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“No one shall be subjected to arbitrary

interference with his privacy, family, home or

correspondence, nor to attacks upon his

honour and reputation. Everyone has the

right to the protection of the law against such

interference or attacks”

Article 12 of Universal Declaration of

Human Rights (1948)





Foreword

As depicted in David Lodge’s celebrated novel Small World, the perceived size of
our world experienced a progressive decrease as jet airplanes became affordable to
ever greater shares of the earth’s population. Yet, the really dramatic shrinking had
to wait until the mid-1990s, when Internet became widespread and the information
age stopped being an empty buzzword. But small is not necessarily beautiful. We
now live in a global village and, alas, some (often very powerful) voices state that
we ought not expect any more privacy in it. Should this be true, we would have
created our own nightmare: a global village combining the worst of conventional
villages, where a lot of information on an individual is known by the other villagers,
and conventional big cities, where the invidual feels lost in a grim and potentially
dangerous place.

Whereas security is essential for organizations to survive, individuals and some-
times even companies also need some privacy to develop comfortably and lead a
free life. This is the reason why individual privacy is mentioned in the Univer-
sal Declaration of Human Rights (1948) and data privacy is protected by law in
most Western countries. Indeed, without privacy, the rest of fundamental rights, like
freedom of speech and democracy, are impaired. The outstanding challenge is to
create technology that implements those legal guarantees in a way compatible with
functionality and security.

This book edited by Dr. Javier Herranz and Dr. Jordi Nin is devoted to edge-
cutting data privacy technologies devised to cope with the huge automated private
data collection inherent to the information society. Indeed, electronic transactions
over the Internet, mobile phones, etc., result in vast amounts of data being collected
which add to the data traditionally collected by government agencies. If no special
protective action was taken, pooling all those data would allow creating fairly accu-
rate profiles of each citizen or consumer. Yet, the (avowable) purpose of data collec-
tion is not profiling specific individuals: rather, it is conducting statistical and/or data
mining analyses in view of extracting knowledge on general trends or relationships
between variables. Such analytical goals must be, and they actually are, compatible
with the privacy of the individual people or organizations to which the data relate.

The first part of the book gives an overview on privacy-preserving data manage-
ment. Then there is a part devoted to statistical disclosure control, which aims at con-
ciliating the utility of statistical data (whether microdata or tabular data) expected
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viii Foreword

by users with a sufficiently low disclosure risk required by respondents to whom
the data correspond. The last part of the book deals with preserving privacy in a
number of applications, like data mining, data sharing, and social networks. Hence,
the book is accessible and relevant to a broad audience, including statisticians, data
managers, data miners, privacy experts, and computer scientists in general.

For a long time already, it has been my pleasure to do research with the coeditors
and with several chapter contributors of this book. They are a fine blend of computer
scientists doing research in database security and privacy, academic statisticians
specializing in statistical disclosure control, and practitioners in data management
and software development. Knowing nearly all of them professionally, I have every
reason to expect that the reader will benefit from their proficiency and their commu-
nication skills in the area of private data management.

Tarragona, 6th January 2010 Josep Domingo-Ferrer
(The Three Wise Men’s Day) Chairholder

UNESCO Chair in Data Privacy
Department of Computer Engineering

and Mathematics
Tarragona, Catalonia
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Part I

Overview



Chapter 1

Introduction to Privacy and Anonymity

in Information Management Systems

Javier Herranz and Jordi Nin

Abstract This first chapter is thought as a quick guide to the reader of the book.
It contains a summary of the contents of each chapter. Before that, we explain
the motivations that led to the edition of this book, the importance of the topics
discussed in it, and the intended/expected audience.

1.1 Background and Motivation

The development of information technologies in the last years is unquestionable.
Large amounts of data are collected and stored by both public institutions and private
companies everyday. This collection of data has always a more or less specific goal.
A first example of such goal is security: information about people, purchases, trips,
personal communications, etc., is stored to decrease or detect possible security risks
for the societies or to implement control policies.

Another example of a goal when collecting data is more oriented to business.
Private companies collect information about clients, about other companies and
products, in such a way that they can classify or predict clients’ behaviors (data
mining), they can compare themselves with rival companies, etc. All this informa-
tion is useful to determine the market strategies to be followed.

Finally, a last canonical example of collection and storing of data is more related
to research goals. Medical institutions or statistical agencies, among others, collect
and disseminate data so that not only themselves but also external analysts can use
this data for research purposes, for decision making, or for any other use.

All these examples illustrate the benefits that a society can globally (or partially)
obtain from the development of information technologies. However, if no care is
taken when collecting, storing, and disseminating data, then there are clear threats
to the privacy of citizens. For example, if a hospital publicly disseminates data about

J. Herranz (B)
Department of Matemàtica Aplicada IV, Universitat Politècnica de Catalunya,
C. Jordi Girona 1-3, Mòdul C3, 08034 Barcelona, Catalonia
e-mail: jherranz@ma4.upc.edu

J. Nin, J. Herranz (eds.), Privacy and Anonymity in Information Management Systems,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-238-4_1, C© Springer-Verlag London Limited 2010
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4 J. Herranz and J. Nin

its patients, with the honest goal of helping pharmaceutical research and progress,
confidential information about illnesses and treatments of specific patients may be
leaked.

There is thus a delicate trade-off between the use of digital data (for security,
progress, research, competitiveness) and the privacy of the citizens. Many docu-
ments (from the Universal Declaration of Human Rights by the United Nations to
local laws) clearly protect the privacy of people, but the (non-) fulfillment of these
laws is not always easy to check or detect. Ensuring privacy for individuals in a
society, when dealing with digital information, is a task which involves many agents:
politicians, legal authorities, managers, developers, system administrators, etc.

This book deals with the most technical part of this “privacy cycle”, mostly
related to computer science: the process by which different privacy mechanisms
are motivated, designed, analyzed, tested, and finally implemented in companies
or institutions. The intended audience of the book is sparse, although more or less
centered around this technical area of computer science. On the one hand, any per-
son working as an analyst, developer, administrator, etc. in the computer science
department of a public institution or a private company which must deal with pri-
vate, confidential data should be potentially interested in reading (some parts of) the
book. The chapters are quite self-contained and are written with a very accessible
language, also for non-experts in the area.

On the other hand, researchers from universities or from R&D departments who
work in privacy and anonymity topics would clearly benefit from reading this book,
because it provides a quite wide perspective of different privacy problems and solu-
tions that are considered in real life today, in different scenarios.

1.2 Organization of the Book

Chapter 2 is really a great starting point for the book. After explaining the delicate
frontier between privacy and utility of confidential information, Alberto Trombetta,
Wei Jiang, and Elisa Bertino survey a large amount of techniques that are used to
anonymize data and to ensure privacy when different data mining operations are
performed.

The rest of chapters have been organized in two parts. Part II contains four chap-
ters dealing with the problem of statistical disclosure control (SDC): how to modify
data sets that contain statistical information before publicly releasing this modified
data set, in such a way that privacy of the confidential original information is pre-
served? Finally, Part III contains three chapters, each of them dealing with a specific
distributed application involving privacy: different agents have private inputs and
they want to cooperate to run some protocol in their own interest, without revealing
unnecessary parts of their private inputs.

1.2.1 Part II: Theory of SDC

Chapter 3, written by Mathias Templ and Bernhard Meindl, is a perfect combi-
nation of theoretical description of SDC protection methods and real implementa-
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tions of such methods, for both microdata and tabular data. This chapter is very
recommendable for both readers who want to have a first contact with SDC pro-
tection methods and developers who want to know how these methods have to be
implemented.

When a data set is protected by a SDC method and then published, there is
always a risk that intruders can combine this data set with other existing informa-
tion and extract confidential information. There are different approaches to measure
this risk.

Natalie Shlomo, in Chapter 4, and Silvia Polettini and Loredana Di Consiglio, in
Chapter 5, explain, discuss, compare, and analyze some of these approaches to esti-
mate or measure the risk associated to a protected data set. The results and recom-
mendations in these two chapters should be very important for statistical agencies,
hospitals, or any other public institution which has to release data, because a good
risk estimation must always be done before publishing a protected data set.

Whereas these three chapters focus mostly on microdata (that is, standard data
sets containing values for different variables of different records), Jordi Castro deals
with tabular data in Chapter 6. Tabular data is data that have been obtained from
standard data sets by crossing different variables; this kind of data representation
is very common in statistical research. A tabular data can also leak information
about the values of the original variables (before crossing). This chapter is a very
nice survey of different protection techniques and risk measures that are specific to
tabular data.

1.2.2 Part III: Preserving Privacy in Distributed Applications

Chapter 7 has been written by Vishal Kapoor, Pascal Poncelet, Francois Trousset,
and Maguelonne Teisseire. They consider the problem of sequential pattern mining
in a distributed scenario: different agents hold different parts of a database, and they
want to detect sequential patterns that appear very often in the global database, with-
out revealing anything else about the database. The authors describe and analyze a
solution for this problem, PriPSec.

David Galindo and Eric Verheul consider in Chapter 8 another practical situa-
tion involving privacy and different agents. Entities collect (confidential) data from
citizens into data sets and then construct pseudonymized versions of these data sets
that can be sent to analysts or researchers without compromising the privacy of the
citizens. Furthermore, some mechanisms can be added to allow some mining oper-
ations on different data sets. In particular, two different analysts holding different
pseudonymized data sets can obtain run a protocol to obtain the information about
citizens who are included in both data sets, without revealing the identity of these
citizens nor information about other citizens. The solutions described in the chapter
employ cryptographic primitives in a very comprehensive way.

The last chapter of this book is Chapter 9, written by Barbara Carminati and
Elena Ferrari. They consider one of the hottest topics related to privacy nowadays:
ensuring privacy when implementing access control policies in social networks. The
chapter presents a nice survey of the state of the art in this topic, by describing the
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general problem and the differences between traditional access control and access
control in online social networks. Authors discuss which privacy threats appear in
this context, how these threats are dealt with by existing proposals offering some
kind of privacy, and what is still to be done in this fascinating and currently very
active research area.



Chapter 2

Advanced Privacy-Preserving Data

Management and Analysis

Alberto Trombetta, Wei Jiang, and Elisa Bertino

Abstract The collection of large amounts of users’ sensible data by services
providers such as Google, Yahoo, or Facebook poses several relevant and challeng-
ing issues. A particularly relevant problem is how to ensure a suitable degree of
statistical analysis over such data without disrupting user privacy. Toward this end,
in the past few years several anonymization and privacy-preserving data mining
techniques have been proposed. In this work, we propose a survey of such method-
ologies and techniques with a particular focus on advanced topics, such as privacy
preserving management of time-varying anonymized data and privacy-preserving
data mining over distributed data.

2.1 Introduction

At the present days, it is widely accepted that data repositories represent an impor-
tant asset for many applications and thus their security is crucial. Data confidential-
ity is particularly relevant because of the value – not only monetary – that data have.
For example, medical data collected by following the clinical history of the patients
over several years may represent an invaluable asset that needs to be adequately
protected. Such a requirement has motivated a large variety of approaches aiming
at better protecting data confidentiality and data ownership. Relevant approaches
include query processing techniques for encrypted data and data watermarking tech-
niques. However, data confidentiality is not the only requirement to be addressed.

Nowadays, there is an increased concern for privacy. The availability of huge
numbers of databases recording a large variety of information about individuals
makes it possible to discover information about specific individuals by simply corre-
lating a certain number of available databases. Although confidentiality and privacy
are often used as synonyms, they are different concepts: data confidentiality is about
the difficulty (or impossibility) by an unauthorized user to learn any information
about data stored in the database. Usually, confidentiality is achieved by enforcing

A. Trombetta (B)
Dipartimento di Informatica e Comunicazione, Università degli Studi dell’Insubria,
Via Mazzini 5, 21100 Varese, Italy
e-mail: alberto.trombetta@uninsubria.it

J. Nin, J. Herranz (eds.), Privacy and Anonymity in Information Management Systems,
Advanced Information and Knowledge Processing,
DOI 10.1007/978-1-84996-238-4_2, C© Springer-Verlag London Limited 2010
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8 A. Trombetta et al.

an access policy and possibly using cryptographic tools. Privacy relates to what data
can be safely disclosed without leaking sensitive information about the legitimate
owner.

In the past years a wide variety of privacy-preserving techniques have been devel-
oped with the aim to making more difficult to link sensitive information to specific
individuals. At a fairly abstract level, most of the proposed techniques operate some
kind of transformation on the original data in order to perform privacy preservation.
Typically, such techniques add some noise or perform some kind of aggregation on
the original data in order to obtain an obfuscated version to be published, aiming
at reducing the risk of privacy loss. This obfuscation process results in somewhat
decreased data utility as well as in a decreased effectiveness in data management
tasks. This is an unavoidable trade-off between data utility and privacy. In this
chapter, we start by reviewing the two most relevant approaches used for such
anonymization task: the (i) randomization-based approach and the (ii) aggregate-
based approach, which will be briefly presented here and discussed in more depth in
Section 2.2.1 and in Section 2.2.2. We then proceed to review the various approaches
aimed at allowing some useful data analysis without disclosing private information.

Randomization-based anonymization techniques usually add noise (drawn from
some publicly known distribution) to the data in order to mask individual val-
ues. Therefore, such techniques are designed to derive aggregate distributions from
the perturbed individual values [9, 16]. Aggregate-based anonymization techniques
operate over the granularity of the original data. The granularity is usually reduced
by generalizing or suppressing carefully chosen values contained in the original data
records. In the k-anonymization approach, the resulting anonymized data are aggre-
gated into groups of at least k uniformly anonymized records having matching non-
anonymized values [38]. In this way, the identification of single record is prevented.
Subsequent enhancements – e.g., l-diversity approach [31] – of the k-anonymity
approach have addressed some of its weaknesses regarding the fact that preventing
the identification of single records does not necessarily amount to learn its sensitive
values.

Although such approaches – both randomization-based and aggregation-based
techniques – have brought significant advances of our understanding of how to
protect data in order to avoid privacy loss, nevertheless they make restrictive
assumptions as to whether anonymized data may change or anonymized data may
be distributed across multiple, disconnected repositories. This clearly limits the
effectiveness of the proposed approaches when applied in real-world scenarios, in
which data may vary (and such changes have to be reported in a consistent way
upon the anonymized version) or different organizations need to share and integrate
the anonymized versions of their own data. These issues have recently spurred an
intense research activity, whose results we survey in the second part of this chapter,
in Sections 2.3 and 2.4 respectively. The techniques developed for protecting the
privacy of time-varying data can be roughly divided into two broad groups, depend-
ing on whether data are continuously released in a stream and – consequently –
anonymized, or whether data are produced in subsequent releases and are to be
anonymized in order to prevent correlations among different releases.
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Concerning the privacy-preserving data analysis techniques we present in the
remaining part of this chapter, we consider the case in which the data set is verti-
cally or horizontally partitioned and the respective owners aim at extracting some
useful information from the entire data set without revealing their data. Various
kind of privacy-preserving data mining tasks can be performed, such as clustering,
association rule mining, decision tree computations, and set intersection [2, 8, 11].
The techniques adopted to ensure that no sensitive information is leaked during such
data mining tasks are mainly cryptographic ones (e.g., homomorphic encryption or
probabilistic encryption).

In Section 2.2 an overview of the main approaches deployed for anonymizing
static data sets is given; in Section 2.3, the main approaches and techniques address-
ing the anonymization of time-varying data sets are considered; in Section 2.4 a
survey of the main techniques for performing data analysis in a privacy-preserving
way is presented; finally in Section 2.5 we draw our conclusions.

2.2 Managing Anonymized Data

In the recent years many data anonymization techniques has been investigated in
order to preserve privacy. In the following, we survey the state of the art of the most
relevant models and algorithms for anonymizing a given data set.

We will consider two broad categories of methods for anonymizing data:
(i) randomization-based methods, (ii) group-based methods (of which k-anonymity
is the most widely known example).

2.2.1 Randomization-Based Anonymization Techniques

Randomization approaches for anonymizing data have been proposed in contexts
where it is acceptable to have imprecise, aggregate answers (up to a certain
level determined by privacy concerns) based on distorted data with noise coming
from certain, well-chosen probability distributions. Such approaches can be further
divided into additive-based and multiplicative-based.

The additive-based randomization approach for anonymizing a given data set is
the most widely adopted approach and it can be described in the following way.
Consider a set of data items DB = {t1, . . . , tn}. To every data item xi noise com-
ponent ni is added, drawn from a probability distribution fN (y). Each noise com-
ponent is drawn independently. The distorted data items are thus d1, . . . , dn , where
di denotes the perturbed data item ti + ni . It is usually assumed that the variance
of the probability distribution from which noise components are extracted is large
enough so that the original data items cannot by easily guessed from the distorted
data set. What is published is the distorted data set {d1, . . . , dn}. We denote with
O the random variable associated with the distribution of the original data items,
with N the random variable of the distribution of the noise components, and with



10 A. Trombetta et al.

D the random variable of the distribution of the distorted data items. The relation
linking such random variables is O + N = D (from which, of course, one deduces
O = D − N ). Remember that n samples – that is, the distorted data items – of
the distribution D are publicly known, as well as the distribution N of the noise
components.

The multiplicative-based randomization approach is an alternative way to distort
data items using noise components drawn from a probability distribution. The foun-
dational work in this area is [22], in which – given a data set represented as a set of
points in a (typically very high) multidimensional metric space – the authors show
how to perform transformations on such data set in order to obtain a corresponding
data set of reduced dimensionality in which the data items approximately maintain
the distances they have in the original data set. In this way, the data set having
reduced dimensionality can be used as an anonymized version of the original, high-
dimensional data set in data mining tasks.

Both the additive- and multiplicative-based randomization approaches suffer
from various kind of attacks aimed at reconstructing the distribution O of the
original data set starting from the approximate distribution D. Regarding the
additive-based approach, in order to learn information about the distribution of O

(corresponding to the original data items), one starts by collecting enough distorted
data items. In this way, for n large enough, the distribution of D can be well approx-
imated. After that, it suffices to subtract N from the approximate distribution of
D. There are various, more advanced techniques which are suitable for this task
such as the iterative methods discussed in [2]. Note, however, that one can learn
the distribution O of the original data set and individual record cannot be accessed.
With respect to the multiplicative-based approach, if the attacker has some a priori
knowledge about the original, non-anonymized data set – such as some linearly
independent records coming from the original data set and their corresponding per-
turbed counterparts – then using linear algebra techniques one can gain information
about the transformation. Similarly, if the attacker knows some records coming from
the same distribution from which the original data set is drawn, then using princi-
pal component analysis techniques information about the original data set can be
inferred.

Another randomization-based approach which does not fall into addition- and
multiplication-based approaches is data swapping. Assuming that the data set to
be anonymized is in tabular form, data swapping-based techniques shuffle sensitive
values among different rows in order to obfuscate the relationship between such
values and row identifiers. Still, such swapping preserves some useful statistics,
such as those found in the marginal tables. See [10] for a recent comparison of the
original proposal of data swapping with more recent techniques.

While subject to different kind of attacks, randomization-based approaches are
relatively simple to implement, since the anonymization is done on a single data
item basis. That is, the anonymization process is done by distorting a single data
item at time, in an independent way from all the others data items. This is not true
for other approaches that we will present later on, which require the entire data set
in order to yield a correct anonymization.
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2.2.2 Aggregation-Based Anonymization Techniques

Anonymization techniques based on perturbing data with random noise suffer from
two main drawbacks, namely that (i) it is extremely difficult to effectively obfuscate
outlier records and (ii) it is not considered the possibility that individual, obfus-
cated records can be re-identified using publicly available, background informa-
tion (this is particularly true in the case of outlier records). Therefore, a substantial
research effort has been done in order to devise anonymization techniques aimed at
aggregate anonymized data items into different, homogeneous groups. We will start
by presenting the first – and most widely known – aggregation approach, namely
k-anonymization. We then proceed to illustrate subsequent techniques proposed to
overcome some serious drawbacks of the k-anonymization approach.

2.2.2.1 The k-Anonymity Approach

This approach is motivated by the simple observation that a widely adopted
technique for anonymizing a tabular data set consists in removing some special
attributes, called unique key identifiers (e.g., social security numbers) from data
records. This however does not guarantee that the obtained records cannot effec-
tively re-identified. In fact, there is a class of attributes that can still be useful to
accurately pin down the identities associated with single records, usually having
access to background information. Typical examples of such attributes are age, sex,
and address. Such attributes are called quasi-identifiers and k-anonymization aims
at reducing the identifiability of data records by modifying the values stored in them.
More precisely, the k-anonymization technique transforms records from the original
data set in order to produce different groups of records such that, for every record in
each group, there are no less than k − 1 other records having the same values in the
quasi-identifier attributes. The attributes not considered as quasi-identifiers are left
unchanged and are usually called sensitive attributes. Having increased in this way
the granularity of the information stored in the original data set, the k-anonymized
data set is publicly released. Since its initial proposal, the k-anonymity approach has
been widely investigated and a comprehensive survey is [9].

Typically, the k-anonymization of a data set is performed through a generaliza-

tion process or – as an extreme case – a suppression process. Using generalization,
the data values contained in the quasi-identifiers are replaced with more general
values. For example, address information can be replaced with zip code, or age
information can be replaced with a year range. Suppression is an extreme case of
generalization, in which the original value is completely cancelled out. Methods
other than generalization and suppression can be deployed, such as clustering-based
techniques which replace quasi-identifier values within a group with a representative
value (usually the mean value).

The k-anonymization technique has been first proposed in [38], where domain

generalization hierarchies of the quasi-identifiers are introduced in order to out-
put k-anonymized versions of the original tabular data set. In the same work, the
authors propose the concept of minimal k-generalization, aiming at reducing as
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much as possible the information loss of the anonymized data set, while guaran-
teeing at the same time that such data set is k-anonymous. The problem of find-
ing a minimal k-anonymization of a tabular data set is a difficult one and in [33]
the authors prove that suppression-based k-anonymization is an NP-hard problem.
However, such problem can be efficiently solved using approximation algorithms
(as those presented in the last cited work) or heuristic-based methods, like the
ones presented in [25, 26]. Unlike heuristic-based methods, approximation-based
algorithms have precise measurements on how much approximate solutions are dis-
tant from optimal ones. At the moment, the best approximation-based algorithm
for k-anonymization is reported in [35] and it provides an O(log(k)) approxima-
tion. Regarding anonymization techniques based on methods other than generaliza-
tion, in [16] an approximation-based algorithm for clustering quasi-identifier values
is shown.

2.2.2.2 The l-Diversity and t-Closeness Approaches

The main drawback of the k-anonymization approach is that, while it is effective
in not allowing the re-identification of single records, it may well be the case that
a k-anonymized version of a data set still releases unintended information about
it. First, if the attacker has background information about the anonymized data set,
such knowledge can be used to extract useful information from such anonymized
data set (as in the case of the perturbation-based approach). Second, if within a
group all the (unmodified) values of a sensitive attribute coincide, then a very precise
information about such sensitive attribute is released. The l-diversity approach [31]
is such that – while guaranteeing that at least k records within a group have the same
value on quasi-identifiers – it guarantees that within a group at least l records have
different values on sensible attributes. As the number of sensitive attributes grows,
the task of finding a proper l-diverse version of the original tabular data set becomes
challenging, due to the dimensionality curse. Nevertheless, for reasonably low val-
ues of l (≤ 10), the performance is acceptable and with not much overhead with
respect to standard k-anonymization procedures. The l-diversity approach assumes
that the values of sensitive attributes are equally distributed. This is far from true, as
real data may be highly skewed. The t-closeness approach addresses this issue by
requesting that the distribution of a sensitive attribute as released in a anonymized
version of the data set is within a threshold t from its real distribution [27].

2.3 Managing Time-Varying Anonymized Data

All the data anonymization approaches and techniques presented in Section 2.2
assume that the anonymized data set do not change over time and – as such – it
is published only once. Clearly, this is a quite restrictive assumption in real-world
settings, in which data item may change or may be added frequently. Taking into
account time-varying data sets in the anonymization process poses several non-
trivial challenges ranging from preventing linkage of data items across different
anonymized data sets to keeping updated statistics about such anonymized data sets.
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Therefore, various research efforts have been made recently in order to propose
solutions to the problem of how to efficiently and effectively anonymize time-
varying data sets. Broadly speaking, the research efforts so far have focused on
two different scenarios describing how data may change. In the first scenario, data
are released in subsequent batches, each updating the preceding one, as discussed
in Section 2.3.1. In the second scenario (described in Section 2.3.2), the data set
is viewed as a stream in which every single data item may change in a continuous
way. Such scenarios present distinctive problems and different techniques has been
developed in order to cope with them, as we will see in the following.

2.3.1 Anonymizing Multiple Releases

When addressing the task of anonymizing different releases of a data set, possi-
ble approaches range from publishing the newly added – anonymized – data items,
once the original, anonymized data set has been published, to entirely re-anonymize
the updated data set. However, these solutions suffer from the following serious
drawbacks: in the former case, there is a substantial possibility of degraded data
quality. In fact, the major problem is that relatively small sets of data items are
anonymized independently. In this way, the anonymization process may incur in a
much more significant obfuscation of the data items compared to the one in which
all the newly added data items are anonymized at once. In the latter case, the entire
data set is re-anonymized whenever it is augmented with new data items. Although
this approach can be easily implemented by using existing techniques, it has a sig-
nificant drawback. In fact, even though each released data set – when independently
observed – is guaranteed to be anonymous, the combination of several released
data sets may be vulnerable to different kinds of inferences, allowing data item
linking across multiple anonymized data sets. Thus, non-trivial techniques are to
be devised to overcome these inferences. All the approaches we will consider in
the following assume that data are stored in tabular form. It is to be noted that
all the existing approaches addressing the problem of anonymizing time-varying
data set extend some aggregation-based (e.g., k-anonymity or l-diversity) approach
previously introduced.

In [51] the problem of preventing inferences able to link different data items
across multiple anonymized tables is addressed assuming that the tables’ attributes
in two separate releases are projections of a unique underlying table. That is,
two separate releases may share common attributes. Then the authors focus their
attention on unwanted information leakages that may happen when two different
released tables are joined. As such, an extension of k-anonymity, termed sequential

anonymity, is introduced in order to guarantee that two sequential releases of the
same data set (possibly defined over overlapping attributes) do not leak unwanted
information on the sensitive data. The basic idea behind sequential anonymity is
that, given two sequential releases T1, T2, the first release T1 is generalized in a
way that when joined with T2 the resulting table does not allow the re-identification
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of its data items. Since this approach generalizes the k-anonymity approach, the
authors show that finding an optimal generalization which is sequentially anony-
mous is NP-hard. Nevertheless, a greedy algorithm for finding minimal sequential
anonymizations is given.

In [52], the principle of m-invariance is introduced, which is a new,
generalization-based anonymization technique. Basically, m-invariance guarantees
that all the quasi-identifier groups which a data item is generalized to in different
releases are invariant in some precise way. Such anonymization approach is effective
toward arbitrary (deletions included) updates of the initially released table. In this
way, it is not possible to link different versions of the same data items contained in
successive releases of the original table.

In the case of incremental, successive releases [6] of an original table, the prob-
lem of identifying and preventing cross-release inferences is addressed. Toward
this end, a new generalization-based anonymity notion – called (k, c)-anonymity –
blending both k-anonymity and l-diversity is introduced. This new kind of
anonymization will then be used in order to anonymize every single release of an
initial table. Such anonymization is performed in order to withstand different attack
kinds, in which an attacker may dispose in different ways of the knowledge it has
about the data released in different versions of the released table. The different attack
kinds considered are difference attacks, in which the attacker may infer additional
information about data items in addition to that allowed by the (k, c)-anonymization
looking at data items contained in table release and not contained in another one;
intersection attacks, in which the inference of additional information is based on
the data items contained in the intersection of two different releases; record-tracing

attacks, in which the attacker is able to uniquely identify data items, starting from
the sensitive values contained in the anonymized versions of the data items. In order
to prevent such attacks, efficient algorithms for detecting whether a given sequence
of released table is subject to such attacks are presented.

In [12] a quite comprehensive set of possible attacks on two incremental, k-
anonymized versions T1, T2 of an original table are presented and formalized. An
attacker is supposed to have the following knowledge on such releases, namely every
data item in T1 corresponds to some data item in T2 but the reverse is not true, that
is, there is at least one data record contained in T2 and not in T1. Then, the following
attacks are formalized: In a forward attack, the attacker aims at uniquely identifying
a data item in T1, having knowledge of the data items contained in T2. In a cross-

attack, the attacker aims at uniquely identifying a data item in T2, knowing that
such data item has been originally released in T1. In a backward attack, the attacker
aims at uniquely identifying a data item in T2, having knowledge of the data items
contained in T1. It is then presented a generalization-based anonymization technique
that ensures that its output is resistant to the previously described attacks.

A different approach is taken in [48], which aims at detecting what are the views
over a unique, underlying table that leak unwanted information when joined and it
is shown that showing exactly those “unsafe” views is very hard to compute. More
specifically, this chapter addresses the problem of how to determine whether two
or more views over the same underlying table may yield unwanted disclosure of the
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information. k-anonymity is taken as a measure of how much information disclosure
is tolerated. That is, a set of views V1, . . . , Vu is k-anonymous over a unique, secret
table T (whose schema is publicly known) if the intersection of their results with
particular views called associations (that is, views over an identifier and a sensitive
attribute) contain no less than k elements. It can be shown that if the schema of
T does not contain functional dependencies, then checking whether a set of views
is k-anonymous can be done in polynomial time, with respect to the size of the
input views. Otherwise, in presence of functional dependencies, the checking has
very high complexity, namely it is Σ

p

2 -hard. On the positive side, the complexity of
checking k-anonymity becomes manageable (polynomial or easily approximable)
in several practical cases, such as in the presence of a single functional dependency
and without common attributes in the views, or when functional dependencies do
not influence k-anonymity views. However, the authors do not give suggestions on
how to prevent unwanted information leakages in this setting.

Finally, in [39] the problem of how to check in a privacy-preserving fashion
whether the addition of a new data item to an already released k-anonymous data
set disrupts its k-anonymity. This is done without accessing the actual content of the
to-be-possibly-added data item using cryptographic techniques. The proposed tech-
niques work for both suppression- and generalization-based k-anonymous data sets.

2.3.2 Anonymizing Data Streams

The main motivation behind the introduction of a data stream-based framework to
study anonymization approaches is that, in many relevant settings, data are fed in
a continuous way and it is not possible to continuously release new versions of the
entire data set. Compared to the previously described approaches, there are some
fundamental differences, namely, in a stream-based release of anonymized data
(i) data items are not republished in multiple versions (hence an attacker cannot
link different versions of the same data items); (ii) time is critical, in the sense as
a new data item should be anonymized and published as soon as possible; (iii) it
is not possible to deploy techniques scanning multiple times the entire data set (on
the contrary, all the previously described approaches assume as feasible). As such,
continuous privacy-preserving data publishing has recently been acknowledged as
a challenging problem and several works have appeared addressing the issues just
described. The totality of the works we consider present stream-based anonymiza-
tion techniques based on the k-anonymity approach.

In [28], a model of stream-based anonymous data publishing is presented, in
which every anonymized data item should be released within a specified time
deadline.

In [7], a stream clustering technique is used in order to form clusters on the fly,
while controlling the cluster size. Once a cluster contains at least k data items, it
can be generalized and released. On the other side, if all the data items contained
in a cluster of size less than k are approaching the time deadline, then such cluster
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is merged with some neighbor cluster, generalized, and then published in order to
meet the releasing time deadline. The problem of measuring the information loss
derived from a missed cluster release is not addressed.

In [23] a k-anonymization-based technique for a stream of data item is presented
in which the data loss is mitigated by deferring the release of a cluster, in the case
that such data loss is estimated to be high enough. The decision about deferring the
release or releasing an anonymized version of a data items’ cluster is taken by a
randomized procedure, which takes into account the distribution of the data items
so far appeared in the stream.

2.4 Privacy-Preserving Data Analysis (PPDA)

In this section, the key focus on PPDA is in distributed environment where data
are either horizontally or vertically distributed among more than two participating
parties. Also, PPDA protocols presented here utilize cryptographic tools, e.g., prob-
abilistic homomorphic encryption, and their tasks mainly fall into the following
categories: association rule mining, clustering, decision tree computation, among
others.

2.4.1 Privacy-Preserving Association Rule Mining

The association rules mining problem can be defined as follows [1]: Let I =
{i1, i2, . . . , in} be a set of items. Let D be a set of transactions, where each trans-
action T is an itemset such that T ⊆ I . Given an itemset X ⊆ I , a transaction
T contains X if and only if X ⊆ T . An association rule is an implication of the
form X ⇒ Y where X ⊆ I, Y ⊆ I , and X ∩ Y = ∅. The rule X ⇒ Y has
support s in the transaction database D if s% of transactions in D contain X ∪ Y .
The association rule holds in the transaction database D with confidence c if c%
of transactions in D that contain X also contain Y . An itemset X with k items is
called k-itemset. The problem of mining association rules is to find all rules whose
support and confidence are higher than certain user specified minimum support and
confidence. In this simplified definition of the association rules, missing items and
negative quantities are not considered. In this respect, transaction database D can be
seen as 0/1 matrix where each column is an item and each row is a transaction.

2.4.1.1 Horizontally Partitioned Data

The above problem of mining association rules can be extended to distributed envi-
ronments. Let us assume that a transaction database D is horizontally partitioned
among n parties where D = D1 ∪ D2 ∪ · · · ∪ Dn , and Di resides at party i’s site
(1 ≤ i ≤ n). Informally speaking, the global support is the sum of the local support
of each site.
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The itemset X has local support count of Support(X,Di ) at party i if
Support(X,Di ) number of the transactions contain X . In association rule mining, an
itemset is frequent only if its global support (that is, the percentage of transactions
containing the itemset) is above a pre-defined threshold. That is, the global support
count of X is given as X.sup =

∑n
i=1 Support(X,Di ). An itemset X is globally

supported if Support(X) ≥ s ·
∑n

i=1 |Di |. Global confidence of a rule X ⇒ Y can
be given as Support(X ∪ Y )/Support(X).

The set of large itemsets L(k) consists of all k-itemsets that are globally sup-
ported. The aim of distributed association rule mining is to find the sets L(k) for all
k > 1 and the support counts for these itemsets, and from this, association rules with
the specified minimum support and confidence can be computed. A fast algorithm
for distributed association rule mining on horizontally partitioned data is given in
Cheung et al. [8]. Their procedure, denoted as FDM, is summarized below.

1. Candidate sets generation: Generate candidate sets CGi(k) based on GL i(k−1),
itemsets that are supported by the Si at the (k − 1)th iteration, using the classic
a priori candidate generation algorithm. Each party generates candidates based
on the intersection of globally large (k − 1) itemsets and locally large (k − 1)
itemsets.

2. Local pruning: For each X ∈ CGi(k), scan the database Di at party i to compute
Support(X,Di ). If X is locally large Si , it is included in the L L i(k) set. It is clear
that if X is supported globally, it will be supported in one party’s database.

3. Support count exchange: L L i(k) are broadcast, and each party computes the local
support for the items in ∪i L L i(k).

4. Broadcast mining results: Each party broadcasts the local support for itemsets in
∪i L L i(k). From this, each party is able to compute L(k).

In [24], authors discuss how to convert the FDM algorithm to a privacy-preserving
association rule mining algorithm. As discussed in this chapter, to enable privacy-
preserving version, it is enough to privately check whether a local large itemset
L L i(k) is globally supported. To achieve this, each site first obtains a union of L L i(k)

using commutative encryption techniques. Then L(k) is calculated via secure sum
and secure comparison protocols based on the following observations:

Support(X,D) ≥ s ∗ |D| = s ·
n
∑

i=1

|Di |,

n
∑

i=1

(Support(X,Di )− s · |Di |) ≥ 0.

Using the secure sum and secure comparison protocols, frequent association rules
can be generated. Note that this protocol requires that the number of participating
parties should be at least three. In addition, it is not completely secure under the
semi-honest model since the protocol discloses the number of commonly supported
itemsets.
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2.4.1.2 Vertically Partitioned Data

Given the transaction database D as 0/1 matrix, where each column is an item
and each row is a transaction, the D is considered vertically partitioned if different
parties know different columns of the D. To mine association rules over vertically
partitioned data, it has been shown that you need to calculate a dot product with 0/1
vectors, where each vector represents whether a certain set of items are present in
a transaction or not [40]. To compute the dot product securely, probabilistic homo-
morphic public key encryptions can be adopted, e.g., Paillier [34]. Suppose E is
such an encryption scheme, it has the following properties:

• The encryption function is injective, i.e., ∀x1, x2 ∈ X , E(x1) = E(x2) ⇒
x1 = x2;

• The encryption function is additive homomorphic, i.e., ∀x1, x2 ∈ R X, E(x1) ×
E(x2) = E(x1 + x2);

• The encryption function has semantic security as defined in [15], e.g., a set of
ciphertexts do not provide additional information about the plaintext to an adver-
sary with polynomial-bounded computing power.

Using these properties, detailed privacy-preserving protocols on mining association
rules in vertically partitioned environment are presented in [13, 53]. These protocols
are secure under the semi-honest model and work for two or more participating
parties. Using zero-knowledge proofs [14] under the random oracle model [5], these
protocols can be transformed into secure protocols under the malicious model and
the accountable computing (AC) framework [20, 21], where the AC framework does
not enforce honest behaviors but it can detect any malicious behaviors after the
execution of a secure protocol.

A related problem is to mine frequent patterns without inference problem,
and a specific example is given in [3, 4]. Informally speaking, given the pattern
a1 ∧ a2 ∧ a3 ∧ a4 holds for 80 individuals and the pattern a1 ∧ a2 ∧ a3 holds for
81 individuals, we can infer that there is only one individual in the data set for
whom the pattern a1 ∧ a2 ∧ a3 ∧¬a4 holds. The knowledge inferred poses potential
threat to the anonymity of that individual. To solve this problem, privacy-preserving
protocols were proposed in [18] based on the DkA framework [19] to mine frequent
association rules without the inference problems described above.

2.4.2 Privacy-Preserving Classification

Classification plays an important role in data mining. In general, a model or model
parameters are learned from training data, and the learned models will be used to
classify new data into pre-defined classes. Here, we assume data that are represented
in relational format where each row is one data record or tuple and each column is an
attribute describing certain properties or information of each data tuple. One of the
attribute is called the class attribute. To learn or build a classifier, the class attribute
is known in the training data set. Then the classifier is used to predict the value of the
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class attribute of a new data tuple based on other attributes. Common classification
learning methods are decision tree, Naive Bayes, and support vector machine.

2.4.2.1 Decision Tree Classifier

Horizontally Partitioned Data

A well-known classification algorithm is ID3 [36] used to generate a decision tree
classifier. Each node in a decision tree is an attribute. The tree is built from top to
bottom recursively, and the key at each stage is to pick the best attribute to classify
the data based on information gain. Let T denote a set of data tuples with a set
of attributes A = {A1, A2, . . . , Am, Ac}, where Ac is the class attribute having k

distinct values ac1, ac2, . . . , ack . Let T (aci ) denote the set of tuples with class value
aci , and suppose A j has l distinct values a j1, a j2, . . . , a jl . The entropy of T and the
conditional entropy of T given A j are defined as follows:

H(T ) = −
k
∑

i=1

|T (aci )|
|T | log

|T (aci )|
|T | H(T |A j ) =

l
∑

i=1

|T (a j i )|
|T | H(T (a j i )).

Information gain is computed by G(A) = H(T ) − H(T |A j ). The attribute with
the highest information gain is selected as the tree node at the current recursive call.
Key steps of an ID3 algorithm is highlighted in Algorithm 1.

Algorithm 1: ID3-Tree(T, A)
if (A − {Ac} = ∅) then

return a leaf-node with the majority class value in T .

if (all tuples in T have the same class value) then

return a leaf-node with the class value.

else

Suppose A j , with attribute values a j1, . . . , a jl , is the best attribute to classify
tuples in T . Partition T into T (a j1), . . . , T (a jl ) such that every tuple in T (a j i )

has the attribute value a j i .
Return a tree with root labeled A j and edges labeled a j1, . . . , a jl such that the
edge a j i goes to the tree ID3-Tree(T (a j i ), A − {A j }).

A privacy-preserving two-party protocol to generate an ID3 tree was proposed
in [29, 30]. The protocol is secure under the semi-honest model. To build a tree
securely, the key is to securely compute (x1 + x2) ln(x1 + x2) where xb is the
party Pb’s private input. The computation returns two random shares y1, y2 such
that y1 + y2 mod |F | = (x1 + x2) ln(x1 + x2). Using the protocol that securely
computing (x1 + x2) ln(x1 + x2) with Yao’s secure circuit evaluation techniques
[29], the participating parties can find the best attribute without disclosing their
private data. Although during each round, one attribute is disclosed to both parties,
this does not affect the security of the protocol because these attributes are part
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of the tree, the final results. Therefore, the protocol completely secure under the
semi-honest model.

Vertically Partitioned Data

To build a decision tree securely is more complicated when data are vertically parti-
tioned. Privacy-preserving protocols to produce such a decision tree were presented
in [43, 45]. In this problem domain, the schema information is assumed to be private,
and only one site knows the class attribute. Each site has an identifier attribute that
serves as a join key. The final tree is also privately distributed across individual sites.
The main protocol consists of several sub-protocols, each of them is responsible for
one particular task in Algorithm 1.

To accomplish the first step, the participating parties can use the secure sum pro-
tocol [24, 37] as follows: one party initiates the protocol by selecting a large random
number and adds this number to the number of remaining attributes. At the end, this
party and the last party use commutative encryption to check if A − {Ac} = ∅. To
check if all tuples in T have the same class, each site needs to know how its data are
partitioned at the current node. The concept of a constraint set is used to find a subset
of the local data that needs to be considered at current iteration or node. Informally,
a constraint set contains attribute values that defines a local/partial path of the tree
leading to the current node. Then from the subset of the local data, class distribution
counts at the current node can be collaborative computed. To protect individual site’s
privacy, secure set intersection protocols [11, 44] are adopted in calculating each
class’ distribution count. Note that class distribution counts are known to all sites.
From this information, each site can determine the majority class and whether all
tuples at the current node have the same class. In addition, information gain of a
specific attribute can also be derived from the class distribution counts.

Since some intermediate results released are not part of the final results, addi-
tional approaches were given to make the protocol more secure. Also, because the
final decision tree is privately distributed, classification steps were proposed to uti-
lize the tree. Note that these protocols work for two or more participating parties.

2.4.2.2 Naive Bayes Classifier

The Naive Bayes classifier [32] is an effective learning method. Suppose data
instances or tuples are in relational format 〈a1, . . . , am〉 (ai denotes a particular
value of attribute Ai ). Based on a set of training data (the data with an additional
class attribute Ac), using the classifier, we can predict the class value of a new data
tuple. The Bayes classifier assigns the class value to the new data tuple if the class
value cj maximize the following probability: P(cj )×Πm

i+1 P(ai |cj ), where P(ai |cj )

is estimated from the training data and prior probability P(cj ) can also be decided in
certain way. For example, P(ai |cj ) = nai

ncj
, where ncj denotes the number of tuples

having class value cj , and nai denotes that among those ncj tuples, the number of
tuples having attribute value ai . To securely build the Naive Bayes classifier, the key
is to estimate P(ai |cj ) and P(cj ) securely.
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Horizontally Partitioned Data

In [46], protocols are proposed to securely build this classifier. Under this distributed
environment, each party holds partial information for nai and ncj . To compute these
values securely, the participating parties can use the secure sum protocol. Once these
values are available to all the parties, the corresponding probabilities can be derived
easily. Since every party knows the schema of the data set, the parties are able to
classify a new data tuple independently. However, because the values nai and ncj are
disclosed to all the parties, so this process of building a Naive Bayes classifier is not
completely secure under the semi-honest model. To satisfy the security requirement,
the key is to use the secure protocol for computing ln x [30]. Although the secure
protocol computing ln x only works for two-party case, it is still applicable by trans-
forming the multiparty computation of nai and ncj into a two-party computation.

Vertically Partitioned Data

The protocol presented in [42, 46] assumes that only one party has the class attribute.
The main idea is that at the end of the execution of the protocol, each party has
shares of the conditionally independent probabilities that constitute the parameters
of the classifier. The challenge is to compute these shares and classify a new tuple
with these shares. Note that the individual probability P(ai |cj ) can be computed by
nai

ncj
. Suppose Alice has the attribute Ai and Bob owns the class attribute. Initially,

Alice constructs a vector corresponding to the entries in the training data. Set the
entry value to 1 if the corresponding tuple has the value ai , and set it to 0 otherwise.
Bob sets up a similar vector with 1

ncj
for the entries with class value cj and 0 for

other entries. Then a secure dot product protocol can be adopted to generate random
shares of the probability, and the secure protocol to compute ln x will be used to
classify a new instance.

2.4.2.3 Support Vector Machines

Privacy-preserving support vector machine (SVM) protocols are proposed in [47,
49, 50]. Here, we only present their main ideas related to a linear kernel. In a
linear binary classification task, an SVM identifies a separating plane/hyperplane
that maximizes the margin, the distance from the closest points to the plane. To
maximize the margin and minimize the error, the SVM solution can be formulated
to the following dual problem by utilizing lagrange multipliers:

min
a

{

1

2
aT Qa − eT a

}

, such that (0 ≤ ai ≤ v) ∧
(

m
∑

i=1

di ai = 0

)

,

where di and ai are the class label and the coefficient for a data vector xi , and Q

is an m × m matrix computed by the scalar product of every data tuple pair, i.e.,
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Qi j = K (xi , x j )di d j and K (xi , x j ) = xi · x j for linear SVM. The support vector
xi correspond to the positive coefficient ai .

Vertically Partitioned Data

When data are vertically partitioned, the key is to compute the matrix Q secure,
which is the same as computing K (xi , x j )di dj securely. Since K is a Gram matrix,
it can be computed from the local Gram matrices. For example, the data m × n

matrix A is vertically partitioned into A1 and A2. Let K1 and K2 be the m × m

Gram matrices of A1 and A2, i.e., K1 = A1 × AT
1 and K2 = A2 × AT

2 . Then
K = K1 + K2. Under the assumption that there are at least three participating
parties, K can be securely generated using the secure sum protocol. K is released to
every party, and each party will derive Q from K . Then the global SVM model can
be computed at each individual party.

Using the SVM model to classify new data instances, dot products need to be
computed between the support vectors and the new data instances. The classification
function is defined as f (x) =

∑m
i=1 ai di K (xi , x)−ε, where xi is the support vector

and x is the new data instance. After training, each party has ai , di , ε (the bias), and
partial support vectors. Thus, to securely compute the dot product, secure addition
of vectors is needed, and these vectors are dot products between a partial support
vector and the new data instance.

Horizontally Partitioned Data

In this setting, training data are partitioned and distributed across multiple parties,
assuming the class labels are the same for all these parties. To securely compute
the Gram matrix Q, it is possible to use secure dot product protocols. An efficient
secure dot product protocol was given in [49], which is used to produce Q.

2.4.3 Privacy-Preserving Clustering

Clustering is one of the most commonly adopted approach in data mining and can
be roughly defined as the process of grouping different objects that are similar in
some way. A cluster is then a group of object which are pair-wise similar and not
similar to objects contained in other clusters. There is a huge number of clustering
techniques and algorithms. We present here algorithms that have been modified in
order to perform clustering over a data set, without directly accessing to it.

2.4.3.1 k-Means Clustering

Given a data set, the k-means algorithm first selects k data records, based on certain
criteria, as the initial cluster centers. The remaining data are clustered depending on
their distance to the current cluster centers. In general, a record is assigned to the
closest cluster. Once all data are clustered, new cluster centers are computed. These
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steps are repeated until the new cluster centers are “close enough” to the previous
cluster centers. The key to develop a secure k-means protocol includes securely
computing the distance between a data record with each cluster centers, securely
identifying the closest cluster and securely checking the stopping conditions.

Vertically Partitioned Data

A secure k-mean protocol was proposed in [41]. The protocol is secure under the
semi-honest model and the number of participating parties should be at least three.
During the execution of the protocol, each party knows a partial value of the current
cluster centers. Let μi j denotes this partial value at jth cluster of party i . μi j is
related to the attributes the party has. Thus, each party has partial information of the
cluster centers. Initially, the parties arbitrarily assign values to μi j based on their
local values. Then a secure sub-protocol is called on each data record to find the
closest cluster to which it belongs. This sub-protocol works as follows: a party cre-
ates a column vector with k entries. The values at the jth entry indicate the distance
of a given record t to the jth cluster center. Imagining that we combine these column
vectors to generate a k × i matrix, and the goal is to find a row such that the sum
of all its values is the smallest among all the rows. Then t will be assigned to the
cluster corresponding to this row.

The following steps are necessary to find such a row: disguise the distance values
of each vector with random values in a way that when the values at each row are
summed up, these random values are cancelled out; when distances are compared,
the parties only know the comparison results but not individual distance; the order
of clusters are permuted so that the comparison results are meaningless. Detailed
techniques, e.g., permutation algorithm, random value generation, are given in [41].
In addition, all the secure comparisons are done using Yao’s technique. Once every
t is clustered, new μi j can be computed locally. To check the stopping condition, a
secure sum can be used along with a secure comparison.

Arbitrarily Partitioned Data

Suppose a data set has m attributes A = {A1, . . . , Am} and n records t1, . . . , tn .
The data set is arbitrarily partitioned between two parties if a party owns a portion
of t projected on any subset of A. For example, let t be a record, Alice could own
t[A1, . . . , Ak] and Bob owns t[Ak+1, . . . , Am]. Alice could own t and Bob does not
know t at all.

A two-party secure k-means protocol is proposed in [17]. The protocol is secure
under the semi-honest model and assumes that the data are arbitrarily partitioned.
The protocol consists of three sub and secure protocols: computing the closest clus-
ter, recomputing the mean, and checking the termination condition. Initially, the
cluster centers are shared between the two parties. Each party holds a random share
of the center; that is, the sum of the shares will produce the correct cluster center.
To find the closest cluster for a given tuple t , both parties need to compute the
distance of t from each cluster center. The k distance values are also shared between
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the two parties in the same way as the cluster centers. The main components of
the distance calculation involve a secure dot product protocol [13]. Once all the
shares are computed, Yao’s secure circuit evaluation technique [29] is used to find
the minimum distance. Then t is assigned to the cluster with the minimum distance.

After all data are clustered, new cluster centers need to be derived. Since there
are m attributes, each cluster center has m components. Let μi j denotes the jth

component of cluster i . μi j can be computed by μ′
i j =

p j+q j

n A
j +nB

j

, where p j denotes

the sum of the values corresponding to attribute A j of all records in cluster i and
n A

j denotes the number of records in cluster i having values for attribute A j . q j

and nB
j are defined similarly for the other party. μ′

i j is computed by Yao’s secure
circuit evaluation technique. The protocol for checking termination status can also
be achieved using Yao’s technique.

2.4.3.2 Customized Clustering Algorithms

The recluster algorithm proposed in [16] is particularly designed in a way that it
is easy to be transformed to a privacy-preserving clustering protocol. Recluster is a
recursive algorithm. It first horizontally divides data into two halves, and each half
will produce 2k clusters. At the end, the 2k clusters from each half is merged based
on their proposed error metric into 2k clusters. Then these 2k clusters are merged
again to produce the final k clusters.

To covert recluster into a two-party secure protocol, both parties initially call
recluster to produce k local clusters on their data (Data are assumed to be horizon-
tally partitioned). Then the local clusters are merged securely to produce k global
clusters, and these cluster centers are shared between the two parties. Using additive
homomorphic encryption techniques, e.g., [34], each party obtains random shares of
the other party’s local k cluster centers. From these shares and using Yao’s secure
circuit evaluation technique [29], the parties can find the best pair of clusters to
merge to eventually produce k global cluster centers.

So far, we have shown techniques/protocols for association rule mining, clas-
sification, and clustering in the domain of privacy-preserving data mining. These
are not meant to be complete but to provide some insight on the design of privacy-
preserving protocols. In summary, many secure protocols use secure sub-protocols,
such as secure sum, dot product, and secure comparison. If the functionality is sim-
ple and the input size is small, Yao’s secure circuit evaluation technique can be used
to implement secure protocols.

2.5 Conclusions

In the first part of this chapter we have reviewed the basic approaches and tech-
niques employed for the anonymization of data sets. We have thus presented a vari-
ety of data obfuscation approaches such as randomization and generalization-based
approaches. Such approaches have been thoroughly investigated and many variants
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of the most fundamental techniques have been presented. We then presented the
most recent proposals dealing with the problem of data set anonymization in the
context of time-varying data. Although the impressive progress is made in the very
recent years, still much is to be done in order to have a general enough and usable
approach. In the second part of the chapter, the most relevant privacy-preserving
data mining techniques have been presented. This is a consolidated research area,
as should be clear from the variety and depth of the proposed solutions.
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Theory of SDC



Chapter 3

Practical Applications in Statistical Disclosure

Control Using R

Mathias Templ and Bernhard Meindl

Abstract The aim is to show how statistical disclosure methods can be applied to
data using the R-packages sdcMicro and sdcTable.

The reader of this chapter should be advised how popular methods in microdata
protection and tabular protection can be applied within these packages to real-world
data.

sdcMicro supports an exploratory approach for the anonymization of both cat-
egorical key variables and numerical variables. Hereby, global recoding, local sup-
pression, and risk estimation can be applied interactively. Furthermore, various pop-
ular methods for microdata protection will be briefly described, but also some new
methods for microdata protection and disclosure risk estimation considering real-
life data problems will be introduced.

Additionally, a description of how tabular protection can be applied using the
R-package sdcTable is given. The most challenging part from the user point of
view is the preliminary data preparation before tabular protection can be applied. In
this case, meta information about the hierarchical variables defining the table must
be provided by the user.

3.1 Microdata Protection Using sdcMicro

Microdata protection has proved to be extremely popular and has grown extensively
in the last few years, because of the significant rise in the demand for scientific-use

files among researchers and institutions.
The aim and in many cases the legal obligation of data holders which want to dis-

seminate microdata is to provide data for which it may only be possible to identify
statistical units by disproportional costs and time resources.
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The aim of SDC is to reduce the risk of disclosing information on statistical units
(individuals, enterprises, organizations) and on the other hand to provide as much
information as possible by minimizing the amount of data modification.

3.1.1 Software Issues

R-package sdcMicro includes the most popular techniques for microdata protec-
tion. It is designed to protect survey data including sampling weights but it can
also be applied to data without survey weights (e.g., population data). The under-
lying code is open source and freely available on the comprehensive R archive net-
work (CRAN, see http://cran.r-project.org). The installation can be easily
achieved by typing the following command into R (the text after the # only com-
ments the operation for additional information to the readers)

Listing 3.1 Installing the package sdcMicro

i n s t a l l . p a c k a g e s ( ‘ sdcMicro ’ )

The installation of sdcMicro comes with a manual including help files for all
functions. These help files are structured standard documents which describe the
parameters and usage of each function. Furthermore, a section with examples on
how to apply the corresponding function is included. To be aware of possible inter-
actions of the functions, a package vignette is also available. The help index together
with the description of the package can be easily displayed by

Listing 3.2 Loading sdcMicro, displaying the help index and the package vignette

r e q u i r e ( sdcMicro )
h e l p ( package = sdcMicro )
v i g n e t t e ( ‘ sdcMicroPaper ’ )

The software is designed to be flexible and to provide reproducibility.

3.1.2 The sdcMicro GUI

The package features also a graphical user interface (GUI). gWidgetsRGtk2 [46]
was used to generate the GUI and must be installed when using it. This package
allows the gWidgets API to use the RGtk2 package [24] to allow the use of the
powerful Gtk2 libraries within R. The Gtk2 libraries usually come with a standard
Linux installation. When installing the gWidgetsRGtk2 R-package, a very easy-to-
use built-in install routine pops up when Gtk2 is not installed. After installation, R
has to be restarted once.

Reproducibility and flexibility are also provided within the GUI. The graphi-
cal user interface (see Fig. 3.1) can be loaded by typing the following command
into R:
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Fig. 3.1 The graphical user interface of sdcMicro. The summaries of a possible anoymization of
the μ-Argus test data are shown

Listing 3.3 Starting the GUI

sdcGUI ( )

Within the GUI, data can be easily loaded, variables can be selected, and different
methods can be easily applied. The GUI provides interaction between all possible
objects, i.e., all measures of information loss and disclosure risk as well as frequency
counts, effects of recordings, etc., are automatically updated after an operation has
been applied.

Each effect of a mouse click and each operation performed is saved in a script
(see Fig. 3.2). This script can later easily be modified and re-applied to the data
and/or run only up to a specific line.

Unfortunately, the following examples of the methods applied in this section
cannot be shown with the GUI to stay in the limits of pages. It seems to be more
elegant to demonstrate the examples via the command line language of R instead
of showing a lot of snapshots from the GUI. Nevertheless, each operation which is
shown can also be applied easily by using the GUI of sdcMicro.
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Fig. 3.2 The script generated automatically from the users operations within the GUI

3.1.3 Anonymization of Categorical Variables

A data intruder may have information of some key variables. Whereas direct

identifying variables, such as IDs, names, addresses, social security numbers,
are usually not disseminated, combinations of indirect identifiers, such as
denomination, age class, NACE, may be used to link data sources and to identify
statistical units.

If an observation is re-identified, the data intruder knows all entries of this statis-
tical unit in the data set whereas some entries may contain sensitive information.

3.1.3.1 Frequency Counts and Disclosure Risk

Consider a random sample of size n drawn from a population of size N . Let
πi , i = 1, . . . , N be the (first-order) inclusion probabilities, i.e., the probability
that the element ui of a population of the size N is chosen in a sample of the
size n. Imagine that the re-identification of statistical units could be performed
by using external samples or registers with equal variables, called (categorical)
key variables.

All possible combinations of categories in the key variables X1, . . . , Xm can be
calculated by cross-tabulation of these categorical variables. Let fk, k = 1, . . . , n

be the frequency counts obtained by cross-tabulation and let Fk be the frequency
counts of the population which belong to the same category. If fk = 1 applies
the corresponding observation is unique in the sample. If Fk = 1 applies then the
observation is unique in the population.

Unfortunately, Fk is usually unknown since in statistics usually information on
samples is collected and only few information about the population is known from
registers and/or external sources.
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3.1.3.2 Estimation of Fk

Fk may be estimated by using the sampling weights. Whenever an observation has
a sampling weight equal to 100 it can be assumed that 100 observations do have
the same characteristics in the population related to the stratification variables of a
(complex) sampling design.

The estimation of the frequency counts in the population is given by the sum
of the weights associated with the observations which belong to the corresponding
category. Fk may then be estimated by

F̂k =
∑

i∈{ j |x j.=xk.}
wi , (3.1)

with xi. denotes the i th row of the key variables.
Please note that this definition is again different from the classical one which

expresses F for each category and not for each observation.

Example 3.1 In order to demonstrate both the calculation of frequency counts in the
sample and the estimation of frequency counts in the population a simple data set
for demonstration is used which is included in R-package sdcMicro [42, 43].

Listing 3.4 Loading and subsetting a data set for demonstration. This subset includes the categor-
ical key variables and the sampling weights

d a t a ( f r a n c d a t ) x <− f r a n c d a t [ , c ( 2 , 4 , 5 , 6 , 8 ) ]
p r i n t ( x )
R> Key1 Key2 Key3 Key4 w
R> 1 1 2 5 1 1 8 . 0
R> 2 1 2 1 1 4 5 . 5
R> 3 1 2 1 1 3 9 . 0
R> 4 3 3 1 5 1 7 . 0
R> 5 4 3 1 4 541 .0
R> 6 4 3 1 1 8 . 0
R> 7 6 2 1 5 5 . 0
R> 8 1 2 5 1 9 2 . 0

Please note that this data set is also used in [5] and [44].
The frequency calculation can be done by using the R-function freqCalc():

Listing 3.5 Calculating the frequency counts and displaying the results

f f <− f r e q C a l c ( x , keyVars = 1 : 4 , w=4)
p r i n t ( c b i n d ( x , f f $ f k , f f $ F k ) )
R> Key1 Key2 Key3 Key4 w f f $ f k f f $ F k
R> 1 1 2 5 1 1 8 . 0 2 110
R> 2 1 2 1 1 4 5 . 5 2 8 4 . 5
R> 3 1 2 1 1 3 9 . 0 2 8 4 . 5
R> 4 3 3 1 5 1 7 . 0 1 17
R> 5 4 3 1 4 541 .0 1 541
R> 6 4 3 1 1 8 . 0 1 8
R> 7 6 2 1 5 5 . 0 1 5
R> 8 1 2 5 1 9 2 . 0 2 110
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The values of observations 1 and 8 are equal in the underlying key variables, for
example. Thus f1 = 2 and f8 = 2. The frequency in the population F̂1 and F̂8
can be estimated with the sum of their sampling weights, w1 and w8, which equals
110. Hence, two observations with xk. = (1, 2, 5, 1)′ exist in the sample and 110
observations with these entities can be expected to exist in the population.

freqCalc() includes three parameters which could be displayed in R either
using

Listing 3.6 Displaying the arguments of function freqCalc()

a r g s ( f r e q C a l c )
R> f u n c t i o n ( x , keyVars = 1 : 3 , w = 4)

or typing ?freqCalc which displays the whole help file. x is an object of class
data.frame or matrix, keyVars is a vector specifying the column index of the key
variables, and w defines the column index of the weight variable. The resulting out-
put of the function is the frequency counts of the sample and the estimated frequency
counts of the population.

The function is implemented in C and integrated into R using the R/C interface.
For this reason the computation is very fast and is able to deal also with large data
sets and many key variables (for runtime issues, see [42]).

Please note that the frequency counts are usually obtained by cross-tabulation
of the key variables which differs from the notation used in this chapter. Usu-
ally, each cell k = 1, . . . , K is the cross-product of the categories of the key
variables, with K being the amount of different categories of the cross-product.
Thus the new notation provides theoretically the same information but it is more
applicable when implementing methods into software, since the overall aim is
to perform all operations on individual level and not only on aggregated infor-
mation. This is especially true when estimating re-identification risks for each
observation.

To obtain the original definition for each category the information must only be
aggregated using R’s aggregate() function, for example.

3.1.3.3 Global Risk Measures

A global measure of the re-identification risk is given by the number of uniqueness
which occurs in both the sample and the population. It can be expressed in the
following way:

τ1 =
n
∑

k=1

I(Fk = 1, fk = 1) , (3.2)

where I denotes the indicator function.
Another well-known global risk measure is given by
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τ2 =
n
∑

k=1

I( fk = 1)
1

Fk

, (3.3)

in which the indicator is weighed with the reciprocal value of the population fre-
quency counts. The higher the population frequency count the lower the risk of
re-identification. If Fk is particularly high, the data intruder cannot be sure if he is
able to assign correctly the observation for which he holds information.

Fk must be estimated when estimating τ1 and/or τ2. τ1 and τ2 are estimated by

τ̂1 =
n
∑

k=1

I( fk = 1)E(P(Fk = 1| fk = 1)) , τ̂2 =
n
∑

k=1

I( fk = 1)E(
1

Fk

| fk = 1).

(3.4)

Unfortunately, it is not reasonable to use F̂k as given in Formula (3.1) to estimate
a global disclosure risk. A certain distribution of Fk must be assumed in order to
formulate a realistic measure of global risk.

The use of prior assumptions for distributions to estimate the individual risk can
be found in [2, 27, 29, 30].

However, all these authors do not provide arguments for why Formula (3.1)
should not be used for the estimation of the individual risk. For better understanding
of this problem the following example is given.

Example 3.2 In this example which was also used in [44] the global risk τ1 is not
only calculated (from a synthetic population) but also estimated (from a sample of
the synthetic population). The synthetic population allows to know the true values
of Fk and the global risk measures, for example.

First, a population including four categorical key variables is generated.

Listing 3.7 Generation of a synthetic population

s e t . s eed ( 1 2 3 4 )
pop <− d a t a . f rame ( c a t 1 = sample ( 1 : 4 , 100 , r e p l a c e =TRUE) ,

c a t 2 = round ( rnorm ( 1 0 0 , 6 ) ) ,
c a t 3 = sample ( 1 : 3 , 100 , r e p l a c e =TRUE) ,
c a t 4 = sample ( 1 : 2 , 100 , r e p l a c e =TRUE ) )

From this population consisting of 100 observations, a sample with simple random
sampling without replacement is drawn. No stratification is considered to keep the
example as simple as possible. The inclusion probabilities are fixed to 1

8 , and there-
fore the sampling weights are fixed to 8

Listing 3.8 Drawing a sample

s1 <− round ( nrow ( pop ) / 8 ) # −−> 12
sp <− sample ( 1 : nrow ( pop ) , s1 ) # choose 12 o u t o f 100
s <− pop [ sp , ] # t h e sample
s [ , "w" ] <− r e p ( 8 , nrow ( s ) ) # t h e s a m p l i ng w e i g h t s
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In the next step, the frequency counts in the sample are calculated and the frequency
counts in the population are estimated.

Listing 3.9 Calculation and estimation of the frequency counts in the synthetic population. The
population frequency counts are known in this example but they are also estimated from the drawn
sample

popf <− f r e q C a l c ( pop , keyVars = 1 : 4 , w=NULL)
s a m p l e f <− f r e q C a l c ( s , keyVars = 1 : 4 , w=5)

The global risk τ1 can be calculated easily.

Listing 3.10 Calculation of the global risk τ1

sum ( popf$Fk [ sp ] == 1)
R> 5

The true value is 5, but the estimated risk τ̂1 is zero.

Listing 3.11 Estimation of the global risk τ1 from the sample

sum ( s a m p l e f $ f k == 1 & sample f$Fk == 1)
R> 0

This results because the estimated population frequency counts are ≤ 8.

The previous example has shown that other concepts for risk estimation should
be considered. The most popular one is the Benedetti–Franconi model [1], which is
also implemented in the R-package sdcMicro.

3.1.3.4 Superpopulation Models

To estimate the frequencies of the population Fk , it is assumed that the population is
drawn from a superpopulation. In fact, this means that either the frequencies in the
population will be generated synthetically by drawing from a specific distribution of
the frequency counts or quantiles of the assumed distribution of Fk are used. Using
quantiles of the prior assumed distribution of Fk makes it possible to estimate the
risk of each statistical unit. However, this estimation is just as good as the frequency
counts of the population are modeled and how well the model assumption is ful-
filled. Many suggestions exist in literature: the use of a Poisson-Gamma superpopu-
lation model [2], the Dirichlet-multinomial model [38], the negative binomial model
[1, 18], a log-linear model [35, 36], a multinominal model [17], the Poisson-inverse
Gaussian model [6], and references therein.

3.1.3.5 The Benedetti–Franconi Model for Risk Estimation

For the popular Benedetti–Franconi model [1, 18] Fk | fk has to be estimated, i.e.,
the frequency counts in the population given the frequency counts in the sample.
A common assumption is Fk ∼ Poisson(Nπk) (independently) (see, e.g., [18]),
where N is assumed to be known and with πk the inclusion probabilities. (Binomial)
Sampling from Fk means that fk |Fk ∼ Bin(Fk, πk). By standard calculations (see,
e.g., [2]) one gets
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fk ∼ Poisson(Nπk) and Fk | fk ∼ fk + Poisson(N (1 − πk)) .

Concerning the risk calculation, the uncertainty on the frequency counts of the popu-
lation is accounted in a Bayesian fashion by assuming that the population frequency
given the sample frequency, Fk | fk , is drawn from a negative binomial distribution
with success probabilities pk and the number of successes fk [27, 30]. By using this
assumption [1] estimated the risk τ2 by the well-known and so-called “model from
Benedetti and Franconi.” Using this background [5] estimated the individual risk r̂k

for each observation as follows:

r̂k =
(

p̂k

1 − p̂k

) fk

⎧

⎨

⎩

A0

⎛

⎝1 +
fk−3
∑

j=0

(−1) j+1
j
∏

l=0

Bl

⎞

⎠+ (−1) fk log( p̂k)

⎫

⎬

⎭

, (3.5)

whereas

p̂k =
fk

F̂k

= fk
∑

i∈{ j |x j.=xk.} πi

,

while

Bl =
( fk − 1 − l)2

(l + 1)( fk − 2 − l)

p̂
l+2− fk

k − 1

p̂
l+1− fk

k − 1
and A0 =

p̂
1− fk

k − 1

fk − 1
.

If fk = 1 [5] use

r̂k =
p̂k

1 − p̂k

log

(

1

p̂k

)

,

while if fk = 2 they use

r̂k =
p̂k

1 − p̂k

−
(

p̂k

1 − p̂k

)2

log

(

1

p̂k

)

,

If the sample is large the computation in formula (3.5) becomes infeasible, but
the following approximation works reasonable [5]:

r̂k =
p̂k

fk − (1 − p̂k)
.

From our previous example we obtain the following risk by using our developed
R-package sdcMicro and the function indivRisk(). The individual risk r̂k is esti-
mated below and its result is shown in the last column of the following table. The
method for the estimation of the individual risk in package sdcMicro is based on the
concept of [5] which was outlined in the previous text.
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Listing 3.12 Estimation and display of individual risks

rk <− i n d i v R i s k ( f f ) $ rk
p r i n t ( c b i n d ( x , f f $ f k , f f$Fk , rk ) )

R> Key1 Key2 Key3 Key4 w f f $ f k f f $ F k rk
R> 1 1 2 5 1 1 8 . 0 2 110 0 . 017
R> 2 1 2 1 1 4 5 . 5 2 8 4 . 5 0 . 0 2 2
R> 3 1 2 1 1 3 9 . 0 2 8 4 . 5 0 . 0 2 2
R> 4 3 3 1 5 1 7 . 0 1 17 0 . 177
R> 5 4 3 1 4 541 .0 1 541 0 .011
R> 6 4 3 1 1 8 . 0 1 8 0 . 297
R> 7 6 2 1 5 5 . 0 1 5 0 . 402
R> 8 1 2 5 1 9 2 . 0 2 110 0 . 017

It follows that the individual risk is large for observations 4, 6, and 7.
Function indivRisk() has only one parameter which must be an object of class

freqCalc, which is typically a output of function freqCalc().
Further research has already been done in this topic. Newest approaches consider

the neighborhood of each category within log-linear models [30].
Although all the concepts for risk estimation require a lot of assumptions which

may not hold in practice, the most important assumption which is often used,
Fk ∼ Poisson(Nπk) and fk ∼ Poisson(Nπk), may be reasonable in theory but may
not be valid in practice. Although other distributions for Fk have been discussed
by other authors, the best modeling of Fk depends on the underlying data, i.e.,
each data set requires different assumptions. The lack of all these methods is that
they are not data-driven approaches, but prior assumptions about distributions are
taken.

3.1.3.6 Global Recoding and Local Suppression

Typically, categorical key variables with categories including only few entries lead
to uniqueness and high risk. Thus recoding into broader categories (e.g., age-to-age
classes) or combining categories (e.g., combining two NACE 2-digit levels) may
reduce the risk.

The output of the previous example shows, for example, that observation 7 has a
high risk of disclosure. This is not surprising because it is unique in the sample and
it is estimated that only five observations with the same entries in the key variables
exist in the population.

Therefore, the estimated individual risk must be reduced, e.g., by global
recoding of a variable. Here, the categories of certain variables are assigned to
broader categories. As mentioned before, it is very likely that, after the recod-
ing, more observations are equal in the key variables and so F̂k increases and r̂k

decreases.
Recoding the values of the first key variable to only four possible labels (1 to 4)

reduces the risk dramatically for some observations.
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Listing 3.13 Global recoding of one key variable

x [ , 1 ] <− g l o b a l R e c o d e ( x [ , 1 ] , b r e a k s =c ( 0 , 1 , 2 , 3 , 6 ) ,
l a b e l s =c ( 1 , 2 , 3 , 4 ) )

Note that the usage of global recording is much easier within the GUI of sdcMicro.
After recoding it is possible that the risk of re-identification is not reduced or

not reduced significantly for several observations. Then, usually, local suppression
is applied. In this method, certain values in the key variables are suppressed in order
to reduce the risk. This should be done in an optimal way, i.e., to suppress as few
values as possible on the one hand and to guarantee low risk of re-identification on
the other hand. An iterative algorithm is implemented in the package sdcMicro [43]
to search for an optimal solution [43]. The user can also assign weights to the key
variables, because often some variables seem to be less important (such as age) than
others (such as economic branch classification in business data). The probability of
local suppressions in variables with high weights is then higher as for variables with
small importance/weights.

Listing 3.14 Obtaining k-anonymity (here: k = 2)

loca lSupp2Wrappe r ( x , keyVars = 1 : 4 , w=5 , kAnon =2)
R> 2−anonymi ty has been r e a c h e d .

Another possibility is to apply function localSupp() which may be more appli-
cable due to such a small data example.

Anyway, it is easy to see when the value in the second entry in the fourth variable
is suppressed that the risk is highly reduced:

Key1 Key2 Key3 Key4 πk fk F̂k r̂k

1 1 2 5 1 18.0 2 110.0 0.017
2 1 2 1 1 45.5 2 84.5 0.022
3 1 2 1 1 39.0 2 84.5 0.022
4 4 3 1 5 17.0 3 30.0 0.048
5 4 3 1 4 541.0 2 549.0 0.003
6 4 3 1 NA 8.0 4 571.0 0.002
7 4 3 1 5 5.0 3 30.0 0.048
8 1 2 5 1 92.0 2 110.0 0.017

The data now only imply low risk of re-identification for each observation.

3.1.3.7 Post-randomization Method (PRAM)

By applying PRAM [19, 23], values of categorical variables may change to different
categories, according to a pre-defined probability mechanism which is given in the
form of a specific transition matrix.

Function pram() provides the invariant PRAM methodology [19, 23] and pro-
duces objects from class pram. A print method and a summary method are provided
for objects of this class.
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In the following, the variable MARSTAT is perturbed from the μ-Argus test data
set which is included in package sdcMicro. A lot of information is stored in the
resulting object MARSTATpram, e.g., the invariant transition matrix. Summary and
print methods are provided as well.

Listing 3.15 An application of PRAM and a selected output of the summary method

d a t a ( f r e e 1 )
MARSTATpram <− pram ( f r e e 1 [ , ‘ ‘MARSTAT’ ’ ] )
summary (MARSTATpram)
−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−
o r i g i n a l f r e q u e n c i e s t r a n s i t i o n Frequency

1 2 3 4 1 1 −−> 1 2448
2547 162 171 1120 2 1 −−> 2 27

3 1 −−> 3 28
−−−−−−−−−−−−−−−−−−−−−− 4 1 −−> 4 44
f r e q u e n c i e s a f t e r p e r t u r b . : 5 2 −−> 1 33

6 2 −−> 2 118
1 2 3 4 7 2 −−> 3 4

2571 160 178 1091 8 2 −−> 4 7
9 3 −−> 1 20
10 3 −−> 2 3
11 3 −−> 3 130
. . . . . . . . .

Further parameters of the function are as follows:

Listing 3.16 Parameters for pram()

a r g s ( pram )
R> f u n c t i o n ( x , pd = 0 . 8 , a l p h a = 0 . 5 )

pd is the minimum diagonal entries for the generated transition matrix and alpha is
the amount of perturbation used for the invariant PRAM method. The output of this
function is not presented here, but it is well described in the manual of the package
[43].

3.1.3.8 Summary

A short description of the most popular methods for the protection of categor-
ical microdata was presented and the corresponding software implementation in
sdcMicro was shown, i.e., functions

• freqCalc() for frequency calculation
• indivRisk() for individual risk estimation
• globalRecode() for recoding
• localSupp() and localSupp2Wrapper() for local suppression
• pram() for post-randomization
• and various print, summary, and plot methods

All these functions can be applied within the sdcMicro GUI as well, simply by
clicking the corresponding buttons.
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3.1.4 Anonymization of Numerical Variables

Almost every combination of continuous scaled variables is unique in the sample.
Thus, the concept of uniqueness used in the previous chapter does no longer work
whenever continuous scaled variables are observed.

Unfortunately, a data intruder may have information about a value of a statistical
unit. If this value matches with the anonymized data, then he can be quite sure that
the re-identification was successful. The intruder then knows all the information
about this unit in the data set, i.e., the values of each variable of this unit. Unfortu-
nately, this information can be very sensitive, for example, information about cancer,
taxes, or competitors.

Unfortunately, an intruder may also use record linkage techniques (also known as
statistical matching) to identify already perturbed values. If a value is not perturbed
sufficiently a successful re-identification is then possible. Thus, the re-identification
risk should be also estimated.

3.1.4.1 Adding Noise Methods

One possible procedure is to add additive noise to each numerical variable

Y = X + ε ,

where X ∼ (μ,Σ), ε ∼ N (0,Σε), Σε = α · diag(σ 2
1 , σ 2

2 , . . . , σ 2
p), α > 0,

Cov(εi �= ε j ) ∀i �= j , and p is equal to the dimension of the numerical vari-
ables which should be perturbed (see, e.g., also in [4]). Let x be a subset of data
consisting of the numerical key variables, then adding additive noise to continuous
scaled variables can easily performed with package sdcMicro:

Listing 3.17 Adding additive noise to numerical key variables

addNoise ( x )

The amount of noise for each variable can be specified by changing specific param-
eters of the function addNoise().

Multivariate measures such as the correlation coefficient cannot be preserved
when adding additive (uncorrelated) noise. Correlation coefficients can, however,
be preserved if correlated noise is added. In this case the covariance matrix of the
masked data is ΣY = (1 + α)ΣX (see, e.g., in [4]).

Kim [22] uses d = ε(1 − α2) and then x j d + αz j is calculated where z j are

random numbers drawn from N (
(1−d)x̄ j

α
, s j ), with s j being the standard deviation

of X j .
The restricted correlated noise method (implemented as method restr in sdcMi-

cro) is a similar method which takes the sample size into account ([4]).

Listing 3.18 Adding noise by simple correlated noise, Kim’s approach and restricted correlated
noise

addNoise ( x , method = ‘ c o r r e l a t e d ’ )
addNoise ( x , method = ‘ c o r r e l a t e d 2 ’ )
addNoise ( x , method = ‘ r e s t r i c t e d ’ )
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ROMM (random orthogonal matrix masking, [45]) applies the transformation
Y = AX where A is randomly generated and fulfills the orthogonality condition
A−1 = AT . To obtain a orthogonal matrix as described in [45] the Gram–Schmidt
procedure was chosen in the implementation of method ROMM.

Listing 3.19 Applying ROMM using default parameters

addNoise ( x , method = ‘ROMM’ )

However, all these methods either are influenced by outliers (method correlated,
restricted and ROMM) or do not preserve outliers sufficiently (additive noise) (see
[41]). To deal with inhomogeneous data sets including outliers a method in which
outliers are detected may be adequate. Observations with large robust Mahalanobis
distances may be treated as outliers.

Outliers should be much more protected than the rest of the observations because
outlying observations have a higher risk for re-identification than non-outliers. In
package sdcMicro a method called outdect() is implemented which considers this
fact.

3.1.4.2 Rank Swapping and Microaggregation

Rank swapping [9] sorts the entries of one variable by their numerical values (rank-
ing). Each ranked value is then swapped with another ranked value that has been
chosen randomly within a restricted range. The rank of two swapped values cannot
differ by more than p percent of the total number of observations. Rank swapping
must be applied to each variable separately and therefore the multivariate data struc-
ture is not preserved very well. Nevertheless, this popular method can be easily
applied by using package sdcMicro for a given data matrix x. In the implementation
the rank swapping is applied columnwise.

Listing 3.20 Rank swapping using a 15% swapping range

swappNum ( x , p =15)

A familiar definition of microaggregation can be found at http://neon.vb.cbs.
nl/casc/Glossary.htm: “Records are grouped based on a proximity measure of
variables of interest, and the same small groups of records are used in calculating
aggregates for those variables. The aggregates are released instead of the individual
record values.”

The choice of the “proximity” measure is the most challenging and most impor-
tant part in microaggregation. The multivariate structure of the data is only preserved
if similar observations are aggregated. Sorting data based on one single variable in
ascending or descending order (method single in sdcMicro), sorting the observa-
tions in each cluster (after clustering the data) by the most influential variable in
each cluster (method influence, see [39]), and sorting (and re-ordering the data after
aggregation) in each variable (individual ranking method, see [10]) are considered
not to be optimal for multivariate data (see [40]).
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Projection methods typically sort the data according to the first principal compo-
nent (method pca) or its robust counterpart (method pppca), whereas the methods
used to obtain the principal components can differ a lot. Usually, all principal com-
ponents must be estimated when using standard approaches for PCA, but method
pppca avoids this and estimates the first (robust) principal component by projection
pursuit without the need of estimating the covariance.

While pca methods are fast, the maximum distance to average vector (MDAV)
often provides better results. This method is an evolution of the multivariate fixed-
size microaggregation (see [14], for example). However, this method (mdav in
sdcMicro) is based on Euclidean distances in a multivariate space.

The algorithm has been improved by replacing Euclidean distances with
robust Mahalanobis distances. In [39] a new algorithm called RMDM (Robust
Mahalanobis Distance-based Microaggregation) was proposed for microaggrega-
tion where MDAV [14] is adapted in several ways.

Microaggregation can be easily applied with package sdcMicro:

Listing 3.21 General procedure to apply microaggregation

m i c r o a g g r e g a t i o n ( x , method = ‘METHOD’ , k =3)

For parameter ‘METHOD’ more than 10 different methods are available [42]. Param-
eter k determines the aggregation level used.

3.1.4.3 Information Loss

One measure of information loss, called IL1s (see, e.g., in [48] or [25]), is based
on aggregated distances from original data points to corresponding values from the
perturbed data divided by the standard deviation for each variable. Unfortunately,
this measure is large even if only one outlier is highly perturbed but all values are
exactly the same as in the original data set.

Other measures are considered in [20] and [39]. Measures of information loss
which compare univariate statistics of the original data and the perturbed data are,
for example, the sum of the differences of the mean or medians. Measures which
compare multivariate statistics of the original data and the perturbed data evaluate
differences of the correlation matrices or loadings obtained by principal component
analysis. Improved measures of information loss have been suggested by [25] and
are also implemented in sdcMicro as well as robust measures (see in the package
manual of sdcMicro).

To apply it one uses the original data and the masked data.

Listing 3.22 Calculation of the IL1 data utility measure

d U t i l i t y ( x , xm , method = ‘ ‘ IL1 ’ ’ )

When calling functions for measuring data utility or risk, expected input parameters
include x , the original data set, and xm, the masked data set.
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The implemented summary method includes more than 10 measures of informa-
tion loss. It can be easily applied to objects of class “micro” (which are typically
calculated using functions addNoise() and microaggregation()).

Methods can finally be compared using function valTable() which calls the
summary method for each anonymization method chosen.

Listing 3.23 Comparing methods using function valTable() and displaying a subset of the cal-
culated output

v <− v a l T a b l e ( Tar ragona , method=c ( ‘ ‘ s imple ’ ’ , ‘ ‘ onedims ’ ’ ,
‘ ‘ pca ’ ’ , ‘ ‘ c l u s t p p p c a ’ ’ , ‘ ‘ mdav ’ ’ , ‘ ‘ addNoise : a d d i t i v e ’ ’ ,
‘ ‘ addNoise : c o r r e l a t e d 2 ’ ’ , ‘ ‘ swappNum ’ ’ ) )

v [ , c ( 1 , 3 , 5 , 9 ) ]
R> method amedian de vva r a c o r s
R> 1 s i m p l e 3 .497 3 .638 5 .119
R> 2 onedims 0 .033 0 .605 0 .006
R> 3 pca 2 .617 2 .765 9 .567
R> 4 c l u s t p p p c a 3 . 640 2 . 797 7 . 399
R> 5 mdav 1 .982 2 .523 5 .681
R> 6 rmd 0 .864 1 .662 1 .392
R> 7 addNoise : a d d i t i v e 42 .892 379 .889 6 . 318
R> 8 addNoise : c o r r e l a t e d 2 2 .993 0 .151 1 .426
R> 9 swappNum 0.114 8 .500 1 .096

3.1.5 Disclosure Risk

In [13] a measure of disclosure risk is proposed which is based on distances. It is
assumed that an intruder can link the masked record of an observation to its original
value (see, e.g., [25]). Given the value of a masked variable it is checked whether
the corresponding original value falls within an interval centered on the masked
value. The width of the interval itself is based on the rank of the variable or on its
standard deviation [13]. However, this interval does not depend on the scale of the
actual value and therefore the length of the interval is equal for non-outlying and
outlying values. However, [41] shows that outlying observations should be much
more perturbed than non-outliers.

By using distance-based record linkage methods one tries to find the nearest
neighbors between observations from two data sets. Reference [13] has shown that
these methods outperform probabilistic methods.

Reference [41] suggests new and more realistic measures of disclosure risk which
accounts for outlying observations by using robust Mahalanobis distances. The
robustification was done using the MCD estimator [31].

The aim is now to measure the distance of each observation to the center of
the data in a multivariate space. For a p-dimensional multivariate sample xi (i =
1, . . . , n) the Mahalanobis distance is defined as

MDi = (xi − t)T C−1(xi − t) for i = 1, . . . , n , (3.6)
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where t is the estimated multivariate location and C the estimated covariance
matrix. In robust statistics, usually, t is a robust estimate of location (e.g., via
MCD) and C is the sample covariance matrix obtained by the MCD estimator, for
example.

Multivariate outliers may simply be defined as observations featuring large
(squared) Mahalanobis distances.

Observations whose robust Mahalanobis distances (RMDi ) are greater than
χ2

(0.975,p)
may be defined as outliers.

The intervals for each data value should now depend on these robust distances,
i.e., the intervals may be defined as k j× (RMDi )

1/2, j ∈ {1, . . . , p}. Following this
approach we obtain a disclosure risk for each observation by checking if any value
of an observation falls into the corresponding interval or not. Then the percentage
of observations featuring high risk can be calculated.

However, if we assume that we have applied microaggregation with high aggre-
gation level, e.g., 10, the methods described previously lead to a high risk of dis-
closure if the original value and the microaggregated value are close to each other.
But these measures are unrealistic for this simple microaggregation example since
10 observations possess the same value in the microaggregated variable, and data
intruder can never be sure which one is the correct link. Especially, if this obser-
vation is near the center of the data cloud the previous measures fail to provide a
meaningful measure of disclosure risk.

An observation which is marked as unsafe is thus considered safe if m observa-
tions are very close to the masked observation.

All the mentioned disclosure risk methods can again be applied within the pack-
age sdcMicro by function dRisk() and dRiskRMD() or by using the results from
above, already stored in object v.

Listing 3.24 Showing additional output from function valTable()

v [ , c ( 1 , 1 7 , 2 0 , 2 1 ) ]
R> method r i s k 0 w r i s k 1 w r i s k 2
R> 1 s i m p l e 0 . 000 621 .445 0 . 000
R> 2 onedims 0 . 799 626 .591 616 .920
R> 3 pca 0 . 000 622 .762 0 . 000
R> 4 c l u s t p p p c a 0 . 000 626 .337 0 . 000
R> 5 mdav 0 . 000 623 .839 0 . 000
R> 6 rmd 0 . 000 626 .099 0 . 000
R> 7 addNoise : a d d i t i v e 0 . 000 549 .716 549 .716
R> 8 addNoise : c o r r e l a t e d 2 0 . 000 613 .749 613 .749
R> 9 swappNum 0. 000 622 .762 615 .199

In 3.24, risk0 refers to the method of [25], wrisk1 and wrisk2 to the measures
proposed by [41].

It is not possible to interprete wrisk1 and wrisk2 in a probabilistic way. How-
ever, they can be used for comparison of methods.
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3.1.6 Case Study Using Real-World Data

In the following an anonymized scientific-use file for the continuing vocational
training survey (CVTS2) data set is created in order to display the functionality
of package sdcMicro to real-world complex data.

This survey includes information on internal measures which enterprises have
taken and (partly) payed for on advanced vocational training for employees. The
raw survey data consist of 2613 enterprises for which a total of 197 variables has
been recorded.

Further information on the CVTS2 data can be found at Statistics Austria’s web-
page at http://www.statistik.at.

The difficulty in generating a scientific-use file for these data is the large number
of categorical variables and the fact that a combination of these variables might be
used by an attacker to correctly identify an enterprise. One scenario is considered
using a subset of the available categorical variables as key variables. It has to be
noted that the decision on the choice of categorical key variables (from subject
matter specialists) is always subjective while the methods for statistical disclosure
control are applied afterward in a non-subjective manner.

Before actually starting to apply anonymization methods, 29 variables which
either were direct identifiers or were including non-relevant information have been
deleted from the data set. We skipped this part of code and continue with the corre-
sponding subset, called cvts.

We started by comparing different scenarios and several combinations of pos-
sible key variables by having a look at the corresponding individual risks for re-
identification [18] as well as the number of unique combinations of the characteris-
tics in the key variables.

This can be easily carried out by repeatedly running a slightly modified script
until both a great reduction in risk and an acceptable loss of information are
obtained.

In such a situation, the graphical user interface of sdcMicro is advantageous
because the results are automatically updated and displayed in the GUI after an
action has been performed out (see Fig. 3.1).

It is in fact very convenient to compare different scenarios using sdcMicro

because the user only has to specify the desired key variables and re-run the code.
Finally, we decided to use the following key variables:

• economic classification of the enterprise: 10 categories
• number of employees: 4 categories
• generated revenues for vocational training: 2 categories
• expenses for vocational training: 2 categories

It should be noted that all of these key variables are modified in an explorative
manner by using the globalRecode() function.

We always looked at the number of unique combinations of the key variables,
the number of observations with a given combination of the key variables that occur
only twice as well as the individual risk for re-identification. We observed 58 unique
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observations and 50 observations whose combination of values of the key variables
occurred exactly two times, see 3.25.

Listing 3.25 Calculation of frequency counts

f r <− f r e q C a l c ( x , keyVars =c ( 5 , 1 0 , 1 2 , 1 3 ) , w=51)
f r
R> 58 o b s e r v a t i o n s wi th fk = 1
R> 50 o b s e r v a t i o n s wi th fk = 2

One aim is to provide k-anonymity [33, 34, 37] and low risk of re-identification.
This means that for any combination of key variables at least k observations
must exist in the data set sharing that combination. Additionally, low individual
re-identification risk of every observation must be guaranteed. The sdcMicro func-
tion localSupp() or localSupp2wrapper() can be used to suppress values in the
key variables. We find 3-anonymity in combination with the other anonymization
methods (e.g., microaggregation) applied to be a sufficient protection to publish this
data set.

If one observation still reports high risk, one can set interactively from the cor-
responding plot of the individual risks (using plot(x) where x must be an out-
put object of function indivRisk()) a threshold which is needed by function
localSupp(). By applying function localSupp2Wrapper() one can guarantee
k-anonymity.

Listing 3.26 Ensuring k-anonymity (here k = 2)

supps <− l oca lSupp2Wrappe r ( x , keyVar=c ( 5 , 1 0 , 1 2 , 1 3 ) ,
w=51 , i m p o r t a n c e =c ( 0 . 1 , 0 . 6 , 1 , 1 ) )

p r i n t ( supps$supp )
R> c l a s s i f . emp r e v e n u e s e x p e n s e s
R> 2 6 49 33

In listing 3.26 we assume that the variable economic classification of enterprises

(classif.) is more important as others, i.e., less values will be suppressed in this
variable. Thus, in this example, only two values have been suppressed in the first
key variable.

After dealing with categorical variables and indirect identifiers, we took addi-
tional precautions by microaggregating the available continuous scaled key vari-
ables.

Listing 3.27 Microaggregation of the continuous scaled key variables with nums being the index
of the key variables

c v t s [ , nums ] <− m i c r o a g g r e g a t i o n ( x [ , nums ] , k =3)

After these steps the resulting scientific-use file may be considered safe since
3-anonymity and low individual risk is provided and the continuous scaled key vari-
ables have been microaggregated.

In this section a short overview of the possibilities to protect continuous scaled
key variables using R-package sdcMicro was presented. The main functions are
summarized in the following:



50 M. Templ and B. Meindl

• swappNum() to apply rank swapping.
• addNoise() to add noise. Different methods can be chosen.
• microaggregation() microaggregates the data. Again, different methods can

be chosen.
• valTable() can be used to compare methods and reports their corresponding

information loss and disclosure risk after perturbation.

3.2 Tabular Data Protection Using sdcTable

Statistical agencies generally do not publish microdata, but disseminate information
in the form of aggregated data. Aggregated data are usually represented as statistical
tables with totals in the margins.

3.2.1 Frequency and Magnitude Tables

A statistical table is constructed from microdata. According to the characteristics of
one or more dimensional variables, all statistical units (e.g., persons, enterprises, or
legal entities) that possess the same set of characteristics for each of the dimensional
variables are grouped.

If the number or units for each combination of the dimensional variables is listed,
the resulting table is referred to as frequency table. If some aggregated measure (usu-
ally the sum of a continuous scaled variable) is listed, the table is called magnitude
table.

However, it should be noted that each statistical table is defined by a set of linear
constraints connecting inner and marginal cells. In order to illustrate theses relations,
the following simple, two-dimensional frequency Table (Table 3.1) is considered
(see also in [7]).

In Table 3.1 the number of persons featuring some kind of characteristic living
in certain zip-codes and age classes is shown. It is easy to see that in this simple
example the linear constraints are just the sum of the rows and the columns. This
means that the number of persons living in zip-code 5021 and the number of people
living in zip-code 5022 sum up to the total number of people living in zip-code 502
since this larger area consists only of those two zip-codes. Therefore, the 14 people
between 56 and 60 years in zip-code 5021 and the 12 persons in the same age class
in zip-code 5022 sum up to the total number of persons in this age-group in zip-code
502. Additionally, summing up over the age-groups for any zip-code results in the
linear restrictions which form the age-totals.

Table 3.1 Two-dimensional frequency table with margins

1–55 56–60 61–65 Total

5021 1529 14 1 1544
5022 2985 12 2 2999
502 4514 26 3 4543



3 Practical Applications in Statistical Disclosure Control Using R 51

Table 3.2 Magnitude two-dimensional table

1–55 56–60 61–65

5021 47,556 44,281 45,302
5022 41,852 37,952 39,040

Even though statistical tables present aggregated information of individuals con-
tributing to the table cells, the risk of identifying single statistical units using tables
is present and can in fact be high.

Consider now in addition to Table 3.1, Table 3.2 in which the median income
is listed for each combination of zip-code and age classes. This table illustrates
a disclosure situation. From the frequency Table (Table 3.1) it is clear that only
one statistical unit contributes to the cell defined by zip-code 5021 and age class
61–65. Therefore, a data intruder gains the knowledge that the income of this single
person is 45, 302. Disclosure would definitely occur if the data intruder manages to
identify this person based on the dimensional variables. For example, he knows that
his colleague is living in the corresponding zip-code and is between 61 and 65 years
of age.

However, by looking at Table 3.2 we can state another possibly disclosure prob-
lem, because any of the two persons that contribute to the table cell with zip-code
5022 and age class 61–65 can calculate the income of the other contributing person
by using the information on his own income which he certainly knows.

Since laws on data privacy are strict in almost all countries, national statistical
offices do not only protect microdata but also aggregated data such as statistical
tables in order to avoid disclosure of sensitive information.

Popular methods of protecting aggregated output to avoid possible re-
identifications of statistical units or attribute disclosure feature cell suppression,
rounding, or table reorganization by collapsing categories. Generally speaking, this
means that some cells have to be suppressed or modified.

3.2.2 Primary Sensitive Cells

The first step when protecting tabular output is to determine table cells that need to
be protected. These cells are referred to as primary sensitive cells.

The minimum frequency rule is the most popular rule to identify primary unsafe
table cells. Using this rule, any table cell for which n or less statistical units con-
tribute is considered to be primary unsafe. The parameter n is often set to 3 or 4.

Further popular methods are based on the idea that a cell should be protected if
one or two statistical units dominate the cell. An example would be a table showing
turnover by region of some businesses. If, for example, an enterprise is responsible
for the vast majority of the generated turnover in its corresponding cell, this enter-
prise dominates this cell. If this fact is well known, the turnover of the enterprise can
be estimated quite well by data intruders and thus, the cell needs to be protected.

Popular rules for identifying primary sensitive cells based on dominance criteria
are the (n, k)-rule and the p%-rule. According to the (n, k)-rule a table cell is unsafe
if the total contribution of the n largest contributors exceeds k% or the total cell
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value. k is often set to 85% in practice. Using the p-rule, a cell needs to be protected
if the cell total minus the two largest contributors is less than p% of the largest
contribution. Generally, the p%-rule should be preferred over the (n, k)-rule which
has been shown by many authors (see, e.g., [8, 26, 47]).

3.2.3 Secondary Cell Suppression

Due to the linear relationships which are typical for statistical tables it is not suf-
ficient to protect tables by identifying primary sensitive cells and suppressing its
values. In order to avoid the recalculation or the possibility to gain good estimates
for sensitive cells, additional cells need to be suppressed. The problem of finding
additional cells for suppression is called secondary cell suppression problem. It
is a quite complex and computer-intensive task to find and identify cells which
are needed to be suppressed or changed in order to protect the primary sensitive
cells since statistical tables are often hierarchical, multidimensional, and/or linked
in practice.

Optimal solutions exist which are based on minimizing a pre-defined cost-
function taking the linear relationships of the hierarchical tables into account (see
e.g., [15]). The objective function is often chosen to minimize the total number
of additional suppressions or similar criteria. The computational costs to solve
the resulting complex combinatorial optimization problems are enormous for large
hierarchical tables. Therefore, different heuristic solutions for two- and three-
dimensional tables have been proposed (see, e.g., [4, 11, 16, 21]).

However, it should be noted that often the tables from statistical agencies are
multidimensional with more than three dimensions. A practical implementation
with up to four dimensions is implemented in the software τ -Argus. Details on its
implementation are given in [26, 32].

Reference [12] proposes a heuristic solution to solve the problem by splitting
a possible large statistical table into subtables and solving several smaller linear
problems instead of trying to solve the complete program in one step. This method
is often referred as the Hitas method.

3.2.4 Software Issues

R-package sdcTable is a newly written package to protect tabular data. The pack-
age is developed within an open-source project and can be downloaded from the
comprehensive R archive network (CRAN, see http://cran.r-project.org).

3.2.4.1 Installation and Dependencies

The installation of the package can also be done directly in R.

Listing 3.28 Installation of the sdcTable package

i n s t a l l . p a c k a g e s ( ‘ sdcTab le ’ )
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The package itself depends on the R-package lpSolve ([3]) which provides an
interface to call the free and open linear programming solver lpSolve within the R
environment.

The installation of sdcTable provides online help for all the functions included
as well as test data and examples which can be copied by the user and directly pasted
and run in the R scripting window. To view the available help, the user needs to type
the following command:

Listing 3.29 Displays the help index of package sdcTable

h e l p ( package = s d c T a b l e )

Figure 3.3 shows the workflow needed to use package sdcTable. After reading
the microdata into R, it is needed to standardize the data in a specific way so that
it is possible to apply suppression or perturbation algorithms. By using the function
createFullData() an object of class fullDat is created which can be used for further
processing. The function protectTable() is a wrapper function which can be used to
call different suppression algorithms. A successful run of protectTable() results in
an object of class safeTable. For objects of class safeTable a summary function is
provided which prints useful information such as the protection algorithm used to
protect the statistical table, the number of primary and additional suppression, or the
running time of the algorithm.

General Workflow

Fig. 3.3 Workflow needed in order to use package sdcTable
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3.2.4.2 Capabilities of the Package

The user is able to protect tabular data which have to be transformed into a specific
format by using either the GHMITER algorithm ([28]) or the Hitas algorithm. Both
heuristic algorithms can be called within protectTable(). Initial work has started to
support rounding algorithms in this package. In the published version, algorithms
for simple, random, and controlled rounding have been implemented for subtables.

In the next section, the usage of sdcTable is explained by explaining all the
steps mentioned above.

3.2.5 Anonymizing Tables Using sdcTable – A Guided Tour

In this section, it will be shown how to use sdcTable to protect hierarchical tables.

3.2.5.1 Standardizing Input

Suppose we have input microdata available and the statistical table we need to pro-
tect is defined by three dimensional variables, namely sex, age, and region. The first
few entries of the microdata set are displayed in Table 3.3.

It should be noted here that prior to any further data manipulations it is required to
remove already pre-calculated totals from the microdata set – they will be calculated
by createFullData() anyway. If, for example, the sum of income for males and
females for combinations of age and region would be included in the data, these
entries need to be removed.

In order to be able to continue working with sdcTable, it is necessary to stan-
dardize the input. In practice, this step can be quite time consuming considering the
great amount of different input and output formats or variable codings. Standardiz-
ing the input data consists of basically three steps:

1. removing pre-calculated totals,
2. defining the hierarchical structure of each dimensional variable,
3. recoding each dimensional variable in a specific way.

The first step is trivial and therefore no further explanation is needed. The latter
two steps will now be explained in detail.

Table 3.3 Underlying microdata

Sex Age Region Income

4914 Male AG1 SR13 20,273.96
26,412 Female AG12 SR111 25,791.30
29,410 Female AG3 SR22 25,462.63
6713 Male AG10 SR13 28,005.68
1258 Male AG3 SR16 25,426.51
4437 Male AG6 SR32 22,252.87
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Fig. 3.4 Hierarchical structure of dimensional variables

In Fig. 3.4 the hierarchical structure of the three dimensional variables is visu-
alized. One can observe that variables sex and age have two levels (this means that
there is only one total) while variable region has a total of three levels. The grand
total consists of three main regions and each of these main regions consists of several
sub-regions.

The hierarchical structure is saved as a list-object in R. For each dimensional
variable a vector is specified. The required number of elements of each vector is
defined by the number of levels. The values of each vector element are defined
by the number of digits that are needed in this level to sequentially number the
characteristics in this level.

Listing 3.30 Hierarchical structure of dimensional variables

d i m S t r u c t <− l i s t ( )
d i m S t r u c t [ [ 1 ] ] <− c ( 1 , 1 ) # sex
d i m S t r u c t [ [ 2 ] ] <− c ( 1 , 2 ) # age
d i m S t r u c t [ [ 3 ] ] <− c ( 1 , 1 , 2 ) # r e g i o n

In this code-listing a list-object dimStruct is defined. For each dimensional vari-
able the standardized hierarchical structure is given as a vector.

We are now considering variable sex. As we can see from Fig. 3.4, this dimen-
sional variable has only two levels. Thus, the required number of elements is 2.
Since the total number of characteristics in the first level (“Total”) is one, only one
digit is required for sequentially numbering. Therefore, the 1 is written as the first
vector element. In the second level, we observe two characteristics, namely male
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and female. Since only one digit is required for sequentially numbering, the second
element for this vector is also 1.

The situation is slightly different for variable age. Variable age features also two
levels. For the total, also only one digit is required. However, as seen in Fig. 3.4, a
total of 12 age-groups exists. Therefore, the required digits for sequential numbering
are 2 which is also the value of the second vector element.

For the third dimensional variable region we observe from Fig. 3.4 that three lev-
els exist. Therefore, the number of vector elements needs to be 3. As in the previous
examples, only one digit is required for level 1 (the total) and level 2 (the three main
regions). But the maximum number of sub-regions in level 3 is 11; two digits are
required for sequentially numbering within level 3 of variable region. This is why
the third element of the corresponding vector is set to 2.

3.2.5.2 Recoding Variables

Since sdcTable is not capable to process any variable codings, standardization
needs to be applied by the user. The recoding process is basically sequential num-
bering within sub-levels. It is helpful to have a look at both Fig. 3.4 and the definition
of the hierarchical structure in the code segment from above.

Considering the microdata from Table 3.3, a total of three dimensional variables
exists defining the statistical table which need to be standardized. The easiest vari-
able to recode is obviously sex since this variable has only two characteristics. The
necessary digits needed can be calculated easily by summing up the vector defining
the hierarchical structure.

Listing 3.31 Required digits for standardized variables

# d i g i t s needed f o r s t a n d a r d i z e d v a r i a b l e s
# sex , age and r e g i o n

u n l i s t ( l a p p l y ( d i m S t r u c t , sum ) )
R> 2 3 4

As we can see from 3.31, we obviously only need two digits to standardize variable
sex and three or rather four digits are required for the standardized variables age and
region, respectively.

The first digit of any standardized variable always equals zero, since the coding
for the grand total consists of zeros only. In all further levels, all characteristics
are sequentially numbered within their upper levels. This leads to the standardized
codes of “01” for males and “02” for females when considering variable sex. We
note that codes for totals (“00” in this case) do not need to be created since these
observations have already been excluded from the minimal data set. To clarify, one
could transform the hierarchical variable sex using the following R-statements:

Listing 3.32 Recoding of Variable “sex” into standardized form

# minDat i s t h e minimal d a t a s e t w i t h o u t t o t a l s
minDat$sex [ which ( minDat$sex == ‘ ‘ male ’ ’ ) ] <− ‘ ‘01 ’ ’
minDat$sex [ which ( minDat$sex == ‘ ‘ female ’ ’ ) ] <− ‘ ‘02 ’ ’
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The missing totals will be calculated automatically from the minimal data set using
function createFullData() and codes for missing (sub)totals will be automatically
generated.

Similarly, the automatic recoding for variable age is done. The only difference is
that three digits are needed for the standardized variable and the characteristic “000”
represents the total value over all age-groups, while “005” and “011”represent the
fifth and eleventh age-group, respectively.

Considering variable region the situation becomes slightly more complicated
because region consists of three levels. From 3.31 we know that a total of four
digits is required for the standardization of this variable. As above, “0000” would
represent the grand total over all areas, while “0200” represents the second main
area and “0203” its third sub-area.

3.2.5.3 Creating a Complete Data set

Having standardized all the dimensional variables, it is now possible to create a com-
plete data set featuring all possible (sub)totals that can be calculated from variables
defining the table.

Listing 3.33 Creating a complete data set for further processing

i n d e x V a r s <− 1 : 3

complDat <− c r e a t e F u l l D a t a ( minDat , i n d e x v a r s , d i m S t u c t )
p r i n t ( c l a s s ( complDat ) )
R> ‘ ‘ f u l l D a t a ’ ’

Code-listing 3.33 shows how to create a data set using createFullData()

function. We suppose that the data set minDat was changed in a way that the
first three columns are now the standardized variables sex, age, and region and
the fourth column represents the number of observations for a given combination
of the dimensional variables. Furthermore, variable indexVars specifies the posi-
tion of the dimensional variables within minDat, and dimStuct is defined as in
3.30.

The output of this function is an object complDat which is of class fullData. It
would be possible to ask the procedure for simple primary suppression of cells using
a minimum frequency rule which can be specified in the function call. We note that
any object of this class is a list-object with the list-elements being the complete
data set with all possible (sub)totals and with an additional column added stating
if a cell was marked as primary suppressed. Another list-object lists the indices of
the cells that should be protected. Therefore, it is possible to manually set cells as
primary suppressions based on a specific rule by directly modifying an object of
class fullData.

3.2.5.4 Protecting the Data

Given an object of class fullData it is then possible to protect table cells whose
indices are listed in the list-object supps2check of an object of class fullDat by
running function protectData() as it is shown in code-listing 3.34.
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Listing 3.34 Protecting a data set using different algorithms

s a f e D a t H y p e r c u b e <− p r o t e c t D a t a ( complDat ,
method = ‘ ‘HYPERCUBE’ ’ )

s a f e D a t H i t a s <− p r o t e c t D a t a ( complDat , method = ‘ ‘HITAS ’ ’ )

Running function protectTable() requires only two input parameters. The
first one is an object of class fullData that has previously been calculated. The
second required argument is the choice of the suppression algorithm. Currently,
only two choices are possible: HYPERCUBE and HITAS.

Furthermore, it is possible to set additional arguments depending on the choice
of the suppression algorithm. Without specifying further arguments, the default val-
ues which are documented in the included online help are used. It is also possible
to specify whether empty cells should be allowed to be included in suppression
patterns when using the HYPERCUBE algorithm or changing the upper and lower
protection levels when using the HITAS method.

3.2.5.5 Comparing and Analyzing Results

Having protected an object of class fullData using function protectTable(), the
resulting object is of class safeTable. A summary function for objects of this
class has been implemented, showing useful information such as the number of
primary suppressed cells, the number of additionally suppressed cells, the complete
running time of the procedure, or the necessary runs to protect against differencing
for secondary suppressions which is necessary in heuristic procedures such as the
HYPERCUBE algorithm. Code-listing 3.35 shows the corresponding output based
on the results of 3.34.

Listing 3.35 Comparing results using the included summary function

p r i n t ( summary ( s a f e D a t H y p e r c u b e ) )
R> The d a t a s e t was p r o t e c t e d u s i n g HYPERCUBE !
R> N e c e s s a r y r u n s : 5
R> T o t a l d u r a t i o n : 5 .453931
R> Pr imary s u p p r e s s i o n s : 24 ( 1 . 7 8 %)
R> Secondary s u p p r e s s i o n s : 144 ( 1 0 . 6 7 %)

p r i n t ( summary ( s a f e D a t H i t a s ) )
R> The d a t a s e t was p r o t e c t e d u s i n g HITAS !
R> N e c e s s a r y r u n s : 1
R> T o t a l d u r a t i o n : 5 .315442
R> Pr imary s u p p r e s s i o n s : 24 ( 1 . 7 8 %)
R> Secondary s u p p r e s s i o n s : 125 ( 9 . 2 6 %)

The results displayed in 3.35 show that the HITAS algorithm results in a total of
125 additional suppressions. In contrast, the HYPERCUBE algorithm suppresses
a total of 144 cells to protect the primary cells sufficiently. However, the algo-
rithms are not directly comparable since the choice of protection intervals and the
choice if empty cells may be included in the supression patterns when using the
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HYPERCUBE algorithm influence the results. Also, the more complex the statisti-
cal tables to protect, the HITAS algorithm tends to run much longer than HYPER-
CUBE.

3.2.6 Summary

In this section a short overview of the possibilities to protect hierarchical tabular
data using R-package sdcTable was presented. The main steps to apply protection
using the package are as follows:

• Standardization: the resource-intensive process of reshaping data so that it
can be used within the package can be done easily within R.

• createFullData() to create a data object suitable as an input object for further
processing.

• protectTable() for secondary cell suppression using different algorithms.

3.3 Summary

Statistical disclosure control is a subject of amazingly many uses due to existing
laws on data privacy and surprisingly few effective practitioners. The road to prac-
tical applications of statistical disclosure limitation methods was blocked, mostly
because methods have not been available in software or only available in closed-
source software. The problem with closed-source software is that it is simply not
possible to enhance, modify, contribute code, or fix bugs since no access to the
source code is provided. The main philosophy of the proposed two R-packages
is open-source development under a general public license. Given such a license,
the Intellectual rights of every author who contributes to the packages with code is
respected.

In the first part of the chapter, an application of the most popular methods for
statistical disclosure control to protect microdata from official statistics was shown
using the sdcMicro package. It was shown how to apply methods from sdcMicro

to protect categorical data by recoding, suppression, and randomization. Further-
more, it was outlined that recoding of variables is a highly explanatory process
which is supported by the software. Finally, an example based on real-world data
was given to show the anonymization of both categorical variables and continuous
scaled variables.

In the second part of the chapter the open-source package sdcTable was pre-
sented. This software could be used for protecting hierarchical tables. A detailed
description was given of how the data must be structured to allow to apply the
available protection methods. This detailed structure is necessary to provide all
information about the hierarchies in the tables. After this data preparation step the
application of protection methods for complex hierarchical tables becomes easy, just
by applying functions createFullData() and protectTable(). In comparison
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with existing closed-source software to protect tables, sdcTable does not need any
additional commercial software – it is based on an open-source solver to solve linear
programs.
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Chapter 4

Disclosure Risk Assessment for Sample

Microdata Through Probabilistic Modeling

Natalie Shlomo

Abstract Disclosure risk occurs when there is a high probability that an intruder
can identify an individual in released sample microdata and confidential information
may be revealed. For some social surveys, the population from which the sample is
drawn is generally not known or only partially known through marginal distribu-
tions. The identification is made possible through the use of a key, which is a com-
bination of indirectly identifying variables, such as age, sex, and place of residence.
Disclosure risk measures are based on the notion of population uniqueness in the
key. In order to quantify the disclosure risk, probabilistic models are defined based
on distributional assumptions about the population counts according to the observed
sample counts. The parameters for the distribution are estimated through log-linear
models. The model selection criteria is based on a ‘minimum error’ test using a
forward search algorithm. The methods are expanded to cover the case of complex
survey designs and misclassification on the key variables, either arising from the
survey process or as a result of perturbative disclosure control techniques that may
have been applied to the data. Variance and confidence intervals of estimated disclo-
sure risk measures are also addressed. The methods are demonstrated on real data
drawn from extracts of the 2001 UK Census. Possible extensions to the probabilistic
modeling are presented based on a local polynomial regression smoothing technique
in neighborhoods of the cells of the key.

4.1 Introduction

Statistical agencies face growing demands for the release of microdata while under
legal, moral, and ethical obligations to preserve the confidentiality of respondents.
The microdata released are generally based on samples arising from social surveys
where the statistical unit is a household or an individual. Microdata from business
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surveys are typically not released because of their disclosive nature due to high
sampling fractions and skewed distributions.

Many statistical agencies have set up provisions for providing access to sam-
ple microdata arising from social surveys for research purposes under different
modes of access, for example, public-use files, microdata under contract, special
license agreements, on-site data labs, and data archives. Each of these modes of
access might have different levels of disclosure risk protection depending on who
is requesting the data. New developments in remote access and remote computa-
tion servers are possible solutions for data release and pose specific challenges for
applying web-based disclosure risk techniques ‘on the fly’ for statistical outputs.

In order to preserve the privacy and confidentiality of individuals in statistical
data, statistical agencies must assess the disclosure risk in sample microdata and
if required choose appropriate statistical disclosure control (SDC) methods to apply
to the data. Measuring disclosure risk involves assessing and evaluating numerically
the risk of re-identifying statistical units. SDC methods perturb, modify, or summa-
rize the data in order to prevent re-identification by a potential attacker. To make
informed decisions about the release of microdata, objective disclosure risk mea-
sures are needed. These measures are compared to tolerable risk thresholds which
may vary according to the mode of access. Higher levels of protection through SDC
methods impact negatively on the utility and quality of the data. The SDC decision
problem involves finding the optimal balance between managing and minimizing
disclosure risk and ensuring high utility in the data.

In this chapter, we focus on quantifying the disclosure risk for sample micro-
data arising from social surveys. Microdata is released only after taking out directly
identifying variables, such as names, addresses, and identity numbers. Disclosure
risk arises from attribute disclosure where small counts on cross-classified indirect
identifying key variables can be used to identify an individual and confidential infor-
mation may be learnt. The key variables are typically variables that are visible and
traceable and are accessible to the public or to potential intruders. They include
variables such as sex, age, occupation, place of residence, country of birth, family
structure. In the kinds of social survey applications of concern here, we assume
that the key variables are categorical. Sensitive variables are often continuous ones
but can also be categorical. We define the ‘key’ as the set of combined identifying
key variables, typically presented as a contingency table spanned by key variables
containing the counts from the microdata.

One disclosure risk scenario often used at statistical agencies is the ability of an
intruder to match the released microdata to external sources containing the target
population based on a common key. Following several authors (e.g., [2, 7, 16]),
consider a microdata file consisting of records for a sample of individuals from a
finite population. The disclosure risk scenario is based on the assumption that an
intruder has access to the file as well as auxiliary information on the values of the
key variables for some known individuals in the population. The intruder matches
the two data sources in order to identify one or more records in the microdata. We
suppose the intruder assesses whether there is a microdata record and a known
individual for which the probability that the former belongs to the latter is high.
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The basic definition of identification risk is the value of this probability when the
microdata record does indeed belong to the known individual. External sources can
be either in the form of prior knowledge that the intruder might have about a spe-
cific population group or individuals or by having access to outside files containing
information about the population, such as a National Population Register, Electoral
Role, or private databases (for example, customer, or market research databases).

The probability of identification risk is conditional on the data which might rea-
sonably be assumed available to the intruder and defined with respect to a model and
assumptions, which are justifiable from analysis of the data and from knowledge of
the processes (sample selection, measurement error etc.) generating the data. The
key variables are treated as given according to a specified scenario, as in [16].

A literature review of methods for assessing disclosure risk for sample microdata
arising from social surveys can be classified into four types:

• Heuristics that identify records as ‘special uniques’ on a set of cross-classified
key variables, i.e., sample uniques that are likely to be population uniques (see
[9, 29]).

• A global disclosure risk measure developed by Skinner and Elliot [25] which
takes into account the sample design and does not need parametric assumptions
for its estimation.

• Probabilistic record linkage on a set of key (matching) variables that can be used
to link the microdata to an external population file. Disclosure risk is quantified
by the number of correct matches (see [6, 28, 30]).

• Probabilistic modeling of disclosure risk which has been developed under two
approaches: a full model-based framework taking into account all of the infor-
mation available to ‘intruders’ and modeling their behavior (see [7, 15, 18]), and
a more simplified approach that restricts the information that would be known to
intruders (see [1, 2, 8, 10, 19, 24]).

In this chapter, the focus is on the simplified probabilistic modeling approach
for assessing disclosure risk in microdata and specifically the risk of identifying
an individual which can lead to the disclosure of sensitive attributes. Using proba-
bilistic modeling we obtain consistency between record-level and global-level dis-
closure risk measures. Record-level disclosure risk measures can be used to target
high-risk records in the microdata for localized applications of SDC techniques.
Global disclosure risk measures are aggregated from record-level risk measures and
are essential for informing decisions about the release of microdata. To quantify
the disclosure risk, a frequency table of counts spanned by the identifying cate-
gorical key variables is produced from the microdata. The corresponding table for
the population is assumed unknown as is the case for typical social surveys where
samples may be drawn from address lists or area-based sampling frames. Some
partial information may be known about the population in the form of marginal
distributions. Disclosure risk arises from cells of the table where both the sample
and the population counts are small. This allows an intruder who has the sample
data and access to some information on the population to identify an individual with
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high probability thereby exposing sensitive information. We restrict our attention to
these high-risk records only.

The framework for disclosure risk assessment based on the simplified proba-
bilistic modeling approach is set out in Section 4.1 where global and individual
disclosure risk measures are defined based on classical distributional assumptions of
count data. We initially assume that variables may have undergone some recoding
to reduce the disclosure risk. Section 4.2 presents the use of log-linear modeling
to estimate the parameters of the distribution and estimates of the disclosure risk
measures. A model selection technique is also described based on a goodness-of-fit
criteria that assures good estimates of the disclosure risk measures. Section 4.3 dis-
cusses extensions to the case of complex survey designs and Section 4.4 to the case
where the microdata has been exposed to measurement error, either arising naturally
in the survey processes or as a result of a perturbative method of disclosure control
that may have been applied to the microdata. Section 5 discusses variance estimation
and confidence intervals for the global disclosure risk measures. Section 6 provides
examples of applying the methods described in the previous sections on samples
drawn from the 2001 UK Census data. Finally, Section 7 introduces some possible
extensions to the probabilistic modeling for assessing disclosure risk.

4.2 Disclosure Risk Measures and Their Estimation

4.2.1 Notation and Definitions

To introduce measures of disclosure risk, let Fk be the population count and fk

be the sample count in cell k of the multiway contingency table formed by cross-
classifying the key variables (with cells labeled k = 1, . . . , K ). Disclosure risk
arises from cells in which both fk and Fk are positive and small and, in particular,
when fk = Fk = 1 (sample and population uniques). Skinner and Holmes defined
in [24] a risk measure given by E(1/Fk) =

∑

r P(Fk = r)/r , where P(Fk = r)

denotes the probability that Fk = r under the model (r = 1, 2, . . . ). This is based
on the assumption that the intruder would not know values of the population (espe-
cially for small counts) and the assumption of the exchangeability on the selection
of records in cell k. We focus on those records in the sample that are sample unique
fk = 1 for a cell k since these cells will provide the highest risk measure. Assuming
that the pairs (Fk, fk) are independent, we define P(Fk = 1| fk = 1) the conditional
probability that Fk = 1 and E(1/Fk | fk = 1) the conditional expectation of 1

Fk
.

These are referred to as record-level disclosure risk measures [29] since they vary
between records. Global disclosure risk measures are typically aggregations of the
record-level risk measures which can be normalized by some measure of the total
size of the table, by the number of sample uniques, or by some measure of the
information value of the data.
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Here, we consider simply summing the record-level measures across sample
unique records to give

τ1 =
∑

SU

P(Fk = 1| fk = 1), (4.1)

the expected number of sample uniques that are population unique and

τ2 =
∑

SU

E(1/Fk | fk = 1), (4.2)

the expected number of correct matches for sample uniques, where SU = {k : fk= 1}
denotes sample unique cells. As global disclosure risk measures aggregate across
individual record-level disclosure risk measures, we obtain consistency between the
two types of disclosure risk measures. The focus will be on situations where K

is large (and the (Fk, fk) may be treated as independent) so that τ will closely
approximate, τ ∗1 =

∑

k I ( fk = 1, Fk = 1), the number of sample uniques that
are population uniques, or τ ∗2 =

∑

k I ( fk = 1) 1
Fk

, the expected number of correct
matches for sample uniques, respectively. The problem of disclosure risk assessment
becomes one of statistical inference if the fk are observed but the Fk are not. Using
probabilistic modeling when population frequencies Fk are unknown, we can infer
from the sample to obtain the estimates:

τ̂1 =
∑

SU

P̂(Fk = 1| fk = 1) and τ̂2 =
∑

SU

Ê[1/Fk | fk = 1]. (4.3)

4.2.2 Estimating the Disclosure Risk

Models are required not only for the explicit definition of most of the disclo-
sure risk measures in the previous section but also for inference about these mea-
sures. Following standard methods for contingency tables (e.g. [3]), we assume
that Fk are realizations of independent Poisson random variables with means λk

(k = 1, . . . , K ), where λk = Nγk (γk ≥ 0 and
∑K

k=1 γk = 1): Fk ∼ P(λk). We
assume that the sample is drawn by Bernoulli sampling where individuals in cell
k have the same known inclusion probability πk so that the sample counts fk are
also independent Poisson random variables: fk ∼ P(πkλk). Under the Bernoulli
sampling assumption, we have Fk | fk ∼ P[λk(1−πk)]+ fk so that the record-level
measures may be expressed as

P(Fk = 1| fk = 1) = exp[−(1 − πk)λk]
and (4.4)

E(1/Fk | fk = 1) = {1 − exp[−(1 − πk)λk]}/[(1 − πk)λk].
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The contingency table spanned by the key variables is typically very large and
therefore the problem of estimating {λk} is a hard problem, especially when we
focus specifically on those cells where the observed sample count fk is equal to
one.

In the approach of [2], the parameters λk = Nγk are assumed to be realizations
from a Gamma prior distribution γk ∼ Gamma(α, β). Since under the constraint
∑K

k=1 γk = 1, we obtain Eγk = αβ = 1
K

and
∑K

i=1 Eγk = 1 and therefore
only the hyperparameter β needs to be estimated from the sample. The parameter β

determines the amount of dispersion of the parameters γk around their mean 1
K

. This
simplistic assumption of a Gamma prior with one hyperparameter assumes that the
population is exchangeable with respect to the cells of the key and all cells have the
same disclosure risk. It follows that the marginal distribution of the sample counts
fk under the Bernoulli sampling scheme follows the negative binomial distribution:
fk ∼ NB(α, pk = 1

1+Nπkβ
) with a mean of E( fk) = α(1−pk )

pk
≡ μk and a vari-

ance of Var( fk) = α(1−pk )

p2
k

≡ μk +
μ2

k

α
. With the above parameterization we have

E( fk) = Nπkαβ and Var( fk) = Nπkαβ(1 + Nπkβ). Further calculations in [19]
yield Fk | fk ∼ fk + NB(α + fk, ρk = Nπk+1/β

N+1/β
), (Fk ≥ fk).

As α → 0 (and hence β → ∞), we obtain Fk | fk ∼ fk + NB( fk, πk), which is
the negative binomial assumption in the model proposed by Benedetti et al. [1]. As
α →∞ and αβ → constant, we obtain the Poisson model described in [8, 24] and
presented below. In this sense the negative binomial distribution with parameter α

subsumes both models. In Section 7 we describe an extension of probabilistic mod-
eling using the negative binomial distribution and based on local neighborhoods.

The original model proposed in [2] was based on only one hyperparameter β

to model the parameters {λk} and therefore did not accurately reflect the underlying
structure in the data. Different researchers [8, 24] propose using log-linear modeling
to estimate the parameters {λk}. The parameters {λk} are related via the log-linear
model:

log λk = x ′kβ (4.5)

where xk is a q × 1 design vector, depending on the values of the key variables in
cell k and β is a q × 1 parameter vector. Typically, xk specifies the main effects
and low-order interactions of the categorical key variables [3]. Since the fk are the
outcomes of independent P(πkλk) random variables, the maximum likelihood (ML)
estimator β̂ are obtained by solving the score equations:

∑

k

[ fk − πk exp(x ′kβ)]xk = 0, (4.6)

using numerical techniques. The risk measures in (4.1) and (4.2) can then be esti-
mated by replacing λk by λ̂k = exp(x ′k β̂) in the expressions (4.4) and then aggre-
gating to (4.3).
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4.2.3 Model Selection and Goodness-of-Fit Criteria

Authors of [27] have developed a diagnostic criteria and model selection technique
known as the minimum error test which can deal with the very large and spare
contingency tables that are typical in disclosure risk assessment for sample micro-
data. The criteria is related to similar tests for over-or under-dispersion of count
data under the Poisson regression model (see [5]), i.e., testing the assumption that
the conditional mean is equal to the conditional variance. The minimum error test
approach involves (i) specifying the key variables, (ii) selection of one or more log-
linear models which fit well according to these criteria, and (iii) using the well-fitting
models to obtain disclosure risk estimates.

The problem of estimating the parameters using log-linear modeling for a very
large and sparse contingency table based on sample counts is to ensure that the
zero cell counts are modeled accurately. Random (non-structural) zeros are defined
for the case where fk = 0 and Fk �= 0. These occur when the selection of the
sample does not include a member in cell k due to a small population count and
a small sampling rate. Structural zeros are defined for the case where fk = 0 and
Fk = 0. These occur when impossible combinations of categories of key variables
are cross-classified, for example, ‘young children’ combined with the category of
‘married’ would result in a structural zero count.

The impact of trying to model both the random and structural zero cell counts cor-
rectly in a large and sparse contingency table leads to problems of over-fitting when
the models are ‘too complex’ or under-fitting when the model is ‘over-smoothed.’
For example, if high-order interactions are used to estimate the parameters {λk} (for
example, the saturated model where λk = fk/πk), the marginal totals that are used
to fit the models would have many random zero counts, resulting in estimating the
expected cell count as zero when in fact there could be population associated to
those cells. On the other hand, if the model only includes main effects (the indepen-
dence model), there is little chance of marginal totals having sample counts of zeros.
This would result in the incorrect modeling of the structural zeros since they would
have non-zero-fitted cell counts when in fact there is no population associated to
these cells. The under-fitting of the model leads to an under-estimation of disclosure
risk, while over-fitting leads to an over-estimation of disclosure risk.

Because the contingency table includes both random and structural zeros counts,
the aim is to define the main effects and appropriate interactions in the model that
take into account both types of zeros and models them appropriately. This would
provide a model of equal dispersion and good estimates of disclosure risk measures.

The minimum error test proposed by Skinner and Shlomo [27] is as follows:
Denote the two record-level risk measures: h1(λk) = exp[−(1 − πk)λk] and
h2(λk) = {1 − exp[−(1 − πk)λk]}/[(1 − πk)λk], where h(λ) is a monotonic
decreasing function of λ. The goodness-of-fit criterion for choosing a specification
of model (4.5) minimizes the error of τ̂ =

∑

k I ( fk = 1)h(λ̂k) as an estimator of
τ =
∑

k I ( fk = 1)h(λk) or as a predictor of τ ∗ =
∑

k I ( fk = 1)g(Fk) which takes
the particular forms: τ ∗1 =

∑

k I ( fk = 1, Fk = 1) or τ ∗2 =
∑

k I ( fk = 1)/Fk ,
respectively.
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Changing the notation from [27], the test statistic is approximated by

B =
∑

k

E[I ( fk = 1)][h(λ̂k)− h(λk)] =
∑

k

πkλk exp(−πkλk)[h(λ̂k)− h(λk)].

(4.7)
A Taylor expansion of h leads to the approximation:

h(λ̂k) ≈ h(λk)+ h′(λk)(λ̂k − λk)+ h′′(λk)(λ̂k − λk)
2/2, (4.8)

using a quadratic expansion of h(λ̂k) around λk . For example, when h(λ) = h1(λ),
h′(λk) = −(1 − πk)h1(λk) and h′′(λk) = (1 − πk)

2h1(λk).
Substituting approximation (4.8) into (4.7) gives

B ≈
∑

kπ

πkλk exp(−πkλk)[h′(λk)(λ̂k − λk)+ h′′(λk)(λ̂k − λk)
2/2]. (4.9)

Since E( fk) = μk = πkλk and E[( fk − πk λ̂k)
2 − fk] = π2

k (λk − λ̂k)
2 under the

null hypothesis of a Poisson model fit, it follows that, for a large number of cells,
expression (4.9) is approximated by

B̂ =
∑

k

λk exp(−μk){−h′(λk)( fk − πk λ̂k)+ h′′(λk)[( fk − πk λ̂k)
2 − fk]/(2πk)}.

(4.10)

B̂ is written as B̂1 or B̂2when h(λ) = h1(λ) or h(λ) = h2(λ)respectively, for
example

B̂1 =
∑

k

λ̂k exp(−λ̂k)(1−πk){( fk −πk λ̂k)+ (1−πk)[( fk −πk λ̂k)
2 − fk]/(2πk)}

(4.11)

The bias estimates are standardized under the assumption that the model is correctly
specified. In this case, B̂ has zero expectation, and using standard results for the first
four moments of a Poisson random variable, var(B̂) =

∑

k a2
k (πkλk)+ 2b2

k (πkλk)
2,

where ak = −λk exp(−πkλk)h
′(λk) and bk = λk exp(−πkλk)h

′′(λk)/(2πk).

A natural estimator of var(B̂) is given by

v =
∑

k

â2
k μ̂k + 2b̂2

k μ̂
2
k, (4.12)

where μ̂k = πk λ̂k , and

âk = −λ̂k exp(−μ̂k)h
′(λ̂k), (4.13)

and

b̂k = λ̂k exp(−μ̂k)h
′′(λ̂k)/(2πk). (4.14)
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For h(λ) = h1(λ), we have ak = (1 − πk)λk exp(−λk) and bk = (1 − πk)
2λk

exp(−λk)/(2πk). For h(λ) = h2(λ), ak = exp(−πkλk)h2(λk) − exp(−λk) and
bk = {exp(−πkλk)h2(λk)− exp(−λk)[1+(1 − πk)λk/2]}/[πkλk].

Given the assumptions above, B̂/
√

v has an approximate standard normal distri-
bution under the hypothesis that the expected value of B̂ is zero. These minimum
error tests are designed to assess whether a model displays evidence of under-fitting
or over-fitting for estimation purposes and not to test whether a given model is cor-
rect.

As mentioned, for typical data sets arising from social surveys, the independence
log-linear model tends to under-fit and leads to over-estimation of the disclosure risk
measures. At the other extreme, the all 3-way interaction model tends to over-fit and
leads to under-estimation of the risk measures. A reasonable solution typically lies
between these extremes and indeed the all 2-way interactions log-linear model often
leads to good estimates of the risk measures for the types of data sets and size of
tables spanned by key variables that are used in practice.

Skinner and Shlomo [27] suggest a practical approach using a forward search
algorithm: compute the minimum error tests for the independence model and the
all 2-way interactions model. If the latter model shows no sign of under-fitting,
then start with the independence model and add in the 2-way interaction terms for
different pairs of key variables, chosen sequentially in order to reduce B̂, until a
model is identified which is judged to show no evidence of under-fitting. On the
other hand, if the all 2-way interactions model is found to exhibit under-fitting, then
start a similar forward model search algorithm from this model as the initial model,
adding 3-way interaction terms for different triples of key variables. As in any model
search algorithm for a hierarchical log-linear model, the inclusion of a higher order
term containing an interaction implies that all lower order effects are also included.
In addition, it is sensible to produce disclosure risk estimates for each of a number of
‘reasonable models’ and to use the differences between the estimates as a diagnostic
to check the sensitivity of the measures to the specification of the model. Section 8.1
provides examples of how this approach can be carried out in practice.

4.3 Complex Survey Designs

Social surveys will generally employ complex sampling schemes, especially strat-
ification and multi-stage sampling, and use of survey weights. The authors of [27]
describe how the probabilistic method approach described in Section 4.2 can be
adapted to take into account the complex survey design.

The greatest variations in individual inclusion probabilities tend to arise from
differences between major strata, especially geographical strata. It is common to
include such major stratification variables as key variables since they will typically
be very visible, e.g., state of residence. In this case, there will be no between-stratum
component to the variation in inclusion probabilities within cells. Even if there are
design variables, which are not natural key variables, but do lead to major variations
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in inclusion probabilities, they should be included as key variables to ensure that a
single inclusion probability πk is defined in each cell k.

Another factor in a complex survey design is the possibility that the sampling of
individuals within same cells is clustered. In practice, the number of sample indi-
viduals in a primary sampling unit in a social survey is usually limited in order to
avoid loss of precision. The cross-classification of key variables, such as sex, age
group, ethnicity, religion, place of residence, or occupation, will typically cut across
the primary sampling units and divide them by many more cells than the sample
sizes within the primary sampling units. There still might be individuals from the
same cell within a common cluster, e.g., few key variables in practice would split
twin children of the same sex living in the same family, but based on empirical work
the degree of clustering in cells tends not to lead to departures from the ‘working
assumption’ that the (Fk, fk) are independent resulting in the bias of the disclosure
risk measures.

In order to estimate the {λk} consistently under complex sampling, pseudo max-
imum likelihood estimation techniques can be employed [17]. The estimating equa-
tion in (4.6) is modified by replacing fk by F̂k , obtained by summing the survey
weights across sample individuals in cell k, and by removing πk . The resulting
estimates λ̂k are plugged into the expressions in (4.4). The value of πk in these
expressions is replaced by the estimate π̂k = fk/F̂k . Note that the risk measures
only depend on πk for sample unique cells and the value of π̂k in this case is simply
the reciprocal of the weight for the sample unique case, and this will be the inclusion
probability of that case if inverse inclusion probability weighting is employed. If
the only variation in inclusion probabilities is between major strata, the λk could
be consistently estimated alternatively by simply ensuring that the strata are repre-
sented by a key variable and that the main effects of this key variable are included
in the model, with πk in (4.4) replaced by π̂k . For the minimum error test criteria
for carrying out the model selection, we use the same expression for B̂ as in (4.10)
with πk replaced by π̂k and with λ̂k estimated as above. The term ( fk − πk λ̂k) may
alternatively be expressed as π̂k(F̂k − λ̂k), i.e., a multiple of the term featuring in
the pseudo score equation. The final term ( fk − πk λ̂k)

2 − fk can be expressed as
(π̂k F̂k − π̂k λ̂k)

2 − π̂k F̂k .

4.4 Measurement Error Models for Disclosure Risk Measures

The probabilistic model described above as well as other probabilistic models pro-
posed by various authors (see [1, 2, 20, 21] assumes that there is no measurement
error in the way the data is recorded. Kuha and Skinner [13] discuss errors that take
the form of misclassification of categorical variables that arise naturally in surveys.
In the statistical disclosure control setting, key variables can be purposely misclassi-
fied as a disclosure control technique, for example, through record swapping or the
post-randomization method (PRAM).
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The authors of [26] adapt the estimation of risk measures to take into account
measurement errors. Denoting the cross-classified key variables in the population
and the microdata as X, we assume that X in the microdata have undergone some
misclassification or perturbation error denoted by the value X̃ and determined inde-
pendently by a misclassification matrix M,

Pr(X̃ = k|X = j) = Mk j . (4.15)

To assess the disclosure protection provided by misclassification, Skinner and
Shlomo [26] assume that the intruder observes a match between a specific sample
unit A and a target population unit B, i.e., observes X̃ A = X B (where X̃ A is the
value of X̃ for unit A and X B is the value of X for unit B), and measures disclosure
risk in terms of the uncertainty as to whether A = B.

Writing X̃a = k and Xb = j and using the assumption of (4.15) about the mis-
classification mechanism, they define a record-level disclosure risk measure based
on a match with a sample unique under measurement error as

Pr(A = B|data) = ([Mkk/(1 − πk Mkk)]/[
∑

j

F j Mk j/(1 − πk Mk j )] (4.16)

It follows that Pr(A = B|data) ≤ 1/Fk with equality holding if there is no misclas-
sification. The extent to which the left-hand side of this inequality is less than the
right-hand side measures the impact of misclassification on disclosure risk.

If the sampling fraction is small the measure (4.16) can be approximated by

Pr(A = B|data) ≈ Mkk/
∑

j

F j Mk j .

Moreover, if the population size is large, then approximately
∑

j F j Mk j ≈ F̃k ,

where F̃k is the number of units in the population which would have X̃ = k if they
were included in the microdata (with misclassification). Hence a simple approxi-
mate expression for the disclosure risk, natural for many social surveys, is

Pr(A = B|data) ≈ Mkk/F̃k . (4.17)

An alternative approximation to expression (4.16) is obtained by assuming that the
misclassification is small, say Mkk = (1 − δ)φkk and Mk j = δφk j ( j �= k), where
the φ are fixed and δ → 0. In this case,

Pr(A = B|data) ≈ F−1
k {1 − [F̃k − Fk Mkk]/[Fk Mkk/(1 − πk Mkk)]} (4.18)

or

Pr(A = B|data) ≈ [Mkk/(1− πk Mkk)]/[(Fkπk M2
kk)/(1− πk Mkk)+ F̃k]. (4.19)
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Note that none of the approximations in (4.17), (4.18), or (4.19) depend on Mk j

for k �= j and so knowledge of these probabilities is not required in the estimation
of disclosure risk if ‘acceptable’ estimates of Mkk and F̃k are available. Expres-
sions (4.18) and (4.19) also require estimates of Fk .

The definition of risk in (4.16) applies to a specific record. It is of interest also to
define aggregate measures. In particular, Skinner and Shlomo [26] consider the sum
of these record-level measures across sample unique records defined from (4.16) as

τ =
∑

k∈SU

[Mkk/(1 − πk Mkk)/[
∑

j

F j Mk j/(1 − πk Mk j )], (4.20)

where SU is the set of key variable values which are sample unique. This mea-
sure may be interpreted as the expected number of correct matches among sample
uniques.

A related measure which could be used if the misclassification status of micro-
data records is known can be defined as follows: Let SUCC denote the set of key
variable values which are sample unique and where these sample unique values have
been correctly classified. The measure is given by

τ ∗CC =
∑

k∈SUCC

1/Fk (4.21)

and again may be interpreted as the expected number of correct matches among
sample uniques.

An agency wishing to apply an SDC method to survey microdata will generally
not know the values of F̃k or Fk appearing in the disclosure risk expressions. The
values of Mk j are assumed known. Expression (4.17) provides a simple way to
extend the Poisson log-linear modeling approach in Sections 2.1 and the estima-
tion of disclosure risk measures in Section 4.2.2 for the case of misclassification
provided that Mkk is known. Since the f̃k, k = 1, . . . , K , represents the available
data, all that is required is to ignore the misclassification and estimate 1/F̃k from
the f̃k, k = 1, . . . , K as shown in Section 4.2.1, that is, by fitting a log-linear
model to the f̃k, k = 1, . . . , K following the same criteria as before. This results

in an estimate Ê(1/F̃k | f̃k = 1) which can then be multiplied by the Mkk values and
summed if aggregate measures of the form in (4.20) are needed. Section 6.2 presents
an example of an application of this method.

4.5 Variance Estimation for Global Disclosure Risk Measures

In the context of this probabilistic method approach for estimating disclosure risk
measures, Rinott and Shlomo [22] considered the variance of a global risk estimator
and its related confidence interval. They point out that calculating precise estimates
and confidence intervals for global disclosure risk measures is a hard problem due
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to the fact that risk measures are not ordinary parameters. In fact, they depend
both on the sample counts (random, observable data) and on the population counts
(unobservable parameters), and therefore they are not the parameters in the classical
sense. Given the sample and a risk measure estimate, its variability and the need for
a confidence interval is due to the fact that the population is unknown and assumed
random in the model while the sample is fixed. A confidence interval should provide
information on how precise the disclosure risk estimate is for a particular sample
and not across all possible random samples. Therefore, conditional (or credible)
confidence intervals (e.g., [14]) are considered with a coverage probability which is
conditional on the given sample based on the posterior distribution of the parameter.
For a discussion and references on the issue of estimating parameters of the type
considered here which involve both the known sample and unknown parameters,
with a brief discussion of the relevance to disclosure control, see [31].

Consider first τ1 =
∑

SU P(Fk = 1| fk = 1) from (4.1) where SU represents
the set of sample uniques. Given the sample counts f = { fk} the measure is a
sum of Bernoulli random variables over sample uniques, taking the value one with
probability P(Fk = 1| fk = 1). Thus

Var(τ1|f) =
∑

k

I ( fk = 1)P(Fk = 1| fk = 1)(1 − P(Fk = 1| fk = 1)) (4.22)

and is estimated by

∧
Var(τ1|f) =

∑

k

I ( fk = 1)P̂(Fk = 1| fk = 1)(1 − P̂(Fk = 1| fk = 1)), (4.23)

provided it is possible to estimate the indicated conditional probabilities. In a similar
way, for τ2 =

∑

SU E(1/Fk | fk = 1) in (4.2):

Var(τ2|f) =
∑

k

I ( fk = 1)Var(1/Fk | fk = 1), (4.24)

which is estimated by replacing the latter conditional variance by its estimate based
on the estimated conditional distribution of {Fk | fk} to yield

∧
Var(τ2|f) =

∑

k

I ( fk = 1)
∧

Var(1/Fk | fk = 1). (4.25)

In order to construct confidence intervals, the approximation that conditionally on
f = { fk}, τi − E(τi |f) (i = 1, 2), is normally distributed with variance as in (4.22)
for τ1 and (4.24) for τ2 can be used. Since E(τi |f) is not observed, we replace them
by their estimates τ̂i , i = 1, 2 given in (4.3). Following details in Section 4.2.3 and
assuming the Poisson log-linear model, a model is selected which minimizes the
bias (or rather an estimate thereof):



76 N. Shlomo

Bi = τ̂i − E(τi |f) (4.26)

and then use the approximate confidence interval of the type:

τ̂i ± Zα/2

√

∧
Var(τi |f) (4.27)

for i = 1, 2, where the variance estimates are those of (4.3) and (4.5), respectively.
Since E(τi |f)is replaced by τ̂i , this is a reasonable approximation provided Bi is
indeed small, and thus the utility of this approximation depends on the quality of
the model selection and parameter estimation.

For the first risk measure τ1 and its estimate in (4.4), an estimate of the variance
is

∧
Var(τ1|f) =

∑

k

I ( fk = 1) exp(−λ̂k(1 − πk)[1 − exp(−λ̂k(1 − πk)]. (4.28)

For the second risk measures τ2 and its estimate in (4.4), because of the complexity,
we can compute a series approximation of Var(1/Fk | fk = 1). In this case, the
variance would be approximated by

R
∑

r=1

1

r2
Pr
λk

(Fk = r | fk = 1)−
(

R
∑

r=1

1

r
Pr
λk

(Fk = r | fk = 1)

)2

where R is a large number. We plug-in λ̂k to obtain the estimate
∧

Var(τ2|f). Now
the confidence intervals of (4.27) can be computed using τ̂1 and τ̂2 of (4.3) and the

variance
∧

Var(τ1|f) of (4.28) and the corresponding
∧

Var(τ2|f).
Taking into account that the many different approximations, such as Taylor series

and normal approximations, and used plug-in estimates, a rather imprecise coverage
level can be obtained for the intervals. Rinott and Shlomo recommend in [22] that a
larger coefficient be used, for example, Zα/2 = 3 will provide good coverage in the
types of data sets used for social surveys. Examples of confidence intervals for the
global risk measures calculated from samples drawn from the extracts of the 2001
UK Census are presented in 6.3.

4.6 Examples of Applications

4.6.1 Estimating Disclosure Risk Measures Under No

Misclassification

The authors of [26] provide empirical results of estimating disclosure risk mea-
sures under misclassification according to the methods described in Section 4.4.
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Misclassification is purposely introduced into the microdata as an SDC technique in
order to lower the probabilities of identifying individuals. Two specific perturbative
SDC techniques are applied: record swapping and the post-randomization method
(PRAM). Since the misclassification is under the control of the statistical agency,
the misclassification matrix M is assumed known.

The key is defined by six traceable and visible key variables (the number of
categories in each variable is in parenthesis): area (4.2), sex (4.2), age (101), marital
status (4.6), ethnicity (4.17), and economic activity (4.10), giving K = 412,080 cells.
To fit the log-linear models, iterative proportional fitting (IPF) [3] was used which
directly generates the fitted values μ̂k = πk λ̂k required for the risk estimates.

Table 4.1 presents true and estimated values of τ1 and τ2 for three of the samples
that were drawn with 0.5, 1, and 2% sampling fractions and for three log-linear
models: the independence model, the all 2-way interactions model, and the all 3-way
interactions model, respectively.

In Table 4.1, we see a consistent pattern of estimates decreasing with increasing
model complexity, with the independence model always leading to over-estimation,
and the all 3-way interactions model always leading to under-estimation. The under-
estimation (and over-fitting) of the all 3-way interactions model is consistently pre-
dicted by the negative signs of the test statistic but with some inconsistencies for the
smaller sample size. This suggests that these tests should be used primarily to detect
under-fitting.

The forward model search procedure presented in Section 4.2.3 is also demon-
strated in [27]. For the 1% sample (n = 9,448), Table 4.1 suggests that the indepen-
dence model under-fits and the all 2-way interactions model over-fits. We therefore
start from the independence model and consider adding 2-way interaction terms
until we find a model for which there is no evidence of lack of fit. Table 4.2 presents
results of the best fitted models obtained for each round of a forward search, starting
with the independence model, labeled as model I. Note that the 1-way (main effects)
terms become obsolete when adding in 2-way interaction terms that contain them.

Table 4.1 Aggregated risk measures and test statistics for samples drawn from the 2001 UK
Census

True Estimates Minimum error test
Sample
size Modela τ ∗1 τ ∗2 τ̂1 τ̂2 B̂1/

√
v B̂2/

√
v

4,724 I 80 183.9 197.4 385.1 16.76 53.14
II 35.9 112.3 −0.52 −0.97

III 0 11.0 0.01 −1.27
9,448 I 159 355.9 386.6 701.2 48.54 114.19

II 104.9 280.1 −1.57 −2.65
III 1.1 42.2 −0.26 −3.09

18,896 I 263 628.9 672.0 1, 170.5 105.24 226.1
II 252.0 591.3 −1.10 −1.52

III 11.3 150.2 −1.28 −6.95
aModel I – independence model, model II – all 2-way interactions model, model III – all 3 way
interactions model
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Table 4.2 Models selected by a forward search for 1% census sample under a simple random
sampling design

Estimates Minimum error test

Model τ̂1 τ̂2 B̂1/
√

v B̂2/
√

v

I 386.6 701.2 48.54 114.19
II 104.9 280.1 −1.57 −2.65
1: I + {a*ec} 243.4 494.3 54.75 59.22
2: 1 + {a*et} 180.1 411.6 3.07 9.82
3: 2 + {a*m} 152.3 343.3 0.88 1.73
4: 3 + {s*ec} 149.2 337.5 0.26 0.92
5a: 4 + {ar*a} 148.5 337.1 −0.01 0.84
5b: 4 + {s*m} 147.7 335.3 0.02 0.66

Area–ar, Sex–s, age–a, marital status–m, ethnicity–et, and economic activity–ec; true values are
τ1 = 159, τ2 = 355.9

In Table 4.2, the first four rounds are clear-cut in the sense that, at each round,
there is a clear choice of the set of 2-way interactions which best reduces all of
the test criteria. The set of interaction terms between age and economic activity,
denoted {a*ec}, is included in round 1 (leading to the model denoted 1). Three
further rounds lead to the addition of the sets {a*et},{a*m}, and {s*ec} to give
model 4. This model provides a good fit in the sense that the values of all the test
statistics based on B̂1 and B̂2 are less than 2. At round 5, we select two models,
5a and 5b, each of which provides improvements over model 4 but neither appears
to be uniformly better than the other in terms of all the criteria. In fact each of the
latter models gives similar estimates τ̂1 and τ̂2 of around 149 and 337, respectively,
implying a robustness of the search procedure to the choice of criterion.

Figure 4.1 presents a scatterplot (in log-scale) of the true risk 1/Fk against the
estimated risk measure in (4.4): h2(λ̂k) = {1− exp[−(1−πk)λ̂k]}/[(1−πk)λ̂k] for
2,304 sample uniques under model 5a in Table 4.2 of the 1% census sample.

Fig. 4.1 Scatterplot (on logarithmic scales) of 1/Fk against h2(λ̂k) for 2,304 sample uniques for
model 5a in Table 4.2 with 1% census sample
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Table 4.3 Cross-classification of 1/Fk against h2(λ̂k) for sample uniques within bands for model
5a of 1% census sample

h2(λ̂k)

1/Fk 0 – 0.1 0.1 – 0.5 0.5 – 1 Total

0 – 0.1 1,391 150 11 1,552
0.1 – 0.5 162 253 76 491
0.5 – 1 26 91 144 261
Total 1,579 494 231 2,304

Table 4.3 provides a corresponding cross-classification of these values within
bands. We observe a strong positive relationship with a Spearman rank correlation
of 0.80, i.e., the model is effective in using the key variable information to predict
1/Fk . Nevertheless, it is good news from the point of view of disclosure protection
that the prediction is far from perfect with, for example, many population unique
cells not being picked up by high h2(λ̂k) values. The values of 1/Fk range above
and below the diagonal line in Fig. 4.1, as anticipated if h2(λ̂k) is to be interpreted
as an expected value of 1/Fk .

Skinner and Shlomo [27] also demonstrate the application of the disclosure risk
estimation and model selection criteria on a more demanding key by adding a nine
category religion variable to the other key variables to produce K=3,708,720 cells.
Taking a 1% sample, over 70% of the non-zero cells were sample unique. The num-
ber of population uniques in the sample rose to τ1 = 311 (compared to τ1 = 159
without the variable religion), representing over 3% of the 9,448 sample cases.
Results are presented in Table 4.4. The all 2-way interactions model (II) provides
a reasonable fit although, as before, there is some evidence of over-fitting. Forward
selection from the independence model (I) works well, as in Table 4.3. The mini-
mum error test criteria suggest the addition of five 2-way interaction terms and the
resulting estimates of τ1 and τ2 are close to their true values.

The last example is the case when complex sampling is employed, typical of
household survey designs implemented at Government Statistical Agencies. As

Table 4.4 Models selected by a forward search for 1% census sample with very large key
(K = 3,708,720)

Estimates Minimum error test

Model τ̂1 τ̂2 B̂1/
√

v B̂2/
√

v

I 962.7 1386.3 108.1 129.6
II 251.8 560.9 −0.9 −2.3

1: I + {a*ec}{ar*a} 716.0 1094.0 58.5 40.6

2: 1 + {s*a}{ar*ec} 715.2 1092.7 58.3 39.0
3: 2 + {et*r}{a*m} 419.0 777.3 16.7 30.2
4: 3 + {a*et}{s*ec} 356.3 687.4 1.1 1.6
5: 4 + {m*r}{ec*r} 320.9 662.4 0.5 0.4

Area–ar, Sex–s, age–a, marital status–m, ethnicity–et, economic activity–ec, religion–r; true values
are τ1 = 311, τ2 = 663.1
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described in [27], the samples are drawn randomly within two strata defined by
the area key variable. Sampling fractions were 1:65 in the first area and 1:125 in
the second area. In each stratum, a systematic sample of households was selected
after sorting by finer geographical detail and all persons in the sampled households
were included, so the sample of individuals is clustered by household. Differential
non-response was generated at the household level based on household size: 20%
non-response for small households, 10% for intermediate size households, and 5%
for large households. The resulting number of responding individuals represented
1% of the population, enabling comparisons with the 1% sample in Section 4.6.2.
Calibrated sample weights were also constructed based on 96 weighting classes
defined by the two geographical areas, sex and 24 age groups. The weights were
calculated to ensure that all individuals in the household receive the same weight
and also that the weighted sample of individuals in each weighting class is equal to
the known population total.

The key with six key variables was used. The values of the true risk measures
are τ1 = 136, τ2 = 331.8 compared to the values τ1 = 159, τ2 = 355.9 for the
1% simple random sample. The differences arise from the sample dependence of
the measures. The estimates obtained using the forward search algorithm described
in Section 2.3 are given in Table 4.5.

From Table 4.5, a good fit is obtained in model 4 by the inclusion of four 2-way
interactions as well as the main effects. This is similar to model 4 in Table 4.4
with three of the 2-way interactions the same. The estimates τ̂1 = 132, τ̂2 = 334.1
are even closer to the true values than for the simple random sample. Four other
well-fitting models, 5a–5d, are also included in Table 4.5 and indicate as earlier that
the risk estimates are fairly stable across these models. The observed robustness
of the results to the complex design seems likely to arise here from the impact
of household clustering being mitigated by the fact that the age and sex key vari-
ables cut across clusters and by the inclusion of the stratifying variable as a key
variable.

Table 4.5 Models selected by a forward search for 1% census sample with complex survey design

Estimates Minimum error test

Model τ̂1 τ̂2 B̂1/
√

v B̂2/
√

v

I 378.5 701.8 8.2 8.5
II 103.5 283.5 −1.5 −3.6

1: I + {a*m} 297.8 590.4 6.3 9.0
2: 1 + {a*et} 231.3 514.0 5.2 8.3
3: 2 + {a*ec} 153.8 357.0 2.5 3.1
4: 3 + {et*ec} 132.0 334.1 0.2 0.8

5a: 4 + {ar*a} 132.8 335.8 0.2 0.7
5b: 4 + {s*m} 129.0 331.3 0.0 0.8
5c: 4 + {ar*ec} 131.1 333.6 −0.1 0.5
5d: 4 + {m*ec} 128.3 327.4 −0.1 0.3

Area–ar, Sex–s, age–a, marital status–m, ethnicity–et, and economic activity–ec; true values are
τ1 = 136, τ2 = 331.8
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4.6.2 Estimating Disclosure Risk Measures Under Misclassification

The work in [26] provides empirical results of estimating disclosure risk measures
under misclassification according to the methods described in Section 4.4. Mis-
classification is purposely introduced into the microdata as an SDC technique in
order to lower the probabilities of identifying individuals. Two specific perturbative
SDC techniques are applied: record swapping and the post-randomization method
(PRAM). Since the misclassification is under the control of the statistical agency,
the misclassification matrix M is assumed known.

For this empirical results study, the 2001 UK Census data set of size N =
1, 468, 255 individuals is used and 1% samples (n = 14,683) drawn. The six key
variables are local authority (LAD) (4.11), sex (4.2), age groups (4.24), marital sta-
tus (4.6), ethnicity (4.17), economic activity (4.10), where the numbers of categories
of each variable are in parentheses so that K = 538,560.

First, a record swapping procedure was applied (see [4, 11]). The geographical
variable LAD was swapped between pairs of individuals in the sample. This was
carried out by first drawing a sub-sample of 20% of the individuals in each of the
LADs. The remaining 80% of the individuals were not changed. On the 20% sub-
sample, half of the individuals in each LAD were flagged. For each flagged record,
an unflagged record was randomly chosen within the sub-sample to produce the
pair for swapping, on condition that the record chosen was not previously selected
for swapping and that the two individuals did not have the same LAD. For each
randomly selected pair within the sub-sample, the LAD variables were swapped
between them.

The misclassification matrix M for this simple record swapping design can
be expressed simply in terms of the 11 × 11 misclassification matrix, denoted
Mg = ⌊M

g

k j⌋, for the geography variable g, since none of the other key variables are

misclassified. The values M
g
k j , denoting the probability of being classified as LAD

j given LAD k, are calculated as follows:

1. On the diagonal: M
g

kk = 0.8
2. Off the diagonal: M

g
k j = 0.2× n j

∑

l �=k nl
, where n j is the number of records in the

sample from LAD j, j = 1, . . . , 11.

A more direct method that is used for exchanging values of categorical variables
is the post-randomization method (PRAM) (see [12]). For this method, values of
categories in a given record are changed or not changed according to a misclassifica-
tion matrix and a stochastic process based on the outcome of a random multinomial
draw. The misclassification matrix can be developed in such a way as to preserve
the expected marginal frequencies of the original variable. This is called invariant
PRAM.

Using the same data, an invariant PRAM procedure was used to perturb the same
geographical variable LAD. For the 11 categories of LAD, a new 11 × 11 mis-
classification matrix Mc was developed where the diagonal elements were 0.8 and
the off-diagonal elements were all equal to a probability of 0.02 (i.e., 0.2/10). The
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invariant misclassification matrix was calculated from this matrix. For each record,
a random uniform number between 0 and 1 was generated and the category of the
LAD was changed (or not changed) if it was within the interval defined by the
aggregated probabilities of the misclassification matrix.

Since the misclassification matrix M is known as well as the true population
counts Fk in these experiments, the performance of expressions (4.17), (4.18), (4.19)
as approximations to expression (4.16) can be assessed. We do this by summing all
the expressions across sample unique records, as in the aggregate risk measure τ

in (4.20) and comparing the resulting sums. In addition, the situation when neither
the Fk nor the F̃k are known to the agency is considered and all that is observed
is the misclassified sample. The matrix M is also assumed known. In this case, we
carry out the risk estimation as described in Section 4.2.2 through the use of the
Poisson log-linear model on the sample counts f̃k . The log-linear model is chosen
using a forward search algorithm and the minimum error test statistics as developed
in Section 4.2.3. The naive estimated disclosure risk measure obtained from the log-
linear model on the misclassified sample and the adjusted estimated risk measure
taking into account the misclassification are calculated and compared. Table 4.6
presents results for both record swapping and the PRAM method of data masking,
each for one simulation experiment.

The values in both columns of Table 4.6 are similar, which is not surprising since
the misclassification matrices are similar. Misclassification reduces the risk in the
file from about τ ∗ = 360 to about τ ∗CC = 294. The decrease in these experiments is
modest since 80% of records remain unchanged.

The three approximations to the risk measure in (4.16) all provide good results
although the approximation in (4.18) is slightly under-estimating. The measure in
(4.20) relies on knowledge of both the full misclassification matrix M and the

Table 4.6 Aggregated risk estimates for samples generated from UK 2001 Census subject to two
perturbative SDC methods

SDC method

Identification risk measures Record swapping PRAM

Identification Risk for unperturbed data

Risk for original key variable values – τ ∗ 362.4 358.1

Identification risk measures for perturbed data with known population counts

Risk measure τ based on (4.20) 298.9 299.7
Approximation based on (4.17) 298.4 299.3
Approximation based on (4.18) 280.4 283.5
Approximation based on (4.19) 298.9 299.8
Risk measure τ ∗CC given in (4.21) 292.6 294.2

Estimated risk measures based on sample data

Naive risk measure from Poisson log-linear
model on misclassified sample 358.6 345.3
Estimated risk measure based on Poisson log-linear
model and adjusted for misclassification 286.8 280.1
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population counts Fk . In contrast, the approximations (4.17), (4.18), (4.19) only
require knowledge of the probability of not misclassifying a record, i.e., the proba-
bilities on the diagonals. The alternative risk measure τ ∗CC in (4.21) also turns out
to behave similarly to (4.20). In practice the population counts will generally be
unknown to the statistical agency for survey data. We therefore consider the esti-
mation method in Section 4.4 based on the Poisson log-linear model. The estimated
aggregate risk measures is given in the last row of Table 4.6. The estimation methods
appear to perform well with estimates for the risk measure under misclassification
of about τ̂ = 284.

To further explore the estimation method, Fig. 4.2 compares the individual
record-level risk measures in (4.16) for the sample uniques with the estimated
adjusted risk measures (as described in Section 4.4) based on the Poisson log-linear
model on one sample under record swapping. In addition, the distribution of the
sample uniques within bands of the individual record-level risk measures is pre-
sented in Table 4.7. From Fig. 4.2 and Table 4.7, we see a good fit between the risk
measures in (4.16) to their estimated risk measures. The Spearman’s rank correlation
was 0.91.

Fig. 4.2 Scatterplot of individual record-level risk measures in (4.16) against estimated risk
measures based on Poisson log-linear model under record swapping

Table 4.7 Cross-classification of individual record-level risk measures in (4.16) against estimates
based on Poisson log-linear model for sample uniques within bands under record swapping

Estimated risk measures from Poisson log-linear model

Individual risk measures in (4.16) 0.0 – 0.1 0.1 – 0.5 0.5 – 1.0 Total

0.0 – 0.1 1,961 133 4 2,098
0.1 – 0.5 180 325 76 581
0.5 – 1.0 8 69 75 152
Total 2,149 527 155 2,831
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4.6.3 Variance Estimation and Confidence Intervals

Table 4.8 presents results of conditional confidence intervals for the global risk
measures defined in (4.3) based on samples drawn from extracts of the 2001 UK
Census as described in [22]. The population size N, the sample size n, the num-
ber of cells in the table K, and the key variables are given in each table with the
number of categories in each attribute in parentheses. The table shows the resulting
parameters τi and their estimates τ̂i , the selection parameters B̂i/

√

v̂i , i = 1, 2, and
the conditional confidence intervals with a coefficient of Zα/2 = 3. The confidence
intervals contain the true τ1 in all the experiments using the coefficient Zα/2 = 3
and indeed the same holds true for Zα/2 = 2. The τ2 is contained in about 80% of
the experiments for Zα/2 = 3 and in about 50% of the experiments for Zα/2 = 2
(however, when it is outside the interval, it is very close and the approximation
seems reasonable and useful).

4.7 Extensions to Probabilistic Modeling for Disclosure Risk

Estimation

Rinott and Shlomo [20, 21] propose a method for estimating quantities τ1 and τ2
based on local polynomial regression smoothing techniques in neighborhoods of
unique cells in the contingency table spanned by key variables. This method is based
on the idea that one can learn about a given population cell from the density of the
neighboring cells if a suitable definition of closeness is possible, without relying on
complex modeling. The method works well for ordinal key variables (such as age,
years of education, size of household) where the closer the categories the higher the
correlation. A variable such as occupation is not ordinal but one can define reason-
able notions of closeness between different occupations. For non-ordinal variables,
the values can remain constant in the whole neighborhood. For example, neighbor-
hoods always consist of individuals of the same gender.

The use of local neighborhoods assumes that if a sample unique is found in a
part of the sample table where neighboring cells (by some reasonable metric) are
small or empty, then it seems reasonable to believe that it is more likely to have
arisen from a small population cell. Classical log-linear models do not take such
closeness into account and, therefore, when such models are used for individual cell
parameter estimation, the estimates involve data in cells which may be remote from
the estimated cell.

The work in [21] proposes using the Poisson distribution assumption with local
neighborhoods. Assuming that sample counts are realizations of the Poisson distri-
bution: fk ∼ P(μk = πkλk), apart from constants, the sample log-likelihood is
∑K

k=1[ fk log μk −μk]. However, if we use a model for μk that is valid only in some
neighborhood M of a given cell, the log-likelihood of the data in this neighborhood is

∑

k∈M

[ fk log μk − μk]. (4.29)
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For convenience of notation, assume that m = 2, a 2-way contingency table. The
extension to m is straightforward. Following [23], a local smoothing polynomial
model is defined.

For each fixed k = (k1, k2) separately, the model below for μk can be written in
terms of the parameters α = (β0, β1, γ1, . . . , βt , γ t ) with k′ = (k′1, k′2) varying in
some neighborhood of k:

log μk′(α) ≡ log μ(k′1,k
′
2)

= β0 + β1(k
′
1 − k1)+ γ1(k

′
2 − k2)+ · · · + βt (k

′
1 − k1)

t + γt (k
′
2 − k2)

t

(4.30)

for some natural number t. The polynomial model is assumed valid with a suitable t

for k′ = (k′1, k′2) in some neighborhood M of k = (k1, k2). Substituting (4.30) into
(4.29), the concave function is maximized:

L(α) = L(β0, β1, γ1, . . . , βt , γt ) =
∑

(k′1,k
′
2)∈M

[ f(k′1,k
′
2)

log μ(k′1,k
′
2)
− μ(k′1,k

′
2)
],

(4.31)

with respect to the coefficients in α of the regression model (4.30). With arg max
L(α) = α̂ and β̂0 denoting its first component, the estimate of μk = μ(k1,k2) is

μ̂k ≡ μk(α̂) = exp(β̂0), (4.32)

where the second inequality is explained by taking k′ = k = (k1, k2) in (4.30).
The maximization by the Newton–Raphson method is straightforward and fast.

Each of the estimates μ̂k requires a separate maximization as above which leads to
a value α̂ that depends on k = (k1, k2) and a set of estimates μk′(α̂) of which only
μ̂k of (4.32) is used. For the risk measures presented in this chapter, it suffices to
compute these estimates for cells k which are sample uniques, that is, fk = 1.

With the estimate of (4.32) and recalling that μk = πkλk and setting SU = {k :
fk = 1}, the set of sample uniques, the risk estimates of (4.3) can be applied under
the Poisson formulae:

τ̂1 =
∑

k∈SU

exp(−μk(1−πk)/πk), τ̂2 = [1−exp(−μ̂k(1−πk)/πk)]/[μ̂k(1−πk)/πk].

(4.33)

The work [20] generalizes the above approach using the negative binomial distri-
bution (as briefly described in Section 2.2) under local neighborhoods. The sam-
ple counts are assumed to be distributed independently, negative binomial: fk ∼
NB(α, pk = 1

1+Nπkβ
). Under this parameterization μk ≡ E fk = Nπkαβ = α(1−pk )

pk

and further calculations yield Fk | fk ∼ fk + N B(α + fk, ρk = Nπk+1/β
N+1/β

), Fk ≥ fk .

Using this relation and setting ρk = Nπk+β
N+β

, the individual risk measures for cell k

are defined by
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P(Fk = 1| fk = 1) = ρ1+α
k , E

[

1

Fk

| fk = 1

]

=
ρk(1 − ρα

k )

α(1 − ρk)
. (4.34)

The proposed estimation method is for the estimation of μand α. These estimates are
transformed to estimates of the parameters appearing in the individual risk measures
(4.34), which in turn lead to estimates of the global risk measures under (4.3).

For each fixed cell k, define a neighborhood of cells M = Mk and estimate the
values of μk and αk , using neighboring cells k′ ∈ Mk and the assumption:

fk′ ∼ NB

(

αk, pk′ =
1

1 + Nπk′βk

)

, (4.35)

so that αk and βk are fixed in the neighborhood and do not depend on k′, while pk′

actually also depends on k. Since k is now fixed, we suppress it as an index in α, β,
or pk′ , and write E fk′ = μk′ = α(1−pk′ )

pk′
. For the fixed k, set μ = {μk′ : k′ ∈ M}, so

the index k is suppressed also in μ.
An expression for the likelihood of (4.35) under the parameters μ and a = 1

α
, for

each fixed k and observations { fk′′ : k′ ∈ M} in a neighborhood M = Mk of k:

L(a, μ) ≡ L(a, μ; { fk′ : k′ ∈ M}) =
∏

k′∈M

Ŵ(x + α)

Ŵ(x + 1)Ŵ(α)
(1 − pk′)

fk′ pα
k′

=
∏

k′∈M

Ŵ(x + α)

Ŵ(x + 1)Ŵ(α)

[

1 − α

μk′ + α

] fk′
[

α

μk′ + α

]α

(4.36)

For each k, estimate α = αk and μk′ for k′ ∈ M = Mk using the likelihood
(4.36) and the smoothing model below, and then use the estimates of αk and μk (not
using the μk′ estimates for k′ �= k) for risk estimates in (4.34).

Again following [23], we use the local smoothing polynomial model. For con-
venience of notation assume m = 2 (a 2-way table); the extension to any m is
straightforward. For each fixed k = (k1, k2) separately, we write the model below
for uk′ in terms of the parameters θ = (θ0, θ1, γ1, . . . , θt , γt ), with k′ = (k′1, k′2)
varying in the neighborhood M = Mk of k:

log μk′(θ) = θ0+θ1(k
′
1−k1)+γ1(k

′
2−k2)+· · ·+θt (k

′
1−k1)

t+γt (k
′
2−k2)

t (4.37)

for some natural number t. Substituting (4.37) into the likelihood function (4.36)
using the relations between parameterizations as described above we obtain the
likelihood function L(a, θ).

To maximize the likelihood function as a function of a = 1
α

and θ , the Fisher
Scoring Algorithm which replaces the Hessian by its expectation should be used to
ensure the convergence to the real MLE since it is possible that the Hessian is not
positive definite for this likelihood function.



88 N. Shlomo

With arg max L(a, θ) = (â, θ̂ ) and θ̂0 denoting the first component of θ̂ , the
estimate of μk = μ(k1,k2) is obtained in the form:

μk ≡ μk(θ̂) = exp(θ̂0), (4.38)

where the second equality is explained by taking k′ = k = (k1, k2) in (4.37).
To summarize, each of the estimates âk, μ̂k requires a separate maximization for

each k, as explained above which leads to a value θ̂ and âk both depending on k, and
a set of estimates μk′(θ̂) of which only μ̂k of (4.38) is used. For the risk measure in
(4.34), it suffices to compute these estimates for cells k which are sample uniques,
that is, fk = 1.

Having estimated âk, μ̂k for each cell k separately on the basis of a neigh-
borhood Mk , we use them to estimate the quantity ρk and α which are obtained
by tracing back the re-parameterizations. Using the relations ρk = Nπkβ+1

Nβ+1 and
μk = Nπkαkβk , we obtain

ρk =
μk + αk
μk

πk
+ αk

, αk =
1

ak

.

Plugging the estimates âk, μ̂k in the latter formula and then plugging the resulting
estimates of αk and ρk into (4.34), we obtain the individual risk estimates. The
global risk measures are estimated as indicated in (4.3).
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Chapter 5

Exploiting Auxiliary Information in the

Estimation of Per-Record Risk of Disclosure

Silvia Polettini and Loredana di Consiglio

Abstract Statistical Institutes as well as other data providers must comply with the
obligation to preserve the privacy of respondents. Publication of files of microdata
makes it possible for a malicious user to link one or more records in the released data
to one or more records in the population, by combining information from external
sources with the published data. Before publication, a careful risk assessment should
be performed that allows to protect records through suitable utility preserving tech-
niques. We define the disclosure risk as the probability of a correct record reiden-
tification; for most population surveys, identification can be based on categorical
variables such as place of residence, sex, age also known as key variables.

Rare traits in the population are the ones that could lead to disclosure, but to be
actually exposed to risk, such rare records should also be included in the sample. As
the population is almost invariably unknown, at least at the level of detail required
for risk estimation, direct or indirect inference is required. A solution is to specify
a model for the population group frequencies F = (F1, . . . , Fk) in the contingency
table defined by cross-classification of the key variables and derive suitable risk
estimates. Typical applications consider very large and sparse contingency tables,
often with logical constraints that induce structural zeroes; this makes inference
particularly difficult, especially for high-risk traits.

Di Consiglio and Polettini [6, 7] derive disclosure risk estimates based on small
area estimators that, besides borrowing strength from neighbouring groups, exploit
auxiliary information obtained from external sources such as administrative regis-
ters or a census. In this contribution we review this approach to risk estimation and
investigate whether the introduction of more sophisticated mixed effects models
may account for unexplained variation thus leading to improved risk estimators. We
analyse the performance over the sample space of some risk estimators based on
models and auxiliary information. In particular, we compare simple SPREE-type
estimators to the Skinner estimator considered in [21] and [11]; we also introduce a
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modified Skinner estimator that relies on a superpopulation model whose top level
is informed by the SPREE.

5.1 Introduction

Statistical disclosure limitation addresses the problem of releasing analytically
useful data while safeguarding confidentiality of respondents to statistical surveys.
Whereas the general public might be satisfied with the analysis of a small set of two-
or three-way tables, there is a growing demand from the research community for the
release of files of microdata that may allow the estimation of complex statistical
models.

A major concern in disclosure limitation is to avoid record reidentification. Even
if data arise from a sample survey, it is always possible that an intruder, using infor-
mation from other sources and the published data, might link one or more of the
released records to one or more units in the population.

Before publication, a careful risk assessment should be performed that allows
to protect records through suitable utility preserving techniques; assessment of the
risk-utility trade-off [8] of the final data product is the last stage of the procedure.
Proposals for data protection range from data masking methods such as suppression
of values, microaggregation and top or bottom coding [25] to imputation based on
suitable statistical models (a partial list of references includes [18, 1, 12, 13, 27]
and references therein). This chapter focuses on the first task, that of quantifying
the disclosure risk.

The definition of a disclosure risk measure relies on a disclosure scenario that
specifies, besides the type of data release, how the disclosure experiment is per-
formed, by what means, what is the information available for identification and
finally what is the disclosure harm [9]. For microdata, disclosure harm is usually
high as the survey variables most often include several sensitive variables that would
be revealed upon record reidentification. Note also that disclosure may occur for a
census as well as for sample survey data. In this chapter we focus on the latter type
of data release. The disclosure scenario for record reidentification conceives the
existence of external information, usually consisting of publicly available variables
known for the population and also present in the file to be released, that enable a
malicious user to match records in the population with records in the released data.
For most population surveys, identification can be based on categorical variables
such as place of residence, sex, age also known as key variables.

Intuitively, records in groups having the same key values are identical for rei-
dentification and should receive the same risk of disclosure. Clearly, rare traits in
the population are the ones that could lead to disclosure, but to be actually exposed
to risk, such rare records should also be included in the sample. The problem is
therefore discriminating between the groups that are structurally small in the pop-
ulation and those that are small in the microdata only due to sampling. Typical
applications consider very large and sparse contingency tables, often with logical
constraints that induce structural zeroes. In addition, survey data often derive from
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complex sampling designs. In this framework, inference is particularly difficult,
especially for high-risk traits having low sample and population sizes. Finite popu-
lation theory cannot account for all the information about the population structure
and would produce unreliable estimates for those unplanned domains, in particular,
when the sampling fraction is small. In this respect, superpopulation models have
been introduced (see, e.g., [3, 4, 14, 19, 21]); some of these approaches exploit the
association structure among the key variables, which is estimated from the sample.
Given the lack of sample information on small cells, models that allow “borrow-
ing strength” from larger cells while avoiding excessive shrinkage of the estimates
are the most appropriate ones. Besides borrowing strength from neighbouring cells,
auxiliary information, derived from external sources such as administrative registers
or a census, may be introduced in the estimation process. For population surveys,
external information is often available for at least some margins of the contingency
table induced by the disclosure scenario. For instance, current population counts
for region, sex and age classes are available from public registers; for other clas-
sifications, it might be the case that design-based direct estimators at the national
level give sufficiently accurate figures for the population. Calibration on some of
these variables may increase further the precision of such direct estimates. For
estimation of counts from a contingency table, the so-called structure preserving
estimator (SPREE) makes precise use of the above-mentioned information [17, 26].
This approach has been investigated by [6, 7] in the context of risk estimation and
is further pursued in this chapter to assess whether the introduction of more sophis-
ticated mixed effects models may account for unexplained variation thus leading to
improved risk estimators. We analyse the performance of risk estimators based on
models and auxiliary information; in particular, we compare simple SPREE-type
estimators to the Skinner estimator considered in [21] and [11]; we also introduce a
modified Skinner estimator that relies on a superpopulation model whose first level
is informed by the SPREE.

In the next section, we review models for risk estimation proposed in the litera-
ture, whereas in Sections 5.2.2, 5.3 and 5.4 we describe the SPREE-type approach
along with the results of a simulation study performed to compare some risk
estimators.

5.2 Risk Measures and Models for Risk Estimation

Consider a disclosure scenario defining q categorical identifying (key) variables,
denoted by Z1, . . . , Zq , having C1, . . . , Cq categories, respectively. In this frame-
work, records with the same key values are identical for reidentification and should
have the same risk. Cross-classification of the key variables generates a contingency
table with a total number of K =

∏

k Ck cells at both the population and the sample
level; cell frequencies in the population and sample table, respectively, are denoted
by Fk and fk . In Section 5.2.2, models for two-way and three-way contingency
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tables will be considered, in that case the cells will be indexed by a double or triple
subscript (e.g. Fdhi) following the standard notation for log-linear models.

If the population contingency table were known, a simple risk measure for each
record in cell k of the sample table could be defined using the corresponding popu-
lation cell size, Fk : rk = 1/Fk . As Fk is almost invariably unknown, at least at the
level of detail required for risk estimation, direct or indirect inference is required.
A solution is to specify a statistical model for F = (F1, . . . , Fk) and derive suitable
risk estimates based on the sample frequencies f = ( f1, . . . , fk), such as E(1/Fk |f);
alternative per-record measures could be defined, such as those associated to sam-
ple uniques, e.g. Pr(Fk = 1| fk = 1), but we restrict our attention to the former
quantity.

The next section reviews some superpopulation models proposed in the litera-
ture for risk estimation, whereas Section 5.2.2 considers the small area approach to
estimation of counts in a contingency table based on auxiliary information.

5.2.1 Superpopulation Models for Risk Estimation

with Survey Data

Part of the literature on disclosure risk assessment is related to the work of [3],
which represents the first approach to defining a statistical model for samples where
identifying variables form a contingency table. The model is a hierarchical Poisson–
Gamma superpopulation model:

πk ∼ gamma(α, Kα), k = 1, . . . , K ,

Fk |πk ∼ Poisson(Nπk),

fk |Fk, πk, pk ∼ binomial(Fk, pk), independently across cells,

in which πk is the probability that a unit of the population falls into cell k and
pk (assumed constant across cells) is the probability that an individual in cell k is
sampled. The model was used to deduce the probability of population uniqueness
given sample uniqueness. The constraints

∑

k Fk = N and
∑

πk = 1 are not
exactly satisfied under the model, which can be seen as an approximation to the
more coherent Dirichlet-multinomial model analysed by [23]. The above-described
Gamma–Poisson model was shown by [19] to have as limit when α → 0 the nega-
tive binomial model analysed in [2] and [15].

The model just outlined and its derivations are all based on an exchangeability
assumption whereby all cells with the same sample frequency are assigned the same
risk estimate. To gather information on small cells from larger ones, models can
be introduced that use the structure of the table through a log-linear model which
is fitted to the data. This is the approach pursued by [21], who focus on sample
uniques and model the Fk , k = 1, . . . , K , as Poisson with mean πk . The mech-
anism generating f is assumed to be a Bernoulli sampling with known probabil-
ity p, so that fk |λk ∼ Poisson(pπk); finally a log-linear model for the expected
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sample frequencies pπk (where p only produces an offset term) is defined, from
which the πks are estimated. The superpopulation model implies that Fk − fk | fk ∼
Poisson((1 − p)πk) and this relation allows one to estimate the probability of pop-
ulation uniqueness given sample uniqueness

Pr(Fk = 1| fk = 1) = exp{(1 − p)π̂k}, (5.1)

by plugging in the log-linear estimates. The model defined by [21] has greater
generality, as it also accounts for overdispersion due to lack of fit by specifying
a log-normal distribution for the log-linear parameters πk , log(πk) = μk + εk ,
εk ∼ N (0, σ 2), exp(μk) being the expected frequencies in the log-linear model
assumed for the population. An empirical Bayesian argument is used to determine
a risk estimate analogous to (5.1). Practical application of the method, however, has
dropped this assumption, partly because of possible negativity of empirical Bayes
estimates of the log-normal variance. See also [20] for a related local smoothing
approach.

A related model is considered by [14], who specify a multinomial(N ,π) distri-
bution for F together with a decomposable graphical log-linear model for π . The
sample frequencies are finally assumed to be drawn by Binomial sampling, so that
f ∼ multinomial(n,π), where π depends on β according to the same log-linear
model as above. Given the log-linear parameters β, f and F − f are thus condi-
tionally independent and F − f|β is multinomial(N − n,π). Use of a convenient
hyper-Dirichlet prior for the log-linear model parameters β allows a closed form
expression for the posterior distribution to be deduced. Under this model and using
the bracket notation to represent distributions, we have

[F − f|f] ∝
∫

[F − f|β][f|β][β] dβ.

For disclosure risk estimation, one can refer to the marginal distribution [Fk − fk |f]
obtained by replacing the multinomial distribution [F− f|β] with the corresponding
binomial marginal. A per-record risk estimate can be derived as

rk = E(1/Fk |f) =
N−n
∑

j=0

1

fk + j
Pr(Fk − fk = j |f).

Monte Carlo Rao-Blackwellized risk estimates can be obtained by noting that

Pr(Fk − fk = j |f) =
∫

[Fk − fk = j |f,β][β|f] dβ = E{Pr(Fk − fk = j |β)|f};

estimates of the probabilities Pr(Fk − fk = j |f) can be obtained by averaging bino-
mial (N − n, πk) probabilities evaluated on Fk − fk over samples from [β|f].

In the above arguments, the issue of model misspecification is not considered.
Rinott and Shlomo [20] note that in a disclosure context standard goodness-of-fit



96 S. Polettini and L. di Consiglio

measure for log-linear models are not appropriate and propose a model selection
strategy targeted to the accuracy of risk estimates. A different approach to allowing
for model uncertainty, namely model averaging, has been proposed by [12] and pur-
sued by [14] who introduce a potentially large number of competing models whose
contribution to risk estimation is then weighted according to the support that they
receive from the data. Compared to model averaging, restricting to a single good
fitting model artificially reduces the uncertainty about the estimates; this uncertainty
is fully accounted for under the former approach.

A potential drawback of the approach proposed in [14] is its complexity, with
consequently increased computational times. For each of the model components
considered in the model-averaging approach, approximate inference is proposed,
based on a Poisson–Gamma model that is equivalent to the one proposed by [3],
with the important difference that the Gamma distributions for the cell probabilities
πk match the corresponding marginal means and variances of [π |f]. The Gamma
distributions are derived as an approximation to the marginals of the Dirichlet pos-
teriors. The risk estimates thus obtained generalize results of [19] and [16].

As a final comment, note that the approach outlined allows uncertainty about
risk estimates to be reported in a straightforward manner, along with the estimates
themselves.

5.2.2 SPREE-Type Estimators for Cross-Classifications

Small area methods exploit external information in the form of auxiliary variables
with the aim to produce estimators with improved MSE properties. This is pur-
sued by explicitly or implicitly modelling the relationship between the variable of
interest and the auxiliary variables. The definition of disclosure risk that we have
adopted is related to the cells of the contingency table built by cross-classifying the
key variables. As already mentioned, for at least some margins of the contingency
table induced by the disclosure scenario, external information at the population
level is often available. For population surveys, the key variables typically comprise
variables region, sex, age in classes, marital status, education. Current figures for
cross-classification of region, sex and age classes are available from registers; for
other classifications such as marital status by education, one can rely on design-
based direct estimators at the national level as these may be considered sufficiently
accurate.

The structure-preserving estimator (SPREE) makes precise use of the above-
mentioned information [17, 26]. The SPREE is a simple estimation method that
informs the population association structure, completely describing the relationship
among key variables, through a supplementary table observed at a previous time.
Most often, the full table observed at a previous census is available. To update the
association structure derived from such a table, SPREE uses current information at
time t on the (partial) association between the variables present in a table m defining
the allocation structure. The allocation structure usually consists of margins of the
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current frequency table to be estimated; we consider counts on classes defined by
region, sex and age, which can be obtained by administrative records, and finally
reliable survey calibration estimates of counts obtained by aggregating over geog-
raphy.

Since any multi-way table can be reduced to three-way by properly re-defining
the classification, we consider a three-way table, where we let d = 1, . . . , D denote
the geographical domain, h = 1, . . . , H the classification given by the auxiliary
variables (sex and age in our application) and i = 1, . . . , I the classification given
by the other survey key variables. As the auxiliary variables have known counts in
the population, h can be considered to define strata.

Let Xdhi be the association structure, i.e. the table completely observed at previ-
ous time t0. Finally, define by Fdhi the counts of the current contingency table to be
estimated and by m the allocation structure, i.e. the updated margins.

In its original formulation, SPREE adjusts the Xdhi to agree with the updated
information in m, while preserving the relationships among variables present in
Xdhi as much as possible. The method is targeted to obtain estimates of the current
population counts Fdhi that minimize the χ2 distance between Xdhi and Fdhi, with
constraints given by m. As mentioned in [17], explicit solutions only exist in trivial
cases. In general, iterative proportional fitting (IPF), which consists of iteratively
adjusting to marginal constraints until convergence, is applied to obtain an approxi-
mate solution, denoted by F̂SPREE

dhi , to the above optimization problem.
The IPF on Xdhi may produce estimates of the current cell counts that are lower

than the observed counts fdhi; to overcome this inconsistency, we propose to apply
the generalized iterative proportional fitting (GIPF, [10]) instead of IPF. In gen-
eral, GIPF allows to obtain the solution of a minimization problem under convex
constraints and can be easily applied with the constraints we have imposed. This
strategy clearly differs from simply equating estimates and sample frequencies for
the inconsistent cells.

Depending on the information available, SPREE allows different specifications
of the allocation structure m. Here we consider the pair of two-way tables already
illustrated and used in the simulation experiment (see Section 5.3), namely m =
({F̂.hi }, {Fdh.}), where F̂.hi are design-based estimates and Fdh. come from admin-
istrative registers.

The structure-preserving estimator is shown (see [17]) to preserve all the inter-
actions of Xdhi but those redefined by the allocation structure, so that the higher
order interactions of Fdhi are set equal to that of Xdhi (see formulas 5.5); the bias
of F̂SPREE

dhi therefore depends on the extent to which the equality of the interac-
tions holds for the data. For further details on SPREE, see [17] and [26]. Note that
with respect to the Purcell and Kish estimator, the introduction of the additional
constraints F̂SPREE

dhi > fdhi, d = 1, . . . , D, h = 1, . . . , H, i = 1, . . . , I in the
allocation step is expected to induce slight modifications in the association structure.

Note that SPREE may exhibit large bias if the association structure was sub-
jected to a significant alteration over time; in our application, by comparing the
table structures at two consecutive censuses, we noticed a certain stability of the
association structure over time, although with some exceptions, see Section 5.4.



98 S. Polettini and L. di Consiglio

To permit additional flexibility in the association structure, [26] introduces a class
of log-linear structural models for the cross-classification which generalizes the
SPREE by introducing linear models on the parameters defining the interactions
among variables. Whereas the SPREE only uses the sample information to produce
some of the margins present in the allocation structure m, the above-mentioned
structural model is introduced to link the saturated association structure observed
at a previous time to the corresponding current timetable, which is estimated from
the sample.

In [26], the SPREE is shown to be a special case of a generalized linear structural
model for the domain proportions. As before we consider the case that updated
margins m = ({F̂.hi }, {Fdh.}) are available for the current population table.

Using the notation already introduced, consider the within-domain proportions
θ F

dhi and θ X
dhi, relative to the target population table and the auxiliary table at time t0,

respectively:

θ F
dhi =

Fdhi

Fdh.

,
∑

i

θ F
dhi = 1,

θ X
dhi being defined similarly.

Define now the saturated log-linear representation of the population counts:

log(Fdhi) = log(θ F
dhi)+ log(Fdh.) = αF

0 +αF
d +αF

h +αF
i +αF

dh +αF
di +αF

hi +αF
dhi

and of the auxiliary complete table:

log(Xdhi) = log(θ X
dhi)+ log(Xdh.) = αX

0 +αX
d +αX

h +αX
i +αX

dh+αX
di +αX

hi +αX
dhi .

Let

μF
dhi = log(θ F

dhi)−
1

I

∑

i

log(θ F
dhi) = αF

i + αF
di + αF

hi + αF
dhi , (5.2)

μX
dhi = log(θ X

dhi)−
1

I

∑

i

log(θ X
dhi) = αX

i + αX
di + αX

hi + αX
dhi .

A generalized linear model is introduced to link the two structural models above
to inform Fdhi through the known complete table Xdhi. With a three-way table, two
different saturated models may be proposed. The first one assumes a linear structure
with constant regression coefficient among strata:

μF
dhi = λhi + β μX

dhi (5.3)

where
∑

i λhi = 0. This model is a proportional interaction model, and SPREE is a
special case of the latter for β = 1; see [26] for a more detailed description of the
implications of the models.

If the regression coefficients are allowed to vary among strata the model is
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μF
dhi = λhi + βh μX

dhi (5.4)

and is equivalent to a stratified proportional interaction model

αF
i;h = λhi + βh αX

i;h, (5.5)

αF
di;h = βh αX

di;h . (5.6)

In the practical application we discarded the estimator based on model (5.3); indeed
the associated computational burden was heavy; moreover, a preliminary inspection
of the population parameters (that are known in our simulation) revealed a certain
variability of βh across strata defined by age and by sex, so that model (5.4) was
deemed more appropriate.

The GLSM (or Proportional Interaction Model) can be further generalized
assuming a linear mixed relationship among the parameters of the current table
{Fdhi} and those of the association structure {Xdhi}. The introduction of random
components is common in small area estimation to account for unexplained varia-
tion among areas that is not explained by covariates in the model.

Defining μF
dhi and μX

dhi as in formula (5.2), the generalized linear structural mixed
model (GLSMM) is specified as

μF
dhi = λhi + βhμX

dhi + νdhi, (5.7)

with (νdh2, . . . , νdhI) distributed as M N (0,Σh) and νdh1 = −
∑I

i=2 νdhi. The
above formulation in terms of stratum-specific parameters βh and Σh leads to a
stratified GLSMM and amounts to consider separate information layers; on the
other hand, when these parameters are assumed constant across strata (βh = β and
Σh = Σ ∀h), the model can be reformulated so that two different mixed models
for higher order interaction are implicitly assumed, sharing the fixed parameter: up
to Op(D−1/2), two different random effects, νd.i e νdhi − νd.i , affect second-order
interactions αF

di and third-order interactions αF
dhi, respectively, see [26].

Note that the GLSMM differs from the usual mixed models in small area estima-
tion, since, due to the constraints on the interactions, it cannot contain a unique area
random effect (see [26]).

Due to the structure of the data we analysed, having a small number of regions
(areas) compared to the number of age–sex classes (strata h = 1, 2 . . . H ), and
recalling that the domain of interest for our estimation problem is given by the cross-
classification of region by age and sex, in the application of the GLSMM we refer
to a different representation of the population contingency table, namely a two-
way representation where cell frequencies Fli are indexed by l = 1, . . . L and i =
1, . . . I , L = D ∗ H ; here dimension indexed by l represents the domain of interest.

Defining μY
li as

μY
li = log(θY

li )−
1

I

∑

i

log(θY
li ) = αY

i + αY
l + αY

li
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and similarly for μX
li , the generalized linear structural mixed model (GLSMM) can

be specified as

μF
li = λi + βμX

li + νli (5.8)

with (νl2, . . . , νl I ) distributed as M N (0,Σ) and νl1 = −
∑I

i=2 νli , model (5.8) can
be equivalently written in terms of the α parameters as follows:

αF
i = λi + βαX

i + Op(L−1/2),

αF
li = βαX

li + νli + Op(L−1/2),

note that, when L goes to ∞, random components affect second-order interactions
of the log-linear model.

Models (5.4) and (5.8) represent examples of the so-called generalized linear
structural model and generalized linear structural mixed model. Note that both refer
to population quantities. For this reason unbiased estimates of cell proportions θ F

dhi

are introduced in (5.2). The presence of a complex sampling scheme is accounted
for by selecting appropriate design-based estimators.

The model parameters are estimated by iterative weighted least squares, for
both models, following standard techniques for generalized linear models, here the
weighting matrix is designed to include the covariance matrix of the direct estima-
tors of Fdhi. For GLSMM, the estimation of the mixed components relies on an
approximate likelihood as well. See [26] for details.

The procedure outlined produces first-step estimates of the population counts,
that we denote by F̃GLSM

dhi and F̃GLSMM
dhi . Note that under SPREE the first-step esti-

mate is just F̃dhi = Xdhi, i.e. the previous table without adjusting for the observed
data.

Recalling that updated margins m = ({F̂.hi }, {Fdh.}) are available, exactly as
described for the SPREE methods, the first-step estimates can be adjusted by
IPF to match margins in m, thus producing the final estimates F̂GLSM

dhi , F̂GLSMM
dhi .

As before, IPF could produce estimated population cell counts that are lower
than the observed sample counts; for this reason, we propose to modify the sec-
ond estimating step by introducing the addition constraints F̂GLSM

dhi > fdhi, d =
1, . . . , D, h = 1, . . . , H, i = 1, . . . , I , F̂GLSMM

dhi > fdhi, d = 1, . . . , D, h =
1, . . . , H, i = 1, . . . , I , respectively. The first-step estimates are therefore adjusted
to auxiliary marginal tables by means of GIPF to ensure consistency with the sample
frequencies.

5.3 Simulation Plan and Data

To assess the estimators, we ran a simulation study consisting of 1,000 synthetic
samples drawn from a known real population, namely the population registered at
the 2001 Italian Census for six Italian regions (Val d’Aosta, Piemonte, Toscana,
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Umbria, Campania, Molise). Knowledge of the target population allows us to assess
the performance of the estimators, as clearly the population contingency table is
known and so is the associated target risk measure. Samples were drawn using the
complex sampling design of Labour Force Survey (LFS), as detailed in [6]. Note that
the LFS sampling design is used for most Italian social surveys. The LFS is based
on a complex sample design with stratification of municipalities. In each sample
municipality, a systematic sample of households is selected; all members of sampled
households are included in the LFS sample.

The six regions above were selected in light of their different geographical posi-
tion (North, Center and South), the differences they exhibit in the distribution of
the key variables, their variability in the number of inhabitants (Val d’Aosta and
Molise are small regions where we expect higher risks of disclosure) and finally
the substantial variation of their sampling rates under the design used. The latter
characteristic results from sample size being planned to guarantee a target precision
level of LFS estimates.

In year 2001 the population of the six regions amounted to over 15 million; the
effective sample size in terms of individuals results in over 80,000 records.

LFS estimates use sampling design weights obtained by a calibration process that
controls over known totals of sex and age in 5-year classes (see [5]). Although the
actual calibration process is more complex, for simplicity we have calibrated only
on sex by age at regional level.

The key variables selected are region of residence (6 classes as described above),
sex, age, marital status (in 4 classes), education (in 5 classes). In [6, 7] we consid-
ered a classification of age in 20 classes; here we also selected a finer classification
(86 classes) that, excluding the extreme classes, corresponds to 1-year classification
to study the performance of the estimators under a more challenging and realistic
scenario. The resulting contingency table obtained by cross-classification of the key
variables has 4,800 and 20,640 cells, respectively.

The estimators considered in this work exploit the association structure at a
previous time; complete information on it is available from the census conducted
in year 1991. The temporal lag is large, but we can study the performance of the
method almost in its worst condition since we expect that the stability in the asso-
ciation structure decreases with time. The estimators also make use of available
information on the margins of the above-mentioned contingency table at current
time. In the terminology of Section 5.2.2, the allocation structure has been defined
as m = ({F̂.hi }, {Fdh.}). In our application Fdh. represents the 2001 census counts of
the marginal table defined by sex by age by region; in the real practice, these counts
would come from updated administrative sources. On the other hand, the counts F.hi

of the marginal cross-table defined by education, by marital status (classes denoted
with i), by sex and by age (classes denoted with h) are unknown; in our applica-
tion we resort to calibration estimates F̂.hi . Increasing the number or detail of the
key variables necessarily affects the precision of these estimators; variable age in
previous work ([6, 7]) was indeed recoded to 5-year classes to limit the variability
of direct estimators. The practical importance of this limitation is dictated by the
data release strategy: indeed the key variables should be defined exactly as they
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appear in the released file. In fact, age is preferably released in 1-year classes, a
classification that might be too fine to allow precise direct estimation of the {F̂.hi }
margins, even at the national level, because these cells are not planned domains for
the LFS. This aspect, together with the fact that the within-domain proportions in
(5.2) are estimated using the sampling design weights, implies that increasing the
number or detail of the key variables affects the precision of the risk estimators.

We also expect that especially the cells with smaller population counts, i.e. higher
risk of identification if selected in the sample, will be present in a small subset of
the universe of all samples. For the 1,000 simulated samples the average percentage
of sample unique cells was about 9% (overall, between 8 and 10.2%) under the first
classification of age and about 12% (overall, between 11.5 and 12.7%), under the
second, finer classification. The average percentage of empty cells was over 45%
(overall, ranging between 44.2 and 46.6%) under the first classification of age and
about 59% (overall, ranging between 58.5 and 59.7%) under the second.

5.4 Risk Estimators and Simulation Results

We compare the Skinner estimator of risk described in Section 5.2.1 to risk estima-
tors based on auxiliary information as described in Section 5.2.2. The formulation of
estimator (5.1) assumes uniform selection probabilities within cells, an assumption
that is not precisely met in the sampling design of the LFS (see also [22]). Indeed
the level at which the sampling rate may be assumed constant is the province, which
corresponds to a classification nested within the region. Although there is some
variation of the rates within regions, to adjust to our framework, for each region d

we specified in model (5.1) the mean sampling fraction pd computed over the corre-
sponding provinces. A simple analytic expression for the risk is available for sample
uniques only; for simplicity the results presented are restricted to this case. The
Skinner-type risk estimator that we consider, adapted to our framework, is therefore

r̂SK
dhi =

1 − exp{−(1 − pd)π̂dhi}
(1 − pd)π̂dhi

. (5.9)

We did not perform any model selection procedure as proposed in [22], but rather,
to ensure comparability, we fitted to the sample data the log-linear model having
as sufficient statistics the margins present in the allocation structure m used for the
SPREE-type estimators.

We also introduce an intermediate estimator, referred to as modified Skinner esti-
mator, that mixes the Poisson–Poisson superpopulation model used for the Skinner
estimator and the SPREE. In this case the top-level population means πk in the
superpopulation model are the SPREE estimates of population cell counts, namely
F̂SPREE

dhi , exploiting the auxiliary information, and no log-linear model for the sample
expected frequencies is introduced:
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Fdhi|πdhi ∼ Poisson(πdhi),

fdhi|Fdhi, πdhi, pd ∼ Poisson(pdπdhi),

where πdhi = F̂SPREE
dhi and as for the estimator (5.9) above, pd is the region-specific

mean sampling rate, computed by averaging the original sampling fractions over the
corresponding provinces. Unlike the Skinner estimator, the association structure is
here introduced through the SPREE estimates; the modified Skinner estimator we
propose is therefore

r̂MSK
dhi =

1 − exp{−(1 − pd)F̂SPREE
dhi }

(1 − pd)F̂SPREE
dhi

. (5.10)

Among the small area-type estimators, first we consider the SPREE-type estima-
tor

r̂SPREE
dhi = 1/F̂SPREE

dhi . (5.11)

Figure 5.1 shows the relationship among the second-order effects in the two-
way tables {Xdi;h} and {Fdi;h}, for selected values of h (a specific classification of
age by sex). The selected strata are such that the second-order interactions in the
{Fdi;h} table differ markedly from the corresponding second-order interactions in
the auxiliary population table {Xdi;h}. For these classifications of age by sex the
graphs indicate that the assumption of constancy of αF

di;h on which the SPREE-type
risk estimator (5.11) is based is violated. In these cases, some improvement may
be achieved by the stratified GLSM estimator, for which the corresponding risk
estimator is

r̂GLSM
dhi = 1/F̂GLSM

dhi (5.12)

and by a GLSMM-type estimator

r̂GLSMM
dhi = 1/F̂GLSMM

dhi . (5.13)

Indeed the stratified GLSM-type estimator (5.12) may improve the SPREE estima-
tor, for which a constant regression coefficient (β = 1) is assumed, by correcting
for stratum-specific coefficient of regression. Furthermore, the presence of random
effects in the GLSMM-type estimator (5.13) should improve the SPREE and strat-
ified GLSM for strata such as those represented in Fig. 5.1 (e.g. h = 9, h = 95)
where, although the relationship between interaction effect is close to identity, some
outlying αF

di;h deviate markedly from their corresponding αX
di;h . We notice that actu-

ally for these strata some of the cells of the cross-classification were empty in the
previous census table X , but not in the current population table F .

As explained in Section 5.2.2, due to the small number of regions in this study,
we do not exploit a three-way GLSMM stratified estimator, which would correspond
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Fig. 5.1 Plot of log-linear second-order association effects αX
di;h for the auxiliary population two-

way table {Xdi;h} for selected h levels of sex–age classification vs corresponding effects αF
di;h for

the population table {Fdi;h}. Tables refer to the finer classification of age

to the SPREE-type and the stratified GLSM-type estimators in terms of information
used in the model. Instead, a two-way representation of the contingency table {Fli }
is used, in which the Fki counts are indexed by l = 1, . . . , K and i = 1, . . . , I ,
L = D ∗ H ; here dimension indexed by l represents the domain of interest, namely
the cross-classification of region by sex by age.

In fact, the GLSMM-type estimator with a specific effect for the cell of such a
table still allows a correction for wrong model specification for the above-mentioned
strata; anyway, the resulting interaction model has a slight different use of associa-
tion among variables. Indeed the structural mixed model does not exploit the main
interaction effects of the classification variable for each sex by age class, so that
the specification of the relationships among variables is less accurate than that used
in SPREE and stratified GLSM-type estimator. This, together with a much higher
difficulty in estimating the random effects, can be the reason why the GLSMM does
not succeed in improving the other models even for those challenging strata as it
will be shown below.

When assessing the risk estimators, there are two different sources of variation:
the sample cell size and the population cell size. We consider a conditional assess-
ment, by analysing the above measures for fixed sample frequency fk = 1.

The assessment is clearly restricted to samples where the cell has been observed,
as the risk is, of course, not defined (and not of interest) when sample cell is empty.
By consequence, for the smallest cells, particularly for regions with lower sampling
rates, the performance criteria have sometimes been evaluated on a very small num-
ber of samples. In this case, conclusions must be drawn with due care but can still
be useful to outline the expected pattern.

Figure 5.2 reports the bias for the estimators considered, restricted to sample
unique cells, vs the corresponding population cell frequencies under the two differ-
ent classifications of the key variables. Whereas all the estimators tend to underesti-
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Fig. 5.2 Plot of bias vs population cell frequencies for sample unique cells under the two classi-
fication of the key variables. The first row contains the results for the coarser classification of age
(20 classes), while the second contains the results for the finer classification of age (86 classes).
Broken lines represent 25 and 75% percentiles of bias for given population cell size, dots joined by
a solid line represent medians of the same quantities

mate very high-risk records, the Skinner estimator, not relying on detailed external
information, shows a more evident tendency to a negative bias; the SPREE, GLSM,
GLSMM and modified Skinner estimators benefit from external information, even
though in the smallest regions, characterized by the highest sampling fractions,
some cells are not well captured by the model. Note that the modified Skinner esti-
mator benefits from a shrinkage effect induced by the superpopulation model that
makes the latter issue less important if compared to the SPREE estimator, whose
definition relies on the same quantities F̂SPREE

dhi .
The conclusions above do not change when refining the detail of key variable age,

except for the risk estimator based on the GLSMM. This estimator indeed behaves
poorly when the classification of the key variables is refined, showing substantial
overestimation of risk for many cells.

The risk underestimation rapidly vanishes when the population cell size
increases; when considering cells with sample frequency fk = 2 (figure not shown
here) the performance of the estimators improves, in particular bias is reduced for
high-risk cells. The GLSMM again behaves poorly under the finer classification of
age.

In [6, 7] evaluation of the performance of risk estimators relies on bias as above
and relative root mean square error. Recall that the estimand is rdhi = 1/Fdhi for
nonempty sample cells. Being the risk a bounded parameter ranging in [0, 1], use of
the euclidean distance is not the best choice, other loss functions being perhaps more
appropriate. In a disclosure limitation context, an underestimation of the true risk is
more serious than is an overestimation. For these reasons to evaluate the estimation
error we considered an asymmetric LINEX loss function (Varian, [24]) defined as

L(�, a, b) = b[exp(a�)− a�− 1]

where � is the estimation error and a �= 0, b > 0 are parameters controlling
asymmetry and shape of the loss function. To penalize underestimation more than
overestimation of risk, we chose a negative value for a.
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Table 5.1 Conditional assessment over sample unique cells of mean LINEX loss for the four
estimators; classification of age in 20 classes

Min. First Qu. Median Mean Third Qu. Max.

rSPREE 0.000000 0.000002 0.000046 0.126900 0.001706 7.936000
rGLSM 0.000000 0.000003 0.000052 0.150700 0.001723 7.906000
rGLSMM 0.000000 0.000004 0.000053 0.156300 0.001584 7.928000
rSK 0.000000 0.000006 0.000085 0.186600 0.001159 7.813000
rMSK 0.000000 0.000003 0.000055 0.126000 0.001993 7.936000

Table 5.2 Conditional assessment over sample unique cells of mean LINEX loss for the four
estimators; classification of age in 86 classes

Min. First Qu. Median Mean Third Qu. Max.

rSPREE 0.000000 0.000016 0.000314 0.170000 0.012750 7.975000
rGLSM 0.000000 0.000019 0.000348 0.203400 0.016650 7.930000
rGLSMM 0.000000 0.000091 0.001395 0.223100 0.036810 7.958000
rSK 0.000000 0.000035 0.000340 0.247500 0.007340 7.828000
rMSK 0.000000 0.000019 0.000358 0.167100 0.015180 7.975000

Table 5.1 contains a summary of the mean LINEX loss function (a = −3,

b = 0.5) evaluated over sample unique cells for the first, coarser classification of
the key variables, while Table 5.2 contains an analogous summary for the second,
finer classification of the key variables.

These figures indicate that overall the SPREE and the modified Skinner estimator
based on the SPREE have the best performance; however, such assessment refers to
different cells in the cross-classification, having low as well as large frequencies in
the population. Analysing population uniques, the SPREE appears to have lower
mean LINEX loss than the other estimators; however, for population cell sizes ≥ 2,
the modified Skinner estimator possesses the best mean LINEX loss.

Figure 5.3 reports a graphical assessment of the performance of the estimators
over sample uniques for all the available samples, under the two classifications of
variable age. To avoid plotting all the replications of sample uniques across all sim-
ulations, for each cell we plot a summary of the estimates over our 1,000 samples,
showing the minimum and maximum (grey dots) and the median (black dots) of the
estimates over the eligible samples. The x-axis reports the target risk that is known
in the simulation. The red line represents a loess curve for the median estimated
values, the broken lines are loess quantile curves of level 0.5 and 0.95, respectively,
giving an idea of the variability of the estimates and finally the dotted lines are
loess curves for minima and maxima. The first row shows the results for the coarser
5-year classification of age, whereas the second contains the same figures for the
finer classification of age. Analogously, Fig. 5.4 reports a graphical assessment of
the performance of the three SPREE-type estimators (excluding the modified Skin-
ner estimator) over sample doubles. Figure 5.3 shows that in general all the estima-
tors permit to distinguish sample uniques between risky and safe, the SPREE and
stratified GLSM exhibiting a very similar behaviour and being apparently preferable
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Fig. 5.3 Performance of the estimators for sample uniques under two age classifications

Fig. 5.4 Performance of the first three estimators for sample doubles under two age classifications

to the Skinner estimator. This is not surprising, as r̂SK
dhi does not make use of auxil-

iary information. On the other hand, the modified, SPREE-based, Skinner estimator
appears to improve both the SPREE and the Skinner estimators especially for the
high-risk cells. The variability is also reduced due to the shrinkage effect.

Whereas the patterns remain unchanged when increasing the detail of age, as
expected there is an increase in the variability, that is anyway not remarkable (see
the broken loess curves), apart for the GLSMM estimator. The performance of such
estimator is comparable to that of the other SPREE-based estimators for the first
coarser classification of age, while under the second classification the estimator
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behaves poorly with respect to both bias and variability. This is due to the input
table {Fdhi} being too sparse to allow for reliable estimation of the random effects.

Figure 5.4 indicates that the performance of the estimators considered already
improves when fk = 2. The GLSMM estimator continues to show a particularly
poor performance when refining the classification of variable age.

5.5 Comments

The estimation of risk for low count cells remains a difficult problem and to obtain
more accurate estimators, all the available information should be used.

In this chapter we presented a comparative analysis of some simple risk estima-
tors based on a linear structural method that is designed to estimate frequency in a
population contingency table using auxiliary information. We considered the struc-
ture preserving estimator (SPREE) and two generalizations of the latter, namely
the generalized linear structural model (GLSM) estimator and its mixed effects
counterpart, namely the generalized linear structural mixed model (GLSMM). In all
cases we have modified the estimation process so as to ensure that the observed cell
frequency fdhi does not exceed the corresponding estimated population frequency.
Once the frequency has been estimated, we simply derived the risk estimate as the
reciprocal of the estimated population count. We also considered two Skinner-type
estimators, one based on a Poisson superpopulation model with log-linear modelling
of the observed counts as proposed in [21] and a variation of the latter that relies on
a similar superpopulation model, that is informed by SPREE estimates instead of
relying on a log-linear model for the sample cell frequencies. To compare the esti-
mators, a simulation plan was pursued following the sampling design of the Italian
Labour Force Survey. We considered two different scenarios specifying the same set
of key variable, though at two different levels of detail for variable age. The latter
choice leads to a very large and sparse contingency table F to be estimated.

Results shown are restricted to the most challenging case of cells with low sam-
ple frequencies. The simulation experiment conducted clearly indicates that all the
estimators tend to underestimate very high-risk records. The Skinner-type estimator,
not relying on detailed information on the population table at a previous time nor on
any other external information, shows a more evident tendency to a negative bias;
note, however, that the underlying log-linear model is not saturated as in the models
underlying the SPREE-type estimators. The latter estimators benefit from the intro-
duction of external information, even though in the smallest regions, characterized
by the highest sampling fractions, some cells are not well captured by the model.
For the modified Skinner estimator based on the SPREE, this effect is mitigated by
the shrinkage induced by the superpopulation model.

To assess the estimation error, instead of MSE we considered LINEX loss, an
asymmetric loss function. Using this measure, the SPREE and the modified Skinner
estimator based on the SPREE appear to be superior to the other estimators. In
particular, the latter estimator exhibits better mean LINEX loss for low population
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frequencies. The introduction of mixed effects did not result in an improvement over
the other estimators, especially when the detail of the key variables is such that the
corresponding contingency table is very large and sparse.

Excluding the GLSMM whose overall performance deteriorates, the increase in
variability of the estimators corresponding to an increase in the detail of key vari-
ables is moderate.

Whereas the estimator (5.9) only requires the observed data and information
about the sampling fraction, the structural estimators (5.11), (5.12) and (5.13) come
with some computational and administrative burden, as they require an estimation
process (especially the GLSM and GLSMM estimators) and management of census
data. The process of building the appropriate table is an important step that requires
at least some insights about the available information and the classes in which
estimates with sufficient precision can be obtained from the sample at hand. The
population table from which the association structure is borrowed must be properly
organized; besides that, margins must be computed from the available sources such
as administrative archives and the sample on release. Finally, in order for the vari-
ables collected at a census to be compatible with the key variables available in the
survey microdata, treatments, such as recoding, are usually necessary, as sometimes
the definitions may vary. This process is nontrivial and might be computationally
demanding, depending on the size of the population. An advantage is that the cen-
sus table has to be collected and organized only once in several years. Indeed the
same association structure is modelled at subsequent releases, the only change being
the update of margins. Log-linear model estimation required for the estimator (5.9)
relies on maximum likelihood; although the procedure is well known and readily
available in standard software, when large tables are analysed, the associated com-
putational costs may also be high.

Among the SPREE-type estimators, (5.11) is based on the simplest model; penal-
izing for underestimation, it emerges in our simulation study as a good perform-
ing estimator, even though the more flexible GLSM estimator has a very similar
behaviour. The relative stability over time of many interaction effects in our data
may be a reason for the good performance of the SPREE. The adoption of a super-
population model that is informed by SPREE estimates, leading to the modified
Skinner estimator, is a relatively simple procedure that leads to good performances,
especially for high-risk cells, with no additional computational costs.
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Chapter 6

Statistical Disclosure Control in Tabular Data

Jordi Castro

Abstract Data disseminated by National Statistical Agencies (NSAs) can be classi-
fied as either microdata or tabular data. Tabular data are obtained from microdata by
crossing one or more categorical variables. Although cell tables provide aggregated
information, they also need to be protected. This chapter is a short introduction
to tabular data protection. It contains three main sections. The first one shows the
different types of tables that can be obtained and how they are modeled. The second
describes the practical rules for detection of sensitive cells that are used by NSAs.
Finally, an overview of protection methods is provided, with a particular focus on
two of them: “cell suppression problem” and “controlled tabular adjustment.”

6.1 Introduction

National Statistical Agencies (NSAs) store information about individuals or respon-

dents (persons, companies, etc.) in microdata files. A microdata file V of s indi-
viduals and t variables is a s × t matrix where Vi j is the value of variable j for
individual i . Formally, it can be defined as a function

V : I → D(V1)× D(V2)× · · · × D(Vt )

that maps individuals of set I to an array of t values for variables V1,. . . , Vt , D()

being the domain of those variables. According to this domain, variables can be
classified as numerical (e.g., “age,” “net profit”) or categorical (“sex,” “economy
sector”).

From those microdata files, tabular data are obtained by crossing one or more
categorical variables. For instance, assuming a microdata file with information of
inhabitants of some region and considering only the categorical variable “pro-
fession,” we could get the one-dimensional table of Fig. 6.1. Crossing variables
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P1 P2 P3 P4 P5 TOTAL

130 73 46 90 31 370

Fig. 6.1 One-dimensional frequency table showing number of persons for each profession

P1 P2 P3 P4 P5 TOTAL

M1

M2

M3

TOTAL

20 15 30 20 10 95

72 20 1 30 10 133

38 38 15 40 11 142

130 73 46 90 31 370

Fig. 6.2 Two-dimensional frequency table showing number of persons for each profession and
municipality

“profession” and “municipality” we could get the two-dimensional table of Fig. 6.2.
The above two tables count the number of inhabitants in each cell; these are named
frequency tables. Instead, the table could provide information about a third vari-
able. For instance, the table of Fig. 6.3 shows the overall salary for each profes-
sion and municipality; these are named magnitude tables. Formally, a table is a
function

T : D(Vi1)× D(Vi2)× · · · × D(Vil ) → R or N,

l being the number of categorical variables that were crossed. The result of func-
tion T (cells’ values) belongs to N for a frequency table and to R for a magnitude
table.

Although tabular data show aggregated information, there is a risk of disclosing
individual information. This can be easily seen from the tables of Figs. 6.2 and 6.3.
Any attacker knows that the salary of the unique respondent of cell (M2, P3) is
22,000 e. This is named an external attacker. If there were two respondents in that
cell, then any of them could deduce the other’s salary, becoming an internal attacker.
Even if there were a larger number of respondents, e.g., five, if one of them had a
salary of, e.g., 18, there would be a disclosure risk. This scenario is named internal

attack with dominance.
The number of registers in a microdata file r is in general much larger than the

number of cells n in a table (r ≫ n ≫ 0). It could be thought that, therefore,

P1 P2 P3 P4 P5 TOTAL

M1

M2

M3

TOTAL

360 450 720 400 360 2290

1440 540 22 570 320 2892

722 1178 375 800 363 3438

2522 2168 1117 1770 1043 8620

Fig. 6.3 Two-dimensional magnitude table showing overall salary (in 1,000e) for each profession
and municipality
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the protection of microdata is more complex, since it involves a larger number of
information. However, tabular data involve a number of linear constraints m; this lin-
ear constraints model the relations between inner and total cells, the most usual rela-
tion being that the sum of some inner cells is equal to some marginal cell. Microdata
protection in general involves few (if not 0) linear constraints, and usually m ≫ 0.
For this reason, tabular data protection methods need linear programming (LP) and
mixed integer linear programming (MILP) technology, making the protection of
complex and large tables a difficult problem.

Although it contains some references to recent literature, this chapter cannot be
considered a comprehensive survey on statistical disclosure control of tabular data.
Additional information can be found, for instance, in the research monographs [20–
22, 32] and in the recent survey [31]. Details about practical aspects of tabular data
protection can be found in the handbook [27].

This chapter is made of three main sections associated with the three stages of
the tabular data protection process. Section 6.2 shows the different types of tables
that can be obtained and how they are modeled. Section 6.3 introduces some sen-
sitivity rules for detection of sensitivity cells to be protected. Finally, Section 6.4
introduces some of the most widely used tabular data protection methods, mainly
focusing on two of them, the cell suppression problem and the controlled tabular

adjustment.

6.2 Tabular Data: Types and Modeling

The first stage of the tabular data protection process is to know the type of table to be
protected and how to model it. It is an important stage, since some protection meth-
ods of Section 6.4 can be specialized (i.e., made more efficient) for some particular
classes of tables.

6.2.1 Classification of Tables

Broadly, tables can be classified according to different criteria as follows:

6.2.1.1 According to the Cell Values

The two types of tables were already introduced in Section 8.1. They are as follows:

• Frequency tables: These are also named contingency tables. They count the
number of respondents that belong to each cell. Cell values are in N.

• Magnitude tables: They provide information about each cell respondents for
another variable of the microfile. Cell values are in R.
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6.2.1.2 According to the Sign of Cell Values

Protection methods usually involve the solution of difficult LP or MILP problems.
The lower bounds of the variables in those problems (either 0 or −∞) are usually
related to the sign of the cell values. We have two cases:

• Positive tables: Cell values are ≥ 0. It is the most usual situation. For
instance, all frequency tables and most of the magnitude tables, like “salary”
for “profession”× “municipality,” are positive tables.

• General tables: Cell values can be either positive or negative. An example
of general table would be “variation of gross domestic product” for “year” ×
“state.”

6.2.1.3 According to Table Structure

This is likely the most important classification. Some protection methods can only
be applied to some of the below classes of tables.

• Single k-dimensional table: Single table obtained by crossing k categorical
variables. All the tables shown above are k-dimensional tables (k = 1 for the
table of Fig. 6.1, k = 2 for the tables of Figs. 6.2 and 6.3). Note that the number
of cells grows very quickly (exponentially) with k.

• Hierarchical tables: Set of tables obtained by crossing some variables, and a
number of these variables have a hierarchical relation. For instance, consider
the three tables of Fig. 6.4. The left subtable shows number of respondents for
“region”× “profession”; the middle subtable, a “zoom in” of region R2, provides
the number of respondents for “municipality” (of region R2) × “profession”;
finally the right subtable, “zip code” × “profession,” details municipality R21.
This table belongs to a particular class named 1H2D, two-dimensional tables
with one hierarchical variable.

• Linked tables: It is the most general situation. Linked tables is a set of tables
obtained from the same microdata file. In theory, the set of all tables obtained
from a microdata file should be considered together as a (likely huge) linked
table. Hierarchical and k-dimensional tables are particular cases of linked tables.
Note that, in theory, the only safe way for protecting all the tables from a
microfile is to jointly protect them as a single linked table. Unfortunately, in
many cases the size of the resulting table would be excessive for current LP or
MILP technology.

C1 C2 C3

R1 5 6 11

R2 10 15 25

R3 15 21 36

T1

C1 C2 C3

R21 10

R22 5

R2

8

2

10 15

18

7

25

T2

C1 C2 C3

R211 12

R212 6

R21

6

2

8

6

4

10 18

T3

Fig. 6.4 Hierarchical table made of three subtables: “region” × “profession,” “municipality” ×
“profession,” and “zip code” × “profession”
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6.2.2 Modeling Tables

Since linked tables are the more general case, a model for them is valid for all
types of tables. However, we will exploit the particular structure of two-dimensional,
three-dimensional, and 1H2D tables.

6.2.2.1 Two-Dimensional Tables

A two-dimensional table of r + 1 rows and c + 1 columns as that of Fig. 6.5 is
modeled by the following constraints.

c
∑

j=1
ai j = ai(c+1) i = 1, . . . , r,

r
∑

i=1
ai j = a(r+1) j j = 1, . . . , c.

(6.1)

Constraints (6.1) can be represented by the bipartite network of Fig. 6.6. This
allows the application of efficient network optimization algorithms, such as those for
minimum-cost network flows, or shortest paths [1]. This fact was originally noticed
in [2], and it has been extensively used in other works [4–6, 9, 14, 23, 28].

a11 ...

... ...

...

...

a1c
a1(c+1)

... ...

a
r1 a

rc
ar(c+1)

a(r+1)1 a(r+1)c a(r+1)(c+1)

Fig. 6.5 General two-dimensional table

. 
 .

  
.

1

2

. 
 .

  
.

2

c

r+1c+1

1

r

Fig. 6.6 Network representing constraints (6.1)
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6.2.2.2 Three-Dimensional Tables

The linear constraints of a three-dimensional table of r + 1 rows, c + 1 columns,
and l + 1 levels (levels refer to categories of third variable) are

r
∑

i=1
ai jk = a(r+1) jk j = 1, . . . , c, k = 1, . . . , l,

c
∑

j=1
ai jk = ai(c+1)k i = 1, . . . , r, k = 1, . . . , l,

l
∑

k=1
ai jk = ai j (l+1) i = 1, . . . , r, j = 1, . . . , c.

(6.2)

Note the above constraints correspond to a cube of data. Rearranging (6.2),
these constraints can be modeled as a multicommodity network [5]. Variables
xi jk, i = 1, . . . , r, j = 1, . . . , c, k = 1, . . . , l are ordered according to k, i.e.,
x = (xT

i j1, . . . , xT
i jl)

T . Each group for a particular k contains rc variables, and it
corresponds to a layer of the cube of data. Each layer is a two-dimensional table,
which is modeled as the network of Fig. 6.6. Data for each particular layer (or level)
correspond to a commodity. The l commodities are linked by capacity constraints,
forcing that the sum for all the commodities (levels) is equal to the marginal level.
The resulting constraint matrix structure is

A =

ai j1 ai j2 . . . ai jl

N for k = 1
N for k = 2

. . .
...

N for k = l

I I . . . I linking constraints,

(6.3)

N being the node-arc incidence network matrix for the two-dimensional tables of
each level, and I ∈ R

rc×rc being the identity matrix. Exploiting this structure, sig-
nificant computational savings can be obtained [7, 10].

6.2.2.3 Hierarchical Tables

In general, hierarchical tables have to be modeled as a general linked table. However,
for the particular case of 1H2D tables, as that of Fig. 6.4, it is possible to obtain a
network representation. In short, the algorithm for building the network of a 1H2D
table consists of the following stages [9]:

1. Build a tree of subtables representing the structure of the 1H2D (i.e., for table
of Fig. 6.4, the root node would be the left table; the middle table would be a
descendant of the root table; and the right table would be a descendant of the
middle table).

2. Search all the subtables of the tree using for instance a breadth-first-search and
build the breadth-first-list.
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3. Build the networks for each subtable.
4. For all the subtables in the breadth-first-list, embed the network of a table within

the table of its parent table.

The above procedure is done in linear time. For instance, for the 1H2D table of
Fig. 6.4 after the first iteration we would get the network of Fig. 6.7; after the second
and last iteration the definitive network of Fig. 6.8 would be obtained. This network
model was successfully used for a fast heuristic for protection of 1H2D tables in [9].
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R21

C1

C2

C3 R3

R1

C3’

R21 C1’

C2’R22

11 6

5

10
25

15

36

15

21

18

8

5

10

15

25

2

10

7

11 6

5
15

21

36

25

7

18

10

15

8

10

5

2

a) T1
b) T2

T1 T2c) +

Fig. 6.7 Intermediate network representing 1H2D table of Fig. 6.4 (first iteration)
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Fig. 6.8 Final network representing 1H2D table of Fig. 6.4 (second iteration)
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6.2.2.4 Linked Tables

Any table can be modeled as a set of n cells ai , i = 1, . . . , n, which satisfy a set
of m linear relations Aa = b, A ∈ R

m×n , b ∈ R
m . If the table is positive, then we

may add bounds ai ≥ 0, i = 1, . . . , n. Each row of matrix A = (ai j ), i = 1, . . . , m,

j = 1, . . . , n, is related to a table linear relation, and ai j ∈ {1, 0,−1}. The value −1
of every equation is related to the marginal cell. The tables of the above sections are
particular cases where A is either a node-arc incidence network flows matrix or a
multicommodity network flows matrix. In real-world problems the dimension of n

and m can be very large, up to millions of cells. Some huge instances can be found
in http://www-eio.upc.es/∼jcastro/data.html.

6.3 Sensitive Cells and Sensitivity Rules

Sensitivity rules are used for detection of the set of cells with disclosure risk. For
frequency tables, the threshold value rule is mostly used. For magnitude tables, both
the (n, k) and the p% can be used, the latter being in general preferred. The three
rules are outlined below. More practical details can be found in [27].

6.3.1 The Threshold Rule for Frequency Tables

In a frequency table, a cell is considered sensitive (i.e., its value has to be protected)
if less than t respondents contribute to this cell. An usual value could be t = 3.
Although this rule could also be applied to magnitude tables, this is not a good
practice, since it misses the contribution of each respondent to the cell value.

6.3.2 The (n, k) and p% Rules for Magnitude Tables

The (n, k) rule (also named dominance rule) considers a cell is sensitive if n or less
respondents contribute to a k% (or more) of the cell value. For instance, for a cell
100 = 30 + 30 + 20 + 10 + 10 (i.e., cell of value 100 and five respondents with
contributions 30, 30, 20, 10, 10), if n = 1 and k = 50 then the cell is non-sensitive:
any respondent contribution is less than a 50% of the cell value; however, if n = 2
and k = 50, then the cell is sensitive since 30 + 30 > 100 · 0.5. The (n, k) rule
tries to avoid that a coalition of n respondents could obtain accurate estimates of the
other respondents’ contributions. Some usual values are, e.g., (n = 3, k = 75).

For the p% rule a cell is sensitive if some respondent may obtain an estimate
of other respondent contribution within a p% precision. The worse case – the one
considered in practice – is obtained when the respondent with the second largest
contribution tries to estimate the value of the respondent with the highest contribu-
tion. For instance, for the cell 100 = 55+30+10+3+2 (i.e., cell of value 100 and
five respondents with contributions 55, 30, 10, 3, 2), the second respondent knows
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that the value of the first respondent is at most 100−30 = 70; the estimate of the first
respondent done by the second is 70. If p = 20%, since 70 > (1+20/100)·55 = 66,
then the cell in non-sensitive. If p = 30, since 70 < (1 + 30/100) · 55 = 71.5, the
cell is considered sensitive. In general, for a cell X = x1 + x2 + · · · + xt with t

respondents and x1 ≥ x2 ≥ · · · ≥ xt , the estimate of x1 is x̂1 = X − x2, and the cell
is sensitive if

x̂1 − x1 < p/100x1 ⇔ X − x1 − x2 < p/100x1. (6.4)

In general, the p% is preferred to the (n, k) rule. Indeed the (n, k) may wrongly
consider as non-sensitive cells and vice versa. The following example, from [29],
illustrates this situation. Consider the rule (n = 1, k = 60). When applied to the
cell 100 = 59 + 40 + 1, this is considered non-sensitive, since 59 < 0.6 · 100.
On the other hand, the cell 100 = 61 + 20 + 19 is considered sensitive, since
61 > 0.6 · 100. However, for the cell declared non-sensitive, the second respondent
gets a too tight estimation of the first one of value 60: 100 − 59 = 61. Similarly,
for the cell considered sensitive, the estimation by the second respondent would be
100 − 20 = 80, far from the real value.

Situations as those of the above paragraph could be avoided by using a rule
(n = 2, k), but even in this case the p% rule is preferred. This is shown by noting
that the (n = 2, k) rule considers a cell as sensitive if

x1 + x2 > k/100X ⇔ X − x2 − x1 < (1 − k/100)X. (6.5)

Comparing (6.4) and (6.5), it is seen that in both cases a cell is sensitive if (X−x2)−
x1, i.e., the difference between the estimation of x1 made by the second respondent
and x1 is less than a certain percentage of either the first respondent value x1 in
(6.4) or the cell value X in (6.5). Note that the p% rule is more natural, and that the
(n = 2, k) suffers from overprotection. Indeed, for some particular values of p and
k, it can be proved that the set of sensitive cells provided by the rule p% is a subset
of the set obtained with (n = 2, k). This is clearly seen in the following result [27].

Proposition 6.1 For p and k such that k = 100 100
100+p

, every non-sensitive cell for

the rule (n = 2, k) is also a non-sensitive cell for the rule p%; but the reverse

implication does not hold.

Proof First we prove the direct implication. If a cell X = x1 + x2 + · · · + xt is
non-sensitive for (n = 2, k), then by (6.5)

x1+x2 ≤
k

100
X = 100

100 + p
X ⇒ (X−x2)−x1 ≥

(

1 − 100

100 + p

)

X = p

100 + p
X

(6.6)
and also

x1 ≤
k

100
X = 100

100 + p
X ⇒ p

100
x1 ≤

p

100 + p
X. (6.7)
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Connecting inequalities (6.6) and (6.7) we have

(X − x2)− x1 ≥
p

100 + p
X ≥ p

100
x1,

thus the cell is non-sensitive for the rule p%.
To show that the reverse implication is not true, we consider a counterexample.

For p = 10% and k = 100 · 100/(100 + p), a cell X = 110 with x1 = 52,
x2 = 50 is non-sensitive for the p% rule, since x̂1 − x1 = (110 − 50) − 52 =
60 − 52 > 52 · p/100. However, it is sensitive for the (n = 2, k) rule, because
x1+x2 = 102 > k/100·110 = 100. ⊓⊔

6.4 Tabular Data Protection Methods

Tabular data protection methods can be classified as follows:

• Non-perturbative: They do not change the original data, instead they “hide” data
or change the table structure. Among them we find recoding and cell suppression.

• Perturbative: They provide an alternative table with modified values. Controlled

rounding and controlled tabular adjustment belong to this class.

The above four methods are introduced and outlined next. References for a full
description of the solution approaches can be found within each section.

6.4.1 Recoding

This simple procedure consists in aggregating or changing some of the categorical
variables that define the table, in order to satisfy sensitivity rules. This is shown in
the example of Fig. 6.9, whose tables report the number of respondents for “pro-
fession” and “municipality.” This method is implemented in the τ -Argus software
[26]. The main advantages of this approach are its simplicity and that it works fine in
practice. The main inconvenience is that it changes the table structure; an excessive
aggregation may significantly reduce the utility of the resulting table.

Original table

P1 P2 P3 P4 P5 TOTAL

M1 20 15 30 20 10 95

M2 72 20 1 30 10 133

M3 38 38 15 40 11 142

TOTAL 130 73 46 90 31 370

Recoded table

P1 P2 +P3 P4 P5 TOTAL

M1 20 45 20 10 95

M2 72 21 30 10 133

M3 38 53 40 11 142

TOTAL 130 119 90 31 370

Fig. 6.9 Original and recoded table after aggregation of professions P2 and P3
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6.4.2 Cell Suppression

Given a set of sensitive cells to be protected (named primary cells), the cell suppres-
sion method removes them, and an additional set of cells named secondary cells to
guarantee the value of primary cells cannot be disclosed. The purpose of the cell

suppression problem (CSP) is to find the set of secondary cells that minimize some
information loss criteria. Figure 6.10 shows an example of a two-dimensional table
with only one primary cell in boldface; removing this cell is not enough, since its
value can be retrieved from marginals, thus forcing the suppression of three addi-
tional complementary cells.

From the protected table of Fig. 6.10, any attacker may deduce a lower and upper
bound for the primary cell. Indeed, considering variables x11, x13, x21, x23 for the
primary and secondary cells, a lower bound a23 and an upper bound a23 for the
primary cell can be obtained by solving

a23 = min x23

subject to x11 + x13 = 72 − 24
x21 + x23 = 116 − 38
x11 + x21 = 98 − 40
x13 + x23 = 110 − 42
(x11, x13, x21, x23) ≥ 0,

and

a23 = max x23
s.t x11 + x13 = 72 − 24

x21 + x23 = 116 − 38
x11 + x21 = 98 − 40
x13 + x23 = 110 − 42
(x11, x13, x21, x23) ≥ 0.

(6.8)
The solutions to (6.8) are a23 = 20 and a23 = 68. If, for instance, lower and upper

protection levels of lpl = upl = 10 were imposed (i.e., the protection pattern must
guarantee that no attacker can deduce a value of the sensitive cell within the range
[40−lpl, 40+upl] = [30, 50]), then this cell would be protected by this suppression
pattern since a23 = 20 < 30 and a23 = 68 > 50.

The above example illustrated the basics of CSP. A general formulation is now
provided. Any instance of CSP is defined by the following parameters:

• A general table ai , i = 1, . . . , n, with m linear relations Aa = b, a =
(a1, . . . , an)T being the vector of cell values.

• Upper and lower bounds u and l for the cell values, which are assumed to be
known by any attacker: l ≤ a ≤ u (e.g., l = 0, u = +∞ for a positive table).

Origina  tablel

P1 P2 P3 TOTAL

M1

M2

M3

TOTAL

20

38

40

98

24

38

39

101

28

40

42

110

72

116

121

309

Protected table

P1 P2 P3 TOTAL

M1

M2

M3

TOTAL

40

98

24

38

39

101

42

110

72

116

121

309

Fig. 6.10 Original table with primary cell in boldface and protected table after suppression of three
secondary cells
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• Vector of non-negative weights associated with the cell suppressions wi , i =
1, . . . , n. If wi = 1 the number of cells is minimized; if wi = ai the value
suppressed is minimized.

• Set P ⊆ {1, . . . , n} of primary or sensitive cells.
• Lower and upper protection levels for each primary cell lplp and uplp, p ∈ P

(usually either a fraction of ap or obtained from the sensitivity rules p% and
(n, k)).

CSP looks for a set S of secondary cells to be removed such that for all p ∈ P

ap ≤ ap − lplp and ap ≥ ap + uplp, (6.9)

ap and ap being defined as

ap = min x p

subject to Ax = b

li ≤ xi ≤ ui i ∈ P ∪ S

xi = ai i �∈ P ∪ S,

and

ap = max x p

subject to Ax = b

li ≤ xi ≤ ui i ∈ P ∪ S

xi = ai i �∈ P ∪ S.

(6.10)

The classical model for CSP was originally formulated in [28]. It considers two sets
of variables:

• yi ∈ {0, 1}, i = 1, . . . , n is 1 if cell has to be suppressed, 0 otherwise.
• For each primary cell p ∈ P , two auxiliary vectors x l,p ∈ R

n and xu,p ∈ R
n

represent cell deviations (positive or negative) from the original ai values; they
are needed to guarantee the protection levels.

The resulting model is

min
n
∑

i=1

wi yi

subject to
Ax l,p = 0

(li − ai )yi ≤ x
l,p
i ≤ (ui − ai )yi i = 1, . . . , n

x
l,p
p ≤ −lplp

Axu,p = 0
(li − ai )yi ≤ x

u,p

i ≤ (ui − ai )yi i = 1, . . . , n

x
u,p
p ≥ uplp

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

∀ p ∈ P.

yi ∈ {0, 1} i = 1, . . . , n.

(6.11)

The inequality constraints of (6.11) with both right- and left-hand sides impose
bounds on x

l,p
i and x

u,p
i when yi = 1 and prevent deviations in non-suppressed

cells (i.e., yi = 0). Clearly, the constraints of (6.11) guarantee that the solutions of
the linear programs (6.10) will satisfy (6.9).
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Model (6.11) is the basis of several solution methods, either optimal or heuristic.
Note, however, that it cannot be used directly as formulated here, because (6.11)
gives rise to a MILP problem of n binary variables, 2n|P| continuous variables, and
2(m + 2n)|P| constraints. This problem is very large even for tables of moderate
size and number of primary cells. For instance, for a table of 8,000 cells, 800 pri-
maries, and 4,000 linear relations, we obtain a MILP with 8,000 binary variables,
12,800,000 continuous variables, and 32,000,000 constraints.

The unique currently optimal solution approach decomposes (6.11) by means
of a Benders decomposition [3]. Initially applied to two-dimensional tables [23],
it was later extended to general tables [24]. The main benefit of this approach
is that it guarantees an optimal solution. The main drawback is that the num-
ber of cuts needed (i.e., iterations of Benders method) may be very large,
resulting in a prohibitive computational time. This does not happen for two-
dimensional tables (the approach is very fast for this kind of tables), but it
becomes computationally very expensive for more complex tables, as it will be
shown below in a numerical example. This method is implemented in the τ -Argus
package [26].

Most heuristic approaches for (6.11) find a feasible, hopefully good point, by
network optimization algorithms (in particular, minimum-cost network flows and
shortest paths [1]). Unfortunately, those heuristics can only be used in tables that
accept a network representation: two-dimensional and 1H2D hierarchical tables
(the latter is, however, an interesting case for NSAs). Some attempts have been
made for extending them to three-dimensional tables [18], but as mentioned in
Section 6.2.2.2, three-dimensional tables correspond to multicommodity flows, and
therefore “standard single-commodity” network optimization procedures are not
valid (and rather unsuccessful). Among those heuristics we find the seminal paper
[28] and [5, 14], which relies on minimum-network cost flows. For general tables
Carvalho et al. [4] suggested an efficient procedure based on shortest paths. Some of
those ideas were sensibly combined in the approach of Castro [9], based on shortest
paths but valid for positive tables. This approach is very efficient, but it can only
be applied to either two-dimensional or 1H2D hierarchical tables. This method is
implemented in the τ -Argus package.

We finally mention two other heuristics, which are also available in the τ -Argus
package. The hypercube [25], initially developed for k-dimensional tables, is a sim-
ple and fast procedure. For two-dimensional tables it can be seen as a network
flows approach that only considers a subset of the flows (thus providing less quality
solutions than heuristics based on network optimization). Although it is efficient, in
practice it tends to oversuppress cells and, moreover, it does not guarantee a feasible
solution (indeed, it finishes with some underprotected cells). Some of the above
drawbacks are also shared by the other heuristic, named HiTaS [19]. That approach
decomposes any table in a tree of smaller two-dimensional subtables and locally
protects them by the previously cited optimal Benders decomposition approach.
Since some linking constraints between subtables are removed, the final solution
is not guaranteed to be feasible. However, the quality of the solutions is in general
acceptable.
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Table 6.1 Results for table “IndustryCode × Size → Var2” from microdata file of τ -Argus distri-
bution
Method #supp. #val. supp. CPU seca

Hypercube 637 15494253 9
HiTas 528 9016562 15
Shortest paths 538 8795130 4
Benders decomposition 557 7830730 120b

Benders decomposition 483 7216286 622b

aResults on a PC with one AMD Athlon 44 00+ 64 bits dual core
b Time limit

It is not easy to compare the above procedures computationally, since the source
code is not available. However, they can be run with the same table from the
τ -Argus package, which implements four of them: the optimal approach of [24], the
shortest paths heuristic of [9], and the two (infeasible) heuristics of [19] and [25].
To compare them, in a toy table 1H2D was generated with τ -Argus. This table was
obtained from the microdata file accompanying the τ -Argus distribution, crossing
categorical variables “industry code” and “size” and using “var2” as explanatory
variable. The results are reported in Table 6.1. Columns “#supp.” and “#val. supp.”
provide information about the solution reported (number of suppressions and total
value suppressed, respectively). The total value suppressed is the objective function
to be minimized. Column “CPU sec” provides the CPU time. Time limits of 2 and
10 min were set for the optimal procedure. Even such a small instance is very dif-
ficult for the Benders decomposition approach, but it provides a better objective.
The shortest paths heuristic provides better results than the other heuristics (and it
is guaranteed to provide a feasible solution). In addition it requires less than 1% of
the CPU time of the optimal approach for a solution with an objective value only a
20% worse. However, if the table was more complex (instead of 1H2D) the shortest
paths heuristic could not be used.

6.4.3 Controlled Rounding

The method of rounding achieves protection by rounding all cell tables to a multiple
of a certain base number r . Figure 6.11 shows an example of a two-dimensional
table using a base number r = 5. Note that the total cell could not be rounded

Original table

P1 P2 P3 TOTAL

M1 M120 24 28 72

M2 M238 38 40 116

M3 M340 39 42 121

TOTAL 98 101 110 309

Rounded table

P1 P2 P3 TOTAL

20 25 30 75

40 40 40 120

40 40 40 120

TOTAL 100 105 110 315

Fig. 6.11 Original and rounded table using a base number r = 5
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to the closest multiple of 5, otherwise the resulting table would not be additive.
This variant that guarantees additivity is named controlled rounding, instead of
rounding.

Although controlled rounding was already in use two decades ago [15], some
recent extensions using lower and upper protection levels have been considered
[30]. The complexity of the resulting model is similar to that of cell suppression,
resulting in a large MILP which is solved by Benders decomposition [3]. This model
is implemented in the τ -Argus package. One of the main drawbacks of controlled
rounding is that it forces deviations for all the cells that are not originally a multiple
of the base r , reducing the utility of the resulting table. In addition, to guarantee
additivity, total cells have also to be rounded, likely to a multiple which can be far
from the original value. The method of the next section, which also perturbs cell
values, avoids some of these inconveniences of controlled rounding.

6.4.4 Controlled Tabular Adjustment

Given a table, a set of sensitive cells, and some lower and upper protection lev-
els, the purpose of controlled tabular adjustment (also known as minimum-distance

controlled tabular adjustment or simply CTA) is to find the closest safe table to
the original one (i.e., the closest table that meets the protection levels). Figure 6.12
shows an example for a small two-dimensional table with one sensitive cell in bold-
face, with lower and upper protection levels equal to five (left table of the figure). If
the protection sense is “lower,” then the value published for the sensitive cell should
be less than or equal to 35; the optimal adjusted table for this case is shown in the
middle table of Fig. 6.12. If the protection sense is “upper,” then the value must be
greater than or equal to 45, as shown in the right table of Fig. 6.12.

CTA was introduced in the manuscript [17] and, independently and in an
extended form, in [8] (in the latter they were named minimum-distance controlled
perturbation methods). The parameters that define any CTA instance are the same
than for the cell suppression problem (see Section 6.4.2), i.e.,

Original table

P1 P2 P3 TOTAL

M1

M2 40 116

M3

TOTAL

Adjusted table,

lower protection sense

P1 P2 P3 TOTAL

M1

M2 35 116

M3

TOTAL

Adjusted table,

upper protection sense

P1 P2 P3 TOTAL

M1

M2 45 116

M3

TOTAL

20 24 28 72

38 38

40 39 42 121

98 101 110 309

15 24 33 72

43 38

40 39 42 121

98 101 110 309

25 24 23 72

33 38

40 39 42 121

98 101 110 309

Fig. 6.12 Original table with sensitive cell in boldface of lower and upper protection levels equal
to five. Protected tables with “lower protection sense” and “upper protection sense” (i.e., value of
sensitive is, respectively, reduced and increased by five units)
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• A general table ai , i = 1, . . . , n, with m linear relations Aa = b.
• Upper and lower bounds u and l for the cell values, assumed to be known by any

attacker: l ≤ a ≤ u.
• Vector of nonnegative weights associated with the cell perturbations wi , i =

1, . . . , n.
• Set P ⊆ {1, . . . , n} of sensitive cells.
• Lower and upper protection levels for each primary cell lplp and uplp p ∈ P .

CTA finds the safe table x closest to a, using some distance Lw:

minx ||x − a||L(w)

subject to Ax = b

lx ≤ x ≤ ux

x p ≤ ap − lplp or x p ≥ ap + uplp p ∈ P.

(6.12)

Defining z = x − a, lz = lx − a, and uz = ux − a, (6.12) can be recast in terms of
deviations:

minz ||z||L(w)

subject to Az = 0
lz ≤ z ≤ uz

z p ≤ −lplp or z p ≥ uplp p ∈ P.

(6.13)

To model the “or” constraints it is necessary to consider binary variables yp ∈ {0, 1},
p ∈ P , such that yp = 1 if cell is “upper protected” (i.e., z p ≥ uplp) and yp = 0 if
it is “lower protected” (z p ≤ −lplp). For the particular case of distance L1, a pair
of variables z+i and z−i is also needed such that zi = z+i − z−i and |zi | = z+i + z−i .
The resulting MILP model is

minz+,z−
n
∑

i=1
wi (z

+
i + z−i )

subject to A(z+ − z−) = 0
0 ≤ z+i ≤ uzi

i �∈ P

0 ≤ z−i ≤ −lzi
i �∈ P

upli yi ≤ z+i ≤ uzi
yi i ∈ P

lpli (1 − yi ) ≤ z−i ≤ −lzi
(1 − yi ) i ∈ P

yi ∈ {0, 1} i ∈ P.

(6.14)

Problem (6.14) has |P| binary variables, 2n continuous variables, and m + 4|P|
constraints. The size of (6.14) is much less than that of the cell suppression formu-
lation (6.11). For instance, for a table of 8,000 cells, 800 primaries, and 4,000 linear
relations, CTA formulates a MILP of 800 binary variables, 16,000 continuous vari-
ables, and 7,200 constraints (these figures were 8,000, 12,800,000, and 32,000,000
for CSP, respectively).

Because of the smaller size of CTA compared to other approaches, it is possible to
apply state-of-the-art MILP solvers. Such an implementation was developed using
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both CPLEX and XPRESS in a package to be used by Eurostat [13]. However,
real-world large and complex instances are still difficult for such generic solvers,
and some preliminary work has been started using optimal approaches based on
Benders reformulation [11] and heuristics. The benefits of CTA are not limited to
a smaller size of the resulting MILP problem. CTA can be easily extended with
constraints to meet some data quality criteria [16]. It has also been experimentally
observed that the quality of CTA solution is comparable (in some instances even
better) than that of CSP [12]: indeed the number of cells with significantly large
deviations is much smaller than the number of cells removed by CSP.

6.5 Conclusions

This chapter introduced some of the currently most used techniques for tabular data
protection. All of them share, at different degrees, the same computational draw-
backs: they result in large difficult MILP optimization problems. Current research
for improving the solution of these MILP problems is being undertaken, mainly
for the most recent method, controlled tabular adjustment. That research makes use
of recent advances in mathematical optimization. There are alternative protection
methods, like interval protection or partial cell suppression, which result in a very
large, even massive, linear programming problem. Some approaches based on Ben-
ders decomposition were suggested in the literature. Being a continuous optimiza-
tion problem, specialized interior-point methods for structured problems can also be
a very efficient alternative. This is research to be conducted in the near future in this
challenging field.
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Chapter 7

From Collaborative to Privacy-Preserving

Sequential Pattern Mining

Vishal Kapoor, Pascal Poncelet, Francois Trousset, and Maguelonne Teisseire

Abstract Research in the areas of privacy-preserving techniques in databases and
subsequently in privacy enhancement technologies has witnessed an explosive
growth spurt in recent years. This escalation has been fueled primarily by the grow-
ing mistrust of individuals toward organizations collecting and disbursing their per-
sonally identifiable information (PII). Digital repositories have become increasingly
susceptible to intentional or unintentional abuse, resulting in organizations to be
liable under the privacy legislations that are increasingly being adopted by gov-
ernments the world over. These privacy concerns have necessitated new advance-
ments in the field of distributed data mining, wherein collaborating parties may
be legally bound not to reveal the private information of their customers. In this
chapter, first we present the sequential pattern discovery problem in a collaborative
framework and subsequently enhance the architecture by introducing the context of
privacy. Thus we propose to extract sequential patterns from distributed databases
while preserving privacy. A salient feature of the proposal is its flexibility and as a
result is more pertinent to mining operations for real-world applications in terms of
efficiency and functionality. Furthermore, under some reasonable assumptions, we
prove that the architecture and protocol employed by our algorithm for multi-party
computation is secure. Finally, we conclude with some trends of current research
being conducted in the field.

7.1 Introduction

The increasing popularity of multi-database technology, such as communication net-
works and distributed, federated, and homogeneous multi-database systems, has led
to the development of many large distributed transaction databases for real-world
applications. However, for the purposes of decision making, large organizations
would need to mine these distributed databases located at disparate locations. More-
over, the Web has rapidly transformed into an information flood, where individuals
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and organizations can access free and accurate information and knowledge on the
Internet while making decisions. Although this large data assists in improving the
quality of decisions, it also results into a significant challenge of efficiently identi-
fying quality knowledge from multi-databases [27, 33].

Therefore large corporations might have to confront the multiple data source
problem. For example, a retail chain with numerous franchisees might wish to col-
laboratively mine the union of all the transactional data. The individual transactional
databases contain information regarding the purchasing history of the same set of
common customers transacting through e-commerce portals or brick and mortar
stores. However, the bigger challenge of such computations is compliance to strin-
gent privacy requirements laid down by the formulation of laws such as HIPAA [25].
These regulatory policies are the driving force behind the growing consciousness
toward the protection of privacy of individuals and their data. Consequently, there
has been a paradigm shift toward the creation of a privacy-aware infrastructure,
which entails aspects ranging from data collection to analysis [4].

Conventionally, data mining has been applied to the traditional data warehouse
model of a central data repository and conducting analysis on it. However, pri-
vacy considerations prevent this generic approach and hence privacy-preserving data
mining has gained recognition among academia and organizations as an important
and unalienable area, especially for highly sensitive data such as health records.
Indeed, if data mining is to be performed on these sensitive data sets, due atten-
tion must be given to the privacy requirements. Recently there has been a spate of
work addressing privacy-preserving data mining [6, 21]. This wide area of research
includes classification techniques [8], association rule mining [9], and clustering
[14] with privacy constraints. In early work on privacy-preserving data mining,
Lindell and Pinkas [17] propose a solution to privacy-preserving classification prob-
lem using oblivious transfer protocol, a powerful tool developed by SMC research.
The techniques based on SMC for efficiently dealing with large data sets have been
addressed in [26], where a solution to the association rule mining problem for the
case of two parties was proposed. In [15], a novel secure architecture has been pro-
posed where the security and accuracy of the data mining results are guaranteed
with improved efficiency.

Traditionally, secure multi-party protocols have been used for the secure com-
putation for generic functions. A secure multi-party computation (SMC) problem
deals with computing any function on any input, in a distributed network where
each participant holds one of the inputs, while ensuring that no more information
is revealed to a participant in the computation than can be inferred from that par-
ticipants input and output. Secure two-party computation was first investigated by
Yao [29, 30] and was later generalized to multi-party computation (e.g., [5, 7, 10]).
It has been proved that for any polynomial function, there is a secure multi-party
computation solution [5, 10]. The approach used is as follows: the function f to
be computed is first represented as a combinatorial circuit and then the parties run
a short protocol for every gate in the circuit. Every participant gets corresponding
shares of the input wires and the output wires for every gate. While this approach is
appealing in its generality and simplicity, the protocols it generates depend on the
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size of the circuit. This size depends on the size of the input (which might be huge
as in a data mining application), and on the complexity of expressing f as a circuit
(for example, a naive multiplication circuit is quadratic in the size of its inputs).
However, the complexity of such a secure protocol is prohibitive for complex data
mining tasks such as the discovery of sequential patterns.

In this chapter, we present an alternative privacy-preserving data mining
approach (PRIPSEP), for discovering sequential patterns in the local databases
of a large integrated organization. PRIPSEP is useful for mining sequential pat-
terns via collaboration between disparate parties, employing secure architecture,
operations, and underlying protocols. Hence, to counter the communication and
bandwidth overhead of the oblivious transfer required between two parties in an
SMC, this work proposes an alternate architecture consisting of “semi-honest” and
“non-colluding” sites. This trade-off between security and efficiency is reasonable
as none of the participating sites are privy to the intermediate or the final results of
the calculus. Furthermore, due to the uniform random noise in the data sets, private
information of any individual is also guarded from any possible leak.

Organization. The remainder of this chapter is organized as follows. Sec-
tion 7.2 goes deeper into presenting the problem statement and provides an extensive
description of the problem at hand. Section 7.3 describes our proposed solution with
the description of the architecture and the algorithms for secure multi-party proto-
cols. Finally, Section 7.4 concludes this chapter with a roadmap for future work as
well as new trends on privacy-preserving sequential pattern mining approaches.

7.2 Problem Statement

In this section we give the formal definition of the problem of privacy-preserving
collaborative sequential pattern mining. First, we give a brief overview of the tra-
ditional pattern mining problem by summarizing the formal description introduced
in [2] and extended in [24]. Subsequently, we extend the problem by considering
distributed databases. Finally, we formally define the problem of privacy-preserving
sequential pattern mining.

7.2.1 Mining of Sequential Patterns

Let DB be a database containing a set of customer transactions where each transac-
tion T consists of a customer-id, a transaction time, and a set of items involved in
the transaction.
Let I = {i1, i2, . . . , im} be a set of literals called items. An itemset is a non-empty
set of items. A sequence s is a set of itemsets ordered according to their timestamp. It
is denoted by < s1, s2, . . . , sn >, where s j , j ∈ 1, . . . , n, is an itemset. In the rest of
the chapter we will consider that itemsets are merely reduced to items. Nevertheless
all the proposal could be easily extended to deal with itemsets. A k-sequence is
a sequence of k items (or of length k). A sequence S′ =< s′1, s′2, . . . , s′n > is a
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subsequence of another sequence S =< s1, s2, . . . , sm >, denoted S′ ≺ S, if there
exist integers i1 < i2 < · · · < i j < · · · < in such that s′1 ⊆ si1 , s′2 ⊆ si2, . . . , s′n ⊆
sin .

All transactions from the same customer are grouped together and sorted in
increasing order and are called a data sequence. A support value (denoted supp(S))
for a sequence gives its number of actual occurrences in DB. Nevertheless, a
sequence in a data sequence is taken into account only once to compute the sup-
port even if several occurrences are discovered. In other words, the support of a
sequence is defined as the fraction of total distinct data sequences that contain S.
A data sequence contains a sequence S if S is a subsequence of the data sequence.
In order to decide whether a sequence is frequent or not, a minimum support value
(denoted minsupp) is specified by the user, and the sequence is said to be frequent if
the condition supp(S) ≥ minsupp holds. Given a database of customer transactions
the problem of sequential pattern mining is to find all the sequences whose support
is greater than a specified threshold (minimum support). Each of these represents
a sequential pattern, also called a frequent sequence. The anti-monotonic Apriori
property [1] holds for sequential patterns [20].

Since its introduction, more than a decade ago, the sequential pattern mining
problem has received a great deal of attention and numerous algorithms have been
defined to efficiently find such patterns (e.g., GSP [24], PSP [18], PrefixSpan [19],
SPADE [31], FreeSpan[12], SPAM [3], CLOSPAN [28], PRISM [11], SAMPLING
[22]).

In order to extract the set of frequent patterns, the various approaches have con-
sidered a “generating-pruning” approach and subsequently made multiple passes
over the database. The first step aims at computing the support of each item in
the database. After the completion of this step, all the frequent items (i.e., those
that satisfy the minimum support) are computed. They are considered as frequent
1-sequences (sequences having a single itemset, itself a singleton). The set of candi-
date 2-sequences is built up according to the assumption that candidate 2-sequences
could be any couple of frequent items, whether embedded in the same transaction
or not. Frequent 2-sequences are determined by counting the support. Subsequently,
candidate k-sequences are generated from frequent (k − 1)-sequences obtained in
the prior pass-(k − 1). The main idea of candidate generation is to retrieve pairs
of sequences (s, s′) from among (k − 1)-sequences, such that discarding the first
element of the former and the last element of the latter results in two fully matching
sequences. When such a condition holds for a pair (s, s′), a new candidate sequence
is built by appending the last item of s′ to s either as itemset extension (I-extension)
or sequence extension (S-extension). The supports for these candidates are then
computed and those with minimum support become frequent sequences. The pro-
cess iterates until no more candidate sequences are formed. Moreover, to efficiently
perform this operation, some approaches consider a new representation of the data.
For example, in SPADE [31] the authors have proposed a vertical representation of
the data and in SPAM [3], the authors propose a new data representation based on
vertical bitmap. The originality of this approach lies in the fact that the generating
and the pruning phase is done at the same time. Each customer transaction is mapped
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as a vector of bits in which a 1 is set at position pos if the item occurs at the time
pos in the transaction. The S-extension is performed as follows: Let us consider that
we would like to generate the candidate (1) (2). First the bitmap corresponding to
the item 1 is transformed with the first occurrence of a 1 replaced by a zero and a
1 is set at the remaining position of the vector. Subsequently, the bitmap operator
AND is applied between the transformed vector and the vector of 2. The main idea
behind the transformation is since we know that the operator is AND, the value of
the first occurrence is forced to 0, in order to find the position of the 2 after the first
occurrence of 1. The I-extension is only performed with an AND between the two
vectors (e.g., (1, 2)) since they must occur at the same date.

More recently, some approaches have been defined in order to avoid the gener-
ating step which could be very time consuming. For instance, in PrefixSpan [19],
FreeSpan[12], and CLOSPAN [28], the authors have illustrated that due to the fact
that the prefix is shared among sequences, sequences could be efficiently extracted
by using projection and prefix-tree representations (as in PSP [18]).

7.2.2 From Collaborative to Privacy-Preserving Sequential

Pattern Mining

Let DB be a database such as DB = DB1
⋃

DB2 · · ·
⋃

DBD . We consider that
all databases DB1, DB2, . . . , DBD share the same number of customers (CIDs),
which is N . We also consider that for each customer in the databases, the number of
transaction times (TIDs), K , is the same. Our data representation scheme considers
that all transactions are depicted in the form of vertical bitmaps, which we denote
as vectors for clarity in mathematical formulae.

Definition 7.1 Let V
j

i be a vector where j and i correspond, respectively, to the i th

item and the j th database. V i
j is defined as follows: V i

j = [C i, j

1 , . . . , C
i, j
N ]where for

u ∈ {1..N }, C
i, j
u = [T i, j,u

1 , . . . , T
i, j,u
K ]. T

i, j,u

v={1,...,K } corresponds to the transaction
list of the customer u from the database DB j and the item i . It is a K length bit string
that has the vth bit as one if the customer has bought the item i from the database
DB j .

Given a set of databases DB1, DB2, . . . , DBD containing customer transactions, the
problem of collaborative sequential pattern mining is to find all the sequences whose
support is greater than a specified threshold (minimum support). Furthermore, the
problem of privacy-preserving collaborative sequential pattern mining is to find all
the sequential patterns embedded in the set of databases by considering parties that
do not want to share their private data sets with each other.

In order to illustrate this further, let us consider the following example.

Example 7.1 Let us consider an example of three retail franchisees Alice, Bob, and
Carol wishing to extract securely the sequential patterns without disclosing the
identities of any individual customers. Each item is provided with its timestamp
(cf. Table 7.1).
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Table 7.1 An example of
distributed databases CID Alice Bob Carol

1 (1)1 (3)5 (2)2 (7)4

2 (2)4 (1)3 (3)6

3 (2)6 (3)7 (1)2 (7)3

Let us assume that the minimal support value is set to 50%. From the three dis-
tributed databases, we can infer that item (1) is not frequent in any one of the indi-
vidual databases. However, by considering the union of all databases (cf. Table 7.2
where the superscript depicts the original database where the item is derived), we
obtain the sequence of < (1)(2)(3) >. By considering privacy, this sequence has to
be obtained by considering Alice, Bob, and Carol do not want to share their private
data sets with each other.

Table 7.2 The union of all
databases CID Sequences

1 (1)A
1 (2)B

2 (7)C
4 (3)A

5

2 (1)B
3 (2)A

4 (3)C
6

3 (1)C
2 (7)C

3 (2)A
6 (3)A

7

In [32], Zhan et al. have proposed a novel approach, which entails the transfor-
mation of the databases of each collaborating party, followed by a protocol, which
results in the preservation of privacy, as well as the correct results. Theoretically,
the approach is robust and secure, however, it has serious limitations relating to the
initial constraints considered while developing the protocol. It has been assumed
that each of the collaborating party carries a unique inventory. For instance, consid-
ering our previous example and our problem statement, and following the previous
approach and not taking into account the possibility of items being shared among
the distributed parties, we come up with erroneous results. An item such as (1)
which is not supported by enough customers in one individual database might not
appear in the final results. This assumption causes serious limitation for different
real applications where items sharing between different databases is imperative and
a fundamental requirement as proved earlier. Moreover, the same customer buying
the same item twice from the same database but on different times is not permissi-
ble, employing their new data representation scheme for sequential data. The other
drawback of mapping each item to a unique code is the additional overhead incurred
while sorting the databases.

7.3 The PRIPSEP Approach

In this section, we propose our novel approach for privacy-preserving sequential pat-
tern mining in distributed and collaborative databases. A preliminary version of this
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proposal has been published in [16]. First, we focus only on collaborative sequen-
tial pattern mining in order to clearly explain our methodology. This approach is
extended in the next section in order to consider privacy requirements and finally we
propose a new algorithm and underlying protocols within the secure architecture.

7.3.1 Collaborative Sequential Pattern Mining

7.3.1.1 An overview

As previously seen in Section 7.2, the main difficulty with collaborative mining is
that we have to deal with different databases where the order of items is not known
beforehand (e.g., consider the item (7) of the CID 1 in the Bob’s database is before
the item (3) of the Alice’s database).

For brevity, we consider that we are provided with a Data Miner performing the
generating and verifying phases of candidate sequences as Apriori-like algorithms.
We assume that the candidate generation is performed conventionally by combining
the k − 1 frequent sequences in order to generate k-candidate sequences (e.g., cf.
GSP [24] generation phase). We extend the verification phase as follows. First, we
consider that our data representation scheme has been extended from the SPAM
algorithm [3], wherein for efficient counting, each customer’s transactions are rep-
resented by a vertical bitmap. These bitmap or vectors are vertically aligned for
various computations to calculate the support value for any sequence. As we have
to deal with disparate distributed databases, we assume that the Miner could request
the N original databases in order to obtain a vector corresponding to the specific
item i , i.e., V

[1..D]
i for any candidate sequence.

Let us consider that we are provided with two databases, namely DB1 and DB2.
These databases contain three customers and each customer has five transaction
times or CIDs. Let us consider that we are in the candidate step counting of an
Apriori-like algorithm. Let us assume that we are currently finding how many times
the sequence < (1)(2) > appears in the set of all customers of the two databases.
First, we extract from DB1, the vector corresponding to the item (1), i.e., V 1

1 , and
from DB2 the vector V 2

1 (left part of Fig. 7.1). From the given vectors, two key oper-
ations have to be performed: (i) merge the two vectors, and then (ii) transform the
result in order to check if it could be followed by (2). These two vectors are merged
together by applying a bitwise operator (∨): V 1

1 ∨ V 2
1 . For the second operation,

similar to the S-Step process of the SPAM algorithm, we consider a function that
transforms the vector or bitmap. For each customer, following the occurrence of the
first bit with value one, every subsequent bit in the vector is flagged as one. However,
since we have to deal with different databases and due to efficiency considerations,
we consider that these two operations are performed through the f function defined
below and thus we obtain a new vector Z1 = f (V 1

1 ∨ V 2
1 ).

Definition 7.2 Let us consider a vector V
j

i for a database j and an item i .

V
j

i is defined as follows: V
j

i = (C
i, j

1 , . . . , C
i, j
N ) where for u ∈ {1, . . . , N },
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Fig. 7.1 Processing of vectors for collaborative mining

C
i, j
u = (T

i, j,u

1 , . . . , T
i, j,u
K ). K stands for the number of TIDs and N corre-

sponds to the number of CIDs. For brevity, we denote this vector as V . Let
f : [0, 1]N×K → [0, 1]N×K be a function such that f (V ) = f (C1, . . . , CN ) =
[ fc(C1) fc(C2), . . . , fc(CN )]. For each u ∈ {1, . . . , N }, we have

fc(Cu) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0
T u

1
T u

1 ∨ T u
2

T u
1 ∨ T u

2 ∨ T u
3

. . .

T u
1 ∨ . . . ∨ T u

k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where∨ are bitwise operators. We can notice that Card(V ) = N×K , Card(Cu) =
K , Card( f (V )) = N × K .

Let g : [0, 1]N×K → [0, 1]N be a function such that

g(V ) = g(C1, . . . , CN ) = [gc(C1)gc(C2), . . . , gc(CN )].

For each u ∈ {1..N }, we have: gc(Cu) = 1 if it exists at least one 1 in the customer
transactions, i.e. customer dates, or 0 otherwise. Note that Card(g(V )) = N .

In conjunction to the computation of the function f , the vectors corresponding to the
item (2) are extracted from DB1 and DB2 (V 1

2 and V 2
2 , respectively). Subsequently,

similar to the previous step the vector (Z2 = V 1
2 ∨ V 2

2 ) is computed. Following
that, the bitwise operator ∧ is used to calculate Z1 ∧ Z2 and the count for each
customer, for the sequence < (1)(2) > has to be calculated. This is performed by
the g function, i.e., Z3 = g( f (V 1

1 ∨ V 2
1 ) ∧ (V 1

2 ∨ V 2
2 )). As the resulting vector Z3

has a cardinality corresponding to the number of customers, the last operation to be
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performed is a summation of the number of 1’s in the vector Z3. This is performed
by the

∑

operation.

7.3.1.2 The Collaborative Support Counting Algorithm

The COLLABORATIVE FREQUENCY algorithm (see Algorithm 1) has been devel-
oped as follows. For each item i of the candidate sequence to be tested, a new vector
X i is generated by applying the ∨ bitwise operator on all vectors from the original
databases. Then by considering the result of the previous operation, the f function
is applied, followed by the bitwise operator ∧ for each item. At the end of this
iteration, a new vector Z of cardinality N × K is produced. Subsequently, the g

function is applied to the intermediate result for generating a vector of cardinality
N , i.e., Y . Finally, the number of bits which are 1 in Y are summated to compute
the final value of support.

Algorithm 1: The COLLABORATIVE FREQUENCY algorithm
Data: S = < i t1 . . . i tq > a sequence to be tested; DB = DB1

⋃

DB2 . . .
⋃

DBD a set
of databases; N the number of customers shared by all databases; K the number of
date shared by all customers of all databases.

Result: The support of the sequence S in DB.
foreach i ∈ 1..|S| do

X i ← V 1
i ti

∨

. . .
∨

V D
iti

;

Z ← X1;
foreach i ∈ 2..|S| do

Z ← f (Z)
∧

X i ;

Y ← g(Z);

return
N
∑

i=1

yi ; here Y = (y1, . . . , yN ) is the bit-representation of Y .

Complexity: Let Vs = N × K be the size of the vectors which are sent and
S be the candidate sequence to be verified. The main transfers that are performed
by the algorithm are (Vs × D × S) for

∨

and (Vs × S) for both the f function
and
∧

operation. There are (N (K − 2))
∨

computations performed by f . If f is
already available, i.e., precomputed and stored, we have (N )

∨

operations otherwise
(N (K − 1))

∨

operations are performed by g.

7.3.2 From Collaborative to Privacy-Preserving Sequential Pattern

Mining

7.3.2.1 A Brief Overview of the Architecture

In this section we describe an architecture where secure multi-party techniques
developed in the cryptographic domain can be easily extended for data mining
purposes.
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Previous work [10] has described that secure multi-party protocols can be used
directly to solve with total security, any generic data mining task. However, the
trade-off is the complexity of the protocol and the requirements that all parties need
to be online during the entire duration of the lengthy process. Hence, it is potentially
unviable for complex data mining tasks, particularly for cases with a large number
of participants. The communication complexity prohibits efficient scalability and
for situations that all parties cannot remain online for the entire process, the SMC
protocols are rendered useless.

Evidently traditional approaches do not fulfill the requirements of a complex
sequential mining algorithm. Hence, as proposed in [15], we deploy a safe archi-
tecture for performing the data mining task without leaking any useful or sensi-
tive information to any of the intermediate parties. These independent sites collect,
store, and evaluate information securely. PRIPSEP requires three non-colluding and
semi-honest [10] sites which follow the protocol correctly but are free to utilize the
information collected by them. They are also referred to as honest but curious sites.
The detailed functions of each of these sites are described as follows:

• Data Miner site DM : The Data Miner is a randomly chosen collaborator
between original databases. Its purpose is to interact with NC1 and NC2, and
it receives the final result of the computation from the PS.

• Non-colluding sites NC1 and NC2: These symmetric sites collect the noisy data
from each database including the Data Miner and perform secure operations
without inferring any intermediate or final result.

• Processing site PS: This site is utilized by both NC1 and NC2 sites for computing
securely the various functions and operations underlying PRIPSEP. Similar to
NC1 and NC2, PS learns no actual results.

Let us consider Fig. 7.2 illustrating the sites. The operations are described as
follows. Initially the following preprocessing steps are performed on the databases
individually:

1. Each database DB1, DB2, . . . , DBD adds ε customers with fake transactions and
employ a non-secure counting strategy (this count could be performed by any
conventional algorithm since this step is independent of the privacy) to note the
number of customers, ε′, that have to be pruned from the final result.

2. Let ϕ be a random number. Each database permutes individually their vector of
transactions (V j

i ) according to the value of ϕ .
3. One of the collaborating parties is randomly elected to perform the data mining

steps. This party is termed as the Data Miner (DM).

At the end of the preprocessing we are provided with databases having fake cus-
tomer transactions and permuted list of vertically aligned vectors. Subsequently,
the Data Miner can apply an Apriori-like algorithm as previously mentioned in
Section 7.3.1. This step is immediately followed by the counting phase. For sim-
plicity, let us consider that we are counting the value of support for the two length
sequence < (1)(2) >. Now, each database DB j sends its V

j

1 vector to NC1 and
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DB1 DBD

...

DBi

Data Miner

4

3

4

2
3

1

1
1

2

Non−colluding Site

NC1

Non−colluding Site

NC2

...

Processing Site

PS

Fig. 7.2 PRIPSEP architecture

NC2 (dashed arrows numbered 1 in Fig. 7.2). In order to minimize the risk of
network transfers, we propose a hypothetical function SENDS × DBd(i t) which
securely transmits the item vector Vi t from database DBd to NC1 and NC2. Fur-
thermore, in order to make sure that NC1 and NC2 receive minimal information,
for each database DBi , we calculate a vector: ZDBi

= Vi t

⊕

RDBi
and send

either ZDBi
to NC1 and RDBi

to NC2 or vice versa. It has been proved in [6],
that any data mining task (h) defined on a vector X = [x1, x2, . . . , xn], it suf-
fices to evaluate h(X

⊕

R) = h(X) since R = [r1, r2, . . . , rn] and X
⊕

R =
[x1 ⊕ r1, x2 ⊕ r2, . . . , xn ⊕ rn]. In this case, for NC1 and NC2 sites we have some
RDBi

vectors and since the other vectors are XOR-ed
⊕

with a random vector, they
are indistinguishable from a uniform random distribution.

Similar to Algorithm 1, the bitwise operator (∨) has to be applied between every
vector. As these vectors are shared by NC1 and NC2, we consider a new protocol
∨S (arrows numbered 2 in Fig. 7.2) aiming at computing a bitwise OR between the
different vectors. This is performed by sending XOR-ed randomized values from
NC1 and NC2 to P S. Then P S also garbles the resulting vectors in order to divide
the result between NC1 and NC2. The calculation continues by computing the f and
g functions (subsequently referred to as f S and gS) in a similar way and results are
also stored between NC1 and NC2 (arrows numbered 3 in Fig. 7.2). Finally, in order
to compute the number of bits which are in 1 (

∑

function, now termed as
∑S), NC1

and NC2 collaborate to append their resultant vector with randomized values and
then reorder the new vector. P S then calculates the summation of the number of bits
and returns part of the result to NC1 and NC2. NC1 removes the initial random noise
and then return this final result to the Data Miner (arrows numbered 4 in Fig. 7.2).
At this step, DM only has to combine the result from NC1 and NC2 and then remove
the ε′ value corresponding to random customers added in the preprocessing phase.
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In the following sections, we will explain in detail the various protocols, func-
tions, and algorithms necessary for PRIPSEP. First, we introduce some notations
that are used for describing the algorithms. As our functions employ bitwise opera-
tors, we first present new protocols for securely performing bitwise operations. Con-
tinuing, we will show how the functions f , g, and

∑

are extended to f S , gS , and
∑S , respectively, to incorporate security aspects. Finally, we present the SECURE

COLLABORATIVE FREQUENCY algorithm. As the main goal of our approach is to
preserve privacy of the individual users and do not divulge any information about the
final result to any of the sites, we will show that at the end of the process, NC1, NC2,
and P S will only learn a upper bound on the support count of sequences and will
not have any information about the private inputs of any of the individual customers.

7.3.2.2 Notations

In the next sections, we will consider the following notations. Let (
+
X |

−
X) ← hS(

+
Y1

. . .
+
Yn |

−
Y1 . . .

−
Yn) be a tripartite calculation of any function hS between NC1, NC2,

and P S where NC1 owns half of the input
+
Y1 . . .

+
Yn and gets half of the result

+
X , and similarly NC2 owns half of the inputs

−
Y1 . . .

−
Yn and gets half the result

−
X

at the end of the process. The final result is the logical bitwise XOR (
⊕

) of the
+
X and

−
X . However, this does not imply that NC1 directly sends

+
Y1 . . .

+
Yn to P S

and receives the result
+
X from P S. Initially, NC1 transforms its inputs

+
Y1 . . .

+
Yn

to
+
Y ′

1 . . .
+
Y ′

n via the addition of uniform random noise and securely sends these
transformed Y ′ to P S. Symmetrically, NC2 also sends its garbled inputs to P S. At

the end of the computation both the sites receive their share of the noisy result
+
X ′

and
−
X ′ from P S. Henceforth, this intermediate result can be used as the inputs for

further computations.

7.3.2.3 The
∧S

and
∨S

protocols

In this section, we define two basic algorithms
∧S (see Algorithm 2) and ¬S

(see Algorithm 3) providing the protocol which is used to compute securely the
bitwise operators from two bits. The

∨S is obtained from the logical equation
A
∨

B = ¬(¬A
∧

¬B) calculated by using the secure operators
∧S and ¬S . The

fundamental principle that the algorithms operate upon is the addition of uniform
random noise to the data which can be removed from the result by the data owners.
The protocol initiates with both NC1 and NC2 perturbing their data by XOR-ing
it with random values. Subsequently, the randomized data is sent (e.g., for NC2,

X2 =
−
X ⊕R2, and Y2 =

−
Y ⊕S2) to P S, which can calculate the

∧

securely. It actu-
ally operates on the randomized inputs and calculates C = (X1 ⊕ X2)

∧

(Y1 ⊕ Y2).
It then also adds random noise to the intermediate results in order to avoid NC1
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Algorithm 2: The algorithm
∧

S

Data: (
+
X,

+
Y |

−
X,

−
Y) bits are such as

+
X and

+
Y owned by NC1,

−
X and

−
Y owned by NC2

Result: (AR |B R) are such that AR ⊕ B R = (
+
X ⊕

−
X)
∧

(
+
Y ⊕

−
Y)

1. NC1 and NC2 mutually generate and exchange four random bits R1, R2, S1 and S2 such
that:

X1 =
+
X ⊕ R1, Y1 =

+
Y ⊕ S1, X2 =

−
X ⊕ R2, Y2 =

−
Y ⊕ S2, R = R1 ⊕ R2 and S = S1 ⊕ S2

2. NC1 sends X1 and Y1 to P S.
3. NC2 sends X2 and Y2 to P S.
4. P S calculates C = (X1 ⊕ X2)

∧

(Y1 ⊕ Y2) and a random bit RP S .
5. P S sends AP S = C ⊕ RP S to NC1 and BP S = RP S to NC2 (or vice versa).

6. NC1 calculates AR = AP S ⊕ (
+
X
∧

S) ⊕ (
+
Y
∧

R) ⊕ (R
∧

S).

7. NC2 calculates B R = BP S ⊕ (
−
X
∧

S) ⊕ (
−
Y
∧

R).

or NC2 having the complete result. At the end of the protocol, non-colluding sites
can then calculate the final result for their own part by removing the initial noise.

For instance, for NC1, the following operation: AR = APS ⊕ (
+
X
∧

S) ⊕(
+
Y
∧

R)

⊕(R
∧

S) could be done securely since it knows its own inputs (
+
X ,

+
Y , R1, and S1)

and random numbers from NC2 (R2 and S2). Hence, the final results AR ⊕ B R =
AP S ⊕ (

+
X
∧

S) ⊕(
+
Y
∧

R) ⊕(R
∧

S) ⊕BPS ⊕(
−
X
∧

S) ⊕(
−
Y
∧

R). Substituting
the value of APS and BPS , the initial and intermediate random numbers are removed

due to the boolean property RPS ⊕ RPS = 0. The desired result is
+
X
∧

+
Y ⊕

+
X
∧

−
Y

⊕
−
X
∧

+
Y ⊕

−
X
∧

−
Y . Although, this operation is never performed, the symmetrically

divided result lies with both NC1 and NC2. More importantly, the Processing Site
receives no information regarding to the private inputs of any individual. Due to the
randomization performed during the initial step, it just sees a stream of uniformly
distributed values and cannot distinguish between a genuine and a random value.

Algorithm 3: The ¬S protocol

Data: (
+
X |

−
X) bits are such as

+
X owned by NC1,

−
X owned by NC2

Result: (AR |B R) are such that AR ⊕ B R = ¬(
−
X ⊕

+
X)).

1. NC1 calculates AR = ¬
+
X

2. NC2 calculates B R =
−
X

Remark: roles of NC1 and NC2 may be exchanged.

Theorem 7.1 The operand
∧S

prohibits NC1 from learning NC2’s private data

and vice versa. Moreover, the third party P S learns none of their private inputs.

Proof From the protocol, BP S is all that NC2 learns related to the private data of
NC1. Due to the randomness and secrecy of RP S , NC2 cannot find out the values of
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+
X or

+
Y . As the roles of NC1 and NC2 are interchangeable, the same argument holds

for NC1 not learning the private inputs
−
X or

−
Y of NC2. However, one key security

aspect of not leaking any information to P S is achieved by randomizing the inputs
before transmitting them to the Processing Site.

Remarks The privacy theorem is obvious for the ¬S operator as no data is
exchanged.

Complexity: For the
∧S operator, nine computations have to be performed (6

⊗

and 3
∧

). As two more ¬S operations are needed by the
∨S protocol, we have in

total 11 computations. For each
∧

, NC1 and NC2 exchange 2× 2 bits among each
other. From NC1 or NC2, 2× 1 bits are sent to P S and 1 bit returned. Furthermore,
both NC1 and NC2 calculate 2 random bits while 1 random bit is generated by P S.

7.3.2.4 The f S, gS, and
∑S

Functions

Algorithm 4: The f S function

Data: Vectors of bits (
+
X |

−
X).

+
X is coming from NC1 and

−
X is coming from NC2. K the

number of dates shared by each customers of all databases.

Result: Vectors (
+
Y |

−
Y) such as

+
Y is the share of NC1 and

−
Y the share of NC2.

foreach c ∈ 0..(|
+
X |/K )− 1 do

// For each client c

(
+

YK×c+1 |
−

YK×c+1) ← (0|0);
foreach i ∈ 2..K do

(
+

YK×c+1 |
−

YK×c+1) ←
∨S

(
+

YK×c+i−1,
+

X K×c+i−1 |
−

YK×c+i−1,
−

X K×c+i−1);

return (
+
Y |

−
Y);

Algorithm 5: The gS function

Data: Vectors of bits (
+
X |

−
X).

+
X is coming from NC1 and

−
X is coming from NC2. K the

number of dates shared by all customers of all databases.

Result: Vectors (
+
Y |

−
Y) such as

+
Y will be send to NC1 and

−
Y will be send to NC2.

foreach c ∈ 0..(|
+
X |/K )− 1 do

// For each client c

(
+
Yc |

−
Yc) ← (

+
X K×c+1 |

−
X K×c+1);

foreach i ∈ 2..K do

(
+
Yc |

−
Yc) ←

∨S
(
+
Yc,

+
X K×c+i |

−
Yc,

−
X K×c+i );

return (
+
Y |

−
Y);
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In this section, we extend the f and g functions in order to incorporate security
(see Algorithm 4). As previously mentioned, the SPAM algorithm’s S-step Process
requires that the vectors corresponding to every customer contain all 1’s after the
date of the first transaction for that customer. Hence, the f S function recursively
employs the

∨S function to securely compute the resultant vector. The inputs of the
function are the randomly distorted customer data and the secure

∨S is used to find
the boolean OR between the successive bits residing at the two sites NC1 and NC2.
Similar to the previous algorithms, the final result of the operation is split into two
parts with the Processing Site oblivious of the correct answer.

Similarly, the gS function (see Algorithm 5) securely computes the existence
of at least “1” in the vector of each customer transaction. It replaces the customer
vector to either a “0” or a “1” depending on whether the sequence is supported at
least once. This function is useful in calculating the support value at the penultimate
step of the Algorithm 7.

Remarks In fact, calculating gS(
+
X,

−
X) → (

+
Y ,

−
Y) can be returned while calculating

f S(
+
X,

−
X) → (

+
Z,

−
Z) because

+
Yi ,

−
Yi can easily be obtained from (

+
Zi×K+K ,

−
Zi×K+K ) by

using the following relation: (
+
Yi |

−
Yi) =

∨S
(

+
Zi×K+K ,

+
Xi×K+K |

−
Zi×K+K ,

−
Xi×K+K ).

Algorithm 6: The
∑S protocol

Data: Vectors of bits (X1|X2). X1 is coming from NC1 and X2 is coming from NC2.
Result: A number which is shared in two parts: (N B1|N B2) corresponding to the number

of bits at 1 in vectors (X1
⊕

X2).
1. NC1 and NC2 generate and exchange two random vectors R1 and R2 of same
cardinality such as (Card(R1) = Card(R2) ≥ 2N ). They both calculate R1

⊕

R2 and
calculate the number of 1s to be deleted, NR , at the end of the computation from P S.;
2. NC1 and NC2 reorder respectively the vector (X1, R1) and (X2, R2) using a
permutation value ϕ and get respectively Y1 and Y2.;
3. NC1 sends Y1 to P S and NC2 sends Y2 to P S.;
4. P S calculates Y1

⊕

Y 2 and count the number of bits at 1 and gets N B.;
5. P S gets a random number RP S and returns N1 = N B + RP S to NC1 and
N2 = N B − RP S to NC2.;
6. NC1 computes N B1 = N1 − NR , NC2 keeps only N B2 = N2.;

Complexity: In Algorithm 6, the number of bits is increased by a value ≥ 2N for
security reasons. Let us consider that we set this value as follows t =∈ [2 . . . K ]. For
NC1 and NC2, (2N (2t+1)) operations are performed while (2N (t+1)) operations
on P S. Furthermore, we have N (t + 1) operations for randomizing. The number of
transfers between NC1 and NC2 is (2t N ). The N (t + 1) number of permutations
could be neglected if NC1 and NC2 have their own generators. Finally between
NC1/NC2 and P S, N (t + 1) bits are transferred.
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7.3.2.5 The SECURE COLLABORATIVE FREQUENCY Algorithm

The SECURE COLLABORATIVE FREQUENCY algorithm (see Algorithm 7) extends
the Algorithm 1 in order to perform all operations securely. It is applied after the
preprocessing step and thus considers the original database having fake transactions.

Algorithm 7: The SECURE COLLABORATIVE FREQUENCY algorithm
Data: S =< i t1 . . . i tq > a sequence to be tested; DB = DB1

⋃

DB2 . . .
⋃

DBD a set
of databases; N the number of customers shared by all databases; K the number of
dates shared by all customers of all databases.

Result: The support of the sequence S in DB with random noise.
foreach i ∈ 1..|S| do

(
+
Xi |

−
Xi ) ← SENDS × DB1(i);

foreach j ∈ 2..D do

(
+
V |

−
V ) ← SENDS × DB j (i ti );

(
+
Xi |

−
Xi ) ←

∨S
(
+
Ci ,

+
V |

−
Ci ,

−
V );

(
+
Z |

−
Z) ← (

+
X1 |

−
X1);

foreach i ∈ 2..|S| do

(
+
T |

−
T ) ← f S(

+
Z |

−
Z);

(
+
Z |

−
Z) ←

∧S
(
+
T ,

+
Xi |

−
T ,

−
X i );

(
+
Y |

−
Y) ← gS(

+
Z |

−
Z);

(
+
R |

−
R) ←

∑S
(
+
Y |

−
Y);

return (
+
R |

−
R);

For each item i of the sequence to be tested, all noisy vectors are sent by SENDS

to NC1 and NC2 in order to securely apply an OR between each vector (
∨S). The

f S function followed by the bitwise operator
∧S is performed. At the end of this

loop we are thus provided with a new vector (
+
Z |

−
Z) where part of results are shared

between NC1 and NC2. Then we apply the gS function for generating (
+
Y |

−
Y).

Finally, we count the number of bits which are 1 in (
+
Y |

−
Y) through the function

∑S . At the end of the process,
+
R and

−
R are sent by NC1 and NC2, respectively, to

the Data Miner party. To get the real and final result, the miner has just to calculate
+
R +

−
R (integer summation) and has to remove the initial random noise, i.e., ε′, they

have added at the beginning of the process.

Theorem 7.2 The randomization, performed at each level (original databases,

NC1, NC2, and P S), does not affect the accuracy of the result.

Proof The first randomization is performed by the original databases while inserting
fake transactions, i.e., ε, and permuting the list of customers according to the value
of ϕ. As DM is elected from the original databases, this information about the noise
is available to DM and hence can easily be removed. The second randomization
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is performed by NC1 and NC2 while sending the transaction vectors to P S for
the secure computation of

∨S ,
∧S , f S , and gS . This added noise is removed at

the end of each computation from NC1 and NC2 when they receive results from
P S by performing an XOR operation with the initial random values. Moreover, we
have also proved that no private information about any individual could be learnt by
any of the sites (cf. Theorem 7.1). Finally, for the computation of the

∑S function,
NC1 and NC2 add random noise in their data, i.e., NR , and also permutate their
vector according to a ϕ value. P S also randomizes its integer value and this noise is
removed by sending opposite parts to NC1 and NC2. The NR value is removed by
NC1 and NC2 when returning the result to DM . Finally, when combining results
from NC1 and NC2, the only operation to be performed by DM to know the real
result is to remove the ε′ previously inserted.

Complexity: In the secure protocol, each database has to send 2N K data bits
instead of N K . Subsequently, each DB has to calculate N K random bits and per-
form (N K )

⊕

operations. According to the previous results on the number of
operations performed by the secure operators, the time complexity is O(12N K )

for binary operations and O(7N ) for randomizing operations. Hence, it could be
bounded by O(20N ). Let us now consider the communication complexity of the
protocol. Let p = D × S × N × K . If the number of operations is at most O(12p),
then the number of transfers required is at most O(4p) and for random values it is
O(3p). Hence, the whole algorithm has to send at most O(20p).

Remarks The secure architecture could be further redefined in order to improve
the communication cost between NC1, NC2, and P S. Furthermore, all the func-
tions except f S(it operates on individual customers) could be parallelized. The total
overhead incurred by our secure protocol could be easily reduced by a factor of two.
We notice that by considering SMC protocols, no such optimizations are possible,
and hence for scalability issues, our alternative approach could be beneficial.

7.3.2.6 Security of the Protocol

For analyzing the security, let us examine the information divulged to each site par-
ticipating in the protocol. Note that during the entire process, the random numbers
are securely generated and the communication infrastructure is robust and intrusion
free.

• NC1 and NC2 View: During the execution of the protocol, both sites only see a
stream of random values with a uniform distribution. By the proposed protocol,
they only receive noisy data and noisy shared results. Also NC1 and NC2 cannot
share information as per the definition of semi-honest non-colluding sites. The
value received from the DBs are XOR-ed with random numbers from a uniform
distribution and indistinguishable from real values.

• PS View: It performs the computation of secure operations (
∧S ,
∨S , f S , gS ,

∑S) and provides the results to NC1 and NC2. As discussed earlier all of
these operations reveal no private data of any individual customer from any of
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the collaborating DBs. Even a succession or sequence of the secure operations
remains secure.

• Overall Security: During the entire algorithm, no site obtains any additional
information beyond of what they are already authorized to learn. Hence security
and privacy of every customer is maintained during the computation of support
in the architecture. The addition of fake transactions during the preprocessing
steps and permutation of the lists enable that each site is ignorant of the correct
intermediate results as well as the final result.

7.3.3 Improving the Robustness of the System

As described in the previous algorithms, all the data are stored in the two non-
colluding sites NC1 and NC2. If a malicious party gains access to both sites, it will
be trivial to obtain all the information and hence violate the tenets of privacy. Thus,
in order to improve the robustness of the system, it would be interesting to have
more than 2 NCi (in fact an arbitrary number w) such that the knowledge of the
data may only be obtained if one gains access to all the w NCi and otherwise get no
more than random numbers. Furthermore in order to be useful, the complexity must
stay linear with w. In this section, we describe the secure operators generalized to w

non-colluding sites NCi and we focus on the most important protocols: SE N DS ,
∧S , ¬S , and

∑S .

7.3.3.1 Sending Data to the w NCi : SENDS

In the original case, for sending a data D to NC1, NC2, sites must generate a random
number R and send D⊕R to NC1 and R to NC2 (or vice versa). This method could
be generalized to w sites NCi by generating w− 1 random numbers, by calculating
V1 = D ⊕ R1, V2 = R1 ⊕ R2, . . . , Vi = Ri−1 ⊕ Ri , . . . , Vw = Rw and then by
sending one V1 to each site NC j in any order.

As in the original case, each NC j obtains only random numbers such as D =
V1 ⊕ · · · ⊕ Vw. The only way to obtain information on D is by gaining access to
all the NC j . If one has access to all but one, it is analogous to the NC1 and NC2
scenario, which has already been proven to be secure.

7.3.3.2 The ¬
S operation

With w sites NCi , this operation is still analogous and simple as the one when
w = 2. In order to implement it, it is sufficient that an odd number of the sites (for
example only one: NC1) negate their part of the value and the other ones do nothing.
There is still nothing exchanged and hence still no issues pertaining to privacy.

7.3.3.3 The
∧S

operation

Similar to the case w = 2 each site garbles its own part of the data (X i and Yi such
that the real data is X = X1 ⊕ . . . ⊕ Xw and Y = Y1 ⊕ . . . ⊕ Yw) before sending
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it to P S. To do that they generate two random numbers Ri to encode X i and Si to
encode Yi and gets X ′

i = X i ⊕ Ri and Y ′
i = Yi ⊕ Ri which are sent to P S. They also

exchange the value R = R1 ⊕ . . .⊕ Rw and S = R1 ⊕ . . .⊕ Sw between all NCi .
Then P S will calculate P = (X ′

1 ⊕ . . . ⊕ X ′
w)
∧

(Y ′
1 ⊕ . . . ⊕ y′w) which could be

written as (X⊕R)
∧

(Y⊕S). P S sends its result P to all NCi by using the SE N DS

protocol. Now all NCi get a value Pi and they only need to remove garbled terms
(X ∧ S), (Y ∧ R), and (R∧ S). To do that, it is sufficient that an odd number of NCi

(for example : NC1) performs Zi = Pi ⊕ (X i ∧ S) ⊕ (Yi ∧ R) ⊕ (S ∧ R) and all
other ones perform Zi = Pi ⊕ (X i ∧ S) ⊕ (Yi ∧ R). We then obtain the expected
results such that Z = Z1 ⊕ . . .⊕ Zw = X ∧ Y .

The number of operation performed by each site (real operations/random num-
bers generation/data sending and receiving) will increase linearly with the number
of NCi (w) and thus the full secure processing still remains linear compared to the
unsecured one.

7.3.3.4 The
∑S

operation

The generalization of the SumS algorithm is described in Algorithm 8. Its complex-
ity increases linearly with the number w of NCi and remains linear compared to the
same unsecured process.

Algorithm 8: The
∑S protocol

Data: Vectors of bits (X1| . . . |Xw). X i are coming from NCi such that X = X1⊕ . . .⊕Xw

Result: A number which is shared in w parts: (N B1| . . . |N Bw) such that N B = N B1 +
. . .+ N Bw corresponds to the number of bits at 1 in vectors X .

let N = card(X) = card(X i ) be the number of bits in vector X . 1a. One of the sites (for
example NC1) will generate w random vectors of bits (R1 . . . Rn) of same size such that
card(Ri ) ≥ 2 ∗ N .;
1b. It calculates R = R1 ⊕ . . .⊕ Rw and Nr the number of bits equal to 1 in R.;
1c. R and Nr are sent to all NCi .;
2. A permutation ϕ is chosen to permute card(R)+ card(X) bits.;
3. Each NCi reorder its vector (X i , Ri ) using the permutation ϕ and gets Yi .;
4. Each NCi sends its Yi to P S.;
5. P S calculates Y = Y1 ⊕ . . .⊕ Yw and counts the number of bits at 1 and gets N B.;
6. P S generates w − 1 random numbers R Pi and calculates N1 = N B + R P1,
N2 = N B + R P2 − R P1 . . . Nw−1 = N B + R Pw−1 − R Pw−2 and Nw = N B − R Pw−1.;
7. P S sends one of the Ni to each NC j in any order.;
8. NC1 computes N B1 = N1 − NR , all other NCi keeps only N Bi = Ni .;
Remark: All additions and subtractions are done modulo card(Y ) = card(R)+ card(X).

7.4 Conclusion

In this work we have addressed the problem of privacy-preserving sequential pattern
mining in the context of distributed databases. We have presented a novel secure
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extension of the SPAM algorithm for mining patterns. We also prove that under
reasonable assumptions, our algorithm and the underlying operations, protocols, and
architecture for multiparty computation is secure.

There are various avenues for future work. First, here we have only focused on
the S-step process of the SPAM algorithm, i.e., we only considered the problem
of discovering sequences reduced to a list of items. The proposed secure functions
can also be extended to the I-step process, i.e., a list of itemsets instead of items.
Furthermore, in the current version of PRIPSEP, results are directly returned to the
DM party. In order to improve the whole process, we plan to extend the role of
DM wherein, it could store the lexicographic tree and could expand each node in
the tree by considering that intermediate results could be stored in shared arrays
between NC1 and NC2. Hence, incremental mining could be possible and unlike
our current approach, previous results do not have to be recomputed. The storage of
results would also be made secure by ensuring that each site has only noisy data or
random values.

In addition, as the volume of data increases to a deluge, it becomes increasingly
expensive (sometimes impossible) to store all available data before processing them
and hence it is necessary to process it “on the fly” as streams of data. Several new
applications directly generate streams of data produced by a large number of sen-
sors (e.g., supermarket transactions, medical data). In order to address this increase
of available data, for which the privacy issue could also be very important, new
research work is being done to apply data mining methods such as sequential pat-
terns mining directly on the streams without storing them [13]. Lastly, as network
traffic data becomes more relevant in the context of detection of Internet worms and
intrusions by discovering abnormal traffic patterns, recent research is trying to solve
the problem while preserving privacy of customers [23].

In sum, research in privacy-preserving data mining, especially sequential pat-
terns, is at an exciting stage, with new papers shaping the future for the field.
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Chapter 8

Pseudonymized Data Sharing

David Galindo and Eric R. Verheul

Abstract In this chapter pseudonymization and pseudonym intersection algorithms
are proposed and analyzed. These two procedures combined make pseudonymized
data sharing possible. Pseudonymized data sharing is used by organizations, that
typically do not share information, to build and provide pseudonymized copies
of their private databases to third parties – called researchers. Some basic secu-
rity properties are satisfied: pseudonymity, meaning that it is infeasible to relate a
pseudonym to its identity; and unlinkability, meaning that it is infeasible to decide
if pseudonyms belonging to different researchers correspond to the same identity.
Computing the equijoin of pseudonymized databases held by researchers A and B
is enabled provided that they are given proper cryptographic keys. The outcome
of the equijoin protocol between A and B is that party A learns virtually nothing,
while party B learns the equijoin of A and B’s pseudonymized databases. We are
able to prevent that malicious researchers abuse equijoin transitivity in the follow-
ing sense: colluding researchers A, B, C cannot use equijoin keys for (A, B) and
(B, C) to compute the equijoin of (A, C). As a prominent application of these
algorithms we discuss the privacy-enhanced secondary usage of electronic health
records.

8.1 Introduction

Let us consider databases containing sensitive and valuable data on individuals.
Assume these data records consist of an identifier of the individual (e.g., name,
social security number) and the data associated to the individual. This data originates
from heterogenous mutually distrustful sources, which we name suppliers, such as
statistical offices, hospitals, or insurance companies.
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Subjects’ data records held by suppliers are the very primary ingredient for
empirical research, but their release exposes the privacy of the individuals con-
cerned. We name researchers the parties interested in getting access to this data for
subsequent analysis. In health care, prominent scenarios include the secondary use
of clinical data for research and confidential patient-safety reporting (e.g., adverse
drug effects), to name but a few. The fact that statistical research is interested in
collective features rather than individual distinctiveness makes it possible to recon-
cile data utility and individual privacy: identifiers can be removed or encoded into
a pseudonym, and subjects’ data can be de-identified by using statistical disclosure
control methods. Ideally, the collective features of the resulting pseudonymized de-
identified data are preserved.

In this chapter we study pseudonymity in the above context. We do so from a
cryptographic point of view, namely by focusing on cryptographic techniques to
transform personal identifiers into pseudonyms with several properties. Thus, our
techniques are necessary but not sufficient to provide pseudonymity from a system-
wide perspective. The reason is simple: even though the data is pseudonymized,
there is the risk that the characteristics of the data singles out a person, e.g., by a
combination of profession, age, and place of residence. The risk of indirect iden-

tification, cf. [5, 12], becomes even larger when linking several pseudonymized
databases, which is our target. The issue of indirect identification, although far from
trivial, is outside the scope of this chapter. The topic is covered by an abundant
literature (the interested reader is referred to [12] for an introduction to this topic,
to [13] for a grasp on the state of the art, to [16] for privacy risk assessment recom-
mendations, and to [18] for an exemplification of the importance of de-identifying
the individuals’ private data). We briefly comment on some lines of defense against
these problem. Keeping track and scrutinizing the queries by the parties as well
as query restriction techniques from the statistical database literature can help. For
instance, these techniques include restricting the size of query results and keeping
audit trails of all answered queries to detect possible compromises.

8.1.1 Security Properties

To be more precise, let us consider databases consisting of entries of the form
(id, D(id)), where id is a unique identifier field (called identity) and D(id) is a
private data field. A pseudonymized database is obtained by replacing the identity
id in the database entries by a blind identifier called pseudonym and by modifying
D(id) into a pseudonymized data field P D(id). Two basic security requirements
apply to the pseudonymization of identities in the context of pseudonymization of
databases. The first one, called pseudonymity, states that it should not be possible
for any party to relate a given pseudonym with a given identity. That is, it should
be infeasible to correctly answer whether a given pseudonym belongs to a given
identity. The second basic security requirement is called unlinkability. This states
that, unless explicitly warranted, it should not be possible for two researchers to
relate their pseudonyms. Or alternatively put, two researchers should not be able to
correctly answer whether two of their pseudonyms belong to the same individual.
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This implies in particular that pseudonyms on the same identity must differ from
one researcher to another. A pseudonym on identity id for researcher Rd is syntac-
tically represented by P(id, Rd). Clearly unlinkability is of paramount importance
as a defense mechanism against indirect identification: it prevents researchers from
correlating its databases without previous consent.

A third security requirement deals with the possibility of computing equijoins
of pseudonymized databases. Let IRs , IRd

be the sets of unknown identities corre-
sponding to the pseudonyms held by researchers Rs, Rd , respectively. Let

{ (

P(id, Rs), P D(id, Rs)
) }

id∈IRs
and
{ (

P(id, Rd), P D(id, Rd)
) }

id∈IRd

be the pseudonymized databases held at a certain point in time by researchers
Rs, Rd , respectively. Then we say that the equijoin between Rs and Rd

pseudonymized databases, with Rs playing the role of source researcher and Rd

playing the role of destination researcher, equals

{ (

P(id, Rd), P D(id, Rd)
) }

∪
{ (

P(id, Rd), P D(id, Rd)||P D(id, Rs)
) }

,

where id’s are such that id ∈ IRd
and id /∈ IRs , while id’s are such that

id ∈ IRd
∩IRs . This operation is possible only if explicitly warranted and it is under

the control of secret cryptographic keys. Specifically, our equijoin protocols involve
two researchers Rs and Rd , where researcher Rs learns virtually nothing while
Rd learns the equijoin of their pseudonymized databases. The security property
we consider, called equijoin non-transitivity, states that researchers cannot abuse
equijoin transitivity in the following sense: colluding researchers Rs, Rd , Ro cannot
use equijoin keys for (Rs, Rd) and (Rd , Ro) to compute the equijoin of (Rs, Ro).

For the sake of enabling flexible equijoins, our pseudonymizing systems make
use of a Trusted Third Party (TTP). This trusted party can function either as a
mighty partner involved in all the security-sensitive transactions in the system
(i.e., pseudonymization, equijoin) or alternatively as a simple key distribution cen-
ter, feeding interested parties with the cryptographic keys required for the opera-
tions. Apart from that, the existence of a TTP also reflects the fact that access to
pseudonymized databases as well as the allowance of operations between different
databases requires previous approval by a Regulatory Privacy Body (RPB). This pri-
vacy body has two main roles. On the one hand, it ensures that the exchange of infor-
mation complies with data protection legislation. On the other hand, it minimizes the
risk of indirect identification, for instance by implementing defense mechanisms
against it. In this work we are primarily interested in the cryptographic aspects of
the pseudonymization problem, and for this reason the functioning of the RPB is
not described.

Overall the assumption on the existence of such a TTP is quite natural, even
necessary, as the need to defend the system against indirect identification shows. In
fact such a TTP is included in most of the pseudonymized data sharing platforms,
either implemented (see [1]) or simply proposed, we are aware of, and it is explicitly
considered in the only existing standard on pseudonymized databases [16].
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8.1.2 Relevance

Pseudonymized data sharing is in use and has been discussed in multiple venues
(see for instance [11, 23, 4, 17, 20]). More importantly, the ISO standard ISO/TS
25237:2008, Health Informatics – Pseudonymization, which has been recently
released, contains principles and requirements for privacy protection in systems
using pseudonymization services for the protection of personal health informa-
tion. In this chapter we provide a cryptographic mechanism for building unlikeable
pseudonym sets that can be made linkable if a Trusted Third Party decides so. In this
sense, our work can be seen as a cryptographic implementation of a pseudonymiza-
tion system satisfying the ISO/TS 25237:2008 requirements, yet with an enriching
equijoin functionality not envisioned by the aforementioned standard.

8.1.3 Related Work

We are not aware of any previous proposal of a cryptographic technique for building
pseudonymized databases containing unlinkable pseudonyms, yet allowing secure
operations on different sets of pseudonyms. In any case, some of our techniques
can be seen as an extension of the work by Agrawal et al. [2], in which proto-
cols for secure equijoin among non-pseudonymized databases are proposed. The
main tool used by Agrawal et al. is commutative encryption (see Section 8.3.4 for
details) and a variant of Shamir’s three-pass protocol [19, 21]. We stress that the
problems addressed in [2] and our work, even if related, are orthogonal. Agrawal
et al. intersect sets containing the same identifiers, while we intersect sects contain-
ing different identifiers (which are indeed unlinkable unless some cryptographic
keys are known). We are able to extend Agrawal et al. techniques to build a
basic pseudonymization scheme. The resulting system has, however, one drawback,
namely colluding researchers Rs and Rd , who are allowed to compute an equijoin of
their pseudonymized databases, can manage to translate pseudonyms P(id, Rs) to
P(id, Rd), and vice versa, for individuals outside the intersection of the databases,
and therefore can abuse equijoin transitivity (cf Theorem 5). In Section 8.6 we
present a natural extension of our basic scheme using pairings, in which the above
problem is avoided. As well as in [2], the security of our two last protocols is relative
to the Random Oracle Model [7].

8.2 Description of a Pseudonymized Data Sharing System

In this section we shall describe the syntax and security properties of a
pseudonymized data sharing system, which comprises (at least) a pseudonymization
algorithm and an equijoin algorithm.
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8.2.1 Syntax

Let us remind we are considering databases consisting of entries of the form
(id, D(id)), where id is the identity field and D(id) is the private data field. A
pseudonymized database for a researcher R is obtained by replacing the identity
id in the database entries by a blind identifier P(id, R) called pseudonym. Each
researcher has one, unique pseudonym set. That is, for the same identifier id and
different researchers R and R′, P(id, R) �= P(id, R′) with overwhelming prob-
ability. However, those different pseudonyms sets can be synchronized under the
control of secret cryptographic keys held by a trusted service provider. Thus our
pseudonymized data sharing systems make use of a TTP that sets the system up,
via a ‘System Setup’ algorithm. As part of this, the TTP generates on request a
secret cryptographic key for each researcher through a ‘Researcher Key Generation’
algorithm, whose output is only known to the TTP. Additional keys are output by
‘Supply Keys Generation’ and ‘Equijoin Keys Generation’ algorithms. Later, these
keys are distributed to the relevant suppliers and researchers, in the case where
researchers and suppliers perform themselves the pseudonymization and equijoin
operations; alternatively, these keys are kept secret in the case where the TTP is in
charge of running those algorithms. These additional keys enable executing the two
fundamental protocols in the scheme, namely “Researcher Supply” and “Researcher
Equijoin”.

Researcher supply This protocol is run between a supplier S, a researcher
R, and eventually the TTP. At the end of the protocol, the researcher R

is supplied with a pseudonymized database that originates from the sup-
plier’s private database. When the TTP is involved, we denote this proto-

col as S
TTP−→P R; otherwise, it is denoted S →P R. The result of the

researcher supply protocol is that R possesses a pseudonymized database
consisting of entries of the form

(

P(id, R), P D(id, R)
)

where P D(id) rep-
resents the de-identified data that the supplier is willing (or allowed) to share
with the researcher on individual id. In particular, R can detect if a certain
pseudonymized identity P(id, R) was already present in its database and
proceed to update the associated pseudonymized data.

Researcher equijoin This protocol is run by a source researcher Rs and a desti-
nation researcher Rd and eventually the TTP. After the protocol is completed,
Rd has an equijoin of Rs and Rd pseudonymized databases, while Rs learns at
most the number of entries on Rd’s database. This protocol does not provide
Rd with any information on individuals that do not appear in both databases.

When the TTP is involved, we denote this protocol as Rs
TTP−→⊲⊳ Rd; other-

wise, it is denoted Rs →⊲⊳ Rd.

A pseudonym scheme P thus consists on six algorithms “System Setup”,
“Researcher Key Generation”, “Supply Keys Generation”, “Equijoin Keys Genera-
tion”, “Researcher Supply”, and “Researcher Equijoin”.
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8.2.2 Security Requirements

We assume that suppliers are honest. That is, they will not deviate from protocols,
they will not collude with any other party nor try to deduce secret information from
the data flow they observe. In contrast, we assume that researchers are semi-honest,
namely they will not deviate from the protocols but might try to deduce secret
information they are not supposed to know. Moreover, researchers are willing to
share cryptographic keys and pseudonyms sets with other researchers to deduce
more information than what they are allowed to. In order to simplify security defi-
nitions and proofs, we do not consider researchers to be malicious in the traditional
sense in multiparty computation [15]. That is, researchers will not abort nor use fake
information as input to their protocols.

In the following we define the security requirements pseudonymity, unlinkabil-
ity, and equijoin non-transitivity we mentioned in the introduction. We addition-
ally define a secure equijoin property. We formalize them in what follows. Let
us stress once again that our definitions imply that no vital information is leaking
from our cryptographic protocols. However, we cannot guarantee anything regard-
ing the safety of the data de-identification protocols nor of the multiple linkage of
pseudonymized databases.

8.2.3 Notation

If x is a string then |x | denotes its length, while if S is a set then |S| denotes its size.

If k ∈ N then 1k denotes the string of k ones. If S is a set then s1, . . . , sn
$← S

denotes the operation of picking n elements si of S independently and uniformly at
random. Let us denote by ISl

the set of identities held by supplier Sl . We denote
by PRd

the set of pseudonyms P(id, Rd) held by researcher Rd ; IRd
the set of the

corresponding unknown identities and nd = |PRd
| the cardinal of PRd

. We consider
identities id ∈ {0, 1}∗ be finite binary strings. Let Pset be the set of all possible
pseudonyms of a pseudonyms scheme P .

Definition 8.1 (Pseudonymity) Let A be a probabilistic polynomial-time adversary
(PPT) [15]. Consider the following situation:

1. Sl and A run the Researcher Supply protocol Sl →P Rd (alternatively Sl
TTP−→P

Rd ).
2. A has been able to break the pseudonymity for pseudonyms in the set

PI = {P(id1, Rd), . . . , P(idt , Rd)} corresponding to identities in the set I =
{id1, . . . , idt }.

We say that a pseudonym scheme P provides pseudonymity if the distributions

(

id1 . . . idnd

P(id1, Rd) . . . P(idnd
, Rd)

)

and

(

id1 . . . idt idt+1 . . . idnd

P(id1, Rd) . . . P(idt , Rd) Z t+1 . . . Znd

)

,
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where Z j
$← Pset for j = t + 1, . . . , nd are computationally indistinguishable in

A’s view.

Definition 8.1 asks that PPT adversaries A cannot distinguish between the distri-
bution with real pseudonyms from a distribution with random values. Similarly to
the definition of semantic security for encryption schemes (cf. [15] and Definition
8.5 in this chapter), the inability to distinguish captures the fact that pseudonyms do
not reveal any information on their corresponding identities to PPT adversaries.

Definition 8.2 (Unlinkability) Let A be a PPT adversary. Consider the following
situation:

1. Sl and A run the Researcher Supply protocol Sl →P Rd (alternatively Sl
TTP−→P

Rd ).
2. A gets hold of PRs , the pseudonyms’ database of Rs .
3. A has been able to link polynomially many pseudonym pairs

〈
(

P(id1, Rs), P(id1, Rd)
)

, . . . ,
(

P(idt , Rs), P(idt , Rd)
)

〉,

corresponding to identities in a certain set I = {id1, . . . , idt }.

Let IRs ∩ IRd
= {id1, . . . , idm}. We say that a pseudonym scheme P provides

unlinkability if the distributions

⎛

⎝

idt+1 . . . idm

P(idt+1, Rd) . . . P(idm, Rd)

P(idt+1, Rs) . . . P(idm, Rs)

⎞

⎠ and

⎛

⎝

idt+1 . . . idm

P(idt+1, Rd) . . . P(idm, Rd)

Z t+1 . . . Zm

⎞

⎠ ,

where Z j
$← Pset for j = t + 1, . . . , m are computationally indistinguishable in

A’s view.

Definition 8.2 asks that PPT adversaries A cannot significantly better link
P(id, Rd) to P(id, Rs) than they can link P(id, Rd) to a random pseudonym. This
inability ensures that pseudonyms are unlinkable by PPT adversaries.

Definition 8.3 (Secure equijoin) Let Rs, Rd be semi-honest researchers running

the researcher equijoin protocol Rs →⊲⊳ Rd (alternatively Rs
TTP−→⊲⊳ Rd ). We say

that a pseudonym scheme P provides secure equijoin if Rs learns nothing or alter-
natively the size of PRd

; Rd learns (id, P D(id, Rs)) for id ∈ IRs ∩ IRd
, and Rd is

allowed to additionally learn the size of PRs .

Definition 8.3 asks that PPT adversaries A only learn the minimal information
that a secure equijoin protocol should disclose. We allow that the equijoin protocol
might disclose the size of Rd ’s database to Rs , but this should be the only infor-
mation Rs should apprehend. Analogously, we allow Rd to learn the size of Rs’s
database and obviously the de-identified data on the individuals belonging to both
databases, but no more than that.
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Definition 8.4 (Equijoin non-transitivity) Suppose that

1. Rs and Rd are allowed to compute the equijoin of their databases.
2. Rd and Ro are allowed to compute the equijoin of their databases.
3. Rs, Rd , Ro share their pseudonymized databases and cryptographic material.

Let IRs ∩ IRo = {id1, . . . , idm} and IRs ∩ IRd
∩ IRo = {id1, . . . , idt } with t ≤ m.

We say that a pseudonym scheme P provides equijoin non-transitivity if the distri-
butions

⎛

⎝

id1 · · · idt idt+1 · · · idm

P(id1, Rs) · · · P(idt , Rs) P(idt+1, Rs) · · · P(idm, Rs)

P(id1, Ro) · · · P(idt , Ro) P(idt+1, Ro) · · · P(idm, Ro)

⎞

⎠ and

⎛

⎝

id1 · · · idt idt+1 · · · idm

P(id1, Rs) · · · P(idt , Rs) P(idt+1, Rs) · · · P(idm, Rs)

P(id1, Ro) · · · P(idt , Ro) Z t+1 · · · Zm

⎞

⎠ ,

where Z j
$← Pset for j = t + 1, . . . , m are computationally indistinguishable in

Rs, Rd , Ro’s view.

Definition 8.4 captures the fact that Rs, Rd , Ro cannot meaningfully relate pairs
(

P(id, Rs), P(id, Ro)
)

for any id ∈ (IRs ∩ IRo) − (IRs ∩ IRd
∩ IRo), and thus

colluding researchers cannot abuse the transitivity property of equijoin. Notice that
the intrinsic transitivity property of equijoin always allows Rs, Rd , Ro to compute
PRs ∩ PRd

∩ PRo .

8.3 Basic Tools

In this section we introduce some basic cryptographic tools that we will need in our
algorithms. We start by defining semantically secure symmetric encryption.

8.3.1 Symmetric Encryption with Semantic Security

We adapt the classical definition of symmetric encryption [15] to what we actually
need in our protocols.

Definition 8.5 (Semantically secure encryption) Let E =
(

EncK (·), DecK (·)) be
a symmetric encryption scheme with secret keys belonging to a certain set K. More
precisely, let EncK : {0, 1}M → {0, 1}M ′

with M ≤ M ′ being integers, and let
DecK : {0, 1}M ′ → {0, 1}M be such that DecK

(

EncK (m)
)

= m for any m ∈ {0, 1}M .
Let OK (·) be an encryption oracle, which when queried on m ∈ {0, 1}M outputs
EncK (m). We say that E is a symmetric encryption scheme with semantic secu-

rity if no PPT algorithm A can meaningfully distinguish between the distributions
(

m, EncK (m)
)

and
(

m, Z
)

, where K
$← K, m ∈ {0, 1}M is a message of A’s
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choosing and Z
$← {0, 1}M ′

. A is allowed to arbitrarily query the encryption oracle
OK (·), except for the chosen message m.

Definition 8.5 requires that for any message of the adversary’s choice, it is infea-
sible to distinguish the encryption of this message from a random ciphertext. The
importance of this definition stems from the fact that the security level it provides
is the computational analogue of Shannon’s perfect secrecy (see [15]): a cipher-
text EncK (m) reveals ‘no information’ on the underlying plaintext m to an attacker
which does not know the secret encryption key K .

Next we informally describe the computational assumptions we use in the sec-
tions that follow.

8.3.2 Decisional Diffie–Hellman Assumption

Let G be a (cyclic) group of order q prime. The decisional Diffie–Hellman (DDH)
problem consists on distinguishing the probability distributions (u, v, ua, va) and

(u, v, ua, vr ) in polynomial time, where u, v
$← G and a, r

$← Zq .

Definition 8.6 (Decisional Diffie–Hellman assumption) Let G be a group of order
q prime. We say that G satisfies the Decisional Diffie–Hellman assumption if no PPT
algorithm A can meaningfully distinguish the probability distributions (u, v, ua, va)

and (u, v, ua, vr ), where u, v
$← G and a, r

$← Zq .

8.3.3 Pairings

Let G1 = 〈g〉, G2 = 〈h〉 and G3 = 〈G〉 be efficiently samplable cyclic groups of
order q prime. A map e : G1 × G2 → G3 to a group G3 is called a pairing (or
bilinear map), if it satisfies the following two properties:

Bilinearity: e(ga, hb) = e(g, h)ab for all integers a, b

Non-Degenerate: e(g, h) has order q in G3.

Moreover, we assume there exists no efficiently computable homomorphism ψ :
G1 → G2, while an efficient homomorphism φ : G2 → G1 does exist. Such a
pairing is called a Type 2 pairing [14]. We set g = φ(h).

Since G1 is a prime order group, we can define the DDH problem in G1. Thor-
ough this chapter we assume that the DDH assumption holds in G1. A prominent
type of groups of which it is widely believed that they satisfy the explained assump-
tions is presented in [9]. These groups are also used in [3, 6, 8, 10]. It is easy to see
that the DDH assumption in G1 implies the DDH assumption in G3.

We need an extra final assumption. This assumption states that a variant of
the decisional Diffie–Hellman problem in Type 2 pairing groups is infeasible to



166 D. Galindo and E.R. Verheul

solve for PPT adversaries. The problem consists on distinguishing the distribu-
tions (g, ga, gb, hb, gab) and (g, ga, gb, hb, gr ), where g = φ(h) generate G1, G2,

respectively, and a, b, r
$← Zq . Notice that the problem statement does not give h

out, since otherwise the problem would be trivially solvable: to distinguish whether
v = gab or v = gr it suffices to check whether e(v, h) = e(ga, hb). An adversary
cannot compute h from g since, by assumption, there does not exist any computable
isomorphism ψ : G1 → G2.

Definition 8.7 (Asymmetric DDH assumption) Let 〈G1, G2, G3, e, φ, g, h, q 〉
be a Type 2 pairing group. We say that such a pairing group satisfies the asym-

metric decisional Diffie–Hellman assumption if no PPT algorithm A can distin-
guish the probability distributions (g, ga, gb, hb, gab) and (g, ga, gb, hb, gr ) where

g = φ(h), h generate G1, G2, respectively, and a, b, r
$← Zq .

The asymmetric DDH assumption trivially implies the DDH assumption in G1.

8.3.4 Commutative Encryption

The next primitive plays a fundamental role in two of our protocols.

Definition 8.8 (Commutative encryption) A commutative encryption function
F = {Fk}k∈KeysF is a family of computable functions f : KeysF × DomF →
DomF , defined on finite computable domains, that satisfies the properties listed
below. We denote fa(x) := f (a, x).

1. Commutativity: for all a, a′ ∈ KeysF we have fa ◦ fa′ = fa′ ◦ fa .
2. Each fa : DomF → DomF is a bijection.
3. The inverse f −1

a is computable in polynomial time given a.
4. The distribution of

(

u, fa(u), v, fa(v)
)

is indistinguishable from the distribution

of
(

u, fa(u), v, z
)

, where u, v, z
$← DomF and a

$← KeysF .

Example 8.1 Let G be a group of prime order q. Let DomF := G and let KeysF :=
Zq . Then if G satisfies the DDH assumption, the power function fa(x) = xa ∈ G is
a commutative encryption function. Properties 1, 2, and 3 are trivially satisfied since
F is the exponentiation function. Property 4 is implied by the DDH assumption. In
effect, the distributions

(

u, fa(u), v, fa(v)
)

and
(

u, fa(u), v, z
)

are precisely the
distributions in the DDH assumption, since z and vr follow the uniform distribution

for z
$← G and r

$← Zq . Let us note a further property satisfied by the exponentia-
tion function: fa ◦ fb = fab and f −1

a = fa−1 . We refer to this as the Property 5 of
the exponentiation function. Actually, this property is exploited in our protocols, in
contrast to [4], where properties 1–4 suffice for their protocols.
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8.3.5 Intersection Protocol

Before giving out our protocols, it is helpful to recall the basic intersection protocol
by Agrawal et al. ([2], Section 4). In this protocol there are two parties, a sender S

and a receiver R, who hold private databases of the form (id, D(id)). Let IS, IR be
the set of identifiers in S and R’s databases, respectively. At the end of the protocol
S only learns |IR |, while R only learns |IS| and IR ∩ IS . It can later be extended
to an equijoin protocol, which is slightly more technically involved. The basic ideas
are the same, though.

In order to use the properties of the commutative encryption primitive, we need
to map identities id to uniformly distributed random values. This is the reason why
we need a random oracle [7] in these protocols. A random oracle is an artifice
used in security proofs. It idealizes (in our case) a hash H : {0, 1}∗ → DomF

function, which means that H(id) can be considered computed by a random oracle:
every time H(·) is evaluated for a new identity id, the output H(id) is distributed
uniformly at random and independently from the previous output values.

In the following, if I is a set (list), then we denote by H(I) the set (list)
{H(id)}id∈I .

8.3.5.1 Intersection Protocol

Input: S inputs H(IS); R inputs H(IR).

1. R generates a random κR
$← Zq and computes the list L R =

〈 IR, fκR

(

H(IR)
)

〉. Next, it sends S the list L0 given by

L0 = 〈 fκR

(

H(IR)
)

〉.

2. S generates a random κS
$← Zq and send R two lists L ′0, L1. First, it sends the

list L ′0 based on L0 given by

L ′0 = 〈 fκR

(

H(IR)
)

, fκS

(

fκR

(

H(IR)
))

〉.

Second, it sends R the list L1 given by

L1 = 〈 fκS

(

H(IS)
)

〉.

3. R transforms the list L1 into the list

L ′1 = 〈 fκR

(

fκS

(

H(IS)
))

〉.

4. R selects, with the help of L R , all id ∈ IR such that fκR

(

fκS

(

H(id)
))

appears
both in L ′0 and L ′1.

Output: S outputs |IR |; R outputs |IS| and IS ∩ IR .
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The protocol is correct since, assuming there are no hash collisions and the com-
mutativity property of the family F , id ∈ IS∩IR iff id ∈ IR , and fκR

(

fκS

(

H(id)
))

= fκS

(

fκR

(

H(id)
))

appears in L ′0 and L ′1. Since H is modeled as a random oracle,
the probability that n hash values have at least one collision equals [22]:

Pr[collision] = 1 −
n−1
∏

i=1

|G| − i

|G| ≈ 1 − exp

(−n(n − 1)

2|G|

)

.

In our protocols we use |G| ≥ 2160, which renders Pr[collision] negligible. There-
fore, with very high probability, the intersection protocol is correct.

8.4 A Pseudonym Scheme with Ubiquitous TTP

In this section we present a pseudonym scheme PTTP and state its security prop-
erties. The description of the scheme starts by defining the system setup and key
generation by the TTP and follows with the two fundamental protocols in the
scheme: researcher supply and researcher equijoin. We assume that any two par-
ties in the protocol communicate via a confidential channel. Our protocols distin-
guish between a sending and a receiving party which execute the protocols with the
active help of the TTP. The sending and receiving parties send their inputs to the
TTP. Finally the sending and receiving parties obtain their outputs from the TTP.
This is why this scheme is called ubiquitous TTP, since the TTP is involved in
all the exchanges between the parties, be it supply-to-researcher or researcher-to-
researcher.

This scheme uses a semantically secure symmetric encryption scheme (cf. Def-
inition 8.5). The pseudonym of individual id in researcher Rs’s pseudonymized

database has the form P(id, Rs) := EncKs (id), where Ks
$← K is a random key

that the TTP secretly assigns to researcher Rs , but which is never revealed.
We next describe the scheme PTTP. The TTP is in charge of performing the

following operations:

System setup. The TTP also selects a semantically secure symmetric encryption
algorithm

(

EncK (·), DecK (·)), with Enc : K× {0, 1}M → {0, 1}M ′
for some

integers M, M ′ such that M ≤ M ′. Individuals, suppliers, and researchers
identifiers are binary strings of length M . The TTP publishes 〈 (Enc, Dec) 〉.

Researcher key generation. For each researcher R j in the system, the TTP gen-

erates a secure key as K j
$← K. These keys are secret and only known to the

TTP.
Supply keys generation. This algorithm is void.
Equijoin keys generation. This algorithm is void.

Researcher supply. The operation Sl
TTP−→P Rd is performed as follows:

1. Sl sends to the TTP the list ISl
of individuals in its database.
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2. The TTP computes the list of pseudonyms as EncKd
(ISl

). The TTP sends
back to Sl the list 〈 id, P(id, Rd) 〉, where P(id, Rd) = EncKd

(id).
3. Sl sends to Rd the pseudonymized database 〈 P(id, Rd), P D(id, Sl) 〉.
4. Rd joins the data with already existing pseudonyms and new rows for

new pseudonyms.

Researcher equijoin. The protocol Rs
TTP−→⊲⊳ Rd is performed as follows:

1. Rs sends its pseudonymized database 〈 P(id, Rs), P D(id, Rs) 〉 to the
TTP.

2. Rd sends its pseudonymized database 〈 P(id, Rd), P D(id, Rd) 〉 to the
TTP.

3. The TTP recovers IRs by decrypting the pseudonyms in Rs’s list. The
TTP recovers IRd

similarly.
4. For every id ∈ IRs ∩ IRd

, the TTP computes the pseudonyms
P(id, Rd):= EncKd

(id) and sends 〈 P(id, Rd), P D(id, Rs) 〉 to Rd .
5. Rd joins the data with already existing pseudonyms and new rows for

new pseudonyms.

Result 1 (PTTP is secure) The pseudonyms’ scheme PTTP satisfies pseudonymity,

unlinkability, secure equijoin, and equijoin non-transitivity provided that E is a

semantically secure symmetric encryption scheme.

Sketch of the proof. These properties are proven in a straightforward manner given
the fact that the TTP is invoked in every algorithm, and that suppliers and researchers
are given no cryptographic material.

For instance, regarding pseudonymity, one needs to prove that the distributions

(

id1 . . . idnd

EncKd
(id1) . . . EncKd

(idnd
)

)

and

(

id1 . . . idt idt+1 . . . idnd

EncKd
(id1) . . . EncKd

(idt ) Z t+1 . . . Znd

)

are indistinguishable, where Z t+1, . . . , Znd

$← {0, 1}M ′
. Given that E is semanti-

cally secure, we know that
(

id, EncKS
(id)
)

is indistinguishable from
(

id, Z
)

, for

any id ∈ {0, 1}∗ and Z
$← {0, 1}M ′

. The result then follows by applying a standard
hybrid argument [15].

Regarding unlinkability, we need to prove that the distributions

⎛

⎝

idt+1 . . . idm

EncKd
(idt+1) . . . EncKd

(idm)

EncKs (idt+1) . . . EncKs (idm)

⎞

⎠ and

⎛

⎝

idt+1 . . . idm

EncKd
(idt+1) . . . EncKd

(idm)

Z t+1 . . . Zm

⎞

⎠

are indistinguishable. Since E is semantically secure, we know that

(

idt+1 . . . idm

EncKd
(idt+1) . . . EncKd

(idm)

)

and

(

idt+1 . . . idm

Z t+1 . . . Zm

)
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are indistinguishable, and that

(

idt+1 . . . idm

EncKs (idt+1) . . . EncKs (idm)

)

and

(

idt+1 . . . idm

Z t+1 . . . Zm

)

are indistinguishable. These two facts imply that the distributions involved in the
unlinkability definition are also indistinguishable.

Finally, secure equijoin and equijoin non-transitivity are implied by the fact that
the operation “equijoin” is performed by the trusted third party. ⊓⊔

The scheme PTTP with ubiquitous TTP reaches all the requested security prop-
erties at the expense of the TTP being involved in every single transaction in the
system. This is something that could be undesirable in certain settings. For instance,
if the number of transactions is high, then the TTP becomes a potential bottleneck
in the system.

In the next section we propose protocols where the TTP is only required to hand
on certain cryptographic keys to the parties. Apart from that, the TTP is not involved
in any transaction, be it supplier-to-researcher or researcher-to-researcher.

8.5 A Basic Pseudonym Scheme with Light TTP

In this section we present a basic pseudonym scheme Pbasic and state its security
properties. This scheme fulfills all the security properties we have identified, except
for equijoin non-transitivity. It is included here as a first step toward a scheme satis-
fying all four security properties, to be presented in Section 8.6.

The description of the scheme starts with the system setup and key genera-
tion/distribution by the TTP and follows with the two fundamental protocols in the
scheme: Researcher Supply and Researcher Equijoin. These protocols distinguish
between a sending and a receiving party which are both provided with the necessary
cryptographic keys by the TTP. The sending party (supplier or researcher) sends
a chunk of data and possibly some temporary cryptographic keys to the receiver
(researcher).

In this scheme we use commutative encryption both for creating pseudonyms
and implementing the protocols. Researcher R j ’s pseudonyms will depend on inte-
gers x j . These quantities are secret and only known to the TTP. Researcher R j ’s
pseudonyms are elements in G and take the form P(id, R j ) = fx j

(

H(id)
)

, where
G and fx j

are defined as in Example 8.1, and H : {0, 1}∗ → G is hash function.
Our equijoin protocol heavily relies in the equijoin protocol of Agrawal et al. [2].
To give the basic idea behind our protocol, we illustrate it by extending the inter-
section algorithm described in Section 8.3.5 to a pseudonyms intersection algorithm
between Rs and Rd .

Recall that in the intersection algorithm from Section 8.3.5, the inputs of the
Sender S and Receiver R parties are H(IS) and H(IR), respectively, where IR, IS

are the sets of identities held by each party. In our case, we have that Rs does
not hold a set of identities but a set of pseudonyms of the form P(id, Rs) =
H(id)xs , and similarly, Rd holds a set of pseudonyms P(id, Rd) = H(id)xd , where



8 Pseudonymized Data Sharing 171

xs, xd ∈ Zq are unknown to Rs, Rd , respectively. The idea is that the TTP feeds Rs

(respectively Rd ) with a pseudonyms’ intersection key β · x−1
s (respectively β · x−1

d )

for β
$← Zq . This allows researchers Rs, Rd to respectively compute the commu-

tative encryptions f
β·x−1

s
and f

β·x−1
d

of their respective pseudonyms’ sets PRs and

PRd
. That is, in the case of researcher Rs , it computes

f
β·x−1

s

(

P(id, Rs)
)

= f
β·x−1

s

(

fxs

(

H(id)
))

= fβ
(

H(id)
)

,

where the last equality is due to the property fa ◦ fb = fab of the exponentiation
function family F . This property is not used in [2], and this is one of the technical
novelties with respect to the protocol in Section 8.3.5. Therefore, researchers end up
with a common representation of their pseudonyms, namely researcher Rs obtains
the set {H(Is)

β}, while researcher Rd obtains the set {H(Id)β}. At this point, Rs

and Rd can run the intersection protocol from Section 8.3.5, with inputs {H(Is)
β}

and {H(Id)β}, respectively. As a result, Rs gets as output |PIs
|, while Rd gets as

output |PId
| and PIs

∩ PId
.

Here follows the description of the pseudonyms scheme Pbasic. The TTP is in
charge of performing the following operations:

System setup. The TTP chooses a cyclic group 〈G, p 〉 where the decisional
Diffie–Hellman assumption is believed to hold. It next picks a hash func-
tion H : {0, 1}ℓ → G for integer ℓ. The TTP also selects a semanti-
cally secure symmetric encryption algorithm

(

EncK (·), DecK (·)), with Enc :
G × {0, 1}M → {0, 1}M ′

for integers M, M ′ with M ≤ M ′. The TTP pub-
lishes 〈G, p, H, (Enc, Dec) 〉.

Researcher key generation. For each researcher R j in the system, the TTP

generates a secure key as x j
$← Zq . These keys are never delivered to the

researcher.
Supply key generation. For each pair supplier/researcher (Sl , R j ), the TTP

recovers the researcher’s assigned key x j ∈ Zq and hands it to the sup-
plier through a secure channel. These keys are never delivered to any
researcher.

Equijoin keys generation. For each pair (Rs, Rd) of researchers that is allowed
to perform the protocol Rs−→⊲⊳ Rd (or Rd−→⊲⊳ Rs), the TTP generates
a random βs,d ∈ Zq and sends βs,d · x−1

s (respectively βs,d · x−1
d ) to Rs

(respectively Rd ).
Researcher supply. The operation Sl →P Rd is performed as follows:

1. Sl computes P(id, Rd) = fx j

(

H(id)
)

for id ∈ ISl
and sends to Rd the

pseudonymized list 〈 P(id, Rd), P D(id, Sl) 〉.
2. Rd joins the data with already existing pseudonyms and new rows for new

pseudonyms.

Researcher equijoin. The protocol Rs →⊲⊳ Rd is performed as follows:

1. Rs computes f
βs,d ·x−1

s

(

PRs

)

and obtains the set {H(Is)
βs,d }.
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2. Rd computes f
βs,d ·x−1

d

(

PRd

)

and obtains the set {H(Id)βs,d }.
3. Rs and Rd run the Agrawal et al.’s equijoin protocol ([2], Section 4) with

inputs
{

(H(id)βs,d , P D(id, Rs)
)}

Is
and
{

(H(id)βs,d , P D(id, Rd)
)}

Id
,

respectively. That is,

a. Rd generates a random κd
$← Zq and sends Rs the list L0 given by

L0 = 〈 fκd

(

H(id)βs,d
)

〉Id
.

b. Rs generates random κs, κ
′
s

$← Zq and sends Rd two lists L ′0, L1. First,
it creates the list L ′0 based on L0 given by

L ′0 =
〈

fκd

(

H(id)βs,d
)

, fκs

(

fκd

(

H(id)βs,d
))

, fκ ′s

(

fκd

(

H(id)βs,d
))〉

Id
.

Second, it creates the list L1 given by

L1 =
〈

fκs

(

H(id)βs,d
)

, EncKs (id)

(

P D(id, Rs)
)

〉

Is

,

where Ks(id) = fκ ′s

(

H(id)βs,d
)

for id ∈ Is .
c. Based on L ′0 the researcher Rd calculates, by applying f −1

κd
, the list

L2 =
〈

H(id)βs,d , fκs

(

H(id)βs,d
)

, fκ ′s

(

H(id)βs,d
) 〉

Id
.

d. Then Rd determines the elements in the list L1, L2 such that
fκs

(

H(id)βs,d
)

= fκs

(

H(id)βs,d
)

. For those elements, which single
out the pseudonyms such that id ∈ Is ∩ Id , researcher Rd uses the
corresponding values fκ ′s

(

H(id)βs,d
)

= Ks(id) in L2 to decrypt

P D(id, Rs) = DecKs (id)

(

EncKs (id)

(

P D(id, Rs)
)

)

.

e. Finally, Rd joins the new data P D(id, Rs) with its already existing
data on P(id, Rd).

Researcher equijoin correctness. It is easy to see that the intersection algorithm
is correct, i.e., at the end of the protocol Rd learns

(

P(id, Rd), P D(id, Rs)
)

for id ∈ IRs ∩ IRd
, as long as the hash function H : {0, 1}ℓ → G does not

present collisions.

Next we show that the scheme Pbasic satisfies pseudonymity, unlinkability, and
secure equijoin.

Result 2 The pseudonym scheme Pbasic has pseudonymity provided that F is a

commutative encryption family.
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Proof We want to show that the distributions

(

id1 . . . idnd

fxd

(

H(id1)
)

. . . fxd

(

H(idnd
)
)

)

and

(

id1 . . . idt idt+1 . . . idnd

fxd

(

H(id1)
)

. . . fxd

(

H(idt )
)

Z t+1 . . . Znd

)

are indistinguishable, where Z t+1, . . . , Znd

$← G. Given that F is a commutative
encryption family, we know that the distributions

(

H(id), fxd

(

H(id)
)

, H(id ′), fxd

(

H(id ′)
))

and
(

H(id), fxd

(

H(id)
)

, H(id ′), Z
)

,

where id, id ′ ∈ {0, 1}l , Z
$← G, and xd

$← DomF are indistinguishable, since for a
random oracle H the values H(id), H(id ′) follow a uniformly random distribution.
The result then follows by applying a standard hybrid argument [2, 15]. ⊓⊔

Result 3 The pseudonym scheme Pbasic has unlinkability provided that F is a com-

mutative encryption family.

Proof We want to show that the distributions

⎛

⎝

idt . . . idm

fxd

(

H(idt )
)

. . . fxd

(

H(idm)
)

fxs

(

H(idt )
)

. . . fxs

(

H(idm)
)

⎞

⎠ and

⎛

⎝

idt+1 . . . idm

fxd

(

H(idt )
)

. . . fxd

(

H(idm)
)

Z t+1 . . . Zm

⎞

⎠

are indistinguishable, where Z t+1, . . . , Zm
$← G, xd , xs

$← KeysF . Given that F
is a commutative encryption family, we use the following lemma.

Lemma 8.1 (Agrawal et al. [2]) For any integer n, the distributions of the tuples

⎛

⎝

s1 . . . sn

fxe (s1) . . . fxe (sn)

fxd
(s1) . . . fxd

(sn)

⎞

⎠ and

⎛

⎝

s1 . . . sn

y1 . . . yn

z1 . . . zn

⎞

⎠

are computationally indistinguishable, where 0 ≤ n, ∀i : si , yi , zi
$← DomF , and

xd , xs
$← KeysF , provided that F is a commutative encryption family.

Now, if we identify si := H(idi ), the result holds due to the fact that H is a
random oracle. ⊓⊔

Result 4 The pseudonym scheme Pbasic provides secure equijoin provided that F is

a commutative encryption family.

Proof This result follows from the fact that our equijoin protocol is an extension
of the equijoin protocol by Agrawal et al. The only change is on the inputs to
the protocol. Let us see that. In ([2], Section 4) the parties R and S input the sets
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{(

H(id), D(id)
)}

id∈IR
and
{(

H(id), D(id)
)}

id∈IS
, respectively. The output they

obtain is |IR |, |IS|, and the equijoin of their databases.
In our protocol, parties Rs and Rd input the sets

{(

P(id, Rs), P D(id, Rs)
)}

id∈IRs

and
{(

P(id, Rd), P D(id, Rd)
)}

id∈IRd

, respectively. The output they obtain is

|IRs |, |IRd
|, and the equijoin of their pseudonymized databases.

Now, from the discussion in Section 8.3.5, we know (and this can also be straight-
forwardly checked by looking at the protocol in ([2], Section 4.3)) that our equijoin
protocol is obtained by changing the inputs to the Agrawal et al. equijoin protocol.
More precisely, we replace { ( H(id), D(id) ) }id∈IR

and { ( H(id), D(id) ) }id∈IS

by {
(

H(id)βs,d , P D(id, Rs) ) }id∈IRs
and { ( H(id)βs,d , P D(id, Rd) ) }id∈IRd

,
respectively. As a consequence, the output is as expected, and the secure equijoin
property is preserved, since both H(id) and H(id)βs,d follow the uniform distribu-
tion for any id. ⊓⊔

Alas, the scheme Pbasic does not satisfy the equijoin non-transitivity property.
Indeed,

Result 5 (Security breach with colluding researchers) The scheme Pbasic does

not provide equijoin non-transitivity.

Proof Let us assume the pairs of researchers Rs, Rd and Rd , Ro are allowed to com-
pute the equijoin of the corresponding databases. If these researchers collude, they
can compute cryptographic keys enabling translation of P(id, Rs) into P(id, Rd),
and the translation of pseudonyms P(id, Rd) into P(id, Ro) as follows. Remem-
ber the intersection key for Rs is βs,d · x−1

s , while for Rd is βs,d · x−1
d . Then

βs,d ·x−1
s /(βs,d ·x−1

d ) = x−1
s xd and f

x−1
s xd

(

P(id, Rs)
)

= P(id, Rd). And similarly
for researchers Rd , Ro. Therefore a transformation P(id, Rs) (→ P(id, Rd) (→
P(id, Ro) can be computed for any pseudonym P(id, Rs) in possession of Rs ,
which allows Rs, Rd , Ro to compute the equijoin PRs ∩ PRo . As a result, equijoin
non-transitivity is broken and the scheme is not fully secure. ⊓⊔

In the next section we propose a fully secure protocol using pairings.

8.6 A Fully Secure Pseudonym Scheme with Light TTP

The problem with the previous solution lied on the fact that malicious researchers
could translate pseudonyms from researcher Rs to researcher Ro by operating with
the equijoin keys. This was possible because the equijoin keys were elements in Zq

that could be manipulated to produce keys enabling translation of pseudonyms. The
proposal in this section seeks to solve the problem by giving out keys as elements
in a finite group instead of integers in a modular ring. We accomplish that by using
pairing groups and by making equijoin keys elements in G2 = 〈h〉. In short, the
equijoin protocol remains essentially the same, but the researchers’ equijoin keys

will be hβs,d ·x−1
s for Rs (in contrast to βs,d · x−1

s for the basic protocol) and hβs,d ·x−1
d

for Rd (in contrast to βs,d · x−1
d for the basic protocol). Informally, when Rs and
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Rd collude to break equijoin non-transitivity in this new situation, they will need

to compute hx−1
s xd from the elements hβs,d ·x−1

s and hβs,d ·x−1
d , which would amount

to solving the computational Diffie–Hellman problem in G2. However, the latter is
assumed to be infeasible.

An important change to be noticed is that now Rs, Rd do not input {H(Is)
βs,d }

and {H(Id)βs,d }, respectively, to the equijoin protocol, but
{

e
(

H(Is), h
)βs,d
}

and
{

e
(

H(Id), h
)βs,d
}

. In the case of Rs , the new set is computed as

e
(

P(id, Rs), hβs,d ·x−1
s
)

= e
(

H(id)xs , hβs,d ·x−1
s
)

= e
(

H(id)xs ·x−1
s , h
)βs,d = e

(

H(id), h
)βs,d ,

thanks to bilinearity of the pairing e(·, ·). To be more precise, the new equijoin pro-
tocol works with elements U ∈ G3 and uses the commutative encryption function
family F ′ := {Fa : U (→ U a}a∈Zq

.

We proceed to describe the pseudonyms scheme Padvanced that provides equijoin
non-transitivity against colluding researchers.

System setup. The TTP chooses a pairing group 〈G1, G2, G3, e, g, q 〉. It next
picks a hash function H : {0, 1}ℓ → G1. Individuals’ identifiers are binary
strings of length ℓ. The TTP also selects a semantically secure symmetric
encryption algorithm

(

EncK (·), DecK (·)), where K denotes the encryption
key. The TTP publishes 〈G1, G2, G3, e, φ, g, q, H, (Enc, Dec) 〉.

All operations are as in the basic scheme with the only exception of the
equijoin keys generation and equijoin algorithms. For the comprehension of
the new protocols, let us note the following equivalences

Fa

(

e(u, h)
)

= e(u, h)a = e(u, ha) = e(ua, h) = e( fa(u), h) (8.1)

for any a ∈ Zq , u ∈ G1, h ∈ G2.
Equijoin keys generation. For each pair (Rs, Rd) of researchers that is allowed

to perform the protocol Rs−→⊲⊳ Rd , the TTP generates a random βs,d ∈ Zq

and sends hβs,d ·x−1
s to Rs and hβs,d ·x−1

d to Rd through a secure channel.
Researchers equijoin The protocol Rs →⊲⊳ Rd is performed as follows:

1. Rs computes e
(

PRs , hβs,d ·x−1
s
)

and obtains the set
{

e
(

H(Is)
βs,d , h

)}

.

2. Rd computes e
(

PRd
, hβs,d ·x−1

d

)

and obtains the set
{

e
(

H(Id)βs,d , h
)}

.
3. Rs and Rd run Agrawal et al.’s equijoin protocol ([2], Section 4) but

with the commutative encryption family {Fa, : U (→ U a}a∈Zq
and inputs

{(e
(

H(id), h
)βs,d , P D(id, Rs))}IRs

and {(e(H(id), h)βs,d , P D(id,

Rd))}IRd
, respectively. That is,

a. Rd generates a random κd
$← Zq and sends Rs the list L0 given by

L0 = 〈 Fκd

(

e(H(id), h)βs,d
)

〉Id
.



176 D. Galindo and E.R. Verheul

b. Rs generates random κs, κ
′
s

$← Zq and sends Rd two lists L ′0, L1. First,
it creates the list L ′0 based on L0 given by

L ′0 =
〈

Fκd

(

e(H(id), h)βs,d
)

, Fκs

(

Fκd

(

e(H(id), h)βs,d
))

,

Fκ ′s

(

Fκd

(

e(H(id), h)βs,d
)) 〉

Id
.

Second, it creates the list L1 given by

L1 =
〈

Fκs

(

e(H(id), h)βs,d
)

, EncKs (id)

(

P D(id, Rs)
)

〉

Is

,

where Ks(id) = Fκ ′s

(

e(H(id), h)βs,d
)

for id ∈ Is .
c. Based on L ′0 the researcher Rd calculates, by applying F−1

κd
, the list

L2 =
〈

e(H(id), h)βs,d , Fκs

(

e(H(id), h)βs,d
)

, Fκ ′s

(

e(H(id), h)βs,d
) 〉

Id
.

d. Then Rd determines the elements in the list L1, L2, such that
Fκs

(

e(H(id), h)βs,d
)

= Fκs

(

e(H(id), h)βs,d
)

. For those elements,
which single out the pseudonyms such that id ∈ Is ∩ Id , researcher
Rd uses the corresponding values

Fκ ′s

(

e(H(id), h)βs,d
)

= Ks(id)

in L2 to decrypt

P D(id, Rs) = DecKs (id)

(

EncKs (id)

(

P D(id, Rs)
)

)

.

e. Finally, Rd joins the new data P D(id, Rs) with its already existing data
on P(id, Rd).

Researcher equijoin correctness. It is easy to see that the equijoin algorithm is
correct, i.e., at the end of the protocol Rd learns

(

P(id, Rd), P D(id, Rs)
)

for id ∈ IRs ∩ IRd
, as long as the hash function H : {0, 1}ℓ → G1 does not

present collisions.

The following results follow directly by extending the corresponding results from
Section 8.5.

Result 6 The pseudonym scheme Padvanced has pseudonymity provided that F ′ is a

commutative encryption family.

Result 7 The pseudonym scheme Padvanced has unlinkability provided that F ′ is a

commutative encryption family.
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Result 8 The pseudonym scheme Padvanced has secure equijoin provided that F ′ is

a commutative encryption family.

Next, we show that Padvanced satisfies the equijoin non-transitivity property.

Result 9 The pseudonym scheme Padvanced has secure equijoin transitivity provided

that the asymmetric DDH assumption holds.

Proof Let us first recall that the asymmetric DDH assumption states the
indistinguishability of the probability distributions (g, ga, gb, hb, gab) and

(g, ga, gb, hb, gr ), where g = φ(h), h generate G1, G2, respectively, and a, b, r
$←

Zq .
To convey this proof we use a different proof technique from those previously

deployed both in this chapter and in [2]. We need to program the random oracle.
This means that H being a random oracle, the values H(id) are simulated to the

adversary. The simulator answers H(idi ) as (ga)λi for idi /∈ IRd
, where λi

$← Zq ,

and answers H(idi ) as gλi for idi ∈ IRd
, where λi

$← Zq . It takes xs, xd , α, β
$←

Zq . Additionally, it picks h
$← G2 and defines φ(h) = g ∈ G1. Next, for the pair

(Rs, Rd), it sets as Rs’s equijoin key the quantity (h)α·x
−1
s ; while for Rd it is set

to (h)α·x
−1
d . Next, for the pair (Rd , Ro), it sets as Rd ’s equijoin key the quantity

(hb)β·x
−1
d , while for Ro it is set to (h)β . The pseudonyms are simulated as follows:

– P(idi , Rs) = gλi xs for idi ∈ IRd
∩ IRs

– P(idi , Rs) = (ga)λi xs for (idi ∈ IRs ) ∧ (idi /∈ IRd
)

– P(idi , Rd) = gλi xd for idi ∈ IRd

– P(idi , Ro) = (gb)λi for idi ∈ IRd
∩ IRo

– P(idi , Ro) = (gab)λi for (idi ∈ IRo) ∧ (idi /∈ IRd
)

The above simulation is consistent with the adversarial’s view. For instance, we
have that for any id ∈ IRd

∩ IRs ,

e
(

P(id, Rs), (h)α·x
−1
s
)

= e
(

g, h
)αλi = e

(

P(id, Rd), (h)α·x
−1
d
)

and for any id ∈ IRd
∩ IRo ,

e
(

P(id, Rd), (hb)β·x
−1
d
)

= e
(

g, h
)βbλi = e

(

g, h
)βbλi = e

(

P(id, Ro), (h)β
)

(8.2)

where (8.2) holds because any h, h ∈ G2 satisfy that e(φ(h), h) = e(φ(h), h),
where φ : G2 → G1 is an efficiently computable homomorphism.

Finally, since gab cannot be distinguished from random gr , and thus they can be
swapped in the above expressions, it follows that pseudonyms P(id, Ro) outside the
intersection IRd

∩ IRs ∩ IRo are indistinguishable from random pseudonyms. Thus,
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the adversary cannot match pseudonyms P(id, Rs) to pseudonyms P(id, Ro) for
id ∈ (IRs ∩ IRo)− (IRd

∩ IRs ∩ IRo). ⊓⊔

8.7 Conclusion

This chapter describes pseudonymization and equijoin protocols aimed at building
pseudonymized data sharing systems. Our pseudonymization algorithm produces
unlinkable pseudonyms sets, yet allows secure intersection between them, provided
that certain cryptographic keys are available. We have presented three schemes:
a first scheme uses a mighty TTP which is invoked in every algorithm; the last
two schemes use a ‘light’ TTP which act as a key distribution center. Our last two
schemes are proven secure in the Random Oracle Model. One problem that is left
open is to provide the light-TTP functionality without resorting to the random oracle
idealization.
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Chapter 9

Privacy-Aware Access Control in Social

Networks: Issues and Solutions

Barbara Carminati and Elena Ferrari

Abstract Access control in online social networks (OSNs) is becoming an urgent
need due to the amount of data managed by social networks and their sensitivity.
Performing access control in a social network has many differences with respect
to performing access control in a traditional data management system, in terms of
both the policy language to support and the reference architecture for access con-
trol enforcement. Moreover, it is fundamental to also consider privacy issues con-
nected to access control and to devise appropriate privacy-preserving access control
systems. The aim of this chapter is to first discuss which are the requirements of
privacy-aware access control to OSN resources and then to review the literature in
view of the identified requirements. Finally, the chapter discusses future research
directions in the field.

9.1 Introduction

Online social networks (OSNs) are platforms that allow people to publish details
about themselves and to connect to other members of the network through various
relationships. The potentialities of these services are enormous, from knowledge
sharing to social search, to establish community of practices1 at the enterprise level,
just to mention few of OSN applicability domains. Recently, the popularity of OSNs
is increasing significantly. For example, Facebook now claims to have more than
300 million active users.2 Also the amount of shared digital contents is enormous.
For instance, considering once again Facebook, it now claims to have more than 2
billion photos and 14 million videos uploaded to the site each month, whereas more
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than 2 billion pieces of content (web links, news stories, blog posts, notes, photos,
etc.) are shared each week.

The existence of this huge amount of data, including person-specific informa-
tion, creates both interesting research challenges and security and privacy threats.
For example, social network data could be used for marketing products to the right
customers. At the same time, security and privacy concerns can prevent such efforts
in practice [4]. Therefore, many researchers have started to work on improving the
access control systems today provided by OSNs. The motivation is that current
OSNs implement very basic access control models, by simply making users able
to decide which information are accessible by other members by marking a given
item as public, private, or accessible by their direct contacts.

In order to give more flexibility, some online social networks enforce vari-
ants of these settings, but the principle is the same. For instance, besides the
basic settings, Bebo (http://bebo.com), Facebook (http://facebook.com),
and Multiply (http://multiply.com) support the option “selected friends”;
Last.fm (http://last.fm) the option “neighbors” (i.e., the set of users hav-
ing musical preferences and tastes similar to mine); Facebook, Friendster, and
Orkut (http://friendster.com, http://www.orkut.com) the option “friends
of friends”; Xing (http://xing.com) the options “contacts of my contacts”
(second degree contacts), and “third” and “fourth degree contacts”; LinkedIn
(http://www.linkedin.com) and Multiply the option “my network” (i.e., all the
WBSN members who are either directly or indirectly connected to, independently
from how far they are). It is important to note that all these approaches have the
advantage of being easy to implement, but they lack flexibility. In fact, the available
protection settings do not allow users to easily specify their protection requirements,
in that they are either too restrictive or too loose (e.g., the option “my network” in
LinkedIn).3

The research activity in the field of OSN access control has resulted in sev-
eral proposals that we survey in Section 9.4. Almost all the proposals appeared
so far enforce relationship-based access control, according to which access control
requirements are expressed in terms of relationship paths existing in the network
and their depth. For example, using relationship-based access control a user can
give access to one of his/her photo only to his/her friends and the friends of his/her
friends or to all my direct and indirect colleagues, no matter how distant they are
from me in the network graph. Furthermore, some of the models support a notion of
trust/reputation as a further parameter for access control decisions.

The enforcement of relationship-based access control poses interesting issues
regarding privacy protection, which are the main focus of this chapter. A first issue
is related to the architecture on support of access control. Clearly a centralized
solution where the social network management system (SNMS) is in charge of
performing access control and managing all users’ resources and security policies
is no more acceptable by SN users since this implies to fully trust the SNMS with

3 A more detailed analysis of privacy practices in 45 OSNs can be found in [6]
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respect to the management of user private data. It is today well recognized that
decentralization is the future of OSN [23] and this should also apply to access
control. Furthermore, enforcing relationship-based access control requires to dis-
close to the resource owner some paths in the network and associated trust level.
This means disclosing all the relationships/trust levels of the links forming the path.
However, disclosing a relationship/trust level always means an exposure of personal
information. Therefore, there is the need of devising privacy-aware access control

mechanisms, able to enforce relationship-based access control by, at the same time,
ensuring relationship privacy.

In this chapter we start by understanding which are the main requirements of
an access control system for OSNs, by focusing on the privacy issues arising in
access control. Then, we review the literature in view of the identified requirements.
Finally, we conclude the chapter by outlining future research directions.

9.2 Access Control Requirements

In what follows, we use as running example the OSN depicted in Fig. 9.1. The OSN
refers to a network of freelance IT consultants that use the network for a variety
of purposes, such as knowledge sharing, advertising new opportunities, finding new
partners. The OSN may also involve companies that wish to make use of the services
provided by the consultants. Clearly, such companies should have a selective access
to OSN resources. Nodes can also form smaller networks or groups (for instance,
a set of consultants/companies working on a specific project). In the figure, the
OSN is represented as a directed labeled graph, where each node corresponds to
a network member and edges denote relationships between two different members.
In particular, the initial node of an edge denotes the member who established the
relationship, whereas the terminal node denotes the member who accepted to estab-
lish the relationship. Each edge is labeled by the type of the established relationship
and the corresponding trust level, representing how much the user that established
the relationship trust the other user with respect to that specific relationship. The
portion of the OSN depicted in Fig. 9.1 consists of three companies, i.e., C1, C2,
and C3, whereas the remaining nodes represent agents.

Fig. 9.1 A portion of an OSN
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The main purpose of an OSN is to establish relationships with other users and
exploit such relationships for sharing resources of various nature. Therefore, it is
already well accepted that any access control model for OSNs should be relation-

ship based. According to a relationship-based access control model, access control
policies are specified in terms of relationships existing in the OSN. This means that
the releasing of a resource is conditioned to the fact that the resource requestor
has a relationship (either direct or indirect) of a specific type with another OSN
member(s). Examples of relationship-based access control policies are as follows:
Only my friends can access document doc1 or only the colleagues of my colleagues
can access report rep. Additional policies referring to the OSN in Fig. 9.1 are as
follows: Only my partners can access the project opportunity I post in the OSN or
only my customers can have a sneak preview of the report describing a particular
not yet released product. Additionally, also the depth of the path is an important
parameter for some access control decisions, since users usually are more inclined
to share their resources with users not much far away from them. For example, a user
may want to limit the disclosure of one of his/her resources to his/her friends and
the friends of their friends or to consultant partners whose distance in the OSN is no
more than three. Therefore, the policy language should be able to express constraints
on the depth of a path. A further important parameter is represented by trust, which
is an orthogonal parameter with respect to the depth of a relationship. For instance,
two of my direct friends may have completely different trust and therefore I may
want to give access to a resource only to the one with the highest trust and not to
the other. Referring to the OSN in Fig. 9.1, consultant A(lice) is a direct partner of
both E(ric) and F(red), but the trust she has on the two is different.4 Because of this,
A may want to share new job opportunities with E but not with F. In this case, the
depth of the relationship is not enough to express this requirement (since both E and
F are at distance one from A). Therefore, the policy language should support also
constraints on the minimum trust level of a relationship.

Moreover, in an OSN relationships between users and resources may be of dif-
ferent types. As usual, a user may be the owner of a resource, but he/she may also
be tagged in a photo of another user. Therefore, a relationship-based access con-
trol model should exploit not only the standard user-to-user relationships for access
control purposes but also the variety of user-to-resource relationships that the OSN
supports.

Apart from the access mode that is granted, the other two main components of an
access control policy are the subject and object specification. In the case of an OSN,
the subject specification identifies the users to which the policy applies, whereas
the object specification identifies the resources covered by the policy. Regarding the
subject specification, the policy language has to be flexible enough to identify the
users to which a policy applies according to their relationships with resources (e.g.,
users “tagged” to a photo, “leader” of a project) or to other users (direct friends,
colleagues of my colleagues). Moreover, the object specification should make one

4 Trust computation is out of the scope of this chapter, we refer the interested reader to [18] for
more details on this topic
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able to identify resources according to their descriptions (e.g., objects of “type”
photo, documents “about” an object of “type” photo), as well as to their URIs.

Up to now, we have focused on the requirements of the access control model
and related policy language. However, a further important class of requirements is
related to how access control is enforced and by what entities of the OSN. Tradi-
tionally, access control is enforced by a trusted software module, called reference
monitor, and hosted by the data management system. The reference monitor inter-
cepts each access request and, on the basis of the specified access control policies,
determines whether the access can be partially or totally authorized or it must be
denied. Therefore, the first architectural choice is related to which entity should host
the reference monitor. If we cast our discussion in an OSN the traditional solution
described above implies to delegate to the SNMS the role of reference monitor.
According to this choice, OSN users completely delegate the control of their data to
the SNMS, which stores and enforces all the access control policies on behalf of the
network users. Even if this kind of solution is largely accepted, we do not believe
that it is the most suited for the OSN scenario. The main reason of this concern
is that this solution implies to totally delegate to the SNMS the administration and
enforcement of access control policies. This means that users should trust the SNMS
regarding the correct enforcement of their policies. However, some recent events
have made OSN users aware that the SNMS’s behavior is not always honest and
transparent. This is, for instance, witnessed by some privacy concerns related to
the collection and delivering of personal data by some of the Facebook’s services
[4, 13, 16]. All these events lead us to believe that a centralized access control solu-
tion where the SNMS hosts the reference monitor is not the most appropriate one in
the OSN scenario. We believe that in the near future OSN participants would like
to have more and more control over their access control policies and the way they
are enforced. The best solution in this respect is a fully decentralized one, where
each OSN user is responsible for policy specification and enforcement. However,
each access control solution to be effectively applied must consider also another
important dimension, that is, the efficiency of access control. Since, access control is
relationship-based, answering an access request may require to verify the existence
of specific paths within an OSN. This task may be very difficult and time consuming
in a fully decentralized solution. Therefore, a further essential requirement of access
control enforcement is to devise efficient and scalable implementation strategies.

The access control requirements discussed so far are summarized in Table 9.1.

Table 9.1 OSN main access control requirements

Component Requirements

Policy language Relationship-based:
(a) User-to-user relationships:

Depth
Trust level

(b) User-to-resource relationships
Access control enforcement Not centralized

Efficient
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9.3 Privacy Issues in OSN Access Control

As we have seen in Section 9.2, the first requirement of any access control model for
OSNs is its ability to enforce relationship-based access control. However, relation-
ships are in general sensitive resources whose privacy should be properly guaranteed
even if they are instrumental to perform access control. Therefore, the main privacy
issues that arise during access control enforcement are those arising by the disclo-
sure of personal relationships. Indeed, establishing a relationship in a community
implies, in some sense, an exposure of personal information of the users involved
in the relationship, which may give rise to some relevant privacy concerns. For
instance, referring to our running example in Fig. 9.1, consultant B(ob) may not want
to disclose to consultant F the fact that he works for company C1. One fundamental
requirement is therefore that each participant has strong guarantees that relationship
privacy is not breached during access control. Clearly, the way this is achieved is
highly impacted by the way access control is enforced. For instance, if we assume
a centralized architecture where the SNMS hosts the reference monitor, privacy is
guaranteed under the assumption that we can fully trust the SNMS. More difficult
is to protect relationship privacy if a decentralized architecture is used, according
to which access control enforcement is under the responsibility of resource own-
ers and/or requestors (see Section 9.4.2 for a more detailed discussion about these
issues). Additionally, relationship may have an associated trust value that must be
protected during access control. For instance, with reference to Fig. 9.1, company C1
may not want to disclose the fact that it does not trust very much C2 as a partner (i.e.,
the trust level assigned to the partnerOf relationship is 0.2). Privacy requirements
regarding trust disclosure may be different from that of relationships. For instance,
a user may consent to disclose that he/she is a friend of a given user, but he/she may
not want to disclose how much he/she trusts that particular user. Therefore, a further
requirement is that of protecting relationship trust level during access control.

Another issue which is out of the scope of this chapter but that it is important
to mention is related to privacy issues arising during trust computation. Literature
shows that there does not exist a unique definition of trust, since it may vary depend-
ing on the context (e.g., PKI, P2P, social networks) and for which purposes it is used
(e.g., to ensure quality of service, to associate a “value” to opinions/recommenda-
tions). This obviously impacts also how trust is computed. In general, the main
issues in trust computation concerns which trust paths must be considered in order
to obtain an accurate trust value, since multiple paths may exist connecting two
entities. Several solutions have been proposed so far, and, usually, they enforce some
constraints in order to select just some of the existing paths (see [12] for a discussion
on trust computation). However, in scenarios where trust is used as a parameter to
enforce access control, we believe that its value should be computed taking into
account also the compliance of user actions to the specified access control policies
and/or privacy preferences. Therefore, the OSN should have some mechanisms to
help a user to precisely estimate the other network participants trust level. Such
mechanisms should also preserve user privacy when performing trust computation.
For instance, a naive solution to trust computation is to log all the actions a user
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performs with respect to resources/relationships disclosure and use such information
to estimate the compliance of user actions to the specified policies. Clearly, this
solution poses serious privacy concerns in that a user may not want to disclose the
details of all his/her actions. As such, methods should be devised that are able to
precisely compute trust without compromising user privacy. Some proposals exist
in this direction. For example, Nin et al. [26] exploit anonymization strategies on
the log file, such that details about the performed access control decisions are kept
private but, at the same time, it is possible to determine whether the decisions are
correct or not, with respect to the specified policies.

9.4 Review of the Literature

In what follows, we review the literature in view of the requirements discussed in the
previous section. We start by illustrating the main proposals of access control mod-
els/systems appeared so far. Then, we focus on the solutions proposed to enforce
access control in a privacy-preserving manner.

9.4.1 Access Control Models

Recently some research proposals have been appeared aiming to overcome the
restrictions of the protection mechanisms provided by current online social net-
works.

For example, Carminati et al. [10, 12] address access control issues arising in
online social networks and propose to model access control requirements in terms
of access rules specified by the resource owners. More precisely, these access rules
denote authorized members in terms of the type, depth, and trust level of the rela-
tionships they must have with other network nodes. In [10, 12] authors also propose
a client-based approach to enforce access control, according to which the requestor
must provide the resource owner with a proof of being authorized to access the
requested resource. As access rules constraint relationships, the proof has to show
the existence of the required relationships and that these relationships have the
required depth and trust level.

In order to generate valid proofs, it is assumed that a “relationship certificate” is
associated with each relationship, containing information on the relationship (i.e.,
users involved, trust, depth, type), which is signed by both the involved users. A
relationship certificate can be seen as a proof that between the involved users there
exists a direct relationship of a certain type and with a certain trust level. Proofs of
indirect relationship can therefore be generated through a set of certificates confirm-
ing the existence of a path of a specified type between them. Based on this access
control model, authors have also investigated privacy-aware solutions for access
control enforcement (see Section 9.4.2 for more details).
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In contrast, the proposal illustrated in [2, 19, 29] represents access control
authorizations by means of access control lists (ACLs) associated with resources.
In particular, these lists, called social ACLs, contain identifiers of authorized users
as well as relationships user must have to gain access. Then, similar to [10, 12],
to enforce authorizations stated in social ACLs they rely on relationship certifi-
cates, here called “social attestations,” which record information about relationships
between two users (i.e., identifiers of involved users and relationship types).

A different approach has been proposed in [1]. Here a multi-level access con-
trol solution is proposed, according to which users and resources are organized in
security levels and accesses are granted based on the relationships between security
levels of the requested resource and the requestor. In order to support this access
control model, with each user u is associated a reputation value r(u), computed
as the average of the trust ratings specified for u by other users in the social net-
work. To organize resources into security levels, the system automatically assigns
to resources created by a user u a security level equal to τ , where τ represents the
trust level in the range [0, r(u)] user has selected when he/she logged in the social
network. Then, users are authorized to access only resources with a security level
equal or less than τ . In [1], authors proposed to enforce multi-level access control
according to a challenge-response-based protocol. In particular, for each resource
o, the resource owner generates a secret key K , which is then processed by a (k, n)
threshold algorithm [27]. According to this algorithm, a key K can be split into n

portions and then reconstructed based only on k portions of it, where k < n. As such,
the proposal in [1] requires that the n portions of K are distributed to n trustworthy
nodes. Then, if a requestor wishes to access resource o, the resource owner sends
him/her the challenge encrypted with K . The requestor has to retrieve the k portions
of K from the set of n nodes holding them. Such portions are released only if the
requestor satisfies the trust requirements specified by the resource owner. Once the
requestor has reconstructed K , he/she responds to the challenge and gains access to
the resource.

Another solution from the same authors proposes to determine access control
rights based on the distance between the owner and the requestor [30]. According
to this solution, users that directly or indirectly are connected to the owner can
be classified into three adjacent zones: “acceptance” zones, whose access requests
will be immediately accepted; “attestation” zones, whose access requests require
a further evaluation to gain access, and “rejection” zones, whose access requests
will be immediately rejected. As a consequence, confidentiality requirements on
resources are specified in terms of two distances, called trusted distance, delimiting
the three zones.

The proposal presented in [3] exploits cryptographic primitives to enforce a
group-based access control in OSNs. The underlying idea is that users are able to
organize their friends into groups and assign permissions to them by means of ACLs.
As this proposal considers a social network model similar to Facebook (i.e., with
simple relationships), group generation does not take into consideration relationship
types and trust. This means that users generate groups by explicitly adding friends
to them. The main contribution of this proposal is indeed in the cryptographic
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primitives exploited to enforce the authorizations in ACLs. More precisely, authors
make use of attribute-based encryption (ABE) [5], according to which (1) both
user’s keys and encrypted data are labeled with a set of attributes and (2) user’s
keys are defined such to decrypt an encrypted data only if there is a match between
its attributes and those of the data. This last feature greatly improves group key
management.

The work reported in [17] presents an interesting analysis of the access control
mechanism of Facebook, with the aim to formalize it into a more comprehensive
access control model for social networks. As a result, Ref. [17] identifies four dif-
ferent types of privacy policies. The access control policies are one of these types.
For each resource, the access control policies state who is authorized to access the
resource. Other two policy types have been proposed by taking into consideration
that in Facebook it is possible to look for new users in the social network by access-
ing some parts of users’ profiles as well as users’ friend lists (this allows a search by
traversing the social graph). As Facebook makes users able to state privacy settings
regulating the access to this information, these are also supported by the model pro-
posed in [17]. These are the search policies and the traversal policies, respectively.
The last policy type, called communication policy, aims to make users able to state
who is authorized to initiate a given type of communication with him/her.

It is interesting to note that the emerging trend in Semantic Web technologies is
to provide much richer social network data (e.g., representing relationships among
users and resources in detail) [25]. On these semantically enriched social networks,
more flexible and expressive protection mechanisms can be devised, as shown by
recent work [9, 15]. For example, in [15] authors focus on online communities, by
proposing a semantic framework based on OWL – web ontology language – for
defining different access rights exploiting the relationships between the individuals
and the community. In contrast, Carminati et al. [9] propose an extension of the
relationship-based access control model in [10, 12], based on Semantic Web rules
[20].

Table 9.2 summarizes the discussion on related work presented in this section.
Proposals are organized according to the supported access control requirements (i.e.,
defined based on type, trust, and depth of relationships).

Interesting examples of access control-related solutions can also be found in
some software available in existing OSNs. Let us consider Facebook, since it is
the OSN for which the majority of these tools have been proposed. We can find

Table 9.2 Summary of access control model for social networks

Access control model
Decision based on
relationship types

Decision based on
relationship trust

Decision based on
relationship depth

[9, 10, 12] Yes Yes Yes
[1] No Yes No
[30] No No Yes
[2, 19, 29] Yes No No
[3] No No No
[17] Yes No No
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some third-party applications aiming to enhance confidentiality of user profiles (e.g.,
Privacy Protector) or messages posted in walls (e.g., Private Wall, Secret Wall,
Private Groups), as well as photos/videos and sensitive data (e.g., Private Photo
Gallery, Private Video Gallery, FlybyNight [22]). Other applications help users to be
aware of which information of their profiles is available to third-party applications
according to users privacy settings (for example, Privacy Mirror, 1984, AppAdvisor,
PrivAware).5 Finally, some third-party applications provide users with insightful
suggestions for properly setting Facebook privacy configurations (for example, Pri-
vacy Helper). Based on information accountability, another interesting application
is Respect My Privacy that makes users able to clearly communicate how they want
their data to be handled in several different scenarios (e.g., commercial, depiction,
financial). However, all these tools do not provide a comprehensive solution to OSN
access control, rather they provide solutions only for specific issues related to access
control (e.g., photos/videos distribution, wall protection).

9.4.2 Privacy-Aware Access Control

It is important to note that up to now, most of the research related to privacy in OSNs
have focused on privacy-preserving techniques to mine social network data [21].
The only proposals we are aware of, providing some solutions for privacy-aware
access control, are those reported in [7, 8, 11, 14, 24]. These proposals, that we
briefly describe in what follows, differ with respect to both the used techniques and
the privacy guarantees they provide.

A first distinction among the various proposals is that some of them are policy-

based [8, 11], this means that a user can express his/her privacy requirements with
respect to the disclosure of his/her relationships to other users. For instance, through
a privacy preference a user may specify that a particular relationship in which he/she
is involved can be seen only by his/her colleagues. Moreover, some of the proposals
address only the problem of relationship protections [24], whereas the others also
consider trust protection. Finally, all the proposals adopt cryptographic techniques
to avoid leakage of private information referring to relationships and/or trust.

Let us start from policy-based solutions, according to which privacy require-
ments related to relationship and trust disclosure are specified by means of distribu-

tion rules [8, 11]. A distribution rule basically states who can be aware of a given
OSN relationship and exploit it for access control purposes. The system proposed in
[11] enforces decentralized access control, according to which existing relationships
and resources are not stored in a central repository, but by OSN members them-
selves, who also carry out the tasks related to access control enforcement and pri-
vacy protection. The only centralized service is a certificate revocation list, storing
information on the revoked relationships. Additionally, access control is client side,

5 This problem has been addressed also in [28], where an access control framework enabling users
to specify how attributes have to be shared with third-party applications have been proposed
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this means that the burden of access control enforcement is mainly on the requestor,
that has to provide the owner a proof demonstrating that he/she satisfies the access
rules applying to the requested resource. Access control is enforced according to
the model described in [12] and summarized in Section 9.4.1, which is based on
relationship certificates used to generate proofs. Since the solution proposed in [11]
is decentralized, relationship certificates are delivered to OSN members accord-
ing to the specified distribution rules. To avoid inferences of private relationships,
relationship certificates are encrypted and the corresponding keys are distributed
only to the users authorized according to the specified distribution rules. Details
on the protocols for keys and certificates distribution and update are contained in
[11]. Unauthorized relationship disclosure may also happen during access control
enforcement, due to the fact that a client-side approach is adopted. Indeed, when
a member requests a resource, the owner replies by sending him/her the set of
access rules regulating the access to that resource. Access rules give information
on the relationships the owner is involved in. For instance, if an owner replies to
an access request by requesting a proof stating a consultantOf relationship with
another user it is very likely that the owner participates in at least one relationship
of type consultant-fof, otherwise no OSN member will be authorized to access the
requested resource. To avoid this kind of inferences cryptographic techniques are
also adopted, according to which the conditions contained into an access rule are
encrypted with a key which is shared only by the users involved in the relationship
of the type required by the condition.

One of the main drawbacks of managing encrypted certificates and access rules is
that the overhead due to key management may be extremely high. For this reason, in
[8] an alternative approach is explored according to which access control (i.e., path
discovery) is performed through a collaboration of selected nodes in the network.
The collaboration is started by the resource owner who, upon receiving an access
request, contacts his/her neighbors asking whether they hold a relationship of the
type required by the specified access rules with the resource requestor. The path is
incrementally built as the request of collaboration is propagated in the network. The
process halts either when a path is found or the request for collaboration cannot
be further forwarded. Clearly, each node receiving a request for collaboration is
aware of the path built so far and its trust level. For this reason, collaboration is
driven by the specified distribution rules in that a node is required to collaborate
only if he/she satisfies the distribution rules associated with the relationships in the
path built so far. By making use of an ad hoc specified data structure, called onion

signature, each user in the path can verify whether previous receivers of the path
have correctly enforced distribution rules.

The idea of enforcing privacy-aware access control through a collaboration of
selected nodes in the network is further explored in [7]. In this chapter, privacy
requirements are not expressed through distribution rules. Rather homomorphic
encryption is used to collaboratively build an anonymous path, that is, a path that
allows the resource owner to verify whether it matches the specified access rules
without revealing the identity of the users involved in the path. An analogous data
structure is used for trust computation, that is, to make the owner able to compute the
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trust of a path without knowing the trust values associated with the arcs composing
the path. However, this solution suffers from privacy breaches in the case of paths of
length 2. This is avoided by inserting into the architecture a trusted entity in charge
of verifying whether this inference can arise and informing the users whose privacy
may be violated to let them deciding whether to release or not the path to the owner.

Domingo-Ferrer et al. [14] also exploit homomorphic encryption and user collab-
oration to enforce privacy-aware access control. With difference to [7] they support
a restricted version of the policy language in [12], where the maximum depth of
a relationship cannot be used as a parameter to perform access control. Therefore,
policies such as “Only my friends and the friends of my friends” are not supported.
Similar to [7], the proposal makes use of a trusted entity. However, the optimistic
TTP proposed in [14] does not mediate each collaboration process, rather it is con-
tacted only in case of conflicts among the users in the network (for instance, when
a user suspects that another one contributed with a fake trust level to path discovery
or has modified the trust value inserted by another user during the collaboration
process). In summary, main differences between [14] and [7] are related to the policy
language they support and the different use of the TTP.

A method to discover relationship paths between two users of an OSN with-
out disclosing the relationships in the path is also proposed in [24]. This method,
which does not consider the issue of the private computation of relationship trust,
can be the basis of privacy-aware decentralized relationship-based access control.
The method exploits a private set intersection protocol by which two parties each
one holding a set of elements can compute the intersection of the two sets, without
knowing the elements in the set belonging to the other party, apart from those in
common to the two parties. The method consists of two steps: a token flooding
phase and a path discovery phase. The first phase requires that users are online,
whereas the second one can be conducted off-line. During the first phase users gen-
erate and propagate along the network cryptographic tokens to privately explore the
paths originating from him/her up to a pre-defined depth. To better explain how the
process works consider a user u in the network. He/she generates a set of tokens,
obtained by hashing with a one-way function a random number concatenated with a
counter, and delivers one of the generated tokens to each of his/her neighbors. Each
user receiving a token repeats the same procedure (concatenation of the counter
value and application of the hash function) before forwarding the token to the subse-
quent users in the network. Each user locally stores the set of received tokens. Addi-
tionally, since token generation follows a deterministic process, each originator of
a token t can locally compute all the tokens originated from t . Therefore, two users
u1 and u2, by running a private set intersection protocol on the set of received and
generated tokens, respectively, can privately discover whether they have a common
path. If the intersection of the two sets of tokens is not empty, this means that there
exists a path between the two. However, in [24] it is showed that this basic scheme is
not robust against all the inferences that can be performed on private relationships.
More specifically, by following the protocol above described, it is possible to infer
the specific node where two private paths intersect. To avoid this, the protocol has
been enhanced with a randomization technique for token generation that avoids the
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above-described privacy breach. The basic idea is that a user at distance d ≥ 2 from
the originator receives a token randomly selected from the set of tokens generated
for users at distance d. Tokens for intermediate nodes are generated by the so-called
bridge contacts, that is, users directly connected to the token originator. The bridge
contact generates a set of tokens for users at distance d, 2 ≤ d ≤ dmax. Tokens are
generated separately for each distance, by considering the degree of each connected
node. Each node does not communicate its exact degree, rather it adds to it a positive
noise to prevent inferences on the network topology. As a consequence, dummy
tokens are generated and sent along the network. Each user at distance 2 receives
from the bridge contact one token for distance 2 and a set of tokens for distance 3
proportional to the number of friends. This process is iterated for users at distance
d > 2. Each transmitted token is randomly selected from the set of generated tokens.

9.5 Conclusions and Future Research Directions

In this chapter we have first discussed the access control requirements arising in
OSNs, with a particular focus on the privacy issues arising during access control
enforcement. We have then reviewed the literature in view of the identified require-
ments.

However, research in this field is still in its infancy and many interesting issues
remain to be explored. First of all a satisfactory solution to relationship privacy
protection during path discovery has not yet been devised. All the proposals we
reviewed in Section 9.4.2 are based on cryptographic stuff and they suffer from
some drawbacks, such as the limitation they put in the policy language they support
or in the length of the paths that can be supported in practice or the inefficiency of
key management upon a modification of the topology of the OSN. Therefore, the
design of a general-purpose and efficient method for private path discovery is still
an open issue. Another important problem is related to trust protection during access
control. All the methods we reviewed in Section 9.4.2 enforcing privacy protection
adopt a very simple way of computing trust, that is, the trust between two nodes is
given by the trust of any of the path between the two. However, more elaborated
ways of trust computation that lead to a more precise measure of trust have been
proposed in the literature (see, e.g., [18]), according to which the trust between two
nodes is a function of all the paths between them or of some of them, for instance,
the shortest paths. Supporting such measure of trust during privacy-aware access
control is still an open issue. This is even more difficult if we want to enforce access
control in a fully decentralized way, in that the big issue is how a user may compute
all the paths between two nodes in an efficient and private way.

Another important research direction is related to policy administration. As we
have seen in this chapter, OSN users need a very flexible policy language to express
their privacy/confidentiality requirements. However, when a user specifies an access
control policy it is not easy to understand exactly the effect of this policy (for
instance, in terms of authorized users), nor its privacy implication (for instance,



194 B. Carminati

in terms of relationship disclosure), due to the fact that the SN graph may be very
big, with thousands of relations that frequently change. Therefore, a very important
issue is to devise techniques and tools that help the user in evaluating the risk of
unauthorized flows of information that the specification of a policy or its update
may cause.
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