need for greater flexibility to name a
few. In the case of flexibility, for instance, where underlying hardware, such as the underlying
storage medium, remains unchanged, then, for example, the ‘factory method’ software
design pattern may be a feasible approach. On the flip side, with requirements that include
supporting an underlying storage medium that will change, then, for example, embracing the
‘abstract factory’ software design pattern may be considered as an alternative.

As with any other model, remember not to blindly use any software design pattern within
an embedded systems middleware project. This means developers can start by questioning
why a particular pattern was used in a particular software component, and what were the
resulting pros and cons of the approach. For inherited source code, developers can start to
look for software design patterns within components to help with the reverse-engineering
process in understanding the code. Remember, a software design pattern elegantly and
brilliantly implemented for some type of Java Enterprise server-based system may
not be the best approach for a J2ME (Java 2 Micro Edition)-based embedded systems
solution or some C++ rework of that same design pattern. The software team needs to
also investigate and think through the type of system(s) a particular software design
pattern has successfully been implemented for (underlying hardware and system software
differences).

Additional examples of commonly used types of tools by embedded systems developers
are shown in Figure 9.1. In short, embedded developers need a solid software toolbox to
help insure success when building an embedded system that has the added complexity of
middleware components. So, this means asking key questions, such as:

•	 Will	the	tool	help	write	better	source	code,	faster?
•	 Who	is	actually	using	what	tool?
•	 Why	and	how	is	the	tool	being	used?

www.newnespress.com

The Holistic View to Demystifying Middleware 351

Figure 9.1: Examples of Development and Debugging tools3

www.newnespress.com

352 Chapter 9

9.2.2 Always Ask, Is the Code ‘Good Enough’? – Systems Integration, Testing and
Verification from Day 1

With the complexity that middleware adds to an embedded design, it is important to have
an integration, verification, and test strategy from day one, meaning, as soon as embedded
hardware is available with device drivers to bring up the board, developers not verifying and
even unit testing these available software components guarantees headaches later. Make the
quality of your source code visible along with feature feedback from the start, by executing a
disciplined test strategy as soon as you have any software that you plan to ship the board with
running on the system. Verify and test everything, including the prototype that would be used
as the final design’s foundation.

Plan the different types of testing from the start. It does not matter ‘how’, i.e., whether it’s
via individual responsible engineers that are assigned the role or with a formal test group –
as long as it gets done. This includes everything from unit testing to integration testing to
regression testing to stress and acceptance testing. This also includes planning for not only
test-to-pass scenarios, but more importantly the test-to-fail scenarios. Figure out what the
limits of the design are, to insure that the end system deployed can be expected to function
even under unexpected stress conditions in the field. This allows the team to determine early
on if the hardware is faulty or the foundational source code is buggy. Fix the hardware and/
or source code defects as they are found, and do not defer. Having an unstable system with
unreliable hardware and/or bad code is worse than having ‘no’ system. Track defects and
measure their rate in specific components as they are found. This is in order to monitor these
defects, and insure that highly problematic components are replaced or rewritten – since they
become more expensive to debug than to replace.

A common mistake within embedded design teams is not code inspecting and/or testing
proactively and adequately. It does not matter if this software is home-grown or a BSP,
operating system, and/or networking middleware from an external vendor, for example. Do
not assume that because a particular off-the-shelf software component has come from an
expensive external vendor, it is bug-free and production-ready. More importantly, do not
assume that any software that comes out of the box is tuned to your own embedded system’s
requirements until team members see it running and have verified it with their own eyes. In
fact, many embedded software vendors deliver their software components with additional
configuration files that are accessible to their customers, because the expectation is that their
customers will tune their software to meet the requirements of their particular embedded
device.

To be the most effective, code inspections should be incorporated into the test strategy from
the start, and these code inspections need to do more than look for ‘pretty’ code. Insure
language ‘best practices’ have been followed for particular language and actually look for

www.newnespress.com

The Holistic View to Demystifying Middleware 353

bugs. It is cheaper and faster to do stringent code inspections before testing, and as soon
as source code compiles.1 A team’s code inspection process should include some type
of checklist (see Table 9.4) of what is being checked for and where the results are being
documented.

Insure that the right ‘type’ of team members are doing the actual code inspections in order to
be the most effective and most efficient. For example, insuring developers with knowledge

table 9.4: Example of Code Inspection Checklist for ‘C’ Source

parameter/Func-
tion Name

Number of
Errors

Error type

Major Minor

Code does not meet firmware standards

Header Block

Naming Consistency

Comments

Code Layout and Elements

Recommended Coding Practices

Auto-generated code not manually edited

Don’t use magic numbers hard coded in the source
code, i.e., place constant numerical values directly
into the source

Avoid using global variables

Initialize all defined variables

Function size and complexity unreasonable

Unclear expression of ideas in the code

Poor encapsulation

Data types do not match

Poor logic – won’t function as needed

Exceptions and error conditions not caught
(e.g., return codes from malloc())?

Switch statement without a default case (if only a
subset of the possible conditions used)?

Incorrect syntax – such as proper use of ==, =, &&,
&, etc.

Non-reentrant code in dangerous places

… … … Other …

www.newnespress.com

354 Chapter 9

and understanding of the ‘hardware’ or even the actual hardware engineers to code inspect
device drivers that manage various hardware components on the target. In general, an
effective code inspection team targets including team members that support the following
type roles:2

1. Moderator, who is responsible for managing the code inspection process and meeting(s)
2. Reader (not the developer that created the source code being inspected), reads out loud

the source code and relative specifications for the operational investigation
3. Recorder, fills in code inspection checklist report, and documents any agreed-upon open

items
4. Author (the developer of the source code being inspected), helps explain source to code

inspection team, to discuss errors found, and future rework that needs to be done.

9.3 Conclusion – See the pattern Yet?

It is powerful for the team to start with getting the full systems picture via defining the high-
level architectural profile of the embedded system from the top at the application layer and
then work your way down. This is why, for instance, application examples were presented in
previous middleware chapters – because the middleware selected needs to fulfill the needs of
your system’s applications. So, at the application layer, start with describing the applications,
how they will function within the system, interrelationships, and external interfaces.
Then, from the application layer outline what underlying system software and hardware
functionality these applications would explicitly and implicitly require.

Today in the embedded market, there is not ‘one’ middleware solution that supports all
requirements for all systems. Furthermore, many complex embedded designs will require
more than one middleware component to meet various middleware requirements. Thus,
developers must investigate how individual middleware software will be successfully
integrated in order to insure compatibility during the system’s operation. Basically weigh the
pros and cons of utilizing a completely integrated middleware stack from various vendors that
could result in a successful system implementation against what risk is introduced, additional
costs, and potential schedule risk. Compare this to implementing and integrating various
components of the complete stack independently by the team.

For example, larger embedded operating system vendors (such as WindRiver) typically
supply integrated middleware packages with different components that support their
respective embedded OS over various hardware solutions. There are also companies that
supply various middleware packages with integrated core and/or more complex middleware
components that can be ported by customers.

Remember, the idea is to keep things as simple as possible. So, make sure that you have a
solid understanding of core middleware components (Figure 9.2) and how to select between

www.newnespress.com

The Holistic View to Demystifying Middleware 355

these. For example, how to select between a using a file system versus a database within
the embedded design, to manage data? While, on one side, a database system may come
with functionality lacking in a file system the team must also investigate the underlying
requirements of a database versus a file system. If the hardware is not powerful enough to
support a more fully featured database system the best approach may be utilizing a file system
and insuring applications are written to meet specific data management requirements. A
database would be considered a better fit than just a file system for the design, for example,
if given the type of data being managed and how applications will utilize these data results
in data managed in a file system becoming:

•	 inconsistent, where data changes are not updated in all files properly
•	 insecure, managing access of multiple applications to specific files that application is

permitted to have access to

Figure 9.2: General types of Middleware

www.newnespress.com

356 Chapter 9

•	 corruptible, managing the integrity of the data, especially relative to concurrency of data
access by multiple applications accessing the file simultaneously

•	 isolated, searching through files for particular data with a specific format
•	 redundant, where data are duplicated unnecessarily in more than one file.

Finally, take what you learn about different types of embedded middleware and incorporate
that into the ‘big picture’ of how to take an embedded system with this middleware to
production within costs and deadlines. This means, whether successfully designing a piece
of middleware software or building a more complex system with a particular middleware
component, accepting that to win requires more than just the middleware technology alone. In
short, put it all together:

•	 Demystify what you are trying to build from day one for all team members, i.e.,
programmers need to get comfortable with the hardware/schematics, hardware engineers
understand software requirements (especially those of the middleware components and
overlying layers that utilize them), and so on.

•	 Understand that design teams forced to work under unhealthy, stressful environments
will make serious mistakes!

•	 Accept that tired programmers and engineers will make serious mistakes!
•	 Schedule wisely by identifying clear goals and questioning all assumptions/estimates.
•	 Do not cheat on the processes and tools.
•	 Better quality solutions, designed faster can only happen with discipline and teamwork.
•	 A	testing	strategy	that	does not include extensive code inspections is costly.
•	 Releasing	inadequate and/or untested code on the embedded hardware is very risky!

9.4 End Notes
1 ‘A Boss’s Quick-Start to Firmware Engineering’. Jack Ganssle.
2 ‘A Guide to Code Inspections’. Jack Ganssle. Code Inspection Process, Wind River Services.
3 Embedded Systems Architecture, Noergaard, 2005. Elsevier.

357

appENDIX a

Abbreviations and Acronyms

A
A2A Application-to-Application
AC Alternating Current
ACK Acknowledge
ACL Access Control List
A/D Analog-to-Digital
ADC Analog-to-Digital Converter
ALU Arithmetic Logic Unit
AM Amplitude Modulation
AMI Application Messaging Interface
amp Ampere
ANSI American National Standards Institute
AOT Ahead-of-Time
API Application Programming Interface
APPC Advanced Program to Program Communication
ARIB-BML Association of Radio Industries and Business of Japan
AS Address Strobe
ASCII American Standard Code for Information Interchange
ASIC Application Specific Integrated Circuit
ASP Application Service Provider or Active Server Pages
ATM Asynchronous Transfer Mode, Automated Teller Machine
ATMI Application to Transaction Model Interface
ATSC Advanced Television Standards Committee
ATVEF Advanced Television Enhancement Forum

B
BDM Background Debug Mode
BER Bit Error Rate
BIOS Basic Input/Output System
BML Broadcast Markup Language

BMP Bean Managed Persistence
BOA Basic Object Adaptor
BOM Bill of Materials
bps Bits per Second
BSP Board Support Package
BSS ‘Block Started by Symbol’, ‘Block Storage Segment’, ‘Blank Storage Space’, ...
BTP Business Transaction Protocol

C
CAD Computer Aided Design
CAE Common Application Environment
CAN Controller Area Network
CAS Column Address Select
CASE Computer Aided Software Engineering
CBIC Cell-Based IC or Cell-Based ASIC
CBQ Class Based Queuing
CCF Common Connector Framework
CCI Common Client Interface
CCM Common CORBA Model
CDC Connected Device Configuration
CDN Content Delivery Network
CEA Consumer Electronics Association
CEN European Committee for Standardization
CGI Common Gateway Interface
CIDL Component Implementation Definition Language
CISC Complex Instruction Set Computer
CLDC Connected Limited Device Configuration
CLI Call Level Interface
CLR Common Language Runtime
CLS Common Language Specification
CMI Common Messaging Interface
CMOS Complementary Metal Oxide Silicon
CMP Container Managed Persistence
COFF Common Object File Format
COM Component Object Model
COPS Common Open Policy Service
CORBA Common Object Request Broker Architecture
CPI Container Provided Interface
CPLD Complex Programmable Logic Device
CPU Central Processing Unit

Abbreviations and Acronyms

358

CRT Cathode Ray Tube
CTG CICS Transaction Gateway
CTS Clear-to-Send

D
DAC Digital-to-Analog Converter
DAD Document Access Definition
DAG Data Address Generator
DASE Digital TV Applications Software Environment
DAVIC Digital Audio Visual Council
dB Decibel
DC Direct Current
D-Cache Data Cache
DCE Data Communications Equipment or Distributed Computing Environment
DCOM Distributed Component Object Model
DDL Data Definition Language
Demux Demultiplexor
DHCP Dynamic Host Configuration Protocol
DII Dynamic Invocation Interface
DIMM Dual Inline Memory Module
DIP Dual Inline Package
DLL Dynamic Link Library
DMA Direct Memory Access
DNS Domain Name Server, Domain Name System, Domain Name Service
DOM Document Object Model
DPRAM Dual Port RAM
DRAM Dynamic Random Access Memory
DRDA Distributed Relational Database Architecture
DSL Digital Subscriber Line
DSP Digital Signal Processor
DTD Data Type Definition
DTE Data Terminal Equipment
DTP Distributed Transaction Processing
DTVIA Digital Television Industrial Alliance of China
DVB Digital Video Broadcasting

E
ECI External Call Interface
EDA Electronic Design Automation

Abbreviations and Acronyms

359

EDF Earliest Deadline First
EDI Electronic Data Interchange
EDO RAM Extended Data Out Random Access Memory
EEMBC Embedded Microprocessor Benchmarking Consortium
EEPROM Electrically Erasable Programmable Read Only Memory
EIA Electronic Industries Alliance
ELF Extensible Linker Format
EMI Electromagnetic Interference
EPROM Erasable Programmable Read Only Memory
ESD Electrostatic Discharge
EU European Union

F
FAT File Allocation Table
FCFS First Come First Served
FDA Food and Drug Administration – USA
FDMA Frequency Division Multiple Access
FET Field Effect Transistor
FIFO First In First Out
FFS Flash File System
FM Frequency Modulation
FPGA Field Programmable Gate Array
FPU Floating Point Unit
FSM Finite State Machine
FTP File Transfer Protocol

G
GB Gigabyte
Gbit Gigabit
GCC GNU C Compiler
GDB GNU Debugger
GHz Gigahertz
GND Ground
GPS Global Positioning System
GUI Graphical User Interface

H
HAVi Home Audio/Video Interoperability
HDL Hardware Description Language
HL7 Health Level Seven

Abbreviations and Acronyms

360

HLDA Hold Acknowledge
HLL High-Level Language
HTML HyperText Markup Language
HTTP HyperText Transport Protocol
Hz Hertz

I
IC Integrated Circuit
I2C Inter Integrated Circuit Bus
I-Cache Instruction Cache
ICE In-Circuit Emulator
ICMP Internet Control Message Protocol
IDE Integrated Development Environment
IEC International Engineering Consortium
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
INT Interrupt
I/O Input/Output
IP Internet Protocol
IPC Interprocess Communication
IR Infrared
IRQ Interrupt ReQuest
ISA Instruction Set Architecture
ISA Bus Industry Standard Architecture Bus
ISO International Standards Organization
ISP In-System Programming
ISR Interrupt Service Routine
ISS Instruction Set Simulator
ITU International Telecommunication Union

J
JIT Just-In-Time
J2ME Java 2 MicroEdition
JTAG Joint Test Access Group
JVM Java Virtual Machine

K
kB Kilobyte
kbit Kilobit

Abbreviations and Acronyms

361

kbps Kilobits per second
kHz Kilohertz
KVM K Virtual Machine

L
LA Logic Analyzer
LAN Local Area Network
LCD Liquid Crystal Display
LED Light Emitting Diode
LIFO Last In First Out
LSb Least Significant Bit
LSB Least Significant Byte
LSI Large Scale Integration

M
mΩ Milliohm
MΩ Megaohm
MAN Metropolitan Area Network
MCU Microcontroller
MHP Multimedia Home Platform
MIDP Mobile Information Device Profile
MIPS Millions of Instructions per Second, Microprocessor without Interlocked

Pipeline Stages
MMU Memory Management Unit
MOSFET Metal Oxide Silicon Field Effect Transistor
MPSD Modular Port Scan Device
MPU Microprocessor
MSb Most Significant Bit
MSB Most Significant Byte
MSI Medium Scale Integration
MTU Maximum Transfer Unit
MUTEX Mutual Exclusion

N
NAK NotAcKnowledged
NAT Network Address Translation
NCCLS National Committee for Clinical Laboratory Standards
NFS Network File System
NIST National Institute of Standards and Technology

Abbreviations and Acronyms

362

NMI Non-Maskable Interrupt
nsec Nanosecond
NTSC National Television Standards Committee
NVRAM Non-Volatile Random Access Memory

O
OCAP Open Cable Application Forum
OCD On Chip Debugging
OEM Original Equipment Manufacturer
OO Object Oriented
OOP Object-Oriented Programming
OS Operating System
OSGi Open Systems Gateway Initiative
OSI Open Systems Interconnection
OTP One Time Programmable

P
PAL Programmable Array Logic, Phase Alternating Line
PAN Personal Area Network
PC Personal Computer
PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PCP Priority Ceiling Protocol
PDA Personal Data Assistant
PDU Protocol Data Unit
PE Presentation Engine, Processing Element
PID Proportional Integral Derivative
PIO Parallel Input/Output
PIP Priority Inheritance Protocol, Picture-In-Picture
PLC Programmable Logic Controller, Program Location Counter
PLD Programmable Logic Device
PLL Phase Locked Loop
POSIX Portable Operating System Interface X
POTS Plain Old Telephone Service
PPC PowerPC
PPM Parts Per Million
PPP Point-to-Point Portocol
PROM Programmable Read Only Memory
PSK Phase Shift Keying

Abbreviations and Acronyms

363

PSTN Public Switched Telephone Network
PTE Process Table Entry
PWM Pulse Width Modulation

Q
QA Quality Assurance

R
RAM Random Access Memory
RARP Reverse Address Resolution Protocol
RAS Row Address Select
RF Radio Frequency
RFC Request For Comments
RFI Radio Frequency Interference
RISC Reduced Instruction Set Computer
RMA Rate Monotonic Algorithm
RMS Root Mean Square
ROM Read Only Memory
RPM Revolutions Per Minute
RPU Reconfigurable Processing Unit
RTC Real Time Clock
RTOS Real Time Operating System
RTS Request To Send
RTSJ Real Time Specification for Java
R/W Read/Write

S
SBC Single Board Computer
SCC Serial Communications Controller
SECAM Système Electronique pour Couleur avec Mémoire
SEI Software Engineering Institute
SIMM Single Inline Memory Module
SIO Serial Input/Output
SLD Source Level Debugger
SLIP Serial Line Internet Protocol
SMPTE Society of Motion Picture and Television Engineers
SMT Surface Mount
SNAP Scalable Node Address Protocol
SNR Signal-to-Noise Ratio

Abbreviations and Acronyms

364

SoC System-on-Chip
SOIC Small Outline Integrated Circuit
SPDT Single Pole Double Throw
SPI Serial Peripheral Interface
SPST Single Pole Single Throw
SRAM Static Random Access Memory
SSB Single Sideband Modulation
SSI Small Scale Integration

T
TC Technical Committee
TCB Task Control Block
TCP Transmission Control Protocol
TDM Time Division Multiplexing
TDMA Time Division Multiple Access
TFTP Trivial File Transfer Protocol
TLB Translation Lookaside Buffer
TTL Transistor–Transistor Logic

U
UART Universal Asynchronous Receiver/Transmitter
UDM Universal Design Methodology
UDP User Datagram Protocol
ULSI Ultra Large Scale Integration
UML Universal Modeling Language
UPS Uninterruptible Power Supply
USA United States of America
USART Universal Synchronous–Asynchronous Receiver–Transmitter
USB Universal Serial Bus
UTP Untwisted Pair

V
VHDL Very High Speed Integrated Circuit Hardware Design Language
VLIW Very Long Instruction Word
VLSI Very Large Scale Integration
VME VersaModule Eurocard
VoIP Voice Over Internet Protocol
VPN Virtual Private Network

Abbreviations and Acronyms

365

W
WAN Wide Area Network
WAT Way-Ahead-of-Time
WDT Watchdog Timer
WLAN Wireless Local Area Network
WML Wireless Markup Language
WOM Write Only Memory

X
XCVR Transceiver
XHTML eXtensible HyperText Markup Language
XML eXtensible Markup Language

Abbreviations and Acronyms

366

367

appENDIX B

Embedded Systems Glossary

A

Absolute Memory Address The physical address of a specific memory cell.

Accumulator A special processor register used in arithmetic and logical operations to store
an operand used in the operation, as well as the results of the operation.

Acknowledge (ACK) A signal used in bus and network ‘handshaking’ protocols as an
acknowledgment of data reception from another component on the bus (on an embedded
board for bus handshaking) or from another embedded system via some networking
transmission medium (for network handshaking).

Active High Where a logic value of ‘1’ is a higher voltage than a logic value of ‘0’ in a circuit.

Active Low Where a logic value of ‘0’ is a higher voltage than a logic value of ‘1’ in
a circuit.

Actuator A device used for converting electrical signals into physical actions, commonly
found in flow-control valves, motors, pumps, switches, relays and meters.

Adder A hardware component that can be found in a processor’s CPU that adds two
numbers.

Address Bus An address bus carries the addresses (of a memory location, or of particular
status/control registers) between board components. An address bus can connect processors
to memory, as well as processors to each other.

Ahead-of-Time Compiler (AOT) See Way-Ahead-of-Time Compiler.

Alternating Current (AC) An electric current whose voltage source changes polarity of its
terminals over time, causing the current to change direction with every polarity change.

Ammeter A measurement device that measures the electrical current in a circuit.

Ampere The standard unit for measuring electrical current, defined as the charge per unit
time (meaning the number of coulombs that pass a particular point per second).

Amplifier A device that magnifies a signal. There are many types of amplifiers (log, linear,
differential, etc.), all differing according to how they modify the input signal.

Amplitude A signal’s size. For an AC signal it can be measured via the high point of an AC
wave from the equilibrium point (center) to the wave’s highest peak or by performing the
RMS (root mean square) mathematical scheme – which is by 1) finding the square of the
waveform function, 2) averaging the value of the result of step (1) over time, and 3) taking
the square root of the results of step (2). For a DC signal, it is its voltage level.

Amplitude Modulation (AM) The transmission of data signals via modifying (modulating)
the amplitude of a waveform to reflect the data (i.e., a ‘1’ bit being a wave of some amplitude,
and a ‘0’ bit being a wave with a different amplitude).

Analog Data signals represented as a continuous stream of values.

Analog-to-Digital Converter (A/D Converter) A device that converts analog signals to
digital signals.

AND Gate A gate whose output is 1 when both inputs are 1.

Anion A negative ion, meaning an atom that gains electrons.

Anode (1) The negatively charged pole (terminal) of a voltage source. (2) The positively
charged electrode of a device (i.e., diode), which accepts electrons (allowing a current to flow
through the device).

Antenna A transducer made up of conductive material (wires, metal rod, etc.) used to
transmit and receive wireless signals (radio waves, IR, etc.).

Antialiased Fonts Fonts in which a pixel color is the average of the colors of surrounding
pixels. It is a commonly used technique in digital televisions for evening (smoothing)
displayed graphical data.

Application Layer The layer within various models (OSI, TCP/IP, Embedded Systems
Model, etc.), which contains the application software of an embedded device.

Embedded Systems Glossary

368

Application Programming Interface (API) A set of subroutine calls that provide an
interface to some type of component (usually software) within an embedded device (OS
APIs, Java APIs, MHP APIs, etc.).

Application Server Middleware Middleware that allows access to legacy software via a browser.

Application-Specific Integrated Circuit (ASIC) An application-specific ISA-based IC that is
customized for a particular type of embedded system or in support of a particular application
within an embedded system. There are mainly full-custom, semi-custom, or programmable
types of ASICs. PLDs and FPGAs are popular examples of (programmable) ASICs.

Architecture See Embedded Systems Architecture or Instruction Set Architecture.

Arithmetic Logic Unit (ALU) The component within a processor’s CPU which executes
logical and mathematical operations.

Aspect Ratio A ratio of width to height (in memory the number of bits per address to the
total number of memory addresses, the size or resolution of a display, etc.).

Assembler A compiler that translates assembly language into machine code.

Astable Multivibrator A sequential circuit in which there is no state it can hold stable in.

Asynchronous A signal or event that is independent of, unrelated to, and uncoordinated with
a clock signal.

Attenuator A device that reduces (attenuates) a signal (the opposite of what an amplifier
does).

Automatic Binding When an RPC client automatically locates and selects a specific server.

Autovectoring The process of managing interrupts via priority levels rather than relying on
an external vector source.

B

Background Debug Mode (BDM) Components used in debugging an embedded system.
BDM components include BDM hardware on the board (a BDM port and an integrated debug
monitor in the master CPU), and debugger on the host (connected via a serial cable to BDM
port). BDM debugging is sometimes referred to as On-Chip Debugging (OCD).

Embedded Systems Glossary

369

Bandwidth On any given transmission medium, bus, or circuitry – the frequency range of an
analog signal (in hertz, the number of cycles of change per second) or digital signal (in bps,
the number of bits per second) traveling through it (as in the case of a bus or transmission
medium) or being processed by it (as in the case of a processor).

Basic Input/Output System (BIOS) Originally the boot-up firmware on x86-based PCs,
now available for many off-the-shelf embedded x86-based boards and a variety of embedded
OSs.

Battery A voltage source where voltage is created through a chemical reaction within it. A
battery is made up of two metals submerged within a chemical solution, called an electrolyte,
that is in liquid (wet cell) or paste (dry cell) form. Basically, the two metals respond with
different ionic state after they are exposed to the electrolyte. Wet cells are used in automobiles
(car batteries), and dry cells are used in many different types of portable embedded systems
(radios, toys, etc.).

Baud Rate The total number of bits per some unit of time (kbits/sec, Mbits/sec, etc.) that can
be transmitted over some serial transmission link.

Bias An offset (such as voltage or current) applied to a circuit or electrical element to modify
the behavior of the circuit or element.

Big Endian A method of formatting data in which the lowest-order bytes (or bits) are stored
in the highest bytes (or bits). For example, if the highest-order bits are from left to right in
descending order in a particular 8-bit ISA, big endian mode in this ISA would mean that bit 0 of
the data would be stored from left to right in ascending order (the value of ‘B3h/10110011b’
would be stored as ‘11001101b’). In a 32-bit ISA, for instance, where the highest-order bytes
are stored from left to right in descending order, big endian mode in this ISA would mean
that byte 0 of the data is stored from left to right in the word in ascending order (i.e., the value
of ‘B3A0FF11h’ would be stored as ‘11FFA0B3h’).

Binary A base-2 number system used in computer systems, meaning the only two symbols
are a ‘0’ or ‘1’. These symbols are used in a variety of combinations to represent all data.

Bit Error Rate (BER) The rate at which a serial communication stream loses and/or
transfers incorrect data bits.

Bit Rate The (number of actual data bits transmitted / total number of bits that can be
transmitted) × the baud rate of the communications channel.

Embedded Systems Glossary

370

Black-Box Testing Testing that occurs with a tester that has no visibility into the internal
workings of the system (no schematics, no source code, etc.) and is basing testing on general
product requirements documentation.

Blocking Communication When communication between receiver and transmitter is
blocked until response is received in synchronous messaging communication scheme.

Block Started by Symbol (BSS) BSS is several different things depending on the context
and who is asked, including ‘Block Started by Symbol’, ‘Block Storage Segment’, and ‘Blank
Storage Space’. The term ‘BSS’ originated from the 1960s, and while not everyone agrees on
what the BSS abbreviation stands for, it is generally agreed upon that BSS is a statically
allocated memory space containing the source code’s uninitialized variables (data).

Board Support Package (BSP) A software provided by many embedded off-the-shelf OS
vendors that allow their OSs to be ported more easily over various boards and architectures.
BSPs contain the board and architecture-specific libraries required by the OS, and allow for
the device drivers to be integrated more easily for use by the OS through BSP APIs.

Bootloader Firmware in an embedded system that initializes the system’s hardware and
system software components.

Breakpoint A debugging mechanism (hardware or software) which stops the CPU from
executing code.

Bridge A component on an embedded board that interconnects and interfaces two different buses.

Buffered Queue RAM resident message queue.

Bus A collection of wires that interconnect components on an embedded board.

Byte A byte is defined as being some 8-bit value.

Byte Code Byte (8-bit) size opcodes that have been created as a result of high-level source
code (such as Java or C#) being compiled by a compiler (a Java or some Intermediate
Language (IL) compiler) on a host development machine. It is byte code that is translated by
a Virtual Machine (VM), such as: the Java Virtual Machine (JVM) or an.NETCE Compact
Framework virtual machine, for example.

Byte Order How data bits and/or bytes are represented and stored in a particular component
of a computer system.

Embedded Systems Glossary

371

C

Cache Very fast memory that holds copies of a subset of main memory, to allow for faster
CPU access to data and instructions typically stored in main memory.

Capacitor Used to store electrostatic energy, a capacitor is basically made up of conductors
(two parallel metal plates), separated by an insulator (a dielectric such as: air, ceramic,
polyester, mica, etc.). The energy itself is stored in an electric field created between the
two plates given the right environment.

Cathode (1) The positively charged pole (terminal) of a voltage source. (2) The negatively
charged electrode of a device (diode) that acts as an electron source.

Cation A positive ion, meaning an atom that has lost electrons.

Cavity Resonator A component that contains and maintains an oscillating electromagnetic
field.

Central Processing Unit (CPU) (1) The master/main processor on the board. (2) The
processing unit within a processor that is responsible for executing the indefinite cycle of
fetching, decoding, and executing instructions while the processor has power.

Checksum A numerical value calculated from some set of data to verify the integrity of that
data, commonly used for data transmitted via a network.

Chip See Integrated Circuit (IC).

Circuit A closed system of electronic components in which a current can flow.

Circuit Breaker An electrical component that insures that a current load doesn’t get too large
by shutting down the circuit when its overheat sensor senses there is too much current.

Class Used in object-oriented schemes and languages to create objects, a class is a prototype
(type description) that is made up of some combination of interfaces, functions (methods),
and variables.

Clear-Box Testing See White-Box Testing.

Clock An oscillator that generates signals resulting in some type of waveform. Most
embedded boards include a digital clock that generates a square waveform.

Embedded Systems Glossary

372

Coaxial Cable A type of cabling made up of two layers of physical wire, one center wire
and one grounded wire shielding. Coaxial cables also include two layers of insulation, one
between the wire shielding and center wire, and one layer above the wire shielding. The
shielding allows for a decrease in interference (electrical, RF, etc.).

Compiler A software tool that translates source code into assembly code, an intermediary
language opcode, or into a processor’s machine code directly.

Complex Instruction Set Computer (CISC) A general-purpose ISA which typically is made
up of many, more complex operations and instructions than other general-purpose ISAs.

Computer Aided Design (CAD) Tools Tools used to create technical drawings and
documentation of the hardware, such as schematic diagrams.

Computer Aided Software Engineering (CASE) Tools Design and development tools
that aid in creating an architecture and implementing a system, such as UML tools and code
generators.

Conductor A material that has fewer impediments to an electric current (meaning it more
easily loses/gains valence electrons) allowing for an electrical current to flow more easily
through them than other types of materials. Conductors typically have ≤ 3 valence electrons.

Connector An electrical component that interconnects different types of subsystems.

Context The current state of some component within the system (registers, variables, flags, etc.).

Context Switch The process in which a system component (interrupts, an OS task, etc.)
switches from one state to another.

Coprocessor A slave processor that supports the master CPU by providing additional
functionality, and that has the same ISA as the master processor.

Coulomb In electronics, the charge of one electron is too small to be of practical use, so in
electronics, the unit for measuring charges is called a coulomb (named after Charles
Coulomb who founded Coulomb’s law), and is equal to that of 6.28 × 1018 electrons.

Critical Section A set of instructions that are flagged to be executed without interruption.

Cross Compiler A compiler that generates machine code for hardware platforms that differs
from the hardware platform the compiler is actually residing and running on.

Embedded Systems Glossary

373

Crystal An electrical component that determines an oscillator’s frequency. A crystal is
typically made up of two metal plates separated by quartz, with two terminals attached to
each plate. The quartz within a crystal vibrates when current is applied to the terminals,
and it is this frequency that impacts the frequency at which the oscillator operates.

Current A directed flow of moving electrons.

D

Daisy Chain A type of digital circuit in which components are connected in series (in a
‘chain-like’ structure), and where signals pass through each of the components down through
the entire chain. Components at the top of the chain essentially can impact (slow down, block,
etc.) a signal for being received by components further down in the chain.

Data Communications Equipment (DCE) The device that the DTE wants to serially
communicate with, such as an I/O device connected to the embedded board.

Datagram What the networking data received and processed by the networking layer of the
OSI model or corresponding layer in other networking models (the Internet layer in the
TCP/IP model) is called.

Data Terminal Equipment (DTE) The initiator of a serial communication, such as a PC or
embedded board.

Deadlock An undesired result related to the use of an operating system, in which a set of
tasks are blocked, awaiting an event to unblock that is controlled by one of the tasks in the
blocked set.

Debugger A software tool used to test for, track down, and fix bugs.

Decimal A base-10 number system, meaning there are 10 symbols (0–9), used in a variety of
combinations to represent data.

Decoder A circuit or software that translates encoded data into the original format of the data.

Delay Line An electrical component that delays the transmission of a signal.

Demodulation Extracting data from a signal that was modified upon transmission to include
a carrier signal and the added transmitted data signal.

Embedded Systems Glossary

374

Demultiplexor (Demux) A circuit which connects one input to more than one output, where
the value of the input determines which output is selected.

Device Driver Software that directly interfaces with and controls hardware.

Dhrystone A benchmarking application which simulates generic systems programming
applications on processors, used to derive the MIPS (Millions of Instructions per Second)
value of a processor.

Die The portion of an integrated circuit that is made of silicon, that can either be enclosed in
some type of packaging or connected directly to a board.

Dielectric An insulative layer of material found in some electrical components, such as
capacitors.

Differentiator A circuit that calculates a mathematical (calculus) derivative output based on
a given input.

Digital A signal that is expressed as some combination of one of two states, a ‘0’ or ‘1’.

Digital Signal Processor (DSP) A type of processor that implements a datapath ISA, and is
typically used for repeatedly performing fixed computations on different sets of data.

Digital Subscriber Line (DSL) A broadband networking protocol that allows for the direct
digital transmission of data over twisted pair wired (POTS) mediums.

Digital-to-Analog Converter (DAC) A device that converts digital signals to analog signals.

Diode A two-terminal semiconductor device that allows current flow in one direction, and
blocks current which flows in the opposite direction.

Direct Current (DC) Current that flows constantly in the same direction in a circuit. DC
current is defined by two variables: polarity (the direction of the circuit) and magnitude
(the amount of current).

Direct Memory Access (DMA) A scheme in which data is exchanged between I/O and memory
components on a board with minimal interference from and use of the master processor.

Disassembler Software that reverse-compiles the code, meaning machine language is
translated into assembly language.

Embedded Systems Glossary

375

Domain Name Service (DNS) An OSI model session layer networking protocol that
converts domain names into internet (network layer) addresses.

Dual Inline Memory Module (DIMM) A type of packaging in which memory ICs can come
in, specifically a mini-module (PCB) that can hold several ICs. A DIMM has protruding pins
from one side (both on the front and back) of the module that connect into a main embedded
motherboard, and where opposing pins (on the front and back of the DIMM) are each
independent contacts.

Dual Inline Package (DIP) A type of packaging that encloses a memory IC, made up of
ceramic or plastic material, with pins protruding from two opposing sides of the package.

Dual Port Random Access Memory (DPRAM) RAM that can connect to two buses
allowing for two different components to access this memory simultaneously.

Dynamic Host Configuration Protocol (DHCP) A networking layer networking protocol
that provides a framework for passing configuration information to hosts on a TCP/IP-based
network.

Dynamic Random Access Memory (DRAM) RAM whose memory cells are circuits with
capacitors that hold a charge in place (the charges or lack thereof reflecting the data).

E

Earliest Deadline First (EDF) A real-time, preemptive OS scheduling scheme in which
tasks are scheduled according to their deadline, duration, and frequency.

Effective Address The memory address generated by the software. This is the address that is
then translated into the physical address of the actual hardware.

Electrically Erasable Programmable Read Only Memory (EEPROM) A type of ROM
which can be erased and reprogrammed more than once, the number of times of erasure and
re-use depending on the EEPROM. The contents of EEPROM can be written and erased ‘in
bytes’ without using any special devices. This means the EEPROM can stay on its residing
board, and the user can connect to the board interface to access and modify EEPROM.

Electricity Energy generated by the flow of electrons through a conductor.

Electron A negatively charged subatomic particle.

Embedded Systems Glossary

376

Emitter One of three terminals of a bipolar transistor.

Encoder A device that encodes (translates) a set of data into another set of data.

Endianness See Byte Order.

Energy The amount of work performed that can be measured in units of joules (J) or
watts × time.

Erasable Programmable Read Only Memory (EPROM) A type of ROM that can be
erased more than one time using other devices that output intense short wavelength,
ultraviolet light into the EPROM package’s built-in transparent window.

Ethernet One of the most common LAN protocols, implemented at physical and data-link
layers of the OSI model.

Extended Data Out Random Access Memory (EDO RAM) A type of RAM commonly
used as main and/or video memory; it is a faster type of RAM that can send a block of data
and fetch the next block of data simultaneously.

F

Farad The unit of measurement in which capacitance is measured.

Field Programmable Gate Array (FPGA) A type of programmable ASIC implementing the
application-specific ISA model.

Firmware Any software stored on ROM.

Flash Memory A CMOS-based faster and cheaper variation of EEPROM. Flash can be
written and erased in blocks or sectors (a group of bytes). Flash can also be erased
electrically, while still residing in the embedded device.

Flip-Flop One of the most commonly used types of latches in processors and memory circuitry.
Flip-flops are sequential circuits that are called such because they function by alternating
(flip-flopping) between both states (0 and 1), and the output is then switched (such as from
0 to 1 or from 1 to 0, for example). There are several types of flip-flops, but all essentially fall
under either the asynchronous or synchronous categories.

Embedded Systems Glossary

377

Fuse An electrical component that protects a circuit from too much current by breaking the
circuit when a high enough current passes through it. Fuses can also be used in some types of
ROMs as the mechanism to store data.

G

Galvanometer A measurement device that measures smaller amounts of current in a circuit.

Garbage Collector A language-related mechanism that is responsible for deallocating
unused memory at runtime.

Gate A more complex type of electronic switching circuit designed to perform logical binary
operations, such as AND, OR, NOT, NOR, NAND, XOR, and so on.

Glass-Box Testing See White-Box Testing.

Ground In a circuit, the negative reference point for all signals.

H

Half Duplex An I/O communications scheme in which a data stream can be transmitted and
received in either direction, but in only one direction at any one time.

Handshaking The process in which protocols are adhered to by components on a board or
devices over a network that want to initiate and/or terminate communication.

Hard Real Time Describes a situation in which timing deadlines are always met.

Hardware All of the physical components of an embedded system.

Harvard Architecture A variation of the von Neumann model of computer systems, which
differs from von Neumann in that it defines separate memory spaces for data and instructions.

Heap A portion of memory used by software for dynamic allocation of memory space.

Heat Sink A component on a board that extracts and dissipates heat generated by other board
components.

Henry The unit of measurement for inductance.

Hertz The unit of measurement for frequency in terms of cycles per second.

Embedded Systems Glossary

378

High-Level Language A programming language that is semantically further away from
machine language, more resembles human language, and is typically independent of the
hardware.

Hit Rate A cache memory term indicating how often desired data are located in cache
relative to the total number of times cache is searched for data.

Host The computer system used by embedded developers to design and develop embedded
software; it can be connected to the embedded device and/or other intermediary devices for
downloading and debugging the embedded system.

Hysteresis The amount of delay in a device’s response to some change in input.

I

In-Circuit Emulator (ICE) A device used in the development and debugging of an
embedded system which emulates the master processor on an embedded board.

Inductance The storage of electrical energy within a magnetic field.

Inductor An electrical component made up of coiled wire surrounding some type of core
(air, iron, etc.). When a current is applied to a conductor, energy is stored in the magnetic
field surrounding the coil allowing for a energy storing and filtering effect.

Infrared (IR) Light in the THz (1000 GHz, 2 × 1011 Hz – 2 × 1014 Hz) range of frequencies.

Instruction Set Architecture (ISA) The features that are built into an architecture’s
instruction set, including the types of operations, types of operands, and addressing modes,
to name a few.

Insulator A type of component or material which impedes the movement of an electric current.

Integrated Circuit (IC) An electrical device made up of several other discrete electrical
active elements, passive elements, and devices (transistors, resistors, etc.) – all fabricated
and interconnected on a continuous substrate (chip).

Interpreter A mechanism that translates higher-level source code into machine code, one
line or one byte code at a time.

Interrupt An asynchronous electrical signal.

Embedded Systems Glossary

379

Interrupt Handler The software that handles (processes) the interrupt, and is executed after
the context switch from the main instruction stream as a response to the interrupt.

Interrupt Service Routine (ISR) See Interrupt Handler.

Interrupt Vector An address of an interrupt handler.

Inverter A NOT gate that inverts a logical level input, such as from HIGH to a LOW or vice versa.

J

Jack An electrical device designed to accept a plug. There are many types of jacks, including
coaxial, two-plug, three-plug, and phono, just to name a few.

Joint Test Access Group (JTAG) A serial port standard that defines an external interface to
ICs for debugging and testing.

Just-In-Time (JIT) Compiler A higher-level language compiler that translates code via
interpretation in the first pass, and then compiles into machine code that same code to be
executed for additional passes.

K

Kernel The component within all operating systems that contains the main functionality of
the OS, such as process management, memory management, and I/O system management.

L

Lamp An electrical device that produces light. There are many types of lamps used on
different types of embedded devices, including neon (via neon gas), incandescent (producing
light via heat), and xenon flash lamps (via some combination that includes high voltage, gas,
and electrodes), to name a few.

Large Scale Integration (LSI) A reference to the number of electronic components in an IC.
An LSI chip is an IC containing 3000–100,000 electronic components per chip.

Latch A bistable multivibrator that has signals from its output fed back into its inputs, and
can hold stable at only one of two possible output states: 0 or 1. Latches come in several
different subtypes, including S-R, Gated S-R, and D.

Embedded Systems Glossary

380

Latency The length of elapsed time it takes to respond to some event.

Least Significant Bit (LSb) The bit furthest to the right of any binary version of a number.

Least Significant Byte (LSB) The 8 bits furthest to the right of any binary version of a
number; for example, the two digits furthest to the right of any hexadecimal version of a
number larger than a byte.

Light Emitting Diode (LED) Diodes that are designed to emit visible or infrared (IR) light
when in forward bias in a circuit.

Lightweight Process See Thread.

Linker A software development tool used to convert object files into executable files.

Little Endian Data represented or stored in such a way that the LSB and/or the LSb is stored
in the lowest memory address.

Loader A software tool that relocates developed software into some location in memory.

Local Area Network (LAN) A network in which all devices are within close proximity to
each other, such as in the same building or room.

Logical Memory Physical memory as referenced from the software’s point of view, as a
one-dimensional array. The most basic unit of logical memory is the byte. Logical memory is
made up of all the physical memory (registers, ROM, and RAM) in the entire embedded system.

Loudspeaker See Speaker.

Low-Level Language A programming language which more closely resembles machine
language. Unlike high-level languages, low-level languages are hardware dependent, meaning
there is typically a unique instruction set for processors with different architectures.

M

MAC Address The networking address located on networking hardware. MAC addresses
are internationally unique due to the management of allocation of the upper 24 bits of these
addresses by the IEEE organization.

Machine Language A basic language consisting of ones and zeros that hardware components
within an embedded system directly transmit, store, and/or execute.

Embedded Systems Glossary

381

Medium Scale Integration (MSI) A reference to the number of electronic components in an
IC. An MSI chip is an IC containing 100–3000 electronic components per chip.

Memory Cell Physical memory circuit that can store one bit of memory.

Memory Management Unit (MMU) A circuit used to translate logical addresses into physical
addresses (memory mapping), as well as handling memory security, controlling cache, handling
bus arbitration between the CPU and memory, and generating appropriate exceptions.

Meter A measurement device that measures some form of electrical energy, such as voltage,
current, or power.

Microcontroller Processors that have most of the system memory and peripherals integrated
on the chip.

Microphone A type of transducer that converts sound waves into electrical current. There
are many types of microphones used on embedded boards, including condenser microphones
which use changes in capacitance in proportion to changes in sound waves to produce their
conversions, dynamic microphones which use a coil that vibrates to sound waves, and a
magnetic field to generate a voltage that varies in proportion to sound variations, to
name a few.

Microprocessor Processors that contain a minimal set of integrated memory and I/O peripherals.

Most Significant Bit (MSb) The bit furthest to the left of any binary version of a number.

Most Significant Byte (MSB) The 8 bits furthest to the left of any binary version of a
number; for example, the two digits furthest to the left of any hexadecimal version of
a number larger than a byte.

Multitasking The execution of multiple tasks in parallel.

Multivibrator A type of sequential logical circuit designed so that one or more of its outputs
are fed back as input.

N

NAND Gate A gate whose output is 0 when both inputs are 1.

Noise Any unwanted signal alteration from an input source, or any part of the input signal
generated from something other then a sensor.

Embedded Systems Glossary

382

Non-Volatile Memory (NVM) Memory that contains data or instructions that remain even
when there is no power in the system.

NOR Gate A gate whose output is 0 if either of the inputs are 1.

NOT Gate See Inverter.

O

On-Chip Debugging (OCD) Refers to debugging schemes in which debugging capabilities
are built into the board and master processor.

One Time Programmable (OTP) A type of ROM that can only be programmed
(permanently) one time outside the manufacturing factory, using a ROM burner. OTPs are
based upon bipolar transistors, in which the ROM burner burned out fuses of cells to program
them to ‘1’ using high voltage/current pulses.

Operating System (OS) A set of software libraries that serve two main purposes in an
embedded system: providing an abstraction layer for software on top of the OS to be less
dependent on hardware (making the development of middleware and applications that sit on
top of the OS easier), and managing the various system hardware and software resources to
ensure the entire system operates efficiently and reliably.

OR Gate A gate whose output is 1 if either of the inputs are 1.

P

Packet A unit to describe some set of data being transmitted over a network at one time.

Parallel Port An I/O channel that can transmit or receive multiple bits simultaneously.

Plug An electrical component used to connect one subsystem into the jack of another subsystem.
There are many types of plugs, such as two-conductor, three-conductor, and
phono/RCA.

Polling Repeatedly reading a mechanism (such as a register, flag, or port) to determine if
some event has occurred.

Printed Circuit Board (PCB) Thin sheets of fiberglass in which all the electronics within
the circuit sit on. The electric path of the circuit is printed in copper, which carries the
electrical signals between the various components connected on the board.

Embedded Systems Glossary

383

Process A creation of the OS that encapsulates all the information that is involved in the
execution of a program, such as a stack, PC, the source code and data.

R

Random Access Memory (RAM) Volatile memory in which any location within it can be
accessed directly (randomly, rather than sequentially from some starting point), and whose
content can be changed more than once (the number depending on the hardware).

Read Only Memory (ROM) A type of non-volatile memory that can be used to store data on
an embedded system permanently.

Real Time Operating System (RTOS) An OS in which tasks meet their deadlines, and
related execution times are predictable (deterministic).

Rectifier An electronic component that allows current to flow in only one direction.

Reduced Instruction Set Computer (RISC) An ISA that usually defines simpler operations
made up of fewer instructions.

Register A combination of various flip-flops that can be used to temporarily store data or
delay signals.

Relay An electromagnetic switch. There are many types of relays, including the DPDT
(Double Pole Double Throw) relay which contains two contacts that can be toggled both ways
(on and off), a DPST (Double Pole Single Throw) relay which contains two contacts that can
only be switched on or off, an SPDT (Single Pole Double Throw) relay which contains one
contact that can be toggled both ways (on and off), and an SPST (Single Pole Single Throw)
relay which contains one set of contacts and can only be switched one way (on or off).

Resistor An electronic device made up of conductive materials that have had their conductivity
altered in some fashion in order to allow for an increase in resistance.

Romizer A device used to write data to EPROMs.

S

Scheduler A mechanism within the OS that is responsible for determining the order and the
duration of tasks to run on the CPU.

Embedded Systems Glossary

384

Semaphore A mechanism within the OS which can be used to lock access to shared memory
(mutual exclusion), as well as can be used to coordinate running processes with outside
events (synchronization).

Semiconductor Material or electrical component whose base elements have a conductive
nature that can be altered by introducing other elements into their structure, meaning it has
the ability to behave both as a conductor (conducting part of the time) and as an insulator
(blocking current part of the time).

Serial Port An I/O channel that can transmit or receive one bit at any given time.

Speaker A type of transducer that converts variations of electrical current into sound waves.

Switch An electrical device used to turn an electrical current flow on or off.

T

Target The embedded system platform, connected to the host, being developed.

Task See Process.

Thermistor A resistor with a resistance changes on-the-fly depending on the temperature the
thermistor is exposed to. A thermistor’s resistor typically decreases as temperature increases.

Thermocouple An electronic circuit that relays temperature differences via current flowing
through two wires joined at either end. Each wire is made of different materials with one
junction of the connected wires at the stable lower temperature, while the other junction is
connected at the temperature to be measured.

Thread A sequential execution stream within a task. Threads are created within the context
of a task, meaning a thread is bound to a task. Depending on the OS, a task can also own one
or more threads. Unlike tasks, threads of a task share the same resources, such as working
directories, files, I/O devices, global data, address space, and program code.

Throughput The amount of work completed in a given period of time.

Tolerance Represents at any one time how much more or less precise the parameters of an
electrical component are at any given time based on its actual labeled parameter value.
The actual values should not exceed plus (+) or minus (–) the labeled tolerance.

Transceiver A physical device which receives and transmits data bits over a networking
transmission medium.

Embedded Systems Glossary

385

Transducer An electrical device that transforms one type of energy into another type of
energy.

Transformer A type of inductor that can increase or decrease the voltage of an AC signal.

Transistor Some combination of P-type and N-type semiconductor material, typically with
three terminals connecting to one type of each material. Depending on the type of transistor,
they can be used for a variety of purposes, such as current amplifiers (amplification), in
oscillators (oscillation), in high-speed integrated circuits, and/or in switching circuits
(DIP switches and push buttons commonly found on off-the-shelf reference boards).

Translation Lookaside Buffer (TLB) A portion of cache used by an MMU for allocating
buffers that store address translations.

Trap Software and internal hardware interrupts that are raised by some internal event to the
master processor.

Truth Table A table that outlines the possible input(s) of a logic circuit or Boolean equation,
and the relative output(s) to the input(s).

Twisted Pair A pair of tightly interwrapped wires used for digital and analog data transmission.

U

Ultra Large Scale Integration (ULSI) A reference to the number of electronic components
in an IC. A ULSI chip is an IC containing over 1,000,000 electronic components per chip.

Universal Asynchronous Receiver Transmitter (UART) A serial interface that supports
asynchronous serial transmission.

Universal Synchronous Asynchronous Receiver Transmitter (USART) A serial interface
that supports both synchronous and asynchronous serial transmission.

Untwisted Pair (UTP) A pair of parallel wires used for digital and analog data transmission.

V

Very Large Scale Integration (VLSI) A reference to the number of electronic components in
an IC. A VLSI chip is an IC containing 100,000–1,000,000 electronic components per chip.

Embedded Systems Glossary

386

Virtual Address A memory location based upon a logical address that allows for the
expansion of the physical memory space.

Voltage Divider An electrical circuit made up of a few or more resistors that can decrease
the input voltage of a signal.

Voltmeter A measurement device that measures voltage.

W

Wattmeter A measurement device that measures power.

Way-Ahead-of-Time (WAT) Compiler A compiler that translates higher-level code directly
into machine code.

White-Box Testing Testing that occurs with a tester that has visibility into the system’s
interworkings, such as having access to source code and schematics information.

Wire A component made up of conductive material that carries signals between components
on a board (i.e., bus wires) or between devices (i.e., wired transmission mediums).

X

XOR Gate A gate whose output is 1 (or on, or high) if only one input (but not both) is 1.

Embedded Systems Glossary

387

This page intentionally left blank

389

A
A Boss’s Quick-Start to Firmware

Engineering 9
abbreviations 357–66
Abstract window toolkit (AWT)

270
access (database system) 306
acronyms 357–66
actions (point-to-point protocols)

128–9
adaptive (goals for middleware) 2
Advanced Technology Attachment

(ATA) 22
aerospace standards and

middleware 59, 62
ahead-of-time (AOT)

algorithm 277–8
compiler 301

AMD
Flash Device Driver

Code 36
Geode Reference Board 16

Ampro
MIPS Reference Board 17
PowerPC Reference Board 17

analog television 74
application manager (MHP) 91
Application Programming

Interfaces (APIs)
CBIO 47, 53–4
cryptography 336
databases 307, 315, 327
file systems 192, 250–1
Java 72
JVM versus .NET Compact

Framework 301
libraries 68, 262
message oriented middleware

330

MHP 81, 83
operating system 41, 68
OS and file systems 200
pJava 265–6, 267
TCP/IP 266
virtual machine 261,

262–72
vxWorks 235, 236–42, 244–8

application software and embedded
middleware 11

application-specific ISA 18
architecture business cycle 6
arithmetic logic unit (ALU) 19
assembly (programming language)

256, 258, 300
asynchronous serial communication

106, 120
ATA Device Driver Public API

(vxWorks) 37–9
atomic transactional file systems

250
attributes (relational database

model) 307
audio data path (digital televisions)

80
audio device drivers (MHP) 82
authentication and security

Code Access Security 337
cryptography algorithms 336
integration brokers 337–9
Java Virtual Machines 335–7
middleware 5, 328
protocols 120–1
remote procedure call 333,

338
summary 339

author (team member) 354
automotive standards and

middleware 60, 62

availability and processor
performance 18

B
B+ tree

directory sample source code
227, 229, 230

high level index and databases
322–3

Baby USB Memory Stick 29
base class library (BCL) 262
behavior (databases) 312
benchmarks for processor

performance 19
block device (Flash) 197
block map (data storage

management) 221
blocks

device drivers 41, 49–50
hardware storage mediums 22

Bluetooth RFCOMM 118
body (email) 174
book summary 4–5, 12
bound (wired) networks 99–100
buffer and storage management

(real-world database system
model) 325

building a complex middleware
solution
alignment behind leadership 6
architecture business cycle 7
discipline in development 6
people 9
shipping 7–8
software productivity 8–9
strong ethics 6
teamwork 6–7
technology 6

bus device drivers (MHP) 81

Index

C
C (programming language) 71,

255–7, 293, 300, 312, 348,
353

C# (programming language) 73,
260, 293, 301

C++ (programming language)
256–7, 293, 312, 348–51

cache blocked input/output (CBIO)
API 47, 53–4
cache layer 51
description 41
library (vxWorks) 46–7, 51–2
partition layer 52–3

Capability Maturity Model
Integration (CMMI) 343

central processing unit (CPU)
embedded databases 326
jthreads 292–3
MIPS 19
non-preemptive scheduling

algorithm 288–9
scheduler 286
tasks 285
throughput 18
VM design choice 301

character (device driver) 41
classes

IP addresses 141
record-based databases

313–14
client-server architecture 101
clients and networks 101
Code Access Security (CAS) 337
code inspections (systems

integration, testing and
verification) 353–4

commercial standards and
middleware 60, 62–3

common language runtime (CLR)
262

Common Language Specification
261

Common Object Request Broker
Architecture (CORBA) 5,
330, 334–6

communication (COM) port (I/O
subsystems for networks) 105

compilers
ahead-of-time 301

C++ 348
cross 258
just-in-time 273, 278, 279–82
programming 257–8
query 317, 319
way-ahead-of-time 277–8, 301
see also dynamic adaptive

compiler
components

Embedded Systems Model
11–12

operating system 111, 113–14
Computer Aided Design (CAD)

313, 315
configuration (vxWorks) 48–9
Connected Device Configuration

(CDC), J2ME 268–71
Connected Limited Device

Configuration (CLDC)
Generic Connected

Framework 268–9
J2ME 268

Connection class (Generic
Connection Framework) 270,
272

connectivity/intercommunication
(goals for middleware) 2

consumer electronics standards and
middleware 60, 63–4

context-switch (scheduling)
288–9

control bytes 121
copying files 234
core components for middleware

355–6
core layer (file systems) 208, 233
creating directories 234
creating/configuring files 232
cross-compilers (programming

language) 258
cryptography

algorithms 336
Application Programming

Interfaces 336
cycle per instruction (CPI) 19

D
DARPA standard RFC791 141
Data Access Object (DAO)

Frameworks 5, 330, 334

Data Definition Language (DDL)
308–9, 319

data management in file systems
221

data swapping (databases)
first in first out 325
least recently used 325
no recently used 325
optimal 325
second chance 325

data-link frames 108
data-link layer

data block flow diagram 119
data flow 108, 110
logical link control 117
media access control 117
middleware 116, 119
protocols 118, 120
upper 118–19

data-manipulation language (DML)
308–9, 313, 319

database design
APIs 316, 327
architecture models 316–17
database-specific standards

316
DBMS 316
embedded 325–6
extremeDB 326–7
hardware 316, 327
Integrity OS 326
memory 327
Nucleus OS 326
performance 327
Perst 316–17
purpose 315–16
QNX OS 326
software components 316
summary 326–8
vxWorks OS 326

database management system
(DBMS)
access 306
application software 306
data modeling 307
database design 315–17
description 305
functions 305–6
metadata 307
models 314–15

Index

390

real-world database system
model 317–25

record-based
object-oriented database

307–14
relational database 307

storage media 306–7
system communication 308–9

database-specific standards 316
databases

data swapping 325
description 311
design 315
hardware 355–6
object-oriented 312–13, 315
Perst 316–17, 319
real-world

the application layer
325–6

system model 317–25
record-based 307–14
relational 322

datagrams
Internet Protocol 141, 144,

145–50
middleware 113
socket 153

DatagramSockets 266, 268
Datalight FlashFx

high-level diagram 198
tuning parameters 199

deadline (earliest deadline first)
290

defense standards and middleware
59, 62

description of embedded systems
and middleware 1–5

device drivers
access by middleware software

111
AMD Flash Code 36
ATA Public API (vxWorks)

37–9
block 41
character 41
Datalight FlashFx high-level

diagram 198
JFS file systems open source

200–203
layer (file systems) 196–7

libraries
Ethernet 113, 116
networks 109–11

MHP standard 80–2
miscellaneous monitor/control

41
networks 41, 108–11
operating system 41–54
OSI model 108–9
PCMCIA Flash Memory Card

35
POSIX 71
virtual 41

Dhrystone programs 19
digital televisions (DTVs)

audio data path 80
embedded device 74
set-top box 76
standards 76, 77
transport data path 79
video data path 79

Digital Video Broadcasting (DVB)
76

direct addressing (file systems) 221
directories

creating 232
removing 234
vxWorks 235

disks (hardware storage medium) 21
distributed component object model

(DCOM) 5, 329, 334
distributed computing environment

(DCE) 5, 329, 334
distributed transaction

message oriented middleware
5, 330–5

message oriented/distributed
messaging 329

summary 339
do-it-yourself middleware software

best practices 348–9
complication of design 347
features 347
lines of code 347
programming language 347
software design patterns 350

double-indirect addressing (file
system) 221

double-indirect block 221
driver interface layer 195, 196–200

drives (hardware storage medium)
20

Duplex serial handshaking 106–7
duration (earliest deadline first) 290
dynamic adaptive compiler (DAC)

272, 273, 301

E
earliest deadline first (EDF)

scheduler 290
electromagnetic waves (unbound

medium) 100
electronic program guides (EPGs) 86
email

body 174
envelope 174
header 174

embedded compiling (Java) 259–60
Embedded Microprocessor

Benchmark Consortium
(EEMBC) 19

embedded middleware software
1, 11

embedded system design
(middleware and ‘ making
sense’) 343–4

Embedded Systems Conference
(ESC) 61

Embedded Systems Model
components 11–12
database design 316
file systems 192
virtual machine 261

Embedded Systems Architecture:...
10

emergency services standards and
middleware 59

‘end of mail data’ (QUIT) 175
energy and oil standards and

middleware 60, 65
enhanced broadcasting MHP

standard 86
envelope (email) 174
Ethernet device driver public

library (vxWorks) 114, 116
events (point-to-point protocols)

124–6
executable object file 258
execution engine

query compiler 319

Index

391

real-world database system
model 317

virtual machine 262
extent list (file systems) 221
extent-based addressing (file

system) 221
external Linux inode sample source

code (file systems) 228
extremeDB (database) 326–7

F
fairness (scheduling algorithm)

286
File System Operation API layer

195, 232
File Allocation Table (FAT) 198
file definition 191
file system core layer 195
file system operation (API) 195
file system-specific data 194
file systems

access 191–2
Application Programming

Interfaces 192
architecture model 194
atomic transactional 250
control block 208
data

core layer 208, 232
cores and embedded

devices 231–2
directories 208–20,

227–30
driver interface layer

196–200
file descriptor structure

management
208–20

management 195, 208,
221

operation API layer 232
operations 232
OS specific layer

200–208
storage management

221–7, 234
Datalight Reliance 249
description 199
device driver layer (vxWorks)

196

double-indirect block 221
driver interface layer 193,

195–200
Embedded Systems Model 194
extent list 221
external Linux inode source

code 207, 228
indirect block 221
inode data structure 206–7
Linux and JFS 44
log management 208, 210
metadata 206, 208
OS specific layer 200–208
purpose 194
raw (unstructured) files 193
reference model 210, 232
reliability 249–52
stability 249–52
standards 192
structured data files 193
summary 252
vxWorks 45
see also JFS (journaled file

system)
File Transfer Protocol (FTP)

commands/reply codes 168
high level 166, 167
integration brokers 339
network 166–7
open source example 168
ports 154
RFC959 166
server application 251, 252
standalone application 166

first in first out (FIFO)
data swapping 325
queues 332

flag bytes 121
flag field (IP fragmentation) 144–5
flags (IP fragmentation) 144–5
FlashFx libraries 198–9
flexibility/scalability (goals for

middleware) 2
formatted USB flash memory 24
fragment offset field (IP

fragmentation) 144
frame check sequence (FCS) 121
frames (data-link) 108
frequency (earliest deadline first)

290

G
Ganssle, Jack 9
garbage collector (GC)

algorithm 297
collection 297
Java 293–4
memory allocator 294
.NET Compact Framework

262
virtual machine 273, 293–8

general database system model
317–18

General File System Model 195
general purpose

ISA 18
standards and middleware

60, 67
generational garbage collection

algorithm 297
Generic Connection Framework

CLDC 268
connection class 270, 272

glossary 367–87
goals for middleware

adaptive 2
connectivity/

intercommunication 2
flexibility/scalability 2
portability 2
security 2

graphical user interfaces (GUIs)
259

Graves, Steve 312

H
Half Duplex serial handshaking

106–8
hard disks

hardware 22–4
heads 22
low level format 23
platters 22
Seagate 27–8
tracks 23
Western Digital 25–6

hardware
database design 315–16, 327
databases 355
delays/problems 15
embedded middleware 11

Index

392

hard disks 22–4
input/output 17–19, 108–9
Java Virtual Machines 301
memory 17
.NET Compact Framework 301
networks

input/output 104–5,
108–11

physical layer 103–8
serial v. parallel I/O

106–8
operating system 41
physical layer 103–5, 108
processor design 17–19
storage differences 20–2
systems software 15, 102–11
understanding 15
USB flash memory 24–9
virtual machines 261–2

hardware storage mediums
blocks 22
disks 21
drives 21
raw files 21
sectors 22
tracks 22

HarmonicEvent Task 284
hash-table structure (directories) 227
hashing algorithms (databases) 322
Havi XLet

flow example (MHP) 89
source example (MHP) 90

headers
email 174
OSI network models 96

heads (hard disks) 22
high-level data-link control

(HDLC) 120
high-level integration broker 339
high-level message-oriented

middleware 330
high-level programming language

256, 260, 300
holistic view to demystifying

middleware
alignment behind leadership

343
big-bang 342
Capability Maturity Model

Integration 343

code-and-fix 342
conclusions 354–6
discipline in development

341–2
hybrid iterative methods 342
hybrid spiral 342
integrity in team 343
making sense 343–4
more than technology 341
off-the shelf middleware or

do-it-yourself? 344–54
rational unified process 342
scrum 342
software development 342–3
strong ethics 343
systems integration, testing

and verification 352–4
teamwork 343
test driven development 342
waterfall 342
XP 342

home office automation standards
and middleware 60, 63

host groups (IP address) 143
host system (programming) 257
‘HTTP adaptor’ and integration

brokers 339
hybrid networks 101–2
Hypertext Transfer Protocol

(HTTP)
1.1 protocol 175
client and server application

175–88
methods 177–8
open source example 179–88
ports 154
programming language 256
reply codes 175
standalone application 166
Transmission Control Protocol

177, 188

I
in-memory database system

(IMDS) 326
indexing algorithms (databases)

322
indirect addressing (file systems)

221
indirect block (file systems) 221

industrial automation and control
standards and middleware 60,
65

industry-specific standards 68
information field 121
inheritance classes (record-based

databases) 313
input/output (I/O)

APIs and networks 111–16
boards 16
bus (subsystems for networks)

105
device drivers (MHP) 81
hardware 17–19, 104
parallel networks 108
subsystems 19
see also cache blocked input/

output
input/output (I/O) network codes

acquire 110
disable 110
enable 110
installation 109
read 110
release 110
shutdown 110
startup 109
uninstall 109
write 110

Instruction Set Architecture (ISA)
application-specific 18
general purpose 18
instruction-level parallelism 18
MIPS 19

instruction-level parallelism, ISA 18
integration broker

authentication and security
337–9

ecosystem 337–8
file transfer protocol 339
high level 338
HTTP adaptor 339
message-oriented middleware

4, 330, 338
Object Request Brokers 339
summary 339
TCP listener 338

interactive (MHP standard) 86
Interface Description Language

(IDL) 335

Index

393

internet access (MHP standard) 86
Internet Assigned Number

Authority (IANA) 143
internet header length (IHL) 144
internet identification (ID) 144
Internet Inter-ORB Protocol (IIOP)

334
Internet Network Information

Center (InterNIC) 143
Internet Protocol Control Protocol

(IPCP) 124
Internet Protocol (IP)

addresses
classes 142
description 142
host groups 143

fragmentation mechanism
143–52

networks 141–3
open source example 146,

147–52
interpretation (programming

language) 259
interpreter (scripting languages) 259
InterruptEvent Task 284

J
Java 2 Micro Edition (J2ME)

CDC
networking APIs 267–8
package example 268, 270
sockets and JVM 268, 271

CLDC
APIs 266–7, 268, 272
embedded systems 268
pJava APIs 265
sockets and JVM 268, 271

devices 73
software design pattern 352
virtual machines 264–5

Java
API libraries 72, 262, 264
APIs 72, 81, 83
application 302
embedded compiling 259–60
garbage collection 293–4, 297
One (tradeshow) 61
programming language 348–9

APIs 72
garbage collector 293

high-level 256
machine code 259
programmers 301
WAT/AOT 277

servlet (Xlet) 86
standards 72
tasks 284
virtual machine 260

Java Authentication and
authorization support (JAAS)
5, 330

Java Beans (TP) Monitor 5, 330
Java messaging services (JMS) 4,

329
Java Virtual Machines (JVMs)

authentication and security
335–7

byte-code interpretation 301
embedded 2–3, 73, 262
hardware 301
implementation 260
internal components 262–3
Jbed 285
loader 298–300
MHP standard 81
middleware 2–3, 11
Net Compact Framework 73,

75
network protocols 103
pJava 265–6
programming language 72
scheduling 319
sockets 266, 268
summary 302–3
system software 73

java.awt graphical library 270
java.net API 265–7
Javascript (programming language)

259, 260
Jbed

earliest deadline first 290
Java Virtual Machines 285
kernel and states 287
real time operating system 285,

290
scheduling 290
tasks 284–5, 290

JFS (journaled file system)
B+ tree directory source code

229, 230

device driver layer 195,
198–201

directory operations 235, 243–5
IBM 210
inode

extent addressing 224,
226–7

operations 208–13
log manager 215–20
open source 200, 235
source code and extent

addressing 225
source example with Linux

kernel cells 204–5
Usage and Linux File System

Interface 44
JoinEvent Task 284
JSQL (programming language) 309,

310, 319
jthreads

central processing unit 292–3
Kaffe open source JVM 286,

288, 290–1
priority inversion 292
priority and RMS 292–3
starvation 291

just-in-time (JIT)
algorithm 272, 277
compiler 273, 278, 301
Kaffe compiler 278, 279–82

K
Kaffe

class loader 299–300
GC memory allocation 294–5
java.awt APIs 270, 273–6
JIT compiler

byte code analysis 278
instruction translation 278
linking 278
translate function 278,

279–82
jthreads 286, 288
JVM open source 264, 270
mark and sweep garbage

collection algorithm 297
open source JVM and threads

290
priority-preemptive scheduling

290, 291

Index

394

kernel and operating system 34,
39, 41, 111

L
least recently used (LRU) and data

swapping 325
length field (LCP frame) 123
libraries

base class 262
device drivers 110–13, 116
Ethernet 110–12, 113, 116
file system operation API layer

195
FlashFx 198–9
Java APIs 72, 262, 264
OS and protocols 111–16
VM and APIs 262

linear names (directories) 227
lines of code (LOC) and do-it-

yourself middleware software
347

link control protocols (LCP) 120,
121, 123

Linux File System Interface (JFS
Usage) 44

loader (virtual machine) 262,
298–300

local area networks (LAN)
description 99
hybrid networks 101–2
protocols 99–100, 116
WAN comparison 99–100

log management
file systems 209–10
JFS 243

logical link control (LLC) 119
low level format (LLF), hard disks

23

M
machine code (programming

language) 256, 258
macros (programming language)

257
mail transfer agent (MTA) 174
mail user agent (MUA) 174
‘making sense’ of middleware

344–7
manipulation (databases) 308
mark and sweep garbage collection

algorithm 296–7
no compaction 296

market-specific middleware (MHP
standard) 74–91

master processor’s integrated
network (I/O subsystems) 105

maximum segment size (MSS)
160, 162

media access control (MAC) 119
medical standards and middleware

60, 65
memory

database design 327
device drivers (MHP) 81
hardware 17
management scheme

(operating system) 40
MHP standard 78
virtual machine 293–4,

298–300
memory map

amount of memory 20
design 20
location of memory 20
performance 20
type 20

message
brokers 4, 329
oriented middleware 329
queues 4, 329

message oriented/distributed
messaging
authentication/security 330
common object request

brokers 330
Data Access Object

Frameworks 5, 330
distributed

component object model
329

computing environment
329

transaction 329
integration brokers 330
Java

Authentication and
Authorization
Service 330

Beans Monitor 5, 330
messaging services 4, 329

message
brokers 329
oriented middleware 329
queues 329

message queuing middleware
331

middleware 4
object request brokers 5, 330
remote method invocation 333
remote procedure call 329
simple object access protocol

329
summary 339
transaction processing 329

message queuing middleware
(MQM) 331–2

message-oriented middleware
(MOM)
APIs 330
client server/peer-to-peer

architecture 330
communication 330
distributed transaction 330–5
high-level diagram 330
integration brokers 338–9
message transmission 330
middleware 329
transactional middleware and

RPC 332–4
metadata (database system) 307
Microsoft (Common Language

Specification) 261
Microsoft Intermediate Language

(MSIL) 261–2
millions of instructions per second

(MIPS) 19
miscellaneous monitor/control for

device drivers 41
models for networks 94–8, 102–3
moderator (team member) 354
moving files 234
MulticastSockets 266–8
multimedia home platform (MHP)

standard
APIs 83, 85
application manager 91
components 83–91
device drivers 80–2
Digital Video Broadcasting 76
embedded Java 348

Index

395

enhanced broadcasting 86
interactive 86
internet access 86
memory 78
power 78
services 86
sub-standards 83–6
system requirements 77–83

multiple file systems in embedded
systems 11–12

multiple middleware components 54
multitasking (virtual machine) 284

N
.NET Compact Framework

common language runtime
262

framework components 263
hardware 301
Java Virtual Machine 73, 75
summary 302–3
virtual machine 260–1

net Silicon ARM 7 reference board
16

network control protocols (NCP)
121, 123

network id 143
networks

clients 101
controller (I/O subsystems)

105
description 93–4
device drivers 41, 108–11
embedded systems model

102–3
File Transfer Protocol 166–7
hardware 102–11
HTTP client and server

application 173–88
hybrid 101–2
I/O

APIs 111–13
subsystems 108–9

Internet protocol 141–3
LAN v. WAN 99
layer middleware 140
middleware 54
models 94–8
open systems interconnection

94–8

OS and protocol libraries
111–13

overall architecture 98–102
peer-to-peer v. client-server

101–2
physical medium connecting

embedded device 98
point-to-point

protocols 120–30
pseudocode example

130–39
protocols 93, 100–1, 102–4
serial v. parallel I/O 106–8
servers 101
session layer 164–5
Simple Mail Transfer Protocol

and Email 174–5
stacks and applications 160–88
standards and middleware

60, 66
summary 188–9
system software 102–11
transport layer middleware

152–4
UDP v. TCP 154–62
upper data-link layer 118–19
wired v. wireless 99–101

non-preemptive scheduling
algorithm 288

not recently used (NRU) and data
swapping 325

O
object files (execution) 258
Object Management Group (OMG)

334
Object Request Brokers (ORB)

integration brokers 337–9
message-oriented middleware

4, 330–2
summary 339

object-oriented databases 307–14
object-relational databases 313
objects (databases) 313
off-the shelf middleware or do-it-

yourself?
holistic view 344–7
keys to success 347–51
systems integration, testing

and verification 352–4

OneshotTimer Task 284–5
Open Systems Interconnection

(OSI) network
distance between devices 98,

99
models

data 97
device drivers 108–11
embedded systems 96
headers 96
middleware 94–5, 116,

117
TCP/IP 97–8, 120
tools 93

summary 188–9
WAN v. LAN 99

open-source
Ethernet driver library

111–12, 114
Perst B+ tree source code

323–4
Perst query translation source

code 319–21
opening files 234
openMHP org.havi.ui source 83–4
operating system (OS)

APIs 68, 111
APIs and device drivers 111
application programming

interface 41
components 41, 43, 111, 116,

162
device drivers 41–54
embedded systems 34–41,

111
file systems/specific layer

200–8
hardware 41
interface 41
internal design 40–1
kernel 34, 39, 41, 111
layer 195
networks

I/O APIs 111–13
protocol libraries 111–13

permutations 113
POSIX 68
purpose 34
standards 68
tasks 39–40

Index

396

USB flash memory 24
virtual machines 255
vxWorks 114, 115

overhead (scheduling algorithm) 286

P
packet

asychronous transmission 106
term 140

parallel data and physical layer
(hardware for networks)
104–5

parallel networks I/O 108
partition layer in CBIO 52–3
PCMCIA Flash Memory Card

device driver 35
peer-to-peer

architecture 101–2, 334
client-server comparison 101–2

Peopleware 9
performance

database design 326
operating system 40

PeriodicTimer Task 284
PERL (programming language)

259
Perst

database 314, 316–17, 319
open-source

B+ tree source code 323–4
query translation source

code 319–21
physical cabling (bound wiring)

99–100
physical layer and hardware

103–4, 108
pJava (Personal Java)

Application Programming
Interface 267

client/server sockets 266
J2ME sample APIs 72, 74
Java Virtual Machines 265–6
Real Time Core Specification

264
software and JVMs 264–5

platters in hard disks 22
point-to-point communication 152
point-to-point (PTP) protocols

120–30
actions 128–9

authentication protocols 120
data-link protocol handshaking

120
encapsulation mechanism 120
events 124, 126–8
LCP pseudocode

ACK-received 136
ACK-sent 137
closed 131
closing 133
initial 130
opened 138–9
request-sent 135
starting 131
stopped 132
stopping 134

network control protocols 121
phase table 121
state 124–5

police standards and middleware 59
portability (goals for middleware)

2
portable operating system interface

(POSIX)
device drivers 71
standards 68–70
vxWorks 70

ports
File Transfer Protocol 154
Hypertext Transfer Protocol

154
sockets 154

power (MHP standard) 78
preemptive scheduling algorithm

288
preprocessing (programming) 257
presentation layer, protocols 164–5
priority inversion 292
priority-preemptive scheduling

JThread starvation 291
priority inversion 292
thread priority 292
virtual machine 291

process (virtual machine) 283
processor design 17–19
processor performance

availability 18
benchmarks 19
recoverability 18
reliability 18

responsiveness 18
throughput 18

program (virtual machine) 283
programming language

assembly 256, 258, 300
C 71, 255–7, 293, 300, 312,

348, 351
C# 73, 260, 293, 301
C++ 256–7, 312, 348
compilers 257–8
cross-compilers 258
debugging in house 349, 351
do-it-yourself middleware

software 347
evolution 72, 256
high-level 256, 260
higher-level 300
HTTP 256
interpretation 259
Java 72, 256, 259, 277, 293,

301, 349, 350
Javascript 260
JSQL 319
low-level 256
machine code 256, 258
macros 257
Microsoft Intermediate

Language 261
PERL 259
preprocessors 257
scripting 259
SQL 256, 307, 312
standards 68, 71–2
virtual machines 255–9, 261
Visual Basic 260

programming middleware 17–19
protocol field 120
protocols

data-link layer 115, 118
local area networks 118
networks 93, 100–1, 102–4
point-to-point 120–30
presentation layer 165–6
transport layer middleware

152–4
wide area networks 118

Q
query compiler

execution engine 319

Index

397

real-world database system
model 317, 319

query language 308, 310
queues

first in first out 332
message 4, 329

R
RAM

database system 306
file systems 191
storage management 221

Rate Monotonic Scheduling (RMS)
292–3

raw files
hardware storage mediums 21
unstructured 193

reader (team member) 354
reading

directories
creating/initializing file

systems 235
file system verification

235
mounting the file system

235
unmounting the file

system 235
files 232

Real-time Embedded Systems
Conference 61

real-world database system model
buffer/storage management

317, 325
execution engine 317
general database system

317–18
Perst open-source query

translation source code
319–21

query compiler 317, 319
resource manager 317, 321–5
transaction manager 317–18

real-world designs and application
layer (databases) 325–6

record-based databases
hierarchical 312
object-oriented comparison

307–14
Perst database 314

trees 312–13
recoverability (processor

performance) 18
relational databases

model 307, 313
underlying file system 322

reliability
file systems 249–52
processor performance 18

reliable connections 155
Reliance embedded file system

(Datalight) 198
Remote Method Invocation 329
remote method invocation (RMI)

message oriented messaging
4, 329

message oriented middleware
330–2

object request brokers 334–5
remote procedure call (RPC) 5, 329

authentication and security
337, 339

removal
directories 234
files 234

renaming files 232
request message (HTTP client) 177
resource manager (real-world

database system model) 317,
321–5

response message (HTTP server)
177

response time (scheduling
algorithm) 286

responsiveness (processor
performance) 18

resume task (virtual machine) 286
RFC768 User Datagram Protocol

154
RFC793 Transmission Control

Protocol 154
RFC959 File Transfer Protocol 166–7
RFC2821 Simple Mail Transfer

Protocol 174–5
RFC5531 Remote Procedure Call

Protocol 332–4

S
scheduling

algorithm 286, 288

earliest deadline first (EDF)
290

Java Virtual Machines 319
notes 293
operating system 40
real-world database system

model 317–25
scripting languages

HTML 259
interpreted programming

language 259
interpreter 259
Javascript 259
PERL 259
properties 259

Seagate Hard Disk 27–8
second chance and data swapping

325
sectors

hardware storage mediums 22
USB flash memory 24

security (goals for middleware) 2
segments (data) 155
serial data and physical layer

104–5
serial handshaking

Duplex 106
Half Duplex 106
Simplex 106

serial peripheral interface (SPI) 108
serial v. parallel networks I/O

106–8
servers and networks 101
ServerSockets 268
services MHP standard 86
servlet (XLet)

flow example 87
Havi flow example 89
Havi source example 90
source example 88

session layer, networks 164
set-top box (STB) 76, 348
Simple Mail Transfer Protocol

(SMTP)
commands/reply codes 174
email 174
pseudocode example 175
standalone applications 166

simple object access protocol
(SOAP) 4, 329

Index

398

Simplex (serial handshaking) 106
Small Computer Systems Interface

(SCII) 22
socket (core communication

mechanism) 153–4
sockets

constructors 267, 269
DatagramSockets 266–8
J2ME CDC-based JVM 268,

271
ServerSockets 268
stream 267–8

software design patterns
do-it-yourself middleware

software 347–51
Java 2 Micro edition 350

space standards and middleware 59
spawn threading 285
SQL (structured query language)

programming language 256
query and table 311
relational algebra 307
relational database model 313

stability of file systems 249–52
standards

digital televisions 76, 77
embedded systems 68–74
file systems 191
industry-specific 68
Java 72
multimedia home platform

74–91
operating system 68
POSIX middleware layer

68–9
programming language 68–74
space 59

standards and middleware
aerospace 59, 62
automotive 60, 62
commercial 60, 62–3
consumer electronics 60, 63–4
defense 59, 62
emergency services 59
energy and oil 60, 65
general purpose 60, 67
home office automation 60,

62–3
industrial automation and

control 60, 65

medical 60, 65
networking and

communication 60, 66
police 59
space 59

starvation (scheduling algorithm)
286

states
databases 312, 313
point-to-point protocols

120–30
virtual machine 286

storage and buffer manager (real-
world database system) 317,
325

storage differences in hardware
20–1

stream sockets 267–8
structured data files 193
structured query language (SQL)

312
Sun Microsystems

pJava 1.1.8 264
pJava standards 264–5
Real Time specification for

Java 264
suspend task (virtual machine) 286
synchronous serial communication

108, 120
systems integration, testing and

verification
code inspections 353–4
development/debugging tools

351
team members 353–4

systems software
Embedded Systems Model 11
hardware 15, 102–11

T
tables (relational database model)

307–8
target system (programming) 257
task control block (TCB) 285
tasks

blocked/waiting state 286
JBed 290
ready state 286
running state 286
virtual machine 283

‘TCP listener’ and integration
brokers 338

team members (systems integration,
testing and verification)
353–4

technical foundation for
middleware 10–12, 15–54

Texas Instruments digital television
78

threads
Kaffe open source JVM 286,

290
virtual machine 283–4

throughput
central processing unit 17
processor performance 18
scheduling algorithm 286

total length (version field) 144
tracks

hard disks 23
hardware storage mediums 22

transaction manager (real-world
database model) 317–18

transaction processing (TP) 5, 330
transactional file system (TRFS)

210, 214
Transmission Control Protocol

(TCP)
header fields 161
Hypertext Transfer Protocol

175, 186
I/O model 104, 120
Internet Protocol (TCP/IP)

97–8
IP stack 162
packet diagram 160
RFC793 154–5
Simple Mail Transfer Protocol

174
states and handshaking

diagram 162
transport layer protocol 266
window sizes 164

transmission medium for networks
I/O subsystems 108
wired v. wireless 99–101

transmission protocol (TP),
monitors 338

transport data path (digital
televisions) 79

Index

399

transport layer
data-flow 154
networks 152
UDP v. TCP 154–62

trees (record-based databases)
312–13

turnaround time (scheduling
algorithm) 286

U
unbound (wireless) networks

99–100
Uniform Resource Locator (URL)

175, 177
unreliable connections 155
unstructured (raw) file systems 193
upper data-link layer 116, 118
USB flash memory

Baby USB Memory Stick 29
capacity 24
formatted 24
hardware 24, 29
operating system 24
other names 24
sector size 24

user content data 195
User Datagram Protocol (UDP)

open source example 154–7
packet diagram 160
RFC768 154–5
TCP comparison 154–62
transport layer protocol 266

UserEvent Task 284

V
version field 144
video data path (digital televisions)

79
video device drivers (MHP) 82
virtual device drivers 41
virtual machine (VM)

API 261, 262–72
architecture 261–300
design choices 301
embedded operating system

262

embedded relative to
application layer 300–2

Embedded Systems Model 261
execution engine

embedded/scheduling
286–93

garbage collector 273
multitasking 284
process 283
program 283
resume task 286
scheduler 286
states 286
suspend task 286
task 283
tasks v. threads 278–86
threads 283

garbage collector 293–4
hardware 261–2
Java 2 Micro Edition 264
Kaffe JVM open source 264
loaders 262
memory management

garbage collector 293–4
loader 298–300

middleware 255–303
.NET Compact Framework

73, 75, 260–3
operation system 255
performance optimization

301–2
priority-preemptive scheduling

291
programming language 255–61
software 262
summary 302–3
threads 286, 290

Visual Basic (programming
language) 260

vxWorks653
protracted application with

partitions 71
Application Programming

Interfaces 235
ATA Device Driver Public API

37–9

block device driver 49–50
CBIO

I/O interface 41
interface 195–6
library 46–7, 51

configuration 48
databases 325–6
directories 235
Ethernet device driver public

library 113, 116
file system

device driver layer 195
interface 45

FlashFx libraries 198
networking stack 162
networks component

parameters 162
operating system 113, 116
POSIX 70
Reliance embedded file system

(Datalight) 250
transactional file system 214

W
way-ahead-of-time (WAT)

algorithm 272, 277–8
compiler 278, 301

Western Digital Hard Disk 25–6
Whetstone programs 19
wide area networks (WAN)

description 99
hybrid networks 101–2
LAN comparison 99
protocols 99–100, 118

WinCE device 73
WindRiver

CBIO layer 197
embedded operating systems

355
server application 251

wired v. wireless networks
protocols 99–101
transmission medium 99–101

World Wide Web (WWW)
Consortium 175

writing to files 234

Index

400

	Demystifying Embedded Systems Middleware
	Copyright
	Contents
	About the Author
	Chapter 1 - Demystifying Middleware in Embedded Systems
	Chapter Points
	1.1 - What is the Middleware of an Embedded System?
	1.2 - How to Begin When Building a Complex Middleware-based Solution
	1.3 - Why is a Strong Technical Foundation Important in Middleware Design?
	1.4 - Summary
	1.5 - End Notes

	Chapter 2 - The Foundation
	Chapter Points
	2.1 - A Middleware Programmer’s Viewpoint – Why Care about Processor Design and I/O?
	2.2 - The Memory Map, Storage Mediums, and Middleware
	2.3 - Device Drivers and Middleware
	2.4 - The Role of an Embedded System’s Operating System and Middleware-specific Code
	2.5 - Operating Systems and Device Driver Access for Middleware
	2.6 - A Brief Comment on Multiple Middleware Components
	2.7 - Summary
	2.8 - Problems
	2.9 - End Notes

	Chapter 3 - Middleware and Standards in Embedded Systems
	Chapter Points
	3.1 - What are Standards for Middleware Software?
	3.2 - Real-world Middleware Standards Implemented in Embedded Systems
	3.3 - The Contribution of Standards to an Embedded System
	3.4 - Market-specific Middleware and the MHP (Multimedia Home Platform) Standard Example
	3.5 - Summary
	3.6 - Problems
	3.7 - End Notes

	Chapter 4 - The Fundamentals in Understanding Networking Middleware
	Chapter Points
	4.1 - Step 1 to Understanding Networking Middleware: Networking Models
	4.2 - Step 2 to Understanding Networking Middleware: Understanding the Overall Network
	4.3 - Step 3 to Understanding Networking Middleware: Understanding the Underlying Hardware and System Software Layers
	4.4 - An Embedded OS and Networking I/O APIs
	4.5 - Step 4: Networking Middleware
	4.6 - Step 5 Putting it All Together: Tuning the Networking Stack and the Application Requirements
	4.7 - Summary
	4.8 - Problems5
	4.9 - End Notes

	Chapter 5 - File Systems
	Chapter Points
	5.1 - What is a File System?
	5.2 - How Does a File System Manage Data?
	5.3 - File System Data and the File System Reference Model
	5.4 - Remembering the Importance of File System Stability and Reliability
	5.5 - Summary
	5.6 - File System Problems
	5.7 - End Notes

	Chapter 6 - Virtual Machines in Middleware
	Chapter Points
	6.1 - The First Step to Understanding a VM Implementation: The Basics to Programming Languages1
	6.2 - Understanding the Elements of a VM’s Architecture1
	6.3 - A Quick Comment on Selecting Embedded VMs Relative to the Application Layer
	6.4 - Summary
	6.5 - Problems
	6.6 - End Notes

	Chapter 7 - An Introduction to the Fundamentals of Database Systems
	Chapter Points
	7.1 - What is a Database System?
	7.2 - Record-based versus Object-oriented Database Models
	7.3 - Why Care About The Different Database Models?
	7.4 - The Fundamentals of Database Design: The First Steps
	7.5 - Real-world Database System Model
	7.6 - Utilizing Embedded Databases in Real-world Designs and the Application Layer
	7.7 - Summary
	7.8 - Problems
	7.9 - End Notes

	Chapter 8 - Putting It All Together
	Chapter Points
	8.1 - Message-oriented Middleware and Distributed Transaction
	8.2 - Authentication and Security Middleware
	8.3 - Integration Brokers
	8.4 - Summary
	8.5 - Problems
	8.6 - End Notes

	Chapter 9 - The Holistic View to Demystifying Middleware
	Chapter Points
	9.1 - Does using Middleware in your Embedded System Design Actually ‘Make Sense’?
	9.2 - Buy an Off-the-shelf Middleware Solution or Do-it-yourself?
	9.3 - Conclusion – See the Pattern Yet?
	9.4 - End Notes

	Appendix A - Abbreviations and Acronyms
	Appendix B - Embedded Systems Glossary
	Index

