

i

P U R E

CORBA

Fintan Bolton

00 0672318121 fm 6/20/01 5:46 PM Page i

Pure CORBA

Copyright 2002 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and authors assume no respon-
sibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-321812-1

Library of Congress Catalog Card Number: 99-66025

Printed in the United States of America

First Printing: July 2001

04 03 02 01 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or ser-
vice marks have been appropriately capitalized. Sams Publishing cannot
attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or ser-
vice mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information pro-
vided is on an “as is” basis. The authors and the publisher shall have nei-
ther liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or
from the use of the CD or programs accompanying it.

EXECUTIVE EDITOR

Michael Stephens

ACQUISITIONS EDITOR

Carol Ackerman

DEVELOPMENT EDITOR

Heather Goodell

MANAGING EDITOR

Matt Purcell

PROJECT EDITOR

George E. Nedeff

COPY EDITORS

Gene Redding
Michael Henry
Michael Dietsch

INDEXER

Sandra Henselmeier

PROOFREADER

Benjamin Berg

TECHNICAL EDITORS

Jeremy L. Rosenberger
Ajay M.R.

TEAM COORDINATOR

Pamalee Nelson
Lynne Williams

MEDIA DEVELOPER

Dan Scherf

INTERIOR DESIGNER

Karen Ruggles

COVER DESIGNER

Aren Howell

00 0672318121 fm 6/20/01 5:46 PM Page ii

Overview
Introduction 1

PART I CONCEPTUAL REFERENCE 3
1 CORBA Architecture 5

2 Programming with CORBA 23

PART II TECHNIQUES 137
3 A Sample CORBA System 139

4 Memory Management 151

5 Object References 199

6 Interoperable Naming Service 245

7 The Portable Object Adapter 289

8 The any Type 389

9 Callbacks 445

10 Interceptors 459

11 Objects by Value 487

12 Events Service 523

13 CORBA Components 551

14 Internet Inter-ORB Protocol 619

PART III SYNTAX REFERENCE 627
15 IDL Data Types 629

16 IDL Grammar 759

17 DynAny Type 769

18 Dynamic Invocation Interface 795

19 Dynamic Skeleton Interface 813

20 Interface Repository 829

21 CORBA System Exceptions 857

Index 865

00 0672318121 fm 6/20/01 5:46 PM Page iii

Contents
INTRODUCTION 1

How This Book Is Organized ..1

PART I CONCEPTUAL REFERENCE 3

1 CORBA ARCHITECTURE 5
The Rise of Middleware ..5
The Object Management Group ..6
The Common Object Request Broker Architecture7

Remote Procedure Calls ..7
CORBA Requirements ..8
OMG Interface Definition Language ..10
Internet Inter-ORB Protocol ..11

Basic CORBA Concepts ..11
IDL Compilers..11
Language Mappings ..12
Stub and Skeleton Code ..13
Object References ..13
Object Adapter..14
The Object Request Broker ..15

Deployment of CORBA Applications ..15
Finding CORBA Objects..15
Locating and Activating Servers ..16

The Object Management Architecture ..19
CORBA Services..19
The Rest of the Object Management Architecture20

Summary ..21

2 PROGRAMMING WITH CORBA 23
A Basic Client-Server Application—Example 123

Client Code ..25
Server Code ..30

Basic IDL Mapping (Example 1) ..43
IDL Identifiers ..43
IDL Mapping for Basic Types..44
Modules and Interfaces ..47
C++ _var and _ptr Types ..49

Initializing a CORBA Application ..50
ORB Initialization ..50
The orb.properties File ..55
Resolving Initial References ..56
Locating CORBA Objects ..56

00 0672318121 fm 6/20/01 5:46 PM Page iv

Adding an IDL Interface for Searching—Example 257
Client Code ..59
Server Code ..63

IDL Mapping for Some Complex Types (Example 2)69
The struct Type ..70
The Unbounded sequence Type ..73
Java Holder and Helper Types..76

Returning Parameters ..79
Using out Parameters on the Client Side ..80
Using out Parameters on the Server Side ..80

Adding Exception Handling—Example 3 ..81
Client Code ..83
Server Code ..87

IDL Mapping (3)..96
Java Mapping for Types Declared in IDL Interfaces97
CORBA User Exceptions ..98
CORBA System Exceptions ..100

Adding a Multiply-Inheriting IDL Interface—Example 4102
Server Code ..103

Multiple Inheritance and the Delegation (Tie) Approach (Example 4)106
Multiple Inheritance of Interfaces ..106
Java Inheritance and Delegation (Tie) Approach107

Adding CORBA Naming Service Support—Example 5109
Client Code ..110
Server Code ..114

More IDL Syntax and Rules for Mapping Identifiers121
IDL Constants ..121
Recursive IDL Types ..125
Unique Type Identifiers—Repository IDs......................................126
C++ Mapped Identifiers and Keywords ..129
Java Mapped Identifiers and Keywords ..130
Contexts ..131

More About Servers ..132
Transient and Persistent CORBA Objects......................................132
Implicit Activation and _this()..133

Summary ..135

PART II TECHNIQUES 137

3 A SAMPLE CORBA SYSTEM 139
Recycle Broker Architecture..139
Recycle Broker IDL ..141

Data Interfaces..147
Control Interfaces ..147
Factory Interfaces ..148

Recycle Broker Implementation ..148
Summary ..149

00 0672318121 fm 6/20/01 5:46 PM Page v

4 MEMORY MANAGEMENT 151
C++ Smart Pointer Types _var ..152

What Is a Smart Pointer?..152
The CORBA::String_var Type ..153
General Form of a _var Class ..154
Assignment Semantics..155
Use of in(), inout(), out(), and _retn() ..155

Sample IDL..156
Allocating and Initializing ..158

String Types..158
Bounded String Types ..159
WString Types ..159
Bounded WString Types ..160
Struct Types ..160
Unbounded Sequence Types ..161
Bounded Sequence Types ..163
Fixed Types ..164
Union Types..165
Array Types ..166
any Type..167
Object References ..167

Deallocating ..168
Recursive Deletion ..168

Assignment and Copying ..170
Deep and Shallow Copy ..170
Mixed Assignment..173
String Types (Unbounded and Bounded)173
WString Types (Unbounded and Bounded)174
Struct Types ..175
Sequence and Union Types ..176
Array Types ..177

Parameter Passing ..179
Fixed- and Variable-Length Types..179
Parameter Lifecycle..180
Passing in Parameters—Collocated Case181
Passing in Parameters ..183
Passing inout Parameters—No Reallocation..................................184
Passing inout Parameters—Reallocating..187
Receiving out Parameters—Fixed-Length Types190
Receiving out Parameters—Variable Length Types192
Return Values and _retn() ..194
Table of Parameter-Passing Types..197
Table of Memory Management Rules..197

Summary ..198

v i

00 0672318121 fm 6/20/01 5:46 PM Page vi

5 OBJECT REFERENCES 199
CORBA Objects and Object References ..199

What Is an Object Reference?..201
Aspects of a CORBA Object..202
Lifecycle of Object References ..204
Location Transparency ..206

IDL Syntax of Interfaces ..206
Interfaces ..206
Pseudo-IDL ..211

C++ Memory Management ..211
Using _ptr Types ..212
Using _var Types ..214
Mixed Assignments Between _ptr and _var Types216

Nil Object Reference ..218
C++ Nil Object References ..218
Java Nil Object References ..219

Factory Objects ..220
Polymorphism..221

Widening Object References ..222
Narrowing Object References ..225
The Object Base Type ..228
Polymorphism and IDL Operations ..230
Pitfalls of Narrowing ..232

Interoperable Object Reference ..236
Structure of an IOR ..236
Structure of an IIOP Profile ..237
Stringified Object References ..238
IOR Components ..240

Summary ..242

6 INTEROPERABLE NAMING SERVICE 245
Overview..245
Names ..247

Stringified Names ..247
Raw Names—CosNaming::Name..249

The Initialization Service ..250
Basic Operations ..254

Create Object Bindings—rebind() and bind()................................256
Create Context Bindings—bind_new_context()256
Resolve Names—resolve_str() and resolve()256
Conversion Operations ..257

Server Example..257
Name Utility—createContextPath() ..257
Name Utility—bindObjectPath()..260
Server Mainline ..262

v i i

00 0672318121 fm 6/20/01 5:46 PM Page vii

Client Example ..265
Federated Naming Service ..267

Graph or Hierarchy? ..268
Binding Iterators and the list() Operation..269

The IDL Interface for list() and BindingIterator............................269
Name Utility—listBindings() ..271
Name Utility—recursiveUnbind() ..274

Object URLs ..276
Converting an Object URL to an Object Reference277
URL Escape Mechanism for Strings..278
corbaloc:rir: Object URL..278
corbaloc:iiop: Object URL ..279
Fault-Tolerant corbaloc:iiop: Object URL280
corbaname:rir: Object URL..280
corbaname:iiop: Object URL ..281
Fault-Tolerant corbaname:iiop: Object URL282

Specifying Values for Initial References ..282
Command-Line Argument -ORBInitRef..282
Command-Line Argument -ORBDefaultInitRef............................283

Summary ..283
Initialization Service Pseudo-IDL ..284
Naming Service IDL..284

7 THE PORTABLE OBJECT ADAPTER 289
Understanding the POA ..289

An Abstract View of an Invocation ..290
The Role of the POA..290
Servant Activation ..292
The Role of the POA Manager ..293
The RootPOA Object and the POA Hierarchy293

POA Policies..296
RootPOA Policies and Default POA Policies297
IDL for POA Policies ..298

Types of CORBA Objects..301
Transient and Persistent Objects ..301
Session and Entity Objects ..303
Factory Objects ..304

A POA for Session Objects ..305
Creating the POA ..306
Thread Policy..309
Lifespan Policy ..310
ID Assignment Policy ..310
Implementing a Session Object Factory ..311
Creating the Factory ..313

v i i i

00 0672318121 fm 6/20/01 5:46 PM Page viii

A POA for Entity Objects..315
Creating the POA ..317
Mapping Database Keys to ObjectIds ..317
Managing the Database Record..320
Implementing an Entity Object Factory ..322
Creating the Factory ..327

A POA for Service Objects ..330
Creating the POA ..330
ID Uniqueness Policy ..333
Implementing a Service Object Factory ..333
Creating the Factory ..336

Servant Activator POA ..338
Lazy Activation ..340
The Evictor Pattern ..342
Servant Deactivation ..344
Creating the POA ..345
Servant Retention Policy ..348
Request Processing Policy..348
Local Interfaces ..349
Implementing the Servant Activator ..351
Implementing a Lazy Factory ..360
Creating the Factory ..365

Servant Locator POA ..367
The Evictor Pattern Revisited ..369
Creating the POA ..370
Mapping for PortableServer::ServantLocator373

Default Servant POA ..375
Two Kinds of Default Servant..376
Implementing a Default Servant ..377

Implicit Activation ..378
Implicit Activation Using _this()..379
Overriding the _default_POA() Function381

The POAManager ..381
Lifecycle of a POAManager ..381
POAManager States ..383
POAManager State Transitions ..383

POA Activation ..385
Summary ..388

8 THE ANY TYPE 389
Introduction to the any Type..389

When to Use the any Type ..390
When Not to Use the any Type ..390

A Sample IDL Module ..391

i x

00 0672318121 fm 6/20/01 5:46 PM Page ix

C++ Example of Passing anys ..392
The AnyPasser Interface ..392
C++ Client for AnyPasser Interface ..392
C++ Server for AnyPasser Interface ..393

C++ Insertion into CORBA::Any..394
Insertion of Basic Types ..394
Insertion of Compound Types ..395
Inserting Unambiguous Basic Types ..398
Inserting Ambiguous Basic Types ..400
Inserting String Types ..400
Inserting Wide String Types ..402
Inserting Struct Types ..405
Inserting Sequence Types ..405
Inserting Fixed Precision Numbers ..406
Inserting Union Types ..406
Inserting Array Types ..407
Inserting Exception Types ..408
Inserting Object References ..408
Inserting any Types ..409

C++ Extraction from CORBA::Any..409
Extraction of Basic Types ..409
Extraction of Compound Types..409
Read-Only Extraction ..410
Extracting Unambiguous Basic Types ..411
Extracting Ambiguous Basic Types ..412
Extracting String Types ..413
Extracting Wide String Types ..414
Extracting Struct Types ..415
Extracting Sequence Types ..416
Extracting Fixed Precision Numbers..416
Extracting Union Types ..416
Extracting Array Types ..417
Extracting Exception Types..418
Extracting Object References ..418
Extracting Any Types ..419

Java Example of Passing anys ..420
The AnyPasser Interface ..420
Java Client for the AnyPasser Interface ..420
Java Server for the AnyPasser Interface ..421

Java Insertion into org.omg.CORBA.Any ..423
Inserting Basic Types ..423
Inserting Strings and Wide Strings ..424
Inserting Struct Types ..426
Inserting Sequence Types ..426
Inserting Fixed Precision Numbers ..427

x

00 0672318121 fm 6/20/01 5:46 PM Page x

Inserting Union Types ..427
Inserting Array Types ..427
Inserting Exception Types ..428
Inserting Object References ..428
Inserting any and TypeCode Types ..429

Extraction from org.omg.CORBA.Any ..429
Extracting Basic Types ..429
Extracting Strings and Wide Strings ..431
Extracting Struct Types ..433
Extracting Sequence Types ..433
Extracting Fixed Precision Numbers..434
Extracting Union Types ..434
Extracting Array Types ..434
Extracting Exception Types..435
Extracting Object References ..435
Extracting any and TypeCode Types ..436

Type Codes ..436
C++ Type Code Constants..437
Type Code Representations ..439
Inserting and Extracting Type Aliases..440
Comparison of Type Codes ..442

Summary ..444

9 CALLBACKS 445
Processing Invocations in a Client ..445
Avoiding Deadlock in Callbacks ..447
Callback Example Using oneway Operations448

Limitations of oneway Operations ..449
Callback Sample Implementation ..449

Summary ..457

10 INTERCEPTORS 459
Portable Interceptor Interface ..460
Request Interceptors ..460

Client-Side Interceptor ..461
Server-Side Interceptor ..467
Request Information ..471

Portable Interceptor Current ..476
IOR Interceptor ..477
PolicyFactory Interface ..477
Registering Interceptors ..478
Writing and Using Portable Interceptors ..480

Writing a Server-Side Interceptor ..480
Registering the Interceptor ..483
Running an Application Using the Interceptor485

Summary ..486

x i

00 0672318121 fm 6/20/01 5:46 PM Page xi

11 OBJECTS BY VALUE 487
Overview of Value Semantics ..487

Pass by Value Semantics ..488
Value Factories ..491
Pass by Reference Semantics ..492

Regular Value Type ..495
IDL Syntax ..495
C++ Mapping ..496
Java Mapping..499

Example of a Regular Value Implementation......................................501
Example IDL ..501
Implementing a Regular Value ..502
Implementing a Value Factory..504
Registering the Value Factory ..506
Passing the Value as a Return Value ..508

Other Kinds of Value Type ..509
Values That Inherit from a Value..509
Values That Inherit from an Interface ..513
Abstract Values ..517
Abstract Interfaces..517
Summary of Inheritance Rules ..519

Summary ..521

12 EVENTS SERVICE 523
CORBA Event Service Patterns ..524

Event Flow Models ..525
Using an Event Channel ..527

Implementing a Consumer ..542
Implementing a Supplier ..544

Summary ..546

13 CORBA COMPONENTS 551
Basic Architecture..552

Components ..553
Component Homes ..553
Containers ..554
Component Categories ..554

Defining IDL for Components ..556
Basic Component Declarations ..557
Basic Component Home Declarations ..558
Recycle Broker Example..566

Generating Component Skeletons ..569
Implementing Components..570

Implementing Session and Service Components571
Implementing Entity and Process Components577

x i i

00 0672318121 fm 6/20/01 5:46 PM Page xii

Implementing Component Homes ..584
Customizable Persistence ..584
Implementing Keyless Component Homes....................................585
Implementing Keyfull Component Homes590

Implementing Clients ..597
Container Programming Environment ..598

Internal Interfaces ..598
Callback Interfaces ..600

Extended Components ..601
Facets and Receptacles ..602
Event Sources and Event Sinks..603

Development and Deployment Roles ..604
Container Provider..605
Component Implementor..605
Component Assembler..605
Component Deployer..606

Component Assembly and Deployment ..607
Servant Lifetime Policies ..608
Transaction Policies..608
Security Policies ..609
Policy Constraints ..610

Summary ..610
Components IDL Module ..611

14 THE INTERNET INTER-ORB PROTOCOL 619
GIOP: The Basis for IIOP ..619

GIOP Design Goals ..620
GIOP Core Elements ..621

IIOP Specialization of GIOP ..625
Summary ..626

PART III SYNTAX REFERENCE 627

15 IDL DATA TYPES 629
Built-In IDL Types ..630

Array Type..630
boolean Type ..637
char Type ..640
double Type ..643
enum Type ..645
exception Type..650
fixed Type ..655
float Type..660
long Type ..663
long double Type ..666
long long Type..668

x i i i

00 0672318121 fm 6/20/01 5:46 PM Page xiii

native Type..670
Object Type ..671
octet Type ..671
sequence Type ..674
short Type ..681
string Type ..683
struct Type ..687
union Type ..693
unsigned long Type ..703
unsigned long long Type ..706
unsigned short Type..709
wchar Type ..712
wstring Type ..715

Pseudo-IDL from the CORBA Module ..719
CORBA::Context Interface ..719
CORBA::ContextList Interface ..721
CORBA::Environment Interface ..722
CORBA::ExceptionList Interface ..723
CORBA::NamedValue Interface ..724
CORBA::NVList Interface ..726
CORBA::Object Interface ..727
CORBA::ORB Interface ..731
CORBA::Request Interface ..741
CORBA::ServerRequest Interface..744
CORBA::TypeCode Interface ..745
CORBA::ValueBase Interface ..750

Exception Types ..751
The Exception Class ..751
The SystemException Classes..751
The UnknownUserException Classes ..753
The UserException Classes ..754

The PortableServer Module ..754
C++ PortableServer Functions ..755
The PortableServer Dynamic Implementation Classes..................755
PortableServer::Servant Native Type..756

Java Helper and Holder Types ..757
Helper Types ..757
Holder Types ..758

16 IDL GRAMMAR 759
Literals ..759

Integer Literals..759
Floating-Point Literals..759
Fixed-Point Literals ..760

x i v

00 0672318121 fm 6/20/01 5:46 PM Page xiv

Character Literals ..760
String Literals ..761

Expressions ..761
Integer Expressions ..762
Floating-Point Expressions ..763
Fixed-Point Expressions ..763

OMG IDL Grammar in EBNF Notation ..764

17 DYNANY TYPE 769
Introduction to the DynamicAny Module ..769

DynAny Type Is Unchangeable..770
Dynamic any Interfaces Are Locality Constrained770
Dynamic Invocation and Dynamic Skeleton Interfaces770

Dynamic Creation of Type Codes..771
Type Code for Structs ..774
Type Code for a Union ..776
Type Code for Recursive Type ..778

Creating and Destroying a DynAny ..780
DynAny Examples ..782

Creating a DynStruct ..782
Creating a DynUnion..785
Creating Other DynAny Types ..788

Dynamic any IDL ..788

18 DYNAMIC INVOCATION INTERFACE 795
Overview of the DII ..795
Use of CORBA::DynAny and CORBA::TypeCode796
Using CORBA::Request Objects ..796

Sample IDL Interface ..797
Use of _request() ..797
Processing Exceptions ..804
Use of _create_request() ..806

oneway Invocations..809
Asynchronous Invocations ..809
Pseudo-Interfaces ..810

19 DYNAMIC SKELETON INTERFACE 813
Overview of the DSI ..813

POA for the DSI Servant..815
Single DSI Servant Supporting Many Interfaces816
A Sample Bootstrap Interface ..817

C++ Implementing a DSI Servant ..817
C++ Overriding DynamicImplementation Member Functions......818

Java Implementing a DSI Servant ..822
Java Overriding DynamicImplementation Methods822

x v

00 0672318121 fm 6/20/01 5:46 PM Page xv

20 INTERFACE REPOSITORY 829
Structure of the Interface Repository ..830

Nodes of the Parse Tree..830
Base Interfaces..830

Using the Interface Repository ..831
Populating the Interface Repository ..832
Making an Initial Connection ..832
Searching the Parse Tree ..832
Iterating Over the Parse Tree..834

An Example of Reading from the Interface Repository......................836
IDL for the Interface Repository ..841

21 CORBA SYSTEM EXCEPTIONS 857

INDEX 865

00 0672318121 fm 6/20/01 5:46 PM Page xvi

About the Author
Fintan Bolton is a software consultant, trainer, and technical writer for IONA
Technologies, the world’s leading developer of CORBA tools and software. Mr. Bolton
has trained developers in the use of CORBA-based software such as Orbix, OrbixWeb,
and OrbixOTM. He has also written technical documentation for many CORBA-based
products, including Orbix 2000 and OrbixOTM. He can be reached at
fbolton@pure-corba.com or at the accompanying Web site for this book,
http://www.pure-corba.com.

About the Contributing Authors
Jeremy L. Rosenberger is a cofounder of and principal consultant with Ivy Design
Group LLC (also known as ivyDesign), a consulting firm specializing in enterprise
application architecture using Java, CORBA, EJB, and J2EE technologies. Mr.
Rosenberger is also the author of Sams Teach Yourself CORBA in 14 Days (Sams
Publishing, 1998). He can be reached at jeremy@ivydesign.com.

Mark Shacklette is a principal with Leverett & Pierce, Inc. in Chicago, where he spe-
cializes in the design and implementation of distributed object e-Commerce solutions
for clients which include the American Bar Association, Siemens, A. C. Nielsen, The
Options Clearing Corporation, The Chicago Board of Trade, Kemper Insurance, CNA
Insurance, and The Northern Trust Bank. He holds degrees from Furman and Harvard
Universities, and is on the faculty of computer science at the University of Chicago,
where he teaches courses on operating systems, distributed object technology, and
object-oriented architecture, design, and methodology.

Lichun Wang, Ph.D., is a research scientist in applied computing and bioinformatics
at EBI (the European Bioinformatics Institute), currently working on using CORBA
and XML for accessing and distributing biological data.

00 0672318121 fm 6/20/01 5:46 PM Page xvii

Dedication
To Sylvia, for your love and support.

—Fintan

Acknowledgments
I owe thanks to many people who helped create this book: the editors, Carol Ackerman,
Heather Goodell, and Gene Redding, for their dedication and the encouragement they
gave me throughout the book’s long gestation; the technical reviewers, Ajay M.R. and
Jeremy Rosenberger, for their careful reading of the manuscript and constructive com-
ments; the members of the Orbix code generation team, Ciaran McHale, Alan Conway,
Adrian Skehill, and Anne Kinsella, who inadvertently provided me with the starting
point for many of the code examples; and finally, to all of my colleagues in IONA
Technologies who have patiently answered my questions over the years and shared
their expertise in postings to internal newsgroups. This book could not have been writ-
ten without them. -Fintan

00 0672318121 fm 6/20/01 5:46 PM Page xviii

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do better,
what areas you’d like to see us publish in, and any other words of wisdom you’re will-
ing to pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can fax,
e-mail, or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-581-4770
E-mail: feedback@samspublishing.com
Mail: Michael Stephens

Associate Publisher
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

00 0672318121 fm 6/20/01 5:46 PM Page xix

00 0672318121 fm 6/20/01 5:46 PM Page xx

Introduction
This book is a practical guide to writing CORBA-compliant applications in C++ and
Java. Rather than describing how to program using one particular ORB (or ORBs), this
book focuses on the CORBA standard itself. Of course, examples have to be tested and
for this purpose Orbix 2000 from IONA Technologies is used. In cases where there is
any divergence from the standard, however, examples are written to be CORBA-
compliant.

Equal priority for C++ and Java is ensured by presenting code fragments and examples
in both languages throughout. A side effect of this is that a detailed comparison of the
IDL-to-C++ and IDL-to-Java mappings can be made by comparing the code examples
that appear throughout the book. Comments are liberally distributed throughout the
code examples to aid legibility and to ensure that the examples can stand on their own.

At the time of writing, the eagerly-awaited CORBA 3 specification has yet to be
released. Some aspects of the CORBA 3 specification are still being worked on but the
most important element, the CORBA Component Model (CCM), is already available
as an informal specification. Chapter 13, “CORBA Components,” previews the CCM
based on that specification. No commercial implementations of the CCM are yet avail-
able, however, so the code examples in that chapter are by necessity untested.

This book is intended for experienced C++ and Java developers who want to learn the
rudiments of CORBA programming quickly and, thereafter, use the book mainly as a
reference guide. From a CORBA perspective, the book is self-contained and requires
no previous knowledge of distributed systems or of CORBA application development.

How This Book Is Organized
Chapters 1 and 2 provide a fast-track introduction to CORBA programming, as well as
detailed descriptions of basic programming techniques. All of the chapters up to and
including Chapter 8 cover the core topics that you need to understand to become an
effective CORBA programmer. Chapters 9–14 discuss standalone topics that you can
dip into as the need arises. The last part of the book, which spans Chapters 15–21, is a
syntax reference that provides more than just syntax. Examples are provided and
semantics are discussed, as necessary, to ensure that you can quickly make effective
use of the various CORBA programming interfaces.

01 0672318121 intro 6/20/01 5:35 PM Page 1

01 0672318121 intro 6/20/01 5:35 PM Page 2

PA R T I

CONCEPTUAL REFERENCE
1 CORBA Architecture

2 Programming with CORBA

02 0672318121 Part1 6/20/01 5:37 PM Page 3

02 0672318121 Part1 6/20/01 5:37 PM Page 4

CORBA Architecture
This chapter explains the basic concepts of the Common
Object Request Broker Architecture (CORBA) that form a
foundation for the rest of the book. An overview of the
CORBA architecture is also provided, and the work of the
Object Management Group, the CORBA standards body, is
described.

The Rise of Middleware
Middleware thrives on the diversity of computer platforms
found in a typical company’s IT infrastructure. There are many
factors at work that fuel the inhomogeneity of large computer
systems:

• Legacy systems
A company might aspire to replace old technology with
new. However, it often proves too expensive and risky
to replace an old system completely, so a mixture of old
and new technology is used instead.

• Technology niches
Some hardware platforms and software packages that
deviate from the corporate norm might have to be used
because their special features are needed.

• Legislation
Legislation aimed at deregulating industry can have an
impact on the computer infrastructure of affected com-
panies. In general, deregulation places a requirement on
computer systems to be more flexible and open.

• Mergers and acquisitions
When a merger or acquisition takes place, the compa-
nies involved face the considerable technical challenge
of successfully integrating their respective computer
networks.

C H A P T E R 1

C
O

R
B

A
 A

rch
ite

ctu
re

03 0672318121 CH01 6/20/01 5:37 PM Page 5

Often, an organization finds it can muddle along by letting diverse computer systems
operate in parallel. An occasional manual intervention and batch transfer of files from
one system to another can keep the whole edifice going. This approach, however, is
becoming unsustainable with the growing importance of the World Wide Web. Web
applications require seamless integration of an IT infrastructure so that transactions can
be automated. Many organizations have found that the Web gives them a powerful
motive to address integration problems and unify different systems across their organi-
zation. This goes some way toward explaining the increasing interest in middleware
technology.

The Object Management Group
The Object Management Group (OMG) is the organization that steers the development
of the CORBA standard. It was founded in 1989 by a group of companies with the aim
of marrying two emerging strands of technology: remote procedure calls and object
orientation. The OMG set itself the goal of producing a complete infrastructure for dis-
tributed computing, the object management architecture (OMA). The CORBA stan-
dard, which is popularly used as a synonym for the whole of the OMA, is a core part
of the OMA that describes the basic infrastructure needed to support distributed
objects.

The OMG has put in place a formal procedure, the technology process, that describes
how new elements of the CORBA standard are proposed and adopted. The technology
process driving the CORBA standard has proved quite effective at ensuring that new
specifications can be implemented and used in practice. The development of each part
of the standard is coordinated by a task force, consisting of experts drawn from the
OMG membership. Members have the right to submit proposals for new standards or
for modifications to existing standards. Once a proposal is being considered for adop-
tion, members vote to accept or reject the proposal. An architecture board has respon-
sibility for overseeing the development of the CORBA standard and ensuring its overall
consistency. In practice, Object Request Broker (ORB) implementors usually base a
proposal on an existing implementation or partial implementation. Consequently, the
proposed CORBA specifications tend to be realistic and implementable.

The CORBA standard is an open standard, and all of the specifications are freely down-
loadable from the OMG public Web site at http://www.omg.org. The documents can
be divided into formal specifications that have been voted on and formally adopted,
adopted specifications that have been adopted but are subject to minor changes, and
work in progress documents. It is a good idea to take a look at the adopted specifica-
tions and work in progress documents, which can be found under the technology
process pages at the OMG Web site, since many of the more recent specifications are
only available there.

6 C h a p t e r 1 : C O R B A A r c h i t e c t u r e

03 0672318121 CH01 6/20/01 5:37 PM Page 6

The Common Object Request Broker
Architecture
The CORBA specification, which is the core part of the OMA, describes the basic
infrastructure for making object-oriented remote procedure calls. This section presents
a conceptual overview of CORBA, covering the following topics:

• Remote procedure calls
• CORBA requirements
• The OMG interface definition language
• The Internet inter-ORB protocol
• Basic CORBA concepts
• Locating and activating servers
• Finding CORBA objects
• Dynamic CORBA

Remote Procedure Calls
Throughout the 1980s, remote procedure call (RPC) technology was developed and
began to be used widely. The two most popular kinds of RPC are SUN RPC and dis-
tributed computing environment (DCE) RPC.

To the application that calls it, a remote procedure call looks like a local function call
but, instead of executing locally, the procedure’s parameters are sent across the network
to a remote application that evaluates the procedure. The procedure’s return values, if
any, are then sent back across the network to the calling application. The RPC infra-
structure provides the rudiments of a distributed system. The calling application is a
client and the called application is a server.

Figure 1.1 shows an outline of a basic remote procedure call. When a client makes a
remote procedure call, the parameters of the call are marshaled into a request packet
and sent across the network to the server, typically using either the user datagram pro-
tocol (UDP) or transmission control protocol (TCP) for the transport layer. Marshaling
refers to the copying of parameters into a buffer in a format suitable for transmission
over the network. A request is an RPC message, transported inside a UDP or TCP
packet, that contains the name of the remote procedure and a list of its parameters.

T h e C o m m o n O b j e c t R e q u e s t B r o k e r A r c h i t e c t u r e 7

Client Server

Reply

return 1

return 2

…

Evaluate
Procedure

Request

op name

arg 1

arg 2

…

Figure 1.1

A basic remote procedure call.

03 0672318121 CH01 6/20/01 5:37 PM Page 7

When the request arrives at the server, the parameters are unmarshaled and the server
evaluates the procedure. After evaluation, the procedure’s return values are marshaled
into a reply packet that is sent back to the waiting client. A reply is an RPC message
containing either a collection of return values or an error status.

An interesting feature of this example is that the call is synchronous. That is, when the
client makes a call, it is blocked until the matching reply is received from the server.
Synchronous calling is the usual mode of operation for remote CORBA invocations as
well.

CORBA Requirements
Because distributedsystems can potentially operate across different hardware platforms
and use different operating systems and programming languages, it is desirable to
abstract away platform and implementation details. Another aim is to ensure that
remote procedure calls are almost as easy to use as native programming constructs.
Therefore, CORBA is designed with the following goals in mind:

• Object orientation
• Location transparency
• Programming language neutrality
• Support for bridges

Object Orientation
One of the main improvements that CORBA offers over earlier RPC technology is
object orientation. Remote operations are grouped into interfaces, in the same way that
functions in C++ and Java are grouped into classes. An instance of an interface is
known as a CORBA object. It should be born in mind, however, that a CORBA object
is an abstract idea and, therefore, is not always directly identifiable with a C++ or Java
object.

An invocation of an operation on a CORBA object is shown in Figure 1.2. The CORBA
object lives in the server and an invocation (effectively a remote procedure call) is
made by the client. To make a remote invocation, the client must obtain the identity of
the CORBA object, represented by a CORBA object reference. An object reference
encapsulates all the information (including location) that is needed to use the CORBA
object.

8 C h a p t e r 1 : C O R B A A r c h i t e c t u r e

Client Server
remote
invocation

CORBA
Object

Figure 1.2

A CORBA invocation (remote procedure call).

03 0672318121 CH01 6/20/01 5:37 PM Page 8

Note that a particular object reference in CORBA refers to a unique CORBA object. If
you use the same object reference at different times, invocations are routed to the same
unique CORBA object.

Location Transparency
To make CORBA easier to use, location transparency of CORBA objects is supported.
Location transparency means that it does not matter where the CORBA object is (local
or remote). You always invoke operations on it using the same syntax.

This is illustrated by Figure 1.3, which shows applications A and B running on host
platform X and application C running on host platform Y. Consider the code in appli-
cation A that invokes on a CORBA object. It does not matter whether the CORBA
object is in the same address space as application A, in another process on the same
host (application B on host X), or even another process on a different host (application
C on host Y). In every case, the invocation is made using the same syntax.

T h e C o m m o n O b j e c t R e q u e s t B r o k e r A r c h i t e c t u r e 9

Host X

App A

local
invocation

Host Y

App C

remote
invocation

App B

remote
invocation

Figure 1.3

Location transparency of CORBA objects.

Programming Language Neutrality
CORBA is designed to work with multiple programming languages. Both invocation
syntax (client-side code) and implementation of CORBA objects (server-side code) can
be written in the programming language of your choice. Some programming languages
for which language mappings currently exist are C, C++, Java, COBOL, Ada,
Smalltalk, and Lisp.

Figure 1.4 shows a Java client invoking on a C++ CORBA object that, in turn, invokes
operations on a COBOL CORBA object. You may wonder how it can make sense to
talk about objects implemented in a language like COBOL, which is not even object
oriented. It is possible because clients view a server through an object-oriented IDL
interface. One of the strengths of CORBA is that it allows you to introduce object-
oriented concepts to languages that are not inherently object oriented.

03 0672318121 CH01 6/20/01 5:37 PM Page 9

1 0 C h a p t e r 1 : C O R B A A r c h i t e c t u r e

UNIX Host

Java Client

invocation

Mainframe Host

ServerC++ Server

C++ COBOL

Figure 1.4

Using multiple programming languages.

Support for Bridges
CORBA is not the only technology to provide a distributed computing platform. Older
specifications, such as distributed computing environment (DCE) RPC, and newer
specifications, such as Microsoft’s DCOM, also are widely used. The OMG anticipated
that there would be a need to operate in conjunction with alternative technologies, and
therefore it provides an interworking architecture as part of the core specification.

In practice, CORBA, DCOM, and DCE occupy slightly different niches in the realm of
distributed technology, and ORB vendors have regarded bridges as an opportunity to
promote acceptance of CORBA technology. Consequently, there are many commer-
cially available CORBA/DCOM bridges.

OMG Interface Definition Language
The interface to a CORBA object is defined using OMG interface definition language
(IDL). The OMG IDL is a language in its own right and is not derived from an exist-
ing programming language. Unlike regular programming languages, however, the
OMG IDL is a purely declarative language—there are no syntactical constructs for
evaluating expressions or describing algorithms.

There are many advantages to basing CORBA on IDL. The IDL is optimized to be
adaptable to different programming languages, and the syntax can be expanded as nec-
essary to deal with the demands of distributed systems. The only drawback is that
developers have to learn a new language. However, the OMG IDL is relatively simple,
and programmers familiar with C++ or Java will grasp the rudiments of IDL syntax in
a very short time.

Listing 1.1 shows an example of an IDL interface, CustomerAccount, that might be
used to represent a customer account in a bank.

Listing 1.1 IDL Interface Example
//IDL
interface CustomerAccount {

string get_name();
long get_account_no();

03 0672318121 CH01 6/20/01 5:37 PM Page 10

Listing 1.1 continued
boolean deposit_money(in float amount);
boolean transfer_money(

in float amount,
in long destination_account_no,
out long confirmation_no

);
};

An IDL interface is analogous to a class declaration for CORBA objects. The only sur-
prise for a C++ or Java programmer in Listing 1.1 is the appearance of the in and out

direction indicators. An in parameter is a parameter passed from the client to the server
(pass by value), and an out parameter is a parameter passed from the server back to the
client (an extra return value). The OMG IDL is discussed further in Chapter 2,
“Programming with CORBA.”

Internet Inter-ORB Protocol
The main innovation at the time of release of the CORBA 2.0 specification was the
specification of the Internet inter-ORB protocol (IIOP). The IIOP defines a standard
protocol for the mediation of CORBA invocations over the TCP/IP transport layer. In
fact, IIOP is a specialization of the general inter-ORB protocol (GIOP), which defines
the protocol independently of the transport layer.

One of the benefits of IIOP is that it facilitates interoperability between different ven-
dor’s ORBs. This means that a client written using one brand of ORB can communi-
cate with a server implemented using a completely different brand of ORB. Prior to the
introduction of IIOP, ORB vendors implemented proprietary protocols for the trans-
mission of CORBA invocations, and interoperability was not possible.

Basic CORBA Concepts
This section describes the basic elements of the core CORBA specification. The fol-
lowing concepts are discussed:

• IDL compilers
• Language mappings
• Stub and skeleton code
• Object references
• Object adapters
• The object request broker

IDL Compilers
Defining the IDL for your system is the first step in the development of a CORBA
application. It allows you to define interfaces to your CORBA objects in a manner that
is platform independent, language neutral, and independent of implementation details.
After you have written the application IDL, you can decide which platforms and pro-
gramming languages you are going to use for the client and server.

B a s i c C O R B A C o n c e p t s 1 1

03 0672318121 CH01 6/20/01 5:37 PM Page 11

An IDL compiler is used to map the IDL to a specific language. Consider, for exam-
ple, a system where the client is implemented in Java and the server in C++. Figure 1.5
shows an outline of the steps involved.

• On the client side, the IDL file is passed through an IDL compiler for Java. The
IDL compiler maps the IDL definitions to Java, producing Java stub code as
output. The stub code provides a client with the code it needs to make Java
invocations on the interfaces defined in the IDL file.

• On the server side, the IDL file is passed through an IDL compiler for C++. The
IDL compiler produces C++ skeleton code as output. The skeleton code pro-
vides a server with the code needed to define CORBA object implementations.

Of course, the choice of languages could easily be reversed so that the client is imple-
mented in C++ and the server in Java.

1 2 C h a p t e r 1 : C O R B A A r c h i t e c t u r e

C++ Server
Executable

C++
Runtime

C++

Compile

Skeleton
Code

C++ Server
Code

Java Client
Executable

Java
Runtime

Java

Compile

Client
Code

Java Stub
Code

IDL�C++ CompilerIDL�Java Compiler

IDL
File

Client Server

Figure 1.5

An example of a Java client and a C++ server.

An IDL compiler is typically provided as a command-line utility that reads an IDL file
and produces files in the target language, either stub or skeleton code. IDL compilers
are usually language specific: You would use one command-line utility for mapping
IDL to Java and another utility for mapping IDL to C++.

Language Mappings
CORBA supplements the core specification with a number of language-mapping docu-
ments that specify how to translate IDL definitions into equivalent constructs in the tar-
get language. For example, if your target language is C++ or Java, the language mapping

• Defines how IDL data types map to equivalent C++ or Java data types.

03 0672318121 CH01 6/20/01 5:37 PM Page 12

• Defines how IDL interfaces map to classes, and how IDL operations map to
member functions (C++) or methods (Java).

• Describes how to go about implementing CORBA objects on the server side.

To find the latest supported language mappings, look at the OMG Web site at
http://www.omg.org and follow the link to the formal documentation pages. The for-
mal specifications are freely available for download.

Stub and Skeleton Code
The stub and skeleton code generated by IDL compilers is used to make clients and
servers, respectively, aware of the definitions appearing in the IDL file. The stub code
is used on the client side, and it allows clients to invoke operations on remote CORBA
objects using the same syntax as if they were local objects. For example, the Java stub
code in Figure 1.5 contains the following Java definitions:

• Each IDL data type is represented by a corresponding Java data type.
• Each IDL interface is represented by a corresponding Java interface.
• Each IDL operation is represented by a corresponding Java method.

The skeleton code (a superset of the stub code) is used on the server side and enables
servers to implement CORBA objects. For example, the C++ skeleton code in
Figure 1.5 is used to associate IDL interfaces with C++ classes implemented by the
developer. When a client invokes a particular IDL operation on an interface, the corre-
sponding C++ member function of a C++ class is then invoked.

Object References
Figure 1.6 shows how the application code, stub, and ORB library fit together on the
client side and how the application code, skeleton, and ORB library fit together on the
server side. On the client side, the CORBA application programming interface (API)
consists of the runtime library API, giving access to the ORB object and other standard
objects, and the stub code API, giving access to user-defined IDL interfaces.

B a s i c C O R B A C o n c e p t s 1 3

Client Server

invoke
CORBA
Object

Runtime Library Runtime Library

Stub Code Skeleton Code

Object
Reference

Request

Reply

Figure 1.6

Using an object reference to make a remote invocation.

03 0672318121 CH01 6/20/01 5:37 PM Page 13

A client must have an object reference to make invocations on a CORBA object because
the object reference encapsulates the location details of the CORBA object. In C++ and
Java, the object reference is itself an object having member functions mapped from the
operations of the corresponding IDL interface. When a client makes an invocation, it
calls the appropriate member function on the object reference. As far as the client is con-
cerned, the object reference might as well be the CORBA object. The object reference
acts as a stand-in, or proxy object, for the CORBA object on the client side.

However, the object reference does not actually implement the invoked operation.
Figure 1.6 shows what happens after the object reference’s member function is called:
A remote procedure call is initiated, with a request being sent to the remote server con-
taining the parameters of the operation. On the server side, the invocation is routed to
the appropriate CORBA object with the help of the ORB library and the skeleton code.
The server executes the operation and then sends back a reply containing the return
value and out parameters. Back on the client side, the object reference passes back the
return value and out parameters to the application code.

Object Adapter
The language mappings for C++ and Java take advantage of the fact that C++ and Java
are object oriented by letting you implement classes for CORBA objects in the same
way as you would for ordinary C++ or Java objects.

After implementing a CORBA class, you need to indicate to the ORB that the class rep-
resents a particular IDL interface. You also need a way of telling the ORB how to make
instances of this class, the CORBA objects, accessible to client applications. The part
of the ORB responsible for these tasks is the object adapter.

The essential responsibilities of an object adapter are

• To provide a mechanism for associating a C++ or Java class with a particular
IDL interface.

• To manage the lifecycle of CORBA objects. In particular, the object adapter
must provide a way of activating CORBA objects (making them accessible to
clients), and a way of deactivating CORBA objects (making them inaccessible
to clients).

Two different kinds of object adapter are commonly used: the basic object adapter
(BOA) and the portable object adapter (POA).

The BOA dates from earlier versions of the CORBA specification (pre-CORBA 2.2).
Because the BOA is loosely specified, individual ORB vendors have been forced to
introduce proprietary extensions to implement it. Consequently, code written using the
BOA is not portable between ORB implementations.

The POA was added to the CORBA specification for CORBA 2.2 and is intended to
replace the BOA. The POA specification is very detailed, allowing a good degree of
portability between ORB implementations and adding many enhancements. The POA
is described in detail in Chapter 7, “The Portable Object Adapter.”

1 4 C h a p t e r 1 : C O R B A A r c h i t e c t u r e

03 0672318121 CH01 6/20/01 5:37 PM Page 14

The Object Request Broker
At this stage, it would be nice if we could point at some entity and say “this is the
ORB.” However, there is no such entity because the ORB is an abstraction. An ORB is
the sum total of the infrastructure that enables you to make remote invocations. A typ-
ical ORB has the following main elements:

• The stub and skeleton code that is obtained from your IDL and linked with
your applications.

• A runtime library to link with your applications.
• A mechanism for locating and activating remote servers. Typically, a daemon

process (or processes) fulfills this role.

Deployment of CORBA Applications
The basic deployment issues for a CORBA system are the configuration, the mecha-
nism for locating CORBA objects, and the mechanism for activating server processes
on demand. Different ORB implementations take varying approaches to these deploy-
ment issues. Differences also necessarily arise because of the demands of particular
platforms.

The CORBA specification is deliberately open ended when it comes to deployment.
However, there are some broad features that are common to most ORB implementa-
tions, and these are described in the following two sections.

Finding CORBA Objects
The basic entity used to encapsulate the location of a CORBA object is an object ref-
erence. An ORB using TCP/IP as the transport layer typically puts the following key
pieces of information into an object reference:

• The IP hostname of the host where the server runs
• The IP port number that the server listens on
• A unique object identity

This information is sufficient to locate a remote server and identify a particular
CORBA object that lives in that server. Object references contain all the information
needed to find and use a CORBA object.

In C++ or Java ORBs, object references are represented as objects at runtime. However,
object references can also be passed from place to place. A standard format, the inter-
operable object reference (IOR), is defined for this purpose. An IOR can be passed in
a request or a reply as part of a remote procedure call, or it can be converted into a
string format, the stringified IOR.

Object references originate in servers. If a client needs to obtain an object reference, a
server must create the object reference and pass it back to the client. This creates a
Catch-22 situation, however, whereby the client cannot establish contact with a server
until it gets an object reference that must be obtained from that server. The solution is
to use an intermediary for passing object references.

D e p l o y m e n t o f C O R B A A p p l i c a t i o n s 1 5

03 0672318121 CH01 6/20/01 5:37 PM Page 15

Three common solutions for obtaining object references are

• To write stringified IORs to files.
A server can stringify an IOR and write it to a file that is known to the client.
This is a primitive approach that is useful for testing but does not scale to real-
istic distributed systems.

• To use the CORBA naming service.
The naming service associates names with object references and stores these
(name to object reference) bindings in a central location. A client needs only to
know the location of the naming service and the names of some objects to
bootstrap connections to servers. The naming service is described in Chapter 6,
“Interoperable Naming Service.”

• To use the CORBA trading object service.
The trading service resembles the naming service in that it is a central reposi-
tory of object references, but it is more flexible. The features offered by the
trading service include the capability to search for object references by query-
ing their properties. The trading service is not covered here.

Locating and Activating Servers
For a client to make a network connection to a server, the ORB has to provide a mech-
anism for locating the server. In addition, if the server is dormant, the ORB must be
capable of activating the server on demand. Both of these mechanisms, locating and
activating servers, are highly ORB-specific, and you will find that no two ORBs go
about it in the same way.

Nevertheless, there are some features of locating and activating servers common to
most ORBs. This section describes a generic model of an ORB implementation that
illustrates some common features. Two important entities are used in this generic
model:

• An ORB Daemon Process
A daemon process is a concept that has its origins in the UNIX operating sys-
tem (on Windows NT, the equivalent concept is a Windows NT service). It
refers to a process that starts up automatically as a machine is booted up and
remains running permanently in the background. The role of a daemon is to lis-
ten for service requests and activate server processes, when needed, to deal
with the requests. For example, ftpd and httpd are UNIX daemons that ser-
vice FTP and HTTP connection attempts, respectively.
The purpose of an ORB daemon process is to listen for CORBA client connec-
tion attempts and to assist the client in connecting to the appropriate server. In
fact, a particular ORB implementation might use several daemons. For exam-
ple, the tasks of locating, activating, and licensing a server might be assigned to
three separate daemons. In the generic model discussed here, however, it is
assumed that all tasks are assigned to a single daemon.

1 6 C h a p t e r 1 : C O R B A A r c h i t e c t u r e

03 0672318121 CH01 6/20/01 5:37 PM Page 16

• The Implementation Repository
This repository stores details about each server process. At its most basic level,
the implementation repository stores details about how to launch each server
process, an activation record. It is also an appropriate place to record the per-
missions associated with each server process. Because this is precisely the
information needed by the ORB daemon, the implementation repository is
effectively a database used by the ORB daemon.

The following subsections describe basic scenarios, using the generic model for pur-
poses of illustration.

Invoking on a Dormant Server
This scenario shows a CORBA client about to connect to a remote CORBA server. On
the server machine (a UNIX host), there is an ORB daemon process running in the
background. The CORBA server is dormant, but the information needed to activate it
is stored in the implementation repository.

Figure 1.7 shows the steps that occur automatically to establish a connection between
the client and the server.

D e p l o y m e n t o f C O R B A A p p l i c a t i o n s 1 7

Client Host Server Host

ServerClient

2. Activate

ORB Daemon Process

Implementation
Repository

3. Invoke

1. Locate Server

Figure 1.7

Invoking on a dormant server.

The steps are as follows:

1. Get the server location.
The client opens a network connection to the remote ORB daemon and asks it
for the server location details.
This step presupposes that the client is able to find the ORB daemon in the first
place. If the ORB implementation adheres strictly to the CORBA standard, the
client gets this information from a cached object reference. On the other hand,
many ORBs perform this step using a proprietary approach. For example, the
client might assume that the ORB daemon is listening on a standard Internet
protocol (IP) port number, or the client might use a UDP multicast message to
find the ORB daemon.

03 0672318121 CH01 6/20/01 5:37 PM Page 17

2. Activate the server.
Because the server is dormant, the ORB daemon retrieves the server’s activa-
tion record from the implementation repository and uses this information to
activate the server (that is, spawn a new server process). Each activation record
in the implementation repository is associated with at most one server process.
Older versions of the CORBA specification used to allow multiple server
processes to be associated with a single activation record, depending on the acti-
vation mode that was chosen. Activation modes are now obsolete—they substi-
tuted for multithreading at a time when threads were still an exotic novelty.

3. Make CORBA invocations.
Using the location information retrieved in step 1, the client can now open a
network connection to the server and begin sending invocation requests.

Invoking on an Active Server
In this scenario the CORBA server is already running. The server has possibly already
been activated in response to a client or manually started by an administrator.

Figure 1.8 shows the steps that occur automatically to establish a connection between
the client and the server.

1 8 C h a p t e r 1 : C O R B A A r c h i t e c t u r e

Client Host Server Host

ServerClient

ORB Daemon Process

Implementation
Repository

2. Invoke

1. Locate Server

Figure 1.8

Invoking on an active server.

The steps are as follows:

1. Get the server location.
It is assumed that the ORB daemon has some way of tracking the CORBA
server processes activated within its domain and therefore knows the server’s
location.

2. Make CORBA invocations.
It is possible that other clients are already connected to the server. A CORBA
server can support as many clients as the operating system will allow.
Typically, the first resource limit reached by a server is the maximum number
of open connections allowed by the operating system.

03 0672318121 CH01 6/20/01 5:37 PM Page 18

Invoking on a Transient CORBA Object
A transient CORBA object is a short-lived object that survives at most as long as the
server process that created it. The object reference for a transient CORBA object typi-
cally contains the server’s IP port instead of the daemon’s IP port. This enables the
transient object to bypass the daemon when a server connection is being established.

Figure 1.9 shows the steps that occur automatically to establish a connection between
the client and the server.

T h e O b j e c t M a n a g e m e n t A r c h i t e c t u r e 1 9

Figure 1.9

Invoking on a transient CORBA object.

The steps are as follows:

1. Make CORBA invocations.
When an invocation is made on a transient object, the request message
bypasses the ORB daemon and goes directly to the active server. The client
opens the connection to the server and begins making invocations right away.
This scenario assumes that the server is active. If it is not, the client invocation
fails.

The Object Management Architecture
In addition to the CORBA core specification, the OMG defines the CORBA Services
and the CORBA Facilities. Collectively, the components of the specification make up
the object management architecture.

CORBA Services
The CORBA Services group together basic services that are commonly needed in a
wide variety of applications, including security and support for transactions. Table 1.1
shows the complete list of services that have been adopted by the OMG at the time this
book is being written.

Client Host Server Host

ServerClient

ORB Daemon Process

Implementation
Repository

1. Invoke

03 0672318121 CH01 6/20/01 5:37 PM Page 19

Table 1.1 Adopted CORBA Services

CORBA Service Description

Collection A service for managing and moving groups of CORBA
objects.

Concurrency A service that enables you to perform distributed locking.
Used by the Object Transaction Service.

Event A simple messaging service.
Externalization A service that enables CORBA data types to be stored in

an external location.
Interoperable Naming A basic directory service that stores name to object refer-

ence bindings in a central repository.
Licensing A service to manage the licensing of a distributed applica-

tion.
Life Cycle A service to describe a pattern for remotely creating and

destroying CORBA objects.
Notification A flexible messaging service that supports message filter-

ing and configurable qualities of service.
Persistent Object (Obsolete) Superseded by the Persistent State Service.
Persistent State A CORBA-friendly persistence mechanism.
Property A simple service for associating names with properties.
Query A service that is used to manipulate collections of CORBA

objects.
Relationship A service that can be used to define relationships

between pairs of CORBA objects.
Security A service to describe how an ORB provides secure com-

munications and defines the different levels of security
that can be provided.

Time A basic service that provides the current time and other
time-related services.

Trading Object A flexible directory service that facilitates object discovery
by querying the properties of an object.

Transaction A service that allows safe simultaneous updates of data-
bases by providing support for distributed transactions.

The Rest of the Object Management Architecture
The OMG has established a number of working groups to develop specifications that
are useful in a broad range of industries. These specifications are divided up into a
number of categories:

• CORBA Common Facilities
The common facilities are similar to the CORBA services in that they are use-
ful for a wide variety of applications, but they are not as fundamental as the
CORBA services.

2 0 C h a p t e r 1 : C O R B A A r c h i t e c t u r e

03 0672318121 CH01 6/20/01 5:37 PM Page 20

At the time this book is being written, there are two formally ratified specifica-
tions: the Internationalization and Time specification and the Mobile Agent
Facility specification.

• Domain-Specific Specifications
A number of OMG working groups, domain task forces, are entrusted with
developing services for particular industry domains. Currently, there exist domain
task forces for CORBA Business, CORBA Finance, CORBA Manufacturing,
CORBA Medical, CORBA Telecoms, CORBA Transportation, CORBA
E-Commerce, and CORBA Life Science.

The specifications developed by the various OMG task forces are available from the
OMG Web site at http://www.omg.org.

Summary
This chapter discussed the motivations for using middleware technology and took a
brief look at the work of the OMG, which develops and promotes the CORBA stan-
dard. Important characteristics that distinguish CORBA from most other distributed
platforms are object-orientation, programming language neutrality, and the fact that
CORBA is based on an open standard.

Some basic CORBA concepts are explained in this chapter. A special declarative lan-
guage, OMG IDL, is introduced to declare interfaces for CORBA objects. Interfaces
defined in IDL can be mapped to particular programming languages, such as C++ or
Java, according to the rules of the CORBA language mapping specifications. This
enables a developer to access and implement CORBA objects using a syntax that is
similar to the native syntax for objects in the target language.

The roles of the IDL compiler, stub and skeleton code, and daemon process were
briefly discussed. These aspects of an ORB tend to be highly ORB-specific and non-
standard—consequently, IDL compilers and daemon processes are not discussed any
further.

The rest of the book focuses on writing application code for CORBA clients and
servers. The next chapter takes a relatively simple example of a client/server applica-
tion and, building on the example as it goes along, introduces most of the fundamental
concepts needed for CORBA programming.

S u m m a r y 2 1

03 0672318121 CH01 6/20/01 5:37 PM Page 21

03 0672318121 CH01 6/20/01 5:37 PM Page 22

Programming with CORBA
This chapter provides a basic introduction to programming
with CORBA in C++ and Java. A sample application, Book
Repository, is developed in five stages, and various aspects of
CORBA programming are discussed at each stage. The topics
covered include how to write a basic client/server application
using complex data types, exception handling, multiple IDL
inheritance, and the CORBA Naming Service.

A Basic Client-Server
Application—Example 1
This section introduces a book repository application that
tracks and administers various book collections. The applica-
tion might be used as a prototype for software that manages a
book library. A central CORBA server is connected to a data-
base backend that stores details of the books in each collection.
Clients connect to the server to search for books and perform
actions such as borrowing and returning books. This applica-
tion is built up in stages throughout this chapter as the neces-
sary CORBA features are introduced.

The first step in writing the CORBA application is to define the
interface between client and server in terms of OMG IDL.
Listing 2.1 shows the first draft of an IDL module,
BookRepository, which defines a single IDL interface,
Collection.

C H A P T E R 2

P
ro

g
ra

m
m

in
g

 w
ith

 C
O

R
B

A

04 0672318121 CH02 6/21/01 1:14 PM Page 23

Listing 2.1 IDL BookRepository Module for Example 1
//IDL

module BookRepository {
typedef long ISBN;
enum FuzzyBoolean {NO, YES, UNKNOWN};

interface Collection {
// IDL attributes
readonly attribute long number_of_books;
attribute string name_of_collection;

// IDL operations
FuzzyBoolean is_in_collection(in ISBN book_id);

};
};

The OMG IDL has a syntax that is similar to C++ and Java. The example in Listing 2.1
introduces the following IDL constructs:

• IDL comments, just like C++ and Java, are introduced by two forward slashes
and continue until the end of the line.

• An IDL module—for example, module BookRepository—is simply a device
for grouping related definitions together, like C++ namespaces and Java pack-
ages. A type defined within the BookRepository module gains
BookRepository:: as a prefix to its name, such as
BookRepository::FuzzyBoolean and BookRepository::Collection.

• An IDL typedef defines a synonym for a type. This is often called aliasing.
For example, in Listing 2.1 the type ISBN is defined to be an alias for long (a
32-bit integer).

• An enum type, FuzzyBoolean, is declared to have the allowed values NO, YES,
and UNKNOWN. The IDL enum construct is similar to an enum in C or C++ (no
native equivalent exists in the Java language, however).

• An IDL interface—for example, Collection—is analogous to an abstract class
in C++ or an interface in Java. It is the most fundamental construct in IDL
because it is used to define interfaces to CORBA objects.

• The Collection interface supports two attributes: number_of_books and
name_of_collection. There are two possible kinds of attribute:

• A read-only attribute is mapped to a single accessor function in the target
language, which allows the attribute value to be read.

• A plain attribute is mapped to an accessor and a modifier function in the
target language, which allows the attribute value to be read and modified.

• The Collection interface defines a single IDL operation:
is_in_collection(). The syntax of IDL operations is similar to regular func-
tions in C++ or methods in Java. However, one significant difference is that
operation parameters must be declared with a parameter passing mode—one of
in, inout, or out. An in parameter—for example, book_id in Listing 2.1—is
passed from the client to the server only.

2 4 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:14 PM Page 24

The IDL effectively defines a contract between the client and server and forms the basis
for communication between them. The following sections show you how to implement
a client and a server, in both C++ and Java, using the IDL from Listing 2.1.

Client Code
Listing 2.2 and Listing 2.3 give the complete code for a client of the
BookRepository::Collection interface in C++ and Java, respectively. The client con-
nects to the Book Repository server and remotely invokes a couple of attributes and an
operation to retrieve information about a Collection CORBA object.

Listing 2.2 C++ Client of the Collection Interface
//C++
//File: ‘bk_collection.cxx’
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <sstream>
#include “BookRepository.hh”

CORBA::ORB_var
global_orb = CORBA::ORB::_nil();

// read_reference() -- read an object reference from file.
static
CORBA::Object_ptr
read_reference(

const char* file
)
{

ifstream ifs(file);
CORBA::String_var strV;
ifs >> strV;
if (!ifs) {

cerr << “Error reading object reference from “ << file << endl;
return CORBA::Object::_nil();

}
return global_orb->string_to_object(strV);

}

int
main(int argc, char **argv)
{

try
{

A B a s i c C l i e n t - S e r v e r A p p l i c a t i o n — E x a m p l e 1 2 5

04 0672318121 CH02 6/21/01 1:14 PM Page 25

// Step 1 - Initialize the ORB.
global_orb = CORBA::ORB_init(argc, argv);

// Parse command line arguments:
if (argc != 1) {

cout << “Usage: bk_collection “ << endl;
exit(0);

}

// Step 2 - Obtain ‘BookRepository::Collection’ object reference.
CORBA::Object_var objV;
objV = read_reference(“BookRepository_Collection.ref”);
BookRepository::Collection_var collectionV

= BookRepository::Collection::_narrow(objV);
if (CORBA::is_nil(collectionV.in()))
{

cerr << “error: failed to narrow to Collection.” << endl;
exit(1);

}

// Step 3 - Invoke on ‘BookRepository::Collection’ object.
cout << “Details of book collection:” << endl;
CORBA::String_var name_strV;
name_strV = collectionV->name_of_collection();
cout << “\tName of collection = \”” << name_strV.in() << “\”” << endl;
CORBA::Long n_books;
n_books = collectionV->number_of_books();
cout << “\tNumber of books = “ << n_books << endl;

// Try changing the name of the book collection.
cout << “Changing name of book collection...” << endl;
collectionV->name_of_collection(“Brand new collection!”);
cout << “checking name of collection...” << endl;
name_strV = collectionV->name_of_collection();
cout << “\tName of collection = \”” << name_strV.in() << “\”” << endl;

}
catch(CORBA::Exception &ex)
{

cerr << “Unexpected CORBA exception: “ << ex << endl;
}

// Step 4 - Shut down the ORB.
try
{

global_orb->shutdown(1);
global_orb->destroy();

}

2 6 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.2 continued

04 0672318121 CH02 6/21/01 1:14 PM Page 26

catch (...)
{

// Do nothing.
}
return 0;

}

Listing 2.3 Java Client of the Collection Interface
//Java
package Pure.BookRepository;

import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import java.io.*;
import Pure.BookRepository.*;

public class bk_collection
{

// global_orb -- make ORB public
public static org.omg.CORBA.ORB global_orb = null;

// read_reference() -- read an object reference from file.
static org.omg.CORBA.Object read_reference(String file)
{

System.out.println(“Reading stringified object reference from “ + file);
String ref = null;
try
{

FileReader retrieve=new FileReader(file);
BufferedReader in=new BufferedReader(retrieve);
ref = in.readLine();

} catch (IOException ex)
{

System.out.println(“Error reading object reference from “
+ file + “ : “ + ex.toString()

);
return null;

}
org.omg.CORBA.Object obj = global_orb.string_to_object(ref);
return obj;

}

public static void main (String args[])
{

A B a s i c C l i e n t - S e r v e r A p p l i c a t i o n — E x a m p l e 1 2 7

Listing 2.2 continued

04 0672318121 CH02 6/21/01 1:14 PM Page 27

try
{

// Step 1 - Initialize the ORB.
global_orb = ORB.init(args, null);

String app_args[] = remove_ORB_args(args);

// Parse command line arguments:
if (app_args.length != 0) {

System.out.println(“Usage: bk_collection “);
System.exit(1);

}

// Step 2 - Obtain ‘BookRepository::Collection’ object reference.
org.omg.CORBA.Object obj;
obj = read_reference(“BookRepository_Collection.ref”);
Collection theCollection = CollectionHelper.narrow(obj);

// Step 3 - Invoke ‘BookRepository::Collection’ object.
System.out.println(“Details of book collection:”);
String name_str;
name_str = theCollection.name_of_collection();
System.out.println(“\tName of collection = \”” + name_str + “\””);
int n_books;
n_books = theCollection.number_of_books();
System.out.println(“\tNumber of books = “ + n_books);

// Try changing the name of the book collection.
System.out.println(“Changing name of book collection...”);
theCollection.name_of_collection(“Brand new collection!”);
System.out.println(“checking name of collection...”);
name_str = theCollection.name_of_collection();
System.out.println(“\tName of collection = \”” + name_str + “\””);

}
catch(Exception ex)
{

System.out.println(“Unexpected CORBA exception: “ + ex);
}

// Step 4 - Shut down the ORB.
try
{

global_orb.shutdown(true);
global_orb.destroy();

}
catch (Exception ex)
{

2 8 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.3 continued

04 0672318121 CH02 6/21/01 1:14 PM Page 28

// Do nothing.
}
return;

}
}

The bk_collection client performs the following steps:

1. Initialize the ORB—The first thing the client must do is create an ORB object,
global_orb, calling CORBA::ORB_init() in C++ and
org.omg.CORBA.ORB.init() in Java. The array of command-line arguments,
argv in C++ and args in Java, is passed to the initialization function, giving the
user an opportunity to pass parameters to the ORB. In Java, the ORB options
must be explicitly removed, using remove_ORB_args(), before processing the
rest of the command-line arguments. See the section “ORB Initialization,” later
in this chapter.

2. Obtain an object reference—To locate a remote CORBA object, the client has
to obtain an object reference. The object reference contains complete location
details for the object. For example, on a TCP/IP network the object reference
contains the server host and IP port.
In this example, the client reads the object reference, which is in stringified
form, from a well-known file. A more sophisticated way of passing the object
reference from server to client is to use the CORBA Naming Service, which is
demonstrated in Example 5.
The read_reference() function reads the stringified object reference from a
file and converts the string to an object reference using string_to_object().
The return type of string_to_object() is CORBA::Object in C++ and
org.omg.CORBA.Object in Java, which is the base class for all object reference
types.
The object reference returned by read_reference() is cast to the correct type
using Collection::_narrow() in C++ and CollectionHelper.narrow() in
Java. The narrow function makes a down cast, similar to
dynamic_cast<Collection> in C++ and (Collection) in Java. Narrowing
does more than that, however—it also checks that the down cast is legal with
respect to the IDL inheritance hierarchy.
In C++, a failed narrow returns a nil object reference that must be checked for
using the CORBA::is_nil() function. In Java, a failed narrow raises the
CORBA::BAD_PARAM system exception.

3. Make remote invocations—Use the remote object reference, collectionV in
C++ and theCollection in Java, to begin making remote invocations. You can
invoke any of the operations or attributes declared in the Collection IDL inter-
face.

A B a s i c C l i e n t - S e r v e r A p p l i c a t i o n — E x a m p l e 1 2 9

Listing 2.3 continued

04 0672318121 CH02 6/21/01 1:14 PM Page 29

In C++, the Collection object reference is declared as a smart pointer type,
BookRepository::Collection_var. The purpose of the _var types is to help
you avoid memory leaks: The destructor of the _var type deletes the memory it
is pointing at. The Collection_var type is designed to mimic the syntax of the
Collection* pointer type—for example, the members of collectionV can be
accessed using the -> member access operator.

4. Shut down the ORB—The ORB must shut down correctly so that it can close
connections in an orderly manner and release any other resources it is using.
Two calls, CORBA::ORB::shutdown() and CORBA::ORB::destroy(),complete
the shutdown.

NOTE
The CORBA::ORB::destroy() operation is a relatively recent addition to the
CORBA specification and currently is not supported by all ORBs.

Server Code
The main programming task on the server side is to provide implementations for each
of the IDL interfaces appearing in the IDL. This is the code that is executed in response
to remote invocations by clients—it provides the meat of the user application. Listing
2.4 shows the declaration of the C++ BookRepository_CollectionImpl class, which
provides an implementation of the BookRepository::Collection interface.

Listing 2.4 C++ BookRepository_CollectionImpl Class Declaration
//C++
//File: ‘BookRepository_CollectionImpl.h’
#ifndef BOOKREPOSITORY_COLLECTIONIMPL_H_
#define BOOKREPOSITORY_COLLECTIONIMPL_H_

//Include the header for the server Skeleton code.
#include “BookRepositoryS.hh”

class BookRepository_CollectionImpl :
public virtual PortableServer::RefCountServantBase,
public virtual POA_BookRepository::Collection

{
public:

// Constructor and Destructor
BookRepository_CollectionImpl(PortableServer::POA_ptr);
virtual ~BookRepository_CollectionImpl();

// Override ‘_default_POA()’ - inherited from ‘ServantBase’
virtual PortableServer::POA_ptr
_default_POA();

//----------
// IDL operations

3 0 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:14 PM Page 30

//----------
virtual BookRepository::FuzzyBoolean
is_in_collection(BookRepository::ISBN book_id)
throw (CORBA::SystemException);

//----------
// IDL attributes
//----------
virtual CORBA::Long number_of_books()
throw (CORBA::SystemException);

virtual char* name_of_collection()
throw (CORBA::SystemException);

virtual void name_of_collection(const char* _new_value)
throw (CORBA::SystemException);

private:
// Instance variables for attributes.
CORBA::Long m_number_of_books;
CORBA::String_var m_name_of_collectionV;

// Private member variables
PortableServer::POA_var m_poaV;

// The following are not implemented
BookRepository_CollectionImpl(

const BookRepository_CollectionImpl &
);
BookRepository_CollectionImpl& operator=(

const BookRepository_CollectionImpl &
);

};

#endif

The name of the implementation class, BookRepository_CollectionImpl, is arbitrary.
No naming conventions are enforced by the ORB, but it is a good idea to follow a con-
sistent convention. Common naming schemes add a suffix, such as Impl or _i, or a pre-
fix, such as I (a common naming convention in Microsoft’s DCOM).

In the context of the Portable Object Adapter (POA), the implementation class is
known as a servant class. A servant class provides the code that implements CORBA
objects.

The servant class inherits from POA_BookRepository::Collection, which indicates
that the servant implements the BookRepository::Collection interface. The

A B a s i c C l i e n t - S e r v e r A p p l i c a t i o n — E x a m p l e 1 3 1

Listing 2.4 continued

04 0672318121 CH02 6/21/01 1:14 PM Page 31

POA_BookRepository::Collection class is declared in the skeleton code and has pure
virtual member functions that must be overridden to implement each of the IDL attrib-
utes and operations.

The C++ inheritance hierarchy for the BookRepository_CollectionImpl servant class
is shown in Figure 2.1.

3 2 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

PortableServer : : ServantBase

POA_BookRepository : : Collection

BookRepository_CollectionImpl

PortableServer : :
RefCountServantBase

Figure 2.1

C++ servant inheritance hierarchy.

At the root of the hierarchy is PortableServer::ServantBase, which is the base of all
C++ servant classes. An additional class, PortableServer::RefCountServantBase, is
inherited into BookRepository_CollectionImpl. The RefCountServantBase class
provides an implementation of the _add_ref() and _remove_ref() member functions
to implement reference counting for servants.

TIP
Inheriting from RefCountServantBase is optional for servant classes but highly
recommended. Including the inheritance allows you to use the
PortableServer::ServantBase_var smart pointer class and diminishes the like-
lihood that servant instances are leaked.

The body of the BookRepository_CollectionImpl class declares functions that corre-
spond to an IDL operation, is_in_collection(), and two IDL attributes,
number_of_books and name_of_collection. The C++ function signatures are derived
from IDL by following the rules of the IDL-to-C++ mapping. Generally, ORBs provide
a tool that generates these signatures for you.

In Java, an outline of the servant class declaration is given by the following code frag-
ment:

//Java
package Pure.BookRepository;

public class CollectionImpl
extends Pure.BookRepository.CollectionPOA

{
// Implementation not shown...

}

04 0672318121 CH02 6/21/01 1:15 PM Page 32

The Java inheritance hierarchy for the BookRepository.CollectionImpl servant class
is shown in Figure 2.2.

A B a s i c C l i e n t - S e r v e r A p p l i c a t i o n — E x a m p l e 1 3 3

org.omg.PortableServer.Servant

BookRepository.CollectionPOA

BookRepository.CollectionImpl

Figure 2.2

Java servant inheritance hierarchy.

At the root of the hierarchy is org.omg.PortableServer.Servant, which is the base
of all Java servant classes.

The CollectionImpl servant class inherits from BookRepository.CollectionPOA,
which indicates that the servant implements the BookRepository::Collection IDL
interface. The BookRepository.CollectionPOA class is an abstract class, declared in
the skeleton code, and its methods must be overridden to implement each of the IDL
attributes and operations.

Listing 2.5 and Listing 2.6 show the implementation of the servant methods for C++
and Java, respectively.

Listing 2.5 C++ Implementation of BookRepository::Collection
//C++

#include <stdlib.h>
#include <iostream.h>
#include “BookRepository_CollectionImpl.h”

// Constructor
BookRepository_CollectionImpl::BookRepository_CollectionImpl(

PortableServer::POA_ptr the_poa
) :

m_poaV(PortableServer::POA::_duplicate(the_poa)),
m_number_of_books(1000),
m_name_of_collectionV(CORBA::string_dup(“AssortedBooks”))

{ }

// ~BookRepository_CollectionImpl destructor.
BookRepository_CollectionImpl::~BookRepository_CollectionImpl()
{ }

04 0672318121 CH02 6/21/01 1:15 PM Page 33

PortableServer::POA_ptr
BookRepository_CollectionImpl::_default_POA()
{

return PortableServer::POA::_duplicate(m_poaV);
}

//----------------
// IDL Operations
//----------------

// is_in_collection()
BookRepository::FuzzyBoolean
BookRepository_CollectionImpl::is_in_collection(

BookRepository::ISBN book_id
) throw (

CORBA::SystemException
)
{

return BookRepository::UNKNOWN;
}

//----------------
// IDL Attributes
//----------------

// number_of_books -- Accessor
CORBA::Long
BookRepository_CollectionImpl::number_of_books()
throw (CORBA::SystemException)
{

return m_number_of_books;
}

// name_of_collection -- Accessor
char*
BookRepository_CollectionImpl::name_of_collection()
throw (CORBA::SystemException)

{
return CORBA::string_dup(m_name_of_collectionV);

}

// name_of_collection -- Modifier
void
BookRepository_CollectionImpl::name_of_collection(

const char* _new_value

3 4 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.5 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 34

) throw (CORBA::SystemException)
{

m_name_of_collectionV = CORBA::string_dup(_new_value);
}

Listing 2.6 Java Implementation of BookRepository::Collection
//Java
package Pure.BookRepository;

import org.omg.CORBA.ORB;
import Pure.BookRepository.*;

public class CollectionImpl
extends CollectionPOA

{
// Private member variables
private int m_number_of_books;
private java.lang.String m_name_of_collection;
private org.omg.PortableServer.POA m_poa = null;

// Constructor
public CollectionImpl(org.omg.PortableServer.POA poa)
{

m_poa = poa;
m_number_of_books = 1000;
m_name_of_collection = “AssortedBooks”;

}

//----------------
// IDL Operations
//----------------

public Pure.BookRepository.FuzzyBoolean is_in_collection(
int book_id

)
throws org.omg.CORBA.SystemException
{

return FuzzyBoolean.UNKNOWN;
}

//----------------
// IDL Attributes
//----------------

public int number_of_books()
{

A B a s i c C l i e n t - S e r v e r A p p l i c a t i o n — E x a m p l e 1 3 5

Listing 2.5 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 35

return m_number_of_books;
}

public java.lang.String name_of_collection()
{

return m_name_of_collection;
}

public void name_of_collection(
java.lang.String _new_value

)
{

m_name_of_collection = _new_value;
}

public org.omg.PortableServer.POA _default_POA()
{

return m_poa;
}

}

The implementation of the IDL operation, is_in_collection(), is a simple place-
holder that returns the value, BookRepository::UNKNOWN in C++ and
BookRepository.FuzzyBoolean.UNKNOWN in Java. A proper implementation would
consult a database backend to check if there is a valid record for the given book_id.

The implementation of the IDL attributes, number_of_books and name_of_

collection, is simply a matter of reading or setting the corresponding private member
variables, m_number_of_books and m_name_of_collection. It is not obligatory to
define member variables for attributes, however—you can implement the accessor and
modifier functions however you like. The IDL attributes are mapped to accessor and
modifier functions, not to member variables.

In addition to providing implementations for the IDL operations and attributes, the ser-
vant overrides the _default_POA() function, which is inherited from the servant base
class. The _default_POA() function can be called at any time to discover which POA
object a servant is associated with. It is the developer’s responsibility to implement
_default_POA(). In this example, the servant simply returns a cached reference to a
POA object—m_poaV in C++ or m_poa in Java—that is set by the servant’s constructor.

CAUTION
It is recommended that you always override _default_POA()in your servant
classes. Otherwise, there is a serious risk that your servant objects could be acci-
dentally activated by the wrong POA object. See the section “Implicit Activation
and _this(),” later in this chapter, for details of how this can happen.

3 6 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.6 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 36

The code to initialize a server is shown in Listing 2.7 for C++ and Listing 2.8 for C++
for Java. Most of this code appears in the server’s main() function.

Listing 2.7 C++ Server Initialization
//C++
//File: ‘server.cxx’
#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <stdlib.h>
#include <omg/PortableServer.hh>
#include “BookRepository_CollectionImpl.h”

CORBA::ORB_var
global_orb = CORBA::ORB::_nil();

// write_reference() -- export object reference to file.
void
write_reference(

CORBA::Object_ptr refP,
const char* objref_file

)
{

CORBA::String_var stringified_ref = global_orb->object_to_string(refP);
cout << “Writing stringified object reference to “ << objref_file << endl;

ofstream os(objref_file);
os << stringified_ref;
if (!os.good())
{

cerr << “Failed to write to “ << objref_file << endl;
}

}

int
main(int argc, char **argv)
{

// Step 1 - Declare variables to hold servant references.
PortableServer::ServantBase_var the_BookRepository_Collection = 0;

try
{

CORBA::Object_var objV; // For temporary object references.

// Step 2 - Initialise the ORB and Root POA.
cout << “Initializing the ORB” << endl;
global_orb = CORBA::ORB_init(argc, argv);

A B a s i c C l i e n t - S e r v e r A p p l i c a t i o n — E x a m p l e 1 3 7

04 0672318121 CH02 6/21/01 1:15 PM Page 37

objV = global_orb->resolve_initial_references(“RootPOA”);
PortableServer::POA_var root_poaV

= PortableServer::POA::_narrow(objV);
if (CORBA::is_nil(root_poaV.in())) {

cerr << “error: failed to narrow root POA.” << endl;
exit(1);

}
PortableServer::POAManager_var root_poa_managerV

= root_poaV->the_POAManager();
if (CORBA::is_nil(root_poa_managerV.in())) {

cerr << “error: failed to narrow root POA manager.” << endl;
exit(1);

}

PortableServer::ObjectId_var oid;

// Step 3 - Create and activate a ‘Collection’ servant.
the_BookRepository_Collection

= new BookRepository_CollectionImpl(root_poaV);
oid = root_poaV->activate_object(the_BookRepository_Collection.in());
objV = root_poaV->id_to_reference(oid);

// Step 4 - Export a ‘Collection’ object reference
write_reference(objV, “BookRepository_Collection.ref”);

// Step 5 - Activate the POA Manager.
root_poa_managerV->activate();
cout << “Waiting for requests...” << endl;

// Step 6 - Let the ORB process requests.
global_orb->run();

}
catch (CORBA::Exception& e)
{

cout << “Unexpected CORBA exception: “ << e << endl;
}

// Servants are automatically deleted by ‘_var’ types.

try
{

global_orb->destroy();
}
catch (...)
{

// Do nothing.
}
return 0;

}

3 8 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.7 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 38

Listing 2.8 Java Server Initialization
//Java
package Pure.BookRepository;

import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import java.io.*;

import java.text.DateFormat;

public class server {
public static ORB global_orb = null;

// write_reference() -- export object reference to file.
static void write_reference(

org.omg.CORBA.Object ref,
String objref_file

)
{

String stringified_ref = global_orb.object_to_string(ref);
System.out.println(

“Writing stringified object reference to “ + objref_file
);

try
{

FileWriter store = new FileWriter(objref_file);
store.write(stringified_ref);
store.flush();
store.close();

}
catch (IOException ex)
{

System.out.println(“error: failed to create “ + objref_file);
}

}

public static void main(String args[])
{

// Step 1 - Declare variables to hold servant references.
Servant the_BookRepository_Collection = null;

try
{

org.omg.CORBA.Object obj = null;

// Step 2 - Initialise the ORB and Root POA.
System.out.println(“Initializing the ORB”);

A B a s i c C l i e n t - S e r v e r A p p l i c a t i o n — E x a m p l e 1 3 9

04 0672318121 CH02 6/21/01 1:15 PM Page 39

try
{

global_orb = ORB.init(args, null);
obj = global_orb.resolve_initial_references(“RootPOA”);

}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{

System.out.println(
“error: unexpected exception while resolving”
+ “the root POA : “ + ex

);
System.exit(1);

}
POA root_poa = POAHelper.narrow(obj);
POAManager root_poa_manager = root_poa.the_POAManager();

byte[] oid;

try{
// Step 3 - Create and activate the ‘Collection’ servant.
the_BookRepository_Collection

= new Pure.BookRepository.CollectionImpl(root_poa);
oid = root_poa.activate_object(the_BookRepository_Collection);
obj = root_poa.id_to_reference(oid);

// Step 4 - Export a ‘Collection’ object reference
write_reference(obj,”BookRepository_Collection.ref”);

}
catch (Exception ex)
{

System.out.println(ex);
ex.printStackTrace();
System.exit(1);

}

// Step 5 - Activate the POA Manager.
try
{

root_poa_manager.activate();
}
catch (org.omg.PortableServer.POAManagerPackage.AdapterInactive ex)
{

System.out.println(“error: could not activate POA manager”+ex);
System.exit(1);

}

// Step 6 - Let the ORB process requests.
System.out.println(“Waiting for requests...”);

4 0 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.8 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 40

global_orb.run();
}
catch (Exception ex)
{

System.out.println(“error: unexpected exception: “ + ex);
}

try
{

global_orb.destroy();
}
catch (Exception e)
{

// Do nothing.
}
return;

}
}

The server main() function performs the following steps:

1. Declare variables to hold servant references—A variable,
the_BookRepository_CollectionV in C++ and the_BookRepository_
Collection in Java, is declared to hold a servant reference.
In C++, the servant reference is declared as
PortableServer::ServantBase_var, which is a smart pointer that mimics the
PortableServer::ServantBase* type. The ServantBase_var type helps you
avoid a memory leak because its destructor deletes the servant automatically
for you. To use the ServantBase_var type with a particular servant, you must
declare the servant class to inherit from
PortableServer::RefCountServantBase.
In Java, the servant reference is declared as
org.omg.PortableServer.Servant, which is a reference to the servant base
class. Alternatively, you could declare it as a BookRepository.CollectionImpl
reference.

2. Initialize the ORB and root POA—To initialize a servant, you need to obtain
references to both an ORB and a POA object. An ORB object provides a level
of service that is typically sufficient for a client application. A POA object pro-
vides the extra functionality needed by server applications.
The ORB instance, global_orb, is initialized in the same way as a client ORB.
To obtain a reference to the root POA, you use the CORBA::ORB::resolve_
initial_references() operation object, passing the string RootPOA as its
argument. The resolve_initial_references() operation provides the boot-
strap mechanism for obtaining basic CORBA objects.

A B a s i c C l i e n t - S e r v e r A p p l i c a t i o n — E x a m p l e 1 4 1

Listing 2.8 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 41

Because the return value of resolve_initial_references() is a base class
type, CORBA::Object_ptr in C++ and org.omg.CORBA.Object in Java, it is
necessary to down cast the return value to the correct type, using
PortableServer::POA::_narrow() in C++ and
org.omg.PortableServer.POAHelper.narrow() in Java.

CAUTION
Always use a narrow function, instead of a native cast, to down cast an object ref-
erence. In addition to performing the down-cast, a narrow function checks that the
cast is typesafe with respect to IDL inheritance.

A reference to the root POA Manager object is obtained by invoking
the_POAManager() on the POA object. The root POA Manager is implicitly
created at the same time as the root POA, and it is used in step 5.

3. Create and activate servants—A single servant, of type
BookRepository_CollectionImpl in C++ and
BookRepository.CollectionImpl in Java, is created. The constructor is passed
a reference to the root POA, which is cached in the servant instance and
returned by the _default_POA() member function.
A servant has to be activated before it can be used by a client. Activation asso-
ciates the servant with a particular POA object and a particular object ID. The
object ID returned by the CORBA::POA::activate_object() operation, oid, is
automatically generated by the root POA.

4. Export object references—An object reference encapsulates the location of a
CORBA object. A server makes CORBA objects accessible to clients by pub-
lishing object references to a well-known location.
In this example, the write_reference() function publishes a stringified object
reference to the BookRepository_Collection.ref file. This presupposes that
the client has access to the file, possibly through a networked file system
(NFS). A more realistic and scalable approach is to use the CORBA Naming
Service, which is discussed in the section “Adding CORBA Naming Service
Support—Example 5,” later in this chapter.

5. Activate the POA Manager—A POA Manager is a kind of valve that controls
the flow of invocation requests into a POA object. It must be in the active state
to allow invocations to reach the POA. The
PortableServer::POAManager::activate() operation activates the POA
Manager.
A POA Manager can also be in a holding, discarding, or inactive state. See
Chapter 7, “The Portable Object Adapter,” for more information.

6. Let the ORB process requests—At this point, the server initialization is com-
plete. You are ready to hand over control of the application to the ORB by call-
ing the CORBA::ORB::run() operation.
When CORBA::ORB::run() is called, the server begins listening on an IP port
(assuming the Transport layer is TCP/IP). The server can now respond to client
connection attempts and process invocations received from clients.

4 2 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 42

The CORBA::ORB::run() operation blocks. It returns when one of the following
events occurs:

• The CORBA::ORB::shutdown() operation is called with a FALSE argu-
ment: 0 in C++ and false in Java. Because CORBA::ORB::run() grabs
the main thread, the only opportunities for calling shutdown() occur in
the course of an operation invocation or from a subthread.

• A signal is sent to the server. In this case, you should install a signal han-
dler that catches the signal and calls CORBA::ORB::shutdown() with a
false argument, 0 in C++ and false in Java.

Basic IDL Mapping (Example 1)
The IDL features introduced in Example 1 are discussed further in the following sub-
sections:

• IDL identifiers
• IDL mapping for basic types
• Modules and interfaces
• C++ _var and _ptr types

IDL Identifiers
An IDL identifier is a sequence of ASCII alphabetic, numeric, and underscore (_)
characters of any length. All characters are significant. The first character of an identi-
fier must be an ASCII alphabetic character unless it is an escaped identifier. Escaped
identifiers begin with an underscore character followed by an ASCII alphabetic char-
acter.

Case Sensitivity
The following rules apply:

• Every occurrence of a particular identifier must be spelled with the same case.
• Two identifiers differing only by case collide if they occur in the same scope.

Colliding identifiers usually give rise to a compilation error. These rules ensure that
IDL identifiers can be mapped consistently to either case-sensitive or non–case-sensitive
programming languages.

Escaped Identifiers
At the time CORBA 2.3 was defined, it was realized that introducing new keywords to
IDL was problematic because a new keyword might collide with an existing user-
defined identifier. Unless such collisions can be prevented, it might prove impossible
to compile legacy IDL using a CORBA 2.3 (or later) IDL compiler.

An example occurs in the CORBA Lifecycle Service IDL, which defines an IDL inter-
face called Factory. The Factory identifier collides with the factory keyword intro-
duced in CORBA 2.3.

B a s i c I D L M a p p i n g (E x a m p l e 1) 4 3

04 0672318121 CH02 6/21/01 1:15 PM Page 43

To solve this problem, the CORBA 2.3 specification introduced the underscore (_) as
an IDL escape character (also valid in later versions of CORBA). If an identifier begins
with an underscore, an IDL compiler skips the step of checking for keyword collisions,
strips the _ prefix from the identifier, and otherwise treats the stripped identifier as a
normal identifier.

For example, to compile the CORBA Lifecycle Service IDL using a CORBA 2.3 (or
later) IDL compiler, change the name of the Factory interface to _Factory. The code
generated by the IDL compiler is then exactly the same as if the interface had been
called Factory, except that no collision with the factory keyword occurs.

IDL Mapping for Basic Types
The mapping from IDL to C++ and Java for the basic types is shown in Table 2.1.

Table 2.1 Mapping for Basic Types

OMG IDL C++ Java

short CORBA::Short short

unsigned short CORBA::UShort short

long CORBA::Long int

unsigned long CORBA::ULong int

long long CORBA::LongLong long

unsigned long long CORBA::ULongLong long

float CORBA::Float float

double CORBA::Double double

long double CORBA::LongDouble not yet available
octet CORBA::Octet byte

char CORBA::Char char

wchar CORBA::WChar char

boolean CORBA::Boolean boolean

string char* java.lang.String

wstring CORBA::WChar* java.lang.String

fixed CORBA::Fixed java.lang.BigDecimal

any CORBA::Any org.omg.CORBA.Any

These basic IDL types can mostly be represented using built-in types in both C++ and
Java. The C++ types appearing in Table 2.1 are simply typedefs of C++ types.

The Integer Types
An IDL short has 16 bits, a long 32 bits, and a long long 64 bits of precision. The
mapping of integer IDL types to C++ is straightforward because C++ has native sup-
port for both signed and unsigned integer types.

The mapping of integer IDL types to Java is complicated by the fact that Java has no
support for unsigned integers. For example, the IDL short and unsigned short types
both map to a Java short. It is your responsibility to ensure that large unsigned inte-
gers are not treated as negative integers in your Java code.

4 4 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 44

The Floating Point Types
The IDL floating point types, float, double, and long double, are based on Institute
of Electrical and Electronics Engineers (IEEE) standards. See Chapter 17, “IDL Data
Types.” The extended floating point type, long double, is not widely supported yet.

The octet and char Types
The IDL octet and char types are both transmitted in the form of an 8-bit byte.

• An octet is intended to hold binary data and is guaranteed not to undergo con-
version when it is transmitted.

• A char is intended to hold character data and might undergo conversion if the
transmitting and receiving platforms have different native character sets.

In C++, the CORBA::Octet type is typically a typedef of unsigned char, and the
CORBA::Char type is typically a typedef of char.

The wchar Type
The IDL wchar type represents an international (wide) character. In standard C++, the
CORBA::WChar type can be a typedef of the wchar_t type; with older C++ compilers,
it might be represented by an integer type instead.

In Java, the IDL wchar type maps naturally to the Java char type, which already sup-
ports international characters in Unicode format.

The boolean Type
In standard C++, the CORBA::Boolean type can be a typedef of bool; with older C++
compilers, CORBA::Boolean might be a typedef of char or unsigned char instead.

The true and false Boolean values should be represented in C++ by 1 and 0, respec-
tively, to ensure portability between the various representations.

In Java, the IDL boolean type maps to the Java boolean type.

The string and wstring Types
The IDL string and wstring types hold strings of narrow characters and strings of
wide characters, respectively.

In C++, an IDL string type maps to char*. The IDL wstring type maps to
CORBA::WChar*. Both narrow and wide strings must be null terminated, like regular
C++ strings. The terminating null is not counted as part of the length of the string.

But there is a bit more to it than that. The C++ mapping also defines smart pointer types
for manipulating strings and wide strings. Table 2.2 shows the mapping, including
smart pointers.

A smart pointer is a type that has syntax similar to an ordinary pointer but does some-
thing extra as a side-effect of its use.

B a s i c I D L M a p p i n g (E x a m p l e 1) 4 5

04 0672318121 CH02 6/21/01 1:15 PM Page 45

Table 2.2 C++ Mapping for string and wstring Types

OMG IDL C++ Dumb Pointer C++ Smart Pointer

string char* CORBA::String_var

wstring CORBA::WChar* CORBA::WString_var

The reason for introducing smart pointers, _var types, is to aid in memory manage-
ment. See the section “C++ _var and _ptr Types,” later in this chapter, for a brief dis-
cussion of _var types. See Chapter 4, “Memory Management,” for a detailed
discussion.

In C++, both strings and wide strings must be allocated on the free store. However, you
must not use new and delete to allocate and deallocate memory for strings. Instead,
use the functions shown in Table 2.3.

Table 2.3 String Allocation and Deallocation Functions

C++ Function Description

char * Allocate len bytes on the free
CORBA::string_alloc(store to hold a string. The

CORBA::ULong len allocated memory can hold up
) to len-1 characters.
char * Make a duplicate of the p
CORBA::string_dup(char *p) string and return a pointer to

the new copy.
void Deallocate the memory
CORBA::string_free(char *p) associated with the p string.
char * Allocate len bytes on the free
CORBA::wstring_alloc(store to hold a wide string.

CORBA::ULong len The allocated memory can hold
) up to len-1 characters.
char * Make a duplicate of the p wide
CORBA::wstring_dup(char *p) string and return a pointer to

the new copy.
void Deallocate the memory
CORBA::wstring_free(char *p) associated with the p wide

string.

In Java, the IDL string and wstring types both map to java.lang.String, which
natively supports both narrow and wide strings.

The fixed and any Types
The IDL fixed type represents fixed-precision decimal numbers and is useful for rep-
resenting money amounts. See Chapter 17 for a detailed description of the fixed type.

4 6 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 46

The IDL any type, technically a basic type because it has simple syntax in IDL, is a
self-describing data type that can hold any valid IDL type. See Chapter 8, “The any

Type,” for a detailed discussion.

Modules and Interfaces
An overview of the mapping from IDL to C++ and Java for modules and the client-side
mapping for interfaces is shown in Table 2.4.

Table 2.4 Mapping for Modules and Interfaces

OMG IDL C++ Java

module Foo { } namespace Foo { } package Foo;

(standard C++)

class Foo { }

(older C++)

interface Bar { } class Bar interface Bar

class Bar_ptr class BarHelper

class Bar_var class BarHolder

Modules
An IDL module provides a convenient way of grouping collections of IDL definitions
into a common scope. For example, consider the following IDL:

//IDL
module M1 {

typedef short AliasShort;
interface Foo {

AliasShort getShort();
};

};

module M2 {
typedef M1::AliasShort DoublyAliasShort;

};

The fully scoped names of the AliasShort and Foo entities appearing in module M1 are
M1::AliasShort and M1::Foo, respectively. The basic effect of a module is that the
name of the module, M1, is prefixed to the entities defined within its scope. Modules
are useful because they help you to avoid polluting the global namespace.

Definitions at the M1 scope are also visible within nested scopes. For example, the
AliasShort type is visible within the scope of interface Foo.

Outside the scope of M1, it is necessary to refer to AliasShort using its fully scoped
name. For example, within module M2, the M1::AliasShort scoped name must be used
to refer to AliasShort.

B a s i c I D L M a p p i n g (E x a m p l e 1) 4 7

04 0672318121 CH02 6/21/01 1:15 PM Page 47

The following IDL sample illustrates two further properties of modules:

//IDL
module M1 {

module M2 {
// definitions

};
};

module M1 {
// more definitions for ‘M1’

};

The properties are

• Modules can be nested. A module M2 can be declared within the scope of mod-
ule M1.

• Modules can be reopened (in theory, at least). In the preceding fragment, mod-
ule M1 is opened twice.
However, there is a problem with reopening modules. Depending on the partic-
ular language and platform the IDL is mapped to, it may prove impossible for
an ORB vendor to implement module reopening.

In standard C++, an IDL module maps to a C++ namespace. The namespace construc-
tion is a relatively new addition to the C++ standard; its properties are similar to those
of an IDL module. For example, a namespace can be reopened just like an IDL mod-
ule.

With older C++ compilers that lack support for C++ namespaces, an IDL module is
mapped to a C++ class instead. This has the disadvantage that class declarations can-
not be reopened and, consequently, module reopening is also not supported.

In Java, an IDL module maps naturally to a Java package.

Interfaces—Client-Side Mapping
An interface is the fundamental unit of IDL. It defines a class of objects and the actions
that can be performed on those objects, represented by operations and attributes.
Additionally, it is possible to declare data types within the scope of an IDL interface—
a convenient way of grouping type declarations.

In C++, an IDL interface maps to three C++ classes on the client side. For example, an
interface—Bar—maps to the C++ classes Bar, Bar_ptr, and Bar_var:

• The signature class, Bar, represents the client’s view of a CORBA object. Its
member functions are mapped from the operations and attributes of the original
IDL interface.
Signature class pointers are used to point at object references (proxy objects).
Clients invoke member functions on an object reference to access local or
remote CORBA objects.

4 8 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 48

The signature class also exposes miscellaneous static functions needed by the
client. The names of the static functions are prefixed by an underscore charac-
ter (_) to avoid clashing with operation and attribute names.

• The Bar_ptr type represents a simple pointer to a Bar object reference. It is
often just a typedef of Bar*, but you should not rely on this assumption.
Always use Bar_ptr to ensure portability for your code.

• The Bar_var type represents a smart pointer to a Bar object reference. See the
following section, “C++ _var and _ptr Types,” and Chapter 5, “Object
References.”

In Java, an IDL interface maps to a Java interface and auxiliary Helper and Holder

classes. For example, an IDL interface Bar maps to the Java interface Bar and the
BarHelper and BarHolder classes:

• The signature Java interface, Bar, represents the client’s view of a CORBA
object. Its methods are mapped from the operations and attributes of the origi-
nal IDL interface.
Signature Java interfaces are used to reference object references (proxy
objects). Clients invoke methods on object references to access local or remote
CORBA objects.

• The BarHelper class exposes miscellaneous static methods needed by the
client. These static methods are deliberately defined in a separate class to
accommodate the CORBA Java-to-IDL reverse mapping specification.

• The BarHolder class is needed to facilitate pass-by-reference semantics when
passing Bar instances as parameters, because pass-by-reference is not natively
supported by the Java language. See the section “Java Holder and Helper
Types,” later in this chapter.

C++ _var and _ptr Types
Because the parameters and return values of IDL operations are often dynamically allo-
cated, you need to take care to avoid memory leaks. To lessen the risk of memory leaks,
the IDL-to-C++ mapping provides smart pointers, _var types, for most IDL types. In
the case of _var types, the _var destructor deallocates the memory it is pointing at.

For example, consider the following (from Listing 2.2), which uses a
CORBA::String_var type to point to a string.

//C++
//...
// Invoke on ‘BookRepository::Collection’ object.
CORBA::String_var name_strV;
name_strV = collectionV->name_of_collection();
cout << “\tName of collection = \”” << name_strV.in() << “\”” << endl;
//...

} // End of current scope --> ‘name_strV’ auto-deallocates string.

B a s i c I D L M a p p i n g (E x a m p l e 1) 4 9

04 0672318121 CH02 6/21/01 1:15 PM Page 49

The name_strV variable is declared to be of CORBA::String_var type and is intended
to be used in exactly the same way as if it was a char* type. The crucial difference from
char* becomes apparent at the end of the current scope. A char* instance would have
to be deleted explicitly to avoid a memory leak. However, because name_strV is of the
type CORBA::String_var, it automatically deallocates the string in its destructor.

In general, _var types are generated for all types that can be allocated on the heap. In
most cases, if T is the C++ name of a type, T_var is the name of the corresponding _var
type.

An object reference is a special case. In addition to the smart pointer, _var type, object
references also have an associated dumb pointer, _ptr type. A given T_ptr dumb
pointer behaves just like a T* pointer (in some ORB implementations it may even be
just a typedef of a T*). You are required to use the T_ptr type for object references
instead of T* to be CORBA compliant.

Initializing a CORBA Application
The CORBA standard defines a complete API for bootstrapping an application.
Standard initialization usually takes place in three stages:

1. A reference to an ORB object is obtained. CORBA allows you to create multi-
ple ORB objects, but most applications use just one.

2. References to a number of fundamental objects are obtained by invoking
resolve_initial_references() on the ORB object. Typical initial references
include a naming service object and a root POA instance.

3. Further object references can be obtained from the naming service by resolving
a given set of names.

Each stage of initialization is discussed in detail in the following sections.

ORB Initialization
An ORB object the basic bootstrap mechanism for a CORBA application. Basic object
references are obtained via the ORB object.

The configuration of a CORBA application is aligned closely with ORB initialization.
An ORB instance is intended to encapsulate the basic properties of a CORBA applica-
tion. These might include the type of transport used, the qualities of service, the loca-
tion of basic services, and many other properties.

CORBA allows you to instantiate more than one ORB object per application, each
ORB being uniquely identified by its ORB ID. An ORB ID is significant in two
respects:

• An ORB ID is a string that uniquely identifies a particular ORB object and can
be used to obtain a reference to that ORB object from anywhere within the
application.

5 0 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 50

• An ORB ID is also significant from an administrative viewpoint because it can
be used to associate an ORB with a set of externally defined properties.
Depending on the ORB implementation you are using, some of the ORB prop-
erties might be read automatically from a file or imported from an external
database.
This is an area that can differ greatly between ORBs because the standard does
not dictate exactly how a CORBA system should be administered.

When an ORB object is initialized, its properties are obtained from the following
sources:

• Administrative files or database A typical ORB implementation provides a
way for administrators to configure CORBA applications by editing files or
updating a database.
Some implementations associate a set of properties with a particular ORB ID.
This is an administrative domain. Applications that use the same ORB ID share
the same basic properties—that is, they belong to the same administrative
domain.

• Command-line parameters The properties of an ORB can be overridden by
supplying command-line arguments as the application starts up. Given an appli-
cation executable called app, an ORB property can be specified using com-
mand-line arguments. One of the following three syntaxes can be used:
% app -ORBOption Value%
app “-ORBOption Value”
% app -ORBOptionValue

This sets the Option property equal to Value. The first syntax specifies the
option name and value as separate, consecutive command-line parameters. The
second syntax puts the option name and value into a single parameter, using
white space as a separator. The third syntax puts the option name and value
into a single parameter, without any white space. This last syntax, although
legal, is not recommended because it makes the command-line arguments diffi-
cult to parse.
For example, the following sets the ORB ID of an application that has an exe-
cutable called app_executable:
app_executable -ORBid MyOrbId

The -ORBid flag is used to specify the ORB ID.
• Java system properties A natural way of passing parameters to a Java appli-

cation is to use the system properties, and this approach is supported. For an
applet, it is usually the only convenient way of passing properties.

The following basic properties are always initialized:

• The ORB id If an ORB ID is not set explicitly when the ORB is created, a
reference to the default ORB is returned. The default ORB has an ORB ID
equal to “” (empty string).

I n i t i a l i z i n g a C O R B A A p p l i c a t i o n 5 1

04 0672318121 CH02 6/21/01 1:15 PM Page 51

• Initial references Every ORB needs to know where to find its basic services.
At a minimum, this includes references to the naming service and the Interface
Repository. See the section “Resolving Initial References,” later in this chapter.

The following sections describe the syntax for creating ORB objects in C++ and Java.

C++ ORB Creation
The static CORBA::ORB_init() function is used to get a reference to an ORB object:

//C++
namespace CORBA {

typedef char* ORBid;
static ORB_ptr ORB_init(

int& argc,
char** argv,
const char* orb_identifier = “”

);
}

The conventional argc and argv parameters of the C++ main() function should be
passed directly to ORB_init(). The ORB_init() function searches the argv string array
for one of the following argument combinations:

• A -ORBOption argument followed by a Value argument.
• A single argument of the form -ORBOption Value, where Option and Value

are separated by arbitrary white space.
• A single argument of the form -ORBOptionValue.

If Option is recognized, it is set equal to Value. If Option is not recognized, a
CORBA::BAD_PARAM system exception is raised instead. The -ORBOption Value argu-
ments are removed from the argv list before ORB_init() returns.

The orb_identifier parameter optionally specifies the ORB ID. If the orb_
identifier parameter is omitted (or set equal to “”), the command-line parameters are
searched instead, to find an -ORBid option. Failing that, ORB_init() returns a reference
to the default ORB object.

The first time ORB_init() is called with a particular ORB ID, a new CORBA::ORB object
is created. Subsequent calls to ORB_init() with the same ORB ID return a reference
to the same ORB object each time.

Java Application ORB Creation
The first form of the org.omg.CORBA.ORB.init() method is meant to be used with
standalone Java applications. It has the following Java signature:

//Java
public static org.omg.CORBA.ORB
org.omg.CORBA.ORB.init(String[] args, java.util.Properties props);

5 2 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 52

The conventional args parameter of the Java main() method should be passed directly
to org.omg.CORBA.ORB.init(). The ORB.init() method searches the args string
array for one of the following argument combinations:

• A -ORBOption argument followed by a Value argument.
• A single argument of the form -ORBOption Value, where Option and Value

are separated by arbitrary white space.
• A single argument of the form -ORBOptionValue.

If Option is recognized, it is set equal to Value. If Option is not recognized, an
org.omg.CORBA.BAD_PARAM system exception is raised instead.

CAUTION
In Java, the -ORBOption Value arguments are not removed from the args list by
ORB.init(). Therefore, the developer must provide code to remove (or skip) these
parameters when parsing the other command-line arguments. See “Java Removing
ORB Options,” later in this chapter.

The props argument allows you to set the properties shown in Table 2.5.

Table 2.5 Properties Recognized by ORB.init()

Property Description

org.omg.CORBA.ORBClass The name of the class that implements the
newly created ORB object.

org.omg.CORBA.ORBSingletonClass The name of the class that implements the
ORB singleton object.

The properties in Table 2.5 are currently the only ones recognized by ORB.init(). They
are discussed further in the section “The orb.properties File,” later in this chapter.
Other properties in props are ignored.

The first time ORB.init() is called with a particular ORB ID, a new
org.omg.CORBA.ORB object is created. Subsequent calls to ORB.init() with the same
ORB ID return a reference to the same ORB object each time.

Java Removing ORB Options
The syntax of the Java ORB.init() method does not allow ORB options to be removed
from the list of command-line arguments (the formal parameter type, String[], can-
not be modified by the called code). Because of this, you are obliged to remove the
ORB parameters yourself. The following helper method, remove_ORB_args(), can be
used for this purpose:

//Java
public static String[] remove_ORB_args(String args[])
{

I n i t i a l i z i n g a C O R B A A p p l i c a t i o n 5 3

04 0672318121 CH02 6/21/01 1:15 PM Page 53

String temp[] = new String[args.length];
int i = 0;
int arg_count = 0;
while (i < args.length)
{

java.util.StringTokenizer st
= new java.util.StringTokenizer(args[i]);

int n_skip = 0;
if (st.countTokens() > 0)
{

if (st.nextToken().startsWith(“-ORB”)) {
n_skip++;
if (st.countTokens() == 0) { n_skip++; }

}
}

if (n_skip==0) {
temp[arg_count++] = args[i++];

}
else {

i += n_skip;
}

}

String result[] = new String[arg_count];
for (i=0; i<arg_count; i++) { result[i] = temp[i]; }

return result;
}

The return value of remove_ORB_args() is an argument list from which all ORB
options have been removed. The method removes ORB options supplied either as sep-
arate arguments, -ORBOption Value, or as single arguments, “-ORBOption Value”.

Java Applet ORB Creation
The second form of the org.omg.CORBA.ORB.init() method is meant to be used with
Java applets. It has the following Java signature:

//Java
public static org.omg.CORBA.ORB
org.omg.CORBA.ORB.init(java.applet.Applet app, java.util.Properties props);

The app argument is a reference to the Applet object that is using the ORB.

The props argument allows you to set the properties shown in Table 2.5, as described
in the preceding section.

5 4 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 54

Java Singleton ORB Creation
The third form of the org.omg.CORBA.ORB.init() method returns a slightly different
type of ORB object, known as a singleton ORB. It has the following Java signature:

//Java
public static org.omg.CORBA.ORB
org.omg.CORBA.ORB.init();

The singleton ORB.init() method takes no arguments and returns a reference to the
same static ORB object each time it is called.

The role of the singleton ORB is to provide quick and easy access to certain static
methods needed for using Any and TypeCode types. The singleton ORB is very
restricted—only the methods shown in Table 2.6 are supported.

Table 2.6 Methods Supported by the Singleton ORB

Method Name Description

create_type_tc() A method to create type codes dynamically for a non-trivial
type. For example, create_struct_tc() creates a type code
for an IDL struct.

get_primitive_tc() A method that returns references to basic type codes.
create_any() A method to create an org.omg.CORBA.Any object.

The orb.properties File
If you are using Sun’s Java Development Kit (JDK) to build your CORBA application,
it is necessary to create or modify the orb.properties file to get it to work with your
chosen ORB. The reason for this is that Sun’s JDK already contains an ORB runtime,
which it uses by default. The orb.properties file can be used to override this default
ORB runtime.

In fact, there are two ways of specifying the ORB runtime used by the JDK:

• In the orb.properties file In the JDKHome/jre/lib directory, create an
orb.properties file containing the following two lines:
org.omg.CORBA.ORBClass=ORBClassName
org.omg.CORBA.ORBSingletonClass=ORBSingletonClassName

ORBClassName and ORBSingletonClassName, specifying the ORBClass and
ORBSingletonClass, respectively, can be found in your ORB’s documentation.

• As arguments to the Java interpreter The ORB properties can also be spec-
ified as command-line arguments to the java interpreter. For example, an appli-
cation called foo.Client might be run using the following command:
java -Dorg.omg.CORBA.ORBClass=ORBClassName

-Dorg.omg.CORBA.ORBSingletonClass=ORBSingletonClassName foo.Client

Both of these approaches are clumsy and inconvenient. A proposed modification to the
CORBA specification, however, would require a Java interpreter to search the user’s

I n i t i a l i z i n g a C O R B A A p p l i c a t i o n 5 5

04 0672318121 CH02 6/21/01 1:15 PM Page 55

home directory (given by the user.home system property) for an orb.properties file.
Unfortunately, this is not possible at present (JDK1.2.x or JDK1.3).

Resolving Initial References
References to basic CORBA services can be obtained from the ORB object by invok-
ing the resolve_initial_references() operation, which has the following signature
in C++ and Java:

//C++
CORBA::Object CORBA::ORB::resolve_initial_references(const char *identifier)

//Java
org.omg.CORBA.Object org.omg.CORBA.ORB.resolve_initial_references(

String identifier
)

The identifier parameter is used to select the particular service for which an object
reference is returned. Common identifier values are “RootPOA”, “NameService”,
and “InterfaceRepository”.

The resolve_initial_references() operation is discussed in detail in the section
“The Initialization Service” in Chapter 6, “Interoperable Naming Service.”

Locating CORBA Objects
The location of a CORBA object is encapsulated in an object reference. The process of
locating a CORBA object therefore is reduced to obtaining an object reference.

An object reference is generated by the server process containing the CORBA object.
The object reference must then be passed somehow from the server to a client. Two
simple alternatives are available to solve this bootstrap problem:

• Use stringified object references An object reference can be converted to a
standard string format (stringified object reference), which easily can be written
to a file or passed around in other ways.
Two functions, object_to_string() and string_to_object(), are defined to
enable conversion to and from the stringified object reference format. These
functions have the following signatures:
//C++
static char * CORBA::ORB::object_to_string(const CORBA::Object_ptr)
static CORBA::Object_ptr CORBA::ORB::string_to_object(const char *)

//Java
public static String
➥org.omg.CORBA.ORB.object_to_string(org.omg.CORBA.Object)
public static org.omg.CORBA.Object
➥org.omg.CORBA.ORB.string_to_object(String)

For example, a server that wants to make a CORBA object known to clients
could convert an object reference to a string using object_to_string() and
write the stringified object reference to a file. Assuming a client also has access

5 6 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 56

to the file, the client can read the stringified object reference and convert it
back to an object reference. This approach is useful for simple demonstrations
and testing, but it is not scalable.

• Use the CORBA naming service The naming service is a central repository
for storing object references that associates an object reference with a specific
name.
To use the naming service, a server stores a (name, object reference) binding in
the naming service. Clients can then look up the object reference by supplying
its name. A naming service therefore provides a convenient way of publicizing
object references.
See the section “Adding CORBA Naming Service Support—Example 5,” later
in this chapter, and Chapter 6 for more details about the naming service.

Adding an IDL Interface for Searching—
Example 2
The second example adds the SearchableCollection IDL interface. This interface
supports a single operation, find_by_title(), to let you search for a particular book.
The structure and sequence IDL types are introduced as well.

Listing 2.9 shows the second draft of the BookRepository IDL module, with these
additions.

Listing 2.9 IDL BookRepository Module for Example 2
//IDL

module BookRepository {
typedef long ISBN;

struct PersonName {
string first_name;
string second_name;

};

struct Date {
short day;
short month;
short year;

};

struct BookDetails {
PersonName author;
string title;
ISBN book_id;

A d d i n g a n I D L I n t e r f a c e f o r S e a r c h i n g — E x a m p l e 2 5 7

04 0672318121 CH02 6/21/01 1:15 PM Page 57

Date publication_date;
};
typedef sequence<BookDetails> BookDetailsSeq;

enum FuzzyBoolean {NO, YES, UNKNOWN};

interface Collection {
readonly attribute long number_of_books;
attribute string name_of_collection;

FuzzyBoolean is_in_collection(in ISBN book_id);
};

interface SearchableCollection : Collection {
boolean find_by_title(

in string title,
out BookDetailsSeq books_found

);
};

};

The following IDL constructs are introduced in Listing 2.9:

• Three IDL structures are declared: PersonName, Date, and BookDetails. An
IDL structure is a convenient way of grouping related data items. For example,
the declaration beginning struct PersonName defines a new IDL type,
PersonName, which has two string fields, first_name and second_name.
The syntax for declaring an IDL struct is similar to the syntax in C and C++,
but it is more restricted. For example, inheritance is not supported, and only
data members can be declared.

• An IDL sequence, BookDetailsSeq, is declared. A construction of the form
sequence<ElementType> declares an unbounded sequence of ElementType ele-
ments. A sequence is like a one-dimensional array, except that the number of
elements in the sequence is arbitrary.

• The SearchableCollection IDL interface is defined to inherit from
Collection. This implies that SearchableCollection supports the attributes
and operations defined in Collection, in addition to the explicitly declared
find_by_title() operation.
The second parameter of find_by_title(), books_found, is specified as an
out parameter. An out parameter is similar to a return value—it is passed from
the server back to the client.

The following sections show you how to implement a client and a server, in both C++
and Java, using the IDL from Listing 2.9.

5 8 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.9 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 58

Client Code
Listing 2.10 and Listing 2.11 give the complete code for a client of the
BookRepository::SearchableCollection interface in C++ and Java, respectively.
The bk_search client prints details of the books that match a given title, which is sup-
plied as a command-line argument. The client code connects to the Book Repository
server and invokes find_by_title() to obtain the BookDetailsSeq sequence contain-
ing details of the matching books.

Listing 2.10 C++ Client of the SearchableCollection Interface
//C++

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

#include “BookRepository.hh”

CORBA::ORB_var
global_orb = CORBA::ORB::_nil();

// read_reference() -- read an object reference from file.
// ...same definition as Example 1...

int
main(int argc, char **argv)
{

try
{

CORBA::Object_var objV; // For temporary object references.

// Initialize the ORB.
global_orb = CORBA::ORB_init(argc, argv);

// Parse command line arguments:
if (argc != 2) {

cout << “Usage: bk_search “ << “ <book_title>” << endl;
exit(0);

}
const char * book_title = argv[1];

// Obtain ‘BookRepository::SearchableCollection’ object reference.
objV = read_reference(“BookRepository_SearchableCollection.ref”);
BookRepository::SearchableCollection_var searchableCollectionV

= BookRepository::SearchableCollection::_narrow(objV);
if (CORBA::is_nil(searchableCollectionV.in()))
{

A d d i n g a n I D L I n t e r f a c e f o r S e a r c h i n g — E x a m p l e 2 5 9

04 0672318121 CH02 6/21/01 1:15 PM Page 59

cerr << “error: failed to narrow to SearchableCollection.” << endl;
exit(1);

}

// Invoke on BookRepository::SearchableCollection object.
BookRepository::BookDetailsSeq_var detailsSeqV;
CORBA::Boolean wasFound;
wasFound = searchableCollectionV->find_by_title(

book_title,
detailsSeqV.out()

);
if (wasFound) {

cout << “Found the following matching titles:” << endl;
}
else {

cout << “No matching titles.” << endl;
}

// Print out the list of books (if any)
for (CORBA::ULong i=0; i < detailsSeqV->length(); i++) {

cout << “Book[“ << i << “]” << endl;
cout << “\tAuthor: “ << detailsSeqV[i].author.second_name

<< “, “ << detailsSeqV[i].author.first_name << endl;
cout << “\tTitle: “ << detailsSeqV[i].title << endl;
cout << “\tISBN: “ << detailsSeqV[i].book_id << endl;
cout << “\tPublication Date: “

<< detailsSeqV[i].publication_date.day << “/”
<< detailsSeqV[i].publication_date.month << “/”
<< detailsSeqV[i].publication_date.year << endl;

}
}
catch(CORBA::Exception &ex)
{

cerr << “Unexpected CORBA exception: “ << ex << endl;
}

// Shut down the ORB.
try
{

global_orb->shutdown(1);
global_orb->destroy();

}
catch (...)
{

// Do nothing.
}
return 0;

}

6 0 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.10 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 60

Listing 2.11 Java Client of the SearchableCollection Interface
//Java
package Pure.BookRepository;

import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import java.io.*;
import Pure.BookRepository.*;

public class bk_search
{

// global_orb -- make ORB public
public static org.omg.CORBA.ORB global_orb = null;

// read_reference() -- read an object reference from file.
// ...same definition as Example 1...

public static void main (String args[])
{

try
{

// Initialise the ORB.
global_orb = ORB.init(args, null);

String app_args[] = remove_ORB_args(args);

// Parse command line arguments:
if (app_args.length != 1) {

System.out.println(“Usage: bk_search “ + “ <book_title>”);
System.exit(1);

}
String book_title = app_args[0];

// Obtain ‘BookRepository:: SearchableCollection’ object reference.
org.omg.CORBA.Object obj;
obj = read_reference(“BookRepository_SearchableCollection.ref”);
SearchableCollection theSearchableCollection

= SearchableCollectionHelper.narrow(obj);

// Invoke on BookRepository::SearchableCollection object.
BookDetailsSeqHolder detailsSeqH

= new BookDetailsSeqHolder();
boolean wasFound;
wasFound = theSearchableCollection.find_by_title(

book_title,
detailsSeqH

);.

A d d i n g a n I D L I n t e r f a c e f o r S e a r c h i n g — E x a m p l e 2 6 1

04 0672318121 CH02 6/21/01 1:15 PM Page 61

if (wasFound) {
System.out.println(“Found the following matching titles:”);

}
else {

System.out.println(“No matching titles.”);
}

// Print out the list of books (if any)
for (int i=0; i < detailsSeqH.value.length; i++) {

System.out.println(“Book[“ + i + “]”);
System.out.println(“\tAuthor: “

+ detailsSeqH.value[i].author.second_name + “, “
+ detailsSeqH.value[i].author.first_name);

System.out.println(“\tTitle: “ + detailsSeqH.value[i].title);
System.out.println(“\tISBN: “ + detailsSeqH.value[i].book_id);
System.out.println(“\tPublication Date: “

+ detailsSeqH.value[i].publication_date.day + “/”
+ detailsSeqH.value[i].publication_date.month + “/”
+ detailsSeqH.value[i].publication_date.year);

}
}
catch(Exception ex)
{

System.out.println(“Unexpected CORBA exception: “ + ex);
}

try
{

global_orb.shutdown(true);
global_orb.destroy();

}
catch (Exception ex)
{

// Do nothing.
}
return;

}
}

The bk_search client performs the following steps:

1. Initialize the ORB A new ORB object is created and assigned to
global_orb.

2. Obtain an object reference A BookRepository::SearchableCollection

object reference is obtained by reading a stringified object reference from the
BookRepository_SearchableCollection.ref file.

3. Invoke the find_by_title() operation The find_by_title() remote oper-
ation is invoked to find the books that match the specified title.

6 2 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.11 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 62

In C++, a smart pointer, detailsSeqV, is used to access the result of the search.
Because it is an out parameter, the detailsSeqV smart pointer is declared but
not initialized. After the invocation, detailsSeqV points to the result. The
out() method (for example, detailsSeqV.out()) converts detailsSeqV
explicitly to the correct formal parameter type. If your ORB does not support
the out() method, you can pass the parameter as detailsSeqV instead and rely
on implicit type conversion.
In Java, a BookDetailsSeqHolder object, detailsSeqH, is used to hold the
result of the search. Holder types are generated by the Java mapping for all
user-defined types to facilitate the semantics of out parameters. The Holder
types are needed to get around the fact that Java does not support pass-by-
reference semantics for method parameters. See the sections “Java Holder and
Helper Types” and “Returning Parameters,” later in this chapter.

4. Print out list of books A for loop iterates over the elements of the
BookDetailsSeq sequence—detailsSeqV[i] in C++ and
detailsSeqH.value[i] in Java—to print details of the matching books. The
BookDetailsSeq data is already stored locally on the client side. No remote
invocations need to be made within the scope of this for loop.

5. Shut down the ORB Two calls CORBA::ORB::shutdown() and
CORBA::ORB::destroy() are made to shut down the ORB.

Server Code
The interesting feature of the server code in Example 2 is that it demonstrates how to
implement an inherited IDL interface. That is, it shows the implementation of the
SearchableCollection interface, which inherits from the Collection interface.

Listing 2.12 shows the declaration of the C++ BookRepository_

SearchableCollectionImpl class, which provides the implementation of the
BookRepository::SearchableCollection interface.

Listing 2.12 C++ BookRepository_SearchableCollectionImpl Servant
Class Declaration
//C++
#ifndef BOOKREPOSITORY_SEARCHABLECOLLECTIONIMPL_H_
#define BOOKREPOSITORY_SEARCHABLECOLLECTIONIMPL_H_

#include “BookRepositoryS.hh”
#include “BookRepository_CollectionImpl.h”

#include “Collection_DB.h”

class BookRepository_SearchableCollectionImpl :
public virtual POA_BookRepository::SearchableCollection,
public virtual BookRepository_CollectionImpl

{

A d d i n g a n I D L I n t e r f a c e f o r S e a r c h i n g — E x a m p l e 2 6 3

04 0672318121 CH02 6/21/01 1:15 PM Page 63

public:
BookRepository_SearchableCollectionImpl(PortableServer::POA_ptr);

virtual ~BookRepository_SearchableCollectionImpl();

// Overriding inherited IDL operations
virtual BookRepository::FuzzyBoolean
is_in_collection(

BookRepository::ISBN book_id
) throw (CORBA::SystemException);

//----------
// IDL operations
//----------
virtual CORBA::Boolean
find_by_title(

const char* title,
BookRepository::BookDetailsSeq_out books_found

) throw (CORBA::SystemException);

private:
// Private member variables.
Collection_DB m_collection_db;

// ...
};

#endif

The BookRepository_SearchableCollectionImpl servant class inherits from
POA_BookRepository::SearchableCollection, which indicates that the servant
implements the BookRepository::SearchableCollection interface. This inheritance
relationship is necessary.

The BookRepository_SearchableCollectionImpl servant class also inherits from
BookRepository_CollectionImpl. This inheritance relationship is not necessary, but
it is very convenient. It implies that the IDL inheritance hierarchy is mirrored by the
C++ hierarchy of implementation classes, allowing you to make the most of C++’s sup-
port for object orientation.

The PortableServer::RefCountServantBase class is also a base class of
BookRepository_SearchableCollectionImpl (inherited indirectly via
BookRepository_CollectionImpl). This ensures support for servant reference count-
ing.

The is_in_collection() member function demonstrates how to implement a poly-
morphic IDL operation in C++. Because the is_in_collection() function is overrid-
den in the derived class, BookRepository_SearchableCollectionImpl, two

6 4 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.12 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 64

implementations are available: Collection CORBA objects use the
BookRepository_CollectionImpl version, and SearchableCollection CORBA
objects use the BookRepository_SearchableCollectionImpl version of the function.
Effectively, you are using a standard C++ mechanism—overriding virtual member
functions—to implement polymorphic IDL operations.

In Java, an outline of the SearchableCollectionImpl servant class declaration is given
by the following code fragment:

//Java
package Pure.BookRepository;

public class SearchableCollectionImpl
extends Pure.BookRepository.SearchableCollectionPOA

{
// Implementation not shown...

}

The SearchableCollectionImpl servant class extends
BookRepository.SearchableCollectionPOA, which indicates that the servant imple-
ments the BookRepository::SearchableCollection interface. This inheritance rela-
tionship is necessary.

It would be convenient if SearchableCollectionImpl could also extend
CollectionImpl. Unfortunately, this is not possible, because Java is limited to single
inheritance. You are forced to re-implement all of the attributes and operations already
implemented in the CollectionImpl class. However, there is a way around this
problem—see “Adding a Multiply-Inheriting IDL Interface—Example 4.”

To implement a polymorphic IDL operation using Java, simply provide a different
implementation for the operation in the servant class that implements the derived IDL
interface. For example, the SearchableCollectionImpl version of is_in_

collection() is different from the CollectionImpl version.

Listing 2.13 and Listing 2.14 show the implementation of the servant methods for C++
and Java, respectively.

Listing 2.13 C++ Implementation of
BookRepository::SearchableCollection Interface
//C++

#include <stdlib.h>
#include <iostream.h>
#include “BookRepository_SearchableCollectionImpl.h”

// Constructor
BookRepository_SearchableCollectionImpl::\

A d d i n g a n I D L I n t e r f a c e f o r S e a r c h i n g — E x a m p l e 2 6 5

04 0672318121 CH02 6/21/01 1:15 PM Page 65

BookRepository_SearchableCollectionImpl(
PortableServer::POA_ptr the_poa

) :
BookRepository_CollectionImpl(the_poa)

{
}

// Destructor.
BookRepository_SearchableCollectionImpl::\
~BookRepository_SearchableCollectionImpl()
{
}

// is_in_collection() -- inherited from ‘BookRepository::Collection’ interface
BookRepository::FuzzyBoolean
BookRepository_SearchableCollectionImpl::is_in_collection(

BookRepository::ISBN book_id
) throw (CORBA::SystemException)
{

if (m_collection_db.is_in_collection(book_id)) {
return BookRepository::YES;

}
else {

return BookRepository::NO;
}

}

// find_by_title()
CORBA::Boolean
BookRepository_SearchableCollectionImpl::find_by_title(

const char* title,
BookRepository::BookDetailsSeq_out books_found

) throw (CORBA::SystemException)
{

books_found = m_collection_db.getByTitle(title);
return (books_found->length() > 0);

}

Listing 2.14 Java Implementation of
BookRepository::SearchableCollection Interface
//Java
package Pure.BookRepository;

import org.omg.CORBA.ORB;
import Pure.BookRepository.Collection_DB;

6 6 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.13 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 66

public class SearchableCollectionImpl
extends Pure.BookRepository.SearchableCollectionPOA

{
// Private member variables.
private int m_number_of_books;
private java.lang.String m_name_of_collection;
private Collection_DB m_collection_db;
private org.omg.PortableServer.POA m_poa = null;

public SearchableCollectionImpl(org.omg.PortableServer.POA poa)
{

m_poa = poa;
m_number_of_books = 1000;
m_name_of_collection = “AssortedBooks”;
m_collection_db = new Collection_DB();

}

public Pure.BookRepository.FuzzyBoolean is_in_collection(
int book_id

)
throws org.omg.CORBA.SystemException
{

if (m_collection_db.is_in_collection(book_id)) {
return FuzzyBoolean.YES;

}
else {

return FuzzyBoolean.NO;
}

}

public boolean find_by_title(
java.lang.String title,
BookDetailsSeqHolder books_found

)
throws org.omg.CORBA.SystemException
{

System.out.println(“find_by_title(): called.”);

books_found.value = m_collection_db.getByTitle(title);
return (books_found.value.length > 0);

}

public int number_of_books()
{

return m_number_of_books;
}

A d d i n g a n I D L I n t e r f a c e f o r S e a r c h i n g — E x a m p l e 2 6 7

Listing 2.14 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 67

public java.lang.String name_of_collection()
{

return m_name_of_collection;
}

public void name_of_collection(
java.lang.String _new_value)

{
m_name_of_collection = _new_value;

}

public org.omg.PortableServer.POA _default_POA()
{

return m_poa;
}

}

The implementation of the servant, BookRepository_SearchableCollectionImpl in
C++ and BookRepository.SearchableCollectionImpl in Java, is fairly straightfor-
ward. In C++, an implementation of is_in_collection() is provided to override the
inherited implementation. In Java, every attribute and operation from both the
Collection and SearchableCollection IDL interfaces has to be implemented.

Both the C++ and Java servants delegate most of their functionality to a database class,
Collection_DB. The Collection_DB class is a wrapper class that accesses the database
table where the book details are stored. Listing 2.15 and Listing 2.16 show the
declarations of the Collection_DB class.

Listing 2.15 C++ Declaration of the Collection_DB Class
// C++
#ifndef _COLLECTION_DB_
#define _COLLECTION_DB_

// ...

// Include definitions from the stub code.
#include “BookRepository.hh”

class Collection_DB {
public:

Collection_DB();

CORBA::Boolean
is_in_collection(CORBA::Long book_id);

6 8 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.14 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 68

BookRepository::BookDetails*
get(CORBA::Long book_id);

BookRepository::BookDetailsSeq*
getByTitle(const char * title);

//...
};
#endif

Listing 2.16 Java Declaration of the Collection_DB Class
// Java
package Pure.BookRepository;

public class Collection_DB
{

// Private member variables
//...

// Public methods
public Collection_DB()
{ ... }

public boolean is_in_collection(int book_id)
{ ... }

public BookDetails get(int book_id)
{ ... }

public BookDetails[] getByTitle(String title)
{ ... }

}

The Collection_DB class can be implemented using the database adapter of your
choice. The implementation details are not shown here.

IDL Mapping for Some Complex Types
(Example 2)
The IDL features introduced in Example 2 are discussed further in the following sub-
sections:

• The struct type
• The unbounded sequence type
• Java Holder and Helper types

I D L M a p p i n g f o r S o m e C o m p l e x Ty p e s (E x a m p l e 2) 6 9

Listing 2.15 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 69

The struct Type
The mapping of an IDL struct to C++ and Java is shown in Table 2.7.

Table 2.7 Mapping for the struct Type

OMG IDL C++ Java

struct Foo {...}; struct Foo {...}; class Foo {...}

class Foo_var class FooHelper

class FooHolder

An IDL struct has a very similar syntax to a struct in the C programming language. For
example

//IDL
module BookRepository {

struct Date {
short day;
short month;
short year;

};
};

defines a BookRepository::Date struct having three members: day, month, and year.
The Date type can be used as a parameter or return value of an IDL operation.

In C++, an IDL struct maps directly to a C++ struct. For example

//C++
namespace BookRepository {

//...
struct Date {

CORBA::Short day;
CORBA::Short month;
CORBA::Short year;

};
};

As well as the Date struct, the C++ mapping also defines a Date_var type to assist with
memory management of heap-allocated Date structs.

In Java, an IDL struct maps to a Java class (there is no struct type in Java). For
example

//Java
package BookRepository;

//...
final public class Date
implements org.omg.CORBA.portable.IDLEntity

{
public short day;

7 0 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 70

public short month;
public short year;

// ‘Date’ Constructors
public Date() {}
public Date(short day, short month, short year) { ... }

};
};

Each member of the IDL Date struct maps to a public field of the Java Date class. The
Date class provides a constructor that allows you to set all the fields in one go.

In Java, two auxiliary classes—DateHelper and DateHolder—are defined. See the sec-
tion “Java Holder and Helper Types,” later in this chapter, for an explanation of these
classes.

Initializing a Struct
In C++, a struct can be allocated on the stack or on the heap. For example

//C++
// Allocate ‘Date’ on the stack.
BookRepository::Date stackDate;

// Allocate ‘Date’ on the heap.
BookRepository::Date_var heapDateV = new BookRepository::Date();

The BookRepository::Date_var smart pointer is used here instead of a
BookRepository::Date* dumb pointer to take advantage of the memory management
features of _var types.

A mapped C++ struct must be initialized member by member. For example

//C++
heapDateV->day = 7;
heapDateV->month = 7;
heapDateV->year = 1999;

In Java, a struct can be allocated and initialized in a single step. For example

//Java
BookRepository.Date theDate = new BookRepository(

7, //day
7, //month
1999 //year

);

The order of the arguments in the constructor is the same as the order of the corre-
sponding members.

I D L M a p p i n g f o r S o m e C o m p l e x Ty p e s (E x a m p l e 2) 7 1

04 0672318121 CH02 6/21/01 1:15 PM Page 71

Copying a Struct
In C++, a deep copy of a struct can be made by copying a reference to a struct. For
example

//C++
BookRepository::Date_var origDate = new BookRepository::Date();
BookRepository::Date_var copiedDate = new BookRepository::Date();

// Initialize ‘origDate’ (not shown)
...

// Make a deep copy of ‘origDate’
*copiedDate = *origDate;

Assignment of structs is performed using member-wise copying. If a member of a
struct is a constructed type (for example, the publication_date member of the
BookRepository::BookDetails struct in Listing 2.9), the constructed type member is
also deep copied. See Chapter 4 for further details.

In Java, performing a deep copy of a struct type is relatively difficult—the standard
IDL-to-Java mapping does not define a clone() method for the mapped Java class. The
only alternatives are

• To copy the struct explicitly, member by member.
• To use some advanced CORBA features. For example, you could use the

dynamic any module to make a copy of a struct (see Chapter 19).

Deallocating a Struct
In C++, heap-allocated structs are deallocated using delete. However, if you are using
a _var type, the deallocation is done for you automatically. For example

//C++
{

BookRepository::Date* heapDateP = new BookRepository::Date();
// Initialize, etc...
...
// Deallocate ‘heapDateP’ explicitly.
delete heapDateP;

}
{

BookRepository::Date_var heapDateV = new BookRepository::Date();
// Initialize, etc...
...
// No ‘delete’ necessary
// ‘heapDateV’ implicitly deallocates the struct.

}

In Java, the garbage collector automatically takes care of deallocating the struct
for you.

7 2 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 72

The Unbounded sequence Type
The mapping of an IDL unbounded sequence to C++ and Java is shown in Table 2.8.

Table 2.8 Mapping for the struct Type

OMG IDL C++ Java

typedef class FooSeq Foo[]

sequence<Foo>

FooSeq; class FooSeq_var class FooSeqHelper

class FooSeqHolder

Only unbounded sequences are described here because the bounded sequence type is
not used very often. For details of bounded sequences, see Chapter 17.

IDL sequences are almost always defined using a typedef statement (but there are
exceptions to this rule—see the section “Recursive IDL Types,” later in this chapter).
For example, the following IDL defines a sequence of octets:

//IDL
typedef sequence<octet> OctetSeq;

The OctetSeq type can be used as a parameter or return value of an IDL operation and
is a natural type to use for sending binary data.

In C++, an IDL sequence maps to a C++ class of the same name. For example, the IDL
OctetSeq alias maps to the C++ OctetSeq class.

The main functions and operations supported by a C++ sequence object are as follows:

• An operator[] that accesses the sequence elements.
• A length() accessor function that returns the number of accessible sequence

elements.
• A length() modifier function that sets the number of accessible sequence ele-

ments.
• A maximum() accessor function that returns the total number of allocated

sequence elements. For an unbounded sequence, the maximum() is automati-
cally increased as the length() is increased.

A corresponding _var type is defined to aid memory management. For example, the
OctetSeq_var class is generated for OctetSeq.

NOTE
A sequence _var class has one special property not shared by other _var classes:
The operator[] is overloaded to provide convenient access to the sequence ele-
ments. For example, if v is a sequence _var type, you can access the sequence ele-
ments either as v[j] or as (*v)[j].

I D L M a p p i n g f o r S o m e C o m p l e x Ty p e s (E x a m p l e 2) 7 3

04 0672318121 CH02 6/21/01 1:15 PM Page 73

In Java, an IDL sequence type maps directly to a one-dimensional array. For example,
OctetSeq maps directly to the Java byte[] array.

The Holder and Helper classes, OctetSeqHolder and OctetSeqHelper, are defined.
See the section “Java Holder and Helper Types” for details.

Initializing a Sequence
In C++, the OctetSeq can be initialized to contain three bytes of data, as follows:

//C++
OctetSeq_var theSeq = new OctetSeq(3); // maximum = 3, length = 0
theSeq->length(3); // set length = 3
theSeq[0] = 0x20; // Use ‘operator[]’ defined on the _var
theSeq[1] = 0x33;
theSeq[2] = 0x44;

You must always set the length of a C++ sequence before you use it, because initially
the length equals zero. If you already have a block of memory containing some binary
data, it would be highly inefficient to copy it into the sequence, octet by octet, in this
way. Instead, a special form of the OctetSeq constructor can be used, for example

//C++
// Given ‘buf’, which points to binary data

OctetSeq_var theSeq = new OctetSeq(
1000, // maximum
1000, // length
buf, // buffer pointer ‘CORBA::Octet*’
0 // release flag = FALSE

);

In this example, buf is a pointer to a contiguous buffer containing 1000 bytes of binary
data. The release flag is zero, which indicates that the OctetSeq destructor should not
call delete buf as the sequence is destroyed.

In Java, the OctetSeq can be initialized to contain three bytes of data, as follows:

//Java
byte[] = new byte[3];
byte[0] = 0x20;
byte[1] = 0x33;
byte[2] = 0x44;

Because the IDL octet type maps to the Java byte type, the sequence is a simple
byte[] array.

7 4 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 74

Accessing Sequence Elements
In C++, individual elements of a sequence are accessed using the operator[], as for
an array. The elements can also be accessed using the operator[] defined on the
sequence _var type.

If an OctetSeq contains a large block of binary data, however, it is more efficient to
retrieve the data in the form of a single contiguous buffer. The
OctetSeq::get_buffer() function is supplied for this purpose:

//C++
...
CORBA::Octet* buf;
buf = theSeq->get_buffer(

0 // orphan flag
);

The orphan flag is 0, specifying that the sequence retains ownership of the buffer. If the
orphan flag is equal to 1, the sequence either yields ownership if it owns the buffer or
returns a NULL pointer if it does not.

In Java, the elements of a sequence are accessed as a normal array.

Copying a Sequence
In C++, a sequence is copied using the overloaded operator= assignment operator. For
example, an OctetSeq is copied as follows:

//C++
// Allocate the sequence on the stack.
OctetSeq origSeq(1000); // maximum = 1000, length = 0
// Initialize ‘origSeq’ (not shown)
...

OctetSeq copiedSeq(0); // maximum = 0, length = 0
copiedSeq = origSeq;

Assignment between two _var types also makes a copy of a sequence:

//C++
// Allocate the sequence on the heap.
OctetSeq_var origSeqV = new OctetSeq(1000); // maximum = 1000, length = 0
// Initialize ‘origSeq’ (not shown)
...

OctetSeq_var copiedSeqV = new OctetSeq(0); // maximum = 0, length = 0
copiedSeqV = origSeqV;

In this respect, _var type semantics differ from pointer type semantics because the
whole sequence is copied, instead of just a pointer to the sequence. See Chapter 4 for
more details.

I D L M a p p i n g f o r S o m e C o m p l e x Ty p e s (E x a m p l e 2) 7 5

04 0672318121 CH02 6/21/01 1:15 PM Page 75

In Java, a sequence is copied by iterating over the sequence and copying every element,
like a normal array:

//Java
byte[] origSeq = new byte[1000];
// Initialize ‘origSeq’ (not shown)
...

byte[] copiedSeq = new byte[origSeq.length];
for (int i; i < origSeq.length; i++) {

copiedSeq[i] = origSeq[i];
}

Deallocating a Sequence
In C++, heap-allocated sequences are deallocated using delete. If you are using a _var
type, the deallocation is made in the _var destructor. See Chapter 4 for details.

In Java, the garbage collector automatically takes care of deallocating the sequence.

Java Holder and Helper Types
In Java, every IDL type, IDLType, maps to one or more Java types, as follows:

• JavaType (not defined for type aliases)
The JavaType class (or, in some cases, interface) represents an IDLType
instance in Java.
Type aliases (that is, IDL types defined using a typedef declaration) are a spe-
cial case. There is no mapped JavaType for a type alias because Java does not
support the typedef construction. The IDLType maps to the original (unaliased)
Java type instead.

• JavaTypeHolder

The JavaTypeHolder class is needed to enable the passing of inout and out

parameters in an operation invocation.
Holder classes are defined for all built-in types and all named user-defined
types.

• JavaTypeHelper (not defined for built-in types)
The JavaTypeHelper class provides an assortment of standard methods that are
useful for manipulating JavaType instances.
No Helper class is provided for the built-in types. The equivalent functionality
for built-in types is available directly from the ORB runtime library.

Table 2.9 shows how various IDL types map to the corresponding Java Holder and
Helper types.

7 6 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 76

Table 2.9 Java Mapping to Holder and Helper Types

OMG IDL Java Holder Type Java Helper Type

short org.omg.CORBA.ShortHolder none
unsigned short org.omg.CORBA.ShortHolder none
long org.omg.CORBA.IntHolder none
unsigned long org.omg.CORBA.IntHolder none
long long org.omg.CORBA.LongHolder none
unsigned long long org.omg.CORBA.LongHolder none
float org.omg.CORBA.FloatHolder none
double org.omg.CORBA.DoubleHolder none
long double not yet available none
octet org.omg.CORBA.ByteHolder none
char org.omg.CORBA.CharHolder none
wchar org.omg.CORBA.CharHolder none
boolean org.omg.CORBA.BooleanHolder none
string org.omg.CORBA.StringHolder none
wstring org.omg.CORBA.StringHolder none
fixed org.omg.CORBA.FixedHolder none
any org.omg.CORBA.AnyHolder none
UserType UserTypeHolder UserTypeHelper

typedef AliasTypeHolder AliasTypeHelper

OriginalType

AliasType;

Object org.omg.CORBA.ObjectHolder none
CORBA::TypeCode org.omg.CORBA.TypeCodeHolder none

Generally, the naming scheme for Holder types is based on the mapped name of the
IDL type. For example, the IDL long long type has the org.omg.CORBA.LongHolder
Holder type because the IDL long long type maps to the Java long type. An IDL user-
defined type, FooScope::Foo, has the FooScope.FooHolder Holder type because the
IDL FooScope::Foo type maps to the Java FooScope.Foo type.

CAUTION
There is one exception to the general rule that a Holder type is named after its
mapped Java type. The Holder type for the fixed IDL type is called FixedHolder, not
BigDecimalHolder.

I D L M a p p i n g f o r S o m e C o m p l e x Ty p e s (E x a m p l e 2) 7 7

04 0672318121 CH02 6/21/01 1:15 PM Page 77

Holder Types
The Holder types are necessary to compensate for the fact that Java’s parameter-pass-
ing semantics support only pass-by-value, not pass-by-reference. Using inout and out

parameters requires pass-by-reference semantics so that changes made to parameters in
the called code are also visible in the calling code.

For example, consider the following IDL:

//IDL
interface Test {

void get_values(inout long inOutVal, out long outVal);
};

You might try to map this to the following Java method:

//Java
//WRONG! This is not the way ‘get_values()’ maps to Java.
public void Test.get_values(int inOutVal, int outVal);

This naïve attempt at defining an IDL-to-Java mapping for get_values() is a failure.
When the get_values() method is invoked, the inOutVal and outVal parameters are
copied and, in the called code, only the local copies of the parameters can be changed.
When get_values() returns, the inOutVal and outVal parameters remain unchanged.

Instead of mapping the inout and out parameters to a plain int type, the parameters
map to the org.omg.CORBA.IntHolder type. The correct mapping of the get_values()
operation is

//Java
import org.omg.CORBA.*;
public void Test.get_values(IntHolder inOutVal, IntHolder outVal);

The org.omg.CORBA.IntHolder class is defined in outline as follows:

//Java
package org.omg.CORBA;

final public class IntHolder
implements org.omg.CORBA.portable.Streamable

{
public int value;

public IntHolder() {}
public IntHolder(int initial_value) {...}
//...

};

7 8 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 78

The public value member is used to hold a Java int value (corresponding to an IDL
long). The IntHolder.value member is the actual value of the inout or out parame-
ter. For example, the get_values() operation can be invoked from Java as follows:

//Java
import org.omg.CORBA.*;
IntHolder inOutValH = new IntHolder(23);
IntHolder outValH = new IntHolder();

testObj.get_values(inOutValH, outValH);

System.out.println(“Parameters: inOutVal = “ + inOutValH.value);
System.out.println(“ outVal = “ + outValH.value);

The IntHolders must be created before get_values() is invoked. The
IntHolder.value field provides access to the inout and out parameters after the invo-
cation returns. Further examples of using Holder types are provided in the section
“Returning Parameters,” which follows.

Helper Types
The Java Helper classes provide standard methods for manipulating types. Helper types
are defined for all user-defined IDL types, including IDL type aliases defined using
typedef. No Helper types are defined for built-in types. Refer to Table 2.9.

Given an IDLType user-defined type, a partial outline of the corresponding
JavaTypeHelper class is as follows:

//Java
abstract public class JavaTypeHelper
{

public static void insert(org.omg.CORBA.Any a, JavaType t) {...}
public static JavaType extract(org.omg.CORBA.Any a) {...}
public static org.omg.CORBA.TypeCode type() {...}
public static string id() {...}
// only helpers for non-abstract interface with
// no abstract base interface
public static JavaType narrow(org.omg.CORBA.Object obj) {...}
//...

};

The methods shown in the preceding example are the most commonly used methods of
JavaTypeHelper. A full definition of the Helper class is provided in Chapter 17.

Returning Parameters
In addition to a single return value, CORBA operations also permit you to define out
parameters that are effectively like extra return values passed from server to client. The
following sections outline how to call and how to implement an operation with out
parameters.

R e t u r n i n g P a r a m e t e r s 7 9

04 0672318121 CH02 6/21/01 1:15 PM Page 79

Using out Parameters on the Client Side
In C++, out parameters are handled in a number of ways, depending on the type of
parameter passed. Details of how to use out parameters in C++ are presented in
Chapter 4.

In Java, out parameters are handled using Holder types. A Holder type has to be used
for an out parameter because Java does not natively support pass-by-reference seman-
tics. For example, the invocation of the SearchableCollection::find_by_title()
operation, which has an out parameter of type BookRepository::DetailsSeq, is
shown in Listing 2.17.

Listing 2.17 Java Invocation of the
SearchableCollection::find_by_title() Operation
//Java
//---
// Given the following variables are already initialized:
// theSearchableCollection - an object reference

// Step 1: Prepare the parameters.
String book_ title = “Of Mice and Men”;
BookDetailsSeqHolder detailsSeqH = new BookDetailsSeqHolder();
boolean wasFound;
// Step 2: Invoke ‘find_by_title()’.
wasFound = theSearchableCollection.find_by_title(

book_title, // ‘in’ parameter
detailsSeqH // ‘out’ parameter

);
// Step 3: Use the returned sequence, ‘detailsSeqH.value’
//...(not shown)...

The second parameter of the find_by_title() operation, detailsSeqH, is an out
parameter. It is used as follows:

1. Prepare the parameters A Holder object of
BookRepository.BookDetailsSeqHolder type, detailsSeqH, is allocated but
not initialized.

2. Invoke find_by_title() The detailsSeqH Holder object is passed as a
placeholder to receive the out parameter from the server.

3. Use the returned sequence After the invocation, the returned sequence is
accessible as detailsSeqH.value.

Using out Parameters on the Server Side
In C++, the server side also handles out parameters in different ways according to the
parameter type. This is beyond the scope of this chapter—details are presented in
Chapter 4.

8 0 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 80

In Java, the server code has to initialize the value of a Holder object for each out para-
meter. Listing 2.18 shows how this is done in the implementation of find_by_title().

Listing 2.18 Java Implementation of the
SearchableCollection::find_by_title() Operation
//Java
// Defined in class ‘SearchableCollectionImpl’
public boolean find_by_title(

java.lang.String title,
BookDetailsSeqHolder books_found

)
throws org.omg.CORBA.SystemException
{

books_found.value = m_collection_db.getByTitle(title);
return (books_found.value.length > 0);

}

The second parameter, books_found, is an out parameter. It is initialized by assigning
a BookDetailsSeq object to books_found.value.

Adding Exception Handling—Example 3
The third example adds the BorrowableCollection IDL interface, which supports a
single operation, borrow_book(), to let you record the borrowing of a book.

Listing 2.19 shows the BookRepository IDL module with these additions.

Listing 2.19 IDL BookRepository Module for Example 3
//IDL

module BookRepository {
typedef long ISBN;

struct PersonName {
string first_name;
string second_name;

};

struct Date {
short day;
short month;
short year;

};

struct BookDetails {
PersonName author;
string title;

A d d i n g E x c e p t i o n H a n d l i n g — E x a m p l e 3 8 1

04 0672318121 CH02 6/21/01 1:15 PM Page 81

ISBN book_id;
Date publication_date;

};
typedef sequence<BookDetails> BookDetailsSeq;

enum FuzzyBoolean {NO, YES, UNKNOWN};

interface Collection {
readonly attribute long number_of_books;
attribute string name_of_collection;

FuzzyBoolean is_in_collection(in ISBN book_id);
};

interface SearchableCollection : Collection {
boolean find_by_title(

in string title,
out BookDetailsSeq books_found

);
};

interface BorrowableCollection : Collection {
exception Unavailable {

Date when_available;
};

void borrow_book(
in ISBN book_id,
in PersonName borrower,
out Date return_date

)
raises (Unavailable);

};
//...

};

The following IDL constructs are introduced in Listing 2.19:

• A CORBA user exception, Unavailable, is defined within the scope of the
BorrowableCollection interface. The exception definition is introduced by the
exception keyword, and syntactically it resembles a struct definition. An
exception has member fields, like a struct, that enable you to pass useful infor-
mation about the exception condition back to the client.

• A raises() clause is added to the borrow_book() operation declaration to
indicate that borrow_book() can raise the Unavailable user exception. A user
exception is not supported unless it is declared in the raises() clause of an
operation.

8 2 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.19 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 82

The following sections show you how to implement a client and a server in both C++
and Java, using the IDL from Listing 2.19.

Client Code
Listing 2.20 and Listing 2.21 give the code for a client of the
BookRepository::BorrowableCollection interface in C++ and Java, respectively.
The bk_borrow client invokes the borrow_book() operation to record the borrowing of
a book. If the book is already on loan, the
BookRepository::BorrowableCollection::Unavailable user exception is caught by
the client.

Listing 2.20 C++ Client of the BorrowableCollection Interface
//C++
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <sstream>

#include “BookRepository.hh”

CORBA::ORB_var
global_orb = CORBA::ORB::_nil();

// read_reference() -- read an object reference from file.
// ...same definition as Example 1...

int
main(int argc, char **argv)
{

try
{

CORBA::Object_var objV; // For temporary object references.

// Initialize the ORB.
global_orb = CORBA::ORB_init(argc, argv);

// Parse command line arguments:
if (argc != 4) {

cout << “Usage: bk_borrow “
<< “<your_first_name> <your_second_name> <book_id>” << endl;

exit(0);
}
const char * borrower_first_name = argv[1];
const char * borrower_second_name = argv[2];
const char * isbn_string = argv[3];

// Obtain ‘BookRepository::BorrowableCollection’ object reference.
objV = read_reference(“BookRepository_BorrowableCollection.ref”);

A d d i n g E x c e p t i o n H a n d l i n g — E x a m p l e 3 8 3

04 0672318121 CH02 6/21/01 1:15 PM Page 83

BookRepository::BorrowableCollection_var borrowableCollectionV =
BookRepository::BorrowableCollection::_narrow(objV);

if (CORBA::is_nil(borrowableCollectionV))
{

cerr << “error: failed to narrow BorrowableCollection.” << endl;
exit(1);

}

// Invoke ‘borrow_book()’ operation.
CORBA::Long book_id;
std::string s = isbn_string;
std::istringstream ist(s);
ist >> book_id;
BookRepository::PersonName borrower;
borrower.first_name = CORBA::string_dup(borrower_first_name);
borrower.second_name = CORBA::string_dup(borrower_second_name);
BookRepository::Date_var return_dateV;
try {

borrowableCollectionV->borrow_book(
book_id,
borrower,
return_dateV.out()

);
cout << “Book [ISBN=” << book_id << “] has been borrowed.” << endl;
cout << “Please return by: “

<< return_dateV->day << “/”
<< return_dateV->month << “/”
<< return_dateV->year << endl;

}
catch (BookRepository::BorrowableCollection::Unavailable& bk_ex) {

cout << “Sorry, book [ISBN=” << book_id
<< “] is unavailable until “
<< bk_ex.when_available.day << “/”
<< bk_ex.when_available.month << “/”
<< bk_ex.when_available.year << endl;

}
}
catch(CORBA::Exception &ex)
{

cerr << “Unexpected CORBA exception: “ << ex << endl;
}

try
{

global_orb->shutdown(1);
global_orb->destroy();

}

8 4 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.20 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 84

catch (...)
{

// Do nothing.
}
return 0;

}

Listing 2.21 Java Client of the BorrowableCollection Interface
//Java
package Pure.BookRepository;

import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import java.io.*;
import Pure.BookRepository.BorrowableCollectionPackage.*;

public class bk_borrow
{

// global_orb -- make ORB public
public static org.omg.CORBA.ORB global_orb = null;

// read_reference() -- read an object reference from file.
// ...same definition as Example 1...

public static void main (String args[])
{

try
{

// Initialize the ORB.
global_orb = ORB.init(args, null);

String app_args[] = remove_ORB_args(args);

// Parse command line arguments:
if (app_args.length != 3) {

System.out.println(“Usage: bk_borrow “
+ “<your_first_name> <your_second_name> <book_id>”);

System.exit(1);
}
String borrower_first_name = app_args[0];
String borrower_second_name = app_args[1];
String isbn_string = app_args[2];

// Obtain ‘BookRepository::BorrowableCollection’ object reference.
org.omg.CORBA.Object obj;

A d d i n g E x c e p t i o n H a n d l i n g — E x a m p l e 3 8 5

Listing 2.20 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 85

obj = read_reference(“BookRepository_BorrowableCollection.ref”);
BorrowableCollection theBorrowableCollection

= BorrowableCollectionHelper.narrow(obj);

// Invoke ‘borrow_book()’ operation.
int book_id;
book_id = Integer.parseInt(isbn_string);
PersonName borrower = new PersonName();
borrower.first_name = borrower_first_name;
borrower.second_name = borrower_second_name;
DateHolder return_dateH = new DateHolder();
try {

theBorrowableCollection.borrow_book(
book_id,
borrower,
return_dateH

);
System.out.println(“Book [ISBN=”

+ book_id + “] has been borrowed.”);
System.out.println(“Please return by: “

+ return_dateH.value.day + “/”
+ return_dateH.value.month + “/”
+ return_dateH.value.year);

}
catch (Unavailable bk_ex) {

System.out.println(“Sorry, book [ISBN=”
+ book_id + “] is unavailable until “
+ bk_ex.when_available.day + “/”
+ bk_ex.when_available.month + “/”
+ bk_ex.when_available.year);

}
}
catch(Exception ex)
{

System.out.println(“Unexpected CORBA exception: “ + ex);
}

try
{

global_orb.shutdown(true);
global_orb.destroy();

}
catch (Exception ex)
{

// Do nothing.
}
return;

}
}

8 6 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.21 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 86

The bk_search client performs the following steps:

1. Initialize the ORB A new ORB object is created and assigned to
global_orb.

2. Obtain an object reference A BookRepository::BorrowableCollection

object reference is obtained by reading a stringified object reference from the
BookRepository_BorrowableCollection.ref file.

3. Invoke the borrow_book() operation The borrow_book() operation is
invoked to record the borrowing of a book.
In C++, after a successful invocation, the return_dateV variable holds the date
when the borrower is expected to return the book. Because return_dateV is an
out parameter, it is not initialized prior to the invocation. See the section
“Returning Parameters,” earlier in this chapter.
In Java, after a successful invocation, the return_dateH variable holds the date
when the borrower is expected to return the book. Because return_dateH is an
out parameter, it is declared as a DateHolder type. After the invocation, the
return date is given by return_dateH.value. See the sections “Java Holder and
Helper Types” and “Returning Parameters,” earlier in this chapter.

4. Catch the Unavailable user exception If the book is already on loan, the
server raises the Unavailable user exception. This exception, bk_ex, is caught
explicitly by the client code.
The client examines the body of the Unavailable exception (refer to Listing
2.19) to find out when the book is expected to become available again. The
when_available field of bk_ex contains the expected availability date, which is
in the form of a BookRepository::Date struct.

5. Shut down the ORB Two calls, CORBA::ORB::shutdown() and
CORBA::ORB::destroy(), are made to shut down the ORB.

Server Code
The server code for Example 3 implements the BorrowableCollection IDL interface
and illustrates how CORBA user exceptions are thrown.

Listing 2.22 shows the declaration of the C++ BookRepository_

BorrowableCollectionImpl class, which provides the implementation of the
BookRepository::BorrowableCollection interface.

Listing 2.22 C++ BookRepository_BorrowableCollectionImpl Class
Declaration
//C++
#ifndef BOOKREPOSITORY_BORROWABLECOLLECTIONIMPL_H_
#define BOOKREPOSITORY_BORROWABLECOLLECTIONIMPL_H_

#include “BookRepositoryS.hh”
#include “BookRepository_CollectionImpl.h”

A d d i n g E x c e p t i o n H a n d l i n g — E x a m p l e 3 8 7

04 0672318121 CH02 6/21/01 1:15 PM Page 87

#include “Borrower_DB.h”

class BookRepository_BorrowableCollectionImpl :
public virtual POA_BookRepository::BorrowableCollection,
public virtual BookRepository_CollectionImpl

{
public:

BookRepository_BorrowableCollectionImpl(PortableServer::POA_ptr);

virtual ~BookRepository_BorrowableCollectionImpl();

//----------
// IDL operations
//----------
virtual void
borrow_book(

BookRepository::ISBN book_id,
const BookRepository::PersonName& borrower,
BookRepository::Date_out return_date

) throw (
CORBA::SystemException,
BookRepository::BorrowableCollection::Unavailable

);

private:
// Private member variables.
Borrower_DB m_borrower_db;

// Private member functions
BookRepository::Date&
current_date();

void
increment_date(BookRepository::Date& given_date, int days);

// ...
};

#endif

The declaration of the BookRepository_BorrowableCollectionImpl class follows the
same pattern as the BookRepository_SearchableCollectionImpl class of Example 2.
One new IDL operation, borrow_book(), is declared.

Two private functions, current_date() and increment_date(), are declared to facil-
itate working with dates.

8 8 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.22 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 88

The Borrower_DB database wrapper class accesses a database table that records every
book that has been borrowed but not yet returned. An instance of the Borrower_DB
class, m_borrower_db, is created to provide the necessary access to the database.

Listing 2.23 and Listing 2.24 show the implementation of the servant methods for C++
and Java, respectively.

Listing 2.23 C++ Implementation of
BookRepository::BorrowableCollection

//C++

#include <stdlib.h>
#include <iostream.h>
#include “BookRepository_BorrowableCollectionImpl.h”

#include <time.h>

// Constructor
BookRepository_BorrowableCollectionImpl::\
BookRepository_BorrowableCollectionImpl(

PortableServer::POA_ptr the_poa
) :

BookRepository_CollectionImpl(the_poa)
{
}

// Destructor.
BookRepository_BorrowableCollectionImpl::\
~BookRepository_BorrowableCollectionImpl()
{
}

BookRepository::Date&
BookRepository_BorrowableCollectionImpl::current_date()
{

time_t utc_time = time(0);
tm * time_details = gmtime(&utc_time);

BookRepository::Date* todayP = new BookRepository::Date();
todayP->day = (CORBA::Short) time_details->tm_mday;
todayP->month = (CORBA::Short) time_details->tm_mon + 1;
todayP->year = (CORBA::Short) time_details->tm_year + 1900;
return *todayP;

}

void

A d d i n g E x c e p t i o n H a n d l i n g — E x a m p l e 3 8 9

04 0672318121 CH02 6/21/01 1:15 PM Page 89

BookRepository_BorrowableCollectionImpl::increment_date(
BookRepository::Date& given_date,
int days

)
{

static const int seconds_per_day = 24*60*60;

tm time_details;
time_details.tm_sec = 0;
time_details.tm_min = 0;
time_details.tm_hour = 2;
time_details.tm_mday = given_date.day;
time_details.tm_mon = given_date.month - 1;
time_details.tm_year = given_date.year - 1900;
time_details.tm_isdst = -1;
time_t utc_time = mktime(&time_details);

utc_time += days*seconds_per_day;

tm * new_details = gmtime(&utc_time);
given_date.day = (CORBA::Short) new_details->tm_mday;
given_date.month = (CORBA::Short) new_details->tm_mon + 1;
given_date.year = (CORBA::Short) new_details->tm_year + 1900;

}

// borrow_book()
void
BookRepository_BorrowableCollectionImpl::borrow_book(

BookRepository::ISBN book_id,
const BookRepository::PersonName& borrower,
BookRepository::Date_out return_date

) throw (
CORBA::SystemException,
BookRepository::BorrowableCollection::Unavailable

)
{

Borrower_DB::LoanRecord loan;

// Check availability of book:
if (m_borrower_db.get(book_id, loan)) {

// Throw CORBA user exception
throw BookRepository::BorrowableCollection::Unavailable(

loan.return_date
);

}

9 0 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.23 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 90

// Calculate the return date (today + two weeks)
return_date = current_date();
increment_date(return_date, 14);

// Create a record of the loan in the Borrower_DB database.
loan.borrower = borrower;
loan.return_date = return_date;
m_borrower_db.put(book_id, loan);

}

Listing 2.24 Java Implementation of
BookRepository::BorrowableCollection

//Java
package Pure.BookRepository;

import org.omg.CORBA.ORB;
import Pure.BookRepository.Borrower_DB;
import Pure.BookRepository.BorrowableCollectionPackage.*;

public class BorrowableCollectionImpl
extends Pure.BookRepository.BorrowableCollectionPOA

{
// Private member variables
private int m_number_of_books;
private java.lang.String m_name_of_collection;
private Borrower_DB m_borrower_db;
private org.omg.PortableServer.POA m_poa = null;

public BorrowableCollectionImpl(org.omg.PortableServer.POA poa)
{

m_poa = poa;
m_number_of_books = 1000;
m_name_of_collection = “AssortedBooks”;
m_borrower_db = new Borrower_DB();

}

public FuzzyBoolean
is_in_collection(

int book_id
)
throws org.omg.CORBA.SystemException
{

A d d i n g E x c e p t i o n H a n d l i n g — E x a m p l e 3 9 1

Listing 2.23 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 91

return FuzzyBoolean.UNKNOWN;
}

public Pure.BookRepository.Date
current_date()
{

Pure.BookRepository.Date today
= new Pure.BookRepository.Date();

java.util.Calendar c = java.util.Calendar.getInstance();
today.day = (short) c.get(java.util.Calendar.DATE);
today.month = (short) (c.get(java.util.Calendar.MONTH) + 1);
today.year = (short) c.get(java.util.Calendar.YEAR);

return today;
}

public Pure.BookRepository.Date
increment_date(

Pure.BookRepository.Date given_date,
int days

)
{

Pure.BookRepository.Date new_date
= new Pure.BookRepository.Date();

java.util.Calendar c = java.util.Calendar.getInstance();
c.set((int) given_date.year,

(int) given_date.month - 1,
(int) given_date.day

);
c.add(java.util.Calendar.DATE, days);

new_date.day = (short) c.get(java.util.Calendar.DATE);
new_date.month = (short) (c.get(java.util.Calendar.MONTH) + 1);
new_date.year = (short) c.get(java.util.Calendar.YEAR);
return new_date;

}

public void borrow_book(
int book_id,
Pure.BookRepository.PersonName borrower,
Pure.BookRepository.DateHolder return_date

)
throws org.omg.CORBA.SystemException,

Pure.BookRepository.BorrowableCollectionPackage.Unavailable
{

9 2 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.24 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 92

// Check availability of book:
Borrower_DB.LoanRecord loan = m_borrower_db.get(book_id);
if (loan != null) {

// Throw CORBA user exception.
throw new Unavailable(loan.return_date);

}

// Calculate the return date (today + two weeks).
return_date.value = increment_date(current_date(), 14);

// Create a record of the loan in the Borrower_DB database.
loan = new Borrower_DB.LoanRecord();
loan.borrower = borrower;
loan.return_date = return_date.value;
m_borrower_db.put(book_id, loan);

}

public int number_of_books()
{

return m_number_of_books;
}

public java.lang.String name_of_collection()
{

return m_name_of_collection;
}

public
void name_of_collection(

java.lang.String _new_value)
{

m_name_of_collection = _new_value;
}

public org.omg.PortableServer.POA _default_POA()
{
return m_poa;

}
}

The date functions, current_date() and increment_date(), are implemented using
the standard POSIX time functions in C++ (declared in the time.h header file) and are
implemented using the java.util.Calendar class in Java. The current_date() func-
tion returns today’s date in the form of a BookRepository::Date, and the
increment_date() function adds the specified number of days to the given date.

A d d i n g E x c e p t i o n H a n d l i n g — E x a m p l e 3 9 3

Listing 2.24 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 93

The implementation of the borrow_book() function illustrates how CORBA user
exceptions are thrown in a server. The borrow_book() function signature lists
Unavailable as one of the exceptions that might be thrown. The availability of the
book identified by book_id is checked by invoking Borrower_DB::get() in C++ and
Borrower_DB.get() in Java (see the declaration of the Borrower_DB class in Listing
2.25 and Listing 2.26). There are two possible outcomes, depending on the result of the
get() call:

• If a book_id loan record does not exist, the book is available. A new loan
record is created that stores the borrower’s name and the calculated return date
(two weeks from today) along with the book_id, which is used as a database
key. The return date, return_date, is returned as an out parameter.

• If a book_id loan record does exist, the book is already on loan and is therefore
unavailable. The server throws an Unavailable CORBA user exception to indi-
cate to the client that the book cannot be borrowed at this time. The expected
return date, loan.return_date, is passed to the Unavailable constructor and
initializes the when_available field of the exception.

Both the C++ and Java servants delegate some functionality to a database class,
Borrower_DB. The Borrower_DB class is a wrapper class that records every book that
has been borrowed but not yet returned. Listing 2.25 and Listing 2.26 show the decla-
rations of the Borrower_DB methods.

Listing 2.25 C++ Declaration of the Borrower_DB Class
// C++
#ifndef _BORROWER_DB_
#define _BORROWER_DB_

...

// Inlude definitions from the stub code.
#include “BookRepository.hh”

class Borrower_DB {
public:

struct LoanRecord {
BookRepository::PersonName borrower;
BookRepository::Date return_date;

};

Borrower_DB();

CORBA::Boolean
get(CORBA::Long book_id, LoanRecord&);

CORBA::Boolean
put(CORBA::Long book_id, const LoanRecord&);

9 4 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 94

private:
...

};
#endif

Listing 2.26 Java Declaration of the Borrower_DB Class
// Java
package Pure.BookRepository;

public class Borrower_DB {

// Public static inner class
public static class LoanRecord {

public PersonName borrower;
public Pure.BookRepository.Date return_date;

};

// Private member variables
//...

public Borrower_DB()
{ ... }

public LoanRecord get(int book_id)
{ ... }

public boolean put(int book_id, LoanRecord new_loan)
{ ... }

}

The LoanRecord type, declared in the Borrower_DB scope, is used to hold a record of
the borrower name (of BookRepository::PersonName type) and the return_date (of
BookRepository::Date type).

There are two public methods declared in the Borrower_DB class:

• The put() function creates a new database record containing the book_id
(database key) and the new_loan record.

• The get() function searches for a database record using book_id as a key.

The Borrower_DB class can be implemented using the database adapter of your choice.
The implementation details are not shown here.

A d d i n g E x c e p t i o n H a n d l i n g — E x a m p l e 3 9 5

Listing 2.25 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 95

IDL Mapping (3)
CORBA has a well-developed exception-handling capability that integrates with lan-
guages such as C++ and Java that support native exception handling. There are two cat-
egories of CORBA exceptions:

• CORBA user exceptions These are open-ended exceptions that can be
defined in IDL by the application developer. User exceptions reflect application-
level semantics. See the section “CORBA User Exceptions”.

• CORBA system exceptions These are a closed set of exceptions, pre-defined
by the CORBA specification. System exceptions are reserved for ORB-level
exceptions and are usually thrown by the ORB runtime, not by the application
developer See the section “CORBA System Exceptions,” which follows.

All exceptions thrown by a CORBA invocation, whether local or remote, must fall into
one of these two categories. A CORBA invocation that throws an exception that is not
a user or system exception might be a symptom of a bug in the ORB runtime.

Figure 2.3 shows the overall hierarchy of CORBA exception classes in C++.

9 6 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

CORBA : : Exception

CORBA : : SystemException

OBJECT_NOT_EXIST

CORBA : : UserException

CORBA : : UnknownUserException

COMM_FAILURETRANSIENT

Figure 2.3

The C++ exception class hierarchy.

The CORBA::Exception class is the abstract base class for all CORBA exceptions in
C++ (no direct instances can be created). The two main categories of exception,
CORBA::UserException and CORBA::SystemException, are derived from
CORBA::Exception and serve as base classes for the different types of user and system
exceptions, respectively.

The CORBA::UnknownUserException class is a special type of user exception that is
used in conjunction with the dynamic invocation interface (DII). See Chapter 20,
“Dynamic Invocation Interface,” for details.

Figure 2.4 shows the overall hierarchy of CORBA exception classes in Java.

04 0672318121 CH02 6/21/01 1:15 PM Page 96

Figure 2.4

The Java exception class hierarchy.

The java.lang.Exception class is the abstract base class for all CORBA exceptions
in Java (no direct instances can be created). The two main categories of exception are
org.omg.CORBA.UserException and org.omg.CORBA.SystemException. The
UserException and SystemException classes derive from java.lang.Exception in
different ways, affecting the way the exceptions are treated:

• Checked exceptions Because UserException extends java.lang.Exception
directly, it is treated as a checked exception. Java forces you to handle checked
exceptions by refusing to compile your code unless you either catch the excep-
tion or insert a throws clause in the method signature.

• Unchecked exceptions Because SystemException extends
java.lang.RuntimeException directly, it is treated as an unchecked exception.
Java does not require you to handle unchecked exceptions. However, it is good
practice to catch SystemExceptions anyway.

The org.omg.CORBA.UnknownUserException class is a special type of user exception
that is used in conjunction with the dynamic invocation interface (DII). See Chapter 20
for details.

The following subsections provide a basic introduction to CORBA user and system
exceptions. The first subsection explains why the Java mapping of the Unavailable
user exception in Example 3 appears in the scope of the
BookRepository.BorrowableCollectionPackage Java package.

Java Mapping for Types Declared in IDL Interfaces
In most cases, a scoped IDL type name maps directly to an equivalent scoped Java type
name. For example, the A::B::C IDL type usually maps to the A.B.C Java type (making

I D L M a p p i n g (3) 9 7

java.lang.Exception

java.lang.RuntimeException

org.omg.CORBA.SystemException

OBJECT_NOT_EXIST

org.omg.CORBA.UserException

org.omg.CORBA.UnknownUserException

COMM_FAILURETRANSIENT

04 0672318121 CH02 6/21/01 1:15 PM Page 97

allowance for the special cases that arise when there is a risk of clashing identifiers—
see the section “IDL Identifiers,” earlier in this chapter). However, when a type is
defined within the scope of an IDL interface, the Java mapping treats it as a special
case.

Consider the following IDL:

//IDL
exception FooAtGlobalScope { };
module M {

exception FooAtModuleScope { };
interface I {

exception FooAtInterfaceScope { };
};

};

The exception types defined in the preceding IDL are mapped to Java, as shown in
Table 2.10.

Table 2.10 Java Mapping of Exception Types Defined at Different
Scopes

IDL Scoped Name Java Scoped Name

::FooAtGlobalScope FooAtGlobalScope

::M::FooAtModuleScope M.FooAtModuleScope

::M::I::FooAtInterfaceScope M.IPackage.FooAtInterfaceScope

The FooAtInterfaceScope exception class is put into the M.IPackage Java package
instead of appearing at the M.I scope. The exception class cannot be defined at the M.I
scope because M.I is a Java interface, and Java interfaces do not support inner classes.

TIP
The general rule is: If applying the default Java mapping rules would put a class
into the scope of a Java interface, I, the class is put into the IPackage scope
instead.

This rule affects all IDL types defined in the scope of an interface. It also affects related
Java Helper and Holder classes.

CORBA User Exceptions
User exceptions are thrown by server developers to signal application-level exceptions
that occur while processing IDL operations. Client developers can then catch and
process the user exception. User exceptions offer the following advantages:

• Informative exceptions User exceptions can contain data that provides
details about the exception condition.

• Integration with native exception handling You can raise and handle user
exceptions using the familiar throw/catch native syntax in both C++ and Java.

9 8 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 98

• Propagation across the network When a user exception is thrown in the
body of an operation, the exception propagates back to the code that invoked
the operation. If the invocation is remote, the ORB sends exception data back
across the network and re-creates the exception on the client side.

The following subsections explain how user exceptions work in practice.

IDL Syntax of User Exceptions
A user exception must be declared in IDL before it can be used by either a client or a
server. There are two aspects of IDL syntax relating to user exceptions:

• Exception type declaration The declaration of an exception type is similar
to a struct, except that the exception declaration is introduced by the exception
keyword instead of the struct keyword.

• Raises clause A raises clause, raises(exc1,exc2,...), containing a
comma separated list of user exceptions must be appended to the declaration of
exception-raising operations. The absence of a raises() clause implies that no
user exceptions can be raised.

For example, the following IDL declares an OutOfRange exception that is used within
a graphics package to indicate when a line extends beyond the limits of the screen:

//IDL
module Graphics {

interface Screen {
exception OutOfRange {

long maxHeight;
long maxWidth;

};

void draw(x1, y1, x2, y2) raises (OutOfRange);
};

};

The OutOfRange exception has two fields, maxHeight and maxWidth, that can be set to
the current screen limits when the exception is raised. The draw() operation specifies
a raises() clause to enable it to throw the OutOfRange exception.

Throwing User Exceptions
In both C++ and Java, a constructor that initializes the exception fields is provided. For
example, the OutOfRange exception can be thrown as shown in the following C++ and
Java code:

//C++
throw Graphics::Screen::OutOfRange(1000, 2000);

//Java
throw new Graphics.ScreenPackage.OutOfRange(1000, 2000);

I D L M a p p i n g (3) 9 9

04 0672318121 CH02 6/21/01 1:15 PM Page 99

The constructor arguments initialize the exception fields according to the order
declared in IDL (in this case, maxHeight is initialized to 1000 and maxWidth to 2000).

In C++, note the contrast between a mapped exception, which supports a multi-
argument constructor, and a mapped struct, which does not.

In Java, because OutOfRange is declared inside the scope of an IDL interface, Screen,
the Java OutOfRange class is placed in an InterfaceNamePackage scope.

Catching User Exceptions
User exceptions can be caught individually if desired using standard C++ and Java syn-
tax:

//C++
// Given ‘screenObj’ is initialized as a ‘Graphics::Screen’ object
try {

screenObj->draw(x1, y1, x2, y2);
}
catch (Graphics::Screen::OutOfRange& oor) {

cerr << “error: exceeded range: “
<< “maxHeight = “ << oor.maxHeight
<< “maxWidth = “ << oor.maxWidth << endl;

}

//Java
// Given ‘screenObj’ is initialized as a ‘Graphics::Screen’ object
try {

screenObj.draw(x1, y1, x2, y2);
}
catch (Graphics.ScreenPackage.OutOfRange oor) {

System.out.println(“error: exceeded range: “
+ “maxHeight = “ + oor.maxHeight
+ “maxWidth = “ + oor.maxWidth);

}

Alternatively, you can catch the user exception generically as a
CORBA::UserException in C++ and an org.omg.CORBA.UserException in Java.

CORBA System Exceptions
System exceptions are thrown by the ORB runtime to warn users of low-level errors in
the ORB or incorrect use of the ORB programming interface. System exceptions are
not usually thrown by the application developer, but it is legal (and occasionally use-
ful) to do so.

Table 2.11 lists a sample of commonly encountered system exceptions, with an expla-
nation of the most common cause of each exception:

1 0 0 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 100

Table 2.11 Commonly Encountered System Exceptions

System Exception Most Common Cause

CORBA::TRANSIENT The client failed to open a network connection to a
server.

CORBA::COMM_FAILURE The client has already established a network connec-
tion, but a network problem subsequently arises.

CORBA::OBJECT_NOT_EXIST The server cannot find the particular CORBA object
you are trying to use.

CORBA::UNKNOWN The operation implementation raised a non-CORBA
exception.

Chapter 21, “CORBA System Exceptions,” contains definitions of these and other sys-
tem exceptions. The following subsections explain how system exceptions work in
practice.

Throwing System Exceptions
It is occasionally useful for an application developer to throw system exceptions. You
might find it useful to raise a system exception when

• A particular system exception provides a good match for an exception condi-
tion that occurs in your application code.

• Constraints on the design of your IDL interfaces prevent you from adding new
user exceptions where they are needed. System exceptions might be used as
approximate substitutes in some cases.

One advantage of system exceptions is that they do not have to be declared in the
raises() clause of an operation—system exceptions are always available. To throw a
system exception, SysExc, use one of the following constructors in C++ and Java:

//C++
CORBA::SysExc(CORBA::ULong minor, CORBA::CompletionStatus status);
CORBA::SysExc();

//Java
org.omg.CORBA.SysExc(int minor, org.omg.CORBA.CompletionStatus status);
org.omg.CORBA.SysExc();

The first system exception constructor takes two arguments. The minor code number,
minor, specifies the system exception more precisely. The completion status, status,
indicates whether or not the invocation had finished before the exception was raised.
See Chapter 23 for details.

The default system exception constructor sets the minor code to 0 and the completion
status to COMPLETED_MAYBE.

Consider for example the CORBA::PERSIST_STORE system exception, which can be
raised when there is a problem with persistent storage on the server side.
CORBA::PERSIST_STORE is thrown as follows in C++ and Java:

I D L M a p p i n g (3) 1 0 1

04 0672318121 CH02 6/21/01 1:15 PM Page 101

//C++
throw CORBA::PERSIST_STORE(0, CORBA::COMPLETED_NO);

//Java
throw new org.omg.CORBA.PERSIST_STORE(

0, org.omg.CORBA.completion_status.COMPLETED_NO
);

Catching System Exceptions
System exceptions can be caught individually using standard C++ and Java syntax:

//C++
// Given ‘screenObj’ is initialized as a ‘Graphics::Screen’ object
try {

screenObj->draw(x1, y1, x2, y2);
}
catch (CORBA::TRANSIENT& sysEx) {

cerr << “error: failed to connect to server: “ << sysEx << endl;
}

//Java
// Given ‘screenObj’ is initialized as a ‘Graphics::Screen’ object
try {

screenObj.draw(x1, y1, x2, y2);
}
catch (org.omg.CORBA.TRANSIENT sysEx) {

System.out.println(“error: failed to connect to server: “ + sysEx);
}

Alternatively, you can catch the system exception generically as a
CORBA::SystemException in C++ and an org.omg.CORBA.SystemException in Java.

Adding a Multiply-Inheriting IDL Interface—
Example 4
The fourth example adds the FlexibleCollection IDL interface, which inherits from
both the SearchableCollection and BorrowableCollection interfaces. The
FlexibleCollection interface enables the server application to define a book collec-
tion that supports both book-searching operations and book-borrowing operations.

Listing 2.27 shows the BookRepository IDL module with this addition.

Listing 2.27 IDL BookRepository Module for Example 4
//IDL

module BookRepository {
//...
interface Collection {

1 0 2 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 102

//...
};

interface SearchableCollection : Collection {
//...

};

interface BorrowableCollection : Collection {
//...

};

interface FlexibleCollection
: BorrowableCollection, SearchableCollection { };

};

No new operations or attributes are defined in FlexibleCollection. The
FlexibleCollection interface illustrates the syntax for declaring multiple inheritance
in IDL—a colon (:) followed by a comma-separated list of interface names.

The next section shows you how to implement the FlexibleCollection interface in
both C++ and Java.

Server Code
The server code for Example 4 implements the FlexibleCollection IDL interface and
illustrates how to implement a multiply inheriting IDL interface.

Listing 2.28 shows the declaration of the C++ BookRepository_

FlexibleCollectionImpl class, which provides the implementation of the
BookRepository::FlexibleCollection interface.

Listing 2.28 C++ BookRepository_FlexibleCollectionImpl Class
Declaration
//C++
#ifndef BOOKREPOSITORY_FLEXIBLECOLLECTIONIMPL_H_
#define BOOKREPOSITORY_FLEXIBLECOLLECTIONIMPL_H_

#include “BookRepositoryS.hh”
#include “BookRepository_BorrowableCollectionImpl.h”
#include “BookRepository_SearchableCollectionImpl.h”

class BookRepository_FlexibleCollectionImpl :
public virtual POA_BookRepository::FlexibleCollection,
public virtual BookRepository_BorrowableCollectionImpl,
public virtual BookRepository_SearchableCollectionImpl

{
public:

A d d i n g a M u l t i p l y - I n h e r i t i n g I D L I n t e r f a c e — E x a m p l e 4 1 0 3

Listing 2.27 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 103

BookRepository_FlexibleCollectionImpl(PortableServer::POA_ptr);
virtual ~BookRepository_FlexibleCollectionImpl();

private:
//...

};

#endif

The C++ BookRepository_FlexibleCollectionImpl class inherits from
BookRepository_BorrowableCollectionImpl and BookRepository_

SearchableCollectionImpl, from which it gets the definitions of all its operations and
attributes. The C++ implementation inheritance tree is thus a mirror of the IDL inher-
itance tree.

The C++ BookRepository_FlexibleCollectionImpl class also inherits from
POA_BookRepository::FlexibleCollection, which indicates to the ORB that it is an
implementation of the FlexibleCollection IDL interface.

Listing 2.29 shows the implementation of the servant methods for C++.

Listing 2.29 C++ Implementation of
BookRepository::FlexibleCollection

//C++
#include <stdlib.h>
#include <iostream.h>
#include “BookRepository_FlexibleCollectionImpl.h”

// Constructor
BookRepository_FlexibleCollectionImpl::BookRepository_FlexibleCollectionImpl(

PortableServer::POA_ptr the_poa
) :

BookRepository_CollectionImpl(the_poa),
BookRepository_BorrowableCollectionImpl(the_poa),
BookRepository_SearchableCollectionImpl(the_poa)

{
}

// Destructor.
BookRepository_FlexibleCollectionImpl::~BookRepository_FlexibleCollectionImpl()
{
}

The C++ implementation of FlexibleCollection is trivial, consisting of just a con-
structor and a destructor. The definitions for the operations and attributes are inherited.

1 0 4 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.28 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 104

Listing 2.30 shows the declaration of the Java
BookRepository.FlexibleCollectionImpl class, which provides the implementation
of the BookRepository::FlexibleCollection interface.

Listing 2.30 Java Implementation of
BookRepository::FlexibleCollection

//Java
package Pure.BookRepository;

import org.omg.CORBA.ORB;

public class FlexibleCollectionImpl
extends Pure.BookRepository.FlexibleCollectionPOA

{
// Private member variables
private org.omg.PortableServer.POA m_poa = null;

public BorrowableCollectionImpl(org.omg.PortableServer.POA poa)
{

m_poa = poa;
}

public org.omg.PortableServer.POA _default_POA()
{
return m_poa;

}

// IDL Operations and Attributes
// (implement all IDL ops and attributes inherited from
// ‘SearchableCollection’ and ‘BorrowableCollection’)
// ...not shown...

}

The Java FlexibleCollectionImpl class cannot inherit from
BorrowableCollectionImpl or SearchableCollectionImpl because the single inher-
itance slot is used up by inheriting from BookRepository.FlexibleCollectionPOA.
The Java implementation inheritance tree is therefore not a mirror of the IDL inheri-
tance tree.

As a consequence of this limitation of Java inheritance, it is necessary to repeat the def-
initions of the inherited operations and attributes within the scope of the
FlexibleCollectionImpl class. The method definitions can be cut and pasted from
the BorrowableCollectionImpl and SearchableCollectionImpl classes—however,
this is fairly inconvenient. The section “Java Inheritance and Delegation (Tie)
Approach” discusses an alternative approach to implementing IDL interfaces that
partly circumvents this difficulty.

A d d i n g a M u l t i p l y - I n h e r i t i n g I D L I n t e r f a c e — E x a m p l e 4 1 0 5

04 0672318121 CH02 6/21/01 1:15 PM Page 105

Multiple Inheritance and the Delegation (Tie)
Approach (Example 4)
Example 4 introduces multiple IDL inheritance and shows you how to implement mul-
tiply inheriting interfaces in C++ and Java. The following sections discuss multiple
inheritance issues in greater detail, paying particular attention to dealing with the lim-
itations of Java.

Multiple Inheritance of Interfaces
In C++, the servant inheritance hierarchy is generally arranged in parallel to the IDL
interface inheritance hierarchy. For example, Figure 2.5 illustrates the servant inheri-
tance hierarchy for the BookRepository_FlexibleCollectionImpl class.

1 0 6 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

BookRepository_CollectionImpl

BookRepository_SearchableCollectionImpl BookRepository_BorrowableCollectionImpl

POA_BookRepository: :FlexibleCollection

BookRepository_FlexibleCollectionImpl

Figure 2.5

The C++ servant inheritance hierarchy for the BookRepository_FlexibleCollectionImpl
class.

When an IDL interface multiply inherits from other IDL interfaces, the servant class
also multiply inherits from other servant classes. This approach makes the most of the
C++ support for multiple inheritance. It is worth bearing in mind, however, that you
could implement a different inheritance relationship (or none) between servant classes
if you prefer.

In Java, the servant inheritance hierarchy cannot be arranged in parallel to the IDL
interface inheritance hierarchy, because Java is limited to single inheritance only. For
example, Figure 2.6 illustrates the servant inheritance hierarchy for the
BookRepository.FlexibleCollectionImpl class.

In Figure 2.6, the Java FlexibleCollectionImpl class inherits from
FlexibleCollectionPOA, and this uses up the single available inheritance slot. The
operations and attributes inherited from the BorrowableCollection and
SearchableCollection IDL interfaces must therefore be defined again within the
scope of the FlexibleCollectionImpl class.

04 0672318121 CH02 6/21/01 1:15 PM Page 106

Figure 2.6

Java servant inheritance hierarchy for the BookRepository.FlexibleCollectionImpl class.

Java Inheritance and Delegation (Tie) Approach
CORBA supports two approaches to implementing IDL interfaces in Java:

• The inheritance approach is characterized by the fact that the connection
between a Foo IDL interface and a FooImpl implementation class is established
by inheritance. The FooImpl class inherits from a FooPOA Java base class. This
is the approach used in this chapter up to this point.

• The delegation (tie) approach is characterized by the fact that the connection
between a Foo IDL interface and a FooImpl implementation class is established
by delegation. For every FooImpl object that is created, an auxiliary FooPOATie
object is created that holds a reference pointing at the FooImpl object.
Operation invocations made on the FooPOATie object are delegated to the
FooImpl object.

NOTE
The tie approach is also available in C++, where the tie class implementation is
usually based on templates. However, the tie approach is of much less importance
in C++.

The tie approach is illustrated in Figure 2.7.

M u l t i p l e I n h e r i t a n c e a n d t h e D e l e g a t i o n (T i e) A p p r o a c h
(E x a m p l e 4) 1 0 7

BookRepository.FlexibleCollectionPOA

BookRepository.FlexibleCollectionImpl

Instance of
BorrowableCollectionPOATie

Instance of
BorrowableCollectionImpl

Figure 2.7

Java implementation of BookRepository::BorrrowableCollection using the tie approach.

Whenever a single servant is created using the tie approach in Java, it is necessary to
create two Java objects: an implementation object, for example
BorrowableCollectionImpl, and a tie object, for example
BorrowableCollectionPOATie. A pointer to the implementation object is passed to the
constructor of the tie object to establish a connection between the two objects. In the
tie approach, two Java objects represent one servant.

04 0672318121 CH02 6/21/01 1:15 PM Page 107

The payoff in the tie approach is that it frees up the single inheritance slot. For exam-
ple, Figure 2.8 shows the Java inheritance hierarchy when the tie approach is applied
to the CollectionImpl and BorrowableCollectionImpl classes.

1 0 8 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

CollectionImpl

BorrowableCollectionImpl

CollectionOperations

BorrowableCollectionOperations

implements

implements

Figure 2.8

Java inheritance hierarchy when using the tie approach.

Using the tie approach, it is now possible for BorrowableCollectionImpl to inherit
directly from CollectionImpl. Consequently, it is not necessary for the
CollectionImpl methods to be repeated in BorrowableCollectionImpl.

Listing 2.31 shows how to define the Java BorrowableCollectionImpl class using the
tie approach.

Listing 2.31 Java Implementation of
BookRepository::BorrowableCollection (Delegation Approach)
//Java
package Pure.BookRepository;

import org.omg.CORBA.ORB;
import Pure.BookRepository.Borrower_DB;
import Pure.BookRepository.BorrowableCollectionPackage.*;

public class BorrowableCollectionImpl
extends CollectionImpl
implements BorrowableCollectionOperations

{
// Private member variables
//...

public static Pure.BookRepository.BorrowableCollectionPOATie
_create(org.omg.PortableServer.POA the_poa)
throws org.omg.CORBA.SystemException
{
BorrowableCollectionImpl tied_object = new BorrowableCollectionImpl();
Pure.BookRepository.BorrowableCollectionPOATie the_tie

= new Pure.BookRepository.BorrowableCollectionPOATie(

04 0672318121 CH02 6/21/01 1:15 PM Page 108

tied_object, the_poa
);

return the_tie;
}

public BorrowableCollectionImpl()
{

//...
}

// IDL Operations and Attributes
// (implement extra IDL ops and attributes
// defined in ‘BorrowableCollection’)
// ...not shown...

}

The single inheritance slot is now occupied by CollectionImpl. The
BorrowableCollectionImpl class also implements the
BorrowableCollectionOperations Java interface. In general, an
InterfaceNameOperations Java interface contains just the signatures of the operations
and attributes associated with the InterfaceName IDL interface.

The BorrowableCollectionImpl::_create() method is a convenient method defined
in order to simplify the creation of a servant under the tie approach. Recall that the tie
approach requires two Java objects for every servant: the implementation object and the
tie object. Both are created when you call _create().

The BorrowableCollectionPOATie() constructor takes two arguments. The first argu-
ment, tied_object, is cached by the tie object and used to delegate invocations to the
implementation object. The second argument, the_poa, sets the POA that is returned if
_default_POA() is invoked on the tie object.

Because BorrowableCollectionImpl inherits from CollectionImpl, it is only neces-
sary to define the extra operations and attributes defined in the BorrowableCollection
IDL interface. Alternatively, you can override the inherited methods if you require dif-
ferent behavior for BorrowableCollection objects.

Adding CORBA Naming Service Support—
Example 5
The fifth example adds support for the CORBA Naming Service to the application.
Instead of the server passing object references to the client by writing to a file, the code
is modified so that the server publishes object references to the naming service. The
client can then retrieve object references from the naming service by resolving names.

No changes are made to the example IDL.

A d d i n g C O R B A N a m i n g S e r v i c e S u p p o r t — E x a m p l e 5 1 0 9

Listing 2.31 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 109

Client Code
Listing 2.32 and Listing 2.33 give the code for a client of the
BookRepository::Collection interface in C++ and Java, respectively. This client
obtains the Collection object reference using the CORBA Naming Service.

Listing 2.32 C++ Collection Client Using the CORBA Naming Service
//C++
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <sstream>
#include <omg/CosNaming.hh>
#include “BookRepository.hh”

CORBA::ORB_var
global_orb = CORBA::ORB::_nil();

int
main(int argc, char **argv)
{

try
{

CORBA::Object_var objV; // For temporary object references.

// Initialise the ORB.
global_orb = CORBA::ORB_init(argc, argv);

// Parse command line arguments:
if (argc != 1) {

cout << “Usage: bk_collection “ << endl;
exit(0);

}

// Obtain Naming Service reference.
CosNaming::NamingContext_var rootContextV;
objV = global_orb->resolve_initial_references(“NameService”);
rootContextV = CosNaming::NamingContext::_narrow(objV);
if (CORBA::is_nil(rootContextV.in())) {

cerr << “error: failed to narrow root naming context.” << endl;
exit(1);

}

// Obtain ‘BookRepository::Collection’ object reference.
CosNaming::Name objectName(2);
objectName.length(2);
objectName[0].id = CORBA::string_dup(“BookRepository”);
objectName[0].kind = CORBA::string_dup(“”);

1 1 0 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 110

objectName[1].id = CORBA::string_dup(“PlainCollection”);
objectName[1].kind = CORBA::string_dup(“”);
objV = rootContextV->resolve(objectName);
BookRepository::Collection_var collectionV =

BookRepository::Collection::_narrow(objV);
if (CORBA::is_nil(collectionV.in()))
{

cerr << “error: failed to narrow to Collection.” << endl;
exit(1);

}

// Invoke ‘BookRepository::Collection’ object.
cout << “Details of book collection:” << endl;
CORBA::String_var name_strV;
name_strV = collectionV->name_of_collection();
cout << “\tName of collection = \”” << name_strV.in() << “\”” << endl;
CORBA::Long n_books;
n_books = collectionV->number_of_books();
cout << “\tNumber of books = “ << n_books << endl;

// Try changing the name of the book collection.
cout << “Changing name of book collection...” << endl;
collectionV->name_of_collection(“Brand new collection!”);
cout << “checking name of collection...” << endl;
name_strV = collectionV->name_of_collection();
cout << “\tName of collection = \”” << name_strV.in() << “\”” << endl;

}
catch(CORBA::Exception &ex)
{

cerr << “Unexpected CORBA exception: “ << ex << endl;
}

// Shut down the ORB.
try
{

global_orb->shutdown(1);
global_orb->destroy();

}
catch (...)
{

// Do nothing.
}
return 0;

}

A d d i n g C O R B A N a m i n g S e r v i c e S u p p o r t — E x a m p l e 5 1 1 1

Listing 2.32 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 111

Listing 2.33 Java Collection Client Using the CORBA Naming Service
//Java
package Pure.BookRepository;

import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import java.io.*;
import Pure.BookRepository.*;

public class bk_collection
{

// global_orb -- make ORB public
public static org.omg.CORBA.ORB global_orb = null;

public static void main (String args[])
{

try
{

org.omg.CORBA.Object obj;

// Initialise the ORB.
global_orb = ORB.init(args, null);

String app_args[] = remove_ORB_args(args);

// Parse command line arguments:
if (app_args.length != 0) {

System.out.println(“Usage: bk_collection “);
System.exit(1);

}

// Obtain Naming Service reference.
org.omg.CosNaming.NamingContext rootContext = null;
obj = global_orb.resolve_initial_references(“NameService”);
rootContext = org.omg.CosNaming.NamingContextHelper.narrow(obj);

// Obtain ‘BookRepository::Collection’ object reference.
org.omg.CosNaming.NameComponent[] objectName

= new org.omg.CosNaming.NameComponent[2];
objectName[0]

= new org.omg.CosNaming.NameComponent(“BookRepository”, “”);
objectName[1]

= new org.omg.CosNaming.NameComponent(“PlainCollection”, “”);
obj = rootContext.resolve(objectName);
Collection theCollection

= CollectionHelper.narrow(obj);

// Invoke ‘BookRepository::Collection’ object.
System.out.println(“Details of book collection:”);

1 1 2 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 112

String name_str;
name_str = theCollection.name_of_collection();
System.out.println(“\tName of collection = \”” + name_str + “\””);
int n_books;
n_books = theCollection.number_of_books();
System.out.println(“\tNumber of books = “ + n_books);

// Try changing the name of the book collection.
System.out.println(“Changing name of book collection...”);
theCollection.name_of_collection(“Brand new collection!”);
System.out.println(“checking name of collection...”);
name_str = theCollection.name_of_collection();
System.out.println(“\tName of collection = \”” + name_str + “\””);

}
catch(Exception ex)
{

System.out.println(“Unexpected CORBA exception: “ + ex);
}

// Shut down the ORB.
try
{

global_orb.shutdown(true);
global_orb.destroy();

}
catch (Exception ex)
{

// Do nothing.
}
return;

}
}

The bk_collection client performs almost the same sequence of steps as the client in
Example 1 (Listing 2.2 and Listing 2.3). The only difference is that the client in this
example uses the CORBA Naming Service instead of the read_reference() function
to obtain the Collection object reference:

1. Obtain a naming service reference An initial reference to the naming ser-
vice is obtained by invoking CORBA::ORB::resolve_initial_references()
with the string NameService as its argument.
The object reference returned by resolve_initial_references() is normally
obtained from an ORB-specific configuration mechanism. For some ORBs, the
naming service location can be specified in a configuration file. Other ORBs let
you specify the location using command-line parameters (which would then be
extracted from the args parameter passed to ORB_init() in C++ and
ORB.init() in Java).

A d d i n g C O R B A N a m i n g S e r v i c e S u p p o r t — E x a m p l e 5 1 1 3

Listing 2.33 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 113

The naming service initial reference is an object of
CosNaming::NamingContext type (or CosNaming::NamingContextExt type, if
you are using the extended functionality of the CORBA Interoperable Naming
Service). The NamingContext IDL interface provides most of the operations
that you need when you are using the naming service.

2. Obtain the Collection object reference The Collection object reference is
obtained by resolving the name BookRepository/PlainCollection, for which
a server has already created a binding in the naming service.
The CosNaming::NamingContext::resolve() operation has the following IDL
signature:
//IDL
#pragma prefix “omg.org”

module CosNaming {
typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;
...
interface NamingContext {

...
Object resolve (in Name n)

raises(NotFound, CannotProceed, InvalidName);
...

};
...

};

The resolve() operation takes an argument of CosNaming::Name type, which
is a sequence of NameComponent structs. In this example, the objectName has
two name components: The first component is BookRepository, and the second
component is PlainCollection.
The return type of resolve() is the base type, Object, which maps to
CORBA::Object in C++ and org.omg.CORBA.Object in Java. The return value,
therefore, must be cast to the correct type using Collection::_narrow() in
C++ and CollectionHelper.narrow() in Java.
The naming service is described in detail in Chapter 6.

Server Code
The server shown in Listing 2.34 for C++ and Listing 2.35 for Java uses the CORBA
Naming Service to publish its object references.

1 1 4 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 114

Listing 2.34 C++ Server Initialization Using the CORBA Naming Service
//C++
#include <iostream.h>
#include <fstream.h>
#include <string.h>
#include <stdlib.h>
#include <omg/PortableServer.hh>
#include <omg/CosNaming.hh>
#include “BookRepository_CollectionImpl.h”
#include “BookRepository_SearchableCollectionImpl.h”
#include “BookRepository_BorrowableCollectionImpl.h”
#include “BookRepository_FlexibleCollectionImpl.h”

CORBA::ORB_var
global_orb = CORBA::ORB::_nil();

int
main(

int argc,
char **argv

)
{

// Variables to hold servants.
PortableServer::ServantBase_var the_BookRepository_Collection = 0;
PortableServer::ServantBase_var

the_BookRepository_SearchableCollection = 0;
PortableServer::ServantBase_var

the_BookRepository_BorrowableCollection = 0;
PortableServer::ServantBase_var the_BookRepository_FlexibleCollection = 0;

try
{

CORBA::Object_var objV; // For temporary object references.

// Initialize the ORB and Root POA.
cout << “Initializing the ORB” << endl;
global_orb = CORBA::ORB_init(argc, argv);
objV = global_orb->resolve_initial_references(“RootPOA”);
PortableServer::POA_var root_poaV

= PortableServer::POA::_narrow(objV);
if (CORBA::is_nil(root_poaV.in())) {

cerr << “error: failed to narrow root POA.” << endl;
exit(1);

}
PortableServer::POAManager_var root_poa_managerV

= root_poaV->the_POAManager();
if (CORBA::is_nil(root_poa_managerV.in())) {

A d d i n g C O R B A N a m i n g S e r v i c e S u p p o r t — E x a m p l e 5 1 1 5

04 0672318121 CH02 6/21/01 1:15 PM Page 115

cerr << “error: failed to narrow root POA manager.” << endl;
exit(1);

}

// Obtain Naming Service reference.
CosNaming::NamingContext_var rootContextV;
objV = global_orb->resolve_initial_references(“NameService”);
rootContextV = CosNaming::NamingContext::_narrow(objV);
if (CORBA::is_nil(rootContextV.in())) {

cerr << “error: failed to narrow root naming context.” << endl;
exit(1);

}

// Make sure that a ‘BookRepository’ naming context exists.
CosNaming::Name objectName(2);
objectName.length(1);
objectName[0].id = CORBA::string_dup(“BookRepository”);
objectName[0].kind = CORBA::string_dup(“”);
try {

rootContextV->bind_new_context(objectName);
}
catch (CosNaming::NamingContext::AlreadyBound&) { }

// Create servants and export object references.
PortableServer::ObjectId_var oid;

// Create and activate a ‘Collection’ servant.
the_BookRepository_Collection

= new BookRepository_CollectionImpl(root_poaV);
oid = root_poaV->activate_object(the_BookRepository_Collection.in());
objV = root_poaV->id_to_reference(oid);

// Create an object binding in the CORBA Naming Service.
objectName.length(2);
objectName[0].id = CORBA::string_dup(“BookRepository”);
objectName[0].kind = CORBA::string_dup(“”);
objectName[1].id = CORBA::string_dup(“PlainCollection”);
objectName[1].kind = CORBA::string_dup(“”);
rootContextV->rebind(objectName, objV);

// Similarly, create other servants and create object bindings.
// ...(not shown)...

// Activate the POA Manager and let the ORB process requests.
root_poa_managerV->activate();
cout << “Waiting for requests...” << endl;
global_orb->run();

}

1 1 6 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.34 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 116

catch (CORBA::Exception& e)
{

cout << “Unexpected CORBA exception: “ << e << endl;
}

// Servants are automatically deleted by ‘_var’ types.

// Shut down the ORB.
try
{

global_orb->destroy();
}
catch (...)
{

// Do nothing.
}
return 0;

}

Listing 2.35 Java Server Initialization Using the CORBA Naming Service
//Java
package Pure.BookRepository;

import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import java.io.*;

public class server {

public static ORB global_orb = null;

public static void main(String args[])
{

// Variables to hold the servants.
Servant the_BookRepository_Collection = null;
Servant the_BookRepository_SearchableCollection = null;
Servant the_BookRepository_BorrowableCollection = null;
Servant the_BookRepository_FlexibleCollection = null;

try
{

org.omg.CORBA.Object obj = null;

// Initialize the ORB and Root POA.
System.out.println(“Initializing the ORB”);
global_orb = ORB.init(args, null);

A d d i n g C O R B A N a m i n g S e r v i c e S u p p o r t — E x a m p l e 5 1 1 7

Listing 2.34 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 117

obj = global_orb.resolve_initial_references(“RootPOA”);
POA root_poa = POAHelper.narrow(obj);
POAManager root_poa_manager = root_poa.the_POAManager();

// Obtain Naming Service reference.
org.omg.CosNaming.NamingContext rootContext = null;
obj = global_orb.resolve_initial_references(“NameService”);
rootContext = org.omg.CosNaming.NamingContextHelper.narrow(obj);

// Make sure that a ‘BookRepository’ naming context exists.
org.omg.CosNaming.NameComponent[] objectName

= new org.omg.CosNaming.NameComponent[1];
objectName[0]

= new org.omg.CosNaming.NameComponent(“BookRepository”, “”);
try {

rootContext.bind_new_context (objectName);
}
catch (org.omg.CosNaming.NamingContextPackage.AlreadyBound e) { }

// Create servants and export object references.
byte [] oid;

try{
// Create and activate the ‘Collection’ servant.
the_BookRepository_Collection

= new Pure.BookRepository.CollectionImpl(root_poa);
oid = root_poa.activate_object(the_BookRepository_Collection);
obj = root_poa.id_to_reference(oid);

// Create a object binding in the CORBA Naming Service.
objectName = new org.omg.CosNaming.NameComponent[2];
objectName[0]
= new org.omg.CosNaming.NameComponent(“BookRepository”, “”);

objectName[1]
= new org.omg.CosNaming.NameComponent(“PlainCollection”, “”);

rootContext.rebind(objectName, obj);

// Similarly, create other servants and create object bindings.
// ...(not shown)...

}
catch (Exception ex)
{

System.out.println(ex);
ex.printStackTrace();
System.exit(1);

}

// Activate the POA Manager.
try {

1 1 8 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.35 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 118

root_poa_manager.activate();
}
catch (POAManagerPackage.AdapterInactive ex) {

System.out.println(“error: could activate POA manager” + ex);
System.exit(1);

}

//Let the ORB process requests.
System.out.println(“Waiting for requests...”);
global_orb.run();

}
catch (Exception ex)
{

System.out.println(“error: unexpected exception: “ + ex);
}

try
{

global_orb.destroy();
}
catch (Exception e)
{

// Do nothing.
}
return;

}
}

The server initialization performs almost the same sequence of steps as the server ini-
tialization in Example 1 (Listing 2.7 and Listing 2.8). The only difference is that the
CORBA Naming Service is used to distribute object references to clients instead of the
write_reference() function:

1. Obtain a naming service reference An initial reference to the naming ser-
vice is obtained by invoking CORBA::ORB::resolve_initial_references()
with the string NameService as its argument.

2. Make sure that a BookRepository naming context exists The server creates
a context binding named BookRepository if it does not already exist. A context
binding associates an object name with a NamingContext object.
The BookRepository naming context defines a scope within the naming con-
text hierarchy. Subsequently, object bindings can be created within this scope—
for example, BookRepository/PlainCollection, BookRepository/
SearchableCollection and so on (see step 3).
The CosNaming::NamingContext::bind_new_context() operation creates new
context bindings. It has the following IDL signature:

A d d i n g C O R B A N a m i n g S e r v i c e S u p p o r t — E x a m p l e 5 1 1 9

Listing 2.35 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 119

//IDL
#pragma prefix “omg.org”

module CosNaming {
typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;
...
interface NamingContext {

...
NamingContext bind_new_context(in Name n)

raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
...

};
...

};

The bind_new_context() operation creates a binding that associates the name
n with a newly created NamingContext object. The new NamingContext object
is a CORBA object that lives in the naming service. A naming service imple-
mentation normally provides some kind of persistent storage to preserve the
state of these NamingContext objects.
If the BookRepository naming context already exists, the naming service noti-
fies the server by throwing the CosNaming::NamingContext::AlreadyBound
user exception. This is not a serious error: The server simply proceeds to use
the existing naming context. In Listing 2.34 and Listing 2.35, the
AlreadyBound exception is caught to enable the server to continue uninter-
rupted.
The full details of bind_new_context() are described in Chapter 6.

3. Create object bindings in the CORBA Naming Service An object refer-
ence is published to the naming service by creating an object binding that asso-
ciates an object name with an object reference.
The CosNaming::NamingContext::rebind() operation creates object bindings.
It has the following IDL signature:
//IDL
#pragma prefix “omg.org”

module CosNaming {
typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;
...

1 2 0 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 120

interface NamingContext {
...
void rebind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName);
...

};
...

};

The rebind() operation creates a binding that associates the name n with the
object reference obj. Clients can later retrieve the object reference by resolving
its associated name.
The rebind() operation works in clobber mode (to borrow the Unix term). It
can either create a new binding with name n or, if a binding with that name
already exists, overwrite the existing binding. This is convenient if, as is
usually the case, you want to refresh the object bindings each time the server
starts up.
The full details of rebind() are described in Chapter 6.

More IDL Syntax and Rules for Mapping
Identifiers
Miscellaneous IDL features are discussed in the following subsections:

• IDL constants
• Recursive IDL types
• Unique type identifiers—RepositoryIds
• C++ mapped identifiers and keywords
• Java mapped identifiers and keywords
• Contexts

IDL Constants
The IDL syntax allows constants to be defined for basic types, enumerations, and
aliases (typedefs) of basic types and enumerations. Listing 2.36 gives some examples
of IDL constant definitions.

Listing 2.36 Sample IDL Constant Definitions
//IDL
// Characters constants
const char A_LETTER = ‘p’;
const char A_NEWLINE = ‘\n’;
const char A_SINGLE_QUOTE = ‘\’’;

// Wide character constants
const wchar A_WIDE_LETTER = L’q’;
const wchar A_UNICODE_LETTER = L’\u039b’; // capital Lambda

M o r e I D L S y n t a x a n d R u l e s f o r M a p p i n g I d e n t i f i e r s 1 2 1

04 0672318121 CH02 6/21/01 1:15 PM Page 121

// String constants
const string SALUTATION = “Hello!\n”;
const string CONCATENATED = “Put” “ me” “ together” “ again.”;
const string<8> BOUNDED = “Not long”;

// Wide string constant
const wstring GREEK_LETTERS = L”\u039b=2\u0393”; // Lambda = 2 Gamma

// Octet constant
const octet BIGGEST_OCTET = 0xff;

// Integer constants
const long A_DECIMAL_INT = 365;
const long AN_OCTAL_INT = 0555;
const long A_HEX_INT = 0x16d;
const long A_BIGGER_INT = A_DECIMAL_INT + 100;

// Floating point constants
const float A_FLOAT_EXPR = 2.0/3.0;
const float A_SMALL_FLOAT = 1.2e-10;

// Enumeration constant
enum Shade { black, grey, white };
const Shade CAVE_INTERIOR = black;

// Fixed point constant
const fixed MONEY_AMOUNT = 23.45D;

The syntax of IDL literals is similar to the syntax of C++ and Java literals. The exam-
ples in Listing 2.36 illustrate the following points:

• Character literals follow the ISO Latin-1 standard. Non-graphic characters can
be specified using \ (backslash) escape sequences, familiar from C++ and Java.
See Chapter 18 for details.

• Wide character literals consist of a character literal preceded by the L (capital
L) character. International characters can be specified using a Unicode escape
sequence, ‘\uXXXX’ where XXXX is a hexadecimal number.

• String literals have a similar format to C++ and Java. Consecutive string liter-
als, separated only by whitespace, are concatenated before being assigned to a
string constant. For example, the CONCATENATED string constant of Listing 2.36
is set equal to “Put me together again.”.

• Wide string literals consist of a string preceded by the L (capital L) character.
In addition, Unicode escape sequences, of the form \uXXXX, are allowed to
appear in wide string literals.

• Octets can be specified in decimal, octal, or hexadecimal format.

1 2 2 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.36 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 122

• Integers can be specified in decimal, octal, or hexadecimal format. It is also
possible to assign integer expressions to an integer constant.

• Floating point constants can be set equal to a floating point expression. All
floating point literals appearing in a floating point expression must contain a
decimal point (mixed integer and floating point arithmetic is not allowed).

• Enumeration constants can be defined.
• Fixed-point constants can be defined. A fixed-point literal is always terminated

by the letter d (small d) or D (capital D). See Chapter 17 and Chapter 18 for
details.

The IDL syntax allows numerical types to be specified as arithmetical expressions. The
supported arithmetical operations are shown in Table 2.12.

Table 2.12 Operations Allowed in Constant Expressions

Unary Binary
IDL Types Operations Operations

float + *

double - /

long double +

fixed -

short + *

unsigned short - /

long ~ %

unsigned long +

long long -

unsigned long long <<

>>

&

|

^

The additional integer operations are described in Chapter 18. These include ~ (two’s
complement), % (remainder), << (shift bits left), >> (shift bits right), & (bitwise AND),
| (bitwise OR), and ^ (bitwise exclusive OR).

Constants at Different Scopes
IDL constants can be defined at different scopes, as shown in Listing 2.37.

Listing 2.37 IDL Constants Defined at Different Scopes
//IDL
const string GLOBAL_SCOPE = “global”;

module MyModule {
const string MODULE_SCOPE = “in MyModule”;
//...

M o r e I D L S y n t a x a n d R u l e s f o r M a p p i n g I d e n t i f i e r s 1 2 3

04 0672318121 CH02 6/21/01 1:15 PM Page 123

interface MyInterface {
const string INTERFACE_SCOPE = “in MyInterface”;
//...

};
};

Listing 2.37 defines three string constants: GLOBAL_SCOPE, MODULE_SCOPE, and
INTERFACE_SCOPE. The mapping of these string constants to C++ and Java is described
in the following sections.

C++ Mapping
The IDL constants from Listing 2.37 are mapped to C++ as shown in Listing 2.38.

Listing 2.38 C++ Mapping of Constants Defined at Different Scopes
//C++
const char * const GLOBAL_SCOPE = “global”;

namespace MyModule {
const char * const MODULE_SCOPE = “in MyModule”;
//...
class MyInterface {

static const char * const INTERFACE_SCOPE;
//...

};
};
...
// Initialisation of ‘INTERFACE_SCOPE’
MyModule::MyInterface::INTERFACE_SCOPE = “in MyInterface”;
...

To refer to the mapped string constants, you can use the fully scoped names:
GLOBAL_SCOPE, MyModule::MODULE_SCOPE, and MyModule::MyInterface::

INTERFACE_SCOPE. The mapping in Listing 2.38 assumes that you are using standard
ANSI C++. Hence, the IDL module MyModule is mapped to a C++ namespace.

Java Mapping
The IDL constants from Listing 2.37 are mapped to Java as shown in Listing 2.39 and
Listing 2.40.

Listing 2.39 Java Mapping of Global Constants
//Java
// File containing global constants:
interface GLOBAL_SCOPE {

String value = “global”;
};
...

1 2 4 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

Listing 2.37 continued

04 0672318121 CH02 6/21/01 1:15 PM Page 124

Listing 2.40 Java Mapping of Constants at Module and Interface Scopes
//Java
package MyModule;

interface MODULE_SCOPE {
String value = “in MyModule”;

};

interface MyInterface
{

String INTERFACE_SCOPE = “in MyInterface”;
//...

};

To refer to the mapped string constants, you can use the fully scoped names:
GLOBAL_SCOPE.value, MyModule.MODULE_SCOPE.value, and
MyModule.MyInterface.INTERFACE_SCOPE.

NOTE
In Java mapping, a distinction is made between constants declared in the scope of
an IDL interface and other constants. Constants in the scope of an IDL interface
map intuitively to a scoped identifier—for example,
MyModule.MyInterface.INTERFACE_SCOPE. Constants declared outside an IDL
interface, however, map to a Java interface with a single value member—for
example, GLOBAL_SCOPE.value.

Recursive IDL Types
In general, sequences must be given an alias, using the IDL typedef construction,
before they can be used. The following IDL fragment, for example, contains an error:

//IDL
typedef sequence<long> LongSeq;

interface TestSequence {
void set_sequence(in LongSeq numbers); // OK. Uses ‘LongSeq’ alias.
sequence<long> get_sequence(); //WRONG! Will not compile.

};

The anonymous sequence type, sequence<long>, cannot be used as the return value or
parameter of an IDL operation. You must use the LongSeq alias instead.

However, there are two contexts in IDL where it is legal to use an anonymous sequence
type (apart from a typedef):

• As a struct member (a recursive struct)
• As a union member (a recursive union)

M o r e I D L S y n t a x a n d R u l e s f o r M a p p i n g I d e n t i f i e r s 1 2 5

04 0672318121 CH02 6/21/01 1:15 PM Page 125

The following IDL fragment shows an example of a recursive struct definition:

//IDL
struct Node {

string info;
sequence<Node> recur;

};

The Node struct is recursive because the sequence<Node> sequence is defined in terms
of the Node struct itself.

In C++, the sequence<Node> sequence is mapped in a special way. Because the
sequence has no name in IDL, it is mapped to the Node::_recur_seq class. In general,
when a MemberName member of a StructName struct is declared as an anonymous
sequence, it is mapped to the StructName::_MemberName_seq class.

In Java, the sequence<Node> sequence is mapped to Node[].

Unique Type Identifiers—Repository IDs
Every named IDL type is associated with a unique identifier string, known as a repos-
itory ID. Repository IDs are used by the Interface Repository, a type repository for
IDL, to keep track of IDL data types—hence the name. However, repository IDs are
used in many other contexts as unique type identifiers.

For example, consider the IDL fragment in Listing 2.41, which defines a number of
new named IDL types.

Listing 2.41 A Sample IDL Illustrating Repository IDs
//IDL
module MyModule {

struct MyStruct {
string FirstMember;
long SecondMember;

;
typedef sequence<MyStruct> MyStructSeq;

interface MyInterface {
MyStructSeq getSequence();

};
};

The IDL types defined in Listing 2.41 are associated with the repository IDs shown in
Table 2.13.

1 2 6 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 126

Table 2.13 Sample Repository IDs in OMG IDL Format

IDL Scoped Name Repository ID

::MyModule IDL:MyModule:1.0

::MyModule::MyStruct IDL:MyModule/MyStruct:1.0

::MyModule::MyStructSeq IDL:MyModule/MyStructSeq:1.0

::MyModule::MyInterface IDL:MyModule/MyInterface:1.0

By default, each named IDL type is associated with a repository ID in OMG IDL for-
mat. In general, the OMG IDL repository ID format has the following form:

IDL:ModifiedScopedName:major.minor

The ModifiedScopedName is equal to the scoped name of the IDL type with / (forward
slash) used in place of :: to separate components of the name. A version number, of
the form major.minor, appears at the end of the repository ID, where the major and
minor version numbers are decimal unsigned short integers. The default version num-
ber is 1.0.

Repository IDs are generated by the IDL compiler as it generates the stub code for the
target language of your CORBA application.

In C++, you can access the MyModule::MyInterface repository ID as follows:

//C++
CORBA::String_var rep_idV = MyModule::_tc_MyInterface->id();
cout << “The MyModule::MyInterface repository id is: “ << rep_idV << endl;

The MyModule::_tc_MyInterface object is an example of a CORBA type code, which
is generated by the IDL compiler. CORBA type codes are discussed further in Chapter
8, “The any Type.”

In Java, you can access the MyModule::MyInterface repository ID as follows:

//C++
String rep_id = MyModule.MyInterfaceHelper.id();
System.out.println(“The MyModule::MyInterface repository id is: “ + rep_id);

Java provides a short cut to access the repository ID via the id() method of the
MyInterfaceHelper class. (You can also access the repository ID using the type code
for MyInterface.)

The generation of repository IDs by the IDL compiler can be influenced by inserting
#pragma preprocessor directives into the IDL code. This enables repository IDs to be
modified in three ways:

• Using the #pragma prefix preprocessor directive
• Using the #pragma version preprocessor directive
• Using the #pragma ID preprocessor directive

M o r e I D L S y n t a x a n d R u l e s f o r M a p p i n g I d e n t i f i e r s 1 2 7

04 0672318121 CH02 6/21/01 1:15 PM Page 127

The #pragma prefix Preprocessor Directive
To avoid polluting the global namespace of IDL repository IDs, it is often useful to
apply a prefix to all of the repository IDs defined in a particular IDL file. The #pragma
prefix preprocessor directive is used for this purpose.

Consider, for example, that a #pragma prefix directive is inserted at the start of the
IDL shown in Listing 2.41. This gives the following IDL fragment:

//IDL
#pragma prefix “pure-corba-3.com”

module MyModule {
//... As before.

};

The quotation marks around the “pure-corba-3.com” prefix string are compulsory,
and the #pragma prefix directive should appear at the beginning of the IDL file. The
IDL types defined by the preceding fragment are associated with the following repos-
itory ID strings:

“IDL:pure-corba-3.com/MyModule:1.0”
“IDL:pure-corba-3.com/MyModule/MyStruct:1.0”
“IDL:pure-corba-3.com/MyModule/MyStructSeq:1.0”
“IDL:pure-corba-3.com/MyModule/MyInterface:1.0”

The prefix is intended to be a unique identifier for a particular organization that pro-
duces IDLs. Because the authors of the OMG specification believe that a Web domain
name is a particularly appropriate form of prefix, the repository ID format allows the
use of the hyphen (-) and period (.) characters in its components. This makes it possi-
ble to use Internet addresses (for example, pure-corba-3.com) as IDL prefixes.

The #pragma version Preprocessor Directive
You can use the #pragma version directive to associate a version number with any
IDL definition. The effect of the #pragma version directive is to modify the version
field of a repository ID.

Consider, for example, that you produce a new version of the IDL from Listing 2.41,
adding a new field to MyModule::MyStruct and a new operation to
MyModule::MyInterface. This gives rise to the following IDL fragment:

//IDL
#pragma prefix “pure-corba-3.com”

module MyModule {
#pragma version MyModule 1.1

struct MyStruct {
#pragma version MyStruct 1.1

string FirstMember;
long SecondMember;

1 2 8 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 128

short ExtraMember;
;
typedef sequence<MyStruct> MyStructSeq;

interface MyInterface {
#pragma version MyInterface 1.1

MyStructSeq getSequence();
void putSequence(in MyStructSeq seq);

};
};

The repository IDs defined by the preceding IDL fragment are modified as follows:

“IDL:pure-corba-3.com/MyModule:1.1”
“IDL:pure-corba-3.com/MyModule/MyStruct:1.1”
“IDL:pure-corba-3.com/MyModule/MyStructSeq:1.0”
“IDL:pure-corba-3.com/MyModule/MyInterface:1.1”

Use of the #pragma version directive is compatible with the #pragma prefix direc-
tive, as this example shows.

The #pragma ID Preprocessor Directive
For specialized applications, it is sometimes useful to override the standard IDL format
for a repository ID and define a more or less arbitrary repository ID instead. The
#pragma ID directive allows you to do this.

The following IDL fragment shows you how to assign a new repository ID to
MyModule:

//IDL
#pragma prefix “pure-corba-3.com”

module MyModule {
#pragma ID MyModule “FORMAT: Any string at all”

//... As before.
};

The preceding #pragma ID directive replaces the IDL:pure-corba-3.com/

MyModule:1.0 repository ID with the FORMAT: Any string at all repository ID. The
most general allowed form of a repository ID is

format:string

Here, format is a short name for the repository ID format, which must not contain a
colon (:) character, and string is a string that conforms to the given format.

C++ Mapped Identifiers and Keywords
In general, IDL identifiers map to C++ identifiers with the same capitalization. For
example, the rANdOm_CaSE IDL identifier maps to the rANdOm_CaSE C++ identifier.

M o r e I D L S y n t a x a n d R u l e s f o r M a p p i n g I d e n t i f i e r s 1 2 9

04 0672318121 CH02 6/21/01 1:15 PM Page 129

However, two kinds of clashes can occur that are treated as special cases. These are dis-
cussed in the following two sections.

Clash with C++ Keywords
If an IDL identifier clashes with a C++ keyword, the identifier is prefixed by _cxx_
when it is mapped to C++. For example, consider the following IDL:

//IDL
interface New {

void continue();
void friend();

};

The IDL identifiers New, continue, and friend are mapped to the C++ identifiers
_cxx_New, _cxx_continue, and _cxx_friend, respectively. The _cxx_ prefix is added
to avoid a clash with C++ keywords.

Clash with Suffixes and Prefixes
C++ mapping forms additional C++ types from a given IDL type by adding suffixes to
the IDL identifier. For example, a Foo interface has associated Foo_var and Foo_ptr

types, formed by adding the _var and _ptr suffixes, respectively.

The use of suffixes can lead to an identifier clash, as shown by the following IDL:

//IDL
struct foo {...};

struct foo_var {...}; //WARNING! Bad for C++.

The foo IDL struct maps to a foo class and a foo_var smart pointer class. The foo_var
IDL struct maps to a foo_var class (conflicting with the previous foo_var smart
pointer class) and a foo_var_var smart pointer class. The conflict between the
foo_var classes cannot be resolved. The only solution is to avoid these kinds of iden-
tifiers in your IDL files.

A similar problem can occur with C++ identifiers formed by adding a prefix to an IDL
identifier—for example, the POA_ prefix that is used to form the name of a servant’s
base class. Avoid defining an IDL interface or module whose name begins with POA_.

Java Mapped Identifiers and Keywords
In general, IDL identifiers also map to identical Java identifiers with the same capital-
ization. For example, the rANdOm_CaSE IDL identifier maps to the rANdOm_CaSE Java
identifier. However, two kinds of clashes can occur that must be treated as special
cases. These are discussed in the following two sections.

Clash with Java Keywords
An IDL identifier that clashes with a Java keyword is prefixed by an underscore (_)
when it is mapped to Java. For example, consider the following IDL:

1 3 0 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 130

//IDL
interface New {

void break();
void final();

};

The IDL identifiers New, break, and final are mapped to the Java identifiers _New,
_break, and _final, respectively. The underscore (_) prefix is added to avoid a clash
with Java keywords.

Clash with Suffixes
Java mapping forms additional Java types from an IDL type by adding suffixes to the
IDL identifier. For example, a Foo interface has associated FooHelper, FooHolder,
FooOperations, FooPOA, and FooPOATie types.

The use of suffixes can lead to an identifier clash, as shown by the following IDL:

//IDL
struct foo {...};

struct fooHelper {...};

The foo IDL struct maps to a foo class and a fooHelper Helper class (and other types).
The fooHelper IDL struct maps to a _fooHelper class and a _fooHelperHelper
Helper class. The conflict between class names is avoided by adding the underscore (_)
prefix to the fooHelper identifier when it is mapped to Java. The mapping is summa-
rized in Table 2.14.

Table 2.14 Mapping of IDL Types to Java

IDL Identifier Java Identifier Java Helper Class

foo foo fooHelper

fooHelper _fooHelper _fooHelperHelper

In general, multiple clashing suffixes are resolved by prefixing more than one under-
score (_) character, with the number of underscores equal to the number of suffixes that
appear in the IDL identifier. For example, the fooHelperPOA IDL identifier maps to the
__fooHelperPOA Java identifier.

Contexts
A context expression is a syntax associated with an operation definition that enables
you to send a group of variables (with string values) from a client to a server. For exam-
ple, when searching for books, using the find_by_title() operation, you might want
to vary the size of the returned list depending on the client hardware. Context variables
could be used to send this type of information:

M o r e I D L S y n t a x a n d R u l e s f o r M a p p i n g I d e n t i f i e r s 1 3 1

04 0672318121 CH02 6/21/01 1:15 PM Page 131

//IDL
module BookRepository {

...
interface SearchableCollection : Collection {

boolean find_by_title(
in string title,
out BookDetailsSeq books_found

) context (TERMINAL_TYPE, SCREEN_SIZE_*);
};

};

The context expression picks out the TERMINAL_TYPE, SCREEN_SIZE_WID, and
SCREEN_SIZE_HGT variables to send to the server (the * character is a wildcard).

Contexts are not covered in this book for the following reasons:

• Obsolescence The role of contexts in providing auxiliary data for an opera-
tion has been largely superseded by the use of service contexts and intercep-
tors. Service contexts provide a more elegant solution because they do not need
to be declared for each operation in IDL.

• Poor ease of use To use contexts, you have to learn new IDL syntax (which,
unlike the rest of IDL’s syntax, is not intuitive) and more mapping rules.
However, there is nothing you can do with contexts that cannot also be done
using plain operation parameters.

• Poor Type Safety Context variables are weakly typed (all context values are
passed as strings).

• Lack of support In the author’s experience, use of contexts in real-life pro-
jects is rare. Therefore, commercial ORB vendors receive few bug reports on
contexts, and potential problems might remain undiscovered.
Additionally, some leading ORB vendors have already dropped support for IDL
contexts altogether.

More About Servers
For the sake of simplicity, this chapter focuses throughout on using the root POA. In
realistic applications, however, you generally create your own POA instances and use
these instead. Chapter 7 explains in detail how to create POA instances and what you
can do with a POA.

The following sections highlight some basic POA features that are important to know
about when you start to develop CORBA applications.

Transient and Persistent CORBA Objects
When using the POA, CORBA objects can be divided into two fundamental categories:

• Transient CORBA Object A short-lived object whose lifetime is bounded
by the lifetime of the server process in which it is created.

• Persistent CORBA Object A long-lived object whose lifetime is unbounded.
For example, an object whose state is permanently stored in a database should
be managed as a persistent CORBA object.

1 3 2 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 132

CORBA objects associated with the root POA instance are always transient. Chapter 7
explains how to create a POA instance that has the PERSISTENT lifetime policy,
enabling you to manage persistent CORBA objects as well.

Implicit Activation and _this()
The root POA supports implicit activation, which is a feature that allows CORBA
objects to be activated using an abbreviated syntax. Compare the long syntax for cre-
ating and activating a CORBA object, shown in Listing 2.42 for C++ and Listing 2.43
for C++ for Java, with the abbreviated syntax using the _this() method, shown in
Listing 2.44 for C++ and Listing 2.45 for Java.

Listing 2.42 C++ Activating a Collection Object—Long Syntax
//C++
//---
// Given the following variables already initialized:
// root_poaV - a reference to the root POA instance

PortableServer::ObjectId_var oid;
CORBA::Object_var objV;

// Create and activate a ‘Collection’ servant.
the_BookRepository_Collection

= new BookRepository_CollectionImpl(root_poaV);
oid = root_poaV->activate_object(the_BookRepository_Collection.in());
objV = root_poaV->id_to_reference(oid);

Listing 2.43 Java Activating a Collection Object—Long Syntax
//Java
//---
// Given the following variables already initialized:
// root_poa - a reference to the root POA instance

byte[] oid;
org.omg.CORBA.Object obj;

try{
// Create and activate the ‘Collection’ servant.
the_BookRepository_Collection

= new Pure.BookRepository.CollectionImpl(root_poa);
oid = root_poa.activate_object(the_BookRepository_Collection);
obj = root_poa.id_to_reference(oid);

}
catch (Exception ex) { ... }

M o r e A b o u t S e r v e r s 1 3 3

04 0672318121 CH02 6/21/01 1:15 PM Page 133

Listing 2.44 C++ Activating a Collection Object—Using _this()

//C++
//---
// Given the following variables already initialized:
// root_poaV - a reference to the root POA instance

CORBA::Object_var objV;

// Create and activate a ‘Collection’ servant.
the_BookRepository_Collection

= new BookRepository_CollectionImpl(root_poaV);
objV = the_BookRepository_Collection->_this();

Listing 2.45 Java Activating a Collection Object—Using _this()

//Java
//---
// Given the following variables already initialized:
// root_poa - a reference to the root POA instance

byte[] oid;
org.omg.CORBA.Object obj;

try{
// Create and activate the ‘Collection’ servant.
the_BookRepository_Collection

= new Pure.BookRepository.CollectionImpl(root_poa);
obj = the_BookRepository_Collection._this();

}
catch (Exception ex) { ... }

The _this() method activates the CORBA object as a side-effect of returning an object
reference. Using _this() has the benefit of simplifying object activation. However,
implicit activation is more of a liability than a benefit for the following reasons:

• Using _this() hides too many details. In particular, you cannot see explicitly
which POA instance is used to activate the CORBA object.

• Sometimes _this() activates a CORBA object using the wrong POA instance.
This can easily happen because of the way _this() determines the POA
instance. The _this() method implicitly calls _default_POA() on the servant
class to get a reference to a POA instance. Unless you have explicitly overrid-
den _default_POA() in the servant implementation, _default_POA() returns a
reference to the root POA. In general, this is not what you want to happen at
all. The root POA is rarely used in real applications.

For these reasons, it is preferable to avoid using implicit activation altogether.

1 3 4 C h a p t e r 2 : P r o g r a m m i n g w i t h C O R B A

04 0672318121 CH02 6/21/01 1:15 PM Page 134

Summary
This chapter introduces the main CORBA features that you need to write basic client
and server applications. A typical CORBA application begins with the definition of an
interface specification written in OMG IDL. The IDL definitions are then compiled
into your chosen target language using an IDL compiler. The resulting stub code
enables you to access the data types, IDL interfaces, operations, and attributes using
your chosen development language, for example C++ or Java.

As a CORBA application starts up, the first thing it does is initialize an ORB object (or
objects) and obtain references to basic objects using resolve_initial_references().
Clients can then obtain references to objects in CORBA servers by reading stringified
object references from files or using the naming service.

CORBA supports a range of data types that can be passed as parameters to IDL oper-
ations or used as return values. In addition to basic types, such as strings, integer types,
and floating point types, CORBA also supports complex types, such as structs and
sequences. A special difficulty for C++ programmers is the fact that IDL data types are
often allocated dynamically (on the heap). Special _var pointer types are defined for
most IDL data types to help C++ programmers avoid memory leaks when dealing with
dynamically allocated data.

Exception handling is extremely important in distributed applications because of the
complex interactions between components and the potential for network failures.
CORBA has a well-developed exception-handling capability that integrates with C++
and Java native exception handling.

Multiple inheritance of IDL interfaces is supported. In C++, the IDL inheritance hier-
archy maps naturally to a parallel inheritance hierarchy of implementation classes. In
Java, which does not support multiple inheritance, implementing multiple inheritance
is less convenient. However, the situation in Java is better if you adopt the tie approach
to implementing interfaces.

The last section introduces the CORBA Naming Service as a standard way for clients
to locate services and retrieve named object references. This rounds out the basic
CORBA programming introduction.

S u m m a r y 1 3 5

04 0672318121 CH02 6/21/01 1:15 PM Page 135

04 0672318121 CH02 6/21/01 1:15 PM Page 136

PA R T I I

TECHNIQUES
3 A Sample CORBA System

4 Memory Management

5 Object References

6 Interoperable Naming Service

7 The Portable Object Adapter

8 The any Type

9 Callbacks

10 Interceptors

11 Objects by Value

12 Events Service

13 CORBA Components

14 Internet Inter-ORB Protocol

05 0672318121 Part2 6/20/01 5:38 PM Page 137

05 0672318121 Part2 6/20/01 5:38 PM Page 138

A Sample CORBA System
This chapter introduces the Recycle Broker application, which
is used as the basis for many of the code examples throughout
this book. This example is also intended to illustrate some
basic principles of IDL design. The Recycle Broker IDL mod-
ule contains several interfaces and is long enough to demon-
strate how IDL interfaces typically are used together.

Complete source code for the Recycle Broker application is
available for download, as detailed in the introduction.

Recycle Broker Architecture
The Recycle Broker application is devised as an e-business
infrastructure for an imaginary waste management company,
ACME Recycling Ltd. ACME Recycling is an established
recycling business that has one large head office and a couple
dozen small branch offices spread throughout the country.
Attached to each branch office is a depot where customers who
sell waste can deposit their waste material. The waste material
is stored at the depot until it can be collected by specialist recy-
cling companies. ACME Recycling thus acts as a middleman,
collecting and storing waste until it can be sold in large quan-
tities to recycling factories or to other customers.

The senior management of ACME Recycling have heard about
the Internet and are beginning to think about how it could be
used to improve their business model. They have had problems
in the past with depots running out of space to store waste. It
occurs to the managers that, in the case of customers who pro-
duce a large amount of waste, it would make more sense to
transport the waste directly to the recipient, bypassing the
waste depot. The Internet is an ideal way to broker this kind of
arrangement. It is also apparent to the management that offer-
ing a service on the Internet could broaden the customer base
and increase the volume of business.

C H A P T E R 3

A
 S

a
m

p
le

 C
O

R
B

A
 S

y
ste

m

06 0672318121 CH03 6/20/01 5:45 PM Page 139

An e-business consulting company is engaged to devise an Internet strategy. The con-
sultants draw up a plan for a CORBA-based system, the Recycle Broker application.
The Recycle Broker architecture is shown in Figure 3.1. The application is a distrib-
uted system with servers running at each of the company sites. There is a single head
office server and branch office servers at each of the regional branches.

1 4 0 C h a p t e r 3 : A S a m p l e C O R B A S y s t e m

IIOP

DBCORBA Server

Web Server

Client Client

Client

Client
Client

Head Office

HTTP

HTTP

HTTP

HTTP

DB

CORBA Server

Client Client

Branch Office

DB

CORBA Server

Client Client

Branch Office

IIOP

HTTP
Servlet

Internet

Figure 3.1

Architecture for the Recycle Broker system.

A three-tier system is put into each branch office, consisting of clients (tier 1), a branch
office server (tier 2), and a local database (tier 3). Each branch office keeps track of
local customers and the waste items in its depot, using its own database. It is important
to store these details locally, because connectivity with the head office is not reliable,
and IT staff are not readily available to fix problems at each of the branch offices.

The head office server acts as a central repository for all of the information in the com-
pany. Details stored in each of the branch office databases are regularly copied over to
the head office database. The company Web server is also located in the head office.

06 0672318121 CH03 6/20/01 5:45 PM Page 140

To automate the process of buying and selling waste items, the Web server must access
the head office server directly.

The bridge between the head office server and the Internet is provided by Java Servlet
technology combined with CORBA. An HTTP Servlet, which runs on the Web server,
acts as a CORBA client with respect to the head office server. This internal link uses
the Internet inter-ORB protocol (IIOP), as shown in Figure 3.1. The HTTP Servlet
processes HTML forms and generates Web pages in response to clients using ordinary
Web browsers. This external link uses the HTTP protocol.

NOTE
Another solution would be to use JavaServer Pages (JSP) in combination with an
HTTP Servlet. JSP enables generated Web pages to be updated more easily.

The Recycle Broker CORBA servers at branch offices and at the head office provide
access to customer data and record details of transactions to buy and sell waste items.
The purpose of the Internet service is to automate the buying and selling of waste items
online.

Recycle Broker IDL
Listing 3.1 shows the complete IDL for the RecycleBroker IDL module. This IDL is
supported by both the head office and the branch office CORBA servers.

Listing 3.1 RecycleBroker IDL Module
//IDL
module RecycleBroker {

typedef string NameType;
typedef string AddressType;
typedef long KeyType;
typedef float PriceType;

enum WasteType {
BROWN_GLASS, GREEN_GLASS, CLEAR_GLASS, SCRAP_STEEL,
ALUMINIUM_CANS, PLASTIC_BOTTLES, WASTE_PAPER

};

// User Exceptions
exception NoPermission { };
exception NotLoggedOn { };
exception NotFound { };
exception InsufficientQuantity { };
exception NetworkError {

string reason;

R e c y c l e B r o k e r I D L 1 4 1

06 0672318121 CH03 6/20/01 5:46 PM Page 141

string telephone;
};

// struct RecycleBroker::CustomerDetails
struct CustomerDetails {

NameType name;
AddressType address;
string email_address;
string password;

};

struct CustomerDetailsFull {
CustomerDetails public_details;
KeyType branch_id;
KeyType customer_id;

};

// struct RecycleBroker::WasteItemDetails
struct WasteItemDetails {

WasteType waste;
long quantity;
PriceType price_per_kilo;

};

struct WasteItemDetailsFull {
WasteItemDetails public_details;
KeyType branch_id;
KeyType customer_id;
KeyType wasteitem_id;

};

// struct RecycleBroker::BranchDetails
struct BranchDetails {

AddressType address;
string telephone;

};

struct BranchDetailsFull {
BranchDetails public_details;
KeyType branch_id;

};

interface Office;

interface Customer {
// attributes
attribute NameType name;

1 4 2 C h a p t e r 3 : A S a m p l e C O R B A S y s t e m

Listing 3.1 continued

06 0672318121 CH03 6/20/01 5:46 PM Page 142

attribute AddressType address;
attribute string email_address;
attribute string password;
readonly attribute KeyType branch_id;
readonly attribute KeyType customer_id;

// operations
CustomerDetails get_details();

};

interface WasteItem {
// attributes
attribute WasteType waste;
attribute long quantity;
attribute PriceType price_per_kilo;
readonly attribute KeyType branch_id;
readonly attribute KeyType customer_id;
readonly attribute KeyType wasteitem_id;

// operations
WasteItemDetails get_details();

};

typedef sequence<KeyType> CustomerIdSeq;
typedef sequence<CustomerDetails> CustomerDetailsSeq;

interface CustomerAdmin {
Customer create(

in CustomerDetails initialData,
out KeyType customer_id

)
raises (NoPermission);

Customer find(in KeyType customer_id)
raises (NoPermission, NotFound);

CustomerIdSeq find_by_name(in NameType name)
raises (NoPermission, NotFound);

};

typedef sequence<KeyType> WasteItemIdSeq;
typedef sequence<WasteItem> WasteItemSeq;
typedef sequence<WasteItemDetails> WasteItemDetailsSeq;

interface WasteItemAdmin {
WasteItem create(

in WasteItemDetails initialData,

R e c y c l e B r o k e r I D L 1 4 3

Listing 3.1 continued

06 0672318121 CH03 6/20/01 5:46 PM Page 143

out KeyType wasteitem_id
)
raises (NoPermission);

WasteItem find(in KeyType wasteitem_id)
raises (NotFound);
WasteItemIdSeq find_by_waste(in WasteType waste)
raises (NotFound);
WasteItemIdSeq find_by_branch(in KeyType branch_id)
raises (NotFound);
WasteItemIdSeq find_all();

WasteItemDetailsSeq get_details(in WasteItemIdSeq id_seq)
raises (NotFound);

};

typedef sequence<BranchDetails> BranchDetailsSeq;

interface OfficeAdmin {
BranchDetailsSeq get_all_details();

};

interface Browsing {
WasteItemAdmin get_waste_item_admin();

};

interface Selling {
enum Status {INITIAL,

LOGGED_ON,
LOGGED_OFF };

readonly attribute Status current_status;

Customer create_customer(
in CustomerDetails initialData,
out KeyType customer_id

);

Customer log_on(in NameType name, in string password)
raises (NoPermission);

WasteItem create_waste_item(
in WasteItemDetails initialData,
out KeyType wasteitem_id

)
raises (NotLoggedOn);

1 4 4 C h a p t e r 3 : A S a m p l e C O R B A S y s t e m

Listing 3.1 continued

06 0672318121 CH03 6/20/01 5:46 PM Page 144

void log_off() raises (NotLoggedOn);
};

interface Buying {
enum Status {INITIAL,

LOGGED_ON,
LOGGED_OFF };

readonly attribute Status current_status;

Customer create_customer(
in CustomerDetails initialData,
out KeyType customer_id

);

Customer log_on(in NameType name, in string password)
raises (NoPermission);

void buy_item(
in KeyType wasteitem_id,
in long quantity

)
raises (NotFound,

InsufficientQuantity,
NetworkError,
NotLoggedOn

);

void log_off() raises (NotLoggedOn);
};

interface Office {
// attributes
readonly attribute string address;
readonly attribute long branch_id;

// Customer operations
Browsing get_browsing();
Selling get_selling();
Buying get_buying();

// Agent operations
CustomerAdmin get_customer_admin();
WasteItemAdmin get_waste_item_admin();

};

R e c y c l e B r o k e r I D L 1 4 5

Listing 3.1 continued

06 0672318121 CH03 6/20/01 5:46 PM Page 145

typedef sequence<WasteItemDetailsFull> WasteItemDetailsFullSeq;
typedef sequence<CustomerDetailsFull> CustomerDetailsFullSeq;

interface HeadOffice : Office {
void replicate_waste_item_details(

in WasteItemDetailsFullSeq detailsSeq
);

void replicate_customer_details(
in CustomerDetailsFullSeq detailsSeq

);
};

interface BranchOffice : Office { };
};

The starting point for any client is to obtain a reference to an Office object. There are
two sub-types of the Office interface: the HeadOffice interface, used by clients of the
head office server, and the BranchOffice interface, used by clients of a branch office
server. The initial reference to an Office object can either be cached on the client side
or be obtained using the CORBA Naming Service.

Once a client has a reference to an Office object, the client can navigate to all of the
other objects in the server. The operations in the Office interface are grouped into the
categories customer operations and agent operations, depending on the type of client
using the server:

• A customer client is an application that accesses the RecycleBroker server
directly on behalf of a customer. This category covers customers accessing
Recycle Broker via the Internet. For security reasons, customer clients are
granted limited access to the server. If a customer client attempts to perform a
forbidden action, the RecycleBroker::NoPermission user exception is raised.

• An agent client is an application that accesses the RecycleBroker server on
behalf of an ACME Recycling employee. For this category of client, security is
more relaxed because employees must be able to update customer records and
waste item records directly.

The activities available to customer clients are to browse the list of available waste
items by calling get_browsing(), offer waste items for sale by calling get_selling(),
or purchase waste items by calling get_buying(). Each of these operations returns ref-
erences to CORBA objects that organize the tasks of browsing, selling, and buying and
limit the degree of access to the server.

Agent clients have the option of calling get_customer_admin() and
get_waste_item_admin(). The CustomerAdmin and WasteItemAdmin object refer-
ences returned by these operations allow the agent to make arbitrary updates to the
database records.

1 4 6 C h a p t e r 3 : A S a m p l e C O R B A S y s t e m

Listing 3.1 continued

06 0672318121 CH03 6/20/01 5:46 PM Page 146

The interfaces appearing in the RecycleBroker module can be grouped into the fol-
lowing categories:

• Data interfaces represent objects that consist primarily of persistent data. These
are typically objects whose state is stored in a backend data base attached to
the server. The Customer and WasteItem interfaces fall into this category.

• Control interfaces represent objects that encapsulate the steps needed to per-
form certain tasks. The Browsing, Selling, and Buying interfaces fall into this
category.

• Factory interfaces represent objects that create, find, and manage instances of
other objects. The CustomerAdmin, WasteItemAdmin, HeadOffice, and
BranchOffice interfaces fall into this category.

• Base interfaces appear in the inheritance hierarchy solely so that other inter-
faces can derive from them. No instances of a base interface are created. The
Office interface falls into this category.

The preceding categories are not part of the standard CORBA terminology, nor is there
any IDL syntax available to make a distinction between them. However, you will often
see these interface categories reflected in the design of CORBA applications. For
example, many modules designed by the OMG, such as the interface repository IDL in
Chapter 23, “CORBA System Exceptions,” exhibit this kind of pattern. The following
subsections discuss data, control, and factory interfaces in more detail.

Data Interfaces
Instances of Customer and WasteItem represent database records, making the data
available to clients through the Customer and WasteItem IDL interfaces. Both the
Customer and WasteItem interfaces consist mainly of attributes that allow clients to
access individual data fields.

Consider the Customer interface. It supports a single operation, get_details(), that
returns a CustomerDetails struct. The CustomerDetails struct contains most of the
fields that appear as attributes in the corresponding Customer object. Additionally, a
CustomerDetailsFull struct is defined to contain all of the attributes of the Customer
object (including the readonly attribute).

This association between an interface, Customer, and a struct, CustomerDetails, is a
common pattern in IDL design. If a client needs to access multiple fields of the
Customer object, it is very inefficient to invoke each attribute and incur the overhead
of several remote invocations. It is better for these clients to obtain a CustomerDetails
struct using a single remote invocation.

Control Interfaces
The Browsing, Selling, and Buying interfaces are examples of control interfaces
because they encapsulate the steps needed to perform certain tasks. These kinds of
objects have very little state associated with them. Both the Selling and Buying

objects behave as state machines, moving through the three states: INITIAL,
LOGGED_ON, and LOGGED_OFF.

R e c y c l e B r o k e r I D L 1 4 7

06 0672318121 CH03 6/20/01 5:46 PM Page 147

It is debatable as to whether you would really want to define all the steps for buying
and selling items in the server application—it is often more convenient to put this logic
on the client side. However, it is useful to put in place some steps to regulate logging
in and logging out. This provides the server with some protection against buggy client
code and unauthorized users.

Factory Interfaces
The use of factory interfaces is a fundamental pattern in IDL design. Factory objects
are used to create, find, and manage instances of other CORBA objects.

The HeadOffice and BranchOffice interfaces are typical of factories that create only
short-lived CORBA objects. The Office interface provides an operation to create each
object—for example, get_browsing() for a new Browsing object—but provides no
operations to find or otherwise manage the objects it creates. Servers typically clean up
short-lived objects automatically, clearing them out of memory if they have been dor-
mant for too long.

The ConsumerAdmin and WasteItemAdmin factory interfaces manage long-lived
CORBA objects—Customer and WasteItem, respectively.

Recycle Broker Implementation
On the server side of a CORBA application, some common patterns for the implemen-
tation and management of CORBA objects can be identified. CORBA objects can
therefore be divided into categories as follows:

• Entity objects are long-lived CORBA objects whose state is stored persistently
so that they can be re-created after the server is stopped and restarted.
For example, Customer and WasteItem objects are entity objects because they
represent records in a database. Entity objects require a well-defined identity to
facilitate later retrieval. They also tend to have an associated factory object,
which manages the entity object’s lifecycle and provides search operations.
Scalability is a major issue for entity objects. Because these objects often rep-
resent records in a database, there might be many millions of them. It is gener-
ally impossible, or at least highly inefficient, for a server to keep all of these
objects in memory at the same time. It is therefore essential for a server to have
the capability to load entity objects dynamically into memory only as they are
needed. The POA provides just this sort of functionality—full details are dis-
cussed in Chapter 7, “The Portable Object Adapter.”

• Session objects are short-lived CORBA objects created to do some work on
behalf of a client. When the client finishes its interaction with the server, the
associated session objects typically are no longer needed and can be discarded.
For example, Browsing, Selling, and Buying objects are session objects
because they each manage particular tasks on behalf of a client. Session objects
do not usually require a well-defined identity, because they are used once and
then discarded.

1 4 8 C h a p t e r 3 : A S a m p l e C O R B A S y s t e m

06 0672318121 CH03 6/20/01 5:46 PM Page 148

Some form of garbage collection has to be implemented for session objects.
When a server is active for a long time, more and more clients connect to the
server, which causes the number of session objects to grow without limit.
Determining when it is safe to discard a session object is difficult, in general.
However, a common approach is to discard session objects that remain unused
for a certain length of time. The POA supports this kind of session manage-
ment—see Chapter 7 for details.

• Process objects are long-lived objects that are closely associated with the server
process. There is only a single instance of each type of process object.
For example, HeadOffice and BranchOffice objects are process objects. They
are intended to be the first point of contact for clients and provide access,
directly or indirectly, to all of the other CORBA objects in the server.
Process objects are given a precise meaning in the context of the CORBA
Components model, which is discussed in Chapter 15, “CORBA Components.”

Many of the issues that server programmers have to deal with are related to managing
the lifecycle of CORBA objects. These kinds of issues are dealt with in Chapter 7.

Summary
This chapter presented a basic outline of the Recycle Broker application, which is used
as the basis for a number of examples throughout the book. The interfaces in the
RecycleBroker IDL module follow common patterns and are described here as data,
control, and factory style interfaces.

The implementation of the RecycleBroker interfaces is discussed in terms of common
patterns such as entity objects, session objects, and process objects. These object cate-
gories are revisited in Chapter 7, which covers how to create and configure the POA to
manage each type of object effectively. In Chapter 15, the object categories are dis-
cussed in the context of the CORBA Components framework.

S u m m a r y 1 4 9

06 0672318121 CH03 6/20/01 5:46 PM Page 149

06 0672318121 CH03 6/20/01 5:46 PM Page 150

Memory Management
CORBA provides a rich variety of data types, including a num-
ber of compound types such as structs, sequences, unions, and
arrays. These complex data types tend to be of variable size, so
it is often appropriate to allocate them on the free store (heap
allocation) using new. The CORBA programmer has to under-
stand where to allocate memory for the CORBA data and,
more importantly, where to deallocate the memory. In other
words, the programmer needs to have an understanding of
CORBA memory management.

The issue of memory management is one that specifically
affects C++ programmers. The flexibility of allocating mem-
ory on the free store brings with it the responsibility of freeing
the memory at the appropriate time. Java solves this problem
conveniently with the garbage collector, which does the deal-
location for you. The C++ language does not offer such a con-
venient solution, and programmers must learn the principles
of memory management when programming with CORBA
and C++.

It is particularly important to adopt good practices in memory
management when programming with CORBA in C++.
Certain programming practices that you might get away with
in a standalone application simply will not work in a distrib-
uted application. A server providing for thousands of clients
will rapidly be brought to its knees by any memory leaks, for
example.

To program effectively with CORBA in C++ you need to have
a grasp of the following fundamentals:

• Allocating and initializing CORBA data types
• Deallocating CORBA data types

C H A P T E R 4

M
e
m

o
ry

 M
a
n

a
g

e
m

e
n

t

07 0672318121 CH04 6/20/01 5:35 PM Page 151

• Assigning and copying CORBA data types
• Passing CORBA data type parameters
• Using smart pointers to manage memory effectively

This chapter covers each of these topics, enabling you to manage the complete lifecy-
cle of CORBA data. The difficult part, however, is to know when to carry out the basic
steps in the lifecycle of a parameter. This chapter explains what happens as parameters
are passed in a CORBA invocation so that you can understand the logic underlying the
CORBA memory management rules.

The good news for C++ programmers is that they are not entirely on their own when it
comes to memory management. CORBA provides help in the form of smart pointer
types (also known as _var types) that are designed to ease the burden.

C++ Smart Pointer Types _var
This section introduces the idea of _var types in the C++ mapping. For almost all
CORBA types, apart from some of the basic types, the C++ mapping defines a corre-
sponding _var type. For each IDL type T, a class T_var is generated by the C++
mapping.

The main purpose of the _var types is to assist the C++ programmer with memory
management, and in particular to help avoid memory leaks. The _var types also have
some additional features, including helper methods that can simplify parameter pass-
ing in CORBA operations.

This section begins with an explanation for the concept of a smart pointer. The _var
type for managing CORBA strings, CORBA::String_var, is then presented before dis-
cussing the general properties of _var types.

What Is a Smart Pointer?
A smart pointer is a C++ class that is designed to imitate the syntax of an ordinary
pointer. For example, the dereferencing operator operator*() and the member refer-
encing operator operator->() are frequently overloaded in a smart pointer class:

class SmartPtr {
T* m_ptr;

public:
T& operator*();
T* operator->();
// Definitions of constructors etc.
...

};

An instance of the class SmartPtr is intended to be used as a pointer to the type T. In
other words, SmartPtr is a replacement for the dumb pointer T* and holds a pointer to
a T instance. The operator*() is used to dereference the smart pointer, returning the

1 5 2 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 152

value of the corresponding T instance. The operator->() is used to access the mem-
bers of the corresponding T instance (needed in cases where T is a class, struct, or
union type).

More overloaded operators can be defined for the class SmartPtr as required (in par-
ticular, the subscripting operator operator[]() is frequently overloaded as well). With
a little effort, a class SmartPtr can be defined that imitates the built-in pointer T* in
almost every respect.

The power of a smart pointer lies in the fact that every time it is accessed via an over-
loaded operator, some special behavior can be programmed to occur. This allows a
smart pointer to behave in a more intelligent manner than an ordinary pointer. For
example, an attempt to dereference a null pointer in C++ usually has grave conse-
quences. A smart pointer instance, however, can be designed to generate a warning
message and avoid the program crashing.

In the context of the CORBA C++ mapping, smart pointer classes are used to aid
memory management and avoid memory leaks.

The CORBA::String_var Type
An example of a smart pointer is the type CORBA::String_var. CORBA specifies that
the IDL type string maps to either of the C++ types given in Table 4.1.

Table 4.1 Dumb and Smart Pointers for CORBA Strings

Pointer Type Description

char * Dumb pointer type—A CORBA string has the same layout as
a standard C++ string and can be referenced via a simple
char * pointer.

CORBA::String_var Smart pointer type—A CORBA string can also be referenced
using this smart pointer type. The smart pointer automatically
manages the memory associated with the string, deleting it
as necessary.

Consider a simple code fragment that dynamically allocates a string:

// C++
{ // Begin local scope

// Allocate and Initialize the string ‘s’
char * s = CORBA::string_dup(“Hello Earth”);

// Print out various bits of the string
cout << s << endl;
cout << s[0] << s[1] << s[2] << s[3] << s[4] << endl;

// Deallocate the string ‘s’
CORBA::string_free(s);

} // End local scope

C + + S m a r t P o i n t e r Ty p e s _ v a r 1 5 3

07 0672318121 CH04 6/20/01 5:35 PM Page 153

As usual in C++ you must take particular care to deallocate the string before exiting
the current scope. If you forget to call CORBA::string_free() on the pointer s, the
memory associated with the string (12 bytes worth) will be leaked.

The above code fragment can be rewritten with the help of the smart pointer type
CORBA::String_var as follows:

// C++
{

// Allocate and Initialize the string ‘s’
CORBA::String_var s = CORBA::string_dup(“Hello Earth”);

// Print out various bits of the string
cout << s.in() << endl;
cout << s[0] << s[1] << s[2] << s[3] << s[4] << endl;

} // String ‘s’ is automatically Deallocated

The key difference here is that the _var type relieves you of the burden of calling
CORBA::string_free() at the end of the function. The destructor of the
CORBA::String_var class makes a call to CORBA::string_free(), and this destructor
is called automatically as soon as s goes out of scope.

When the CORBA::String_var is streamed to cout, it is converted to an ordinary char*
by calling s.in(). With ANSI-compliant C++ compilers, you can print out the string
directly, as in cout << s << endl. However, automatic type conversion is not prop-
erly supported by some C++ compilers, and for these compilers the
CORBA::String_var::in() function might need to be called.

NOTE
You can use array subscripting on CORBA::String_var, for example s[0], just like an
ordinary string. This is because the operator[]() is also overloaded for the
CORBA::String_var class.

General Form of a _var Class
The CORBA C++ language mapping specifies that smart pointer classes representing
structured IDL types should have the following general form (from section 1.9.1,
p. 1–22 of “C++ Language Mapping Specification,” June 1999):

// C++
class T_var
{
public:

T_var();
T_var(T *);

1 5 4 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 154

T_var(const T_var &);
~T_var();

T_var &operator=(T *);
T_var &operator=(const T_var &);

T* operator->();
const T* operator->() const;

/* in parameter type */ in() const;
/* inout parameter type */ inout();
/* out parameter type */ out();
/* return type */ _retn();

// other conversion operators to support
// parameter passing

};

The T_var class for structured types invariably overloads the assignment operator
operator=() as well as the member access operator operator->(). The methods in(),
inout(), and out() were introduced in CORBA 2.3. They allow you to convert T_var
explicitly to the appropriate type for passing as an in, inout, or out parameter. Some
C++ compilers require you to use these functions—with ANSI-compliant compilers
their use is optional.

The key feature of the T_var class is that its destructor ~T_var() always frees the mem-
ory referenced by the T_var. However, there are a number of other important features.
Assignment semantics are affected and parameter passing of T_var types is aided by
the in(), inout(), and out() methods. These features are discussed in the following
sections.

Assignment Semantics
CORBA _var types always overload the assignment operator=(). This is done in
order to make assignment to _var a more intelligent operation that reduces the danger
of leaking memory. A key concept here is that of ownership. A _var type owns the
memory it references and so long as it keeps ownership of this memory there is no dan-
ger of that memory being leaked. The _var type is designed so that this remains true
irrespective of the operations carried out on it and, in particular, irrespective of the
assignment operations carried out on it.

Assignment semantics are discussed in detail in the section “Assignment and Copying,”
later in this chapter.

Use of in(), inout(), out(), and _retn()
The methods T_var::in(), T_var::inout(), T_var::out(), and T_var::_retn()
were introduced in the CORBA 2.3 specification to facilitate conversion of T_vars to
the appropriate type when used as parameters or return values in CORBA invocations.
Table 4.2 summarizes the use of the methods:

C + + S m a r t P o i n t e r Ty p e s _ v a r 1 5 5

07 0672318121 CH04 6/20/01 5:35 PM Page 155

Table 4.2 Conversion of _var Type to Parameter Type

Conversion Method Description

T_var::in() Convert T_var to the type that should be used when
passing the referenced data as an in parameter.

T_var::inout() Convert T_var to the type that should be used when
passing the referenced data as an inout parameter.

T_var::out() Convert T_var to the type that should be used when
passing the referenced data as an out parameter.

T_var::_retn() Yield ownership of the referenced data and return a
pointer of the appropriate type for use as a return
value.

In the case of in(), inout(), and out(), T_var retains ownership of the memory it ref-
erences. The effect of the methods is to convert T_var cleanly to the appropriate type
for each parameter-passing mode.

The method _retn() is a special case. A call on _retn() forces T_var to give up own-
ership of its referenced data. After the call, T_var is effectively null and ceases to ref-
erence the data. The method can be a useful aid to avoid memory leaks associated with
return values. The use of _retn() is discussed in the section “Return Values and
_retn(),” later in this chapter.

In previous versions of the CORBA specification the _var types relied on implicit con-
version when passed as parameters. For backward compatibility, ORBs still support
implicit conversion. However, some C++ compilers do not implement implicit conver-
sion correctly. For these compilers, it is necessary to perform conversion explicitly
using in(), inout(), and out().

Sample IDL
The following IDL is used as a source of examples throughout the rest of the chapter.
The module SampleTypes defines a selection of user-defined types and an interface Foo
that passes some of these types back and forth.

Listing 4.1 IDL for Sample Data Types (04Listing01.idl)
// IDL
// Sample Data Types

#pragma prefix “pure-corba-3.com”

module SampleTypes {
enum Shape { Square, Circle, Triangle };

typedef string< 64 > BoundedString;
typedef wstring< 128 > BoundedWString;

struct FixLen {
short theShort;

1 5 6 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 156

float theFloat;
};
struct VarLen {

string theString;
long theLong;

};

typedef sequence< FixLen > SeqOfFixLen;
typedef sequence< VarLen > SeqOfVarLen;
typedef sequence< VarLen, 5 > BSeqOfVarLen;

typedef fixed<6,2> Money;

union Poly switch(short) {
case 1: short theShort;
case 2: string theString;

};

typedef FixLen ArrOfFixLen[10];
typedef VarLen ArrOfVarLen[10];

exception GenericExc {
string reason;

};

interface Foo {
void passIn(in FixLen fl);
void passInout(inout FixLen fl);
void passInout2(inout VarLen vl);
void receiveOut(out FixLen fl);
void receiveOut2(out VarLen vl);
VarLen getResult(out VarLen vl) raises (GenericExc);

}; // interface Foo

}; // module SampleTypes

The IDL defines some basic types: an enum, a bounded string, and a bounded wide
string. Two different sorts of struct are defined: FixLen and VarLen. These two structs
are useful samples for highlighting the difference between a fixed-length type and a
variable-length type, respectively. This distinction is discussed in the section
“Parameter Passing,” later in this chapter.

Some sequences both unbounded (SeqOfFixLen, SeqOfVarLen) and unbounded
(BSeqOfBarLen) are defined. A miscellany of other data types are also defined, includ-
ing a fixed type, a union, arrays, and an exception type.

S a m p l e I D L 1 5 7

Listing 4.1 continued

07 0672318121 CH04 6/20/01 5:35 PM Page 157

The interface Foo comes in useful in the section “Parameter Passing,” where it is used
to illustrate how parameters are passed for each of the parameter-passing modes in,
inout, and out.

Allocating and Initializing
There is a variety of ways of allocating memory for CORBA data types. Most of these
data types, apart from very simple types such as CORBA::Short, may be allocated either
on the stack or on the heap (free store).

It is a general principle that CORBA data types are always initialized before being
passed in an invocation. For example, a blank string should always be initialized as “”
(empty string) and never as NULL.

The following sections give examples of how to allocate and initialize a wide variety
of CORBA data types. Basic data types such as short, unsigned short, long,
unsigned long, float, double, long long, unsigned long long, and the enum type
are not covered, because they are trivial.

String Types
CORBA strings can only be allocated on the heap. This is done with the help of the
CORBA::string_alloc() function. The following code illustrates string allocation
using a smart pointer CORBA::String_var.

// C++
#include <string.h>

// Allocation using smart pointer
CORBA::String_var strV = CORBA::string_alloc(5+1);

// Initialization
strncpy((char*) strV, “Hello”, 5);

The following code illustrates string allocation using a dumb pointer char*.

// C++
#include <string.h>

// Allocation using dumb pointer
char * strP = CORBA::string_alloc(5+1);

// Initialization
strncpy((char*) strP, “Hello”, 5);

// Beware! Remember to Deallocate strP
CORBA::string_free(strP);

CORBA strings are null terminated, just like ordinary C++ strings. That is why the
number of bytes allocated by CORBA::string_alloc() is 1 greater than the length of
the string.

1 5 8 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 158

Allocation and initialization of a string can be compressed into a single step with the
help of the function CORBA::string_dup(). This is illustrated by the following code
fragment:

// C++
//Allocation and Initialization using smart pointer
CORBA::String_var strV = CORBA::string_dup(“Hello”);

Bounded String Types
The following is an example of a bounded string declared in IDL:

// IDL
typedef string<64> BoundedString;

The integer value between angle brackets declares the maximum allowed length of the
string BoundedString.

Bounded strings are allocated and initialized in exactly the same way as unbounded
strings. Bounds checking occurs when an attempt is made to pass the string as a para-
meter or return value that was declared bounded. A compliant ORB will raise an
exception at this point if the bound is exceeded.

WString Types
Wide strings consist of an array of wide characters CORBA::WChar (typically unicode
characters). Wide strings are discussed further in Chapter 17, “IDL Data Types.”
Allocation and initialization follow a pattern similar to that of ordinary strings.

The following code illustrates allocation using a smart pointer CORBA::WString_var.

// C++
//Allocation using smart pointer
CORBA::WString_var wstrV = CORBA::wstring_alloc(5+1);

// Initialization
wstrV[0] = L’H’;
wstrV[1] = L’e’;
wstrV[2] = L’l’;
wstrV[3] = L’l’;
wstrV[4] = L’o’;
wstrV[5] = L’\0’;

The following code illustrates allocation using a dumb pointer CORBA::WChar*.

// C++
// Allocation using dumb pointer
CORBA::WChar* wstrP = CORBA::wstring_alloc(5+1);

// Initialization
wstrP[0] = L’H’;

A l l o c a t i n g a n d I n i t i a l i z i n g 1 5 9

07 0672318121 CH04 6/20/01 5:35 PM Page 159

wstrP[1] = L’e’;
wstrP[2] = L’l’;
wstrP[3] = L’l’;
wstrP[4] = L’o’;
wstrP[5] = L’\0’;

// Beware! Remember to Deallocate wstrP
CORBA::wstring_free(wstrP);

Allocation and initialization of a wide string can be compressed into a single step with
the help of the function CORBA::wstring_dup(). This is illustrated by the following
code fragment:

// C++
// Allocation and Initialization using smart pointer
CORBA::WString_var wstrV = CORBA::wstring_dup(L”Hello”);

Bounded WString Types
The following is an example of a bounded wide string declared in IDL:

// IDL
typedef wstring<128> BoundedWString;

The integer value between angle brackets declares the maximum allowed length of the
wide string BoundedWString.

Bounded wide strings are allocated and initialized in exactly the same way as
unbounded wide strings. Bounds checking for wide strings occurs when an attempt is
made to pass the wide string as a parameter or return value that was declared bounded.
A compliant ORB will raise an exception at this point if the bound is exceeded.

Struct Types
A user-defined struct can be allocated either on the stack or on the heap. Consider the
struct VarLen, defined in the IDL of Listing 4.1.

// IDL
module SampleTypes {

...
struct VarLen {

string theString;
long theLong;

};
...

};

1 6 0 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 160

The following code illustrates allocation on the stack.

// C++
// Allocation and Initialization on the stack
SampleTypes::VarLen aVarLen;

// Initialization
aVarLen.theString = CORBA::string_dup(“Initial string”);
aVarLen.theLong = (CORBA::Long) 32;

The following code illustrates allocation on the heap using a smart pointer.

// C++
// Allocation using smart pointer
SampleTypes::VarLen_var aVarLenV = new SampleTypes::VarLen();

// Initialization
aVarLenV->theString = CORBA::string_dup(“Initial string”);
aVarLenV->theLong = (CORBA::Long) 32;

The following code illustrates allocation on the heap using a dumb pointer.

// C++
// Allocation using dumb pointer
SampleTypes::VarLen * aVarLenP = new SampleTypes::VarLen();

// Initialization
aVarLenP->theString = CORBA::string_dup(“Initial string”);
aVarLenP->theLong = (CORBA::Long) 32;

// Beware! Remember to Deallocate ‘aVarLenP’
delete aVarLenP;

A struct owns the memory associated with its members. Therefore, when a struct is
deleted, it recursively deletes each of its members.

Unbounded Sequence Types
A sequence can be allocated either on the stack or on the heap. Three different con-
structors are provided for sequences (see Chapter 18, “IDL Grammar”), but the most
commonly used is the constructor that sets the maximum() of the sequence. Consider an
instance of SampleTypes::SeqOfVarLen, declared in the IDL of Listing 4.1.

// IDL
module SampleTypes {

...
typedef sequence< VarLen > SeqOfVarLen;
...

};

A l l o c a t i n g a n d I n i t i a l i z i n g 1 6 1

07 0672318121 CH04 6/20/01 5:35 PM Page 161

The following code illustrates allocation on the stack.

// C++
// Allocation on the stack
SampleTypes::SeqOfVarLen aSeqOfVarLen(2); // maximum = 2

// length = 0
// Set the length to a sensible value
aSeqOfVarLen.length(2);

// Initialize the sequence
CORBA::ULong i=0;
aSeqOfVarLen[i].theString = CORBA::string_dup(“First”);
aSeqOfVarLen[i].theLong = (CORBA::Long) 64;
++i;
aSeqOfVarLen[i].theString = CORBA::string_dup(“Second”);
aSeqOfVarLen[i].theLong = (CORBA::Long) 128;

Note that the sequence index is of type CORBA::ULong. It is not satisfactory to use sim-
ple integer arguments here, such as aSeqOfVarLen[0] or aSeqOfVarLen[1]. Such code
would not always compile, because the operator[]() is overloaded on an argument of
type CORBA::ULong and not int.

NOTE
It is not necessary to explicitly allocate memory for the VarLen structs in the pre-
ceding code fragment. Sequence types are constructed in a way that is analogous
to C++ arrays: When the length of a sequence is set, the sequence elements are
initialized by calling the default constructor for the element type.

The following code illustrates allocation on the heap using a smart pointer:

// C++
// Allocation on the heap
SampleTypes::SeqOfVarLen_var aSeqOfVarLenV =

new SampleTypes::SeqOfVarLen(2); // maximum = 2
// length = 0

// Set the length to a sensible value
aSeqOfVarLenV->length(2);

// Initialize the sequence
CORBA::ULong i=0;
aSeqOfVarLenV[i].theString = CORBA::string_dup(“First”);
aSeqOfVarLenV[i].theLong = (CORBA::Long) 64;
++i;
aSeqOfVarLenV[i].theString = CORBA::string_dup(“Second”);
aSeqOfVarLenV[i].theLong = (CORBA::Long) 128;

1 6 2 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 162

The syntax used for accessing sequence elements in the last example,
aSeqOfVarLenV[i], is apparently inconsistent. You would expect to write
(*aSeqOfVarLenV)[i] instead, assuming aSeqOfVarLenV is interpreted as a pointer. In
fact, both forms of syntax are supported, because the operator[]() is overloaded.

The following code illustrates allocation on the heap using a dumb pointer.

// C++
// Allocation on the heap
SampleTypes::SeqOfVarLen * aSeqOfVarLenP =

new SampleTypes::SeqOfVarLen(2); // maximum = 2
// length = 0

// Set the length to a sensible value
aSeqOfVarLenP->length(2);

// Initialize the sequence
CORBA::ULong i=0;
(*aSeqOfVarLenP)[i].theString = CORBA::string_dup(“First”);
(*aSeqOfVarLenP)[i].theLong = (CORBA::Long) 64;
++i;
(*aSeqOfVarLenP)[i].theString = CORBA::string_dup(“Second”);
(*aSeqOfVarLenP)[i].theLong = (CORBA::Long) 128;

// Beware! Remember to deallocate ‘aSeqOfVarLenP’
delete aSeqOfVarLenP;

Bounded Sequence Types
Bounded sequences are rarely used, because they defeat the primary advantage of a
sequence, which is the capability to extend the sequence to hold an arbitrary number
of elements. Consider an instance of a bounded sequence,
SampleTypes::BseqOfVarLen, declared in the IDL of Listing 4.1.

// IDL
module SampleTypes {

...
typedef sequence< VarLen, 5 > BSeqOfVarLen;
...

};

The following code illustrates allocation on the stack.

// C++
// Allocation on the stack
SampleTypes::BSeqOfVarLen aBSeqOfVarLen; // maximum = 5

// length = 0
// The maximum is implicitly, and irrevocably, set equal to the bound
// that was declared in the IDL.

A l l o c a t i n g a n d I n i t i a l i z i n g 1 6 3

07 0672318121 CH04 6/20/01 5:35 PM Page 163

// Set the length to a sensible value
aBSeqOfVarLen.length(2);

// Initialize the sequence
CORBA::ULong i=0;
aBSeqOfVarLen[i].theString = CORBA::string_dup(“First”);
aBSeqOfVarLen[i].theLong = (CORBA::Long) 64;
++i;
aBSeqOfVarLen[i].theString = CORBA::string_dup(“Second”);
aBSeqOfVarLen[i].theLong = (CORBA::Long) 128;

The default constructor is used, and the maximum is implicitly set equal to the bound
declared in the IDL. Otherwise the syntax is the same as in the case of an unbounded
string.

The length of a bounded sequence cannot be set greater than its maximum. The conse-
quences of trying to do so are undefined and may result in a core dump.

Fixed Types
Fixed types are passed by reference as operation parameters and by value as return val-
ues. In other words, although fixed types are objects, they are treated more like basic
types.

A number of constructors are provided that enable a fixed type to be initialized from
any CORBA integer type, floating-point type, or string. You should be wary of initial-
izing fixed data from a floating point number—it could lead to undesirable rounding
errors.

Consider the following definition of a fixed type Money:

// IDL
module SampleTypes {

...
typedef fixed< 6, 2> Money;
...

};

This defines a six-digit precision number that has two decimal places. The most con-
venient and accurate way to initialize a fixed type is by assigning numbers in string for-
mat. This method of initialization is illustrated by the following code fragment.

// C++
// Allocation on the stack
SampleTypes::Money f1 = “1234.56”; // Use the maximum number of digits
SampleTypes::Money f2 = “-9999.99”; // The most negative number
SampleTypes::Money f3 = “0.04”;

1 6 4 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 164

Union Types
Unions can be allocated on the stack or on the heap. A union is allocated using its
default constructor, and it does not contain any valid value until it has been initialized.
Consider the union type SampleTypes::Poly, declared in the IDL of Listing 4.1.

// IDL
module SampleTypes {

...
union Poly switch(short) {

case 1: short theShort;
case 2: string theString;

};
...

};

The following code illustrates allocation on the stack.

// C++
// Allocation of union on the stack
SampleTypes::Poly aPoly;

// Initialization to type short
aPoly.theShort(2); //Discriminant = 1

// Change to type string
aPoly.theString(“A new identity.”); // Discriminant = 2

Note how the discriminant is automatically set to the value of the appropriate case
label.

The following code illustrates allocation on the heap using a smart pointer.

// C++
// Allocation of union on the heap
SampleTypes::Poly_var aPolyV = new SampleTypes::Poly();

// Initialization
aPolyV->_default(); // Discriminant = some value not equal to 1 or 2

The use of method _default() is a special case of initialization of the union.
Whenever a union is declared in IDL without a default case label, the method
_default() is generated by the IDL compiler. By initializing via _default(), the
union is left empty and the discriminant set to a value that does not appear in the case
labels (the value selected isimplementation dependent).

NOTE
Effectively, this enables you to initialize an empty union. It is legal to marshal this
empty union as a parameter in a CORBA invocation.

A l l o c a t i n g a n d I n i t i a l i z i n g 1 6 5

07 0672318121 CH04 6/20/01 5:35 PM Page 165

Array Types
Arrays can be allocated either on the stack or on the heap. Because arrays map to a C++
built-in type, in certain respects they are a special case. In particular, the use of array
slice pointers is needed to reference dynamically allocated arrays. Consider the type
SampleTypes::ArrOfVarLen, defined in the IDL of Listing 4.1.

// IDL
module SampleTypes {

...
typedef VarLen ArrOfVarLen[10];
...

};

The following code illustrates allocation on the stack.

// C++
// Allocate an instance of a 10-element array
SampleTypes::ArrOfVarLen anArrOfVarLen;

// Initialize the first element explicitly
anArrOfVarLen[0].theString = CORBA::string_dup(“First Element”);
anArrOfVarLen[0].theLong = (CORBA::Long) 256;
// Accept default initial values for other elements

Note that as anArrOfVarLen is initialized it calls the default constructor of VarLen for
each of its 10 elements.

The following code illustrates allocation on the heap using a smart pointer.

// C++
// Allocate an instance of a 10-element array
SampleTypes::ArrOfVarLen_var anArrOfVarLenV = SampleTypes::ArrOfVarLen_alloc();

// Initialize the first element explicitly
anArrOfVarLenV[0].theString = CORBA::string_dup(“First Element”);
anArrOfVarLenV[0].theLong = (CORBA::Long) 256;
// Accept default initial values for other elements

This example uses SampleTypes::ArrOfVarLen_alloc() to allocate the array on the
heap. It is not possible to use new to perform the allocation.

The following code illustrates allocation on the heap using a dumb pointer.

// C++
// Allocate an instance of a 10-element array
SampleTypes::ArrOfVarLen_slice * anArrOfVarLenSl =
➥SampleTypes::ArrOfVarLen_alloc();

// Initialize the first element explicitly
anArrOfVarLenSl[0].theString = CORBA::string_dup(“First Element”);

1 6 6 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 166

anArrOfVarLenSl[0].theLong = (CORBA::Long) 256;
// Accept default initial values for other elements

// Beware! Remember to Deallocate ‘anArrOfVarLenSl’
SampleTypes::ArrOfVarLen_free(anArrOfVarLenSl);

This example uses SampleTypes::ArrOfVarLen_slice* as the dumb pointer type. In
this case, with a one-dimensional array, the slice pointer is equivalent to the type
SampleTypes::VarLen *. However, in the general case there is no natural representa-
tion of a dumb pointer. The type arrayType_slice* is generated to fit this role—see
Chapter 18 for more details.

any Type
The any type can be allocated either on the stack or on the heap. The any is covered
separately in Chapter 8, “The any Type.” A simple example of initializing an any is
where a basic type such as a CORBA::Long is inserted into the any.

The following code illustrates allocation on the stack.

// C++
// Allocate an instance of an ‘any’
CORBA::Any anAny;

// Initialization by inserting a ‘long’
anAny <<= (CORBA::Long) 123;

The left-shift assignment operator (<<=) is used to insert data into an any. In this case,
the inserted data is a CORBA::Long, but in general it could be any user-defined CORBA
type.

The following code illustrates allocation on the heap using a smart pointer.

// C++
// Allocate an instance of an ‘any’ on the heap
CORBA::Any_var anAnyV = new CORBA::Any();

// Initialization by inserting a ‘long’
(*anAnyV) <<= (CORBA::Long) 123;

Object References
Object references are never instantiated directly by the user. All object references orig-
inate in the ORB. They are obtained either directly from the ORB (for example, via the
Initialization Service) or as return values from a CORBA invocation.

Nevertheless, the user is still responsible for deleting the object reference. To assist
with the memory management of object references, a smart pointer class
interfaceName_var is defined. Details about object references can be found in
Chapter 5, “Object References.”

A l l o c a t i n g a n d I n i t i a l i z i n g 1 6 7

07 0672318121 CH04 6/20/01 5:35 PM Page 167

Deallocating
If you follow the recommended style of CORBA programming and use _var types as
much as possible, you will find that explicit deallocation of CORBA data types is rarely
necessary.

Most CORBA data types can be deallocated using the delete operator. The complete
list of deallocating methods is shown in Table 4.3.

Table 4.3 CORBA Methods for Deallocation of Memory

Deallocation Method Description

void CORBA::string_free(char *) This function must always be used to
deallocate a CORBA string. If you do
not use this method, your C++ code
will not be portable across all plat-
forms.

void CORBA::wstring_free(CORBA::WChar*) This function must always be used to
deallocate a CORBA wide string. If
you do not use this method, your
C++ code will not be portable across
all platforms.

void <arrayName>_free(<arrayName>_slice*) For every array of type arrayName, a
corresponding function of this kind is
generated by the IDL compiler. This
function is convenient because it
enables multi-dimensional arrays to
be deleted in a single step.

void CORBA::release(CORBA::Object_ptr) This function is used to free object
references of any type. It is discussed
in Chapter 5.

delete All other heap-allocated CORBA types
are deallocated using the delete
operator.

There are specific methods made available to deallocate strings, wide strings, and
arrays that have been allocated on the heap. Object references are a special case, being
released (but not necessarily deallocated straightaway) by the function
CORBA::release.

In all other cases, a simple delete suffices to deallocate CORBA data that has been
allocated on the heap.

Recursive Deletion
It is a general principle that an instance of a nested CORBA type can be deleted sim-
ply by calling delete on the outermost containing instance. All of the members and
subelements of the nested type are recursively deleted.

1 6 8 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 168

Take as an example the struct VarLen, whose nested members include a string and a
long. The following code fragment shows the allocation, initialization, and deletion of
an instance of VarLen.

// C++
// Allocation using dumb pointer
SampleTypes::VarLen * aVarLenP = new SampleTypes::VarLen();

// Initialization
aVarLenP->theString = CORBA::string_dup(“Initial string”);
aVarLenP->theLong = (CORBA::Long) 32;

// Beware! Remember to Deallocate ‘aVarLenP’
delete aVarLenP;

When the struct instance aVarLenP is deleted, it automatically deletes the nested
instance of the string pointed at by aVarLenP->theString. This is not what would hap-
pen with an ordinary struct—this requires some trickery in the implementation. In fact,
a string occurring as a member of a struct behaves just like the _var type
CORBA::String_var. See Chapter 17 for details.

A common variation is where some of the nested members are already assigned to a
_var type before being assigned to the nested structure. For example

// C++
// Allocation using dumb pointer
SampleTypes::VarLen * aVarLenP = new SampleTypes::VarLen();

// Initialize and assign string to a _var
CORBA::String_var sV = CORBA::string_dup(“Initial string”);

// Initialization of struct
aVarLenP->theString = sV;
aVarLenP->theLong = (CORBA::Long) 32;

// Beware! Remember to Deallocate ‘aVarLenP’
delete aVarLenP;

The question then arises: Who is responsible for deallocating the string member? Is it
the smart pointer sV or the member aVarLenP->theString (which also behaves like a
_var)? In fact, both smart pointers perform deallocation, because there are two strings
to deallocate. The assignment aVarLenP->theString = sV results in a deep copy of
the original string. The assignment operator=() is overloaded to perform a deep copy
whenever both sides of the assignment statement are smart pointers. This is consistent
with the semantics of assignment and copying, as discussed in the next section of this
chapter, “Assignment and Copying.”

D e a l l o c a t i n g 1 6 9

07 0672318121 CH04 6/20/01 5:35 PM Page 169

The principle of recursive deletion applies to all CORBA data types and to arbitrary
degrees of nesting. For example, a sequence of structs containing a union, an any, and
an array of structs, each of which contains strings, anys, and unions, could be deal-
located simply by calling delete on the pointer to the parent sequence (assuming it
was allocated on heap).

You have a choice of whether to use a smart or a dumb pointer for the topmost parent
data type (sequence in this case). However, you have no such choice for the data types
nested within the parent. All elements of a sequence are automatically deleted along
with the parent sequence. Likewise, all members of a struct are deleted along with the
parent struct. Any pointer members of a struct recursively delete the memory they ref-
erence. This is because they are smart pointers. And so it continues down the chain.
CORBA uses smart pointers by default wherever one data type is nested inside another.
This is what makes recursive deletion of CORBA data possible.

There are just two exceptions to the principle of recursive deletion. The sequence types
and the any type both provide a special form of constructor that allows you to switch
off smart memory-management behavior. In other words, they would cease to own the
memory they use. This is an option that should be used with considerable caution
because of the danger of introducing memory leaks. See Chapters 8 and 18.

Assignment and Copying
This section takes a look at the copying of CORBA data types in C++. This is a trivial
exercise for simple data types such as short or float, but for compound types the
operation of copying is complicated by a couple of factors.

First of all, you have to decide if you want to make a physical copy of the data or if you
just want to copy a pointer to the original data. The concept of deep and shallow copy
is introduced to clarify copying semantics.

You also have to contend with the fact that there are different ways of referring to
CORBA data in C++ (by value, by pointer, or by smart pointer). Mixed assignments
between these different representations are possible. Some of the resulting assignment
permutations are discussed below.

Deep and Shallow Copy
The CORBA data types have been designed to simplify copying as far as possible, par-
ticularly when it comes to compound and nested types. There are generally two kinds
of copy operation that are useful:

• Shallow copy
• Deep copy

In a shallow copy, only a pointer to the data is copied. The data itself is not copied. The
following code fragment shows an example of a shallow copy:

1 7 0 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 170

//C++
SampleTypes::VarLen * p;
SampleTypes::VarLen * q;

// Allocate and Initialize original ‘VarLen’ struct
p = new SampleTypes::VarLen();
p->theString = CORBA::string_dup(“Nested String”);
p->theLong = (CORBA::Long) 36;

// Shallow copy from pointer ‘p’ to pointer ‘q’
q = p;

// Beware! Remember to deallocate the ‘VarLen’ struct
delete p;

This example uses the struct type VarLen, defined in Listing 4.1. The situation after
performing the shallow copy p=q is illustrated by Figure 4.1. After the assignment,
there is just one copy of the VarLen struct, and both p and q reference the same data.

A s s i g n m e n t a n d C o p y i n g 1 7 1

p q

36

"Nesting String"

• •

•

Figure 4.1

Shallow copy.

The other useful copy operation is a deep copy. In this case, a complete copy of the
VarLen struct is made, including all of its nested elements (and, recursively, all the
nested data). The following code fragment illustrates how a deep copy of the VarLen
struct is made:

//C++
SampleTypes::VarLen * p;
SampleTypes::VarLen * q;

// Allocate and Initialize original ‘VarLen’ struct
p = new SampleTypes::VarLen();
p->theString = CORBA::string_dup(“Nested String”);
p->theLong = (CORBA::Long) 36;

// Allocate second ‘VarLen’ struct
q = new SampleTypes::VarLen();

// Deep copy from ‘*p’ to ‘*q’
*q = *p;

07 0672318121 CH04 6/20/01 5:35 PM Page 171

// Beware! Remember to deallocate both of the ‘VarLen’ structs
delete p;
delete q;

The situation after the struct assignment *q = *p is illustrated in Figure 4.2. If you are
familiar with the semantics of struct assignment in C++, you might guess that there is
some trickery going on behind the scenes. Figure 4.2 shows that q references a com-
pletely new copy of the data, including a newly allocated copy of the nested string.
However, the standard semantic for struct assignment in C++ is memberwise assign-
ment. In other words, the following are equivalent:

// C++
// This assignment...
*q = *p;

//...is equivalent to this memberwise assignment...
q->theString = p->theString;
q->theLong = p->theLong;

Therefore, if the theString member were an ordinary pointer, the nested string would
not be duplicated at all, because the above assignment copies just the pointer to the
string. However, the theString member is not an ordinary pointer. It is a smart pointer
with properties identical to the type CORBA::String_var—see Chapter 18 for details.

You do not need to worry about the mechanism underlying the deep copy. That is an
implementation detail for the ORB vendor. You only need to know that when a CORBA
compound type is copied, it is designed so that all of its nested data is recursively
copied. You end up with a completely new copy of the data. There is no overlap
between the original and the new copy. This is true no matter how complex and nested
the data type may be.

In summary, a CORBA data type can be copied either as a shallow copy (pointers only)
or as a deep copy (a complete new copy). There is nothing between these two extremes.

1 7 2 C h a p t e r 4 : M e m o r y M a n a g e m e n t

p

36

"Nesting String"

•

•

q

36

"Nesting String"

•

•

Figure 4.2

Deep copy.

07 0672318121 CH04 6/20/01 5:35 PM Page 172

Mixed Assignment
Each data type can be referenced either by a smart or a dumb pointer. As a result, there
is a variety of mixed assignments that can occur.

The mixed assignments are summarized in Table 4.4:

Table 4.4 Summary of Mixed Pointer Assignments

Type of Assignment Description

T *= T * Shallow copy. Pointer value only is copied.
T_var = T * Shallow copy. Old data referenced by T_var is deallocated. After

assignment, T_var references the same data as T * and assumes
ownership of this data.

T_var = T_var Deep copy. Old data referenced by T_var is deallocated. After
assignment, T_var on the left side references a new copy of the
data from the right side.

T * = T_var Shallow copy. Pointer value of T_var is assigned to T *. Old data
referenced by dumb pointer T * ought to be deallocated before
reaching this step. T_var retains ownership of its data.

The following sections look at the different kinds of mixed assignments for each
CORBA data type.

String Types (Unbounded and Bounded)
The following code fragment shows examples of mixed pointer assignments between
dumb pointers and _var pointers for strings:

// C++
char * origStringP = CORBA::string_dup(“Dumb”);
CORBA::String_var origStringV = CORBA::string_dup(“Smart”);
char * copiedStringP;
CORBA::String_var copiedStringV;
...
// dumb_pointer = dumb_pointer
delete copiedStringP;
copiedStringP = origStringP; //Shallow copy.
...
// dumb_pointer = duplicate(dumb_pointer)
delete copiedStringP;
copiedStringP = CORBA::string_dup(origStringP); // Deep copy.
...
//_var = dumb_pointer
copiedStringV = origStringP; // Shallow copy.

// the ‘copiedStringV’ assumes ownership of
memory
...

A s s i g n m e n t a n d C o p y i n g 1 7 3

07 0672318121 CH04 6/20/01 5:35 PM Page 173

//_var = _var
copiedStringV = origStringV // Deep copy.

// each _var manages its own copy
...
// dumb_pointer = _var
delete copiedStringP;
copiedStringP = origStringV // Shallow copy

// the ‘origStringV’ retains ownership of
memory

The semantics of assignment and copying are identical for both unbounded and
bounded strings.

WString Types (Unbounded and Bounded)
The copying of wide strings works in a manner that is analogous to the copying of ordi-
nary strings. The following fragment shows examples of mixed pointer assignments
between dumb pointers and _var pointers for wide strings:

// C++
CORBA::WChar * origWStringP = CORBA::wstring_dup(L”Dumb”);
CORBA::WString_var origWStringV = CORBA::wstring_dup(L”Smart”);
CORBA::WChar * copiedWStringP;
CORBA::WString_var copiedWStringV;
...
// dumb_pointer = dumb_pointer
delete copiedWStringP;
copiedWStringP = origWStringP; // Shallow copy.
...
// dumb_pointer = duplicate(dumb_pointer)
delete copiedWStringP;
copiedWStringP = CORBA::wstring_dup(origWStringP); // Deep copy.
...
//_var = dumb_pointer
copiedWStringV = origWStringP; // Shallow copy.

// the ‘copiedWStringV’ assumes ownership of memory
...
//_var = _var
copiedWStringV = origWStringV // Deep copy.

// each _var manages its own copy
...
// dumb_pointer = _var
delete copiedWStringP;
copiedWStringP = origWStringV // Shallow copy

// the ‘origWStringV’ retains ownership of memory

The semantics of assignment and copying are identical for both unbounded and
bounded wide strings.

1 7 4 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 174

Struct Types
The following fragment shows examples of mixed pointer assignments between dumb
pointers and _var pointers for the struct type VarLen:

// C++
SampleTypes::VarLen * origStructP = new SampleTypes::VarLen();
origStructP->theString = CORBA::string_dup(“Dumb”);
origStructP->theLong = (CORBA::Long) 32;

SampleTypes::VarLen_var origStructV = new SampleTypes::VarLen();
origStructV->theString = CORBA::string_dup(“Smart”);
origStructV->theLong = (CORBA::Long) 64;

SampleTypes::VarLen * copiedStructP;
SampleTypes::VarLen_var copiedStructV;
...
// dumb_pointer = dumb_pointer
copiedStructP = origStructP; // Shallow copy.
...
//_var = dumb_pointer
copiedStructV = origStructP; // Shallow copy.

// the ‘copiedStructV’ assumes ownership
// of memory

...
//_var = _var
copiedStructV = origStructV; // Deep copy.

// each _var manages its own copy
...
// dumb_pointer = _var
copiedStructP = origStructV._retn(); // Shallow copy
copiedStructP = origStructV; // Shallow copy

// the ‘origStructV’ retains ownership of memory

Making a deep copy of a CORBA struct is particularly easy because of the way this
type has been designed. All you need to do is assign a value of a struct to a value of a
struct—for example, *copiedStructP = *origStructP. This results in recursive
copying of all struct members and all of the nested data referenced by these members.
Consider the following examples using the struct type VarLen:

// C++
SampleTypes::VarLen * copiedStructP;
SampleTypes::VarLen_var copiedStructV;
...
// *(dumb_pointer) = *(dumb_pointer)
copiedStructP = new SampleTypes::VarLen();
*copiedStructP = *origStructP; // Deep copy.
...

A s s i g n m e n t a n d C o p y i n g 1 7 5

07 0672318121 CH04 6/20/01 5:35 PM Page 175

// *(_var) = *(dumb_pointer)
copiedStructV = new SampleTypes::VarLen();
*copiedStructV = *origStructP; // Deep copy.
...
// *(_var) = *(_var)
*copiedStructV = *origStructV; // Deep copy.
// (same effect as ‘copiedStructV = origStructV’)
...
// *(dumb_pointer) = *(_var)
*copiedStructP = *origStructV; // Deep copy
...
delete origStructP;
delete copiedStructP;

As usual, it is safest to delete dumb pointers before assigning to them. This will not do
any harm if the pointers are already NULL.

Sequence and Union Types
The types sequence and union can be grouped together because they are represented
by C++ classes and therefore have identical syntax for assignment and copying. The
sequence type is taken as a representative example and discussed in detail.

The following fragment shows examples of mixed pointer assignments between dumb
pointers and _var pointers for the sequence SeqOfVarLen:

// C++
SampleTypes::SeqOfVarLen * origSeqP =

new SampleTypes::SeqOfVarLen(2); // maximum = 2
// Initialize the sequence ‘origSeqP’ (not shown)

SampleTypes::SeqOfVarLen_var origSeqV =
new SampleTypes::SeqOfVarLen(2); // maximum = 2

// Initialize the sequence ‘origSeqV’ (not shown)

SampleTypes::SeqOfVarLen * copiedSeqP;
SampleTypes::SeqOfVarLen_var copiedSeqV;

// dumb_pointer = dumb_pointer
copiedSeqP = origSeqP; // Shallow copy.

//_var = dumb_pointer
copiedSeqV = origSeqP; // Shallow copy.

// the ‘copiedSeqV’ assumes ownership of memory

//_var = _var
copiedSeqV = origSeqV; // Deep copy.

// each _var manages its own copy

1 7 6 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 176

// Beware! ‘origSeqP’ and ‘copiedSeqP’ are now
// both dangling pointers.

// dumb_pointer = _var
copiedSeqP = origSeqV._retn(); // Shallow copy
delete copiedSeqP;

copiedSeqP = origSeqV; // Shallow copy
// the ‘origSeqV’ retains ownership of memory

Making a deep copy of a sequence type is easy because the assignment operator
operator=() is overloaded for values of the sequence. For example, the assignment
*copiedSeqP = *origSeqP results in all of the elements of the sequence being deep
copied. Consider the following examples:

// C++
SampleTypes::SeqOfVarLen * copiedSeqP;
SampleTypes::SeqOfVarLen_var copiedSeqV;

// *(dumb_pointer) = *(dumb_pointer)
copiedSeqP = new SampleTypes::SeqOfVarLen(2);
*copiedSeqP = *origSeqP; // Deep copy.

// *(_var) = *(dumb_pointer)
copiedSeqV = new SampleTypes::SeqOfVarLen(2);
*copiedSeqV = *origSeqP; // Deep copy.

// *(_var) = *(_var)
*copiedSeqV = *origSeqV; // Deep copy.
// (same effect as ‘copiedSeqV = origSeqV’)

// *(dumb_pointer) = *(_var)
*copiedSeqP = *origSeqV; // Deep copy

delete origSeqP;
delete copiedSeqP;

The above examples of copying sequences are similar to the examples involving
structs. Likewise, the union type is assigned and copied in a manner similar to that of
the sequence type.

Array Types
Array types are exceptional because they are mapped directly to a native C++ pointer
type instead of a specialized class. Operator overloading cannot be used to the same
extent as with other compound types and some helper functions are needed.

A s s i g n m e n t a n d C o p y i n g 1 7 7

07 0672318121 CH04 6/20/01 5:35 PM Page 177

The following fragment shows examples of mixed pointer assignments between dumb
pointers and _var pointers for sample arrays of type ArrOfVarLen:

// C++
SampleTypes::ArrOfVarLen_slice * origArrP = SampleTypes::ArrOfVarLen_alloc();

// Initialize the array ‘origArrP’ (not shown)

SampleTypes::ArrOfVarLen_var origArrV = SampleTypes::ArrOfVarLen_alloc();
// Initialize the array ‘origArrV’ (not shown)

SampleTypes::ArrOfVarLen_slice * copiedArrP;
SampleTypes::ArrOfVarLen_var copiedArrV;

// dumb_pointer = dumb_pointer
copiedArrP = origArrP; // Shallow copy.

//_var = dumb_pointer
copiedArrV = origArrP; // Shallow copy.

// the ‘copiedArrV’ assumes ownership of memory

//_var = _var
copiedArrV = origArrV; // Deep copy.

// each _var manages its own copy
// Beware! ‘origArrP’ and ‘copiedArrP’ are now
// both dangling pointers.

// dumb_pointer = _var
copiedArrP = origArrV._retn(); // Shallow copy
// copiedArrP = origArrV; // Shallow copy

// the ‘origArrV’ retains ownership of memory

When copying arrays, it is not possible to implement an appropriate overloaded assign-
ment operator, so a helper function arrayName_dup(const arrayName_slice*) is sup-
plied. For example

// C++
// dumb_pointer = dup(dumb_pointer)
SampleTypes::ArrOfVarLen_free(copiedArrP);
copiedArrP = SampleTypes::ArrOfVarLen_dup(origArrP); // Deep copy.

The effect of the arrayName_dup() function is to allocate space for a new array on the
heap and then make a deep copy of every element in the original array to the new array.
In other words, a deep copy is made.

Note that using arrayName_dup() is an inefficient way of copying large arrays of basic
types. Consider the following IDL array type:

// IDL
typedef long LongArr[100000];

1 7 8 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 178

Copying a LongArr along the lines of this example would involve reallocating the array
assigned to. This is unnecessary and inefficient. Reallocation can be avoided by using
the arrayName_copy() helper function. Consider the following example:

// C++
LongArr_slice * longArrP = LongArr_alloc();
... // Initialize the array ‘longArrP’ (not shown)
LongArr_slice * copiedLongArrP = LongArr_alloc();
... // Initialize the array ‘copiedLongArrP’ (not shown)
...
// dumb_pointer = dup(dumb_pointer) [The INEFFICIENT method]
LongArr_free(copiedLongArrP);
copiedLongArrP = LongArr_dup(longArrP); // Deep copy.

// copy(dumb_pointer, dumb pointer) [The EFFICIENT method]
// (assume ‘copiedLongArrp’ already points at a valid array)
LongArr_copy(copiedLongArrP, longArrP); // Deep copy.

When arrayName_copy() is used to copy longArrP to copiedLongArrP, the array
copiedLongArrP of 10,000 longs is modifed in place. The unnecessary reallocation of
the array is avoided.

Parameter Passing
One of the key concepts that needs to be understood to program with CORBA in C++
is the semantics of parameter passing. With each distributed invocation, the ORB
copies parameters from the client and makes them temporarily available to the server.
Return values from the server are subsequently copied back to the client address space.
A lot of allocation, copying, and deletion is going on in the background. It is essential
that you understand how responsibility for memory management is divided up between
client, server, and ORB so that you can avoid leaking any of this memory.

This section takes you step-by-step through the semantics of parameter passing. It con-
siders each of the following cases:

• in parameters
• inout parameters
• out parameters (fixed-length types)
• out parameters (variable-length types)
• Return values

In each case, it is explained where to allocate, initialize, and deallocate the data that is
passed.

Fixed- and Variable-Length Types
The IDL to C++ mapping divides CORBA data types into two categories: fixed and
variable length. It is important to distinguish between these two categories because

P a r a m e t e r P a s s i n g 1 7 9

07 0672318121 CH04 6/20/01 5:35 PM Page 179

they are treated differently with respect to parameter passing and memory manage-
ment.

A fixed-length type is any CORBA data type whose size is known at compile time.

Conversely, a variable-length type is any CORBA data type whose size is not known
at compile time.

For example, simple types such as char, short, unsigned short, long, unsigned
long, long long, unsigned long long, enum, float, and double are all of fixed
length. A string or wstring is of variable length, however, because it can contain an
arbitrary number of characters.

Compound types can be of either fixed or variable length, depending on what they con-
tain. A struct is fixed length if all its members are of fixed length. Otherwise it is vari-
able length. For example, the struct SampleTypes::FixLen defined in Listing 4.1 is
fixed length because it contains a short and a float, both fixed-length types. The
struct SampleTypes::VarLen is variable length because it has a string member, a vari-
able length type.

Sequences are always variable length because the number of elements is arbitrary.
Bounded sequences are also treated as variable length. For example, the sample types
defined in Listing 4.1 (SampleTypes::SeqOfFixLen, SampleTypes::SeqOfVarLen, and
SampleTypes::BseqOfVarLen) are all variable length.

Arrays can be either fixed or variable length, depending on the type of the array ele-
ments. For example, considering the array types defined in Listing 4.1,
SampleTypes::ArrOfFixLen is fixed length, and SampleTypes::ArrOfVarLen is vari-
able length.

Unions can be either fixed or variable. A union is fixed length if all members are fixed
length and variable length otherwise.

An instance of type fixed is fixed length (this is true, in spite of the fact that the fixed
type can occupy anything from 1 to 16 bytes when transmitted). An any, an object ref-
erence, and a valuetype are all variable length.

The distinction between fixed- and variable-length types is not part of IDL syntax.
However, the distinction between them is sufficiently important to the C++ program-
mer that it is helpful to think of them as distinct types in the context of C++.

Parameter Lifecycle
There are three significant steps that occur during the lifecycle of any CORBA para-
meter:

• Allocation—Allocate memory for the CORBA data, either on the stack or on
the heap.

• Initialization—Fill the CORBA data item with initial data. This must always be
done before a CORBA data item can be used as an operation parameter.

• Deallocation—Delete the memory associated with a CORBA data type.

1 8 0 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 180

Of these three, the most important is deallocation, because if you forget deallocation
you have a program that leaks.

There are two roles, or participants, involved in a CORBA invocation—the caller and
the callee. You can think of caller and callee as corresponding loosely to client and
server. However, since a CORBA object is allowed to make invocations on any other
CORBA object, it is common for caller and callee to inhabit the same address space.
In this case, the invocation is a collocated invocation.

TIP
In the following subsections, a number of rules are outlined for managing memory
in connection with parameter passing. The most important rule, which holds in
every case, is this:

The caller is always responsible for deallocating parameters and return values.

The following examples are based on the SampleTypes module defined in Listing 4.1.

Passing in Parameters—Collocated Case
This example illustrates passing a fixed-length struct SampleTypes::FixLen as an in
parameter when caller and callee are collocated. Figure 4.3 shows what happens when
the operation passIn() is invoked on an instance of SampleTypes::Foo. The steps
involved in the process are

1. Caller allocates memory for the fixed-length struct fl.
2. Caller initializes the fixed-length struct fl.
3. Caller invokes the operation passIn(), implemented by the callee, passing fl

as an in parameter.
4. Callee gets read-only access to parameter fl.
5. If callee requires access to fl after the function returns, it should make a pri-

vate copy of fl.
6. Callee returns.
7. Caller deallocates the parameter fl (at some later stage).

A key point here is that the allocation, initialization, and deallocation lifecycle of the
parameter fl is managed entirely by the caller. The callee gets just read-only access to
the parameter for the duration of the invocation.

Here is some C++ sample code for the caller:

// C++
//---
// This code assumes that the object reference
// ‘objV’ is already initialized to point at an
// instance of ‘SampleTypes::Foo’.
//---
{

P a r a m e t e r P a s s i n g 1 8 1

07 0672318121 CH04 6/20/01 5:35 PM Page 181

// Allocate ‘fl’ on the stack
SampleTypes::FixLen fl;

// Initialize ‘fl’
fl.theShort = (CORBA::Short)15;
fl.theFloat = (CORBA::Float)3.14;

// Invoke ‘passIn()’
objV->passIn(fl);

} //’fl’ is automatically deallocated

1 8 2 C h a p t e r 4 : M e m o r y M a n a g e m e n t

Key: User allocated
memory

User deallocates

Caller Callee

/ / Allocate

/ / Initialize

obj - >passIn (fl) ;

/ / Deallocate

Foo : :passInout2 (. .) {

.

.

.

.
} / / Return

.

.

.

in Parameter - Collocated

Figure 4.3

Passing an in parameter—collocated case.

The code can be rewritten to allocate the parameter on the heap instead:

// C++
{

// Allocate ‘fl’ on the heap
SampleTypes::FixLen_var fl = new SampleTypes::FixLen();

07 0672318121 CH04 6/20/01 5:35 PM Page 182

// Initialize ‘fl’
fl->theShort = (CORBA::Short)15;
fl->theFloat = (CORBA::Float)3.14;

// Invoke ‘passIn()’
objV->passIn(fl.in());

} //’fl’ is automatically deallocated by the _var

The invocation passIn() uses the in() method of _var to convert it to the appropriate
parameter type such that it is maximally portable.

Sample code for the callee is given by the implementation of the method passIn():

// C++
void SampleTypes_FooImpl::passIn(const SampleTypes::FixLen& fl)

throw (CORBA::SystemException)
{

// Use readonly access - Do not modify ‘fl’!
cout << “fl.theShort = “ << fl.theShort << endl;
cout << “fl.theFloat = “ << fl.theFloat << endl;
// If access to ‘fl’ is needed after this function returns,
// then make a private copy now!

}

The reason you need to make a private copy of fl, if you want to access it after
passIn() returns, is discussed in the next section.

Passing in Parameters
This example illustrates passing the fixed-length struct SampleTypes::FixLen as an in
parameter when the invocation is made remotely. Figure 4.4 shows what happens when
the operation passIn() is invoked in this case. The steps involved in the process are

1. Caller allocates memory for the fixed-length struct fl.
2. Caller initializes the fixed-length struct fl.
3. Caller invokes the operation passIn(), implemented by the callee, passing fl

as an in parameter.
4. ORB copies fl to callee’s address space and makes it temporarily available.
5. Callee gets read-only access to local copy of fl.
6. If callee requires access to fl after the function returns, it should make a pri-

vate copy of fl.
7. Callee returns.
8. ORB deallocates the callee’s copy of fl.
9. Caller deallocates the parameter fl (at some later stage).

The basic difference between this and the collocated case is that the ORB has to copy
the parameter fl across to the callee’s address space. A key point is that the lifecycle
of the callee’s temporary copy is always shorter (sometimes much shorter) than the
original instance in the caller’s address space. As soon as the method passIn() returns,
the parameter fl is deallocated by the ORB.

P a r a m e t e r P a s s i n g 1 8 3

07 0672318121 CH04 6/20/01 5:35 PM Page 183

This reveals a subtle semantic difference between collocated and remote invocations.
In the collocated case a parameter instance may remain valid long after the invocation
has finished, whereas in the remote case the parameter is guaranteed to be deleted
straightaway (the ORB takes care of this for you). Since the callee code must work in
both cases, you are forced to assume that the parameter will cease to be available as
soon as the method returns. If the callee wants to have access to the parameter for a
longer time, it must make a private copy.

1 8 4 C h a p t e r 4 : M e m o r y M a n a g e m e n t

Key: User allocated
memory

User deallocates

Caller Callee

/ / Allocate

/ / Initialize

obj - >passIn (fl) ;

/ / Deallocate

Foo : :passInout2 (. .) {

.

.

.

.
} / / Return

.

.

.

in Parameter

ORB allocated
memory

ORB deallocates

Figure 4.4

Passing an in parameter—remote invocation.

The sample code for this case is identical to the previous section.

Passing inout Parameters—No Reallocation
This example illustrates passing the fixed-length struct SampleTypes::FixLen as an
inout parameter when the invocation is made remotely and the parameter is modified
in place. In the case of a fixed-length parameter, no reallocation of the parameter is
needed when it is modified. Figure 4.5 shows what happens when the operation
passInout() is invoked. The steps involved in the process are

07 0672318121 CH04 6/20/01 5:35 PM Page 184

1. Caller allocates memory for the fixed length struct fl.
2. Caller initializes the fixed-length struct fl.
3. Caller invokes the operation passInout(), implemented by the callee, passing

fl as an inout parameter.
4. ORB copies fl to callee’s address space and makes it temporarily available.
5. Callee (optionally) modifies local copy of fl. Since fl is fixed length, it can be

modified in place. No reallocation is required.
6. If callee requires access to fl after the function returns, it should make a pri-

vate copy of fl.
7. Callee returns.
8. ORB sends the (possibly modified) callee’s copy of fl back to the caller

address space and modifies the original instance of fl in place.
9. ORB deallocates the callee’s copy of fl.

10. Caller deallocates fl (at some later stage).

In this case, the callee code has read and write access to the parameter fl so it has the
option of modifying it. There is no need to reallocate fl if the callee modifies it,
because it is a fixed-length type.

P a r a m e t e r P a s s i n g 1 8 5

Key: User allocated
memory

User deallocates

Caller Callee

/ / Allocate

/ / Initialize

obj - >passIn (fl) ;

/ / Deallocate

Foo : :passInout2 (. .) {

.

.

.

.
} / / Return

.

.

.

inout Parameter - No reallocation

ORB allocated
memory

ORB deallocates

/ / Modify in place•

ORB
modifies
in place

•

Figure 4.5

Passing an inout parameter—no reallocation.

07 0672318121 CH04 6/20/01 5:35 PM Page 185

Here is some C++ sample code for the caller:

// C++
//---
// This code assumes that the object reference
// ‘objV’ is already initialized to point at an
// instance of ‘SampleTypes::Foo’.
//---
{

// Allocate ‘fl’ on the stack
SampleTypes::FixLen fl;

// Initialize ‘fl’
fl.theShort = (CORBA::Short)15;
fl.theFloat = (CORBA::Float)3.14;

// Invoke ‘passInout()’
objV->passInout(fl);

cout << “fl.theShort = “ << fl.theShort << endl;
cout << “fl.theFloat = “ << fl.theFloat << endl;

} //’fl’ is automatically deallocated

The code can be rewritten to allocate the parameter on the heap instead:

// C++
{

// Allocate ‘fl’ on the heap
SampleTypes::FixLen_var fl = new SampleTypes::FixLen();

// Initialize ‘fl’
fl->theShort = (CORBA::Short)15;
fl->theFloat = (CORBA::Float)3.14;

// Invoke ‘passInout()’
objV->passInout(fl.inout());

cout << “fl->theShort = “ << fl->theShort << endl;
cout << “fl->theFloat = “ << fl->theFloat << endl;

} //’fl’ is automatically deallocated by the _var

The invocation passInout() uses the inout() method of the _var to convert it to the
appropriate parameter type in such a way that it is maximally portable.

Sample code for the callee is given by the implementation of the method passInout():

// C++
void SampleTypes_FooImpl::passInout(SampleTypes::FixLen& fl)

throw (CORBA::SystemException)
{

1 8 6 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 186

// Callee has read and write access to ‘fl’
cout << “fl.theShort = “ << fl.theShort << endl;
cout << “fl.theFloat = “ << fl.theFloat << endl;

// Modify ‘fl’ in place
fl.theShort = (CORBA::Short)100;
fl.theFloat = (CORBA::Float)3.14;

// If access to ‘fl’ is needed after this function returns,
// then make a private copy now!

}

Passing inout Parameters—Reallocating
This example illustrates passing the variable-length struct SampleTypes::VarLen as an
inout parameter when the invocation is made remotely and the parameter is reallo-
cated by the callee. In the case of a variable-length parameter, this reallocation is some-
times necessary. For example, if the callee wants to replace a string with a longer string,
reallocation is necessary. But if the callee wants to replace the string with a shorter
string, reallocation is not needed. Figure 4.6 shows what happens when the operation
passInout2() is invoked and the callee reallocates the inout parameter. The steps
involved in the process are

1. Caller allocates memory for the variable-length struct vl.
2. Caller initializes the variable-length struct vl.
3. Caller invokes the operation passInout2(), implemented by the callee, passing

vl as an inout parameter.
4. ORB copies vl to callee’s address space and makes it temporarily available.
5. Callee (optionally) modifies local copy of vl. If modifications call for a differ-

ent size struct vl, then the existing copy of vl must be deallocated and a new
struct vl of the appropriate size allocated.

6. If callee requires access to vl after the function returns, it should make a pri-
vate copy of vl.

7. Callee returns.
8. ORB sends the (possibly modified) callee’s copy of vl back to the caller

address space. ORB modifies the original instance of vl by reallocating vl and
initializing it with the value received from the callee.

9. ORB deallocates the callee’s copy of vl.
10. Caller deallocates vl (at some later stage).

Note that it is not always strictly necessary to reallocate an inout parameter in the
callee if the new data can fit inside the old instance. However, reallocation is usually
needed when a variable-length type is modified.

P a r a m e t e r P a s s i n g 1 8 7

07 0672318121 CH04 6/20/01 5:35 PM Page 187

Figure 4.6

Passing an inout parameter—reallocating.

Here is some C++ sample code for the caller:

// C++
//---
// This code assumes that the object reference
// ‘objV’ is already initialized to point at an
// instance of ‘SampleTypes::Foo’.
//---
{

// Allocate ‘vl’ on the stack
SampleTypes::VarLen vl;

// Initialize ‘vl’
vl.theString = CORBA::string_dup(“Doomed string”);
vl.theLong = (CORBA::Long)10000;

1 8 8 C h a p t e r 4 : M e m o r y M a n a g e m e n t

Key: User allocated
memory

User deallocates

Caller Callee

/ / Allocate

/ / Initialize

obj - >passInout2 (vl) ;

/ / Deallocate

Foo : :passInout2 (. .) {
.
.
.
.
.
.
.
.
.
.

} / / Return

inout Parameter - Reallocation

ORB allocated
memory

ORB deallocates

/ / Modify in place

/ / Deallocate

/ / Initialize

07 0672318121 CH04 6/20/01 5:35 PM Page 188

// Invoke ‘passInout2()’
objV->passInout2(vl);

cout << “vl.theString = “ << vl.theString << endl;
cout << “vl.theLong = “ << vl.theLong << endl;

} //’vl’ is automatically deallocated

The code can be rewritten to allocate the parameter on the heap instead:

// C++
{

// Allocate ‘vl’ on the heap
SampleTypes::VarLen_var vl = new SampleTypes::VarLen();

// Initialize ‘vl’
vl->theString = CORBA::string_dup(“Doomed string”);
vl->theLong = (CORBA::Long)10000;

// Invoke ‘passInout2()’
objV->passInout2(vl.inout());

cout << “vl->theString = “ << vl->theString << endl;
cout << “vl->theLong = “ << vl->theLong << endl;

} //’vl’ is automatically deallocated by the _var

The invocation passInout2() uses the inout() method of _var to convert it to the
appropriate parameter type in such a way that it is maximally portable.

Sample code for the callee is given by the implementation of the method
passInout2():

// C++
void SampleTypes_FooImpl::passInout2(SampleTypes::VarLen& vl)
throw (CORBA::SystemException)
{

// Callee has read and write access to ‘vl’
cout << “vl.theString = “ << vl.theString << endl;
cout << “vl.theLong = “ << vl.theLong << endl;

// Modify ‘vl’ - Reallocation
// The assignment to ‘vl.theString’ has the following effect:
// Deallocates old value of ‘vl.theString’ (implicit)
// Allocates new value of string (via ‘string_dup()’)
vl.theString = CORBA::string_dup(“New string of greater length”);
vl.theLong = (CORBA::Long)10000000;

// If access to ‘vl’ is needed after this function returns,
// then make a private copy now!

}

P a r a m e t e r P a s s i n g 1 8 9

07 0672318121 CH04 6/20/01 5:35 PM Page 189

Receiving out Parameters—Fixed-Length Types
This example illustrates receiving the fixed-length struct SampleTypes::FixLen as an
out parameter when the invocation is made remotely. Figure 4.7 shows what happens
when the operation receiveOut() is invoked. The steps involved in the process are

1. Caller allocates memory for the fixed-length struct fl (but fl is not initialized).
2. Caller invokes the operation receiveOut(), implemented by the callee, speci-

fying fl as a placeholder for the out parameter.
3. ORB allocates an uninitialized placeholder for fl in the callee’s address space.
4. Callee initializes the placeholder fl.
5. If callee requires access to fl after the function returns, it should make a pri-

vate copy of fl.
6. Callee returns.
7. ORB sends the newly initialized fl back to the caller address space and uses

this data to initialize the caller’s instance of fl.
8. ORB deallocates the callee’s fl.
9. Caller deallocates fl (at some later stage).

This case is unusual because it is the only time the caller allocates the parameter but
does not initialize it. Of course, it would not make sense for a caller to initialize the out
parameter, because the parameter is never passed from caller to callee. The instance of
fl given to receiveOut() is just a placeholder for the reception of the out parameter.

Here is some C++ sample code for the caller:

// C++
//---
// This code assumes that the object reference
// ‘objV’ is already initialized to point at an
// instance of ‘SampleTypes::Foo’.
//---
{

// Allocate ‘fl’ on the stack
SampleTypes::FixLen fl;

// Invoke ‘receiveOut()’
objV->receiveOut(fl);

// Do something with ‘fl’...
cout << “fl.theShort = “ << fl.theShort << endl;
cout << “fl.theFloat = “ << fl.theFloat << endl;

} //’fl’ is automatically deallocated

1 9 0 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 190

Figure 4.7

Passing an out parameter—fixed-length type.

The code can be rewritten to allocate the parameter on the heap instead:

// C++
{

// Allocate ‘fl’ on the heap
SampleTypes::FixLen_var fl = new SampleTypes::FixLen();

// Invoke ‘receiveOut()’
objV->receiveOut(fl.out());

// Do something with ‘fl’...
cout << “fl->theShort = “ << fl->theShort << endl;
cout << “fl->theFloat = “ << fl->theFloat << endl;

} //’fl’ is automatically deallocated by the _var

The invocation receiveOut() uses the out() method of the _var to convert it to the
appropriate parameter type in such a way that it is maximally portable.

P a r a m e t e r P a s s i n g 1 9 1

Key: User allocated
memory

User deallocates

Caller Callee

/ / Allocate

obj - >receiveOut (fl) ;

/ / Deallocate

Foo : : receiveOut (. .) {

.

.

.

.
} / / Return

.

.

.

out Parameter - Fixed Length

ORB allocated
memory

ORB deallocates

/ /Initialize•

ORB
initalizes
the struct

•

Data is
not yet
initialized

07 0672318121 CH04 6/20/01 5:35 PM Page 191

Sample code for the callee is given by the implementation of the method
receiveOut():

// C++
void SampleTypes_FooImpl::receiveOut(SampleTypes::FixLen& fl)

throw (CORBA::SystemException)
{

// Initialize ‘fl’
fl.theShort = (CORBA::Short)100;
fl.theFloat = (CORBA::Float)3.14;

// If access to ‘fl’ is needed after this function returns,
// then make a private copy now!

}

Receiving out Parameters—Variable Length Types
This example illustrates receiving the variable-length struct SampleTypes::VarLen as
an out parameter when the invocation is made remotely. Figure 4.8 shows what
happens when the operation receiveOut2() is invoked. The steps involved in the
process are

1. The caller invokes the operation receiveOut2(), implemented by the callee,
specifying vl as a placeholder for the out parameter (the parameter vl is
passed as an uninitialized pointer).

2. The callee allocates vl in the callee’s address space.
3. The callee initializes vl.
4. If the callee requires access to vl after the function returns, it should make a

private copy of vl.
5. The callee returns.
6. ORB copies vl back to the caller, allocating and initializing an instance of vl

in the caller’s address space.
7. ORB deallocates the callee’s vl.
8. The caller deallocates vl (at some later stage).

In contrast to the previous section (fixed-length struct as out parameter), the caller does
not allocate the parameter at all. Instead, the caller passes an uninitialized pointer (or
else a _var) as a placeholder for the out parameter.

Here is some C++ sample code for the caller. The caller must specify the parameter as
either a plain pointer or a _var type.

// C++
//---
// This code assumes that the object reference
// ‘objV’ is already initialized to point at an
// instance of ‘SampleTypes::Foo’.
//---

1 9 2 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 192

{
SampleTypes::VarLen_var vl;

// Invoke ‘receiveOut2()’
objV->receiveOut2(vl.out());

// Do something with ‘vl’...
cout << “vl->theString = “ << vl->theString << endl;
cout << “vl->theLong = “ << vl->theLong << endl;

} //’vl’ is automatically deallocated

P a r a m e t e r P a s s i n g 1 9 3

Key: User allocated
memory

User deallocates

Caller Callee

obj - >receiveOut2 (fl) ;

/ / Deallocate

Foo : :receiveOut2 (. .) {

.

.

.

.

.

} / / Return.
.
.
.
.

out Parameter - Variable Length

ORB allocated
memory

ORB deallocates

/ / Allocate

/ / Initialize

Figure 4.8

Passing an out parameter—variable-length type.

The invocation receiveOut2() uses the out() method of the _var to convert it to the
appropriate parameter type in such a way that it is maximally portable.

07 0672318121 CH04 6/20/01 5:35 PM Page 193

Sample code for the callee is given by the implementation of the method
receiveOut2():

// C++
void SampleTypes_FooImpl::receiveOut2(SampleTypes::VarLen*& vl)
throw (CORBA::SystemException)
{

// Allocate ‘vl’ on the heap
vl = new SampleTypes::VarLen();

// Initialize ‘vl’
vl->theString = CORBA::string_dup(“New string”);
vl->theLong = (CORBA::Long)10000000;

// If access to ‘vl’ is needed after this function returns,
// then make a private copy now!

}

Return Values and _retn()
The rules for memory management of return values are almost identical to the rules for
variable length out parameters. The steps for allocation, initialization, and deallocation
of return values are similar to those of out parameters.

As is the case with out parameters, variable-length and fixed-length data types are
treated differently.

A danger with both out parameters and return values is that they are susceptible to
memory leaks when an exception is thrown. The example presented in this section
illustrates how the _retn() method used in conjunction with a _var type can help you
avoid this sort of memory leak.

Consider the IDL operation getResult(), defined in Listing 4.1:

// IDL
module SampleTypes {

...
interface Foo {

...
VarLen getResult(out VarLen vl) raises (GenericExc);
...

};

};

The following sections show caller and callee code for this invocation. Exception han-
dling is explicitly shown in these examples.

1 9 4 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 194

Caller Code
Here is some sample C++ code for the caller:

// C++
//---
// This code assumes that the object reference
// ‘objV’ is already initialized to point at an
// instance of ‘SampleTypes::Foo’.
//---
{

SampleTypes::VarLen_var vlParamV;
SampleTypes::VarLen_var vlReturnV;
CORBA::Boolean excRaised = 0;

try {
// Invoke ‘getResult()’
vlReturnV = objV->getResult(vlParamV.out());

}
catch (CORBA::UserException&) {

excRaised = 1;
}
catch (CORBA::SystemException&) {

excRaised = 1;
}

if (!excRaised) {
// Case 1: Operation succeeded, proceed normally.

}
else {

// Case 2: Exception was raised.
// ‘vlReturnV’ and ‘vlParamV’ are undefined.

}

} //’vlParamV’ is automatically deallocated

Consider what happens if an exception is raised during the invocation of getResult().
Both the out parameter vlParamV and the return value vlReturnV will be undefined.
You will have to proceed along different logical paths, depending on whether or not an
exception was thrown.

Callee Code
Sample code for the callee is given by the implementation of the method getResult().

// C++
SampleTypes::VarLen*
SampleTypes_FooImpl::getResult(SampleTypes::VarLen*& vl)

throw (CORBA::SystemException, SampleTypes::GenericExc)
{

P a r a m e t e r P a s s i n g 1 9 5

07 0672318121 CH04 6/20/01 5:35 PM Page 195

// Declare temporary ‘out’ variable as a ‘_var’
SampleTypes::VarLen_var tmpOutV;

// Allocate ‘tmpOutV’ on the heap
tmpOutV = new SampleTypes::VarLen();

// Initialize ‘tmpOutV’
tmpOutV->theString = CORBA::string_dup(“New string”);
tmpOutV->theLong = (CORBA::Long)10000000;

// Declare temporary result variable as a ‘_var’
SampleTypes::VarLen_var resultV;

// Allocate ‘_resultV’ on the heap
resultV = new SampleTypes::VarLen();

// Initialize ‘_resultV’
resultV->theString = CORBA::string_dup(“The result.”);
resultV->theLong = (CORBA::Long) 123;

// Beware! Risk of an exception throw!
funcThatMightThrowAnException();

// Force ‘_var’s to yield ownership
vl = tmpOutV._retn();
return resultV._retn();

}

After allocating and initializing the out parameter tmpOutV and return value resultV,
the callee calls the function funcThatMightThrowAnException(), which throws an
exception from time to time. This function is potentially dangerous. If an out parame-
ter or a return value has been allocated, the thrown exception could prevent a pointer
to this memory being passed back to the calling code. The calling code would there-
fore never get a chance to delete the memory. How can this memory leak be avoided?

The trick is to use a _var type to hold the temporary result value and temporary out
value. This ensures that, whenever execution of getResult() is interrupted by an
exception, these return values are automatically freed as the stack unwinds.

At first sight this solution appears to have a flaw—the _var normally deallocates its
data at the end of the function call. If the function returns normally, the return values
will be deleted before the callee gets a chance to use them. This difficulty is solved,
however, with the help of the _retn() method, which forces the _var to yield owner-
ship of the referenced data. After _retn() is called on a _var, the _var no longer ref-
erences the data and will not attempt to deallocate it. In this way, ownership of the data
passes from _var to the calling code. The calling code can then delete the data at some
later time.

1 9 6 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 196

Table of Parameter-Passing Types
Table 4.5 summarizes the parameter types that are used in the various parameter-pass-
ing modes. These parameter types are used in the signatures of C++ methods that
implement IDL operations.

Table 4.5 Parameter Types Used for Passing CORBA Data

Data Type in inout out return

basic Basic Basic& Basic& Basic

fixed const fixed& fixed& fixed& fixed

string const char* char*& char*& char*

wstring const WChar* WChar*& WChar*& WChar*

object reference objref_ptr objref_ptr& objref_ptr& objref_ptr

fixed-length struct const struct& struct& struct& struct

variable-length struct const struct& struct& struct*& struct*

sequence const sequence& sequence& sequence*& sequence*

fixed-length union const union& union& union& union

variable-length union const union& union& union*& union*

fixed-length array const array array array array_slice*

variable-length array const array array array_slice*& array_slice*

any const any& any& any*& any*

The basic types refer to the simple IDL types short, unsigned short, long, unsigned
long, long long, unsigned long long, float, double, long double, boolean, char,
wchar, octet, and enum.

A distinction is made between fixed-length and variable-length data types. This dis-
tinction is important in the case of out parameters and return values.

It would be impractical to memorize the above table in its entirety. Fortunately, that is
not necessary. If you use a _var type as a parameter, the parameter automatically con-
verts itself to the correct type. Alternatively, the methods in(), inout(), and out()
explicitly convert a _var type to the appropriate parameter type. These methods effec-
tively memorize the table on your behalf, saving you the bother of doing so.

Table of Memory Management Rules
Table 4.6 summarizes the memory management rules for parameter passing in C++.
The column headings enumerate the parameter passing modes, and the rows of the
table show the responsibilities of the caller and callee in each case.

P a r a m e t e r P a s s i n g 1 9 7

07 0672318121 CH04 6/20/01 5:35 PM Page 197

Table 4.6 Summary of C++ Memory Management Rules

Parameter Passing Caller Callee
Mode Responsibilities Responsibilities

in Allocate Copy
Initialize
Deallocate

inout Allocate Copy
Initialize
Deallocate

out (fixed length) Allocate Initialize
Deallocate
Copy

out (variable length) Deallocate Allocate
Initialize
Copy

return value Deallocate Allocate
Initialize
Copy

The copying refers to the fact that the callee might want to have access to the parame-
ter/return value after the invocation has returned. In that case, it is necessary for the
callee to make an explicit copy of the data in order for the data to be available at a later
time.

Summary
Once you begin using the more complicated structured types that CORBA has to offer,
you inevitably have to deal with dynamically allocated memory. The CORBA C++
mapping gives you a hand with this by providing the _var types. _var types implement
smart pointer functionality that helps you to avoid memory leaks. Even so, the issues
surrounding memory management in a distributed system can be bewildering.

Most of the rules in this chapter could be described as nothing more than good prac-
tice in C++ programming. What is unusual about distributed programming, however, is
that you are forced to work with heap-allocated data practically all of the time (with
the consequent danger of memory leaks). By contrast, a typical standalone application
uses stack-allocated data more often.

If you are just beginning to learn CORBA memory management rules, there is one rule
of thumb that is useful to bear in mind: The caller always owns the memory associated
with parameters and return values. In other words, it is the caller’s responsibility to
delete parameters and return values.

1 9 8 C h a p t e r 4 : M e m o r y M a n a g e m e n t

07 0672318121 CH04 6/20/01 5:35 PM Page 198

Object References
Object references in CORBA provide a key abstraction, encap-
sulating the location details of a remote CORBA object and
abstracting away the network protocol layer. In a CORBA sys-
tem augmented by CORBA services, object references do even
more work, being responsible for encapsulating security
details and propagating transaction context.

From the perspective of the developer, however, object refer-
ences appear to be quite simple. They are objects much the
same as regular C++ or Java objects. You invoke the methods
of an object reference like any normal object. It is then up to
the ORB to take care of locating the CORBA object, estab-
lishing a connection, negotiating secure connections, sending
and receiving messages, and whatever else is needed to com-
plete a remote procedure call. If you scratch the surface of an
object reference, you will find a lot of hidden details.

CORBA Objects and Object
References
There is a complementary relationship between CORBA
objects and object references. A CORBA object is the entity
that provides the implementation of the object and does the
work. An object reference is the entity that knows where to
find a CORBA object and delegates work to the CORBA
object. Object references effectively provide a window to a
CORBA object.

Because CORBA objects do the real work of an invocation,
you might be inclined to think of them as more concrete than
object references. In fact, the reverse is the case. The portable
object adapter (POA) does not even define entities that corre-
spond to CORBA objects (see Chapter 7, “The Portable Object
Adapter”).

C H A P T E R 5

O
b

je
ct R

e
fe

re
n

ce
s

08 0672318121 CH05 6/20/01 5:55 PM Page 199

The OMG recognized that there is no need to represent CORBA objects as concrete
objects and, moreover, that it would be a disadvantage to do so. A group of cooperat-
ing entities constitutes a CORBA object instead. In the world of the POA, a CORBA
object is an abstraction.

Figure 5.1(a) shows a naive view of a CORBA object.

2 0 0 C h a p t e r 5 : O b j e c t R e f e r e n c e s

remote
invocation

(a) Naive Picture of a CORBA Object

(b) Realistic Picture of a CORBA Object

remote
invocation

Server
CORBA
Object

Server

?

Client

invoke

Object
Reference

Client

invoke

Object
Reference

Figure 5.1

Naive and realistic views of a CORBA object.

A given IDL interface is implemented by a concrete C++ or Java object—the CORBA
object. To support remote invocations on this CORBA object, client programs create an
object reference to act as a proxy. The object reference supports the same set of IDL
operations as the CORBA object and delegates invocations to it by exchanging mes-
sages over the network. The object reference acts like a remote control for the CORBA
object.

The naive picture is often a useful model when discussing CORBA concepts. However,
it should not be taken too literally. To insist that a CORBA object is represented liter-
ally as a language-specific object is unnecessarily restrictive. The lifecycle of a
CORBA object, for example, is independent of the lifecycle of the C++ or Java object
that represents it. It is also worth recalling that CORBA supports languages such as C
and COBOL that are not even object-oriented.

Figure 5.1(b) shows a more realistic picture of a CORBA object. Here, the CORBA
object is represented by an indeterminate mechanism on the server side. If the server
uses a POA, the operations are ultimately executed by a servant object.

08 0672318121 CH05 6/20/01 5:55 PM Page 200

The client has the same view of the CORBA object as before; it uses the object refer-
ence to invoke operations. As far as the client is concerned, the server is a black box
that processes remote invocations. The CORBA object need not exist at all; it is an
abstraction.

What Is an Object Reference?
An object reference encapsulates the following kind of information:

• The type of the CORBA object An object reference knows the interface type
of the CORBA object that it refers to. It follows that the supported operations
and attributes are known (either statically via the stubs or dynamically via the
Interface Repository).

• The location of the CORBA object An object reference encapsulates the loca-
tion of its corresponding CORBA object. This typically includes the host and
port of the relevant server and an object key that the server uses to identify an
object instance uniquely.

• Additional information In some cases, a CORBA object is used in conjunc-
tion with one or more CORBA services. Some of these services (for example,
the security service) need to supply the client with extra information. The most
convenient way to provide this information is to supply it as part of the object
reference.

The detailed definition of an object reference changes continuously as the CORBA
specification is updated and expanded. However, these detailed changes normally do
not matter to a developer, because they are hidden. The object reference is exposed to
the developer in an opaque form.

Representation of an Object Reference
Although an ORB has to perform a number of steps to locate the CORBA object and
establish a network connection to the server, all of this remains hidden from the devel-
oper. To use the CORBA object, all that is needed is an object reference.

The main representations of an object reference are

• An object reference instance This is the form of object reference that a devel-
oper usually encounters. Invocations of the object reference cause the corre-
sponding operations (or attributes) to be invoked on the CORBA object.

• An interoperable object reference (IOR) An IOR is the form an object refer-
ence is converted to when it is sent across the wire as a parameter or return
value of an operation. Details are given in the section “Interoperable Object
Reference,” later in this chapter.

• A stringified object reference A stringified object reference is one that has
been converted to a text string using the operation
CORBA::ORB::object_to_string(). It is derived from the format of an IOR.
A stringified object reference encapsulates the state of the object reference. If
written to persistent storage, it is possible to restore the object reference at a
later stage by reading the string and invoking

C O R B A O b j e c t s a n d O b j e c t R e f e r e n c e s 2 0 1

08 0672318121 CH05 6/20/01 5:55 PM Page 201

CORBA::ORB::string_to_object(). As long as the corresponding CORBA
object continues to exist, the object reference can be used to make invocations.

Aspects of a CORBA Object
When you read about the POA (see Chapter 7), you will see that a number of entities,
in addition to an object reference, are defined to support the notion of a CORBA object.
They are

• Object key
• POA name
• Object ID
• Servant

The relationship between these entities can be clarified by taking a closer look at an
IOR. Figure 5.2 shows a schematic picture of an IOR that focuses on the location infor-
mation for the CORBA object.

2 0 2 C h a p t e r 5 : O b j e c t R e f e r e n c e s

Server details object_key

POA name Objectld

POA
Instance

manages
Servant
Object

IOR Location Details

Figure 5.2

Part of an IOR focusing on location information.

The server details give the host and port of the server process. This information is used
by the client to locate the server process.

The object_key is an opaque sequence of octets (a stream of bytes) used by the server
process to uniquely identify a CORBA object in its address space. The client might not
understand the format of the object_key, but this does not matter, because the
object_key is used exclusively by the server.

The contents of an object_key are not specified by the OMG. It is left as an imple-
mentation detail for the ORB vendor. The details of an object_key depend on the type
of object adapter used. For example, the object_key format will be different for a basic
object adapter (BOA), a portable object adapter (POA), a COBOL object adapter
(COA), or a PL/I object adapter (POD).

The POA is the only object adapter considered here. Although the format of the
object_key is implementation dependent, in the case of the POA you can be sure it
encompasses two pieces of information: the CORBA object’s POA name and object
ID.

08 0672318121 CH05 6/20/01 5:55 PM Page 202

The POA name identifies the POA instance that manages the CORBA object in ques-
tion. The object ID is a unique identifier for the CORBA object and is defined relative
to a particular POA instance.

These two pieces of information, POA name and object ID, enable the server to
uniquely identify the CORBA object. You should not assume, however, that there is a
one-to-one correspondence between an object ID and a servant. The POA supports
many models for mapping object IDs to servants, as discussed in Chapter 7.

Conversion Methods
Given the variety of entities associated with a CORBA object, it is often useful to nav-
igate between them. In addition to the CORBA::ORB::string_to_object() and
CORBA::ORB::object_to_string() methods already introduced, the provides a num-
ber of other conversion methods. They are summarized here:

// IDL
#pragma prefix “omg.org”

module PortableServer {
...
native Servant;
typedef sequence<octet> ObjectId;
...
interface POA {

...
exception ObjectNotActive {};
exception ServantNotActive {};
exception WrongAdapter {};
exception WrongPolicy {};
...
// Identity mapping operations
ObjectId servant_to_id(in Servant p_servant)

raises (ServantNotActive, WrongPolicy);

Object servant_to_reference(in Servant p_servant)
raises (ServantNotActive, WrongPolicy);

Servant reference_to_servant(in Object reference)
raises (ObjectNotActive, WrongPolicy);

ObjectId reference_to_id(in Object reference)
raises (WrongAdapter, WrongPolicy);

Servant id_to_servant(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

Object id_to_reference(in ObjectId id)
raises (ObjectNotActive, WrongPolicy);

C O R B A O b j e c t s a n d O b j e c t R e f e r e n c e s 2 0 3

08 0672318121 CH05 6/20/01 5:55 PM Page 203

};
...

};

It is not always legal to call these operations. To understand how to use the conversion
operations properly and to know when it makes sense to use them, you need an under-
standing of the POA.

Lifecycle of Object References
One of the features of the POA is the way it completely separates the lifecycle of object
references from the lifecycle of implementation objects (servants). For anyone familiar
with the old basic object adapter (prior to CORBA 2.2), this is a striking difference
between the two types of object adapter.

In fact, using the POA, it is possible to create object references in the server without
instantiating any servant objects. The operations that do this are create_reference()
and create_reference_with_id(), as declared in the following IDL code fragment:

// IDL
#pragma prefix “omg.org”

module PortableServer {
...
typedef sequence<octet> ObjectId;
...
interface POA {

...
exception WrongPolicy {};
...
// Reference creation operations
Object create_reference(in CORBA::RepositoryId intf)

raises (WrongPolicy);

Object create_reference_with_id(
in ObjectId oid,
in CORBA::RepositoryId intf

) raises (WrongPolicy);
...

};
...

};

While it is possible to create the object references independently of the servant object,
you should make sure that the server also has a mechanism in place to instantiate the
corresponding servant on demand. The mechanisms for instantiating servants on
demand are described in Chapter 7.

Both of the operations for creating references take an argument of type
CORBA::RepositoryId. This is a string that identifies the type of the corresponding

2 0 4 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:55 PM Page 204

interface. For example, an interface called Bar might have a repository ID
IDL:Bar:1.0. See Chapter 6, “Interoperable Naming Service,” for details.

• The operation create_reference() can be used when the POA
IdAssignmentPolicy of SYSTEM_ID is in force. In this case a unique object ID
is assigned automatically to the object reference (and embedded within the
object reference).
This approach is appropriate for short-lived CORBA objects that will not be
needed again after the server process shuts down.

• The operation create_reference_with_id() is intended to be used when the
POA IdAssignmentPolicy of USER_ID is in force. In this case the user can
choose the object ID.
This approach is appropriate for long-lived CORBA objects such as those that
are stored in a database. Remember that the object ID, in combination with the
POA name, uniquely identifies a CORBA object. Therefore, you should take
care that you use a consistent scheme for assigning object IDs and that differ-
ent CORBA objects are assigned unique IDs. A typical approach is to use a
database key as the object ID.

Object Reference from _this()
Another way of getting an object reference is by invoking the _this() method on a ser-
vant object. You can use this method when you already have an instance of a servant.

For example, given an interface Foo and a servant instance myFooServant, you can get
an object reference by invoking myFooServant._this() (C++ or Java). You should be
aware of the fact that invoking _this() actually does two things:

• It returns an object reference of type Foo_ptr (C++) or Foo (Java) that is asso-
ciated with the given servant.

• As a side effect, _this() activates the servant if it is not already active.

A limitation of _this() is that it makes sense only if you have a one-to-one mapping
between servants and object references. This is not always the case—it depends on the
particular POA policies that you have chosen. See Chapter 7 for details.

Longevity of Object References
After an object reference is created, it is usually exported to other processes as a para-
meter or return value of an IDL operation.

Once the object reference goes outside the server address space, the server has no con-
trol over what happens to it. The object reference can be passed from application to
application, stored in a naming service or trader service, or written to a file in the form
of a stringified object reference. It can easily happen that an object reference outlives
the CORBA object to which it refers. If an application attempts to make an invocation
on a stale object reference, the invocation is relayed to the server, but the server
responds with a CORBA::OBJECT_NOT_EXIST system exception. This indicates that the
corresponding CORBA object has been permanently deleted.

C O R B A O b j e c t s a n d O b j e c t R e f e r e n c e s 2 0 5

08 0672318121 CH05 6/20/01 5:55 PM Page 205

Location Transparency
An important feature of CORBA is that it does not matter whether a CORBA object is
implemented in the same process as the code that calls it or is implemented in a sepa-
rate process. The same calling code can be used to make local or remote invocations.
This is known as location transparency.

There are many benefits to location transparency:

• Sections of code that work in a local application will work just as well in a
remote application.

• Developers use a consistent style of coding whether they are using remote or
local CORBA objects.

• Interceptors are called for both local and remote invocations.
• Local invocations are subject to the same security checks as remote invoca-

tions.
• When using the CORBA Transaction Service, both local and remote objects

can take part in a transaction.

An ORB is allowed to make optimizations in the way it handles local invocations, as
long as the optimizations do not affect location transparency. For example, an ORB is
allowed to optimize the network layer so that marshaling and transmission steps are
omitted for local invocations.

There are two aspects to location transparency: syntax and semantics. The basic object
adapter (BOA) requires the syntax to be the same for local and remote invocations but
is rather vague about semantics. In many BOA implementations, local invocations
would bypass some or all of the dispatching mechanisms. For example, interceptors,
persistence mechanisms, and security mechanisms might all be bypassed in a local
invocation.

The situation is much better with the POA, which explicitly requires the semantics of
local invocations to be the same as remote invocations. That is, local invocations are
required to pass through the usual ORB dispatching mechanisms, including intercep-
tors, the POA manager, and mechanisms that implement services such as security and
transactions. Invocations on an object reference always pass through POA dispatching
mechanisms before reaching a servant.

IDL Syntax of Interfaces
An interface is the fundamental building block of OMG IDL. There are two basic fla-
vors described here: ordinary interfaces that can be implemented by anyone and
pseudo-interfaces that can be implemented only by ORB vendors.

Interfaces
Interfaces contain the declarations of operations and attributes. That is their most
important feature. They can also contain other kinds of declarations. The entities that
can be contained in an interface are

2 0 6 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:55 PM Page 206

• Attribute declarations
• Operation declarations
• Exception declarations
• Type declarations
• Constant declarations

For example, the following interface illustrates these kinds of declarations:

// IDL
interface SquareGrid {

// Constant declarations
const long MAX_HEIGHT = 1000;
const long MAX_WIDTH = 500;

// Type declarations
typedef double GridType[MAX_HEIGHT][MAX_WIDTH];

// Exception declaration
exception OutOfBounds {

long heightBound;
long widthBound;

};

// Operations
void setValue(in long x, in long y, in double d)

raises (OutOfBounds);
double getValue(in long x, in long y)

raises (OutOfBounds);

// Attributes
attribute long currentHeight;
attribute long currentWidth;

};

Entities declared in the interface are also scoped within the interface. For example, the
fully scoped name of the constant MAX_HEIGHT is SquareGrid::MAX_HEIGHT, and the
fully scoped name of the exception OutOfBounds is SquareGrid::OutOfBounds. If you
need to refer to these entities outside the scope of SquareGrid, you must use the fully
scoped names.

Forward Declarations
Forward declarations of IDL interfaces are allowed. This allows interfaces to be mutu-
ally referential. For example

// IDL

// Forward declaration of ‘Foo’
interface Foo;

I D L S y n t a x o f I n t e r f a c e s 2 0 7

08 0672318121 CH05 6/20/01 5:55 PM Page 207

interface Bar {
Foo getAssociatedFoo();

};

// Actual declaration of ‘Foo’
interface Foo {

Bar getAssociatedBar();
};

The syntax for a forward declaration is interface IntfName; where the braces ({ and
}) are omitted. In this IDL fragment, interface Foo; is an example of a forward
declaration.

It is not legal to inherit from an interface before it has been fully declared. For exam-
ple, the following IDL is illegal and will not compile:

// IDL

// Forward declaration of ‘Foo’
interface Foo;

interface Bar : Foo { // ILLEGAL! Will not compile
Foo getAssociatedFoo();

};
...

However, this example can easily be corrected, as shown in the following IDL:

// IDL

// Forward declaration of ‘Bar’
interface Bar;

interface Foo {
Bar getAssociatedBar();

};

// Actual declaration of ‘Bar’
interface Bar : Foo {

Foo getAssociatedFoo();
};

The order of declaration has been reversed so that a forward reference is declared for
Bar instead of Foo.

No Overloading of Operations
Unlike C++ and Java, which allow you to overload methods, IDL does not support
overloading of operations. CORBA identifies an operation based on its fully scoped
name. It is not possible to distinguish operations based on the number or types of their
arguments.

2 0 8 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:55 PM Page 208

For example, the following interface is illegal:

// IDL
interface TooMuchLikeCPlusPlus {

void contactDetails(in string name, in fixed<20,0> telephone);
void contactDetails(in string name, in string emailAddress); // ILLEGAL!

};

This fragment of IDL will not compile, because of the ambiguous declaration of
contactDetails().

Inheritance
Inheritance in IDL implies that all of the entities declared in the base interface become
available to the derived interface. In other words, all of the operations, attributes, type
definitions, exceptions, and constants are inherited by the derived interface.

Multiple inheritance of interfaces is supported in IDL. It is therefore possible to define
a diamond-shaped inheritance graph as follows:

// IDL
interface A {};

interface B1 : A {};

interface B2 : A {};

interface C : B1, B2 {};

This kind of inheritance graph does not give rise to ambiguities in IDL, because there
is no state associated with interfaces. Contrast this with the situation in C++, where a
similar kind of inheritance graph involving classes can be interpreted in various ways,
depending on whether virtual or non-virtual inheritance is used.

No Ambiguous Operations or Attributes
The use of inheritance can give rise to name clashes between entities declared in dif-
ferent interfaces. For operations and attributes, the rule is that no ambiguity arising
from interface inheritance is allowed.

The basic inheritance cases, illustrated by Figure 5.3, are

• In Figure 5.3(a), if an operation A::op() is declared in the scope of interface A,
the operation cannot be redeclared in interface B. If you are accustomed to vir-
tual functions in C++ or method overriding in Java, you might find this prohibi-
tion surprising. See the section “No Redeclaration of Operations,” later in this
chapter, for more details.

• In Figure 5.3(b), if an operation A1::op() is declared in A1 and an operation
A2::op() is declared in A2, the amalgamation of the two interfaces via multiple
inheritance into B gives rise to a name clash. A name clash is illegal in IDL,
and you must rewrite the IDL to avoid it.

I D L S y n t a x o f I n t e r f a c e s 2 0 9

08 0672318121 CH05 6/20/01 5:55 PM Page 209

These restrictions generalize to arbitrarily complex inheritance graphs. Any example
where two identically named operation or attribute declarations are inherited into the
same scope is illegal.

2 1 0 C h a p t e r 5 : O b j e c t R e f e r e n c e s

A

B

A1 A2

B

(a) Single Inheritance (b) Multiple Inheritance

Figure 5.3

Inheritance and clashing identifiers.

Ambiguous Types, Exceptions and Constants
For all other declarations—that is, for type definitions, exceptions, and constant decla-
rations—name clashes arising from interface inheritance are allowed in IDL. The
ambiguity is resolved by using fully scoped names.

CAUTION
Avoid using ambiguous declarations of types, exceptions, and constants in your
IDL. There is a great danger of causing confusion and introducing bugs if you try
to use this mis-feature of IDL.

The basic inheritance cases illustrated by Figure 5.3 are

• In Figure 5.3(a), consider that type A::T is declared in the scope of interface A
and type T is redeclared in the derived interface B. This can be illustrated by the
following IDL fragment:
// IDL
interface A {

// Declare ‘A::T’
typedef string T;

};

interface B : A {
// Redeclaration of ‘T’
typedef long T;

T getLong(); // Ok - refers to ‘B::T’
A::T getString(); // Ok - refers to ‘A::T’

};

The ambiguity is resolved by using T to refer to B::T and using the fully
scoped name A::T to refer to the T declared in the base class.

08 0672318121 CH05 6/20/01 5:55 PM Page 210

• In Figure 5.3(b), consider that type A1::T is declared in the scope of A1 and the
type A2::T is declared in the scope of A2. A name clash occurs when A1 and A2

are inherited into interface B. The ambiguity is resolved by using fully scoped
names to refer to A1::T and A2::T whenever they appear in B.

Pseudo-IDL
The CORBA specification has to specify an API for a number of objects that make up
the nuts and bolts of the ORB. For example, ORB objects and POA objects belong to
this basic API. Typically, code for these objects is supplied as a library (C++ ORBs) or
a class package (Java ORBs). However, CORBA faces a unique difficulty in that it
must simultaneously define its basic API for a whole range of languages.

Rather than painstakingly rewrite the core CORBA document for every language that
CORBA supports, the architects of CORBA took advantage of IDL to help them spec-
ify the API in a language-neutral format.

Consequently, the declaration of objects such as the ORB and the POA is written in a
form that closely resembles IDL. However, it is not really IDL but Pseudo-IDL (PIDL).
There are many significant differences between IDL and PIDL:

• PIDL interfaces do not represent CORBA objects, and invocations of PIDL
objects are treated differently (typically as normal function calls).

• PIDL objects are normally local objects, not remote.
• PIDL operations and attributes do not have to follow the regular rules for a par-

ticular language mapping.
• PIDL can use constructs that are not a part of regular IDL. For example, the
native keyword is used to declare types that are language specific.

The main thing to bear in mind is that PIDL is just a guideline for the OMG commit-
tees that specify language mappings. Parts of the PIDL can be mapped in an ad hoc
manner to suit the requirements of a particular language mapping.

C++ Memory Management
Object references in C++ are dynamically allocated and, consequently, care has to be
taken to avoid leaking the associated memory. As with other heap-allocated CORBA
data (see Chapter 4, “Memory Management”), object references can be by either dumb
or smart pointers. The C++ language mapping specifies that two C++ classes are gen-
erated for each IDL interface, as given in Table 5.1:

Table 5.1 C++ Mapping of Interfaces

C++ Mapped Type Description

IntfName_ptr A dumb pointer representation of the object reference for
IntfName. This pointer has the semantics of IntfName *.
However, for standards compliance and portability you must
always use IntfName_ptr as the type of the dumb pointer.

C + + M e m o r y M a n a g e m e n t 2 1 1

08 0672318121 CH05 6/20/01 5:55 PM Page 211

IntfName_var A smart pointer representation of the object reference. This
pointer follows the semantics of a _var type (see Chapter 4).
The _var type guards against memory leaks by automatically
deleting its referenced memory when necessary.

The next two section discuss the semantics of the _ptr and _var types. The memory
management rules are explained for each type of pointer.

Using _ptr Types
The dumb _ptr types do not give you any help at managing the memory of the associ-
ated object reference. The lifecycle of an object reference must therefore be managed
explicitly. The basic steps in the object reference lifecycle are given in Table 5.2.

Table 5.2 Object Reference Lifecycle Operations

Lifecycle Method Description
Operation

Creation Various An object reference can be created in
various ways: via the Initialization
Service, via the Naming Service, or via
operations defined in the POA.

Copying IntfName::_duplicate() Duplication of dumb pointers
IntfName_ptr must be performed
explicitly using the _duplicate()
method.

Destruction CORBA::release() This is the only safe way to destroy
object references. It must be called
explicitly when dumb pointers
IntfName_ptr are used. Never use
delete to destroy an l object refer-
ence.

These stages in the lifecycle of an object reference can be illustrated by a simple exam-
ple. Consider an IDL interface Foo that maps to the dumb pointer class Foo_ptr. It does
not matter what operations Foo supports—we are only interested in looking at the cre-
ation, copying, and destruction of Foo object references. The following code fragment
illustrates the object reference lifecycle:

// C++
...
{ // begin first local scope

Foo_ptr firstP = /* Initialize ‘Foo’ reference */;
...

2 1 2 C h a p t e r 5 : O b j e c t R e f e r e n c e s

Table 5.1 C++ Mapping of Interfaces Continued

C++ Mapped Type Description

08 0672318121 CH05 6/20/01 5:55 PM Page 212

{ // begin second local scope
Foo_ptr secondP = Foo::_duplicate(firstP);
...
// must ‘release’ reference before end of scope
CORBA::release(secondP);

}
...
// must ‘release’ reference before end of scope
CORBA::release(firstP);

}

In this example, both firstP and secondP are defined as automatic variables. They
remain valid over their respective scopes: the reference firstP over the outer scope
and the reference secondP over the inner scope. Both firstP and secondP point to their
own copies of an object reference. It is therefore necessary to call CORBA::release()
on each of them. The call to CORBA::release() is made before the pointers reach the
end of their respective scopes. If this is not done, a memory leak would result.

In practice, the duplication and deletion of object references is simulated using refer-
ence counting. The effect of calling IntfName::_duplicate() is to increment the ref-
erence count by 1; the effect of calling CORBA::release() is to decrement the
reference count by 1.

The practice of simulating the lifecycle of object references via reference counting is
illustrated in Figure 5.4. The figure shows how the preceding code fragment might
actually be implemented by an ORB that uses reference counting.

C + + M e m o r y M a n a g e m e n t 2 1 3

first P

1

(a) firstP = /* initialize */

first P

2

(b) secondP = Foo : :_duplicate(firstP)

first P

1

(c) CORBA : : release (secondP)

first P

0

(d) CORBA : : release (firstP)

secondP

secondP

Figure 5.4

Reference counting with dumb pointers.

Figure 5.4(a) shows an object reference pointed at by a single dumb pointer firstP.
Figure 5.4(b) shows the object reference after it has been duplicated. The reference
count is increased to 2, and it is pointed at by two pointers. Figure 5.4(c) shows the

08 0672318121 CH05 6/20/01 5:55 PM Page 213

object reference after secondP is released. The reference count drops back to 1.
Figure 5.4(d) shows the object reference after firstP is released. The reference count
falls to 0, resulting in the destruction of the object reference.

Though you might think of CORBA::release() as a method that destroys an object ref-
erence, this is not how it behaves in a reference-counting implementation. In
Figure 5.4, it is only the last invocation of CORBA::release() that destroys the object
reference. This is why it is such a serious error to call delete directly on an object ref-
erence. It would play havoc with the semantics of reference counting.

CAUTION
Never call delete on an object reference. In a reference-counting implementation,
this gives rise to dangling pointers. Your program will crash as soon as an attempt
is made to dereference one of these dangling pointers.

Using _var Types
The IDL interface Foo also maps to a smart pointer type Foo_var. This _var type is
designed to help avoid memory leaks. Its semantics are similar to the semantics of the
_var types for dynamically allocated CORBA data types, as described in Chapter 4.

A Foo object reference that is referenced by Foo_var is owned by Foo_var. This means
that Foo_var is responsible for releasing the object reference. The destructor of
Foo_var will call CORBA::release() on its associated object reference. Assignment to
a Foo_var will also cause CORBA::release() to be called on the old value of the object
reference. Consider the following code fragment, which illustrates the use of Foo_var:

// C++
...
{ // begin first local scope

Foo_var firstV = /* Initialize ‘Foo’ reference */;
...
{ // begin second local scope

// duplicate the object reference
Foo_var secondV = firstV;
...
// reference automatically released at end of scope

}
...
// reference automatically released at end of scope

}

When firstV is initialized, it assumes ownership of the corresponding object refer-
ence. The assignment statement secondV = firstV results in duplication of the object
reference. In other words, the first object reference is implicitly duplicated using
Foo::_duplicate(), and the result of this duplication is assigned to secondV. As each
of the smart pointers secondV and firstV goes out of scope, there is no need to worry

2 1 4 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:55 PM Page 214

about calling CORBA::release(). The _var destructor takes care of calling
CORBA::release() automatically.

The preceding code fragment is illustrated in more detail by Figure 5.5. This figure
shows what happens behind the scenes in an ORB that implements reference counting
of object references.

C + + M e m o r y M a n a g e m e n t 2 1 5

first V

1

(a) firstV = /* initialize */

first V

2

(b) secondV = FirstV

first V

1

(c) Auto-release (secondV)

first V

0

(d) Auto-release (firstV)

secondV

secondV

Figure 5.5

Reference counting with smart pointers.

In Figure 5.5(a), the object reference is referenced by a single smart pointer firstV,
and its reference count is 1. The arrow connecting firstV to the object reference is
drawn with a heavy line to indicate that firstV owns the object reference.

Figure 5.5(b) shows the object reference after the assignment statement secondV =

firstV. The object reference is incremented to 2 because of implicit duplication. The
_var pointers firstV and secondV each own one unit of the reference count.

Figure 5.5(c) shows the situation after secondV goes out of scope. The destructor of
secondV calls CORBA::release(), and the reference count decreases to 1.

Figure 5.5(d) shows the situation after firstV goes out of scope. The destructor of
firstV calls CORBA::release(), reducing the reference count to 0. The object refer-
ence self-destructs as soon as its reference count reaches 0.

Another important feature of the _var type is that it guards against memory leaks in
assignment statements. Consider the following code fragment:

// C++
...
{ // begin local scope

Foo_var firstV = /* Initialize ‘Foo’ reference to ‘obj1’ */;
Foo_var secondV = /* Initialize ‘Foo’ reference to ‘obj2’ */;
...

08 0672318121 CH05 6/20/01 5:55 PM Page 215

// Perform assignment between ‘_var’s
secondV = firstV;
...
// reference automatically released at end of scope

}

The _var’s firstV and secondV are initialized to refer to two distinct object references,
obj1 and obj2. When the assignment secondV = firstV is made, it looks as if the
memory associated with obj2 might be leaked. However, the leak does not occur
because secondV is smart enough to release obj2 before completing the assignment
operation. This behavior is illustrated in Figure 5.6 (for a reference-counting imple-
mentation).

2 1 6 C h a p t e r 5 : O b j e c t R e f e r e n c e s

second V

1

(a) Before Assignment

first V

1
obj1 obj2

second V

0

(b) secondV = firstV

first V

2
obj1 obj2

Figure 5.6

Assignment behavior with smart pointers.

Figure 5.6(a) shows the initial situation. firstV and secondV reference distinct object
references obj1 and obj2, respectively.

Figure 5.6(b) shows the situation after assignment. The smart pointer secondV auto-
matically calls CORBA::release() on its old object reference. This reduces the refer-
ence count of obj2 to 0, resulting in its destruction. After assignment, the reference
count on obj1 is increased to 2.

Ultimately, _var types for object references are used in the same way as _var types for
dynamically allocated CORBA data. It is just the implementation, substituting refer-
ence counting for deep copying, which is different. Moreover, the conversion methods,
such as Foo_var::in(), Foo_var::inout(), Foo_var::out(), and
Foo_var::_retn(), are also defined on object reference _var types.

Mixed Assignments Between _ptr and _var Types
The _ptr and _var types are frequently mixed together in the same section of code.
Therefore, you need to understand the semantics of mixed assignment between these
types. Two types of assignment are considered here:

• Assignments of type _var = _ptr
• Assignments of type _ptr = _var

The semantics of these mixed assignments are similar to mixed assignments as
described in Chapter 4. It is helpful to see how these assignments are implemented
using reference counting.

08 0672318121 CH05 6/20/01 5:55 PM Page 216

Assignment of Type _var = _ptr
The following code fragment shows the assignment of a dumb pointer to a smart
pointer:

// C++
{ // begin local scope

Foo_var dumbP = /* Initialize ‘Foo’ reference to ‘obj1’ */;
Foo_ptr smartV = /* Initialize ‘Foo’ reference to ‘obj2’ */;

// Assignment ‘_var = _ptr’
smartV = dumbP;

}

After assignment, the smart pointer smartV assumes ownership of the object reference
and is responsible for releasing it. This assignment is illustrated in Figure 5.7.

C + + M e m o r y M a n a g e m e n t 2 1 7

smartV

1

(a) Before Assignment

dumbP

1
obj1 obj2

smartV

0

(b) smartV = dumbP

dumbP

1
obj1 obj2

Figure 5.7

Assignment _var = _ptr.

Figure 5.7(a) shows that before assignment dumbP and smartV refer to the object refer-
ences obj1 and obj2, respectively. Figure 5.7(b) shows the situation after assignment.
smartV automatically calls CORBA::release() on obj2. This reduces its reference
count to 0, causing obj2 to self-destruct. The reference count of obj1 is not
incremented.

Assignment of Type _ptr = _var
The following code fragment shows the assignment of a smart pointer to a dumb
pointer:

// C++
{ // begin local scope

Foo_var dumbP = /* Initialize ‘Foo’ reference to ‘obj1’ */;
Foo_ptr smartV = /* Initialize ‘Foo’ reference to ‘obj2’ */;

// Assignment ‘_ptr = _var’
CORBA::release(dumbP); // Beware! Remember to release old value.
dumbP = smartV;

}

08 0672318121 CH05 6/20/01 5:55 PM Page 217

Before making an assignment to dumbP, it is essential to call CORBA::release().
Otherwise, the memory associated with obj2 is leaked. This assignment is illustrated
in Figure 5.8.

2 1 8 C h a p t e r 5 : O b j e c t R e f e r e n c e s

smartV

1

(a) Before Assignment

dumbP

1
obj1 obj2

smartV

1

(b) After Assignment

dumbP

0
obj1 obj2

Figure 5.8

Assignment _ptr = _var.

Figure 5.8(a) shows that before assignment dumbP and smartV refer to separate object
references, obj1 and obj2. Figure 5.8(b) shows the situation after assignment. The
object reference obj1 is released by the explicit call CORBA::release(dumbP). After
assignment, both smartV and dumbP refer to obj2. The reference count for obj2 is not
incremented.

Nil Object Reference
In general, it is illegal for null pointers (C++) or null references (Java) to be passed as
arguments to CORBA operations when concrete values are expected. For example, if
an empty string is to be passed as an in parameter, it must be represented as the string
“” rather than a null value.

Object references are a special case, however. It is permissible to pass an empty value
for an object reference—these are known as nil object references. The representation
of nil object references depends on the language mapping.

The reason nil object references are permitted is that it is often useful to supply one as
a default value. For example, a finder operation might return a nil value to indicate that
an object reference was not found. This offers alternative semantics to raising an excep-
tion.

The syntax of nil object references for C++ and Java is described in the next two sec-
tions.

C++ Nil Object References
Nil object references in C++ are created using the _nil() static method that is defined
on every object reference class:

// C++
InterfaceName_ptr InterfaceName::_nil()

08 0672318121 CH05 6/20/01 5:55 PM Page 218

This _nil() method is used to create a nil object reference of type InterfaceName. If
you want to test whether a given object reference is nil, use the standard function
CORBA::is_nil(), defined in the CORBA module:

// C++
CORBA::Boolean CORBA::is_nil(CORBA::Object_ptr obj)

The following code fragment shows nil objects in use for an interface type Foo:

// C++
{ // Open a local scope

// Create ‘nil’ object reference
Foo_var foo1V = Foo::_nil();

if (CORBA::is_nil(foo1V)) {
cout << “Yes, it’s nil.” << endl;

}

// Duplicate a ‘nil’ object reference
Foo_ptr foo2P = Foo::_duplicate(foo1V);
...
// Release a ‘nil’ object reference
CORBA::release(foo2P); // Call release to be on the safe side
// ‘foo1V’ auto-releases memory

}

These object references can legally be duplicated and released, just like ordinary object
references. However, these functions effectively are no-ops, since reference counting is
not done for nil object references.

Attempting to invoke a nil object reference is a serious error. In some ORB implemen-
tations where nil is represented as a null pointer, an attempted invocation would lead to
a core dump.

Java Nil Object References
There is no special representation of a nil object reference in Java. A nil object refer-
ence is represented as an ordinary null reference.

Likewise, there is no special method for testing for nilness. A simple test for equality
to null does the trick.

The following code fragment shows nil objects in use for an interface type Foo:

// Java
{ // Open a local scope

// Create ‘nil’ object reference
Foo foo1=null;

N i l O b j e c t R e f e r e n c e 2 1 9

08 0672318121 CH05 6/20/01 5:55 PM Page 219

if (foo1==null) {
cout << “Yes, it’s nil.” << endl;

}

// Copy the ‘nil’ object reference
Foo foo2 = foo1;
...

}

Attempting to invoke a nil object reference in Java is a serious error that results in a
runtime exception.

Factory Objects
In distributed systems, clients are often required to create objects on remote servers.
For example, a customer at a bank needs to create an Account object when opening a
new account. Something like a remote constructor is what is needed. Java and C++
both support constructor methods, but the constructors are not remotely accessible.

The solution to the problem of creating remote objects is to use a factory design pat-
tern. This involves defining a factory interface in IDL that can create and manage
object references of a particular type. No new features are introduced to help define
factory objects. It is simply a design pattern that uses standard IDL syntax.

Consider, for example, a client in a financial application needs to create new Account
objects. The IDL given in Listing 5.1 introduces a corresponding AccountFactory
interface:

Listing 5.1 Interfaces for Account and AccountFactory

// IDL

#pragma prefix “pure-corba-3.com”

typedef fixed<10, 2> MoneyAmount;

interface Account {
...

};

interface AccountFactory {
Account create(

in string name,
in MoneyAmount initialBalance

);

Account find(in string name);

// No operation supplied to destroy Accounts
};

2 2 0 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:55 PM Page 220

Interface AccountFactory is introduced to manage Account objects. The interface
defines two operations: create() and find().

• The create() operation is used to make new Account objects and is analogous
to a remote constructor method. The characteristic feature of create() is that
its return value is the name of an interface Account.

• The find() operation is used to locate existing Account objects, given the
name of the account. It is common to declare finder methods in a factory inter-
face. Sometimes an interface consists solely of finder operations, in which case
it can be referred to as a finder interface.

The AccountFactory interface does not provide an operation to destroy Account
objects. In this example a destroy operation would be inappropriate, because the
application intends to keep a permanent record of all accounts that have been opened.
An operation to deactivate accounts could probably be provided instead.

In some cases it is appropriate to provide a destroy operation in the factory interface.
In other cases, for example when the objects created are short lived, it may be more
appropriate for the server to implement a form of garbage collection.

Polymorphism
From the outset, CORBA was intended to provide strong support for object-oriented
programming concepts. Polymorphism is, therefore, one of the fundamental features of
CORBA. The following are some of the object-oriented features supported:

• Inheritance of interfaces, including multiple inheritance
• Polymorphism

The IDL module Zoo, given in Listing 5.2, is used here to illustrate the features of
inheritance and polymorphism.

Listing 5.2 The IDL for Module Zoo
// IDL

#pragma prefix “pure-corba-3.com”

module Zoo {
interface Animal;
typedef sequence<Animal> AnimalSeq;
typedef sequence<string> StringSeq;

interface ZooManager {
AnimalSeq getAllAnimals();
...

};

// Base Interfaces
interface Animal {

readonly attribute string species;

P o l y m o r p h i s m 2 2 1

08 0672318121 CH05 6/20/01 5:55 PM Page 221

Listing 5.2 The IDL for Module Zoo Continued
readonly attribute short numberOfLegs;

};

interface Poisonous : Animal { };
interface Spider : Animal { };

// Concrete Interfaces
interface Giraffe : Animal { };
interface Elephant : Animal { };
interface Kangaroo : Animal { };
interface Lion : Animal { };
interface Centipede : Animal { };
interface Tarantula : Spider, Poisonous { };

};

An interface Animal is defined that serves as the base class for a number of Animal
types, Giraffe, Elephant, and so on. Two other base classes, Spider and Poisonous,
are defined. They are used in the discussion of multiple inheritance.

Widening Object References
The widening of object references refers to an assignment where a derived type is
assigned to a base type.

C++ Widening Object References
Because each interface maps to both a _ptr and a _var type, there are a number of per-
mutations possible when widening in C++. Consider widening type Giraffe to type
Animal. Four permutations of assignment are possible:

• _ptr to _ptr

• _ptr to _var

• _var to _ptr

• _var to _var

Most of these assignments work as expected and have semantics similar to that
described in the section “Mixed Assignments Between _ptr and _var Types.” There is
one nasty surprise, however: Widening a _var to a _var does not work.

The following code fragment illustrates the widening of type Giraffe to Animal:

// C++
{

// Assignment of _ptr = _ptr
Zoo::Giraffe_ptr giraffeP = /* Initialize object reference */;
Zoo::Animal_ptr animalP;

animalP = giraffeP; // Ok - shallow copy

CORBA::release(animalP); // Cleanup

2 2 2 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:55 PM Page 222

}
{

// Assignment of _ptr = _var
Zoo::Giraffe_var giraffeV = /* Initialize object reference */;
Zoo::Animal_ptr animalP;

animalP = giraffeV; // Ok - shallow copy

// No cleanup necessary - ‘giraffeV’ owns the memory
}
{

// Assignment of _var = _ptr
Zoo::Giraffe_ptr giraffeP = /* Initialize object reference */;
Zoo::Animal_var animalV;

animalV = giraffeP; // Ok - shallow copy
// ‘animalV’ assumes ownership of object reference

// No cleanup necessary - ‘animalV’ owns the memory
}
{

// Assignment of _var = _var
// Beware! Direct assignment is not possible.
Zoo::Giraffe_var giraffeV = /* Initialize object reference */;
Zoo::Animal_var animalV;

// Use _duplicate to help assignment
animalV = Zoo::Animal::_duplicate(giraffeV); // Ok - duplicate copy

// No cleanup necessary - ‘_vars do auto-cleanup
}

The first three cases work as expected and are similar to normal mixed pointer assign-
ments. The exception is the assignment of _var to _var. In fact, a direct assignment
between the _vars, such as animalV = giraffeV, is not possible and will not compile.
The two _var types are not related by inheritance, and the number of conversions
required to make the assignment exceeds the limit of an ANSI C++ compiler. You need
to give the C++ compiler a little help at converting Zoo::Giraffe_var to
Zoo::Animal_var. This is done by making the explicit call to
Zoo::Animal::_duplicate(). At the end of this assignment statement the reference
count on the Giraffe object is 2.

TIP
Widening of object references works as you would expect (similarly to assignment
between object references of the same type) except for widening a derived_var to
a base_var. In that case, use base::_duplicate() (or derived::_duplicate()) to
help perform the assignment.

P o l y m o r p h i s m 2 2 3

08 0672318121 CH05 6/20/01 5:55 PM Page 223

Keep a lookout for occasions when widening a _var to a _var is required. For exam-
ple, consider a struct AnimalFamily, defined in IDL:

// IDL
module Zoo {

...
struct AnimalFamily {

Animal mother;
Animal father;
AnimalSeq children;

};
};

Here is a fragment of code to initialize the struct for a family of Giraffes:

// C++
Zoo::AnimalFamily family;
Zoo::Giraffe_var giraffeV;
...
giraffeV = /* Initialize to object reference for Giraffe mother */;
family.mother = Zoo::Animal::_duplicate(giraffeV);

giraffeV = /* Initialize to object reference for Giraffe father */;
family.father = Zoo::Animal::_duplicate(giraffeV);

// No children in this ‘AnimalFamily’
family.children.length(0);
...

The use of _duplicate() is required in assignments to the struct members mother and
father because the assignments implicitly widen Giraffe to Animal. You may recall
that struct members referencing heap-allocated memory are smart pointers. The seman-
tics of assignment are therefore the same as widening a _var to a _var. The call to
_duplicate() is necessary to aid the type conversion.

Java Widening Object References
The widening of object references in Java is straightforward. There is just one case to
consider:

// Java
{

// Assignment of ‘Animal = Giraffe’
Zoo.Giraffe theGiraffe = /* Initialize object reference */;
Zoo.Animal theAnimal;

theAnimal = theGiraffe; // Ok
}

2 2 4 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:55 PM Page 224

The assignment theAnimal = theGiraffe corresponds to ordinary widening of a ref-
erence in Java.

Narrowing Object References
Narrowing consists of taking a base type object reference and converting it to a derived
type. Narrowing is generally more complicated than widening. For example, consider
the relationship between the types Giraffe and Animal. While it is clear that a Giraffe
is always an Animal (widening), it is not so clear whether a given Animal is actually a
Giraffe (narrowing). To perform a narrowing cast, the compiler has to know that the
most derived type of the object is Giraffe and that Giraffe inherits from Animal.

There are two distinct kinds of difficulty with performing narrowing casts:

• Limitations of the particular mapped language may make it difficult to perform
narrowing. For example, pre-ANSI C++ compilers do not provide a general
mechanism for making narrowing casts.

• Implicit knowledge of the IDL inheritance hierarchy is needed by the ORB. For
example, to perform a cast from Animal to Giraffe, the ORB needs to know
that Giraffe inherits from Animal. This information is normally obtained from
the stub code that is linked with your application.

Because of the special requirements associated with narrowing, a narrow function
(_narrow() in C++, narrow() in Java) is provided to help perform these casts. This
narrow function must always be used to make a cast down the IDL object hierarchy.

The first reason for using the narrow function is that it works around any language or
compiler specific limitations to make the narrowing cast possible.

The second and more important reason for using narrow is that it automatically checks
IDL inheritance relationships for you. The narrow succeeds only if the type you nar-
row from really is an IDL base of the type you narrow to. In other words, the use of the
narrow function guarantees type safety with respect to IDL interfaces.

C++ Narrowing Object References
Narrowing from a base type base to a derived type derived is performed using the sta-
tic _narrow() function that has the following signature:

// C++
derived_ptr derived::_narrow(CORBA::Object_ptr theBaseReference)

The method takes an object reference of type CORBA::Object, in this case of type base,
and returns an object reference of type derived. The object reference is implicitly
duplicated when _narrow() is invoked. The _narrow() works for all permutations of
assignment between _ptrs and _vars.

If the type derived is not derived from type base, the narrowing fails and returns a nil
object reference. You can test for nilness of the returned object reference using the
CORBA::is_nil() function.

P o l y m o r p h i s m 2 2 5

08 0672318121 CH05 6/20/01 5:56 PM Page 225

TIP
You should always test the return value of a narrow function for nilness in C++
using CORBA::is_nil(). This may seem pedantic at first, but it is important when
debugging your application.

The following code fragment illustrates the narrowing of type Animal to Giraffe for a
variety of mixed assignments between _ptrs and _vars:

// C++
{

// Assignment of _ptr = _ptr
Zoo::Giraffe_ptr giraffeP;
Zoo::Animal_ptr animalP = /* Initialize as a Giraffe */;

giraffeP = Zoo::Giraffe::_narrow(animalP); // Implicit duplication
if (CORBA::is_nil(giraffeP)) {

cerr << “Narrow to Giraffe failed!” << endl;
}

CORBA::release(animalP); // Cleanup
CORBA::release(giraffeP); // Cleanup

}
{

// Assignment of _ptr = _var
Zoo::Giraffe_ptr giraffeP;
Zoo::Animal_var animalV = /* Initialize as a Giraffe */;

giraffeP = Zoo::Giraffe::_narrow(animalV); // Implicit duplication
if (CORBA::is_nil(giraffeP)) {

cerr << “Narrow to Giraffe failed!” << endl;
}

CORBA::release(giraffeP); // Cleanup
// ‘animalV’ calls release automatically

}
{

// Assignment of _var = _ptr
Zoo::Giraffe_var giraffeV;
Zoo::Animal_ptr animalP = /* Initialize as a Giraffe */;

giraffeV = Zoo::Giraffe::_narrow(animalP); // Implicit duplication
if (CORBA::is_nil(giraffeV)) {

cerr << “Narrow to Giraffe failed!” << endl;
}

CORBA::release(animalP); // Cleanup
// ‘giraffeV’ calls release automatically

2 2 6 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:56 PM Page 226

}
{

// Assignment of _var = _var
Zoo::Giraffe_var giraffeV;
Zoo::Animal_var animalV = /* Initialize as a Giraffe */;

giraffeV = Zoo::Giraffe::_narrow(animalV); // Implicit duplication
if (CORBA::is_nil(giraffeV)) {

cerr << “Narrow to Giraffe failed!” << endl;
}

// No cleanup necessary - ‘_vars do auto-cleanup
}

All of these examples are regular, and the _narrow() method is used the same way
throughout.

CAUTION
An important point to bear in mind is that _narrow() duplicates the object refer-
ence. Therefore, you must ensure that CORBA::release() eventually gets called
both on the original object reference and on the narrowed copy.

Java Narrowing Object References
Narrowing from a base type base to a derived type derived is performed using the sta-
tic narrow() method, which is defined in the derivedHelper class:

// Java
derived derivedHelper.narrow(org.omg.CORBA.Object theBaseReference)

The method takes an object reference of type CORBA.Object and returns an object ref-
erence of type derived.

If the type derived is not derived from type base, the narrowing fails and raises the
system exception CORBA::BAD_PARAM.

The following code fragment illustrates the narrowing of type Animal to Giraffe in
Java:

// Java
try {

// Assignment of ‘Giraffe = Animal’
Zoo.Giraffe theGiraffe;
Zoo.Animal theAnimal = /* Initialize as a Giraffe */;

theGiraffe = Zoo.GiraffeHelper.narrow(theAnimal); // Ok
}
catch (org.omg.CORBA.BAD_PARAM ex) {

System.err.println(“Attempted to narrow to wrong type: “ + ex);

P o l y m o r p h i s m 2 2 7

08 0672318121 CH05 6/20/01 5:56 PM Page 227

}
catch (org.omg.CORBA.SystemException sysex) {

System.err.println(sysex);
}

The method Zoo.GiraffeHelper.narrow() is invoked to perform the down-cast.
Optionally, you can catch the CORBA::BAD_PARAM exception explicitly, as shown above.
This enables you to print out an informative error message if the narrow() fails.

The Object Base Type
CORBA defines the special type Object that is the base type for all IDL interfaces.
Effectively, it is as if every IDL interface is inherited from type Object. However,
inheritance from Object is implicit, so there is no need to declare inheritance from it.
In fact, explicit inheritance from Object is illegal.

The Object type is useful for defining general-purpose finder operations that have to
return a wide variety of object references. For example, the Object type is used by the
CORBA Naming Service for the return value of the resolve_str() operation:

// IDL
...
module CosNaming {

...
interface NamingContextExt : NamingContext {

typedef string StringName;
...
Object resolve_str(in StringName n);
...

};
};

The resolve_str() operation provides a simple lookup service. Given the name of an
object in a string format, it returns the corresponding object reference. Since the nam-
ing service needs to be able to store object references of any type, the only feasible
return type that can be used here is Object.

C++ CORBA::Object Type
The IDL type Object maps to the C++ type CORBA::Object. All object reference types
in C++ inherit from the class CORBA::Object.

There are a number of methods defined on the base class CORBA::Object, and all of
these method names are preceded by an underscore to avoid clashing with operation
names. For example, you have already encountered the methods
CORBA::Object::_duplicate(), CORBA::Object::_nil(), and
CORBA::Object::_is_a() in this chapter. The complete set of methods for
CORBA::Object is given in Chapter 17, “IDL Data Types.”

2 2 8 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:56 PM Page 228

As an example of how to use the CORBA::Object type in C++, imagine that a Giraffe
object reference is registered in the naming service under the name
“Animals/Giraffe1”. The Giraffe object reference can be looked up using the
resolve_str() operation:

// C++
...
CosNaming::NamingContextExt_var rootContextV;
CORBA::Object_var objV;
Zoo::Giraffe_var giraffeV;

//----------------------------
// Initialize ‘rootContextV’ (not shown)
...
// Resolve the name “Animals/Giraffe1”
objV = rootContextV->resolve_str(“Animals/Giraffe1”);
giraffeV = Zoo::Giraffe::_narrow(objV);
if (CORBA::is_nil(giraffeV)) {

cerr << “Narrow to Giraffe failed.” << endl;
return;

}

// Now you are ready to use ‘giraffeV’...

This example is typical of the way clients find object references. First an object refer-
ence objV of CORBA::Object type is returned from resolve_str(). This object refer-
ence is not directly useful, because CORBA::Object does not declare any methods for
Giraffes. The object reference must be narrowed to type Zoo::Giraffe before it can
be used.

Java org.omg.CORBA.Object Type
The IDL type Object maps to the Java classes org.omg.CORBA.Object and
org.omg.CORBA.ObjectHelper. All object reference types in Java extend the class
org.omg.CORBA.Object.

There are a number of methods defined in the base class org.omg.CORBA.Object. All
of these method names are preceded by an underscore to avoid clashing with operation
names. The complete set of methods for org.omg.CORBA.Object is given in
Chapter 18.

As an example of how to use the org.omg.CORBA.Object type in Java, imagine that a
Giraffe object reference is registered in the naming service under the name
“Animals/Giraffe1”. The Giraffe object reference can be looked up using the
resolve_str() operation:

// Java
...
CosNaming.NamingContextExt rootContext;
org.omg.CORBA.Object obj;

P o l y m o r p h i s m 2 2 9

08 0672318121 CH05 6/20/01 5:56 PM Page 229

Zoo.Giraffe giraffe;

//----------------------------
// Initialize ‘rootContext’ (not shown)
//----------------------------
...
try {

// Resolve the name “Animals/Giraffe1”
obj = rootContext.resolve_str(“Animals/Giraffe1”);
giraffe = Zoo.GiraffeHelper.narrow(obj);

// Now you are ready to use ‘giraffe’...
}
catch (org.omg.CORBA.BAD_PARAM ex) {

System.err.println(“Attempted to narrow to wrong type: “ + ex);
}
catch (org.omg.CORBA.SystemException sysex) {

System.err.println(sysex);
}

This example is typical of the way clients find object references. First an object refer-
ence obj of org.omg.CORBA.Object type is returned from resolve_str(). This object
reference is not directly useful, because org.omg.CORBA.Object does not declare any
methods for Giraffes. The object reference must be narrowed to type Zoo.Giraffe
before it can be used.

Polymorphism and IDL Operations
All IDL operations support dynamic binding (that is, they behave similarly to virtual
member functions in C++ and methods in Java). This can be illustrated by a short
example. Consider the interface ZooManager that was declared in Listing 5.2:

module Zoo {
interface Animal;
typedef sequence<Animal> AnimalSeq;

interface ZooManager {
AnimalSeq getAllAnimals();
...

};
...

};

The operation ZooManager::getAllAnimals() returns a sequence containing various
animal types. It is therefore convenient to declare the elements of the returned sequence
to be of type Animal. Because IDL operations support dynamic binding, it is possible
to get sensible results by invoking methods directly in the base class Animal.
Narrowing is not required if the operations you need are already declared in the base
class. For example

2 3 0 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:56 PM Page 230

// C++
Zoo::ZooManager_var zooManagerV;
Zoo::AnimalSeq_var animalSeqV;

// Initialize zooManager (not shown)
...
animalSeqV = zooManagerV->getAllAnimals();

for (CORBA::ULong i=0; i < animalSeqV->length(); i++) {
// Assign to ‘String_var’ to avoid a memory leak
CORBA::String_var strV = animalSeqV[i]->species();
cout << “The “ << strV

<< “ has “ << animalSeqV[i]->numberOfLegs() << “ legs.” << endl;
}

// Java
Zoo.ZooManager zooManager = null;
Zoo.Animal[] animalSeq = null;

// Initialize zooManager (not shown)
...
animalSeq = zooManager.getAllAnimals();

for (int i=0; i < animalSeq.length; i++) {
System.out.println(“The “ + animalSeq[i].species()

+ “ has “ + animalSeq[i].numberOfLegs() + “ legs.”);
}

If the returned sequence contains the three elements Giraffe, Centipede, and
Tarantula, you would get output that looks like the following:

The Giraffe has 4 legs.
The Centipede has 60 legs.
The Tarantula has 8 legs.

The polymorphism of CORBA objects ensures that the correct implementations of the
attributes species and numberOfLegs are invoked even though the invocation is made
on the base class Animal. The implementation of an operation is selected on the basis
of the underlying type of the object reference.

No Redeclaration of Operations
If you are familiar with virtual methods (C++) or method overriding (Java), you might
be tempted to write the IDL for Zoo in the following way:

// IDL

#pragma prefix “pure-corba-3.com”

module Zoo {

P o l y m o r p h i s m 2 3 1

08 0672318121 CH05 6/20/01 5:56 PM Page 231

...
// Base Interfaces
interface Animal {

readonly attribute string species;
readonly attribute short numberOfLegs;

};
...
// Concrete Interfaces
interface Giraffe : Animal {

// Redeclaration of Animal attributes/operations
readonly attribute string species; // ILLEGAL!
readonly attribute short numberOfLegs; // ILLEGAL!

// Declare operations specific to Giraffe
...

};
};

However, the redeclaration of attributes species and numberOfLegs is illegal IDL syn-
tax. The author of such an IDL module is presumably trying to indicate that the attrib-
utes species and numberOfLegs should be implemented differently in interface
Giraffe. There is no need to redeclare them, however. You are already free to provide
different implementations of these attributes for interface Animal and interface
Giraffe without redeclaration.

Polymorphic Implementation of Operations
When it comes to implementing operations in the mapped language, you can use what-
ever mechanism the mapped language provides to help you implement them.

Take the C++ language for example: If you want operations declared in interface
Animal to be implemented differently by Giraffe objects, you can use virtual member
functions to achieve this. In the implementation class for Giraffe, you would redeclare
the virtual member functions and provide implementations specific to the Giraffe
class. This is the standard approach to implementing virtual functions in C++.

In Java, you would use method overriding to achieve the same result.

Pitfalls of Narrowing
The operation of narrowing, as described in the previous section, sounds straightfor-
ward. However, when you use narrowing in a realistic application, you may experience
some surprises. The surprises arise from the fact that there are two distinct kinds of nar-
rowing operation:

• Narrowing using stubs In this case, knowledge of the IDL inheritance hierar-
chy is derived from the stub code linked with your application. The narrowing
is straightforward and executes locally.

2 3 2 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:56 PM Page 232

• Narrowing using dynamic CORBA This arises when knowledge of the IDL
inheritance hierarchy is missing from the stub code. A remote invocation must
be made in the course of narrowing to determine whether the given cast is type
safe.

The choice of narrowing algorithm is made automatically by the ORB. If the ORB
encounters an object reference of unknown type, it defaults to the dynamic narrowing
algorithm and makes a remote invocation to decide if a cast is legal.

Unfortunately, if you have not anticipated the possibility of dynamic narrowing, the
side effects can be unpleasant. At the very least, the application is slowed by the over-
head of an extra remote call. In some cases, an unexpected remote call can lead to dead-
lock (see Chapter 10, “Threading”).

The next two sections discuss how dynamic narrowing can arise in practice and how
you might avoid it.

Hiding Interfaces
A common feature of object-oriented design is the definition of a public and a private
part of an interface. This approach is often desirable in commercial packages that
expose a public API for the user of the package, while hiding a private API that is used
internally.

For example, the public methods of an IDL interface could be made available to both
client and server while the private methods are available only to the server application.
The IDL for such an application might be split across two files.

The first file (public.idl, given in Listing 5.3) contains the public part of the interface
and is meant to be used by all clients of the application.

Listing 5.3 Public IDL for Clients
// IDL
// File: ‘public.idl’

#pragma prefix “example-company.com”

interface PublicInterface {
void publicOp();

};

The second file (non-public.idl, given in Listing 5.4) contains both the public and
hidden parts of the interface. The interfaces in this file are implemented by the server.

Listing 5.4 Hidden IDL for Servers Only
// IDL
// File: ‘non-public.idl’

#pragma prefix “example-company.com”

P o l y m o r p h i s m 2 3 3

08 0672318121 CH05 6/20/01 5:56 PM Page 233

interface PublicInterface {
void publicOp();

};

interface HiddenInterface : PublicInterface {
void hiddenOp();

};

This IDL features a typical object-oriented approach: The hidden operations are
defined in the class HiddenInterface, which derives from PublicInterface. This
achieves a clean separation of the public and private parts of the interface. The server
instantiates objects of type HiddenInterface that support both HiddenInterface and
PublicInterface. From the server’s perspective, PublicInterface is a base interface.

Elegant though this approach is, it suffers from one drawback: It forces clients to use
dynamic narrowing. This occurs because the server knows about an interface,
HiddenInterface, of which clients know nothing. Knowledge of this interface is miss-
ing from the client stub code.

Consider what happens when the server publishes an object of type HiddenInterface
to the naming service under the name “Example/Public”. A client wanting to narrow
this interface to the type PublicInterface uses the following code:

// C++
...
CosNaming::NamingContextExt_var rootContextV;
CORBA::Object_var objV;
PublicInterface_var publicInterfaceV;
...
// Initialize ‘rootContextV’ (not shown)
...
// Resolve the name “Example/Public”
objV = rootContextV->resolve_str(“Example/Public”);
publicInterfaceV = PublicInterface::_narrow(objV); // Dynamic narrowing!

if (CORBA::is_nil(publicInterfaceV)) {
cerr << “Narrow to Giraffe failed.” << endl;
return;

}

// Java
...
CosNaming.NamingContextExt rootContext;
org.omg.CORBA.Object obj;
PublicInterface pub;
...
// Initialize ‘rootContext’ (not shown)
...
try {

2 3 4 C h a p t e r 5 : O b j e c t R e f e r e n c e s

Listing 5.4 continued

08 0672318121 CH05 6/20/01 5:56 PM Page 234

// Resolve the name “Example/Public”
obj = rootContext.resolve_str(“Example/Public”);
pub = PublicInterfaceHelper.narrow(obj); // Dynamic narrowing!

}
catch (org.omg.CORBA.SystemException sysex) { ... }

The narrow from the IDL type Object to the type PublicInterface can succeed only
if the object is really of type PublicInterface. By examining the state of the object,
the ORB can determine that the real type of the object is HiddenInterface. The IDL
in Listing 5.3 makes no mention of HiddenInterface. Therefore, based on stub code
alone, the ORB is unable to determine if the object inherits from PublicInterface.
The ORB is forced to discover the inheritance dynamically. Two different approaches
are commonly employed in response to this situation:

• The ORB can invoke CORBA::Object::is_a() on the remote HiddenInterface
object, passing the repository ID “IDL:example-company.com/
PublicInterface:1.0”. Since the server has access to the stub code for the
full IDL in Listing 5.4, it knows that HiddenInterface inherits from
PublicInterface. The is_a() operation therefore returns the value TRUE,
indicating that the narrow should succeed.
The main drawback of this approach, apart from the overhead of an extra
remote call, is the fact that it can lead to deadlock in certain circumstances.
Note that although the operation CORBA::Object::is_a() is defined in pseudo-
IDL, it results in a remote invocation. This is a rare example of a remote invo-
cation defined by pseudo-IDL.

• The ORB might elect to consult the Interface Repository instead of invoking
CORBA::Object::is_a(). The Interface Repository would have to be populated
with the complete IDL in Listing 5.4 for this to work. The advantage of this
approach is that there is no possibility of deadlock occurring.

Each of these approaches has its drawbacks. On the whole, it is probably better to avoid
dynamic narrowing altogether if you can. One way of avoiding it is to try hiding oper-
ations instead of hiding interfaces.

Hiding Operations
The problem with hiding interfaces from CORBA clients is that the clients subse-
quently have difficulty figuring out the inheritance relationships between interfaces. A
compromise solution is possible. The IDL exposed to clients can include all private
interfaces in the form of placeholders that declare no operations. Inheritance relation-
ships are declared, and this gives clients all the information they need to perform nar-
rowing. For example, the public IDL in Listing 5.3 would be replaced by that in
Listing 5.5.

Listing 5.5 Modified Public IDL for Clients
// IDL
// File: ‘modified-public.idl’

P o l y m o r p h i s m 2 3 5

08 0672318121 CH05 6/20/01 5:56 PM Page 235

#pragma prefix “example-company.com”

interface PublicInterface {
void publicOp();

};

// Dummy declaration of ‘HiddenInterface’
interface HiddenInterface : PublicInterface {};

In this example, every interface is available to clients, but the operations of
HiddenInterface remain hidden. Clients can now obtain complete information about
inheritance relationships from the stub code. Dynamic narrowing is no longer neces-
sary.

It might seem odd to declare the interface HiddenInterface one way for clients
(Listing 5.5) and another way for servers (Listing 5.4). The effect of this is benign.
Clients can invoke only operations that they know about, so the set of operations clients
can use is restricted to those inherited from PublicInterface.

CAUTION
You should not get carried away with declaring distinct IDL for clients and servers,
however. For example, it is imperative that clients and servers use identical declara-
tions of IDL data types. Otherwise the ORB would not be able to marshal parame-
ters correctly.

Interoperable Object Reference
When developing a CORBA application, you usually encounter object references in the
form of an object instance (a C++ object or a Java object). There are occasions, how-
ever, when object references have to be converted to a stream of bytes:

• When marshalling an object reference for transmission as a parameter or return
value in an IIOP message (see Chapter 16, “Internet Inter-ORB Protocol”).

• When CORBA::ORB::object_to_string() is called to stringify a given refer-
ence.

The use of object_to_string() is of particular interest in this chapter. It is easy to
dump the state of an object reference into a string by calling object_to_string(). The
information that can be extracted from the resulting string is often very helpful when it
comes to debugging your distributed application.

The following sections outline the structure of an interoperable object reference (IOR).

Structure of an IOR
A schematic outline of the structure of an IOR is shown in Figure 5.9.

2 3 6 C h a p t e r 5 : O b j e c t R e f e r e n c e s

Listing 5.5 continued

08 0672318121 CH05 6/20/01 5:56 PM Page 236

Figure 5.9

The overall structure of an IOR.

Figure 5.9 shows that an IOR consists of a repository ID followed by an arbitrary num-
ber of profiles.

The repository ID identifies the type of object. For example, a CORBA object of type
Giraffe (as defined in Listing 5.2) would have a repository ID
“IDL:pure-corba-3.com/Zoo/Giraffe:1.0”. The number at the end of the repository
ID refers to the version of the IDL interface and is usually just 1.0. The type given in
the repository ID should always be the most derived type of the CORBA object. For
example, if the CORBA object is of type Giraffe, it would be incorrect to put the
Animal repository ID “IDL:pure-corba-3.com/Zoo/Animal:1.0” into the object ref-
erence. However, since object references are created by the ORB, this is not something
you usually have to worry about.

A series of profiles is given after the repository ID. Each profile is specific to a partic-
ular transport protocol and contains complete details about the location of an object and
how to open a connection to the object. A client uses the information in a single IOR
profile to locate a CORBA object.

You may therefore be wondering: If a single profile contains all the necessary infor-
mation, why include multiple profiles in the IOR? In many cases the IOR does indeed
contain just one profile. However, there are a couple of reasons multiple profiles are
potentially useful:

• An ORB that supports multiple transport protocols can make the same object
accessible via a number of different protocols. The ORB would include an IOR
profile for each supported transport protocol. For example, an ORB might sup-
port shared memory transport or multicast transport (these are not yet standard-
ized by the OMG, however).

• Multiple profiles can be used as a way of implementing fault tolerance. The
same CORBA object could be made available on a number of different servers
and an IOR profile included for each server.

Currently there is only one standard profile type of interest here: the IIOP profile. This
profile specifies the location details of a CORBA object reachable via the TCP/IP
transport. It is described in the next section.

Structure of an IIOP Profile
The schematic structure of an IIOP profile is shown in Figure 5.10.

I n t e r o p e r a b l e O b j e c t R e f e r e n c e 2 3 7

Repositoryld Profiles

"IDL : Foo : 1.0" n Profile 1 Profile n

08 0672318121 CH05 6/20/01 5:56 PM Page 237

Figure 5.10

The structure of an IIOP profile.

The profile begins with a tag that identifies it as an IIOP profile. The tag is called
TAG_INTERNET_IOP and has the value 0. It is followed by the CDR encapsulation of the
profile body. The main pieces of information in the profile body are as follows:

1. It begins by giving the version of IIOP supported by this particular object. At
the time of this writing, the IIOP version could be 1.0, 1.1, or 1.2.

2. The endpoint details, host and port, are given for a listening point on the server
where the CORBA object lives. The host is a string that can contain either the
server hostname or an IP address in dotted decimal notation.

3. An object_key is given in the form of a sequence of octets. The object_key is
binary data that uniquely identifies the CORBA object in the address space of
the server. The format of the object_key might not be understood by the client,
but this does not matter, because the object_key is only interpreted by the
server.

4. If the version of this IIOP profile is 1.1 or 1.2, the profile may include a series
of IOR components. The purpose of these components is to give miscellaneous
information that may be needed to use the CORBA object. For example, the
CORBA Security Service defines several types of component to facilitate
secure connections to a CORBA object.

The formal CDR encoding of an IIOP profile is defined in Chapter 16. With the details
given here, it is possible to understand the contents of a typical stringified object ref-
erence.

Stringified Object References
A stringified object reference is derived from the standard format of an IOR. An ORB
creates a stringified object reference using the following algorithm:

1. The IOR is marshalled into a buffer as a CDR encapsulation. (The details of
CDR encapsulation are described in Chapter 16.) An important feature of an
encapsulation is that it begins with a flag to indicate whether the rest of the
data is big-endian or little-endian. A value of 0 indicates big-endian, and 1 indi-
cates little-endian.

2. Each byte of the IOR is converted to a pair of hexadecimal characters (either
upper- or lowercase). The resulting series of hexadecimal characters is concate-
nated into a string.

3. The string “IOR:” is prefixed to the string of hexadecimal numbers.

Consider the following example of a stringified object reference:

2 3 8 C h a p t e r 5 : O b j e c t R e f e r e n c e s

Tag IIOP Version

0 1.2 host port object_key optional components

08 0672318121 CH05 6/20/01 5:56 PM Page 238

IOR:010000000e00000049444c3a48656c6c6f3a312e3000000001000000000000004e000000010
10200100000003139332e3132302e3232312e31303200480500001b0000003a3e0231310c010000
00710000002348000008000000000000000000010000000600000006000000010000001100

This object reference was generated by an IONA Orbix 2000 server. Table 5.3 shows
how this object reference can be parsed to extract location details and other details of
the CORBA object.

Table 5.3 An Example of a Parsed Stringified Object Reference

Bytes of IOR Description

+0 [01] Byte order of IOR: (1) little-endian
+1 [00][00][00] (Padding)
+4 [0e][00][00][00] TypeId length: 14 bytes (including null)
+8 TypeId value:
[49][44][4c][3a][48][65][6c] ‘IDL:Hello:1.0.’

[6c][6f][3a][31][2e][30][00]

+22 [00][00] (Padding)
+24 [01][00][00][00] Number of tagged profiles: 1
+28 [00][00][00][00] Tag: (0) TAG_INTERNET_IOP
+32 [4e][00][00][00] Profile length: 78 bytes
+36 [01] Byte order: (1) little-endian
+37 [01][02] Version: 1.2
+40 [10][00][00][00] Host length:

16 bytes (including null)
+44 Host string:
[31][39][33][2e][31][32][30] ‘193.120.221.102.’

[2e][32][32][31][2e][31][30]

[32][00]

+60 [48][05] Port: 1352
+62 [00][00] (Padding)
+64 [1b][00][00][00] Object key length: 27 bytes (including any trailing

null)
+68 Object key data: (opaque binary data)
[3a][3e][02][31][31][0c][01]

[00][00][00][71][00][00][00]

[23][48][00][00][08][00][00]

[00][00][00][00][00][00]

+95 [00] (Padding)
+96 [01][00][00][00] Number of tagged components: 1
+100 [06][00][00][00] Tag: (6) ENDPOINT_ID_POSITION
+104 [06][00][00][00] Component length: 6 bytes
+108 [01] Component byte order: (1) little-endian
+109 [00] (padding)
+110 [00][00] EndpointId begin (index): 0
+112 [11][00] EndpointId end (index): 17

I n t e r o p e r a b l e O b j e c t R e f e r e n c e 2 3 9

08 0672318121 CH05 6/20/01 5:56 PM Page 239

Because the stringified object reference is encoded as a CDR encapsulation, it begins
with a byte to indicate whether the following data is big or little-endian. Note that the
first integer that appears, the TypeId length, is indeed little-endian.

From the TypeId you can see that the object implements an interface called Hello. The
object reference holds a single profile. The server is located on host 193.120.221.102
and listens on the IP port 1352. The object_key is not legible, consisting of binary data
that is interpreted by the server to identify the object.

At a number of points in the IOR, some null bytes are inserted as padding. This is to
satisfy the requirement that CDR encoding align data on its natural boundaries. For
example, any CORBA longs (4-byte integers) occurring in the IOR begin at a position
that is divisible by four. For details of CDR encoding and its alignment requirements,
consult Chapter 16.

There are a couple of points at which encapsulation is used again within the stringified
IOR (effectively, encapsulation within an encapsulation). Both the profile and the
tagged component are encapsulated. The telltale sign of an encapsulation is a 4-byte
integer giving the size of the data block, followed by a byte order flag and then the
encapsulated data.

At the end of the IOR there is a single tagged component. This component is used to
impart additional information about the object. These components are discussed in
more detail in the following section.

IOR Components
As explained in the section “Structure of an IIOP Profile,” an IIOP profile might
include a set of components (for IIOP versions 1.1 or later). The components provide
extra information about how the object reference is meant to be used.

Each component begins with a tag to indicate what kind of component it is. The fol-
lowing tags are allowed in an IIOP profile that conforms to IIOP 1.1:

• TAG_ORB_TYPE = 0

This tag is followed by an unsigned long (4-byte integer) that gives the unique
ID of the ORB that generated the object references. An ORB manufacturer can
apply to the OMG to obtain a unique ID to identify its ORB.

• TAG_CODE_SETS = 1

A server can use this component to indicate the character formats that it under-
stands for both ordinary characters and wide characters. It indicates its native
code set and any additional code sets that it understands.
The process of code set negotiation is required primarily for wide characters,
because there are many standards for extended character sets. Unicode is a pop-
ular choice on many computing platforms.

• TAG_SEC_NAME = 14

This tag is a sequence of octets that gives the secure identity of the target
object. It is used by the CORBA Security Service specification.

2 4 0 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:56 PM Page 240

• TAG_ASSOCIATION_OPTIONS = 13

This tag describes the degree of security supported by and required by the
server. It is used by the CORBA Security Service specification.

• TAG_GENERIC_SEC_MECH = 22

This tag is used by the CORBA Security Service.
• TAG_SSL_SEC_TRANS = 20

This tag is used by the CORBA Security Service.
• TAG_SPKM_1_SEC_MECH = 15

This tag is used by the CORBA Security Service.
• TAG_SPKM_2_SEC_MECH = 16

This tag is used by the CORBA Security Service.
• TAG_KerberosV5_SEC_MECH = 17

This tag is used by the CORBA Security Service.
• TAG_CSI_ECMA_Secret_SEC_MECH = 18

This tag is used by the CORBA Security Service.
• TAG_CSI_ECMA_Hybrid_SEC_MECH = 19

This tagis used by the CORBA Security Service.
• TAG_CSI_ECMA_Public_SEC_MECH = 21

This tag is used by the CORBA Security Service.
• TAG_JAVA_CODEBASE = 25

This tag is used by Java-to-IDL mapping. It contains a space-separated list of
URL strings that specify directories (or JAR files) from which Java classes can
be loaded.

The following tags are allowed in an IIOP profile that conforms to IIOP 1.2.

• TAG_ALTERNATE_IIOP_ADDRESS = 3

This component allows an alternative endpoint (or endpoints) to be specified
for the object. The body of this tag contains the following struct encoded as a
CDR encapsulation:
//PIDL
struct {

string HostID;
short Port;

};

This component can be used by an ORB to implement fault-tolerant behavior.
If a client fails to contact the server at the endpoint given in the main part of
the profile, it can try this alternative endpoint instead.

• TAG_POLICIES = 2

This tag is used by the asynchronous messaging specification. It contains a list
of policies that specify the qualities of service supported by the target object.

• TAG_DCE_STRING_BINDING = 100

This tag contains a DCE string binding. It provides all the information required
to establish communication with a DCE server.

• TAG_DCE_BINDING_NAME = 101

I n t e r o p e r a b l e O b j e c t R e f e r e n c e 2 4 1

08 0672318121 CH05 6/20/01 5:56 PM Page 241

This tag contains a name that can be looked up in a DCE naming service to
obtain a binding handle for a DCE connection.

• TAG_DCE_NO_PIPES = 102

This is a hint to an ORB that the server does not support the dce_ciop_pipe
DCE-RPC interface.

• TAG_DCE_SEC_MECH = 103

This tag is used by the CORBA Security Service.
• TAG_COMPLETE_OBJECT_KEY = 5

In the context of DCE, this tag may be specified as part of a
TAG_MULTIPLE_COMPONENTS profile to specify the object_key for the object.
This tag never appears as part of a TAG_INTERNET_IOP profile.

• TAG_ENDPOINT_ID_POSITION = 6

This component is used to specify a range of bytes within the profile’s
object_key that uniquely identifies the endpoint associated with this object.
The component holds the following struct:
//PIDL
struct EndpointIdPositionComponent {

unsigned short begin;
unsigned short end;

};

If many IORs have the same endpoint ID, this gives a hint to the ORB that it
can re-use the same connection to communicate with all of those objects.
Because of the elaborate location semantics in CORBA, this is a more reliable
way of determining if a connection can be reused.

• TAG_LOCATION_POLICY = 12

This tag contains a flag that customizes the location semantics of DCE (or
other protocols). The flag is used to indicate how often the client attempts to
locate the remote object.

More IOR components may periodically be added to this list as the CORBA standard
is expanded.

Summary
This chapter has presented the basic essentials you need to program using object ref-
erences. The details of memory management were presented for the C++ language. The
essential concepts of polymorphism and how to widen and narrow object references
were discussed. For most of the CORBA programming you do, this level of knowledge
is sufficient. You can treat object references as black boxes that give you access to the
CORBA object.

2 4 2 C h a p t e r 5 : O b j e c t R e f e r e n c e s

08 0672318121 CH05 6/20/01 5:56 PM Page 242

If you want to uncover the detailed state of an object reference, you can stringify the
object reference and parse it. Most ORBs provide some sort of utility for parsing
stringified object references. The amount of information that can be stored in the object
reference is open ended. An IOR can contain any number of tagged components. As
the CORBA services are extended, many more of these tagged components may be
defined. You may need to consult the CORBA service specifications from time to time
to analyze all of the information in an IOR.

S u m m a r y 2 4 3

08 0672318121 CH05 6/20/01 5:56 PM Page 243

08 0672318121 CH05 6/20/01 5:56 PM Page 244

Interoperable Naming
Service
The CORBA naming service is used by clients to locate
CORBA objects and by servers to advertise specific CORBA
objects. It plays the role of a bootstrap service, enabling clients
to find other services and facilitating initial connections
between clients and servers.

The basic function of the naming service is the association of
names with object references. A server creates associations
between names and object references for those CORBA
objects that are intended to serve as initial points of contact. A
client that knows the name of an object can then retrieve its
object reference by querying the naming service.

The naming service is available in two major versions:

• The original CORBA Naming Service.
• The CORBA Interoperable Naming Service. This is a

more recent extension and revision of the original nam-
ing service. The semantics of certain operations are
specified more precisely. A string format and a URL
format are defined for names. New operations are
declared in the CosNaming::NamingContextExt inter-
face.

This chapter describes the newer Interoperable Naming
Service. If you want to use the original CORBA Naming
Service, you must restrict yourself to the subset of IDL that
excludes the interface NamingContextExt.

Overview
The naming service is a simple locating service that allows
clients to look up an object location using a name as a key.

C H A P T E R 6

In
te

ro
p

e
ra

b
le

 N
a
m

in
g

 S
e
rv

ice

09 0672318121 CH06 6/20/01 5:44 PM Page 245

The name can be specified in a human-readable stringified name format or in a raw
name format.

Before a client can look up an object, the association between the object location and
its name must be created. This association is known as an object binding, and it is nor-
mally made by a CORBA server.

2 4 6 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

Figure 6.1

Basic use of the CORBA naming service.

Figure 6.1 illustrates the steps in using the naming service. It is typically implemented
as a standalone process that runs independently of the client and server. These steps are
followed:

1. Create an object binding. As a server is starting up, it creates a number of
CORBA objects that will serve as points of initial contact for clients. These
objects are advertised to clients by creating object bindings in the naming ser-
vice. The bindings consist of a series of name/object reference associations.

2. Resolve a name. A client can access each of the objects advertised in the previ-
ous step by resolving a name. This consists of looking up an object reference
using its name as a key.

3. Use the target object. Since an object reference is all the client needs to access
an object, the client can now go ahead and use the object.

This is the main functionality provided by the naming service, which is, essentially, a
database of object bindings. The collection of object bindings is usually—but not
always—arranged in a hierarchy. There are two kinds of bindings in the hierarchy:

• Context binding—An association between a name and a naming context.
• Object binding—An association between a name and an object reference.

The hierarchy is illustrated in Figure 6.2. In many ways it resembles the directory
structure of a file system. Open circles represent naming contexts, which play a role

Naming Service

1. Create binding

3. Use target object

2. Resolve

Client Server

•

••

09 0672318121 CH06 6/20/01 5:44 PM Page 246

analogous to directories in a file system. Closed circles represent object references,
which play a role analogous to files in a file system. They are the leaves of the hier-
archical tree.

N a m e s 2 4 7

Initial Naming Context

New_York.region
London.region

Frankfurt.region

Main.failover Backup.failover

StockExchange BrokerService

•• •

• •

• •

Figure 6.2

A sample naming service hierarchy.

At the top of the sample hierarchy is the initial context. Immediately below the initial
context are three naming contexts: London.region, New_York.region, and
Frankfurt.region. At a lower level of nesting are the naming contexts London.
region/Main.failover and London.region/Backup.failover. At a lower level again
are some object references, for example London.region/Main.failover/

StockExchange.

Names
Two types of name format are specified in the CORBA Interoperable Naming Service:

• Stringified name format—Stringified names have an intuitive format that is
easy to read and pass from place to place.

• Raw name format—Raw names are defined in terms of IDL complex types and
can be used only within a CORBA program.

The following sections describe both of these name formats in detail.

Stringified Names
Consider the fully qualified name of the object StockExchange. Its structure is shown
in Figure 6.3.

The name is divided into three components by the component separator character /
(forward slash). The individual components consist of an id field and a kind field,
joined by the kind separator character . (dot). When the kind field is omitted, as in the
third component, it is implicitly empty.

09 0672318121 CH06 6/20/01 5:44 PM Page 247

Figure 6.3

The structure of a sample stringified name.

Each component of a name maps to an entity in the naming service (either a naming
context or an object reference). For example, the components shown imply the exis-
tence of three context bindings and one object binding, as given in Table 6.1.

Table 6.1 Components of a Stringified Name

Stringified Name Binds To

empty string Initial naming context
London.region Naming context
London.region/Main.failover Naming context
London.region/Main.failover/StockExchange Object reference

The initial naming context is always present and serves as the entry point to the nam-
ing service.

The kind field is intended to describe how a name component is used. For example, we
have used the .region suffix above to indicate that a naming context refers to a par-
ticular geographical location. This resembles the way in which suffixes are used by a
file system. For example client.cxx, client.obj, and client.exe would represent
three related, but distinct, files under Windows NT.

The naming service specification does not specify how the kind field should be used,
nor does it reserve any specific values for it. The only specific direction given is that
the kind field is part of the unique identity of a name. That is, the names
London.region and London are distinct and refer to two different entities in the nam-
ing service.

Escape Character
An escape character \ (backslash) is reserved for use in stringified names. The escape
sequences are defined in Table 6.2.

Table 6.2 Escape Sequences in Stringified Names

Escape Sequence Value

\/ Literal /
\. Literal .
\\ Literal \

2 4 8 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

London.region/Main.failover/StockExchange

id kind id kind id

First
Component

Second
Component

Third
Component

09 0672318121 CH06 6/20/01 5:44 PM Page 248

Other escape sequences (that is, \ followed by any other character) are reserved by the
OMG for future use. The existing escape sequences allow you to embed any of the
characters /, ., and \ in an id field or a kind field. For example, the name component

“www\.omg\.org\/index\.html.hierarchy\\of\\kinds”

is interpreted as

id = “www.omg.org/index.html”, kind = “hierarchy\of\kinds”

when parsed by the naming service. This allows the id and kind fields to be arbitrary
strings.

Special Cases
Spaces are legal in both id fields and kind fields.

There are some special constructions for representing empty fields.

• An empty kind field is indicated by omitting the kind field and kind separator
. (dot), for example, London/Main. It is not correct to append a trailing . char-
acter to either of the name components. Thus, London./Main. is illegal.

• An empty id field is indicated by starting the name component directly with a
kind separator . (dot), such as .region/.failover. However, some implemen-
tations of the naming service might forbid the use of empty id fields.

• An empty id field and an empty kind field are denoted by a single . (dot). For
example, a sequence of three empty name components ././. is the only legal
representation of a name component with empty id and kind fields. Some
implementations of the naming service might forbid the use of empty name
components.

Raw Names—CosNaming::Name
Stringified names are a convenient way of representing names in a readable format, but
that is not how they are represented internally by the naming service. The raw format
of a name is defined by the following IDL extract:

//IDL

#pragma prefix “omg.org”

module CosNaming {
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;
...

};

N a m e s 2 4 9

09 0672318121 CH06 6/20/01 5:44 PM Page 249

This defines the data type CosNaming::Name, which is the canonical form of a name. It
consists of a sequence of NameComponents. Each NameComponent is broken down into
an id field and a kind field.

The definition of Istring is a historical artifact and is simply an alias for the type
string. Originally, it was defined as a placeholder for an internationalized string (sub-
sequently introduced into IDL as the type wstring). The definition of Istring has not
been changed because of backward-compatibility issues.

A raw name is basically a sequence of structs and can be manipulated using the rules
for IDL compound types. Consider, for example, how to represent the stringified name
London.region/Backup.failover in raw form:

//C++
CosNaming::Name exName(2); //maximum = 2

//length = 0
exName.length(2);

exName[(CORBA::ULong) 0].id = CORBA::string_dup(“London”);
exName[(CORBA::ULong) 0].kind = CORBA::string_dup(“region”);

exName[(CORBA::ULong) 1].id = CORBA::string_dup(“Backup”);
exName[(CORBA::ULong) 1].kind = CORBA::string_dup(“failover”);

//Java
org.omg.CosNaming.NameComponent exName[]

= new org.omg.CosNaming.NameComponent[2];

exName[0] = new org.omg.CosNaming.NameComponent();
exName[0].id = “London”;
exName[0].kind = “region”;

exName[1] = new org.omg.CosNaming.NameComponent();
exName[1].id = “Backup”;
exName[1].kind = ”failover”;

The Initialization Service
When a CORBA application starts up, it must get references to a basic set of initial
objects, for example the ORB, the object adapter, and the naming service. The CORBA
standard defines the CORBA initialization service to take care of this task.

At the beginning of every CORBA application, you will see the initialization service
being used to initialize the ORB. It is a simple service that declares just a few associ-
ated operations, given in Table 6.3.

2 5 0 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 250

Table 6.3 Initialization Service Operations

Operation Name Description

CORBA::ORB_init() Return an object reference to the
CORBA::ORB object.

CORBA::ORB::resolve_initial_references() Return an object reference to the
named service.

CORBA::ORB::list_initial_services() Return a list of services available from
this ORB instance.

The signatures of these operations depend on the details of the language mapping. The
pseudo-IDL for these operations is given at the end of this chapter.

The operations are illustrated by example in the rest of this chapter.

A common use of the initialization service is to get hold of a reference to an initial
naming context. Once an application has a reference to the initial naming context, it
can resolve references to numerous other CORBA and application-specific services.

Typical steps followed by a CORBA application during its initialization phase are

1. Get a reference to an ORB object using CORBA::ORB_init().
2. Get a reference to a POA object using CORBA::ORB::resolve_initial_

references() (server only).
3. Get a reference to a NamingContext object (or a NamingContextExt object)

using the operation CORBA::ORB::resolve_initial_references().

These initialization steps are demonstrated in Listing 6.1 and Listing 6.2 for C++ and
Java.

Listing 6.1 C++ Obtaining Initial Reference to the Naming Service
//C++
int
main (int argc, char *argv[])
{

CORBA::ORB_var orbV;

try
{

cout << “Initializing the ORB” << endl;

//--
// Step 1. Get reference to ORB
//--
orbV = CORBA::ORB_init(argc, argv);
if (CORBA::is_nil(orbV.in()))
{

cerr << “Nil ORB object reference” << endl;
return 1;

}

T h e I n i t i a l i z a t i o n S e r v i c e 2 5 1

09 0672318121 CH06 6/20/01 5:44 PM Page 251

Listing 6.1 continued
//--
// Step 2. (Server only) Get reference to POA
//--
CORBA::Object_var objV;
PortableServer::POA_var poaV;

objV = orbV->resolve_initial_references(“RootPOA”);
poaV = PortableServer::POA::_narrow(objV.in());
if (CORBA::is_nil(poaV.in())) {

cerr << “Nil POA object reference” << endl;
return 1;

}

//--
// Step 3. Get reference to CosNaming::NamingContextExt
//--
CosNaming::NamingContextExt_var rootContextExtV; // INS Root ContextExt

try {
objV = orbV->resolve_initial_references(“NameService”);
rootContextExtV = CosNaming::NamingContextExt:: _narrow(objV.in()

➥);
}
catch (CORBA::SystemException &sysEx) {

cerr << sysEx << endl;
return 1;

}
if (CORBA::is_nil(rootContextExtV.in())) {

cerr << “Nil root naming context” << endl;
return 1;

}

// Now make use of ’rootContextExtV’...
...

}

Listing 6.2 Java Obtaining Initial Reference to the Naming Service
//Java

import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.PortableServer.POAManagerPackage.*;

public class Server
{

private static ORB m_orb;

2 5 2 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 252

Listing 6.2 continued
public static void main(String args[])
{

//--
// Step 1. Get reference to ORB
//--
m_orb = ORB.init(args,null);

//--
// Step 2. (Server only) Get reference to POA
//--
org.omg.CORBA.Object obj = null;
org.omg.PortableServer.POA poa = null;

try {
obj = m_orb.resolve_initial_references(“RootPOA”);
poa = org.omg.PortableServer.POAHelper.narrow(obj);

}
catch (org.omg.CORBA.SystemException ex) {

System.err.println(“error: failed to get reference to POA” + ex);
System.exit(1);

}
catch (org.omg.CORBA.UserException ux) {

System.err.println(“error: failed to get reference to POA” + ux);
System.exit(1);

}

//--
// Step 3. Get reference to CosNaming::NamingContextExt
//--
NamingContextExt rootContextExt=null;

try {
obj = m_orb.resolve_initial_references(“NameService”);
rootContextExt = NamingContextExtHelper.narrow(obj);

}
catch (org.omg.CORBA.SystemException ex) {

System.err.println(ex);
System.exit(1);

}
catch (org.omg.CORBA.UserException ux) {

System.err.println(ux);
System. exit(1);

}
}

}

T h e I n i t i a l i z a t i o n S e r v i c e 2 5 3

09 0672318121 CH06 6/20/01 5:44 PM Page 253

2 5 4 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

The function resolve_initial_references() is used twice. The first time it is
invoked with the argument RootPOA. The second time it is invoked with the argument
NameService. In each case, the returned object reference has to be cast to the correct
type using a narrow function (_narrow() in C++ and narrow() in Java).

TIP
In C++, always test an object reference for nilness with the CORBA::is_nil() func-
tion after it has been returned from a _narrow() method.

The argument passed to resolve_initial_references() is known as an ObjectId
(this choice of name is unfortunate—it has nothing to do with object IDs in the context
of the POA). The ObjectId string is used to select a particular service type and deter-
mines the type of object reference returned by resolve_initial_references().
Allowable values for ObjectId are specified by the OMG. Some of these values are
given in Table 6.4.

Table 6.4 Some OMG-Defined Values for ObjectId

ObjectId String Type of Reference Returned

RootPOA PortableServer::POA

POACurrent PortableServer::Current

NameService CosNaming::NamingContextExt or CosNaming::NamingContext
TradingService CosTrading::Lookup

InterfaceRepository CORBA::Repository

SecurityCurrent SecurityLevel1::Current or SecurityLevel2::Current
TransactionCurrent CosTransactions::Current

DynAnyFactory DynamicAny::DynAnyFactory

The list in Table 6.4 may be extended from time to time as the OMG adds new services
to the CORBA specification.

The naming service is a special case, since the type of object returned depends on the
naming service version. If it conforms to the CORBA Interoperable Naming Service
specification, you will obtain a reference to a CosNaming::NamingContextExt object.
Alternatively, if it conforms to the older naming service specification you will obtain a
reference to a CosNaming::NamingContext object instead.

Basic Operations
The basic operations of the naming service are defined either in the interface
CosNaming::NamingContext (the subset of operations in the old naming service spec-
ification) or the interface CosNaming::NamingContextExt (the extensions introduced
in the CORBA Interoperable Naming Service specification). Some of the basic tasks
you need to perform on the naming service are to

• Create object bindings
• Create context bindings

09 0672318121 CH06 6/20/01 5:44 PM Page 254

• Resolve names
• Convert name formats

The following IDL fragment highlights some of the operations you can use for these
tasks:

//IDL
#pragma prefix “omg.org”

module CosNaming {
...
interface NamingContext {

...
void rebind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName);

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext bind_new_context(in Name n)
raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

...
};
...
interface NamingContextExt: NamingContext {

...
typedef string StringName;

Object resolve_str(in StringName n)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn)

raises(InvalidName);
URLString to_url(in Address addr, in StringName sn)

raises(InvalidAddress, InvalidName);
...

};
};

Parts of the module CosNaming have been omitted from this listing (including the dec-
laration of user exceptions). For a full listing of the IDL, see the section “Naming
Service IDL,” later in this chapter.

The following sections give the semantics for each of these basic operations.

B a s i c O p e r a t i o n s 2 5 5

09 0672318121 CH06 6/20/01 5:44 PM Page 255

Create Object Bindings—rebind() and bind()
To create an object binding, you can use either rebind() or bind(). Both operations
create an object binding that associates the name n (in raw format) with the naming
context nc. The semantics, however, are different:

• rebind()—the operation creates a new object binding for the given name n or,
if a binding already exists with that name, overwrites the existing binding.

• bind()—the operation creates a new object binding for the given name n as
long as there is no existing binding with that name. If a binding already exists,
an AlreadyBound exception is thrown.

The semantics of rebind() are more convenient so you will probably use it instead of
bind() most of the time.

Note that these operations create object bindings relative to the naming context on
which they are invoked. For example, if you want to create an object binding with the
name A/B/C/MyObj you can either invoke rebind() on the initial naming context, using
the full name A/B/C/MyObj, or invoke rebind() on the naming context A/B/C, using
the short name MyObj.

Create Context Bindings—bind_new_context()
To create a new context binding you can use the operation bind_new_context() to cre-
ate the context in one step. It takes the name of the context you want to create as an
argument (in raw format) and returns an object reference for the newly created naming
context.

The immediate parent of the context binding you want to create must already exist, oth-
erwise a NotFound exception is raised. For example, you can only create the context
A/B/C if the context A/B already exists.

Resolve Names—resolve_str() and resolve()
To resolve a binding in the naming service you can use either resolve_str() or
resolve(). The only difference between these two operations is that resolve_str()
takes a stringified name as its argument while resolve() takes a raw name.

Note the following points:

• The return value is of type Object so the returned object reference always
needs to be narrowed to the actual type before it can be used.

• The operation resolve_str() is available only on the interface
NamingContextExt. You must narrow your naming context to
NamingContextExt before you can access this operation.

• The resolve operations can be used to resolve either object or context bindings.
For context bindings, narrow to NamingContext or NamingContextExt as
appropriate.

2 5 6 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 256

Conversion Operations
Three conversion operations are provided in the interface NamingContextExt. These
are to_string(), to_name(), and to_url().

The conversion operations to_string() and to_name() are used to convert back and
forth between stringified name format and raw name format. The exception
InvalidName is raised by either of these operations if the argument is malformed in
some way.

Server Example
The main interaction a server has with the naming service is to create object bindings
to advertise objects to clients. The operations most often used are rebind() or bind(),
to create object bindings, and bind_new_context(), to create context bindings that
hold the object bindings.

However, the operations provided directly by the naming service interface are fairly
primitive. In most real-life projects you will find it helpful to build some kind of util-
ity or wrapper around the naming service. In the examples that follow a class NameUtil
is defined that provides a more convenient way of accessing the naming service.

One of the things missing from the naming IDL is a way to create multiple components
in a single step. For example, if you want to create a naming context named A/B/C/D,
and neither A, B, C, nor D exists yet, it will take at least four explicit invocations of
bind_new_context() to create the naming context. To simplify this process, our name
utility defines the following operations:

• NameUtility::createContextPath()—create a multi-component naming con-
text. For example, if you want to create the naming context A/B/C/D, it fills in
any context bindings missing between A and D.

• NameUtility::bindObjectPath()—create a multi-component object binding.
For example, if you want to create the object binding A/B/C/D/MyObj it fills in
any context bindings missing between A and MyObj.

The code for these two methods is given in the following sections.

Name Utility—createContextPath()
The method createContextPath() is used to create a name component, filling in any
missing components along the way. The implementation of the method in C++ and
Java is given in Listing 6.3 and Listing 6.4.

Listing 6.3 C++ Implementation of createContextPath()
// C++
//--
// method: ‘createContextPath()’
//
// purpose: For each ‘NameComponent’ in ‘name’,
// create a corresponding ‘NamingContext’.
//--

S e r v e r E x a m p l e 2 5 7

09 0672318121 CH06 6/20/01 5:44 PM Page 257

Listing 6.3 continued
void
NameUtil::createContextPath(

const CosNaming::NamingContext_ptr nc,
const CosNaming::Name& name
)

{
int isNotFound = 0;
CORBA::ULong lengthMissing = 0;

CosNaming::NamingContext_var tmpCtxVar;
try {

tmpCtxVar = nc->bind_new_context(name);
}
catch (CosNaming::NamingContext::NotFound& nf) {

isNotFound = 1;
lengthMissing = nf.rest_of_name.length();

}
if (lengthMissing==name.length()) {

cerr << “This cannot happen!” << endl;
}

if (isNotFound) {
for (CORBA::ULong l=name.length()-lengthMissing;

l <= name.length();
l++)

{
CosNaming::Name tmpName = name;
tmpName.length(l);
tmpCtxVar = nc->bind_new_context(tmpName);

}
}

}

Listing 6.4 Java Implementation of createContextPath()
// Java
package Pure.Util;

import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.PortableServer.POAManagerPackage.*;

public class NameUtil {

//--
// method: ‘createContextPath()’
//
// purpose: For each ‘NameComponent’ in ‘name’,

2 5 8 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 258

Listing 6.4 continued
// create a corresponding ‘NamingContext’.
//--
public static void createContextPath(

NamingContext nc,
NameComponent[] name
)
throws org.omg.CORBA.UserException

{
boolean isNotFound = false;
int lengthMissing = 0;

NamingContext tmpCtx;
try {

tmpCtx = nc.bind_new_context(name);
}
catch (NotFound nf) {

isNotFound = true;
lengthMissing = nf.rest_of_name.length;

}

if (isNotFound && lengthMissing==name.length) {
System.err.println(“This cannot happen!”);
return;

}

if (isNotFound) {
for (int len = name.length-lengthMissing;

len <= name.length;
len++)

{
NameComponent[] tmpName = new NameComponent[len];
for (int i=0; i < len; i++) { tmpName[i] = name[i]; }
tmpCtx = nc.bind_new_context(tmpName);

}
}

}
...

}

The implementation makes interesting use of the NotFound exception. The NotFound
exception is declared in IDL as follows:

// IDL
module CosNaming {

...
interface NamingContext {

...
enum NotFoundReason { missing_node, not_context, not_object };

S e r v e r E x a m p l e 2 5 9

09 0672318121 CH06 6/20/01 5:44 PM Page 259

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};
...
};

};

Consider, for example, what happens if you want to create the naming context A/B/C/D
but only A exists initially. The createContextPath() method performs the following
steps:

1. A call to bind_new_context() is made. This only works if the naming context
A/B/C already exists. Since B and C are missing, the NotFound exception is
thrown.

2. The NotFound exception is caught and the length of the missing part of the
name is extracted. Since two components, B and C, are missing between A and
D, the number of missing components is 2. The value of rest_of_name is B/C.

3. A for loop creates all of the components needed to complete the path—A/B,
A/B/C, and A/B/C/D

The NotFound exception allows you avoid using trial and error to identify the compo-
nents that need to be created. The approach used here minimizes the number of remote
calls that must be made.

Name Utility—bindObjectPath()
The method bindObjectPath() is used to create an object binding, filling in any miss-
ing components along the way. The implementations of the method in C++ and Java
are given in Listing 6.5 and Listing 6.6.

Listing 6.5 C++ Implementation of bindObjectPath()
// C++
//--
// method: ‘bindObjectPath()’
//
// purpose: For the first [0, length-2] NameComponents of
// ‘name’, create a corresponding ‘NamingContext’.
// For the length-1 NameComponent of ‘name’, bind it
// to the object reference ‘obj’.
//--
void
NameUtil::bindObjectPath(

const CosNaming::NamingContext_ptr nc,
const CosNaming::Name& name,
const CORBA::Object_ptr obj
)

{
try {

2 6 0 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 260

Listing 6.5 continued
nc->rebind(name, obj);

}
catch (CosNaming::NamingContext::NotFound&) {

CosNaming::Name tmpName = name;
tmpName.length(tmpName.length()-1);
createContextPath(nc, tmpName);

nc->bind(name, obj);
}

}

Listing 6.6 Java Implementation of bindObjectPath()
// Java
package Pure.Util;

import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.PortableServer.POAManagerPackage.*;

public class NameUtil {

//--
// method: ‘bindObjectPath()’
//
// purpose: For the first [0, length-2] NameComponents of
// ‘name’, create a corresponding ‘NamingContext’.
// For the length-1 NameComponent of ‘name’, bind it
// to the object reference ‘obj’.
//--
public static void bindObjectPath(

NamingContext nc,
NameComponent[] name,
org.omg.CORBA.Object obj
)
throws org.omg.CORBA.UserException

{
try {

nc.rebind(name, obj);
}
catch (NotFound nf) {

NameComponent[] tmpName = new NameComponent[name.length-1];
for (int i=0; i < name.length-1; i++) { tmpName[i] = name[i]; }
createContextPath(nc, tmpName);

nc.bind(name, obj);
}

}
}

S e r v e r E x a m p l e 2 6 1

09 0672318121 CH06 6/20/01 5:44 PM Page 261

This utility method delegates most of the work to the createContextPath() method.
Consider, for example, that you are creating an object binding called A/B/C/D/MyObj.
If the invocation of rebind() gives rise to a NotFound exception, a call to
createContextPath() is used to complete the path A/B/C/D before invoking bind() to
create the object binding A/B/C/D/MyObj.

Server Mainline
Consider a server that instantiates a single StockExchange object and publishes it to the
naming service. For this example, the functionality of the object is not of interest, so a
trivial placeholder can be used for the StockExchange interface:

// IDL
interface StockExchange { };

Assuming that the interface is implemented by a servant class called StockExchange_i
(not shown), the server mainline is given by Listing 6.7 and Listing 6.8.

Listing 6.7 C++ Server Binding a Name
// C++
int
main(int argc, char* argv[])
{

...
//--
// The usual initialization boilerplate comes here (not shown).
// The following variables are defined by the initialization code:
//
// ‘orbV’ - a pointer to the ORB object
//
// ‘poaV’ - a pointer to the root POA object
//
// ‘namingContextExtV’ - a pointer to the root naming context
//--

StockExchange_i myStockServant;
StockExchange_var myStockV = myStockServant._this();

try
{

nameV = rootContextExtV->to_name(
”London.region/Main.failover/StockExchange”

);

NameUtil::bindObjectPath(
rootContextExtV.in(),
nameV.in(),
myStockV.in());

}
catch (CORBA::SystemException& se) {

2 6 2 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 262

cerr << se << endl;
return 1;

}
catch (CORBA::UserException& ue) {

cerr << ue << endl;
return 1;

}

try
{

cout << “Activating the POA manager.” << endl;
PortableServer::POAManager_var poa_manager= poaV->the_POAManager();
poa_manager->activate();

cout << “Invoking ORB::run().” << endl;
orbV->run();

}
catch (CORBA::SystemException& se)
{

cerr << “ORB::run() failed: “ << se << endl;
return 1;

}

//Cleanup
orbV->destroy();
return 0;

}

Listing 6.8 Java Server Binding a Name
// Java

package Pure.NamesDemo;

import Pure.Util.*;

import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming. NamingContextPackage.*;
import org.omg.PortableServer.POAManagerPackage.*;

public class Server
{
...

//--
// The usual initialization boilerplate comes here (not shown).
// The following variables are defined by the initialization code:
//
// ‘m_orb’ - a reference to the ORB object

S e r v e r E x a m p l e 2 6 3

09 0672318121 CH06 6/20/01 5:44 PM Page 263

Listing 6.8 continued
//
// ‘poa’ - a reference to the root POA object
//
// ‘namingContextExt’ - a reference to the root naming context
//--

//
// Instantiate a ‘StockExchange’ object
//
StockExchange_i myStockServant = new StockExchange_i();
StockExchange myStock = myStockServant._this(m_orb);

try
{

name = rootContextExt.to_name(
“London.region/Main.failover/StockExchange”

);
NameUtil.bindObjectPath(rootContextExt, name, myStock);

}
catch (org.omg.CORBA.SystemException ex) {

System.err.println(ex);
System.exit(1);

}
catch (org.omg.CORBA.UserException ux) {

System.err.println(ux);
System.exit(1);

}

try
{

System.out.println(“Activating the POA manager.”);
org.omg.PortableServer.POAManager poa_manager = poa.the_POAManager();
poa_manager.activate();

System.out.println(“Invoking ORB::run().”);
m_orb.run();

}
catch (org.omg.CORBA.SystemException ex) {

System.err.println(ex);
System.exit(1);

}
catch (org.omg.CORBA.UserException ux) {

System.err.println(ux);
System.exit(1);

}
}

}

2 6 4 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 264

An object reference for the StockExchange object is obtained by invoking _this() on
the servant, which simultaneously activates the object. A stringified name is converted
to a raw name using to_name(), and the object binding is then created with the help of
the bindObjectPath() utility method.

Client Example
A client normally nteracts with the naming service in the following manner:

1. It obtains an object reference by resolving the given name (using either
resolve_str() or resolve()).

2. It narrows the object reference returned by the previous step to cast it to the
correct type.

3. It uses the object reference.

Listing 6.9 and Listing 6.10 show sample clients in C++ and Java that use the naming
service to look up the StockExchange object.

Listing 6.9 C++ Client Resolving a Name
// C++
...
int
main (int argc, char *argv[])
{

...
//--
// The usual initialization boilerplate comes here (not shown).
// The following variables are defined by the initialization code:
//
// ‘orbV’ - a pointer to the ORB object
//
// ‘namingContextExtV’ - a pointer to the root naming context
//--

try
{

CORBA::Object_var objV;
StockExchange_var stockV;

objV = rootContextExtV->resolve_str(
“London.region/Main.failover/StockExchange”
);

stockV = StockExchange::_narrow(objV.in());

if (CORBA::is_nil(stockV.in())) {
cout << “Nil reference returned for StockExchange object.” << endl;
return 1;

}
CORBA::String_var strV = orbV->object_to_string(stockV);

C l i e n t E x a m p l e 2 6 5

09 0672318121 CH06 6/20/01 5:44 PM Page 265

Listing 6.9 continued
cout << strV << endl;
// Now make some invocations on the object reference ‘StockV’
//...

}
catch (CORBA::UserException& ue) {

cerr << ue << endl;
return 1;

}

return 0;
}

Listing 6.10 Java Client Resolving a Name
// Java
package Pure.NamesDemo;

import Pure.Util.*;

import org.omg.CORBA.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;

public class Client
{
private static ORB m_orb;

public static void main(String args[])
{
...
//--
// The usual initialization boilerplate comes here (not shown).
// The following variables are defined by the initialization code:
//
// ‘m_orb’ - a reference to the ORB object
//
// ‘namingContextExt’ - a reference to the root naming context
//--

org.omg.CORBA.Object obj = null;

try
{

//
// Resolve the ‘StockExchange’ object reference
//
obj = rootContextExt.resolve_str(

“London.region/Main.failover/StockExchange”

2 6 6 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 266

Listing 6.10 continued
);

StockExchange Stock = StockExchangeHelper.narrow(obj);

System.out.println(“The ‘StockExchange’ object reference:”);
System.out.println(m_orb.object_to_string(obj));
// Now make some invocations on the object reference ‘Stock’
//...

}
catch (org.omg.CORBA.SystemException ex) {

System.err.println(ex);
System.exit(1);

}
catch (org.omg.CORBA.UserException ux) {

System.err.println(ux);
System.exit(1);

}
}

}

In this example, once the client has the object reference, it stringifies it and prints it to
standard output. The client can make remote invocations once it has initialized the
object reference.

Federated Naming Service
The naming service supports federation; that is, distinct naming servers can be linked
together to create a single naming graph. A client can then navigate seamlessly
throughout the naming graph without being aware that it is federated.

The key to federation support is the operation bind_context(), declared in the fol-
lowing IDL fragment:

//IDL
#pragma prefix “omg.org”

module CosNaming {
...
interface NamingContext {

...
void bind_context(in Name n, in NamingContext nc)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
...

};
...

};

The bind_context() operation binds a given naming context nc to a name n, enabling
arbitrary crosslinks to be created. It is conceptually similar to creating a symbolic link
with the UNIX command ln -s.

F e d e r a t e d N a m i n g S e r v i c e 2 6 7

09 0672318121 CH06 6/20/01 5:44 PM Page 267

Figure 6.4 shows an example of two distinct naming services that have been linked
together using bind_context(). This link could be created by invoking bind_
context() on the initial context of naming service X, giving the name A/B/C as the first
argument and a reference to naming context C as the second argument.

2 6 8 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

Figure 6.4

Making a crosslink between naming services.

The existence of crosslinks has an important impact on the architecture of the naming
service. Simple invocations on a naming service can give rise to a chain of remote invo-
cations across the federated graph.

For example, consider a client that resolves an object with the name A/B/C/MyObject.
Figure 6.4 shows that the contexts A/B and A/B/C are located in two distinct naming
services. When the client invokes resolve() on the naming service X, this naming ser-
vice cannot complete the resolution on its own, so it makes a further invocation of
resolve() on context C in naming service Y.

Graph or Hierarchy?
The topology of the naming service is typically a tree structure. However, there is noth-
ing in the naming service specification that requires the topology to be a tree. In fact,
the topology was deliberately left as flexible as possible to allow the CORBA naming
service to be layered on top of a wide variety of naming services. The naming service
can take the form of an arbitrary directed graph.

It is therefore possible to introduce cycles into the naming graph, as illustrated in
Figure 6.5.

•

••

•

••
A

B

C

Naming Service X

Naming Service Y

A U

B V

• •

••

Figure 6.5

Creating a cycle in a naming graph.

09 0672318121 CH06 6/20/01 5:44 PM Page 268

By introducing a crosslink between B and U and a further crosslink between V and A,
this graph assumes the shape of a bowtie. If you follow the directed links of the graph,
it takes you in a complete circuit. For example, the context A can be accessed under any
of the names A, A/B/U/V/A, or A/B/U/V/A/B/U/V/A.

If cycles are likely to occur in your naming service, you must avoid getting caught in
an infinite loop when traversing the graph. The code examples shown in this chapter
are not designed to be used in a naming graph that has cycles.

Binding Iterators and the list() Operation
Another basic operation on the naming service is the list() operation, which returns
the contents of a naming context. In addition to the simple task of printing out the con-
tents of a naming context, the list() operation is useful for any tasks that require tra-
versal of the naming graph.

The IDL Interface for list() and BindingIterator
At first, it would appear that list() should be a simple operation: It is invoked on a
naming context and returns a list of bindings contained by that naming context. But
what if the naming context happens to contain one million objects? This might seem a
little far-fetched for the particular project you are working on, but it is realistic for some
applications. For example, if the naming service is used to wrap a database, it would
not be unusual to find millions of objects in a naming context. In order to cope with
this situation, the naming service defines a BindingIterator interface that sends over
parts of the listing in manageable-size pieces.

The IDL relating to the list() operation is declared as follows:

// IDL
module CosNaming {

enum BindingType { nobject, ncontext };

struct Binding {
Name binding_name;
BindingType binding_type;

};

typedef sequence <Binding> BindingList;

interface NamingContext {
...
void list(

in unsigned long how_many,
out BindingList bl,
out BindingIterator bi
);

};

interface BindingIterator {
boolean next_one(out Binding b);

B i n d i n g I t e r a t o r s a n d t h e list() O p e r a t i o n 2 6 9

09 0672318121 CH06 6/20/01 5:44 PM Page 269

boolean next_n(in unsigned long how_many, out BindingList bl);
void destroy();

};
...

};

When the list() operation is invoked on a naming context, it returns BindingList,
which holds a sequence of bindings belonging to that naming context. The how_many
argument is used to specify the maximum number of bindings that can be returned in
BindingList.

Two cases arise, according to whether or not the returned BindingIterator bi is null:

• If the BindingIterator bi is a null object reference, the BindingList bl

returned by list() is complete.
• If the BindingIterator bi is not null, the BindingList bl returned by list()

is incomplete. It is then necessary to invoke the BindingIterator object to
retrieve the remaining bindings. You can retrieve the remaining values either
one-by-one, using next_one(), or in larger chunks, using next_n(). The opera-
tions next_one() and next_n() return true if more bindings remain to be
retrieved and false if the end of the list has been reached.

Semantics of list() and BindingIterator

The CORBA specification gives a good deal of latitude to the implementation of
list() and BindingIterator. The following points are important:

• The argument how_many specifies a maximum for the number of returned bind-
ings. There is no guarantee that you will get all of the bindings with an invoca-
tion of list(), even if the number of bindings in the naming context is fewer
than how_many. The specification requires a minimum of only one binding to be
returned from a non-empty naming context. Therefore, you must always check
whether or not a returned BindingIterator is null.

• Likewise, in the operation next_n(), the argument how_many specifies a maxi-
mum for the number of returned bindings. The number of bindings returned
may lie anywhere in the range [1..how_many], irrespective of the number of
bindings that remain to be listed.

• It is legal to pass a zero value of how_many to list(). This is taken to indicate
that you want to use the binding iterator bi to retrieve the list of bindings. In
this case, the returned binding list bl is always a zero-length sequence.

• It is illegal to pass a zero value of how_many to next_n(); this will give rise to a
CORBA::BAD_PARAM exception.

Cleanup After Listing Is Finished
There are a few points to take care of once a listing is finished:

• The only way to tell if a listing is finished is by checking the return value of
next_one() or next_n(). A value of false indicates that there are no more

2 7 0 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 270

bindings to retrieve and that the current return value is empty. A further call
to next_one() or next_n() after they have returned false has undefined
behavior.

• The BindingIterator object in the server has to be deleted. The best approach
is for the client to explicitly call destroy() on the BindingIterator object.
Alternatively, the server may spontaneously delete the BindingIterator
(garbage collection) in order to keep its memory usage under control. The
client has to be prepared to deal with a CORBA::OBJECT_NOT_EXIST in that case.

The garbage collection of BindingIterator is a typical issue that crops up in a dis-
tributed system. In general, for any session object (such as BindingIterator), a server
might need to implement garbage collection to clean out those objects that have been
lying dormant for a relatively long time.

Name Utility—listBindings()
The combination of list() and BindingIterator to retrieve lists of bindings is flexi-
ble but awkward to use. It is easier to use a method that returns the listing in a single
invocation. The listBindings() method of our name utility is such a method.

An implementation of listBindings() is shown for C++ and Java in Listing 6.11 and
Listing 6.12:

Listing 6.11 C++ Implementation of listBindings()
// C++
//--
// method: ‘listBindings()’
//
// purpose:
//--
CosNaming::BindingList *
NameUtil::listBindings(

const CosNaming::NamingContext_ptr nc,
const CosNaming::Name& name,
CORBA::ULong max_list_size
)

{
CosNaming::BindingList_var basicListV;
CosNaming::BindingIterator_var bIterV;

CORBA::Object_var objV;
CosNaming::NamingContext_var tmpContextV;

if (name.length()==0) {
tmpContextV = CosNaming::NamingContext::_duplicate(nc);

}
else {

objV = nc->resolve(name);
tmpContextV = CosNaming::NamingContext::_narrow(objV);

B i n d i n g I t e r a t o r s a n d t h e list() O p e r a t i o n 2 7 1

09 0672318121 CH06 6/20/01 5:44 PM Page 271

Listing 6.11 continued
}
if (CORBA::is_nil(tmpContextV)) {

cerr << “listBindings: Nil context” << endl;
return 0;

}

tmpContextV->list(max_list_size, basicListV.out(), bIterV.out());

CORBA::Long max_remaining = max_list_size - basicListV->length();
CORBA::Boolean moreBindings = !CORBA::is_nil(bIterV);

if (moreBindings) {
while (moreBindings && (max_remaining > 0)) {

CosNaming::BindingList_var tmpListV;

moreBindings = bIterV->next_n(max_remaining, tmpListV.out());

//Append ‘tmpListV’ to ‘basicListV’
CORBA::ULong basicListLen = basicListV->length();
basicListV->length(basicListLen+tmpListV->length());
for (CORBA::ULong i=0; i < tmpListV->length(); i++) {

(*basicListV)[i+basicListLen] = (*tmpListV)[i];
}

//Re-calculate ‘max_remaining’
max_remaining = max_list_size - basicListV->length();

}
bIterV->destroy();

}

return basicListV._ retn();
}

Listing 6.12 Java Implementation of listBindings()
// Java
//--
// method: ‘listBindings()’
//
// purpose:
//--
public static Binding[] listBindings(

NamingContext nc,
NameComponent[] name,
int max_list_size
)
throws org.omg.CORBA.UserException

{

2 7 2 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 272

Listing 6.12 continued
Binding[] basicList;
BindingIterator bIter;

org.omg.CORBA.Object obj;
NamingContext tmpContext;

if (name.length==0) {
tmpContext = nc;

}
else {

obj = nc.resolve(name);
tmpContext = NamingContextHelper.narrow(obj);

}

BindingListHolder basicList_out
= new BindingListHolder();

BindingIteratorHolder bIter_out
= new BindingIteratorHolder();

tmpContext.list(
max_list_size,
basicList_out,
bIter_out
);

basicList = basicList_out.value;
bIter = bIter_out.value;

int max_remaining = max_list_size - basicList.length;
boolean moreBindings = (bIter!=null);

if (moreBindings) {
while (moreBindings && (max_remaining > 0)) {

Binding[] tmpList;
Binding[] oldList;
BindingListHolder tmpList_out

= new BindingListHolder();

moreBindings = bIter.next_n(
max_list_size,
tmpList_out
);

tmpList = tmpList_out.value;

//Append ‘tmpList’ to ‘basicList’
oldList = basicList;
basicList = new Binding[oldList.length+tmpList.length];
for (int i=0; i < oldList.length; i++) {

basicList[i] = oldList[i];
}

B i n d i n g I t e r a t o r s a n d t h e list() O p e r a t i o n 2 7 3

09 0672318121 CH06 6/20/01 5:44 PM Page 273

Listing 6.12 continued
for (int i=0; i < tmpList.length; i++) {

basicList[i+oldList.length] = tmpList[i];
}

// Re-calculate ‘max_remaining’
max_remaining = max_list_size - basicList.length;

}
bIter.destroy();

}

return basicList;
}

The naming context that you want to obtain the listing for is specified by passing the
initial naming context nc and the name of the context relative to the initial context. The
argument max_list_size is used to specify the largest length of BindingList that you
find acceptable. The implementation of listBindings() does not return until either it
has retrieved all of the bindings or it reaches the limit max_list_size.

Name Utility—recursiveUnbind()
As an application of the utility function listBindings(), consider the common task of
deleting a naming context and all its contents. In order to delete the naming context
completely, it is necessary to recurse into all of the sub-contexts and delete their con-
tents as well.

With the help of listBindings(), it is straightforward to implement
recursiveUnbind(), as shown in Listing 6.13 and Listing 6.14 for C++ and Java:

Listing 6.13 C++ Implementation of recursiveUnbind()
// C++
//--
// method: ‘recursiveUnbind()’
//
// purpose:
//--
void
NameUtil::recursiveUnbind(

const CosNaming::NamingContext_ptr nc,
const CosNaming::Name& name

)
{

CORBA::Object_var objV;
CosNaming::NamingContext_var tmpContextV;

objV = nc->resolve(name);
tmpContextV = CosNaming::NamingContext::_narrow(objV);
if (CORBA::is_nil(tmpContextV)) {

2 7 4 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 274

Listing 6.13 continued
cerr << “recursiveUnbind: Nil context reference” << endl;
return;

}

CosNaming::BindingList_var blV;
CosNaming::Name tmpName;
tmpName.length(0);

blV = NameUtil::listBindings(tmpContextV.in(),
tmpName,
10000 // ‘max_list_size’

);

for (CORBA::ULong i=0; i<blV->length(); i++)
{

tmpName = (*blV)[i].binding_name;

if ((*blV)[i].binding_type==CosNaming::nobject)
{

tmpContextV->unbind(tmpName);
}
else if ((*blV)[i].binding_type==CosNaming::ncontext)
{

NameUtil::recursiveUnbind(tmpContextV.in(), tmpName);
}

}
nc->unbind(name);
tmpContextV->destroy();

}

Listing 6.14 Java Implementation of recursiveUnbind()
// Java
//--
// method: ‘recursiveUnbind()’
//
// purpose:
//--
public static void recursiveUnbind(

NamingContext nc,
NameComponent[] name

)
throws org.omg.CORBA.UserException

{
org.omg.CORBA.Object obj;
NamingContext tmpContext;

obj = nc.resolve(name);
tmpContext = NamingContextHelper.narrow(obj);

B i n d i n g I t e r a t o r s a n d t h e list() O p e r a t i o n 2 7 5

09 0672318121 CH06 6/20/01 5:44 PM Page 275

Listing 6.14 continued
Binding[] bl;
NameComponent[] tmpName = new NameComponent[0];

bl = NameUtil.listBindings(tmpContext,
tmpName,
10000 // max_list_size

);

for (int i=0; i < bl.length; i++)
{

tmpName = bl[i].binding_name;

if (bl[i].binding_type==BindingType.nobject)
{

tmpContext.unbind(tmpName);
}
else if (bl[i].binding_type==BindingType.ncontext)
{

NameUtil.recursiveUnbind(tmpContext, tmpName);
}

}
nc.unbind(name);
tmpContext.destroy();

}

The naming context that you want to delete is specified by passing the initial naming
context nc and the name of the context relative to the initial context. Note there are a
couple of limitations of recursiveUnbind() that make it less than industrial strength.
The maximum list size cannot be specified, nor does it deal with a situation in which
the maximum list size is exceeded. Also, this method makes the assumption that the
naming service is arranged strictly in the form of a tree. It cannot deal with naming
graphs containing cycles.

Object URLs
CORBA defines a number of uniform resource locator (URL) formats that can be used
to specify the location of a CORBA object. The allowed URL formats are summarized
in Table 6.5.

Table 6.5 Object URL Formats

Format Description

IOR: A stringified IOR. The prefix IOR: is followed by a string of
hexadecimal numbers.

corbaloc:rir: Specify an object reference that is implicitly resolved using
resolve_initial_references().

corbaloc:iiop: or Specify the location of a CORBA object in a form that is
corbaloc:: appropriate for the IIOP protocol.

2 7 6 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 276

Table 6.5 continued

Format Description

corbaname:rir: Specify a name that is resolved relative to the initial naming
context.

corbaname:iiop: or Specify a name that is resolved relative to the given naming
corbaname:: context.
file:// Indicates a file that may contain a URL or a stringified IOR of

a CORBA object.
ftp:// Indicates a file, retrieved using FTP, that may contain a URL or

a stringified IOR for a CORBA object.
http:// An HTTP URL that can be used to retrieve a URL or a stringi-

fied IOR for a CORBA object.

The first five URL formats—IOR:, corbaloc:rir:, corbaloc:iiop:,
corbaname:rir:, and corbaname:iiop:—must be supported by a CORBA 3 ORB.
However, support for the URL formats file://, ftp://, and http:// is currently
optional.

Converting an Object URL to an Object Reference
Any of the above object URLs can be passed as an argument to the function
CORBA::ORB::string_to_object(). You are not restricted to passing the format
IOR:..., as was the case with versions of CORBA prior to CORBA 3. The way to con-
vert an object URL to an object reference is

//C++
// Given:
// ‘orbV’ -- a reference to a CORBA::ORB instance
// ‘objectURLString’ -- an arbitrary object URL string
CORBA::Object_var objV;
objV = orbV->string_to_object(objectURLString);
...

//Java
// Given:
// ‘orb’ -- a reference to a org.omg.CORBA.ORB instance
// ‘objectURLString’ -- an arbitrary object URL string
org.omg.CORBA.Object obj;
obj = orb.string_to_object(objectURLString);
...

The object reference has to be narrowed to the correct type after it is returned by
string_to_object().

The ORB may need to carry out a number of steps internally to resolve the object URL
passed to string_to_object(). This can include making one or more remote invoca-
tions.

O b j e c t U R L s 2 7 7

09 0672318121 CH06 6/20/01 5:44 PM Page 277

URL Escape Mechanism for Strings
An escape mechanism is needed to encode data in a URL. There are two reasons the
escape mechanism is needed:

• Object URLs frequently need to include binary data. The binary data must be
mapped to printable characters before it can be included in a URL.

• Certain non-alphanumeric characters can become garbled when transmitted
across the Internet.

For these reasons, an escape mechanism is defined by the Internet Engineering Task
Force (IETF) RFC 2396 specifically for URLs. The escape mechanism ensures that
arbitrary strings and binary data can be sent across the Internet without being cor-
rupted. The URL escape mechanism is defined as follows:

• ASCII-encoded alphanumeric characters remain unchanged.
• The following printable ASCII characters remain unchanged:
;, /, :, ?, @, &, =, +, $, ,, -, _, ., !, ~, *, ‘, (,)

• All other characters are escaped. The escaped characters are represented as a %
(percent sign) followed by a two-digit hexadecimal number.

corbaloc:rir: Object URL
The corbaloc:rir: URL has the following general form:

corbaloc:rir:[/ObjectId]

The protocol identifier rir stands for resolve initial references. It indicates that URLs
of this form are resolved by making an implicit call to the method resolve_
initial_references(). The optional part ObjectId is used to select one of the initial
reference types, listed in Table 6.4. For example, ObjectId might be NameService or
RootPOA. If ObjectId is omitted, it is assumed to be NameService by default.

Some examples of corbaloc:rir: URLs are given in Table 6.6.

Table 6.6 Examples of corbaloc:rir: Object URLs

Object URL Description

corbaloc:rir:/TradingService Resolves to an object reference of type
CosTrading::Lookup.

corbaloc:rir:/NameService Resolves to an object reference of type
CosNaming::NamingContext.

corbaloc:rir: Resolves to an object reference of type
CosNaming::NamingContext.

For example, the following invocation of the string_to_object() method

//C++
// Given orbV initialized to an instance of CORBA::ORB
CORBA::Object_var objV = orbV->string_to_object(“corbaloc:rir:”);

2 7 8 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 278

//Java
// Given orb initialized to an instance of org.omg.CORBA.ORB
org.omg.CORBA.Object obj = orb.string_to_object(“corbaloc:rir:”);

is equivalent to an invocation of the resolve_initial_references() method:

//C++
// Given orbV initialized to an instance of CORBA::ORB
CORBA::Object_var objV = orbV->resolve_initial_references(“NameService”);

//Java
// Given orb initialized to an instance of org.omg.CORBA.ORB
org.omg.CORBA.Object obj = orb.resolve_initial_references(“NameService”);

The corbaloc:rir: URL can be used in any context where a stringified object refer-
ence is expected.

corbaloc:iiop: Object URL
The corbaloc:iiop: URL is used to specify the location of a CORBA object in a rel-
atively readable form. It has the following general form:

corbaloc:[iiop]:[version@]host[:port][/URL_escaped_object_key]

The protocol identifier iiop is optional. A blank protocol identifier is taken to be iiop
by default. The version refers to the IIOP version supported by the object. Currently,
it can be 1.0, 1.1, or 1.2. The default is 1.0. The host and port of the server process can
be specified. If port is omitted, it is set to 2089 by default. URL_escaped_object_key
is derived from the object_key that is part of an IOR (see Chapter 5, “Object
References”). The octets of the original object_key are converted to characters using
the URL escape mechanism described previously.

Some examples of corbaloc:iiop: URLs are shown in Table 6.7.

Table 6.7 Examples of corbaloc:iiop: Object URLs

Object URL Description

corbaloc:iiop:1.2@myhost:1234/xyz A server that supports IIOP 1.2, located on
host myhost and listening on port 1234. The
object_key is xyz.

corbaloc::myhost:1234/xyz A server that supports IIOP 1.0, located on
host myhost and listening on port 1234. The
object_key is xyz.

corbaloc::myhost/xyz A server that supports IIOP 1.0, located on
host myhost and listening on port 2089. The
object_key is xyz.

The corbaloc:iiop: URL can be used in place of a stringified IOR in calls to
string_to_object(). The URL contains the same sort of location information that is
found in an IIOP profile. However, unlike the IOR, the URL cannot encode IOR com-
ponents, so it is not an exact replacement for the IOR.

O b j e c t U R L s 2 7 9

09 0672318121 CH06 6/20/01 5:44 PM Page 279

Fault-Tolerant corbaloc:iiop: Object URL
It is possible to specify a comma-separated list of addresses in place of a single address
in the corbaloc:iiop: URL. For example

corbaloc::1.2@myhost:1200,:1.2@mybackuphost:1200,iiop:1.2@myotherbackup:1240/xy

Note that the protocol specifier (iiop: or :) is considered to be part of an address. In
this case, the ORB has three different servers to choose from, with each of them run-
ning on a different host. If the ORB fails to contact the first host, it can try the second
or third one.

corbaname:rir: Object URL
The corbaname:rir: URL has the following general form:

corbaname:rir:[/NameService][#URL_escaped_string_name]

This URL is used to specify an object reference by giving a stringified name that is
resolved relative to the initial naming context. The protocol identifier rir: indicates
that the initial naming context is resolved by invoking resolve_initial_

references(“NameService”). The ObjectId, specified as /NameService, can be omit-
ted from the URL. The URL_escaped_string_name is a stringified name that has been
subjected to the URL escape mechanism.

Some examples of corbaname:rir: URLs are shown in Table 6.8.

Table 6.8 Examples of corbaname:rir: Object URLs

Object URL Description

corbaname:rir:/NameService#Foo/Bar Resolves the object with the stringified
name Foo/Bar relative to the initial nam-
ing context.

corbaname:rir:#Foo/name%20with%20spaces Resolves the object with the stringified
name Foo/name with spaces relative to
the initial naming context.

corbaname:rir:#Foo%5c%5cwith%20backslash Resolves the object with the stringified
name Foo\\with backslash relative to
the initial naming context. Note that \\
is an escaped backslash that represents
a single backslash.

corbaname:rir: Resolves to the initial naming context.

A sample URL of the form corbaname:rir:#Foo/Bar and the following invocation of
the string_to_object() method

//C++
// Given orbV initialized to an instance of CORBA::ORB
CORBA::Object_var objV = orbV->string_to_object(“corbaname:rir:#Foo/Bar”);

2 8 0 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 280

//Java
// Given orb initialized to an instance of org.omg.CORBA.ORB
org.omg.CORBA.Object obj = orb.string_to_object(“corbaname:rir:#Foo/Bar”);

yields a result similar to the following code fragment:

//C++
// Given orbV initialized to an instance of CORBA::ORB
CORBA::Object_var objV = orbV->resolve_initial_references(“NameService”);
CosNaming::NamingContextExt_var rootCtxV

= CosNaming::NamingContextExt::_narrow(objV.in());
if (CORBA::is_nil(rootCtxV.in())) {

cerr << “Error: Failed to narrow to type NamingContextExt” << endl;
exit(1);

}
objV = rootCtxV->resolve_str(“Foo/Bar”);

//Java
// Given orb initialized to an instance of org.omg.CORBA.ORB
org.omg.CosNaming.NamingContextExt rootCtx = null;
org.omg.CORBA.Object obj = orb.resolve_initial_references(“NameService”);
rootCtx = org.omg.CosNaming.NamingContextExtHelper.narrow(obj);
obj = rootCtx.resolve_str(“Foo/Bar”);

For simplicity, the error handling is not shown in the above example. The object refer-
ence obtained needs to be narrowed to the appropriate type before it can be used.

corbaname:iiop: Object URL
The corbaname:iiop: URL has the following general form:

corbaname:[iiop]:[version@]host[:port][/URL_escaped_object_key]
[#URL_escaped_string_name]

This URL format is closely related to the corbaloc:iiop: object URL. The address
portion of the URL

[iiop]:[version@]host[:port][/URL_escaped_object_key]

is identical to the address used in a corbaloc:iiop: URL. In the context of a
corbaname:iiop: URL, the address is taken to specify the location of a
CosNaming::NamingContext object. The URL_escaped_string_name is a stringified
name that has been subjected to the URL escape mechanism. The stringified name is
resolved relative to the specified naming context to yield the object reference to which
the URL refers.

Some examples of corbaname:iiop: URLs are shown in Table 6.9.

O b j e c t U R L s 2 8 1

09 0672318121 CH06 6/20/01 5:44 PM Page 281

Table 6.9 Examples of corbaname:iiop: Object URLs

Object URL Description

corbaname::1.2@myhost:1234/xyz#Foo/Bar An object reference given by the stringi-
fied name Foo/Bar, resolved relative to
the naming context given by
:1.2@myhost:1234/xyz.

corbaname::myhost/xyz#Foo/Bar An object reference given by the stringi-
fied name Foo/Bar, resolved relative to the
naming context given by :myhost/xyz.

Fault-Tolerant corbaname:iiop: Object URL
In a manner similar to the corbaloc:iiop: URL, it is possible to specify a comma-
separated list of addresses in place of a single address in the corbaname:iiop: URL.
For example

corbaname::1.2@myhost:1200,:1.2@mybackuphost:1200,iiop:1.2@myotherbackup:1240
/xyzxyzxyz#Foo/Bar

If the ORB fails to contact the first host, it can try the second or third one. This is par-
ticularly valuable in the case of the naming service. If clients locate all application ser-
vices using the naming service, it is potentially a single point of failure. Using multiple
addresses in a URL provides a simple way of redirecting clients to a backup naming host.

Specifying Values for Initial References
The API associated with the initialization service tells you how an application can get
hold of initial object references. It says nothing, however, about where these object ref-
erences come from or how to specify their values to the ORB. This question is left as
an implementation detail for the ORB vendor. Different ORBs will let you set initial
references in different ways. Typically, the values are stored in a configuration file that
is accessible to the application.

Irrespective of the approach used, the existence of a standard API for the initialization
service means that application code remains independent of the ORB configuration
mechanism.

In addition to an unspecified mechanism for setting default initial references, the ini-
tialization service also provides a mechanism for overriding defaults. You may specify
initial references using one of the command-line arguments -ORBInitRef or
-ORBDefaultInitRef. These command-line arguments are described in the following
sections.

Command-Line Argument -ORBInitRef
The command-line argument -ORBInitRef allows you to override default values of ini-
tial references. For example, consider a C++ server that is initialized using the code
given in Listing 6.1, and suppose the name of the server executable is server. If you

2 8 2 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 282

want to force the server to use a naming service other than the one specified by the
default ORB configuration mechanism, you could run the server as follows:

$ server -ORBInitRef NameService=IOR:010000001600000049444c3a53746f...

where NameService is the ObjectId for the naming service and IOR:0100000016... is
the stringified object reference of a specific CosNaming::NamingContext or
CosNaming::NamingContextExt object. The specified object reference will be returned
in place of the default when the application invokes resolve_initial_

references(“NameService”).

In Listing 6.1 you can see that the command-line arguments held in the string array
argv[] are passed to CORBA::ORB_init(). As the ORB initializes, it scans the supplied
argument list looking for options of the form -ORBsuffix. In this case it finds a single
option -ORBInitRef. This option, along with its associated parameter NameService=
IOR:0100000016..., is removed from the argument list argv[], and the value is used
as the initial reference for the naming service.

Command-Line Argument -ORBDefaultInitRef
The command-line argument -ORBDefaultInitRef allows you to usurp the initializa-
tion service completely by specifying a location from which all initial references are
retrieved. The format for this option is

-ORBDefaultInitRef URLStem

URLStem can be given either as a corbaloc:iiop: or corbaname:iiop: URL. When
resolve_initial_references(“ObjectId”) is subsequently invoked, the initial ref-
erence to ObjectId is resolved as follows:

1. An object URL is constructed from URLStem by appending a / (forward slash)
to ObjectId. This gives a URL string of the general form URLStem/ObjectId.

2. The resulting URL URLStem/ObjectId is resolved in the standard way and
passed back as the return value of resolve_initial_references().

For example, if the following command-line argument is passed to ORB_init()

-ORBDefaultInitRef corbaname::1.2@myhost:1234/xyz#Foo/Bar

a call of the form resolve_initial_references(“TradingService”) will result in
the construction of the URL corbaname::1.2@myhost:1234/xyz#Foo/Bar/

TradingService. The ORB will then look for an object of type CosTrading::Lookup
bound under the name Foo/Bar/TradingService in the naming service given by the
address :1.2@myhost:1234/xyz.

Summary
The naming service is used to establish points of contact between clients and servers.
Together with the initialization service, it provides the basic bootstrap service
in CORBA. Because of this bootstrap role, the naming service is also, potentially, a

S u m m a r y 2 8 3

09 0672318121 CH06 6/20/01 5:44 PM Page 283

single point of failure. If you are interested in developing fault-tolerant applications,
you will need to pay a lot of attention to this component of your architecture.

Naming is a relatively basic service. The operations give you the functionality you need
to associate names with object references and to maintain a graph of naming contexts.
If you need more sophisticated features, for example a flexible search operation or util-
ities that can cope with cycles, you have to supply these yourself. In most development
projects you will probably find it necessary to build a library layered on top of the nam-
ing service that provides the features you need.

Occasionally, you might want to go a step further and implement the whole naming ser-
vice yourself. This is not as difficult as it sounds, and sometimes there are compelling
reasons for doing so. If you already have a non-CORBA naming service that forms part
of your architecture, it makes a lot of sense to re-use the old naming service. You could
implement the CORBA naming service IDL as a wrapper around the old service. It is
precisely this kind of flexibility that is the strength of the CORBA naming service.

Initialization Service Pseudo-IDL
Listing 6.15 shows the IDL for the Initialization Service, which is contained in the
module CORBA.

Listing 6.15 IDL for the Initialization Service
//PIDL
module CORBA {

...
typedef string ORBid;
typedef sequence<string> arg_list;
ORB ORB_init(inout arg_list argv, in ORBid orb_identifier);
...
interface ORB {

typedef string ObjectId;
typedef sequence<ObjectId> ObjectIdList;
...
ObjectIdList list_initial_services();
...
Object resolve_initial_references(

in ObjectId identifier
);

...
}; // interface ORB
...

}; //module CORBA

Naming Service IDL
Listing 6.16 shows the IDL for the Interoperable Naming Service, which is contained
in the module CosNaming.

2 8 4 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 284

Listing 6.16 IDL for the CosNaming Module
//IDL
// File: CosNaming.idl
#ifndef _COSNAMING_IDL_
#define _COSNAMING_IDL_

#pragma prefix “omg.org”

module CosNaming {

typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};

typedef sequence<NameComponent> Name;

enum BindingType { nobject, ncontext };

struct Binding {
Name binding_name;
BindingType binding_type;

};

// Note: In struct Binding, binding_name is incorrectly defined
// as a Name instead of a NameComponent. This definition is
// unchanged for compatibility reasons.
typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {
enum NotFoundReason {

missing_node, not_context, not_object
};
exception NotFound {

NotFoundReason why;
Name rest_of_name;

};
exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};
exception InvalidName{};
exception AlreadyBound {};
exception NotEmpty{};

N a m i n g S e r v i c e I D L 2 8 5

09 0672318121 CH06 6/20/01 5:44 PM Page 285

Listing 6.16 continued
void bind(in Name n, in Object obj)

raises(
NotFound, CannotProceed,
InvalidName, AlreadyBound

);
void rebind(in Name n, in Object obj)

raises(NotFound, CannotProceed, InvalidName);
void bind_context(in Name n, in NamingContext nc)

raises(
NotFound, CannotProceed,
InvalidName, AlreadyBound

);
void rebind_context(in Name n, in NamingContext nc)

raises(NotFound, CannotProceed, InvalidName);
Object resolve (in Name n)

raises(NotFound, CannotProceed, InvalidName);
void unbind(in Name n)

raises(NotFound, CannotProceed, InvalidName);
NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(
NotFound, AlreadyBound,
CannotProceed, InvalidName

);
void destroy() raises(NotEmpty);
void list(

in unsigned long how_many,
out BindingList bl,
out BindingIterator bi
);

};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many, out BindingList bl);
void destroy();

};

interface NamingContextExt: NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;
StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn)

raises(InvalidName);
exception InvalidAddress {};
URLString to_url(in Address addr, in StringName sn)

raises(InvalidAddress, InvalidName);

2 8 6 C h a p t e r 6 : I n t e r o p e r a b l e N a m i n g S e r v i c e

09 0672318121 CH06 6/20/01 5:44 PM Page 286

Object resolve_str(in StringName n)
raises(

NotFound, CannotProceed,
InvalidName, AlreadyBound

);
};

};
#endif // _COSNAMING_IDL_

N a m i n g S e r v i c e I D L 2 8 7

09 0672318121 CH06 6/20/01 5:44 PM Page 287

09 0672318121 CH06 6/20/01 5:44 PM Page 288

The Portable Object
Adapter
The purpose of an object adapter is to make CORBA objects
accessible to CORBA clients via the network. An object
adapter is analogous to a socket into which you can plug your
CORBA objects. By plugging your objects into an object
adapter, you effectively plug them into the network.

The primary responsibility of the object adapter is to ensure
that an invocation, whether local or remote, reaches the object
for which it is intended. When an object adapter receives a
request message, it identifies the appropriate target object and
invokes the corresponding operation on behalf of the client.

The portable object adapter (POA) is a standard object adapter
described in the CORBA specification, and its programming
interface is fully specified. In principle, therefore, code written
using the POA should be portable across different ORB imple-
mentations.

Understanding the POA
The POA is a powerful and flexible object adapter. In particu-
lar, it has been designed very much with scalability in mind—
it is able to cope efficiently with applications that support
millions of CORBA objects.

The downside of this flexibility is that the POA can appear
bewilderingly complex when you approach it for the first time.
It is helpful to keep in mind that the POA is not so much an
object adapter as a whole family of object adapters. The
designers of the POA could have specified a variety of object
adapters, each with different characteristics and each suitable

C H A P T E R 7

Th
e
 P

o
rta

b
le

 O
b

je
ct A

d
a
p

te
r

10 0672318121 CH07 6/20/01 5:52 PM Page 289

for different kinds of applications. Instead, they chose to define a single type of adapter,
the POA, whose characteristics are defined at creation time by a set of POA policies.

Different combinations of POA policies can be used to create very different kinds of
object adapters. Although an enormous number of POA policy combinations are theo-
retically possible, a few examples are sufficient to illustrate the typical and intended
uses of POA policies. Most applications use no more than two or three different kinds
of POA.

An Abstract View of an Invocation
Figure 7.1 shows a high-level view of a remote invocation. Two object references in the
client, labelled “Fred” and “Anna”, are shown invoking operations on two correspond-
ing CORBA objects that live in the server. The interesting entities in this view are

• ObjectId The identity of a CORBA object is represented by the type
PortableServer::ObjectId. In Figure 7.1, the ObjectIds are represented by
the labels “Fred” and “Anna”.

• Object Reference An object reference in the client encapsulates both the loca-
tion and the identity of the corresponding CORBA object. The ObjectId for a
CORBA object is therefore embedded in its object reference.

• CORBA Object A CORBA object has an identity, which is represented by its
ObjectId. In Figure 7.1, the ObjectIds are “Fred” and “Anna”.

2 9 0 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

Figure 7.1

An abstract view of remote invocations.

An object reference in a client encapsulates the location and identity of the corre-
sponding CORBA object. If an operation is invoked on, say, the “Anna” object refer-
ence, the invocation is forwarded to the remote CORBA object with ObjectId equal to
“Anna”. A CORBA object, therefore, has an intrinsic identity, an ObjectId, according
to which invocations are routed.

The Role of the POA
Figure 7.2 gives a more detailed view of invocation routing, assuming that the POA is
used on the server side. Two entities are introduced in this figure:

“Fred”

ObjectId

“Anna”

ObjectId

CORBA
Objects

Server
Object

References

Client

remote
invocations

10 0672318121 CH07 6/20/01 5:52 PM Page 290

• Servant A servant class is a class that provides the implementation of an IDL
interface. Servant instances have no intrinsic identity; they are effectively
anonymous.

• Active Object Map An active object map is a lookup table that is built into a
POA. It associates ObjectIds with a corresponding pointer (C++) or reference
(Java) to a servant object.

U n d e r s t a n d i n g t h e P O A 2 9 1

Server

Object
References

Client

POA - “MyPOA”

“Fred”

“Anna”

Active Object Map Servants

Figure 7.2

POA mapping ObjectIds to servants.

Invocations that arrive in the server are first routed to the appropriate POA object. The
POA takes the ObjectId for the invocation and looks it up in the active object map to
find the target servant object.

Note an important feature of the POA: The POA completely separates the notions of
identity and implementation. A CORBA object is effectively decomposed into

• An identity, represented by PortableServer::ObjectId
• An implementation, provided by a servant instance

The decomposition of a CORBA object into an identity and an implementation is
slightly counterintuitive. You might tend to identify a servant as a CORBA object.
However, you cannot do so. A CORBA object has an identity; a servant does not.

TIP
A CORBA object is composed of an ObjectId, a servant instance, and the associa-
tion that exists between them. A servant is not a CORBA object.

There is no object in the server that corresponds directly to a CORBA object. The
CORBA object is effectively an abstraction.

10 0672318121 CH07 6/20/01 5:52 PM Page 291

The idea of separating identity from implementation is a powerful one. It provides the
key to implementing highly scalable systems using the POA.

The POA has two major responsibilities within the server:

• Locating a servant object to service each incoming invocation request.
• Invoking the appropriate operation on the servant object as specified in the

invocation request.

A servant is located based on the ObjectId contained in the invocation request. The
POA can exercise considerable flexibility in the way it maps ObjectIds to servants.
Figure 7.3 shows three different ways of mapping ObjectIds to servants.

In Figure 7.3(a), the POA implements a one-to-one mapping between ObjectIds and
servants. This straightforward approach is used by default and is supported by the
POA’s built-in active object map.

In Figure 7.3(b), the POA maps many different ObjectIds to a single servant object.
This approach might be appropriate for stateless servants. For example, it could be used
for a servant that implements an interface for telling the time. This approach is sup-
ported by the POA’s built-in active object map.

In Figure 7.3(c), the POA maintains a pool of servants. The mapping of ObjectIds to
servants is carried out dynamically; as soon as an invocation request arrives, the POA
attempts to locate the appropriate servant. This approach is not supported by the POA’s
active object map. Instead, you must take advantage of advanced POA features that
allow you to customize ObjectId to servant mapping.

Once the servant is located, the POA automatically invokes the appropriate operation
on it. However, if you want a greater degree of control over the POA, you can write
code to select the operation yourself. This requires the use of the dynamic skeleton
interface (DSI), described in Chapter 22, “Dynamic Skeleton Interface.”

Servant Activation
In most cases, the association between an ObjectId and a servant is established when
an entry is made in the POA’s active object map. If the association is established in this
way, it is called activating the servant. Removing an association from the active object
map is called deactivating the servant.

Creating a CORBA object typically entails two steps:

1. Create a servant object.
2. Activate the servant object.

In addition, if you want to make this CORBA object available to clients, you create an
object reference and export the object reference to a well-known location.

2 9 2 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 292

Figure 7.3

Different ways of mapping ObjectIds to servants.

The Role of the POA Manager
The picture of how invocation requests are routed to a servant object has been slightly
simplified up to this point. Before an invocation request gets to the POA, it must first
pass through a POA manager object. A POA manager is used to control the flow of
requests into its associated POA (or POAs). This is illustrated in Figure 7.4.

A POA manager can be in one of four states: holding, active, discarding, and inactive.
It acts as a kind of valve to control the flow of incoming requests. The POA manager
must be put into the active state before its associated POA (or POAs) can begin pro-
cessing requests.

The RootPOA Object and the POA Hierarchy
When a CORBA server boots up, there is initially just one POA object available, the
RootPOA. The RootPOA is configured with a default set of POA policies and can be used
right away to activate servant objects. Alternatively, the RootPOA can create new POA
objects, child POAs, which can be configured to have a custom set of POA policies.

U n d e r s t a n d i n g t h e P O A 2 9 3

POA - “POA_1”

“Fred”

“Anna”

(a) One-to-One Mapping

POA - “POA_3”

(c) Dynamic Mapping

POA - “POA_2”

“Fred”

“Anna”

(b) Many-to-One Mapping

Dynamic
Mapping

10 0672318121 CH07 6/20/01 5:52 PM Page 293

Figure 7.4

The POA manager controlling the flow of incoming requests.

The PortableServer module, however, enables you to create any number of POA
objects using the PortableServer::POA::create_POA() operation. A typical server
would create a number of POA objects, with each of these POA objects configured to
manage a group of CORBA objects in a particular way.

For example, if you have a server application that implements the Customer and
CustomerAdmin IDL interfaces, you could create two separate POA objects:

• A POA object named customer_POA that manages Customer servant objects.
• A POA object named customerAdmin_POA that manages CustomerAdmin ser-

vant objects.

The resulting POA hierarchy is illustrated in Figure 7.5. At the top of the hierarchy is
RootPOA. The two new POA objects are created as children of RootPOA.

2 9 4 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

POA

ORB

Request

Servants

POA Manager
(active state)

creates creates

RootPOA - (No Name)

POA - customer_POA POA - customerAdmin_POA

Figure 7.5

A sample POA hierarchy under the root POA.

Other arrangements of the hierarchy are possible. For example, the customer_POA POA
could be created as a child of the customerAdmin_POA POA, which in turn could be cre-
ated as a child of RootPOA. In this way you can create POA hierarchies that are nested
to an arbitrary degree.

10 0672318121 CH07 6/20/01 5:52 PM Page 294

Obtaining a Reference to RootPOA
A reference to the RootPOA object is obtained using the initialization service, as shown
in the following for C++ and Java:

//C++
CORBA::ORB_var global_orbV = CORBA::ORB::_nil();

int main(int argc, char * argv[])
{

PortableServer::POA_var root_poaV;

try {
global_orbV = CORBA::ORB_init(argc, argv);
CORBA::Object_var poa_objV =

global_orbV->resolve_initial_references(“RootPOA”);
root_poaV = PortableServer::POA::_narrow(poa_objV);
if (CORBA::is_nil(poaV.in())) {

cerr << “error: failed to narrow RootPOA object.” << endl;
return 1;

}
}
catch (CORBA::SystemException&) {

//Exception code not shown
}
...

}

//Java
import org.omg.CORBA.*;

public class javaserver
{
public static ORB global_orb;

public static void main(String args[])
{

try
{

System.out.println(“Initializing the ORB”);

global_orb = ORB.init(args, null);
org.omg.CORBA.Object poa_obj
= global_orb.resolve_initial_references(“RootPOA”);

org.omg.PortableServer.POA root_poa
= org.omg.PortableServer.POAHelper.narrow(poa_obj);

//...
}

U n d e r s t a n d i n g t h e P O A 2 9 5

10 0672318121 CH07 6/20/01 5:52 PM Page 295

catch(org.omg.CORBA.SystemException ex)
{

//Exception code not shown
}

}
//...

}

The resolve_initial_references() operation is invoked on the CORBA::ORB object
with “RootPOA” as its argument.

Creating a Child POA
A child POA is created using the PortableServer::POA::create_POA() IDL opera-
tion. The definition of the create_POA() operation is given by the following IDL:

//IDL
module PortableServer {

interface POA {
POA create_POA(

in string adapter_name,
in POAManager a_POAManager,
in CORBA::PolicyList policies

)
raises (AdapterAlreadyExists, InvalidPolicy);
//...

};
};

The create_POA() operation is invoked on an existing POA instance, the parent POA,
and returns a reference to a new POA instance, the child POA. The adapter_name
string identifies the new POA uniquely with respect to its parent POA.

The a_POAManager parameter is a reference to a POAManager object. If a POAManager
object is specified for this parameter, it is used to control the flow of request messages
into the child POA. Alternatively, if a nil object reference is specified, a new
POAManager object is created for the child POA.

The policies parameter enables you to customize the configuration of the child POA.
The CORBA::PolicyList type is a sequence of CORBA::Policy objects, as described in
the next section.

POA Policies
Policies provide a generic mechanism for configuring a CORBA ORB. Each policy is
represented by an object that inherits from the CORBA::Policy IDL interface. They are
used extensively by the POA. Table 7.1 gives a list of standard POA policy types and
the allowed values for each policy.

2 9 6 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 296

Table 7.1 POA Policy Types

POA Policy Type Allowed Values

ThreadPolicy ORB_CTRL_MODEL

SINGLE_THREAD_MODEL

LifespanPolicy TRANSIENT

PERSISTENT

IdAssignmentPolicy SYSTEM_ID

USER_ID

IdUniquenessPolicy UNIQUE_ID

MULTIPLE_ID

RequestProcessingPolicy USE_ACTIVE_OBJECT_MAP_ONLY

USE_DEFAULT_SERVANT

USE_SERVANT_MANAGER

ServantRetentionPolicy RETAINNON_RETAIN

ImplicitActivationPolicy NO_IMPLICIT_ACTIVATION

IMPLICIT_ACTIVATION

When all of the POA policies are used in combination, theoretically there are a lot of
ways of configuring a newly created POA. However, some policy combinations do not
make sense and are not permitted.

Detailed explanations of each POA policy are presented later in this chapter in the con-
text of code examples.

RootPOA Policies and Default POA Policies
POA policies are set at the time a POA object is created. They cannot subsequently be
altered. Because the RootPOA object is implicitly created by the ORB, its POA policies
are set automatically and are immutable. Table 7.2 shows the standard policy values
used by the RootPOA object.

Table 7.2 Policy Values for RootPOA

POA Policy Type RootPOA Policy Value

ThreadPolicy ORB_CTRL_MODEL

LifespanPolicy TRANSIENT

IdAssignmentPolicy SYSTEM_ID

IdUniquenessPolicy UNIQUE_ID

RequestProcessinPolicy USE_ACTIVE_OBJECT_MAP_ONLY

ServantRetentionPolicy RETAIN

ImplicitActivationPolicy IMPLICIT_ACTIVATION

The POA policies for a child POA are set at creation time by the CORBA::PolicyList
that is passed as one of the parameters to the create_POA() operation. Any policies not
explicitly set in CORBA::PolicyList are implicitly set to a default value, as given in
Table 7.3.

P O A P o l i c i e s 2 9 7

10 0672318121 CH07 6/20/01 5:52 PM Page 297

Table 7.3 Default Policy Values for Child POAs

POA Policy Type Default Policy Value

ThreadPolicy ORB_CTRL_MODEL

LifespanPolicy TRANSIENT

IdAssignmentPolicy SYSTEM_ID

IdUniquenessPolicy UNIQUE_ID

RequestProcessinPolicy USE_ACTIVE_OBJECT_MAP_ONLY

ServantRetentionPolicy RETAIN

ImplicitActivationPolicy NO_IMPLICIT_ACTIVATION

The ImplicitActivationPolicy default value, NO_IMPLICIT_ACTIVATION, is different
from the RootPOA ImplicitActivationPolicy policy value, IMPLICIT_ACTIVATION.

CAUTION
The RootPOA policy values are distinct from the default policy values used by child
POAs.

IDL for POA Policies
Listing 7.1 provides IDL extracts that show the interfaces and operations used for
manipulating POA policies. Detailed code examples using POA policies are presented
in the section “A POA for Session Objects” and in the sections following that.

Listing 7.1 IDL for POA Policies
//IDL

#pragma prefix “omg.org”

module CORBA {
typedef unsigned long PolicyType;

//Basic IDL definition
interface Policy {

readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

};

typedef sequence<Policy> PolicyList;
};

module PortableServer {
//...
// Policy interfaces
const CORBA::PolicyType THREAD_POLICY_ID = 16;

2 9 8 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 298

Listing 7.1 continued
const CORBA::PolicyType LIFESPAN_POLICY_ID = 17;
const CORBA::PolicyType ID_UNIQUENESS_POLICY_ID = 18;
const CORBA::PolicyType ID_ASSIGNMENT_POLICY_ID = 19;
const CORBA::PolicyType IMPLICIT_ACTIVATION_POLICY_ID = 20;
const CORBA::PolicyType SERVANT_RETENTION_POLICY_ID = 21;
const CORBA::PolicyType REQUEST_PROCESSING_POLICY_ID = 22;

enum ThreadPolicyValue {
ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL

};
interface ThreadPolicy : CORBA::Policy {

readonly attribute ThreadPolicyValue value;
};

enum LifespanPolicyValue {
TRANSIENT,
PERSISTENT

};
interface LifespanPolicy : CORBA::Policy {

readonly attribute LifespanPolicyValue value;
};

enum IdUniquenessPolicyValue {
UNIQUE_ID,
MULTIPLE_ID

};
interface IdUniquenessPolicy : CORBA::Policy {

readonly attribute IdUniquenessPolicyValue value;
};

enum IdAssignmentPolicyValue {
USER_ID,
SYSTEM_ID

};
interface IdAssignmentPolicy : CORBA::Policy {

readonly attribute IdAssignmentPolicyValue value;
};

enum ImplicitActivationPolicyValue {
IMPLICIT_ACTIVATION,
NO_IMPLICIT_ACTIVATION

};
interface ImplicitActivationPolicy : CORBA::Policy {

readonly attribute ImplicitActivationPolicyValue value;
};

P O A P o l i c i e s 2 9 9

10 0672318121 CH07 6/20/01 5:52 PM Page 299

Listing 7.1 continued
enum ServantRetentionPolicyValue {

RETAIN,
NON_RETAIN

};
interface ServantRetentionPolicy : CORBA::Policy {

readonly attribute ServantRetentionPolicyValue value;
};

enum RequestProcessingPolicyValue {
USE_ACTIVE_OBJECT_MAP_ONLY,
USE_DEFAULT_SERVANT,
USE_SERVANT_MANAGER

};
interface RequestProcessingPolicy : CORBA::Policy {

readonly attribute RequestProcessingPolicyValue value;
};

// POA interface
interface POA {

//...
// Factories for Policy objects
ThreadPolicy create_thread_policy(

in ThreadPolicyValue value
);
LifespanPolicy create_lifespan_policy(

in LifespanPolicyValue value
);
IdUniquenessPolicy create_id_uniqueness_policy(

in IdUniquenessPolicyValue value
);
IdAssignmentPolicy create_id_assignment_policy(

in IdAssignmentPolicyValue value
);
ImplicitActivationPolicy create_implicit_activation_policy(

in ImplicitActivationPolicyValue value
);
ServantRetentionPolicy create_servant_retention_policy(

in ServantRetentionPolicyValue value
);
RequestProcessingPolicy create_request_processing_policy(

in RequestProcessingPolicyValue value
);
//...

};
//...

};

3 0 0 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 300

Types of CORBA Objects
Before we present the different kinds of POAs that can be created using POA policies,
it is helpful to divide CORBA objects into different categories. A number of common
patterns can be identified. For example, some CORBA objects have their state stored
in a database, and others do not. Some CORBA objects are short lived, others are long
lived, some are transactional, and others are not transactional.

The basic categories discussed in this section are as follows:

• Transient and Persistent Objects These are categories specific to the POA
and relate to the TRANSIENT and PERSISTENT lifespan policies.

• Session and Entity Objects These object categories are derived from compo-
nent technologies, such as Sun’s Enterprise JavaBeans (EJB) and the CORBA
Components specification. They are used in this chapter in an informal way to
motivate some of the POA policies.

• Factory Objects The concept of a factory object is derived from the CORBA
Lifecycle Service and refers to objects that create other objects.

Transient and Persistent Objects
The POA distinguishes between the two following categories of CORBA object:

• Transient Objects Short-lived objects whose lifetime is bounded by the life-
time of the server process in which they are created.

• Persistent Objects Long-lived objects whose lifetime is unbounded. The
server in which a persistent object is created can be started, stopped, and
restarted multiple times. The persistent object remains valid throughout.

This concept is illustrated in Figure 7.6, which shows a server that is started and
stopped three times in a row. The first time the server is started, it creates a transient
object, T1, and a persistent object, P. At the end of the first run of the server, T1 is
destroyed and ceases to exist. The persistent object, P, remains valid but dormant.

When the server is started up for the second time, it creates a new transient object, T2.
The old T1 transient object is no longer accessible. If a client holds an object reference
for the old T1 session object and attempts to invoke an operation on it, it receives a
CORBA::OBJECT_NOT_EXIST system exception from the server. In contrast to this, the
persistent object, P, remains valid and can still have its operations invoked by a
CORBA client.

The following two subsections summarize the basic properties of transient and persis-
tent objects.

Transient Objects
Transient objects have the following basic properties:

• Transient objects typically represent short-lived objects that perform some
work on behalf of clients.

Ty p e s o f C O R B A O b j e c t s 3 0 1

10 0672318121 CH07 6/20/01 5:52 PM Page 301

For example, the RecycleBroker application from Chapter 3, “A Sample
CORBA System,” features the Selling and Buying interfaces that represent the
action of a client selling or buying WasteItem objects. These interfaces can be
implemented as transient objects.

• The lifetime of a transient object is bounded by the lifetime of the POA
instance that is used to activate it.

• Once its associated POA has been destroyed, any attempt to use a transient
object reference generates a CORBA::OBJECT_NOT_EXIST system exception.

• The fact that transient objects are guaranteed to be short lived enables an ORB
implementation to make optimizations. In some ORBs, interoperable object ref-
erences (IORs) are constructed in a special way for transient objects. For exam-
ple, transient IORs typically hold location details for making a direct
connection to the server, bypassing any ORB daemon process.

3 0 2 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

Server
Process

start stop

Transient
Objects

create

create

destroy

T1

Persistent
Object

P

T2 T3

Figure 7.6

The lifecycles of transient and persistent objects.

Persistent Objects
Persistent objects have the following basic properties:

• Persistent objects typically represent objects with persistent state that is stored
in a database.
For example, the RecycleBroker application from Chapter 3 features the
RecycleBroker::Customer and RecycleBroker::WasteItem interfaces. These
interfaces represent Customer and WasteItem records, respectively, that are
stored in a database. The interfaces can be implemented as persistent objects.

• The lifetime of a persistent object is unbounded.
• Once its associated POA has been destroyed, a persistent object becomes dor-

mant. It can be reactivated, however, when the server is restarted and the POA
reinstantiated.

10 0672318121 CH07 6/20/01 5:52 PM Page 302

• In some ORBs, IORs specify the details for making a connection to a form of
locator daemon instead of specifying a direct connection to the server. This
enables an ORB to automatically restart the server process if necessary. The
client is redirected to the appropriate server process using the GIOP
location-forwarding mechanism (see Chapter 16, “The Internet Inter-ORB
Protocol”).

Session and Entity Objects
In concept, session and entity objects are closely related to transient and persistent
objects. The terminology of session and entity objects appears in both the Enterprise
JavaBeans specification and the CORBA Components specification.

The terms session object and entity object are not used in the core CORBA specifica-
tion. However, it is helpful to introduce the terms informally to motivate POA policies
and use patterns. In this chapter, the terms are used in the following way:

• Session object—A transient object, augmented by its typical usage pattern.
• Entity object—A persistent object, augmented by its typical usage pattern.

Session Objects
A session object is typically

• Short-lived It is created with a transient lifespan.
• Non-persistent The state of a session object does not need to be stored in a

database. However, a session object can provide access to a database.

These two characteristics of a session object influence how its lifecycle is managed.
Figure 7.7 illustrates how a CORBA session object is created.

Ty p e s o f C O R B A O b j e c t s 3 0 3

POA - “SessionPOA”

“Fred”

2. Activate Servant 1. Create Servant3. Create Object
Reference

Figure 7.7

Creating a CORBA session object.

A session object is created in three steps:

1. Create the servant object The servant is initialized with state that depends
on the context in which it is created.

10 0672318121 CH07 6/20/01 5:52 PM Page 303

2. Activate the servant object The servant is activated with a POA that has a
lifespan policy equal to TRANSIENT.

3. Create an object reference The object reference is exported to advertise the
session object to clients.

Entity Objects
An entity object is typically

• Long-lived It is created with a persistent lifespan.
• Persistent It usually has some state that must be stored in a database.

These two characteristics of an entity object influence how its lifecycle is managed.
Figure 7.8 illustrates how a CORBA entity object is created.

3 0 4 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

POA - “EntityPOA”

“Fred”

3. Activate Servant 2. Create Servant

1. Create DB Record

4. Create Object
Reference

DB Table

Figure 7.8

Creating a CORBA entity object.

An entity object is created in four steps:

1. Create a database record The database record holds the persistent state of
the entity object.

2. Create the servant object The servant is initialized by reading its state from
the database.

3. Activate the servant object The servant is activated with a POA that has a
lifespan policy equal to PERSISTENT.

4. Create an object reference The object reference is exported to advertise the
session object to clients.

Factory Objects
In the context of the POA, factory objects are important because they are concerned
with lifecycle operations such as creating, finding, and destroying other objects.

For example, in the RecycleBroker application of Chapter 3, WasteItem objects are
managed by the WasteItemAdmin interface. The WasteItemAdmin interface features
operations for creating and finding WasteItem objects.

10 0672318121 CH07 6/20/01 5:52 PM Page 304

The implementation of the create() function depends heavily on the particular style
of lifecycle management used for the WasteItem objects. It is affected by the fact that
WasteItem objects are entity objects and by the exact choice of POA policies. There
are two main sorts of factory objects:

• Factory objects for session objects The create() operation performs the
three steps described in the previous section to create a session object.

• Factory objects for entity objects The create() operation performs the
four steps listed previously to create an entity object.

The factory objects themselves may be either session or entity objects. A factory object
that serves as the first point of contact between client and server is often treated as an
entity object. For example, in the RecycleBroker application the BranchOffice and
HeadOffice interfaces might be implemented as entity objects.

Sub-factories created by other factories are often treated as session objects. There is no
need to make the sub-factories long lived, because they can easily be regenerated by
invoking on the original factory. For example, in the RecycleBroker application, the
Browsing factory interface might be implemented as a session object.

A POA for Session Objects
This section describes how to create and use a POA instance that is appropriate for
activating and managing session objects. The sample IDL used to illustrate the POA for
session objects is given in Listing 7.2.

Listing 7.2 A Sample IDL
//IDL

module RecycleBroker {
//...

// Interface for Session Objects
interface Browsing {

// operations and attributes not shown...
};

// Base Interface for Session Object Factory
interface Office {

Browsing get_browsing();
};

// Interface for Session Object Factory
interface BranchOffice : Office { };

};

This example is based on the RecycleBroker application described in Chapter 3.

Browsing objects are created for a short time to allow a particular user to browse the
list of available WasteItems. A Browsing object has the characteristics of a session
object.

A P O A f o r S e s s i o n O b j e c t s 3 0 5

10 0672318121 CH07 6/20/01 5:52 PM Page 305

The BranchOffice::get_browsing() operation (inherited from the Office interface)
creates Browsing objects on demand. A BranchOffice object has the characteristics of
a session object factory.

This section is divided into three parts that explain how to create and use a POA that is
appropriate for activating and managing session objects.

Creating the POA
For convenience, a class POAUtility and a static function POAUtility::create_
basic_POA() are defined here to encapsulate the basic steps needed to create a POA
for session objects. The code for the static create_basic_POA() function is shown for
C++ in Listing 7.3 and for Java in Listing 7.4. The create_basic_POA() function is
basically a wrapper for the PortableServer::POA::create_POA() function:

Listing 7.3 C++ Creating a POA for Session Objects
//C++
#include “POAUtility.h”

PortableServer::POA_ptr
POAUtility::create_basic_POA(

PortableServer::POA_ptr parentPOAP,
PortableServer::POAManager_ptr POAManagerP,
char * POAName,
CORBA::Boolean isMultiThread,
CORBA::Boolean isPersistent

)
{

// Create a policy list.
CORBA::PolicyList policies;
policies.length(3);
CORBA::ULong i = 0;

// Thread Policy
PortableServer::ThreadPolicyValue threadPolicy;

if (isMultiThread) {
threadPolicy = PortableServer::ORB_CTRL_MODEL;

}
else {

threadPolicy = PortableServer::SINGLE_THREAD_MODEL;
}
policies[i] = parentPOAP->create_thread_policy(threadPolicy);

// Lifespan and IdAssignment Policies
PortableServer::LifespanPolicyValue lifeSpanPolicy;
PortableServer::IdAssignmentPolicyValue idAssignPolicy;

if (isPersistent) {
// Policies for ‘Entity’ objects

3 0 6 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 306

Listing 7.3 continued
lifeSpanPolicy = PortableServer::PERSISTENT;
idAssignPolicy = PortableServer::USER_ID;

}
else {

// Policies for ‘Session’ objects
lifeSpanPolicy = PortableServer::TRANSIENT;
idAssignPolicy = PortableServer::SYSTEM_ID;

}

// Lifespan Policy
i++;
policies[i] = parentPOAP->create_lifespan_policy(lifeSpanPolicy);

// IdAssignment Policy
i++;
policies[i] = parentPOAP->create_id_assignment_policy(idAssignPolicy);

// IdUniqueness Policy - Default = UNIQUE_ID

// ImplicitActivation Policy - Default = NO_IMPLICIT_ACTIVATION

// RequestProcessing Policy - Default = USE_ACTIVE_OBJECT_MAP_ONLY

// ServantRetention Policy - Default = RETAIN

return parentPOAP->create_POA(POAName, POAManagerP, policies);
}

Listing 7.4 Java Creating a POA for Session Objects
//Java
package Pure.Util;

import org.omg.PortableServer.*;

public class POAUtility {
public static org.omg.PortableServer.POA
create_basic_POA(

org.omg.PortableServer.POA parentPOA,
org.omg.PortableServer.POAManager POAManager,
String POAName,
boolean isMultiThread,
boolean isPersistent

)
throws org.omg.PortableServer.POAPackage.InvalidPolicy,

org.omg.PortableServer.POAPackage.AdapterAlreadyExists
{
// Create a policy list.
org.omg.CORBA.Policy policies[] = new org.omg.CORBA.Policy[3];
int i = 0;

A P O A f o r S e s s i o n O b j e c t s 3 0 7

10 0672318121 CH07 6/20/01 5:52 PM Page 307

Listing 7.3 continued
// Thread Policy
org.omg.PortableServer.ThreadPolicyValue threadPolicy = null;

if (isMultiThread) {
threadPolicy = ThreadPolicyValue.ORB_CTRL_MODEL;

}
else {

threadPolicy = ThreadPolicyValue.SINGLE_THREAD_MODEL;
}
policies[i] = parentPOA.create_thread_policy(threadPolicy);

// Lifespan and IdAssignment Policies
org.omg.PortableServer.LifespanPolicyValue lifeSpanPolicy = null;
org.omg.PortableServer.IdAssignmentPolicyValue idAssignPolicy = null;

if (isPersistent) {
// Policies for ‘Entity’ objects
lifeSpanPolicy = LifespanPolicyValue.PERSISTENT;
idAssignPolicy = IdAssignmentPolicyValue.USER_ID;

}
else {

// Policies for ‘Session’ objects
lifeSpanPolicy = LifespanPolicyValue.TRANSIENT;
idAssignPolicy = IdAssignmentPolicyValue.SYSTEM_ID;

}

// Lifespan Policy
i++;
policies[i] = parentPOA.create_lifespan_policy(lifeSpanPolicy);

// IdAssignment Policy
i++;
policies[i] = parentPOA.create_id_assignment_policy(idAssignPolicy);

// IdUniqueness Policy - Default = UNIQUE_ID

// ImplicitActivation Policy - Default = NO_IMPLICIT_ACTIVATION

// RequestProcessing Policy - Default = USE_ACTIVE_OBJECT_MAP_ONLY

// ServantRetention Policy - Default = RETAIN

return parentPOA.create_POA(POAName, POAManager, policies);
}
//...

}

3 0 8 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 308

The first parameter, parentPOAP, is a reference to the POA that serves as a parent to the
POA returned by this function.

The second parameter, POAManagerP, specifies the POAManager object that is passed
into create_POA() and controls the flow of messages into the newly created POA.

The third parameter, POAName, sets the name of the newly created POA (relative to the
parent POA).

The fourth parameter, isMultiThread, determines whether or not you want this POA
to be multithreaded. This is discussed in more detail in the next section.

The fifth parameter, isPersistent, determines whether objects activated by this POA
will be short lived or long lived. Effectively, it determines whether you want to treat
your objects as session objects or entity objects. In this example, it is always set equal
to FALSE to indicate session objects.

The body of the create_basic_POA() function is taken up mostly with initializing the
list of policies. CORBA::PolicyList is declared as sequence<CORBA::Policy> and
contains a list of CORBA::Policy objects that are used to initialize the POA returned by
create_POA(). Listing 7.1 shows the IDL used to create individual POA
CORBA::Policy objects.

The three policies explicitly set here are discussed in the following sections.

Thread Policy
The thread policy, of PortableServer::ThreadPolicy type, specifies whether the
newly created POA is single-threaded or multithreaded. There are two possible values
for this policy:

• SINGLE_THREAD_MODEL

This policy value makes the POA single-threaded. Invocation requests are dis-
patched to the POA’s servants in a sequential manner. Only one request at a
time is processed. This policy value is useful if you want to implement servants
that are not thread aware.
However, using a single-threaded POA does not necessarily isolate servants
from threading issues. If the application as a whole is multithreaded, some ser-
vant methods might be invoked directly from multiple threads, or the servants
might need to access synchronized resources. Servants managed by a single-
threaded POA need to be thread aware under these circumstances.

• ORB_CTRL_MODEL

This policy value makes the POA multithreaded. However, details of the multi-
threading model are not described in the CORBA standard. Typically, an ORB
provides some kind of thread pool to process requests: As each request arrives
at the POA, it is assigned to the next available thread. In this way, many
requests can execute concurrently. This policy value requires servant code to be
thread aware.

A P O A f o r S e s s i o n O b j e c t s 3 0 9

10 0672318121 CH07 6/20/01 5:52 PM Page 309

Lifespan Policy
The lifespan policy, of PortableServer::LifespanPolicy, is used to indicate whether
the POA’s objects are transient or persistent. There are two possible values for this policy:

• TRANSIENT

This policy value specifies that the POA’s objects are short lived. The lifetime
of an object activated by a particular POA instance is bounded by the lifetime
of the POA instance. Once the POA has been deactivated, its objects perma-
nently cease to exist. This policy value is always used for session objects.

• PERSISTENT

This policy value specifies that the POA’s objects are long lived (entity
objects). Objects activated by this POA can continue to exist after the POA has
been deactivated and the server process shut down. This policy value is always
used for entity objects.

ID Assignment Policy
The ID assignment policy, of PortableServer::IdAssignmentPolicy type, is used to
indicate whether ObjectIds are assigned by the developer or automatically assigned by
the POA:

• SYSTEM_ID

This policy value specifies that the POA always automatically generates its
own ObjectIds. For short-lived objects, this policy value is very convenient. It
saves the administrative overhead of having to maintain some kind of counter
to generate ObjectIds yourself.

• USER_ID

This policy value specifies that the developer must always supply the ObjectId
used to identify a servant. The ObjectId must be unique per POA.
Typically, this policy value is needed for entity objects. For example, it allows a
developer to embed a database key in an ObjectId.

The IdAssignmentPolicy value determines which operation you are allowed to call to
activate a servant object. There are two IDL operations provided for activating servants:

//IDL
module PortableServer {

//...
// POA interface
interface POA {

exception ObjectAlreadyActive {};
exception ServantAlreadyActive {};
exception WrongPolicy {};

// Compatible with ‘SYSTEM_ID’ policy value
ObjectId activate_object(

in Servant p_servant)
raises (ServantAlreadyActive, WrongPolicy);

3 1 0 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 310

// Compatible with ‘USER_ID’ policy value
void activate_object_with_id(

in ObjectId id,
in Servant p_servant)

raises (ServantAlreadyActive, ObjectAlreadyActive, WrongPolicy);
};

};

The activate_object() operation can be used only for a POA that has a SYSTEM_ID
policy value. The activate_object_with_id() operation is mainly intended to be
used for a POA that has a USER_ID policy value. The operation can also be used for a
POA that has a SYSTEM_ID policy value, but only if the supplied object ID was previ-
ously generated by the system.

The use of the activate_object() and activate_object_with_id() operations is
illustrated by example in this section and in the following sections.

Implementing a Session Object Factory
The way to create and activate a servant object is affected by the particular set of poli-
cies chosen for the POA. The implementation of the
RecycleBroker::BranchOffice::get_browsing() operation, given in Listing 7.5 and
Listing 7.6, illustrates how to create a session object of Browsing type.

Listing 7.5 C++ Implementation of the RecycleBroker::BranchOffice::
get_browsing() Operation
//C++
//---
// Given the following variables:
// m_poa_for_childrenV - a cached pointer to a ‘PortableServer::POA’ object
// used for activating and managing ‘Browsing’ objects.
// It is a private member variable of ‘RecycleBroker_BranchOffice_i’
// and is initialized by the constructor.
//

RecycleBroker::Browsing_ptr

RecycleBroker_BranchOffice_i::get_browsing()
throw (CORBA::SystemException)
{

PortableServer::ServantBase_var the_BrowsingV;
PortableServer::ObjectId_var oidV;
CORBA::Object_var objV;
RecycleBroker::Browsing_var refV;

cout << “RecycleBroker_BranchOffice_i::get_browsing() called”
<< endl;

// Case: Use Basic POA

A P O A f o r S e s s i o n O b j e c t s 3 1 1

10 0672318121 CH07 6/20/01 5:52 PM Page 311

Listing 7.5 continued
// Step 1 - Create a ‘Browsing_i’ servant object
// (constructor arguments not shown)
the_BrowsingV = new RecycleBroker_Browsing_i();

// Step 2 - Activate the CORBA object
oidV = m_poa_for_childrenV->activate_object(the_BrowsingV.in());

// Step 3 - Create an object reference
objV = m_poa_for_childrenV->id_to_reference(oidV);
refV = RecycleBroker::Browsing::_narrow(objV.in());

return refV. _retn();
}

Listing 7.6 Java Implementation of the get_browsing() Operation
//Java
//---
// Given the following variables:
// m_poa_for_children - a cached reference to a ‘PortableServer.POA’ object
// used for activating and managing ‘Browsing’ objects.
// It is a private member variable of ‘RecycleBroker_BranchOffice_i’
// and is initialized by the constructor.
//
package Pure.POADemo;

import Pure.POADemo.RecycleBroker.*;

public class RecycleBroker_BranchOffice_i
extends BranchOfficePOA

{
// IDL operations
public Browsing get_browsing()
throws org.omg.CORBA.SystemException
{
org.omg.PortableServer.Servant the_Browsing;
byte[] oid;
org.omg.CORBA.Object obj;
Browsing ref;

System.out.println(“RecycleBroker_BranchOffice_i.get_browsing() called”);

// Case: Use Basic POA

// Step 1 - Create a ‘Browsing_i’ servant object
// (constructor arguments not shown)
the_Browsing = new RecycleBroker_Browsing_i();

3 1 2 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 312

Listing 7.6 continued
try {

// Step 2 - Activate the CORBA object
oid = m_poa_for_children.activate_object(the_Browsing);

// Step 3 - Create an object reference
obj = m_poa_for_children.id_to_reference(oid);
ref = BrowsingHelper.narrow(obj);

}
catch (Exception ex) {

// Error: details of exception handling not shown
ref = null;

}

return ref;
}
//...

}

The get_browsing() operation creates and returns an object reference for a
RecycleBroker::Browsing object. The m_poa_for_childrenV variable is a private
member variable that caches a pointer to the POA used to activate new Browsing
objects.

Because the Browsing interface fits the pattern of a session object, the three steps illus-
trated in Figure 7.7 are used to create the Browsing CORBA object.

1. Create the servant object Though not shown in this example, typically the
servant constructor for a session object is initialized with some arguments.

2. Activate the servant object Because the POA has been created with an ID
assignment policy of SYSTEM_ID, the developer must call activate_object()
to activate the servant. The return value of activate_object() is an automati-
cally generated ObjectId for the servant.

3. Create an object reference The id_to_reference() operation is used to
convert the ObjectId to a Browsing object reference that can be returned from
get_browsing().

Creating the Factory
The BranchOffice factory object can create any number of Browsing objects on
demand. Before this can happen, however, there must be at least one instance of a
BranchOffice object to get things started. Listing 7.7 and Listing 7.8 show how the
BranchOffice object is created and activated.

Listing 7.7 C++ Creating and Activating a BranchOffice Object
//C++
//---
// Given the following variables:
// root_poaV - a pointer to the root POA object.
// root_poa_managerV - the root POAManager object that is

A P O A f o r S e s s i o n O b j e c t s 3 1 3

10 0672318121 CH07 6/20/01 5:52 PM Page 313

Listing 7.7 continued
// obtained from the root POA object.
//
...
// Create a basic POA for ‘Session’ objects.
basic_session_poaV =

POAUtility::create_basic_POA(
root_poaV.in(),
root_poa_managerV.in(),
“basic_session_poa”,
0, // Single threaded
0 // for ‘Session’ objects

);

//---
// Create Factories and export their object references.
//---
PortableServer::ObjectId_var oidV;
CORBA::Object_var refV;

// Step 1 - Create a servant for the ‘BranchOffice’ interface.
the_BranchOfficeV = new RecycleBroker_BranchOffice_i(

basic_session_poaV.in(), //POA for the Factory
basic_session_poaV.in() //POA for the children

);

// Step 2 - Activate the CORBA object
oidV = basic_session_poaV->activate_object(the_BranchOfficeV.in());

// Step 3 - Create an object reference
refV = basic_session_poaV->id_to_reference(oidV);

// Export the ‘BranchOffice’ object reference, ‘refV’, to the Naming Service
...

Listing 7.8 Java Creating and Activating a BranchOffice Object
//Java
//---
// Given the following variables:
// root_poa - a reference to the root POA object.
// root_poa_manager - the root POAManager object that is
// obtained from the root POA object.
//
...
// Create a basic POA for ‘Session’ objects.
POA basic_session_poa =

Pure.Util.POAUtility.create_basic_POA(
root_poa,
root_poa_manager,

3 1 4 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 314

Listing 7.8 continued
“basic_session_poa”,
false, // Single threaded
false // for ‘Session’ objects

);

//---
// Create Factories and export their object references.
//---
byte[] oid = null;
org.omg.CORBA.Object ref = null;

// Step 1 - Create a servant for the ‘BranchOffice’ interface.
Servant the_BranchOffice = new RecycleBroker_BranchOffice_i(

basic_session_poa //POA for the children
);

// Step 2 - Activate the CORBA object
oid = basic_session_poa.activate_object(the_BranchOffice);

// Step 3 - Create an object reference
ref = basic_session_poa.id_to_reference(oid);

// Export the ‘BranchOffice’ object reference, ‘refV’, to the Naming Service
...

The basic_session_poaV object is created using the
POAUtility::create_basic_POA() function. This is the POA used to activate session
objects in this example.

Because the BranchOffice object itself is created as a session object, the steps to cre-
ate and activate a BranchOffice object are essentially the same as the steps for
Browsing objects in the previous section.

Note that the RecycleBroker_BranchOffice_i constructor takes two arguments. The
first is the POA used to activate this BranchOffice object; the second is the POA that
will be used to activate the Browsing objects created by the BranchOffice object. In
this case, the same POA can be used for both purposes.

A POA for Entity Objects
This section describes how to create and use a POA that is appropriate for activating
and managing entity objects. The sample IDL used to illustrate the POA for entity
objects is given in Listing 7.9.

Listing 7.9 A Sample IDL
//IDL

module RecycleBroker {
//...

A P O A f o r E n t i t y O b j e c t s 3 1 5

10 0672318121 CH07 6/20/01 5:52 PM Page 315

Listing 7.9 continued
typedef long KeyType;
typedef float PriceType;
enum WasteType {

BROWN_GLASS, GREEN_GLASS, CLEAR_GLASS, SCRAP_STEEL,
ALUMINIUM_CANS, PLASTIC_BOTTLES, WASTE_PAPER

};

// struct RecycleBroker::WasteItemDetails
struct WasteItemDetails {

WasteType waste;
long quantity;
PriceType price_per_kilo;

};

// Interface for Entity Objects
interface WasteItem {

// operations and attributes not shown...
};

// Interface for Entity Object Factory
interface WasteItemAdmin {

WasteItem create(
in WasteItemDetails initialData,
out KeyType wasteitem_id

);
WasteItem find(in KeyType wasteitem_id);

};
};

A WasteItem object represents a consignment of waste of a particular WasteType, for
example BROWN_GLASS or SCRAP_STEEL. The WasteItemDetails struct encapsulates
some of the properties of a WasteItem object. A WasteItem object has the characteris-
tics of an entity object.

The WasteItemAdmin interface is effectively a factory for creating and managing
WasteItem objects. Two operations are defined:

• The create() operation creates a new WasteItem object and returns an object
reference for it. The first parameter, a WasteItemDetails struct, is used to ini-
tialize the new WasteItem. The second parameter, wasteitem_id, is an out para-
meter that returns the database key associated with the new WasteItem object.

• The find() operation finds an existing WasteItem object. It takes the
wasteitem_id database key as its argument and returns the corresponding
WasteItem object reference.

A BranchOffice object has the characteristics of an entity object factory.

This section is divided into five parts explaining how to create and use a POA that is
appropriate for activating and managing entity objects.

3 1 6 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 316

Creating the POA
The POAUtility::create_basic_POA() function, presented in Listing 7.3 and Listing
7.4, can also be used to create a POA suitable for entity objects. The function is called
with the isPersistent argument equal to TRUE and the isMultiThread argument equal
to FALSE (see Listing 7.16 and Listing 7.17).

In this example, the set of POA policies used to manage entity objects is given in
Table 7.4.

Table 7.4 POA Policies Used for Entity Objects

Policy Name Policy Value

ThreadPolicy SINGLE_THREAD_MODEL

LifespanPolicy PERSISTENT

IdAssignmentPolicy USER_ID

IdUniquenessPolicy UNIQUE_ID

ImplicitActivationPolicy NO_IMPLICIT_ACTIVATION

RequestProcessingPolicy USE_ACTIVE_OBJECT_MAP_ONLY

ServantRetentionPolicy RETAIN

Two of these policies relate specifically to the management of entity objects:

• The PERSISTENT lifespan policy value specifies that objects managed by this
POA can outlive the server process in which they are created.

• The USER_ID ID assignment policy value specifies that ObjectIds are set
explicitly instead of being automatically generated.

The last four policies are left at their default values. These policies are discussed as the
need arises in the later sections of this chapter.

Mapping Database Keys to ObjectIds
Because the ID assignment policy for this POA is equal to USER_ID, the developer is
responsible for choosing ObjectIds for its CORBA objects. Fundamentally, the ORB
combines two pieces of information on the server side to uniquely identify a CORBA
object:

• A POA name (or sequence of names, in the case of a nested POA hierarchy).
• An ObjectId, which is required to be unique per POA.

Given an ObjectId, you want to be able to find the corresponding persistent object.
When an entity object’s state is stored in a database, it makes sense to embed the
object’s database key in the ObjectId. The database key alone, however, is not enough.
You also need to know which table to search to retrieve the object’s state. Since objects
of a particular type are usually stored in the same table, it is often enough to identify
the type of the CORBA object in addition to its key.

A P O A f o r E n t i t y O b j e c t s 3 1 7

10 0672318121 CH07 6/20/01 5:52 PM Page 317

3 1 8 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

NOTE
The ORB does not use the type of an object to track its identity. This makes sense
in general. However, for this particular example it is convenient to have the type of
the object form part of its identity.

The approach used here is to embed both the type of the CORBA object and its data-
base key in the ObjectId. The type of the CORBA object is represented here by its
local interface name (you could also use CORBA::RepositoryId or a more compact
hash key) and the database key is assumed to be an integer. The format used for an
ObjectId is interface_name db_key, where a single space serves as a separator. For
example, a WasteItem object with the database key 1234 is mapped to the following
ObjectId:

WasteItem 1234

An ObjectId is, in fact, not a string but a sequence of octets. In C++, the following
functions are provided to convert between string and ObjectId types:

//C++
//Conversion between ‘ObjectId’ and narrow strings.
PortableServer::ObjectId * PortableServer::string_to_ObjectId(const char * s);
char* PortableServer::ObjectId_to_string(const PortableServer::ObjectId& oid);

//Conversion between ‘ObjectId’ and wide strings.
PortableServer::ObjectId *
PortableServer::wstring_to_ObjectId(const CORBA::WChar * ws);
CORBA::WChar *
PortableServer::ObjectId_to_wstring(const PortableServer::ObjectId& oid);

In Java an ObjectId is represented as a byte array, byte[], which can be converted to
and from a string format using java.lang.String.String(byte[]) and
java.lang.String.getBytes().

The sample application uses the helper class ObjectIdMapper to perform the mapping
between ObjectIds and an interface name/database key combination. Listing 7.10 and
Listing 7.11 give the implementation of this class in C++ and Java, respectively.

Listing 7.10 C++ Implementation of the ObjectIdMapper Class
//C++
//---
// class ‘ObjectIdMapper’
//---

#include <sstream>
#include “ObjectIdMapper.h”

// Manipulation of ‘ObjectId’

10 0672318121 CH07 6/20/01 5:52 PM Page 318

Listing 7.10 continued
PortableServer::ObjectId *
ObjectIdMapper::make_ObjectId(const char * type, CORBA::Long key)
{

std::ostringstream ost;

ost << type << “ “ << (int) key;

return PortableServer::string_to_ObjectId(ost.str().c_str());
}

CORBA::Long
ObjectIdMapper::extract_key_from_ObjectId(const PortableServer::ObjectId & oid)
{

CORBA::String_var strV;
std::string type;
CORBA::Long key;

strV = PortableServer::ObjectId_to_string(oid);
std::string s = strV.in();
std::istringstream ist(s);
ist >> type >> key;

return key;
}

char *
ObjectIdMapper::extract_type_from_ObjectId(

const PortableServer::ObjectId & oid
)
{

CORBA::String_var strV;
std::string type;
CORBA::Long key;

strV = PortableServer::ObjectId_to_string(oid);
std::string s = strV.in();
std::istringstream ist(s);
ist >> type >> key;

return CORBA::string_dup(type.c_str());
}

Listing 7.11 Java Implementation of the ObjectIdMapper Class
//Java
//---
// class ‘ObjectIdMapper’
//---

A P O A f o r E n t i t y O b j e c t s 3 1 9

10 0672318121 CH07 6/20/01 5:52 PM Page 319

Listing 7.10 continued
package Pure.POADemo;

public class ObjectIdMapper {

// Manipulation of ‘ObjectId’
public static byte[]
make_ObjectId(String type, int key)
{
String out_str = type + “ “ + key;

return out_str.getBytes();
}

public static int
extract_key_from_ObjectId(byte[] oid)
{
String str = new String(oid);

int indexOfDelimiter = str.indexOf(‘ ‘);
int key = Integer.parseInt(

str.substring(indexOfDelimiter+1, str.length())
);

return key;
}

public static String
extract_type_from_ObjectId(byte[] oid)
{
String str = new String(oid);

int indexOfDelimiter = str.indexOf(‘ ‘);
String type = str.substring(0, indexOfDelimiter);

return type;
}

}

The ObjectIdMapper class is used throughout this chapter to manage the ObjectIds
associated with entity objects.

Managing the Database Record
It is assumed that a WasteItem object has its state stored persistently, for example in a
database. The mechanism for storing and retrieving the state of WasteItem objects is
not presented here—see Chapter 13, “Persistent State Service,” for a discussion of how
to make CORBA objects persistent.

3 2 0 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 320

One aspect of persistent storage that does concern us in this chapter is how to create
and find database records for WasteItem objects. This functionality is needed by the
WasteItemAdmin factory object.

Two static functions are added to the WasteItem class to support creating and finding
WasteItem database records, as shown in Listing 7.12 and Listing 7.13.

Listing 7.12 C++ Declaration of Functions to Create and Find Database
Records
//C++
class RecycleBroker_WasteItem_i :

public virtual ServantBaseOverrides,
public virtual POA_RecycleBroker::WasteItem

{
public:

static CORBA::Boolean
_find_DB_record(CORBA::Long key);

static CORBA::Long
_create_DB_record(

const RecycleBroker::WasteItemDetails& initialData
);
//...

};

Listing 7.13 Java Declaration of Functions to Create and Find Database
Records
//Java
package Pure.POADemo;

import Pure.POADemo.RecycleBroker.*;

public class RecycleBroker_WasteItem_i extends WasteItemPOA
{
public static boolean
_find_DB_record(int key)
{
//...

}

public static int
_create_DB_record(WasteItemDetails initialData)
{
//...

}
//...

};

A P O A f o r E n t i t y O b j e c t s 3 2 1

10 0672318121 CH07 6/20/01 5:52 PM Page 321

The _find_DB_record() function is used to find an existing WasteItem database
record in which the key argument is the primary key of the WasteItem database table.
The function returns TRUE if a record is found and FALSE otherwise.

The _create_DB_record() function is used to create a new WasteItem database
record. The initialData argument initializes the record, and the return value gives the
record’s primary key.

The implementation of the two functions is not shown here—it is primarily an exercise
in database programming. Typically, the two functions would be implemented using
embedded Structured Query Language (SQL) code to access and update the database.

Implementing an Entity Object Factory
The create() and find() operations of the WasteItemAdmin class are implemented in
Listing 7.14 and Listing 7.15 for C++ and Java, respectively.

Listing 7.14 C++ Implementation of the
RecycleBroker::WasteItemAdmin::
create() and find() Operations
//C++
// create() - Implements IDL operation “RecycleBroker::WasteItemAdmin::create”.
RecycleBroker::WasteItem_ptr
RecycleBroker_WasteItemAdmin_i::create(

const RecycleBroker::WasteItemDetails& initialData,
RecycleBroker::KeyType_out wasteitem_id

) throw (
CORBA::SystemException,
RecycleBroker::NoPermission

)
{

PortableServer::ObjectId_var oidV;
PortableServer::ServantBase_var servantV;
CORBA::Object_var objV;
RecycleBroker::WasteItem_var refV;

// Case: Use Basic POA

// Step 1 - Create a database record.
wasteitem_id = RecycleBroker_WasteItem_i::_create_DB_record(initialData);

// Construct an ‘ObjectId’ from the database key, ‘wasteitem_id’
oidV = ObjectIdMapper::make_ObjectId(“WasteItem”, wasteitem_id);

// Step 2 - Create the servant object.
servantV = new RecycleBroker_WasteItem_i(

m_poa_for_childrenV.in(),
wasteitem_id

);

3 2 2 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 322

Listing 7.14 continued
// Step 3 - Activate the servant object.
m_poa_for_childrenV->activate_object_with_id(

oidV,
servantV.in()

);

// Step 4 - Create an object reference.
objV = m_poa_for_childrenV->id_to_reference(oidV.in());
refV = RecycleBroker::WasteItem::_narrow(objV.in());

return refV._retn();
}

// find() -- Implements IDL operation “RecycleBroker::WasteItemAdmin::find”.

RecycleBroker::WasteItem_ptr
RecycleBroker_WasteItemAdmin_i::find(

RecycleBroker::KeyType wasteitem_id
) throw (

CORBA::SystemException
)
{

PortableServer::ObjectId_var oidV;
PortableServer::ServantBase_var servantV;
CORBA::Object_var objV;
RecycleBroker::WasteItem_var refV;

// Case: Use Basic POA

// Construct an ‘ObjectId’ from the database key, ‘wasteitem_id’
oidV = ObjectIdMapper::make_ObjectId(“WasteItem”, wasteitem_id);

// Step 1 - Search the active object map.
try {

// Look up the ‘oid’ in the ‘Active Object Map’
objV = m_poa_for_childrenV->id_to_reference(oidV.in());

}
catch (PortableServer::POA::ObjectNotActive&) {

objV = CORBA::Object::_nil();
}

if (CORBA::is_nil(objV.in())) {
// Step 2 - Check for the existence of a database record.
if (RecycleBroker_WasteItem_i::_find_DB_record(wasteitem_id)) {

// Step 3 - Create the servant object.
servantV = new RecycleBroker_WasteItem_i(

A P O A f o r E n t i t y O b j e c t s 3 2 3

10 0672318121 CH07 6/20/01 5:52 PM Page 323

Listing 7.14 continued
m_poa_for_childrenV.in(),
wasteitem_id

);

// Step 4 - Activate the servant object.
m_poa_for_childrenV->activate_object_with_id(

oidV,
servantV.in()

);
// Step 5 - Create an object reference.
objV = m_poa_for_childrenV->id_to_reference(oidV.in());

}
else {

objV = CORBA::Object::_nil();
}

}

refV = RecycleBroker::WasteItem::_ narrow(objV.in());
return refV._retn();

}

Listing 7.15 Java Implementation of the
RecycleBroker::WasteItemAdmin::create() and find() Operations
//Java
package Pure.POADemo;

import Pure.POADemo.RecycleBroker.*;

public class RecycleBroker_WasteItemAdmin_i
extends WasteItemAdminPOA

{
//...

// create() - Implements IDL operation “RecycleBroker.WasteItemAdmin.create”.
public WasteItem
create(
WasteItemDetails initialData,
org.omg.CORBA.IntHolder wasteitem_id

)
throws org.omg.CORBA.SystemException, Pure.POADemo.RecycleBroker.NoPermission
{
byte[] oid;
org.omg.PortableServer.Servant servant;
org.omg.CORBA.Object obj;
WasteItem ref;

// Case: Use Basic POA

3 2 4 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 324

Listing 7.14 continued
// Step 1 - Create a database record.
wasteitem_id.value

= RecycleBroker_WasteItem_i._create_DB_record(initialData);

// Construct an ‘ObjectId’ from the database key, ‘wasteitem_id’
oid = ObjectIdMapper.make_ObjectId(“WasteItem”, wasteitem_id.value);

try {
// Step 2 - Create the servant object.
servant = new RecycleBroker_WasteItem_i(

wasteitem_id.value
);

// Step 3 - Activate the servant object.
m_poa_for_children.activate_object_with_id(

oid,
servant

);

// Step 4 - Create an object reference.
obj = m_poa_for_children.id_to_reference(oid);

}
catch (Exception ex) {

// Error: details of exception handling not shown
obj = null;

}

ref = WasteItemHelper.narrow(obj);
return ref;

}

// find() -- Implements IDL operation “RecycleBroker.WasteItemAdmin.find”.
public WasteItem
find(
int wasteitem_id

)
throws org.omg.CORBA.SystemException
{
byte[] oid;
org.omg.PortableServer.Servant servant;
org.omg.CORBA.Object obj;
WasteItem ref;

System.out.println(
“RecycleBroker_WasteItemAdmin_i.find(“ + wasteitem_id + “) called”

);

A P O A f o r E n t i t y O b j e c t s 3 2 5

10 0672318121 CH07 6/20/01 5:52 PM Page 325

Listing 7.14 continued
// Case: Basic POA

// Construct an ‘ObjectId’ from the database key, ‘wasteitem_id’
oid = ObjectIdMapper.make_ObjectId(“WasteItem”, wasteitem_id);

try {
// Step 1 - Search the active object map.
try {

obj = m_poa_for_children.id_to_reference(oid);
}
catch (org.omg.PortableServer.POAPackage.ObjectNotActive ona) {

obj = null;
}

if (obj==null) {
// Step 2 - Check for the existence of a database record.
if (RecycleBroker_WasteItem_i._find_DB_record(wasteitem_id)) {

// Step 3 - Create the servant object.
servant = new RecycleBroker_WasteItem_i(

wasteitem_id
);

// Step 4 - Activate the servant object.
m_poa_for_children.activate_object_with_id(

oid,
servant

);

// Step 5 - Create an object reference.
obj = m_poa_for_children.id_to_reference(oid);

}
else {

obj = null;
}

}
}
catch (Exception ex) {

// Error: details of exception handling not shown
obj = null;

}

ref = WasteItemHelper.narrow(obj);
return ref;

}

//---------------------------
// Private member variables
//---------------------------
org.omg.PortableServer.POA m_poa_for_children;

}

3 2 6 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 326

The create() and find() operations are described in the two following subsections.

The RecycleBroker::WasteItemAdmin::create() Operation
The create() operation takes some initial data, WasteItemDetails, as an argument to
initialize a new database record and returns an object reference for the corresponding
WasteItem object. The private member variable m_poa_for_childrenV (C++) or
m_poa_for_children (Java) caches a POA pointer that is used to activate new
WasteItem objects.

The algorithm for the create() operation consists of the following steps (see
Figure 7.8):

1. Create a database record The WasteItem CORBA object exists from this
point onward, though it is initially dormant.

2. Create the servant object The WasteItem object’s state is retrieved from the
database.

3. Activate the servant object The POA used to activate the WasteItem object
is a POA suitable for entity objects.

4. Create an object reference The WasteItem object reference is used as the
return value from create(). Note that it is not legal to return a pointer to the
servant object.

The RecycleBroker::WasteItemAdmin::find() Operation
The find() operation takes the wasteitem_id database key as an argument and returns
the object reference for an existing WasteItem object. If the object does not exist,
find() returns a nil object reference.

The algorithm for the find() operation consists of the following steps:

1. Search the active object map.
The PortableServer::POA::id_to_reference() operation searches the active
object map for an object with the given ObjectId. If the object is in the active
object map, its corresponding object reference is returned; otherwise the
ObjectNotActive user exception is thrown.

2. Check for the existence of the database record.
If the CORBA object is not found in the active object map, it is then necessary
to create and activate the CORBA object in memory.
The static _find_DB_record() function is called to determine whether the
wasteitem_id key corresponds to an existing database record.

3. Create the servant object.
If wasteitem_id is a valid key, the servant object is created.

4. Activate the servant object.
5. Create an object reference.

Creating the Factory
Listing 7.16 and Listing 7.17 show how the WasteItemAdmin object, a factory for
WasteItem objects, is created and activated.

A P O A f o r E n t i t y O b j e c t s 3 2 7

10 0672318121 CH07 6/20/01 5:52 PM Page 327

Listing 7.16 C++ Creating and Activating a WasteItemAdmin Object
//C++
...
// Create a basic POA for ‘Session’ objects.
basic_session_poaV =

POAUtility::create_basic_POA(
root_poaV.in(),
root_poa_managerV.in(),
“basic_session_poa”,
0, // ‘isMultiThread’ = FALSE => Single threaded
0 // ‘isPersistent’ = FALSE => ‘Session’ objects

);

// Create a basic POA for ‘Entity’ objects.
basic_entity_poaV =

POAUtility::create_basic_POA(
root_poaV.in(),
root_poa_managerV.in(),
“basic_entity_poa”,
0, // ‘isMultiThread’ = FALSE => Single threaded
1 // ‘isPersistent’ = TRUE => ‘Entity’ objects

);

//---
// Create Factories and export their object references.
//---
PortableServer::ObjectId_var oidV;
CORBA::Object_var refV;

// Create a servant for the ‘Browsing’ interface.
the_WasteItemAdminV = new RecycleBroker_WasteItemAdmin_i(

basic_session_poaV.in(), //POA for the Factory
basic_entity_poaV.in() //POA for the children

);
oidV = basic_session_poaV->activate_object(the_WasteItemAdminV.in());
refV = basic_session_poaV->id_to_reference(oidV);

// Export the ‘WasteItemAdmin’ object reference, ‘refV’, to the Naming Service
...

Listing 7.17 Java Creating and Activating a WasteItemAdmin Object
//Java
...
// Create a basic POA for ‘Session’ objects.
System.out.println(“Creating basic session POA”);
POA basic_session_poa =

Pure.Util.POAUtility.create_basic_POA(

3 2 8 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 328

Listing 7.16 continued
root_poa,
root_poa_manager,
“basic_session_poa”,
false, // ‘isMultiThread’ = FALSE => Single threaded
false // ‘isPersistent’ = FALSE => ‘Session’ objects

);

// Create a basic POA for ‘Entity’ objects.
System.out.println(“Creating basic entity POA”);
POA basic_entity_poa =

Pure.Util.POAUtility.create_basic_POA(
root_poa,
root_poa_manager,
“basic_entity_poa”,
false, // ‘isMultiThread’ = FALSE => Single threaded
true // ‘isPersistent’ = TRUE => ‘Entity’ objects

);

//---
// Create Factories and export their object references.
//---
byte[] oid = null;
org.omg.CORBA.Object ref = null;

// Create a servant for the ‘Browsing’ interface.
Servant the_WasteItemAdmin = new RecycleBroker_WasteItemAdmin_i(

basic_entity_poa //POA for the children
);
oid = basic_session_poa.activate_object(the_WasteItemAdmin);
ref = basic_session_poa.id_to_reference(oid);

// Export the ‘WasteItemAdmin’ object reference, ‘ref’, to the Naming Service
...

The basic_entity_poaV object (C++) or basic_entity_poa object (Java) is created
using create_basic_POA(). The isPersistent flag is set to TRUE, indicating that the
POA is used to manage entity objects.

The WasteItemAdmin object itself is created as a session object, in the manner
described in the section “A POA for Session Objects.”

The RecycleBroker_WasteItemAdmin_i constructor takes two arguments. The first,
basic_session_POA, is the POA used to activate this WasteItemAdmin object; the sec-
ond, basic_entity_POA, is the POA used to activate the WasteItem objects created by
the WasteItemAdmin object.

A P O A f o r E n t i t y O b j e c t s 3 2 9

10 0672318121 CH07 6/20/01 5:52 PM Page 329

A POA for Service Objects
A service object is a particularly simple kind of session object that has no associated
state. Service objects have the following properties:

• They are short lived. Like session objects, they have a transient lifespan.
• A single service object can be used by several clients. This is because the ser-

vice object does not store any client-specific state.
• Service objects are insensitive to the order in which their operations are

invoked.

For example, a library of mathematical functions could be implemented as a service
object.

The service objects described here correspond informally to service objects as defined
in the CORBA Components specification or stateless session beans as defined in the
Enterprise JavaBeans specification.

The sample IDL used in this section is given in Listing 7.2, earlier in this chapter. It is
the same IDL as is used in the section “A POA for Session Objects.”

The Browsing objects are implemented and managed as service objects in this section.
The BranchOffice object, as implemented in this section, has the characteristics of a
service object factory.

This section is divided into three parts that explain how to create and use a POA that is
appropriate for activating and managing service objects.

Creating the POA
For convenience, basic steps needed to create a POA for session objects are encapsu-
lated in the POAUtility::create_service_POA() function. The code for the static
create_service_POA() function is shown in Listing 7.18 and Listing 7.19.

Listing 7.18 C++ Creating a POA for Service Objects
//C++
PortableServer::POA_ptr
POAUtility::create_service_POA(

PortableServer::POA_ptr parentPOAP,
PortableServer::POAManager_ptr POAManagerP,
char * POAName,
CORBA::Boolean isMultiThread

)
{

// Create a policy list.
CORBA::PolicyList policies;
policies.length(2);
CORBA::ULong i = 0;

// Thread Policy
PortableServer::ThreadPolicyValue threadPolicy;

3 3 0 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 330

Listing 7.18 continued
if (isMultiThread) {

threadPolicy = PortableServer::ORB_CTRL_MODEL;
}
else {

threadPolicy = PortableServer::SINGLE_THREAD_MODEL;
}
policies[i] = parentPOAP->create_thread_policy(threadPolicy);

// LifeSpan Policy - Default = TRANSIENT

// IdAssignment Policy - Default = SYSTEM_ID

// IdUniqueness Policy
i++;
policies[i] = parentPOAP->create_id_uniqueness_policy(

PortableServer::MULTIPLE_ID
);

// ImplicitActivation Policy - Default = NO_IMPLICIT_ACTIVATION

// RequestProcessing Policy - Default = USE_ACTIVE_OBJECT_MAP_ONLY

// ServantRetention Policy - Default = RETAIN

return parentPOAP->create_POA(POAName, POAManagerP, policies);
}

Listing 7.19 Java Creating a POA for Service Objects
//Java
package Pure.Util;

import org.omg.PortableServer.*;

public class POAUtility {
public static org.omg.PortableServer.POA
create_service_POA(

org.omg.PortableServer.POA parentPOA,
org.omg.PortableServer.POAManager POAManager,
String POAName,

boolean isMultiThread
)
throws org.omg.PortableServer.POAPackage.InvalidPolicy,

org.omg.PortableServer.POAPackage.AdapterAlreadyExists
{
// Create a policy list.
org.omg.CORBA.Policy policies[] = new org.omg.CORBA.Policy[2];
int i = 0;

A P O A f o r S e r v i c e O b j e c t s 3 3 1

10 0672318121 CH07 6/20/01 5:52 PM Page 331

Listing 7.18 continued
// Thread Policy
org.omg.PortableServer.ThreadPolicyValue threadPolicy = null;

if (isMultiThread) {
threadPolicy = ThreadPolicyValue.ORB_CTRL_MODEL;

}
else {

threadPolicy = ThreadPolicyValue.SINGLE_THREAD_MODEL;
}
policies[i] = parentPOA.create_thread_policy(threadPolicy);

// LifeSpan Policy - Default = TRANSIENT

// IdAssignment Policy - Default = SYSTEM_ID

// IdUniqueness Policy
i++;
policies[i] = parentPOA.create_id_uniqueness_policy(

IdUniquenessPolicyValue.MULTIPLE_ID
);

// ImplicitActivation Policy - Default = NO_IMPLICIT_ACTIVATION

// RequestProcessing Policy - Default = USE_ACTIVE_OBJECT_MAP_ONLY

// ServantRetention Policy - Default = RETAIN

return parentPOA.create_POA(POAName, POAManager, policies);
}

}

The first parameter, parentPOAP, is a reference to the POA that serves as a parent to the
POA returned by this function.

The second parameter, POAManagerP, specifies the POAManager object that is passed to
create_POA() and that controls the flow of messages into the newly created POA.

The third parameter, POAName, sets the name of the newly created POA (relative to the
parent POA).

The fourth parameter, isMultiThread, determines whether or not you want this POA
to be multithreaded.

The body of the create_service_POA() function is taken up mostly with initializing
the list of policies. The CORBA::PolicyList is declared as sequence<CORBA::Policy>
and contains a list of CORBA::Policy objects that are used to initialize the POA
returned by create_POA(). Listing 7.1, earlier in this chapter, shows the IDL used to
create individual POA CORBA::Policy objects.

3 3 2 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 332

In this example, the set of POA policies used to manage service objects is given by
Table 7.5.

Table 7.5 POA Policies Used for Service Objects

Policy Name Policy Value

ThreadPolicy SINGLE_THREAD_MODEL

LifespanPolicy TRANSIENT

IdAssignmentPolicy SYSTEM_ID

IdUniquenessPolicy MULTIPLE_ID

ImplicitActivationPolicy NO_IMPLICIT_ACTIVATION

RequestProcessingPolicy USE_ACTIVE_OBJECT_MAP_ONLY

ServantRetentionPolicy RETAIN

Three of these policies relate specifically to the management of service objects:

• The TRANSIENT lifespan policy value specifies that objects managed by this
POA cease to exist after the POA is destroyed.

• The SYSTEM_ID ID assignment policy value specifies that ObjectIds are auto-
matically generated by the POA.

• The MULTIPLE_ID ID uniqueness policy value is discussed in the following sec-
tion, “ID Uniqueness Policy.”

The last three policies are left at their default values. These policies are discussed in the
later sections of this chapter as the need arises.

ID Uniqueness Policy
The POA’s ID uniqueness policy, of PortableServer::IdUniquessPolicy type, deter-
mines whether servant references appearing in the active object map are forced to map
to a unique ObjectId. Two alternatives are possible:

• UNIQUE_ID

This policy value specifies that each servant is associated with a unique
ObjectId in the active object map. If either activate_object() or activate_
object_with_id() are called on a servant that is already activated, the POA
throws a PortableServer::POA::ServantAlreadyActive user exception.

• MULTIPLE_ID

This policy value specifies that each servant can be associated with many
ObjectIds in the active object map. This allows a many-to-one association
between ObjectIds and servants, as previously illustrated in Figure 7.3(b). The
MULTIPLE_ID policy value puts implicit restrictions on the servant implementa-
tion, effectively requiring it to be a service object.

Implementing a Service Object Factory
The implementation of the RecycleBroker::BranchOffice::get_browsing() opera-
tion, given in Listing 7.20 and Listing 7.21, illustrates how to create a service object of
Browsing type.

A P O A f o r S e r v i c e O b j e c t s 3 3 3

10 0672318121 CH07 6/20/01 5:52 PM Page 333

Listing 7.20 C++ Implementation of the
RecycleBroker::BranchOffice::get_browsing() Operation
//C++
RecycleBroker::Browsing_ptr
RecycleBroker_BranchOffice_i::get_browsing()
throw (CORBA::SystemException)
{

PortableServer::ServantBase_var the_BrowsingV;
PortableServer::ObjectId_var oidV;
CORBA::Object_var objV;
RecycleBroker::Browsing_var refV;

// Case: Use Service POA

// Step 1 - Retrieve a pointer to the cached servant object.
// Check cached servant
if (! m_browsing_servantV.in()) {

// Create a ‘Browsing’ servant
// (constructor arguments not shown)
m_browsing_servantV = new RecycleBroker_Browsing_i();

}

// Step 2 - Activate the servant object.
oidV = m_poa_for_childrenV->activate_object(m_browsing_servantV.in());

// Step 3 - Create an object reference.
objV = m_poa_for_childrenV->id_to_reference(oidV);
refV = RecycleBroker::Browsing::_narrow(objV.in());

return refV._ retn();
}

Listing 7.21 Java Implementation of the
RecycleBroker::BranchOffice::
get_browsing() Operation
//Java
package Pure.POADemo;

import Pure.POADemo.RecycleBroker.*;

public class RecycleBroker_BranchOffice_i
extends BranchOfficePOA

{
//...

// IDL operations
public Browsing get_browsing()
throws org.omg.CORBA.SystemException
{

3 3 4 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 334

Listing 7.21 continued
byte[] oid;
org.omg.CORBA.Object obj;
Browsing ref;

// Case: Use Service POA

// Step 1 - Retrieve a pointer to the cached servant object.
// Check cached servant
if (m_browsing_servant==null) {

// Create a ‘Browsing’ servant
org.omg.PortableServer.POA poa_for_grandchildren

= m_poa_for_children;
m_browsing_servant = new RecycleBroker_Browsing_i(

poa_for_grandchildren
);

}
try {

// Step 2 - Activate the servant object.
oid = m_poa_for_children.activate_object(m_browsing_servant);

// Step 3 - Create an object reference.
obj = m_poa_for_children.id_to_reference(oid);
ref = BrowsingHelper.narrow(obj);

}
catch (Exception ex) {

// Error: details of exception handling not shown
ref = null;

}

return ref;
}
//...

//-------------------------------
// Private member variables
//-------------------------------
private org.omg.PortableServer.POA m_poa_for_children;
private org.omg.PortableServer.Servant m_browsing_servant;

}

The get_browsing() operation creates and returns an object reference for a
RecycleBroker::Browsing object.

The private member variable m_poa_for_childrenV (C++) or m_poa_for_children
(Java) caches a pointer to a POA that is used to activate Browsing objects.

m_browsing_servantV (C++) or m_browsing_servant (Java) is a private member vari-
able that caches a reference to a single RecycleBroker_Browsing_i servant object.

A P O A f o r S e r v i c e O b j e c t s 3 3 5

10 0672318121 CH07 6/20/01 5:52 PM Page 335

In this example, the get_browsing() operation is implemented in such a way that only
a single cached servant object is ever created. Each time get_browsing() is called, the
same servant object is activated.

The following steps are used to generate a Browsing object reference (service object):

1. Retrieve a pointer to the cached servant object.
Only one RecycleBroker_Browsing_i servant object is ever created. The ser-
vant object is created and cached the first time get_browsing() is called.

2. Activate the servant object.
Because the POA has been created with an ID assignment policy of
MULTIPLE_ID, the developer is allowed to activate the same servant object many
times (see Figure 7.3(b)). Each time activate_object() is called, the cached
servant becomes associated with a new, automatically generated ObjectId.

3. Create an object reference.
The id_to_reference() operation converts the newly-generated ObjectId to a
Browsing object reference that can be returned from get_browsing().

Creating the Factory
Listing 7.22 and Listing 7.23 show how the BranchOffice object is created and acti-
vated.

Listing 7.22 C++ Creating and Activating a BranchOffice Object
//C++
//---
// Given the following variables:
// root_poaV - a reference to the root POA object.
// root_poa_managerV - the root POAManager object that is
// obtained from the root POA object.
//
// Create a basic POA for ‘Session’ objects.
basic_session_poaV =

POAUtility::create_basic_POA(
root_poaV.in(),
root_poa_managerV.in(),
“basic_session_poa”,
0, // Single threaded
0 // for ‘Session’ objects

);

// Create a POA for ‘Service’ objects.
service_poaV =

POAUtility::create_service_POA(
root_poaV.in(),
root_poa_managerV.in(),
“service_poa”,
0 // Single threaded

);

3 3 6 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 336

Listing 7.22 continued
//---
// Create Factories and export their object references.
//---
PortableServer::ObjectId_var oidV;
CORBA::Object_var refV;

// Step 1 - Create a servant for the ‘BranchOffice’ interface.
the_BranchOfficeV = new RecycleBroker_BranchOffice_i(

basic_session_poaV.in(), //POA for the Factory
service_poaV.in() //POA for the children

);

// Step 2 - Activate the CORBA object
oidV = basic_session_poaV->activate_object(the_BranchOfficeV.in());

// Step 3 - Create an object reference
refV = basic_session_poaV->id_to_reference(oidV);

// Export the ‘BranchOffice’ object reference, ‘refV’, to the Naming Service
...

Listing 7.23 Java Creating and Activating a BranchOffice Object
//Java
//---
// Given the following variables:
// root_poa - a reference to the root POA object.
// root_poa_manager - the root POAManager object that is
// obtained from the root POA object.
//
...
// Create a basic POA for ‘Session’ objects.
POA basic_session_poa =

Pure.Util.POAUtility.create_basic_POA(
root_poa,
root_poa_manager,
“basic_session_poa”,
false, // Single threaded
false // for ‘Session’ objects

);

// Create a POA for ‘Service’ objects.
System.out.println(“Creating basic service POA”);
POA service_poa =

Pure.Util.POAUtility.create_service_POA(
root_poa,
root_poa_manager,
“service_poa”,

A P O A f o r S e r v i c e O b j e c t s 3 3 7

10 0672318121 CH07 6/20/01 5:52 PM Page 337

Listing 7.22 continued
false // Single threaded

);

//---
// Create Factories and export their object references.
//---
byte[] oid = null;
org.omg.CORBA.Object ref = null;

// Step 1 - Create a servant for the ‘BranchOffice’ interface.
Servant the_BranchOffice = new RecycleBroker_BranchOffice_i(

service_poa //POA for the children
);

// Step 2 - Activate the CORBA object
oid = basic_session_poa.activate_object(the_BranchOffice);

// Step 3 - Create an object reference
ref = basic_session_poa.id_to_reference(oid);

// Export the ‘BranchOffice’ object reference, ‘ref’, to the Naming Service
...

The service_poaV (C++) or service_poa (Java) object is created using the
POAUtility::create_service_POA() function. This is the POA used to activate ses-
sion objects in this example.

The BranchOffice object itself is created as a session object. See the section “A POA
for Session Objects.”

Note that the RecycleBroker_BranchOffice_i constructor takes two arguments. The
first is the POA used to activate that BranchOffice object; the second is the POA that
will be used to activate the Browsing objects created by the BranchOffice object. The
service_poaV (C++) or service_poa (Java) object is passed as the second argument
and is used to initialize the m_poa_for_childrenV (C++) or m_poa_for_children

(Java) member variable.

Servant Activator POA
This section describes the first of the advanced POA features designed to provide
increased scalability for CORBA servers. If you are designing and developing a small-
scale CORBA application—an application for which all of the CORBA objects can
easily fit in memory—it is likely that the examples in the preceding sections have all
the functionality that you need.

On the other hand, if you are implementing a large-scale system—one that manages
thousands or even millions of CORBA objects—you will need to manage those objects
in the most efficient manner possible. Using a PortableServer::ServantManager

3 3 8 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 338

object in conjunction with a POA allows you much greater freedom to manage the life-
cycle and activation of servant objects. There are two kinds of ServantManager
objects:

• PortableServer::ServantActivator

A servant activator is used with a POA that has an active object map. If an
invocation arrives at the POA and the ObjectId cannot be found in the active
object map, the POA asks the ServantActivator to incarnate (create and acti-
vate) the appropriate servant object.

• PortableServer::ServantLocator

A servant locator is used with a POA that does not have an active object map.
It is more flexible than a servant activator and is discussed in detail in the sec-
tion “Servant Locator POA,” later in this chapter.

The IDL for the ServantManager and ServantActivator interfaces is shown in
Listing 7.24.

Listing 7.24 IDL for the ServantActivator Interface
//IDL
module PortableServer {

//...
interface ServantManager{ };

local interface ServantActivator : ServantManager {
Servant incarnate (

in ObjectId oid,
in POA adapter

)
raises (ForwardRequest);

void etherealize (
in ObjectId oid,
in POA adapter,
in Servant serv,
in boolean cleanup_in_progress,
in boolean remaining_activations

);
};

// POA interface
interface POA {

//...
exception WrongPolicy {};

// Servant Manager registration:
ServantManager get_servant_manager()
raises (WrongPolicy);

S e r v a n t A c t i v a t o r P O A 3 3 9

10 0672318121 CH07 6/20/01 5:52 PM Page 339

Listing 7.24 continued
void set_servant_manager(

in ServantManager imgr
)
raises (WrongPolicy);
//...

};
};

The ServantManager interface has no operations. It is used as a base interface.

ServantActivator declares two operations, incarnate() and etherealize(), that are
associated with the activation and deactivation of servants. This interface must be
implemented by the developer to customize the behavior of the ServantActivator.

A ServantActivator becomes associated with a particular POA by registering it using
the PortableServer::POA::set_servant_manager() operation.

This section describes how to write a server application that manages the lifecycle of
entity objects to minimize the length of time that the objects spend in working mem-
ory. Two basic patterns are used in combination to manage the lifecycle of entity
objects:

• Lazy activation When a client asks a factory object to create another object,
the factory does not have to create and activate the servant right away. The
server can wait, instead, until the first invocation is made on the new object.

• The evictor pattern When too many objects of a certain type occupy work-
ing memory, the server can evict some of the objects. To evict an object, the
server deactivates and deletes the corresponding servant from memory.

Both of these principles are applied to the example described in the following sections.

Lazy Activation
One of the applications of the ServantActivator is to implement lazy activation of
servants. Instead of activating a servant immediately when a factory operation is
invoked, you can wait until the first invocation on the corresponding CORBA object is
made. Lazy activation saves memory and resources on the server side. Often, clients
obtain a large number of object references from a CORBA server, many of which they
never use.

Consider, for example, the lazy activation of WasteItem entity objects—the IDL for
this example is given in Listing 7.9. The steps involved in the lazy activation of an
entity object are illustrated in Figure 7.9.

Figure 7.9(a) shows what happens when a CORBA object is created using lazy activa-
tion. For example, when a client invokes WasteItemAdmin::create(), the server cre-
ates a CORBA object without creating a corresponding servant object. The developer
implements WasteItemAdmin::create() to perform the following steps:

3 4 0 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 340

1. Store the entity object’s initial state in a database record.
2. Create an object reference from the entity object’s ObjectId, using the

POA::create_reference_with_id() operation. The ObjectId is based on the
primary key of the database record.

S e r v a n t A c t i v a t o r P O A 3 4 1

Figure 7.9

Lazy activation of an entity object.

Figure 7.9(b) shows what happens when the first invocation is made on the new entity
object. The first invocation of an operation on the WasteItem object causes the POA to
call incarnate() on its ServantActivator object (see Listing 7.24). The developer
implements incarnate() to perform the following steps:

3. Create a servant object that provides an implementation of the entity object.
4. Activate the servant object, using the ObjectId supplied as a parameter to

incarnate().

The IDL operations shown in Listing 7.25 are of key importance to lazy activation.

Listing 7.25 IDL Operations to Create Object References
//IDL
module PortableServer {

//...
interface POA {

“Fred”

POA - “EntityPOA”

2. Create Object
Reference

1. Create DB Record

DB Table

POA - “EntityPOA”

“Fred”

4. Activate Servant 3. Create Servant

DB Table

(a) Lazy CORBA Object Creation

(b) Automatic Activation in Response
to Invocation Request

10 0672318121 CH07 6/20/01 5:52 PM Page 341

Listing 7.25 continued
//...
// reference creation operations
Object create_reference (

in CORBA::RepositoryId intf
)
raises (WrongPolicy);

Object create_reference_with_id (
in ObjectId oid,
in CORBA::RepositoryId intf

)
raises (WrongPolicy);
//...

};
};

These operations allow you to create an object reference without having to create and
activate a servant beforehand. The first operation, create_reference(), is used with
POAs that have the SYSTEM_ID ID assignment policy value. The second operation,
create_reference_with_id(), is used with POAs that have the USER_ID ID assign-
ment policy value. The examples in the following sections show how these operations
are used.

The Evictor Pattern
A common problem facing the designer of a CORBA server is how to prevent the num-
ber of CORBA objects in memory from running out of control. Typically, entity objects
map to individual database records, and there may be millions of them. Fortunately,
only a fraction of those objects need to be active in the server at any one time.

However, the difficulty is deciding when the server is finished with particular entity
objects. A long-running server may gradually (or even rapidly) be brought to its knees
unless it can clear dormant CORBA objects out of its working memory. Two basic
approaches can be used to clean up the server’s memory:

• Client-driven The client tells the server when it is finished using particular
CORBA objects. For example, the client might invoke a destroy() operation
on the objects.

• Server-driven The server decides, independently of the client, when a
CORBA object should be deactivated and destroyed. For example, a server may
impose a time limit on the lifetime of a particular type of CORBA object.

In practice, most applications use a combination of client-driven and server-driven
memory management. Of the two approaches, server-driven memory management is
the most important. You can never rely completely on clients to perform object cleanup.
The server must always have the capability to keep its resource use within acceptable
limits.

3 4 2 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 342

This section describes the evictor pattern, which is a simple pattern used to limit the
number of CORBA objects that are active in the server at any one time. There are two
basic elements of this pattern:

• Object eviction The server monitors the number of objects of a particular
type that are active at any one time. If a maximum limit is exceeded, the excess
CORBA objects must be evicted. A servant object is evicted by deactivating it
and deleting it from memory.

• Automatic object activation It can happen that a CORBA object gets evicted
just before a client tries to invoke on it. It would be unacceptable for the server
to generate an OBJECT_NOT_EXIST system exception at this point.
Instead, the server should be capable of automatically reactivating the object.
This capability is provided by installing a ServantActivator in the POA, as
described in the earlier section, “Lazy Activation.”

Figure 7.10 illustrates how servant objects are managed using the evictor pattern.
Typically, the evictor is applied to objects of a particular type. For example, in this sec-
tion the evictor is applied to WasteItem objects.

S e r v a n t A c t i v a t o r P O A 3 4 3

Figure 7.10

Implementation of an evictor pattern.

To implement the evictor, you need to maintain a list of active servant objects.
Figure 7.10 shows a simple first-in, first-out queue containing a list of ObjectIds. Each
time a WasteItem object is activated, its ObjectId is added to the back of the queue.
Once the queue reaches a certain maximum size, it becomes necessary to start evicting
older objects at the front of the queue.

Every time a new object is about to be activated, a check can be made to test if the
queue is about to exceed its maximum allowed length. If the queue is at its maximum
length, the WasteItem object at the front of the queue is evicted, as follows:

POA - “MyPOA”

“A” •

“Z” •

WasteItem servant ObjectId

“A”

“B”

“Z”

front

back

deactivate

10 0672318121 CH07 6/20/01 5:52 PM Page 343

1. The ObjectId is removed from the front of the queue.

2. The servant object with the given ObjectId is deactivated and destroyed.

Servant deactivation is discussed in the following section.

Servant Deactivation
Servant deactivation is performed using the deactivate_object() operation, as
defined by the IDL in Listing 7.26.

Listing 7.26 IDL Operation to Deactivate Objects
//IDL
module PortableServer {

//...
interface POA {

exception ObjectNotActive {};
exception WrongPolicy {};
//...
void deactivate_object(in ObjectId oid)
raises (ObjectNotActive, WrongPolicy);

};
};

The deactivate_object() operation looks up the POA’s active object map and
removes the entry for the ObjectId given by the oid argument.

The ObjectNotActive user exception is raised if oid is not found in the POA’s active
object map.

The WrongPolicy user exception is raised if the POA does not have an active object
map. This is the case if the POA is created with a servant retention policy of
NON_RETAIN. See the section “Servant Locator POA,” later in this chapter.

The deactivate_object() operation is intended to work in cooperation with the
ServantActivator’s etherealize() operation. Deactivation of a CORBA object is a
more delicate operation than you might think. It can easily happen that
deactivate_object() is called while the corresponding servant is in the middle of
processing a request. Deactivation is performed using the following algorithm:

1. The developer calls deactivate_object(), passing the appropriate ObjectId
as the argument. The corresponding active object map entry is marked and
the deactivate_object() operation returns immediately. The object is still
active at this point.

2. At the next opportunity, the POA checks whether the marked object is currently
processing a request. If the marked object is busy processing, the POA does
nothing, waiting until the next opportunity to check the object.
If the marked object is not busy processing, the POA removes the marked entry
from the active object map and calls etherealize() on its associated
ServantActivator object.

3 4 4 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 344

3. The etherealize() operation is implemented by the developer. It is responsi-
ble for deleting the servant object and cleaning up other resources associated
with the CORBA object.

Effectively, deactivate_object()() performs a gentle shutdown of a CORBA object.
Even after deactivate_object()has been called, a CORBA object can remain active
for some time while processing outstanding requests.

In theory, it is possible to call deactivate_object() without implementing a corre-
sponding etherealize() operation. However, it would be impossible to delete deacti-
vated servants in a thread-safe manner, so this approach is not recommended.

Creating the POA
The code to create a POA that uses a ServantActivator is conveniently encapsulated
in the create_servant_activator_POA() function, shown in Listing 7.27 and
Listing 7.28.

Listing 7.27 C++ Creating a POA That Uses a Servant Activator
//C++
PortableServer::POA_ptr
POAUtility::create_servant_activator_POA(

PortableServer::POA_ptr parentPOAP,
PortableServer::POAManager_ptr POAManagerP,
char * POAName,
CORBA::Boolean isMultiThread,
CORBA::Boolean isPersistent

)
{

// Create a policy list.
CORBA::PolicyList policies;
policies.length(4);
CORBA::ULong i = 0;

// Thread Policy
PortableServer::ThreadPolicyValue threadPolicy;

if (isMultiThread) {
threadPolicy = PortableServer::ORB_CTRL_MODEL;

}
else {

threadPolicy = PortableServer::SINGLE_THREAD_MODEL;
}
policies[i] = parentPOAP->create_thread_policy(threadPolicy);

PortableServer::LifespanPolicyValue lifeSpanPolicy;
PortableServer::IdAssignmentPolicyValue idAssignPolicy;

// Lifespan and IdAssignment Policies
if (isPersistent) {

S e r v a n t A c t i v a t o r P O A 3 4 5

10 0672318121 CH07 6/20/01 5:52 PM Page 345

Listing 7.27 continued
// Policies for ‘Entity’ objects
lifeSpanPolicy = PortableServer::PERSISTENT;
idAssignPolicy = PortableServer::USER_ID;

}
else {

// Policies for ‘Session’ objects
lifeSpanPolicy = PortableServer::TRANSIENT;
idAssignPolicy = PortableServer::SYSTEM_ID;

}

// Lifespan Policy
i++;
policies[i] = parentPOAP->create_lifespan_policy(lifeSpanPolicy);

// IdAssignment Policy
i++;
policies[i] = parentPOAP->create_id_assignment_policy(idAssignPolicy);

// IdUniqueness Policy - Default = UNIQUE_ID

// ImplicitActivation Policy - Default = NO_IMPLICIT_ACTIVATION

// RequestProcessing Policy
i++;
policies[i] = parentPOAP->create_request_processing_policy(

PortableServer::USE_SERVANT_MANAGER
);

// ServantRetention Policy - Default = RETAIN

return parentPOAP->create_POA(POAName, POAManagerP, policies);
}

Listing 7.28 Java Creating a POA That Uses a Servant Activator
//Java
package Pure.Util;
import org.omg.PortableServer.*;

public class POAUtility {
//...
public static org.omg.PortableServer.POA
create_servant_activator_POA(

org.omg.PortableServer.POA parentPOA,
org.omg.PortableServer.POAManager POAManager,
String POAName,
boolean isMultiThread,
boolean isPersistent

)

3 4 6 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 346

Listing 7.28 continued
throws org.omg.PortableServer.POAPackage.InvalidPolicy,

org.omg.PortableServer.POAPackage.AdapterAlreadyExists
{
// Create a policy list.
org.omg.CORBA.Policy policies[] = new org.omg.CORBA.Policy[4];
int i = 0;

// Thread Policy
org.omg.PortableServer.ThreadPolicyValue threadPolicy = null;

if (isMultiThread) {
threadPolicy = ThreadPolicyValue.ORB_CTRL_MODEL;

}
else {

threadPolicy = ThreadPolicyValue.SINGLE_THREAD_MODEL;
}
policies[i] = parentPOA.create_thread_policy(threadPolicy);

org.omg.PortableServer.LifespanPolicyValue lifeSpanPolicy = null;
org.omg.PortableServer.IdAssignmentPolicyValue idAssignPolicy = null;

// Lifespan and IdAssignment Policies
if (isPersistent) {

// Policies for ‘Entity’ objects
lifeSpanPolicy = LifespanPolicyValue.PERSISTENT;
idAssignPolicy = IdAssignmentPolicyValue.USER_ID;

}
else {

// Policies for ‘Session’ objects
lifeSpanPolicy = LifespanPolicyValue.TRANSIENT;
idAssignPolicy = IdAssignmentPolicyValue.SYSTEM_ID;

}

// Lifespan Policy
i++;
policies[i] = parentPOA.create_lifespan_policy(lifeSpanPolicy);

// IdAssignment Policy
i++;
policies[i] = parentPOA.create_id_assignment_policy(idAssignPolicy);

// IdUniqueness Policy - Default = UNIQUE_ID

// ImplicitActivation Policy - Default = NO_IMPLICIT_ACTIVATION

// RequestProcessing Policy
i++;

S e r v a n t A c t i v a t o r P O A 3 4 7

10 0672318121 CH07 6/20/01 5:52 PM Page 347

Listing 7.28 continued
policies[i] = parentPOA.create_request_processing_policy(

RequestProcessingPolicyValue.USE_SERVANT_MANAGER
);

// ServantRetention Policy - Default = RETAIN

return parentPOA.create_POA(POAName, POAManager, policies);
}

}

Two policies are particularly relevant to the use of ServantActivator: the servant
retention policy and the request processing policy. The values of these policies that
must be used in combination with a ServantActivator are shown in Table 7.6.

Table 7.6 POA Policies Used with ServantActivator

Policy Name Policy Value

ServantRetentionPolicy RETAIN

RequestProcessingPolicy USE_SERVANT_MANAGER

Servant Retention Policy
The servant retention policy, of PortableServer::ServantRetentionPolicy type,
determines whether or not a POA uses an active object map.

• RETAIN This policy value specifies that the POA uses an active object map. It
must be set if you want to use a ServantActivator.

• NON_RETAIN This policy value specifies that the POA does not use an active
object map. This implies that the POA is configured to support some other way
of locating servant objects. It must be set if you want to use a ServantLocator.

Either policy value is compatible with the use of a default servant. See the section
“Default Servant POA.”

Request Processing Policy
The request processing policy, of PortableServer::RequestProcessingPolicy type,
influences how a POA locates a servant to process an incoming request.

• USE_ACTIVE_OBJECT_MAP_ONLY The POA extracts an ObjectId from the
incoming request and uses the ObjectId to look up the active object map. If an
entry is found, the POA assigns the request to the corresponding servant.
Otherwise, an OBJECT_NOT_EXIST system exception is raised by the POA back
to the client.

• USE_DEFAULT_SERVANT In this case, a default servant object must be regis-
tered with the POA. If the POA fails to find the request’s ObjectId in the
active object map, it will pass the request on to the POA’s default servant for
processing. See the section “Default Servant POA” for details.

3 4 8 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 348

• USE_SERVANT_MANAGER In this case, either a ServantActivator or
ServantLocator object must be registered with the POA, depending on the
value of the servant retention policy. A ServantActivator is used in conjunc-
tion with an active object map (RETAIN servant retention policy value).
Use of a ServantLocator is discussed in the section “Servant Locator POA.” A
ServantLocator is used instead of an active object map (NON_RETAIN servant
retention policy value).

Local Interfaces
There are certain IDL interfaces defined by the CORBA standard, locality-constrained
interfaces, that are never called remotely. This category includes most of the pseudo-
IDL interfaces, for example CORBA::ORB and PortableServer::POA. A regular
CORBA developer does not normally have to worry about implementing pseudo-IDL
interfaces—the pseudo-IDL implementations are supplied by an ORB vendor.

However, the CORBA developer does occasionally have to implement interfaces that
are not intended to be accessed remotely—for example, the
PortableServer::ServantActivator interface. It would be clumsy and inefficient to
insist that a ServantActivator object should be activated using a POA. To avoid this,
the PortableServer::ServantActivator interface is declared as a local interface, as
shown in the following code fragment:

//IDL
module PortableServer {

...
interface ServantManager{ };

local interface ServantActivator : ServantManager {
...

};
...

};

The IDL keyword local introduces the definition of a local IDL interface. A local
interface has the following properties:

• A local interface cannot be accessed remotely. Attempting to marshal a local
object reference or to convert a local object reference to a stringified IOR gives
rise to a CORBA::MARSHAL system exception.

• A local interface can inherit from another local interface or from an uncon-
strained interface (ordinary interface). However, an unconstrained interface
cannot inherit from a local interface.

• A local object does not need to be activated.

The following subsections describe how to implement a local interface in C++ and
Java.

S e r v a n t A c t i v a t o r P O A 3 4 9

10 0672318121 CH07 6/20/01 5:52 PM Page 349

C++ Implementation of a Local Interface
In C++, a local interface is implemented by inheriting from the signature class (the
class with the same name as the IDL interface) and the class CORBA::LocalObject. The
IDL attributes and operations are implemented in the same way as a regular servant
object. For example, an outline of a C++ implementation of the ServantActivator
local interface is shown in the following code fragment:

//C++
...
class ServantActivatorImpl :

public virtual PortableServer::ServantActivator,
public virtual CORBA::LocalObject

{
// Implement IDL attributes and operations.
// (not shown)
...

};

See Listing 7.29 for the complete code. The principal difference between this imple-
mentation and the implementation of an unconstrained interface is the list of base
classes.

To create a local ServantActivator object, call a ServantActivatorImpl() construc-
tor. The ServantActivatorImpl instance can be referenced directly using the
PortableServer::ServantActivator_ptr type or the
PortableServer::ServantActivator_var type.

Reference counting must be implemented explicitly by overriding the _add_ref() and
_remove_ref() functions, which are inherited from CORBA::LocalObject.
Unfortunately, there is no equivalent to the convenient
PortableServer::RefCountServantBase class when implementing local interfaces.

Java Implementation of a Local Interface
In Java, a local interface is implemented by extending the
org.omg.CORBA.LocalObject class and implementing the signature Java interface (the
Java interface with the same name as the IDL interface). The IDL attributes and oper-
ations are implemented in the same way as a regular servant object. For example, an
outline of a Java implementation of the ServantActivator local interface is given in
the following code fragment:

//Java
...
public class ServantActivatorImpl

extends org.omg.CORBA.LocalObject
implements org.omg.PortableServer.ServantActivator

{
...

}

3 5 0 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 350

See Listing 7.31 for the complete code. The principal difference between this imple-
mentation and the implementation of an unconstrained interface is the list of inherited
classes.

To create a local ServantActivator object, simply call a ServantActivatorImpl()
constructor. The ServantActivatorImpl instance can then be referenced directly using
the org.omg.PortableServer.ServantActivator type (as if it were an object refer-
ence).

Implementing the Servant Activator
The class declaration for a C++ implementation of the ServantActivator is shown in
Listing 7.29 (the Java implementation of ServantActivator is shown in Listing 7.31).

Listing 7.29 C++ Declaration of a Servant Activator Class
//C++
#include <omg/PortableServer.hh>

#include <queue>

// ServantActivatorImpl -- a local object implementation.
class ServantActivatorImpl :

public virtual PortableServer::ServantActivator,
public virtual CORBA::LocalObject

{
public:
ServantActivatorImpl(CORBA::Long queueSizeLimit);

virtual
~ServantActivatorImpl();

virtual PortableServer::Servant
incarnate(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr adapter

) throw (
CORBA::SystemException,
PortableServer::ForwardRequest

);

virtual void
etherealize(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr adapter,
PortableServer::Servant serv,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations

) throw (CORBA::SystemException);

S e r v a n t A c t i v a t o r P O A 3 5 1

10 0672318121 CH07 6/20/01 5:52 PM Page 351

Listing 7.29 continued
private:
typedef std::queue<PortableServer::ObjectId> QType;

// Private Member Variables
QType m_queue;
CORBA::Long m_queueSizeLimit;

// Not implemented for this class
ServantActivatorImpl(const ServantActivatorImpl&);
ServantActivatorImpl& operator=(const ServantActivatorImpl&);

};

The ServantActivatorImpl class inherits from PortableServer::ServantActivator
and overrides the incarnate() and etherealize() operations. The
ServantActivatorImpl constructor takes a queueSizeLimit argument that specifies
the maximum number of WasteItem objects that should be active at any time. This
value is stored in the m_queueSizeLimit private member variable.

The list of active WasteItem objects is stored in a std::queue<element_type> tem-
plate class. The queue container type is one of the container types supported by the
C++ standard template library (STL). A comprehensive description of the template
library can be found in The C++ Programming Language by Bjarne Stroustrup (ISBN
0201700735). For this example, we note that the queue template class supports three
useful functions:

• front() Returns a copy of the element at the front of the queue.
• push(element_type elem) Inserts the elem element at the back of the queue.
• pop() Removes the element at the front of the queue.

Listing 7.30 and Listing 7.31 show the implementation of ServantActivatorImpl in
C++ and Java, respectively.

Listing 7.30 C++ Implementation of a Servant Activator Class
//C++
//File: ‘ServantActivatorImpl.cxx’
#include <stdlib.h>
#include <stdio.h>

#include “ServantActivatorImpl.h”
#include “RecycleBroker_WasteItem_i.h”

#include “ToyDB.h”
#include “ObjectIdMapper.h”

// Constructor.
ServantActivatorImpl::ServantActivatorImpl(

CORBA::Long queueSizeLimit

3 5 2 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 352

Listing 7.30 continued
)
: m_queueSizeLimit(queueSizeLimit)

{ }

// Destructor.
ServantActivatorImpl::~ServantActivatorImpl()
{ }

// incarnate()
PortableServer::Servant
ServantActivatorImpl::incarnate(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr poa

) throw (
CORBA::SystemException,
PortableServer::ForwardRequest

)
{

// Step 1 - Obtain the object’s type
CORBA::String_var typeV = ObjectIdMapper::extract_type_from_ObjectId(oid);

if (strcmp(typeV.in(), “WasteItem”)==0)
{

// Step 2 - Evict overflow servant
if (m_queue.size() == m_queueSizeLimit)
{

PortableServer::ObjectId& _tmp = m_queue.front();
poa->deactivate_object(_tmp);
m_queue.pop();

}

// Step 3 - Incarnate this servant
m_queue.push(oid);
return RecycleBroker_WasteItem_i::_incarnate(oid, poa);

}
else
{

throw CORBA::OBJECT_NOT_EXIST();
}

}

// etherealize()
void
ServantActivatorImpl::etherealize(

const PortableServer::ObjectId & oid,

S e r v a n t A c t i v a t o r P O A 3 5 3

10 0672318121 CH07 6/20/01 5:52 PM Page 353

Listing 7.30 continued
PortableServer::POA_ptr poa,
PortableServer::Servant servant,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations

) throw (
CORBA::SystemException

)
{

if (!remaining_activations)
{

servant->_remove_ref();
}

}

Listing 7.31 Java Implementation of a Servant Activator Class
//Java
package Pure.POADemo;

import Pure.POADemo.RecycleBroker.*;

public class ServantActivatorImpl
extends org.omg.CORBA.LocalObject
implements org.omg.PortableServer.ServantActivator

{
public ServantActivatorImpl(int queueSizeLimit)
{
m_queueSizeLimit = queueSizeLimit;
m_queue = new java.util.Vector(queueSizeLimit);

}

public org.omg.PortableServer.Servant
incarnate(byte[] oid, org.omg.PortableServer.POA poa)
throws org.omg.PortableServer.ForwardRequest
{

// Step 1 - Obtain the object’s type
String id_string = new String(oid);
String type = ObjectIdMapper.extract_type_from_ObjectId(oid);

System.out.println(“Calling incarnate for id ” + id_string);
System.out.println(“type = “ + type);

if (type.equals(“WasteItem”))
{

// Step 2 - Evict overflow servant
if (m_queue.size() == m_queueSizeLimit)
{

byte[] _tmp = (byte[]) m_queue.firstElement();

3 5 4 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 354

Listing 7.30 continued
try {

poa.deactivate_object(_tmp);
}
catch (org.omg.PortableServer.POAPackage.ObjectNotActive ona) { }
catch (org.omg.PortableServer.POAPackage.WrongPolicy wp) { }
m_queue.remove(0);

}

// Step 3 - Incarnate this servant
m_queue.add(oid);
return RecycleBroker_WasteItem_i._incarnate(oid, poa);

}
else
{

throw new org.omg.CORBA.OBJECT_NOT_EXIST();
}

}

public void etherealize(
byte[] oid,
org.omg.PortableServer.POA poa,
org.omg.PortableServer.Servant servant,
boolean cleanup_in_progress,
boolean remaining_activations

)
{
}

//-----------------------------
// Private Member Variables
//-----------------------------
private java.util.Vector m_queue;
private int m_queueSizeLimit;

};

The ServantActivator::incarnate() Operation
The ServantActivatorImpl::incarnate() function is called whenever a servant
needs to be created and activated. Because we are using lazy activation, this is the only
place in the code where a RecycleBroker_WasteItem_i servant is created.

The POA invokes incarnate(), passing the ObjectId (oid) and the POA (poa) asso-
ciated with this CORBA object. The poa/oid pair represents the fundamental identity
of the CORBA object. Recall that the ObjectId format we are using for WasteItem
objects is

WasteItem integerKeyValue

S e r v a n t A c t i v a t o r P O A 3 5 5

10 0672318121 CH07 6/20/01 5:52 PM Page 355

The ServantActivatorImpl::incarnate() function implements the following steps:

1. The ObjectIdMapper::extract_type_from_ObjectId() function is used to
extract the WasteItem string from this object ID. The returned string is tested to
confirm that the object we are dealing with really is a WasteItem object.

2. The code then checks whether the maximum queue size has been reached and
evicts an object if necessary.

3. The final step is to go ahead and incarnate the WasteItem object. For conve-
nience, this task is delegated to a static
RecycleBroker_WasteItem_i::_incarnate() function. This _incarnate()
function is not a standard CORBA function; it just provides a convenient way
of organizing our sample code.

Listing 7.32 and Listing 7.33 show a sample implementation of _incarnate() in C++
and Java, respectively.

Listing 7.32 C++ RecycleBroker__WasteItem_i::_incarnate() Function
//C++
RecycleBroker_WasteItem_i*
RecycleBroker_WasteItem_i::_incarnate(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr poa

) throw (
CORBA::SystemException,
PortableServer::ForwardRequest

)
{

CORBA::Long key;

key = ObjectIdMapper::extract_key_from_ObjectId(oid);

if (!ToyDB::DB_instance().is_valid_key(key))
{

throw CORBA::OBJECT_NOT_EXIST();
}

return new RecycleBroker_WasteItem_i(poa, key);
}

Listing 7.33 Java RecycleBroker__WasteItem_i._incarnate() Method
//Java
package Pure.POADemo;
import Pure.POADemo.RecycleBroker.*;

public class RecycleBroker_WasteItem_i extends WasteItemPOA
{
//...
public static RecycleBroker_WasteItem_i
_incarnate(

3 5 6 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 356

Listing 7.32 continued
byte[] oid,
org.omg.PortableServer.POA poa

)
throws org.omg.CORBA.SystemException, org.omg.PortableServer.ForwardRequest
{
int key;

key = ObjectIdMapper.extract_key_from_ObjectId(oid);
System.out.println(“Entity key = \”” + key + “\””);

if (!ToyDB.DB_instance().is_valid_key(key))
{

throw new org.omg.CORBA.OBJECT_NOT_EXIST();
}

return new RecycleBroker_WasteItem_i(key);
}
//...

}

The _incarnate() function calls the constructor for the servant object. However,
because WasteItem is an entity type, it is first necessary to check that a corresponding
database record exists for the given key.

The ToyDB::DB_instance() refers to a hypothetical database adapter class (imple-
mentation not shown) that has an associated is_valid_key() function to test whether
a given key can be found in the database.

C++ ServantActivator::etherealize() Function
The responsibility of the etherealize() operation is to clean up the resources associ-
ated with the CORBA object identified by the poa and oid parameters. In practice, this
usually means deleting the servant.

There are two ways of implementing the etherealize() operation. The first way is
used with servant reference counting, as shown in Listing 7.34.

Listing 7.34 C++ etherealize() Implementation with Servant Reference
Counting
//C++
// etherealize()
void
ServantActivatorImpl::etherealize(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr poa,
PortableServer::Servant servant,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations

S e r v a n t A c t i v a t o r P O A 3 5 7

10 0672318121 CH07 6/20/01 5:52 PM Page 357

Listing 7.34 continued
) throw (

CORBA::SystemException
)
{

if (!remaining_activations)
{

servant->_remove_ref();
}

}

The second way is used in the absence of servant reference counting, as shown in
Listing 7.35.

Listing 7.35 C++ etherealize() Implementation Without Servant
Reference Counting
//C++
// etherealize()
void
ServantActivatorImpl::etherealize(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr poa,
PortableServer::Servant servant,
CORBA::Boolean cleanup_in_progress,
CORBA::Boolean remaining_activations

) throw (
CORBA::SystemException

)
{

if (!remaining_activations)
{

delete servant;
}

}

In these examples, care is taken to ensure that the etherealize() function is compat-
ible with the MULTIPLE_ID ID uniqueness policy value. You may recall from the section
“A POA for Service Objects” that a POA with an IdUniquenessPolicy of
MULTIPLE_ID might have many entries in its active object map that refer to the same
servant object—see Figure 7.3(b). The remaining_activations flag is TRUE if there
are further entries in the active object map that refer to servant. Therefore, in Listing
7.34 and Listing 7.35, the remaining_activations flag is checked to make sure it is
FALSE before deleting the servant.

When the MULTIPLE_ID policy value is set, the servant reference counting approach
(Listing 7.34) works as follows:

1. The servant object is created with a reference count equal to 1.

3 5 8 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 358

2. After being returned by the ServantActivator::incarnate() function, the
servant object is activated by the POA and has its reference count increased by
one (the POA calls _add_ref() on the servant). After N incarnations of the ser-
vant object, the reference count becomes equal to N+1.

3. Each time the servant is deactivated, its reference count is automatically
decreased by one (the POA calls _remove_ref() on the servant). The
etherealize() function has no effect during the first N-1 deactivations,
because the remaining_activations flag is equal to TRUE.

4. At the last deactivation, both the POA and the etherealize() function call
_remove_ref() on the servant object (the remaining_activations flag is
equal to FALSE). This reduces the reference count from 2 to 0, causing the ser-
vant object to be deleted.

The other flag passed to etherealize() is the cleanup_in_progress flag. This flag is
equal to TRUE if etherealize() is called as a consequence of either
PortableServer::POA::deactivate() or PortableServer::POA::destroy() being
called with its etherealize_objects parameter set to TRUE.

Java ServantActivator.etherealize() Method
The Java implementation of etherealize() is usually trivial, as shown in Listing 7.36.

Listing 7.36 Java etherealize() Implementation
//Java
// ServantActivatorImpl -- a local object implementation.
package Pure.POADemo;
import Pure.POADemo.RecycleBroker.*;

public class ServantActivatorImpl
extends org.omg.CORBA.LocalObject
implements org.omg.PortableServer.ServantActivator

{
//...
public void etherealize(
byte[] oid,
org.omg.PortableServer.POA poa,
org.omg.PortableServer.Servant servant,
boolean cleanup_in_progress,
boolean remaining_activations

)
{
// Let the Java garbage collector take care of cleaning
// up the servant.

}
};

As soon as the last servant reference is removed from the active object map, the Java
garbage collector takes care of servant cleanup. The etherealize() method is occa-
sionally useful when other resources need to be cleaned up at the same time as the ser-
vant object.

S e r v a n t A c t i v a t o r P O A 3 5 9

10 0672318121 CH07 6/20/01 5:52 PM Page 359

Implementing a Lazy Factory
The create() and find() operations of the lazy WasteItemAdmin factory class are
implemented in Listing 7.37 and Listing 7.38 for C++ and Java, respectively.

Listing 7.37 C++ Implementation of RecycleBroker::WasteItemAdmin
Servant with Lazy Activation
//C++
#include <stdlib.h>
#include <iostream.h>

#include “RecycleBroker_WasteItem_i.h”
#include “RecycleBroker_WasteItemAdmin_i.h”
#include “ObjectIdMapper.h”

// RecycleBroker_WasteItemAdmin_i constructor
RecycleBroker_WasteItemAdmin_i::RecycleBroker_WasteItemAdmin_i(

const PortableServer::POA_ptr poa,
const PortableServer::POA_ptr poa_for_children

) :
ServantBaseOverrides(poa),
m_poa_for_childrenV(PortableServer::POA::_duplicate(poa_for_children))

{ }

// ~RecycleBroker_WasteItemAdmin_i destructor.
//
RecycleBroker_WasteItemAdmin_i::~RecycleBroker_WasteItemAdmin_i()
{ }

// create() - Implements IDL operation “RecycleBroker::WasteItemAdmin::create”.
RecycleBroker::WasteItem_ptr
RecycleBroker_WasteItemAdmin_i::create(

const RecycleBroker::WasteItemDetails& initialData,
RecycleBroker::KeyType_out wasteitem_id

) throw (
CORBA::SystemException,
RecycleBroker::NoPermission

)
{

PortableServer::ObjectId_var oidV;
CORBA::RepositoryId_var repIdV;
CORBA::Object_var objV;
RecycleBroker::WasteItem_var refV;

cout << endl
<< “RecycleBroker_WasteItemAdmin_i::create() called” << endl;

3 6 0 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 360

Listing 7.37 continued
// Case: Servant Activator POA

// Create a DB record for the new CORBA object
wasteitem_id = RecycleBroker_WasteItem_i::_create_DB_record(initialData);

// Construct an ‘ObjectId’ from the database key, ‘wasteitem_id’
oidV = ObjectIdMapper::make_ObjectId(“WasteItem”, wasteitem_id);

// Create a ‘WasteItem’ object reference
repIdV = RecycleBroker::_tc_WasteItem->id();
objV = m_poa_for_childrenV->create_reference_with_id(

oidV,
repIdV

);

refV = RecycleBroker::WasteItem::_ narrow(objV.in());
return refV._retn();

}

// find() -- Implements IDL operation “RecycleBroker::WasteItemAdmin::find”.
RecycleBroker::WasteItem_ptr
RecycleBroker_WasteItemAdmin_i::find(

RecycleBroker::KeyType wasteitem_id
) throw (

CORBA::SystemException
)
{

PortableServer::ObjectId_var oidV;
CORBA::RepositoryId_var repIdV;
CORBA::Object_var objV;
RecycleBroker::WasteItem_var refV;

// Case: Activator POA

// Construct an ‘ObjectId’ from the database key, ‘wasteitem_id’
oidV = ObjectIdMapper::make_ObjectId(“WasteItem”, wasteitem_id);

try {
// Look up the ‘oid’ in the ‘Active Object Map’
objV = m_poa_for_childrenV->id_to_reference(oidV.in());

}
catch (PortableServer::POA::ObjectNotActive&) {

objV = CORBA::Object::_nil();
}

if (CORBA::is_nil(objV.in())) {
// Object not active --> check validity of ‘wasteitem_id’

S e r v a n t A c t i v a t o r P O A 3 6 1

10 0672318121 CH07 6/20/01 5:52 PM Page 361

Listing 7.37 continued
if (RecycleBroker_WasteItem_i::_find_DB_record(wasteitem_id)) {

// Create a ‘WasteItem’ object reference
repIdV = RecycleBroker::_tc_WasteItem->id();
objV = m_poa_for_childrenV->create_reference_with_id(

oidV,
repIdV

);
}
else {

objV = CORBA::Object::_nil();
}

}

refV = RecycleBroker::WasteItem::_ narrow(objV.in());
return refV._retn();

}

Listing 7.38 Java Implementation of RecycleBroker::WasteItemAdmin
Servant with Lazy Activation
//Java
package Pure.POADemo;
import Pure.POADemo.RecycleBroker.*;

public class RecycleBroker_WasteItemAdmin_i
extends WasteItemAdminPOA

{

// RecycleBroker_WasteItemAdmin_i constructor
public RecycleBroker_WasteItemAdmin_i(
org.omg.PortableServer.POA poa_for_children

)
{
m_poa_for_children = poa_for_children;

}

// create() - Implements IDL operation “RecycleBroker.WasteItemAdmin.create”.
public WasteItem
create(
WasteItemDetails initialData,
org.omg.CORBA.IntHolder wasteitem_id

)
throws org.omg.CORBA.SystemException, Pure.POADemo.RecycleBroker.NoPermission
{
byte[] oid;
String repId;
org.omg.CORBA.Object obj;
WasteItem ref;

3 6 2 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 362

Listing 7.37 continued
// Case: Servant Activator POA

// Create a DB record for the new CORBA object
wasteitem_id.value

= RecycleBroker_WasteItem_i._create_DB_record(initialData);

// Construct an ‘ObjectId’ from the database key, ‘wasteitem_id’
oid = ObjectIdMapper.make_ObjectId(“WasteItem”, wasteitem_id.value);

try {
// Create a ‘WasteItem’ object reference
repId = WasteItemHelper.type().id();
obj = m_poa_for_children.create_reference_with_id(

oid,
repId

);
}
catch (Exception ex) {

System.err.println(
“error: WasteItemAdmin.create\n” + ex

);
obj = null;

}

ref = WasteItemHelper.narrow(obj);
return ref;

}

// find() -- Implements IDL operation “RecycleBroker.WasteItemAdmin.find”.
public WasteItem
find(
int wasteitem_id

)
throws org.omg.CORBA.SystemException
{
byte[] oid;
String repId;
org.omg.CORBA.Object obj;
WasteItem ref;

// Case: Servant Activator POA

// Construct an ‘ObjectId’ from the database key, ‘wasteitem_id’
oid = ObjectIdMapper.make_ObjectId(“WasteItem”, wasteitem_id);

try {
try {

S e r v a n t A c t i v a t o r P O A 3 6 3

10 0672318121 CH07 6/20/01 5:52 PM Page 363

Listing 7.37 continued
// Look up the ‘oid’ in the ‘Active Object Map’
obj = m_poa_for_children.id_to_reference(oid);

}
catch (org.omg.PortableServer.POAPackage.ObjectNotActive ona) {

obj = null;
}

if (obj==null) {
// Object not active --> check validity of ‘wasteitem_id’
if (RecycleBroker_WasteItem_i._find_DB_record(wasteitem_id)) {

// Create a ‘WasteItem’ object reference
repId = WasteItemHelper.type().id();
obj = m_poa_for_children.create_reference_with_id(

oid,
repId

);
}
else {

obj = null;
}

}
}
catch (Exception ex) {

// Error: details of exception handling not shown
obj = null;

}

ref = WasteItemHelper.narrow(obj);
return ref;

}

//---------------------------
// Private member variables
//---------------------------
org.omg.PortableServer.POA m_poa_for_children;

}

The lazy create() and find() operations are described in the following two subsec-
tions.

The RecycleBroker::WasteItemAdmin::create() Operation
The algorithm for the lazy create() operation consists of the following steps:

1. Create a database record.
2. Create an object reference.

The lazy create() operation does not create and activate a servant right away. It
returns a plain object reference instead, using the create_reference_with_id() func-
tion, and lets the ServantActivator take care of activating the servant on demand.

3 6 4 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 364

The RecycleBroker::WasteItemAdmin::find() Operation
The lazy find() operation takes the wasteitem_id database key as an argument and
returns the object reference for an existing WasteItem object. If the object does not
exist, find() returns a nil object reference.

The algorithm for the lazy find() operation consists of the following steps:

1. Search the active object map.
The PortableServer::POA::id_to_reference() operation searches the active
object map for an object with the given ObjectId.
Considering that we could create an object reference straight away using
create_reference_with_id(), this step might appear unnecessary. However,
remember that for an entity object we must verify that the wasteitem_id corre-
sponds to a real database record. Searching for an existing entry in the active
object map is the fastest way to confirm this.

2. Check for the existence of the database record.
If the CORBA object is not found in the active object map, the static
_find_DB_record() function must be called to determine whether the
wasteitem_id key corresponds to an existing database record.

3. Create an object reference.
Once the existence of the WasteItem object has been confirmed, we can create
an object reference using the create_reference_with_id() function.

Creating the Factory
Listing 7.39 and Listing 7.40 show how the WasteItemAdmin object, a factory for
WasteItem objects, is created and activated in C++ and Java, respectively. The listings
also show how the ServantActivator object is constructed and registered with a POA.

Listing 7.39 C++ Creating and Activating a
RecycleBroker::WasteItemAdmin Object
//C++
// Create a basic POA for ‘Session’ objects.
basic_session_poaV =

POAUtility::create_basic_POA(
root_poaV.in(),
root_poa_managerV.in(),
“basic_session_poa”,
0, // Single threaded
0 // for ‘Session’ objects

);

// Create an activator POA for ‘Entity’ objects.
entity_activator_poaV =

POAUtility::create_servant_activator_POA(
root_poaV.in(),
root_poa_managerV.in(),
“entity_activator_poa”,

S e r v a n t A c t i v a t o r P O A 3 6 5

10 0672318121 CH07 6/20/01 5:52 PM Page 365

Listing 7.39 continued
0, // Single threaded
1 // for ‘Entity’ objects

);

//---
// Create an ‘Evictor’ for the ‘entity_activator_poa’
//---
entity_activatorV = new ServantActivatorImpl(

10 // Queue size limit
);

entity_activator_poaV->set_servant_manager(
entity_activatorV.in()

);

//---
// Create Factories and export their object references.
//---
PortableServer::ObjectId_var oidV;
CORBA::Object_var refV;

// Create a servant for the ‘Browsing’ interface.
the_WasteItemAdminV = new RecycleBroker_WasteItemAdmin_i(

basic_session_poaV.in(), //POA for the Factory
entity_activator_poaV.in() //POA for the children

);
oidV = basic_session_poaV->activate_object(the_WasteItemAdminV.in());
refV = basic_session_poaV->id_to_reference(oidV);

// Export the ‘WasteItemAdmin’ object reference, ‘refV’, to the Naming Service
...

Listing 7.40 Java Creating and Activating a
RecycleBroker::WasteItemAdmin Object
//Java
// Create a basic POA for ‘Session’ objects.
System.out.println(“Creating basic session POA”);
POA basic_session_poa =

Pure.Util.POAUtility.create_basic_POA(
root_poa,
root_poa_manager,
“basic_session_poa”,
false, // Single threaded
false // for ‘Session’ objects

);

// Create an activator POA for ‘Entity’ objects.
System.out.println(“Creating activator POA”);
POA entity_activator_poa =

3 6 6 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 366

Listing 7.39 continued
Pure.Util.POAUtility.create_servant_activator_POA(

root_poa,
root_poa_manager,
“entity_activator_poa”,
false, // Single threaded
true // for ‘Entity’ objects

);

//---
// Create an ‘Evictor’ for the ‘entity_activator_poa’
//---
ServantActivatorImpl entity_activator = new ServantActivatorImpl(

10 // Queue size limit
);

entity_activator_poa.set_servant_manager(
entity_activator

);

//---
// Create Factories and export their object references.
//---
System.out.println(“Creating WasteItemAdmin object”);

byte[] oid = null;
org.omg.CORBA.Object ref = null;

// Create a servant for the ‘Browsing’ interface.
Servant the_WasteItemAdmin = new RecycleBroker_WasteItemAdmin_i(

entity_activator_poa //POA for the children
);
oid = basic_session_poa.activate_object(the_WasteItemAdmin);
ref = basic_session_poa.id_to_reference(oid);

// Export the ‘WasteItemAdmin’ object reference, ’refV’, to the Naming Service
...

Servant Locator POA
The second kind of ServantManager object is a ServantLocator. A servant locator is
used in conjunction with a POA that has no active object map. Instead of recording the
association between ObjectIds and servants statically in an active object map, a ser-
vant locator is used to map dynamically between ObjectIds and servants—shown
schematically in Figure 7.3(c).

Recall two major responsibilities of the POA, mentioned at the beginning of this chapter:

• Locating a servant object to service each incoming invocation request.
• Invoking the appropriate operation on the servant object as given in the invoca-

tion request.

S e r v a n t L o c a t o r P O A 3 6 7

10 0672318121 CH07 6/20/01 5:52 PM Page 367

When a servant locator is used, responsibility for locating a servant is delegated
entirely to the ServantLocator object.

The IDL for the ServantManager and ServantLocator interfaces is shown in
Listing 7.41.

Listing 7.41 IDL for the ServantLocator Interface
//IDL
module CORBA {

//...
typedef string Identifier;

};

module PortableServer {
//...
typedef sequence<octet> ObjectId;
exception ForwardRequest {

Object forward_reference;
};

interface ServantManager{ };

interface ServantLocator : ServantManager {
native Cookie;

Servant preinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
out Cookie the_cookie)

raises (ForwardRequest);

void postinvoke(
in ObjectId oid,
in POA adapter,
in CORBA::Identifier operation,
in Cookie the_cookie,
in Servant the_servant

);
};
//...

};

The ServantLocator interface defines two operations, preinvoke() and postin-

voke(). These operations are called for every invocation processed by the POA. When
using a servant locator, the POA processes an invocation as follows:

1. A request invocation arrives in the POA, triggering the invocation processing.
2. The POA calls preinvoke() to locate a servant.

3 6 8 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 368

The preinvoke() operation, which is implemented by the developer, returns a
servant object and a Cookie.

3. The POA invokes the appropriate IDL operation on the servant object returned
by preinvoke().

4. The POA calls postinvoke(), passing back the Cookie, to let the servant loca-
tor know that this invocation is complete.
The Cookie is used by the servant locator to match a preinvoke() call with a
postinvoke() call. The servant locator is therefore able to determine when a
particular invocation has finished and to clean up any resources associated with
that invocation.

Using the servant locator gives the developer sufficient flexibility to implement practi-
cally any scheme for managing the lifecycle of servant objects. For example, the
CORBA Components specification makes extensive use of the servant locator to imple-
ment flexible management of CORBA components—see Chapter 15, “CORBA
Components.”

The following sections provide an outline of the steps to implement an evictor strategy
using a servant locator.

The Evictor Pattern Revisited
The section “Servant Activator POA,” earlier in this chapter, describes a strategy for
managing the number of servants in memory, known as the evictor pattern. However,
the evictor described in that section has a significant drawback: The strategy of evict-
ing the oldest servant in memory is fairly primitive. Moreover, it is difficult to improve
on that evictor strategy using a servant activator.

The servant locator, on the other hand, provides an excellent basis for implementing
more sophisticated evictor patterns. Some more efficient strategies for choosing which
servants to evict are

• To evict the least recently used servant.
This requires the developer to implement the list of active servants as an
ordered list, with the least recently used servant at the front of the list. When
the size of the list is about to overflow, the servant at the front of the list can be
deactivated and deleted.
The list of servants can easily be kept in the right order. Each time
preinvoke() is called, it moves the servant identified by the oid argument to
the back of the list.

• To evict any servant that has not received invocations within a specified period
of time.
This requires the developer to implement a list that has a time stamp for each
servant. The time stamp records the time of the last invocation on a servant. If
the period elapsed between the time stamp and the current time is greater than
a specified amount, the servant, considered dormant, is deactivated and deleted.
The time stamps can easily be kept up-to-date by the preinvoke() function.
Each time preinvoke() is called, it can update a servant’s time stamp to the
current time.

S e r v a n t L o c a t o r P O A 3 6 9

10 0672318121 CH07 6/20/01 5:52 PM Page 369

Both of these evictor strategies are straightforward to implement using a servant loca-
tor.

Creating the POA
The code to create a POA that uses a ServantLocator is conveniently encapsulated in
the create_servant_locator_POA() function, shown in Listing 7.42 and Listing 7.43.

Listing 7.42 C++ Creating a POA That Uses a Servant Locator
//C++
PortableServer::POA_ptr
POAUtility::create_servant_locator_POA(

PortableServer::POA_ptr parentPOAP,
PortableServer::POAManager_ptr POAManagerP,
char * POAName,
CORBA::Boolean isMultiThread,
CORBA::Boolean isPersistent

)
{

// Create a policy list.
CORBA::PolicyList policies;
policies.length(5);
CORBA::ULong i = 0;

// Thread Policy
PortableServer::ThreadPolicyValue threadPolicy;

if (isMultiThread) {
threadPolicy = PortableServer::ORB_CTRL_MODEL;

}
else {

threadPolicy = PortableServer::SINGLE_THREAD_MODEL;
}
policies[i] = parentPOAP->create_thread_policy(threadPolicy);

PortableServer::LifespanPolicyValue lifeSpanPolicy;
PortableServer::IdAssignmentPolicyValue idAssignPolicy;

// Lifespan and IdAssignment Policies
if (isPersistent) {

// Policies for ‘Entity’ objects
lifeSpanPolicy = PortableServer::PERSISTENT;
idAssignPolicy = PortableServer::USER_ID;

}
else {

// Policies for ‘Session’ objects
lifeSpanPolicy = PortableServer::TRANSIENT;
idAssignPolicy = PortableServer::SYSTEM_ID;

}

3 7 0 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 370

Listing 7.42 continued
// Lifespan Policy
i++;
policies[i] = parentPOAP->create_lifespan_policy(lifeSpanPolicy);

// IdAssignment Policy
i++;
policies[i] = parentPOAP->create_id_assignment_policy(idAssignPolicy);

// IdUniqueness Policy - Default = UNIQUE_ID

// ImplicitActivation Policy - Default = NO_IMPLICIT_ACTIVATION

// RequestProcessing Policy
i++;
policies[i] = parentPOAP->create_request_processing_policy(

PortableServer::USE_SERVANT_MANAGER
);

// ServantRetention Policy
i++;
policies[i] = parentPOAP->create_servant_retention_policy(

PortableServer::NON_RETAIN
);

return parentPOAP->create_POA(POAName, POAManagerP, policies);
}

Listing 7.43 Java Creating a POA That Uses a Servant Locator
//Java
package Pure.Util;
import org.omg.PortableServer.*;

public class POAUtility {
//...
public static org.omg.PortableServer.POA
create_servant_locator_POA(

org.omg.PortableServer.POA parentPOA,
org.omg.PortableServer.POAManager POAManager,
String POAName,
boolean isMultiThread,
boolean isPersistent

)
throws org.omg.PortableServer.POAPackage.InvalidPolicy,

org.omg.PortableServer.POAPackage.AdapterAlreadyExists
{
// Create a policy list.
org.omg.CORBA.Policy policies[] = new org.omg.CORBA.Policy[5];
int i = 0;

S e r v a n t L o c a t o r P O A 3 7 1

10 0672318121 CH07 6/20/01 5:52 PM Page 371

Listing 7.43 continued
// Thread Policy
org.omg.PortableServer.ThreadPolicyValue threadPolicy = null;

if (isMultiThread) {
threadPolicy = ThreadPolicyValue.ORB_CTRL_MODEL;

}
else {

threadPolicy = ThreadPolicyValue.SINGLE_THREAD_MODEL;
}
policies[i] = parentPOA.create_thread_policy(threadPolicy);

org.omg.PortableServer.LifespanPolicyValue lifeSpanPolicy = null;
org.omg.PortableServer.IdAssignmentPolicyValue idAssignPolicy = null;

// Lifespan and IdAssignment Policies
if (isPersistent) {

// Policies for ‘Entity’ objects
lifeSpanPolicy = LifespanPolicyValue.PERSISTENT;
idAssignPolicy = IdAssignmentPolicyValue.USER_ID;

}
else {

// Policies for ‘Session’ objects
lifeSpanPolicy = LifespanPolicyValue.TRANSIENT;
idAssignPolicy = IdAssignmentPolicyValue.SYSTEM_ID;

}

// Lifespan Policy
i++;
policies[i] = parentPOA.create_lifespan_policy(lifeSpanPolicy);

// IdAssignment Policy
i++;
policies[i] = parentPOA.create_id_assignment_policy(idAssignPolicy);

// IdUniqueness Policy - Default = UNIQUE_ID

// ImplicitActivation Policy - Default = NO_IMPLICIT_ACTIVATION

// RequestProcessing Policy
i++;
policies[i] = parentPOA.create_request_processing_policy(

RequestProcessingPolicyValue.USE_SERVANT_MANAGER
);

// ServantRetention Policy
i++;
policies[i] = parentPOA.create_servant_retention_policy(

3 7 2 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 372

Listing 7.43 continued
ServantRetentionPolicyValue.NON_RETAIN

);

return parentPOA.create_POA(POAName, POAManager, policies);
}

}

Two policies are particularly relevant to the use of a ServantLocator: the servant
retention policy and the request processing policy. The policy values that must be used
in combination with a ServantLocator are shown in Table 7.7.

Table 7.7 POA Policy Values Used with a ServantLocator

Policy Name Policy Value

RequestProcessingPolicy USE_SERVANT_MANAGER

ServantRetentionPolicy NON_RETAIN

The NON_RETAIN policy value specifies that this POA does not use an active object map.
For details of these two POA policies, see the earlier section, “Servant Activator POA.”

Mapping for PortableServer::ServantLocator
The mapping of the IDL ServantLocator interface to C++ and Java is shown in
Listing 7.44 and Listing 7.45, respectively.

Listing 7.44 C++ Mapping of the ServantLocator Class
//C++
#include <omg/PortableServerS.hh>

class AccountServantLocatorImpl :
public PortableServer::ServantLocator,
public CORBA::LocalObject

{
public:
PortableServer::Servant
preinvoke(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr adapter,
const char* operation,
PortableServer::ServantLocator::Cookie& the_cookie

)
throw (CORBA::SystemException, PortableServer::ForwardRequest);

void
postinvoke(

const PortableServer::ObjectId & oid,
PortableServer::POA_ptr adapter,
const char* operation,

S e r v a n t L o c a t o r P O A 3 7 3

10 0672318121 CH07 6/20/01 5:52 PM Page 373

Listing 7.44 C++ Mapping of the ServantLocator Class
PortableServer::ServantLocator::Cookie the_cookie,
PortableServer::Servant the_servant

)
throw (CORBA::SystemException);
//...

};

Listing 7.45 Java Mapping of the ServantLocator Class
//Java
import org.omg.CORBA.*;
import org.omg.CORBA.portable.*;
import org.omg.PortableServer.POA.*;
import org.omg.PortableServer.*;
import org.omg.PortableServer.ServantLocatorPackage.*;

import java.io.*;

public class AccountServantLocatorImpl
extends LocalObject
implements ServantLocator

{
public org.omg.PortableServer.Servant
preinvoke(

byte[] oid,
POA adapter,
String operation,
CookieHolder the_cookie

)
throws ForwardRequest
{
// Implementation not shown...

}

public void
postinvoke(
byte[] oid,
POA adapter,
String operation,
java.lang.Object the_cookie,
org.omg.PortableServer.Servant the_servant

)
{
// Implementation not shown...

}
//...

}

3 7 4 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 374

To implement your own servant locator, perform the following steps:

1. Declare a new class that inherits from ServantLocator.
2. In the new class, override the preinvoke() and postinvoke() functions, pro-

viding your own implementation.
3. Create an instance of the new ServantLocator class and register it with a POA

that has the USE_SERVANT_MANAGER and NON_RETAIN policy values set.
Register the ServantLocator object in the same way you would register a
ServantActivator object, using the
PortableServer::POA::set_servant_manager() operation. See the section
“Servant Activator POA.”

Default Servant POA
A default servant is a single servant object that provides the implementation for many
CORBA objects. In a sense, it is an extension of the concept of a service object (see
the section “POA for Service Objects”). However, it is implemented using a different
set of POA policies and does not require an active object map.

The following list gives some typical uses for a default servant:

• A default servant is useful for implementing stateless CORBA objects. It could
be used to implement service objects, for example, instead of using the
MULTIPLE_ID policy value.

• A default servant can be used to implement entity objects where the state of the
entity object is not cached in the servant’s member variables. That is, every
operation on the object’s state would require a database read or write operation.
This is slower than a conventional entity object implementation, but it saves
memory in the server process.

• A default servant can be used to implement the dynamic skeleton interface (see
Chapter 22).

The POA policies that are relevant to the use of default servants are the
RequestProcessingPolicy and the ServantRetentionPolicy.

Table 7.8 shows the POA policy values that should be chosen when using a default ser-
vant together with an active object map. When an invocation request arrives at a POA
having these policies, the POA first searches its active object map to see if there is a
matching ObjectId. If the ObjectId is not found in the active object map, the invoca-
tion is made on the default servant instead.

Table 7.8 Default Servant POA Policies—With Active Object Map

Policy Name Policy Value

RequestProcessingPolicy USE_DEFAULT_SERVANT

ServantRetentionPolicy RETAIN

D e f a u l t S e r v a n t P O A 3 7 5

10 0672318121 CH07 6/20/01 5:52 PM Page 375

Table 7.9 shows the POA policy values that should be chosen when using a default ser-
vant on its own, without the active object map. When an invocation request arrives at a
POA having these policies, the invocation is made on the default servant.

Table 7.9 Default Servant POA Policies—No Active Object Map

Policy Name Policy Value

RequestProcessingPolicy USE_DEFAULT_SERVANT

ServantRetentionPolicy NON_RETAIN

In both cases, for RETAIN and NON_RETAIN policy values, if the default servant is of the
wrong type, an unspecified system exception is thrown. If there is no default servant
registered with the POA, the CORBA::OBJ_ADAPTER system exception is thrown.

The IDL in Listing 7.46 gives the operations associated with registering a default
servant.

Listing 7.46 IDL Operations to Register a Default Servant
//IDL
module PortableServer {

interface POA {
//...
// operations for the USE_DEFAULT_SERVANT policy
Servant get_servant()
raises (NoServant, WrongPolicy);

void set_servant(in Servant p_servant)
raises (WrongPolicy);
//...

};
//...

};

The POA::set_servant() operation registers a default servant. It can be invoked only
on a POA that has the USE_DEFAULT_SERVANT RequestProcessingPolicy value.
Otherwise, the WrongPolicy user exception is raised.

The POA::get_servant() operation gets a reference to a registered default servant. If
the POA does not have the USE_DEFAULT_SERVANT RequestProcessingPolicy value,
the WrongPolicy user exception is raised. If no default servant has yet been registered,
the NoServant user exception is raised.

Two Kinds of Default Servant
There are two basic kinds of default servant:

• A default servant using static skeleton code.
This kind of default servant implements a single IDL interface. The default ser-
vant class inherits from POA_InterfaceName (C++) or InterfaceNamePOA
(Java). Alternatively, it can be implemented using the tie approach.

3 7 6 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 376

The steps involved in implementing this kind of servant are described in the
next section, “Implementing a Default Servant.”

• A default servant using the dynamic skeleton interface (DSI).
This kind of default servant can implement any number of IDL interfaces. The
default servant class inherits from the
PortableServer::DynamicImplementation (C++) or
org.omg.PortableServer.DynamicImplementation (Java) class.
The DSI is typically used for building CORBA bridges or other types of
dynamic application for which compiled-in skeleton code is not available. It is
described in detail in Chapter 22.

Implementing a Default Servant
The implementation of a default servant using static skeleton code has some similari-
ties to the implementation of a conventional servant object:

• Inheritance from a generated skeleton class can be used to implement the
default servant. The default servant class can inherit from the
POA_InterfaceName (C++) or InterfaceNamePOA (Java) class. Alternatively,
the default servant can be implemented using the tie approach.

• The InterfaceName operations are implemented by overriding the member
functions of the same name.

The implementation also differs from a conventional servant object implementation:

• Because a default servant is associated with many CORBA object instances, it
is inconvenient to cache the state of a CORBA object in the default servant. To
do so, you would have to define the servant member variables as arrays indexed
by the target object’s ObjectId. It is better to avoid using a default servant in
this way.

• A servant object governed by the UNIQUE_ID policy value identifies the target
CORBA object either by caching the object identity in a member variable or by
calling PortableServer::POA::servant_to_id(). A default servant, by con-
trast, must use the PortableServer::Current interface to establish the identity
of the target CORBA object.

The PortableServer::Current interface is defined by the IDL in Listing 7.47.

Listing 7.47 IDL Definition of the PortableServer::Current Interface
//IDL
module PortableServer {

//...
// Current interface
interface Current : CORBA::Current {

exception NoContext { };

POA get_POA() raises (NoContext);

ObjectId get_object_id() raises (NoContext);
};

};

D e f a u l t S e r v a n t P O A 3 7 7

10 0672318121 CH07 6/20/01 5:52 PM Page 377

A reference to the PortableServer::Current interface is obtained by invoking the
resolve_initial_references() operation on the ORB, passing in the string
POACurrent. The returned object reference is then narrowed to the
PortableServer::Current_ptr type.

The PortableServer::Current operations get_POA() and get_object_id() can be
called only in the context of a dispatched invocation. In other words, get_object_id()
could be called in the body of a servant method that implements an IDL operation,
assuming that the method was called in the context of a CORBA invocation.

If the PortableServer::Current operations are called outside the context of a
CORBA invocation, the NoContext user exception is raised.

A factory that creates CORBA objects implemented by a default servant should follow
the pattern for a lazy factory class, as described in the section “Implementing a Lazy
Factory.” This involves the use of the POA::create_reference_with_id() operation
to generate object references independently of the servant object.

Implicit Activation
The IMPLICIT_ACTIVATION policy value enables you to activate a CORBA object and
create a corresponding object reference from the servant object in a single step using
the servant’s _this() function.

To enable implicit activation, the POA policies shown in Table 7.10 must be used
together.

Table 7.10 Policy Values Required for Implicit Activation

POA Policy Type Policy Value

ImplicitActivationPolicy IMPLICIT_ACTIVATION

IdAssignmentPolicy SYSTEM_ID

ServantRetentionPolicy RETAIN

If you attempt to set the IMPLICIT_ACTIVATION policy value without using the
SYSTEM_ID and RETAIN policy values as well, the POA::create_POA() operation raises
the InvalidPolicy user exception.

Consider, for example, the RecycleBroker::BranchOffice interface, whose definition
is given in Listing 7.2. The C++ signature of the _this() member function is

//C++
RecycleBroker::BranchOffice_ptr POA_RecycleBroker::BranchOffice::_this();

and the Java signature of the _this() method is

//Java
RecycleBroker.BranchOffice RecycleBroker.BranchOfficePOA._this();

3 7 8 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 378

Java mapping also supports an equivalent method that has the org.omg.CORBA.Object
return type:

//Java
org.omg.CORBA.Object org.omg.PortableServer.Servant._this_object();

It is important to understand that the behavior of _this() depends on whether it is
invoked within or outside the context of an invocation dispatch. In fact, the difference
is fairly radical:

• The _this() function within the context of invocation dispatch arises, for exam-
ple, where the _this() function is called in the body of a servant method. The
_this() function derives the associated POA and ObjectId from the context of
the invocation (that is, from the PortableServer::Current interface). The POA
and ObjectId are used to create the object reference for the current target object.
This use of the _this() function is not connected with implicit activation and
can be used when either the NO_IMPLICIT_ACTIVATION or IMPLICIT_
ACTIVATION policy value is in force.

• The _this() function outside the context of invocation dispatch arises when
the _this() function is invoked directly on a servant instance in a CORBA
server, as a shortcut to activating a CORBA object. There is no invocation con-
text in this case and no possibility of obtaining the POA and ObjectId from the
PortableServer::Current interface. Instead, the POA is obtained by calling
the _default_POA() function, and the ObjectId is generated automatically (the
SYSTEM_ID policy value is in force).
This use of the _this() function requires implicit activation and can be used
only when the IMPLICIT_ACTIVATION policy value is in force.

In the first case, the _this() function straightforwardly generates an object reference
without causing implicit activation or any other side effects. Hence, this case needs no
elaboration.

The following subsections discuss the second case in detail: how to use _this() to per-
form implicit activation.

Implicit Activation Using _this()
Because the root POA is an example of a POA that supports implicit activation, it is
used for the examples in this section. Implicit activation allows you to activate and cre-
ate CORBA objects using _this() as a shortcut. Listing 7.48 and Listing 7.49 show
both the shortcut approach and the longhand equivalent in C++ and Java, respectively.
The examples show the activation and creation of the RecycleBroker::BranchOffice
CORBA object.

Listing 7.48 C++ Activating and Creating a CORBA Object Using _this()
and Equivalent Code
//C++
//--
// Shortcut Approach

I m p l i c i t A c t i v a t i o n 3 7 9

10 0672318121 CH07 6/20/01 5:52 PM Page 379

Listing 7.48 continued
//--
PortableServer::ServantBase_var theBranchOfficeV;
CORBA::Object_var refV;

the_BranchOfficeV = new RecycleBroker_BranchOffice_i(...);
refV = the_BranchOfficeV->_this();

...
//--
// Longhand Equivalent
//--
PortableServer::ServantBase_var theBranchOfficeV;
PortableServer::POA_var poaV;
PortableServer::ObjectId_var oidV;
CORBA::Object_var refV;

the_BranchOfficeV = new RecycleBroker_BranchOffice_i(...);
poaV = the_BranchOfficeV->_default_POA();
oidV = poaV->activate_object(the_BranchOfficeV.in());
refV = poaV->id_to_reference(oidV);

Listing 7.49 Java Activating and Creating a CORBA Object Using
_this() and Equivalent Code
//Java
//--
// Shortcut Approach
//--
org.omg.PortableServer.Servant the_BranchOffice = null;
org.omg.CORBA.Object ref = null;

the_BranchOffice = new RecycleBroker_BranchOffice_i(...);
ref = the_BranchOffice._this();

...
//--
// Longhand Equivalent
//--
org.omg.PortableServer.Servant the_BranchOffice = null;
org.omg.PortableServer.POA poa = null;
byte[] oid = null;
org.omg.CORBA.Object ref = null;

the_BranchOffice = new RecycleBroker_BranchOffice_i(...);
poa = the_BranchOffice._default_POA();
oid = poa.activate_object(the_BranchOffice);
ref = poa.id_to_reference(oid);

3 8 0 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 380

The CORBA specification mandates that _this() obtain a POA by calling
_default_POA() on the servant, as shown explicitly in the equivalent code. The default
implementation of _default_POA() returns the root POA. If you are not using the root
POA to activate your servants, it is essential to override the definition of
_default_POA() to return a reference to the correct POA, instead.

Overriding the _default_POA() Function
The default implementation of _default_POA(), which returns a reference to the root
POA, is dangerous. If you do not override the definition of _default_POA(), it could
happen that some part of the code calls _default_POA() and erroneously uses the root
POA to activate one of your CORBA objects.

In particular, if you do not override _default_POA(), the _this() function activates
objects erroneously, using the root POA instead of the POA you intended. Because of
the potential for confusion and error, it is recommended that you always override the
definition of _default_POA() in servant implementations.

The POAManager
The POAManager is used to control the flow of invocation requests into one or more
associated POA objects. It is needed particularly as the server application is being
started up or shut down. When the server starts up, the POAManager can ensure that
requests are not passed to a POA until it is ready to process them. When the server
shuts down, the POAManager enables you to specify when request processing should
cease.

The remainder of this section is divided into the following parts:

• The lifecycle of a POAManager
• POAManager states
• POAManager state transitions

Lifecycle of a POAManager
A POA manager is created as follows:

• The root POA manager is implicitly created at the same time as the root POA,
when resolve_initial_references() is called with the “RootPOA” argument.
A reference to the root POA manager can be obtained by invoking the
POA::the_POAManager attribute on the root POA object.

• A new POA manager object is implicitly created whenever POA::create_POA()
is invoked with a nil second argument. The newly created POA object is
implicitly associated with a new POA manager.
A reference to the new POA manager can be obtained by invoking the
POA::the_POAManager attribute on the POA object.

If you allow a new POA manager to be implicitly created along with every new POA,
you end up with a server architecture like that shown in Figure 7.11(a). Each POA is
associated with its own POAManager, allowing the flow of requests into each POA to be
independently controlled.

I m p l i c i t A c t i v a t i o n 3 8 1

10 0672318121 CH07 6/20/01 5:52 PM Page 381

On the other hand, you can also arrange for a single POAManager to control the flow of
requests into several POA objects, as shown in Figure 7.11(b). A reference to the same
POAManager object is passed as the second argument of create_POA() for each POA
object.

In the examples shown in this chapter, all of the POA objects are associated with the
root POA manager object. This conveniently allows the flow of requests into POA
objects to be simultaneously controlled and is the preferred approach for normal
CORBA applications.

Because a single POA manager object provides uniform control over the flow of mes-
sages, it is natural for ORB implementations to identify a POA manager with a single
communications channel. For example, an ORB implementation with a TCP/IP trans-
port layer might identify a POA manager with a single server IP port. Whether or not
this is done in practice is an ORB-specific implementation detail.

3 8 2 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

POA2POA1 POA3

Request

POA Manager
(active state)

(a) One POA manager for Many POAs

POA1 POA2 POA3

(b) One POA manager per POA Instance

Figure 7.11

Associating POAs and POAManagers.

A POAManager object is implicitly destroyed when all of its associated POA objects are
destroyed.

10 0672318121 CH07 6/20/01 5:52 PM Page 382

POAManager States
A POAManager object can be in one of four states: HOLDING, ACTIVE, DISCARDING, or
INACTIVE. These four states are described as follows:

• HOLDING When a POA manager is in the holding state, no requests are passed
on to its associated POAs. Incoming requests are held in a message queue and
are processed after the POA manager makes a transition to the active state. A
newly created POA manager is initially put into the holding state.
One of the uses of the holding state is to ensure that server startup proceeds
smoothly. There is usually some short delay between the time when a server is
physically able to receive messages from the network (for example, when it
begins listening on an IP port) and the time when a POA is able to process the
requests. The holding state allows the requests to be buffered until the POA is
ready to process them.

• ACTIVE When a POA manager is in the active state, incoming requests are
passed on to all of its associated POAs. This is the normal state of the POA
manager in a running server application.

• DISCARDING When a POA manager is in the discarding state, the ORB
responds to incoming requests by raising a CORBA::TRANSIENT system excep-
tion back to the client. The requests are neither processed nor stored in a mes-
sage queue. However, any processing of requests that began before the
POAManager entered the discarding state will be allowed to finish.
The discarding state can be useful as a means of controlling the flow of
requests into a heavily loaded server. If the load on the server becomes unman-
ageable, the POA manager can be put into the discarding state temporarily.

• INACTIVE A POA manager in the inactive state rejects all incoming requests.
The way in which requests are rejected is specific to the ORB implementation.
It is impossible to make a transition to any other state from the inactive state.
A POA manager typically enters the inactive state just prior to server shut-
down. No new requests can be processed by its associated POA objects.

POAManager State Transitions
Figure 7.12 shows the allowed transitions between these states and the IDL operations
that effect the transitions.

The operations used to change from one state to another are given by the IDL in
Listing 7.50.

Listing 7.50 IDL for the PortableServer::POAManager Interface
//IDL
module PortableServer {

//...
// POAManager interface
interface POAManager {

exception AdapterInactive{};

I m p l i c i t A c t i v a t i o n 3 8 3

10 0672318121 CH07 6/20/01 5:52 PM Page 383

Listing 7.50 continued
enum State {HOLDING, ACTIVE, DISCARDING, INACTIVE};

void activate()
raises(AdapterInactive);

void hold_requests(in boolean wait_for_completion)
raises(AdapterInactive);

void discard_requests(in boolean wait_for_completion)
raises(AdapterInactive);

void deactivate(
in boolean etherealize_objects,
in boolean wait_for_completion

)
raises(AdapterInactive);

State get_state();
};

};

3 8 4 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

Figure 7.12

A POAManager state transition diagram.

The four operations for making state transitions are activate(), hold_requests(),
discard_requests(), and deactivate().

Holding

Inactive

DiscardingActive

POA::create_POA

POA d

discard_requests

discard_requests

activate

deactivatedeactivate

deactivate

activate hold_requests

hold_requests

10 0672318121 CH07 6/20/01 5:52 PM Page 384

The AdapterInactive user exception can be raised by any of the four state transition
operations if they are invoked on a POA manager in the INACTIVE state. An INACTIVE
POA manager is not allowed to undergo any further state transitions (not even the
INACTIVE to INACTIVE state transition).

Three of the four state transition operations take a wait_for_complete flag as an argu-
ment. When the POA manager is making a transition from the ACTIVE state to one of
the other states, it may take some time before the associated POA objects finish pro-
cessing the outstanding requests. If the wait_for_complete flag is TRUE, an operation
will wait for outstanding requests to finish processing. Otherwise, the operation returns
straightaway.

Calling an operation with the wait_for_complete flag equal to TRUE, theoretically,
could lead to deadlock if called in the same thread that is actually processing the asso-
ciated requests. If this is liable to occur, the ORB will throw the
CORBA::BAD_INV_ORDER system exception instead, and the state transition will not take
place.

The deactivate() operation takes an etherealize_objects flag as its first parame-
ter. This option affects only POAs that have a ServantActivator installed (see the sec-
tion “Servant Activator POA,” earlier in this chapter). The option instructs the servant
activator POAs to call etherealize() for every entry in their active object maps. The
etherealize_objects flag should normally be set equal to TRUE. A value of FALSE is
used only in case of abnormal server shutdown.

POA Activation
Occasionally, it is necessary to develop a server in such a way that POA objects are cre-
ated only when they are needed. For example, certain kinds of bridges built using the
dynamic skeleton interface might be required to construct POA hierarchies dynami-
cally.

To support dynamic creation of POA objects, the PortableServer module provides an
AdapterActivator interface. The developer implements the AdapterActivator inter-
face by providing code that can create POA objects on demand.

Listing 7.51 shows extracts from the PortableServer module that are relevant to the
AdapterActivator.

Listing 7.51 IDL Definition of the PortableServer::AdapterActivator
Interface
//IDL
module PortableServer {

//...
// AdapterActivator interface
interface AdapterActivator {

boolean unknown_adapter(
in POA parent,
in string name

P O A A c t i v a t i o n 3 8 5

10 0672318121 CH07 6/20/01 5:52 PM Page 385

Listing 7.51 continued
);

};

// POA interface
interface POA {

exception AdapterNonExistent {};
//...
attribute AdapterActivator the_activator;
//...
POA find_POA(in string adapter_name, in boolean activate_it)
raises (AdapterNonExistent);
//...

};
};

The AdapterActivator interface is implemented by the developer and installed in one
or more existing POA objects. The POA objects created by an AdapterActivator are
the direct children of the POA in which the AdapterActivator is installed, the parent
POA.

The AdapterActivator::unknown_adapter() operation is used to create new POA
instances. It is invoked automatically when an invocation request arrives at the parent
POA and the parent POA cannot find the appropriate child. The parent argument is a
reference to the POA that received the invocation request. The name argument identi-
fies the child POA sought by the parent.

The POA::the_activator attribute is used either to install an AdapterActivator in a
POA (modifier method) or to obtain a reference to an already installed
AdapterActivator object (accessor method).

The POA::find_POA() operation is used sto obtain a reference to a child POA. The
operation returns a reference to the child POA whose name is given by the
adapter_name argument. If an active POA with the adapter_name name cannot be
found, the outcome depends on the value of the Boolean activate_it argument:

• If the activate_it argument is FALSE, the AdapterNonExistent user exception
is raised.

• If the activate_it argument is TRUE, an attempt is made to create the child
POA using the AdapterActivator (if one is installed). If this attempt fails, the
AdapterNonExistent user exception is raised.

An AdapterActivator object is implemented as a locality-constrained CORBA object.
Listing 7.52 and Listing 7.53 show the declaration of a MyAdapterActivator example
class in C++ and Java, respectively.

3 8 6 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 386

Listing 7.52 C++ Declaration of MyAdapterActivator Class
//C++
class MyAdapterActivator :

public PortableServer::AdapterActivator,
public CORBA::LocalObject

{
public:
//...

// Developer must override this function:
virtual CORBA::Boolean
unknown_adapter(

PortableServer::POA_ptr parent,
const char* name

)
throw (CORBA::SystemException);

};

Listing 7.53 Java Declaration of MyAdapterActivator Class
//Java
class MyAdapterActivator

implements org.omg.PortableServer.AdapterActivator
extends org.omg.CORBA.LocalObject

{
//...

// Developer must override this function:
boolean unknown_adapter(

org.omg.PortableServer.POA parent,
java.lang.String name

);
}

The unknown_adapter() typically implements the following algorithm:

1. Decide whether or not to create the child POA called name. If the child POA is
not to be created, return FALSE.

2. Invoke create_POA() on the parent POA, passing name as the first argument.
3. If the newly created child POA also needs to be associated with an

AdapterActivator, install an AdapterActivator using the the_activator
modifier method.

4. If the name child POA was successfully created, return TRUE.

At least one POA object has to exist in the server before any invocation requests can
be processed. At a minimum, you can get away with creating just the root POA object.
An AdapterActivator object can be installed in the root POA to senable further POA
objects to be created on demand.

P O A A c t i v a t i o n 3 8 7

10 0672318121 CH07 6/20/01 5:52 PM Page 387

Recall that POA hierarchies can potentially be nested. For example, an invocation
request arriving at the root POA might be targeted at a CORBA object that lives at the
bottom of a POA hierarchy firstPOA/secondPOA. This request results in a cascade of
POA activations: The root POA’s AdapterActivator creates the firstPOA POA, and
the firstPOA POA’s AdapterActivator creates the secondPOA POA. The secondPOA
POA then s handles the processing of the request.

Summary
This chapter has outlined all of the features provided by the portable object adapter. It
is not necessary to master all of the POA functionality at once, however. A simple
CORBA application typically needs only two different kinds of POAs: one for session
objects and one for entity objects, as described in the earlier sections of this chapter.

For more advanced applications, particularly for applications supporting very many
objects, the servant activator, servant locator, and default servant features are invalu-
able. For example, in the CORBA Components specification, described in Chapter 15,
extensive use is made of the servant locator, which allows the lifecycle of CORBA
objects to be managed with maximum flexibility.

3 8 8 C h a p t e r 7 : T h e P o r t a b l e O b j e c t A d a p t e r

10 0672318121 CH07 6/20/01 5:52 PM Page 388

The any Type
The any type provides support for dynamic typing in IDL.
Specifying a parameter or return value to be of type any allows
you to decide at runtime what type of data is sent.

Introduction to the any Type
The any type is a built-in CORBA data type that can be used
as a parameter or return value of an IDL operation. It can also
be nested inside other data types; for example, you could have
a sequence of anys, a struct containing an any, or even an any
containing an any. The following IDL fragment shows an
example of its use:

//IDL
typedef sequence<any> AnySeq;

interface BlobStack {
readonly attribute size;
void push(in any blob);
void pop(out any blob);
void popNBlobs(in long n, out AnySeq blobs);

};

The BlobStack interface describes a stack whose elements can
be of arbitrary type. Elements of the stack are added and
removed using push() and pop(), respectively. The
popNBlobs() operation returns an out parameter of type
AnySeq, allowing you to remove an arbitrary number of stack
elements at a time.

The any type is not an escape hatch for sending arbitrarily for-
matted data—it is possible to send only built-in IDL types or
user-defined IDL types. The type of data sent in the any must
be declared somewhere in IDL, and this declaration must be
accessible to both client and server so that they can marshal the
any.

C H A P T E R 8

Th
e
a
n
y

Ty
p

e

11 0672318121 CH08 6/20/01 5:42 PM Page 389

The marshalling of an any is somewhat different from ordinary data types. When an
ordinary data type is sent as a parameter, only the value of the data is marshalled. When
an any is sent as a parameter, two pieces of information are sent:

• value—This is the data contained in the any.
• type—This is a type code that completely describes the layout of the any data.

The inclusion of type information makes the any completely self describing.

Because an any is self describing, it is possible to marshal and parse its data without
having access to the original IDL. However, this requires advanced features of dynamic
CORBA: dynamic anys and dynamic creation of TypeCodes. See Chapter 19, “DynAny
Type.”

When to Use the any Type
There are two common situations when you might need to use the any type:

• In operations that must handle a variety of data types.
The best way to use an any is as a parameter that handles a wide variety of data
types. An example of this can be found in messaging services. The IDL that
describes the CORBA Events Service needs to be able to propagate messages
of an arbitrary type. The any type is therefore used to declare the messages that
are passed as parameters.

• In recursive data structures.
Because an any can contain data of an arbitrary type, it is possible to build
flexible, recursive data structures using them. This is a powerful feature, but
there is likely to be some performance cost associated with this kind of use.

The difficulty or ease in implementing an application using anys depends strongly on
the predictability of any data. If it is known that a limited number of data types will be
sent in the any, it is much easier to identify the any’s contents and extract the data.

When Not to Use the any Type
Just as important as knowing when to use anys is knowing when not to use them. It is
best to avoid the unnecessary use of anys, because of the extra marshalling overhead,
which can affect performance.

A common wrong use of an any is to declare a parameter as an any because the decla-
ration of that parameter type is unclear at the outset and subject to change during appli-
cation development. For example, in a financial application you might want to pass the
state of an Account object from the server to the client. A sample IDL is

//IDL
struct AccountDetails {

long accountNumber;
string name;
fixed<8,2> balance;

};

3 9 0 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 390

interface Account {
void getDetails(in long accNumber, out AccountDetails details);

};

In this example, AccountDetails represents the state of an Account object.
Unfortunately, if the server wants to pass an object’s state to the client, it is impossible
to hide this state. You could declare the second parameter of getDetails() to be an
any, but you still have to declare the AccountDetails struct that will be passed in the
any.

This example demonstrates that distributed programming sometimes meshes imper-
fectly with object orientation. The example breaks the object-oriented principle of data
hiding. There is no magic solution to this problem, and declaring details to be of type
any instead of type AccountDetails does not solve it. In a multi-platform, multi-
language architecture such as CORBA, an object that has its state passed from place to
place must have that state declared in the IDL.

A Sample IDL Module
For the sections that follow it is helpful to have a sample of CORBA data types at hand
to illustrate insertion from and extraction to an any. The IDL module SampleTypes,
seen in Listing 8.1, declares a representative set of types—this is essentially the same
set as used in Chapter 4, “Memory Management.”

Listing 8.1 Sample IDL Data Types Used by any Examples
// IDL
#pragma prefix “pure-corba-3.com”

module SampleTypes {
typedef string< 64 > BoundedString;
typedef wstring< 128 > BoundedWString;

struct FixLen {
short theShort;
float theFloat;

};
struct VarLen {

string theString;
long theLong;

};
typedef sequence< FixLen > SeqOfFixLen;
typedef sequence< VarLen > SeqOfVarLen;
typedef sequence< VarLen, 5 > BSeqOfVarLen;

typedef fixed<6,2> Money;

union Poly switch(short) {
case 1: short theShort;
case 2: string theString;

};

A S a m p l e I D L M o d u l e 3 9 1

11 0672318121 CH08 6/20/01 5:42 PM Page 391

Listing 8.1 continued
typedef FixLen ArrOfFixLen[10];
typedef VarLen ArrOfVarLen[10];

exception GenericExc {
string reason;

};

interface Foo {
...

}; // interface Foo

}; // module SampleTypes

This IDL declares a number of compound types—structs, sequences, and arrays—as
well as typedefs of some basic types.

C++ Example of Passing anys
C++ mapping maps the IDL type any to the C++ class CORBA::Any. A corresponding
_var class, CORBA::Any_var, is also generated. The C++ mapping of the any is
focussed on the definition of the following two operators: the insertion operator <<=
(left-shift assignment) and the extraction operator >>= (right-shift assignment).

The motivation for using operators for insertion and extraction is to take advantage of
the C++ overloading mechanism. With the help of operator overloading, the appropri-
ate function is chosen automatically by the C++ compiler according to the type of data
being inserted or extracted.

For a variety of reasons, however, overloading cannot automatically cope with the full
range of CORBA data types. This gives rise to exceptions to the simple insertion and
extraction syntax. Additional helper types are used to insert and extract many of the
CORBA data types.

The AnyPasser Interface
Consider the following sample IDL, which introduces the interface AnyPasser:

// IDL
interface AnyPasser {

void sendEvent(in any item);
};

The sendEvent() operation can be used to send an any from a client to a server. The
next two sections show client code and server code that make use of the interface
AnyPasser.

C++ Client for AnyPasser Interface
Suppose that you are writing a client of the AnyPasser interface that sends only one of
the IDL types long and string and the user-defined type SampleTypes::VarLen. (See

3 9 2 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 392

the section “A Sample IDL Module,” earlier in this chapter.) The operation
sendEvent() can be invoked, as shown in Listing 8.2.

Listing 8.2 C++ Invocation of sendEvent()
// C++
//--------------------
// Initialize the object reference and the ‘any’.
//
AnyPasser_var theAnyPasserV = /* initialize ‘AnyPasser’ object reference */;
CORBA::Any theItem;

// Pass a ‘long’ using operation ‘sendEvent()’
theItem <<= (CORBA::Long) 10001;
theAnyPasserV->sendEvent(theItem);
...
// Pass a ‘string’ using operation ‘sendEvent()’
theItem <<= “A string item.”;
theAnyPasserV->sendEvent(theItem);
...
// Pass a ‘SampleTypes::VarLen’ struct using operation ‘sendEvent()’
SampleTypes::VarLen_var theVarLenV = new SampleTypes::VarLen();
theVarLenV->theString = CORBA::string_dup(“String member”);
theVarLenV->theLong = (CORBA::Long) 123;
theItem <<= theVarLenV._ retn();
theAnyPasserV->sendEvent(theItem);

Insertion of the types long and string into the any is straightforward. When inserting
the type SampleTypes::VarLen, the call to _retn() causes the _var to give up owner-
ship of the data it references. After insertion, the instance theItem owns the memory,
instead.

C++ Server for AnyPasser Interface
Suppose that the server developer works in close collaboration with the developer of
the preceding client. In that case, the server developer knows that there are only three
possible values for the any: a long, a string, or a SampleTypes::VarLen. Given that
the implementation class is called AnyPasserImpl, the implementation of the operation
sendEvent() can be written as shown in Listing 8.3.

Listing 8.3 C++ Implementation of sendEvent()
// C++
...
AnyPasserImpl::sendEvent(const CORBA::Any& item) {

CORBA::Long l;
char * s;
SampleTypes::VarLen * vlP;

if (item >>= l) {
// value is of type ‘long’

C + + E x a m p l e o f P a s s i n g anys 3 9 3

11 0672318121 CH08 6/20/01 5:42 PM Page 393

Listing 8.3 continued
cout << “Received long = “ << l << endl;

}
else if (item >>= s) {

// value is of type ‘string’
cout << “Received string = “ << s << endl;

}
else if (item >>= vlP) {

// value is of type ‘SampleTypes::VarLen’
cout << “Received VarLen = {“ << endl

<< “\ttheString = “ << vlP->theString << endl
<< “\ttheLong = “ << vlP->theLong << endl
<< “}” << endl;

}
else {

// value is of unexpected type!
// probably should raise an exception in this case.
cout << “Received unexpected type in any” << endl;

}
}

The expression that is used to extract an any, for example item >>= l, has a return
type of CORBA::Boolean. If the type of the extracted variable (in this case l) matches
the type of the data in the any, the expression returns TRUE. Otherwise, the expression
returns FALSE, and the extraction fails to take place.

The return status of the extraction expression facilitates a simple method for checking
the contents of the any. As shown in the example above, a series of if-then-else
clauses can be used to attempt extraction into a fixed set of alternative data types. In
many cases, this simple approach is adequate.

There are times when this approach is unsatisfactory: There might be such a large num-
ber of alternatives that the linear search (as used above) affects performance, or you
might not know in advance what types will be sent in the any. In both of these cases,
you have to learn about type code parsing to make further progress. This topic is
beyond the scope of this chapter—reference material on type codes can be found in
Chapter 17, “IDL Data Types.” See also Chapter 19, “DynAny Type.”

C++ Insertion into CORBA::Any
This section provides sample code that shows how a variety of data types are inserted
into a CORBA::Any. Some special cases of insertion are discussed in more detail as they
arise.

Insertion of Basic Types
Insertion of most basic types T is accomplished using the following operator:

// C++
void operator<<=(CORBA::Any&, T); // Copying insertion

3 9 4 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 394

This is sufficient for most data types T that are normally passed by value, such as
short, long, and float.

Insertion of Compound Types
Insertion of most compound types T is accomplished using the following pair of oper-
ators:

// C++
void operator<<=(CORBA::Any&, const T&); // Copying insertion
void operator<<=(CORBA::Any&, T*); // Consuming insertion

These two operators give you the choice of making either a copying insertion or a con-
suming insertion. This applies to most compound data types, except for arrays and
object references.

Copying Insertion
A copying insertion is an insertion that creates a deep copy of the data and puts the
copied data under the ownership of the any.

The copying insertion of a compound type T is illustrated in Figure 8.1.

C + + E x a m p l e o f P a s s i n g anys 3 9 5

Figure 8.1

A copying insertion into CORBA::Any.

With this type of insertion, the CORBA::Any creates and owns a deep copy of the data.
Deallocation of the original data remains the responsibility of the original reference.
Deallocation of the inserted copy is the responsibility of the CORBA::Any.

The CORBA::Any deletes the inserted copy when either of the following happens:

• The CORBA::Any itself is deleted.
• A new value is inserted into the CORBA::Any.

This ensures that the memory associated with the inserted copy is not leaked.

Consider the following code fragment, which shows two examples of a copying inser-
tion. The fragment uses the IDL struct SampleTypes::VarLen, previously defined in
the section “A Sample IDL Module”:

// C++
//--

CORBA : : Any CORBA : : Any

Value ValueT_var T_var

(a) Before insertion. (b) After insertion.

11 0672318121 CH08 6/20/01 5:42 PM Page 395

// Inserting Struct - Copying insertion
//
// Uses: //IDL
// //...in module ‘SampleTypes’
// struct VarLen {
// string theString;
// long theLong;
// };
//
CORBA::Any theAny; // ‘theAny’ is initially empty
SampleTypes::VarLen theVarLen;
theVarLen.theString = CORBA::string_dup(“Insert me!”);
theVarLen.theLong = (CORBA::Long) 123;

// ‘theAny’ makes a deep copy of the struct ‘theVarLen’
theAny <<= theVarLen; // Copying insertion

SampleTypes::VarLen_var theVarLenV = new SampleTypes::VarLen();
theVarLenV->theString = CORBA::string_dup(“Insert me!”);
theVarLenV->theLong = (CORBA::Long) 123;

// The insertion occurs as follows:
// i) The data currently referenced by the ‘any’ is deleted.
// ii) The ‘any’ makes a deep copy of ‘*theVarLenV’.
theAny <<= *theVarLenV; // Copying insertion

This shows theVarLen and *theVarLenV being inserted into a CORBA::Any. In both
cases, the VarLen struct is passed by value, and this results in a copying insertion.

This is a general rule: Passing by value to the insertion operator <<= indicates copying
insertion. Types naturally represented as pointers—strings, arrays, and object refer-
ences—are treated as a special case.

Consuming Insertion
A consuming insertion is an insertion that puts the original data under the ownership
of the any. No copy of the data is made.

The consuming insertion of a compound type T is illustrated in Figure 8.2.

3 9 6 C h a p t e r 8 : T h e any Ty p e

CORBA : : Any CORBA : : Any

Value ValueT_* T_*

(a) Before insertion. (b) After insertion.

Figure 8.2

A consuming insertion into CORBA::Any.

11 0672318121 CH08 6/20/01 5:42 PM Page 396

With this type of insertion, the CORBA::Any does not create a new copy of the data.
Instead, the value of the CORBA::Any is initialized so as to reference the original copy
of the data. The CORBA::Any takes over ownership of the inserted data and has respon-
sibility for deallocating it. The original reference loses ownership of the data, and it
should not attempt to write to or read from the data any longer.

The CORBA::Any deletes the inserted data when either of the following happens:

• The CORBA::Any itself is deleted.
• A new value is inserted into the CORBA::Any.

This ensures that the memory associated with the inserted data is not leaked.

Consider the following code fragment, which shows two examples of a consuming
insertion. The fragment uses the same IDL struct as the previous example
(SampleTypes::VarLen, defined in the previous section “A Sample IDL Module”):

// C++
//--
// Inserting Struct - Consuming insertion
//
// (Uses same IDL as in previous section)
//
CORBA::Any theAny; // ‘theAny’ is initially empty
SampleTypes::VarLen * theVarLenP = new SampleTypes::VarLen();
theVarLenP->theString = CORBA::string_dup(“Insert me!”);
theVarLenP->theLong = (CORBA::Long) 123;

// ‘theAny’ makes a shallow copy of the struct ‘VarLen’
// and assumes ownership of the data
theAny <<= theVarLenP; // Consuming insertion

SampleTypes::VarLen_var theVarLenV = new SampleTypes::VarLen();
theVarLenV->theString = CORBA::string_dup(“Insert me!”);
theVarLenV->theLong = (CORBA::Long) 123;

// The insertion occurs as follows:
// i) ‘theVarLenV’ gives up ownership of the data by invoking ‘_retn()’
// ii) The data currently referenced by the ‘any’ is automatically deleted
// iii) The ‘any’ assumes ownership of the data
// referenced by ‘theVarLenV’
theAny <<= theVarLenV._retn(); // Consuming insertion

In the first case, a dumb pointer theVarLenP is inserted into the CORBA::Any. The fact
that theVarLenP is passed as a pointer indicates that a consuming insertion is intended.
The CORBA::Any makes a shallow copy of the pointer and takes ownership of the ref-
erenced data.

In the second case, a smart pointer theVarLenV is used to reference the data before
insertion. In order for a _var type to be inserted into a CORBA::Any, it is essential that

C + + E x a m p l e o f P a s s i n g anys 3 9 7

11 0672318121 CH08 6/20/01 5:42 PM Page 397

the _var give up ownership of the data it references. Therefore, in the above example,
the _retn() method is invoked on the _var. This returns a simple pointer to the data
and relinquishes ownership.

The general rule is this: Passing a pointer to the insertion operator indicates consum-
ing insertion. Exceptions to this pattern are types that are naturally represented as
pointers—strings, arrays, and object references.

CAUTION
Never insert a _var directly into a CORBA::Any. That would result in both the _var
and the CORBA::Any owning the data. Disastrous results would occur when they
both subsequently tried to delete the same block of memory.

Inserting _var Types
If you want to make a consuming insertion of a _var type, you have to be careful. A
_var type cannot be inserted directly or you would have a situation in which both the
_var and the CORBA::Any own the associated data, leading to double deletion of the
data. The correct way to make a consuming insertion, taking the example of a struct, is
as follows:

//C++
SampleTypes::VarLen_var theVarLenV = new SampleTypes::VarLen();
theVarLenV->theString = CORBA::string_dup(“Insert me!”);
theVarLenV->theLong = (CORBA::Long)123;
theAny <<= theVarLenV._retn(); // Consuming insertion

The trick is to use the _retn() method of the _var class in the insertion statement (note
that it is invoked as theVarLenV._retn(), not theVarLenV->_retn()). The return
value of _retn() is a plain pointer of type SampleTypes::VarLen*. Critically, a side
effect of calling _retn() is that the _var gives up ownership of the data. Afterward, the
CORBA::Any is the sole owner of the data.

Inserting Unambiguous Basic Types
The code in Listing 8.4 shows how unambiguous basic types are inserted into an any.

Listing 8.4 C++ Examples of Inserting Unambiguous Basic Types
//C++
//--
// Declaration of ‘CORBA::Any’ on the stack
//
CORBA::Any theAny;

//--
// Inserting unambiguous Basic Types
//

3 9 8 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 398

Listing 8.4 continued
// Inserting a ‘short’
theAny <<= (CORBA::Short) -33; // Copying insertion

CORBA::Short s = -33;
theAny <<= s; // Copying insertion

// Inserting an ‘unsigned short’
theAny <<= (CORBA::UShort) 44; // Copying insertion

CORBA::UShort us = 44;
theAny <<= us; // Copying insertion

// Inserting a ‘long’
theAny <<= (CORBA::Long) -1000000; // Copying insertion

CORBA::Long l = -1000000;
theAny <<= l; // Copying insertion

// Inserting an ‘unsigned long’
theAny <<= (CORBA::ULong) 2000123; // Copying insertion

CORBA::ULong ul = 2000123;
theAny <<= ul; // Copying insertion

// Inserting a ‘long long’
theAny <<= (CORBA::LongLong) -1234; // Copying insertion

CORBA::LongLong ll = -1234;
theAny <<= ll; // Copying insertion

// Inserting an ‘unsigned long long’
theAny <<= (CORBA::ULongLong) 1234; // Copying insertion

CORBA::ULongLong ull = 1234;
theAny <<= ull; // Copying insertion

// Inserting a ‘float’
theAny <<= (CORBA::Float) 2.567; // Copying insertion

CORBA::Float f = 2.567;
theAny <<= f; // Copying insertion

// Inserting a ‘double’
theAny <<= (CORBA::Double) 2.567891; // Copying insertion

CORBA::Double d = 2.567891;
theAny <<= d; // Copying insertion

C + + E x a m p l e o f P a s s i n g anys 3 9 9

11 0672318121 CH08 6/20/01 5:42 PM Page 399

Listing 8.4 continued
// Inserting a ‘long double’
theAny <<= (CORBA::LongDouble) 1e-40; // Copying insertion

CORBA::LongDouble ld = 1e-40;
theAny <<= ld; // Copying insertion

Inserting Ambiguous Basic Types
The CORBA specification does not require boolean, octet, char, and wchar to map
to distinct types. For example, it is possible that the IDL types unsigned char and
octet both map to the C++ type unsigned char. It follows that operator overloading
cannot be relied on to insert those types.

A set of helper types, CORBA::Any::from_boolean, CORBA::Any::from_octet,
CORBA::Any::from_char, and CORBA::Any::from_wchar, are defined to aid the inser-
tion of these types.

The code in Listing 8.5 shows how ambiguous basic types are inserted into an any.

Listing 8.5 C++ Examples of Inserting Ambiguous Basic Types
//--
// Inserting Ambiguous Basic Types
//

// Inserting a ‘boolean’
CORBA::Boolean b = 1;
theAny <<= CORBA::Any::from_boolean(b); // Copying insertion

// Inserting an ‘octet’
CORBA::Octet o = 0xf3;
theAny <<= CORBA::Any::from_octet(o); // Copying insertion

// Inserting a ‘char’
CORBA::Char c = ‘q’;
theAny <<= CORBA::Any::from_char(c); // Copying insertion

// Inserting a ‘wchar;
CORBA::WChar wc = L’q’;
theAny <<= CORBA::Any::from_wchar(wc); // Copying insertion

Inserting String Types
To insert bounded strings into a CORBA::Any, there has to be some way of specifying
the bound as the string is inserted. For this reason, the helper type
CORBA::Any::from_string is defined. Two constructors for this helper type are
declared:

// C++
CORBA::Any::from_string(char * s, // string to insert

CORBA::ULong b, // bound, as declared in IDL

4 0 0 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 400

CORBA::Boolean n=FALSE // no-copy flag
);

// Constructor for const strings
CORBA::Any::from_string(const char * s, // const string to insert

CORBA::ULong b // bound, as declared in IDL
);

A bound of 0, passed as the second argument, indicates that the string is unbounded.
When the no-copy flag is set to TRUE, a consuming insertion is made.

The code in Listing 8.6 shows how string types are inserted into an any. Three kinds of
string are considered:

• Unbounded strings
• Bounded strings
• Aliases of a bounded string

Listing 8.6 C++ Examples of Inserting String Types
//--
// Inserting Unbounded Strings
//

theAny <<= “Insert me!”; // Copying insertion

char * theString = “Insert me!”;
theAny <<= theString; // Copying insertion

const char * theConstString = “Insert me!”;
theAny <<= theConstString; // Copying insertion

// Note: There is no special insertion operator for ‘_var’ types
// so we convert it to a ‘char *’ using the ‘in()’ method.
CORBA::String_var theStringV = CORBA::string_dup(“Insert me!”);
theAny <<= theStringV.in(); // Copying insertion

theAny <<= CORBA::Any::from_string(“Insert me!”, 0);
// Copying insertion

char * theStringP = CORBA::string_dup(“Insert me!”);
theAny <<= CORBA::Any::from_string(theStringP, 0, 1);

// Consuming insertion

theStringV = CORBA::string_dup(“Insert me!”);
theAny <<= CORBA::Any::from_string(theStringV._retn(), 0, 1);

// Consuming insertion

// Beware! Do not make a consuming insertion of a string literal.

C + + E x a m p l e o f P a s s i n g anys 4 0 1

11 0672318121 CH08 6/20/01 5:42 PM Page 401

Listing 8.6 continued
//--
// Inserting Bounded Strings
//
// These examples use the bounded string of type ‘string<64>’.
//
char * theBString = “Insert me!”;
theAny <<= CORBA::Any::from_string(theBString, 64);

// Copying insertion

const char * theConstBString = “Insert me!”;
theAny <<= CORBA::Any::from_string(theConstBString, 64);

// Copying insertion

// Note: There is no special insertion operator for ‘_var’ types
// so convert it to a ‘char *’ using the ‘in()’ method.
CORBA::String_var theBStringV = CORBA::string_dup(“Insert me!”);
theAny <<= CORBA::Any::from_string(theBStringV.in(), 64);

// Copying insertion

theAny <<= CORBA::Any::from_string(“Insert me!”, 64);
// Copying insertion

char * theBStringP = CORBA::string_dup(“Insert me!”);
theAny <<= CORBA::Any::from_string(theBStringP, 64, 1);

// Consuming insertion

theBStringV = CORBA::string_dup(“Insert me!”);
theAny <<= CORBA::Any::from_string(theBStringV._retn(), 64, 1);

// Consuming insertion

// Beware! Do not make a consuming insertion of a string literal.

//--
// Inserting Alias of Bounded String
//
// Uses ‘typedef string<64> BoundedString’
//
theAny <<= CORBA::Any::from_string(“Insert me!”, 64);

// Copying insertion
// Explicitly set type code
theAny.type(SampleTypes::_tc_BoundedString);

Inserting Wide String Types
A helper type CORBA::Any::from_wstring is defined for wide strings. Two construc-
tors for this helper type are declared:

4 0 2 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 402

// C++
CORBA::Any::from_wstring(CORBA::WChar * s, // string to insert

CORBA::ULong b, // bound, as declared in IDL
CORBA::Boolean n=FALSE // no-copy flag

);

// Constructor for const strings
CORBA::Any::from_wstring(const CORBA::WChar * s, // const string to insert

CORBA::ULong b // bound, as declared in IDL
);

A bound of 0, passed as the second argument, indicates that the wide string is
unbounded. When the no-copy flag is set to TRUE, a consuming insertion is made.

The code in Listing 8.7 shows how wide string types are inserted into an any. Three
kinds of wide string are considered:

• Unbounded wide strings
• Bounded wide strings
• Aliases of a bounded wide string

Listing 8.7 C++ Examples of Inserting Wide String Types
//--
// Inserting Unbounded Wide Strings
//

theAny <<= L”Insert me!”; // Copying insertion

CORBA::WChar * theWString = L”Insert me!”;
theAny <<= theWString; // Copying insertion

const CORBA::WChar * theConstWString = L”Insert me!”;
theAny <<= theConstWString; // Copying insertion

// Note: There is no special insertion operator for ‘_var’ types
// so convert it to a ‘CORBA::WChar *’ using the ‘in()’ method.
CORBA::WString_var theWStringV = CORBA::wstring_dup(L”Insert me!”);
theAny <<= theWStringV.in(); // Copying insertion

theAny <<= CORBA::Any::from_wstring(L”Insert me!”, 0);
// Copying insertion

CORBA::WChar * theWStringP = CORBA::wstring_dup(L”Insert me!”);
theAny <<= CORBA::Any::from_wstring(theWStringP, 0, 1);

// Consuming insertion

theWStringV = CORBA::wstring_dup(L”Insert me!”);
theAny <<= CORBA::Any::from_wstring(theWStringV._retn(), 0, 1);

// Consuming insertion

C + + E x a m p l e o f P a s s i n g anys 4 0 3

11 0672318121 CH08 6/20/01 5:42 PM Page 403

Listing 8.7 continued
// Beware! Do not make a consuming insertion of a string literal.

//--
// Inserting Bounded Wide Strings
//
// These examples use the bounded wide string of type ‘wstring<128>’.
//
CORBA::WChar * theBWStringP = L”Insert me!”;
theAny <<= CORBA::Any::from_wstring(theBWStringP, 128);

// Copying insertion

const CORBA::WChar * theConstBWStringP = L”Insert me!”;
theAny <<= CORBA::Any::from_wstring(theConstBWStringP, 128);

// Copying insertion

// Note: There is no special insertion operator for ‘_var’ types
// so convert it to a ‘CORBA::WChar *’ using the ‘in()’ method.
CORBA::WString_var theBWStringV = CORBA::wstring_dup(L”Insert me!”);
theAny <<= CORBA::Any::from_wstring(theBWStringV.in(), 128);

// Copying insertion

theAny <<= CORBA::Any::from_wstring(L”Insert me!”, 128);
// Copying insertion

CORBA::WChar * wp = CORBA::wstring_dup(L”Insert me!”);
theAny <<= CORBA::Any::from_wstring(wp, 128, 1);

// Consuming insertion

theBWStringV = CORBA::wstring_dup(L”Insert me!”);
theAny <<= CORBA::Any::from_wstring(theBWStringV._retn(), 128, 1);

// Consuming insertion

// Beware! Do not make a consuming insertion of a string literal.

//--
// Inserting Alias of Bounded Wide String
//
// Uses ‘typedef wstring<128> BoundedWString’
//
theAny <<= CORBA::Any::from_wstring(L”Insert me!”, 128);

// Copying insertion
// Explicitly set type code
theAny.type(SampleTypes::_tc_BoundedWString);

4 0 4 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 404

Inserting Struct Types
The code in Listing 8.8 shows how struct types are inserted into an any.

Listing 8.8 C++ Examples of Inserting Struct Types
//--
// Inserting Structs
//
// Uses: //IDL
// //...in module ‘SampleTypes’
// struct VarLen {
// string theString;
// long theLong;
// };
//
SampleTypes::VarLen theVarLen;
theVarLen.theString = CORBA::string_dup(“Insert me!”);
theVarLen.theLong = (CORBA::Long)123;
theAny <<= theVarLen; // Copying insertion

SampleTypes::VarLen_var theVarLenV = new SampleTypes::VarLen();
theVarLenV->theString = CORBA::string_dup(“Insert me!”);
theVarLenV->theLong = (CORBA::Long)123;
theAny <<= *theVarLenV; // Copying insertion

SampleTypes::VarLen * theVarLenP = new SampleTypes::VarLen();
theVarLenP->theString = CORBA::string_dup(“Insert me!”);
theVarLenP->theLong = (CORBA::Long)123;
theAny <<= theVarLenP; // Consuming insertion

theAny <<= theVarLenV._retn(); // Consuming insertion

Inserting Sequence Types
The code in Listing 8.9 shows how sequence types are inserted into an any.

Listing 8.9 C++ Examples of Inserting Sequence Types
//--
// Inserting Sequences
//
// Uses: //IDL
// //...in module ‘SampleTypes’
// typedef sequence< VarLen > SeqOfVarLen;
//
SampleTypes::SeqOfVarLen theSeqOfVarLen(1); //maximum = 1

//length = 0
theSeqOfVarLen.length(1);
theSeqOfVarLen[0].theString = CORBA::string_dup(“Insert me!”);
theSeqOfVarLen[0].theLong = (CORBA::Long)123;
theAny <<= theSeqOfVarLen; // Copying insertion

C + + E x a m p l e o f P a s s i n g anys 4 0 5

11 0672318121 CH08 6/20/01 5:42 PM Page 405

Listing 8.9 continued
SampleTypes::SeqOfVarLen_var theSeqOfVarLenV

= new SampleTypes::SeqOfVarLen(1); //maximum = 1
//length = 0

theSeqOfVarLenV->length(1);
(*theSeqOfVarLenV)[0].theString = CORBA::string_dup(“Insert me!”);
(*theSeqOfVarLenV)[0].theLong = (CORBA::Long) 123;
theAny <<= *theSeqOfVarLenV; // Copying insertion

SampleTypes::SeqOfVarLen * theSeqOfVarLenP
= new SampleTypes::SeqOfVarLen(1); //maximum = 1

//length = 0
theSeqOfVarLenP->length(1);
(*theSeqOfVarLenP)[0].theString = CORBA::string_dup(“Insert me!”);
(*theSeqOfVarLenP)[0].theLong = (CORBA::Long) 123;
theAny <<= theSeqOfVarLenP; // Consuming insertion

theSeqOfVarLenV->length(1);
(*theSeqOfVarLenV)[0].theString = CORBA::string_dup(“Insert me!”);
(*theSeqOfVarLenV)[0].theLong = (CORBA::Long) 123;
theAny <<= theSeqOfVarLenV._retn(); // Consuming insertion

Inserting Fixed Precision Numbers
The code in Listing 8.10 shows how fixed types are inserted into an any.

Listing 8.10 C++ Examples of Inserting Fixed Types
//--
// Inserting Fixed Precision Numbers
//
// Uses: Type ‘fixed<6, 2>’
//
CORBA::Fixed fx = “-1234.56”; // Use 6 digits and 2 decimal places
theAny <<= CORBA::Any::from_fixed(fx, 6, 2); // Copying insertion

// Note: There is no such type as a ‘CORBA::Fixed_var’. The ‘fixed’ type
// is always passed by value.

Inserting Union Types
The code in Listing 8.11 shows how union types are inserted into an any.

Listing 8.11 C++ Examples of Inserting Union Types
//--
// Inserting Unions
//
// Uses: //IDL
// //...in module ‘SampleTypes’
// union Poly switch(short) {
// case 1: short theShort;

4 0 6 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 406

// case 2: string theString;
// };
//
SampleTypes::Poly thePoly;
thePoly.theString((const char*) “Insert me!”);
theAny <<= thePoly; // Copying insertion

SampleTypes::Poly_var thePolyV = new SampleTypes::Poly();
thePolyV->theString((const char*) “Insert me!”);
theAny <<= *thePolyV; // Copying insertion

SampleTypes::Poly * thePolyP = new SampleTypes::Poly();
thePolyP->theString((const char*) “Insert me!”);
theAny <<= thePolyP; // Consuming insertion

theAny <<= thePolyV._retn(); // Consuming insertion

Inserting Array Types
A helper type is needed for array types because insertion of an array pointer alone offers
no way of determining the array bounds. For every array arrayName, a corresponding
helper type arrayName_forany is generated, having the following constructor:

// C++
arrayName_forany(arrayName_slice * a, CORBA::Boolean nocopy=FALSE);

When the nocopy flag is set to TRUE, a consuming insertion is made.

The code in Listing 8.12 shows how array types are inserted into an any.

Listing 8.12 C++ Examples of Inserting Array Types
//--
// Inserting Arrays
//
// Uses: //IDL
// //... in module ’SampleTypes’
// typedef VarLen ArrOfVarLen[10];
//
SampleTypes::ArrOfVarLen theArr;
//...initialize the array ‘theArr’
theAny <<= SampleTypes::ArrOfVarLen_forany(theArr); // Copying insertion

SampleTypes::ArrOfVarLen_var theArrV = SampleTypes::ArrOfVarLen_alloc();
//...initialize the array ‘theArrV’
theAny <<= SampleTypes::ArrOfVarLen_forany(theArrV.in()); // Copying insertion

SampleTypes::ArrOfVarLen_slice * theArrP = SampleTypes::ArrOfVarLen_alloc();
//...initialize the array ‘theArrP’
theAny <<= SampleTypes::ArrOfVarLen_forany(theArrP, 1); // Consuming insertion

theAny <<= SampleTypes::ArrOfVarLen_forany(theArrV._retn(), 1);
// Consuming insertion

C + + E x a m p l e o f P a s s i n g anys 4 0 7

11 0672318121 CH08 6/20/01 5:42 PM Page 407

Inserting Exception Types
The code in Listing 8.13 shows how exception types are inserted into an any.

Listing 8.13 C++ Examples of Inserting Exception Types
//--
// Inserting Exceptions
//
// Uses: //IDL
// //... in module ‘SampleTypes’
// exception GenericExc {
// string reason;
// };
//

SampleTypes::GenericExc theExc(“This is the reason.”);
theAny <<= theExc; // Copying insertion

//Exceptions are normally declared on the stack.

Inserting Object References
For a given interface intfName, a pair of insertion operators are generated:

// C++
void operator<<=(CORBA::Any&, intfName_ptr) // Copying insertion
void operator<<=(CORBA::Any&, intfName_ptr*) // Consuming insertion

For a consuming insertion, you effectively pass a pointer to a pointer.

The code in Listing 8.14 shows how object references are inserted into an any.

Listing 8.14 C++ Examples of Inserting Object References
//--
// Inserting Object References
//

SampleTypes::Foo_var theFooV;
// ...initialize ‘theFooV’
theAny <<= theFooV; // Copying insertion

SampleTypes::Foo_ptr theFooP;
// ...initialize ‘theFooP’
theAny <<= theFooP; // Copying insertion

theAny <<= &theFooP; // Consuming insertion

4 0 8 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 408

Inserting any Types
The code in Listing 8.15 shows how any types are inserted into an any.

Listing 8.15 C++ Examples of Inserting any Types
//--
// Inserting Anys
//
CORBA::Any anyToBeInserted;
anyToBeInserted <<= (CORBA::Long) 123;
theAny <<= anyToBeInserted; // Copying insertion

CORBA::Any_var anyToBeInsertedV = new CORBA::Any();
*anyToBeInsertedV <<= (CORBA::Long) 123;
theAny <<= *anyToBeInsertedV; // Copying insertion

CORBA::Any * anyToBeInsertedP = new CORBA::Any();
*anyToBeInsertedP <<= (CORBA::Long) 123;
theAny <<= anyToBeInsertedP; // Consuming insertion

theAny <<= anyToBeInsertedV. _retn(); // Consuming insertion

C++ Extraction from CORBA::Any
This section provides sample code that shows how a variety of data types are extracted
from a CORBA::Any. Some special cases of extraction are discussed in more detail at the
end of this section.

Extraction of Basic Types
Extraction of most (but not all) basic types T is accomplished using the following oper-
ator:

// C++
CORBA::Boolean operator>>=(const CORBA::Any&, T&); // Simple extraction

This is sufficient for most data types T that are passed by value, such as short, long,
and float.

Extraction of Compound Types
Extraction of most (but not all) compound types T is accomplished using the follow-
ing operator:

// C++
void operator>>=(const CORBA::Any&, const T*&); // Read-only extraction

This is sufficient for most compound data types, except for arrays and object
references.

C + + E x t r a c t i o n f r o m CORBA::Any 4 0 9

11 0672318121 CH08 6/20/01 5:42 PM Page 409

Read-Only Extraction
When a compound type is extracted from a CORBA::Any, there is only one option: a
read-only extraction. The read-only extraction of a compound type T is illustrated in
Figure 8.3.

4 1 0 C h a p t e r 8 : T h e any Ty p e

CORBA : : Any CORBA : : Any

Value ValueT_* T_*

(a) Before extraction. (b) After extraction.

Figure 8.3

A read-only extraction from CORBA::Any.

When data is extracted from the CORBA::Any, the extraction operator makes a shallow
copy of the pointer to the data. No new copy of the data is made, and the extracted
pointer references data inside the CORBA::Any. The CORBA::Any retains ownership of
the inserted data and has responsibility for deallocating it. The extracted reference is
granted only read-only access to the CORBA::Any’s data. It is essential that the extracted
pointer not attempt to deallocate the data or modify it in any way.

Consider the following code fragment, which shows an example of a read-only extrac-
tion. The fragment uses the same IDL struct as the previous example
(SampleTypes::VarLen, defined in the earlier section “A Sample IDL Module”):

// C++
//--
// Inserting Struct - Consuming insertion
//
// (Uses same IDL as in previous section)
//
// Given ‘theAny’ which contains a ‘VarLen’ struct
SampleTypes::VarLen * theVarLenP;
extractSucceeds = (theAny >>= theVarLenP); // Read-only extraction

// Make a modifiable copy of ‘theVarLenP’
SampleTypes::VarLen theVarLenCopy; // Allocated on the stack
theVarLenCopy = *theVarLenP;
...

The contents of the CORBA::Any are shallow-copied to the pointer theVarLenP. You
therefore have only read-only access to the CORBA::Any’s data via this pointer. A new
copy of the data is made in case you need to modify it.

11 0672318121 CH08 6/20/01 5:42 PM Page 410

Extracting Unambiguous Basic Types
The code in Listing 8.16 shows how unambiguous basic types are extracted from
an any.

Listing 8.16 C++ Examples of Extracting Unambiguous Basic Types
//C++
//--
// Declaration of ‘CORBA::Any’ on the stack
//

CORBA::Any theAny;

//--
// Declaration of ‘CORBA::Boolean’ status
// TRUE => attempted extraction succeeded
// FALSE => attempted extraction failed

CORBA::Boolean extractSucceeds;

//--
// Extracting unambiguous Basic Types
//
...
// Extracting a ‘short’
CORBA::Short s;
extractSucceeds = (theAny >>= s); // Simple extraction
...
// Extracting an ‘unsigned short’
CORBA::UShort us;
extractSucceeds = (theAny >>= us); // Simple extraction
...
// Extracting a ‘long’
CORBA::Long l;
extractSucceeds = (theAny >>= l); // Simple extraction
...
// Extracting an ‘unsigned long’
CORBA::ULong ul;
extractSucceeds = (theAny >>= ul); // Simple extraction
...
// Extracting a ‘long long’
CORBA::LongLong ll;
extractSucceeds = (theAny >>= ll); // Simple extraction
...
// Extracting an ‘unsigned long long’
CORBA::ULongLong ull;
extractSucceeds = (theAny >>= ull); // Simple extraction
...

C + + E x t r a c t i o n f r o m CORBA::Any 4 1 1

11 0672318121 CH08 6/20/01 5:42 PM Page 411

Listing 8.16 continued
// Extracting a ‘float’
CORBA::Float f;
extractSucceeds = (theAny >>= f); // Simple extraction
...
// Extracting a ‘double’
CORBA::Double d;
extractSucceeds = (theAny >>= d); // Simple extraction
...
// Extracting a ‘long double’
CORBA::LongDouble ld;
extractSucceeds = (theAny >>= ld); // Simple extraction

Extracting Ambiguous Basic Types
The CORBA specification does not require boolean, octet, char, and wchar to map
to distinct types. Therefore, operator overloading cannot be relied on to extract these
types.

A set of helper types, CORBA::Any::to_boolean, CORBA::Any::to_octet,
CORBA::Any::to_char, and CORBA::Any::to_wchar, are defined to aid in the extrac-
tion of these types.

The code in Listing 8.17 shows how ambiguous basic types are extracted from an any.

Listing 8.17 C++ Examples of Extracting Ambiguous Basic Types
//C++
//--
// Extracting Ambiguous Basic Types
//
...
// Extracting a ‘boolean’
CORBA::Boolean b;
extractSucceeds = (theAny >>= CORBA::Any::to_boolean(b));

// Simple extraction
...
// Extracting an ‘octet’
CORBA::Octet o;
extractSucceeds = (theAny >>= CORBA::Any::to_octet(o));

// Simple extraction
...
// Extracting a ‘char’
CORBA::Char c;
extractSucceeds = (theAny >>= CORBA::Any::to_char(c));

// Simple extraction
...
// Extracting a ‘wchar;
CORBA::WChar wc;
extractSucceeds = (theAny >>= CORBA::Any::to_wchar(wc));

// Simple extraction

4 1 2 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 412

Extracting String Types
To extract bounded strings from a CORBA::Any, there has to be some way of specifying
the bound as the string is extracted. For this reason, the helper type
CORBA::Any::to_string is defined. The constructor for this helper type is

// C++
CORBA::Any::to_string(const char *& s, // string to extract

CORBA::ULong b // bound, as declared in IDL
);

A bound of 0, passed as the second argument, indicates that the string is unbounded.

The code in Listing 8.18 shows how string types are extracted from an any. Three kinds
of string are considered:

• Unbounded strings
• Bounded strings
• Aliases of a bounded string

Listing 8.18 C++ Examples of Extracting String Types
//C++
//--
// Extracting Unbounded Strings
//
...
const char * theStringP;
extractSucceeds = (theAny >>= theStringP); // Read-only extraction
...
const char * theStringP;
extractSucceeds = (theAny >>= CORBA::Any::to_string(theStringP, 0));

// Read-only extraction

// Make a modifiable copy of the string
CORBA::String_var theStringCopyV = CORBA::string_dup(theStringP);
...
//--
// Extracting Bounded Strings
//
// Assume that the ‘any’ contains a string of type ‘string< 64 >’.
//
...
const char * theBStringP;
extractSucceeds = (theAny >>= CORBA::Any::to_string(theBStringP, 64));

// Read-only extraction
...
// Make a modifiable copy of the string
CORBA::String_var theBStringCopyV = CORBA::string_dup(theBStringP);
...

C + + E x t r a c t i o n f r o m CORBA::Any 4 1 3

11 0672318121 CH08 6/20/01 5:42 PM Page 413

Listing 8.18 continued
//--
// Extracting Alias of Bounded String
//
// Uses ‘typedef string<64> BoundedString’
//
...
const char * theBStringP;
// Make a more stringent check to ensure that the type is ‘BoundedString’
if ((theAny.type()).equal(CORBA::_tc_BoundedString)) {

extractSucceeds = (theAny >>= CORBA::Any::to_string(theBStringP, 64));
// Read-only extraction

}

Extracting Wide String Types
To extract bounded wide strings from a CORBA::Any, there has to be some way of spec-
ifying the bound as the wide string is extracted. For this reason, the helper type
CORBA::Any::to_wstring is defined. The constructor for this helper type is

// C++
CORBA::Any::to_wstring(const CORBA::WChar *& ws, // wide string to extract

CORBA::ULong b // bound, as declared in IDL
);

A bound of 0, passed as the second argument, indicates that the wide string is
unbounded.

The code in Listing 8.19 shows how wide string types are extracted from an any. Three
kinds of wide string are considered:

• Unbounded wide strings
• Bounded wide strings
• Aliases of a bounded wide string

Listing 8.19 C++ Examples of Extracting Wide String Types
//C++
//--
// Extracting Unbounded Wide Strings
//
...
const CORBA::WChar * theWStringP;
extractSucceeds = (theAny >>= theWStringP); // Read-only extraction
...
const CORBA::WChar * theWStringP;
extractSucceeds = (theAny >>= CORBA::Any::to_wstring(theWStringP, 0));

// Read-only extraction

// Make a modifiable copy of the string
CORBA::WString_var theWStringCopyV = CORBA::wstring_dup(theWStringP);
...

4 1 4 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 414

Listing 8.19 continued
//--
// Extracting Bounded Wide Strings
//
// Assume that the ‘any’ contains a wide string of type ‘string<128>’.
//
...
const CORBA::WChar * theBWStringP;
extractSucceeds = (theAny >>= CORBA::Any::to_wstring(theBWStringP, 128));

// Read-only extraction

// Make a modifiable copy of the wide string
CORBA::WString_var theBWStringCopyV = CORBA::wstring_dup(theBWStringP);
...
//--
// Extracting Alias of Bounded Wide String
//
// Uses ‘typedef wstring<128> BoundedWString’
//
...
const CORBA::WChar * theBWStringP;
// Make a more stringent check to ensure that the type is ‘BoundedWString’
if ((theAny.type()).equal(CORBA::_tc_BoundedWString)) {

extractSucceeds = (theAny >>= CORBA::Any::to_wstring(theBWStringP, 128));
// Read-only extraction

}

Extracting Struct Types
The code in Listing 8.20 shows how struct types are extracted from an any.

Listing 8.20 C++ Examples of Extracting Struct Types
//C++
//--
// Extracting Structs
//
// Uses: //IDL
// //...in module ‘SampleTypes’
// struct VarLen {
// string theString;
// long theLong;
// };
//
...
SampleTypes::VarLen * theVarLenP;
extractSucceeds = (theAny >>= theVarLenP); // Read-only extraction

// Make a modifiable copy of ‘theVarLenP’
SampleTypes::VarLen theVarLenCopy; // Allocated on the stack
theVarLenCopy = *theVarLenP;

C + + E x t r a c t i o n f r o m CORBA::Any 4 1 5

11 0672318121 CH08 6/20/01 5:42 PM Page 415

Extracting Sequence Types
The code in Listing 8.21 shows how sequence types are extracted from an any.

Listing 8.21 C++ Examples of Extracting Sequence Types
//--
// Extracting Sequences
//
// Uses: //IDL
// //...in module ‘SampleTypes’
// typedef sequence< VarLen > SeqOfVarLen;
//
...
SampleTypes::SeqOfVarLen * theSeqOfVarLenP;
extractSucceeds = (theAny >>= theSeqOfVarLenP);

// Read-only extraction

// Make a modifiable copy of ‘theSeqOfVarLenP’
SampleTypes::SeqOfVarLen theSeqOfVarLenCopy; // Allocated on the stack
theSeqOfVarLenCopy = *theSeqOfVarLenP;

Extracting Fixed Precision Numbers
The code in Listing 8.22 shows how fixed types are extracted from an any.

Listing 8.22 C++ Examples of Extracting Fixed Types
//C++
//--
// Extracting Fixed Precision Numbers
//
// Uses: Type ‘fixed<6, 2>’
//
...
CORBA::Fixed fx;
extractSucceeds = (theAny >>= CORBA::Any::to_fixed(fx, 6, 2));

// Read-only extraction
...
// Note: You do not use a ‘CORBA::fixed *’ here. The ‘fixed’ type
// is always passed by value --- it is a basic type.

Extracting Union Types
The code in Listing 8.23 shows how union types are extracted from an any.

Listing 8.23 C++ Examples of Extracting Union Types
//C++
//--
// Extracting Unions
//
// Uses: //IDL

4 1 6 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 416

Listing 8.23 continued
// //...in module ‘SampleTypes’
// union Poly switch(short) {
// case 1: short theShort;
// case 2: string theString;
// };
//
...
SampleTypes::Poly * thePolyP;
extractSucceeds = (theAny >>= thePolyP);

// Read-only extraction

// Make a modifiable copy of ‘thePolyP’ union
SampleTypes::Poly thePolyCopy; // Allocated on the stack
thePolyCopy = *thePolyP;

Extracting Array Types
A helper type is needed for array types because extraction of an array pointer alone
offers no way of determining the array bounds. For every array arrayName, a corre-
sponding helper type arrayName_forany is generated. This is the same helper type that
is generated to aid the insertion of arrays.

The type arrayName_forany does not own the memory it references (remember that
data extracted from an array is read-only). This is a fundamental difference between it
and the _var types. However, in almost every other respect it is identical to the
arrayName_var type, even including support for an indexing operator.

The code in Listing 8.24 shows how array types are extracted from an any.

Listing 8.24 C++ Examples of Extracting Array Types
//C++
//--
// Extracting Arrays
//
// Uses: //IDL
// //... in module ‘SampleTypes’
// typedef VarLen ArrOfVarLen[10];
//
...
SampleTypes::ArrOfVarLen_forany theForany;
extractSucceeds = (theAny >>= theForany); // Read-only extraction

// The type ‘SampleTypes::ArrOfCVarLen_forany’ also overloads
// the subscripting ‘operator[]’
cout << theForany[9].theString << endl; // Use as read-only

// Make a modifiable copy of ‘theForany’ array
SampleTypes::ArrOfVarLen theArrCopy; // Allocate on the stack
SampleTypes::ArrOfVarLen_copy(theArrCopy, theForany);

C + + E x t r a c t i o n f r o m CORBA::Any 4 1 7

11 0672318121 CH08 6/20/01 5:42 PM Page 417

Extracting Exception Types
The code in Listing 8.25 shows how exception types are extracted from an any.

Listing 8.25 C++ Examples of Extracting Exception Types
//C++
//--
// Extracting Exceptions
//
// Uses: //IDL
// //... in module ‘SampleTypes’
// exception GenericExc {
// string reason;
// };
//
...
SampleTypes::GenericExc * theExcP;
extractSucceeds = (theAny >>= theExcP); // Read-only extraction

Extracting Object References
For a given interface intfName, the following extraction operator is generated:

// C++
CORBA::Boolean operator>>=(const CORBA::Any&, intfName_ptr&)
➥ // Read-only extraction

A special case arises when you want to make a widening extraction of an object refer-
ence. For example, consider the following fragment of IDL:

// IDL
interface Base { };
interface Derived : Base { };

An instance of a Derived object reference is inserted into a CORBA::Any as follows:

// C++
// Given an initialized object reference ‘theDerivedP’ of type ‘Derived_ptr’
CORBA::Any theAny;
theAny <<= &theDerivedP; // Consuming insertion

If you attempt to extract the object reference as a Base type, as follows

// C++
Base_ptr theBaseP;
CORBA::Boolean succeeds = (theAny >>= theBaseP); // Extraction fails!

the extraction fails. Extraction of an object reference succeeds only if the extracted type
exactly matches the inserted type. If you need to perform a widening extraction, it can
be done using the helper type CORBA::Any::to_object as follows:

4 1 8 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 418

// C++
CORBA::Object_var objV;
Base_var theBaseV;

CORBA::Boolean succeeds = (theAny >>= CORBA::Any::to_object(objV));
// Widening extraction

theBaseV = Base::_narrow(objV);
if (CORBA::is_nil(theBaseV.in())) {

cerr << “Narrow failed” << endl;
}
else {

cout << “Base object successfully extracted” << endl;
}

Note that extraction using CORBA::Any::to_object() is a special case with regard to
memory management. The extracted reference must be explicitly released, and it is
therefore extracted into the _var type objV. Since _narrow() implicitly duplicates the
object reference, it is also necessary to make the reference theBaseV a _var type.

The code in Listing 8.26 shows how object references are extracted from an any.

Listing 8.26 C++ Examples of Extracting Object References
//C++
//--
// Extracting Object References
//
...
SampleTypes::Foo_ptr theFooP;
extractSucceeds = (theAny >>= theFooP); // Read-only extraction

Extracting Any Types
The code in Listing 8.27 shows how any types are extracted from an any.

Listing 8.27 C++ Examples of Extracting any Types
//C++
//--
// Extracting Anys
//
// Assume that the extracted ‘any’ contains a ‘CORBA::Long’
...
CORBA::Any * anyToExtractP;
extractSucceeds = (theAny >>= anyToExtractP);

// Read-only extraction
if (extractSucceeds) {

CORBA::Long theLong;
if (*anyToExtractP >>= theLong) {

cout << “any(any(long)) = “ << theLong << endl;
}

}

C + + E x t r a c t i o n f r o m CORBA::Any 4 1 9

11 0672318121 CH08 6/20/01 5:42 PM Page 419

Java Example of Passing anys
Java mapping maps the IDL type any to the Java class org.omg.CORBA.Any. There are
two styles of access to CORBA.Any when inserting or extracting data: the API for built-
in types and the API for user-defined types.

Insertion or extraction of built-in types is performed by invoking methods directly on
CORBA.Any. For example, the IDL type long is inserted and extracted using the follow-
ing methods:

// Java
void org.omg.CORBA.Any.insert_long(int l)
int org.omg.CORBA.Any.extract_long()

Insertion or extraction of user-defined types is performed by invoking methods defined
on the Helper classes. For example, an IDL user-defined struct called Foo would be
inserted and extracted using the following methods:

// Java
void FooHelper.insert(org.omg.CORBA.Any a, Foo f)
Foo FooHelper.extract(org.omg.CORBA.Any a)

The following sections show how these operations are used in practice.

The AnyPasser Interface
Consider a sample IDL interface that illustrates use of the any type:

// IDL
interface AnyPasser {

void sendEvent(in any item);
};

The next two sections show client and server code that uses the interface AnyPasser.

Java Client for the AnyPasser Interface
Suppose that you are writing a client of the AnyPasser interface that sends only one of
the IDL types long or string or the user-defined type SampleTypes::VarLen (see the
section “A Sample IDL Module,” earlier in this chapter). The operation sendEvent()
can be invoked as shown in Listing 8.28.

Listing 8.28 A Java Invocation of sendEvent()
// Java
//--------------------
// Initialize the object reference and the ‘any’.
//
...
package Pure.AnyPasser;

4 2 0 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 420

Listing 8.28 continued
import java.io.*;
import org.omg.CORBA.*;
import Pure.AnyPasser.SampleTypes.*;
...
try {

AnyPasser theAnyPasser = /* initialize ‘AnyPasser’ object reference */;
org.omg.CORBA.Any theItem = org.omg.CORBA.ORB.init().create_any();

// Pass a ‘long’ using operation ‘sendEvent()’
theItem.insert_long(10001);
theAnyPasser.sendEvent(theItem);
...
// Pass a ‘string’ using operation ‘sendEvent()’
theItem.insert_string(“A string item.”);
theAnyPasser.sendEvent(theItem);
...
// Pass a ‘SampleTypes::VarLen’ struct using operation ‘sendEvent()’
VarLen theVarLen

= new VarLen(“String member”, 123);
VarLenHelper.insert(theItem, theVarLen);
theAnyPasser.sendEvent(theItem);

}
catch (org.omg.CORBA.SystemException sysEx) {

System.out.println(“SystemException: “ + sysEx);
}

Insertion of the types long and string into the any follows the pattern for built-in
types. The method insert_type() is invoked on the any.

Insertion of the struct VarLen follows the pattern for user-defined types. The method
insert() is invoked on the SampleTypes.VarLenHelper class.

Java Server for the AnyPasser Interface
Suppose that the server developer works in close collaboration with the developer of
the preceding client. In that case, the server developer knows that there are only three
possible values for the any parameter: a long, a string, or a SampleTypes::VarLen.
Given that the implementation class is called AnyPasserImpl, the implementation of
the operation sendEvent() can be written as shown in Listing 8.29.

Listing 8.29 A Java Implementation of sendEvent()
// Java
...
package Pure.AnyPasser;

import java.io.*;
import org.omg.CORBA.*;

J a v a E x a m p l e o f P a s s i n g anys 4 2 1

11 0672318121 CH08 6/20/01 5:42 PM Page 421

Listing 8.29 continued
import org.omg.PortableServer.*;
import Pure.AnyPasser.SampleTypes.*;
...
//Declared in ‘class AnyPasserImpl’
public sendEvent(org.omg.CORBA.Any item) {

int l;
String s;
VarLen vl;

if ((item.type()).kind() == org.omg.CORBA.TCKind.tk_long) {
// value is of type ‘long’
l = item.extract_long();
System.out.println(“Received long = “ + l);

}
else if ((item.type()).kind() == org.omg.CORBA.TCKind.tk_string) {

// value is of type ‘string’
s = item.extract_string();
System.out.println(“Received string = “ + s);

}
else if ((item.type()).equivalent(VarLenHelper.type())) {

// value is of type ‘SampleTypes::VarLen’
vl = VarLenHelper.extract(item);
System.out.println(“Received VarLen = {\n”

+ “\ttheString = “ + vl.theString + “\n”
+ “\ttheLong = “ + vl.theLong + “\n”
+ “}”);

}
else {

// value is of unexpected type!
// probably should raise an exception in this case.
System.out.println(“Received unexpected type in any”);

}
}

Before you can extract the data from the CORBA.Any, you must check the type of the
any’s contents. The type code for the any’s contents can be accessed using the method

// Java
org.omg.CORBA.TypeCode org.omg.CORBA.Any.type()

A complete declaration of the class TypeCode is given in Chapter 18. Two TypeCode
methods are commonly used in conjunction with the CORBA.Any:

// Java
org.omg.CORBA.TCKind org.omg.CORBA.TypeCode.kind()
boolean org.omg.CORBA.TypeCode.equivalent(org.omg.CORBA.TypeCode tc)

For CORBA built-in types you can check the value of the type code by invoking
kind(), which returns a tag of type TCKind (a complete list of tags is given in

4 2 2 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 422

Chapter 18). For example, Listing 8.29 shows how to check the contents of the any by
comparing its type code kind with tags tk_long and tk_string.

For CORBA user-defined types, you can check the value of the type code by invoking
equivalent() to compare it with a given type code. For example, in Listing 8.29, the
any’s type code is compared with SampleTypes.VarLenHelper.type(). For every
user-defined type Foo, the corresponding type code is given by FooHelper.type().

There are times when you might have such a large number of alternatives that the lin-
ear search (as used above) affects performance, or you might not know in advance what
types will be sent in the any. In both of these cases you have to learn about type code
parsing to make further progress. This topic is beyond the scope of this chapter—ref-
erence material on type codes can be found in Chapter 18. See also Chapter 20.

Java Insertion into org.omg.CORBA.Any
The following sections give examples of any insertion for a representative sample of
CORBA data types. The IDL types used in these examples are taken from Listing 8.1.

Inserting Basic Types
The code in Listing 8.30 shows how basic types are inserted into an any.

Listing 8.30 Java Examples of Inserting Basic Types
// Java
//--
// Declaration of ‘ org.omg.CORBA.Any ‘
// (assume that ‘orb’, an instance of ‘org.omg.CORBA.ORB’, is initialized)

org.omg.CORBA.Any theAny = org.omg.CORBA.ORB.init().create_any();

//--
// Inserting Basic Types
//

// Inserting a ‘short’
short s = -123;
theAny.insert_short(s);

// Inserting an ‘unsigned short’
short us = 321;
theAny.insert_ushort(us);

// Inserting a ‘long’
int l = -1000000;
theAny.insert_long(l);

// Inserting an ‘unsigned long’
int ul = 1000000;
theAny.insert_ulong(ul);

J a v a I n s e r t i o n i n t o org.omg.CORBA.Any 4 2 3

11 0672318121 CH08 6/20/01 5:42 PM Page 423

Listing 8.30 continued
// Inserting a ‘long long’
long ll = -1000;
theAny.insert_longlong(ll);

// Inserting an ‘unsigned long long’
long ull = 1000;
theAny.insert_ulonglong(ull);

// Inserting a ‘float’
float f = 0.432f;
theAny.insert_float(f);

// Inserting a ‘double’
double d = 0.0000123;
theAny.insert_double(d);

// Inserting a ‘long double’
// Not available in the CORBA 2.3 IDL-to-Java mapping

// Inserting a ‘boolean’
boolean b = true;
theAny.insert_boolean(b);

// Inserting an ‘octet’
byte o = 0x3f;
theAny.insert_octet(o);

// Inserting a ‘char’
char c = ‘H’;
theAny.insert_char(c);

// Inserting a ‘wchar’
char wc = ‘H’;
theAny.insert_wchar(wc);

Inserting Strings and Wide Strings
Insertion of aliased bounded strings is different from insertion of unbounded strings.
Instead of the org.omg.CORBA.Any.insert_string() and
org.omg.CORBA.Any.insert_wstring() methods used for unbounded strings, you
must use insert methods defined on Helper classes.

For example, consider the bounded string type BoundedString and the bounded wide
string type BoundedWString, defined as follows:

//IDL
module SampleTypes {

typedef string < 64 > BoundedString;
typedef wstring < 128 > BoundedWString;

4 2 4 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 424

...
};

Insertion of BoundedString strings is done using

//Java
void SampleTypes.BoundedStringHelper.insert(

org.omg.CORBA.Any theAny,
String plainString

);

Insertion of BoundedWString wide strings is done using

//Java
void SampleTypes.BoundedWStringHelper.insert(

org.omg.CORBA.Any theAny,
String wideString

);

The code in Listing 8.31 shows how string types are inserted into an any.

Listing 8.31 Java Examples of Inserting String Types
//Java
//--
// Inserting Unbounded Strings
//
String s = “Insert me!”;
theAny.insert_string(s);

//--
// Inserting Bounded Strings
//
// Uses: ‘string<64>’
//
// (In Java, insertion of unaliased bounded strings is NOT SUPPORTED.)
// (The dynamic any interface can be used to work around this limitation.)

//--
// Inserting Alias of Bounded String
//
// Uses ‘typedef string<64> BoundedString’
//
String s = “Insert me!”;
BoundedStringHelper.insert(theAny, s);

//--
// Inserting Unbounded Wide Strings
//
String ws = “Insert me!”;
theAny.insert_wstring(ws);

//--

J a v a I n s e r t i o n i n t o org.omg.CORBA.Any 4 2 5

11 0672318121 CH08 6/20/01 5:42 PM Page 425

Listing 8.31 continued
// Inserting Bounded Wide Strings
//
// Uses: ‘wstring<64>’
//
// (In Java, insertion of unaliased bounded strings is NOT SUPPORTED.)
// (The dynamic any interface can be used to work around this limitation.)

//--
// Inserting Alias of Bounded Wide String
//
// Uses ‘typedef wstring<128> BoundedWString’
//
String ws = ”Insert me!”;
BoundedWStringHelper.insert(theAny, ws);

Inserting Struct Types
The code in Listing 8.32 shows how struct types are inserted into an any.

Listing 8.32 Java Examples of Inserting Struct Types
//Java
//--
// Inserting Structs
//
// Uses: //IDL
// //...in module ‘SampleTypes’
// struct VarLen {
// string theString;
// long theLong;
// };
//
SampleTypes.VarLen theVarLen;
theVarLen = new SampleTypes.VarLen(“Insert me!”, 123);
SampleTypes.VarLenHelper.insert(theAny, theVarLen);

Inserting Sequence Types
The code in Listing 8.33 shows how sequence types are inserted into an any.

Listing 8.33 Java Examples of Inserting Sequence Types
//--
// Inserting Sequences
//
// Uses: //IDL
// //...in module ‘SampleTypes’
// typedef sequence< VarLen > SeqOfVarLen;
//
SampleTypes.VarLen theSeqOfVarLen[] = new SampleTypes.VarLen[1];
theSeqOfVarLen[0] = new SampleTypes.VarLen(“Insert me!”, 123);
SampleTypes.SeqOfVarLenHelper.insert(theAny, theSeqOfVarLen);

4 2 6 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 426

Inserting Fixed Precision Numbers
The code in Listing 8.34 shows how fixed types are inserted into an any.

Listing 8.34 Java Examples of Inserting Fixed Types
//Java
//--
// Inserting Fixed Precision Numbers
//
// Uses: Type ‘fixed<6, 2>’
//
java.math.BigDecimal fx = new java.math.BigDecimal(“1234.02”);
theAny.insert_fixed(fx);

Inserting Union Types
The code in Listing 8.35 shows how union types are inserted into an any.

Listing 8.35 Java Examples of Inserting Union Types
//Java
//--
// Inserting Unions
//
// Uses: //IDL
// //...in module ‘SampleTypes’
// union Poly switch(short) {
// case 1: short theShort;
// case 2: string theString;
// };
//
SampleTypes.Poly thePoly = new SampleTypes.Poly();
thePoly.theString(“Insert me!”);
SampleTypes.PolyHelper.insert(theAny, thePoly);

Inserting Array Types
The code in Listing 8.36 shows how array types are inserted into an any.

Listing 8.36 Java Examples of Inserting Array Types
//Java
//--
// Inserting Arrays
//
// Uses: //IDL
// //... in module ‘SampleTypes’
// typedef VarLen ArrOfVarLen[10];
//
SampleTypes.VarLen theArrOfVarLen[] = new SampleTypes.VarLen[10];
theArrOfVarLen[0] = new SampleTypes.VarLen(“Insert me!”, 123);
... // Initialize each of 10 elements.
SampleTypes.ArrOfVarLenHelper.insert(theAny, theArrOfVarLen);

J a v a I n s e r t i o n i n t o org.omg.CORBA.Any 4 2 7

11 0672318121 CH08 6/20/01 5:42 PM Page 427

Inserting Exception Types
The code in Listing 8.37 shows how exception types are inserted into an any.

Listing 8.37 Java Examples of Inserting Exception Types
//Java
//--
// Inserting Exceptions
//
// Uses: //IDL
// //... in module ‘SampleTypes’
// exception GenericExc {
// string reason;
// };
//
SampleTypes.GenericExc theExc;
theExc = new SampleTypes.GenericExc(“This is the reason field.”);
SampleTypes. GenericExcHelper.insert(theAny, theExc);

Inserting Object References
There are two approaches supported for inserting an object reference into an any.

The first approach is to use the insert() method of the Helper class. For example, in
Listing 8.38, the method SampleTypes.FooHelper.insert() is used to insert a Foo
object reference.

The second approach is to use one of the generic insert_Object() methods:

//Java
package org.omg.CORBA;

void Any.insert_Object(org.omg.CORBA.Object obj);
void Any.insert_Object(org.omg.CORBA.Object obj, org.omg.CORBA.TypeCode t)

throws org.omg.CORBA.BAD_PARAM;

The second form of insert_Object() throws the BAD_PARAM system exception if the
type code t is inconsistent with the type of the object reference obj.

The code in Listing 8.38 shows how object references are inserted into an any.

Listing 8.38 Java Examples of Inserting Object References
//Java
//--
// Inserting Object References
//

SampleTypes.Foo theFoo = /* Initialize object reference */;

// Method 1. - Insert as derived type
SampleTypes.FooHelper.insert(theAny, theFoo);

4 2 8 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 428

// Method 2. - Insert as org.omg.CORBA.Object
SampleTypes.Foo theFoo = /* Initialize object reference */;
theAny.insert_Object(theFoo, SampleTypes.FooHelper.type());

Inserting any and TypeCode Types
The code in Listing 8.39 shows how any and TypeCode types are inserted into an any.

Listing 8.39 Java Examples of Inserting any and TypeCode Types
//--
// Inserting Anys
//
org.omg.CORBA.Any anyToBeInserted = org.omg.CORBA.ORB.init().create_any();
anyToBeInserted.insert_long(123);
theAny.insert_any(anyToBeInserted);

//--
// Inserting TypeCodes
//
org.omg.CORBA.TypeCode theTypeCode = /* Initialize the TypeCode */;
theAny.insert_TypeCode(theTypeCode);

Extraction from org.omg.CORBA.Any
The following sections give examples of any extraction for a representative sample of
CORBA data types. The IDL types used in these examples are taken from Listing 8.1.

Extracting Basic Types
The code in Listing 8.40 shows how basic types are extracted from an any.

Listing 8.40 Java Examples of Extracting Basic Types
// Java
//--
// Declaration of ‘ org.omg.CORBA.Any ‘
//

org.omg.CORBA.Any theAny = org.omg.CORBA.ORB.init().create_any();

//--
// Extracting Basic Types
//

// Extracting a ‘short’
short s;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_short) {

s = theAny.extract_short();
}

// Extracting an ‘unsigned short’
short us;

E x t r a c t i o n f r o m org.omg.CORBA.Any 4 2 9

11 0672318121 CH08 6/20/01 5:42 PM Page 429

Listing 8.40 continued
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_ushort) {

us = theAny.extract_ushort();
}

// Extracting a ‘long’
int l;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_long) {

l = theAny.extract_long();
}

// Extracting an ‘unsigned long’
int ul;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_ulong) {

ul = theAny.extract_ulong();
}

// Extracting a ‘long long’
long ll;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_longlong) {

ll = theAny.extract_longlong();
}

// Extracting an ‘unsigned long long’
long ull;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_ulonglong) {

ull = theAny.extract_ulonglong();
}

// Extracting a ‘float’
float f;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_float) {

f = theAny.extract_float();
}

// Extracting a ‘double’
double d;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_double) {

d = theAny.extract_double();
}

// Extracting a ‘long double’
// Not available in the CORBA 2.3 IDL-to-Java mapping

// Extracting a ‘boolean’
boolean b;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_boolean) {

b = theAny.extract_boolean();
}

4 3 0 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 430

Listing 8.40 continued
// Extracting an ‘octet’
byte o;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_octet) {

o = theAny.extract_octet();
}

// Extracting a ‘char’
char c;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_char) {

c = theAny.extract_char();
}

// Extracting a ‘wchar’
char wc;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_wchar) {

wc = theAny.extract_wchar();
}

Extracting Strings and Wide Strings
Extraction of aliased bounded strings is different from extraction of unbounded strings.
Instead of the org.omg.CORBA.Any.extract_string() and
org.omg.CORBA.Any.extract_wstring() methods used for unbounded strings, you
must use extraction methods defined on Helper classes.

For example, consider the bounded string type BoundedString and the bounded wide
string type BoundedWString, defined as follows:

//IDL
module SampleTypes {

typedef string < 64 > BoundedString;
typedef wstring < 128 > BoundedWString;
...

};

Extraction of BoundedString strings is done using

//Java
String SampleTypes.BoundedStringHelper.extract(

org.omg.CORBA.Any theAny
);

Extraction of BoundedWString wide strings is done using

//Java
String SampleTypes.BoundedWStringHelper.extract(

org.omg.CORBA.Any theAny
);

E x t r a c t i o n f r o m org.omg.CORBA.Any 4 3 1

11 0672318121 CH08 6/20/01 5:42 PM Page 431

The code in Listing 8.41 shows how string types are extracted from an any.

Listing 8.41 Java Examples of Extracting String Types
//Java
//--
// Extracting Unbounded Strings
//
String s;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_string) {

s = theAny.extract_string();
}

//--
// Extracting Bounded Strings
//
// Uses: ‘string<64>’
//
// (In Java, extraction of unaliased bounded strings is NOT SUPPORTED.)
// (The dynamic any interface can be used to work around this limitation.)

//--
// Extracting Alias of Bounded String
//
// Uses ‘typedef string<64> BoundedString’
//
String s;
if ((theAny.type()).equal(BoundedStringHelper.type())) {

s = BoundedStringHelper.extract(theAny);
}

//--
// Extracting Unbounded Wide Strings
//
String ws;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_wstring) {

ws = theAny.extract_wstring();
}

//--
// Extracting Bounded Wide Strings
//
// Uses: ‘wstring<64>’
//
// (In Java, extraction of unaliased bounded strings is NOT SUPPORTED.)
// (The dynamic any interface can be used to work around this limitation.)

//--
// Extracting Alias of Bounded Wide String
//

4 3 2 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 432

Listing 8.41 continued
// Uses ‘typedef wstring<128> BoundedWString’
//
String ws;
if ((theAny.type()).equal(BoundedWStringHelper.type())) {

ws = BoundedWStringHelper.extract(theAny);
}

Extracting Struct Types
The code in Listing 8.42 shows how struct types are extracted from an any.

Listing 8.42 Java Examples of Extracting Struct Types
//Java
//--
// Extracting Structs
//
// Uses: //IDL
// //...in module ‘SampleTypes’
// struct VarLen {
// string theString;
// long theLong;
// };
//
SampleTypes.VarLen theVarLen;
if ((theAny.type()).equivalent(SampleTypes.VarLenHelper.type())) {

theVarLen = SampleTypes.VarLenHelper.extract(theAny);
}

Extracting Sequence Types
The code in Listing 8.43 shows how sequence types are extracted from an any.

Listing 8.43 Java Examples of Extracting Sequence Types
//Java
//--
// Extracting Sequences
//
// Uses: //IDL
// //...in module ‘SampleTypes’
// typedef sequence< VarLen > SeqOfVarLen;
//
SampleTypes.VarLen theSeqOfVarLen[];
if ((theAny.type()).equivalent(SampleTypes.SeqOfVarLenHelper.type())) {

theSeqOfVarLen = SampleTypes.SeqOfVarLenHelper.extract(theAny);
}

E x t r a c t i o n f r o m org.omg.CORBA.Any 4 3 3

11 0672318121 CH08 6/20/01 5:42 PM Page 433

Extracting Fixed Precision Numbers
The code in Listing 8.44 shows how fixed types are extracted from an any.

Listing 8.44 Java Examples of Extracting Fixed Types
//Java
//--
// Extracting Fixed Precision Numbers
//
// Uses: Type ‘fixed<6, 2>’
//
java.math.BigDecimal fx;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_fixed) {

fx = theAny.extract_fixed();
}

Extracting Union Types
The code in Listing 8.45 shows how union types are extracted from an any.

Listing 8.45 Java Examples of Extracting Union Types
//Java
//--
// Extracting Unions
//
// Uses: //IDL
// //...in module ‘SampleTypes’
// union Poly switch(short) {
// case 1: short theShort;
// case 2: string theString;
// };
//
SampleTypes.Poly thePoly = new SampleTypes.Poly();
if ((theAny.type()).equivalent(SampleTypes.PolyHelper.type())) {

thePoly = SampleTypes.PolyHelper.extract(theAny);
}

Extracting Array Types
The code in Listing 8.46 shows how array types are extracted from an any.

Listing 8.46 Java Examples of Extracting Array Types
//Java
//--
// Extracting Arrays
//
// Uses: //IDL
// //... in module ‘SampleTypes’
// typedef VarLen ArrOfVarLen[10];
//

4 3 4 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 434

Listing 8.46 continued
SampleTypes.VarLen theArrOfVarLen[];
if ((theAny.type()).equivalent(SampleTypes.ArrOfVarLenHelper.type())) {

theArrOfVarLen = SampleTypes.ArrOfVarLenHelper.extract(theAny);
}

Extracting Exception Types
The code in Listing 8.47 shows how exception types are extracted from an any.

Listing 8.47 Java Examples of Extracting Exception Types
//Java
//--
// Extracting Exceptions
//
// Uses: //IDL
// //... in module ‘SampleTypes’
// exception GenericExc {
// string reason;
// };
//
SampleTypes.GenericExc theExc;
if ((theAny.type()).equivalent(SampleTypes.GenericExcHelper.type())) {

theExc = SampleTypes.GenericExcHelper.extract(theAny);
}

Extracting Object References
There are two approaches to extracting an object reference from an any.

The first approach is to use the extract() method of the Helper class. For example,
in Listing 8.48, the method SampleTypes.FooHelper.extract() is used to extract a
Foo object reference.

The second approach is to use the generic extract_Object() method:

//Java
package org.omg.CORBA;

org.omg.CORBA.Object Any.extract_Object()
throws org.omg.CORBA.BAD_OPERATION;

Because the return type of extract_Object() is the base class
org.omg.CORBA.Object, it is typically necessary to narrow the returned object refer-
ence to the correct type.

The code in Listing 8.48 shows how object references are extracted from an any.

Listing 8.48 Java Examples of Extracting Object References
//Java
//--
// Extracting Object References

E x t r a c t i o n f r o m org.omg.CORBA.Any 4 3 5

11 0672318121 CH08 6/20/01 5:42 PM Page 435

Listing 8.48 continued
//
// Method 1. - Extract derived type
SampleTypes.Foo theFoo;
if ((theAny.type()).equivalent(SampleTypes.FooHelper.type())) {

theFoo = SampleTypes.FooHelper.extract(theAny);
}

// Method 2. - Extract base type
SampleTypes.Foo theFoo;
org.omg.CORBA.Object theObj;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_objref) {

theObj = theAny.extract_Object();
theFoo = SampleTypes.FooHelper.narrow(theObj);

}

Extracting any and TypeCode Types
The code in Listing 8.49 shows how any and TypeCode types are extracted from an any.

Listing 8.49 Java Examples of Extracting any and TypeCode Types
//Java
//--
// Extracting Anys
//
// Given an ‘Any’ that contains an ‘Any’ that contains a ‘long’:
//
org.omg.CORBA.Any extractedAny;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_any) {

extractedAny = theAny.extract_any();
long extractedLong = extractedAny.extract_long();

}

//--
// Extracting TypeCodes
//
org.omg.CORBA.TypeCode theTypeCode;
if ((theAny.type()).kind() == org.omg.CORBA.TCKind.tk_TypeCode) {

theTypeCode = theAny.extract_TypeCode();
}

Type Codes
Type codes are an essential part of the dynamic typing mechanism of CORBA. They
are described by the pseudo-IDL interface CORBA::TypeCode, which maps to the class
CORBA::TypeCode in C++ and org.omg.CORBA.TypeCode in Java.

A type code can provide a complete description of built-in IDL types or user-defined
IDL types. Usually, it is possible to re-create the exact IDL declaration of a given user-
defined type by querying the properties of the corresponding type code.

4 3 6 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 436

Most of the time you do not need to know much about the structure of type codes
because the IDL compiler generates predefined type codes for you. Often the only
operation you will need to perform on type codes is to make comparisons.
Comparisons can be made using the operations equal() and equivalent(), as
described in the section “Comparison of Type Codes,” later in this chapter. If you need
to use type codes in a more sophisticated way, consult Chapter 17 and Chapter 19.

C++ Type Code Constants
The C++ language mapping provides a predefined set of type code constants. Type
code constants are predefined for

• All built-in CORBA types.
• All user-defined types for which stub code is available.

If your application does not have the stub code for an IDL type, the corresponding type
code constant will not be available. In that case, you could use the operations defined
on CORBA::ORB to create the type code dynamically (see Chapter 18 and Chapter 20).

Built-In CORBA Types
The constants provided for built-in types are listed in Table 8.1.

Table 8.1 Type Codes for Built-In Types

IDL Type Type Code Constant

no type CORBA::_tc_null

void CORBA::_tc_void

short CORBA::_tc_short

long CORBA::_tc_long

unsigned short CORBA::_tc_ushort

unsigned long CORBA::_tc_ulong

float CORBA::_tc_float

double CORBA::_tc_double

boolean CORBA::_tc_boolean

char CORBA::_tc_char

octet CORBA::_tc_octet

any CORBA::_tc_any

TypeCode CORBA::_tc_TypeCode

Principal CORBA::_tc_Principal

Object CORBA::_tc_Object

string CORBA::_tc_string

long long CORBA::_tc_longlong

unsigned long long CORBA::_tc_ulonglong

long double CORBA::_tc_longdouble

wchar CORBA::_tc_wchar

wstring CORBA::_tc_wstring

fixed<> CORBA::_tc_fixed

Ty p e C o d e s 4 3 7

11 0672318121 CH08 6/20/01 5:42 PM Page 437

The type code constants are object references of type CORBA::TypeCode_ptr. The cor-
responding objects, of type CORBA::TypeCode, are local objects (technically, these are
locality-constrained CORBA objects).

There are a few special cases among the built-in type codes. The constant
CORBA::_tc_null does not correspond to any IDL type. It merely represents the value
of a type code that is in an uninitialized state.

As an example of a type code constant in use, consider the following code fragment.

// C++
CORBA::Any theAny;
...
// Given that ‘theAny’ contains a ‘float’ value:

CORBA::Float f;
CORBA::Boolean succeeds;
if ((theAny.type())->equivalent(CORBA::_tc_float)) { // Redundant check

succeeds = theAny >>= f;
}

The method CORBA::TypeCode::equivalent() is used to compare the type code of
theAny with CORBA::_tc_float. Note that it would be an error to attempt to compare
two type codes using the == operator.

In fact, checking the type code of the CORBA::Any in this way is redundant. The extrac-
tion operator >>= performs the type check anyway. The return value of the extraction
expression is TRUE if the types match.

User-Defined CORBA Types
Constants are also defined for user-defined CORBA types. For example, the struct
SampleTypes::VarLen (defined in Listing 8.1) has a corresponding type code constant
called SampleTypes::_tc_VarLen.

The following code fragment shows SampleTypes::_tc_VarLen being used to check
the type of the data inside a CORBA::Any.

// C++
CORBA::Any theAny;
...
// Given that ‘theAny’ contains a ‘SampleTypes::VarLen’ struct

SampleTypes::VarLen * theVarLenP;
CORBA::Boolean succeeds;
if ((theAny.type())->equivalent(SampleTypes::_tc_VarLen)) { //Redundant check

succeeds = theAny >>= theVarLenP; // Read-only extraction
}

The method CORBA::TypeCode::equivalent() is used to compare the type code of
theAny with SampleTypes::_tc_VarLen. Once again, the explicit check of the
CORBA::Any’s type is redundant.

4 3 8 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 438

Typedefs of CORBA Types
Type code constants are also generated for aliases of CORBA types. For example, if
the following lines appear in your IDL file

// IDL
...
typedef string AliasString;
typedef VarLen AliasStruct;

this results in the generation of constants _tc_AliasString and _tc_AliasStruct

when mapped to C++.

Type Code Representations
Type codes can be fairly complex and bulky. In the interest of efficiency, it is worth
considering how some of the bulk can be discarded. There is one important case in
which the bulk of the type code can be reduced: a type code that describes the layout
of data for marshalling or unmarshalling. In this case, most identifiers appearing in the
type definition are redundant.

For reasons of efficiency, therefore, two representations of a type code are supported:

• Complete type code
• Compact type code

These representations are discussed in the following sections.

Complete Type Codes
A complete type code contains enough information to re-create the fragment of IDL
that describes the type. Consider SampleTypes::VarLen, defined in Listing 8.1. The
corresponding type code consists of a repository ID and other details.

Some types have no need of a repository ID. These are known as unnamed types, and
for these types the repository ID is left blank. For example, there is no need to provide
a repository ID for trivial IDL types like short or float.

Using the operations of the TypeCode interface (Chapter 18), you can extract the fol-
lowing information about VarLen:

• The name of the struct is VarLen.
• There are two members.
• The first member is of type string and named theString.
• The second member is of type long and named theLong.

Putting this information together, you can re-create the original IDL:

// IDL

// RepositoryID = “IDL:pure-corba-3.com/SampleTypes/VarLen:1.0”
// (defined in scope ‘SampleTypes’)

struct VarLen {

Ty p e C o d e s 4 3 9

11 0672318121 CH08 6/20/01 5:42 PM Page 439

string theString;
long theLong;

};

A complete type code supplies a repository ID (where appropriate) and enough struc-
ture to re-create the IDL definition exactly.

Compact Type Codes
A compact type code is derived from a complete type code in the following way:

• The repository ID remains intact.
• Alias names remain intact (that is, alternative names for the type resulting from

a typedef).
• All other identifiers in the type code are left blank.

To obtain a compact type code, invoke the operation CORBA::TypeCode::get_
compact_typecode() on a regular type code. For example, consider how to generate a
compact type code for the type VarLen:

// C++
CORBA::TypeCode_var tcCompactV;
tcCompactV = SampleTypes::_tc_VarLen->get_compact_typecode();

// Java
org.omg.CORBA.TypeCode tcCompact;
tcCompact = SampleTypes.VarLenHelper.type().get_compact_typecode();

For a compact type code, the operations of the TypeCode interface (see Chapter 18)
allow you to reconstruct only a bare outline of the original IDL declaration:

// IDL

// RepositoryID = “IDL:pure-corba-3.com/SampleTypes/VarLen:1.0”
// (defined in scope ‘SampleTypes’)

struct blank {
string blank;
long blank;

};

The compact type code has an intact repository ID, but it provides only a bare type
code structure that is stripped of identifier names.

Inserting and Extracting Type Aliases
In the C++ mapping of any, it is necessary to set the type() field of the any explicitly
when inserting type aliases into the any.

Consider the following fragment of IDL:

// IDL
typedef string Alias1;
typedef string Alias2;

4 4 0 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 440

This defines the two alias types Alias1 and Alias2.

To insert an aliased string, Alias1, the usual C++ expression, theAny <<=

“Inserted”, is not adequate. The generic API does not specify the exact type of the
any’s data. This difficulty is solved by explicitly calling the type() modifier method of
CORBA::Any after the string has been inserted.

The way to insert a string alias in C++ and in Java is as follows:

// C++
...
theAny <<= “Insert me as an Alias1”; // Copying insertion
theAny.type(_tc_Alias1); // Explicitly set type code

// Java
...
Alias1Helper.insert(theAny,”Insert me as an Alias1”);

The C++ code fragment shows that you can set the type of the any explicitly after
inserting the string.

The Java code fragment uses the insert() method of the Alias1Helper class to insert
the string alias into the any.

Suppose you have a piece of code that expects to receive an any containing either
Alias1 or Alias2:

// C++
// Given ‘theAny’ containing either ‘Alias1’ or ‘Alias2’
...
if ((theAny.type()).equal(_tc_Alias1)) {

// Perform actions for ‘Alias1’
}
else if ((theAny.type()).equal(_tc_Alias2)) {

// Perform actions for ‘Alias2’
}

// Java
// Given ‘theAny’ containing either ‘Alias1’ or ‘Alias2’
...
if ((theAny.type()).equal(Alias1Helper.type())) {

// Perform actions for ‘Alias1’
}
else if ((theAny.type()).equal(Alias2Helper.type())) {

// Perform actions for ‘Alias2’
}

This code fragment is sensitive to the exact type contained in the any. It is therefore
essential to use equal() here and not equivalent(), because the equivalent()
method cannot distinguish between aliases.

Ty p e C o d e s 4 4 1

11 0672318121 CH08 6/20/01 5:42 PM Page 441

Comparison of Type Codes
There are times when the distinction between a type alias (defined using an IDL
typedef statement) and the original type is important. At other times the distinction is
unimportant. The CORBA::TypeCode interface, therefore, provides two comparison
operations that treat type aliases in different ways:

• CORBA::TypeCode::equal()—Returns TRUE if and only if the target type code
and the type code passed as an argument are identical in every respect.

• CORBA::TypeCode::equivalent()—Returns TRUE if the type codes being com-
pared are derived from the same original type code, ignoring aliases.
Comparison using equivalent() is also tolerant of compact type codes. When
comparing a type code with its compact representation, equivalent() returns
TRUE.

The difference between an equal() comparison and an equivalent() comparison can
be illustrated by an example. Consider the following fragment of IDL that defines
aliases of the string type:

// IDL
typedef string FirstAlias;
typedef FirstAlias SecondAlias;
typedef SecondAlias ThirdAlias;

typedef string OtherAlias;

The following sections show the results of comparing the type string with the type
ThirdAlias, using first the equal() operation and then the equivalent() operation.

Comparison Using CORBA::TypeCode::equal()
The following code fragments, in C++ and Java, define two anys: anyForString,
which holds a plain string, and anyForThirdAlias, which holds a string of type
ThirdAlias. A strict comparison of the type() fields is made using
CORBA::TypeCode::equal().

// C++
// Initialize ‘anyForString’ and ‘anyForThirdAlias’
CORBA::Any anyForString <<= “Any old string”;
CORBA::Any anyForThirdAlias <<= “and another string”;
anyForThirdAlias.type(_tc_ThirdAlias);

// Strict Comparison, using ‘equal()’.
CORBA::Boolean isEqual;
isEqual = (anyForString.type()).equal(anyForThirdAlias.type());
// --------> Result: isEqual == FALSE

// Java
// Initialize ‘anyForString’ and ‘anyForThirdAlias’
org.omg.CORBA.Any anyForString = org.omg.CORBA.ORB.init().create_any();

4 4 2 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 442

anyForString.insert_string(“Any old string”);
org.omg.CORBA.Any anyForThirdAlias = org.omg.CORBA.ORB.init().create_any();
ThirdAliasHelper.insert(anyForThirdAlias, “and another string”);

// Strict Comparison, using ‘equal()’.
boolean isEqual;
isEqual = (anyForString.type()).equal(anyForThirdAlias.type());
// --------> Result: isEqual == FALSE

The comparison using equal() returns FALSE because an original type and its alias are
considered to be distinct by the equal() operation.

Comparison Using CORBA::TypeCode::equivalent()
The following code fragments, in C++ and Java, define two anys: anyForString,
which holds a plain string, and anyForThirdAlias, which holds a string of type
ThirdAlias. A loose comparison of the type() fields is made using
CORBA::TypeCode::equivalent().

// C++
// Initialize ‘anyForString’ and ‘anyForThirdAlias’
CORBA::Any anyForString <<= “Any old string”;
CORBA::Any anyForThirdAlias <<= “and another string”;
anyForThirdAlias.type(_tc_ThirdAlias);

// Loose Comparison using, ‘equivalent()’.
CORBA::Boolean isEquiv;
isEquiv = (anyForString.type()).equivalent(anyForThirdAlias.type());
// --------> Result: isEquiv == TRUE

// Java
// Initialize ‘anyForString’ and ‘anyForThirdAlias’
org.omg.CORBA.Any anyForString = org.omg.CORBA.ORB.init().create_any();
anyForString.insert_string(“Any old string”);
org.omg.CORBA.Any anyForThirdAlias = org.omg.CORBA.ORB.init().create_any();
ThirdAliasHelper.insert(anyForThirdAlias, “and another string”);

// Loose Comparison using, ‘equivalent()’.
boolean isEquiv;
isEquiv = (anyForString.type()).equivalent(anyForThirdAlias.type());
// --------> Result: isEquiv == TRUE

The comparison using equivalent() returns TRUE because equivalent() implicitly
unwinds the aliases ThirdAlias, SecondAlias, and FirstAlias until it arrives at the
basic type string. The unwinding of aliases is performed on both arguments before
type comparison is made. Therefore, comparison between any permutation of string,
FirstAlias, SecondAlias, ThirdAlias, and OtherAlias would return TRUE when
equivalent() is used.

Ty p e C o d e s 4 4 3

11 0672318121 CH08 6/20/01 5:42 PM Page 443

Summary
This chapter has covered the syntax and semantics of insertion into and extraction from
the any type. To use the any type effectively, you also need to have some understand-
ing of CORBA type codes. The following aspects of type codes were discussed in this
chapter:

• Type code constants
• Comparison of type codes

The contents of an any can easily be checked by examining its type() field.

The use of the any type in this chapter is restricted to cases in which you have stub code
to support the data types contained in the any. There are applications, however, that
need to manipulate the any’s contents even without stub code. The DynamicAny mod-
ule is provided by CORBA for this sort of application. It is discussed in detail in
Chapter 20.

4 4 4 C h a p t e r 8 : T h e any Ty p e

11 0672318121 CH08 6/20/01 5:42 PM Page 444

Callbacks
Many simple CORBA applications exhibit a clear distinction
between client and server roles. The server plays a passive role,
responding to invocation requests from clients, while the client
plays an active role, initiating invocations on the server.

Sometimes, however, the roles need to be reversed. If a server
logs an important event, it might need to take the initiative to
notify interested clients in a timely manner. An example of this
is a system for monitoring stock prices. A server that monitors
stock prices must send out notifications to enable traders to
track the latest price movements in stocks that interest them.

This kind of system requires the direction of the invocations to
be reversed so that a server invokes on a client. The client
application must implement and instantiate a CORBA object,
a callback object, to receive the invocations. The client, there-
fore, takes on some of the characteristics of a server—it is a
hybrid in many respects. This chapter describes the features of
a callback client and provides a simple example of a system
that uses callbacks. There is nothing fundamentally new, in
terms of CORBA programming, described here. However, the
use of callbacks is a common pattern that illustrates a number
of principles of CORBA programming, including how to avoid
distributed deadlock.

Processing Invocations in a
Client
Implementing a callback object in a client is similar to imple-
menting a regular CORBA object in a server (a callback object
is just a CORBA object that lives in the client). To implement
a callback, perform the following steps:

1. Implement a servant class for the callback’s IDL inter-
face.

C H A P T E R 9

C
a
llb

a
ck

s

12 0672318121 CH09 6/20/01 4:58 PM Page 445

2. Instantiate and activate the callback servant in the same way as in a server.
3. Configure the POA that activates the callback object to have the TRANSIENT

lifespan policy value.
An application that supports only TRANSIENT objects does not need to be regis-
tered with the ORB’s activation mechanism (activation in the sense of launch-
ing a process).
Most ORB implementations optimize the interoperable object references
(IORs) associated with TRANSIENT objects. TRANSIENT IORs typically contain
the host and port of the application that generated the IOR.

4. Implement the callback client to process incoming invocations within an event
loop.

5. Generate skeleton code from the callback’s IDL interface and link it with the
client application.

You could call CORBA::ORB::run() to process events, but this is not satisfactory in a
client application because the run() operation blocks, preventing all other activities
apart from processing invocations. There are two alternative approaches to processing
invocations in a client application:

• Single-threaded client Use the CORBA::ORB::perform_work() operation
instead of CORBA::ORB::run(). The perform_work() operation does not block
indefinitely and returns after a certain number of invocations have been processed
(the exact behavior of perform_work() is implementation dependent). This
allows you to write an event loop to integrate with the other activities of the
client application. For example, the following listings outline a simple client
event loop in C++ and Java:

Listing 9.1 C++ Sample Event Loop
//C++

...
while (keep_running) {

if (orb->work_pending()) { orb->perform_work(); }
process_user_input();

}

Listing 9.2 Java Sample Event Loop
//Java

...
while (keep_running) {

if (orb.work_pending()) { orb.perform_work(); }
process_user_input();

}

The process_user_input() function processes events from the user’s key-
board and mouse.
The drawback with this approach is that it often makes the client unresponsive.
If an invocation takes a long time to process, the user is frozen out by the
perform_work() operation, and the client application cannot respond to the
keyboard or mouse.

4 4 6 C h a p t e r 9 : C a l l b a c k s

12 0672318121 CH09 6/20/01 4:58 PM Page 446

• Multithreaded client In this case you reserve one thread for processing
CORBA invocations, and within this thread you can call the
CORBA::ORB::run() operation. A second thread is created to respond to user
input and perform other tasks.

Of the two approaches to invocation processing in the client, the multithreaded
approach is preferable because it ensures a reasonable degree of responsiveness to user
input. However, if you are adding callback functionality to an existing single-threaded
application, it is preferable to avoid multithreading. Retrofitting multithreading to a
legacy application can be a fairly complex task that carries with it a risk of destabiliz-
ing the application.

Avoiding Deadlock in Callbacks
Callbacks can easily manifest the phenomenon of distributed deadlock. Consider the
system shown in Figure 9.1, where a client with a callback object makes an invocation
on a CORBA object in a server. Both client and server are single threaded.

Av o i d i n g D e a d l o c k i n C a l l b a c k s 4 4 7

Servant

blocked

Client

Servant

blocked

Server

Request

Request

Figure 9.1

Deadlock in a system using callbacks.

Because the client is single threaded, it uses an event loop, as shown in Listing 9.1 and
Listing 9.2. In the course of executing the process_user_input() function, the client
makes a remote invocation on the server’s CORBA object. Consider what happens if
the server calls back on the client’s CORBA object while processing this invocation.
Ordinary CORBA invocations are synchronous, and therefore the server is blocked
while it awaits a reply from the client. But the client will never send the reply, because
it is also blocked, waiting for the reply from the invocation it made on the server. This
is distributed deadlock.

There are two ways of avoiding the deadlock in this system:

• Client is single threaded Declare the operations on the callback object to be
oneway operations in your IDL. Because oneway operations expect no reply, the
callback invocation returns right away, thereby avoiding the deadlock.

• Client is multithreaded Using a separate thread for processing invocations
in the client avoids the deadlock, assuming that the initial client invocation is
made from another thread.

12 0672318121 CH09 6/20/01 4:58 PM Page 447

To be really safe against deadlock, however, it might be necessary to activate
the callback object using a POA that supports the ORB_CTRL_MODEL multithread-
ing policy. The client will then be protected against deadlock even if the initial
invocation originates from a thread that is processing invocations.

The example in the next section shows how to use the first approach (using oneways)
to implement a simple callback application.

Callback Example Using oneway Operations
The example in this section is based on the RecycleBroker IDL described in Chapter 3,
“A Sample CORBA System.” Listing 9.3 shows an enhancement to the RecycleBroker
system that enables users of the system to be notified as soon as a new waste item is
offered for sale.

Listing 9.3 IDL for a Callback That Uses a oneway Operation
//IDL
module RecycleBroker {

typedef long KeyType;

enum WasteType {
BROWN_GLASS, GREEN_GLASS, CLEAR_GLASS, SCRAP_STEEL,
ALUMINIUM_CANS, PLASTIC_BOTTLES, WASTE_PAPER

};

// Implemented by the Client.
interface WasteItemCallback {

oneway void notify(in KeyType wasteitem_id, in WasteType waste);
};

// Implemented by the Server.
interface WasteItemRegister {

void reg_callback(in WasteItemCallback obj, in WasteType waste);
void dereg_callback(in WasteItemCallback obj, in WasteType waste);

};
};

Two new interfaces are defined to support this feature: WasteItemCallback and
WasteItemRegister.

The WasteItemCallback interface is implemented by client applications. It provides a
single notify() operation, which a server can call to notify a client that a new waste
item is up for sale. The wasteitem_id argument uniquely identifies the new item, and
the waste argument indicates the type of waste. The notify() operation is declared
oneway to avoid the possibility of deadlock, as explained in the section “Avoiding
Deadlock in Callbacks,” earlier in this chapter.

The WasteItemRegister interface is implemented by server applications. The
reg_callback() operation allows clients to register their interest in receiving notifi-
cations about certain kinds of waste item. The obj argument is a reference to a

4 4 8 C h a p t e r 9 : C a l l b a c k s

12 0672318121 CH09 6/20/01 4:58 PM Page 448

WasteItemCallback object in the client, and the waste argument specifies the type of
waste item. The dereg_callback() operation is used by the client to tell the server to
stop sending notifications to the obj object.

Limitations of oneway Operations
Although oneway operations are convenient to use with callbacks, they do have limita-
tions. A oneway operation

• Must have a void return type and can have only in parameters.
• Cannot raise any exceptions, either user or system exceptions, back to the caller.
• Is not always a oneway operation. One of the peculiar features of version 1.2 of

the general inter-ORB protocol (GIOP) standard is that it allows the semantics
of oneway operations to be overridden by the ORB configuration. If your ORB
supports GIOP 1.2 and is configured to make all invocations synchronous, the
oneway directive is ignored, and callbacks can become deadlocked after all. The
solution, obviously, is to reconfigure your ORB to treat oneways normally.

Because of these limitations, using oneways might not be appropriate in all circum-
stances. You should also bear in mind that, in general, it is easier to design and imple-
ment applications that rely on synchronous invocations, which are processed in a
definite sequence. It is not a good idea to use oneways extensively—in this chapter
oneways are used solely when needed to avoid deadlock.

Callback Sample Implementation
This section presents a sample implementation of the callback IDL in Listing 9.3. The
sample code is a test implementation that illustrates the mechanics of making a call-
back—it is not intended to be a realistic implementation.

The implementation of the WasteItemRegister interface is shown in Listing 9.4 and
Listing 9.5 for C++ and Java, respectively.

Listing 9.4 C++ Implementation of RecycleBroker::WasteItemRegister
Interface
//C++
// Part of ‘server’ application.

// reg_callback()
// Implements IDL operation “RecycleBroker::WasteItemRegister::reg_callback”.
void
RecycleBroker_WasteItemRegister_i::reg_callback(

RecycleBroker::WasteItemCallback_ptr obj,
RecycleBroker::WasteType waste

)
throw (CORBA::SystemException)
{

m_callback_objV = RecycleBroker::WasteItemCallback::_duplicate(obj);
m_waste_type = waste;

C a l l b a c k E x a m p l e U s i n g oneway O p e r a t i o n s 4 4 9

12 0672318121 CH09 6/20/01 4:58 PM Page 449

Listing 9.4 continued
if (!CORBA::is_nil(m_callback_objV.in())) {

// Do some notifications to test the callback:
m_callback_objV->notify((CORBA::Long) 1234, m_waste_type);
m_callback_objV->notify((CORBA::Long) 2345, m_waste_type);
m_callback_objV->notify((CORBA::Long) 6543, m_waste_type);

}
}

// dereg_callback()
// Implements IDL operation “RecycleBroker::WasteItemRegister::dereg_callback”.
void
RecycleBroker_WasteItemRegister_i::dereg_callback(

RecycleBroker::WasteItemCallback_ptr obj,
RecycleBroker::WasteType waste

)
throw (CORBA::SystemException)
{

if (m_callback_objV->_is_equivalent(obj)) {
m_callback_objV = RecycleBroker::WasteItemCallback:: _nil();

}
}

Listing 9.5 Java Implementation of RecycleBroker::WasteItemRegister
Interface
//Java
package Pure.CallbackDemo.RecycleBroker;

public class WasteItemRegister_i extends WasteItemRegisterPOA
{

...
public void reg_callback(

Pure.CallbackDemo.RecycleBroker.WasteItemCallback obj,
Pure.CallbackDemo.RecycleBroker.WasteType waste

)
{

System.out.println(“WasteItemRegister_i.reg_callback(): called.”);
m_callback_obj = obj;
m_waste_type = waste;

if (m_callback_obj != null) {
// Do some notifications:
System.out.println(

“info: about to call back with wasteitem_id = \”1234\””
);
m_callback_obj._notify(1234, m_waste_type);
m_callback_obj._notify(2345, m_waste_type);
m_callback_obj._notify(6543, m_waste_type);

}
}

4 5 0 C h a p t e r 9 : C a l l b a c k s

12 0672318121 CH09 6/20/01 4:58 PM Page 450

Listing 9.5 continued
public void dereg_callback(

Pure.CallbackDemo.RecycleBroker.WasteItemCallback obj,
Pure.CallbackDemo.RecycleBroker.WasteType waste

)
{

System.out.println(“WasteItemRegister_i.dereg_callback(): called.”);
if (m_callback_obj._is_equivalent(obj)) {

m_callback_obj = null;
}

}
...
private WasteItemCallback m_callback_obj;
private WasteType m_waste_type;

}

The reg_callback() operation allows clients to register an interest in receiving call-
backs about a particular waste type. This simple example allows only a single client to
register a callback. The reference to the callback object is stored in the private member
variable m_callback_objV (C++) or m_callback_obj (Java), and the waste type is
stored in m_waste_type.

The reg_callback() implementation tests the callback by making a few notify()
invocations with random arguments.

NOTE
The WasteItemCallback::notify() operation is mapped to _notify() in Java
because it clashes with a Java keyword. The convention used in IDL-to-Java map-
ping is to prefix clashing identifiers with an underscore character.

The dereg_callback() operation clears the value in the m_callback_objV (C++) or
m_callback_obj (Java) member variable if it is equal to the supplied obj object refer-
ence.

The implementation of the WasteItemCallback interface is shown in Listing 9.6 and
Listing 9.7. This code represents the callback object, and it is compiled and linked with
the client application.

Listing 9.6 C++ Implementation of RecycleBroker::WasteItemCallback
Interface
//C++
// Part of ‘client’ application

// notify()
// Implements IDL operation “RecycleBroker::WasteItemCallback::notify”.
void
RecycleBroker_WasteItemCallback_i::notify(

RecycleBroker::KeyType wasteitem_id,

C a l l b a c k E x a m p l e U s i n g oneway O p e r a t i o n s 4 5 1

12 0672318121 CH09 6/20/01 4:58 PM Page 451

Listing 9.6 continued
RecycleBroker::WasteType waste

)
throw (CORBA::SystemException)
{

cout << “RecycleBroker_WasteItemCallback_i::notify(): called.” << endl;
cout << “ wasteitem_id = “ << wasteitem_id << endl;

}

Listing 9.7 Java Implementation of RecycleBroker::WasteItemCallback
Interface
//Java
package Pure.CallbackDemo.RecycleBroker;

public class WasteItemCallback_i extends WasteItemCallbackPOA
{

...
public void _notify(

int wasteitem_id,
Pure.CallbackDemo.RecycleBroker.WasteType waste

)
{

System.out.println(“WasteItemCallback::notify(): called.”);
System.out.println(“ wasteitem_id = “ + wasteitem_id);

}
...

}

For testing purposes, WasteItemCallback::notify() prints out the value of the
wasteitem_id parameter to let you verify that the callback has been processed.

The main() function of the callback client is shown in Listing 9.8 and Listing 9.9. In
many respects, it resembles the main() function of a CORBA server, but there are a
couple of differences.

Listing 9.8 C++ Callback Client main() Function
//C++
...
#include “RecycleBroker_WasteItemCallback_i.h”
#include “POAUtility.h”
...
int
main(int argc, char **argv)
{

int exit_status = 0; // Return code from main.

PortableServer::Servant the_RecycleBroker_WasteItemCallback = 0;

4 5 2 C h a p t e r 9 : C a l l b a c k s

12 0672318121 CH09 6/20/01 4:59 PM Page 452

Listing 9.8 continued
try
{

// For temporary object references.
CORBA::Object_var tmp_ref;
// Reference to Callback object.
RecycleBroker::WasteItemCallback_var callback_refV;

// Initialise the ORB and Root POA.
cout << “Initializing the ORB” << endl;
global_orb = CORBA::ORB_init(argc, argv);
tmp_ref = global_orb->resolve_initial_references(“RootPOA”);
PortableServer::POA_var root_poaV =

PortableServer::POA::_narrow(tmp_ref);
PortableServer::POAManager_var root_poa_managerV

= root_poaV->the_POAManager();

// Create a POA for TRANSIENT (session) objects.
PortableServer::POA_var my_poa =

POAUtility::create_basic_POA(
root_poaV.in(),
root_poa_managerV.in(),
“my_poa”,
0, // Single threaded
0 // for ‘Session’ objects

);
PortableServer::ObjectId_var oid;

// Create a servant for interface RecycleBroker::WasteItemCallback.
the_RecycleBroker_WasteItemCallback =

new RecycleBroker_WasteItemCallback_i(my_poa);

// Activate the ‘WasteItemCallback’ object.
oid = my_poa->activate_object(the_RecycleBroker_WasteItemCallback);
tmp_ref = my_poa->id_to_reference(oid);
callback_refV = RecycleBroker::WasteItemCallback::_narrow(tmp_ref);
if (CORBA::is_nil(callback_refV.in())) {

cerr << “error: failed to narrow to ‘WasteItemCallback’ object”
<< endl;

exit(1);
}

// Activate the POA Manager
// NB: The POA Manager must be activated before the ‘WasteItemCallback’
// object can service callback invocations.
root_poa_managerV->activate();

C a l l b a c k E x a m p l e U s i n g oneway O p e r a t i o n s 4 5 3

12 0672318121 CH09 6/20/01 4:59 PM Page 453

Listing 9.8 continued
tmp_ref = // Get a reference to a ‘WasteItemRegister’ object

// using the Naming Service or some other means.
RecycleBroker::WasteItemRegister_var WasteItemRegister2 =

RecycleBroker::WasteItemRegister::_narrow(tmp_ref);
if (CORBA::is_nil(WasteItemRegister2))
{

cerr << “Could not narrow reference to interface “
<< “RecycleBroker::WasteItemRegister” << endl;

exit(1);
}
WasteItemRegister2->reg_callback(

callback_refV.in(),
RecycleBroker::BROWN_GLASS

);

// Begin event loop...
keep_running = 1;
while (keep_running) {

if (orb->work_pending()) { orb->perform_work(); }
process_user_input();

}
}
catch (CORBA::Exception& e)
{

cout << “Unexpected CORBA exception: “ << e << endl;
exit_status = 1;

}
// Delete the servants.
the_RecycleBroker_WasteItemCallback->_remove_ref();

// Ensure that the ORB is properly shutdown and cleaned up.
try
{

global_orb->shutdown(1);
global_orb->destroy();

}
catch (...)
{

// Do nothing.
}
return exit_status;

}

Listing 9.9 Java Callback Client main() Function
//Java
package Pure.CallbackDemo;

import java.io.*;

4 5 4 C h a p t e r 9 : C a l l b a c k s

12 0672318121 CH09 6/20/01 4:59 PM Page 454

Listing 9.9 continued
import org.omg.CORBA.*;
import org.omg.PortableServer.*;
import Pure.CallbackDemo.RecycleBroker.*;

public class callback
{
public static ORB global_orb;

public static void main(String args[])
{
try
{

System.out.println(“Initializing the ORB”);

global_orb = ORB.init(args, null);
org.omg.CORBA.Object poa_obj
= global_orb.resolve_initial_references(“RootPOA”);

org.omg.PortableServer.POA root_poa
= org.omg.PortableServer.POAHelper.narrow(poa_obj);

org.omg.PortableServer.POAManager root_poa_manager
= root_poa.the_POAManager();

// Create a basic POA for ‘Session’ objects.
System.out.println(“Creating basic session POA”);
POA basic_session_poa =

Pure.Util.POAUtility.create_basic_POA(
root_poa,
root_poa_manager,
“basic_session_poa”,
false, // Single threaded
false // for ‘Session’ objects

);

byte[] oid = null;
org.omg.CORBA.Object ref = null;

// Create a servant for interface WasteItemCallback.
Servant the_WasteItemCallback = new WasteItemCallback_i(

basic_session_poa //Default POA
);
oid = basic_session_poa.activate_object(the_WasteItemCallback);
ref = basic_session_poa.id_to_reference(oid);
WasteItemCallback the_callback

= WasteItemCallbackHelper.narrow(ref);

// Activate the POA Manager
// NB: The POA Manager must be activated before the ‘WasteItemCallback’

C a l l b a c k E x a m p l e U s i n g oneway O p e r a t i o n s 4 5 5

12 0672318121 CH09 6/20/01 4:59 PM Page 455

Listing 9.9 continued
// object can service callback invocations.
root_poa_manager.activate();

ref = // Get a reference to a ‘WasteItemRegister’ object
// using the Naming Service or some other means.

WasteItemRegister the_reg = WasteItemRegisterHelper.narrow(ref);
the_reg.reg_callback(the_callback, WasteType.BROWN_GLASS);

// Begin event loop...
keep_running = 1;
while (keep_running) {

if (orb.work_pending()) { orb.perform_work(); }
process_user_input();

}
}
catch (org.omg.CORBA.SystemException sysEx) {

System.out.println(“SystemException: “ + sysEx);
}
catch (Exception ex) {

System.out.println(“Exception: “ + ex);
}

System.out.println(“Done”);
orb.shutdown(true);

}
}

The callback client main() function follows the standard steps for a server main()
function up to the point where it creates and activates the WasteItemCallback object.
The next step the client makes is to activate the POA Manager by calling
PortableServer::POAManager::activate(). It is essential for the client to call
activate() before making remote invocations because the client is not able to receive
callbacks when the POA Manager is not in the active state.

The client gets a reference to the WasteItemRegister object, the CORBA object that
lives in the server, and invokes the reg_callback() operation on it. The following
sequence of events occurs:

1. The client ORB sends a request message to the server to invoke the reg_
callback() operation.

2. In the course of processing the reg_callback() operation, the server calls back
on the client by invoking the notify() operation (refer to Listing 9.6 and
Listing 9.7).

3. Upon the first invocation of notify(), the server establishes a new network
connection to the client.
IIOP specifies that invocations can be made in only one direction along a net-
work connection. Therefore, the existing connection from the client to the
server cannot be reused for callback invocations.

4 5 6 C h a p t e r 9 : C a l l b a c k s

12 0672318121 CH09 6/20/01 4:59 PM Page 456

4. Because notify() is a oneway operation, a request is sent to the client, and
notify() returns immediately without waiting for a reply. This is the step that
breaks the deadlock.
The oneway requests are stored in a queue on the client side. Typically, an ORB
creates internal threads to deal with requests incoming from the network.

5. The reg_callback() operation finishes executing, and a reply message is sent
back to the client.

6. Control returns to the client main() function. The reg_callback() invocation
has returned, so the client can proceed to its event loop.
Once the perform_work() function is called, the queued notify() requests
start to be processed on the client side.

In this way, the problem of deadlock is resolved without resorting to the use of appli-
cation level threads.

Summary
The use of callbacks introduces the risk of distributed deadlock, and this has to be
resolved either using multithreading or by declaring the callback operations as oneway.
The callback pattern is particularly useful in applications that use messaging services.
Two of the CORBA services, the CORBA Event Service and the CORBA Notification
Service, provide messaging infrastructures based on a callback pattern.

S u m m a r y 4 5 7

12 0672318121 CH09 6/20/01 4:59 PM Page 457

12 0672318121 CH09 6/20/01 4:59 PM Page 458

Interceptors
The ORB core is defined in the CORBA architecture as “that
part of the ORB that provides the basic representation of
objects and communication of requests.” ORB Services, such
as the security or transaction, are built on this core and provide
a higher-level ORB environment to distributed object applica-
tions. The function of an ORB service is specified as a trans-
formation of a given message (a request, reply, or derivation
thereof), in terms of service contexts. A client may generate an
object request. ORB services require hooks into the ORB in
order to necessitate some transformation of that request.

Interceptors provide hooks into the ORB or interception points
within the request/reply sequence, through which ORB ser-
vices can query request/reply data and transfer service contexts
between clients and servers. They are a means of structuring an
ORB’s interactions with extra-ORB services.

The concept of interceptors in CORBA 2.2 was underspecified
and the interfaces for dealing with service context were not
portable. For example, service implementations must negotiate
interfaces with each ORB vendor in order to pass service con-
text. This makes them largely useless as a mechanism for third
parties, who offer services to “plug in to” an ORB.

The OMG issued a request for proposal (RFP) for a specifica-
tion of portable Interceptors, which aims to solve this problem.
Portable Interceptors are hooks into the ORB through which
ORB services can intercept the normal flow of execution of the
ORB. Portable Interceptors presented in this chapter are based
on the adopted draft specification for CORBA v2.4+, which
defines two classes of portable Interceptors: request
Interceptors and IOR Interceptors. Request Interceptors are
concerned with service contexts and are called during request

C H A P T E R 1 0

In
te

rce
p

to
rs

13 0672318121 CH10 6/20/01 5:41 PM Page 459

mediation. IOR Interceptors are concerned with adding service specific information
related to an object or server into tagged components of the profile in the IOR when
the IOR is created.

The rest of the chapter provides an overview of the portable Interceptor interface spec-
ification and covers two types of portable Interceptors including request and IOR
Interceptors. It also covers the Portable Interceptor Current, which can provide service
context, and Policy Factory, which provides the policies used to create a POA and
influences the set of tagged components within the profiles of any IOR created by that
POA. Registering Interceptors are discussed, and writing and using Interceptors are
demonstrated with a simple example in both C++ and Java.

Portable Interceptor Interface
The module PortableInterceptor defines portable Interceptor interfaces and related
types.

module PortableInterceptor{
local interface Interceptor{

readonly attribute string name;
void destroy();

};
};

All portable Interceptors inherit from the local interface Interceptor. This means all
portable Interceptors must be declared local and invocations on local objects that
implement interceptors are not ORB mediated.

Each interceptor may have a name or have an empty string as the name attribute. Only
one Interceptor of a given name can be registered with ORB for each Interceptor type.
An Interceptor with empty string as the name is anonymous. Any number of anony-
mous Interceptors may be registered with ORB. Interceptor::destroy is called dur-
ing ORB::destroy.

As mentioned earlier, there are two classes of Interceptors: request Interceptors and
IOR Interceptors.

Request Interceptors
A request Interceptor is designed to intercept the flow of a request/reply sequence
through the ORB at specific points so that the services can query the request informa-
tion and manipulate the service contexts, which are propagated between clients and
servers.

The main function of request Interceptors is to allow ORB services to transfer service
context information between clients and servers.

There are two types of request Interceptors. One is the client-side Interceptor and the
other is the server-side Interceptor. Both client- and server-side Interceptors are regis-
tered with the ORB. The ORB logically maintains an ordered list of these Interceptors.

4 6 0 C h a p t e r 1 0 : I n t e r c e p t o r s

13 0672318121 CH10 6/20/01 5:41 PM Page 460

Each request Interceptor is called at a number of interception points within the flow of
request/reply sequence. The interception points are shown in Figure 10.1.

R e q u e s t I n t e r c e p t o r s 4 6 1

O
R

B

send_request

send_poll

receive_reply

receive_exception

receive_other

C
lient

S
ervant

receive_request
service_contaxts

receive_request

send_reply

send_exception

send_other

Figure 10.1

Request interceptor points.

Client-Side Interceptor
local interface ClientRequestInterceptor: Interceptor {

void send_request (in ClientRequestInfo ri) raises (ForwardRequest);
void send_poll (in ClientRequestInfo ri);
void receive_reply (in ClientRequestInfo ri);
void receive_exception (in ClientRequestInfo ri) raises (ForwardRequest);
void receive_other (in ClientRequestInfo ri) raises (ForwardRequest);

};

The local interface ClientRequestInterceptor defines a number of operations that
correspond to the client-side interception points as shown in Figure 10.1.

Client-Side Interception Points
At the client-side, there are five interception points:

• send_request

• send_poll

• receive_reply

• receive_exception

• receive_other

13 0672318121 CH10 6/20/01 5:41 PM Page 461

The send_request interception point allows an Interceptor to query request informa-
tion and modify the service context before the request is sent to the server. A system
exception may be raised at this point. In this case, no other Interceptor’s send_request
operations are called. Rather, receive_exception interception points are called
instead. The Interceptor may also raise a ForwardRequest exception. In this case, no
other Interceptor’s send_request operations are called. Instead, receive_other inter-
ception points are called to signal the ForwardRequest exception. The
completion_status will be COMPLETED_NO if a system exception is raised.

The send_poll interception point allows an Interceptor to query an asynchronously
invoked request when the client polls for results of the deferred synchronous invoca-
tions. This poll is reported to Interceptors through the send_poll interception points
and a response is returned through the receive_reply or receive_exception inter-
ceptor points. If the response is not available before the polling timeout expires, the
system exception TIMEOUT is raised and receive_exception is called with this excep-
tion. A system exception may be raised at this point. In this case, no other Interceptor’s
send_poll operations are called whereas receive_exception interception points are
called, and the completion_status will be COMPLETED_NO.

The receive_reply interception point allows an Interceptor to query the information
on a reply after it is returned from the server and before control is returned to the client.
A system exception may be raised at this point. In this case, no other Interceptor’s
receive_reply operations are called. Rather, receive_exception interception points
are called, and the completion_status will be COMPLETED_YES.

When an exception occurs, the receive_exception interception is called. It allows an
Interceptor to query the exception’s information before it is passed to the client. This
operation may raise a system exception. As successive Interceptors may change the
exception while receiving their calls to receive_exception, the exception raised to the
client will be the last exception raised by the interceptor, or the original exception if no
Interceptor changes the exception. This operation may also raise a ForwardRequest
exception. If an Interceptor raises this exception, no other Interceptors’
receive_exception will be called. Rather, receive_other will be called. If the origi-
nal exception is a system exception, the completion_status of the new exception will
be the same as the original. If the original exception is a user exception, then the
completion_status of the new exception is COMPLETED_YES. Under some conditions,
depending on what policies are in effect, an exception such as COMM_FAILURE may
result in a retry of the request. Because this retry is a new request with respect to
Interceptors, but control has not returned to the client, the
PortableInterceptor::Current will be the same for the original request and the retry
request.

The receive_other interceptor point allows an Interceptor to query the information
available when a request results in something other than a normal reply or an

4 6 2 C h a p t e r 1 0 : I n t e r c e p t o r s

13 0672318121 CH10 6/20/01 5:41 PM Page 462

exception—for example, a retry or an asynchronous call. The reply does not immedi-
ately follow the request, but the control will return to the client and an ending inter-
ception point will be called. For a retry, that is a new request with respect to
Interceptors; if it does follow the original request, the request scoped
PortableInterceptor::Current will be the same for the original request and the
retrying request. This interception point may raise a system exception. If it does, no
other Interceptors’ receive_other will be called. Rather, receive_exception will be
called. It may also raise a ForwardRequest exception. If it happens, successive inter-
ceptors’ receive_other will be called with the new information provided by the
ForwardRequest exception. The completion_status will be COMPLETED_NO. If the tar-
get invocation had completed, this interception point would not be called.

Client-Side Interception Point Flow
The send_request and send_poll are starting interception points. The
receive_reply, receive_exception, and receive_other are ending interception
points. On any given request/reply sequence, only one of the starting interception
points and one of the ending points is called. There is no intermediate exception point.
Only when send_request or send_poll runs to completion is an ending interception
point called.

A ClientRequestInterceptor instance is registered with ORB. When multiple inter-
ceptors are registered on a client, the ORB maintains an ordered list. The Interceptor
list is traversed in order on send interception points and in reverse order for receive
interception points.

The following scenarios assume there are three Interceptors: A, B, and C. On the send
interception points they are called in the order A, B, C. On the receive interception
points they are called in the order C, B, A.

Scenario 1: Request/reply sequence is successful. The interception point flow is
shown in Figure 10.2. The flow for each Interceptor follows the rules: the
send_request followed by receive_reply—that is, a start point is followed by an
end point.

Scenario 2: B.send_request raises an exception. As shown in Figure 10.3, the
flow for A is send_request followed by receive_exception. The flow for B is
send_request; as the start point did not complete, so no end point is called. The
interceptor C is never called. The exception aborts the interception flow.

Scenario 3: A reply returns successfully from the server, but B.receive_reply
raises an exception. From the interception point flow shown in Figure 10.4, it can
be seen that the flow for B and C is send_request followed by receive_reply.
Because receive_reply of B raises an exception, the flow for A is send_request
followed by receive_exception.

R e q u e s t I n t e r c e p t o r s 4 6 3

13 0672318121 CH10 6/20/01 5:41 PM Page 463

Figure 10.2

Request/reply sequence is successful.

4 6 4 C h a p t e r 1 0 : I n t e r c e p t o r s

B

A

C

C
lient

S
ervant

send_request

send_reply

send_request

send_reply

send_request

send_reply

B

A

C

C
lient

S
ervant

send_request

receive_exception

send_request

throws exception

Figure 10.3

B.send_request raises an exception.

13 0672318121 CH10 6/20/01 5:41 PM Page 464

Figure 10.4

B.receive_reply throws an exception.

Scenario 4: An exception X is thrown by C.receive_reply, but
B.receive_exception changes it to the exception Y. As shown in Figure 10.5, the
flow for C is send_request followed by receive_reply. Because
C.receive_reply raises the exception X, the flow for A and B is send_request
followed by receive_exception, but B is handled in exception X while A is han-
dled in exception Y.

Scenario 5: An exception arrives from the server. C.receive_exception raises
exception ForwardRequest F1 and B.receive_other raises exception
ForwardRequest F2. The interception point flow of this scenario is shown in
Figure 10.6.

R e q u e s t I n t e r c e p t o r s 4 6 5

B

A

C

C
lient

S
ervant

send_request

receive_exception

send_request

throws exception

send_request

receive_reply

receive_reply

13 0672318121 CH10 6/20/01 5:41 PM Page 465

Figure 10.5

C.receive_reply throws exception X and B.receive_exception throws exception Y.

4 6 6 C h a p t e r 1 0 : I n t e r c e p t o r s

B

X

A

Y

C

C
lient

S
ervant

send_request

receive_exception

send_request

throws exception Y

send_request

receive_exception

receive_reply
throws exception X

B

F1

A

F2

C

C
lient

S
ervant

send_request

receive_other

send_request

ForwardRequest F2
send_request

receive_other
throw

receive_exception
throw
ForwardRequest F1

Figure 10.6

An exception arrives from the server.

13 0672318121 CH10 6/20/01 5:41 PM Page 466

Server-Side Interceptor
local interface ServerRequestInterceptor : Interceptor{
void receive_request_service_contexts (in ServerRequestInfo ri)

raises (ForwardRequest);
void receive_request (in ServerRequestInfo ri)

raises (ForwardRequest);
void send_reply (in ClientRequestInfo ri);
void send_exception (in ServerRequestInfo ri)

raises (ForwardRequest);
void send_other (in ServerRequestInfo ri)

raises (ForwardRequest);
};

A server-side Interceptor defines a number of operations that matches the server-side
interception points shown in Figure 10.1.

Server-Side Interception Points
At the server-side, there are also five interception points:

• receive_request_service_contexts

• receive_request

• send_reply

• send_exception

• send_other

The receive_request_service_contexts is an interception point at which
Interceptors must get their service context information from the incoming request and
transfer it to PortableInterceptor::Current’s slots. This interception point is called
before the servant manager is called. This interception point may or may not execute
in the same thread as the target invocation. Operation parameters are not yet available
at this point. A system exception may be raised at this interception point. If it happens,
no other Interceptors’ receive_request_service_contexts will be called. Rather,
their send_exception interception points are called instead. A ForwardRequest excep-
tion may also be raised. In this case, no other Interceptors’ receive_request_

service_contexts will be called whereas their send_other operations are called. The
completion_status is COMPLTED_NO, if a system exception is raised.

The receive_request interception point allows an Interceptor to query information
after all the information, including operation parameters, is available. This operation
executes in the same thread as the target invocation. The ORB guarantees that
receive_request is called once, either through arguments or through set_exception.
If it is called through set_exception, requesting the arguments will result in
NO_RESOURCES being raised with a standard minor code of 1. If a system exception is
raised, no other Interceptors’ receive_request operations are called, whereas their
send_exception interception points are called instead. A ForwardRequest exception
may also be raised. In this case, no other Interceptors’ receive_request operations are

R e q u e s t I n t e r c e p t o r s 4 6 7

13 0672318121 CH10 6/20/01 5:41 PM Page 467

called. Rather, their send_other interception points are called instead. If a system
exception has been raised, the completion_status is COMPLETED_NO.

The send_reply interception point allows an Interceptor to query information and
modify the reply service context after the target operation has been invoked and before
the reply is returned to the client. If a system exception is raised, no other Interceptors’
receive_reply operations are called whereas their send_exception interception
points are called instead. Even if a system exception is raised, the completion_status
will be COMLETED_YES.

The send_exception interception point is called when an exception occurs. It allows
an Interceptor to query the exception information and modifies the service context
before the exception is raised to the client. A system exception may be raised.
Successive Interceptors may receive calls on send_exception. The exception raised to
the client will be the last exception raised by an Interceptor, or the original exception
if no Interceptor change the exception. A ForwardRequest exception may also be
raised at this point. In this case, no other Interceptors’ send_exception operations are
called. Rather, their send_other interception points are called instead. When a system
exception has been raised, if the original exception is a system exception, the
completion_status of the new exception is the same as the original one. If the origi-
nal exception is a user exception, then the completion_status of the new exception is
COMPLETED_YES.

The send_other interception point allows an Interceptor to query the information
available when a request results in something other than a normal reply or an excep-
tion, for instance, a retry. At this interception point, a system exception may be raised.
If it happens, no other Interceptors’ send_other operations are called. The remaining
Interceptors will have their send_exception interception points called. A
ForwardRequest exceptionmay also be raised at this interception point. If an intercep-
tor raises this exception, successive Interceptors’ send_other operations are called
with the new information provided by the ForwardRequest exception. If a system
exception has been raised, the completion_status is COMPLETED_NO.

Server-Side Interception Point Flow
The receive_request_service_contexts is the starting interception point. It is called
on any given request/reply sequence. The send_reply, send_exception, and
send_other are the ending interception points. Only one of these is called on any given
request/reply sequence. The receive_request is the intermediate interception point. It
is called after receive_request_service_contexts and before an ending interception
point. On an exception, receive_request may not be called. If and only if
receive_request_service_context runs to completion is an ending interception
point called. For a successful invocation, the chain of interception points is in order of
receive_request_service_context, receive_request, and send_reply, that is, a
start point is followed by an intermediate point that is followed by an end point.

A ServerRequestInterceptor instance is registered with the ORB. When multiple
server-side Interceptors are registered, the ORB logically maintains an ordered list. The

4 6 8 C h a p t e r 1 0 : I n t e r c e p t o r s

13 0672318121 CH10 6/20/01 5:41 PM Page 468

Interceptor list is traversed in order on the receiving interception points and in reverse
order on sending interception points. The following scenarios assume there are three
Interceptors: A, B, and C. On the receive interception points they are called in order A,
B, C; on the send interception points, they are called in the order C, B, A.

Scenario 6: The target invocation returns successfully, but B.send_reply raises an
exception. The server-side point flow is shown in Figure 10.7. The flow for B and
C is receive_request_service_contexts followed by receive_request that is
followed by send_reply. Because send_reply of B raised an exception, the flow
for A is receive_request_service_contexts followed by receive_request that
is followed by send_exception.

R e q u e s t I n t e r c e p t o r s 4 6 9

B C

X

A

C
lient

S
ervant

r_req_serv_cxts

receive_request

r_req_serv_exts r_req_serv_exts

receive_request receive_request

send_replysend_exception send_reply
 throws exception X

Figure 10.7

The target invocation returns successfully, and B.send_reply raises an exception.

Scenario 7: B.receive_request raises an exception. As shown in Figure 10.8,
when B.receive_request raises an exception, C.receive_request will not be
called and all Interceptors have the end point send_exception.

Scenario 8: B.receive_request_service_contexts raises an exception. The
interception point flow is shown in Figure 10.9. Because B’s
receive_request_service_contexts did not complete, no end point of B was
called. The flow for A is receive_request_service_contexts followed by
send_exception; no intermediate points are called. The flow for C did not exist
because the exception occurred before any of C’s interception points were called.

13 0672318121 CH10 6/20/01 5:41 PM Page 469

Figure 10.8

B.receive_request throws exception X.

4 7 0 C h a p t e r 1 0 : I n t e r c e p t o r s

B C

X

X

X

A

C
lient

S
ervant

r_req_serv_cxts

receive_request

r_req_serv_exts r_req_serv_exts

receive_request
 throws exception X

send_exceptionsend_exception send_exception

B C

X

A
C

lient

S
ervant

r_req_serv_cxts r_req_serv_exts
 throws exception X

send_exception

Figure 10.9

B.receive_request_service_contexts throws an exception.

13 0672318121 CH10 6/20/01 5:41 PM Page 470

Scenario 9: C.receive_request throws exception X and B.send_exception
throws exception Y. The interception point flow is shown in Figure 10.10. When
the exception X is raised by C.receive_request, the flows for A, B and C are the
same: receive_request_service_contexts and receive_request, followed by
send_exception. But B is handled in exception X while A is handled in exception
Y because B.send_exception changed the exception.

R e q u e s t I n t e r c e p t o r s 4 7 1

B C

Y X

A

C
lient

S
ervant

r_req_serv_cxts

receive_request

r_req_serv_exts r_req_serv_exts

receive_request receive_request
throws exception X

send_exceptionsend_exception send_reply
 throws exception Y

Figure 10.10

C.receive_request throws exception X and B.send_exception throws exception Y.

Request Information
Each interception point is given an object of ClientRequestInfo or
ServerRequestInfo through which the Interceptor can access request information.
Client-side and server-side have different information: ClientRequestInfo and
ServerRequestInfo. They inherit from a common interface: RequestInfo which pro-
vides general request information that is common to both.

RequestInfo Interface is defined as follows:

local interface RequestInfo {
readonly attribute unsigned long request-id;
readonly attribute string operation;
readonly attribute Dynamic::ParameterList arguments;
readonly attribute Dynamic::ExceptionList exceptions;
readonly attribute Dynamic::ContextList contexts;

13 0672318121 CH10 6/20/01 5:41 PM Page 471

readonly attribute Dynamic::RequestContext operation_context;
readonly attribute any result;
readonly attribute boolean response_exepcted;
readonly attribute Messaging::SyncScope sync_scope;
readonly attribute ReplyStatus reply_status;
readonly attribute Object forward_reference;
any get_slot (in SlotId id) raises (InvalidSlot);
IOP::ServiceContext get_request_service_context(in IOP::ServiceId id);
IOP::ServiceContext get_reply_service_context(in IOP::ServiceId id);

};

All the attributes defined in this interface are read-only. This means that Interceptors
cannot change attribute values. Attributes and operations provide the general request
information: the request_id that uniquely identifies an active request/reply sequence,
a name of the operation and the arguments on the operation being invoked, contexts
being passed on the operation invocation, operation_context being sent on the
request and the result of the operation invocation. In addition, the Boolean attribute
response_expected indicates whether a response is expected. When it is false the
sync_scope defines how far the request is passed before the control is returned to the
client. It can have one of the following values:

Messaging::SYNC_NONE

Messaging::SYNC_WITH_TRANSPORT

Messaging::SYNC_WITH_SERVER

Messaging::SYNC_WITH_TARGET

The attribute reply_status gives the state of the result of the operation invocation. It
takes one of the following values:

PortableInterceptor::SUCCESSFUL

PortableInterceptor::SYSTEM_EXCEPTION

PortableInterceptor::USER_EXCEPTION

PortableInterceptor::LOCATION_FORWARD

PortableInterceptor::TRANSPORT_ENTRY

If the reply_status is LOCATION_FORWARD, the attribute will contain the object to
which the request will be forwarded.

The operation get_slot allows an Interceptor to access the data from the given slot in
the PortableInterceptor::Current. The operation get_request_service_context
returns a copy of the service context with the given ID that is associated with the
request. The operation get_reply_service_context returns a copy of the service con-
text with the given the ID that is associated with the reply.

4 7 2 C h a p t e r 1 0 : I n t e r c e p t o r s

13 0672318121 CH10 6/20/01 5:41 PM Page 472

ClientRequestInfo inherits from RequestInfo and provides more specific informa-
tion on client request which Client Request Interceptor can access and modify:

local interface ClientRequestInfo : RequestInfo {
readonly attribute Object target;
readonly attribute Object effective_target;
readonly attribute IOP::TaggedProfile effective_profile;
readonly attribute any received_exception;
readonly attribute CORBA::RepositoryId received_exception_id;
IOR::TaggedComponent get_effective_component(in IOP::ComponentId id);
IOP_N::TaggedComponentSeq get_effective_components(in IOP::Componentd id);
CORBA::Policy get_request_policy (in CORBA::PolicyType type);
void add_request_service_context(in IOP::ServiceContext service_context,

in boolean replace);
};

Not all attributes and operations on ClientRequestInfo are valid at all client-side
interception points. Table 10.1 shows which attributes and operations are valid to each
client-side interception point. If it is not valid, attempting to access it will throw a
BAD_INV_ORDER exception with minor code of 14.

Table 10.1 ClientRequestInfo Validity for Client-side Interception
Points

Send_ send_ receive_ Receive_ receive_

request poll reply exception other

Request_id Yes Yes Yes Yes Yes
Operation Yes Yes Yes Yes Yes
Arguments Yesa No Yes No No
Exceptions Yes No Yes Yes Yes
Contexts Yes No Yes Yes Yes
Operation_context Yes No Yes Yes Yes
Result No No Yes No No
Response_expected Yes Yes Yes Yes Yes
Sync_scope Yes No Yes Yes Yes
Reply_status No No Yes Yes Yes
Forward_reference No No No No Yesb

Get_slot Yes Yes Yes Yes Yes
Get_request_ Yes No Yes Yes Yes
Service_context

Get_reply_ No No Yes Yes Yes
Service_context

Target Yes Yes Yes Yes Yes
Effective_target Yes Yes Yes Yes Yes
Effective_profile Yes Yes Yes Yes Yes
Received_exception No No No Yes No
Receive_exception_id No No No Yes No

R e q u e s t I n t e r c e p t o r s 4 7 3

13 0672318121 CH10 6/20/01 5:41 PM Page 473

Get_effective_ Yes No Yes Yes Yes
Component

Get_effective_ Yes No Yes Yes Yes
Components

Get_request_policy Yes No Yes Yes Yes
Add_request Yes No No No No
Service_context
a. When ClientRequestInfo is passed to Send_request, there is an entry in the list for every argument,
but only in and inout arguments are available.
b. If the reply_status attribute is not LOCATION_FORWARD, accessing this attribute will throw
BAD_INV_ORDER with a minor code of 14.

The attribute target is an object which the client called to perform the operation. The
effective_target indicates the actual object on which the operation is invoked. If the
reply_status is LOCATION_FORWARD, then on the subsequent requests,
effective_target will contain the forwarded IOR while target remains unchanged.
The attribute effective_profile is the profile being used to send the request. The
attributes received_exception and received_exception_id provide the exception
and its ID returned to the client. The operation get_effective_component returns the
IOP::TaggedComponent with the given ID from the profile selected for the request and
the operation get_effective_components returns all the tagged components. With
operation get_request_policy, the given policy in effect for this operation is
obtained. Interceptors can add service contexts to the request using operation
add_request_service_context.

The interface ServerRequestInfo inherits from RequestInfo and provides more spe-
cific information on server request that a server-side request Interceptor can access and
modify:

local interface ServerRequestInfo : RequestInfo {
readonly attribute any sending_exception;
readonly attribute CORBA::OctetSeq object_id;
readonly attribute CORBA::OctetSeq adapter_id;
readonly attribute CORBA::RepositoryId target_most_derived_interface;
CORBA::Policy get_server_policy (in CORBA::PolicyType type);
void set_slot(in SlotId, in any data) raises (InvalidSlot);
boolean target_is_a (in CORBA::RepositoryId id);
void add_reply_service_context(in IOP::ServiceContext service_context,

in boolean replace);
};

4 7 4 C h a p t e r 1 0 : I n t e r c e p t o r s

Table 10.1 continued

Send_ send_ receive_ Receive_ receive_

request poll reply exception other

13 0672318121 CH10 6/20/01 5:41 PM Page 474

Not all attributes and operations on ClientRequestInfo are valid at all server-side
interception points. Table 10.2 shows which attributes and operations are valid to each
server-side interception point. If it is not valid, attempting to access it will throw a
BAD_INV_ORDER exception with minor code of 14.

Table 10.2 ServerRequestInfo Validity for Server-side Interception
Points

Receive_ receive_ send_ send_ send_
request_ request reply exception other
Service_
contexts

Request_id Yes Yes Yes Yes Yes
Operation Yes Yes Yes Yes Yes
Arguments No Yesa Yes Nob Nob

Exceptions No Yes Yes Yes Yes
Contexts No Yes Yes Yes Yes
Operation_context No Yes Yes No No
Result No No Yes No No
Response_expected Yes Yes Yes Yes Yes
Sync_scope Yes Yes Yes Yes Yes
Reply_status No No Yes Yes Yes
Forward_reference No No No No Yesb

Get_slot Yes Yes Yes Yes Yes
Get_request_ Yes No Yes Yes Yes
Service_context

Get_reply_ No No Yes Yes Yes
Service_context

Sending_exception No No No Yes No
Object_id No Yes Yes Yesc Yesc

Adapter_id No Yes Yes Yesc Yesc

Target_most_ No Yes Nod Nod Nod

Derived_interface

Get_server_policy Yes Yes Yes Yes Yes
Set_slot Yes Yes Yes Yes Yes
Target_is_a No Yes Nod Nod Nod

Add_reply_ Yes Yes Yes Yes Yes
Service_context
a. When ServerRequestInfo is passed to receive_request, there is an entry in the list for every argu-
ment, but only in and inout arguments are available.
b. If the reply_status attribute is not LOCATION_FORWARD, accessing this attribute will throw
BAD_INV_ORDER with a minor code of 14.
c. If the servant locator caused a location forward, or raised an exception, this attribute/operation may
not be available in this interception point. If it is not available, NO_RESOURCES with a standard minor
code of 1 will be raised.
d. When the necessary information requires access to the target object’s servant that may no longer
available to the ORB, the operation is not available in this interception point.

R e q u e s t I n t e r c e p t o r s 4 7 5

13 0672318121 CH10 6/20/01 5:41 PM Page 475

The attribute object_id and adaptor_id provide target object and object adapter
information. The attribute RepositoryId is the most derived interface of servant that
allows the method target_is_a to determine other target types. The attribute
sending_exception contains the exception in any type to be returned to the client. If
the exception is a user exception, which cannot be inserted into an any, the attribute
will be an any containing the system exception UNKNOWN with a standard minor
code of 1. The get_server_policy returns the policy in effect of a given policy type.
An Interceptor can set a slot in the PortableInterceptor::Current that is in the
scope of the request using the set_slot operation. With add_reply_service_context
operation, an Interceptor can add service contexts to the request.

Portable Interceptor Current
The object PortableInterceptor::Current (PICurrent) is a Current object used by
portable Interceptors to transfer thread context information to a request context if the
information from a client’s thread context is required at an Interceptor’s interception
points. Portable Interceptors are not required to use PICurrent. But if information from
a client’s thread is required at an Interceptor’s interception points, PICurrent can be
used to propagate that information. On the client side, this information includes, but is
not limited to, thread context information that will be propagated to the server via a ser-
vice context. On the server side, this information includes, but is not limited to, service
context information received from the client that will be propagated to the target’s
thread context. PICurrent allows portable service code to be written regardless of an
ORB’s threading model. The definition of the portable Interceptor Current interface is
as follows:

module PortableInterceptor{
typedef unsinged long SlotId;
exception InvalidSlot{};

local interface Current : CORBA::Current{
any get_slot(inSlotIf id) raises(InvalidSlot);
void set_slot (in SlotId id, in any data) raises (InvalidSlot);

};
};

It defines a table of slots which are used by each service to transfer their context data
between their context and request’s or reply’s service context. Via the operation
set_slot, a service sets data in a slot in the form of any. If the data already exists in
that slot, it is overwritten. If a slot that is called on has not been allocated, InvalidSlot
is raised. With the operation get_slot a service can get the slot data set in PICurrent.
If the given slot has not been set, an any contains a type code with a TCKind value of
tk_null. No value is returned. If the slot that is called on has not been allocated,
InvalidSlot is raised.

Each service which wishes to use PICurrent reserves a lot of slots at initialization time
and uses those slots during the processing of requests and replies.

4 7 6 C h a p t e r 1 0 : I n t e r c e p t o r s

13 0672318121 CH10 6/20/01 5:41 PM Page 476

PICurrent is obtained via a call to ORB::resolve_initial_references

(“PICurrent”).

IOR Interceptor
The IOR Interceptor allows services to add the information that describes the server’s
or object’s ORB service related capabilities to object references when the reference is
created. This information is included in tagged components in the profile within an
IOR.

local interface IORInterceptor : Interceptor {
void establish_components(in IORInfo info);

};

The ORB calls establish_components on all registered IOR Interceptors when it is
assembling the list of components that will be included in the profile or profiles of an
object reference. The object IORInfo is passed as an argument of the operation to estab-
lish these components. This operation is not allowed to throw exceptions.

The IORInfo interface provides the sever-side ORB service with access to the applica-
ble policies during IOR construction and the ability to add components:

local interface IORInfo {
CORBA::Policy get_effective_policy(in CORBA::PolicyType type);
void add_ior_component(in IOP::TaggedComponent a_component);
void add_ior_component_to_profile (

in IOP::TaggedComponenet a_component,
in IOP::ProfileId profile);

};

A call to the get_effective_policy operation will return the effective server-side pol-
icy of a particular type for an IOR being constructed. If the IOR being constructed is
for an object implemented using a POA, all Policy objects passed to the
PortableServer::POA::create_POA call that created that POA are accessible via
get_effective_policy. If a policy for a given type is not known to the ORB, this
operation will raise INV_POLICY exception. If the given policy type is known, but no
policy of that type is in effect, the operation will return a nil object reference.

The operation add_ior_component allows adding a tagged component to all profiles.
The operation add_ior_component_to_profile allows adding a tagged component
into a specified profile. Any number of components may exist with the same compo-
nent ID. If the given profile ID does not define a known profile or it is impossible to
add components to that profile, BAD_PARAM exception will be raised with a standard
minor code of 29.

PolicyFactory Interface
An IOR that represents an object is created by POA. The policies used to create a POA
affect the tagged components in the profile of the IOR. ORB services may introduce

P o l i c y F a c t o r y I n t e r f a c e 4 7 7

13 0672318121 CH10 6/20/01 5:41 PM Page 477

new polices related to their services. The interface PolicyFactory allows to create
these new policies:

module PortableInterceptor
{

local interface PolicyFactory{
CORBA::Policy create_policy(

in CORBA::PolicyType type,
in any value)

raises (CORBA::PolicyError);
};

};

The interface PolicyFactory has one operation, create_policy. During ORB initial-
ization, a portable service implementation registers an instance of the PolicyFactory
interface. When CORBA::ORB::create_policy is called for the PolicyType under
which the PolicyFactory is registered, a ORB calls the create_policy on a registered
PolicyFactory instance. The create_policy returns an instance of the appropriate
interface derived from CORBA::Policy of type any. If it cannot, it will raise an excep-
tion.

Registering Interceptors
Interceptors provide a means for ORB services to access ORB processing. They
become part of the ORB and are therefore required to register with the ORB. When
ORB_init returns an ORB, they will have been registered. Interceptors cannot be reg-
istered on an ORB after it has been returned by a call to ORB_init.

An Interceptor is registered by registering an associated ORBInitializer object which
implements the ORBInitializer interface. When an ORB is initializing, it calls regis-
tered ORBInitializer, passing it an ORBInitInfo object that is used to register its
Interceptor:

module PortableInterceptor {
local interface ORBInitializer {

void pre_init (in ORBInitInfo info);
void post_init(in ORBInitInfo info);

};
};

The operations pre_init and post_init are called during ORB initialization. If initial
services registered by an Interceptor are expected to be used by other interceptors, then
these initial services are registered at the point of pre_init via calls to
ORBInitInfo::register_initial_reference. If a service must resolve initial refer-
ences as part of its initialization, it can assume that all initial references are available
at the point of post_init.

ORBInitInfo object is passed that provides initialization attributes and operations by
which Interceptors can be registered. It is defined by ORBInitInfo interface:

4 7 8 C h a p t e r 1 0 : I n t e r c e p t o r s

13 0672318121 CH10 6/20/01 5:41 PM Page 478

module PortableInterceptor {
local interface ORBInitInfo {
typedef string ObjectId;
exception DuplicateName {

string name;
};

exception InvalidName{};
readonly attribute CORBA::StringSeq arguments;
readonly attribute string orb_id;
readonly attribute IOP::CodecFactory codec_factory;

void register_initial_reference (in ObjectId id, in Object obj)
raises (InvalidName);

void resolve_initial_references(in ObjectId id)
raises (InvalidName);

void add_client_request_interceptor (in ClientRequestInterceptor
➥interceptor)

raises(DuplicateName);
void add_server_request_interceptor (in ServerRequestInterceptor

➥interceptor)
raises(DuplicateName);

void add_ior_interceptor (in IORInterceptor interceptor)
raises(DuplicateName);

SlotId allocate_slot_id();
void register_policy_factory (in CORBA::PolicyType type,

in PolicyFactory policy_factory);
};

};

Only one Interceptor of a given name can be registered with the ORB for each
Interceptor type. An attempt to register a second Interceptor with the same name will
raise DuplicateName exception. An Interceptor may be anonymous, that is, having an
empty string as the name attribute. As any number of anonymous Interceptors can be
registered with the ORB, registering an anonymous Interceptor will not raise
DuplicateName exception.

In order to register an OBRInitializer, an operation register_orb_initializer is
provided. It resides in PortableInterceptor module:

module PortableInterceptor {
void register_orb_initializer (in ORBInitializer init);
};

Each service that implements Interceptors will provide an instance of ORBInitializer.
To use a service, an application first calls register_orb_initializer, passing in the
service’s ORBInitializer. After this is complete, the application will make an instan-
tiating ORB_init call. This instantiating ORB_init call calls each registers
ORBInitializer. The returned ORB will contain any Interceptors that the service
requires.

R e g i s t e r i n g I n t e r c e p t o r s 4 7 9

13 0672318121 CH10 6/20/01 5:41 PM Page 479

The register_orb_initializer is a global operation. An ORBInitializer registered
at a given point in time will be called by all instantiating ORB_init calls that occur after
that point in time.

In C++, the register_orb_initializer is defined in the PortableInterceptor name
space as

Namespace PortableInterceptor {
static void register_orb_initializer (
PortableInterceptor::ORBInitializer_ptr init);
};

In Java, as the global operation register_orb_initializer would break applet secu-
rity with respect to ORB, ORBInitializers are registered via Java ORB properties.
The new property names are of the form

org.omg.PortableInterceptor.ORBInitializerClass.Service

where Service is the string name of a class which implements
org.omg.PortableInterceptor.ORBInitializer (see the example in the following
section).

Request Interceptors are registered on a per-ORB basis. Virtual per-object Interceptors
can be achieved by querying the policies on each target from within the interception
points to determine whether they should do any work. Virtual per-POA Interceptors can
be achieved by instantiating each POA with a different ORB.

Writing and Using Portable Interceptors
To illustrate writing and using the Portable Interceptors, we consider a simple example
of server-side logging service. It observes every invocation call from a client and prints
the RepositoryID for the most derived interface of the called servant, the operation
name, the time of the incoming request, and the time when the reply is returned to the
client.

Writing a Server-Side Interceptor
To provide the above logging service, we write a server-side request Interceptor that
implements the ServerRequestInterceptor interface and extends LocalObject in
case of Java (for example, ORBIX, OpenORB), or
IT_CORBA::RefCountedLocalObject in case of C++ (for example, ORBIX). The log-
ging functionality is implemented by the two methods: receive_request() and
send_reply(). The other three methods are empty.

//C++
//in server_interceptor_impl.hh

#include <omg/PortableInterceptor.hh>
#include <orbix/corba.hh> //in case of using Orbix2000

4 8 0 C h a p t e r 1 0 : I n t e r c e p t o r s

13 0672318121 CH10 6/20/01 5:41 PM Page 480

class ServerInterceptorImpl :
public PortableInterceptor::ServerRequestInterceptor,
public IT_CORBA::RefCountedLocalObject

{
public:
ServerInterceptorImpl();

//declaration of the five methods defined by IDL
void
receive_request_service_contexts(
PortableInterceptor::ServerRequestInfo_ptr ri
) throw(CORBA::SystemException, PortableInterceptor::ForwardRequest));
//......

}

//in server_interceptor_impl.cc

#include <time.h>
#include <iostream.h>
#include “server_interceptor_impl.hh”

ServerInterceptorImpl::ServerInterceptorImpl()
{
}

char*
ServerInterceptorImpl::name(
) throw(CORBA::SystemException)
{

return CORBA::String_dup(“ServerInterceptorDemo”);
}

void
ServerInterceptorImpl::receive_request_service_contexts(

PortableInterceptor::ServerRequestInfo_ptr ri
) throw(CORBA::SystemException, PortableInterceptor::ForwardRequest)
{

// do nothing
}

void
ServerInterceptorImpl::receive_request(

PortableInterceptor::ServerRequestInfo_ptr ri
) throw (CORBA::SystemException, PortableInterceptor::ForwardRequest)
{

cout<<”Receives a request << endl;
cout<< “ for an object: “ << ri->target_most_derived_interface()<<endl;
cout <<” on operation: “ + ri->operation()<<endl;

W r i t i n g a n d U s i n g P o r t a b l e I n t e r c e p t o r s 4 8 1

13 0672318121 CH10 6/20/01 5:41 PM Page 481

time_t t_now=time(0);
cout <<” at time: “ << ctime(&t_now)<<endl;

}

void
ServerInterceptorImpl::send_reply(

PortableInterceptor::ServerRequestInfo_ptr ri
) throw(CORBA::SystemException)
{

cout<<”Sends a reply” << endl;
cout<< “ for an object: “ << ri->target_most_derived_interface()<<endl;
cout <<” on operation: “ + ri->operation()<<endl;
time_t t_now=time(0);
cout <<” at time: “ << ctime(&t_now)<<endl;

}

void
ServerInterceptorImpl::send_exception(

PortableInterceptor::ServerRequestInfo_ptr ri
) throw(CORBA::SystemException, PortableInterceptor::ForwardRequest)
{

// do nothing
}

void
ServerInterceptorImpl::send_other(

PortableInterceptor::ServerRequestInfo_ptr ri
) throw(CORBA::SystemException, PortableInterceptor::ForwardRequest)
{

// do nothing
}

//java
//in ServerInterceptorImpl.java

package Pure.InterceptorDemo;

import org.omg.CORBA.LocalObject;
import org.omg.PortableInterceptor.*;
import java.util.*;

public class ServerInterceptorImpl
extends LocalObject
implements ServerRequestInterceptor

{
public void receive_request_service_contexts(ServerRequestInfo ri)

throws ForwardRequest
{

4 8 2 C h a p t e r 1 0 : I n t e r c e p t o r s

13 0672318121 CH10 6/20/01 5:41 PM Page 482

//do nothing
}

public void receive_request(ServerRequestInfo ri)
throws ForwardRequest

{
System.out.println(“Receives a request \n”

+ “\t for an object: “
+ ri.target_most_derived_interface() +”\n”
+ “\t on operation: “ + ri.operation() + “\n”
+ “\t at time: “ + new Date(System.currentTimeMillis()) +”\n”);

}

public void send_reply(ServerRequestInfo ri)
{

System.out.println(“Sends a reply \n”
+ “\t for operation: “ + ri.operation() +”\n”
+ “\t at time: “ + new Date(System.currentTimeMillis()));

}

public void send_exception(ServerRequestInfo ri)
throws ForwardRequest

{
//do nothing
}

public void send_other(ServerRequestInfo ri)
throws ForwardRequest

{
//do nothing
}

public java.lang.String name()
{

return “ServerInterceptorDemo”;
}

}

Registering the Interceptor
To use the Interceptor, you need to register it with the ORB by writing
ORBInitializerImpl that implements the ORBInitializer interface. When an ORB is
initializing, it calls the registered ORBInitializerImpl object and passes it an
ORBInitInfo object that is used to register the Interceptor.

//C++
//in initializer_impl.hh

W r i t i n g a n d U s i n g P o r t a b l e I n t e r c e p t o r s 4 8 3

13 0672318121 CH10 6/20/01 5:41 PM Page 483

#include <omg/PortableInterceptor.hh>
#include <orbix/corba.hh> //in case of using Orbix2000

class ORBInitializerImpl :
public PortableInterceptor::ORBInitializer,
public IT_CORBA::RefCountedLocalObject

{
public:

ORBInitializerImpl();

void
pre_init(
PortableInterceptor::ORBInitInfo_ptr info
) throw (CORBA::SystemException);

void
post_init(
PortableInterceptor::ORBInitInfo_ptr info
) throw (CORBA::SystemException);

};

//in initializer_impl.cc

#include “initializer_impl.hh”
#include “server_interceptor_impl.hh”
#include <iostream.h>

ORBInitializerImpl::ORBInitializerImpl()
{
}

void
ORBInitializerImpl::pre_init(

PortableInterceptor::ORBInitInfo_ptr info)
{

try{
// Create and Register server interceptor

PortableInterceptor::ServerRequestInterceptor_var
➥server_interceptor

= new ServerInterceptorImpl();
info->add_server_request_interceptor(server_interceptor);

}
catch (DuplicateName &){
//
}

}

4 8 4 C h a p t e r 1 0 : I n t e r c e p t o r s

13 0672318121 CH10 6/20/01 5:41 PM Page 484

void
ORBInitializerImpl::post_init(

PortableInterceptor::ORBInitInfo_ptr info
)
{
// we do not need to do anything here
}

//java
//in ORBInitializerImpl.java

package Pure.InterceptorDemo;

import org.omg.CORBA.LocalObject;
import org.omg.PortableInterceptor.*;
import org.omg.PortableInterceptor.ORBInitInfoPackage.*;

public class ORBInitializerImpl extends LocalObject implements
➥ORBInitializer
{

public void pre_init(ORBInitInfo info)
{

ServerInterceptorImpl serverInterceptor = new
➥ServerInterceptorImpl();

try{
System.out.println(“Registering Interceptors”);
info.add_server_request_interceptor(serverInterceptor);

}
catch (DuplicateName dn) {

System.out.println(“DuplicateName “ + dn.getMessage());
}

}

public void post_init(ORBInitInfo info)
{
//we do not need to do anything here
}

}

Running an Application Using the Interceptor
The logging service can be used by a CORBA server program. Suppose you have a
very simple application defined by the IDL:

module MyApp
{

interface SimpleObject
{

W r i t i n g a n d U s i n g P o r t a b l e I n t e r c e p t o r s 4 8 5

13 0672318121 CH10 6/20/01 5:41 PM Page 485

void
print_message(in string message);
};

};

To use the logging service, you need to register the ORBInitializerImpl object. In
C++, registering ORBInitializerImpl object is done by calling register_orb_
initializer (PortableInterceptor::ORBInitializer_ptr init). In Java the
registration is done by setting a Java property. For example, when you run the server
program that is implemented by using OpenORB, type

Java -Dorg.omg.PortableInterceptor.ORBInitializerClass.
Pure.InterceptorDemo.ORBInitializerImpl
=Pure.InterceptorDemo.ORBInitializerImpl
Pure.InterceptorDemo.Server

When it is called by a client, it will print the following logging message:

Receives a request
for an object : IDL:MyApp/SimpleObject:1.0
on operation : print_message
at time: Wed May 23 10:54:07 BST 2001

Sends a reply
for operation: print_message
at time: Wed May 23 10:54:07 BST 2001

Without specifying this Java property, the application will work without using the log-
ging service, that is, no logging message is printed out.

Summary
ORB services such as security or transaction require hooks into the ORB in order to be
able to fulfill their goals. Portable Interceptors provide such hooks into the ORB, or
interception points within a request/reply sequence, through which ORB services can
intercept the normal flow of execution of the ORB. There are two classes of intercep-
tors: request Interceptors and IOR Interceptors. A request Interceptor allows intercept-
ing the flow of a request/reply sequence through the ORB at specific points so that the
services can query the request/reply information and transfer the service contexts
between clients and servers. The IOR Interceptor allows services to add the informa-
tion into tagged components in the profile within an IOR when the IOR is created. This
information describes the IOR represented server’s or object’s ORB service related
capabilities.

Each interception point is given an object ClientRequestInfo or ServerRequestInfo
through which an Interceptor can access request information. Service contexts of the
request are populated from information in a service’s Current object, from effective
policies, and from information in the tagged components on an Igor’s profile.
Interfaces Current, PolicyFactory, and IORInfo necessitate this population.

4 8 6 C h a p t e r 1 0 : I n t e r c e p t o r s

13 0672318121 CH10 6/20/01 5:41 PM Page 486

Objects by Value
The CORBA objects by value specification enables you to
define objects that can be passed by value when transmitted as a
parameter or return value of an operation. The value objects can
have an associated state and behavior, which is declared in IDL.

Pass by value semantics are most useful between tightly inte-
grated applications that are written in the same language.
Because sender and receiver must both provide an implemen-
tation of every transmitted value type, it is generally not prac-
tical to transmit value types across a language barrier.

This chapter provides a basic introduction to programming
with value types.

Overview of Value Semantics
A value type combines the characteristics of an IDL struct and
an IDL interface. A regular value can declare state members
(displaying struct-like character) and operations and attributes
(displaying interface-like character). For example, an
AccountVal type could be declared as a regular value, as
shown in Listing 11.1.

Listing 11.1 An AccountVal Type Declared as a
Regular Value
//IDL
valuetype AccountVal {

// state members
public long m_account_id;
public string m_owner;
private long m_balance;

// operations
boolean withdraw(in long amount);
void pay_in(in long amount);

};

C H A P T E R 1 1

O
b

je
cts b

y
 V

a
lu

e

14 0672318121 CH11 6/21/01 8:04 AM Page 487

The AccountVal value type could represent a cached database record in a server. The
state members of AccountVal—that is, m_account_id, m_owner, and m_balance—are
declared in a similar manner to struct members, except that each member declaration
must be preceded by one of the keywords public or private. The public or private
keyword directs a language mapping (for example, IDL to C++, or IDL to Java) to
make the mapped state member, respectively, either accessible or inaccessible to the
general application code. The operations of AccountVal are defined with the same syn-
tax as ordinary interface operations.

Regular values exhibit a mixture of behavior and state—both are explicitly declared in
IDL. Some values exhibit only behavior (operations and attributes) and other values
exhibit only state. The balance between state and behavior has an important bearing on
how a value is used because it affects inheritance (see “Summary of Inheritance Rules,”
later in this chapter) and the relative difficulty of implementing the value. It is helpful,
therefore, to distinguish between the following kinds of regular value:

• Pure state (character of a struct). For example, the following NameData value
type has only state members:
//IDL
valuetype NameData {

public string FirstName;
public string SecondName;

};

• Pure behavior (character of an IDL interface). For example, the following
UserAccount value type has only operations:
//IDL
valuetype UserAccount {

boolean logon(in NameData user, in string passwd);
void logoff();

};

• State and behavior. This is illustrated by the AccountVal value type from
Listing 11.1.

You could regard a value type either as an enhanced struct or an enhanced IDL inter-
face, depending on your point of view. The defining feature of a value type, however,
is that it can support pass by value semantics when passed as a parameter or return
value of an IDL operation. In this respect, a value type resembles a struct more than it
does an IDL interface. Pass by value semantics are discussed in the next section.

Pass by Value Semantics
If you look at the motivation for value types, you can see that they were introduced
partly to remedy the deficiencies of structs (which cannot support inheritance), and
partly to remedy the limitations of interfaces (which do not allow CORBA objects to
be passed by value). A regular value type lets you create value objects that can be
passed by value and combines characteristics from structs and interfaces.

4 8 8 C h a p t e r 1 1 : O b j e c t s b y Va l u e

14 0672318121 CH11 6/21/01 8:04 AM Page 488

TIP
A value object is not a CORBA object. Consequently, a value object is not associ-
ated with an ORB, is not associated with a POA, and does not have an associated
object ID. In fact, there is a much closer analogy between a value type and a struct
than between a value type and an IDL interface.

For an example of passing by value, consider the PassByValue IDL interface defined
in Listing 11.2, which declares a single operation, pass_account_val().

Listing 11.2 The PassByValue Interface That Enables AccountVal Value
Object to Be Passed by Value
//IDL
valuetype AccountVal; // Forward reference.

interface PassByValue {
void pass_account_val(in AccountVal val);

};

The pass_account_val() operation can pass a value object, val, of AccountVal value
type (as defined in Listing 11.1). Because it is declared as a value type, the val para-
meter is passed by value. Figure 11.1 shows what happens when a server A passes an
AccountVal value object to server B by invoking the pass_account_val() operation
on a PassByValue CORBA object.

O v e r v i e w o f Va l u e S e m a n t i c s 4 8 9

DB

servant

PassByValue

value

Account

value

Account

2. Instantiate

1. Invoke

Server BServer A

pass_account_val()

Figure 11.1

Passing an AccountVal value object by value.

14 0672318121 CH11 6/21/01 8:04 AM Page 489

In this example, the AccountVal value object might represent the cached value of a
record stored in a central database, also shown in Figure 11.1. The PassByValue inter-
face might prove useful if, for example, server A is shutting down for maintenance rea-
sons and server B is a standby process that is running in parallel to A. When server A
shuts down, it can pass all its currently active AccountVal value objects to server B by
calling pass_account_val() for each object. (Of course, in a real system, it would be
more efficient to pass a sequence of AccountVal value objects.)

When server A invokes pass_account_val() on the PassByValue CORBA object in
server B, the AccountVal value object is passed as follows:

1. When pass_account_val() is invoked, the ORB automatically marshals the
AccountVal state members and sends them in a request message to server B.

2. When the ORB receives the request message, it creates a new AccountVal
value object and initializes the value object with the state members read from
the request message. The val parameter of pass_account_val() is initialized
as a pointer to the local copy of the AccountVal value object.

The val parameter received by server B is, therefore, used strictly for accessing the
local copy of the AccountVal value object. Any operations invoked on val—for exam-
ple, pay_in()—are called only on the local copy of the object. Consequently, the
semantics of calling a value type operation are different from the semantics of calling
an interface operation. Table 11.1 highlights some of the semantic differences.

Table 11.1 Differences Between Value Type Operations and Interface
Operations

Value Type Operations Interface Operations

Always called locally Called locally or remotely
Invoked on a pointer that Invoked on an object reference that indirectly
points directly at a value propagates the invocation through an ORB
object
Called on a local copy of a Called on a unique, original copy of a CORBA
value object object

The preceding description of passing by value, as shown in Figure 11.1, omits some
important details. In particular, there are certain prerequisites for server B to be able to
unmarshal the AccountVal value object:

• The implementation code for the AccountVal value type must be available on
server B, as well as on server A

• The server B ORB must have the capability to create new instances of
AccountVal value objects in order to perform unmarshalling of AccountVal
value parameters

The capability to create new AccountVal value objects is satisfied by implementing
and registering value factories, as described in the sections “Implementing a Value

4 9 0 C h a p t e r 1 1 : O b j e c t s b y Va l u e

14 0672318121 CH11 6/21/01 8:04 AM Page 490

Factory” and “Registering the Value Factory,” later in this chapter. The following sec-
tion describes the role played by a value factory in unmarshalling its associated value
type.

Value Factories
Value factories are the key to supporting pass by value semantics. To have the capabil-
ity to unmarshal a particular value type, you must provide a local implementation of
both the value type and its associated value factory. On the other hand, if you have a
local value type that will not be passed between processes, there is no need to imple-
ment an accompanying value factory. The unmarshalling mechanism is required only
when dealing with a value type that is passed between applications—otherwise the
value type is used locally within the application.

To support the unmarshalling of value types, each ORB instance maintains its own
value factory table. The purpose of the value factory table is to enable the ORB to find
the appropriate value factory while it unmarshals a value type. Entries in the value fac-
tory table consist of a value type repository ID (for example, a string such as
IDL:AccountVal:1.0) and an associated pointer to a value factory. The ORB provides
operations for creating an entry in the table (registering a value factory) and removing
an entry from the table (unregistering a value factory).

Value type unmarshalling support has the following pre-requisites:

• A value type implementation must be provided locally.
• A corresponding value factory implementation must be provided locally.
• An instance of the value factory must be registered with the ORB.

For example, given the preceding conditions, Figure 11.2 shows the steps performed
by the ORB to unmarshal an AccountVal value object passed as a parameter to the
pass_account_val() operation.

An AccountVal value object is unmarshalled, as follows:

1. A remote application invokes the pass_account_val() operation on the
PassByValue CORBA object in server B, which causes a request message to be
sent to server B.

2. When the request message reaches the ORB object in server B, the ORB reads
the repository ID of the val parameter from the request message (in this exam-
ple, the string IDL:AccountVal:1.0). The ORB looks up the
IDL:AccountVal:1.0 repository ID in its value factory table to find the associ-
ated value factory. If no value factory can be found, the ORB raises the
CORBA::MARSHAL system exception.

3. The ORB calls the create_for_unmarshal() function (C++) or the
read_value() method (Java) on the value factory to create a new, uninitialized
AccountVal value object.

O v e r v i e w o f Va l u e S e m a n t i c s 4 9 1

14 0672318121 CH11 6/21/01 8:04 AM Page 491

Figure 11.2

Unmarshalling an AccountVal value object with the assistance of a value factory.

4. The ORB initializes the new AccountVal value object by reading the state
members from the request message (both public and private) and setting the
corresponding members of the value object.

5. The pass_account_val() upcall is made on the target object, with the val
parameter pointing at the local copy of the AccountVal value object.

It is, therefore, appropriate to use pass by value semantics when the client requires a
separate, local instance of the value object. If a client requires access to a remote copy
of a value object, pass by reference semantics are used instead (as discussed in the next
section).

Pass by Reference Semantics
There are circumstances in which it is more convenient for a value to support pass by
reference semantics—in other words, to behave more like a conventional CORBA
object. For example, although it is convenient for server-side applications to pass
around AccountVal values, which represent cached database records, it makes no sense
to expose this kind of entity to a client-side application because the client has no access
to the database. A better solution would be to expose the account record to a client
using a conventional IDL interface; for example, Account.

The object by value specification solves this problem by allowing a value type to
inherit from a single ordinary IDL interface, using the supports keyword. This
inheritance feature effectively allows you to create hybrid objects that combine the

4 9 2 C h a p t e r 1 1 : O b j e c t s b y Va l u e

servant

PassByValue

value
factory value

4. Initialize

1. pass_account_val()

5. Invoke
upcall

2. Look up
factory table

3. create_for_unmarshal()

Server B

ORB

POA

obj ID

IDL:Account:1.0

Value Factory Table creates

14 0672318121 CH11 6/21/01 8:04 AM Page 492

personality of a value type, which supports pass by value semantics, with the person-
ality of a CORBA object, which supports pass by reference semantics. For example,
Listing 11.3 shows how the AccountVal type can be refactored to take advantage of
this inheritance feature. This involves declaring a new IDL interface, Account, and
deriving the AccountVal value type from this interface using the supports keyword.

Listing 11.3 Definition of the Account Interface and the Refactored
Definition of the AccountVal Value Type
//IDL
interface Account {

// attributes
readonly attribute account_id;
readonly attribute owner;
readonly attribute balance;

// operations
boolean withdraw(in long amount);
void pay_in(in long amount);

};

valuetype AccountVal supports Account {
// state members
public long m_account_id;
public string m_owner;
private long m_balance;

};

In the refactored code, the IDL operations are moved from the AccountVal scope into
the Account scope so that clients of the Account interface can call these operations
remotely.

To pass a reference to an AccountVal object, you must simply refer to it as an Account
object in IDL. For example, Listing 11.4 shows the definition of a PassByReference
interface, which provides a single get_account() operation.

Listing 11.4 Definition of the PassByReference Interface That Defines an
Operation to Return a Reference to an AccountVal Object
//IDL
interface PassByReference {

Account get_account(in long account_id);
};

When the get_account() operation is invoked, it returns an ordinary Account object
reference, which provides the client with remote access to an AccountVal value. The
returned object reference supports only the operations and attributes defined in the
Account interface—it cannot be narrowed to the AccountVal type.

O v e r v i e w o f Va l u e S e m a n t i c s 4 9 3

14 0672318121 CH11 6/21/01 8:04 AM Page 493

To enable the AccountVal type to be passed by reference, it is not enough just to refac-
tor the IDL as shown in Listing 11.3. It is also necessary to modify the implementation
of the server so that an AccountVal object is initialized in the same way as a CORBA
object. Figure 11.3 shows a schematic example of an AccountVal object that is con-
figured to support pass by reference semantics. The following objects are shown in
Figure 11.3:

• PassByReference servant—provides an implementation of the
PassByReference interface that can pass AccountVal objects by reference.

• AccountVal value object—is both a value object and a servant at the same
time. It can be passed either by value or by reference.

• Value factory object—is provided to enable unmarshalling of AccountVal val-
ues. The value factory is not needed for pass by reference semantics, however.

4 9 4 C h a p t e r 1 1 : O b j e c t s b y Va l u e

servant

PassByValue

servant
value

value
factory

get_account()

Server B

ORB

POA

obj ID

obj ID

IDL:Account:1.0

Value Factory Table

Figure 11.3

Configuring a value to support pass by reference semantics.

When the AccountVal object is created, it can be activated with a POA instance, just
like any servant object. The activated value object then has a dual personality:

• CORBA object If the AccountVal object is passed by reference (as an
Account type), it is treated like a CORBA object and operation invocations are
mediated by the ORB.

• Value type If the AccountVal object is passed by value (as an AccountVal
type), it is treated like a value type and operations are invoked directly on the
value object.

14 0672318121 CH11 6/21/01 8:04 AM Page 494

If the AccountVal object is not activated, it displays only the personality of a value
type. The AccountVal object can then be passed by value, but not by reference.

Regular Value Type
There are several different kinds of value type. This section focuses on the regular
value type, which is used to define concrete value objects. Some of the other kinds of
value type—abstract value types and abstract interfaces—are primarily useful for con-
structing complex inheritance hierarchies. They are discussed in the section “Other
Kinds of Value Type,” later in this chapter.

The following subsections describe the IDL syntax and the language mappings for reg-
ular value types.

IDL Syntax
This section describes the IDL syntax for regular value types excluding the syntax for
value type inheritance, which is discussed in the section “Summary of Inheritance
Rules.” Listing 11.5 shows the basic IDL syntax for a regular value type.

Listing 11.5 Syntax of a Regular Value Type (Without Inheritance)
//IDL
valuetype ValueName [: OtherValueName] [supports IntfName] {

//--
// Syntax Specific to Valuetypes
//--
// public state members
public TypeSpec MemberList;
...
// private state members
private TypeSpec MemberList;
...
// initializers
factory InitializerName(in Param, in Param, ...);
...

//--
// Syntax Common to Interfaces and Valuetypes
//--
// operations
...
// attributes
...
// type declarations
...
// exception declarations
...
// constant declarations
...

};

R e g u l a r Va l u e Ty p e 4 9 5

14 0672318121 CH11 6/21/01 8:04 AM Page 495

The value type definition in Listing 11.5 defines a new value type, ValueName, which
can then be used as a type specifier in subsequent IDL definitions. The body of the
value type can contain zero or more elements, and all the element kinds familiar from
the IDL interface syntax are allowed within the scope of the value type. For example,
you can include ordinary operations, attributes, and type declarations. In addition, a
value type allows you to define the following kinds of element:

• State member (both public and private) Has the syntax of a struct mem-
ber prefixed by either of the keywords public or private.

• Initializer Has the syntax of an IDL operation in which the return type speci-
fier is replaced by the factory keyword and all the parameters are declared as
in parameters. This element is analogous to a constructor in C++ or Java.
When the initializer is mapped from IDL to a target language, the initializer
return type is declared to be the mapped ValueName type.

C++ Mapping
When a value type, ValueName, is mapped to C++, several C++ classes are generated
as described in Table 11.2.

Table 11.2 C++ Classes Generated from the ValueName Value Type

Generated C++ Class Description

ValueName An abstract base class that can reference instances
of the ValueName value type. A plain pointer,
ValueName*, can be used to point at value objects.
Every ValueName class inherits from the common
CORBA::ValueBase class.

ValueName_var A smart pointer for ValueName types that manages
reference counting in a similar manner to object
reference _var types (see Chapter 5, “Object
References”).

OBV_ValueName A partial implementation of the ValueName class,
which provides implementations for all public and
private value state members.

ValueName_init An abstract base class for the ValueName value fac-
tory. This class inherits from
CORBA::ValueFactoryBase and defines virtual
abstract member functions for each initializer
declared in IDL.
This class is generated only if the IDL definition of
ValueName declares at least one initializer.

The state members of a value type are mapped to accessor and modifier member func-
tions of the ValueName class. For example, Listing 11.6 shows how you can access the
public state members of the AccountVal value type previously defined in Listing 11.1.

4 9 6 C h a p t e r 1 1 : O b j e c t s b y Va l u e

14 0672318121 CH11 6/21/01 8:04 AM Page 496

Listing 11.6 Accessing the Public Members of AccountVal
//C++
AccountVal_var acc_valV = // get a pointer to an AccountVal object.

cout << “Account ID = “ << acc_valV->m_account_id() << endl;

// Note: In contrast to an attribute accessor, the following line
// does NOT cause a memory leak. The value returned by m_owner() is
// a const char * pointer to memory owned by the value object.
cout << “Owner = “ << acc_valV->m_owner() << endl;

Listing 11.7 shows how you can set the public state members of the AccountVal value
type.

Listing 11.7 Setting the Public Members of AccountVal
//C++
AccountVal_var acc_valV = // get a pointer to an AccountVal object.

acc_valV->m_account_id(1234);

// Note: The following call makes a copy of the “Mr. New Owner” string.
acc_valV->m_owner(“Mr. New Owner”);

char * new_ownerP = CORBA::string_dup(“Yet another owner”);
// Note: In the following call, acc_valV assumes ownership of
// the new_ownerP string.
acc_valV->m_owner(new_ownerP);

The C++ mapping of valuetype state members to C++ accessor and modifier func-
tions is based directly on the C++ mapping of union members. The C++ syntax and
semantics are the same in both cases.

To implement a value type, ValueName, in C++, you must inherit from the generated
OBV_ValueName class and you can optionally inherit from the
CORBA::DefaultValueRefCountBase class. Listing 11.8 shows the outline of a class,
ValueNameImpl, that implements a value type.

Listing 11.8 Outline of a Value Implementation Class, ValueNameImpl
//C++
class ValueNameImpl :

public virtual OBV_ValueName,
public virtual CORBA::DefaultValueRefCountBase

{
// Override virtual functions to implement IDL operations and attributes.
... // (not shown)

// Override the standard _copy_value() function.
virtual CORBA::ValueBase* _copy_value();

};

R e g u l a r Va l u e Ty p e 4 9 7

14 0672318121 CH11 6/21/01 8:04 AM Page 497

The OBV_ValueName class provides the implementation of state members and the
CORBA::DefaultValueRefCountBase mix-in class supplies the missing implementa-
tion of reference counting. The value type’s operations and attributes can be imple-
mented using the same syntax as for operations and attributes defined in ordinary IDL
interfaces.

The _copy_value() function, which returns a deep copy of the value object, is inher-
ited from the CORBA::ValueBase class. An implementation of the _copy_value() func-
tion must be provided.

Implementing a value type that inherits from an IDL interface is a special case that is
discussed in the section “Values That Inherit from an Interface,” later in this chapter.

The process of implementing a value factory, ValueNameFactory, depends on whether
the ValueName value type defines any initializers:

• If the ValueName value type does not declare any initializers, a value factory
implementation must be defined by inheriting directly from the
CORBA::ValueFactoryBase class. For example, the following code outlines the
declaration of a value factory implementation class, ValueNameFactory:
//C++
class ValueNameFactory :

public virtual CORBA::ValueFactoryBase
{

// Override the ‘create_for_unmarshal()’ virtual function.
virtual CORBA::ValueBase* create_for_unmarshal();

};

The CORBA::ValueFactoryBase class has built-in support for reference count-
ing, so there is no need to inherit a reference-counting mix-in class here.

• If the ValueName value type declares at least one initializer, a value factory
implementation is defined by inheriting from the generated ValueName_init
class. For example, the following code outlines the declaration of a value fac-
tory implementation class, ValueNameFactory:
//C++
class ValueNameFactory :

public virtual ValueName_init
{

// Override the ‘create_for_unmarshal()’ virtual function.
virtual CORBA::ValueBase* create_for_unmarshal();

// Override the initializer virtual functions
... // (not shown)

};

Implementing value factories is described in more detail in the later section
“Implementing the Value Factory.”

4 9 8 C h a p t e r 1 1 : O b j e c t s b y Va l u e

14 0672318121 CH11 6/21/01 8:04 AM Page 498

Value types provide support for reference counting that works in a similar way to ref-
erence counting for object references (see Chapter 5). Table 11.3 shows the functions
that are provided to manipulate the reference count of value objects.

Table 11.3 Value Type Reference Counting Functions

Function Name Description

ValueName::_add_ref() Increment the reference count (usually implemented
by a mix-in class)

ValueName::_remove_ref() Decrement the reference count (usually imple-
mented by a mix-in class)

ValueName::_refcount_value() Return the current reference count (usually imple-
mented by a mix-in class)

CORBA::add_ref(Increment the reference count
CORBA::ValueBase*

)

CORBA::remove_ref(Decrement the reference count
CORBA::ValueBase*

)

The functions in Table 11.3 are useful for manually manipulating reference counts. The
usual way of managing reference counts, however, is to assign ValueName pointers to
a ValueName_var smart pointer type. Reference counting (and, hence, memory man-
agement) of the value object is then taken care of automatically.

Java Mapping
When a value type, ValueName, is mapped to Java, several Java classes and interfaces
are generated as described in Table 11.4.

Table 11.4 Java Classes Generated from the ValueName Value Type

Generated Java Class Description

ValueName An abstract Java class that can reference instances of
the ValueName value type.

ValueNameHelper The Helper class that is associated with the ValueName
value type.

ValueNameHolder The Holder class that is associated with the ValueName
value type.

ValueNameValueFactory A Java interface for the ValueName value factory. This
class inherits from
org.omg.CORBA.portable.ValueFactory and defines
methods for each initializer declared in IDL.
This interface is generated only if the IDL definition of
ValueName declares at least one initializer.

R e g u l a r Va l u e T y p e 4 9 9

14 0672318121 CH11 6/21/01 8:04 AM Page 499

The public and private state members of a value type are mapped, respectively, to
public and private member variables of the ValueName Java interface. For example,
Listing 11.9 shows how to access the public state members of the AccountVal value
type previously defined in Listing 11.1.

Listing 11.9 Accessing the Public Members of AccountVal
//Java
AccountVal acc_val = // get a reference to an AccountVal object.
System.out.println(“Account ID = “ + acc_val.m_account_id);

System.out.println(“Owner = “ + acc_val.m_owner);

Listing 11.10 shows how to set the public state members of the AccountVal value type.

Listing 11.10 Setting the Public Members of AccountVal
//Java
AccountVal acc_val = // get a reference to an AccountVal object.
acc_val.m_account_id = (int) 1234;
acc_val.m_owner = “Mr. New Owner”;

The process of implementing a value type, ValueName, in Java requires you to extend
and implement the generated ValueName abstract Java class as shown in Listing 11.11.

Listing 11.11 Implementing a ValueName Value Type in Java
//Java
public class ValueNameImpl extends ValueName
{

// Implement all IDL operations and attributes.
... // (not shown)

}

Implementing a value type that inherits from an IDL interface is a special case that is
discussed in the section “Values that Inherit from an Interface,” later in this chapter.

The process of implementing a value factory, ValueNameFactoryImpl, in Java, depends
on whether the ValueName value type defines any initializers:

• If the ValueName value type does not declare any initializers, a value factory
implementation must be defined by implementing the
org.omg.CORBA.portable.ValueFactory class. For example, the following
code outlines the declaration of a value factory implementation class,
ValueNameFactoryImpl:
//Java
public class ValueNameFactoryImpl

implements org.omg.CORBA.portable.ValueFactory
{

// Override the factory’s ‘read_value()’ method.

5 0 0 C h a p t e r 1 1 : O b j e c t s b y Va l u e

14 0672318121 CH11 6/21/01 8:04 AM Page 500

public java.io.Serializable
read_value(org.omg.CORBA_2_3.portable.InputStream is) {

return is.read_value((java.io.Serializable) new ValueNameImpl());
}

}

You must override the ValueFactory’s read_value() method as shown.
• If the ValueName value type declares at least one initializer, a value factory

implementation is defined by implementing the generated
ValueNameValueFactory class. For example, the following code outlines the
declaration of a value factory implementation class, ValueNameFactoryImpl:
//Java
public class ValueNameFactoryImpl

implements ValueNameValueFactory
{

// Override the factory’s ‘read_value()’ method.
public java.io.Serializable
read_value(org.omg.CORBA_2_3.portable.InputStream is) {

return is.read_value((java.io.Serializable) new ValueNameImpl());
}

// Override the mapped initializer methods.
... // (not shown)

}

Implementing value factories is described in more detail in the next section.

Example of a Regular Value Implementation
The following subsections describe in detail how to implement a regular value type in
C++ and Java. The example is based on the Recycle Broker application of Chapter 3,
“A Sample CORBA System.” In the original definition of the RecycleBroker IDL
module (Listing 3.1), struct types—for example, CustomerDetails and
WasteItemDetails—are used to represent the state of objects. The Recycle Broker
code can be refactored to replace those structs with value types instead. This section
describes how to re-implement WasteItemDetails as a value type.

Example IDL
A partial listing of the RecycleBroker module refactored from Listing 3.1 is shown in
Listing 11.12. The Listing 11.12 shows only the IDL definitions relevant to the
WasteItemDetails value type.

Listing 11.12 Refactored IDL Definition of the WasteItemDetails Value
Type
//IDL
module RecycleBroker {

typedef float PriceType;

E x a m p l e o f a R e g u l a r Va l u e I m p l e m e n t a t i o n 5 0 1

14 0672318121 CH11 6/21/01 8:04 AM Page 501

enum WasteType {
BROWN_GLASS, GREEN_GLASS, CLEAR_GLASS, SCRAP_STEEL,
ALUMINIUM_CANS, PLASTIC_BOTTLES, WASTE_PAPER

};

// valuetype RecycleBroker::WasteItemDetails
valuetype WasteItemDetails {

// public members
public WasteType waste;
public long quantity;
public PriceType price_per_kilo;
factory create(in WasteType w, in long q, in PriceType p);

};

interface WasteItemAdmin {
WasteItemDetails get_item_details(in KeyType wasteitem_id);

};
};

The original WasteItemDetails struct from Listing 3.1 is refactored as a
WasteItemDetails value type by prefixing the public keyword to each of the state
members and adding a single value type initializer, create().

The WasteItemAdmin IDL interface is abbreviated here to show just the single opera-
tion, get_item_details(), that is needed for the example.

Implementing a Regular Value
The implementation of the WasteItemDetails value type follows the general pattern
described for the C++ mapping and the Java mapping in the preceding section “Regular
Value Type.”

In this example, the WasteItemDetails value type is implemented by the
RecycleBroker_WasteItemDetailsImpl class in C++ (Listing 11.13 and
Listing 11.14) and the RecycleBroker.WasteItemDetailsImpl class in Java
(Listing 11.15).

Listing 11.13 shows the C++ declaration of the RecycleBroker_

WasteItemDetailsImpl class.

Listing 11.13 C++ RecycleBroker_WasteItemDetailsImpl Class
Declaration
//C++
...
class RecycleBroker_WasteItemDetailsImpl :

public virtual OBV_RecycleBroker::WasteItemDetails,
public virtual CORBA::DefaultValueRefCountBase

{

5 0 2 C h a p t e r 1 1 : O b j e c t s b y Va l u e

Listing 11.12 Continued

14 0672318121 CH11 6/21/01 8:04 AM Page 502

public:
RecycleBroker_WasteItemDetailsImpl();
virtual ~RecycleBroker_WasteItemDetailsImpl();

RecycleBroker_WasteItemDetailsImpl(
RecycleBroker::WasteType _waste,
CORBA::Long _quantity,
RecycleBroker::PriceType _price_per_kilo

);

// Override the standard _copy_value() function.
virtual CORBA::ValueBase* _copy_value();

private:
... // (not shown)

};

In C++, the implementation inherits from OBV_RecycleBroker::WasteItemDetails,
which supplies the definitions of the state member accessor and modifier functions, and
CORBA::DefaultValueRefCountBase, which supplies the definitions of the reference
counting functions.

Because the WasteItemDetails value type does not define IDL operations or attrib-
utes, there is little additional functionality to define. The required _copy_value() func-
tion is declared and an additional constructor also, for convenience. Listing 11.14
shows the definition of these C++ functions.

Listing 11.14 C++ RecycleBroker_WasteItemDetailsImpl Class Definition
//C++
...
RecycleBroker_WasteItemDetailsImpl::RecycleBroker_WasteItemDetailsImpl() { }

RecycleBroker_WasteItemDetailsImpl::~RecycleBroker_WasteItemDetailsImpl() { }

RecycleBroker_WasteItemDetailsImpl::RecycleBroker_WasteItemDetailsImpl(
RecycleBroker::WasteType _waste,
CORBA::Long _quantity,
RecycleBroker::PriceType _price_per_kilo

)
{

waste(_waste);
quantity(_quantity);
price_per_kilo(_price_per_kilo);

}

// Override the standard _copy_value() function.
CORBA::ValueBase*

E x a m p l e o f a R e g u l a r Va l u e I m p l e m e n t a t i o n 5 0 3

Listing 11.13 Continued

14 0672318121 CH11 6/21/01 8:04 AM Page 503

RecycleBroker_WasteItemDetailsImpl::_copy_value()
{

return new RecycleBroker_WasteItemDetailsImpl(
waste(),
quantity(),
price_per_kilo()

);
}

The extra constructor enables all the state members to be initialized at construction
time. Recall that for complex data types, a state modifier function makes a deep copy
of its argument. The _copy_value() function is implemented to return a deep copy of
the WasteItemDetails value type.

Listing 11.15 shows the Java definition of the RecycleBroker.WasteItemDetailsImpl
class.

Listing 11.15 Java WasteItemDetailsImpl Class Definition
//Java
package RecycleBroker;

public class WasteItemDetailsImpl
extends WasteItemDetails

{
WasteItemDetailsImpl () { }

}

The definition of WasteItemDetailsImpl is trivial because the state members, waste,
quantity, and price_per_kilo, are already defined in the IDL-compiler generated
abstract class WasteItemDetails. You are not required to implement a copy method for
value objects in Java, but you could, optionally, specify that WasteItemDetailsImpl
implements the java.lang.Cloneable interface and implement the clone() method.

Implementing a Value Factory
The implementation of the value factory for WasteItemDetails follows the pattern for
a value type that declares at least one initializer, as described in the preceding section
“Regular Value Types.” On account of the initializer’s presence in the value type dec-
laration, the IDL compiler generates an extra definition, a
RecycleBroker::WasteItemDetails_init class in C++ and a
RecycleBroker.WasteItemDetailsValueFactory interface in Java, which serves as
the base for the value factory implementation.

In this example, the value factory is implemented by the
RecycleBroker_WasteItemDetailsFactory class in C++ (Listing 11.16 and
Listing 11.17) and the RecycleBroker.WasteItemDetailsFactoryImpl class in Java
(Listing 11.18).

5 0 4 C h a p t e r 1 1 : O b j e c t s b y Va l u e

Listing 11.14 Continued

14 0672318121 CH11 6/21/01 8:04 AM Page 504

Listing 11.16 shows the C++ declaration of the RecycleBroker_

WasteItemDetailsFactory class.

Listing 11.16 C++ RecycleBroker_WasteItemDetailsFactory Class
Declaration
//C++
class RecycleBroker_WasteItemDetailsFactory :

public virtual RecycleBroker::WasteItemDetails_init {
public:

virtual CORBA::ValueBase* create_for_unmarshal();

virtual RecycleBroker::WasteItemDetails*
create(

RecycleBroker::WasteType w,
CORBA::Long q,
RecycleBroker::PriceType p

);
};

In C++, the factory implementation inherits from
RecycleBroker::WasteItemDetails_init, which includes pure virtual function dec-
larations corresponding to each of the initializers declared in IDL.

The create_for_unmarshal() function must be implemented to enable a transmitted
WasteItemDetails value object to be unmarshalled at the receiving end. The create()
function is the C++ mapping of the create() initializer declared in IDL. Listing 11.17
shows the definition of these C++ functions.

Listing 11.17 C++ RecycleBroker_WasteItemDetailsFactory Class
Definition
//C++
CORBA::ValueBase*
RecycleBroker_WasteItemDetailsFactory::create_for_unmarshal()
{

return new RecycleBroker_WasteItemDetailsImpl();
}

RecycleBroker::WasteItemDetails*
RecycleBroker_WasteItemDetailsFactory::create(

RecycleBroker::WasteType w,
CORBA::Long q,
RecycleBroker::PriceType p

)
{

return new RecycleBroker_WasteItemDetailsImpl(w, q, p);
}

E x a m p l e o f a R e g u l a r Va l u e I m p l e m e n t a t i o n 5 0 5

14 0672318121 CH11 6/21/01 8:04 AM Page 505

In Java, the factory class implements the WasteItemDetailsValueFactory Java inter-
face, which includes method declarations corresponding to each of the initializers
declared in IDL. The definition of the WasteItemDetailsValueFactory class is given
in Listing 11.18.

Listing 11.18 Java WasteItemDetailsFactoryImpl Class Definition
//Java
package RecycleBroker;

public class WasteItemDetailsFactoryImpl
implements WasteItemDetailsValueFactory

{
public java.io.Serializable read_value(

org.omg.CORBA_2_3.portable.InputStream is
)
{

return is.read_value(
(java.io.Serializable)new WasteItemDetailsImpl()

);
}

public WasteItemDetails create(RecycleBroker.WasteType w, int q, float p) {
return new WasteItemDetailsImpl(w,q,p);

}
}

The read_value() method must be implemented to enable a transmitted
WasteItemDetails value object to be unmarshalled at the receiving end. The create()
method is the Java mapping of the create() initializer declared in IDL.

Registering the Value Factory
To enable an application (client or server) to receive WasteItemDetails value objects
as parameters or return values, it is necessary to register the value factory with your
ORB instance beforehand. In the case of an application with multiple ORB instances,
it would be necessary to register the value factory with each ORB. Listing 11.19 and
Listing 11.20 show how to register a value factory with an ORB instance in C++ and
Java respectively.

Listing 11.19 C++ Registration of the
RecycleBroker_WasteItemDetailsFactory Value Factory
//C++
...
// global_orb
CORBA::ORB_var global_orb = CORBA::ORB::_nil();

int main(int argc, char **argv)
{

5 0 6 C h a p t e r 1 1 : O b j e c t s b y Va l u e

14 0672318121 CH11 6/21/01 8:04 AM Page 506

...
try
{
...

// Initialise the ORB.
global_orb = CORBA::ORB_init(argc, argv);

// Register valuetype factories:
CORBA::ValueFactoryBase_var vf

= new RecycleBroker_WasteItemDetailsFactory();
CORBA::String_var repIdV = RecycleBroker::_tc_WasteItemDetails->id();
orb->register_value_factory(

repIdV.in(),
vf.in()

);
...

}
catch (CORBA::Exception) {

// Deal with exceptions...
}

}

Listing 11.20 Java Registration of the WasteItemDetailsFactoryImpl
Value Factory
//Java
...
public class client
{

// global_orb
public static org.omg.CORBA_2_3.ORB global_orb = null;

public static void main (String args[])
{

try
{

...
global_orb = (org.omg.CORBA_2_3.ORB) ORB.init(args, null);

// Register valuetype factories:
global_orb.register_value_factory(

Pure.RecycleBroker.WasteItemDetailsHelper.id(),
new Pure.RecycleBroker.WasteItemDetailsFactoryImpl()

);
...

}
catch (org.omg.CORBA.SystemException ex) {

E x a m p l e o f a R e g u l a r Va l u e I m p l e m e n t a t i o n 5 0 7

Listing 11.19 Continued

14 0672318121 CH11 6/21/01 8:04 AM Page 507

// Handle exceptions here...
}

...
}
...

}

In C++, registration is performed by calling the register_value_factory() opera-
tion, passing the WasteItemDetails repository ID as the first parameter and a pointer
to a new value factory instance.

CAUTION
In C++, assigning the newly created value factory object to a _var object, vf, is
essential to avoid leaking memory in Listing 11.19.

In Java, registration is performed by calling the register_value_factory() opera-
tion, passing the WasteItemDetails repository ID as the first parameter and a refer-
ence to a new value factory instance. Because the mapped Java
register_value_factory() method is declared by the org.omg.CORBA_2_3.ORB sub-
type, it is necessary, first of all, to cast the ORB instance to the
org.omg.CORBA_2_3.ORB type.

Passing the Value as a Return Value
The WasteItemAdmin::get_item_details() operation provides a demonstration of
how to pass a value object as the return value of an IDL operation. The implementa-
tion of get_item_details() is given in Listing 11.21 and Listing 11.22 for C++ and
Java respectively.

Listing 11.21 C++ Implementation of the
WasteItemAdmin::get_item_details() Operation
//C++
RecycleBroker::WasteItemDetails*
RecycleBroker_WasteItemAdminImpl::get_item_details(

RecycleBroker::KeyType wasteitem_id
) throws (CORBA::SystemException)
{

// TEST IMPLEMENTATION - return a sample value:
RecycleBroker::WasteItemDetails* _result

= new RecycleBroker_WasteItemDetailsImpl();
_result->waste(RecycleBroker::BROWN_GLASS);
_result->quantity(1000);
_result->price_per_kilo(2.4f);

return _result;
}

5 0 8 C h a p t e r 1 1 : O b j e c t s b y Va l u e

Listing 11.20 Continued

14 0672318121 CH11 6/21/01 8:04 AM Page 508

Listing 11.22 Java Implementation of the
WasteItemAdmin::get_item_details() Operation
//Java
package RecycleBroker;

public interface WasteItemAdminImpl
extends WasteItemAdminPOA

{
Pure.RecycleBroker.WasteItemDetails get_item_details(

int wasteitem_id
)
{

// TEST IMPLEMENTATION - return a sample value:
WasteItemDetails _result = new WasteItemDetailsImpl();
_result.waste = WasteType.BROWN_GLASS;
_result.quantity = (int)1000;
_result.price_per_kilo = (float)2.4;

return _result;
}

}

In C++, a value object is created and a pointer to the object is returned. In Java, a value
object is created and a reference to the object is returned. This resembles the way that
an ordinary complex type, such as a struct, is returned, but constrasts markedly with
the way that a CORBA object is returned. In this context, therefore, a value object is
more like a struct than a CORBA object.

Other Kinds of Value Type
In addition to regular value types, which can correspond directly to concrete imple-
mentations, the value type specification defines abstract value and abstract

interface types, which can be used only as base types in the context of an inheritance
hierarchy.

Value types support a relatively rich syntax for defining inheritance relationships. This
section describes the different kinds of value type that result from applying the various
inheritance rules and, at the end, a summary of the inheritance rules is presented.

Values That Inherit from a Value
A regular value can inherit from another regular value subject to a limit of single inher-
itance. This brings a valuable element of flexibility to defining complex types.
Consider, for example, the original definition of the RecycleBroker IDL module from
Listing 3.1 where WasteItemDetails and WasteItemDetailsFull are both declared as
structs. Although these structs are clearly related to each other, in the sense that
WasteItemDetailsFull extends WasteItemDetails, the only way of expressing the
relationship prior to the introduction of value types was to declare a WasteItemDetails
member within the scope of WasteItemDetailsFull.

O t h e r K i n d s o f Va l u e Ty p e 5 0 9

14 0672318121 CH11 6/21/01 8:04 AM Page 509

The relationship between WasteItemDetails and WasteItemDetailsFull can, how-
ever, be expressed more elegantly using inheritance after the RecycleBroker module
has been refactored using value types, as shown in Listing 11.23.

Listing 11.23 Refactored Definition of the WasteItemDetailsFull Value
Type Using Inheritance
//IDL
module RecycleBroker {

typedef long KeyType;
typedef float PriceType;

enum WasteType {
BROWN_GLASS, GREEN_GLASS, CLEAR_GLASS, SCRAP_STEEL,
ALUMINIUM_CANS, PLASTIC_BOTTLES, WASTE_PAPER

};

valuetype WasteItemDetails {
// public members
public WasteType waste;
public long quantity;
public PriceType price_per_kilo;
// initializer
factory create(in WasteType w, in long q, in PriceType p);

};

valuetype WasteItemDetailsFull : WasteItemDetails {
// private members
private KeyType branch_id;
private KeyType customer_id;
private KeyType wasteitem_id;
// operations
void reassign_branch(in KeyType new_branch_id);
void delete_record();
// initializer
factory create(in KeyType branch_id, in KeyType customer_id);

};

interface WasteItemAdmin {
WasteItemDetails get_item_details(in KeyType wasteitem_id);

};
};

In Listing 11.23, the WasteItemDetailsFull value type inherits state members, oper-
ations, attributes, exceptions, and type definitions from WasteItemDetails.

5 1 0 C h a p t e r 1 1 : O b j e c t s b y Va l u e

14 0672318121 CH11 6/21/01 8:04 AM Page 510

NOTE
Initializers are not inherited between value types. Hence, in Listing 11.23, there is
no identifier clash between the create() initializer defined within the
WasteItemDetails scope and the create() initializer defined within the
WasteItemDetailsFull scope.

The WasteItemAdmin::get_item_details() operation, which returns
WasteItemDetails, supports a kind of polymorphism in the sense that either a
WasteItemDetails or a WasteItemDetailsFull value object can be returned from the
get_item_details() operation. When a value object is transmitted as a return value
from get_item_details(), the receiving application reads the object’s repository ID
from the incoming reply message to identify the value type. The ORB then looks up
the value factory table to find the appropriate kind of factory, for either
WasteItemDetails value objects or WasteItemDetailsFull value objects. If the
matching value factory cannot be found, the ORB normally throws a CORBA::MARSHAL
system exception.

Value types also support a special form of inheritance that allows unmarshalling to suc-
ceed even if the matching value factory cannot be found. Listing 11.24 illustrates the
syntax of truncatable inheritance in the definition of the WasteItemDetailsFull value
type.

Listing 11.24 The WasteItemDetailsFull Value Type Inherits
“Truncatably” from WasteItemDetails
//IDL
module RecycleBroker {

...
valuetype WasteItemDetails {

...
};

valuetype WasteItemDetailsFull : truncatable WasteItemDetails {
...

};

interface WasteItemAdmin {
WasteItemDetails get_item_details(in KeyType wasteitem_id);

};
};

When a truncatable WasteItemDetailsFull value object is transmitted as the return
value from get_item_details(), the unmarshalling can now succeed in the receiving
application even if just the WasteItemDetails value factory is registered. The ORB
initially looks for the value factory for WasteItemDetailsFull value objects. If that
factory is not found, the ORB then looks for the value factory for WasteItemDetails

O t h e r K i n d s o f Va l u e Ty p e 5 1 1

14 0672318121 CH11 6/21/01 8:04 AM Page 511

value objects instead and discards the state members—branch_id, customer_id, and
wasteitem_id—specific to WasteItemDetailsFull.

CAUTION
Use truncatability with some discretion. Unless your application is designed specifi-
cally with truncatability in mind, truncatable inheritance can lead to bugs in which
value objects are unexpectedly and erroneously truncated.

Using value type inheritance has an impact on the inheritance hierarchy of implemen-
tation classes, which is discussed briefly in the following two subsections, for C++ and
Java, respectively.

C++ Mapping
Listing 11.25 shows the effect that value type inheritance has on the C++ inheritance
hierarchy when a regular value, WasteItemDetails, inherits from another regular
value, WasteItemDetailsFull.

Listing 11.25 C++ Inheritance Hierarchy for a Value That Inherits from
Another Value
//C++
class RecycleBroker_WasteItemDetailsImpl :

public virtual OBV_RecycleBroker::WasteItemDetails,
public virtual CORBA::DefaultValueRefCountBase

{
public:

...
};

class RecycleBroker_WasteItemDetailsFullImpl :
public virtual OBV_RecycleBroker::WasteItemDetailsFull,
public virtual RecycleBroker_WasteItemDetailsImpl

{
public:

...
};

The base value type, WasteItemDetails, is implemented as normal. The derived value
type, WasteItemDetailsFull, is conveniently implemented by letting the implementa-
tion class inherit from the WasteItemDetails implementation class. This ensures that
existing operation and attribute implementations are inherited by the derived imple-
mentation.

Java Mapping
Listing 11.26 shows the effect that value type inheritance has on the Java inheritance
hierarchy when a regular value, WasteItemDetails, inherits from another regular
value, WasteItemDetailsFull.

5 1 2 C h a p t e r 1 1 : O b j e c t s b y Va l u e

14 0672318121 CH11 6/21/01 8:04 AM Page 512

Listing 11.26 Java Inheritance Hierarchy for a Value That Inherits from
Another Value
//Java
package RecycleBroker;

public class WasteItemDetailsImpl
extends WasteItemDetails

{
...

}

public class WasteItemDetailsFullImpl
extends WasteItemDetailsFull

{
...

}

Both the base value type, WasteItemDetails, and the derived value type,
WasteItemDetailsFull, are implemented as normal. The disadvantage of this arrange-
ment is that the derived implementation class does not inherit existing operations and
attributes from the WasteItemDetails implementation class. This implies that existing
operation and attribute implementations must be redefined by the derived
implementation.

Values That Inherit from an Interface
A regular value can inherit from an ordinary IDL interface subject to a limit of single
inheritance. This feature is the key to enabling pass by reference semantics for value
types, as discussed in the earlier section “Pass by Reference Semantics.” An instance
of a regular value type that inherits from an ordinary IDL interface can be both a
CORBA object and a value object.

Listing 11.27 shows an extract from the RecycleBroker IDL module that is refactored
to make the WasteItemDetailsFull value type support the WasteItem IDL interface.

Listing 11.27 Refactoring the WasteItemDetailsFull Value Type to
Support the IDL Interface, WasteItem
//IDL
module RecycleBroker {

typedef long KeyType;
typedef float PriceType;

enum WasteType {
BROWN_GLASS, GREEN_GLASS, CLEAR_GLASS, SCRAP_STEEL,
ALUMINIUM_CANS, PLASTIC_BOTTLES, WASTE_PAPER

};

valuetype WasteItemDetails;

O t h e r K i n d s o f Va l u e Ty p e 5 1 3

14 0672318121 CH11 6/21/01 8:04 AM Page 513

interface WasteItem {
WasteType get_waste();
void set_waste(in WasteType w);
long get_quantity();
void set_quantity(in long q);
PriceType get_price_per_kilo();
void set_price_per_kilo(in PriceType pt);

KeyType get_branch_id();
KeyType get_customer_id();
KeyType get_wasteitem_id();

// operations
WasteItemDetails get_details();

};

valuetype WasteItemDetails {
// public members
public WasteType waste;
public long quantity;
public PriceType price_per_kilo;

};

valuetype WasteItemDetailsFull
: WasteItemDetails
supports WasteItem

{
// private members
private KeyType branch_id;
private KeyType customer_id;
private KeyType wasteitem_id;
// operations
void reassign_branch(in KeyType new_branch_id);
void delete_record();
// initializers
factory create(in KeyType branch_id, in KeyType customer_id);

};

interface WasteItemAdmin {
WasteItemDetails get_item_details(in KeyType wasteitem_id);
WasteItem get_waste_item(in KeyType wasteitem_id);

};
};

Because WasteItemDetailsFull supports the WasteItem interface, it can now be
passed either as a value type or as an object reference, depending on how it is declared
in IDL. For example, when a WasteItemDetailsFull object is returned from the

5 1 4 C h a p t e r 1 1 : O b j e c t s b y Va l u e

Listing 11.27 Continued

14 0672318121 CH11 6/21/01 8:04 AM Page 514

WasteItemAdmin::get_item_details() operation, it is passed by value. On the other
hand, when a WasteItemDetailsFull object is returned from the
WasteItemAdmin::get_waste_item() operation it is passed by reference (as a
WasteItem object reference).

If you need the flexibility to choose between pass by value and pass by reference
semantics at runtime, you should consider using abstract interfaces—see the later sec-
tion, “Abstract Interfaces.”

Making value types inherit from an IDL interface has an impact on the inheritance hier-
archy of implementation classes, which is discussed briefly in the following two sub-
sections, for C++ and Java, respectively.

C++ Mapping
Listing 11.28 shows the inheritance hierarchy of C++ implementation classes that
result when a regular value, WasteItemDetailsFull, inherits from an ordinary IDL
interface, WasteItem.

Listing 11.28 C++ Inheritance Hierarchy for a Value That Inherits from
an Ordinary IDL Interface
//C++
class RecycleBroker_WasteItemDetailsImpl :

public virtual OBV_RecycleBroker::WasteItemDetails,
public virtual CORBA::DefaultValueRefCountBase

{
public:

...
};

class RecycleBroker_WasteItemDetailsFullImpl :
public virtual RecycleBroker_WasteItemDetailsImpl,
public virtual OBV_RecycleBroker::WasteItemDetailsFull,
public virtual PortableServer::ValueRefCountBase,
public virtual POA_RecycleBroker::WasteItem

{
public:

...
};

To enable the WasteItemDetailsFullImpl class to be used as a servant class and to
support pass by reference semantics, the WasteItemDetailsFullImpl class must
inherit from the following:

• POA_RecycleBroker::WasteItem This is the usual POA class generated for
the WasteItem interface.

• PortableServer::ValueRefCountBase This is a special implementation of a
reference counting mix-in class that must appear as a base class when a value
type implements an IDL interface using the inheritance approach.

O t h e r K i n d s o f Va l u e Ty p e 5 1 5

14 0672318121 CH11 6/21/01 8:04 AM Page 515

Java Mapping
To implement the inheritance hierarchy built using WasteItem, WasteItemDetails,
and WasteItemDetailsFull from Listing 11.27, you can define the Java implementa-
tion classes as defined in Listing 11.29.

Listing 11.29 Java Inheritance Hierarchy for a Value That Inherits from
Another Value
//Java
package RecycleBroker;

public class WasteItemDetailsImpl
extends WasteItemDetails

{
...

}

public class WasteItemDetailsFullImpl
extends WasteItemDetailsFull
implements WasteItemOperations

{
...

}

You immediately run into a problem, however, when you consider how to make the
WasteItemDetailsFullImpl class support the WasteItem interface because the sole
inheritance slot is filled by the WasteItemDetailsFull class. The solution is to imple-
ment the WasteItem interface using the Tie approach—hence the
WasteItemDetailsFull class is defined to implement the WasteItemOperations inter-
face. An instance of a WasteItem object can now be created and activated as shown in
Listing 11.30.

Listing 11.30 Java Creating a WasteItem Instance Using the Tie
Approach
//Java
package RecycleBroker;

// Create a value object and its associated TIE object.
WasteItemDetailsFullImpl value_object = new WasteItemDetailsFullImpl();
WasteItemPOATie the_tie = new WasteItemPOATie(value_object, my_poa);

// Activate the TIE object (servant object).
byte[] oid = my_poa.activate_object(the_tie);
org.omg.CORBA.Object obj = obj = my_poa.id_to_reference(oid);
...

5 1 6 C h a p t e r 1 1 : O b j e c t s b y Va l u e

14 0672318121 CH11 6/21/01 8:04 AM Page 516

Abstract Values
An abstract value type, which is introduced by the abstract keyword in IDL, restricts
the syntax and semantics of a value type as follows:

• No state members can be declared.
• No initializers can be declared.
• An abstract value type cannot be directly implemented in the target language.

Only concrete value types that derive from the abstract value can be imple-
mented.

The effect of the syntax restrictions is shown in Listing 11.31, which summarizes the
IDL syntax for abstract value type. The IDL inheritance syntax is described later, in the
section “Summary of Inheritance Rules.”

Listing 11.31 Syntax of an Abstract Value Type
//IDL
abstract valuetype AbstractValueName

[: OtherAbstractValue, OtherAbstractValue ...]
[supports AbstractIntf, AbstractIntf ...]

{
// NO public state members
// NO private state members
// NO initializers

// operations
...
// attributes
...
// type declarations
...
// exception declarations
...
// constant declarations
...

};

Abstract value types are typically used to define bundles of operation signatures, which
are then inherited by regular value types. Forward declarations of abstract value types
are also permitted, for example:

//IDL
abstract valuetype AbstractValueName;

Abstract Interfaces
An abstract interface is useful in circumstances where you need to pass either an inter-
face or a value type, but you cannot know which until the application is running.
Semantically, an abstract interface is similar to a special kind of union or any type in

O t h e r K i n d s o f Va l u e Ty p e 5 1 7

14 0672318121 CH11 6/21/01 8:04 AM Page 517

that it allows alternative types to be passed. The advantage of using an abstract inter-
face, however, is that it offers greater syntactical convenience.

An abstract interface type, which is introduced by the abstract keyword in IDL, can
contain the same kinds of declaration as an ordinary IDL interface. The IDL syntax
(apart from inheritance) is shown in Listing 11.32.

Listing 11.32 Syntax of an Abstract Interface Type
//IDL
abstract interface AbstractIntfName

[: OtherAbstractIntf, OtherAbstractIntf ...]
{

// operations
...
// attributes
...
// type declarations
...
// exception declarations
...
// constant declarations
...

};

There are a couple of different patterns for using abstract interfaces. One pattern is to
use the abstract interface as a polymorphic base class that serves as a base class for
interfaces or value types. This usage is illustrated by the following IDL fragment:

//IDL
abstract interface AdminStuff;

interface MainApplication {
AdminStuff get_admin_stuff(in string objID);
...

};

abstract interface AdminStuff {
// could define some operations here...

};

valuetype Status supports AdminStuff {
... // (some useful info)

};

interface ShutdownTool : AdminStuff {
void shutdown();

};

5 1 8 C h a p t e r 1 1 : O b j e c t s b y Va l u e

14 0672318121 CH11 6/21/01 8:04 AM Page 518

In the preceding IDL example, the AdminStuff abstract interface represents a miscel-
laneous collection of administration objects. Some of these objects—for example, the
Status value type—consist mainly of state and can be passed by value. Other
objects—for example, the ShutdownTool interface—represent a service provided by
the remote application and are therefore passed by reference.

Another usage pattern can be illustrated by modifying the WasteItem interface declared
in Listing 11.27 to make it inherit from an abstract interface, AbstractWasteItem, as
follows:

//IDL
module RecycleBroker {

...
abstract interface AbstractWasteItem;

interface WasteItemAdmin {
AbstractWasteItem get_abstract(in KeyType wasteitem_id);

};

abstract interface AbstractWasteItem { };
interface WasteItem : AbstractWasteItem { ... };
...
valuetype WasteItemDetails { ... };
valuetype WasteItemDetailsFull

: WasteItemDetails supports WasteItem { ... };
};

In the preceding IDL example, a client that invokes the
WasteItemAdmin::get_abstract() operation could receive either a WasteItem object
reference or a WasteItemDetailsFull value object. In this example, the abstract inter-
face lets the server return two alternative views of the same underlying object. One
view, the WasteItem object reference, is appropriate for remote clients, and the other
view, the WasteItemDetailsFull value object, is appropriate for other server applica-
tions.

Summary of Inheritance Rules
The syntax for defining regular value inheritance from other value types and interfaces
is as follows:

//IDL
valuetype RegValueName

[: OtherRegValueName, AbstractValueName, AbstractValueName ...]
[supports IntfName, AbstractIntfName, AbstractIntfName ...]

{
// Value members

};

O t h e r K i n d s o f Va l u e Ty p e 5 1 9

14 0672318121 CH11 6/21/01 8:04 AM Page 519

The value type inheritance rules state that a regular value type, RegValueName, can
inherit from any of the following:

• At most, one other regular value, OtherRegValueName, and any number of
abstract value types, AbstractValueName

• At most, one ordinary IDL interface, IntfName, and any number of abstract
interfaces, AbstractIntfName

There are, in addition, specific inheritance rules that govern every possible inheritance
relationship between values and interfaces. Generally, the different kinds of value and
interface can be placed in a sequence that runs from the most abstract to the most con-
crete entity, as follows:

1. abstract interface

2. interface

3. abstract valuetype

4. valuetype

An entity in this list can inherit from, or support, any one of the preceding (more
abstract) entities in the list, but not the other way around. Thus, a valuetype can sup-
port an abstract interface, but an abstract interface cannot support or inherit
from a valuetype.

In addition to this basic rule, there are additional constraints that specify when single
or multiple inheritance is allowed. The complete set of inheritance rules are summa-
rized in Figure 11.4, in which each inheritance relationship is labeled with one of the
following kinds of inheritance: inherit single, inherit multiple, support single, and
support multiple.

5 2 0 C h a p t e r 1 1 : O b j e c t s b y Va l u e

abstract
valuetype

m

m

mm

m

valuetype
s

s

s

abstract
interface

m

interface

m

supports multiple

supports single

inherits multiple

inherits single

Figure 11.4

Allowed inheritance relationships for value types and interfaces.

14 0672318121 CH11 6/21/01 8:04 AM Page 520

Summary
This chapter has described how to define and implement regular value types, including
cases in which a regular value type inherits from another regular value type or supports
an IDL interface. Other types that can be used as part of an inheritance hierarchy—
abstract valuetype and abstract interface—are also briefly described.

Other special features of value types are not covered in this chapter; specifically, trans-
mission of value graphs and transmission of custom value types are not discussed.

The transmission of value graphs is a useful feature for programmers who want to
transmit large, complex graphs of objects. Value types support an optimized encoding
to minimize the overhead of transmitting value graphs.

The transmission of custom value types is currently not widely supported—it requires
an application programmer to implement custom marshalling code for a value type
using an approach that is not specified by CORBA.

S u m m a r y 5 2 1

14 0672318121 CH11 6/21/01 8:04 AM Page 521

14 0672318121 CH11 6/21/01 8:04 AM Page 522

Events Service
Most communication in a CORBA system is done synchro-
nously. This means that an operation will block until a return
value is returned from the target object, or until an exception is
thrown by the ORB. It also means that the two parties in the
communication must be in direct contact with one another via
the ORB. In most instances, this is desired behavior.

There are occasions, however, when indirectand asynchronous
communication is indicated, such as when two objects do not
want to or cannot have direct knowledge of one another. Other
reasons indirect or asynchronous communication may be
desired include whenever an object does not want to wait until
the message is received by the recipient or when one object
wishes to deliver a message to a collection of potentially
unknown recipients.

A pattern known as the Mediator (see Figure 12.1) facilitates
the design of such asynchronous communication by promoting
loose coupling between the two parties in the communication.
The Mediator pattern encapsulates the communication
between objects into a common object, and each party then
communicates with that common object directly. This requires
the parties on either end of the communication to know only
about the Mediator object, and not about each other directly.
Such a pattern implements the OO principles of loose coupling
of objects, as well as tight cohesion in the Mediator object
itself, as it encapsulates the communication between the two
objects into a common object. A Mediator object is responsi-
ble for mediating the communication between two or more
collaborating objects. Through the use of a Mediator, collabo-
rators are decoupled and their communication is abstracted and

C H A P T E R 1 2

E
v
e
n

ts S
e
rv

ice

15 0672318121 CH12 6/20/01 5:51 PM Page 523

encapsulated into a single controller object. The Mediator thus centralizes the man-
agement of the communication and acts as a forwarder of information from one col-
laborating object to another.

5 2 4 C h a p t e r 1 2 : E v e n t s S e r v i c e

CollaboratingObject

ConcreteMediator

ConcreteCollaborator2ConcreteCollaborator1

Mediator

Figure 12.1

The Mediator pattern.

CORBA Event Service Patterns
The CORBA Event Service is one implementation of the Mediator pattern. The OMG
Event Service specification provides for decoupled message transfer between CORBA
objects. The decoupling of communication provided by the Event Service enables vari-
ability in terms of the communication modes and methods. Specifically, it gives one
object (the Supplier) the capability to send messages to another object (the Consumer)
that is interested in receiving those messages without having to know where the
receiver is or even whether the receiver is listening. This decoupling provides several
important benefits:

• Suppliers and Consumers do not themselves physically have to handle the
communication, nor must they have any specific knowledge of each other.
They simply connect to the Event Service, which mediates their communica-
tion.

• Message passing between the Supplier and Consumer takes place asynchro-
nously. Message delivery does not need to entail blocking (although a pull
Consumer may choose to block if it wishes, as will be seen in the “Pull Model”
section of this chapter). Event Channels may be set up to be either typed or
untyped (not all ORB implementations support typed events).

• Event Channels will automatically buffer events they receive until a suitable
Consumer expresses interest in the events. (Note that this does not imply either
persistence or store and forward capabilities.) Generally, an independent queue

15 0672318121 CH12 6/20/01 5:51 PM Page 524

in the Event Channel will be devoted to each Consumer. These internal queues
usually operate on a last in, first out (LIFO) basis, with older messages being
disposed of if the buffer is full and new messages arrive without a Consumer
extracting the messages fast enough. Most ORBs will allow the maximum
queue length to be set.

• Events may be confirmed and their delivery guaranteed if the vendor has imple-
mented this capability.

• Suppliers can choose either to push events onto the channel (push) or have the
channel itself request events from them (pull). Similarly, a Consumer may
request to either synchronously or asynchronously obtain (pull) events from the
channel or to have the channel deliver (push) events to them.

• A one-to-one correspondence between Suppliers and Consumers is not neces-
sary; there can be multiple Suppliers connected to a single Consumer via the
Event Service, as well as a single Supplier connected to one or more
Consumers.

Event Flow Models
As alluded to above, there are two primary styles of interaction between Suppliers and
Consumers and the Event Channel. These two styles are known as the Push and Pull
models. Although the flow of events is always from Supplier to Consumer, the direc-
tion of a method call by which an event is transmitted may be either from Supplier to
Consumer or vice versa. Figure 12.2 illustrates this concept of event flow.

C O R B A E v e n t S e r v i c e P a t t e r n s 5 2 5

push ()

pull ()

 try_pull()

push ()

pull ()

try_pull()

Push
Supplier

Pull
Supplier

Push
Consumer

Pull
Consumer

Event Channel

ProxyPushConsumer ProxyPushSupplier

ProxyPullConsumer ProxyPullSupplier

direction of events

Figure 12.2

Event flow.

Push Model
In the Push model, a Supplier connects to the Event Channel and initiates a push of an
event onto the Event Channel whenever it is ready to do so. It is the Event Channel’s
responsibility to buffer those events until they are delivered to one or more interested
Consumers. When a Supplier wants to connect to an Event Channel, it needs an object

15 0672318121 CH12 6/20/01 5:51 PM Page 525

within the Event Channel to pretend it is a Consumer. This enables the Supplier sim-
ply to deliver events to its consumer, when in reality, this consumer is simply a proxy
for the actual Consumer, which is outside of the Event Channel. It is to this proxy con-
sumer that the Push Supplier pushes events. Thus, the Proxy object is not a real
Consumer, merely an object within the Event Channel that provides a delivery mecha-
nism through which the Supplier can deliver messages.

A Push Consumer likewise connects to a proxy object, a proxy that represents the Push
Supplier. When the Event Channel has a message available, the Push Supplier Proxy
delivers (pushes) the message to the actual Consumer object. The message path is from
the actual Push Supplier, through its Proxy Push Consumer, to the Proxy Push Supplier,
and finally to the Push Consumer itself. There are other variations of this, as the exam-
ple used throughout the “Using an Event Channel” section shows.

NOTE
A proxy, or surrogate, is a pattern in which an object acts as a placeholder for
another object. As far as the user of a proxy is concerned, the proxy is responsible
for providing the requested functionality, when in actuality, the proxy simply dele-
gates the functionality to some third party.

Pull Model
In the Pull model, the Event Channel pulls data from the Supplier. In the Pull model, it
is the Consumer that drives the delivery of messages. A Pull Supplier connects to a
Proxy Pull Consumer. Again, as far as the Pull Supplier is concerned, it can consider
this proxy object a real Consumer, which requests events from it periodically. An inter-
ested Pull Consumer object then connects on the other end of the Event Channel to a
Proxy Pull Supplier. When a Pull Consumer is ready to receive an event, it initiates
either a pull() (which will block until an event is available to be consumed) or
try_pull() (which will retrieve an event for consumption if one is available, but will
not block if one is not) on its Proxy Pull Supplier, which in turn queries the Proxy Pull
Consumer connected to the actual Pull Supplier to request that another event be deliv-
ered. In this way, the Consumer drives the data when it is ready to process another mes-
sage. Some implementations of the pull() method allow the Proxy Pull Supplier to
pull events from the Supplier at regular intervals, to try to keep a buffer full of events
for Consumers when they request delivery.

The nice thing about the Event Channel abstraction is that a communication does not
need to be either entirely Push model or Pull model. A Push Supplier may indirectly
connect to one or more Pull Consumers, and several Pull Suppliers may connect to one
or more Push Consumers. It is the Event Channel logic itself that enables such dispro-
portional interrelationships among objects. It is the application design itself that drives
the decisions concerning suppliers and consumers and their numbers.

5 2 6 C h a p t e r 1 2 : E v e n t s S e r v i c e

15 0672318121 CH12 6/20/01 5:51 PM Page 526

Using an Event Channel
Regardless of the relationship among suppliers and consumers, to establish a connec-
tion and deliver events through the Event Channel, five steps must be taken:

1. The client (Supplier or Consumer) first binds to the Event Channel (which
must be created by someone already, perhaps the client itself).

2. The client obtains an Admin object from the Event Channel. A Consumer needs
a ConsumerAdmin object, and a Supplier needs a SupplierAdmin object.

3. The client obtains a proxy object from the Admin object (a Consumer Proxy
for a Supplier client, and a Supplier Proxy for a Consumer client).

4. The client adds the Supplier or Consumer to the Event Channel via a
connect() call.

5. The client and/or the Event Channel transfer data via the push(), pull(),
and/or try_pull() calls.

When messages are delivered through the Event Channel, they can be either typed or
untyped. Typed messages are those defined in an IDL that are type-checked at compile
time. Untyped events, the most common, adhere to the standard Event Services inter-
faces and are packaged as type CORBA::Any, which is a wrapper around all known
CORBA types. It is this Any type that is actually sent from a Supplier object to a
Consumer object. The Supplier constructs an Any, and the Consumer, upon receipt of
the message, derives the true value from the Any wrapper. This enables great flexibil-
ity in delivering messages because a Supplier may (for example) pass a string first, a
long value second, and an array third, all through packaging the values into an Any. The
following supplier and consumer examples show how to create, embed, and extract val-
ues from Any types (refer back to Chapter 8, “The any Type,” for more on Any types).

This example incorporates an implementation of a Supplier and a Consumer interact-
ing through the use of the Event Service. The Supplier implements the Push Supplier
model and the Consumer implements the Pull Consumer model, thus illustrating that
the models themselves do not have to be all of one type. The example is implemented
both in Java and C++. Listings 12.1 and 12.2 contain the Java implementations of con-
sumer and supplier, respectively; Listings 12.3 and 12.4 show the corresponding C++
implementations.

Listing 12.1 PurePullConsumer.java

// Java

import org.omg.CORBA.Any;
import org.omg.CORBA.BooleanHolder;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Policy;
import org.omg.CORBA.SystemException;
import org.omg.CORBA.TCKind;
import org.omg.CosEventChannelAdmin.EventChannel;
import org.omg.CosEventChannelAdmin.EventChannelHelper;

U s i n g a n E v e n t C h a n n e l 5 2 7

15 0672318121 CH12 6/20/01 5:51 PM Page 527

import org.omg.CosEventChannelAdmin.ProxyPullSupplier;
import org.omg.CosEventChannelAdmin.ConsumerAdmin;
import org.omg.CosEventComm.Disconnected;
import org.omg.CosEventComm.PullSupplier;
import org.omg.CosEventComm.PullConsumerPOA;
import org.omg.PortableServer.LifespanPolicyValue;
import org.omg.PortableServer.POA;
import org.omg.PortableServer.POAHelper;
import org.omg.PortableServer.POAManager;

public class PurePullConsumer extends PullConsumerPOA {

private POA _poa;
PullSupplier _pullSupplier;

public PurePullConsumer(PullSupplier pullSupplier, POA poa) {

_pullSupplier = pullSupplier;
_poa = poa;

}

public void start() throws InterruptedException {

Any anyVal = null;
long longVal;
short shortVal;
double doubleVal;
String stringVal;
boolean hasEvent = false;
BooleanHolder hasEventHolder = new BooleanHolder();

System.out.println(“Consumer in start of thread, sleeping...”);
Thread.currentThread().sleep(2000);
while (true) {

try {
while (!hasEvent) {

Thread.currentThread().sleep(1000);
System.out.println(“Consumer calling try_pull”);
try {

anyVal = _pullSupplier.try_pull(hasEventHolder);
hasEvent = hasEventHolder.value;

} catch (SystemException se) {
System.err.println(“Consumer caught CORBA “ +

“SystemException: “ + se);
return;

}
}

5 2 8 C h a p t e r 1 2 : E v e n t s S e r v i c e

Listing 12.1 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 528

System.out.println(“Consumer got event”);
TCKind kind = anyVal.type().kind();
if (kind == TCKind.tk_long) {

longVal = anyVal.extract_long();
System.out.println(“Consumer pulled long: “ +

longVal);
if (longVal == 13) {

System.out.println(“Consumer received #13, “ +
“exiting...”);

_pullSupplier.disconnect_pull_supplier();
return;

}
} else if (kind == TCKind.tk_short) {

shortVal = anyVal.extract_short();
System.out.println(“Consumer pulled short: “ +

shortVal);
} else if (kind == TCKind.tk_double) {

doubleVal = anyVal.extract_double();
System.out.println(“Consumer pulled double: “ +

doubleVal);
} else if (kind == TCKind.tk_string) {

stringVal = anyVal.extract_string();
System.out.println(“Consumer pulled string: “ +

stringVal);
}
hasEvent = false;

} catch (Disconnected d) {
System.err.println(“Consumer caught Disconnected “ +

“Exception”);
return;

}
}

}

public void disconnect_pull_consumer() {

System.out.println(“PurePullConsumer.” +
“disconnect_pull_consumer()”);

try {
byte[] objId = “PurePullConsumer”.getBytes();
_poa.deactivate_object(objId);

} catch (Exception e) {
System.err.println(e);

U s i n g a n E v e n t C h a n n e l 5 2 9

Listing 12.1 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 529

}
}

public static void main(String[] args) {

try {
// initialize the ORB
ORB orb = ORB.init(args, null);

// 1. The client (Supplier or Consumer) first binds to the
// Event Channel (which must be created by someone already,
// perhaps the client itself).
org.omg.CORBA.Object obj = orb.

resolve_initial_references(“EventService”);
EventChannel eventChannel = EventChannelHelper.narrow(obj);
if (eventChannel == null) {

System.err.println(“could not find EventChannel”);
return;

}
System.out.println(“found the EventChannel”);

// 2. The client obtains an Admin object from the Event
// Channel. A Consumer needs a ConsumerAdmin object, and a
// Supplier needs a SupplierAdmin object.
ConsumerAdmin consumerAdmin = eventChannel.for_consumers();

// 3. The client obtains a proxy object from the Admin
// object (a Consumer Proxy for a Supplier client, and a
// Supplier Proxy for a Consumer client).
ProxyPullSupplier proxySupplier = consumerAdmin.

obtain_pull_supplier();
System.out.println(“got a ProxyPullSupplier”);

// obtain a reference to the Root POA
obj = orb.resolve_initial_references(“RootPOA”);
POA rootPOA = POAHelper.narrow(obj);

// create the policies for the push supplier POA
Policy[] policies = new Policy[1];
policies[0] = rootPOA.

create_lifespan_policy(LifespanPolicyValue.
PERSISTENT);

// create the push supplier POA
POAManager poaManager = rootPOA.the_POAManager();

5 3 0 C h a p t e r 1 2 : E v e n t s S e r v i c e

Listing 12.1 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 530

POA consumerPOA = rootPOA.create_POA(“PullConsumerPOA”,
poaManager, policies);

// create and activate the push supplier
PurePullConsumer pullConsumer = new

PurePullConsumer(proxySupplier, consumerPOA);
String consumerName = “PurePullConsumer”;
byte[] objId = consumerName.getBytes();
consumerPOA.activate_object_with_id(objId, pullConsumer);
consumerPOA.the_POAManager().activate();
consumerPOA.servant_to_reference(pullConsumer);

// 4. The client adds the Supplier or Consumer to the Event
// Channel via a connect() call.
proxySupplier.connect_pull_consumer(pullConsumer._this());

// 5. The client and/or the Event Channel transfer data via
// the push(), pull(), and/or try_pull() calls.
pullConsumer.start();

System.out.println(“Consumer is ending”);
} catch (Exception e) {

System.err.println(e);
}

}
}

Listing 12.2 PurePushSupplier.java

// Java

import org.omg.CORBA.Any;
import org.omg.CORBA.ORB;
import org.omg.CORBA.Policy;
import org.omg.CORBA.SystemException;
import org.omg.CosEventChannelAdmin.EventChannel;
import org.omg.CosEventChannelAdmin.EventChannelHelper;
import org.omg.CosEventChannelAdmin.ProxyPushConsumer;
import org.omg.CosEventChannelAdmin.SupplierAdmin;
import org.omg.CosEventComm.Disconnected;
import org.omg.CosEventComm.PushConsumer;
import org.omg.CosEventComm.PushSupplierPOA;
import org.omg.PortableServer.LifespanPolicyValue;
import org.omg.PortableServer.POA;

U s i n g a n E v e n t C h a n n e l 5 3 1

Listing 12.1 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 531

import org.omg.PortableServer.POAHelper;
import org.omg.PortableServer.POAManager;

public class PurePushSupplier extends PushSupplierPOA {

private ORB _orb;
private POA _poa;
private PushConsumer _pushConsumer;

public PurePushSupplier(PushConsumer pushConsumer, ORB orb, POA poa)
{

_pushConsumer = pushConsumer;
_orb = orb;
_poa = poa;

}

public void start() throws Disconnected, InterruptedException {

Any any = _orb.create_any();

// push some events to the channel

any.insert_long(555555555);
_pushConsumer.push(any);
System.out.println(“Supplier: just pushed a long value”);
Thread.currentThread().sleep(1000);

any.insert_short((short)100);
_pushConsumer.push(any);
System.out.println(“Supplier: just pushed a short value”);

any.insert_double(999999.999999);
_pushConsumer.push(any);
System.out.println(“Supplier: just pushed a double value”);

any.insert_string(“And the ubiquitous Hello World!”);
_pushConsumer.push(any);
System.out.println(“Supplier: just pushed a string”);
Thread.currentThread().sleep(5000);

any.insert_long(13);
_pushConsumer.push(any);

_pushConsumer.disconnect_push_consumer();
}

5 3 2 C h a p t e r 1 2 : E v e n t s S e r v i c e

Listing 12.2 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 532

public void disconnect_push_supplier() {

System.out.println(“PurePushSupplier.” +
“disconnect_push_supplier()”);

try {
byte[] objId = “PurePushSupplier”.getBytes();
_poa.deactivate_object(objId);

} catch (Exception e) {
System.out.println(e);

}
}

public static void main(String[] args) {

try {
// initialize the ORB
ORB orb = ORB.init(args, null);

// 1. The client (Supplier or Consumer) first binds to the
// Event Channel (which must be created by someone already,
// perhaps the client itself).
org.omg.CORBA.Object obj = orb.

resolve_initial_references(“EventService”);
EventChannel eventChannel = EventChannelHelper.narrow(obj);
if (eventChannel == null) {

System.err.println(“could not find EventChannel”);
return;

}
System.out.println(“found the EventChannel”);

// 2. The client obtains an Admin object from the Event
// Channel. A Consumer needs a ConsumerAdmin object, and a
// Supplier needs a SupplierAdmin object.
SupplierAdmin supplierAdmin = eventChannel.for_suppliers();

// 3. The client obtains a proxy object from the Admin
// object (a Consumer Proxy for a Supplier client, and a
// Supplier Proxy for a Consumer client).
ProxyPushConsumer proxyConsumer = supplierAdmin.

obtain_push_consumer();
System.out.println(“got a ProxyPushConsumer”);

// obtain a reference to the Root POA
obj = orb.resolve_initial_references(“RootPOA”);
POA rootPOA = POAHelper.narrow(obj);

U s i n g a n E v e n t C h a n n e l 5 3 3

Listing 12.2 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 533

// create the policies for the push supplier POA
Policy[] policies = new Policy[1];
policies[0] = rootPOA.

create_lifespan_policy(LifespanPolicyValue.
PERSISTENT);

// create the push supplier POA
POAManager poaManager = rootPOA.the_POAManager();
POA supplierPOA = rootPOA.create_POA(“pushSupplierPOA”,

poaManager, policies);

// create and activate the push supplier
PurePushSupplier pushSupplier = new

PurePushSupplier(proxyConsumer, orb, supplierPOA);
String supplierName = “PurePushSupplier”;
byte[] objId = supplierName.getBytes();
supplierPOA.activate_object_with_id(objId, pushSupplier);
supplierPOA.the_POAManager().activate();
supplierPOA.servant_to_reference(pushSupplier);

// 4. The client adds the Supplier or Consumer to the Event
// Channel via a connect() call.
proxyConsumer.connect_push_supplier(pushSupplier. _this());

// 5. The client and/or the Event Channel transfer data via
// the push(), pull(), and/or try_pull() calls.
pushSupplier.start();

System.out.println(“Supplier is ending”);
} catch (Exception e) {

System.err.println(e);
}

}
}

Listing 12.3 PurePullConsumer.C

// C++

#include <unistd.h>
#include <iostream.h>
#include <iomanip.h>
#include <corba.h>
#include <CosEventComm_s.hh>
#include <CosEventChannelAdmin_c.hh>

5 3 4 C h a p t e r 1 2 : E v e n t s S e r v i c e

Listing 12.2 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 534

class PurePullConsumer : public POA_CosEventComm::PullConsumer {

public:
PurePullConsumer(CosEventComm::PullSupplier_ptr pullSupplier,

PortableServer::POA_ptr poa) : _pullSupplier(pullSupplier),
_poa(poa) { }

void start() {

CORBA::Any* anyVal;
CORBA::ULong longVal;
CORBA::Short shortVal;
CORBA::Double doubleVal;
char* stringVal;
CORBA::Boolean hasEvent = 0;

cout << “Consumer in start of thread, sleeping...” << endl;
sleep(2);
while (1) {

try {
while (!hasEvent) {

sleep(1);
cout << “Consumer calling try_pull” << endl;
try {

anyVal = _pullSupplier->try_pull(hasEvent);
} catch (const CORBA::Exception& e) {

cerr << “Consumer caught CORBA::Exception: “ <<
e << endl;

return;
}

}
cout << “Consumer got event” << endl;
if (*anyVal >>= longVal) {

cout << “Consumer pulled long: “ << longVal << endl;
if (longVal == 13) {

cout << “Consumer received #13, exiting...” <<
endl;

_pullSupplier->disconnect_pull_supplier();
return;

}
} else if (*anyVal >>= shortVal) {

cout << “Consumer pulled short: “ << shortVal <<
endl;

} else if (*anyVal >>= doubleVal) {
cout << setiosflags(ios::fixed);
cout << “Consumer: pulled double: “ << doubleVal <<

endl;

U s i n g a n E v e n t C h a n n e l 5 3 5

Listing 12.3 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 535

} else if (*anyVal >>= stringVal) {
cout << “Consumer: pulled string: “ << stringVal <<

endl;
CORBA::string_free(stringVal);

}
hasEvent = 0;

} catch (const CosEventComm::Disconnected& e) {
cerr << “Consumer caught Disconnected Exception” <<

endl;
return;

} catch (const CORBA::Exception& e) {
cerr << “Consumer caught CORBA::Exception: “ << e <<

endl;
return;

}
}

}

void disconnect_pull_consumer() {

cout << “PurePullConsumer::disconnect_pull_consumer()” << endl;

try {
PortableServer::ObjectId_var objId = PortableServer::

string_to_ObjectId(“PurePullConsumer”);
_poa->deactivate_object(objId);

} catch (const CORBA::Exception& e) {
cout << e << endl;

}
}

private:
PortableServer::POA_var _poa;
CosEventComm::PullSupplier_var _pullSupplier;

};

int main(int argc, char** argv) {

// initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// 1. The client (Supplier or Consumer) first binds to the Event
// Channel (which must be created by someone already, perhaps the
// client itself).
CORBA::Object_var obj = orb->

resolve_initial_references(“EventService”);

5 3 6 C h a p t e r 1 2 : E v e n t s S e r v i c e

Listing 12.3 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 536

CosEventChannelAdmin::EventChannel_var eventChannel =
CosEventChannelAdmin::EventChannel::_narrow(obj);

if (eventChannel == NULL) {
cerr << “could not find EventChannel” << endl;
return -1;

}
cout << “found the EventChannel” << endl;

// 2. The client obtains an Admin object from the Event Channel. A
// Consumer needs a ConsumerAdmin object, and a Supplier needs a
// SupplierAdmin object.
CosEventChannelAdmin::ConsumerAdmin_var consumerAdmin =

eventChannel->for_consumers();

// 3. The client obtains a proxy object from the Admin object (a
// Consumer Proxy for a Supplier client, and a Supplier Proxy for a
// Consumer client).
CosEventChannelAdmin::ProxyPullSupplier_var proxySupplier =

consumerAdmin->obtain_pull_supplier();
cout << “got a ProxyPullSupplier” << endl;

// obtain a reference to the Root POA
obj = orb->resolve_initial_references(“RootPOA”);
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

// create the policies for the push supplier POA
CORBA::PolicyList policies;
policies.length(1);
policies[0] = rootPOA->create_lifespan_policy(PortableServer::

PERSISTENT);

// create the push supplier POA
PortableServer::POAManager_var poaManager = rootPOA->

the_POAManager();
PortableServer::POA_var consumerPOA = rootPOA->

create_POA(“PullConsumerPOA”, poaManager, policies);

// create and activate the push supplier
PurePullConsumer* pullConsumer = new PurePullConsumer(proxySupplier,

consumerPOA);
CORBA::String_var consumerName(CORBA::

string_dup(“PurePullConsumer”));
PortableServer::ObjectId_var objId = PortableServer::

string_to_ObjectId(consumerName);
consumerPOA->activate_object_with_id(objId, pullConsumer);

U s i n g a n E v e n t C h a n n e l 5 3 7

Listing 12.3 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 537

consumerPOA->the_POAManager()->activate();
consumerPOA->servant_to_reference(pullConsumer);

// 4. The client adds the Supplier or Consumer to the Event Channel
// via a connect() call.
proxySupplier->connect_pull_consumer(pullConsumer->_this());

// 5. The client and/or the Event Channel transfer data via the\
// push(), pull(), and/or try_pull() calls.
pullConsumer->start();

cout << “Consumer is ending” << endl;
return 0;

}

Listing 12.4 PurePushSupplier.C

// C++

#include <unistd.h>
#include <iostream.h>
#include <corba.h>
#include <CosEventComm_s.hh>
#include <CosEventChannelAdmin_c.hh>

class PurePushSupplier : public POA_CosEventComm::PushSupplier {

public:
PurePushSupplier(CosEventComm::PushConsumer_ptr pushConsumer,

PortableServer::POA_ptr poa) : _pushConsumer(pushConsumer),
_poa(poa) { }

void start() {

CORBA::Any any;

// push some events to the channel

any <<= (CORBA::ULong)555555555;
_pushConsumer->push(any);
cout << “Supplier: just pushed a long value” << endl;
sleep(1);

any <<= (CORBA::Short)100;
_pushConsumer->push(any);
cout << “Supplier: just pushed a short value” << endl;

5 3 8 C h a p t e r 1 2 : E v e n t s S e r v i c e

Listing 12.3 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 538

any <<= (CORBA::Double)999999.999999;
_pushConsumer->push(any);
cout << “Supplier: just pushed a double value” << endl;

CORBA::String_var str = CORBA::string_dup(“And the ubiquitous “
“Hello World!”);

any <<= str;
_pushConsumer->push(any);
cout << “Supplier: just pushed a string” << endl;
sleep(5);

any <<= (CORBA::ULong)13;
_pushConsumer->push(any);

_pushConsumer->disconnect_push_consumer();
}

void disconnect_push_supplier() {

cout << “PurePushSupplier::disconnect_push_supplier()” << endl;

try {
PortableServer::ObjectId_var objId = PortableServer::

string_to_ObjectId(“PurePushSupplier”);
_poa->deactivate_object(objId);

} catch (const CORBA::Exception& e) {
cout << e << endl;

}
}

private:
PortableServer::POA_var _poa;
CosEventComm::PushConsumer_var _pushConsumer;

};

int main(int argc, char** argv) {

// initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// 1. The client (Supplier or Consumer) first binds to the Event
// Channel (which must be created by someone already, perhaps the
// client itself).
CORBA::Object_var obj = orb->

resolve_initial_references(“EventService”);
CosEventChannelAdmin::EventChannel_var eventChannel =

CosEventChannelAdmin::EventChannel::_narrow(obj);

U s i n g a n E v e n t C h a n n e l 5 3 9

Listing 12.4 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 539

if (eventChannel == NULL) {
cerr << “could not find EventChannel” << endl;
return -1;

}
cout << “found the EventChannel” << endl;

// 2. The client obtains an Admin object from the Event Channel. A
// Consumer needs a ConsumerAdmin object, and a Supplier needs a
// SupplierAdmin object.
CosEventChannelAdmin::SupplierAdmin_var supplierAdmin =

eventChannel->for_suppliers();

// 3. The client obtains a proxy object from the Admin object (a
// Consumer Proxy for a Supplier client, and a Supplier Proxy for a
// Consumer client).
CosEventChannelAdmin::ProxyPushConsumer_var proxyConsumer =

supplierAdmin->obtain_push_consumer();
cout << “got a ProxyPushConsumer” << endl;

// obtain a reference to the Root POA
obj = orb->resolve_initial_references(“RootPOA”);
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

// create the policies for the push supplier POA
CORBA::PolicyList policies;
policies.length(1);
policies[0] = rootPOA->create_lifespan_policy(PortableServer::

PERSISTENT);

// create the push supplier POA
PortableServer::POAManager_var poaManager = rootPOA->

the_POAManager();
PortableServer::POA_var supplierPOA = rootPOA->

create_POA(“pushSupplierPOA”, poaManager, policies);

// create and activate the push supplier
PurePushSupplier* pushSupplier = new PurePushSupplier(proxyConsumer,

supplierPOA);
CORBA::String_var supplierName(CORBA::

string_dup(“PurePushSupplier”));
PortableServer::ObjectId_var objId = PortableServer::

string_to_ObjectId(supplierName);
supplierPOA->activate_object_with_id(objId, pushSupplier);
supplierPOA->the_POAManager()->activate();
supplierPOA->servant_to_reference(pushSupplier);

// 4. The client adds the Supplier or Consumer to the Event Channel
// via a connect() call.

5 4 0 C h a p t e r 1 2 : E v e n t s S e r v i c e

Listing 12.4 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 540

proxyConsumer->connect_push_supplier(pushSupplier->_this());

// 5. The client and/or the Event Channel transfer data via the
// push(), pull(), and/or try_pull() calls.
pushSupplier->start();

cout << “Supplier is ending” << endl;
return 0;

}

In the first step, the client (Consumer or Supplier) must bind to the Event Channel,
which is assumed to have been created already. This is accomplished by calling
resolve_initial_references() with the string “EventService” as a parameter. For
the Event Service, the object returned from resolve_initial_references() will be
an instance of an EventChannel. This is performed as follows in Java (assuming the
ORB has already been initialized):

// Java
org.omg.CORBA.Object obj = orb.resolve_initial_references(“EventService”);
EventChannel eventChannel = EventChannelHelper.narrow(obj);
if (eventChannel == null) {

System.err.println(“could not find EventChannel”);
return;

}
System.out.println(“found the EventChannel”);

and in C++ as follows:

// C++
CORBA::Object_var obj = orb->resolve_initial_references(“EventService”);
CosEventChannelAdmin::EventChannel_var eventChannel = CosEventChannelAdmin::

EventChannel::_narrow(obj);
if (eventChannel == NULL) {

cerr << “could not find EventChannel” << endl;
return -1;

}
cout << “found the EventChannel” << endl;

NOTE
Although the ORB provides a standard mechanism for application code to obtain a
reference to certain standard CORBA services such as the Event Service, the stan-
dard does not specify how the ORB is to determine what instance of the Event
Service to use. It is up to the specific ORB implementation to provide a mechanism
for mapping, for example, the “EventService” initial reference to an actual object
reference. Typically, this is accomplished through the use of properties, command
line arguments, or configuration files.

U s i n g a n E v e n t C h a n n e l 5 4 1

Listing 12.4 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 541

Implementing a Consumer
Once a reference to the Event Channel has been obtained, the Event Channel object
(the eventChannel variable in the example) is used to obtain a reference to a
ConsumerAdmin object through the for_consumers() function. The ConsumerAdmin
object provides the proxies for the Consumer clients of the Event Channel. It enables
the Consumer to obtain the appropriate Supplier Proxy. In this case, the
ConsumerAdmin object provides the Pull Consumer with a proxy Pull Supplier. This
enables the Consumer object to act as if it were communicating directly with a Supplier
that expects the Consumer to be “pulling” events from it. Of course, that’s not actually
the case. The Supplier is really a Push Supplier that itself pushes events onto the Event
Channel. The proxies decouple the Consumer and Supplier objects and enable them to
function as if they were directly connected, when in fact their connection is entirely
indirect. Once the ConsumerAdmin is obtained, it is used to create the Pull Supplier
Proxy, as shown in the following example:

// Java
ConsumerAdmin consumerAdmin = eventChannel.for_consumers();
ProxyPullSupplier proxySupplier = consumerAdmin.obtain_pull_supplier();
System.out.println(“got a ProxyPullSupplier”);

// C++
CosEventChannelAdmin::ConsumerAdmin_var consumerAdmin = eventChannel->

for_consumers();
CosEventChannelAdmin::ProxyPullSupplier_var proxySupplier =

consumerAdmin->obtain_pull_supplier();
cout << “got a ProxyPullSupplier” << endl;

Once the Consumer has obtained a reference to its Supplier Proxy, it then notifies the
Event Channel of its interest in receiving events from it through a call to the Proxy’s
connect_pull_consumer() method. An implementation of the Event Service’s Pull
Consumer interface (the creation of this implementation is not shown here) is passed
into the proxy_supplier to make the connection.

// Java
proxySupplier.connect_pull_consumer(pullConsumer._this());

// C++
proxySupplier->connect_pull_consumer(pullConsumer->_this());

Once connected, calls can be made on the Proxy Pull Supplier’s pull() or try_pull()
functions. The interface for the PullSupplier is shown here:

// IDL
interface PullSupplier {

any pull() raises(Disconnected);
any try_pull(out boolean has_event) raises(Disconnected);
void disconnect_pull_supplier();

};

5 4 2 C h a p t e r 1 2 : E v e n t s S e r v i c e

15 0672318121 CH12 6/20/01 5:51 PM Page 542

In this case, the Consumer’s main thread makes the try_pull() call. The try_pull()
call is an asynchronous polling mechanism that enables the Consumer to contact the
Event Channel and “check for mail,” so to speak. If there is a message in the Event
Channel, that message will be returned as a CORBA::Any value, and the try_pull()’s
CORBA::Boolean flag hasEvent will be set to true. The try_pull() call is thus made
from within the Consumer’s start() method (the _pullSupplier variable contains a
reference to the ProxyPullSupplier obtained earlier):

// Java
Any anyVal = null;
BooleanHolder hasEventHolder = new BooleanHolder();
...
anyVal = _pullSupplier.try_pull(hasEventHolder);
hasEvent = hasEventHolder.value;

// C++
CORBA::Any* anyVal;
CORBA::Boolean hasEvent = 0;
...
anyVal = _pullSupplier->try_pull(hasEvent);

If there is no event waiting, the hasEvent flag is set to false and no value is returned.
The call does not block (as the pull() function does); it returns to the client immedi-
ately. This enables the client to continue doing other work while periodically checking
to see if a new event message is waiting in the Event Channel’s queue.

Once the hasEvent value is true and an Any value is retrieved, the Consumer must
decide first what type it is and then extract that value from the Any wrapper in order to
use it. (The Any type is discussed in great detail in Chapter 8). For the purposes of this
example, the value is extracted from the Any as follows:

// Java
TCKind kind = anyVal.type().kind();
if (kind == TCKind.tk_short) {

shortVal = anyVal.extract_short();
System.out.println(“Consumer pulled short: “ + shortVal);

} else if (kind == TCKind.tk_double) {
doubleVal = anyVal.extract_double();
System.out.println(“Consumer pulled double: “ + doubleVal);

}

// C++
if (*anyVal >>= shortVal) {

cout << “Consumer pulled short: “ << shortVal << endl;
} else if (*anyVal >>= doubleVal) {

cout << setiosflags(ios::fixed);
cout << “Consumer: pulled double: “ << doubleVal << endl;

}

U s i n g a n E v e n t C h a n n e l 5 4 3

15 0672318121 CH12 6/20/01 5:51 PM Page 543

In this case, when the Consumer extracts the correct type from the Any, it prints its
value out and immediately begins again checking for events through the try_pull()

call.

Implementing a Supplier
The Supplier implementation is a bit simpler. After binding to the ORB, it creates an
implementation of a class that implements the CORBA PushSupplier IDL:

// Java
public class PurePushSupplier extends PushSupplierPOA {

public PurePushSupplier(PushConsumer pushConsumer, ORB orb, POA poa)
{

...
}
...
public void disconnect_push_supplier() {

...
}

}

// (creation of proxy consumer and appropriate POA precedes)
PurePushSupplier pushSupplier = new PurePushSupplier(proxyConsumer,

orb, supplierPOA);
// (activation of servant follows)

// C++
class PurePushSupplier : public POA_CosEventComm::PushSupplier {

...
void disconnect_push_supplier();

};

// (creation of proxy consumer and appropriate POA precedes)
PurePushSupplier* pushSupplier = new PurePushSupplier(proxyConsumer,

supplierPOA);
// (activation of servant follows)

This class implements the IDL PushSupplier interface, which only has a single func-
tion to implement: disconnect_push_supplier(). The pushSupplier servant will be
used later to connect to the Event Channel and register its interest in supplying events
to the Channel.

Just as the Consumer started by locating the Event Service, our Supplier begins by call-
ing resolve_initial_references(). Using the IOR returned by resolve_

initial_references(), the Supplier can then narrow to the EventChannel object. The
mechanism for doing so is exactly the same as in the Consumer. Once a reference to
the EventChannel is obtained, the Supplier attempts to retrieve a SupplierAdmin object
through a call to the event channel’s for_suppliers() function:

5 4 4 C h a p t e r 1 2 : E v e n t s S e r v i c e

15 0672318121 CH12 6/20/01 5:51 PM Page 544

// Java
SupplierAdmin supplierAdmin = eventChannel.for_suppliers();

// C++
CosEventChannelAdmin::SupplierAdmin_var supplierAdmin = eventChannel->

for_suppliers();

Once the SupplierAdmin object is retrieved, its obtain_push_consumer() function is
called in order for the Supplier to obtain a Proxy PushConsumer with which to com-
municate.

// Java
ProxyPushConsumer proxyConsumer = supplierAdmin.obtain_push_consumer();

// C++
CosEventChannelAdmin::ProxyPushConsumer_var proxyConsumer =

supplierAdmin->obtain_push_consumer();

Once a proxy is obtained, the Supplier then needs to connect to the proxy through this
call:

// Java
proxyConsumer.connect_push_supplier(pushSupplier._this());

// C++
proxyConsumer->connect_push_supplier(pushSupplier->_this());

This call registers the Supplier’s interest in providing the Event Channel with events.
The IDL interface for the PushConsumer (from which ProxyPushConsumer inherits) is

// IDL
interface PushConsumer {

void push(in any data) raises(Disconnected);
void disconnect_push_consumer();

};

Once a proxy push Consumer has been obtained, calls may be made on its push() func-
tion, passing in a CORBA::Any value. That is done quite simply:

// Java
Any any = _orb.create_any();
any.insert_long(555555555);
_pushConsumer.push(any);

// C++
CORBA::Any any;
any <<= (CORBA::ULong)555555555;
_pushConsumer->push(any);

U s i n g a n E v e n t C h a n n e l 5 4 5

15 0672318121 CH12 6/20/01 5:51 PM Page 545

At this point, the Any value is delivered to the Event Channel, which is responsible for
making that event message available to the try_pull() calls of the Consumer, which
was described above. Thus, the discussion of the Supplier/Consumer roles in interact-
ing with the Event Service has come full circle.

When the Consumer and Supplier executables are run, the progress of the Supplier
writing messages to the Event Channel will be visible. Also, the Consumer can be seen
extracting the messages from the Event Channel and printing out their contents. The
Supplier pushes, in succession, a long, a short, a double, a string, and finally,
another long (the number 13), which signals to the Consumer that it is finished. At that
point, the Consumer thread terminates and both applications exit.

Summary
This chapter introduced the CORBA Events Service. This service realizes the well-
known Mediator pattern, which decouples two objects for which direct knowledge of
each other is undesirable. In this case, it is preferred that suppliers and consumers of
events should not have direct knowledge of each other. Hence the concept of an Event
Channel, which mediates the relationship between suppliers and consumers, was intro-
duced.

The chapter then demonstrated that the CORBA Events Service defines two types each
of suppliers and consumers: both push and pull. A Push Supplier pushes events asyn-
chronously to the Event Channel; similarly, a Push Consumer receives events asyn-
chronously from the Event Channel. Conversely, a Pull Supplier is periodically polled
by the Event Channel for events; a Pull Consumer likewise periodically polls the Event
Channel for events.

Finally, the actual use of the Event Channel was discussed, including the implementa-
tion of consumers and suppliers. The actual events themselves are realized as
CORBA::Any values, and thus may contain any data type that can be expressed in IDL.

Listings 12.5–8 contain the IDL definitions for the Event Service, as defined by the
OMG, provided here for reference. Listing 12.5 contains the definitions for the admin-
istration interfaces and the event channel itself, as well as for the proxy consumers and
suppliers. (These interfaces are typically implemented by the vendor of an Event
Service implementation.) Listing 12.6 contains the definitions for consumers and sup-
pliers, which are typically implemented by users of the Event Service. Listings 12.7
and 12.8 contain similar definitions again, but for typed event channels.

Listing 12.5 CosEventChannelAdmin.idl

// IDL

//File: CosEventChannelAdmin.idl
//Part of the Event Service

5 4 6 C h a p t e r 1 2 : E v e n t s S e r v i c e

15 0672318121 CH12 6/20/01 5:51 PM Page 546

#ifndef _COS_EVENT_CHANNEL_ADMIN_IDL_
#define _COS_EVENT_CHANNEL_ADMIN_IDL_

#include <CosEventComm.idl>

#pragma prefix “omg.org”

module CosEventChannelAdmin {

exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};

interface ProxyPullSupplier: CosEventComm::PullSupplier {
void connect_pull_consumer(

in CosEventComm::PullConsumer pull_consumer)
raises(AlreadyConnected);

};

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected,TypeError);

};

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

};

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};

S u m m a r y 5 4 7

Listing 12.5 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 547

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};
};
#endif /* ifndef _COS_EVENT_CHANNEL_ADMIN_IDL_ */

Listing 12.6 CosEventComm.idl

// IDL

//File: CosEventComm.idl
//Part of the Event Service

#ifndef _COS_EVENT_COMM_IDL_
#define _COS_EVENT_COMM_IDL_
#pragma prefix “omg.org”

module CosEventComm {

exception Disconnected{};

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};

interface PushSupplier {
void disconnect_push_supplier();

};

interface PullSupplier {
any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier();

};

interface PullConsumer {
void disconnect_pull_consumer();

};

};
#endif /* ifndef _COS_EVENT_COMM_IDL_ */

5 4 8 C h a p t e r 1 2 : E v e n t s S e r v i c e

Listing 12.5 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 548

Listing 12.7 CosTypedEventChannelAdmin.idl

// IDL

//File: CosTypedEventChannelAdmin.idl
//Part of the Event Service
//Updated to reflect version 1.1 - March 2001

#ifndef _COS_TYPED_EVENT_CHANNEL_ADMIN_IDL_
#define _COS_TYPED_EVENT_CHANNEL_ADMIN_IDL_

#include <CosEventChannelAdmin.idl>
#include <CosTypedEventComm.idl>

#pragma prefix “omg.org”

module CosTypedEventChannelAdmin {

exception InterfaceNotSupported {};
exception NoSuchImplementation {};
typedef string Key; //Repository ID

interface TypedProxyPushConsumer :
CosEventChannelAdmin::ProxyPushConsumer,
CosTypedEventComm::TypedPushConsumer { };

interface TypedProxyPullSupplier :
CosEventChannelAdmin::ProxyPullSupplier,
CosTypedEventComm::TypedPullSupplier { };

interface TypedSupplierAdmin :
CosEventChannelAdmin::SupplierAdmin {

TypedProxyPushConsumer obtain_typed_push_consumer(
in Key supported_interface)

raises(InterfaceNotSupported);
CosEventChannelAdmin::ProxyPullConsumer obtain_typed_pull_consumer (

in Key uses_interface)
raises(NoSuchImplementation);

};

interface TypedConsumerAdmin :
CosEventChannelAdmin::ConsumerAdmin {

TypedProxyPullSupplier obtain_typed_pull_supplier(
in Key supported_interface)

raises (InterfaceNotSupported);
CosEventChannelAdmin::ProxyPushSupplier obtain_typed_push_supplier(

in Key uses_interface)

S u m m a r y 5 4 9

15 0672318121 CH12 6/20/01 5:51 PM Page 549

raises(NoSuchImplementation);
};

interface TypedEventChannel {
TypedConsumerAdmin for_consumers();
TypedSupplierAdmin for_suppliers();
void destroy ();

};
};

#endif /* ifndef _COS_TYPED_EVENT_CHANNEL_ADMIN_IDL_ */

Listing 12.8 CosTypedEventComm.idl

// IDL

//File: CosTypedEventComm.idl
//Part of the Event Service

#ifndef _COS_TYPED_EVENT_COMM_IDL_
#define _COS_TYPED_EVENT_COMM_IDL_

#include <CosEventComm.idl>

#pragma prefix “omg.org”

module CosTypedEventComm {

interface TypedPushConsumer : CosEventComm::PushConsumer {
Object get_typed_consumer();

};

interface TypedPullSupplier : CosEventComm::PullSupplier {
Object get_typed_supplier();

};

};

#endif /* ifndef _COS_TYPED_EVENT_COMM_IDL_ */

5 5 0 C h a p t e r 1 2 : E v e n t s S e r v i c e

Listing 12.7 continued

15 0672318121 CH12 6/20/01 5:51 PM Page 550

CORBA Components
A CORBA component is an extension of a CORBA object,
which is based on a different server programming model. The
CORBA Component Model (CCM) is the framework for defin-
ing, implementing, and deploying CORBA components. It
addresses all the stages of application development, from the
design of components to the deployment of a component-
based application.

The primary purpose of the CCM is to reduce the effort needed
to develop and deploy CORBA servers. The CCM simplifies
the development of CORBA servers in the following ways:

• Abstraction of POA functionality POA functionality
is made available to components through a container. A
container is responsible for managing the life-cycle of
CORBA components, freeing developers from this task.

• Provision of CORBA services CORBA services typ-
ically required by enterprise applications include secu-
rity, transactions, and events. The CCM specifies that
these services should be made available to components
and defines simplified interfaces covering the most
commonly used features for the services.

• Support for ready-made components The CCM
supports the development of reusable, general-purpose
CORBA components. A clean separation can be made
between the component logic and CORBA functional-
ity.
The CCM’s support for configuration and assembly
also makes it easier to integrate ready-made compo-
nents into a new application.

C H A P T E R 1 3

C
O

R
B

A
 C

o
m

p
o

n
e
n

ts

16 0672318121 CH13 6/20/01 5:39 PM Page 551

Consider, for example, the code appearing in Chapter 7, “The Portable Object
Adapter.” Much of the code is concerned purely with CORBA-related housekeeping
tasks—for example, creating POA objects and managing the life-cycle of CORBA
objects. From the perspective of an application developer, writing this CORBA-related
code is an unwelcome burden that adds nothing to the core business functionality. The
CCM eliminates this burden by providing a container with ready-made life-cycle man-
agement.

There are many similarities between the CCM and the Enterprise Java Beans (EJB)
specification from Sun. This is not accidental—the OMG committee that drafted the
CCM specification made a deliberate effort to make the CCM consistent with EJB. To
optimize compatibility with EJB, it was necessary to split the CCM into two levels: the
basic level and the extended level.

The basic level contains the elements of the CCM that are fully compatible with EJB.
Servers conforming to the basic level of the CCM are fully interoperable with EJB.

The extended level adds elements that have no parallel in EJB. Servers that use features
from the extended level might not be compatible with EJB. See the section “Extended
Components,” later in this chapter, for an outline of the extra features supported at that
level.

NOTE
This chapter focuses mainly on the basic level of the CCM, which is fully consistent
with EJB.

Basic Architecture
The basic architecture of the CCM is shown in Figure 13.1.

5 5 2 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Component Component Component

Home Home

manages manages manages

Container

Figure 13.1

The CORBA Component Model architecture.

16 0672318121 CH13 6/20/01 5:39 PM Page 552

The architecture consists of the following elements:

• Components The basic building blocks for server applications.
• Component homes Factory objects that create and manage components.
• Containers The environments that support components, enabling them to

run.

These basic architectural elements are discussed in the following sections.

Components
There are two types of component:

• Basic components These conform to the basic level of the CCM. They are
conceptually similar to CORBA objects. Each instance of a component sup-
ports one or more IDL interfaces (similar to IDL interface inheritance).
Application developers implement the component’s operations and attributes.
The main difference between a basic component and a CORBA object is the
context in which each is used. A component is used in the context of the CCM
and uses the programming interfaces exposed by the container in which it
resides.

• Extended components These conform to the extended level of the CCM.
They have additional features—ports—that are supported neither by basic com-
ponents nor CORBA objects. Component ports are described in the section
“Extended Components,” later in this chapter.
One noteworthy feature of an extended component is that it can support multi-
ple distinct (unrelated by IDL inheritance) IDL interfaces, known as facets. A
navigation mechanism is also provided that enables clients of a component to
move between facets.

Component Homes
A component home is an object that manages a particular type of component. Every
component type is managed by at least one component home type. Conversely, each
component home manages one, and only one, component type. For example, a
WasteItemC component type might be managed by a WasteItemCH component home.

A component home typically enables you to perform the following actions on a man-
aged component type:

• Creating instances
• Finding instances
• Removing instances

Component homes are analogous to factory objects, as defined in Chapter 7.

The motivation for introducing component homes is to hide code that manages the life-
cycle of components within the server. You may recall from Chapter 7 that the analo-
gous factory code for managing the life-cycle of CORBA objects varies greatly,
depending on what kind of life-cycle policy you are implementing.

B a s i c A r c h i t e c t u r e 5 5 3

16 0672318121 CH13 6/20/01 5:39 PM Page 553

Using component homes offers the following advantages:

• It frees you from writing the code associated with a component’s life-cycle
management.

• It insulates the rest of your code from the effect of changing a component’s
life-cycle management policy.

• It facilitates tools that can automatically generate implementations for
component homes.

Containers
A container is the environment in which components are embedded, including inter-
faces to standard services such as transactions and security. The container is layered
above the POA and offers ready-made life-cycle management policies for components.
Direct access to POA objects is not allowed, however, because the container layer
replaces the POA layer.

There is a two-way interaction between a container and its components:

• Component-invoking operations on the container A component can use
the services supplied by the container or invoke operations on a
Components::CCMContext object, which returns details about the context of the
current invocation.

• Container-invoking operations on the component Every component inher-
its from a base interface, Components::SessionComponent or
Components::EntityComponent, that defines callback operations for the con-
tainer to invoke.

A number of IDL interfaces are defined to mediate interaction between the container
and its embedded components—see the section “Container Programming
Environment,” later in this chapter, for details.

Component Categories
The CCM component categories are common patterns for implementing components.
An application developer must choose one of the following allowed component cate-
gories before starting to implement a component:

• Session
• Service
• Entity
• Process

The following sections describe the basic characteristics of each component category.

5 5 4 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 554

Session Components
A session component, which is similar to an EJB stateful session bean, has the follow-
ing basic characteristics:

• Transient state
• Transient identity
• Cannot participate in an OTS transaction

A session component is typically a temporary object that does some work on behalf of
a client. For example, an instance of a particular type of session component is often cre-
ated for each client that connects to the server. After a client disconnects from the
server, its session components are no longer needed and can be discarded.

Service Components
A service component, which is similar to an EJB stateless session bean, has the fol-
lowing basic characteristics:

• No state
• No identity
• Cannot participate in an OTS transaction

A service component—like a session component—is also a temporary object that does
some work on behalf of a client. However, a service component is particularly simple
because it has no state. It follows that a single service component can service any num-
ber of clients.

Entity Components
An entity component, which is similar to an EJB entity bean, has the following basic
characteristics:

• Persistent state
• Persistent identity, which is automatically visible to clients
• Can participate in an OTS transaction

An entity component can be used to represent data stored in a database. For example,
objects such as customers, products for sale, and so on, could be modelled as entity
components. The component container has to manage the entity component’s state,
loading and saving it as necessary.

Process Components
A process component has the following basic characteristics:

• Persistent state
• Persistent identity, which is not automatically visible to clients
• Can participate in an OTS transaction

The main difference between an entity component and a process component is the
accessibility of the component identity. A process component does not expose its iden-
tity to clients.

B a s i c A r c h i t e c t u r e 5 5 5

16 0672318121 CH13 6/20/01 5:39 PM Page 555

A process component is used to represent business processes, such as buying or selling
items, where the state of the process needs to be stored persistently or the process has
to participate in a distributed transaction. In cases where neither persistence nor dis-
tributed transactions are needed, however, a session component can be used instead.

Defining IDL for Components
The first step in developing a component server is to define the components and their
associated component homes, using extended IDL. Extended IDL is equivalent to ordi-
nary IDL augmented by syntax that defines components and component homes.
Component and component home definitions are introduced by the component and
home IDL keywords, respectively.

There is a close relationship between components and IDL interfaces. In fact, compo-
nent and component home definitions are mapped to ordinary IDL, equivalent IDL, as
an intermediate step in the compilation of extended IDL. This compilation process is
illustrated in Figure 13.2.

5 5 6 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Extended IDL
…
component Foo … ;
…
interface FooHome … ;

Equivalent IDL

Skeleton Code

…
interface Foo … ;
…
interface FooHome … ;

IDL
Compiler-Generated

Figure 13.2

Compilation of extended IDL.

Figure 13.2 shows that under IDL compilation the extended IDL is transformed first to
equivalent IDL, and then skeleton code is generated from the equivalent IDL. The fol-
lowing sections define the extended IDL syntax for declaring components and compo-
nent homes. The mapping of the extended IDL to equivalent IDL is also presented.

16 0672318121 CH13 6/20/01 5:39 PM Page 556

Basic Component Declarations
Basic components are subject to a number of restrictions:

• Only attribute declarations can appear in the body of a component declaration.
• No other ports can be declared in a basic component (see the section “Extended

Components,” later in this chapter, for details about ports).
• A basic component cannot inherit from other components.

The following subsections describe the syntax of basic components, within the limits
of these restrictions, and the mapping to equivalent IDL.

Basic Component Syntax
In extended IDL, basic components have the syntax shown in Listing 13.1.

Listing 13.1 Syntax for Basic Component Declarations
//IDL
component component_name [supports interface1, interface2, ...]
{

[attribute_declarations]
};

The optional supports clause is followed by a comma-separated list of ordinary inter-
face names, interface1, interface2, and so on. The body of the basic component
optionally can contain attribute c declarations.

Extended Attribute Syntax
The syntax of attributes is extended by the CCM to allow attributes to raise CORBA
user exceptions. This new syntax is made available both in extended IDL and in ordi-
nary IDL.

Writable attributes have the following IDL syntax:

attribute attr_name [getRaises (excG1, excG2, ...)]
[setRaises (excS1, excS2, ...)] ;

The optional getRaises clause specifies the list of CORBA user exceptions that can be
raised when the attribute is read. The optional setRaises clause specifies the list of
CORBA user exceptions that can be raised when the attribute is written.

Read-only attributes have the following IDL syntax:

readonly attribute attr_name [getRaises (excG1, excG2, ...)] ;

Only the getRaises clause can appear in a readonly attribute declaration.

Component Example
Consider the RecycleBroker::WasteItem IDL interface that was introduced in the
Recycle Broker application from Chapter 3, “A Sample CORBA System.” To imple-
ment the WasteItem IDL interface in the CCM, you could declare a component,
RecycleBroker::WasteItemC, as shown in Listing 13.2.

D e f i n i n g I D L f o r C o m p o n e n t s 5 5 7

16 0672318121 CH13 6/20/01 5:39 PM Page 557

Listing 13.2 Declaration of the WasteItemC Component
//IDL
#include “RecycleBroker.idl”

// Re-open the ‘RecycleBroker’ module...
module RecyleBroker {

...
// Use extended IDL syntax to declare a component.
component WasteItemC supports WasteItem { };
...

};

The WasteItemC component inherits all of the operations, attributes, and definitions
from the WasteItem IDL interface.

You can also declare attributes in the body of the component. Typically, such attributes
are used for configuration or initialization of the component.

Mapping to Equivalent IDL
The syntax for components, previously shown in Listing 13.1, is mapped to equivalent
IDL as shown in Listing 13.3.

Listing 13.3 Equivalent IDL for Basic Component Declarations
//IDL
interface component_name : Components::CCMObject, interface1, interface2, ...
{

[attribute_declarations]
};

For example, the result of mapping the RecycleBroker::WasteItemC component to
equivalent IDL is shown in Listing 13.4.

Listing 13.4 Equivalent IDL for the WasteItemC Component
//IDL
#include “RecycleBroker.idl”

module RecycleBroker {
...
// Equivalent interface for ‘WasteItemC’ component
interface WasteItemC : Components::CCMObject, WasteItem { };
...

};

Basic Component Home Declarations
The purpose of a component home is to manage a particular component type. Instances
of the managed component type are created and destroyed using the component home.
Some component homes also provide search operations to find components.

5 5 8 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 558

There are two kinds of component home, as follows:

• Keyfull component homes are associated with a primary key. A primary key is
a long-lived, unique identifier for components that are stored persistently.

• Keyless component homes are not associated with a primary key.

Primary keys typically are derived from a database key or keys. Although not the same
thing, there is an implicit connection between object IDs and primary keys. The con-
tainer implicitly defines a private map between object IDs and primary keys.

A primary key is declared as a value type in IDL, subject to the following constraints:

• It is declared as a valuetype that inherits from Components::PrimaryKeyBase.
• All state members must be public.
• There must be at least one state member.
• None of the state members can be object references, nor can any of the state

members be data types that contain object references.

The following sections describe the syntax of component homes, both keyfull and key-
less, and the mapping to equivalent IDL.

Basic Component Home Syntax
In extended IDL, basic component homes have the syntax shown in Listing 13.5.

Listing 13.5 Syntax for Basic Component Home Declarations
//IDL
home home_name [: base_home_name]

manages component_name
[primaryKey key_type]

{
[factory_declarations]
[finder_declarations]
[operation_declarations]
[attribute declarations]

};

The header of a component home must always specify the component type,
component_name, that it manages and can optionally specify inheritance from another
home, base_home_name, and use of a primary key, key_type.

The body of a component home optionally can contain factory declarations, finder dec-
larations, and ordinary attribute and operation declarations. The factory and finder dec-
laration syntax is presented in the next section.

Factory and Finder Operation Syntax
Factory operations have the following IDL syntax:

factory factory_name(param1, param2, ...) [raises (exc1, exc2, ...)] ;

D e f i n i n g I D L f o r C o m p o n e n t s 5 5 9

16 0672318121 CH13 6/20/01 5:39 PM Page 559

The syntax is similar to that of an ordinary IDL operation except that the keyword,
factory, appears in place of a return type. The return type of the factory operation is
implicitly defined to be the component type managed by the component home.

Finder operations have the following IDL syntax:

finder finder_name(param1, param2, ...) [raises (exc1, exc2, ...)] ;

The return type of the finder operation is implicitly defined to be the component type
managed by the component home.

Example of a Keyless Component Home
A keyless component home is one that omits a primaryKey clause in its declaration. It
is used to manage components that belong to the session, service, or process compo-
nent category.

Consider the RecycleBroker::Buying IDL interface that was introduced in the
Recycle Broker application from Chapter 3. A component, BuyingC, and component
home, BuyingCH, can be declared for the Buying IDL interface, as shown in
Listing 13.6.

Listing 13.6 Declaration of the BuyingCH Keyless Component Home
//IDL
#include “RecycleBroker.idl”

// Re-open the ‘RecycleBroker’ module...
module RecyleBroker {

...
// Use extended IDL syntax to declare the ‘BuyingC’ component.
component BuyingC supports Buying { };

// Use extended IDL syntax to declare the ‘BuyingCH’ component home.
home BuyingCH manages BuyingC
{

// Implicitly defined factory operation:
// factory create();

// Explicitly defined operations:
factory create_from_initial_data(

KeyType branch_id
);

};
...

};

A keyless component home always has one implicitly defined factory operation, fac-
tory create(), which takes no arguments.

5 6 0 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 560

The factory operation, create_from_initial_data(), initializes the state of the
BuyingC component with the identity of the ACME Recycling branch where the items
are bought, branch_id.

Example of a Keyfull Component Home
A keyfull component home is one that includes a primaryKey clause in its declaration
and is used to manage components that belong to the entity component category.

Consider the RecycleBroker::WasteItemC component defined in Listing 13.2. A key-
less component home, WasteItemCH, can be declared that manages WasteItemC com-
ponents, as shown in Listing 13.7.

Listing 13.7 Declaration of the WasteItemCH Keyfull Component Home
//IDL
#include “RecycleBroker.idl”

// Re-open the ‘RecycleBroker’ module...
module RecyleBroker {

...
// Declaration of the primary key type ‘PrimKeyType’
valuetype PrimKeyType : Components::PrimaryKeyBase {

public KeyType k;
};

// Forward declaration of WasteItemC component.
component WasteItemC;

// Extended IDL declaration of keyfull component home ‘WasteItemCH’
home WasteItemCH manages WasteItemC

primaryKey PrimKeyType
{

// Implicitly defined factory/finder operations:
// factory create(in PrimKeyType key)
// raises (Components::DuplicateKeyValue, Components::InvalidKey);
// finder find_by_primary_key(in PrimKeyType key)
// raises (Components::UnknownKeyValue, Components::InvalidKey);

// Explicitly defined operations:
factory create_from_details(in WasteItemDetailsFull details)

raises (Components::DuplicateKeyValue, Components::InvalidKey);

WasteItemIdSeq find_by_waste(in WasteType waste)
raises (NotFound);

WasteItemIdSeq find_by_branch(in KeyType branch_id)

D e f i n i n g I D L f o r C o m p o n e n t s 5 6 1

16 0672318121 CH13 6/20/01 5:39 PM Page 561

raises (NotFound);
WasteItemIdSeq find_all();

WasteItemDetailsSeq get_details(in WasteItemIdSeq id_seq)
raises (NotFound);

};
...

};

A primary key type, RecycleBroker::PrimKeyType, is defined as a value type with a
single public member, k, which is of RecycleBroker::KeyType type (a typedef of
CORBA::Long).

The WasteItemC component can be declared as a forward reference in advance of the
full definition, as shown.

A component home, WasteItemCH, is declared that manages WasteItemC components
and uses PrimKeyType as its primary key type.

A keyfull component home always has an implicitly defined factory operation,
factory create(in PrimKeyType key) in this instance, and an implicitly defined
finder operation, finder find_by_primary_key(in PrimKeyType key) in this
instance.

The body of the component home, WasteItemCH, contains a number of explicit opera-
tion definitions. The factory operation, create_from_details(), creates a WasteItemC
component whose state is initialized with a WasteItemDetails struct.

A number of operations—find_by_waste(), find_by_branch(), and find_all()—
are declared that search for WasteItemC components. These operations are not finder
operations. In the interests of efficiency, they are declared, instead, as ordinary opera-
tions that return a WasteItemId sequence (CORBA::Long sequence).

Given a WasteItemId, a client can choose to retrieve the corresponding WasteItemC
component reference at any time. The client can wrap the WasteItemId in a
PrimKeyType value type and call the implicit finder find_by_primary_key() opera-
tion.

Mapping Keyless Component Homes to Equivalent IDL
Consider a general keyless component home, as shown in Listing 13.8.

Listing 13.8 General Form of a Keyless Component Home
//IDL
home home_name manages component_name
{

[explicit_declarations]
};

This is mapped to equivalent IDL as shown in Listing 13.9.

5 6 2 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Listing 13.7 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 562

Listing 13.9 Equivalent IDL for Keyless Component Home Declarations
//IDL
interface home_nameImplicit : Components::KeylessCCMHome
{

component_name create();
};
interface home_nameExplicit : Components::CCMHome
{

[mapped_explicit_declarations]
};
interface home_name : home_nameImplicit, home_nameExplicit { };

Explicit declarations are mapped as follows:

• Ordinary operations and attributes are unchanged.
• For factory and finder operations, the factory and finder keywords are

replaced by component_name.

For example, the result of mapping the RecycleBroker::BuyingCH component home,
Listing 13.6, to equivalent IDL is shown in Listing 13.10.

Listing 13.10 Equivalent IDL for RecycleBroker::BuyingCH Component
Home
//IDL
#include “RecycleBroker.idl”

module RecycleBroker {
...
interface BuyingCHImplicit : Components::KeylessCCMHome
{

BuyingC create();
};
interface BuyingCHExplicit : Components::CCMHome
{

BuyingC create_from_initial_data(
KeyType branch_id

);
};
interface BuyingCH

: BuyingCHExplicit, BuyingCHImplicit { };
...

};

Mapping Keyfull Component Homes to Equivalent IDL
Consider a general keyfull component home, as shown in Listing 13.11.

D e f i n i n g I D L f o r C o m p o n e n t s 5 6 3

16 0672318121 CH13 6/20/01 5:39 PM Page 563

Listing 13.11 General Form of a Keyfull Component Home
//IDL
home home_name manages component_name

primaryKey key_type
{

[explicit_declarations]
};

This is mapped to equivalent IDL as shown in Listing 13.12.

Listing 13.12 Equivalent IDL for Keyfull Component Home Declarations
//IDL
interface home_nameImplicit
{

component_name create(in key_type key)
raises (Components::DuplicateKeyValue, Components::InvalidKey);

component_name find_by_primary_key(in key_type key)
raises (Components::UnknownKeyValue, Components::InvalidKey);

void remove(in key_type key)
raises (Components::UnknownKeyValue, Components::InvalidKey);

key_type get_primary_key(in component_name comp);
};
interface home_nameExplicit : Components::CCMHome
{

[mapped_explicit_declarations]
};
interface home_name : home_nameImplicit, home_nameExplicit { };

Explicit declarations are mapped as follows:

• Ordinary operations and attributes are unchanged.
• For factory and finder operations, the factory and finder keywords are

replaced by component_name.

For example, the result of mapping the RecycleBroker::WasteItemCH component
home, Listing 13.7, to equivalent IDL is shown in Listing 13.13.

Listing 13.13 Equivalent IDL for RecycleBroker::WasteItemCH
Component Home
//IDL
#include “RecycleBroker.idl”

module RecycleBroker {
...
interface WasteItemCHImplicit {

5 6 4 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 564

WasteItemC create(in PrimKeyType key)
raises (Components::DuplicateKeyValue, Components::InvalidKey);

WasteItemC find_by_primary_key(in PrimKeyType key)
raises (Components::UnknownKeyValue, Components::InvalidKey);

void remove(in PrimKeyType key)
raises (Components::UnknownKeyValue, Components::InvalidKey);

PrimKeyType get_primary_key(in WasteItemC comp);
};
interface WasteItemCHExplicit : Components::CCMHome
{

WasteItemC create_from_details(in WasteItemDetailsFull details)
raises (Components::DuplicateKeyValue, Components::InvalidKey);

WasteItemIdSeq find_by_waste(in WasteType waste)
raises (NotFound);
WasteItemIdSeq find_by_branch(in KeyType branch_id)
raises (NotFound);
WasteItemIdSeq find_all();

WasteItemDetailsSeq get_details(in WasteItemIdSeq id_seq)
raises (NotFound);

};
interface WasteItemCH : WasteItemCHExplicit, WasteItemCHImplicit { };
...

};

Component Home Inheritance
Extended IDL supports inheritance between component homes, subject to the follow-
ing restrictions:

• Single inheritance only.
• For basic components, the component type, CType, managed by the base and

derived component homes must be identical.
• The primary key type, KType, declared by the base and derived component

homes (if any) must be identical.

Figure 13.3 illustrates the rules of component home inheritance. A single component
type, CType, is managed both by the base component home, HomeBase, and the derived
component home, HomeDeriv. Both HomeBase and HomeDeriv use an identical primary
key type, KType.

D e f i n i n g I D L f o r C o m p o n e n t s 5 6 5

Listing 13.13 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 565

Figure 13.3

Component home inheritance.

A special case of component home inheritance arises when the base component home,
HomeBase, declares a primary key but the derived component, HomeDeriv, does not. For
example:

//IDL
component CType supports CIntf { };

// Primary key, KType, explicitly declared.
home HomeBase manages CType primaryKey KType { };

// Primary key, KType, implicitly declared because of inheritance.
home HomeDeriv : HomeBase manages CType { };

In this case, HomeDeriv becomes implicitly associated with the KType primary key, and
HomeDeriv is treated as if the primaryKey KType clause is part of the component home
declaration. Therefore, HomeDeriv is mapped to equivalent IDL in the same way as a
keyfull component home.

Recycle Broker Example
Consider how to re-engineer the Recycle Broker application from Chapter 3 so that it
is implemented using the CCM. The re-engineered application should be backward
compatible with old recycle broker clients. This imposes the constraint that the new
application must be usable by component-unaware clients.

Listing 13.14, which depends on the definitions appearing in Listing 3.1, shows the
extra IDL that is needed to define the recycle broker components and component
homes.

Listing 13.14 Recycle Broker Component IDL Declarations
//IDL
#include <components.idl>
#include “RecycleBroker.idl”

5 6 6 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

home HomeDeriv

component CType

primaryKey KType

home HomeBase

manages

manages

16 0672318121 CH13 6/20/01 5:39 PM Page 566

module RecycleBroker {

valuetype PrimKeyType : Components::PrimaryKeyBase {
public KeyType k;

};

component CustomerC supports Customer { };
home CustomerCH manages CustomerC

primaryKey PrimKeyType
{

factory create_from_details(in CustomerDetailsFull details)
raises (Components::DuplicateKeyValue, Components::InvalidKey);

CustomerIdSeq find_by_name(in NameType name)
raises (NotFound);

};

component WasteItemC supports WasteItem { };
home WasteItemCH manages WasteItemC

primaryKey PrimKeyType
{

factory create_from_details(in WasteItemDetailsFull details)
raises (Components::DuplicateKeyValue, Components::InvalidKey);

WasteItemIdSeq find_by_waste(in WasteType waste)
raises (NotFound);
WasteItemIdSeq find_by_branch(in KeyType branch_id)
raises (NotFound);
WasteItemIdSeq find_all();

WasteItemDetailsSeq get_details(in WasteItemIdSeq id_seq)
raises (NotFound);

};

component CustomerAdminC supports CustomerAdmin { };
home CustomerAdminCH manages CustomerAdminC
{

factory create_from_initial_data(
CORBA::Boolean hasAdminPrivileges,
KeyType branch_id

);
};

component WasteItemAdminC supports WasteItemAdmin { };
home WasteItemAdminCH manages WasteItemAdminC
{

factory create_from_initial_data(

D e f i n i n g I D L f o r C o m p o n e n t s 5 6 7

Listing 13.14 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 567

CORBA::Boolean hasAdminPrivileges,
KeyType branch_id,
KeyType customer_id

);
};

component OfficeAdminC supports OfficeAdmin { };
home OfficeAdminCH manages OfficeAdminC { };

component BrowsingC supports Browsing { };
home BrowsingCH manages BrowsingC
{

factory create_from_initial_data(
KeyType branch_id

);
};

component SellingC supports Selling { };
home SellingCH manages SellingC
{

factory create_from_initial_data(
KeyType branch_id

);
};

component BuyingC supports Buying { };
home BuyingCH manages BuyingC
{

factory create_from_initial_data(
KeyType branch_id

);
};

component HeadOfficeC supports HeadOffice { };
home HeadOfficeCH manages HeadOfficeC
{

factory create_from_initial_data(
string address,
KeyType branch_id

);
};

component BranchOfficeC supports BranchOffice { };
home BranchOfficeCH manages BranchOfficeC
{

factory create_from_initial_data(
string address,

5 6 8 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Listing 13.14 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 568

KeyType branch_id
);

};
};

The component definitions follow a simple pattern. For every interface, IntfName,
appearing in the original recycle broker IDL, there is a corresponding IntfNameC com-
ponent type that supports IntfName.

The CustomerCH and WasteItemCH component homes, which manage CustomerC and
WasteItemC, respectively, are declared with primary keys. This makes sense because
both customers and waste items are long-lived entities that are held in persistent stor-
age.

The remaining component homes are declared without primary keys.

Generating Component Skeletons
After defining your application’s components and component homes in extended IDL,
the next step is to put the extended IDL through an IDL compiler to generate the com-
ponent skeletons.

However, the process of compiling extended IDL is more involved than compiling ordi-
nary IDL. The aim at this stage is to generate a considerable proportion of the imple-
mentation code. The developer, therefore, has to make some choices to specify what
sort of implementation should be generated.

Figure 13.4 shows a schematic depiction of the compilation process. The extended IDL
and some extra information, the implementation definition, are supplied to the IDL
compiler, which then generates component skeleton code.

G e n e r a t i n g C o m p o n e n t S k e l e t o n s 5 6 9

Listing 13.14 continued

Extended IDL Implementation
Definition

Skeleton Code

compilation

Figure 13.4

Compiling extended IDL.

16 0672318121 CH13 6/20/01 5:39 PM Page 569

There are two possible approaches to providing implementation definitions to an
extended IDL compiler:

• Using Component Implementation Definition Language (CIDL) The
CCM defines a special language, CIDL, for defining the implementation of
components and component homes. The CIDL is an extension of Persistent
State Definition Language (PSDL), which is used by the CORBA Persistent
State Service.
The CIDL is tightly integrated with the persistent state service and enables var-
ious operations on a component home to be delegated to the persistent state
service.

• Custom or proprietary approaches Although at the time of this writing
there are no commercially available implementations of the CCM, it seems
likely that container providers will support alternative persistence mechanisms,
in addition to the persistent state service.
Proprietary approaches might enable you to specify implementation definitions
using a graphical tool or XML instead of using CIDL.
There is also likely to be a requirement to enable developers to customize com-
ponent home implementations. This requires the specification of a new API.
Currently, however, this kind of API is not specified as part of the CORBA
standard.

The details of the CIDL lie beyond the scope of this chapter.

Apart from information about persistence, the most basic aspect of implementation
definition is the choice of component category for the components. At compile time,
you have to choose one of the categories—session, service, entity, or process—for the
component. The choice is constrained by the kind of home that manages the compo-
nent, as follows:

• Keyless component home The managed component can belong to the ses-
sion, service, or process component category.

• Keyfull component home The managed component can belong only to the
entity component category.

Implementing Components
The result of passing your component definitions to an extended IDL compiler is a set
of partially generated classes, the executor classes. An executor is essentially a servant
class with extra conditions imposed on it to make it fit into the CCM programming
framework.

The class that implements a component is a component executor.

When implementing components, it is important to distinguish between container API
types because the API type determines which interfaces are used to communicate with
the container. There are two component API types:

5 7 0 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 570

• Session API Type applies to the session and service component categories. The
relevant IDL interfaces in this case are Components::Basic::SessionContext
and Components::Basic::SessionComponent. See “Components IDL Module”
later in this chapter.

• Entity API Type applies to the entity and process component categories. The
relevant IDL interfaces in this case are Components::Basic::EntityContext
and Components::Basic::EntityComponent. See “Components IDL Module”
later in this chapter.

The following sections give examples of how to implement components using each of
the container API types.

Implementing Session and Service Components
Session and service objects belong to the same container API type, the session API
type, which implies that the programming environment is similar for both. The main
distinction between them is a semantic one: Session objects can assume that their oper-
ations are always invoked by the same client, so that it is all right to store client-
specific state. On the other hand, a service object can have its operation invoked by
several different clients, so it is not possible for it to store client-specific state.

The example in this section is based on the RecycleBroker::BuyingC component,
which belongs to the session category. Listing 13.15 and Listing 13.16 give the decla-
ration of the BuyingCImpl executor class, which implements the BuyingC component.

Listing 13.15 C++ Declaration of the BuyingCImpl Executor Class
//C++
// Class: RecycleBroker_BuyingCImpl
// A POA servant which implements of the RecycleBroker::BuyingC interface
//
#ifndef RECYCLEBROKER_BUYINGCIMPL_H_
#define RECYCLEBROKER_BUYINGCIMPL_H_

#include “recyclebrokerequivS.hh”
#include “components_basic.hh”

class RecycleBroker_BuyingCImpl :
public virtual POA_RecycleBroker::BuyingC,
Components::Basic::SessionComponent

{
// ...(details not shown)

private:
// Private member variables
Components::Basic::SessionContext_var m_ctxV;
//...

};

#endif

I m p l e m e n t i n g C o m p o n e n t s 5 7 1

16 0672318121 CH13 6/20/01 5:39 PM Page 571

Listing 13.16 Java Declaration of the BuyingCImpl Executor Class
//Java
package RecycleBroker;

public class BuyingCImpl
implements

RecycleBroker.BuyingCOperations,
Components.Basic.SessionComponent

{
//...(details shown later)

}

In this example, the C++ executor is implemented using the inheritance approach
(Listing 13.15), and the Java executor is implemented using the delegation (tie)
approach (Listing 13.16).

The BuyingCImpl executor exhibits the usual inheritance relationship you would
expect if you were implementing a regular servant class, deriving from
POA_RecycleBroker::BuyingC in C++ and from RecycleBroker.BuyingCOperations
in Java.

However, the BuyingCImpl executor must also implement the SessionComponent
methods, which requires that BuyingCImpl derives from
Components::Basic::SessionComponent in C++ and
Components.Basic.SessionComponent in Java. This inheritance relationship is
unusual because SessionComponent is declared in IDL as a local interface, which
implies that no POA classes are generated for it (see the section “Components IDL
Module,” later in this chapter).

Listing 13.17 and Listing 13.18 show the implementation of the BuyingCImpl executor
class in C++ and Java, respectively.

Listing 13.17 C++ Implementation of the BuyingCImpl Executor Class
//C++

#include <stdlib.h>
#include “RecycleBroker_BuyingCImpl.h”

//----------
// Constructors and Destructors
//----------
//...

//----------
// Inherited from ‘Components::CCMObject’
// (remote methods)
//----------
CORBA::IRObject_ptr

5 7 2 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 572

RecycleBroker_BuyingCImpl::get_component_def()
throw (CORBA::SystemException)
{

// GENERATED IMPLEMENTATION (not shown)
}

Components::CCMHome_ptr
RecycleBroker_BuyingCImpl::get_ccm_home()
throw (CORBA::SystemException)
{

// GENERATED IMPLEMENTATION (not shown)
}

Components::PrimaryKeyBase*
RecycleBroker_BuyingCImpl::get_primary_key()
throw (CORBA::SystemException, Components::NoKeyAvailable)
{

throw Components::NoKeyAvailable();
}

void
RecycleBroker_BuyingCImpl::configuration_complete()
throw (CORBA::SystemException, Components::InvalidConfiguration)
{

// Actions to do at the end of config phase
}

void
RecycleBroker_BuyingCImpl::remove()
throw (CORBA::SystemException)
{

// GENERATED IMPLEMENTATION (not shown)
}

//----------
// Inherited from ‘Components::Basic::SessionComponent’
// (local methods)
//----------
void
RecycleBroker_BuyingCImpl::set_session_context(

Components::Basic::SessionContext_ptr ctx
)
{

m_ctxV = Components::Basic::SessionContext::_duplicate(ctx);
}

void
RecycleBroker_BuyingCImpl::ccm_activate()

I m p l e m e n t i n g C o m p o n e n t s 5 7 3

Listing 13.17 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 573

{
// Actions to do when component is activated by Container

}

void
RecycleBroker_BuyingCImpl::ccm_passivate()
{

// Actions to do when component is passivated by Container
}

void
RecycleBroker_BuyingCImpl::ccm_remove()
{

// Actions to do immediately before the component is deleted.
}

//----------
// Inherited from the ‘RecycleBroker::Buying’ interface
// (remote methods)
//----------
//...

Listing 13.18 Java Implementation of the BuyingCImpl Executor Class
//Java
package RecycleBroker;

public class BuyingCImpl
implements

RecycleBroker. BuyingCOperations,
Components.Basic.SessionComponent

{
//----------
// Constructors
//----------
//...

//----------
// Inherited from ‘Components.CCMObjectOperations’
// (remote methods)
//----------
public org.omg.CORBA.IRObject get_component_def()
{

// GENERATED IMPLEMENTATION (not shown)
}

public Components.CCMHome get_ccm_home()
{

5 7 4 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Listing 13.17 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 574

// GENERATED IMPLEMENTATION (not shown)
}

public Components.PrimaryKeyBase get_primary_key()
throws Components.NoKeyAvailable

{
throw new Components.NoKeyAvailable();

}

public void configuration_complete()
throws Components.InvalidConfiguration

{
// Actions to do at the end of config phase

}

public void remove()
{

// GENERATED IMPLEMENTATION (not shown)
}

//----------
// Inherited from ‘Components.Basic.SessionComponent’
// (local methods)
//----------
public void set_session_context(

Components.Basic.SessionContext ctx
) throws Components.Basic.CCMException
{

m_ctx = ctx;
}

public void ccm_activate() throws Components.Basic.CCMException
{

// Actions to do when component is activated by Container
}

public void ccm_passivate() throws Components.Basic.CCMException
{

// Actions to do when component is passivated by Container
}

public void ccm_remove() throws Components.Basic.CCMException
{

// Actions to do immediately before the component is deleted.
}

//----------
// Inherited from the ‘RecycleBroker.BuyingOperations’

I m p l e m e n t i n g C o m p o n e n t s 5 7 5

Listing 13.18 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 575

// (remote methods)
//----------
//...

// Private member variables
private Components.Basic.SessionContext m_ctx;

}

From a client’s point of view, the important operations are the ones inherited from the
RecycleBroker::Buying IDL interface. These operations are implemented in much
the same way as for a normal servant.

The additional methods that have to be implemented for a session component derive
from two different interfaces:

• The Components::CCMObject interface
• The Components::Basic::SessionComponent local interface

The methods associated with these interfaces are explained in the following sections.

Components::CCMObject Operations
The get_component_def() method returns a reference to a CORBA::ComponentDef
object in the interface repository that provides a meta-description of the component.
See Chapter 22, “Interface Repository.” The body of this method is generated by the
extended IDL compiler.

The get_ccm_home() method returns a reference to the home object associated with
this component. The body of this method is generated by the extended IDL compiler.

The get_primary_key() method does not apply to session objects, because a session
object has no primary key. Hence, the Components::NoKeyAvailable exception is
thrown.

The configuration_complete() method is called by the container when the configu-
ration phase is finished.

The remove() method is used to destroy a component. The body of this method is gen-
erated by the extended IDL compiler.

Components::Basic::SessionComponent Operations
The set_session_context() method is called by the container as the component is
being initialized, to pass a Components::Basic::SessionContext reference to the
component. The component can use the SessionContext object to communicate with
the container. Here, the SessionContext reference is cached in a member variable.

The ccm_activate() method is called by the container to inform the component that
it has been activated. After a component has been activated, it is liable to receive invo-
cations.

5 7 6 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Listing 13.18 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 576

The ccm_passivate() method is called by the container to inform the component that
it is no longer activated. A passivated component does not receive any invocations.

The cmm_remove() method is called by the container to inform the component that it is
about to be deleted. At this point the component should clean up the resources it is
using, if any.

Implementing Entity and Process Components
Entity and process objects belong to the same container API type, the entity API type,
which implies that the programming environment is similar for both. The main dis-
tinction between them relates to the use of primary keys. Entity objects use primary
keys and expose their primary keys to clients—they are managed by keyfull compo-
nent homes. Process objects can use primary keys, but their keys are not exposed to
clients—they are managed by keyless component homes.

The example in this section is based on the RecycleBroker::WasteItemC component,
which belongs to the entity category. Listing 13.19 and Listing 13.20 give the declara-
tion of the WasteItemCImpl executor class, which implements the WasteItemC compo-
nent.

Listing 13.19 C++ Declaration of the WasteItemCImpl Executor Class
//C++
#ifndef RECYCLEBROKER_WASTEITEMCIMPL_H_
#define RECYCLEBROKER_WASTEITEMCIMPL_H_

#include “recyclebrokerequivS.hh”
#include “components_basic.hh”

class RecycleBroker_WasteItemCImpl :
public virtual POA_RecycleBroker::WasteItemC,
Components::Basic::SessionComponent

{
// ...(details not shown)

private:
// Private member variables
RecycleBroker::PrimKeyType_var m_keyV;
Components::Basic::EntityContext_var m_ctxV;
//...

};

#endif

Listing 13.20 Java Declaration of the WasteItemCImpl Executor Class
//Java
package RecycleBroker;

public class WasteItemCImpl
implements

I m p l e m e n t i n g C o m p o n e n t s 5 7 7

16 0672318121 CH13 6/20/01 5:39 PM Page 577

RecycleBroker.WasteItemCOperations,
Components.Basic.EntityComponent

{
//...(details shown later)

}

In this example, the C++ executor is implemented using the inheritance approach
(Listing 13.19), and the Java executor is implemented using the delegation (tie)
approach (Listing 13.20).

The WasteItemCImpl executor exhibits the usual inheritance relationship you would
expect if you were implementing a regular servant class, deriving from
POA_RecycleBroker::WasteItemC in C++ and from
RecycleBroker.WasteItemCOperations in Java.

However, the WasteItemCImpl executor must also implement the EntityComponent
methods, which requires that WasteItemCImpl derives from
Components::Basic::EntityComponent in C++ and
Components.Basic.EntityComponent in Java. This inheritance relationship is unusual
because EntityComponent is declared in IDL as a local interface, which implies that
no POA classes are generated for it (see the “Components IDL Module” section).

Listing 13.21 and Listing 13.22 show the implementation of the WasteItemCImpl
executor class in C++ and Java, respectively.

Listing 13.21 C++ Implementation of the WasteItemCImpl Executor Class
//C++
#include <stdlib.h>
#include “RecycleBroker_WasteItemCImpl.h”

//----------
// Constructors and Destructors
//----------
//...

//----------
// Inherited from ‘Components::CCMObject’
// (remote methods)
//----------
CORBA::IRObject_ptr
RecycleBroker_WasteItemCImpl::get_component_def()
throw (CORBA::SystemException)
{

// GENERATED IMPLEMENTATION (not shown)
}

Components::CCMHome_ptr
RecycleBroker_WasteItemCImpl::get_ccm_home()

5 7 8 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Listing 13.20 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 578

throw (CORBA::SystemException)
{

// GENERATED IMPLEMENTATION (not shown)
}

Components::PrimaryKeyBase*
RecycleBroker_WasteItemCImpl::get_primary_key()
throw (CORBA::SystemException, Components::NoKeyAvailable)
{

return RecycleBroker::PrimKeyType::_duplicate(m_keyV);
}

void
RecycleBroker_WasteItemCImpl::configuration_complete()
throw (CORBA::SystemException, Components::InvalidConfiguration)
{

// Actions to do at the end of config phase
}

void
RecycleBroker_WasteItemCImpl::remove()
throw (CORBA::SystemException)
{

// GENERATED IMPLEMENTATION (not shown)
}

//----------
// Inherited from ‘Components::Basic::EntityComponent’
// (local methods)
//----------
void
set_entity_context(

Components::Basic::EntityContext_ptr ctx
)
{

m_ctxV = Components::Basic::EntityContext::_duplicate(ctx);
}

void
unset_entity_context()
{

m_ctxV = Components::Basic::EntityContext::_nil();
}

void
ccm_activate()
{

I m p l e m e n t i n g C o m p o n e n t s 5 7 9

Listing 13.21 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 579

// Actions to do when component is activated by Container
}

void
ccm_load()
{

// Load the component’s state from persistent storage,
// if necessary.

}

void
ccm_store()
{

// Save the component’s state to persistent storage,
// if necessary.

}

void
ccm_passivate()
{

// Actions to do when component is passivated by Container
}

void
ccm_remove()
{

// Actions to do immediately before the component is deleted.
}

//----------
// Inherited from the ‘RecycleBroker::Buying’ interface
// (remote methods)
//----------
//...

Listing 13.22 Java Implementation of the WasteItemCImpl Executor Class
//Java
package RecycleBroker;

public class WasteItemCImpl
implements

RecycleBroker.WasteItemCOperations,
Components.Basic.EntityComponent

{
//----------
// Constructors

5 8 0 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Listing 13.21 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 580

//----------
//...

//----------
// Inherited from ‘Components.CCMObjectOperations’
// (remote methods)
//----------
public CORBA.IRObject get_component_def()
{

// GENERATED IMPLEMENTATION (not shown)
}

public Components.CCMHome get_ccm_home()
{

// GENERATED IMPLEMENTATION (not shown)
}

public Components.PrimaryKeyBase get_primary_key()
throws Components.NoKeyAvailable

{
return m_key;

}

public void configuration_complete()
throws Components.InvalidConfiguration

{
// Actions to do at the end of config phase

}

public void remove()
{

// GENERATED IMPLEMENTATION (not shown)
}

//----------
// Inherited from ’Components.Basic.EntityComponent’
// (local methods)
//----------
public void set_entity_context(

Components.Basic.EntityContext ctx
) throws Components.Basic.CCMException
{

m_ctx = ctx;
}

public void unset_entity_context()
throws Components.Basic.CCMException

I m p l e m e n t i n g C o m p o n e n t s 5 8 1

Listing 13.22 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 581

{
m_ctx = null;

}

public void ccm_activate()
throws Components.Basic.CCMException

{
// Actions to do when component is activated by Container

}

public void ccm_load()
throws Components.Basic.CCMException

{
// Load the component’s state from persistent storage,
// if necessary.

}

public void ccm_store()
throws Components.Basic.CCMException

{
// Save the component’s state to persistent storage,
// if necessary.

}

public void ccm_passivate()
throws Components.Basic.CCMException

{
// Actions to do when component is passivated by Container

}

public void ccm_remove()
throws Components.Basic.CCMException

{
// Actions to do immediately before the component is deleted.

}

//----------
// Inherited from the ‘RecycleBroker.BuyingOperations’
// (remote methods)
//----------
//...

// Private member variables
private RecycleBroker.PrimKeyType m_key;
private Components.Basic.EntityContext m_ctx;

}

5 8 2 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Listing 13.22 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 582

From a client’s point of view, the important operations are the ones inherited from the
RecycleBroker::WasteItem IDL interface. These operations are implemented in
much the same way as for a normal servant.

The additional methods that have to be implemented for a session component derive
from two different interfaces:

• The Components::CCMObject interface
• The Components::Basic::EntityComponent local interface

The methods associated with these interfaces are explained in the following sections.

Components::CCMObject Operations
The get_component_def(), get_ccm_home(), configuration_complete(), and
remove() methods have already been discussed, in the section “Implementing Session
and Service Components.”

The get_primary_key() method returns a previously cached primary key, stored as
m_keyV in C++ and m_key in Java. The primary key is typically cached by the execu-
tor’s constructor.

Components::Basic::EntityComponent Operations
The set_entity_context() method is called by the container as the component is
being initialized to pass a Components::Basic::EntityContext reference to the com-
ponent. The component can use the EntityContext object to communicate with the
container. Here, the EntityContext reference is cached in a member variable.

The unset_entity_context() method is called by the container to nullify the cached
EntityContext object. It is called just before a component instance is deleted.

The ccm_activate() method is called by the container to inform the component that
it has been activated. After a component has been activated, it is liable to receive invo-
cations.

The ccm_load() method is called by the container to tell the entity object to load its
state from the underlying persistent storage. The container calls ccm_load() after
ccm_activate().

The ccm_save() method is called by the container to tell the entity object to save its
state to the underlying persistent storage. The container calls ccm_save() before
ccm_passivate().

The ccm_passivate() method is called by the container to inform the component that
it is no longer activated. A passivated component does not receive any invocations.

The ccm_remove() method is called by the container to inform the component that it is
about to be deleted. At that point the component should clean up the resources it is
using, if any.

I m p l e m e n t i n g C o m p o n e n t s 5 8 3

16 0672318121 CH13 6/20/01 5:39 PM Page 583

Implementing Component Homes
For every component type, there is at least one component home type to implement.
The class that implements a component home is a component home executor. In the
CCM, most of the code for the component home executor is generated automatically
using CIDL or some proprietary persistence mechanism. Alternatively, you might
choose to customize the persistence mechanism by providing the implementation code
yourself.

The examples in this section show how to implement both keyless and keyfull compo-
nent homes (as defined in “Basic Component Home Declarations,” earlier in this chap-
ter).

Customizable Persistence
In the examples that follow, it is assumed that your container vendor allows you to cus-
tomize the persistence mechanism for your components. However, customizing com-
ponent persistence requires an API that is not specified by CORBA. Therefore, in the
following examples some placeholders are used to indicate where a proprietary API
would probably be needed (assuming you are not using CIDL). Table 13.1 lists the API
placeholders that are used in the code examples.

Table 13.1 Placeholders for a Proprietary API

Functionality API Placeholder

Registering a new REGISTER_EXECUTOR_WITH_CONTAINER()

component
Making a component GET_OBJ_REF_FROM_KEY()

reference
Instantiating an existing Component constructor
component

Registering a New Component
The API for registering a new component is needed when implementing factory meth-
ods for a component home. A new component is typically created as follows:

1. The developer creates and initializes a new component executor.
2. The developer registers the new component executor with the container.
3. The container activates the component whenever it is needed.

The second step requires a special API, represented by the
REGISTER_EXECUTOR_WITH_CONTAINER() placeholder, to tell the container that a new
component has been created.

Making a Component Reference
The API for making a component reference is needed when implementing finder meth-
ods for a component home. A finder method is typically implemented as follows:

5 8 4 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 584

1. The persistent storage is searched, using the criteria specified in the finder’s
parameters.

2. If a component is found, a component reference is generated from the compo-
nent’s primary key.

3. The component reference is returned to the caller.

The second step requires a special API, represented by the GET_OBJ_REF_FROM_KEY()
placeholder, to convert the primary key to its corresponding component references. The
mapping between primary keys and component references is managed by the container.

Instantiating an Existing Component
When a client invocation is directed at an existing component that is not in active mem-
ory, the container retrieves the component state from persistent storage and creates an
instance of the component executor.

To create an instance of the component executor, the container must invoke one of the
component executor’s constructors. However, the form of this constructor is not spec-
ified by CORBA. To support customized persistence, the form of this constructor
would have to be specified as part of a proprietary API.

Implementing Keyless Component Homes
Session, service, and process components are managed by keyless component homes.
This has a direct bearing on the interfaces supported by the component home and
method that have to be implemented.

The example in this section is based on the RecycleBroker::BuyingCH component
home, which is a keyless component home that manages a session component.
Listing 13.23 and Listing 13.24 give the declaration of the BuyingCHImpl executor
class, which implements the BuyingCH component home.

Listing 13.23 C++ Declaration of the BuyingCHImpl Executor Class
//C++
#ifndef RECYCLEBROKER_BUYINGCHIMPL_H_
#define RECYCLEBROKER_BUYINGCHIMPL_H_

#include “recyclebrokerequivS.hh”
#include “components_basicS.hh”

class RecycleBroker_BuyingCHImpl :
public virtual POA_RecycleBroker::BuyingCH

{
// ...(details not shown)

};

#endif

I m p l e m e n t i n g C o m p o n e n t H o m e s 5 8 5

16 0672318121 CH13 6/20/01 5:39 PM Page 585

Listing 13.24 Java Declaration of the BuyingCHImpl Executor Class
//Java
package RecycleBroker;

public class BuyingCHImpl
implements RecycleBroker.BuyingCHOperations

{
//...(details shown later)

}

In this example, the C++ executor is implemented using the inheritance approach
(Listing 13.23), and the Java executor is implemented using the delegation (tie)
approach (Listing 13.24).

The BuyingCHImpl executor exhibits the usual inheritance relationship you would
expect if you were implementing a regular servant class, deriving from
POA_RecycleBroker::BuyingCH in C++ and from
RecycleBroker.BuyingCHOperations in Java.

Listing 13.25 and Listing 13.26 show the implementation of the BuyingCHImpl execu-
tor class in C++ and Java, respectively.

Listing 13.25 C++ Implementation of the BuyingCHImpl Executor Class
//C++
#include <stdlib.h>
#include “RecycleBroker_BuyingCHImpl.h”

//----------
// Constructors and Destructors
//----------
//...

//----------
// Inherited from the ‘Components::CCMHome’ interface
//----------
CORBA::IRObject_ptr
RecycleBroker_BuyingCHImpl::get_component_def()
throw (CORBA::SystemException)
{

// GENERATED IMPLEMENTATION (not shown)
}

CORBA::IRObject_ptr
RecycleBroker_BuyingCHImpl::get_home_def()
throw (CORBA::SystemException)
{

5 8 6 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 586

// GENERATED IMPLEMENTATION (not shown)
}

void
RecycleBroker_BuyingCHImpl::remove_component(

Components::CCMObject_ptr comp
) throw (CORBA::SystemException)
{

// GENERATED IMPLEMENTATION (not shown)
}

//----------
// Inherited from the ‘Components::KeylessCCMHome’ interface
//----------
Components::CCMObject_ptr
RecycleBroker_BuyingCHImpl::create_component()
throw (CORBA::SystemException)
{

throw CORBA::NO_IMPLEMENT();
}

//----------
// Inherited from the ‘BuyingCHImplicit’ interface
//----------
RecycleBroker::BuyingC_ptr
RecycleBroker_BuyingCHImpl::create()
throw (CORBA::SystemException)
{

throw CORBA::NO_IMPLEMENT();
}

//----------
// Inherited from the ‘BuyingCHExplicit’ interface
//----------
RecycleBroker::BuyingC_ptr
RecycleBroker_BuyingCHImpl::create_from_initial_data(

RecycleBroker::KeyType branch_id
) throw (CORBA::SystemException)
{

RecycleBroker_BuyingCImpl* _new_executor =
new RecycleBroker_BuyingCImpl(branch_id);

RecycleBroker::BuyingC_ptr _new_ref =
REGISTER_EXECUTOR_WITH_CONTAINER(_new_executor);

return _new_ref;
}

I m p l e m e n t i n g C o m p o n e n t H o m e s 5 8 7

Listing 13.25 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 587

Listing 13.26 Java Implementation of the BuyingCHImpl Executor Class
//Java
package RecycleBroker;

public class BuyingCHImpl
implements RecycleBroker.BuyingCHOperations

{
//----------
// Constructors
//----------
//...

//----------
// Inherited from ‘Components.CCMHomeOperations’
//----------
public CORBA.IRObject get_component_def()
{

// GENERATED IMPLEMENTATION (not shown)
}

public CORBA.IRObject get_home_def()
{

// GENERATED IMPLEMENTATION (not shown)
}

public void remove_component(
Components.CCMObject comp

)
{

// GENERATED IMPLEMENTATION (not shown)
}

//----------
// Inherited from ‘Components.KeylessCCMHomeOperations’
//----------
public Components.CCMObject create_component()
{

throw new org.omg.CORBA.NO_IMPLEMENT();
}

//----------
// Inherited from ‘BuyingCHImplicitOperations’
//----------
public RecycleBroker.BuyingC create()
{

throw new org.omg.CORBA.NO_IMPLEMENT();
}

//----------
// Inherited from ‘BuyingCHExplicitOperations’

5 8 8 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 588

//----------
public RecycleBroker.BuyingC create_from_initial_data(

int branch_id
)
{

RecycleBroker_BuyingCImpl _new_executor =
new RecycleBroker_BuyingCImpl(branch_id);

RecycleBroker.BuyingC _new_ref =
REGISTER_EXECUTOR_WITH_CONTAINER(_new_executor);

return _new_ref;
}

}

The methods that have to be implemented for the RecycleBroker::BuyingCH compo-
nent home derive from the following interfaces:

• Components::CCMHome

• Components::KeylessCCMHome

• RecycleBroker::BuyingCHImplicit

• RecycleBroker::BuyingCHExplicit

The methods associated with these interfaces are explained in the following sections.

The Components::CCMHome Interface
The get_component_def() method returns a reference to a CORBA::ComponentDef
object in the interface repository that provides a meta-description of the component.
See Chapter 22 for more information. The body of this method is generated by the
extended IDL compiler.

The get_home_def() method returns a reference to a CORBA::HomeDef object in the
interface repository that provides a meta-description of the component. The body of
this method is generated by the extended IDL compiler.

The remove_component() method is used to destroy a component permanently. In the
case of entity components, this might involve removing the component from the under-
lying persistent storage. The body of this method is generated by the extended IDL
compiler.

The Components::KeylessCCMHome Interface
The create_component() method can be used to create a new component with a
default state. In this example, it is not implemented.

The RecycleBroker::BuyingCHImplicit Interface
The create() method can be used to create a new component with a default state. It
has the same effect as create_component() but has a different return type. In this
example, it is not implemented.

I m p l e m e n t i n g C o m p o n e n t H o m e s 5 8 9

Listing 13.26 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 589

The RecycleBroker::BuyingCHExplicit Interface
The create_from_initial_data() method creates a new BuyingC component, initial-
izing it with the branch_id argument.

Implementing Keyfull Component Homes
Entity components are managed by keyfull component homes. This implies that key-
full component homes use a primary key to track the identity of the components they
manage.

The example in this section is based on the RecycleBroker::WasteItemCH component
home, which is a keyfull component home that manages a WasteItemC entity compo-
nent. Listing 13.27 and Listing 13.28 give the declaration of the WasteItemCHImpl
executor class, which implements the WasteItemCH component home.

Listing 13.27 C++ Declaration of the WasteItemCHImpl Executor Class
//C++
#ifndef RECYCLEBROKER_WASTEITEMCHIMPL_H_
#define RECYCLEBROKER_WASTEITEMCHIMPL_H_

#include “recyclebrokerequivS.hh”
#include “components_basicS.hh”

class RecycleBroker_WasteItemCHImpl :
public virtual POA_RecycleBroker::WasteItemCH

{
// ...(details not shown)

};

#endif

Listing 13.28 Java Declaration of the WasteItemCHImpl Executor Class
//Java
package RecycleBroker;

public class WasteItemCHImpl
implements RecycleBroker.WasteItemCHOperations
{

// ...(details shown later)
}

In this example, the C++ executor is implemented using the inheritance approach
(Listing 13.27), and the Java executor is implemented using the delegation (tie)
approach (Listing 13.28).

The WasteItemCHImpl executor exhibits the usual inheritance relationship you would
expect if you were implementing a regular servant class, deriving from
POA_RecycleBroker::WasteItemCH in C++ and from
RecycleBroker.WasteItemCHOperations in Java.

5 9 0 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 590

Listing 13.29 and Listing 13.30 show the implementation of the WasteItemCHImpl
executor class in C++ and Java, respectively.

Listing 13.29 C++ Implementation of the WasteItemCHImpl Executor
Class
//C++
#include <stdlib.h>
#include “RecycleBroker_WasteItemCHImpl.h”

//----------
// Constructors and Destructors
//----------
//...

//----------
// Inherited from the ‘Components::CCMHome’ interface
//----------
CORBA::IRObject_ptr
RecycleBroker_WasteItemCHImpl::get_component_def()
throw (CORBA::SystemException)
{

// GENERATED IMPLEMENTATION (not shown)
}

CORBA::IRObject_ptr
RecycleBroker_WasteItemCHImpl::get_home_def()
throw (CORBA::SystemException)
{

// GENERATED IMPLEMENTATION (not shown)
}

void
RecycleBroker_WasteItemCHImpl::remove_component(

Components::CCMObject_ptr comp
) throw (CORBA::SystemException)
{

// GENERATED IMPLEMENTATION (not shown)
}

//----------
// Inherited from the ‘WasteItemCHImplicit’ interface
//----------
RecycleBroker::WasteItemC_ptr
RecycleBroker_WasteItemCHImpl::create(

RecycleBroker::PrimKeyType* key
) throw (CORBA::SystemException,

Components::DuplicateKeyValue,
Components::InvalidKey)

{

I m p l e m e n t i n g C o m p o n e n t H o m e s 5 9 1

16 0672318121 CH13 6/20/01 5:39 PM Page 591

throw CORBA::NO_IMPLEMENT();
}

RecycleBroker::WasteItemC_ptr
RecycleBroker_WasteItemCHImpl::find_by_primary_key(

RecycleBroker::PrimKeyType* key
) throw (CORBA::SystemException,

Components::UnknownKeyValue,
Components::InvalidKey)

{
// Search database for component identified by ‘key’...
//...

// If ‘key’ is found...
RecycleBroker::WasteItemC_ptr _new_ref =

GET_OBJ_REF_FROM_KEY(key);

return _new_ref;
}

void
RecycleBroker_WasteItemCHImpl::remove(

RecycleBroker::PrimKeyType* key
) throw (CORBA::SystemException,

Components::UnknownKeyValue,
Components::InvalidKey)

{
// GENERATED IMPLEMENTATION (not shown)

}

RecycleBroker::PrimKeyType*
RecycleBroker_WasteItemCHImpl::get_primary_key(

RecycleBroker::WasteItemC_ptr comp
) throw (CORBA::SystemException)
{

// GENERATED IMPLEMENTATION (not shown)
}

//----------
// Inherited from the ‘WasteItemCHExplicit’ interface
//----------
RecycleBroker::WasteItemC_ptr
RecycleBroker_WasteItemCHImpl::create_from_details(

const RecycleBroker::WasteItemDetailsFull& details
) throw (CORBA::SystemException,

Components::DuplicateKeyValue,
Components::InvalidKey)

{

5 9 2 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Listing 13.29 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 592

// Implicitly create new primary key and DB record.
// Primary key is available via the ‘get_primary_key()’ op.
RecycleBroker_WasteItemCImpl* _new_executor =

new RecycleBroker_WasteItemCImpl(details);

RecycleBroker::WasteItemC_ptr _new_ref =
REGISTER_EXECUTOR_WITH_CONTAINER(_new_executor);

return _new_ref;
}

RecycleBroker::WasteItemIdSeq*
RecycleBroker_WasteItemCHImpl::find_by_waste(

RecycleBroker::WasteType waste
) throw (CORBA::SystemException, RecycleBroker::NotFound)
{

// Search database for a list of waste items that match the
// given ‘waste’ WasteType. Return a sequence of waste IDs.
//...

}

RecycleBroker::WasteItemIdSeq*
RecycleBroker_WasteItemCHImpl::find_by_branch(

RecycleBroker::KeyType branch_id
) throw (CORBA::SystemException, RecycleBroker::NotFound)
{

// Search database for a list of waste items that match the
// given ‘branch_id’. Return a sequence of waste IDs.
//...

}

RecycleBroker::WasteItemIdSeq*
RecycleBroker_WasteItemCHImpl::find_all()
throw (CORBA::SystemException)
{

// Return all waste IDs.
//...

}

RecycleBroker::WasteItemDetailsSeq*
RecycleBroker_WasteItemCHImpl::get_details(

const RecycleBroker::WasteItemIdSeq & id_seq
) throw (CORBA::SystemException, RecycleBroker::NotFound)
{

// Convert the list of waste IDs, ‘id_seq’, into a list of
// ‘WasteItemDetails’ structs.
//...

}

I m p l e m e n t i n g C o m p o n e n t H o m e s 5 9 3

Listing 13.29 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 593

Listing 13.30 Java Implementation of the WasteItemCHImpl Executor
Class
//Java
package RecycleBroker;

public class WasteItemCHImpl
implements RecycleBroker.WasteItemCHOperations
{

//----------
// Inherited from ‘Components.CCMHomeOperations’
//----------
public CORBA.IRObject get_component_def()
{

// GENERATED IMPLEMENTATION (not shown)
}

public CORBA.IRObject get_home_def()
{

// GENERATED IMPLEMENTATION (not shown)
}

public void remove_component(
Components.CCMObject comp

)
{

// GENERATED IMPLEMENTATION (not shown)
}

//----------
// Inherited from ‘WasteItemCHImplicitOperations’
//----------
public RecycleBroker.WasteItemC create(

RecycleBroker.PrimKeyType key
) throws Components.DuplicateKeyValue, Components.InvalidKey
{

throw new org.omg.CORBA.NO_IMPLEMENT();
}

public RecycleBroker.WasteItemC find_by_primary_key(
RecycleBroker.PrimKeyType key

) throws Components.UnknownKeyValue, Components.InvalidKey
{

// Search database for component identified by ‘key’...
//...

// If ‘key’ is found...
RecycleBroker.WasteItemC _new_ref =

GET_OBJ_REF_FROM_KEY(key);

5 9 4 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 594

return _new_ref;
}

public void remove(
RecycleBroker.PrimKeyType key

) throws Components.UnknownKeyValue, Components.InvalidKey
{

// GENERATED IMPLEMENTATION (not shown)
}

public RecycleBroker.PrimKeyType get_primary_key(
RecycleBroker.WasteItemC comp

)
{

// GENERATED IMPLEMENTATION (not shown)
}

//----------
// Inherited from ‘WasteItemCHExplicitOperations’
//----------
public RecycleBroker.WasteItemC create_from_details(

RecycleBroker.WasteItemDetailsFull details
) throws Components.DuplicateKeyValue, Components.InvalidKey
{

// Implicitly create new primary key and DB record.
// Primary key is available via the ‘get_primary_key()’ op.
RecycleBroker.WasteItemCImpl _new_executor =

new RecycleBroker.WasteItemCImpl(details);

RecycleBroker.WasteItemC _new_ref =
REGISTER_EXECUTOR_WITH_CONTAINER(_new_executor);

return _new_ref;
}

public int[] find_by_waste(
RecycleBroker.WasteType waste

) throws RecycleBroker.NotFound
{

// Search database for a list of waste items that match the
// given ‘waste’ WasteType. Return a sequence of waste IDs.
//...

}

public int[] find_by_branch(
int branch_id

I m p l e m e n t i n g C o m p o n e n t H o m e s 5 9 5

Listing 13.30 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 595

) throws RecycleBroker.NotFound
{

// Search database for a list of waste items that match the
// given ‘branch_id’. Return a sequence of waste IDs.
//...

}

public int[] find_all()
{

// Return all waste IDs.
//...

}

public RecycleBroker.WasteItemDetails[] get_details(
int[] id_seq

) throws RecycleBroker.NotFound
{

// Convert the list of waste IDs, ‘id_seq’, into a list of
// ‘WasteItemDetails’ structs.
//...

}
}

The methods that have to be implemented for the RecycleBroker::WasteItemCH com-
ponent home derive from the following interfaces:

• Components::CCMHome

• RecycleBroker::WasteItemCHImplicit

• RecycleBroker::WasteItemCHExplicit

The methods associated with these interfaces are explained in the following sections.

The Components::CCMHome Interface
The get_component_def(), get_home_def(), and remove_component() methods are
discussed in “Implementing Keyless Component Homes,” earlier in this chapter.

The RecycleBroker::WasteItemCHImplicit Interface
The create() method can be used to create a new component with a default state,
given just a primary key. In this example, it is not implemented.

The find_by_primary_key() method finds a component given its primary key. It is not
necessary to instantiate the component executor in the course of this operation. The
container can automatically instantiate a component executor when it is needed.

The remove() method permanently destroys the component corresponding to the given
primary key. This might involve removing the component from the underlying persis-
tent storage as well. The body of this method is generated by the extended IDL com-
piler.

5 9 6 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Listing 13.30 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 596

The RecycleBroker::WasteItemCHExplicit Interface
The create_from_details() method creates a new WasteItemC component, initializ-
ing it with the details argument. The WasteItemCImpl constructor chooses the new
primary key for the component and makes the primary key available using the
WasteItemC::get_primary_key() member function in C++ and the
WasteItemC.get_primary_key() method in Java.

The various find methods—find_by_waste(), find_by_branch(), and find_all()—
are not declared as finder operations because they return a waste ID, an integer, instead
of a component reference.

The find methods are meant to be used in conjunction with the get_details() method,
which returns the WasteItemDetails structs associated with the waste IDs.

A waste ID can also be converted into a primary key by using it to set the k member
of a RecycleBroker::PrimKeyType value. The corresponding WasteItemC component
can then be found by passing the primary key to the find_by_primary_key() operation.

Implementing Clients
There are two kinds of clients that can use a component-based server:

• Component-unaware clients are ordinary CORBA clients that have no knowl-
edge of the CCM. These clients have no special features beyond the ordinary
capability to invoke remote operations and attributes on IDL interfaces.
A component-unaware client treats a component reference like an ordinary
object reference and sees just the operations and attributes defined on the basic
component’s supported IDL interfaces.
Clients obtain component references in the same way as they obtain object ref-
erences—using the naming service or the trading service or by reading a
stringified object reference.

• Component-aware clients are those that are aware of the CCM. In practice,
this means that they are linked with stub code generated from extended IDL
that includes definitions of the components and their component homes. For
example, to use the RecycleBroker components directly, clients would have to
link against stub code generated from Listing 13.14.
A component-aware client can see the following aspects of a basic component:

• The operations and attributes defined on the supported IDL interfaces.
• The attributes defined in the body of the component (although these

attributes are typically meant to be used only by the CCM configuration
mechanism).

• The operations on the associated component home equivalent interface,
including factory and finder operations.

Component-aware clients have the option of obtaining component references
using a component home. The clients can obtain a component home reference,
for example, from the naming service or the trading service. The clients can
then use the component home’s factory and finder operations to obtain compo-
nent references.

I m p l e m e n t i n g C l i e n t s 5 9 7

16 0672318121 CH13 6/20/01 5:39 PM Page 597

In general, component-unaware clients are perfectly adequate for most applications.
The CCM is primarily a framework to facilitate server development—there is no need
to expose the inner workings of the CCM to clients. Therefore, it is preferable to design
your component-based servers so that they are usable by component-unaware clients.

Container Programming Environment
The container provides a complete programming environment for components.
Interfaces are provided that enable components to interact with the container and
obtain access to the container’s services. The container programming environment is
shown schematically in Figure 13.5.

5 9 8 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Component

Container
Callback

Internal

External

Figure 13.5

The container programming environment.

A component interacts with the world through the following sets of interfaces:

• External interfaces define the service provided to clients. The external inter-
faces include the component’s supported interfaces (and facets, in the case of
extended components) and are remotely accessible.
For example, the RecycleBroker::BuyingC component supports the external
interface, RecycleBroker::Buying.

• Internal interfaces provide access to container services. Using internal inter-
faces, a component can access security, transactions, and other services.

• Callback interfaces are used by the container to notify the component of
important events and to supply the component with data.

In the case of the Recycle Broker application, the external interfaces are the IDL inter-
faces defined in the RecycleBroker module from Chapter 3. The following sections
provide further details about internal interfaces and callback interfaces.

Internal Interfaces
A component accesses a container’s internal interfaces using a CCM context.
Listing 13.31 shows the definition of the CCM context interfaces: CCMContext (the
base interface), SessionContext, and EntityContext.

Listing 13.31 Internal Interfaces Defined in the Components IDL Module
//IDL
...
module Components {

...

16 0672318121 CH13 6/20/01 5:39 PM Page 598

module Basic {
...
typedef SecurityLevel2::Credentials Principal;
exception IllegalState { };

local interface CCMContext {
Principal get_caller_principal();
CCMHome get_CCM_home();
boolean get_rollback_only()

raises (IllegalState);
Transaction::UserTransaction get_user_transaction()

raises (IllegalState);
boolean is_caller_in_role (in string role);
void set_rollback_only()

raises (IllegalState);
};

local interface SessionContext : CCMContext {
Object get_CCM_object()

raises (IllegalState);
};

local interface EntityContext : CCMContext {
Object get_CCM_object ()

raises (IllegalState);
PrimaryKeyBase get_primary_key ()

raises (IllegalState);
};
...

};
...

};

The CCMContext is a base interface for SessionContext and EntityContext. The
CCMContext interface provides hooks to other internal interfaces and defines operations
for some frequently used features.

The SessionContext interface belongs to the session API type. It is used by session
and service components. When a component is instantiated, the container passes a new
SessionContext object to the component using the set_session_reference() oper-
ation.

The EntityContext interface belongs to the entity API type. It is used by entity and
process components. When a component is instantiated, the container passes a new
EntityContext object to the component using the set_entity_reference() opera-
tion.

C o n t a i n e r P r o g r a m m i n g E n v i r o n m e n t 5 9 9

Listing 13.31 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 599

Transactional components can use the CCMContext::get_user_transaction() opera-
tion to get a reference to a UserTransaction object. The UserTransaction interface is
an internal interface that controls transactions—see the section “Components IDL
Module.”

Callback Interfaces
A container communicates with a component using the component’s callback inter-
faces. Listing 13.32 shows the definition of the callback interfaces:
EnterpriseComponent (the base interface), SessionComponent, and
EntityComponent.

Listing 13.32 Callback Interfaces Defined in the Components IDL Module
//IDL
...
module Components {

...
module Basic {

...
local interface EnterpriseComponent {};

local interface SessionComponent : EnterpriseComponent {
void set_session_context (in SessionContext ctx)

raises (CCMException);
void ccm_activate()

raises (CCMException);
void ccm_passivate()

raises (CCMException);
void ccm_remove ()

raises (CCMException);
};

local interface EntityComponent : EnterpriseComponent {
void set_entity_context (in EntityContext ctx)

raises (CCMException);
void unset_entity_context ()

raises (CCMException);
void ccm_activate ()

raises (CCMException);
void ccm_load ()

raises (CCMException);
void ccm_store ()

raises (CCMException);
void ccm_passivate ()

raises (CCMException);
void ccm_remove ()

6 0 0 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 600

raises (CCMException);
};

local interface SessionSynchronization {
void after_begin ()

raises (CCMException);
void before_completion ()

raises (CCMException);
void after_completion (

in boolean committed)
raises (CCMException);

};
...

};
...

};

EnterpriseComponent is a base interface for SessionComponent and
EntityComponent.

The SessionComponent interface belongs to the session API type and must be imple-
mented by all session and service components. For example, see the section
“Implementing Session and Service Components,” earlier in this chapter.

The EntityComponent interface belongs to the entity API type and must be imple-
mented by all entity and process components. For example, see the section
“Implementing Entity and Process Components,” earlier in this chapter.

Transactional components optionally can implement the SessionSynchronization
interface to receive callbacks that notify the component when each phase of a transac-
tion occurs.

Extended Components
The extended level of the CCM adds a number of valuable features to components.
Keep in mind, however, that using these extra features can break compatibility with
EJB.

Extended components can expose a number of features to clients, collectively known
as ports. The following port types are supported by the component model:

• Facets declare IDL interfaces that are implemented by the component. This
gives you a way of grouping IDL interfaces together by associating them with a
particular component.

• Receptacles implicitly declare operations that enable you to register compo-
nent references with the component. This gives you a way of explicitly repre-
senting a “uses” relationship between two components.

E x t e n d e d C o m p o n e n t s 6 0 1

Listing 13.32 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 601

• Event sources implicitly declare operations that enable you to register event
consumers or event channels with the component. This enables you to express
the fact that a component emits or publishes events.

• Event sinks implicitly declare a new facet that accepts events from event
sources.

• Attributes are regular IDL attributes, which are also supported by basic com-
ponents.

The new port types are described in the following sections.

Facets and Receptacles
For basic components (and ordinary CORBA objects), the only relationship that can be
expressed directly in IDL is interface inheritance. However, there are many other rela-
tionships that could be expressed by expanding the IDL syntax.

Two new mechanisms are provided by extended components for expressing relation-
ships:

• Facets—This is a mechanism for grouping interfaces together. Interfaces often
can be grouped together because they offer closely related functionality or
because they present different views of the same underlying object. These inter-
faces are not necessarily related to each other by inheritance, however. Facets
offer a general way of grouping related interfaces.

• Receptacles—This is a mechanism for expressing the fact that one type of
component uses another type of component. Components frequently cache ref-
erences to other components whose operations they need to invoke on a regular
basis. Receptacles provide a way of expressing this “using” relationship
between component types.

Figure 13.6 shows extended components that offer facets and receptacles as part of
their external interface.

6 0 2 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Component Component

Receptacles Facets

simplex

multiplex

Equivalent Interfaces

Figure 13.6

Components offering facets and receptacles.

16 0672318121 CH13 6/20/01 5:39 PM Page 602

Every component has an equivalent interface, which includes the operations and attrib-
utes inherited from supported interfaces, attributes declared in the component body,
and a number of standard base interfaces. The equivalent interface is the only interface
exposed by basic components.

Extended components can also define facets, which are additional interfaces declared
by a provides clause in the component body. For example, the following component,
MyComponent, provides a single facet, MyFacet:

//IDL
interface MyIntf
{

// Operation and attribute definitions
};

interface MyFacetIntf
{

// Operation and attribute definitions
};

component MyComponent supports MyIntf {
provides MyFacetIntf MyFacet;

};

Support is provided for navigation between facets. Given a component reference, it is
possible to obtain any of the facet references and, given a facet reference, it is possible
to obtain the other facet references or the component reference.

Extended components can also define receptacles, which express the fact that the com-
ponent caches a particular type of object reference (see Figure 13.6). Receptacles are
declared by a uses clause in the component body. There are two kinds of receptacle:

• Simplex receptacles can be connected to a facet on a single component. A sin-
gle object reference can be cached in the receptacle.

• Multiplex receptacles can be connected to facets on many components. A list
of object references can be cached in the receptacle.

Event Sources and Event Sinks
Components often need the capability to notify each other of particular events and to
pass messages to each other in an asynchronous fashion. The CORBA events service
(see Chapter 14, “Events Service”) or the CORBA notification service is generally
used to support this kind of message passing between CORBA objects.

Extended components allow you to integrate the CORBA notification service into the
component model. You can express the fact that components send or receive events
directly in IDL. Components that send events can declare event sources, and compo-
nents that receive events can declare event sinks.

E x t e n d e d C o m p o n e n t s 6 0 3

16 0672318121 CH13 6/20/01 5:39 PM Page 603

The component event model has the following basic characteristics:

• The event model is layered on top of the CORBA notification service.
• Event sources are uncoupled from event sinks.
• The event model is a push model.

Figure 13.7 shows an example of a component with event sources that sends messages
to a number of components with event sinks.

6 0 4 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Component

Event sources

emitter

publisher

Component

Event sink

Event sink

Figure 13.7

Components offering event sources and event sinks.

On the left of Figure 13.7 is a component that exposes event sources, of which there
are two kinds:

• An emitter is an event source that can transmit events to a single event sink
only. It is declared with an emits clause in IDL.

• A publisher is an event source that can transmit events to multiple event sinks.
It is declared with a publishes clause in IDL.

The other components in Figure 13.7 expose event sinks. There is only one kind of
event sink, which is declared with a consumes clause in IDL. There is no restriction on
the number of event sources (emitters and publishers) that can connect to a single event
sink.

Development and Deployment Roles
The CCM is more than just a framework for developing components. It also attempts
to identify the stages along the way to reaching a working deployed application. A
number of roles are defined that represent each of these stages. For each role, it is pos-
sible to define a set of tasks and responsibilities. Full-featured implementations of the
CCM will provide specific tools for each role.

There are four principal roles in the CCM:

• Container provider
• Component implementor

16 0672318121 CH13 6/20/01 5:39 PM Page 604

• Component assembler
• Component deployer

These roles are discussed in the following sections.

Container Provider
A container provider is a vendor who provides the tools to deploy and run CORBA
components in a container, which is the environment in which components run.

The functionality offered by the container typically covers the following areas:

• The container API A set of interfaces provided by the container that enable
the component to interact with the container. There are two types of container
API: the session API type and the entity API type, as described in the section
“Implementing Components,” earlier in this chapter.

• Lifetime management The container provides configurable policies that
determine when a component is loaded into process memory and how long it
remains active once it is loaded.

• CORBA services The container must provide a basic set of services. In par-
ticular, naming, transactions, security, and event services are typically required.

• Assembly and deployment tools There are many aspects of a component
that are configurable. When assembling and deploying an application, the com-
ponents and the relationships between those components must be configured.
This is most likely to be done with the aid of proprietary graphical tools.

Component Implementor
A component implementor develops components or groups of components. The com-
ponent implementor might either be a third party who develops generic components
and offers them for sale. It also might be an application developer who develops com-
ponents for a particular application.

One of the aims of the CCM is to encourage modular software, so that an application
can be assembled from a mixture of ready-made, off-the-shelf components and cus-
tom-made application components.

A finished component is assembled as a component package, which consists of a
library file (C++) or class file (Java), together with its CORBA component descriptor.
A CORBA component descriptor is an XML file that contains information about the
supported interfaces and the services supported by the component. A CORBA compo-
nent descriptor uses .ccd as its file suffix.

Component Assembler
A component assembler uses a graphical tool to assemble and configure a set of
CORBA components and the relationships between them. The output from the assem-
bly step is an assembly archive, as shown in Figure 13.8.

D e v e l o p m e n t a n d D e p l o y m e n t R o l e s 6 0 5

16 0672318121 CH13 6/20/01 5:39 PM Page 605

Figure 13.8

Contents of a component assembly archive file.

The assembly archive contains the following elements:

• CORBA component archives Each CORBA component archive consists of
a component and its associated CORBA component descriptor.

• Component property files If you want to use the CCM configurator mecha-
nism, you can supply a component property file for each component to be con-
figured. A component property file uses .cpf as its file suffix.

• Component assembly descriptor This is an XML file that describes the
relationships between components and provides bootstrap information for each
component. For example, a component assembly descriptor can specify
whether a component is to be registered with the naming service and whether a
component should undergo a configuration phase at deployment time. A com-
ponent assembly descriptor uses .cad as its file suffix.

An assembly archive can be packaged in a compressed file (Zip file), known as an
assembly archive file, which uses .aar as its file suffix. When using a Zip file for the
archive, the .cad file should be placed in a directory called meta-inf within the
archive.

Component Deployer
A component deployer is responsible for loading components to one or more hosts
where CORBA containers are available. The component deployer takes an assembly
archive as input and decides how to distribute the components in the assembly across
the hosts.

All of the components in the assembly are bootstrapped in an orderly fashion during
the configuration phase. After the configuration phase is finished, the application is
ready to service requests.

Typically, a deployment tool is provided by the ORB vendor to help the component
deployer perform these tasks.

6 0 6 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Component
Archives

Component
Property Files

Component Assembly
Descriptor

ZIP
Files

CAR

CAR CAR CAR

CAR CAR CAR

16 0672318121 CH13 6/20/01 5:39 PM Page 606

Component Assembly and Deployment
A component assembler uses the proprietary tools provided with a container to assem-
ble and configure an application’s components. Typically, this affects both the compo-
nent deployment descriptors and the assembly descriptors.

Optionally, a component assembler can define component property files to configure
some of the components. The data values stored in a property file are used to initialize
the attributes of a component.

For example, consider the HeadOfficeC component with some attributes added to the
component body:

//IDL
#include <components.idl>
#include “RecycleBroker.idl”

module RecycleBroker {
...
component HeadOfficeC supports HeadOffice
{

attribute string office_location;
attribute boolean test_mode;

};
...

};

The office_location and test_mode attributes can be initialized from a component
property file, which contains a list of name-value pairs. Each name-value pair consist
of:

• Name The name of an IDL attribute.
• Value The value used to set the attribute.

The attribute types that can be configured in this way are limited to a particular subset
of IDL. The types can be any combination of structs, sequences, or simple types. The
simple type is one of the following: boolean, char, octet, double, float, short, long,
unsigned short, unsigned long, string, and stringified object references.

The container services can also be configured using the deployment descriptors. A
component assembler can specify the following policies for each component:

• Servant lifetime policies
• Transaction policies
• Security policies

These are the policies for basic components; they are discussed in more detail in the
following sections. The additional policies for extended components are not discussed
here.

C o m p o n e n t A s s e m b l y a n d D e p l o y m e n t 6 0 7

16 0672318121 CH13 6/20/01 5:39 PM Page 607

Servant Lifetime Policies
One of the key services provided by a container is the capability to manage component
lifetimes automatically. This is a fundamental service because it prevents servers from
running out of memory.

Components can be activated when they are needed (loaded from persistent storage, if
necessary) and then deactivated when they are no longer needed or if the server is run-
ning low on memory. Effectively, this provides a mechanism to swap objects into and
out of memory.

Underlying the container are a number of POA instances that manage component life-
times. The components themselves are implemented as servants, so the policies are
called servant lifetime policies. The following servant lifetime policies are supported:

• Method The component remains active only for the duration of a single oper-
ation request.

• Transaction The component is activated at the beginning of a transaction in
which the component takes part. The component remains active until the trans-
action completes (committed or rolled back).

• Component The component is activated in response to the first operation
request and remains active until the component itself explicitly requests passi-
vation.

• Container The component is activated in response to the first operation
request and remains active until the container decides to passivate it.

Transaction Policies
CORBA supports two alternative approaches to managing component transactions:

• Container-managed transactions Transactional behavior is determined by
specifying a transaction policy in the deployment descriptor. The container
manages transactions according to the specified policy.

• Self-managed transactions No transaction policy is specified in the deploy-
ment descriptor. A component implementor can write code to manage transac-
tions explicitly, using the CORBA transaction service.

Assuming that the component implementor chooses the container-managed transaction
model, the following transaction policies are available:

• NOT_SUPPORTED If the calling code is not associated with a transaction, the
invoked operation is not associated with a transaction either.
If the calling code is associated with a transaction, T1, the invoked operation
does not join in the transaction. The T1 transaction is suspended for the dura-
tion of the invocation.

• REQUIRED If the calling code is not associated with a transaction, the con-
tainer begins a new transaction, T2, and commits the T2 transaction at the end
of the invocation.

6 0 8 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 608

If the calling code is associated with a transaction, T1, the invoked operation
joins the transaction.

• SUPPORTS If the calling code is not associated with a transaction, the invoked
operation is not associated with a transaction either.
If the calling code is associated with a transaction, T1, the invoked operation
joins the transaction.

• REQUIRES_NEW If the calling code is not associated with a transaction, the
container begins a new transaction, T2, and commits the T2 transaction at the
end of the invocation.
If the calling code is associated with a transaction, T1, the container begins a
new transaction, T2, and commits the T2 transaction at the end of the invoca-
tion. The T1 transaction is suspended for the duration of the invocation.

• MANDATORY If the calling code is not associated with a transaction, the con-
tainer raises a CORBA::TRANSACTION_REQUIRED system exception.
If the calling code is associated with a transaction, T1, the invoked operation
joins the transaction.

• NEVER If the calling code is not associated with a transaction, the invoked
operation is not associated with a transaction either.
If the calling code is associated with a transaction, T1, the container raises a
CORBA::INVALID_TRANSACTION system exception.

Security Policies
Container security depends on an underlying implementation of the CORBA security
service. Some of the basic security features required by a container implementation are

• Privacy The transport of messages between client and server must be made
secure using encryption.

• Authentication It must be possible to establish positively the identity and
credentials of clients.

• Integrity There must be a way of ensuring that messages have not been tam-
pered with.

These are the basic features required of a CORBA security service implementation.

The deployment descriptor supports the notion of required rights for invoking opera-
tions on an IDL interface. It is possible to associate any number of required rights with
a particular operation.

An operation protected by required rights is invoked as follows in a secure environ-
ment:

1. When a client initially opens a secure connection to the server, the client is
authenticated by the server, establishing the client’s identity and credentials.

2. The client sends an encrypted request across the secure connection to invoke
the operation.

C o m p o n e n t A s s e m b l y a n d D e p l o y m e n t 6 0 9

16 0672318121 CH13 6/20/01 5:39 PM Page 609

3. Based on the client’s credentials, the server determines whether or not the
client has rights that match the operation’s required rights.

4. If the client has the required rights, the operation is invoked. Otherwise, an
error is returned.

Details of how a security service maps a client’s credentials to the required rights is left
as an implementation detail for the container provider.

Policy Constraints
Some policies are incompatible with one or more component categories. Constraints
are imposed on the policy choices, depending on whether a component is in the ses-
sion, service, entity, or process category.

Table 13.2 summarizes the constraints that affect lifetime and transaction policies for
each of the component categories.

Table 13.2 Policy Constraints Affecting Each Component Category

Component Servant Lifetime Transaction
Category Policies Policies

Session any none
Service method none
Entity any any
Process any any

No transaction policies can be defined for session or service components because oper-
ations on these components cannot participate in transactions. Effectively, these com-
ponents behave as if the NOT_SUPPORTED transaction policy is in force.

Summary
The CORBA specification makes components available on two levels of functionality.
This chapter focuses on the basic level, because of its compatibility with the EJB stan-
dard.

It is shown how the concept of a CORBA object is replaced by the equivalent concept
of a component managed by a component home and embedded in a container. A new
dialect of IDL, extended IDL, is defined that includes grammatical constructions for
components, introduced by the component and home keywords.

There are four fundamental categories of component: session, service, entity, and
process. The choice of component category has considerable influence on the compo-
nent’s implementation and life-cycle properties. For example, session and service com-
ponents are transient, whereas entity and process components typically are long lived.

Some important aspects of the CCM are touched on only briefly in this chapter—for
example, persistence integration, container services, and component assembly and
deployment.

6 1 0 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

16 0672318121 CH13 6/20/01 5:39 PM Page 610

Components IDL Module
Listing 13.33 is a partial listing of the Components IDL module, containing only
definitions and interfaces that are relevant to basic components.

Listing 13.33 Part of the Components IDL Module—Applicable to Basic
Components
//IDL
#ifndef _COMPONENTS_IDL_
#define _COMPONENTS_IDL_
//import ::CORBA
//import ::SecurityLevel2
//import ::CosPersistentState
//import ::PortableServer
//import ::CosNotification
//import ::CosNotifyChannelAdmin

// ADDED
#pragma prefix “omg.org”

#include <omg/orb.idl>

module Components {
typedef string FeatureName;
typedef sequence<FeatureName> NameList;
valuetype Cookie {

private sequence<octet> cookieValue;
};

exception InvalidName { };
exception InvalidConnection { };
exception ExceededConnectionLimit { };
exception AlreadyConnected { };
exception NoConnection { };
exception CookieRequired { };
exception DuplicateKeyValue { };
exception NoKeyAvailable { };
exception InvalidKey { };
exception UnknownKeyValue { };
exception BadEventType {

CORBA::RepositoryId expected_event_type;
};
exception HomeNotFound { };
exception WrongComponentType { };
exception InvalidConfiguration { };

valuetype ConnectionDescription {
public Cookie ck;

C o m p o n e n t s I D L M o d e l 6 1 1

16 0672318121 CH13 6/20/01 5:39 PM Page 611

public Object objref;
};

typedef sequence<ConnectionDescription> ConnectedDescriptions;

abstract valuetype PrimaryKeyBase { };

interface CCMObject; //forward reference

interface CCMHome {
CORBA::IRObject get_component_def ();
CORBA::IRObject get_home_def ();
void remove_component (in CCMObject comp);

};

interface KeylessCCMHome {
CCMObject create_component();

};

interface HomeFinder {
CCMHome find_home_by_component_type (

in CORBA::RepositoryId comp_repid)
raises (HomeNotFound);

CCMHome find_home_by_home_type (
in CORBA::RepositoryId home_repid)
raises (HomeNotFound);

CCMHome find_home_by_name (
in string home_name)
raises (HomeNotFound);

};

interface Configurator {
void configure (in CCMObject comp)

raises (WrongComponentType);
};

valuetype ConfigValue {
public FeatureName name;
public any value;

};

typedef sequence<ConfigValue> ConfigValues;

interface StandardConfigurator : Configurator {
void set_configuration (in ConfigValues descr);

};

6 1 2 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Listing 13.33 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 612

interface HomeConfiguration : CCMHome {
void set_configurator (in Configurator cfg);
void set_configuration_values (

in ConfigValues config);
void complete_component_configuration (in boolean b);
void disable_home_configuration();

};

interface CCMObject
//: Navigation, Receptacles, Events
// The preceding base interfaces are not needed
// for basic components.

{
CORBA::IRObject get_component_def ();
CCMHome get_ccm_home();
PrimaryKeyBase get_primary_key()

raises (NoKeyAvailable);
void configuration_complete()

raises (InvalidConfiguration);
void remove();

};

interface Enumeration {
boolean has_more_elements();
CCMObject next_element();

};

module Transaction {

typedef sequence<octet> TranToken;

exception NoTransaction { };
exception NotSupported { };
exception SystemError { };
exception Rollback { };
exception HeuristicMixed { };
exception HeuristicRollback { };
exception Security { };
exception InvalidToken { };

enum Status {
ACTIVE,
MARKED_ROLLBACK,
PREPARED,
COMMITTED,
ROLLED_BACK,
NO_TRANSACTION,

C o m p o n e n t s I D L M o d e l 6 1 3

Listing 13.33 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 613

PREPARING,
COMMITTING,
ROLLING_BACK

};

local interface UserTransaction {
void begin ()

raises (NotSupported, SystemError);
void commit ()

raises (Rollback, NoTransaction,
HeuristicMixed, HeuristicRollback,
Security, SystemError);

void rollback ()
raises (NoTransaction,
Security, SystemError);

void set_rollback_only ()
raises (NoTransaction, SystemError);

Status get_status()
raises (SystemError);

void set_timeout (in long to)
raises (SystemError);

TranToken suspend ()
raises (NoTransaction, SystemError);

void resume (in TranToken txtoken)
raises (InvalidToken, SystemError);

};
};

module Basic {

//typedef SecurityLevel2::Credentials Principal;

enum CCMExceptionReason {
SYSTEM_ERROR,
CREATE_ERROR,
REMOVE_ERROR,
DUPLICATE_KEY,
FIND_ERROR,
OBJECT_NOT_FOUND,
NO_SUCH_ENTITY

};

exception CCMException {
CCMExceptionReason reason;

};
exception IllegalState { };

6 1 4 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Listing 13.33 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 614

local interface CCMContext {
//Principal get_caller_principal();
CCMHome get_CCM_home();
boolean get_rollback_only()

raises (IllegalState);
Transaction::UserTransaction get_user_transaction()

raises (IllegalState);
boolean is_caller_in_role (in string role);
void set_rollback_only()

raises (IllegalState);
};

local interface EnterpriseComponent {};

local interface SessionContext : CCMContext {
Object get_CCM_object()

raises (IllegalState);
};

local interface SessionComponent : EnterpriseComponent {
void set_session_context (in SessionContext ctx)

raises (CCMException);
void ccm_activate()

raises (CCMException);
void ccm_passivate()

raises (CCMException);
void ccm_remove ()

raises (CCMException);
};

local interface SessionSynchronization {
void after_begin ()

raises (CCMException);
void before_completion ()

raises (CCMException);
void after_completion (

in boolean committed)
raises (CCMException);

};

local interface EntityContext : CCMContext {
Object get_CCM_object ()

raises (IllegalState);
PrimaryKeyBase get_primary_key ()

raises (IllegalState);
};

C o m p o n e n t s I D L M o d e l 6 1 5

Listing 13.33 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 615

local interface EntityComponent : EnterpriseComponent {
void set_entity_context (in EntityContext ctx)

raises (CCMException);
void unset_entity_context ()

raises (CCMException);
void ccm_activate ()

raises (CCMException);
void ccm_load ()

raises (CCMException);
void ccm_store ()

raises (CCMException);
void ccm_passivate ()

raises (CCMException);
void ccm_remove ()

raises (CCMException);
};

};

module Deployment {

enum AssemblyState {INACTIVE, INSERVICE};
exception UnknownImplId { };
exception InvalidLocation { };
exception InvalidAssembly { };

interface ComponentInstallation {
boolean install(

in string implUUID,
in string component_loc)

raises (InvalidLocation);
boolean replace(

in string implUUID,
in string component_loc)
raises (InvalidLocation);

boolean remove(in string implUUID)
raises (UnknownImplId);

};

interface Assembly {
boolean build();
boolean tear_down();
AssemblyState get_state();

};

interface AssemblyFactory {
Cookie create(in string assembly_loc)

raises (InvalidLocation);

6 1 6 C h a p t e r 1 3 : C O R B A C o m p o n e n t s

Listing 13.33 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 616

Assembly lookup(in Cookie c)
raises (InvalidAssembly);

boolean destroy(in Cookie c)
raises (InvalidAssembly);

};
};

};

#endif /* _COMPONENTS_IDL_ */

C o m p o n e n t s I D L M o d e l 6 1 7

Listing 13.33 continued

16 0672318121 CH13 6/20/01 5:39 PM Page 617

16 0672318121 CH13 6/20/01 5:39 PM Page 618

The Internet Inter-ORB
Protocol
The Internet Inter-ORB Protocol is a vendor-independent
communication protocol that was designed by the OMG to
facilitate the transfer of CORBA requests from one ORB to
another and, as such, is primarily focused on ORB-to-ORB
communication. This chapter discusses the IIOP protocol, as
well as the General Inter-ORB Protocol (GIOP) from which
IIOP is derived, from a CORBA developer’s perspective. The
lower-level details (such as header structures) of the specifica-
tions are actually relevant only to those designing and imple-
menting an ORB and are not of particular interest to CORBA
application developers.

GIOP: The Basis for IIOP
Because IIOP is actually a specialization of the General Inter-
ORB Protocol (GIOP), much of the behavior of IIOP is in fact
inherited from the more general GIOP protocol specification.
Thus it is appropriate to first discuss GIOP itself, after which
the IIOP-specific specializations to GIOP can be discussed.

First, some history. The CORBA 1.1 specification published in
late 1991 did not define enough of the low-level details that
were necessary for one ORB to communicate effectively with
another vendor’s ORB, leaving many details to be decided by
the various implementing vendors. Different vendors therefore
developed highly proprietary ways of communication, render-
ing their ORBs incompatible with each other. The details that
were needed to establish compatibility began to be furnished
with the publication of the CORBA 2.0 specification. There are
currently three versions of GIOP: 1.0, 1.1, and the latest, which
is 1.2. These versions correspond to the CORBA specification

C H A P T E R 1 4

Th
e
 In

te
rn

e
t In

te
r-O

R
B

 P
ro

to
co

l

17 0672318121 CH14 6/21/01 8:06 AM Page 619

revisions 2.0, 2.1, and 2.3, respectively. (So far, CORBA specifications 2.4 and beyond
have not included revisions to the GIOP specification.)

As an interoperability protocol, GIOP sits on top of the fourth layer of the OSI
Reference Model (the Transport layer) and, along with IIOP, which I will discuss
shortly, occupies roughly both the Session and Presentation layers. The actual ORB
would constitute the Application layer in the OSI model. Table 14.1 shows the relative
placement of GIOP and IIOP as compared to the standard OSI Model layers.

Table 14.1 Model Layers

OSI Model CORBA GIOP/IIOP

Application ORB
Presentation GIOP
Session IIOP
Transport TCP
Network IP
Data Link Data Link
Physical Physical

GIOP Design Goals
GIOP is called a general protocol because it is neutral with respect to its underlying
transport protocol; it can be mapped to any available connection-oriented transport.
The OMG had several design goals in mind with the GIOP which, in their own word,
have been pursued “vigorously.” They are

• Widest possible availability: With its association with TCP/IP as its core trans-
port, GIOP/IIOP rests on the most widely available transport mechanism and
the fundamental transport of the Internet.

• Simplicity: By design, the GIOP is a simple protocol. Nothing extraneous was
added that did not directly service the essential design and motivation.

• Scalability: The GIOP/IIOP protocols were designed specifically to handle the
demands of individual ORB communication, as well as networked and bridged
ORB communication over the Internet.

• Low cost: In keeping with its principle of simplicity, the IIOP was designed so
that it could be provided as an additional transport with a minimum of effort.
This can be seen in Java 1.3 with Sun’s decision to substitute IIOP for the Java
Remote Method Protocol (JRMP) in RMI. Among other things, this will allow
an Enterprise Java Session Bean to communicate directly with a CORBA server
or allow a CORBA client to use an EJB Entity Bean encapsulation.

• Generality: The GIOP message formats were designed to be transport-
independent, to enable additional transport mechanisms to be defined under it,
in addition to IIOP.

• Architectural neutrality: The GIOP makes no assumptions about the architec-
ture of dependent ORBs and treats dependent ORBs as “black box” designs.

6 2 0 C h a p t e r 1 4 : T h e I n t e r n e t I n t e r - O R B P r o t o c o l

17 0672318121 CH14 6/21/01 8:06 AM Page 620

A final fundamental goal of the GIOP specification is that it only specifies the external
protocol for ORB-to-ORB communication. An ORB is not required to implement IIOP
as its own internal protocol (and in fact a number of commercially available ORBs do
not). Thus an ORB produced by a particular vendor, for example, is free to use a pro-
prietary protocol to communicate with other ORBs from that same vendor.

GIOP Core Elements
The OMG has defined several central requirements for interoperability between ORB
implementations. First is the capability for two ORBs to communicate without one
ORB needing any knowledge of the other ORB’s internal mechanisms. This is a fun-
damental tenet of encapsulation. Second, the transport protocol must provide support
for all CORBA functionality. It cannot pick and choose the functionality it wants to
deliver and still conform to the specification. In addition, the transport protocol must
support the integrity of content and semantics in the communication between one ORB
and another.

In order to facilitate its operation, the GIOP defines three core elements that this chap-
ter covers in turn. They are

• Common Data Representation (CDR): CDR defines a common way to express
data during transport. It defines solutions to issues such as network byte order-
ing (big-endian versus little-endian architectures), byte alignment (byte, 2-byte,
4-byte alignment schemes), serialization ordering, and so on.

• Message Formats: With GIOP 1.2, eight message formats are defined to handle
requests between ORB components, communication involving the dynamic
location of agents, and communication between agents.

• Transport Assumptions: General assumptions about the transport underlying
GIOP, which requires a semi-reliable connection-oriented transport that is
implemented as an octet (byte) stream.

Common Data Representation (CDR)
CDR is a transfer syntax for the mapping of data defined via OMG IDL types to a low-
level representation suitable for efficient and safe transport over the network. CDR sup-
ports primitive as well as constructed types, pseudo-object types such as TypeCodes
and exceptions, and object references. All CDR information is transmitted as a serial-
ized octet (8-bit byte) stream.

When addressing issues of network byte ordering, GIOP specifies that the sender must
send its data in its native architecture (memory byte ordering), and it is the job of the
receiver to do any order adjustment, if necessary. That way, the sender only has to send
the data, and it doesn’t have to know anything about the recipient architecture’s byte
ordering. The byte ordering (big-endian/little-endian) of the sender’s architecture is
encoded in a byte in the header (GIOP 1.0) or as the first bit in the flags octet in the
GIOP 1.1 header structure. The recipient examines this flag and makes any modifica-
tions that are necessary in the incoming data stream. If the recipient happens to use the
same network byte order as the sender, no transformation needs to be done on either

G I O P : T h e B a s i s f o r I I O P 6 2 1

17 0672318121 CH14 6/21/01 8:06 AM Page 621

side, and no time is wasted. Compare this with ONC’s External Data Representation
(XDR) in RPC, which uses a single-canonical format that forces all data into big
endian form by default, which means that communication between two little-endian
boxes must (needlessly) perform two translations, which is obviously inefficient. In
CORBA, there would be no need for any conversions in byte ordering between identi-
cal architectures, making it a more efficient protocol in this regard.

Likewise, all data in the octet stream is aligned on the sender’s natural boundaries. The
sender does not have to make any modifications depending on whether the receiver is
working on a byte, 2-byte, or 4-byte alignment architecture. As in the case of network
byte ordering, it is the job of the recipient to adjust the alignment to its own needs, but
again, only if necessary. This is again in contrast to XDR, which forces all XDR data
to a default 4-byte alignment, using padding if necessary.

Finally, all datatypes defined in the IDL must be represented in the CDR, including
pseudo-objects such as TypeCodes.

CDR assumes an agreement on the parts of both the sender and the recipient as to the
types of data being transmitted. That means that both parties must know in advance the
semantics of the operation (via the IDL definition itself), because GIOP will not mark
the datatypes of the data being transmitted. This implicit typing is in keeping with the
ONC XDR approach and is distinguished from the basic encoding rules of ASN.1,
which uses explicit typing. This use of implicit typing is a common cause of the
CORBA MARSHAL exception, which would be thrown if the parameter lists of an
operation differ in some detail, based on either a skeleton or stub having been produced
from outdated IDL information.

As mentioned previously, primitive types are encoded into an octet stream according to
their natural boundaries: 1 byte for a char; 2 bytes for a short; 4 bytes for a long; 8
bytes for a double, etc. The encoded values will be padded, if necessary, either with
random (uninitialized) bytes or with zeroized bytes. (CDR does not specify padding
contents, so this depends on the particular ORB implementation.) An octet stream is a
sequence of 8-bit values that undergo no marshaling by either the sender or recipient.
An octet does not undergo network byte order conversions. Marshaling may occur
before data is inserted into an octet stream. A string is encoded as a combination of an
unsigned long length value (padded with zeros if necessary), followed by the charac-
ters of the string in a sequence of octets, followed by a NUL. So the string hello would
be encoded as a 4-byte long value of 6 representing the length of the string plus the
NUL, followed by the bytes h, e, l, l, o, followed by a NUL, for a total of 10 bytes. Other
complex types are recursively encoded according to the same principles based on the
individual types of the contained data. For example, a struct is encoded in the order of
declared appearance according to each individual element’s type. Sequences are
encoded as an unsigned long value that represents the number of elements in the
sequence, followed by the elements of the sequence, encoded again according to their
type.

6 2 2 C h a p t e r 1 4 : T h e I n t e r n e t I n t e r - O R B P r o t o c o l

17 0672318121 CH14 6/21/01 8:06 AM Page 622

The only variability in alignment requirements is in the wchar IDL primitive type,
which may be aligned on a 1-, 2-, or 4-octet alignment, depending on the byte orienta-
tion of the code set in use. For example, if the code set is byte oriented as in Shift-JIS,
each wide character is represented as one or more octets. If, on the other hand, the code
set is not byte oriented (as in Unicode), each wide character is represented as one or
more codepoints, usually either unsigned shorts or unsigned longs.

Message Formats
GIOP message formats have a few significant features. First of all, the OMG has
defined only eight message formats. This greatly simplifies the task of bringing an
application to the GIOP format. These eight messages (which include the fragment for-
mat introduced in GIOP 1.1) provide for all the functional communication needs of
ORBs as they communicate with one another, including advanced support for optional
capabilities such as object location, dynamic agent migration, and so on. Because of
this simplicity, the GIOP message formats allow ORBs to support object location and
migration as an optional feature, without requiring all ORBs to support such features
if that support would be inappropriate for the ORB’s intended purpose (for lightweight
ORBs, for instance). Finally, GIOP message formats provide full and direct support of
all functions and semantics required by the CORBA specification, including exception
reporting, operational context exchange, and all object reference operations for the sup-
port of remote interfaces.

The eight types of messages supported by GIOP between a client and server are (along
with the originator of the message)

• Request (client)
• LocateRequest (client)
• CancelRequest (client)
• MessageError (client or server)
• Fragment (client or server)
• Reply (server)
• LocateReply (server)
• CloseConnection (server only in GIOP 1.0 and 1.1; client or server in GIOP

1.2)

The two most important messages are the Request and Reply messages, which conduct
the core communication of any ORB. The Request message is used by the client to
invoke an operation on the server. Other operations might include get and set opera-
tions for accessing interface attributes. If the client has indicated that it wants to receive
a reply (by setting the Response Expected flag to 1 in the Request header), the server
will generate a Reply message back to the client. Depending on the circumstances, the
Reply message contains one of the following:

• NO_EXCEPTION: A normal reply, containing the return value as well as values of
out and inout parameters.

• USER_EXCEPTION: A reply containing a CORBA user exception.

G I O P : T h e B a s i s f o r I I O P 6 2 3

17 0672318121 CH14 6/21/01 8:06 AM Page 623

• SYSTEM_EXCEPTION: A reply containing a CORBA system exception.
• LOCATION_FORWARD: A reply containing information directing the client to a

new location. The client ORB is then responsible for resending the Request to
the specified location.

In addition, GIOP 1.2 adds the following Reply types:

• LOCATION_FORWARD_PERM: A reply similar semantically to LOCATION_FORWARD,
except that the new location can be considered to be “permanent.” (Both IORs
are still valid, but the new one is preferred.) Note that use of LOCATION_
FORWARD_PERM is already deprecated, due to problems it may cause with object
hashing.

• NEEDS_ADDRESSING_MODE: A reply containing a
GIOP::AddressingDisposition. The client ORB is then responsible for
resending the Request using the specified addressing mode.

The other messages are available to make the ORB operations more efficient. The
CancelRequest message allows the client to inform a server that it is no longer inter-
ested in the results of the original request (the execution of the call is not interrupted,
however). The LocateRequest and LocateReply messages allow clients to locate
servers and receive an object reference or an error status as the reply. The
CloseConnection message indicates that one party is closing the connection. After a
CloseConnection message has been delivered, no further messages should be sent
across the connection. If further communication is desired, a new connection must be
established. The MessageError message is sent as a general GIOP error message,
whenever a malformed message or message header has been received by the recipient.
The type of the offending message is returned.

Finally, the Fragment message type allows the transfer of larger amounts of data. To
fragment a message, the fragment flag in the Request message header is set to true,
and subsequent fragments of that original Request message are sent in Fragment mes-
sages, with the header flag being set to true if more fragments are to follow, or false
if this represents the last fragment. When the server has received the false indication,
it knows that the request is complete, and it can begin to process the request.

GIOP Transport Assumptions
GIOP message transfer makes certain assumptions about the underlying transport.
First, the GIOP defines a client/server architecture as it pertains to its connections. The
client side of a connection always establishes the connection and sends a request to the
server. The server receives requests and responds with replies. Only with the bidirec-
tional support in GIOP 1.2 can a server actually originate a message on an existing con-
nection established by a client. Second, an individual ORB implementation may
choose to multiplex messages over a single connection to a particular server, allowing
multiple clients to communicate with a single server over a single connection. This is
possible because the target of each request is identified in the request itself.

6 2 4 C h a p t e r 1 4 : T h e I n t e r n e t I n t e r - O R B P r o t o c o l

17 0672318121 CH14 6/21/01 8:06 AM Page 624

GIOP makes several further general assumptions about its underlying transport. First,
it assumes the transport is connection oriented, as opposed to a protocol such as the
Hypertext Transfer Protocol (HTTP), which is connectionless. A connection-oriented
protocol allows a client to have an open connection to a server across more than one
transmission.

The second assumption made is that connections are full duplex, meaning that trans-
missions are bidirectional and the recipient can reply over the same connection with-
out having to know the address of the sender. This greatly simplifies the
communication. Connections are assumed to be symmetric as far as termination is con-
cerned (and for most all messages in GIOP 1.2), in the sense that either end of the con-
nection can close it at any time. If either party determines that a connection has
terminated without being directly notified of termination (that is to say, a
CloseConnection message was never delivered), the determining ORB must assume
that an abortive disconnect has occurred and will need to handle the error.

The GIOP also assumes that the transport provides a byte stream capability, meaning
that serialization of messages is not encumbered by any arbitrary size limitation, and
that message fragmentation, for longer messages, may be necessary and will be sup-
ported. Finally, GIOP assumes that an error will be delivered to both ends of a con-
nection if an error develops during transmission.

IIOP Specialization of GIOP
Recall that GIOP is independent of any particular transport and is thus an abstract pro-
tocol. The Internet Inter-ORB Protocol specifies theTransmission Control Protocol and
thus is based on TCP/IP. IIOP is really not much more than GIOP implemented onto
the reliable connection-oriented TCP/IP. It supports the sending of GIOP messages
over TCP/IP sockets. The one thing that IIOP adds over GIOP is the definition of an
IIOP profile for inclusion in an IOR. To instantiate GIOP, all IIOP has to do is define
how the IIOP profile encodes the TCP/IP socket information inside the IOR, so the
recipient can communicate with the sender.

Figure 14.1 illustrates the information encapsulated in an IOR.

I I O P S p e c i a l i z a t i o n o f G I O P 6 2 5

POA name Object ID

object key

IOR

Figure 14.1

Interoperable Object Reference (IOR) Contents.

17 0672318121 CH14 6/21/01 8:06 AM Page 625

An IOR is composed of

• Repository ID: A string that identifies the object’s most derived type.
• Profiles: Each profile encapsulates all of the information needed to locate and

communicate with an object over a particular transport layer.

The required components of an IIOP profile include

• IIOP version: The IIOP protocol version (major and minor version numbers).
• Communication endpoint information: Information required for the client ORB

to connect to the server. For TCP/IP, this includes a host identifier (either a host
name or an IP address) and port number.

• Object key: An identifier which the server uses to identify the specific object
(recall that a server may contain multiple objects).

In addition, an IOR may contain certain optional information, such as metadata that
identifies the server’s ORB (such information could be used, for example, to optimize
communications between ORBs from the same vendor). Such information is contained
in what are known as profile components or tagged components.

Finally, an IOR has certain properties that deserve attention:

• Can be a null reference: In other words, the IOR doesn’t point to any object at
all.

• Can dangle: In other words, the IOR points to an object that no longer exists.
• Is strongly typed: The type of the object to which the IOR refers can be deter-

mined from the IOR itself.
• Can be serialized: An IOR may be converted to a string which can then be writ-

ten to a file, stored on an HTTP server, or otherwise made persistent for future
use.

• May be persistent: A server may take certain steps to ensure that one of its
objects retains an identical IOR over multiple server invocations. (Otherwise,
subsequent invocations of the server executable may result in new, distinct
IORs being created for its objects.)

Summary
This chapter discussed the Internet Inter-ORB Protocol (IIOP), which is actually a spe-
cialization of the General Inter-ORB Protocol (GIOP). GIOP, it was seen, was designed
to combine wide availability, simplicity, scalability, and low cost. The protocol speci-
fies a Common Data Representation (CDR) as well as eight message formats for com-
munication between client and server ORBs. Additionally, GIOP makes some
assumptions about the characteristics of the underlying transport layer.

IIOP, as its name suggests, is the protocol used to facilitate interoperability between
ORBs from different vendors. It was revealed that, practically speaking, IIOP is little
more than an implementation of GIOP using TCP/IP. Consequently, a discussion of
GIOP suffices to provide most of the interesting details of the IIOP protocol as well.
IIOP does, however, define the IIOP profile, which encapsulates the endpoint informa-
tion (as well as other data) necessary to establish TCP/IP communications.

6 2 6 C h a p t e r 1 4 : T h e I n t e r n e t I n t e r - O R B P r o t o c o l

17 0672318121 CH14 6/21/01 8:06 AM Page 626

PA R T I I I

SYNTAX REFERENCE
15 IDL Data Types

16 IDL Grammar

17 DynAny Type

18 Dynamic Invocation Interface

19 Dynamic Skeleton Interface

20 Interface Repository

21 CORBA System Exceptions

18 0672318121 Part3 6/20/01 5:55 PM Page 627

18 0672318121 Part3 6/20/01 5:55 PM Page 628

IDL Data Types
This chapter provides an IDL syntax and language mapping
reference for all of the core IDL data types. This reference
material is split across the following major sections:

• Built-In IDL Types—Describes basic built-in types,
such as boolean and long, as well as keywords, such as
union and struct, that enable the user to define new
IDL data types.

• Pseudo-IDL from the CORBA Module—Describes core
object types from the CORBA module, such as
CORBA::NamedValue and CORBA::Object.

• Exception Types—Describes the C++ and Java excep-
tion base classes.

• The PortableServer Module—Describes a few types
in the PortableServer module that have non-standard
mappings to C++ and Java.

• Java Helper and Holder Types—Describes the tem-
plates used for generating Helper and Holder classes.

NOTE
The reference material in this chapter is based on the
CORBA 2.4.2 core specification, the C++ language map-
ping document ptc/00-01-02, and the Java language
mapping document ptc/00-02-07. All extracts from the
CORBA specification appearing in this chapter are taken
from those documents and used with permission of the
OMG.

C H A P T E R 1 5

ID
L D

a
ta

 Ty
p

e
s

19 0672318121 CH15 6/20/01 5:48 PM Page 629

Built-In IDL Types
This section provides a detailed guide to most of the built-in types, describing the IDL
syntax and language mappings for each one. The following categories of type are
described here:

• Basic types—For example, types such as char, short, long, and so on.
• Constructed types—The types struct, union, and enum.
• Template types—The types sequence<...>, fixed<...>, string<...>, and
wstring<...>.

• Complex declarator—Array types.
• Native type—Types declared using the native keyword.

Some built-in types are not included in this section because they are described at length
elsewhere in this book. The omitted types are

• The any type—See Chapter 8, “The any Type.”
• User-defined interface types—See Chapter 5, “Object References.”
• User-defined value types—see Chapter 11, “Objects by Value.”

Consult the relevant chapter for further details about those types.

Array Type
This section describes the IDL syntax and CDR encoding of an IDL array type. The
mapping of an IDL array to C++ and to Java is also described and illustrated by
example.

IDL Syntax
An array has the syntax of a declarator. It can be declared only as part of a typedef
expression, as follows:

//IDL
typedef ElementTypeSpec ArrayType[DimSize][DimSize]...

The ArrayType is the name of the newly defined array. An integer expression in square
brackets, [DimSize], is appended for each dimension of the array. The
ElementTypeSpec gives the type of the array elements and DimSize is a constant inte-
ger expression that evaluates to a positive value. For example, a two-dimensional array
can be defined using a typedef expression, as follows:

//IDL
typedef long L2Array[50][100];

The element type of an array can, in principle, be declared using an arbitrary type spec-
ifier. From CORBA 2.4 onward, however, using anonymous type specifiers for the ele-
ment type is deprecated. The following example shows the approved way to declare an
array, which avoids using an anonymous type specifier for the element type:

6 3 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 630

//IDL
typedef string<16> String16;
typedef String16 SmallStringArr[100];

Contrast this with the deprecated style of array declaration in the following example,
in which an anonymous type specifier is used directly to declare the element type:

//IDL
typedef string<16> SmallStringArr[100]; // Deprecated

CDR Encoding
An array is encoded by marshaling all of its elements in sequence. If the array is mul-
tidimensional, the sequence of elements is determined by letting the rightmost index
vary most quickly, while the leftmost index varies most slowly.

IDL Example
The following IDL example illustrates the syntax for declaring arrays:

//IDL
module MyModule {

enum CellState { EMPTY, CROSS, CIRCLE };
typedef CellState TicTacToe[3][3];

typedef string StringArr[2];

interface MyInterface {
TicTacToe useArrayFixLen(

in TicTacToe ttt_in,
inout TicTacToe ttt_inout,
out TicTacToe ttt_out

);
StringArr useArrayVarLen(

in StringArr sa_in,
inout StringArr sa_inout,
out StringArr sa_out

);
};

};

C++ Mapping
An IDL array, <array_name>, maps to a typedef’ed C++ array, <c++_array_name>. In
addition, a number of other types are defined to manage the <c++_array_name> type in
C++, as shown in Table 15.1.

B u i l t - I n I D L Ty p e s 6 3 1

19 0672318121 CH15 6/20/01 5:48 PM Page 631

Table 15.1 C++ Mapping of an Array Type

Type Description

<c++_array_name> A typedef of a C++ array.
<c++_array_name>_var An array _var type is a smart pointer that manages

memory for dynamically-allocated array instances.
<c++_array_name>_slice A pointer to an array slice,

<c++_array_name>_slice*, is the C++ return type of an
operation that returns an array.

<c++_array_name>_forany An array _forany type is a helper type for inserting an
array into an any. See Chapter 8 “The any Type.”

<c++_array_name>_out An array _out type is the formal parameter type for an
array passed as an out parameter.

For examples of how to use the array types listed in Table 15.1, see Chapter 4 “Memory
Management.” A number of static functions are also provided to help you to allocate,
free, and copy dynamically-allocated array instances, as shown in Table 15.2.

Table 15.2 C++ Static Functions for Managing Dynamically-Allocated
Arrays

Static Function Description

<c++_array_name>_slice* Allocate an instance of <c++_array_name>
<c++_array_name>_alloc() on the heap.
void Free the memory associated with arr.
<c++_array_name>_free(

<c++_array_name>_slice* arr

)

<c++_array_name>_slice* Allocate an instance of <c++_array_name>
<c++_array_name>_dup(on the heap and copy the contents of arr

const <c++_array_name> into it.
_slice arr) *

void

<c++_array_name>_copy(Copy the contents of the from array into
<c++_array_name>_slice* to the to array.
const <c++_array_name>_slice*

from)

For explanations and examples of using the static functions listed in Table 15.2, see
Chapter 4.

The TicTacToe array defined in the preceding “IDL Example” section maps to C++ as
follows:

//C++
namespace MyModule
{

6 3 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 632

enum CellState
{

EMPTY,
CROSS,
CIRCLE
// Possibly more members (implementation dependent)

};
...
typedef CellState TicTacToe[3][3];
typedef CellState TicTacToe_slice[3];

// Implementation dependent definitions generated for:
// ===> TicTacToe_out
// ===> _tc_TicTacToe

static TicTacToe_slice* TicTacToe_alloc();
static void TicTacToe_free(TicTacToe_slice*);
static TicTacToe_slice* TicTacToe_dup(const TicTacToe_slice*);

static void TicTacToe_copy(
TicTacToe_slice* _to,
const TicTacToe_slice* _from

);

class TicTacToe_var
{
public:

TicTacToe_var() ... { ... }
TicTacToe_var(TicTacToe_slice*) { ... }
TicTacToe_var(const TicTacToe_var&) { ... }

TicTacToe_var& operator=(TicTacToe_slice*) { ... }
TicTacToe_var& operator=(const TicTacToe_var&) { ... }

const TicTacToe_slice* in() const { ... }
TicTacToe_slice* inout() { ... }
TicTacToe_slice*& out() { ... }
TicTacToe_slice*& _retn() { ... }

TicTacToe_slice& operator[](CORBA::ULong index) { ... }
const TicTacToe_slice& operator[](CORBA::ULong index) const { ... }

// Implementation-dependent conversion operators are included
// to support parameter passing.
... // (not shown)

};

class TicTacToe_forany
{

B u i l t - I n I D L Ty p e s 6 3 3

19 0672318121 CH15 6/20/01 5:48 PM Page 633

public:
TicTacToe_forany() ... { ... }
TicTacToe_forany(TicTacToe_slice*, CORBA::Boolean _nocopy = 0) { ... }
TicTacToe_forany(const TicTacToe_forany&) { ... }

TicTacToe_forany& operator=(TicTacToe_slice*) { ... }
TicTacToe_forany& operator=(const TicTacToe_forany&) { ... }

const TicTacToe_slice* in() const { ... }
TicTacToe_slice* inout() { ... }
TicTacToe_slice*& out() { ... }
TicTacToe_slice*& _retn() { ... }

TicTacToe_slice& operator[](CORBA::ULong index) { ... }
const TicTacToe_slice& operator[](CORBA::ULong index) const { ... }

// Implementation-dependent conversion operators are included
// to support parameter passing.
... // (not shown)

};
...

};

C++ Usage
The following C++ code shows how to invoke the useArrayFixLen() operation
defined in the preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
{
// Example of using a fixed-length array.
MyModule::TicTacToe T;
T[0][0]=MyModule::CIRCLE; T[0][1]=MyModule::CIRCLE; T[0][2]=MyModule::CROSS;
T[1][0]=MyModule::EMPTY ; T[1][1]=MyModule::CROSS ; T[1][2]=MyModule::EMPTY;
T[2][0]=MyModule::CROSS; T[2][1]=MyModule::EMPTY ; T[2][2]=MyModule::EMPTY;

MyModule::TicTacToe_var InValV = MyModule::TicTacToe_dup(T);
MyModule::TicTacToe_var InoutValV = MyModule::TicTacToe_dup(T);
// Fixed-length array => Allocate space for ‘out’ parameter.
MyModule::TicTacToe_var OutValV = MyModule::TicTacToe_alloc();

MyModule::TicTacToe_var RecvValV
= obj->useArrayFixLen(InValV, InoutValV, OutValV);

printTicTacToe(RecvValV);
printTicTacToe(InoutValV);
printTicTacToe (OutValV);
}

6 3 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 634

The following C++ code shows how to invoke the useArrayVarLen() operation
defined in the preceding “IDL Example” section:

// Invoke the useArrayVarLen() operation
{
// Example of using a variable-length array.
MyModule::StringArr InVal;
InVal[0] = CORBA::string_dup(“Zig”);
InVal[1] = CORBA::string_dup(“Zag”);

MyModule::StringArr InoutVal;
InoutVal[0] = CORBA::string_dup(“Rodge”);
InoutVal[1] = CORBA::string_dup(“Podge”);

// Variable-length array => No allocation for ‘out’ parameter.
MyModule::StringArr_var OutValV;

MyModule::StringArr_var RecvValV
= obj->useArrayVarLen(InVal, InoutVal, OutValV);

... // Do something with *RecvValV, InoutVal, and *OutValV
}
...

The printTicTacToe() that prints out the TicTacToe array function can be imple-
mented as follows:

//C++
void printCellState(const MyModule::CellState cell)
{

char result;
switch (cell) {

case MyModule::EMPTY : result = ‘ ‘; break;
case MyModule::CROSS : result = ‘X’; break;
case MyModule::CIRCLE : result = ‘O’; break;
default : result = ‘ ‘; break;

}
cout << result;

}

void printTicTacToe(const MyModule::TicTacToe T)
{

CORBA::ULong k;
for (k=0; k<3; k++)
{

printCellState(T[k][0]);
cout << “|”;
printCellState(T[k][1]);
cout << “|”;

B u i l t - I n I D L Ty p e s 6 3 5

19 0672318121 CH15 6/20/01 5:48 PM Page 635

printCellState(T[k][2]);
cout << endl;
if (k < 2) { cout << “-----” << endl; }

}
cout << endl;

}

Java Mapping
An IDL array, <array_name>, with <element_type> elements maps directly to a Java
array of the same dimensions with mapped <java_element_type> elements. Holder
and helper classes, <java_array_name>Holder and <java_array_name>Helper, are
generated according to the standard template described in the section “Java Helper and
Holder Types” later in this chapter.

For example, the MyModule.TicTacToe IDL array maps to Java as shown in Table 15.3.

Table 15.3 Java Mapping of the TicTacToe Array Type

IDL Type Java Mapped Types

MyModule::TicTacToe array MyModule.CellState[3]

MyModule.TicTacToeHolder

MyModule.TicTacToeHelper

Java Usage
The following Java code shows how to invoke the useArrayFixLen() operation
defined in the preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
import MyModule.CellState;
{
MyModule.CellState T[][] = new MyModule.CellState[3][3];
T[0][0]=CellState.CIRCLE; T[0][1]=CellState.CIRCLE; T[0][2]=CellState.CROSS;
T[1][0]=CellState.EMPTY ; T[1][1]=CellState.CROSS ; T[1][2]=CellState.EMPTY;
T[2][0]=CellState.CROSS ; T[2][1]=CellState.EMPTY ; T[2][2]=CellState.EMPTY;

MyModule.CellState InVal[][] = T; // Shallow copy.
MyModule.TicTacToeHolder InoutValH = new MyModule.TicTacToeHolder(T);
MyModule.TicTacToeHolder OutValH = new MyModule.TicTacToeHolder();

MyModule.CellState RecvVal[][]=obj.useArrayFixLen(InVal, InoutValH, OutValH);

... // Do something with RecvVal, InoutValH.value, and OutValH.value.
}

The following Java code shows how to invoke the useArrayVarLen() operation
defined in the preceding “IDL Example” section:

6 3 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 636

// Invoke the useArrayVarLen() operation
{
String InVal[] = new String[2];
InVal[0] = “Zig”;
InVal[1] = “Zag”;

String T[] = new String[2];
T[0] = “Rodge”;
T[1] = “Podge”;
MyModule.StringArrHolder InoutValH = new MyModule.StringArrHolder(T);
MyModule.StringArrHolder OutValH = new MyModule.StringArrHolder();

String RecvVal[] = obj.useArrayVarLen(InVal, InoutValH, OutValH);

... // Do something with RecvVal, InoutValH.value, and OutValH.value.
}
...

boolean Type
This section describes the IDL constant syntax and CDR encoding of an IDL boolean
type. The mapping of an IDL boolean to C++ and to Java is also described and illus-
trated by example.

IDL Constant Declaration
//IDL
const boolean BooleanConst = BooleanLiteral;
const boolean BooleanConst = OtherBooleanConst;

A new boolean constant, BooleanConst, can be defined either in terms of a literal,
BooleanLiteral, or in terms of an existing constant, OtherBooleanConst. No infix or
unary operators are allowed in IDL boolean constant declarations.

The BooleanLiteral can be one of values shown in Table 15.4.

Table 15.4 IDL Boolean Literals

Value Description

TRUE Boolean literal for true.
FALSE Boolean literal for false.

CDR Encoding
A boolean occupies a single octet (eight bits) and is marshaled by putting it into the
next available position in an octet stream (alignment on a one-byte boundary). The
value 0x01 represents TRUE and 0x00 represents FALSE.

B u i l t - I n I D L Ty p e s 6 3 7

19 0672318121 CH15 6/20/01 5:48 PM Page 637

IDL Example
The following IDL example illustrates the syntax for declaring boolean constants:

//IDL
const boolean GLOBAL_BOOL = TRUE;

module MyModule {
const boolean MODULE_BOOL = FALSE;

interface MyInterface {
const boolean INTERFACE_BOOL = TRUE;

boolean useBoolean(
in boolean b_in,
inout boolean b_inout,
out boolean b_out

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::Boolean GLOBAL_BOOL = 1;

namespace MyModule {
const CORBA::Boolean MODULE_BOOL = 0;

class MyInterface : public virtual CORBA::Object {
static const CORBA::Boolean INTERFACE_BOOL;

virtual CORBA::Boolean useBoolean(
CORBA::Boolean b_in,
CORBA::Boolean& b_inout,
CORBA::Boolean_out b_out

) =0;
};

};
...
// Initialisation of ‘INTERFACE_BOOL’
const CORBA::Boolean MyModule::MyInterface::INTERFACE_BOOL = 1;
...

C++ Usage
The following C++ code shows how to invoke the useBoolean() operation defined in
the preceding “IDL Example” section:

6 3 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 638

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::Boolean InoutVal = 0;
CORBA::Boolean OutVal;

CORBA::Boolean RecvVal = obj->useBoolean(1, InoutVal, OutVal);

cout << “Returned value = “ << RecvVal << endl;
cout << “Inout value = “ << InoutVal << endl;
cout << “Out value = “ << OutVal << endl;
...

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_BOOL {

public static final boolean value = true;
};
...
// File containing module and interface constants:
package MyModule;

public interface MODULE_BOOL {
public static final boolean value = false;

};

public interface MyInterfaceOperations
{

public static final boolean INTERFACE_BOOL = true;

boolean useBoolean(
boolean b_in,
org.omg.CORBA.BooleanHolder b_inout,
org.omg.CORBA.BooleanHolder b_out

);
};

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useBoolean() operation defined in
the preceding “IDL Example” section:

B u i l t - I n I D L Ty p e s 6 3 9

19 0672318121 CH15 6/20/01 5:48 PM Page 639

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
boolean InVal = true;
org.omg.CORBA.BooleanHolder InoutValH = new org.omg.CORBA.BooleanHolder(false);
org.omg.CORBA.BooleanHolder OutValH = new org.omg.CORBA.BooleanHolder();

boolean RecvVal = obj.useBoolean(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

char Type
This section describes the IDL constant syntax and CDR encoding of an IDL char
type. The mapping of an IDL char to C++ and to Java is also described and illustrated
by example.

IDL Constant Declaration
//IDL
const char CharConst = CharLiteral;
const char CharConst = OtherCharConst;

A new char constant, CharConst, can be defined either in terms of a literal,
CharLiteral, or in terms of an existing constant, OtherCharConst. No infix or unary
operators can be used in IDL char constant declarations.

The CharLiteral consists of a character enclosed in single quotes, for example ‘a’, or
an escape sequence enclosed in single quotes, for example ‘\n’. See Chapter 16, “IDL
Grammar” for the list of character escape sequences.

CDR Encoding
A char (eight bits) is marshaled by putting it into the next available position in an octet
stream (alignment on a one-byte boundary). The value of a char is liable to undergo
conversion during transmission, in accordance with the GIOP codeset conversion
framework.

IDL Example
The following IDL example illustrates the syntax for declaring char constants:

//IDL
const char GLOBAL_CHAR = ‘a’;

module MyModule {
const char MODULE_CHAR = ‘\n’;

6 4 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 640

interface MyInterface {
const char INTERFACE_CHAR = ‘\x2E’;

char useChar(
in char c_in,
inout char c_inout,
out char c_out

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::Char GLOBAL_CHAR = ‘a’;

namespace MyModule {
const CORBA::Char MODULE_CHAR = ‘\n’;

class MyInterface : public virtual CORBA::Object {
static const CORBA::Char INTERFACE_CHAR;

virtual CORBA::Char useChar(
CORBA::Char c_in,
CORBA::Char& c_inout,
CORBA::Char_out c_out

) =0;
};

};
...
// Initialisation of ‘INTERFACE_CHAR’
const CORBA::Char MyModule::MyInterface::INTERFACE_CHAR = ‘\x2E’;
...

C++ Usage
The following C++ code shows how to invoke the useChar() operation defined in the
preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::Char InoutVal = ‘y’;
CORBA::Char OutVal;

CORBA::Char RecvVal = obj->useChar(‘x’, InoutVal, OutVal);

cout << “Returned value = “ << RecvVal << endl;
cout << “Inout value = “ << InoutVal << endl;
cout << “Out value = “ << OutVal << endl;
...

B u i l t - I n I D L Ty p e s 6 4 1

19 0672318121 CH15 6/20/01 5:48 PM Page 641

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_CHAR {

public static char char value = ‘a’;
};
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_CHAR {
public static final char value = ‘\n’;

};

public interface MyInterfaceOperations
{

public static final char INTERFACE_CHAR = ‘\u2E’;

char useChar(
char c_in,
org.omg.CORBA.CharHolder c_inout,
org.omg.CORBA.CharHolder c_out

);
};

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useChar() operation defined in the
preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
char InVal = ‘x’;
org.omg.CORBA.CharHolder InoutValH = new org.omg.CORBA.CharHolder(‘y’);
org.omg.CORBA.CharHolder OutValH = new org.omg.CORBA.CharHolder();

char RecvVal = obj.useChar(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

6 4 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 642

double Type
This section describes the IDL constant syntax and CDR encoding of an IDL double
type. The mapping of an IDL double to C++ and to Java is also described and illus-
trated by example.

IDL Constant Declaration
//IDL
const double DoubleConst = FloatingPointExpression;

A new double constant, DoubleConst, is defined in terms of a floating-point expres-
sion, FloatingPointExpression, which is composed of floating-point literals, other
floating point constants, and arithmetical operators.

The +, -, *, / infix and +, - unary operators are allowed in IDL double constant decla-
rations.

Literals are specified in floating point format, for example 1.6e-19, as described in
Chapter 16 “IDL Grammar.”

CDR Encoding
When a double is appended to an octet stream, it is marshaled as eight octets (64 bits)
and aligned on an eight-byte boundary. The order in which the octets are marshaled
depends on the current byte-ordering of the octet stream (big-endian or little-endian).

The encoding of the double follows the IEEE standard for a double-precision floating
point number.

IDL Example
The following IDL example illustrates the syntax for declaring double constants:

//IDL
const double GLOBAL_DOUBLE = 2E30;

module MyModule {
const double MODULE_DOUBLE = 3.14;

interface MyInterface {
const double INTERFACE_DOUBLE = 6.0 * MODULE_DOUBLE;

double useDouble(
in double d_in,
inout double d_inout,
out double d_out

);
};

};

B u i l t - I n I D L Ty p e s 6 4 3

19 0672318121 CH15 6/20/01 5:48 PM Page 643

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::Double GLOBAL_DOUBLE = 2.0e30;

namespace MyModule {
const CORBA::Double MODULE_DOUBLE = 3.14;

class MyInterface : public virtual CORBA::Object {
static const CORBA::Double INTERFACE_DOUBLE;

virtual CORBA::Double useDouble(
CORBA::Double d_in,
CORBA::Double& d_inout,
CORBA::Double_out d_out

) =0;
};

};
...
// Initialisation of ‘INTERFACE_DOUBLE’
const CORBA::Double MyModule::MyInterface::INTERFACE_DOUBLE

= 6.0*MyModule::MODULE_DOUBLE;
...

C++ Usage
The following C++ code shows how to invoke the useDouble() operation defined in
the preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::Double InoutVal = 1.23456;
CORBA::Double OutVal;

CORBA::Double RecvVal = obj->useDouble(1.0e10, InoutVal, OutVal);

cout << “Returned value = “ << RecvVal << endl;
cout << “Inout value = “ << InoutVal << endl;
cout << “Out value = “ << OutVal << endl;
...

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_DOUBLE {

public static final double value = (double) 2.0e30;

6 4 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 644

};
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_DOUBLE {
public static final double value = (double) 3.14;

};

public interface MyInterfaceOperations
{

public static final double INTERFACE_DOUBLE = (double) 18.84;

double useDouble(
double d_in,
org.omg.CORBA.DoubleHolder d_inout,
org.omg.CORBA.DoubleHolder d_out

);
};

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useDouble() operation defined in
the preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
double InVal = 1.0e10;
org.omg.CORBA.DoubleHolder InoutValH = new org.omg.CORBA.DoubleHolder(1.23456);
org.omg.CORBA.DoubleHolder OutValH = new org.omg.CORBA.DoubleHolder();

double RecvVal = obj.useDouble(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

enum Type
This section describes the IDL syntax, IDL constant syntax, and CDR encoding of an
IDL enumerated type. The mapping of an IDL enum to C++ and to Java is also
described and illustrated by example.

B u i l t - I n I D L Ty p e s 6 4 5

19 0672318121 CH15 6/20/01 5:48 PM Page 645

IDL Syntax
An enum can stand on its own as a type declaration, in which case it is terminated by a
semicolon:

//IDL
enum EnumType { EnumeratorList };

The EnumType is the name of the newly defined enum. The EnumeratorList is a list of
one or more identifiers that represent the possible values of the enumeration. For exam-
ple, the following enum declares three identifiers, YELLOW, ORANGE, and RED:

//IDL
enum WarmColor { YELLOW, ORANGE, RED };

An enum can also be used as a type specifier, in which case the terminating semicolon
is omitted. For example, an enum can be given an alias using a typedef expression, as
follows:

//IDL
typedef enum Fruit { APPLE, PEAR } FruitAlias;

IDL Constant Declaration
Enumerated constants can be defined, as follows:

//IDL
const EnumType EnumConst = ScopedIdentifier;
const EnumType EnumConst = OtherEnumConst;

A new enumerated constant, EnumConst, can be defined either in terms of an enumer-
ator of EnumType type, ScopedIdentifier, or in terms of an existing constant,
OtherEnumConst. No infix or unary operators can be used in IDL enum constant decla-
rations.

CDR Encoding
An enum is encoded as a long integer (32 bits)—see the section “long Type.”

IDL Example
The following IDL example illustrates the syntax for declaring enumerations and enu-
meration constants:

//IDL
module MyModule {

interface MyInterface {
enum Veg { CARROT, POTATO, SPINACH, BEETROOT };

const Veg INTERFACE_VEG = SPINACH;

Veg useEnum(
in Veg v_in,

6 4 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 646

inout Veg v_inout,
out Veg v_out

);
};
const MyInterface::Veg MODULE_VEG = MyInterface::POTATO;

};
const MyModule::MyInterface::Veg GLOBAL_VEG = MyModule::MODULE_VEG;

C++ Mapping
The Veg enumeration defined in the preceding “IDL Example” maps to C++ as follows:

//C++
namespace MyModule {

class MyInterface : public virtual CORBA::Object {
enum Veg
{

CARROT,
POTATO,
SPINACH,
BEETROOT
// Implementation-dependent extra value.

};

// Implementation dependent definitions generated for:
// ===> Veg_out
// ===> _tc_Veg

static const MyModule::MyInterface::Veg INTERFACE_VEG;

virtual Veg useEnum(
Veg v_in,
Veg& v_inout,
Veg_out v_out

) = 0;
};

const MyModule::MyInterface::Veg MODULE_VEG =MyModule::MyInterface::POTATO;
};
const MyModule::MyInterface::Veg GLOBAL_VEG = MyModule::MyInterface::POTATO;
...
// Initialisation of ‘INTERFACE_VEG’
const MyModule::MyInterface::Veg MyModule::MyInterface::INTERFACE_VEG

= MyModule::MyInterface::SPINACH;
...

C++ Usage
The following C++ code shows how to invoke the useEnum() operation defined in the
preceding “IDL Example” section:

B u i l t - I n I D L Ty p e s 6 4 7

19 0672318121 CH15 6/20/01 5:48 PM Page 647

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
MyModule::MyInterface::Veg InVal = MyModule::MyInterface::BEETROOT;
MyModule::MyInterface::Veg InoutVal = MyModule::MyInterface::CARROT;
MyModule::MyInterface::Veg OutVal;

MyModule::MyInterface::Veg RecvVal = obj->useEnum(InVal, InoutVal, OutVal);

printVeg(RecvVal);
printVeg(InoutVal);
printVeg(OutVal);
...

The printVeg() function can be implemented, as follows:

//C++
void printVeg(MyModule::MyInterface::Veg v)
{

switch (v)
{

case MyModule::MyInterface::CARROT :
cout << “carrot” << endl;
break;

case MyModule::MyInterface::POTATO :
cout << “potato” << endl;
break;

case MyModule::MyInterface::SPINACH :
cout << “spinach” << endl;
break;

case MyModule::MyInterface::BEETROOT :
cout << “beetroot” << endl;
break;

}
}

Java Mapping
An IDL enumerated type, <enum_name>, maps to a Java class, <java_enum_name>,
because there is no native enumerated type available in Java. Holder and helper classes,
<java_enum_name>Holder and <java_enum_name>Helper, are generated according to
the standard template described in the section “Java Helper and Holder Types” later in
this chapter.

For example, the MyModule.MyInterface.Veg enumerated type maps to Java as shown
in Table 15.5.

6 4 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 648

Table 15.5 Java Mapping of the TicTacToe Array Type

IDL Type Java Mapped Types

MyModule.MyInterface.Veg MyModule.MyInterfacePackage.Veg

MyModule.MyInterfacePackage.VegHolder

MyModule.MyInterfacePackage.VegHelper

The MyModule.MyInterfacePackage.Veg Java class is defined as follows:

//Java
package MyModule.MyInterfacePackage;

public class Veg
implements org.omg.CORBA.portable.IDLEntity

{
public static final int _CARROT = 0;
public static final Veg CARROT = new Veg(0);
public static final int _POTATO = 1;
public static final Veg POTATO = new Veg(1);
public static final int _SPINACH = 2;
public static final Veg SPINACH = new Veg(2);
public static final int _BEETROOT = 3;
public static final Veg BEETROOT = new Veg(3);

public static Veg from_int(int value) { ... }

public int value() { ... }
}

Java Usage
The following Java code shows how to invoke the useEnum() operation defined in the
preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
MyModule.MyInterfacePackage.Veg InVal

= MyModule.MyInterfacePackage.Veg.BEETROOT;
MyModule.MyInterfacePackage.VegHolder InoutValH

= new MyModule.MyInterfacePackage.VegHolder(
MyModule.MyInterfacePackage.Veg.CARROT

);
MyModule.MyInterfacePackage.VegHolder OutValH

= new MyModule.MyInterfacePackage.VegHolder();

MyModule.MyInterfacePackage.Veg RecvVal
= obj.useEnum(InVal, InoutValH, OutValH);

B u i l t - I n I D L Ty p e s 6 4 9

19 0672318121 CH15 6/20/01 5:48 PM Page 649

printVeg(RecvVal);
printVeg(InoutValH.value);
printVeg(OutValH.value);
...

The printVeg() method can be implemented, as follows:

//Java
public class MyModule.MyInterfaceImpl implements MyModule.MyInterfacePOATie
{

public static void printVeg(MyModule.MyInterfacePackage.Veg v)
{

switch (v.value())
{

case MyModule.MyInterfacePackage.Veg._CARROT :
System.out.println(“carrot”);
break;

case MyModule.MyInterfacePackage.Veg._POTATO :
System.out.println(“potato”);
break;

case MyModule.MyInterfacePackage.Veg._SPINACH :
System.out.println(“spinach”);
break;

case MyModule.MyInterfacePackage.Veg._BEETROOT :
System.out.println(“beetroot”);
break;

}
}

}

exception Type
This section describes the IDL syntax and CDR encoding of an IDL user exception
type. The mapping of an IDL exception to C++ and to Java is also described and illus-
trated by example.

IDL Syntax
An exception stands on its own as a type declaration and is terminated by a semicolon:

//IDL
exception ExcType { MemberList };

The ExcType is the name of the newly defined exception. There must be at least one
member in MemberList and each member consists of a type specifier followed by a
comma-separated declarator list. For example, the following OutOfRange exception
declares three members, minValue, maxValue, and errorDetails:

//IDL
exception OutOfRange {

long long minValue, maxValue;

6 5 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 650

string errorDetails;
};

An exception cannot be used as a type specifier. Once an exception type has been
declared, it can only be used in the raises clause of an operation declaration.

The members of an exception can, in principle, be declared using arbitrary type spec-
ifiers. From CORBA 2.4 onward, however, using anonymous type specifiers in the
member list is deprecated. The following example shows the approved way to declare
an exception, which avoids the use of anonymous type specifiers in the member list:

//IDL
typedef string<100> String100;
typedef sequence<octet> OctetSeq;
struct IncidentTime { short hours, minutes, seconds; };

exception ApprovedException {
String100 shortDescription;
OctetSeq raw_data;
IncidentTime when_happened;

};

Contrast this with the deprecated style of exception declaration in the following exam-
ple, in which anonymous type specifiers are used directly to declare exception mem-
bers:

//IDL
exception DeprecatedException {

string<100> shortDescription; // Deprecated
sequence<octet> raw_data; // Deprecated
struct IncidentTime {

short hours, minutes, seconds;
} when_happened; // Poor style, but not deprecated.

};

CDR Encoding
A user exception type is marshaled into an octet stream by marshaling the exception’s
repository ID as a string, followed by each of the exception members in the same
order as they appear in the IDL definition.

IDL Example
The following IDL example illustrates the syntax for declaring a user exception type:

//IDL
module MyModule {

exception OutOfRange {
long long minValue, maxValue;
string errorDetails;

};

B u i l t - I n I D L Ty p e s 6 5 1

19 0672318121 CH15 6/20/01 5:48 PM Page 651

interface MyInterface {
void useException(long long val) raises (OutOfRange);

};
};

C++ Mapping
The OutOfRange user exception defined in the preceding “IDL Example” maps to C++
as follows:

//C++
namespace MyModule {

class OutOfRange: public CORBA::UserException
{
public:

OutOfRange();
OutOfRange(

CORBA::LongLong _itfld_minValue,
CORBA::LongLong _itfld_maxValue,
const char* _itfld_errorDetails

);
void operator=(const OutOfRange&);

CORBA::LongLong minValue;
CORBA::LongLong maxValue;
<impl_dependent_string_manager_type> errorDetails;

// MEMORY MANAGEMENT: _downcast() returns a pointer to the original
// OutOfRange exception - that is, the exception is not duplicated.
static OutOfRange* _downcast(CORBA::Exception* exc);
static const OutOfRange* _downcast(const CORBA::Exception* exc);

// DEPRECATED: _narrow() is deprecated for exceptions
// - use _downcast() instead.
static OutOfRange* _narrow(CORBA::Exception* exc);
static const OutOfRange* _narrow(const CORBA::Exception* exc);

virtual void _raise() const;

// Additional implementation-dependent functions
... // (not shown)

};
};
...

C++ Usage
The MyModule::OutOfRange exception can be raised by the useException() operation
implementation, as follows:

6 5 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 652

//C++
...
// Assume that ‘MyModule_MyInterfaceImpl’ implements ‘MyModule::MyInterface’.
void
MyModule_MyInterfaceImpl::useException(const CORBA::LongLong val)

throws (CORBA::SystemException, MyModule::OutOfRange)
{

static CORBA::LongLong min = -15;
static CORBA::LongLong max = 15;
if (val < min) {

throw MyModule::OutOfRange(min, max, “too small”);
}
if (val > max) {

throw MyModule::OutOfRange(min, max, “too large”);
}
// Do something useful with the ‘val’ parameter...
...

}

The MyModule::OutOfRange exception can be caught on the client side, as follows:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
{

try {
obj->useException(100);

}
catch (MyModule::OutOfRange& oor) {

cout << “error: “ << oor.errorDetails << endl;
cout << “\tMin value = “ << oor.minValue << endl;
cout << “\tMax value = “ << oor.maxValue << endl;

}
}
...

Java Mapping
An IDL user exception type, <exc_name>, maps to a Java class, <java_exc_name>.
Holder and helper classes, <java_exc_name>Holder and <java_exc_name>Helper, are
generated according to the standard template described in the section “Java Helper and
Holder Types” later in this chapter.

For example, the MyModule.OutOfRange user exception type maps to Java as shown in
Table 15.6.

Table 15.6 Java Mapping of the OutOfRange User Exception Type

IDL Type Java Mapped Types

MyModule.OutOfRange MyModule.OutOfRange

MyModule.OutOfRangeHolder

MyModule.OutOfRangeHelper

B u i l t - I n I D L Ty p e s 6 5 3

19 0672318121 CH15 6/20/01 5:48 PM Page 653

Each member variable declared in IDL maps to a corresponding public member of the
Java MyModule.OutOfRange class. The MyModule.OutOfRange Java class is therefore
defined as follows:

//Java
package MyModule;

public final class OutOfRange
extends org.omg.CORBA.UserException

{
public long minValue;
public long maxValue;
public java.lang.String errorDetails;

public OutOfRange() { ... }
public OutOfRange(

long minValue,
long maxValue,
java.lang.String errorDetails

) { ... }
}
...

Java Usage
The MyModule::OutOfRange exception can be raised by the useException() operation
implementation, as follows:

//C++
...
// Class ‘MyModule.MyInterfaceImpl’ implements ‘MyModule::MyInterface’.
class MyModule.MyInterfaceImpl implements MyModule.MyInterfacePOATie {

...
public void useException(long val)

throw MyModule.OutOfRange
{

if (val < m_min) {
throw new MyModule.OutOfRange(min, max, “too small”);

}
if (val > m_max) {

throw new MyModule.OutOfRange(min, max, “too large”);
}
// Do something useful with the ‘val’ parameter...
...

}
private long m_min, m_max;
...

}

6 5 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 654

The MyModule::OutOfRange exception can be caught on the client side, as follows:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
{

try {
obj.useException(100);

}
catch (MyModule.OutOfRange oor) {

System.out.println(“error: “ + oor.errorDetails);
System.out.println(“\tMin value = “ + oor.minValue);
System.out.println(“\tMax value = “ + oor.maxValue);

}
}
...

fixed Type
This section describes the IDL syntax, IDL constant syntax and CDR encoding of an
IDL fixed-point type. The mapping of an IDL fixed to C++ and to Java is also
described and illustrated by example.

IDL Syntax
A fixed data type has the syntax of a type specifier and it is declared as follows:

//IDL
fixed<Digits, Scale>

The Digits specifies the total number of significant digits, expressed as a constant
integer expression that evaluates to a positive integer less than or equal to 31. The
Scale specifies the number of digits following the decimal point, expressed as a con-
stant integer expression that evaluates to a non-negative integer.

From CORBA 2.4 onward, the only context in which a fixed type specifier should
appear is as part of a typedef expression. For example, a fixed data type can be given
an alias using a typedef expression, as follows:

//IDL
typedef fixed<17,2> MonetaryAmount;

IDL Constant Declaration
Fixed-point constants can be defined, as follows:

//IDL
const fixed FixedConst = FixedPointExpression;

A new fixed constant, FixedConst, is defined in terms of a fixed-point expression,
FixedPointExpression, which is composed of fixed-point literals, other fixed-point
constants, arithmetical operators, and other fixed-point expressions enclosed in paren-
theses ().

B u i l t - I n I D L Ty p e s 6 5 5

19 0672318121 CH15 6/20/01 5:48 PM Page 655

The +, -, *, /, infix and +, -, unary operators are allowed in IDL fixed constant decla-
rations.

Literals are specified in fixed-point literal format, for example 54.321d, as described
in Chapter 16.

CDR Encoding
A fixed type is marshaled to an octet stream using a form of binary coded decimal,
where each digit of the fixed type occupies a half-octet and the last half-octet encodes
the sign (0xD for negative, 0xC for non-negative). It follows that a fixed type with N sig-
nificant digits occupies (N+1)/2 octets in the octet stream.

Alignment is on a one-byte boundary. The order in which the octets are marshaled is
independent of the current byte-ordering—that is, the big-endian and little-endian rep-
resentations of a fixed value are the same.

IDL Example
The following IDL example illustrates the syntax for declaring fixed<> types and
fixed constants:

//IDL
const fixed GLOBAL_FIXED = 765.4321d;

module MyModule {
const fixed MODULE_FIXED = GLOBAL_FIXED*100d;

interface MyInterface {
const fixed INTERFACE_FIXED = 0.003d;

typedef fixed<31,2> BigMoney;

BigMoney useFixed(
in BigMoney lm_in,
inout BigMoney lm_inout,
out BigMoney lm_out

);
};

};

C++ Mapping
The preceding ”IDL Example” maps to C++ as follows:

//C++
const CORBA::Fixed GLOBAL_FIXED(“765.4321”);

namespace MyModule {
static const CORBA::Fixed MODULE_FIXED;

6 5 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 656

// Implementation dependent definitions generated for:
// ===> BigMoney
// ===> BigMoney_var
// ===> BigMoney_out
// ===> _tc_BigMoney

class MyInterface : public virtual CORBA::Object {
static const CORBA::Fixed INTERFACE_FIXED;

virtual BigMoney useFixed(
const BigMoney & lm_in,
BigMoney & lm_inout,
BigMoney_out lm_out

) = 0;
};

};

...
// Initialisation of ‘MODULE_FIXED’ and ‘INTERFACE_FIXED’
namespace MyModule
{

const CORBA::Fixed MODULE_FIXED(“76543.2100”);
};
const CORBA::Fixed MyModule::MyInterface::INTERFACE_FIXED(“0.003”);
...

Fixed point values in C++ are represented using the standard class CORBA::Fixed,
which is declared as follows:

//C++
namespace CORBA {

class Fixed
{
public:

// Constructors
Fixed(int val = 0);
Fixed(unsigned val);
Fixed(Long val);
Fixed(ULong val);
Fixed(LongLong val);
Fixed(ULongLong val);
Fixed(Double val);
Fixed(LongDouble val);
Fixed(const Fixed& val);
Fixed(const char*);
~Fixed();

// Conversions
operator LongLong() const;

B u i l t - I n I D L Ty p e s 6 5 7

19 0672318121 CH15 6/20/01 5:48 PM Page 657

operator LongDouble() const;
Fixed round(UShort scale) const;
Fixed truncate(UShort scale) const;

// Operators
Fixed& operator=(const Fixed& val);
Fixed& operator+=(const Fixed& val);
Fixed& operator-=(const Fixed& val);
Fixed& operator*=(const Fixed& val);
Fixed& operator/=(const Fixed& val);
Fixed& operator++();
Fixed operator++(int);
Fixed& operator--();
Fixed operator--(int);
Fixed operator+() const;
Fixed operator-() const;
Boolean operator!() const;

// Other member functions
UShort fixed_digits() const;
UShort fixed_scale() const;

};

istream& operator>>(istream& is, Fixed& val);
ostream& operator<<(ostream& os, const Fixed& val);

Fixed operator + (const Fixed& val1, const Fixed& val2);
Fixed operator - (const Fixed& val1, const Fixed& val2);
Fixed operator * (const Fixed& val1, const Fixed& val2);
Fixed operator / (const Fixed& val1, const Fixed& val2);
Boolean operator > (const Fixed& val1, const Fixed& val2);
Boolean operator < (const Fixed& val1, const Fixed& val2);
Boolean operator >= (const Fixed& val1, const Fixed& val2);
Boolean operator <= (const Fixed& val1, const Fixed& val2);
Boolean operator == (const Fixed& val1, const Fixed& val2);
Boolean operator != (const Fixed& val1, const Fixed& val2);

};

C++ Usage
The following C++ code shows how to invoke the useFixed() operation defined in the
preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
MyModule::BigMoney InVal = “12345.67d”;
MyModule::BigMoney InoutVal = “12.34d”;
MyModule::BigMoney OutVal;

MyModule::BigMoney RecvVal = obj->useFixed(InVal, InoutVal, OutVal);

6 5 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 658

cout << “RecvVal = “ << RecvVal << endl;
cout << “InoutVal = “ << InoutVal << endl;
cout << “OutVal = “ << OutVal << endl;
...

Java Mapping
The fixed IDL type maps to Java as shown in Table 15.7.

Table 15.7 Java Mapping of the fixed Type

IDL Type Java Mapped Types

fixed java.math.BigDecimal

org.omg.CORBA.FixedHolder

org.omg.CORBA.FixedHelper

//Java
// File containing global constants:
public interface GLOBAL_FIXED
{

public static final java.math.BigDecimal value
= new java.math.BigDecimal(“765.4321”);

}
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_FIXED
{

public static final java.math.BigDecimal value
= new java.math.BigDecimal(“76543.21”);

}

public interface MyInterfaceOperations
{

public static final java.math.BigDecimal INTERFACE_FIXED
= new java.math.BigDecimal(“0.003”);

java.math.BigDecimal useFixed(
java.math.BigDecimal lm_in,
org.omg.CORBA.FixedHolder lm_inout,
org.omg.CORBA.FixedHolder lm_out

);
};

public interface MyInterface
extends MyInterfaceOperations,

B u i l t - I n I D L Ty p e s 6 5 9

19 0672318121 CH15 6/20/01 5:48 PM Page 659

org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useFixed() operation defined in the
preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
java.math.BigDecimal InVal = new java.math.BigDecimal(“12345.67”);
org.omg.CORBA.FixedHolder InoutValH = new org.omg.CORBA.FixedHolder(

new java.math.BigDecimal(“12.34”)
);

org.omg.CORBA.FixedHolder OutValH = new org.omg.CORBA.FixedHolder();

java.math.BigDecimal RecvVal = obj.useFixed(InVal, InoutValH, OutValH);

System.out.println(“RecvVal = “ + RecvVal);
System.out.println(“InoutVal = “ + InoutValH.value);
System.out.println(“OutVal = “ + OutValH.value);
...

float Type
This section describes the IDL constant syntax and CDR encoding of an IDL float
type. The mapping of an IDL float to C++ and to Java is also described and illustrated
by example.

IDL Constant Declaration
//IDL
const float FloatConst = FloatingPointExpression;

A new float constant, FloatConst, is defined in terms of a floating-point expression,
FloatingPointExpression, which is composed of floating-point literals, other float-
ing-point constants, arithmetical operators, and other floating-point expressions
enclosed in parentheses ().

The +, -, *, / infix and +, - unary operators are allowed in IDL float constant decla-
rations.

Literals are specified in floating-point literal format, for example 1.6e-19, as described
in Chapter 16.

CDR Encoding
When a float is appended to an octet stream, it is marshaled as four octets (32 bits)
and aligned on a four-byte boundary. The order in which the octets are marshaled
depends on the current byte-ordering of the octet stream (big-endian or little-endian).

6 6 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 660

The encoding of the float follows the IEEE standard for a single-precision floating
point number.

IDL Example
The following IDL example illustrates the syntax for declaring float constants:

//IDL
const float GLOBAL_FLOAT = 2E30;

module MyModule {
const float MODULE_FLOAT = 3.14;

interface MyInterface {
const float INTERFACE_FLOAT = 6.0 * MODULE_FLOAT;

float useFloat(
in float f_in,
inout float f_inout,
out float f_out

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::Float GLOBAL_FLOAT = 2.0e30F;

namespace MyModule {
const CORBA::Float MODULE_FLOAT = 3.14F;

class MyInterface : public virtual CORBA::Object {
static const CORBA::Float INTERFACE_FLOAT;

virtual CORBA::Float useFloat(
CORBA::Float f_in,
CORBA::Float& f_inout,
CORBA::Float_out f_out

) =0;
};

};
...
// Initialisation of ‘INTERFACE_FLOAT’
const CORBA::Float MyModule::MyInterface::INTERFACE_FLOAT = 18.84F;
...

B u i l t - I n I D L Ty p e s 6 6 1

19 0672318121 CH15 6/20/01 5:48 PM Page 661

C++ Usage
The following C++ code shows how to invoke the useFloat() operation defined in the
preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::Float InoutVal = 1.23456f;
CORBA::Float OutVal;

CORBA::Float RecvVal = obj->useFloat(1.0e10f, InoutVal, OutVal);

cout << “Returned value = “ << RecvVal << endl;
cout << “Inout value = “ << InoutVal << endl;
cout << “Out value = “ << OutVal << endl;
...

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_FLOAT {

public static final float value = (float) 2.0e30;
};
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_FLOAT {
public static final float value = (float) 3.14;

};

public interface MyInterfaceOperations
{

public static final float INTERFACE_FLOAT = (float) 18.84;

float useFloat(
float f_in,
org.omg.CORBA.FloatHolder f_inout,
org.omg.CORBA.FloatHolder f_out

);
};

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

6 6 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 662

Java Usage
The following Java code shows how to invoke the useFloat() operation defined in the
preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
float InVal = 1.0e10f;
org.omg.CORBA.FloatHolder InoutValH = new org.omg.CORBA.FloatHolder(1.23456f);
org.omg.CORBA.FloatHolder OutValH = new org.omg.CORBA.FloatHolder();

float RecvVal = obj.useFloat(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

long Type
This section describes the IDL constant syntax and CDR encoding of an IDL long
type. The mapping of an IDL long to C++ and to Java is also described and illustrated
by example.

IDL Constant Declaration
//IDL
const long LongConst = IntegerExpression;

A new long constant, LongConst, is defined in terms of an integer expression,
IntegerExpression, which is composed of integer literals, other integer constants,
arithmetical operators, and other integer expressions enclosed in parentheses ().

The +, -, *, /, %, <<, >>, &, |, ^ infix and +, -, ~ unary operators are allowed in IDL long
constant declarations.

Literals are specified in integer literal format, for example 0x2F2E, as described in
Chapter 16.

CDR Encoding
When a long integer is appended to an octet stream, it is marshaled as four octets (32
bits) and aligned on a four-byte boundary. The order in which the octets are marshaled
depends on the current byte-ordering of the octet stream (big-endian or little-endian).

IDL Example
The following IDL example illustrates the syntax for declaring long constants:

//IDL
const long GLOBAL_LONG = 365;

B u i l t - I n I D L Ty p e s 6 6 3

19 0672318121 CH15 6/20/01 5:48 PM Page 663

module MyModule {
const long MODULE_LONG = GLOBAL_LONG & 0x00FF;

interface MyInterface {
const long INTERFACE_LONG = 07777;

long useLong(
in long l_in,
inout long l_inout,
out long l_out

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::Long GLOBAL_LONG = 365;

namespace MyModule {
const CORBA::Long MODULE_LONG = 109;

class MyInterface : public virtual CORBA::Object {
static const CORBA::Long INTERFACE_LONG;

virtual CORBA::Long useLong(
CORBA::Long l_in,
CORBA::Long& l_inout,
CORBA::Long_out l_out

) =0;
};

};
...
// Initialisation of ‘INTERFACE_LONG’
const CORBA::Long MyModule::MyInterface::INTERFACE_LONG = 4095;
...

C++ Usage
The following C++ code shows how to invoke the useLong() operation defined in the
preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::Long InoutVal = -123;
CORBA::Long OutVal;

CORBA::Long RecvVal = obj->useLong(-321, InoutVal, OutVal);

6 6 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 664

cout << “Returned value = “ << RecvVal << endl;
cout << “Inout value = “ << InoutVal << endl;
cout << “Out value = “ << OutVal << endl;
...

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_LONG {

public static final int value = (int) 365;
};
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_LONG {
public static final int value = (int) 109;

};

public interface MyInterfaceOperations
{

public static final int INTERFACE_LONG = (int) 4095;

int useLong(
int l_in,
org.omg.CORBA.IntHolder l_inout,
org.omg.CORBA.IntHolder l_out

);
};

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useLong() operation defined in the
preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
int InVal = -321;

B u i l t - I n I D L Ty p e s 6 6 5

19 0672318121 CH15 6/20/01 5:48 PM Page 665

org.omg.CORBA.IntHolder InoutValH = new org.omg.CORBA.IntHolder(-123);
org.omg.CORBA.IntHolder OutValH = new org.omg.CORBA.IntHolder();

int RecvVal = obj.useLong(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

long double Type
This section describes the IDL constant syntax and CDR encoding of an IDL long
double type. The mapping of an IDL long double to C++ is also described and illus-
trated by example.

NOTE
There is no Java mapping for the IDL long double type because there is currently
no support for the long double type in the Java language.

IDL Constant Declaration
//IDL
const long double LongDoubleConst = FloatingPointExpression;

A new long double constant, LongDoubleConst, is defined in terms of a floating-point
expression, FloatingPointExpression, which is composed of floating-point literals,
other floating-point constants, and arithmetical operators.

The +, -, *, / infix and +, - unary operators are allowed in IDL long double constant
declarations.

Literals are specified in floating point format, for example 1.6e-19, as described in
Chapter 16.

CDR Encoding
When a long double is appended to an octet stream, it is marshaled as 16 octets (128
bits) and aligned on an eight-byte boundary. The order in which the octets are mar-
shaled depends on the current byte-ordering of the octet stream (big-endian or little-
endian).

The encoding of the long double follows the IEEE standard for a double-extended
floating point number.

IDL Example
The following IDL example illustrates the syntax for declaring long double constants:

//IDL
const long double GLOBAL_LONGDOUBLE = 2E30;

6 6 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 666

module MyModule {
const long double MODULE_LONGDOUBLE = 3.14;

interface MyInterface {
const long double INTERFACE_LONGDOUBLE = 6.0 * MODULE_LONGDOUBLE;

long double useLongDouble(
in long double ld_in,
inout long double ld_inout,
out long double ld_out

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::LongDouble GLOBAL_LONGDOUBLE = 2.0e30;

namespace MyModule {
const CORBA::LongDouble MODULE_LONGDOUBLE = 3.14;

class MyInterface : public virtual CORBA::Object {
static const CORBA::LongDouble INTERFACE_LONGDOUBLE;

virtual CORBA::LongDouble useLongDouble(
CORBA::LongDouble ld_in,
CORBA::LongDouble& ld_inout,
CORBA::LongDouble_out ld_out

) =0;
};

};
...
// Initialisation of ‘INTERFACE_LONGDOUBLE’
const CORBA::LongDouble MyModule::MyInterface::INTERFACE_LONGDOUBLE = 18.84;
...

C++ Usage
The following C++ code shows how to invoke the useLongDouble() operation defined
in the preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::LongDouble InoutVal = 1.23456;
CORBA::LongDouble OutVal;

CORBA::LongDouble RecvVal = obj->useLongDouble(1.0e10, InoutVal, OutVal);

B u i l t - I n I D L Ty p e s 6 6 7

19 0672318121 CH15 6/20/01 5:48 PM Page 667

cout << “Returned value = “ << RecvVal << endl;
cout << “Inout value = “ << InoutVal << endl;
cout << “Out value = “ << OutVal << endl;
...

long long Type
This section describes the IDL constant syntax and CDR encoding of an IDL long
long type. The mapping of an IDL long long to C++ and to Java is also described and
illustrated by example.

IDL Constant Declaration
//IDL
const long long LongLongConst = IntegerExpression;

A new long long constant, LongLongConst, is defined in terms of an integer expres-
sion, IntegerExpression, which is composed of integer literals, other integer con-
stants, arithmetical operators, and other integer expressions enclosed in parentheses
().

The +, -, *, /, %, <<, >>, &, |, ^ infix and +, -, ~ unary operators are allowed in IDL long
long constant declarations.

Literals are specified in integer literal format, for example 0x2F2E, as described in
Chapter 16.

CDR Encoding
When a long long integer is appended to an octet stream, it is marshaled as eight
octets (64 bits) and aligned on an eight-byte boundary. The order in which the octets
are marshaled depends on the current byte-ordering of the octet stream (big-endian or
little-endian).

IDL Example
The following IDL example illustrates the syntax for declaring long long constants:

//IDL
const long long GLOBAL_LONGLONG = 365;

module MyModule {
const long long MODULE_LONGLONG = GLOBAL_LONGLONG & 0x00FF;

interface MyInterface {
const long long INTERFACE_LONGLONG = 07777;

long long useLongLong(
in long long ll_in,
inout long long ll_inout,
out long long ll_out

6 6 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 668

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::LongLong GLOBAL_LONGLONG = 365;

namespace MyModule {
const CORBA::LongLong MODULE_LONGLONG = 109;

class MyInterface : public virtual CORBA::Object {
static const CORBA::LongLong INTERFACE_LONGLONG;

virtual CORBA::LongLong useLongLong(
CORBA::LongLong ll_in,
CORBA::LongLong& ll_inout,
CORBA::LongLong_out ll_out

) =0;
};

};
...
// Initialisation of ‘INTERFACE_LONGLONG’
const CORBA::LongLong MyModule::MyInterface::INTERFACE_LONGLONG = 4095;
...

C++ Usage
The following C++ code shows how to invoke the useLongLong() operation defined in
the preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::LongLong InoutVal = -123;
CORBA::LongLong OutVal;

CORBA::LongLong RecvVal = obj->useLongLong(-321, InoutVal, OutVal);

cout << “Returned value = “ << RecvVal << endl;
cout << “Inout value = “ << InoutVal << endl;
cout << “Out value = “ << OutVal << endl;
...

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_LONGLONG {

B u i l t - I n I D L Ty p e s 6 6 9

19 0672318121 CH15 6/20/01 5:48 PM Page 669

public static final long value = (long) 365;
};
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_LONGLONG {
public static final long value = (long) 109;

};

public interface MyInterfaceOperations
{

public static final long INTERFACE_LONGLONG = (long) 4095;

long useLongLong(
long ll_in,
org.omg.CORBA.LongHolder ll_inout,
org.omg.CORBA.LongHolder ll_out

);
};

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useLongLong() operation defined in
the preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
long InVal = -321;
org.omg.CORBA.LongHolder InoutValH = new org.omg.CORBA.LongHolder(-123);
org.omg.CORBA.LongHolder OutValH = new org.omg.CORBA.LongHolder();

long RecvVal = obj.useLongLong(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

native Type
The native keyword is used to define types that require a special representation in a
mapped programming language. It is intended for use only by the OMG when defining
special CORBA features.

6 7 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 670

A native declaration has the following syntax:

//IDL
native NativeType;

The NativeType declared using this syntax might appear in the same sort of contexts
as a built-in type but its use is typically subject to certain restrictions imposed by the
target language mapping.

Object Type
The Object type is a special built-in IDL type that is the base type of all interfaces.
When Object is declared to be the return type or parameter type of an operation, it is
then legal to pass an object reference of arbitrary type as the return value or parameter
value, respectively.

The Object type is subject to the same syntax rules as a built-in basic type (for exam-
ple, short or boolean).

For details of the C++ and Java mapping of the Object type, see the section
“CORBA::Object Interface” later in this chapter.

octet Type
This section describes the IDL constant syntax and CDR encoding of an IDL octet
type. The mapping of an IDL octet to C++ and to Java is also described and illustrated
by example.

IDL Constant Declaration
//IDL
const octet OctetConst = IntegerExpression;

A new octet constant, OctetConst, is defined in terms of an integer expression,
IntegerExpression, which is composed of integer literals, other integer constants,
arithmetical operators, and other integer expressions enclosed in parentheses ().

The +, -, *, /, %, <<, >>, &, |, ^ infix and +, -, ~ unary operators are allowed in IDL
octet constant declarations.

Literals are specified in integer literal format, as described in Chapter 16.

CDR Encoding
An octet (eight bits) is marshaled by putting it into the next available position in an
octet stream (alignment on a one-byte boundary). The value of an octet is guaranteed
not to undergo any kind of conversion when it is transmitted.

IDL Example
The following IDL example illustrates the syntax for declaring octet constants:

//IDL
const octet GLOBAL_OCTET = 0xF0;

B u i l t - I n I D L Ty p e s 6 7 1

19 0672318121 CH15 6/20/01 5:48 PM Page 671

module MyModule {
const octet MODULE_OCTET = GLOBAL_OCTET | 0x0F;

interface MyInterface {
const octet INTERFACE_OCTET = 255;

octet useOctet(
in octet o_in,
inout octet o_inout,
out octet o_out

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::Octet GLOBAL_OCTET = 240;

namespace MyModule {
const CORBA::Octet MODULE_OCTET = 255;

class MyInterface : public virtual CORBA::Object {
static const CORBA::Octet INTERFACE_OCTET;

virtual CORBA::Octet useOctet(
CORBA::Octet o_in,
CORBA::Octet& o_inout,
CORBA::Octet_out o_out

) =0;
};

};
...
// Initialisation of ‘INTERFACE_OCTET’
const CORBA::Octet MyModule::MyInterface::INTERFACE_OCTET = 255;
...

C++ Usage
The following C++ code shows how to invoke the useOctet() operation defined in the
preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::Octet InoutVal = 0xAD;
CORBA::Octet OutVal;

CORBA::Octet RecvVal = obj->useOctet(0xBC, InoutVal, OutVal);

6 7 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 672

cout << “Returned value = “ << (int) RecvVal << endl;
cout << “Inout value = “ << (int) InoutVal << endl;
cout << “Out value = “ << (int) OutVal << endl;
...

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_OCTET {

public static final byte value = (byte) 240;
};
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_OCTET {
public static final byte value = (byte) 255;

};

public interface MyInterfaceOperations
{

public static final byte INTERFACE_OCTET = (byte) 255;

byte useOctet(
byte o_in,
org.omg.CORBA.ByteHolder o_inout,
org.omg.CORBA.ByteHolder o_out

);
};

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useOctet() operation defined in the
preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
byte InVal = (byte) 0xBC;
org.omg.CORBA.ByteHolder InoutValH = new org.omg.CORBA.ByteHolder((byte)0xAD);
org.omg.CORBA.ByteHolder OutValH = new org.omg.CORBA.ByteHolder();

B u i l t - I n I D L Ty p e s 6 7 3

19 0672318121 CH15 6/20/01 5:48 PM Page 673

byte RecvVal = obj.useOctet(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

sequence Type
This section describes the IDL syntax and CDR encoding of an IDL sequence type.
The mapping of an IDL sequence to C++ and to Java is also described and illustrated
by example.

IDL Syntax
A sequence has the syntax of a type specifier. There are two forms of sequence syn-
tax, unbounded and bounded, which are defined as follows:

//IDL
// Unbounded sequence type specifier:
sequence<ElementTypeSpec>

// Bounded sequence type specifier:
sequence<ElementTypeSpec, Bound>

The ElementTypeSpec gives the type of the sequence elements and Bound is an con-
stant integer expression that evaluates to a positive value. From CORBA 2.4 onward,
the only context in which a sequence type specifier should appear is as part of a
typedef expression. For example, a sequence can be given an alias using a typedef
expression, as follows:

//IDL
typedef sequence<long> LongSeq;

The element type of a sequence can, in principle, be declared using an arbitrary type
specifier. From CORBA 2.4 onward, however, using anonymous type specifiers for the
element type is deprecated. The following example shows the approved way to declare
a sequence, which avoids using an anonymous type specifier for the element type:

//IDL
typedef sequence<long> LongSeq;
typedef sequence<LongSeq> LongSeqSeq;

Contrast this with the deprecated style of sequence declaration in the following exam-
ple, in which an anonymous type specifier is used directly to declare the element type:

//IDL
typedef sequence<sequence<long> > LongSeqSeq; // Deprecated

6 7 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 674

CDR Encoding
A sequence is marshaled as an unsigned long, specifying the number of transmitted
elements, followed by the sequence elements.

IDL Example
The following IDL example illustrates the syntax for declaring sequence types:

//IDL
module MyModule {

typedef sequence<string, 2> String2Seq;
typedef sequence<String2Seq> String2SeqSeq;

typedef sequence<octet> OctetSeq;

interface MyInterface {
String2SeqSeq useString2SeqSeq(

in String2SeqSeq s2_in,
inout String2SeqSeq s2_inout,
out String2SeqSeq s2_out

);
OctetSeq useOctetSeq(

in OctetSeq os_in,
inout OctetSeq os_inout,
out OctetSeq os_out

);
};

};

C++ Mapping
The bounded sequence, String2Seq, and the unbounded sequence, String2SeqSeq,
defined in the preceding “IDL Example” map to C++ as follows:

//C++
namespace MyModule {

//--
// BOUNDED Sequence - String2Seq

// Implementation dependent definitions generated for:
// ===> String2Seq_var
// ===> String2Seq_out
// ===> _tc_String2Seq

class String2Seq
{
public:
String2Seq();
String2Seq(

CORBA::ULong length,

B u i l t - I n I D L Ty p e s 6 7 5

19 0672318121 CH15 6/20/01 5:48 PM Page 675

char** buf,
CORBA::Boolean release = 0

);
String2Seq(const String2Seq& seq);

CORBA::ULong maximum() const;
void length(CORBA::ULong);
CORBA::ULong length() const;

char *&operator[](CORBA::ULong index);
const char *&operator[](CORBA::ULong index) const;

// MEMORY MANAGEMENT - When the release flag is TRUE, which is
// the usual case, the sequence has responsibility
// for deleting the sequence elements.
CORBA::Boolean release() const;

void replace(
CORBA::ULong length,
char **data,
CORBA::Boolean release = FALSE

);

// MEMORY MANAGEMENT - Accessing the sequence buffer:
// orphan = FALSE - The return value provides read-write access.
// The sequence retains ownership of the buffer.
// orphan = TRUE - The return value provides read-write access.
// The sequence yields ownership of the buffer.
char ** get_buffer(CORBA::Boolean orphan = FALSE);

// MEMORY MANAGEMENT - The return value provides read-only access
// to the sequence buffer.
const char ** get_buffer() const;

// MEMORY MANAGEMENT - Allocate a one-dimensional array of char*
// elements. Each char* (string) element is
// allocated and initialized with default data.
// The number of elements in the allocated buffer
// is equal to maximum().
static char **allocbuf(); // Bounded form.

// MEMORY MANAGEMENT - Free a one-dimensional array of char*
// elements.
static void freebuf(char **);

};

//--
// UNBOUNDED Sequence - String2SeqSeq

6 7 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 676

// Implementation dependent definitions generated for:
// ===> String2SeqSeq_var
// ===> String2SeqSeq_out
// ===> _tc_String2SeqSeq

class String2SeqSeq
{
public:
String2SeqSeq();
String2SeqSeq(CORBA::ULong max);
String2SeqSeq(

CORBA::ULong max,
CORBA::ULong length,
String2Seq* buf,
CORBA::Boolean release = 0

);
String2SeqSeq(const String2SeqSeq& seq);
String2SeqSeq& operator=(const String2SeqSeq& seq);

CORBA::ULong maximum() const;
void length(CORBA::ULong);
CORBA::ULong length() const;

String2Seq &operator[](CORBA::ULong index);
const String2Seq &operator[](CORBA::ULong index) const;

// MEMORY MANAGEMENT - When the release flag is TRUE, which is
// the usual case, the sequence has responsibility
// for deleting the sequence elements.
CORBA::Boolean release() const;

void replace(
CORBA::ULong max,
CORBA::ULong length,
String2Seq *data,
CORBA::Boolean release = FALSE

);

// MEMORY MANAGEMENT - Accessing the sequence buffer:
// orphan = FALSE - The return value provides read-write access.
// The sequence retains ownership of the buffer.
// orphan = TRUE - The return value provides read-write access.
// The sequence yields ownership of the buffer.
String2Seq* get_buffer(CORBA::Boolean orphan = FALSE);

// MEMORY MANAGEMENT - The return value provides read-only access
// to the sequence buffer.
const String2Seq* get_buffer() const;

B u i l t - I n I D L Ty p e s 6 7 7

19 0672318121 CH15 6/20/01 5:48 PM Page 677

// MEMORY MANAGEMENT - Allocate a one-dimensional array of String2Seq
// elements. Each String2Seq element is allocated
// and initialized with default data.
static String2Seq* allocbuf(CORBA::ULong nelems); // Unbounded form.

// MEMORY MANAGEMENT - Free a one-dimensional array of String2Seq
// elements.
static void freebuf(String2Seq*);

};
};
...

C++ Usage
The following C++ code shows how to invoke the useString2SeqSeq() operation
defined in the preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
{
MyModule::String2SeqSeq InVal(1); // maximum = 1, length = 0
InVal.length(1); // length = 1
InVal[0].length(2); // sub-sequence: maximum = 2, length = 2
InVal[0][0] = CORBA::string_dup(“Rodge”);
InVal[0][1] = CORBA::string_dup(“Podge”);

MyModule::String2SeqSeq InoutVal(1); // maximum = 1, length = 0
InoutVal.length(1); // length = 1
InoutVal[0].length(2); // sub-sequence: maximum = 2, length = 2
InoutVal[0][0] = CORBA::string_dup(“Zig”);
InoutVal[0][1] = CORBA::string_dup(“Zag”);

MyModule::String2SeqSeq_var OutValV;

MyModule::String2SeqSeq_var RecvValV
= obj->useString2SeqSeq(InVal, InoutVal, OutValV);

... // Do something with *RecvValV, InoutVal, and *OutValV
}

The following C++ code shows how to invoke the useOctetSeq() operation defined in
the preceding “IDL Example” section:

// Invoke the useOctetSeq() operation
{
// Given ‘buf’, which points to binary data

MyModule::OctetSeq InVal(
1000, // maximum
1000, // length

6 7 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 678

buf, // buffer pointer ‘CORBA::Octet*’
0 // release flag = FALSE

);
MyModule::OctetSeq InoutVal(

1000, // maximum
1000, // length
buf, // buffer pointer ‘CORBA::Octet*’
0 // release flag = FALSE

);
MyModule::OctetSeq_var OutValV;

MyModule::OctetSeq_var RecvValV = obj->useOctetSeq(InVal, InoutVal, OutValV);

CORBA::Octet * recvBuf = RecvValV->get_buffer();
CORBA::Octet * inoutBuf = InoutVal.get_buffer();
CORBA::Octet * outBuf = OutValV->get_buffer();

delete[] buf;
}
...

The parameterless get_buffer() function provides read-only access to the sequence’s
internal buffer.

Java Mapping
An IDL sequence, <seq_name>, with <element_type> elements maps to a Java array
<java_element_type>[dim] of dim dimension with <java_element_type> elements.
The Java array dimension, dim, is related to the IDL sequence bound and length as fol-
lows:

• The array dimension, dim, must be less than or equal to the declared bound of
the sequence (if the sequence is bounded).

• The array dimension, dim, is taken to be the length of the sequence.
Consequently, all of the elements in the Java array are transmitted when passed
as a parameter or return value.

Holder and helper classes, <java_seq_name>Holder and <java_seq_name>Helper, are
generated according to the standard template described in the section “Java Helper and
Holder Types” later in this chapter.

For example, the MyModule.String2SeqSeq IDL sequence maps to Java as shown in
Table 15.8.

Table 15.8 Java Mapping of the String2SeqSeq Sequence Type

IDL Type Java Mapped Types

MyModule.String2SeqSeq String[dim][bounded_dim]

MyModule.String2SeqSeqHolder

MyModule.String2SeqSeqHelper

B u i l t - I n I D L Ty p e s 6 7 9

19 0672318121 CH15 6/20/01 5:48 PM Page 679

In Table 15.8 the dim array dimension, which limits the sequence<String2Seq>
unbounded sequence index, can be an arbitrary non-negative integer. The bounded_dim
array dimension, which defines the sequence<string, 2> bounded sequence index,
can be 0, 1, or 2.

Java Usage
The following Java code shows how to invoke the useString2SeqSeq() operation
defined in the preceding “IDL Example” section:

//Java
// Assume ‘obj’ is an object reference of MyModule::MyInterface type.
// Invoke the useString2SeqSeq() operation
{
// Declare a sequence of ‘MyModule::String2SeqSeq’ type.
String InVal[][] = new String[1][2];
InVal[0][0] = “Rodge”;
InVal[0][1] = “Podge”;

String SampleVal[][] = new String[1][2];
SampleVal[0][0] = “Zig”;
SampleVal[0][1] = “Zag”;

MyModule.String2SeqSeqHolder InoutValH
= new MyModule.String2SeqSeqHolder(SampleVal);

MyModule.String2SeqSeqHolder OutValH = new MyModule.String2SeqSeqHolder();

String RecvVal[][] = obj.useString2SeqSeq(InVal, InoutValH, OutValH);

... // Do something with RecvVal, InoutValH.value, and OutValH.value
}

The following Java code shows how to invoke the useOctetSeq() operation defined in
the preceding “IDL Example” section:

// Invoke the useOctetSeq() operation
{
// Initialize ‘buf’with binary data (of byte[] type)
byte[] buf = (new String(“Sample Buffer”)).getBytes();

byte[] InVal = buf;
MyModule.OctetSeqHolder InoutValH = new MyModule.OctetSeqHolder(buf);
MyModule.OctetSeqHolder OutValH = new MyModule.OctetSeqHolder();

byte[] RecvVal = obj.useOctetSeq(InVal, InoutValH, OutValH);

... // Do something with RecvVal, InoutValH.value, and OutValH.value
}
...

6 8 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 680

short Type
This section describes the IDL constant syntax and CDR encoding of an IDL short
type. The mapping of an IDL short to C++ and to Java is also described and illustrated
by example.

IDL Constant Declaration
//IDL
const short ShortConst = IntegerExpression;

A new short constant, ShortConst, is defined in terms of an integer expression,
IntegerExpression, which is composed of integer literals, other integer constants,
arithmetical operators, and other integer expressions enclosed in parentheses ().

The +, -, *, /, %, <<, >>, &, |, ^ infix and +, -, ~ unary operators are allowed in IDL
short constant declarations.

Literals are specified in integer literal format, for example 0x2F2E, as described in
Chapter 16.

CDR Encoding
When a short integer is appended to an octet stream, it is marshaled as two octets (16
bits) and aligned on a two-byte boundary. The order in which the octets are marshaled
depends on the current byte-ordering of the octet stream (big-endian or little-endian).

IDL Example
The following IDL example illustrates the syntax for declaring short constants:

//IDL
const short GLOBAL_SHORT = 365;

module MyModule {
const short MODULE_SHORT = GLOBAL_SHORT & 0x00FF;

interface MyInterface {
const short INTERFACE_SHORT = 07777;

short useShort(
in short s_in,
inout short s_inout,
out short s_out

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

B u i l t - I n I D L Ty p e s 6 8 1

19 0672318121 CH15 6/20/01 5:48 PM Page 681

//C++
const CORBA::Short GLOBAL_SHORT = 365;

namespace MyModule {
const CORBA::Short MODULE_SHORT = 109;

class MyInterface : public virtual CORBA::Object {
static const CORBA::Short INTERFACE_SHORT;

virtual CORBA::Short useShort(
CORBA::Short s_in,
CORBA::Short& s_inout,
CORBA::Short_out s_out

) =0;
};

};
...
// Initialisation of ‘INTERFACE_SHORT’
const CORBA::Short MyModule::MyInterface::INTERFACE_SHORT = 4095;
...

C++ Usage
The following C++ code shows how to invoke the useShort() operation defined in the
preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::Short InoutVal = -123;
CORBA::Short OutVal;

CORBA::Short RecvVal = obj->useShort(-321, InoutVal, OutVal);

cout << “Returned value = “ << RecvVal << endl;
cout << “Inout value = “ << InoutVal << endl;
cout << “Out value = “ << OutVal << endl;
...

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_SHORT {

public static final short value = (short) 365;
};
...

// File containing module and interface constants:
package MyModule;

6 8 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 682

public interface MODULE_SHORT {
public static final short value = (short) 109;

};

public interface MyInterfaceOperations
{

public static final short INTERFACE_SHORT = (short) 4095;

short useShort(
short s_in,
org.omg.CORBA.ShortHolder s_inout,
org.omg.CORBA.ShortHolder s_out

);
};

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useShort() operation defined in the
preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
short InVal = -321;
org.omg.CORBA.ShortHolder InoutValH = new org.omg.CORBA.ShortHolder((short)-
➥123);
org.omg.CORBA.ShortHolder OutValH = new org.omg.CORBA.ShortHolder();

short RecvVal = obj.useShort(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

string Type
This section describes the IDL syntax, IDL constant syntax, and CDR encoding of an
IDL string type. The mapping of an IDL string to C++ and to Java is also described
and illustrated by example.

IDL Syntax
A string has the syntax of a type specifier. There are two forms of string syntax,
unbounded and bounded, which are defined as follows:

B u i l t - I n I D L Ty p e s 6 8 3

19 0672318121 CH15 6/20/01 5:48 PM Page 683

//IDL
// Unbounded string type specifier:
string

// Bounded string type specifier:
string<Bound>

The Bound specifies the maximum length of the string. The Bound is a constant integer
expression that evaluates to a positive value.

An unbounded string type specifier can appear in any context where a type specifier
is expected. From CORBA 2.4 onward, the only context in which a bounded string<>
type specifier should appear is as part of a typedef expression. For example, a bounded
string<> can be given an alias using a typedef expression, as follows:

//IDL
typedef string<128> String128;

IDL Constant Declaration
//IDL
const string StringConst = StringLiteral;
const string StringConst = OtherStringConst;

A new string constant, StringConst, can be defined either in terms of a string literal,
StringLiteral, or in terms of an existing string constant, OtherStringConst. No infix
or unary operators can be used in IDL string constant declarations.

String literal format, for example “This is a string”, is described in Chapter 16.

CDR Encoding
A string is marshaled as an unsigned long, specifying the length of the string
including the terminating null character, followed by the characters themselves (includ-
ing the terminating null).

IDL Example
The following IDL example illustrates the syntax for declaring string constants:

//IDL
const string GLOBAL_STRING = “String “ “with “ “many “ “parts.” “\n”;

module MyModule {
const string MODULE_STRING = GLOBAL_STRING;

interface MyInterface {
const string INTERFACE_STRING = “Ahoy!”;

string useString(
in string s_in,
inout string s_inout,

6 8 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 684

out string s_out
);

};
};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const char * const GLOBAL_STRING = “String with many parts.\n”;

namespace MyModule {
const char* MODULE_STRING = “String with many parts.\n”;

class MyInterface : public virtual CORBA::Object {
static const char * const INTERFACE_STRING;

virtual char * useString(
const char * s_in,
char *& s_inout,
CORBA::String_out s_out

) =0;
};

};
...
// Initialisation of ‘INTERFACE_STRING’
const char* MyModule::MyInterface::INTERFACE_STRING = “Ahoy!”;
...

Some standard types and static functions are provided to help with the memory man-
agement of strings. They are defined as follows:

//C++
namespace CORBA {

// Standard definitions for:
// ===> String_var
// ===> String_out
// ===> _tc_String

// String memory management functions:
char *string_alloc(CORBA::ULong len);
char *string_dup(const char*);
void string_free(char *);

};

For explanations and examples of how to use these memory management functions, see
Chapter 4.

B u i l t - I n I D L Ty p e s 6 8 5

19 0672318121 CH15 6/20/01 5:48 PM Page 685

C++ Usage
The following C++ code shows how to invoke the useString() operation defined in
the preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::String_var InoutVal = CORBA::string_dup(“EFGH”);
CORBA::String_var OutVal;

CORBA::String_var RecvVal = obj->useString(“ABCD”, InoutVal, OutVal);

cout << “Returned value = “ << RecvVal << endl;
cout << “Inout value = “ << InoutVal << endl;
cout << “Out value = “ << OutVal << endl;
...

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_STRING {

public static final String value = “String with many parts.\n”;
};
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_STRING {
public static final String value = “String with many parts.\n”;

};

public interface MyInterfaceOperations
{

public static final String INTERFACE_STRING = “Ahoy!”;

String useString(
String s_in,
org.omg.CORBA.StringHolder s_inout,
org.omg.CORBA.StringHolder s_out

);
};

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

6 8 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 686

Java Usage
The following Java code shows how to invoke the useString() operation defined in
the preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
String InVal = “ABCD”;
org.omg.CORBA.StringHolder InoutValH = new org.omg.CORBA.StringHolder(“EFGH”);
org.omg.CORBA.StringHolder OutValH = new org.omg.CORBA.StringHolder();

String RecvVal = obj.useString(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

struct Type
This section describes the IDL syntax and CDR encoding of an IDL struct type. The
mapping of an IDL struct to C++ and to Java is also described and illustrated by
example.

IDL Syntax
A struct can stand on its own as a type declaration, in which case it is terminated by
a semicolon:

//IDL
struct StructType { MemberList };

The StructType is the name of the newly defined struct. There must be at least one
member in MemberList and each member consists of a type specifier followed by a
comma-separated declarator list. For example, the following struct declares six mem-
bers, s1, s2, s3, d1, d2, and d3:

//IDL
struct SimpleStruct {

short s1, s2, s3;
double d1, d2, d3;

};

A struct can also be used as a type specifier, in which case the terminating semicolon
is omitted. For example, a struct can be given an alias using a typedef expression, as
follows:

//IDL
typedef struct VSimpleStruct { short s; } VSimpleStructAlias;

The members of a struct can, in principle, be declared using arbitrary type specifiers.

B u i l t - I n I D L Ty p e s 6 8 7

19 0672318121 CH15 6/20/01 5:48 PM Page 687

From CORBA 2.4 onward, however, using anonymous type specifiers in the member
list is deprecated. The following example shows the approved way to declare a struct,
which avoids the use of anonymous type specifiers in the member list:

//IDL
typedef wstring<100> WString100;
typedef sequence<octet> OctetSeq;
struct NameStruct { string firstName, secondName; };

struct ApprovedStruct {
WString100 w1, w2, w3;
OctetSeq raw_data;
NameStruct name1, name2;

};

Contrast this with the deprecated style of struct declaration in the following example,
in which anonymous type specifiers are used directly to declare struct members:

//IDL
struct DeprecatedStruct {

wstring<100> w1, w2, w3; // Deprecated
sequence<octet> raw_data; // Deprecated
struct NameStruct {

string firstName, secondName;
} name1, name2; // Poor style, but not deprecated.

};

A forward declaration of a struct, which precedes the full struct declaration, can be
made as follows:

//IDL
struct StructType;

This construction is provided specifically to facilitate the definition of recursive
structs. For example, a recursive struct can be defined as follows:

//IDL
struct RecurStruct;

typedef sequence<RecurStruct> RecurStructSeq;

struct RecurStruct {
string nodeName;
RecurStructSeq recurList;

};

Older (pre-CORBA 2.4) IDL compilers that do not support forward declaration of
structs can accept the following (deprecated) syntax instead:

//IDL
struct RecurStruct {

6 8 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 688

string nodeName;
sequence<RecurStruct> recurList; // Deprecated since CORBA 2.4.

};

CDR Encoding
A struct is marshaled into an octet stream by marshaling each of the struct members
in the same order as they appear in the IDL definition.

IDL Example
The following IDL example illustrates the syntax for declaring struct types:

//IDL
module MyModule {

struct Node;
typedef sequence<Node> NodeSeq;

// Variable length struct.
struct Node {

string nodeName;
NodeSeq recurList;

};

// Fixed length struct.
struct FixLen { long min, max; };

interface MyInterface {
Node useNode(

in Node nd_in,
inout Node nd_inout,
out Node nd_out

);
FixLen useFixLen(

in FixLen fx_in,
inout FixLen fx_inout,
out FixLen fx_out

);
};

};

C++ Mapping
The variable-length struct, Node, and the fixed-length struct, FixLen, defined in the pre-
ceding “IDL Example” map to C++ as follows:

//C++
namespace MyModule {

// Implementation dependent definitions generated for:
// ===> Node_var

B u i l t - I n I D L Ty p e s 6 8 9

19 0672318121 CH15 6/20/01 5:48 PM Page 689

// ===> Node_out
// ===> _tc_Node

struct Node;

// Definition generated for:
// ===> NodeSeq sequence type
... // (not shown)

struct Node
{

<impl_dependent_string_manager_type> nodeName;
NodeSeq recurList;

};

// Implementation dependent definitions generated for:
// ===> FixLen_var
// ===> FixLen_out
// ===> _tc_FixLen

struct FixLen
{

CORBA::Long min;
CORBA::Long max;

};
};

C++ Usage
The following C++ code shows how to invoke the useNode() operation defined in the
preceding “IDL Example” section:

//C++
// Assume ‘obj’ is an object reference of MyModule::MyInterface type.
// Invoke the useNode() operation
{
// Using a variable length struct
MyModule::Node SampleVal;
SampleVal.nodeName = CORBA::string_dup(“Foo”);
SampleVal.recurList.length(2);
SampleVal.recurList[0].nodeName = CORBA::string_dup(“Zig”);
SampleVal.recurList[1].nodeName = CORBA::string_dup(“Zag”);

MyModule::Node InVal = SampleVal;
MyModule::Node InoutVal = SampleVal;
// Variable length => No memory allocation for ‘out’ parameter.
MyModule::Node_var OutValV;

MyModule::Node_var RecvValV = obj->useNode(InVal, InoutVal, OutValV);

6 9 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 690

... // Do something with *RecvValV, InoutVal, and *OutValV
}

The following C++ code shows how to invoke the useFixLen() operation defined in
the preceding “IDL Example” section:

// Invoke the useFixLen() operation
{
// Using a fixed length struct
MyModule::FixLen SampleVal;
SampleVal.min = -10;
SampleVal.max = 10;

// For fixed length, declare all parameters on the stack.
MyModule::FixLen InVal = SampleVal;
MyModule::FixLen InoutVal = SampleVal;
// Fixed length => Allocate memory for ‘out’ parameter.
MyModule::FixLen OutVal;

MyModule::FixLen RecvVal = obj->useFixLen(InVal, InoutVal, OutVal);

cout << “RecvVal.min = “ << RecvVal.min << endl;
cout << “RecvVal.max = “ << RecvVal.max << endl;}
...

Java Mapping
An IDL struct type, <struct_name>, maps to a Java class, <java_struct_name>.
Holder and helper classes, <java_struct_name>Holder and
<java_struct_name>Helper, are generated according to the standard template
described in the section “Java Helper and Holder Types” later in this chapter.

For example, the MyModule.Node struct type maps to Java as shown in Table 15.9.

Table 15.9 Java Mapping of the Node Struct Type

IDL Type Java Mapped Types

MyModule.Node MyModule.Node

MyModule.NodeHolder

MyModule.NodeHelper

Each member variable declared in IDL maps to a corresponding public member of the
mapped Java class. The MyModule.Node and MyModule.FixLen Java classes are there-
fore defined as follows:

//Java
package MyModule;

public final class Node
implements org.omg.CORBA.portable.IDLEntity

{

B u i l t - I n I D L Ty p e s 6 9 1

19 0672318121 CH15 6/20/01 5:48 PM Page 691

public java.lang.String nodeName;
public MyModule.Node[] recurList;

public Node() {}
public Node(

java.lang.String nodeName,
MyModule.Node[] recurList

) { ... }
}

public final class FixLen
implements org.omg.CORBA.portable.IDLEntity

{
public int min;
public int max;

public FixLen() {}
public FixLen(int min, int max) { ... }

}
...

Java Usage
The following Java code shows how to invoke the useNode() operation defined in the
preceding “IDL Example” section:

//Java
// Assume ‘obj’ is an object reference of MyModule::MyInterface type.
// Invoke the useNode() operation
{
MyModule.Node InVal = new MyModule.Node();
InVal.nodeName = “Foo”;
InVal.recurList = new MyModule.Node[2];
InVal.recurList[0] = new MyModule.Node(“Zig”, new MyModule.Node[0]);
InVal.recurList[1] = new MyModule.Node(“Zag”, new MyModule.Node[0]);

MyModule.NodeHolder InoutValH = new MyModule.NodeHolder();
InoutValH.value = new MyModule.Node(“Bar”, new MyModule.Node[0]);
MyModule.NodeHolder OutValH = new MyModule.NodeHolder();

MyModule.Node RecvVal = obj.useNode(InVal, InoutValH, OutValH);

... // Do something with RecvVal, InoutValH.value, and OutValH.value
}

The following Java code shows how to invoke the useFixLen() operation defined in
the preceding “IDL Example” section:

6 9 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 692

// Invoke the useFixLen() operation
{
// Using a fixed length struct
MyModule.FixLen InVal = new MyModule.FixLen(-10,10);
MyModule.FixLenHolder InoutValH = new MyModule.FixLenHolder(

new MyModule.FixLen(-10,10)
);

MyModule.FixLenHolder OutValH = new MyModule.FixLenHolder();

MyModule.FixLen RecvVal = obj.useFixLen(InVal, InoutValH, OutValH);

... // Do something with RecvVal, InoutValH.value, and OutValH.value
}
...

union Type
This section describes the IDL syntax and CDR encoding of an IDL union type. The
mapping of an IDL union to C++ and to Java is also described and illustrated by exam-
ple.

IDL Syntax
A discriminated union can stand on its own as a type declaration, in which case it is
terminated by a semicolon:

//IDL
union UnionType switch(SwitchTypeSpec) { CaseList };

The UnionType is the name of the newly defined union type. The SwitchTypeSpec
specifies the discriminant type and it is restricted to be one of the following: integer,
char, boolean, or enumerated type.

There must be at least one case in CaseList and each case has one of the following
forms:

//IDL
case ConstExpr : [case ConstExpr : ...] TypeSpec Declarator;
default : TypeSpec Declarator;

The first form consists of one or more case labels followed by the declaration of a sin-
gle union member, TypeSpec Declarator. The ConstExpr appearing in the case labels
is a constant expression of the same type as the union discriminant. The member is
selected if the ConstExpr value of one of the associated case labels is equal to the dis-
criminant value.

The second form consists of a single default label followed by the declaration of a
union member, TypeSpec Declarator. There can be at most one default label in a
case list. The default member is selected if the discriminant value does not match any
other case label.

B u i l t - I n I D L Ty p e s 6 9 3

19 0672318121 CH15 6/20/01 5:48 PM Page 693

For example, the following discriminated union declares six members, us, s, ul, l, ull,
and ll:

//IDL
union FlexibleInt switch(short) {

case 0 : unsigned short us;
case 1 : short s;
case 2 : unsigned long ul;
case 3 : long l;
case 4 : unsigned long long ull;
default : long long ll;

};

A union can also be used as a type specifier, in which case the terminating semicolon
is omitted. For example, a union can be given an alias using a typedef expression, as
follows:

//IDL
typedef union VSimpleUnion switch(boolean) {

case TRUE: string val;
} VSimpleUnionAlias;

The members of a union can, in principle, be declared using arbitrary type specifiers.
From CORBA 2.4 onward, however, using anonymous type specifiers within the case
list is deprecated. The following example shows the approved way to declare a union,
which avoids the use of anonymous type specifiers within the case list:

//IDL
typedef wstring<100> WString100;
typedef sequence<octet> OctetSeq;
struct NameStruct { string firstName, secondName; };
enum NameFormat { INTERNATIONAL, RAW_BINARY, STRUCTURED };

union ApprovedUnion switch(NameFormat) {
case INTERNATIONAL: WString100 wsName;
case RAW_BINARY: OctetSeq binName;
case STRUCTURED: NameStruct name;

};

Contrast this with the deprecated style of union declaration in the following example,
in which anonymous type specifiers are used directly to declare union members:

//IDL
enum NameFormat { INTERNATIONAL, RAW_BINARY, STRUCTURED };

union DeprecatedUnion switch(NameFormat) {
case INTERNATIONAL: wstring<100> wsName; // Deprecated
case RAW_BINARY: sequence<octet> binName; // Deprecated
case STRUCTURED: struct NameStruct {

6 9 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 694

string firstName, secondName;
} name; // Poor style, but not deprecated.

};

A forward declaration of a union, which precedes the full union declaration, can be
made as follows:

//IDL
union UnionType;

This construction is provided specifically to facilitate the definition of recursive
unions. For example, a recursive union can be defined as follows:

//IDL
union RecurUnion;

typedef sequence<RecurUnion> RecurUnionSeq;
enum Selector { SELECT_STRING, SELECT_RECURSE };

union RecurUnion switch(Selector) {
case SELECT_STRING: string value;
case SELECT_RECURSE: RecurUnionSeq recurList;

};

Older (pre-CORBA 2.4) IDL compilers that do not support forward declaration of
unions can accept the following (deprecated) syntax instead:

//IDL
enum Selector { SELECT_STRING, SELECT_RECURSE };

union RecurUnion switch(Selector) {
case SELECT_STRING: string value;
case SELECT_RECURSE: sequence<RecurUnion> recurList; // Deprecated

};

CDR Encoding
A union is marshaled into an octet stream by marshaling the following values:

• Discriminant value—Encoded according to the rules for the selected switch
type.

• Member value (if any)—If a member exists for the current discriminant value,
it is marshaled according to the rules for that type.

It can happen, therefore, that a union encoding consists solely of a discriminant value.

IDL Example
The following IDL example illustrates the syntax for declaring union types:

//IDL
module MyModule {

B u i l t - I n I D L Ty p e s 6 9 5

19 0672318121 CH15 6/20/01 5:48 PM Page 695

union UNode;
typedef sequence<UNode> UNodeSeq;
enum SecurityRole { USER, GROUP, OTHER, MULTIPLE };

// Variable length union.
union UNode switch(SecurityRole) {

case USER:
case GROUP: long ID;
default : wstring name;
case MULTIPLE: UNodeSeq recurList;

};

union USimple switch(boolean) { case TRUE: string val; };

interface MyInterface {
UNode useUNode(

in UNode und_in,
inout UNode und_inout,
out UNode und_out

);
USimple useUSimple(

in USimple ufx_in,
inout USimple ufx_inout,
out USimple ufx_out

);
};

};

C++ Mapping
The UNode and USimple unions defined in the preceding “IDL Example” map to C++
as follows:

//C++
namespace MyModule {

enum SecurityRole
{

USER, GROUP, OTHER, MULTIPLE
// Implementation-dependent extra value.

};

// Implementation dependent definitions generated for:
// ===> SecurityRole_out
// ===> _tc_SecurityRole

class UNode;

// Definition generated for:
// ===> UNodeSeq sequence type
... // (not shown)

6 9 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 696

// Implementation-dependent definitions generated for:
// ===> UNode_var
// ===> UNode_out
// ===> _tc_UNode

class UNode
{
public:

UNode();
UNode(const UNode&);
~UNode();
UNode& operator=(const UNode&);

void _d(SecurityRole);
SecurityRole _d() const;

CORBA::Long ID() const;
void ID(CORBA::Long);

// MEMORY MANAGEMENT: union assumes ownership
// of argument’s memory and frees old value.
void name(CORBA::WChar*);

// MEMORY MANAGEMENT: union deep copies argument
// and frees old value.
void name(const CORBA::WChar*);
void name(const CORBA::WString_var &);

// MEMORY MANAGEMENT: read-only access to return value.
const CORBA::WChar * name() const;

// MEMORY MANAGEMENT: union deep copies argument
// and frees old value.
void recurList(const UNodeSeq&);

// MEMORY MANAGEMENT: read-only access to return value.
const UNodeSeq & recurList() const;

// MEMORY MANAGEMENT: read-write access to return value.
UNodeSeq & recurList();

// Additional implementation-dependent details
...

};

class USimple;

B u i l t - I n I D L Ty p e s 6 9 7

19 0672318121 CH15 6/20/01 5:48 PM Page 697

// Implementation-dependent definitions generated for:
// ===> USimple_var
// ===> USimple_out
// ===> _tc_USimple

class USimple
{
public:
USimple();
USimple(const USimple&);
~USimple();
USimple& operator=(const USimple&);

void _d(CORBA::Boolean);
CORBA::Boolean _d() const;

// MEMORY MANAGEMENT: union assumes ownership
// of argument’s memory and frees old value.
void val(char*);

// MEMORY MANAGEMENT: union deep copies argument
// and frees old value.
void val(const char*);
void val(const CORBA::String_var &);

// MEMORY MANAGEMENT: read-only access to return value.
const char * val() const;

// _default() function - Generated only for unions that do NOT have
// a ‘default’ case in IDL.
void _default();

};
};

C++ Usage
The following C++ code shows how to invoke the useUNode() operation defined in the
preceding “IDL Example” section:

//C++
// Assume ‘obj’ is an object reference of MyModule::MyInterface type.
// Invoke the useUNode() operation
{
// Using a variable length union
MyModule::UNodeSeq roleList;
roleList.length(2);
roleList[0].ID(54321); // discriminant = ??? (USER or GROUP)
roleList[0]._d(MyModule::USER); // discriminant = USER
roleList[1].ID(12345); // discriminant = ??? (USER or GROUP)
roleList[1]._d(MyModule::GROUP); // discriminant = GROUP

6 9 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 698

MyModule::UNode SampleVal;
SampleVal.recurList(roleList); // deep copy

// discriminant = MULTIPLE

MyModule::UNode InVal = SampleVal; // deep copy
MyModule::UNode InoutVal = SampleVal; // deep copy
// Variable length union ==> do NOT allocate memory for out parameter.
MyModule::UNode_var OutValV;

MyModule::UNode_var RecvValV = obj->useUNode(InVal, InoutVal, OutValV);

printUNode(*RecvValV);
printUNode(InoutVal);
printUNode(*OutValV);
}

The following C++ code shows how to invoke the useUSimple() operation defined in
the preceding “IDL Example” section:

// Invoke the useUSimple() operation
{
// Using a variable length union
MyModule::USimple InVal;
InVal.val(“This string is deep copied.”); // discriminant = TRUE
MyModule::USimple InoutVal;
InoutVal._default(); // discriminant = FALSE
// Variable length union ==> do NOT allocate memory for out parameter.
MyModule::USimple_var OutValV;

MyModule::USimple_var RecvValV = obj->useUSimple(InVal, InoutVal, OutValV);

cout << “RecvVal = { d=” << RecvValV->_d();
if (RecvValV->_d()) { cout << “, val=” << RecvValV->val(); }
cout << “ }” << endl;
cout << “InoutVal = { d=” << InoutVal._d();
if (InoutVal._d()) { cout << “, val=” << InoutVal.val(); }
cout << “ }” << endl;
cout << “OutVal = { d=” << OutValV->_d();
if (OutValV->_d()) { cout << “, val=” << OutValV->val(); }
cout << “ }” << endl;
}
...

The printUNode() function prints the value of the UNode union, as follows:

//C++
void printUNode(const MyModule::UNode& node, int recurseLevel=0)
{

CORBA::ULong len, j;

B u i l t - I n I D L Ty p e s 6 9 9

19 0672318121 CH15 6/20/01 5:48 PM Page 699

switch (node._d())
{

case MyModule::USER :
cout << “UserID = “ << node.ID();
break;

case MyModule::GROUP :
cout << “GroupID = “ << node.ID();
break;

case MyModule::MULTIPLE :
cout << “{ “;
len = node.recurList().length();
for (j=0; j+1 < len; j++) //Careful! Unsigned arithmetic.
{

printUNode(node.recurList()[j], recurseLevel+1);
cout << “, “;

}
if (len > 0) {

printUNode(node.recurList()[len-1], recurseLevel+1);
}
cout << “ }”;
break;

default :
cout << “Other = “;
printWideString(node.name());
break;

}
if (recurseLevel==0) { cout << ‘\n’; }

}

Java Mapping
An IDL union type, <union_name>, maps to a Java class, <java_union_name>. Holder
and helper classes, <java_union_name>Holder and <java_union_name>Helper, are
generated according to the standard template described in the section “Java Helper and
Holder Types” later in this chapter.

For example, the MyModule.UNode union type maps to Java as shown in Table 15.10.

Table 15.10 Java Mapping of the UNode Union Type

IDL Type Java Mapped Types

MyModule::UNode MyModule.UNode

MyModule.UNodeHolder

MyModule.UNodeHelper

Each union member declared in IDL maps to an accessor method and a modifier
method of the mapped Java class. Additionally, union members with multiple case
labels generate an extra modifier method in Java that lets you set both the discrimina-
tor and the member value. The MyModule.UNode and MyModule.USimple Java classes
are therefore defined as follows:

7 0 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 700

//Java
package MyModule;

public final class UNode
implements org.omg.CORBA.portable.IDLEntity

{
public MyModule.SecurityRole discriminator() { ... }

public UNode(){}

public boolean is_ID() { ... }
public int ID() throws org.omg.CORBA.BAD_OPERATION { ... }
public void ID(int value) { ... }
public void ID(MyModule.SecurityRole discriminator, int value) { }

public boolean is_name() { ... }
public java.lang.String name() throws org.omg.CORBA.BAD_OPERATION { ... }
public void name(java.lang.String value) { ... }
public void name(

MyModule.SecurityRole discriminator,
java.lang.String value

) { ... }

public boolean is_recurList() { ... }
public MyModule.UNode[] recurList()

throws org.omg.CORBA.BAD_OPERATION { ... }
public void recurList(MyModule.UNode[] value) { ... }
public void recurList(

MyModule.SecurityRole discriminator,
MyModule.UNode[] value

) { ... }
}

public final class USimple
implements org.omg.CORBA.portable.IDLEntity

{
public boolean discriminator() { ... }

public USimple(){}

public boolean is_val() { ... }
public java.lang.String val() throws org.omg.CORBA.BAD_OPERATION { ... }
public void val(java.lang.String value) { ... }
public void val(boolean discriminator, java.lang.String value) { ... }

// __default() functions - Generated only for unions that do NOT have
// a ‘default’ case in IDL.
public void __default() { ... }

B u i l t - I n I D L Ty p e s 7 0 1

19 0672318121 CH15 6/20/01 5:48 PM Page 701

public void __default(boolean discrim) { ... }
}
...

Java Usage
The following Java code shows how to invoke the useUNode() operation defined in the
preceding “IDL Example” section:

//Java
// Assume ‘obj’ is an object reference of MyModule::MyInterface type.
// Invoke the useUNode() operation
{
// Using a variable length union
MyModule.UNode roleList[] = new MyModule.UNode[2];
roleList[0] = new MyModule.UNode();
roleList[0].ID(MyModule.SecurityRole.USER, 54321);
roleList[1] = new MyModule.UNode();
roleList[1].ID(MyModule.SecurityRole.GROUP, 12345);
MyModule.UNode SampleVal = new MyModule.UNode();
SampleVal.recurList(roleList); // discriminant = MULTIPLE

MyModule.UNode InVal = new MyModule.UNode();
InVal.recurList(roleList);
MyModule.UNodeHolder InoutValH = new MyModule.UNodeHolder(SampleVal);
MyModule.UNodeHolder OutValH = new MyModule.UNodeHolder();

MyModule.UNode RecvVal = obj.useUNode(InVal, InoutValH, OutValH);

printUNode(RecvVal, 0);
printUNode(InoutValH.value, 0);
printUNode(OutValH.value, 0);
}

The following Java code shows how to invoke the useUSimple() operation defined in
the preceding “IDL Example” section:

// Invoke the useUSimple() operation
{
MyModule.USimple InVal = new MyModule.USimple();
InVal.val(“String value of union”); // discriminant = TRUE
MyModule.USimpleHolder InoutValH = new MyModule.USimpleHolder(

new MyModule.USimple()
);

InoutValH.value.__default(); // discriminant = FALSE
MyModule.USimpleHolder OutValH = new MyModule.USimpleHolder();

MyModule.USimple RecvVal = obj.useUSimple(InVal, InoutValH, OutValH);

7 0 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 702

... // Do something with RecvVal, InoutValH.value, and OutValH.value
}
...

The following implementation of the printUNode() method illustrates how to access
the value of the UNode union:

//Java
public static void printUNode(MyModule.UNode node, int recurseLevel)
{

switch (node.discriminator().value())
{

case MyModule.SecurityRole._USER :
System.out.print(“UserID = “ + node.ID());
break;

case MyModule.SecurityRole._GROUP :
System.out.print(“GroupID = “ + node.ID());
break;

case MyModule.SecurityRole._MULTIPLE :
System.out.print(“{ “);
int len = node.recurList().length;
for (int j=0; j < len-1; j++)
{

printUNode(node.recurList()[j], recurseLevel+1);
System.out.print(“, “);

}
if (len > 0) {

printUNode(node.recurList()[len-1], recurseLevel+1);
}
System.out.print(“ }”);
break;

default :
System.out.print(“Other = <cannot print wide string>”);
break;

}
if (recurseLevel==0) { System.out.print(“\n”); }

}

unsigned long Type
This section describes the IDL constant syntax and CDR encoding of an IDL unsigned
long type. The mapping of an IDL unsigned long to C++ and to Java is also described
and illustrated by example.

IDL Constant Declaration
//IDL
const unsigned long ULongConst = IntegerExpression;

B u i l t - I n I D L Ty p e s 7 0 3

19 0672318121 CH15 6/20/01 5:48 PM Page 703

A new unsigned long constant, ULongConst, is defined in terms of an integer expres-
sion, IntegerExpression, which is composed of integer literals, other integer con-
stants, arithmetical operators, and other integer expressions enclosed in parentheses
().

The +, -, *, /, %, <<, >>, &, |, ^ infix and +, -, ~ unary operators are allowed in IDL
unsigned long constant declarations.

Literals are specified in integer literal format, for example 0x2F2E, as described in
Chapter 16.

CDR Encoding
When an unsigned long integer is appended to an octet stream, it is marshaled as four
octets (32 bits) and aligned on a four-byte boundary. The order in which the octets are
marshaled depends on the current byte-ordering of the octet stream (big-endian or
little-endian).

IDL Example
The following IDL example illustrates the syntax for declaring unsigned long con-
stants:

//IDL
const unsigned long GLOBAL_ULONG = 365;

module MyModule {
const unsigned long MODULE_ULONG = GLOBAL_ULONG & 0x00FF;

interface MyInterface {
const unsigned long INTERFACE_ULONG = 07777;

unsigned long useULong(
in unsigned long ul_in,
inout unsigned long ul_inout,
out unsigned long ul_out

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::ULong GLOBAL_ULONG = 365;

namespace MyModule {
const CORBA::ULong MODULE_ULONG = 109;

7 0 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 704

class MyInterface : public virtual CORBA::Object {
static const CORBA::ULong INTERFACE_ULONG;

virtual CORBA::ULong useULong(
CORBA::ULong ul_in,
CORBA::ULong& ul_inout,
CORBA::ULong_out ul_out

) =0;
};

};
...
// Initialisation of ‘INTERFACE_ULONG’
const CORBA::ULong MyModule::MyInterface::INTERFACE_ULONG = 4095;
...

C++ Usage
The following C++ code shows how to invoke the useULong() operation defined in the
preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::ULong InoutVal = +123;
CORBA::ULong OutVal;

CORBA::ULong RecvVal = obj->useULong(+321, InoutVal, OutVal);

cout << “Returned value = “ << RecvVal << endl;
cout << “Inout value = “ << InoutVal << endl;
cout << “Out value = “ << OutVal << endl;
...

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_ULONG {

public static final int value = (int) 0x16D;
};
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_ULONG {
public static final int value = (int) 0x6D;

};

B u i l t - I n I D L Ty p e s 7 0 5

19 0672318121 CH15 6/20/01 5:48 PM Page 705

public interface MyInterfaceOperations
{

public static final int INTERFACE_ULONG = (int) 0xFFF;

int useULong(
int ul_in,
org.omg.CORBA.IntHolder ul_inout,
org.omg.CORBA.IntHolder ul_out

);
};

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useULong() operation defined in the
preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
int InVal = +321;
org.omg.CORBA.IntHolder InoutValH = new org.omg.CORBA.IntHolder(+123);
org.omg.CORBA.IntHolder OutValH = new org.omg.CORBA.IntHolder();

int RecvVal = obj.useULong(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

unsigned long long Type
This section describes the IDL constant syntax and CDR encoding of an IDL unsigned
long long type. The mapping of an IDL unsigned long long to C++ and to Java is
also described and illustrated by example.

IDL Constant Declaration
//IDL
const unsigned long long ULongLongConst = IntegerExpression;

A new unsigned long long constant, ULongLongConst, is defined in terms of an inte-
ger expression, IntegerExpression, which is composed of integer literals, other inte-
ger constants, arithmetical operators, and other integer expressions enclosed in
parentheses ().

7 0 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 706

The +, -, *, /, %, <<, >>, &, |, ^ infix and +, -, ~ unary operators are allowed in IDL
unsigned long long constant declarations.

Literals are specified in integer literal format, for example 0x2F2E, as described in
Chapter 16.

CDR Encoding
When an unsigned long long integer is appended to an octet stream, it is marshaled
as eight octets (64 bits) and aligned on an eight-byte boundary. The order in which the
octets are marshaled depends on the current byte-ordering of the octet stream (big-
endian or little-endian).

IDL Example
The following IDL example illustrates the syntax for declaring unsigned long long
constants:

//IDL
const unsigned long long GLOBAL_ULONGLONG = 365;

module MyModule {
const unsigned long long MODULE_ULONGLONG = GLOBAL_ULONGLONG & 0x00FF;

interface MyInterface {
const unsigned long long INTERFACE_ULONGLONG = 07777;

unsigned long long useULongLong(
in unsigned long long ull_in,
inout unsigned long long ull_inout,
out unsigned long long ull_out

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::ULongLong GLOBAL_ULONGLONG = 365;

namespace MyModule {
const CORBA::ULongLong MODULE_ULONGLONG = 109;

class MyInterface : public virtual CORBA::Object {
static const CORBA::ULongLong INTERFACE_ULONGLONG;

virtual CORBA::ULongLong useULongLong(
CORBA::ULongLong ull_in,
CORBA::ULongLong& ull_inout,

B u i l t - I n I D L Ty p e s 7 0 7

19 0672318121 CH15 6/20/01 5:48 PM Page 707

CORBA::ULongLong_out ull_out
) =0;

};
};
...
// Initialisation of ‘INTERFACE_ULONGLONG’
const CORBA::ULongLong MyModule::MyInterface::INTERFACE_ULONGLONG = 4095;
...

C++ Usage
The following C++ code shows how to invoke the useULongLong() operation defined
in the preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::ULongLong InoutVal = +123;
CORBA::ULongLong OutVal;

CORBA::ULongLong RecvVal = obj->useULongLong(+321, InoutVal, OutVal);

cout << “Returned value = “ << RecvVal << endl;
cout << “Inout value = “ << InoutVal << endl;
cout << “Out value = “ << OutVal << endl;
...

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_ULONGLONG {

public static final long value = (long) 0x16D;
};
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_ULONGLONG {
public static final long value = (long) 0x6D;

};

public interface MyInterfaceOperations
{

public static final long INTERFACE_ULONGLONG = (long) 0xFFF;

long useULongLong(
long ull_in,
org.omg.CORBA.LongHolder ull_inout,

7 0 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 708

org.omg.CORBA.LongHolder ull_out
);

};

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useULongLong() operation defined
in the preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
long InVal = +321;
org.omg.CORBA.LongHolder InoutValH = new org.omg.CORBA.LongHolder(+123);
org.omg.CORBA.LongHolder OutValH = new org.omg.CORBA.LongHolder();

long RecvVal = obj.useULongLong(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

unsigned short Type
This section describes the IDL constant syntax and CDR encoding of an IDL unsigned
short type. The mapping of an IDL unsigned short to C++ and to Java is also
described and illustrated by example.

IDL Constant Declaration
//IDL
const unsigned short UShortConst = IntegerExpression;

A new unsigned short constant, UShortConst, is defined in terms of an integer
expression, IntegerExpression, which is composed of integer literals, other integer
constants, arithmetical operators, and other integer expressions enclosed in parentheses
().

The +, -, *, /, %, <<, >>, &, |, ^ infix and +, -, ~ unary operators are allowed in IDL
unsigned short constant declarations.

Literals are specified in integer literal format, for example 0x2F2E, as described in
Chapter 16.

B u i l t - I n I D L Ty p e s 7 0 9

19 0672318121 CH15 6/20/01 5:48 PM Page 709

CDR Encoding
When an unsigned short integer is appended to an octet stream, it is marshaled as two
octets (16 bits) and aligned on a two-byte boundary. The order in which the octets are
marshaled depends on the current byte-ordering of the octet stream (big-endian or
little-endian).

IDL Example
The following IDL example illustrates the syntax for declaring unsigned short con-
stants:

//IDL
const unsigned short GLOBAL_USHORT = 365;

module MyModule {
const unsigned short MODULE_USHORT = GLOBAL_USHORT & 0x00FF;

interface MyInterface {
const unsigned short INTERFACE_USHORT = 07777;

unsigned short useUShort(
in unsigned short us_in,
inout unsigned short us_inout,
out unsigned short us_out

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::UShort GLOBAL_USHORT = 365;

namespace MyModule {
const CORBA::UShort MODULE_USHORT = 109;

class MyInterface : public virtual CORBA::Object {
static const CORBA::UShort INTERFACE_USHORT;

virtual CORBA::UShort useUShort(
CORBA::UShort us_in,
CORBA::UShort& us_inout,
CORBA::UShort_out us_out

) =0;
};

};
...

7 1 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 710

// Initialisation of ‘INTERFACE_USHORT’
const CORBA::UShort MyModule::MyInterface::INTERFACE_USHORT = 4095;
...

C++ Usage
The following C++ code shows how to invoke the useUShort() operation defined in
the preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::UShort InoutVal = +123;
CORBA::UShort OutVal;

CORBA::UShort RecvVal = obj->useUShort(+321, InoutVal, OutVal);

cout << “Returned value = “ << RecvVal << endl;
cout << “Inout value = “ << InoutVal << endl;
cout << “Out value = “ << OutVal << endl;
...

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_USHORT {

public static final short value = (short) 0x16D;
};
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_USHORT {
public static final short value = (short) 0x6D;

};

public interface MyInterfaceOperations
{

public static final short INTERFACE_USHORT = (short) 0xFFF;

short useUShort(
short us_in,
org.omg.CORBA.ShortHolder us_inout,
org.omg.CORBA.ShortHolder us_out

);
};

B u i l t - I n I D L Ty p e s 7 1 1

19 0672318121 CH15 6/20/01 5:48 PM Page 711

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useUShort() operation defined in
the preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
short InVal = +321;
org.omg.CORBA.ShortHolder InoutValH = new
org.omg.CORBA.ShortHolder((short)123);
org.omg.CORBA.ShortHolder OutValH = new org.omg.CORBA.ShortHolder();

short RecvVal = obj.useUShort(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

wchar Type
This section describes the IDL constant syntax and CDR encoding of an IDL wchar
type. The mapping of an IDL wchar to C++ and to Java is also described and illustrated
by example.

IDL Constant Declaration
//IDL
const wchar WCharConst = WCharLiteral;
const wchar WCharConst = OtherWCharConst;

A new wchar constant, WCharConst, can be defined either in terms of a wide character
literal, WCharLiteral, or in terms of an existing wide character constant,
OtherWCharConst. No infix or unary operators can be used in IDL wchar constant dec-
larations.

The WCharLiteral consists of an uppercase L followed by a character enclosed in sin-
gle quotes—for example, L’a’—or an escape sequence enclosed in single quotes—for
example, L’\n’. See Chapter 16 “IDL Grammar” for the list of wide character escape
sequences.

CDR Encoding
The CDR encoding of a wchar is complex and depends on the codeset being used by a
particular connection. The codeset conversion framework specifies that codeset nego-
tiation occurs whenever a connection is opened. The result of the codeset negotiation

7 1 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 712

is an agreed set of codes for narrow characters, char, and wide characters, wchar,
understood by both sender and receiver. The agreed set of codes are used for all sub-
sequent character transmissions along the connection.

The number of octets occupied by a wchar varies, depending on the negotiated code-
set. Under GIOP version 1.2, a single wchar could occupy anything up to a theoretical
maximum of 256 octets. The alignment of a wchar, which also depends on the negoti-
ated codeset, could be on a one-, two-, or four-byte boundary.

IDL Example
The following IDL example illustrates the syntax for declaring wchar constants:

//IDL
const wchar GLOBAL_WCHAR = L’a’;

module MyModule {
const wchar MODULE_WCHAR = L’\n’;

interface MyInterface {
const wchar INTERFACE_WCHAR = L’\x2E’;

wchar useWChar(
in wchar wc_in,
inout wchar wc_inout,
out wchar wc_out

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::WChar GLOBAL_WCHAR = L’a’;

namespace MyModule {
const CORBA::WChar MODULE_WCHAR = L’\n’;

class MyInterface : public virtual CORBA::Object {
static const CORBA::WChar INTERFACE_WCHAR;

virtual CORBA::WChar useWChar(
CORBA::WChar wc_in,
CORBA::WChar& wc_inout,
CORBA::WChar_out wc_out

) =0;
};

};
...

B u i l t - I n I D L Ty p e s 7 1 3

19 0672318121 CH15 6/20/01 5:48 PM Page 713

// Initialisation of ‘INTERFACE_WCHAR’
const CORBA::WChar MyModule::MyInterface::INTERFACE_WCHAR = L’\x2E’;
...

C++ Usage
The following C++ code shows how to invoke the useWChar() operation defined in the
preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::WChar InoutVal = L’y’;
CORBA::WChar OutVal;

CORBA::WChar RecvVal = obj->useWChar(L’x’, InoutVal, OutVal);

... // Do something with RecvVal, InoutVal, and OutVal.

...

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_WCHAR {

public static final char value = ‘a’;
};
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_WCHAR {
public static final char value = ‘\n’;

};

public interface MyInterfaceOperations
{

public static char INTERFACE_WCHAR = ‘\u2E’;

char useWChar(
char wc_in,
org.omg.CORBA.CharHolder wc_inout,
org.omg.CORBA.CharHolder wc_out

);
};

public interface MyInterface
extends MyInterfaceOperations,

7 1 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 714

org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useWChar() operation defined in the
preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
char InVal = ‘x’;
org.omg.CORBA.CharHolder InoutValH = new org.omg.CORBA.CharHolder(‘y’);
org.omg.CORBA.CharHolder OutValH = new org.omg.CORBA.CharHolder();

char RecvVal = obj.useWChar(InVal, InoutValH, OutValH);

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

wstring Type
This section describes the IDL syntax, IDL constant syntax, and CDR encoding of an
IDL wstring type. The mapping of an IDL wstring to C++ and to Java is also
described and illustrated by example.

IDL Syntax
A wstring has the syntax of a type specifier. There are two forms of wstring syntax,
unbounded and bounded, which are defined as follows:

//IDL
// Unbounded wstring type specifier:
wstring

// Bounded wstring type specifier:
wstring<Bound>

The Bound specifies the maximum length of the wide string. The Bound is a constant
integer expression that evaluates to a positive value.

An unbounded wstring type specifier can appear in any context where a type specifier
is expected. From CORBA 2.4 onward, the only context in which a bounded
wstring<> type specifier should appear is as part of a typedef expression. For exam-
ple, a bounded wstring<> can be given an alias using a typedef expression, as follows:

//IDL
typedef wstring<128> WString128;

B u i l t - I n I D L Ty p e s 7 1 5

19 0672318121 CH15 6/20/01 5:48 PM Page 715

IDL Constant Declaration
//IDL
const wstring WStringConst = WStringLiteral;
const wstring WStringConst = OtherWStringConst;

A new wstring constant, WStringConst, can be defined either in terms of a wide string
literal, WStringLiteral, or in terms of an existing wide string constant,
OtherWStringConst. No infix or unary operators can be used in IDL wstring constant
declarations.

Wide string literal format, for example L”This is a wide string”, is described in
Chapter 16.

CDR Encoding
A wstring is marshaled as an unsigned long, specifying the length of the wstring
including the terminating null character, followed by the wide characters themselves
(including the terminating null).

The details of the wstring encoding can vary depending on the particular GIOP ver-
sion and wide character encoding that is used. Consult the OMG codeset conversion
framework for more details.

IDL Example
The following IDL example illustrates the syntax for declaring wstring constants:

//IDL
const wstring GLOBAL_WSTRING = L”WString “ L”with “ L”many “ L”parts.” L”\n”;

module MyModule {
const wstring MODULE_WSTRING = GLOBAL_WSTRING;

interface MyInterface {
const wstring INTERFACE_WSTRING = L”Ahoy!”;

wstring useWString(
in wstring ws_in,
inout wstring ws_inout,
out wstring ws_out

);
};

};

C++ Mapping
The preceding “IDL Example” maps to C++ as follows:

//C++
const CORBA::WChar* GLOBAL_WSTRING = L”WString with many parts.\n”;

7 1 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 716

namespace MyModule {
const CORBA::WChar* MODULE_WSTRING = L”WString with many parts.\n”;

class MyInterface : public virtual CORBA::Object {
static const CORBA::WChar * const INTERFACE_WSTRING;

virtual CORBA::WChar * useWString(
const CORBA::WChar * ws_in,
CORBA::WChar *& ws_inout,
CORBA::WString_out ws_out

) =0;
};

};
...
// Initialisation of ‘INTERFACE_WSTRING’
const CORBA::WChar* MyModule::MyInterface::INTERFACE_WSTRING = L”Ahoy!”;
...

Some standard types and static functions are provided to help with the memory man-
agement of wide strings. They are defined as follows:

//C++
namespace CORBA {

// Standard definitions for:
// ===> WString_var
// ===> WString_out
// ===> _tc_WString

// String memory management functions:
WChar *wstring_alloc(CORBA::ULong len);
WChar *wstring_dup(const WChar* ws);
void wstring_free(WChar*);

};

For explanations and examples of using these wide string memory management func-
tions, see Chapter 4.

C++ Usage
The following C++ code shows how to invoke the useWString() operation defined in
the preceding “IDL Example” section:

//C++
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
CORBA::WString_var InoutValV = CORBA::wstring_dup(L”EFGH”);
CORBA::WString_var OutValV;

CORBA::WString_var RecvValV = obj->useWString(L”ABCD”, InoutValV, OutValV);

// Do something with *RecvValV, *InoutValV, and *OutValV.
...

B u i l t - I n I D L Ty p e s 7 1 7

19 0672318121 CH15 6/20/01 5:48 PM Page 717

Java Mapping
The preceding “IDL Example” maps to Java as follows:

//Java
// File containing global constants:
public interface GLOBAL_WSTRING {

public static final String value = “WString with many parts.\n”;
};
...

// File containing module and interface constants:
package MyModule;

public interface MODULE_WSTRING {
public static final String value = “WString with many parts.\n”;

};

public interface MyInterfaceOperations
{

public static final String INTERFACE_WSTRING = “Ahoy!”;

String useWString(
String ws_in,
org.omg.CORBA.StringHolder ws_inout,
org.omg.CORBA.StringHolder ws_out

);
};

public interface MyInterface
extends MyInterfaceOperations,
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity { }

...

Java Usage
The following Java code shows how to invoke the useWString() operation defined in
the preceding “IDL Example” section:

//Java
//Assume ‘obj’ is an object reference of MyModule::MyInterface type.
String InVal = “ABCD”;
org.omg.CORBA.StringHolder InoutValH = new org.omg.CORBA.StringHolder(“EFGH”);
org.omg.CORBA.StringHolder OutValH = new org.omg.CORBA.StringHolder();

String RecvVal = obj.useWString(InVal, InoutValH, OutValH);

7 1 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 718

System.out.println(“Returned value = “ + RecvVal);
System.out.println(“Inout value = “ + InoutValH.value);
System.out.println(“Out value = “ + OutValH.value);
...

Pseudo-IDL from the CORBA Module
This section provides the C++ and Java mapping definitions of the core CORBA object
types, most of which are defined in pseudo-IDL (see Chapter 5 for a discussion of
pseudo-IDL).

CORBA::Context Interface
This section describes how the CORBA::Context pseudo-interface maps to C++ and to
Java.

Pseudo-IDL
The following pseudo-IDL code defines the CORBA::Context pseudo-interface:

// PIDL
module CORBA {

...
pseudo interface Context {

readonly attribute Identifier context_name;
readonly attribute Context parent;

// C++ mapping version
void create_child(in Identifier child_ctx_name, out Context child_ctx);
// Java mapping version
Context create_child(in Identifier child_ctx_name);

void set_one_value(in Identifier propname, in any propvalue);
void set_values(in NVList values);
void delete_values(in Identifier propname);

// C++ mapping version
void get_values(

in Identifier start_scope,
in Flags op_flags,
in Identifier pattern,
out NVList values

);
// Java mapping version
NVList get_values(

in Identifier start_scope,
in Flags op_flags,
in Identifier pattern

);
};
...

};

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 1 9

19 0672318121 CH15 6/20/01 5:48 PM Page 719

C++ Mapping
The CORBA::Context pseudo-interface maps to C++ as follows:

// C++
namespace CORBA {

...
class Context
{
public:

// MEMORY MANAGEMENT: Context object retains ownership
// of return value’s memory.
const char *context_name() const;

// MEMORY MANAGEMENT: Context object retains ownership
// of return value’s memory.
Context_ptr parent() const;

void create_child(const char *, Context_out);
void set_one_value(const char *, const Any &);
void set_values(NVList_ptr);
void delete_values(const char *);
void get_values(

const char*,
Flags,
const char*,
NVList_out

);
};
...

};

Java Mapping
The CORBA::Context pseudo-interface maps to Java as follows:

// Java
package org.omg.CORBA;

public abstract class Context {
public abstract String context_name();
public abstract Context parent();
public abstract Context create_child(String child_ctx_name);
public abstract void set_one_value(String propname, Any propvalue);
public abstract void set_values(NVList values);
public abstract void delete_values(String propname);
public abstract NVList get_values(

String start_scope,
int op_flags,
String pattern

);
}

7 2 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 720

CORBA::ContextList Interface
This section describes how the CORBA::ContextList pseudo-interface maps to C++
and to Java.

Pseudo-IDL
The following pseudo-IDL code defines the CORBA::ContextList pseudo-interface:

// PIDL
module CORBA {

...
pseudo interface ContextList {

readonly attribute unsigned long count;
void add(in string ctx);
string item(in unsigned long index) raises (CORBA::Bounds);
void remove(in unsigned long index) raises (CORBA::Bounds);

};
...

};

C++ Mapping
The CORBA::ContextList pseudo-interface maps to C++ as follows:

// C++
namespace CORBA {

...
class ContextList
{
public:

ULong count();
void add(const char* ctxt);

// MEMORY MANAGEMENT: ContextList object assumes ownership
// of ctxt argument’s memory.
void add_consume(char* ctxt);

// MEMORY MANAGEMENT: ContextList object retains ownership
// of returned value’s memory.
const char* item(ULong index);

void remove(ULong index);
};
...

};

Java Mapping
The CORBA::ContextList pseudo-interface maps to Java as follows:

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 2 1

19 0672318121 CH15 6/20/01 5:48 PM Page 721

// Java
package org.omg.CORBA;

public abstract class ContextList {
public abstract int count();
public abstract void add(String ctx);
public abstract String item(int index) throws org.omg.CORBA.Bounds;
public abstract void remove(int index) throws org.omg.CORBA.Bounds;

}

CORBA::Environment Interface
This section describes how the CORBA::Environment pseudo-interface maps to C++
and to Java.

Pseudo-IDL
The following pseudo-IDL code defines the CORBA::Environment pseudo-interface:

// PIDL
module CORBA {

...
pseudo interface Environment
{

attribute exception exception;
void clear();

};
...

};

C++ Mapping
The CORBA::Environment pseudo-interface maps to C++ as follows:

// C++
namespace CORBA {

...
class Environment
{
public:

// MEMORY MANAGEMENT: Environment object assumes ownership
// of Exception* argument’s memory.
void exception(Exception*);

// MEMORY MANAGEMENT: Environment object retains ownership
// of returned value’s memory.
Exception *exception() const;

void clear();
};
...

};

7 2 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 722

Java Mapping
The CORBA::Environment pseudo-interface maps to Java as follows:

// Java
package org.omg.CORBA;

public abstract class Environment {
public abstract void exception(java.lang.Exception except);
public abstract java.lang.Exception exception();
public abstract void clear();

}

CORBA::ExceptionList Interface
This section describes how the CORBA::ExceptionList pseudo-interface maps to C++
and to Java.

Pseudo-IDL
The following pseudo-IDL code defines the CORBA::ExceptionList pseudo-interface:

// PIDL
module CORBA {

...
pseudo interface ExceptionList {

readonly attribute unsigned long count;
void add(in TypeCode exc);
TypeCode item (in unsigned long index) raises (CORBA::Bounds);
void remove (in unsigned long index) raises (CORBA::Bounds);

};
...

};

C++ Mapping
The CORBA::ExceptionList pseudo-interface maps to C++ as follows:

// C++
namespace CORBA {

...
class ExceptionList
{
public:

ULong count();
void add(const TypeCode_ptr tc);

// MEMORY MANAGEMENT: ExceptionList object assumes ownership
// of tc argument’s memory.
void add_consume(TypeCode_ptr tc);

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 2 3

19 0672318121 CH15 6/20/01 5:48 PM Page 723

// MEMORY MANAGEMENT: ExceptionList object retains ownership
// of returned value’s memory.
TypeCode_ptr item(ULong index);

void remove(ULong index);
};
...

};

Java Mapping
The CORBA::ExceptionList pseudo-interface maps to Java as follows:

// Java
package org.omg.CORBA;

public abstract class ExceptionList {
public abstract int count();
public abstract void add(TypeCode exc);
public abstract TypeCode item(int index) throws org.omg.CORBA.Bounds;
public abstract void remove(int index) throws org.omg.CORBA.Bounds;

}

CORBA::NamedValue Interface
This section describes how the CORBA::NamedValue pseudo-interface maps to C++ and
to Java.

Pseudo-IDL
The following pseudo-IDL code defines the CORBA::NamedValue pseudo-interface:

// PIDL
module CORBA {

...
typedef unsigned long Flags;
typedef string Identifier;
const Flags ARG_IN = 1;
const Flags ARG_OUT = 2;
const Flags ARG_INOUT = 3;
const Flags CTX_RESTRICT_SCOPE = 15;

pseudo interface NamedValue {
readonly attribute Identifier name;
readonly attribute any value;
readonly attribute Flags flags;

};
...

};

7 2 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 724

C++ Mapping
The CORBA::NamedValue pseudo-interface maps to C++ as follows:

// C++
namespace CORBA {

...
class NamedValue
{
public:

// MEMORY MANAGEMENT: NamedValue object retains ownership
// of returned value’s memory.
const char *name() const;

// MEMORY MANAGEMENT: NamedValue object retains ownership
// of returned value’s memory.
Any *value() const;

Flags flags() const;
};
...

};

Java Mapping
The CORBA::NamedValue pseudo-interface maps to Java as follows:

// Java
package org.omg.CORBA;

public interface ARG_IN {
public static final int value = 1;

}

public interface ARG_OUT {
public static final int value = 2;

}

public interface ARG_INOUT {
public static final int value = 3;

}

public interface CTX_RESTRICT_SCOPE {
public static final int value = 15;

}

public abstract class NamedValue {
public abstract String name();
public abstract Any value();
public abstract int flags();

}

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 2 5

19 0672318121 CH15 6/20/01 5:48 PM Page 725

CORBA::NVList Interface
This section describes how the CORBA::NVList pseudo-interface maps to C++ and to
Java.

Pseudo-IDL
The following pseudo-IDL code defines the CORBA::NVList pseudo-interface:

// PIDL
module CORBA {

...
pseudo interface NVList {

readonly attribute unsigned long count;
NamedValue add(in Flags flags);
NamedValue add_item(in Identifier item_name, in Flags flags);
NamedValue add_value(

in Identifier item_name,
in any val,
in Flags flags

);
NamedValue item(in unsigned long index) raises (CORBA::Bounds);
void remove(in unsigned long index) raises (CORBA::Bounds);

};
...

};

C++ Mapping
The CORBA::NVList pseudo-interface maps to C++ as follows:

// C++
namespace CORBA {

...
class NVList
{
public:

ULong count() const;

// MEMORY MANAGEMENT: NVList object retains ownership
// of returned value’s memory.
NamedValue_ptr add(Flags);

// MEMORY MANAGEMENT: NVList object retains ownership
// of returned value’s memory.
NamedValue_ptr add_item(const char*, Flags);

// MEMORY MANAGEMENT: NVList object retains ownership
// of returned value’s memory.
NamedValue_ptr add_value(const char*, const Any&, Flags);

7 2 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 726

// MEMORY MANAGEMENT: NVList object retains ownership
// of returned value’s memory and assumes ownership of
// the char* argument’s memory.
NamedValue_ptr add_item_consume(char*, Flags);

// MEMORY MANAGEMENT: NVList object retains ownership
// of returned value’s memory and assumes ownership of
// the char* and the Any* arguments’ memory.
NamedValue_ptr add_value_consume(char*, Any *, Flags);

// MEMORY MANAGEMENT: NVList object retains ownership
// of returned value’s memory.
NamedValue_ptr item(ULong);

// MEMORY MANAGEMENT: NVList calls CORBA::release() on the
// indexed NamedValue object.
void remove(ULong);

};
...

};

Java Mapping
The CORBA::NVList pseudo-interface maps to Java as follows:

// Java
package org.omg.CORBA;

public abstract class NVList {
public abstract int count();
public abstract NamedValue add(int flags);
public abstract NamedValue add_item(String item_name, int flags);
public abstract NamedValue add_value(

String item_name,
Any val,
int flags

);
public abstract NamedValue item(int index) throws org.omg.CORBA.Bounds;
public abstract void remove(int index) throws org.omg.CORBA.Bounds;

}

CORBA::Object Interface
Technically, the CORBA::Object interface is not a pseudo-interface. In common with
other pseudo-interfaces, however, it exhibits a highly irregular mapping from IDL to
C++ and Java.

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 2 7

19 0672318121 CH15 6/20/01 5:48 PM Page 727

NOTE
You cannot use the CORBA::Object type in your IDL because this type is not directly
available in ordinary IDL. Use the special IDL Object keyword instead, which is a
built-in IDL type specifier.

IDL
The following IDL code defines the Object interface:

//IDL
module CORBA {

interface Object {
void release();
boolean is_nil();
Object duplicate();

ImplementationDef get_implementation();
InterfaceDef get_interface();

boolean is_a(in string logical_type_id);
boolean non_existent();
boolean is_equivalent(in Object other_object);
unsigned long hash(in unsigned long maximum);

void create_request(
in Context ctx,
in Identifier operation,
in NVList arg_list,
in NamedValue result,
out Request request,
in Flags req_flags

);
void create_request2(

in Context ctx,
in Identifier operation,
in NVList arg_list,
in NamedValue result,
in ExceptionList exclist,
in ContextList ctxtlist,
out Request request,
in Flags req_flags

);

Policy_ptr get_policy(in PolicyType policy_type);
DomainManagerList get_domain_managers();
Object set_policy_overrides(

in PolicyList policies,

7 2 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 728

in SetOverrideType set_or_add
);

};
};

C++ Mapping
The Object interface maps to C++ as follows:

// C++
namespace CORBA {

void release(Object_ptr obj);
Boolean is_nil(Object_ptr obj);

class Object
{
public:

static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();

ImplementationDef_ptr _get_implementation();
InterfaceDef_ptr _get_interface();

Boolean _is_a(const char* logical_type_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);
ULong _hash(ULong maximum);

void _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags

);
void _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags

);
Request_ptr _request(const char* operation);

Policy_ptr _get_policy(PolicyType policy_type);
DomainManagerList* _get_domain_managers();

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 2 9

19 0672318121 CH15 6/20/01 5:48 PM Page 729

Object_ptr _set_policy_overrides(
const PolicyList& policies,
SetOverrideType set_or_add

);
};

};

Java Mapping
The Object interface maps to Java as follows:

// Java
package org.omg.CORBA;

public interface Object {
void _release();
org.omg.CORBA.Object _duplicate();

boolean _is_a(String Identifier);
boolean _non_existent();
boolean _is_equivalent(Object that);
int _hash(int maximum);

// Deprecated by CORBA 2.3.
InterfaceDef _get_interface();

org.omg.CORBA.Object _get_interface_def();

Request _create_request(
Context ctx,
String operation,
NVList arg_list,
NamedValue result

);
Request _create_request(

Context ctx,
String operation,
NVList arg_list,
NamedValue result,
ExceptionList exclist,
ContextList ctxlist

);
Request _request(String s);

Policy _get_policy(int policy_type);
DomainManager[] _get_domain_managers();
org.omg.CORBA.Object _set_policy_override(

Policy[] policies,
SetOverrideType set_or_add

7 3 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 730

);
}

abstract public class ObjectHelper {
// A standard Helper class is generated for Object.
... // (not shown)

}

CORBA::ORB Interface
This section describes how the CORBA::ORB pseudo-interface maps to C++ and to Java.

Pseudo-IDL
The following pseudo-IDL code defines the CORBA::ORB pseudo-interface:

// PIDL
module CORBA {

...
interface NVList; // forward declaration
interface OperationDef; // forward declaration
interface TypeCode; // forward declaration
typedef short PolicyErrorCode;
typedef unsigned long PolicyType;
interface Request; // forward declaration
typedef sequence <Request> RequestSeq;
native AbstractBase;
exception PolicyError { PolicyErrorCode reason; };

typedef string RepositoryId;
typedef string Identifier;

struct StructMember {
Identifier name;
TypeCode type;
IDLType type_def;

};
typedef sequence <StructMember> StructMemberSeq;

struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;

};
typedef sequence <UnionMember> UnionMemberSeq;

typedef sequence <Identifier> EnumMemberSeq;

typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 3 1

19 0672318121 CH15 6/20/01 5:48 PM Page 731

typedef unsigned long ServiceDetailType;
const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;

};

struct ServiceInformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

};

native ValueFactory;

pseudo interface ORB { // PIDL
string object_to_string (in Object obj);
Object string_to_object (in string str);

// Dynamic Invocation related operations
void create_list (in long count, out NVList new_list);
void create_operation_list (in OperationDef oper, out NVList new_list);

// C++ mapping only.
void create_named_value(out NamedValue nv);

// C++ mapping version.
void create_exception_list(out ExceptionList ex_list);
// Java mapping version.
ExceptionList create_exception_list();

// C++ mapping version.
void create_context_list(out ContextList ctxt_list);
// Java mapping version.
ContextList create_context_list();

// C++ mapping version.
void create_environment(out Environment env);
// Java mapping version.
Environment create_environment();

void get_default_context (out Context ctx);
void send_multiple_requests_oneway(in RequestSeq req);
void send_multiple_requests_deferred(in RequestSeq req);
boolean poll_next_response();
void get_next_response(out Request req);

7 3 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 732

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
exception InvalidName {};

// Initial reference operation
ObjectIdList list_initial_services ();
Object resolve_initial_references (

in ObjectId identifier
) raises (InvalidName);

// Thread related operations
boolean work_pending();
void perform_work();
void run();
void shutdown(in boolean wait_for_completion);
void destroy();

// Service information operations
boolean get_service_information (

in ServiceType service_type,
out ServiceInformation service_information

);

// Policy related operations
Policy create_policy(

in PolicyType type,
in any val

) raises (PolicyError);

// Value factory operations
ValueFactory register_value_factory(

in RepositoryId id,
in ValueFactory factory

);
void unregister_value_factory(in RepositoryId id);
ValueFactory lookup_value_factory(in RepositoryId id);

// Type code creation operations
TypeCode create_struct_tc (

in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);
TypeCode create_union_tc (

in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 3 3

19 0672318121 CH15 6/20/01 5:48 PM Page 733

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);
TypeCode create_alias_tc (

in RepositoryId id,
in Identifier name,
in TypeCode original_type

);
TypeCode create_exception_tc (

in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);
TypeCode create_interface_tc (

in RepositoryId id,
in Identifier name

);
TypeCode create_string_tc (

in unsigned long bound
);
TypeCode create_wstring_tc (

in unsigned long bound
);
TypeCode create_fixed_tc (

in unsigned short digits,
in short scale

);
TypeCode create_sequence_tc (

in unsigned long bound,
in TypeCode element type

);
TypeCode create_recursive_sequence_tc (// deprecated

in unsigned long bound,
in unsigned long offset

);
TypeCode create_array_tc (

in unsigned long length,
in TypeCode element_type

);
TypeCode create_value_tc (

in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members

);
TypeCode create_value_box_tc (

7 3 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 734

in RepositoryId id,
in Identifier name,
in TypeCode boxed_type

);
TypeCode create_native_tc (

in RepositoryId id,
in Identifier name

);
TypeCode create_recursive_tc (

in RepositoryId id
);
TypeCode create_abstract_interface_tc (

in RepositoryId id,
in Identifier name

);
TypeCode create_local_interface_tc(

in RepositoryId id,
in Identifier name

);

//---
// Java mapping version only.
//---
TypeCode get_primitive_tc(in TCKind tcKind);
Current get_current();
Any create_any();
OutputStream create_output_stream();
void connect(Object obj);
void disconnect(Object obj);
Object get_value_def(in String repid);
void set_delegate(Object wrapper);

};
...

};

C++ Mapping
The CORBA::ORB pseudo-interface maps to C++ as follows:

// C++
namespace CORBA {

...
class ORB
{
public:

char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char*);

//--
// Dynamic Invocation related operations
//--

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 3 5

19 0672318121 CH15 6/20/01 5:48 PM Page 735

void create_list(Long, NVList_out);
void create_operation_list(OperationDef_ptr, NVList_out);
void create_named_value(NamedValue_out);
void create_exception_list(ExceptionList_out);
void create_context_list(ContextList_out);
void create_environment(Environment_out);
void get_default_context(Context_out);

void send_multiple_requests_oneway(
const RequestSeq&

);
void send_multiple_requests_deferred(

const RequestSeq&
);
Boolean poll_next_response();
void get_next_response(Request_out);

//--
// Obtaining initial object references
//--
typedef char* ObjectId;
class ObjectIdList {...};
class InvalidName : public UserException {...};
ObjectIdList *list_initial_services();
Object_ptr resolve_initial_references(

const char *identifier
);

//--
// Thread-related operations.
//--
Boolean work_pending();
void perform_work();
void shutdown(Boolean wait_for_completion);
void run();

//--
// Service information operations
//--
Boolean get_service_information(

ServiceType svc_type,
ServiceInformation_out svc_info

);

// Policy related operations
Policy_ptr create_policy(PolicyType type, const Any& val);

// Value factory operations
CORBA::ValueFactory register_value_factory(

7 3 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 736

const char* id,
CORBA::ValueFactory fact

);
void unregister_value_factory(const char* id);
CORBA::ValueFactory lookup_value_factory(const char* id);

static ORB_ptr _duplicate(ORB_ptr orb);
static ORB_ptr _nil();

// Type code creation operations
// (map according to the standard IDL-C++ mapping rules)
... // (not shown)

};
...

};

Java Mapping
The CORBA::ORB pseudo-interface maps to two distinct Java scopes:

• org.omg.CORBA.ORB defines the bulk of the ORB methods.
• org.omg.CORBA_2_3.ORB, which inherits from org.omg.CORBA.ORB, defines

additional ORB methods that support the use of value types.

The org.omg.CORBA.ORB Java class is defined as follows:

// Java
package org.omg.CORBA;

public abstract class ORB {
public abstract org.omg.CORBA.Object string_to_object(String str);
public abstract String object_to_string(org.omg.CORBA.Object obj);

//--
// Dynamic Invocation related operations
//--
public abstract NVList create_list(int count);

// Deprecated by CORBA 2.3.
public abstract NVList create_operation_list(OperationDef oper);

// The oper argument must be an OperationDef
public NVList create_operation_list(org.omg.CORBA.Object oper);

public abstract NamedValue create_named_value(
String name, Any value, int flags

);
public abstract ExceptionList create_exception_list();
public abstract ContextList create_context_list();

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 3 7

19 0672318121 CH15 6/20/01 5:48 PM Page 737

public abstract Environment create_environment();
public abstract Context get_default_context();

public abstract void send_multiple_requests_oneway(
Request[] req);

public abstract void send_multiple_requests_deferred(
Request[] req);

public abstract boolean poll_next_response();
public abstract Request get_next_response() throws

org.omg.CORBA.WrongTransaction;

//--
// Obtaining initial object references
//--
public abstract String[] list_initial_services();
public abstract org.omg.CORBA.Object

resolve_initial_references(
String object_name)
throws org.omg.CORBA.ORBPackage.InvalidName;

//--
// Service information operations
//--
public boolean get_service_information(

short service_type,
ServiceInformationHolder service_info

) { ... }

//--
// Thread related operations
//--
public boolean work_pending() { ... }
public void perform_work() { ... }
public void run() { ... }
public void shutdown(boolean wait_for_completion) { ... }
public void destroy() { ... }

// Policy related operations
public Policy create_policy(short policy_type, Any val)

throws org.omg.CORBA.PolicyError { ... }

//--
// Type code creation
//--
public abstract TypeCode create_struct_tc(

String id,
String name,
StructMember[] members);

public abstract TypeCode create_union_tc(

7 3 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 738

String id,
String name,
TypeCode discriminator_type,
UnionMember[] members);

public abstract TypeCode create_enum_tc(
String id,
String name,
String[] members);

public abstract TypeCode create_alias_tc(
String id,
String name,
TypeCode original_type);

public abstract TypeCode create_exception_tc(
String id,
String name,
StructMember[] members);

public abstract TypeCode create_interface_tc(
String id,
String name);

public abstract TypeCode create_string_tc(int bound);
public abstract TypeCode create_wstring_tc(int bound);
public TypeCode create_fixed_tc(

short digits,
short scale) { ... }

public abstract TypeCode create_sequence_tc(
int bound,
TypeCode element_type);

// Deprecated by CORBA 2.3.
public abstract TypeCode create_recursive_sequence_tc(

int bound,
int offset);

public abstract TypeCode create_array_tc(
int length,
TypeCode element_type);

public TypeCode create_value_tc(
String id,
String name,
short type_modifier,
TypeCode concrete_base,
ValueMember[] members) { ... }

public TypeCode create_value_box_tc(
String id,
String name,
TypeCode boxed_type) { ... }

public TypeCode create_native_tc(
String id,
String name) { ... }

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 3 9

19 0672318121 CH15 6/20/01 5:48 PM Page 739

public TypeCode create_recursive_tc(
String id) { ... }

public TypeCode create_abstract_interface_tc(
String id,
String name) { ... }

// Deprecated by CORBA 2.2.
public Current get_current() { ... }

// Deprecated by Portable Object Adapter,
public void connect(org.omg.CORBA.Object obj) { ... }

// Deprecated by Portable Object Adapter,
public void disconnect(org.omg.CORBA.Object obj) { ... }

//--
// Additional methods for the IDL to Java mapping
//--
public abstract TypeCode get_primitive_tc(TCKind tcKind);
public abstract Any create_any();
public abstract org.omg.CORBA.portable.OutputStream

create_output_stream();

//--
// Additional static methods for ORB initialization
//--
public static ORB init(Strings[] args, Properties props);
public static ORB init(Applet app, Properties props);
public static ORB init();
abstract protected void set_parameters(

String[] args,
java.util.Properties props);

abstract protected void set_parameters(
java.applet.Applet app,
java.util.Properties props);

}

The org.omg.CORBA_2_3.ORB Java class is defined as follows:

//Java
package org.omg.CORBA_2_3;

public abstract class ORB extends org.omg.CORBA.ORB {
// The return type is a ValueDef
public org.omg.CORBA.Object get_value_def(String repid)

throws org.omg.CORBA.BAD_PARAM { ... }

//--
// Value factory operations
//--

7 4 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 740

public org.omg.CORBA.portable.ValueFactory register_value_factory(
String id,
org.omg.CORBA.portable.ValueFactory factory) { ... }

public void unregister_value_factory(String id) { ... }
public org.omg.CORBA.portable.ValueFactory

lookup_value_factory(String id) { ... }

public void set_delegate(java.lang.Object wrapper) { ... }
}

CORBA::Request Interface
This section describes how the CORBA::Request pseudo-interface maps to C++ and to
Java.

Pseudo-IDL
The following pseudo-IDL code defines the CORBA::Request pseudo-interface:

// PIDL
module CORBA {

...
pseudo interface Request {

readonly attribute Object target;
readonly attribute Identifier operation;
readonly attribute NVList arguments;
readonly attribute NamedValue result;
readonly attribute Environment env;
readonly attribute ExceptionList exceptions;
readonly attribute ContextList contexts;

attribute Context ctx;

any add_in_arg();

// C++ mapping version.
// any add_in_arg(in string name);
// Java mapping version.
any add_named_in_arg(in string name);

any add_inout_arg();

// C++ mapping version.
// any add_inout_arg(in string name);
// Java mapping version.
any add_named_inout_arg(in string name);

any add_out_arg();

// C++ mapping version.
// any add_out_arg(in string name);

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 4 1

19 0672318121 CH15 6/20/01 5:48 PM Page 741

// Java mapping version.
any add_named_out_arg(in string name);

void set_return_type(in TypeCode tc);
any return_value();

void invoke();
void send_oneway();
void send_deferred();
void get_response();
boolean poll_response();

};
...

};

C++ Mapping
The CORBA::Request pseudo-interface maps to C++ as follows:

// C++
namespace CORBA {

...
class Request
{
public:

// MEMORY MANAGEMENT: Request object retains ownership
// of returned value’s memory.
Object_ptr target() const;

// MEMORY MANAGEMENT: Request object retains ownership
// of returned value’s memory.
const char *operation() const;

// MEMORY MANAGEMENT: Request object retains ownership
// of returned value’s memory.
NVList_ptr arguments();

// MEMORY MANAGEMENT: Request object retains ownership
// of returned value’s memory.
NamedValue_ptr result();

// MEMORY MANAGEMENT: Request object retains ownership
// of returned value’s memory.
Environment_ptr env();

// MEMORY MANAGEMENT: Request object retains ownership
// of returned value’s memory.
ExceptionList_ptr exceptions();

7 4 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 742

// MEMORY MANAGEMENT: Request object retains ownership
// of returned value’s memory.
ContextList_ptr contexts();

// MEMORY MANAGEMENT: Request object retains ownership
// of returned value’s memory.
Context_ptr ctx() const;

void ctx(Context_ptr);

// argument manipulation helper functions
Any &add_in_arg();
Any &add_in_arg(const char* name);
Any &add_inout_arg();
Any &add_inout_arg(const char* name);
Any &add_out_arg();
Any &add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any &return_value();
void invoke();
void send_oneway();
void send_deferred();
void get_response();
Boolean poll_response();

};
...

};

Java Mapping
The CORBA::Request pseudo-interface maps to Java as follows:

// Java
package org.omg.CORBA;

public abstract class Request {
public abstract Object target();
public abstract String operation();
public abstract NVList arguments();
public abstract NamedValue result();
public abstract Environment env();
public abstract ExceptionList exceptions();
public abstract ContextList contexts();

public abstract Context ctx();
public abstract void ctx(Context c);

public abstract Any add_in_arg();
public abstract Any add_named_in_arg(String name);
public abstract Any add_inout_arg();

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 4 3

19 0672318121 CH15 6/20/01 5:48 PM Page 743

public abstract Any add_named_inout_arg(String name);
public abstract Any add_out_arg();
public abstract Any add_named_out_arg(String name);

public abstract void set_return_type(TypeCode tc);
public abstract Any return_value();

public abstract void invoke();
public abstract void send_oneway();
public abstract void send_deferred();
public abstract void get_response()

throws org.omg.CORBA.WrongTransaction;
public abstract boolean poll_response();

}

CORBA::ServerRequest Interface
This section describes how the CORBA::ServerRequest pseudo-interface maps to C++
and to Java.

Pseudo-IDL
The following pseudo-IDL code defines the CORBA::ServerRequest pseudo-interface:

// PIDL
module CORBA {

...
interface ServerRequest { // PIDL

readonly attribute Identifier operation;
void arguments(inout NVList nv);
Context ctx();
void set_result(in Any val);
void set_exception(in Any val);

};
...

};

C++ Mapping
The CORBA::ServerRequest pseudo-interface maps to C++ as follows:

// C++
namespace CORBA {

...
class ServerRequest
{
public:

// MEMORY MANAGEMENT: ServerRequest object retains ownership
// of returned value’s memory.
const char* operation() const;

7 4 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 744

// MEMORY MANAGEMENT: ServerRequest object assumes ownership
// of the NVList argument’s memory.
// (see Chapter 18 for details of C++ memory management)
void arguments(NVList_ptr& parameters);

// MEMORY MANAGEMENT: ServerRequest object retains ownership
// of returned value’s memory.
Context_ptr ctx();

void set_result(const Any& value);
void set_exception(const Any& value);

};
...

};

For more details of the special C++ memory management rules that apply to
CORBA::ServerRequest objects, see Chapter 19, “Dynamic Skeleton Interface.”

Java Mapping
The CORBA::ServerRequest pseudo-interface maps to Java as follows:

// Java
package org.omg.CORBA;

public abstract class ServerRequest {
public String operation() { ... }
public abstract Context ctx();
public void arguments(NVList nv) { ... }
public void set_result(Any val) { ... }
public void set_exception(Any val) { ... }

}

CORBA::TypeCode Interface
This section describes how the CORBA::TypeCode pseudo-interface maps to C++ and to
Java.

Pseudo-IDL
The following pseudo-IDL code defines the CORBA::TypeCode pseudo-interface:

// PIDL
module CORBA {

...
enum TCKind {

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 4 5

19 0672318121 CH15 6/20/01 5:48 PM Page 745

tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,
tk_value, tk_value_box,
tk_native,
tk_abstract_interface,
tk_local_interface

};

typedef short ValueModifier;
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM = 1;
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;

typedef short Visibility;
const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

interface TypeCode {
exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal (in TypeCode tc);
boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();
TCKind kind ();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface and tk_except
RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// tk_local_interface and tk_except
Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, tk_value,
// and tk_except
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index)

raises(BadKind, Bounds);

// for tk_struct, tk_union, tk_value,
// and tk_except
TypeCode member_type (in unsigned long index)

raises (BadKind, Bounds);

7 4 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 746

// for tk_union
any member_label (in unsigned long index)

raises(BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);

// for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, tk_value_box and tk_alias
TypeCode content_type () raises (BadKind);

// for tk_fixed
unsigned short fixed_digits() raises(BadKind);
short fixed_scale() raises(BadKind);

// for tk_value
Visibility member_visibility(in unsigned long index)

raises(BadKind, Bounds);
ValueModifier type_modifier() raises(BadKind);
TypeCode concrete_base_type() raises(BadKind);

};
...

};

C++ Mapping
The CORBA::TypeCode pseudo-interface maps to C++ as follows:

// C++
namespace CORBA {

...
class TypeCode
{
public:

class Bounds : public UserException { ... };
class BadKind : public UserException { ... };

Boolean equal(TypeCode_ptr) const;
Boolean equivalent(TypeCode_ptr) const;
TCKind kind() const;
TypeCode_ptr get_compact_typecode() const;

// MEMORY MANAGEMENT: TypeCode object retains ownership
// of returned value’s memory.
const char* id() const;

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 4 7

19 0672318121 CH15 6/20/01 5:48 PM Page 747

// MEMORY MANAGEMENT: TypeCode object retains ownership
// of returned value’s memory.
const char* name() const;

ULong member_count() const;

// MEMORY MANAGEMENT: TypeCode object retains ownership
// of returned value’s memory.
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;

UShort fixed_digits() const;
Short fixed_scale() const;

Visibility member_visibility(ULong index) const;
ValueModifier type_modifier() const;
TypeCode_ptr concrete_base_type() const;

};
...

};

Java Mapping
The CORBA::TypeCode pseudo-interface maps to Java as follows:

// Java
package org.omg.CORBA;

final public class TypeCodeHolder
implements org.omg.CORBA.portable.Streamable

{
public Typecode value;
public TypeCodeHolder() {}
public TypeCodeHolder(Typecode initial) {...}
public void _read(
org.omg.CORBA.portable.InputStream is)
{...}
public void _write(

org.omg.CORBA.portable.OutputStream os)
{...}

7 4 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 748

public org.omg.CORBA.TypeCode _type() {...}
}

public abstract class TypeCode extends
org.omg.CORBA.portable.IDLEntity

{
// for all TypeCode kinds
public abstract boolean equal(TypeCode tc);
public abstract boolean equivalent(TypeCode tc);
public abstract TypeCode get_compact_typecode();
public abstract TCKind kind();

// for objref, struct, union, enum, alias,
// value, value_box, native,
// abstract_interface, and except
public abstract String id() throws TypeCodePackage.BadKind;
public abstract String name() throws TypeCodePackage.BadKind;

// for struct, union, enum, value, and except
public abstract int member_count() throws TypeCodePackage.BadKind;
public abstract String member_name(int index)

throws TypeCodePackage.BadKind, TypeCodePackage.Bounds;

// for struct, union, value, and except
public abstract TypeCode member_type(int index)

throws TypeCodePackage.BadKind, TypeCodePackage.Bounds;

// for union
public abstract Any member_label(int index)

throws TypeCodePackage.BadKind, TypeCodePackage.Bounds;
public abstract TypeCode discriminator_type()

throws TypeCodePackage.BadKind;
public abstract int default_index() throws TypeCodePackage.BadKind;

// for string, sequence, and array
public abstract int length() throws TypeCodePackage.BadKind;

// for sequence, array, value, value_box and alias
public abstract TypeCode content_type() throws TypeCodePackage.BadKind;

// for fixed
public abstract short fixed_digits() throws TypeCodePackage.BadKind;
public abstract short fixed_Scale() throws TypeCodePackage.BadKind;

// for value
public abstract short member_visibility(long index)

throws TypeCodePackage.BadKind, TypeCodePackage.Bounds;
public abstract short type_modifer() throws TypeCodePackage.BadKind;

P s e u d o - I D L f r o m t h e C O R B A M o d u l e 7 4 9

19 0672318121 CH15 6/20/01 5:48 PM Page 749

public abstract TypeCode concrete_base_type()
throws TypeCodePackage.BadKind;

}

CORBA::ValueBase Interface
The CORBA::ValueBase interface is a pseudo-interface that acts as the base type for all
value types.

NOTE
You cannot use the CORBA::ValueBase type in your IDL because this type is not
directly available in ordinary IDL. Use the special IDL ValueBase keyword instead,
which is a built-in IDL type specifier.

IDL
The following IDL code defines the ValueBase pseudo interface:

//IDL
module CORBA {

...
valuetype ValueBase{

ValueDef get_value_def();
};

};

C++ Mapping
The ValueBase pseudo interface maps to C++ as follows:

// C++
namespace CORBA {

void add_ref(ValueBase* vb) { ... }
void remove_ref(ValueBase* vb) { ... }

class ValueBase {
public:
virtual ValueBase* _add_ref() = 0;
virtual void _remove_ref() = 0;
virtual ValueBase* _copy_value() = 0;
virtual ULong _refcount_value() = 0;
static ValueBase* _downcast(ValueBase*);

protected:
ValueBase();
ValueBase(const ValueBase&);
virtual ~ValueBase();

private:
void operator=(const ValueBase&);

7 5 0 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 750

};
};

Java Mapping
In Java, the ValueBase pseudo interface maps directly to the java.io.Serializable
class.

Exception Types
Both the C++ and Java mapping specifications define a number of exception classes
that serve as the base classes for CORBA system and user exceptions. The following
exception classes are described here:

• CORBA::Exception

• CORBA::SystemException

• CORBA::UnknownUserException

• CORBA::UserException

The Exception Class
This section describes how the CORBA::Exception pseudo-interface maps to C++ and
to Java.

C++ CORBA::Exception Class
The CORBA::Exception class is defined as follows:

// C++
namespace CORBA {

...
class Exception
{
public:

virtual ~Exception();
virtual void _raise() const = 0;
virtual const char * _name() const;
virtual const char * _rep_id() const;

};
...

};

Java java.lang.Exception Class
The CORBA::Exception pseudo interface maps directly to the built-in
java.lang.Exception class in Java. The java.lang.Exception class is the base class
for all CORBA exceptions in Java.

The SystemException Classes
This section describes how the CORBA::SystemException pseudo-interface maps to
C++ and to Java.

E x c e p t i o n Ty p e s 7 5 1

19 0672318121 CH15 6/20/01 5:48 PM Page 751

C++ CORBA::SystemException Class
The CORBA::SystemException class is defined as follows:

// C++
namespace CORBA {

...
enum CompletionStatus {

COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

};

class SystemException : public Exception
{
public:

SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);
ULong minor() const;
void minor(ULong);
CompletionStatus completed() const;
void completed(CompletionStatus);

// MEMORY MANAGEMENT: Neither version of the _downcast() function
// duplicates the Exception argument.
static SystemException *_downcast(Exception *);
static const SystemException *_downcast(const Exception *);

virtual void _raise() const = 0;

};
...

};

Java org.omg.CORBA.SystemException Class
The org.omg.CORBA.SystemException class is defined as follows:

// Java
package org.omg.CORBA;

abstract public class SystemException
extends java.lang.RuntimeException

{
public int minor;
public CompletionStatus completed;
...

}

7 5 2 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 752

The UnknownUserException Classes
The UnknownUserException type is not defined as a pseudo-interface but it is, never-
theless, provided both by the C++ mapping (as CORBA::UnknownUserException) and
by the Java mapping (as org.omg.CORBA.UnknownUserException).

For a description of how the UnknownUserException type is used, see Chapter 18,
“Dynamic Invocation Interface.”

C++ UnknownUserException Class
The CORBA::UnknownUserException class is defined as follows:

// C++
namespace CORBA {

...
class UnknownUserException : public UserException
{
public:

Any &exception();

// MEMORY MANAGEMENT: Neither version of the _downcast() function
// duplicates the Exception argument.
static UnknownUserException* _downcast(Exception*);
static const UnknownUserException* _downcast(const Exception*);

virtual void raise();
};
...

};

Java org.omg.CORBA.UnknownUserException Class
The org.omg.CORBA.UnknownUserException class is defined as follows:

// Java
package org.omg.CORBA;

final public class UnknownUserException
extends org.omg.CORBA.UserException

{
public Any except;
public UnknownUserException() { ... }
public UnknownUserException(Any a) { ... }

}

final public class UnknownUserExceptionHolder {
// Follows the usual pattern for a Holder class.

}

E x c e p t i o n Ty p e s 7 5 3

19 0672318121 CH15 6/20/01 5:48 PM Page 753

The UserException Classes
The UserException type is not defined as a pseudo-interface but it is, nevertheless,
provided both by the C++ mapping (as CORBA::UserException) and by the Java map-
ping (as org.omg.CORBA.UserException).

C++ CORBA::UserException Class
The CORBA::UserException class is defined as follows:

// C++
namespace CORBA {

...
class UserException : public Exception
{
public:

UserException();
UserException(const UserException &);
~UserException();
UserException &operator=(const UserException &);

// MEMORY MANAGEMENT: Neither version of the _downcast() function
// duplicates the Exception argument.
static UserException* _downcast(Exception*);
static const UserException* _downcast(const Exception*);

virtual void _raise() const = 0;
};
...

};

Java org.omg.CORBA.UserException Class
The org.omg.CORBA.UserException class is defined as follows:

// Java
package org.omg.CORBA;

abstract public class UserException
extends java.lang.Exception
implements org.omg.CORBA.portable.IDLEntity

{
public UserException() { ... }
public UserException(java.lang.String value) { ... }

}

The PortableServer Module
Most of the PortableServer module maps from IDL to C++ and to Java according to
the standard mapping rules. The mappings for the few exceptional types are given here.

7 5 4 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 754

C++ PortableServer Functions
The C++ functions for converting an object ID to and from a string (or wide string) are
defined in the PortableServer scope as follows:

// C++
namespace PortableServer
{

char* ObjectId_to_string(const ObjectId&);
WChar* ObjectId_to_wstring(const ObjectId&);
ObjectId* string_to_ObjectId(const char*);
ObjectId* wstring_to_ObjectId(const WChar*);

};

The PortableServer Dynamic Implementation
Classes
The DynamicImplementation type is not defined as a pseudo-interface but it is, never-
theless, provided both by the C++ mapping (as
PortableServer::DynamicImplementation) and by the Java mapping (as
org.omg.PortableServer.DynamicImplementation).

The DynamicImplementation type is used by the DSI to process invocations dynami-
cally. See Chapter 19, “Dynamic Skeleton Interface.”

C++ Mapping
The PortableServer dynamic implementation class maps to C++ as follows:

// C++
namespace PortableServer {

class DynamicImplementation : public virtual ServantBase
{
public:

Object_ptr _this();
virtual void invoke(ServerRequest_ptr request) = 0;
virtual RepositoryId _primary_interface(

const ObjectId& oid,
POA_ptr poa

) = 0;
};

};

Java Mapping
The PortableServer dynamic implementation class maps to Java as follows:

// Java
package org.omg.PortableServer;

T h e P o r t a b l e S e r v e r M o d u l e 7 5 5

19 0672318121 CH15 6/20/01 5:48 PM Page 755

abstract public class DynamicImplementation extends Servant
{

abstract public void invoke(org.omg.CORBA.ServerRequest request);
}

PortableServer::Servant Native Type
The Servant type is defined as a native type in IDL because its definition is highly
dependent on the individual language mapping.

C++ Mapping
The PortableServer::Servant native type maps to C++ as follows:

// C++
namespace PortableServer
{

class ServantBase
{
public:

virtual ~ServantBase();
virtual POA_ptr _default_POA();
virtual InterfaceDef_ptr _get_interface() throw(SystemException);
virtual Boolean _is_a(const char* logical_type_id)

throw(SystemException);
virtual Boolean _non_existent() throw(SystemException);
virtual void _add_ref();
virtual void _remove_ref();
...

};
typedef ServantBase* Servant;

class RefCountServantBase : public virtual ServantBase
{
public:

~RefCountServantBase();
virtual void _add_ref();
virtual void _remove_ref();
...

};

class ServantBase_var
{

// Implementation-dependent definition.
};
...

};

7 5 6 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 756

Java Mapping
The PortableServer::Servant native type maps to Java as follows:

// Java
package org.omg.PortableServer;

import org.omg.CORBA.ORB;
import org.omg.PortableServer.POA;

abstract public class Servant {
final public org.omg.CORBA.Object _this_object() { ... }
final public org.omg.CORBA.Object _this_object(ORB orb) { ... }
final public ORB _orb() { ... }
final public POA _poa() { ... }
final public byte[] _object_id() { ... }

// Methods that can be overridden.
public POA _default_POA() { ... }
public boolean _is_a(String repository_id) { ... }
public boolean _non_existent() { ... }
public org.omg.CORBA.InterfaceDef _get_interface() { ... }

abstract public String[] _all_interfaces(POA poa, byte[] objectId);

final public Delegate _get_delegate() { ... }
final public void _set_delegate(Delegate delegate) { ... }

}

Java Helper and Holder Types
This section describes the templates that are used by an IDL to Java compiler to gen-
erate Java Helper and Holder types from a given user-defined IDL type.

Helper Types
Helper types are provided only for user-defined types. The purpose of a Helper class is
to provide miscellaneous, typed Java methods that support the use of the user-defined
type.

For each user-defined type, <user_type>, a Helper class, <user_type>Helper, is gen-
erated in accordance with the following template:

//Java
// Helper class for non-boxed value types.

abstract public class <user_type>Helper {
public static void insert(org.omg.CORBA.Any a, <user_type> t) {...}
public static <user_type> extract(Any a) {...}
public static org.omg.CORBA.TypeCode type() {...}
public static String id() {...}

J a v a H e l p e r a n d H o l d e r Ty p e s 7 5 7

19 0672318121 CH15 6/20/01 5:48 PM Page 757

public static <user_type> read(org.omg.CORBA.portable.InputStream is) {...}
public static void write(

org.omg.CORBA.portable.OutputStream os, <user_type> val
) {...}

// Only in Helpers for an abstract interface.
public static <user_type> narrow(java.lang.Object obj) {...}

// Only in Helpers for a non-abstract interface with at
// least one abstract base interface.
public static <user_type> narrow(org.omg.CORBA.Object obj) {...}
public static <user_type> narrow(java.lang.Object obj) {...}

// Only in Helpers for a non-abstract interface with
// no abstract base interface.
public static <user_type> narrow(org.omg.CORBA.Object obj) {...}

// For each factory declaration in a non-abstract value type.
public static <user_type> <factory_name> (

org.omg.CORBA.ORB orb
[“ ,” <factory_arguments>]

) {...}
}

Holder Types
Holder types are provided for every built-in type and user-defined type to facilitate
passing data as out and inout parameters in an operation invocation.

For each user-defined type, <user_type>, a Holder class, <user_type>Holder, is gen-
erated in accordance with the following template:

//Java
final public class <user_type>Holder
implements org.omg.CORBA.portable.Streamable {
public <user_type> value;

public <user_type>Holder() {}
public <user_type>Holder(<user_type> initial) {...}

public void _read(org.omg.CORBA.portable.InputStream is) {...}
public void _write(org.omg.CORBA.portable.OutputStream os) {...}

public org.omg.CORBA.TypeCode _type() {...}
}

7 5 8 C h a p t e r 1 5 : I D L D a t a Ty p e s

19 0672318121 CH15 6/20/01 5:48 PM Page 758

IDL Grammar
This chapter describes the fundamentals of IDL grammar: the
syntax of literals, the syntax of expressions, and a formal def-
inition of IDL grammar in Extended Backus-Naur Format
(EBNF).

Literals
This section describes the following IDL literals: integer, float-
ing point, fixed point, character, and string.

Integer Literals
There are three forms of integer literal in IDL, as follows:

• Decimal (base 10)—A sequence of digits, not begin-
ning with 0. For example, 14460.

• Octal (base 8)—A sequence of digits, beginning with
0. Because the literal is base 8, the digits 8 and 9 are
excluded. For example, 0771.

• Hexadecimal (base 16)—A sequence of digits, from
the range 0–9, and characters, from the range a–f or
A–F, prefixed by either 0x or 0X. For example, 0x9f2E.

A signed integer, for example +12 or -12, is technically an inte-
ger expression, with a unary + or - operator attached to the
literal.

Floating-Point Literals
There are two forms of floating-point literal in IDL, as follows:

• Without exponent—A sequence of decimal digits
including exactly one occurrence of a decimal point.
For example, 40.0123, 9933., and .001 are examples
of correctly formed literals.

C H A P T E R 1 6

ID
L G

ra
m

m
a
r

20 0672318121 CH16 6/21/01 8:06 AM Page 759

• With exponent—An exponent can be included in a floating-point literal by
appending e or E, followed optionally by + or -, followed by a decimal integer.
The decimal point in the mantissa can be omitted when an exponent is present.
For example, 6.001e-30, 54321.e+1, and 22E0 are examples of correctly
formed floating-point literals.

Fixed-Point Literals
A fixed-point literal is a sequence of decimal digits including zero or one occurrences
of a decimal point followed by d or D. For example, 40.0123D, 9933d, and .001D are
examples of correctly formed fixed-point literals.

Character Literals
Both narrow (char) and wide (wchar) character literals are taken from the ISO Latin-
1 (8859.1) character set. Graphic characters are represented as follows:

• Narrow character—a single character enclosed in single quotes. For example,
‘a’, and ‘z’.

• Wide character—the letter L followed by a single character enclosed in single
quotes. For example, L’a’, and L’z’.

Non-graphic character literals are represented by escape sequences, as shown in Table
16.1.

Table 16.1 Narrow and Wide Character Escape Sequences

Narrow Character Wide Character
Description Literal Literal

null ‘\0’ L’\0’

newline ‘\n’ L’\n’

horizontal tab ‘\t’ L’\t’

vertical tab ‘\v’ L’\v’

backspace ‘\b’ L’\b’

carriage return ‘\r’ L’\r’

form feed ‘\f’ L’\f’

alert ‘\a’ L’\a’

backslash ‘\\’ L’\\’

question mark ‘\?’ L’\?’

single quote ‘\’’ L’\’’

double quote ‘\”’ L’\”’

octal number ‘\ddd’ L’\ddd’

hexadecimal number ‘\xhh’ L’\xhh’

Unicode character Not available L’\uhhhh’

7 6 0 C h a p t e r 1 6 : I D L G r a m m a r

20 0672318121 CH16 6/21/01 8:06 AM Page 760

The octal number escape sequence consists of a backslash (\) followed by a sequence
of one, two, or three digits from the range 0–7. For example, \144 is the octal repre-
sentation of decimal 100. The allowed range of octal number values is \000 to \377 (an
initial 0 is not required for octal numbers in the context of an escape sequence).

The hexadecimal number escape sequence consists of \x followed by a sequence of
one or two hexadecimal digits. The allowed range of hexadecimal number values is
\x00 to \xFF.

The Unicode escape sequence consists of \u followed by a sequence of one, two, three,
or four hexadecimal digits. The allowed range of Unicode values is \u0000 to \uFFFF.

String Literals
A narrow string literal (string) is a sequence of graphic characters and character
escape sequences enclosed in double quotes, excluding the null \0 and Unicode \uhhhh
escape sequences. For example, “This is a string.\n”. An octal or hexadecimal
escape sequence is terminated by the first non-octal or non-hexadecimal digit respec-
tively. For example, the string “\x20Beware!” would not be accepted by an IDL com-
piler because it is interpreted as ‘\x20Be’ (invalid character escape!), ‘w’, ‘a’, ‘r’,
‘e’, ‘!’.

A wide string literal (wstring) is a sequence of graphic characters and character escape
sequences enclosed in double quotes, excluding the null \0 escape sequence. An octal
or hexadecimal escape sequence is terminated by the first non-octal or non-
hexadecimal digit respectively. For example, L”This is a wide string.\n” and
L”\u20Beware!”. The latter string is interpreted as L’\u20Be’, L’w’, L’a’, L’r’, L’e’,
L’!’.

A string literal can also consist of a sequence of adjacent substrings which are subse-
quently concatenated by the IDL compiler. The following narrow string literal
expresses the string “Like a 1-D jigsaw puzzle.” as a sequence of substrings:

//IDL
const string CONCAT_STRING = “Like “ “a “ “1-D “ “jigsaw “ “puzzle.”;

This way of expressing strings is occasionally useful for strings that cannot be written
any other way. For example, the sequence of characters ‘\xB’ followed by ‘B’ can be
expressed as the string “\xB” “B” but not as the string “\xBB”.

The following wide string literal expresses the string L”Like a 1-D jigsaw puzzle.”
as a sequence of substrings:

//IDL
const wstring CONCAT_WSTRING = L”Like “ L”a “ L”1-D “ L”jigsaw “ L”puzzle.”;

Expressions
This section describes the syntax and semantics for the following forms of IDL con-
stant expression: integer, floating-point, and fixed-point.

E x p r e s s i o n s 7 6 1

20 0672318121 CH16 6/21/01 8:06 AM Page 761

Integer Expressions
An integer expression consists of a combination of the following elements:

• Integer literals.
• Integer constants.
• The +, -, ~ unary operators.
• The +, -, *, /, %, <<, >>, &, |, ^ binary operators.
• Integer sub-expressions.

The format of an integer literal is defined in the section “Integer Literals,” earlier in this
chapter, and the syntax of integer constants is described in Chapter 15, “IDL Data
Types” (under the various subheadings for short type, unsigned short type, long
type, unsigned long type, long long type, and unsigned long long type).

The ~ unary operator generates the bitwise complement of the expression that follows
it. For example, in the context of an octet expression ~0xF0 is transformed to 0x0F, and
~0 is transformed to 255.

The binary operators that can be applied to integer expressions are described in Table
16.2.

Table 16.2 Binary Operators Used in Integer Expressions

Binary Operator Description

+ Yields the arithmetical sum of its operands.
- Yields the arithmetical difference of its operands.
* Yields the arithmetical product of its operands.
/ Yields the integer quotient of its operands. For example, 5/2

yields 2.
% The expression x%y yields the remainder left from dividing x

by y. For example, 5%2 yields 1.
<< The expression x<<n shifts the bits in x by n places to the left,

using 0 to fill the empty bits. For example, 0xFFFF<<4 yields
0xFFF0.

>> The expression x>>n shifts the bits in x by n places to the
right, using 0 to fill the empty bits. For example, 0xFFFF>>4
yields 0x0FFF.

& Yields the logical, bitwise AND of its operands.
| Yields the logical, bitwise OR of its operands.
^ Yields the logical, bitwise exclusive-OR of its operands.

An integer sub-expression consists of an integer expression enclosed in parentheses,
(IntegerExpression). For example, the following integer constant is set equal to the
product of two sub-expressions:

//IDL
const long SAMPLE_INT = (123+456)*(12-123);

7 6 2 C h a p t e r 1 6 : I D L G r a m m a r

20 0672318121 CH16 6/21/01 8:06 AM Page 762

Floating-Point Expressions
A floating-point expression consists of a combination of the following elements:

• Floating-point literals.
• Floating-point constants.
• The +, - unary operators.
• The +, -, *, / binary operators.
• Floating-point sub-expressions.

The format of a floating-point literal is defined in the section “Floating-Point Literals”
earlier in this chapter and the syntax of floating-point constants is described in Chapter
15 (under the various sub-headings for float type, double type, and long double

type).

The binary operators that can be applied to floating-point expressions—+, -, *, /—act
as normal floating-point arithmetical operators. The following binary operators cannot
be used in floating-point expressions: %, <<, >>, &, |, ^.

A floating-point sub-expression consists of a floating-point expression enclosed in
parentheses, (FloatingPointExpression). For example, the following floating-point
constant is set equal to the quotient of two sub-expressions:

//IDL
const float SAMPLE_FLOAT = (1.0e6 + 2.345e6)/(1.5e8 - 5.67e9);

Fixed-Point Expressions
A fixed-point expression consists of a combination of the following elements:

• Fixed-point literals.
• Fixed-point constants.
• The +, - unary operators.
• The +, -, *, / binary operators.
• Fixed-point sub-expressions.

The format of a fixed-point literal is defined in the section “Fixed-Point Literals” ear-
lier in this chapter and the syntax of fixed-point constants is described in Chapter 15.

Fixed point arithmetic expressions—involving the binary operators +, -, *, /—are eval-
uated using double-precision arithmetic (62 digits) for all intermediate expressions. If
the result, in the format fixed<D,S>, has more than 31-digit precision, a 31-digit result
is retained by transforming the result to the format fixed<31,S-(D-31)> and discard-
ing the excess digits.

A fixed-point sub-expression consists of a fixed-point expression enclosed in paren-
theses, (FixedPointExpression). For example, the following fixed-point constant is
set equal to the quotient of two sub-expressions:

//IDL
const Fixed SAMPLE_FIXED = (1.23D + 2.345D)/(6879D - 0.876D);

E x p r e s s i o n s 7 6 3

20 0672318121 CH16 6/21/01 8:06 AM Page 763

OMG IDL Grammar in EBNF Notation
The formal definition of the IDL grammar presented in this section is based on the
CORBA 2.4.2 specification. You should bear in mind that the formal definition
expressed in EBNF is not a complete description of IDL grammar—the semantics
described in this and other chapters implicitly put further constraints on IDL grammar.

A brief summary of EBNF notation is provided in Table 16.3.

Table 16.3 Syntax Notation for IDL Grammar

Notation Meaning

“text” A text literal.
<token> A token composed of other tokens and literals.
::= The token on the left of this operator is defined by the expres-

sion on the right of it.
| The expressions to the left and right of this operator are alterna-

tives.
{} The expression within braces is treated as a single syntactical

unit (like a token).
[] Zero or one instances of the expression within square brackets.
* Zero or more instances of the preceding token.
+ One or more instances of the preceding token.

The formal definition of the IDL grammar, in EBNF notation, is shown in Listing 16.1.

Listing 16.1 OMG IDL Grammar in EBNF Notation
(1) <specification> ::= <definition>+
(2) <definition> ::= <type_dcl> “;”

| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”
| <value> “;”

(3) <module> ::= “module” <identifier> “{“ <definition> + “}”
(4) <interface> ::= <interface_dcl>

| <forward_dcl>
(5) <interface_dcl> ::= <interface_header> “{“ <interface_body> “}”
(6) <forward_dcl> ::= [“abstract” | “local”] “interface” <identifier>
(7) <interface_header> ::= [“abstract” | “local”] “interface” <identifier>

[<interface_inheritance_spec>]
(8) <interface_body> ::= <export>*
(9) <export> ::= <type_dcl> “;”

| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”

7 6 4 C h a p t e r 1 6 : I D L G r a m m a r

20 0672318121 CH16 6/21/01 8:06 AM Page 764

(10) <interface_inheritance_spec> ::= “:” <interface_name>
{ “,” <interface_name> }*

(11) <interface_name> ::= <scoped_name>
(12) <scoped_name> ::= <identifier>

| “::” <identifier>
| <scoped_name> “::” <identifier>

(13) <value> ::= <value_dcl> | <value_abs_dcl> |
<value_box_dcl> | <value_forward_dcl>

(14) <value_forward_dcl> ::= [“abstract”] “valuetype” <identifier>
(15) <value_box_dcl> ::= “valuetype” <identifier> <type_spec>
(16) <value_abs_dcl> ::= “abstract” “valuetype” <identifier>

[<value_inheritance_spec>]
“{“ <export>* “}”

(17) <value_dcl> ::= <value_header> “{“ < value_element>* “}”
(18) <value_header> ::= [“custom”] “valuetype” <identifier>

[<value_inheritance_spec>]
(19) <value_inheritance_spec> ::= [“:” [“truncatable”] <value_name>

{ “,” <value_name> }*]
[“supports” <interface_name>
{ “,” <interface_name> }*]

(20) <value_name> ::= <scoped_name>
(21) <value_element> ::= <export> | < state_member> | <init_dcl>
(22) <state_member> ::= { “public” | “private” }

<type_spec> <declarators> “;”
(23) <init_dcl> ::= “factory” <identifier>

“(“ [<init_param_decls>] “)” “;”
(24) <init_param_decls> ::= <init_param_decl> { “,” <init_param_decl> }*
(25) <init_param_decl> ::= <init_param_attribute> <param_type_spec>

<simple_declarator>
(26) <init_param_attribute> ::= “in”
(27) <const_dcl> ::= “const” <const_type>

<identifier> “=” <const_exp>
(28) <const_type> ::= <integer_type>

| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>
| <octet_type>

(29) <const_exp> ::= <or_expr>
(30) <or_expr> ::= <xor_expr>

| <or_expr> “|” <xor_expr>
(31) <xor_expr> ::= <and_expr>

| <xor_expr> “^” <and_expr>

O M D I D L G r a m m a r i n E B N F N o t a t i o n 7 6 5

Listing 16.1 continued

20 0672318121 CH16 6/21/01 8:06 AM Page 765

(32) <and_expr> ::= <shift_expr>
| <and_expr> “&” <shift_expr>

(33) <shift_expr> ::= <add_expr>
| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(34) <add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

(35) <mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

(36) <unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

(37) <unary_operator> ::= “-”
| “+”
| “~”

(38) <primary_expr> ::= <scoped_name>
| <literal>
| “(“ <const_exp> “)”

(39) <literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

(40) <boolean_literal> ::= “TRUE”
| “FALSE”

(41) <positive_int_const> ::= <const_exp>
(42) <type_dcl> ::= “typedef” <type_declarator>

| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>
| <constr_forward_decl>

(43) <type_declarator> ::= <type_spec> <declarators>
(44) <type_spec> ::= <simple_type_spec>

| <constr_type_spec>
(45) <simple_type_spec> ::= <base_type_spec>

| <template_type_spec>
| <scoped_name>

(46) <base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>

7 6 6 C h a p t e r 1 6 : I D L G r a m m a r

Listing 16.1 continued

20 0672318121 CH16 6/21/01 8:06 AM Page 766

| <any_type>
| <object_type>
| <value_base_type>

(47) <template_type_spec> ::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(48) <constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

(49) <declarators> ::= <declarator> { “,” <declarator> } *
(50) <declarator> ::= <simple_declarator>

| <complex_declarator>
(51) <simple_declarator> ::= <identifier>
(52) <complex_declarator> ::= <array_declarator>
(53) <floating_pt_type> ::= “float”

| “double”
| “long” “double”

(54) <integer_type> ::= <signed_int>
| <unsigned_int>

(55) <signed_int> ::= <signed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(56) <signed_short_int> ::= “short”
(57) <signed_long_int> ::= “long”
(58) <signed_longlong_int> ::= “long” “long”
(59) <unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
| <unsigned_longlong_int>

(60) <unsigned_short_int> ::= “unsigned” “short”
(61) <unsigned_long_int> ::= “unsigned” “long”
(62) <unsigned_longlong_int> ::= “unsigned” ”long” “long”
(63) <char_type> ::= “char”
(64) <wide_char_type> ::= “wchar”
(65) <boolean_type> ::= “boolean”
(66) <octet_type> ::= “octet”
(67) <any_type> ::= “any”
(68) <object_type> ::= “Object”
(69) <struct_type> ::= “struct” <identifier> “{“ <member_list> “}”
(70) <member_list> ::= <member>+
(71) <member> ::= <type_spec> <declarators> “;”
(72) <union_type> ::= “union” <identifier> “switch”

“(“ <switch_type_spec> “)”
“{“ <switch_body> “}”

(73) <switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>

O M D I D L G r a m m a r i n E B N F N o t a t i o n 7 6 7

Listing 16.1 continued

20 0672318121 CH16 6/21/01 8:06 AM Page 767

| <scoped_name>
(74) <switch_body> ::= <case>+
(75) <case> ::= <case_label>+ <element_spec> “;”
(76) <case_label> ::= “case” <const_exp> “:”

| “default” “:”
(77) <element_spec> ::= <type_spec> <declarator>
(78) <enum_type> ::= “enum” <identifier>

“{“ <enumerator> { “,” <enumerator> } * “}”
(79) <enumerator> ::= <identifier>
(80) <sequence_type> ::= “sequence” “<” <simple_type_spec> “,”

<positive_int_const> “>”
| “sequence” “<” <simple_type_spec> “>”

(81) <string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

(82) <wide_string_type> ::= “wstring” “<” <positive_int_const> “>”
| “wstring”

(83) <array_declarator> ::= <identifier> <fixed_array_size>+
(84) <fixed_array_size> ::= “[“ <positive_int_const> “]”
(85) <attr_dcl> ::= [“readonly”] “attribute”

<param_type_spec> <simple_declarator>
{ “,” <simple_declarator> }*

(86) <except_dcl> ::= “exception” <identifier> “{“ <member>* “}”
(87) <op_dcl> ::= [<op_attribute>] <op_type_spec>

<identifier> <parameter_dcls>
[<raises_expr>] [<context_expr>]

(88) <op_attribute> ::= “oneway”
(89) <op_type_spec> ::= <param_type_spec>

| “void”
(90) <parameter_dcls> ::= “(“ <param_dcl> { “,” <param_dcl> } * “)”

| “(“ “)”
(91) <param_dcl> ::= <param_attribute> <param_type_spec>

<simple_declarator>
(92) <param_attribute> ::= “in”

| “out”
| “inout”

(93) <raises_expr> ::= “raises” “(“ <scoped_name> { “,” <scoped_name> }* “)”
(94) <context_expr> ::= “context” “(“ <string_literal>

{ “,” <string_literal> } * “)”
(95) <param_type_spec> ::= <base_type_spec>

| <string_type>
| <wide_string_type>
| <scoped_name>

(96) <fixed_pt_type> ::= “fixed” “<” <positive_int_const> “,”
<positive_int_const> “>”

(97) <fixed_pt_const_type> ::= “fixed”
(98) <value_base_type> ::= “ValueBase”
(99) <constr_forward_decl> ::= “struct” <identifier>

| “union” <identifier>

7 6 8 C h a p t e r 1 6 : I D L G r a m m a r

Listing 16.1 continued

20 0672318121 CH16 6/21/01 8:06 AM Page 768

DynAny Type
The any type offers great flexibility when passing parameters
to and receiving return values from an IDL operation. It is par-
ticularly useful for specifying interfaces when it is not known
in advance what data types will be passed as operation para-
meters. This flexibility is needed for general-purpose bridges
and messaging services. The OMG specification of the
CORBA Notification Service provides a good example of this.

However, the standard mapping of the any type (CORBA::Any in
C++ and org.omg.CORBA.Any in Java) has its limitations. It
relies on stub code to provide the facility to manipulate its con-
tents. Without stub code there is no means of inserting or
extracting user-defined types.

To overcome the shortcomings of the standard any type, a
number of interfaces are defined that facilitate dynamic
manipulation of anys. These interfaces are grouped together in
the module DynamicAny, and they consist of the interface
DynAny, its derived interfaces, and a DynAnyFactory interface.
With the help of these interfaces it is possible to build general-
purpose bridges and messaging services without compiling
stub code for user-defined types.

Introduction to the DynamicAny
Module
The interfaces that constitute the DynamicAny module are listed
in the section “Dynamic any IDL,” at the end of this chapter.
There are several different types of DynAny object. Besides the
DynAny interface, there are the derived interfaces DynFixed,
DynEnum, DynStruct, DynUnion, DynSequence, DynArray, and
DynValue. DynAnyFactory is used to create instances of
DynAny. Table 17.1 lists the DynAny interfaces with the IDL
types they represent.

C H A P T E R 1 7

D
y
n

A
n

y
 Ty

p
e

21 0672318121 CH17 6/20/01 5:46 PM Page 769

Table 17.1 DynAny Interfaces and Corresponding Types

DynAny Interface IDL Types Represented

DynFixed fixed

DynEnum enum

DynStruct struct

exception

DynUnion union

DynSequence sequence

DynArray array

DynValue value

DynAny all other types

Note that DynStruct can be used to represent either the struct or exception type.

DynAny Type Is Unchangeable
Unlike the ordinary representation of any, a DynAny instance is not a general-purpose
container. A particular DynAny can be used only to hold the data type for which it is cre-
ated. For example, a DynAny instance created to hold a boolean value can only be ini-
tialized with boolean data. Attempting to insert a different data type raises a
TypeMismatch exception. The restrictions are

• The type of data that can be held in a given DynAny is given by the return value
of DynamicAny::DynAny::type(). The DynAny’s type can not be changed after
it is created.

• Attempting to insert or extract the wrong type raises a
DynamicAny::DynAny::TypeMismatch exception.

• Assignment of a DynAny to a DynAny is allowed only if both DynAnys hold data
of the same type. Otherwise, a TypeMismatch exception is raised.

Dynamic any Interfaces Are Locality Constrained
The interfaces in the DynamicAny module are locality-constrained interfaces. Instances
of these interfaces are always local objects. They cannot be invoked remotely, and their
object references cannot be passed as arguments to remote invocations.

Dynamic Invocation and Dynamic Skeleton
Interfaces
One of the main applications of dynamic anys is to facilitate the use of the dynamic
invocation interface (DII) and dynamic skeleton interface (DSI). See Chapter 20,
“Dynamic Invocation Interface,” and Chapter 21, “Dynamic Skeleton Interface,” for
details.

When using the DII or the DSI, parameters and return values of CORBA operations are
exposed to the programmer as anys. To send parameters, you must be able to create
anys containing arbitrary data. To receive parameters, you must be able to analyze anys

7 7 0 C h a p t e r 1 7 : D y n A n y Ty p e

21 0672318121 CH17 6/20/01 5:46 PM Page 770

that contain arbitrary data. If stub code is not available, the DynAny type is needed to
create and manipulate anys that contain user-defined types. The ways in which DynAny
is used by the DII and DSI are outlined in the following two sections.

Sending Arbitrary Parameters
When sending parameters using the DII or DSI, the DynAny is needed to create anys
containing user-defined types. The following steps describe how to create an any hold-
ing arbitrary data:

1. Create a type code to describe the data. You can either create the type code
dynamically or retrieve it from the interface repository.

2. Create a DynAny object from the type code. Narrow the DynAny to the appropri-
ate type, if necessary.

3. Initialize the value of the DynAny.
4. Convert the DynAny to an ordinary any using the to_any() method.

Examples of this procedure are given in the section “DynAny Examples,” later in this
chapter.

Receiving Arbitrary Parameters
When receiving parameters using the DII or DSI, the any representing the parameter
must be parsed to discover its contents. The following steps describe how to analyze
the contents of an any that holds arbitrary data:

1. Create a DynAny object from the given any. Narrow it to the appropriate type, if
necessary.

2. Get the type code for the data held in the DynAny.
3. With the help of the TypeCode interface and the dynamic any interfaces, use

recursive descent traversal to analyze the contents of the any.

Details of this procedure are beyond the scope of this book.

Dynamic Creation of Type Codes
The first step in the creation of a DynAny is to obtain a type code that describes the lay-
out of the data held by the any. In general, if you are building a dynamic application
such as a CORBA bridge, it is necessary to create type codes dynamically.

The interface for creating type codes dynamically is defined by a subset of operations
in CORBA::ORB. A number of additional data types, borrowed from the interface repos-
itory IDL, are also used. Excerpts from the relevant IDL are shown in Listing 17.1.

Listing 17.1 IDL for Creating Type Codes
//IDL
module CORBA {

//--
// Excerpt from the Interface Repository specification
// The following types are needed for creating type codes:
// ‘StructMemberSeq’, ‘UnionMemberSeq’, ‘EnumMemberSeq’

D y n a m i c C r e a t i o n o f Ty p e C o d e s 7 7 1

21 0672318121 CH17 6/20/01 5:46 PM Page 771

//--

typedef string Identifier;
typedef string RepositoryId;
interface IDLType;

struct StructMember {
Identifier name;
TypeCode type;
IDLType type_def;

};
typedef sequence <StructMember> StructMemberSeq;

struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;

};
typedef sequence <UnionMember> UnionMemberSeq;

typedef sequence <Identifier> EnumMemberSeq;

interface ORB {
//--
// Excerpt from the ‘ORB interface’ specification
// Type code creation operations
//--
TypeCode create_struct_tc (

in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);
TypeCode create_union_tc (

in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);
TypeCode create_enum_tc (

in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);
TypeCode create_alias_tc (

in RepositoryId id,
in Identifier name,
in TypeCode original_type

7 7 2 C h a p t e r 1 7 : D y n A n y Ty p e

Listing 17.1 continued

21 0672318121 CH17 6/20/01 5:46 PM Page 772

);
TypeCode create_exception_tc (

in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);
TypeCode create_interface_tc (

in RepositoryId id,
in Identifier name

);
TypeCode create_string_tc (

in unsigned long bound
);
TypeCode create_wstring_tc (

in unsigned long bound
);
TypeCode create_fixed_tc (

in unsigned short digits,
in short scale

);
TypeCode create_sequence_tc (

in unsigned long bound,
in TypeCode element type

);
TypeCode create_array_tc (

in unsigned long length,
in TypeCode element_type

);
TypeCode create_value_tc (

in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMembersSeq members

);
TypeCode create_value_box_tc (

in RepositoryId id,
in Identifier name,
in TypeCode boxed_type

);
TypeCode create_native_tc (

in RepositoryId id,
in Identifier name

);
TypeCode create_recursive_tc(

in RepositoryId id
);
TypeCode create_abstract_interface_tc(

in RepositoryId id,

D y n a m i c C r e a t i o n o f Ty p e C o d e s 7 7 3

Listing 17.1 continued

21 0672318121 CH17 6/20/01 5:46 PM Page 773

in Identifier name
);
...

};
};

The CORBA::ORB interface provides operations, such as create_struct_tc(), for cre-
ating every kind of complex type code. Many more operations are provided—see
Chapter 17, “IDL Data Types,” for a complete list.

Type codes for basic types are not provided by the CORBA::ORB interface. Basic type
codes are provided differently in C++ and Java:

• In C++, basic type codes are provided by standard type code constants of the
form CORBA::_tc_typeName. See Chapter 8, “The any Type,” for details.

• In Java, basic type codes are obtained by invoking
org.omg.CORBA.ORB.get_primitive_tc() with the appropriate TCKind-
enumerated constant as an argument. The method get_primitive_tc() is
specific to the Java mapping.

Examples of how to create both basic and complex type codes in C++ and Java are pre-
sented in the following subsections.

Type Code for Structs
The Listing 17.2 shows a sample struct called VarLen that is declared within the scope
of the module SampleTypes.

Listing 17.2 IDL for the Struct VarLen
//IDL
#pragma prefix “pure-corba-3.com”

module SampleTypes {
...
struct VarLen {

string theString;
long theLong;

};
...

};

The operation CORBA::ORB::create_struct_tc(), in conjunction with the type
CORBA::StructMemberSeq, is used to create a type code for a struct. Listing 17.3 and
Listing 17.4 show how to create a type code for the struct VarLen in C++ and Java.

Listing 17.3 C++ Creating Type Code for VarLen
//C++
#include <ifr.hh>
#include <DynamicAny.hh>

7 7 4 C h a p t e r 1 7 : D y n A n y Ty p e

Listing 17.1 continued

21 0672318121 CH17 6/20/01 5:46 PM Page 774

...
//---
// Assume that the following variable is already defined:
// ‘orbV’ - a _var reference to an ORB instance
//
CORBA::StructMemberSeq memSeq(2); //maximum = 2
memSeq.length(2); //length = 2
memSeq[0].name = CORBA::string_dup(“theString”);
memSeq[0].type = CORBA::_tc_string;
memSeq[1].name = CORBA::string_dup(“theLong”);
memSeq[1].type = CORBA::_tc_long;
CORBA::TypeCode_var TCVarLenV = orbV->create_struct_tc(

“IDL:pure-corba-3.com/SampleTypes/VarLen:1.0”, // RepositoryId
“VarLen”, // name of ‘struct’
memSeq // member details

);

Listing 17.4 Java Creating Type Code for VarLen
//Java
//---
// Assume that the following variable is already defined:
// ‘orb’ - a reference to an ORB instance
//
org.omg.CORBA.TypeCode TCstring = orb.get_primitive_tc(

org.omg.CORBA.TCKind.tk_string
);

org.omg.CORBA.TypeCode TClong = orb.get_primitive_tc(
org.omg.CORBA.TCKind.tk_long

);

org.omg.CORBA.StructMember[] memSeq = new org.omg.CORBA.StructMember[2];
memSeq[0] = new org.omg.CORBA.StructMember();
memSeq[0].name = “theString”;
memSeq[0].type = TCstring;
memSeq[1] = new org.omg.CORBA.StructMember();
memSeq[1].name = “theLong”;
memSeq[1].type = TClong;
org.omg.CORBA.TypeCode TCVarLen = orb.create_struct_tc(

“IDL:pure-corba-3.com/SampleTypes/VarLen:1.0”, // RepositoryId
“VarLen”, // name of ‘struct’
memSeq // member details

);

The type CORBA::StructMemberSeq is filled with the descriptions of the VarLen struct
members. The order of descriptions in the sequence must be identical to the order in
which VarLen struct members are declared in the IDL.

D y n a m i c C r e a t i o n o f Ty p e C o d e s 7 7 5

Listing 17.3 continued

21 0672318121 CH17 6/20/01 5:46 PM Page 775

Each element of CORBA::StructMemberSeq is set as follows:

• The name field gives the name of the corresponding VarLen struct member.
• The type field gives the type code for the corresponding VarLen struct member.
• The type_def field is not used (it defaults to a nil object reference).

In Java, it is necessary to obtain type codes for the basic types string and long using
the method get_primitive_tc().

Type Code for a Union
Listing 17.5 shows a sample union called Poly that is declared within the scope of the
module SampleTypes.

Listing 17.5 The IDL for the Union Poly
//IDL
#pragma prefix “pure-corba-3.com”

module SampleTypes {
...
union Poly switch(short) {

case 1: short theShort;
case 2: string theString;

};
...

};

This union does not have a default: case label.

The operation CORBA::ORB::create_union_tc(), in conjunction with the type
CORBA::UnionMemberSeq, is used to create a type code for a union. Listing 17.6 and
Listing 17.7 show how to create a type code for the union Poly in C++ and Java.

Listing 17.6 C++ Creating Type Code for Poly
//C++
#include <ifr.hh>
#include <DynamicAny.hh>
...
//---
// Assume that the following variable is already defined:
// ‘orbV’ - a _var reference to an ORB instance
//
CORBA::UnionMemberSeq memSeq(2); //maximum = 2
memSeq.length(2); //length = 2
memSeq[0].label <<= (CORBA::Short) 1;
memSeq[0].type = CORBA::_tc_short;
memSeq[0].name = CORBA::string_dup(“theShort”);
memSeq[1].label <<= (CORBA::Short) 2;
memSeq[1].type = CORBA::_tc_string;
memSeq[1].name = CORBA::string_dup(“theString”);
CORBA::TypeCode_var TCPolyV = orbV->create_union_tc(

7 7 6 C h a p t e r 1 7 : D y n A n y Ty p e

21 0672318121 CH17 6/20/01 5:46 PM Page 776

“IDL:pure-corba-3.com/SampleTypes/Poly:1.0”, // RepositoryId
“Poly”, // name of ‘union’
CORBA::_tc_short, // type of union discriminator
memSeq // member details

);

Listing 17.7 Java Creating Type Code for Poly
//Java
//---
// Assume that the following variable is already defined:
// ‘orb’ - a reference to an ORB instance
//
org.omg.CORBA.TypeCode TCstring = orb.get_primitive_tc(

org.omg.CORBA.TCKind.tk_string
);

org.omg.CORBA.TypeCode TCshort = orb.get_primitive_tc(
org.omg.CORBA.TCKind.tk_short

);

org.omg.CORBA.UnionMember[] memSeq = new org.omg.CORBA.UnionMember[2];
memSeq[0] = new org.omg.CORBA.UnionMember();
memSeq[0].label = org.omg.CORBA.ORB.init().create_any();
memSeq[0].label.insert_short((short) 1);
memSeq[0].type = TCshort;
memSeq[0].name = “theShort”;
memSeq[1] = new org.omg.CORBA.UnionMember();
memSeq[1].label = org.omg.CORBA.ORB.init().create_any();
memSeq[1].label.insert_short((short) 2);
memSeq[1].type = TCstring;
memSeq[1].name = “theString”;
org.omg.CORBA.TypeCode TCPoly = orb.create_union_tc(

“IDL:pure-corba-3.com/SampleTypes/Poly:1.0”, // RepositoryId
“Poly”, // name of ‘union’
TCshort, // type of union discriminator
memSeq // member details

);

The type CORBA::UnionMemberSeq is filled with the descriptions of the Poly union
members. The order of descriptions in the sequence must be identical to the order in
which union members are declared in IDL.

Each element of CORBA::UnionMemberSeq is set as follows:

• The label field is an any that is set to the case label of the corresponding
union member.

• The type field gives the type code for the corresponding union member.
• The name field gives the name of the corresponding union member.
• The type_def field is not used (it defaults to a nil object reference).

D y n a m i c C r e a t i o n o f Ty p e C o d e s 7 7 7

Listing 17.6 continued

21 0672318121 CH17 6/20/01 5:46 PM Page 777

Type Code for Recursive Type
The syntax of IDL allows you to create recursive types in certain special cases.
Currently, you can declare only structs, unions, or values to be recursive. Listing 17.8
shows an example of a recursive struct.

Listing 17.8 IDL for a Recursive Struct
//IDL
#pragma prefix “pure-corba-3.com”

struct RecursiveList {
string item;
sequence< RecursiveList > list;

};

The type RecurseList presents a special difficulty for type code creation, because
RecurseList is used in the declaration of the struct before its declaration is complete.
The way to break out of this impasse is to use the method
CORBA::ORB::create_recursive_tc() to create a placeholder for the incomplete type
code.

The operations create_recursive_tc(), create_sequence_tc(), and
create_struct_tc()are used together to create the type RecursiveList. Listing 17.9
and Listing 17.10 show how to create a type code for RecursiveList in C++ and Java.

Listing 17.9 C++ Creating Type Code for RecursiveList
//C++
#include <ifr.hh>
#include <DynamicAny.hh>
...
//---
// Assume that the following variable is already defined:
// ‘orbV’ - a _var reference to an ORB instance
//

//Create placeholder for recursive type code
CORBA::TypeCode_var TCplaceholderV

= orbV->create_recursive_tc(“IDL:pure-corba-3.com/RecursiveList:1.0”);

//Create anonymous sequence type code
CORBA::TypeCode_var TCsequenceV

= orbV->create_sequence_tc(
0, // bound (0 = unbounded)
TCplaceholderV.in() you to create recursive // element type

);

//Create type code for ‘RecursiveList’
CORBA::StructMemberSeq memSeq(2); //maximum = 2
memSeq.length(2); //length = 2

7 7 8 C h a p t e r 1 7 : D y n A n y Ty p e

21 0672318121 CH17 6/20/01 5:46 PM Page 778

memSeq[0].name = CORBA::string_dup(“item”);
memSeq[0].type = CORBA::_tc_string;
memSeq[1].name = CORBA::string_dup(“list”);
memSeq[1].type = TCsequenceV.in();
CORBA::TypeCode_var TCRecursiveListV = orbV->create_struct_tc(

“IDL:pure-corba-3.com/RecursiveList:1.0”, // RepositoryId
“RecursiveList”, // name of ‘struct’
memSeq // member details

);

Listing 17.10 Java Creating Type Code for RecursiveList
//Java
//---
// Assume that the following variable is already defined:
// ‘orb’ - a reference to an ORB instance
//
org.omg.CORBA.TypeCode TCstring = orb.get_primitive_tc(

org.omg.CORBA.TCKind.tk_string
);

//Create placeholder for recursive type code
org.omg.CORBA.TypeCode TCplaceholder

= orb.create_recursive_tc(“IDL:pure-corba-3.com/RecursiveList:1.0”);

//Create anonymous sequence type code
org.omg.CORBA.TypeCode TCsequence

= orb.create_sequence_tc(
0, // bound (0 = unbounded)
TCplaceholder // element type

);

//Create type code for ‘RecursiveList’
org.omg.CORBA.StructMember[] memSeq = new org.omg.CORBA.StructMember[2];
memSeq[0] = new org.omg.CORBA.StructMember();
memSeq[0].name = “item”;
memSeq[0].type = TCstring;
memSeq[1] = new org.omg.CORBA.StructMember();
memSeq[1].name = “list”;
memSeq[1].type = TCsequence;
org.omg.CORBA.TypeCode TCRecursiveList = orb.create_struct_tc(

“IDL:pure-corba-3.com/RecursiveList:1.0”, // RepositoryId
“RecursiveList”, // name of ‘struct’
memSeq // member details

);

The occurrence of RecursiveList as the element type of the sequence is represented
by a recursive type code. Since the type code for RecursiveList is not yet defined, a
placeholder must be created by calling create_recursive_tc(). The repository ID

D y n a m i c C r e a t i o n o f Ty p e C o d e s 7 7 9

Listing 17.9 continued

21 0672318121 CH17 6/20/01 5:46 PM Page 779

IDL:pure-corba-3.com/RecursiveList:1.0 is the you to create recursive only argu-
ment passed to create_recursive_tc().

A type code for the anonymous sequence sequence<RecursiveList> is created using
create_sequence_tc(). No repository ID is associated with the sequence because the
sequence is anonymous. The declaration of an anonymous sequence inside a struct is a
special case of IDL syntax. Normally, sequence types must be given a name using a
typedef construction.

The type code for RecursiveList is created using create_struct_tc(), in a similar
way to the example described in the section “Type Code for Structs.”

Once the overall RecursiveList type code is constructed, the embedded recursive type
code begins to function as a normal RecursiveList you to create recursive type code.

Creating and Destroying a DynAny
Instances of you to create recursive DynAny are created using the DynAnyFactory inter-
face, which has the following IDL:

//IDL
module DynamicAny {

...
interface DynAnyFactory
{

exception InconsistentTypeCode {};
DynAny create_dyn_any(in any value)

raises (InconsistentTypeCode);
DynAny create_dyn_any_from_type_code(in CORBA::TypeCode type)

raises (InconsistentTypeCode);
};

};

The first step in the creation of a DynAny is to obtain a reference to a DynAnyFactory
object. Use resolve_initial_references(), passing the string “DynAnyFactory” as
the ObjectId. You have a choice of creating a DynAny using the create_dyn_any() or
create_dyn_any_from_type_code() operation.

The destruction of a DynAny is effected using the destroy() operation of the DynAny
interface, declared as follows:

//IDL
module DynamicAny {

...
interface DynAny
{

...
void destroy();

};
};

7 8 0 C h a p t e r 1 7 : D y n A n y Ty p e

21 0672318121 CH17 6/20/01 5:46 PM Page 780

The examples in Listing 17.11 and Listing 17.12 show how to create and destroy a
DynAny containing a boolean, in C++ and Java respectively.

Listing 17.11 C++ DynAny Containing a boolean
//C++
...
//---
// Assume that the following variable is already defined:
// ‘orbV’ - a _var reference to an ORB instance
//---
// Get a handle on a ‘DynAnyFactory’ object
CORBA::Object_var objV = orbV->resolve_initial_references(“DynAnyFactory”);
DynamicAny::DynAnyFactory_var dynFactoryV

= DynamicAny::DynAnyFactory::_narrow(objV.in());
if (CORBA::is_nil(dynFactoryV.in())) {

cerr << “error: narrow to DynAnyFactory failed.” << endl;
exit(1);

}

// Create ‘DynAny’ containing a ‘boolean’
DynamicAny::DynAny_var dynBooleanV;
dynBooleanV = dynFactoryV->create_dyn_any_from_type_code(CORBA::_tc_boolean);
dynBooleanV->insert_boolean(1);
...
// Destroy the ’DynAny’
dynBooleanV->destroy();

Listing 17.12 Java DynAny Containing a boolean
//Java
...
//---
// Assume that the following variables are already defined:
// ‘orb’ - a reference to an ORB instance
// ‘TCBoolean’ - a ‘boolean’ type code
//---
// Exception handling not shown...

// Get a handle on a ‘DynAnyFactory’ object
org.omg.CORBA.Object obj = orb.resolve_initial_references(“DynAnyFactory”);
org.omg.DynamicAny.DynAnyFactory dynFactory

= org.omg.DynamicAny.DynAnyFactoryHelper.narrow(obj);

// Create ‘DynAny’ containing a ‘boolean’
org.omg.DynamicAny.DynAny dynBoolean

= dynFactory.create_dyn_any_from_type_code(TCBoolean);
dynBoolean.insert_boolean(true);
...
// Destroy the ‘DynAny’
dynBoolean.destroy();

D y n a m i c C r e a t i o n o f Ty p e C o d e s 7 8 1

21 0672318121 CH17 6/20/01 5:46 PM Page 781

A DynAnyFactory object is first obtained using the initialization service. The type code
passed to the create_dyn_any_from_type_code() operation determines the type of
DynAny that is created—in this case boolean. The returned DynAny cannot be used to
hold a type other than a boolean.

If a DynAny is created for one of the IDL types fixed, enum, struct, exception, union,
sequence, array, or value, it is then also necessary to narrow it to the correct type: one
of DynFixed, DynEnum, DynStruct, DynUnion, DynSequence, DynArray, or DynValue.
Examples of this are given in the next section, “DynAny Examples.”

The DynAny is initialized using insert_boolean().

After you are finished with the DynAny, you must call destroy(). In some ORB imple-
mentations, invocation of destroy() might not have any effect. However, doing so is
required by the CORBA specification and ensures portability of your code.

DynAny Examples
Two examples are presented in this section that illustrate many of the features of the
DynAny interfaces.

• Creating and initializing a DynStruct instance
• Creating and initializing a DynUnion instance

Creating a DynStruct
Consider how to create a DynAny object that represents the struct VarLen, declared in
Listing 17.2.

The code in Listing 17.13 and Listing 17.14 shows how to create and initialize a
DynStruct object that represents a VarLen instance.

Listing 17.13 C++ Creating a DynStruct for a VarLen
//C++
#include <ifr.hh>
#include <DynamicAny.hh>
...
//---
// Assume that the following variable is already defined:
// ‘orbV’ - a _var reference to an ORB instance
// ‘TCVarLenV’ - reference to type code of a ‘VarLen’ struct
//---

// Get a handle on a ‘DynAnyFactory’ object
CORBA::Object_var objV = orbV->resolve_initial_references(“DynAnyFactory”);
DynamicAny::DynAnyFactory_var dynFactoryV

= DynamicAny::DynAnyFactory::_narrow(objV.in());
if (CORBA::is_nil(dynFactoryV.in())) {

cerr << “error: narrow to DynAnyFactory failed.” << endl;
exit(1);

}

7 8 2 C h a p t e r 1 7 : D y n A n y Ty p e

21 0672318121 CH17 6/20/01 5:47 PM Page 782

// Get an instance of a ‘DynStruct’ object
objV = dynFactoryV->create_dyn_any_from_type_code(TCVarLenV.in());
DynamicAny::DynStruct_var dynStructV

= DynamicAny::DynStruct::_narrow(objV.in());
if (CORBA::is_nil(dynStructV.in())) {

cerr << “error: narrow to DynStruct failed.” << endl;
exit(1);

}

// Initialize each member of the ‘VarLen’ struct
DynamicAny::DynAny_var memberV;
memberV = dynStructV->current_component();
memberV->insert_string(“Hello World!”);
dynStructV->next();
memberV = dynStructV->current_component();
memberV->insert_long(1234);

//Convert ‘DynAny’ to an ordinary ‘any’...
CORBA::Any_var anyStructV = dynStructV->to_any();
...
//Cleanup
dynStructV->destroy();

Listing 17.14 Java Creating a DynStruct for VarLen
//Java
...
//---
// Assume that the following variable is already defined:
// ‘orb’ - a reference to an ORB instance
// ‘TCVarLen’ - reference to type code of a ‘VarLen’ struct
//---

// Get a handle on a ‘DynAnyFactory’ object
org.omg.CORBA.Object obj = orb.resolve_initial_references(“DynAnyFactory”);
org.omg.DynamicAny.DynAnyFactory dynFactory

= org.omg.DynamicAny.DynAnyFactoryHelper.narrow(obj);

// Get an instance of a ‘DynStruct’ object
obj = dynFactory.create_dyn_any_from_type_code(TCVarLen);
org.omg.DynamicAny.DynStruct dynStruct

= org.omg.DynamicAny.DynStructHelper.narrow(obj);

// Initialize each member of the ‘VarLen’ struct
org.omg.DynamicAny.DynAny member;
member = dynStruct.current_component();
member.insert_string(“Hello World!”);
dynStruct.next();
member = dynStruct.current_component();

D y n A n y E x a m p l e s 7 8 3

Listing 17.13 continued

21 0672318121 CH17 6/20/01 5:47 PM Page 783

member.insert_long(1234);

//Convert ‘DynAny’ to an ordinary ‘any’...
org.omg.CORBA.Any anyStruct = dynStruct.to_any();
...
//Cleanup
dynStruct.destroy();

Using the type code for the VarLen struct (created as described in the section “Type
Code for Structs”), a new DynStruct object is created by invoking
create_dyn_any_from_type_code() on the DynAnyFactory. Because the return type
of this operation is only a reference to the base class DynAny, it is necessary to narrow
it to the derived type DynStruct before you proceed any further.

The DynStruct object (dynStructV in C++, dynStruct in Java) can be initialized
using one of two approaches:

• Using a generic, iterative approach to member access. Support for this
approach is provided by a group of iteration operations defined in the base
interface DynAny.

• Using a type specific approach supported by a group of operations defined in
the derived interface DynStruct.

The approach used here is the generic, iterative approach because it turns out to be sim-
pler and requires less coding. The relevant operations of DynAny are given in the fol-
lowing IDL extract:

//IDL
module DynamicAny {

...
interface DynAny {

...
boolean seek(in long index);
void rewind();
boolean next();
unsigned long component_count() raises (TypeMismatch);
DynAny current_component() raises (TypeMismatch);

};
...

};

The components of the DynAny refer, in this case, to the members of a struct. A current
position is implicitly associated with the DynAny, and it initially indexes the very first
struct member (index 0).

The operation seek() can be used to set the current position to index an arbitrary struct
member (as long as the index is less than component_count()). It returns true if a valid
index is passed and false otherwise.

7 8 4 C h a p t e r 1 7 : D y n A n y Ty p e

Listing 17.13 continued

21 0672318121 CH17 6/20/01 5:47 PM Page 784

The operation next() is used to increment the current position by one.

The operation rewind() is equivalent to seek(0).

The special value -1 is used to represent a current position that does not refer to any
component. The current position is automatically set to -1 if the DynAny does not have
any components. The current position can also be set to -1 in a DynAny that has com-
ponents. For example, calling seek() with a negative argument sets the current posi-
tion to -1. Calling next() when the current position is already at the final component
changes the index to -1.

The operation current_component() returns a DynAny for the component at the cur-
rent position. Because complete type code information is provided when a DynAny is
created, the DynAny returned by current_component() is automatically set to be the
correct type.

The initialization step in Listing 17.13 and Listing 17.14 shows this approach being
used. The operations current_component() and next() are used together to initialize
the members of the VarLen struct.

The dynamic any is then converted to an ordinary any by invoking the method
to_any().

Creating a DynUnion
The code in Listing 17.15 and Listing 17.16 shows how to create and initialize a
DynUnion object that represents a Poly instance (see Listing 17.5 for the declaration of
Poly).

Listing 17.15 C++ Creating a DynUnion for Poly
//C++
#include <ifr.hh>
#include <DynamicAny.hh>
...
//---
// Assume that the following variable is already defined:
// ‘orbV’ - a _var reference to an ORB instance
// ‘TCPolyV’ - a type code for the union ‘Poly’
//

// Get a handle on a ‘DynAnyFactory’ object
CORBA::Object_var objV = orbV->resolve_initial_references(“DynAnyFactory”);
DynamicAny::DynAnyFactory_var dynFactoryV

= DynamicAny::DynAnyFactory::_narrow(objV.in());
if (CORBA::is_nil(dynFactoryV.in())) {

cerr << “error: narrow to DynAnyFactory failed.” << endl;
exit(1);

}

// Get an instance of a ‘DynUnion’ object
objV = dynFactoryV->create_dyn_any_from_type_code(TCPolyV.in());

D y n A n y E x a m p l e s 7 8 5

21 0672318121 CH17 6/20/01 5:47 PM Page 785

DynamicAny::DynUnion_var dynUnionV = DynamicAny::DynUnion::_narrow(objV.in());
if (CORBA::is_nil(dynUnionV.in())) {

cerr << “error: narrow to DynUnion failed.” << endl;
exit(1);

}

//Set the discriminator to ‘2’
DynamicAny::DynAny_var dynDiscrimV = dynUnionV->get_discriminator();
dynDiscrimV->insert_short(2);
dynUnionV->set_discriminator(dynDiscrimV.in());

// Initialize the union member
DynamicAny::DynAny_var memberV;
memberV = dynUnionV->member();
memberV->insert_string(“The second label is selected.”);

//Convert ‘DynAny’ to an ordinary ‘any’...
CORBA::Any_var anyUnionV = dynUnionV->to_any();
...
//Cleanup
dynUnionV->destroy();

Listing 17.16 Java Creating a DynUnion for Poly
//Java
//---
// Assume that the following variable is already defined:
// ‘orb’ - a reference to an ORB instance
// ‘TCPoly’ - a type code for the union ‘Poly’
//

// Get a handle on a ‘DynAnyFactory’ object
org.omg.CORBA.Object obj = orb.resolve_initial_references(“DynAnyFactory”);
org.omg.DynamicAny.DynAnyFactory dynFactory

= org.omg.DynamicAny.DynAnyFactoryHelper.narrow(obj);

// Get an instance of a ‘DynUnion’ object
obj = dynFactory.create_dyn_any_from_type_code(TCPoly);
org.omg.DynamicAny.DynUnion dynUnion

= org.omg.DynamicAny.DynUnionHelper.narrow(obj);

//Set the discriminator to ‘2’
org.omg.DynamicAny.DynAny dynDiscrim = dynUnion.get_discriminator();
dynDiscrim.insert_short((short) 2);
dynUnion.set_discriminator(dynDiscrim);

//Initialize the union member
org.omg.DynamicAny.DynAny member;
member = dynUnion.member();
member.insert_string(“The second label is selected.”);

7 8 6 C h a p t e r 1 7 : D y n A n y Ty p e

Listing 17.15 continued

21 0672318121 CH17 6/20/01 5:47 PM Page 786

//Convert ‘DynAny’ to an ordinary ‘any’...
org.omg.CORBA.Any anyUnion = dynUnion.to_any();
...
//Cleanup
dynUnion.destroy();

Using the type code for the Poly union (created as described in the section “Type Code
for a Union”), a new DynUnion object is created by invoking
create_dyn_any_from_type_code() on the DynAnyFactory. Because the return type
of this operation is only a reference to the base class DynAny, it is necessary to narrow
it to the derived type DynUnion before you proceed any further.

To initialize the DynUnion, set the discriminator using the operation
DynUnion::set_discriminator()(). If the discriminator is set to a value that does not
correspond to a case label, this step completes the initialization of the union.

If the value of the discriminator matches one of the case labels, as in this instance, or
if there is a default case, it is necessary to initialize the active member as well. Obtain
the DynAny for the active member by invoking DynUnion::member(), and initialize it.

Once the DynUnion is initialized, it can be converted to an ordinary any by invoking the
method to_any().

In addition to the general-purpose operation set_discriminator(), the DynUnion
interface provides convenient operations that set the discriminator to some special val-
ues.

//IDL
module DynamicAny {

...
interface DynUnion : DynAny
{

...
void set_to_default_member() raises (TypeMismatch);
void set_to_no_active_member() raises (TypeMismatch);
boolean has_no_active_member() raises (InvalidValue);
...

};
};

If the union has a default label, you can call set_to_default_member(). It sets the dis-
criminator to a value different from any of the case labels. The active member must also
be initialized in this case.

If the union has no default label, you can call set_to_no_active_member(). This sets
the discriminator to a value different from any of the case labels. The union is put into
a state where it has no active member. The method has_no_active_member() can be
used to test if a union is in this state.

D y n A n y E x a m p l e s 7 8 7

Listing 17.16 continued

21 0672318121 CH17 6/20/01 5:47 PM Page 787

If the union has no default label and all legal values of the discriminator are used up by
the case labels (this could happen if the discriminator was declared to be boolean or
enum), then neither set_to_default_member() nor set_to_no_active_member() can
legally be called.

Creating Other DynAny Types
For IDL constructed types, the most convenient way to initialize the components of a
DynAny is to use the generic iteration approach (see the section “Creating a DynStruct,”
earlier in this chapter).

To use the iterative approach with other DynAny types, you need to know what the com-
ponents represent in each case:

• The components of a DynStruct or DynValue represent the members of the cor-
responding struct, exception, or value type.

• The components of DynSequence or DynArray represent the elements of the
corresponding sequence or array.

• There can be one or two valid components in a DynUnion. The component at
the current position O corresponds to the union discriminator. If the union has
an active member, the component at the current position 1 is also valid and cor-
responds to the active member of DynUnion.

Dynamic any IDL
Listing 17.17 shows the complete IDL for the module DynamicAny. Interfaces defined
within this module are locality-constrained interfaces.

Listing 17.17 IDL for the DynamicAny Module
//IDL
#pragma prefix “omg.org”

module DynamicAny
{

interface DynAny
{

exception InvalidValue {};
exception TypeMismatch {};

CORBA::TypeCode type();
void assign(in DynAny dyn_any)

raises (TypeMismatch);
void from_any(in any value)

raises (TypeMismatch, InvalidValue);
any to_any();
boolean equal(in DynAny dyn_any);
void destroy();
DynAny copy();

void insert_boolean(in boolean value)

7 8 8 C h a p t e r 1 7 : D y n A n y Ty p e

21 0672318121 CH17 6/20/01 5:47 PM Page 788

raises (TypeMismatch, InvalidValue);
void insert_octet(in octet value)

raises (TypeMismatch, InvalidValue);
void insert_char(in char value)

raises (TypeMismatch, InvalidValue);
void insert_short(in short value)

raises (TypeMismatch, InvalidValue);
void insert_ushort(in unsigned short value)

raises (TypeMismatch, InvalidValue);
void insert_long(in long value)

raises (TypeMismatch, InvalidValue);
void insert_ulong(in unsigned long value)

raises (TypeMismatch, InvalidValue);
void insert_float(in float value)

raises (TypeMismatch, InvalidValue);
void insert_double(in double value)

raises (TypeMismatch, InvalidValue);
void insert_string(in string value)

raises (TypeMismatch, InvalidValue);
void insert_reference(in Object value)

raises (TypeMismatch, InvalidValue);
void insert_typecode(in CORBA::TypeCode value)

raises (TypeMismatch, InvalidValue);
void insert_longlong(in long long value)

raises (TypeMismatch, InvalidValue);
void insert_ulonglong(in unsigned long long value)

raises (TypeMismatch, InvalidValue);
void insert_longdouble(in long double value)

raises (TypeMismatch, InvalidValue);
void insert_wchar(in wchar value)

raises (TypeMismatch, InvalidValue);
void insert_wstring(in wstring value)

raises (TypeMismatch, InvalidValue);
void insert_any(in any value)

raises (TypeMismatch, InvalidValue);
void insert_dyn_any(in DynAny value)

raises (TypeMismatch, InvalidValue);
void insert_val(in ValueBase value)

raises (TypeMismatch, InvalidValue);

boolean get_boolean()
raises (TypeMismatch, InvalidValue);

octet get_octet()
raises (TypeMismatch, InvalidValue);

char get_char()
raises (TypeMismatch, InvalidValue);

short get_short()
raises (TypeMismatch, InvalidValue);

unsigned short get_ushort()

D y n a m i c A n y I D L 7 8 9

Listing 17.17 continued

21 0672318121 CH17 6/20/01 5:47 PM Page 789

raises (TypeMismatch, InvalidValue);
long get_long()

raises (TypeMismatch, InvalidValue);
unsigned long get_ulong()

raises (TypeMismatch, InvalidValue);
float get_float()

raises (TypeMismatch, InvalidValue);
double get_double()

raises (TypeMismatch, InvalidValue);
string get_string()

raises (TypeMismatch, InvalidValue);
Object get_reference()

raises (TypeMismatch, InvalidValue);
CORBA::TypeCode get_typecode()

raises (TypeMismatch, InvalidValue);
long long get_longlong()

raises (TypeMismatch, InvalidValue);
unsigned long long get_ulonglong()

raises (TypeMismatch, InvalidValue);
long double get_longdouble()

raises(TypeMismatch, InvalidValue);
wchar get_wchar()

raises (TypeMismatch, InvalidValue);
wstring get_wstring()

raises (TypeMismatch, InvalidValue);
any get_any()

raises (TypeMismatch, InvalidValue);
DynAny get_dyn_any()

raises (TypeMismatch, InvalidValue);
ValueBase get_val()

raises (TypeMismatch, InvalidValue);

boolean seek(in long index);
void rewind();
boolean next();
unsigned long component_count() raises (TypeMismatch);
DynAny current_component() raises (TypeMismatch);

};

interface DynFixed : DynAny
{

string get_value();
boolean set_value(in string val)

raises (TypeMismatch, InvalidValue);
};

interface DynEnum : DynAny
{

string get_as_string();

7 9 0 C h a p t e r 1 7 : D y n A n y Ty p e

Listing 17.17 continued

21 0672318121 CH17 6/20/01 5:47 PM Page 790

void set_as_string(in string value)
raises (InvalidValue);

unsigned long get_as_ulong();
void set_as_ulong(in unsigned long value)

raises (InvalidValue);
};

typedef string FieldName;

struct NameValuePair
{

FieldName id;
any value;

};
typedef sequence<NameValuePair> NameValuePairSeq;

struct NameDynAnyPair
{

FieldName id;
DynAny value;

};
typedef sequence<NameDynAnyPair> NameDynAnyPairSeq;

interface DynStruct : DynAny
{

FieldName current_member_name()
raises (TypeMismatch);

CORBA::TCKind current_member_kind()
raises (TypeMismatch);

NameValuePairSeq get_members();
void set_members(in NameValuePairSeq value)

raises (TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises (TypeMismatch, InvalidValue);
};

interface DynUnion : DynAny
{

DynAny get_discriminator();
void set_discriminator(in DynAny d)

raises (TypeMismatch);
void set_to_default_member()

raises (TypeMismatch);
void set_to_no_active_member()

raises (TypeMismatch);
boolean has_no_active_member()

raises (InvalidValue);
CORBA::TCKind discriminator_kind();

D y n a m i c a n y I D L 7 9 1

Listing 17.17 continued

21 0672318121 CH17 6/20/01 5:47 PM Page 791

DynAny member()
raises (InvalidValue);

FieldName member_name()
raises (InvalidValue);

CORBA::TCKind member_kind()
raises (InvalidValue);

};

typedef sequence<any> AnySeq;
typedef sequence<DynAny> DynAnySeq;

interface DynSequence : DynAny
{

unsigned long get_length();
void set_length(in unsigned long len)

raises (InvalidValue);
AnySeq get_elements();
void set_elements(in AnySeq value)

raises (TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises (TypeMismatch, InvalidValue);
};

interface DynArray : DynAny
{

AnySeq get_elements();
void set_elements(in AnySeq value)

raises (TypeMismatch, InvalidValue);
DynAnySeq get_elements_as_dyn_any();
void set_elements_as_dyn_any(in DynAnySeq value)

raises (TypeMismatch, InvalidValue);
};

interface DynValue : DynAny
{

FieldName current_member_name()
raises (TypeMismatch, InvalidValue);

CORBA::TCKind current_member_kind()
raises (TypeMismatch, InvalidValue);

NameValuePairSeq get_members();
void set_members(in NameValuePairSeq values)

raises (TypeMismatch, InvalidValue);
NameDynAnyPairSeq get_members_as_dyn_any();
void set_members_as_dyn_any(in NameDynAnyPairSeq value)

raises (TypeMismatch, InvalidValue);
};

7 9 2 C h a p t e r 1 7 : D y n A n y Ty p e

Listing 17.17 continued

21 0672318121 CH17 6/20/01 5:47 PM Page 792

interface DynAnyFactory
{

exception InconsistentTypeCode {};

DynAny create_dyn_any(in any value)
raises (InconsistentTypeCode);

DynAny create_dyn_any_from_type_code(in CORBA::TypeCode type)
raises (InconsistentTypeCode);

};
};

D y n a m i c a n y I D L 7 9 3

Listing 17.17 continued

21 0672318121 CH17 6/20/01 5:47 PM Page 793

21 0672318121 CH17 6/20/01 5:47 PM Page 794

Dynamic Invocation
Interface
CORBA offers two different approaches to making an opera-
tion invocation. These are the Static Invocation Interface (SII)
and the Dynamic Invocation Interface (DII).

When using the SII, stub code generated from IDL makes the
IDL operations available to the application in a convenient
language-specific syntax.

The use of stub code, however, is too restrictive for certain
applications. It requires that the IDL interfaces used by an
application be known in advance. This is not always possible.
For some applications, notably interoperable bridges, it is nec-
essary to use IDL interfaces that only become known at run-
time. For this reason, CORBA defines the Dynamic Invocation
Interface (DII), which allows invocations to be dynamically
created at runtime.

Overview of the DII
A client must have knowledge of an IDL interface before it can
make an invocation. There are two possible sources of this
knowledge:

• Stub code. This is generated from the IDL using an
IDL compiler.

• Interface repository. The IDL is typically registered with
the interface repository using a command-line utility.

In real applications, use of the DII goes hand-in-hand with use
of the interface repository. When a DII client needs to make an
invocation at runtime, it must consult the interface repository
to discover dynamically the syntax of the operation it wants to
invoke.

C H A P T E R 1 8

D
y
n

a
m

ic In
v
o

ca
tio

n
 In

te
rfa

ce

22 0672318121 CH18 6/20/01 5:38 PM Page 795

The interface repository is a standalone CORBA server that acts a repository for all
IDL declarations. It makes the declarations available in the form of a parse tree that is
accessible through standard IDL interfaces. Information about IDL interfaces can be
retrieved at runtime by making remote invocations on the interface repository. For
details, see Chapter 20, “Interface Repository.”

Use of CORBA::DynAny and CORBA::TypeCode
The absence of stub code, apart from forcing you to consult the interface repository,
has other important consequences. Stub code also provides the following useful
classes:

• Type codes for user-defined data types.
• Classes that represent each of the user-defined types. These classes encapsulate

the memory layout of user-defined types.

In the absence of stub code, it is very difficult to manipulate user-defined types. To
cope with user-defined types, you must use the dynamic features CORBA::TypeCode and
DynamicAny::DynAny.

• Type codes can be created dynamically with the help of a set of operations
defined in CORBA::ORB. Operations of the general form
CORBA::ORB::create_type_tc are used to create type codes on-the-fly. See
Chapter 15, “IDL Data Types,” and Chapter 17, “DynAny Type,” for details.

• Representations of arbitrary CORBA data types (built-in or user-defined) can
be constructed using the DynamicAny::DynAny type. The DynAny makes it pos-
sible to parse parameter data at runtime for arbitrary user-defined types. See
Chapter 17 for details.

In a typical DII application, it is necessary to consult the interface repository to dis-
cover the layout of a user-defined type before a CORBA::TypeCode or a CORBA::DynAny
can be constructed.

Using CORBA::Request Objects
A number of pseudo-interfaces constitute the programming interface for the DII. The
most important of these is the CORBA::Request pseudo-interface. A CORBA::Request is
a local object used by a client to encapsulate the details of an operation invocation. A
client proceeds by creating a CORBA::Request object, filling it with the needed infor-
mation, and calling CORBA::Request::invoke() to perform the invocation.

The pseudo-interface CORBA::Object defines one operation—
CORBA::Object::create_request()—that is used to create a CORBA::Request object.
However, both the C++ and Java mappings take a bit of liberty with this pseudo-inter-
face. The following methods are provided in C++ and Java:

• A _request() method. The C++ method is called
CORBA::Object::_request(), and the Java method is called
org.omg.CORBA.Object._request().

7 9 6 C h a p t e r 1 8 : D y n a m i c I n v o c a t i o n I n t e r f a c e

22 0672318121 CH18 6/20/01 5:38 PM Page 796

• An overloaded _create_request() method. The C++ method is called
CORBA::Object::_create_request(), and the Java method is called
org.omg.CORBA.Object._create_request().

The sections below discuss how to use both the _request() method and the
_create_request() methods.

Sample IDL Interface
To illustrate the use of the DII, it is convenient to consider an example that exhibits
most of the syntactical features of an IDL operation. Listing 18.1 introduces the oper-
ation confirmItem() declared in interface Inventory.

Listing 18.1 Sample IDL for Use with DII
//IDL
//File: ‘dii.idl’

interface Inventory {
exception NoSuchItem {};

boolean confirmItem(
in long itemId,
inout float price,
out long howManyInStock)

raises (NoSuchItem);
};

The operation confirmItem() features a return value and in, inout, and out parame-
ters and raises a single user exception, Inventory::NoSuchItem. One syntactical fea-
ture deliberately omitted is the context clause. Although not officially deprecated by
the OMG, contexts are almost never used in real-world applications.

Use of _request()
The signature for the _request() method is shown in Listing 18.2 and Listing 18.3:

Listing 18.2 C++ Signature for _request()
//C++
// In namespace ‘CORBA’
class Object
{
public:

...
Request_ptr _request(const char* operation);
...

};

Listing 18.3 Java Signature for _request()
//Java
package org.omg.CORBA;

U s i n g C O R B A : : R e q u e s t O b j e c t s 7 9 7

22 0672318121 CH18 6/20/01 5:38 PM Page 797

public interface Object {
...
Request _request(String s);
...

}

The distinguishing feature of the _request() method is that the CORBA::Request
object is created with the minimum amount of information. Initially it is associated
with an object reference and an operation name. Details of the operation syntax are
subsequently filled in by invoking the attributes and operations of the CORBA::Request
object.

Steps to Make an Invocation
If you construct a request object using the _request() method, these are the steps you
must follow to make a complete operation invocation:

1. Create a request object using _request().
2. Set all parameters (in, inout, and out).
3. Set return type.
4. Set list of use exception type codes (optional).
5. Set list of context identifiers (optional).
6. Make the invocation.
7. Check for exceptions.
8. If no exceptions, extract return value, inout parameters, and out parameters.

The fifth step, setting the list of context identifiers, should not be necessary if you avoid
the use of contexts in your IDL.

C++ Invocation on Inventory::confirmItem()
The C++ code in Listing 18.4 illustrates the steps to invoke the operation
confirmItem() using the DII.

Listing 18.4 C++ Invocation Using the DII
//C++
#include “dii.hh”
...
//---
// The following variables are assumed to be given:
// objV - An object reference of type ‘CORBA::Object_var’
// that is initialized to an ‘Inventory’ object reference.

// Step 1: Create the request.
CORBA::Request_var reqV;
reqV = objV->_request(“confirmItem”);

// Step 2: Set all parameters.

7 9 8 C h a p t e r 1 8 : D y n a m i c I n v o c a t i o n I n t e r f a c e

Listing 18.3 continued

22 0672318121 CH18 6/20/01 5:38 PM Page 798

CORBA::Long itemId = 1234;
reqV->add_in_arg() <<= itemId;
CORBA::Float price = 100.0;
reqV->add_inout_arg() <<= price;
CORBA::Long howManyInStock;
reqV->add_out_arg() <<= howManyInStock;

//Step 3: Set return type.
reqV->set_return_type(CORBA::_tc_boolean);

//Step 4: Set exception list.
reqV->exceptions()->add(Inventory::_tc_NoSuchItem);

//Step 5: Set context list.
//(Skipped!)

//Step 6: Make the invocation.
reqV->invoke();

//Step 7: Check for exceptions.
CORBA::Exception * excP = reqV->env()->exception();
if (excP) {

processException(excP);
}
else {

//Step 8: If no exceptions, process return values.
CORBA::Boolean isAvailable;
reqV->return_value() >>= isAvailable;
*(reqV->arguments()->item(1)->value()) >>= price;
*(reqV->arguments()->item(2)->value()) >>= howManyInStock;

if (isAvailable) {
cout << “Item “ << itemId << “ is available.” << endl

<< “price = “ << price << endl
<< “howManyInStock = “ << howManyInStock << endl;

}
else {

cout << “Item “ << itemId << “ is not available.” << endl;
}

}

In step 2, parameters are added in the same order that they appear in the signature of
the confirmItem() operation. The return type of the CORBA::Request methods
add_in_arg(), add_inout_arg(), and add_out_arg() is CORBA::Any&. Parameters are
inserted using the standard syntax for any insertion, with the help of the <<= operator.
The precise value of out arguments added to the request is immaterial because they are
not sent to the server.

U s i n g C O R B A : : R e q u e s t O b j e c t s 7 9 9

Listing 18.4 continued

22 0672318121 CH18 6/20/01 5:38 PM Page 799

In step 3 and step 4, type codes are needed to set the return type and list of exception
types. In a real application, if the type codes were for user-defined types, you would
need to use dynamic type code creation. The current example cheats in step 4: The
exception type code Inventory::_tc_NoSuchItem is defined in the stub code. A true
DII application would create this type code dynamically—see Chapter 17.

In step 6, the method invoke() sends a request message to the CORBA object and
blocks until a reply is received. If the operation were declared as oneway, you would
use the send_oneway() method instead. See the section “oneway Invocations,” later in
this chapter.

In step 7, a check is made for exceptions. The processing of exceptions in the DII is
discussed in the section “Processing Exceptions,” later in this chapter.

In step 8, the return value, inout, and out parameters are extracted. The extraction of
inout and out parameters is slightly complicated because it requires manipulation of
a CORBA::NVList type:

• The call reqV->arguments() returns a list of argument items as a
CORBA::NVList.

• The call arguments()->item(itemIndex) returns a particular argument from
the list as a CORBA::NamedValue.

• The call item(itemIndex)->value() returns a CORBA::Any that holds the value
of the argument given by itemIndex.

See Chapter 15 for further details of CORBA::NVList.

Unconventional Memory Management
Memory management for the DII pseudo-interfaces is unconventional. Consider the
following line from step 8 of Listing 18.4:

//C++
*(reqV->arguments()->item(1)->value()) >>= price;

If conventional CORBA memory management rules applied, this line would leak three
objects: the CORBA::NVList returned by reqV->arguments(), the CORBA::NamedValue
returned by arguments()->item(1), and the CORBA::Any* returned by
item(1)->value().

No such memory leaks occur, however, because the pseudo-interfaces
CORBA::Request, CORBA::NVList, and CORBA::NamedValue have unconventional
memory management semantics. Methods invoked on these pseudo-interfaces retain
ownership of their return values. This means that the caller is relieved of the responsi-
bility of deallocating return values.

Java Invocation on Inventory::confirmItem()
The Java code in Listing 18.5 illustrates the steps needed to invoke the operation
confirmItem() using the DII.

8 0 0 C h a p t e r 1 8 : D y n a m i c I n v o c a t i o n I n t e r f a c e

22 0672318121 CH18 6/20/01 5:38 PM Page 800

Listing 18.5 Java Invocation Using the DII
//Java
...
//---
// The following variables are assumed to be given:
// obj - An object reference of type ‘CORBA::Object_var’
// that is initialized to an ‘Inventory’ object reference.
// orb - A reference to an ORB object of type ‘CORBA::ORB’.

try {
//Step 1: Create the request
org.omg.CORBA.Request req;
req = obj._request(“confirmItem”);

//Step 2: Set all parameters

// Get the parameter list from the request
org.omg.CORBA.NVList params = req.arguments();

// Create 1st parameter
org.omg.CORBA.Any param1Any = orb.create_any();
int itemId = 1234;
param1Any.insert_long(itemId);
params.add_value(

“itemId”, // Parameter name
param1Any, // Value
org.omg.CORBA.ARG_IN.value // Direction

);

// Create 2nd parameter
org.omg.CORBA.Any param2Any = orb.create_any();
param2Any.insert_float(100.0f);
params.add_value(

“price”, // Parameter name
param2Any, // Value
org.omg.CORBA.ARG_INOUT.value // Direction

);

// Create 3rd parameter
org.omg.CORBA.Any param3Any = orb.create_any();
org.omg.CORBA.TypeCode TCint = orb.get_primitive_tc(

org.omg.CORBA.TCKind.tk_long
);

param3Any.type(TCint);
params.add_value(

“howManyInStock”, // Parameter name
param3Any, // Value
org.omg.CORBA.ARG_OUT.value // Direction

);

U s i n g C O R B A : : R e q u e s t O b j e c t s 8 0 1

22 0672318121 CH18 6/20/01 5:38 PM Page 801

//Step 3: Set the return type
org.omg.CORBA.TypeCode booleanTC = orb.get_primitive_tc(

org.omg.CORBA.TCKind.tk_boolean
);

req.set_return_type(booleanTC);

//Step 4: Set the exception list
req.exceptions().add(

InventoryPackage.NoSuchItemHelper.type()
);

//Step 5: Set the context list
//(Skipped)

//Step 6: Make the invocation
req.invoke();

//Step 7: Check for exceptions
Exception exc = req.env().exception();
if (exc != null) {

processException(exc);
}
else {

//Step 8: If no exceptions, process return values
boolean isAvailable;
isAvailable = req.return_value().extract_boolean();

if (isAvailable) {
org.omg.CORBA.Any outAny = null;

// Extract 2nd parameter
outAny = req.arguments().item(1).value();
float price = outAny.extract_float();

// Extract 3rd parameter
outAny = req.arguments().item(2).value();
int howManyInStock = outAny.extract_long();

// Print out results...
System.out.println(“Item “ + itemId + “ is available.”);
System.out.println(“price = “ + price);
System.out.println(“howManyInStock = “ + howManyInStock);

}
else {

System.out.println(“Item “ + itemId + “ is not available.”);

8 0 2 C h a p t e r 1 8 : D y n a m i c I n v o c a t i o n I n t e r f a c e

Listing 18.5 continued

22 0672318121 CH18 6/20/01 5:38 PM Page 802

}
}

}
catch (org.omg.CORBA.SystemException sysEx) {

System.out.println(“SystemException: “ + sysEx);
}
catch (org.omg.CORBA.Bounds boundsEx) {

System.out.println(“UserException: “ + boundsEx);
}

In step 1, a Request object is created for the operation “confirmItem”, using the
_request() method.

In step 2, parameters are added in the same order that they appear in the signature of
the confirmItem() operation. A reference to the list of parameters params is obtained
by calling the Request.arguments() method, which returns an NVList object. Initially,
this list is empty. It is filled using the add_value() method, as declared in the follow-
ing code fragment:

//Java
package org.omg.CORBA;

NamedValue NVList.add_value(
String item_name,
Any val,
int flags

);

The three arguments of add_value() give a complete description of an operation
parameter.

• item_name is the parameter name as declared in IDL.
• val is an any containing the value of the parameter. For in or inout parame-

ters, val must be initialized with the appropriate data type. For out parameters,
it is only necessary to set the parameter type of val using the Any.type()
method.

• flags is set to one of org.omg.CORBA.ARG_IN.value,
org.omg.CORBA.ARG_INOUT.value, or org.omg.CORBA.ARG_OUT.value to indi-
cate the direction in which the parameter is passed.

In step 3, the return type of the request is set.

In step 4, the list of exception types is set. The only item in the list is
Inventory::NoSuchItem. The current example cheats by using an exception type code
that is defined in the stub code. In a real application you would need to use dynamic
type code creation—see Chapter 17.

U s i n g C O R B A : : R e q u e s t O b j e c t s 8 0 3

Listing 18.5 continued

22 0672318121 CH18 6/20/01 5:38 PM Page 803

In step 6, the method invoke() sends a request to the CORBA object and blocks until
a reply is received. If the operation were declared as oneway, you would use the
send_oneway() method, instead. See the section “oneway Invocations,” later in this
chapter.

In step 7, a check is made for exceptions. The processing of exceptions in the DII is
discussed in the section “Processing Exceptions,” later in this chapter.

In step 8, the return value and the inout and out parameters are extracted. The extrac-
tion of inout and out parameters requires manipulation of an org.omg.CORBA.NVList
type:

• The call req.arguments() returns a list of argument items as an NVList.
• The call arguments().item(itemIndex) returns a particular argument from the

list as a org.omg.CORBA.NamedValue.
• The call item(itemIndex).value() returns an any that holds the value of the

argument given by itemIndex.

See Chapter 17 for further details of CORBA::NVList.

The _request() Method and the Interface Repository
The _request() method has one potential drawback: It might automatically consult
the interface repository even if you do not want it to. Whether this happens or not
depends on the particular ORB implementation you are using. If stub code for an inter-
face is not available, the CORBA specification allows _request() to consult the inter-
face repository to set properties of the CORBA::Request object as it is being created.

If the interface repository is consulted every time _request() is called, this leads to
degradation in performance because the associated remote invocations are relatively
expensive. This limitation can be overcome by using the _create_request()method
instead.

Processing Exceptions
The C++ demonstration code in Listing 18.6 shows the implementation of the function
processException() that was used in the Listing 18.4.

Listing 18.6 C++ Processing DII Exceptions
//C++
static void
processException(CORBA::Exception * excP)
{

cout << “Processing exception:” << endl;

CORBA::SystemException * sysExcP;
sysExcP = CORBA::SystemException::_downcast(excP);
if (sysExcP) {

cout << “SystemException: “ << sysExcP << endl;
return;

}

8 0 4 C h a p t e r 1 8 : D y n a m i c I n v o c a t i o n I n t e r f a c e

22 0672318121 CH18 6/20/01 5:38 PM Page 804

CORBA::UnknownUserException * unkExcP;
unkExcP = CORBA::UnknownUserException::_downcast(excP);
if (unkExcP) {

cout << “UnknownUserException: <no details>” << endl;
return;

}
}

The exception type extracted from the CORBA::Request object has the base type
CORBA::Exception. The implementation of processExceptions() identifies the class
of exception by attempting to cast the exception to either CORBA::SystemException or
CORBA::UnknownUserException. The method used to perform the cast is of the form
exceptionClass::_downcast(). The _downcast() method is similar to _narrow()
except that the return value is not duplicated. Therefore, it is not necessary to delete the
value returned from _downcast(). A NULL object reference is returned if an attempt
is made to downcast to the wrong type.

CAUTION
Do not use CORBA[edit, double colon]is_nil() to check the return value of a
_downcast(). A _downcast() returns a NULL pointer, which is not necessarily the
same thing as a nil pointer.

The Java code in Listing 18.7 shows the implementation of the function
processException() used in Listing 18.5.

Listing 18.7 Java Processing DII Exceptions
//Java
public static void
processException(Exception exc)
{

System.out.println(“Processing exception:”);

org.omg.CORBA.SystemException sysExc = null;
if (exc instanceof org.omg.CORBA.SystemException) {

sysExc = (org.omg.CORBA.SystemException) exc;
System.out.println(“SystemException: “ + sysExc);
return;

}

org.omg.CORBA.UnknownUserException unkExc = null;
if (exc instanceof org.omg.CORBA.UnknownUserException) {

unkExc = (org.omg.CORBA.UnknownUserException) exc;
System.out.println(“UnknownUserException: “ + unkExc);
return;

}
}

U s i n g C O R B A : : R e q u e s t O b j e c t s 8 0 5

Listing 18.6 continued

22 0672318121 CH18 6/20/01 5:38 PM Page 805

The base class for all CORBA exceptions in Java is java.lang.Exception. This type
is passed as an argument to the function processException(), which uses the
instanceof operator to determine whether this exception is of type SystemException
or UnknownUserException. System exceptions are easy to handle because there are no
special marshalling requirements.

All user exceptions raised through the DII are created by the ORB as
UnknownUserExceptions (CORBA::UnknownUserException in C++ and
org.omg.CORBA.UnknownUserException in Java), which is a subclass of
UserException (CORBA::UserException in C++ and org.omg.CORBA.UserException
in Java).

Details of the user exception are accessible in the form of an any that can be extracted
using the CORBA::UnknownUserException::exception()0 method in C++ or the
org.omg.CORBA.UnknownUserException.except() method in Java. In the absence of
stub code, the contents of the any can be analyzed with the help of the CORBA::DynAny
interface, described in Chapter 19.

Use of _create_request()
An alternative way of creating a CORBA::Request object is to use one of the two
_create_request() methods. Listing 18.8 shows the declarations for the C++
methods, and Listing 18.9 shows the declarations for the Java methods.

Listing 18.8 C++ Signatures for create_request()
//C++
// In namespace ‘CORBA’
class Object
{
public:

...
// First form of ‘_create_request()’
void _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags

);

// Second form of ‘_create_request()’
void _create_request(

Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,

8 0 6 C h a p t e r 1 8 : D y n a m i c I n v o c a t i o n I n t e r f a c e

22 0672318121 CH18 6/20/01 5:38 PM Page 806

Request_out request,
Flags req_flags

);
...

};

Listing 18.9 Java Signatures for create_request()
//Java
package org.omg.CORBA;

public interface Object {
...
Request _request(String s);

// First form of ‘_create_request()’
Request _create_request(

Context ctx,
String operation,
NVList arg_list,
NamedValue result);

// Second form of ‘_create_request()’
Request _create_request(

Context ctx,
String operation,
NVList arg_list,
NamedValue result,
ExceptionList exclist,
ContextList ctxlist);

...
}

The first form of _create_request() corresponds formally to the IDL declaration of
CORBA::Object::create_request(). However, it is best to avoid using this form
because the ExceptionList and ContextList arguments are missing.

The second form of _create_request() has a complete set of arguments. The charac-
teristic feature of this method is that it allows you to create a CORBA::Request object
in a single step. The arguments supplied to _create_request() give a complete
description of an operation’s syntax.

The ctx argument is used as the source of context information sent with the operation.
The operation argument gives the name of the operation being invoked.

U s i n g C O R B A : : R e q u e s t O b j e c t s 8 0 7

Listing 18.8 continued

22 0672318121 CH18 6/20/01 5:38 PM Page 807

The arg_list operation is a CORBA::NVList containing all of the operation’s parame-
ters (in, inout, and out parameters). The CORBA::NVList can be created using either
of the following CORBA::ORB methods:

//C++
void CORBA::ORB::create_list(CORBA::Long count, CORBA::NVList_out new_list);
void CORBA::ORB::create_operation_list(

CORBA::OperationDef_ptr oper,
CORBA::NVList_out new_list

);

//Java
package org.omg.CORBA;
NVList ORB.create_list(int count);
NVList ORB.create_operation_list(org.omg.CORBA.Object oper);
// Argument ‘oper’ must be of type ‘org.omg.CORBA.OperationDef’

The operation create_list() allocates a list in which the count argument gives the
initial number of list elements allocated. The operation create_operation_list()

allocates and sets the type fields of a list, in which the type of each argument is auto-
matically set by consulting the CORBA::OperationDef object in the interface reposi-
tory.

The NamedValue for the result argument is created using the following
create_named_value() method:

//C++
void CORBA::ORB::create_named_value(CORBA::NamedValue_out nv);

//Java
package org.omg.CORBA;
NamedValue ORB.create_named_value(String name, Any value, int flags);

The ExceptionList and ContextList are created using the following methods defined
on CORBA::ORB.

//C++
void CORBA::ORB::create_exception_list(CORBA::ExceptionList_out exclist);
void CORBA::ORB::create_context_list(CORBA::ContextList_out ctxlist);

//Java
package org.omg.CORBA;
ExceptionList ORB.create_exception_list();
ContextList ORB.create_context_list();

The flags argument, which appears only in the C++ version of _create_request(),
is ignored and has no effect on the returned CORBA::Request.

8 0 8 C h a p t e r 1 8 : D y n a m i c I n v o c a t i o n I n t e r f a c e

22 0672318121 CH18 6/20/01 5:38 PM Page 808

oneway Invocations
If you are invoking a oneway operation, you must make the invocation by calling
send_oneway() in place of invoke(). It has the following syntax in C++ and Java:

//C++
void CORBA::Request::send_oneway();

//Java
void org.omg.CORBA.Request.send_oneway();

The semantics of send_oneway() depend on the particular version of GIOP used over
the connection.

• GIOP 1.0 or 1.1 A call to send_oneway() sends a request message to the
server that has the response_expected flag set to false. No reply is sent back
from the server, and send_oneway() returns immediately.

• GIOP 1.2 In this case, a call to send_oneway() provides only a hint to the
ORB that a reply is not needed. The ORB might ignore this hint and ask for a
reply anyway. This would enable the ORB to receive LOCATION_FORWARD or
system exception replies.

A peculiar feature of the DII is that the CORBA specification permits you to use
send_oneway() even if an operation was not originally defined as oneway.

Asynchronous Invocations
A special feature of the DII is that it supports the use of asynchronous invocations.
There are three operations—send_deferred(), get_response(), and
poll_response() —defined on CORBA::Request that are associated with asynchro-
nous invocations:

//C++
void CORBA::Request::send_deferred();
void CORBA::Request::get_response();
CORBA::Boolean CORBA::Request::poll_response();

//Java
package org.omg.CORBA;
void Request.send_deferred();
void Request.get_response()

throws org.omg.CORBA.WrongTransaction;
boolean Request.poll_response();

The operation send_deferred() is called in place of invoke() when you want to make
an asynchronous invocation. A request is sent to the server and send_deferred()
returns right away.

To retrieve the reply from the server, you must call get_response() at some later time.
If the matching reply message has already arrived, get_response() returns right away.
Otherwise get_response() blocks until the matching reply message arrives. After

A s y n c h r o n o u s I n v o c a t i o n s 8 0 9

22 0672318121 CH18 6/20/01 5:38 PM Page 809

get_response() returns, the CORBA::Request is in a state from which you can extract
its return value and its inout and out parameters.

If you want to avoid blocking on a call to get_response(), you can check for the
arrival of a reply message by calling poll_response(). It returns true if the reply has
arrived and false otherwise. Calling poll_response() does not change the values in
the CORBA::Request object. You must also call get_response() before extracting the
return value and inout and out parameters.

When using the CORBA Transaction Service, the send_deferred() and
get_response() methods both must be invoked from the same thread for a given
CORBA::Request. If not, the call to get_response() will raise a WrongTransaction
exception.

Another style of asynchronous invocation is supported by methods defined on the
CORBA::ORB interface. The CORBA::ORB methods allow batches of requests to be sent to
servers.

//C++
void CORBA::ORB::send_multiple_requests_oneway(const CORBA::RequestSeq&);
void CORBA::ORB::send_multiple_requests_deferred(const CORBA::RequestSeq&);
CORBA::Boolean CORBA::ORB::poll_next_response();
void CORBA::ORB::get_next_response(CORBA::Request_out);

//Java
package org.omg.CORBA;
void ORB.send_multiple_requests_oneway(Request[] req);
void ORB.send_multiple_requests_deferred(Request[] req);
boolean ORB.poll_next_response();
Request ORB.get_next_response();

The CORBA::RequestSeq is defined in IDL to be a typedef of sequence<Request>; it is
used to hold a batch of requests for processing. These methods work in a fashion anal-
ogous to the methods defined in CORBA::Request.

Retrieving responses works slightly differently in batch mode. Because replies arrive
in random order, get_next_response() returns whatever response is next available.
poll_next_response() returns true if one or more responses have arrived at the client.

Pseudo-Interfaces
A relatively large number of pseudo-interfaces are used with the DII. Details of the
pseudo-interfaces are given in Chapter 15. The main ones are

CORBA::Request

CORBA::ORB

CORBA::Object

CORBA::Environment

CORBA::Exception

CORBA::SystemException

8 1 0 C h a p t e r 1 8 : D y n a m i c I n v o c a t i o n I n t e r f a c e

22 0672318121 CH18 6/20/01 5:38 PM Page 810

CORBA::UnknownUserException

CORBA::NamedValue

CORBA::NVList

CORBA::ExceptionList

CORBA:: ContextList

P s u e d o - I n t e r f a c e s 8 1 1

22 0672318121 CH18 6/20/01 5:38 PM Page 811

22 0672318121 CH18 6/20/01 5:38 PM Page 812

Dynamic Skeleton
Interface
A CORBA server needs detailed knowledge of an interface,
including its operation names, parameters, return value, and
exception declarations, in order to complete the dispatch of an
incoming request to a particular function or method. This
knowledge is encapsulated in the server’s skeleton code.

Usually, the skeleton code is generated from the IDL by the
IDL compiler, and then it is compiled and linked against the
server application. This is known as static skeleton code and is
used in most CORBA servers. It suffers from one serious draw-
back, however: The interfaces supported by the server applica-
tion must be known in advance, at the time the server is built.

There are many applications that cannot operate with this
restriction, such as debugging tools, bridges, and adapters.
These general-purpose applications should be able to support
arbitrary IDL interfaces without needing to be rebuilt. For
these kinds of applications, CORBA provides the dynamic
skeleton interface (DSI). The DSI provides a framework for
retrieving type information at runtime and dynamically inter-
preting the contents of operation parameters.

This chapter provides an overview of the DSI, outlining how it
could be used to build an adapter, followed by an outline of
how to implement the DSI in C++ and in Java.

Overview of the DSI
This section gives an overview of the DSI by examining the
architecture of a typical DSI application: a protocol adapter.

C H A P T E R 1 9

D
y
n

a
m

ic S
k
e
le

to
n

 In
te

rfa
ce

23 0672318121 CH19 6/21/01 8:07 AM Page 813

Consider a scenario in which a company has already implemented an infrastructure for
making remote method calls. The old protocol is called LEGACY protocol, and legacy
servers that use the LEGACY protocol are widely deployed within the company’s
intranet. The company would now like to build a CORBA subsystem that can talk to
the old legacy servers.

Evidently, it would be far too difficult and costly to re-engineer all legacy servers to
communicate directly with CORBA clients using IIOP. The most effective solution is
to build a LEGACY adapter that dynamically translates CORBA invocations to
LEGACY invocations. The architecture for such an adapter is shown in Figure 19.1.

8 1 4 C h a p t e r 1 9 : D y n a m i c S k e l e t o n I n t e r f a c e

Client
Bootstrap

Foo

Bar

LEGACY Adapter
Bootstrap Servant

Legacy Server

LEGACYFoo

LEGACYBar

DSI Servant

POA

POA

•

•

Interface Repository

interface Foo { . . . } ;

interface Bar { . . . } ;

Figure 19.1

Sample application: a LEGACY adapter.

In this example, you have a CORBA client that needs to access two objects in a legacy
server, LEGACYFoo and LEGACYBar. Because the client speaks only IIOP and the server
understands only LEGACY protocol, it is necessary to insert a LEGACY adapter to
translate IIOP requests into LEGACY requests.

The DSI servant does most of the work of the adapter. It receives the CORBA invoca-
tion that originates from the CORBA client, dynamically translates it to a LEGACY
invocation request, and forwards the LEGACY invocation to the appropriate legacy
server. In order to perform the translation, the DSI servant uses the following dynamic
features of CORBA:

• Dynamic anys The DynamicAny module is needed to dynamically interpret
and generate parameters and return values. See Chapter 17, “DynAny Type.”

• CORBA Interface Repository The interface repository is used to store type
information and descriptions of IDL operation signatures. See Chapter 20,
“Interface Repository.”

23 0672318121 CH19 6/21/01 8:07 AM Page 814

The DSI servant retrieves type information from the interface repository, as necessary,
to interpret the invocations it receives from CORBA clients.

Like normal servants, the DSI servant receives invocation requests via a POA object
(refer to the section “Default Servant POA” in Chapter 7, “The Portable Object
Adapter”). However, the implementation of a DSI servant is very different from that of
an ordinary servant.

Figure 19.1 shows another servant in the LEGACY adapter, the Bootstrap servant.
This is just the name given to a sample object that helps establish communication
between a CORBA client and a legacy server—it is not a standard object. In any
adapter architecture, you typically will require some kind of Bootstrap object that
enables CORBA clients to find particular legacy servers (or objects in legacy servers).

POA for the DSI Servant
The POA used with the DSI servant has to be configured to use a default servant. The
only policy restriction required for a DSI servant is that RequestProcessingPolicy
must have a value of USE_DEFAULT_SERVANT.

For the example LEGACY adapter shown in Figure 19.1, the POA policies shown in
Table 19.1 are recommended.

Table 19.1 POA Policies Recommended for the DSI Example

POA Policy Type Policy Value

ThreadPolicy ORB_CTRL_MODEL

or SINGLE_THREAD_MODEL
LifespanPolicy TRANSIENT

or PERSISTENT
IdAssignmentPolicy USER_ID

ServantRetentionPolicy NON_RETAIN

ImplicitActivationPolicy NO_IMPLICIT_ACTIVATION

RequestProcessingPolicy USE_DEFAULT_SERVANT

It is preferable to use the ORB_CTRL_MODEL thread policy value if you can, to make the
LEGACY adapter multithreaded. A general-purpose adapter such as this needs to be as
responsive as possible.

The POA lifespan policy could be either TRANSIENT or PERSISTENT. The chosen policy
does not have to reflect whether objects in the legacy servers behave as session or entity
objects. However, if you want to support both types of object lifecycle, you must cre-
ate two corresponding POA objects—one having the TRANSIENT policy and another
having the PERSISTENT policy.

Registering the DSI Servant with a POA
A DSI servant is registered with a POA by passing it as the argument to the
POA::set_servant() operation. See the section “Default Servant POA” in Chapter 7.

O v e r v i e w o f t h e D S I 8 1 5

23 0672318121 CH19 6/21/01 8:07 AM Page 815

Single DSI Servant Supporting Many Interfaces
Unlike an ordinary servant, which implements the operations corresponding to a single
interface type, a DSI servant typically supports a large number of interfaces.
Theoretically, a given DSI servant can implement an infinite number of interfaces.

One of the first things a DSI servant has to do on receiving an invocation request is fig-
ure out what kind of interface is being invoked on. As noted in Chapter 7, the interface
name is not sent in the invocation request. Instead, the ORB uses the following basic
information to identify an object and its type:

• The POA name, or sequence of POA names if at the bottom of a POA
hierarchy.

• The ObjectId.

If you want to derive the type of an object from this information, you typically need to
ensure that type information is somehow embedded in the ObjectId or can be derived
from it.

Mapping ObjectIds to Interface Types
From time to time the ORB needs to know the type of an object. Therefore, when
implementing a DSI servant, you are required to implement the function shown in
Listing 19.1 (C++) or Listing 19.2 (Java). These functions perform the mapping of
ObjectIds to interface types.

Listing 19.1 C++ Determining the Interface Type
//C++
CORBA::RepositoryId
PortableServer::DynamicImplementation::_primary_interface(

const PortableServer::ObjectId& oid,
PortableServer::POA_ptr poa

);

Listing 19.2 Java Determining the Interface Type
//Java
String[]
org.omg.PortableServer.Servant._ all_interfaces(

POA poa,
byte[] objectId

);

The C++ _primary_interface() function returns a single repository ID string (char
*) that is the most derived interface type for this object. For example, it might return
IDL:Foo:1.0 or IDL:Bar:1.0.

The Java _all_interfaces() method returns a sequence of repository IDs that
includes the most derived interface type and all of its base classes. The first (zero index)
element of the returned array must be the most derived interface type.

8 1 6 C h a p t e r 1 9 : D y n a m i c S k e l e t o n I n t e r f a c e

23 0672318121 CH19 6/21/01 8:07 AM Page 816

To implement these functions, you could store the type of an object in its ObjectId
either by embedding the CORBA::RepositoryId (see the sample ObjectIdMapper class
in Chapter 7) or by embedding a more compact form of key. When either of these func-
tions is called, the interface type can then be determined by examining the ObjectId.

A Sample Bootstrap Interface
The LEGACY adapter has to provide some means for CORBA clients to find the
objects on legacy servers—it cannot use the CORBA Naming Service because the
legacy objects are not CORBA objects. A typical solution is for the LEGACY adapter
to provide some sort of Bootstrap interface to find legacy objects—this is not a stan-
dard CORBA interface. Listing 19.3 shows a sample Bootstrap interface.

Listing 19.3 A Sample Bootstrap Interface
//IDL
#include <orb.idl>

interface Bootstrap {
typedef string LEGACYAddress;
typedef string LEGACYObjectId;

Object find_object(
CORBA::RepositoryId type,
LEGACYAddress addr,
LEGACYObjectId id

);
};

The Bootstrap interface provides a single find_object() operation. The type argu-
ment gives the type of the object as a repository ID (a string). The addr and id argu-
ments are placeholders for the location and identity of the object in the legacy system.
The find_object() operation returns a plain object reference, which must be
narrowed to the appropriate type.

C++ Implementing a DSI Servant
A DSI servant is implemented by defining a new class that inherits from
PortableServer::DynamicImplementation and overriding certain inherited member
functions. The inheritance tree for a C++ DSI servant is illustrated in Figure 19.2.

In the example, a new servant class, MyDSIServant, is defined.

The _this() function defined in the DynamicImplementation base class returns a
generic CORBA::Object_ptr object reference. This contrasts with a normal servant,
which inherits a type-specific _this() function.

C + + I m p l e m e n t i n g a D S I S e r v a n t 8 1 7

23 0672318121 CH19 6/21/01 8:07 AM Page 817

Figure 19.2

A C++ inheritance tree for a DSI servant.

C++ Overriding DynamicImplementation Member
Functions
Listing 19.4 shows the main C++ classes that are used in the implementation of a DSI
servant.

Listing 19.4 C++ Classes Used in the DSI
//C++
namespace CORBA
{

class ServerRequest
{
public:

const char* operation() const;
void arguments(NVList_ptr& parameters);
Context_ptr ctx();
void set_result(const Any& value);
void set_exception(const Any& value);

};
};

namespace PortableServer
{

class ServantBase
{
public:

virtual ~ServantBase();

virtual POA_ptr _default_POA();

virtual CORBA::InterfaceDef_ptr
_get_interface() throw(CORBA::SystemException);

8 1 8 C h a p t e r 1 9 : D y n a m i c S k e l e t o n I n t e r f a c e

ServantBase

Object_ptr_this()

DynamicImplementation

MyDSIServant

23 0672318121 CH19 6/21/01 8:07 AM Page 818

virtual CORBA::Boolean
_is_a(const char* logical_type_id) throw(CORBA::SystemException);

virtual CORBA::Boolean
_non_existent() throw(CORBA::SystemException);

virtual void _add_ref();

virtual void _remove_ref();

protected:
ServantBase();
ServantBase(const ServantBase&);
ServantBase& operator=(const ServantBase&);
// ...all other constructors...

};

typedef ServantBase* Servant;

class DynamicImplementation : public virtual ServantBase
{
public:

CORBA::Object_ptr _this();
virtual void invoke(

CORBA::ServerRequest_ptr request
) = 0;

virtual CORBA::RepositoryId
_primary_interface(

const ObjectId& oid,
POA_ptr poa

) = 0;
};

}

A number of DynamicImplementation member functions, some of them inherited from
ServantBase, must be overridden. These are discussed in the following two subsec-
tions.

The DynamicImplementation::invoke() Function
The invoke() operation provides the logic to process DSI invocations. When the POA
receives an invocation request, it passes the request, in the form of a
CORBA::ServerRequest object, to the DSI servant by calling invoke().

C + + I m p l e m e n t i n g a D S I S e r v a n t 8 1 9

Listing 19.4 continued

23 0672318121 CH19 6/21/01 8:07 AM Page 819

The following steps implement the invoke() operation in the LEGACY adapter
example:

1. Determine the identity of the object, ObjectId, using the
PortableServer::Current::get_object_id() operation. From the ObjectId,
determine the type of object (CORBA::RepositoryId).

2. Call operation() on the ServerRequest object to determine the name of the
invoked operation.

3. Given the type of the object and the name of the invoked operation, determine
the list of parameters for the invocation.
This step requires a named value list (CORBA::NVList) to be constructed that
has entries for each of the IDL in, inout, and out parameters. The parameters
in NVList must be in the same order as they appear in IDL.
NVList can be constructed either by remotely contacting the interface reposi-
tory (see Chapter 20) or by retrieving NVList from a cache. The use of a cache
is highly recommended for reasons of efficiency.
When constructing an operation’s NVList for the first time, the
CORBA::ORB::create_operation_list() operation is useful.
Do not assign NVList to a _var type. Exceptional memory management seman-
tics apply to the argument list (see Chapter 18, “Dynamic Invocation
Interface”).

4. Call arguments() on the ServerRequest object, passing in the NVList that was
constructed in the previous step.
After this call, the entries in NVList that correspond to in or inout parameters
are initialized with the data received from the client.
After arguments() has been called, ServerRequest assumes ownership of
NVList (exceptional memory management). Do not delete NVList after calling
arguments().

5. The in and inout parameters can be parsed with the help of the DynamicAny
module.

6. The DSI servant does some work to process the request.
In the case of the LEGACY adapter example, the request is converted to a
LEGACY request and forwarded to the appropriate Legacy server.

7. The out and inout parameters and the return value can be constructed with the
help of the DynamicAny module.
The out and inout parameters are updated by modifying the entries in the
NVList that correspond to out or inout parameters.

8. Call set_result() on the ServerRequest object, passing an any that contains
the return value of the operation. This call must be made even if the return type
of the operation is void.
After set_result() has been called, ServerRequest assumes ownership of the
any (exceptional memory management). Do not delete the any after calling
set_result().

8 2 0 C h a p t e r 1 9 : D y n a m i c S k e l e t o n I n t e r f a c e

23 0672318121 CH19 6/21/01 8:07 AM Page 820

9. Alternatively, if you want to raise an exception, call set_exception() instead,
passing an any that contains the exception.
After set_exception() has been called, ServerRequest assumes ownership of
the any (exceptional memory management). Do not delete the any after calling
set_exception().

Other DynamicImplementation Member Functions
The following member function must be overridden:

• DynamicImplementation::_primary_interface()

This function is called by the ORB in the course of dispatching an invocation
request. It performs the task of mapping an ObjectId and POA object reference
to a CORBA::RepositoryId that identifies the type of the target object. See the
section “Mapping ObjectIds to Interface Types,” earlier in this chapter.

• ServantBase::_non_existent()

The _non_existent() operation is a pseudo-operation that can be called
remotely, like regular IDL operations. It tests whether or not a CORBA object
exists. The CORBA object being tested can be identified using the
PortableServer::Current interface (see Chapter 7).
The _non_existent() operation returns TRUE if the CORBA object definitely
does not exist. Otherwise, it returns FALSE. The default implementation of
_non_existent() always returns FALSE.
This function must be overridden by a DSI servant to return TRUE or FALSE as
appropriate.

The following member functions can optionally be overridden:

• ServantBase::_default_POA()

This function returns a reference to the POA associated with the servant and
can be called outside the context of an invocation dispatch.
The _default_POA() function is unlikely to be used by a DSI servant, but it is
good practice to override this function just in case.

• ServantBase::_is_a()

The _is_a() operation is a pseudo-operation that can be called remotely, like
regular IDL operations. It tests whether a CORBA object is of a particular type.
The CORBA object being tested can be identified using the
PortableServer::Current interface. The type being tested for is passed as the
logical_type_id argument, which is really a CORBA::RepositoryId although
declared as a const char * above.
The _is_a() operation returns TRUE if logical_type_id matches the type of
the object exactly or if it matches any of the object’s base classes. Otherwise, it
returns FALSE.
The default implementation of _is_a() identifies the fundamental type of the
object using _primary_interface() and makes remote calls to the interface
repository to identify the base classes.

C + + I m p l e m e n t i n g a D S I S e r v a n t 8 2 1

23 0672318121 CH19 6/21/01 8:07 AM Page 821

It is preferable to override this function when implementing a DSI servant in
the C++ mapping, because the default implementation provided is rather ineffi-
cient. You can do better by caching the list of base classes.

• ServantBase::_get_interface()

This function returns a reference to a CORBA::InterfaceDef interface reposi-
tory object for the type of CORBA object currently being invoked on. The
object’s type is identified using the _primary_interface() function. It is nor-
mally unnecessary to override this function.

The following member function cannot be overridden:

• DynamicImplementation::_this()

The _this() function returns an object reference (of CORBA::Object_ptr type)
for the CORBA object currently being invoked on.

Java Implementing a DSI Servant
A DSI servant is implemented by defining a new class that inherits from
PortableServer.DynamicImplementation and overriding certain inherited methods.
The inheritance tree for a Java DSI servant is illustrated in Figure 19.3.

8 2 2 C h a p t e r 1 9 : D y n a m i c S k e l e t o n I n t e r f a c e

Server

_this_object ()

DynamicImplementation

MyDSIServant

Figure 19.3

The Java inheritance tree for a DSI servant.

In this example, a new servant class, MyDSIServant, is defined.

The _this_object() function defined in the Servant base class returns a generic
org.omg.CORBA.Object object reference. Unlike a normal servant, the DSI servant
does not have a type-specific _this() function.

The next section discusses the DynamicImplementation member functions that can be
overridden.

Java Overriding DynamicImplementation Methods
Listing 19.5 and Listing 19.6 show the main Java classes that are used in the imple-
mentation of a DSI servant.

23 0672318121 CH19 6/21/01 8:07 AM Page 822

Listing 19.5 Java CORBA.ServerRequest Class
//Java
package org.omg.CORBA;

public abstract class ServerRequest {
public String operation() {

throw new org.omg.CORBA.NO_IMPLEMENT();
}
public abstract Context ctx();
public void arguments(NVList nv) {

throw new org.omg.CORBA.NO_IMPLEMENT();
}
public void set_result(Any val) {

throw new org.omg.CORBA.NO_IMPLEMENT();
}
public void set_exception(Any val) {

throw new org.omg.CORBA.NO_IMPLEMENT();
}

}

Listing 19.6 Java PortableServer.Servant and
PortableServer.DynamicImplementation Classes
//Java
package org.omg.PortableServer;

import org.omg.CORBA.ORB;
import org.omg.PortableServer.POA;

abstract public class Servant {
// Convenience methods for application programmer
final public org.omg.CORBA.Object _this_object() {

return _get_delegate().this_object(this);
}

final public org.omg.CORBA.Object _this_object(ORB orb) {
try {

((org.omg.CORBA_2_3.ORB)orb).set_delegate(this);
}
catch(ClassCastException e) {

throw new org.omg.CORBA.BAD_PARAM(
“POA Servant requires an instance of org.omg.CORBA_2_3.ORB”

);
}
return _this_object();

}

J a v a I m p l e m e n t i n g a D S I S e r v a n t 8 2 3

23 0672318121 CH19 6/21/01 8:07 AM Page 823

final public ORB _orb() {
return _get_delegate().orb(this);

}

final public POA _poa() {
return _get_delegate().poa(this);

}

final public byte[] _object_id() {
return _get_delegate().object_id(this);

}

// Methods which may be overridden by the
// application programmer
public POA _default_POA() {

return _get_delegate().default_POA(this);
}

public boolean _is_a(String repository_id) {
return _get_delegate().is_a(this, repository_id);

}

public boolean _non_existent() {
return _get_delegate().non_existent(this);

}

public org.omg.CORBA.InterfaceDef _get_interface() {
return _get_delegate().get_interface(this);

}

// methods for which the skeleton or application
// programmer must provide an implementation
abstract public String[] _all_interfaces(

POA poa,
byte[] objectId

);

// private implementation methods
private transient Delegate _delegate = null;

final public Delegate _get_delegate() {
if (_delegate == null) {

throw new org.omg.CORBA.BAD_INV_ORDER(
“The Servant has not been associated with an ORBinstance”

);
}
return _delegate;

}

8 2 4 C h a p t e r 1 9 : D y n a m i c S k e l e t o n I n t e r f a c e

Listing 19.6 contined

23 0672318121 CH19 6/21/01 8:07 AM Page 824

final public void _set_delegate(Delegate delegate) {
_delegate = delegate;

}
}

abstract public class DynamicImplementation extends Servant
{

abstract public void invoke(
org.omg.CORBA.ServerRequest request

);
}

A number of DynamicImplementation member functions, some inherited from
Servant, must be overridden. These are discussed in the following two sections.

The DynamicImplementation.invoke() Method
The invoke() operation provides the logic to process DSI invocations. When the POA
receives an invocation request, it passes the request, in the form of an
org.omg.CORBA.ServerRequest object, to the DSI servant by calling invoke().

The following steps implement the invoke() operation in the LEGACY adapter
example:

1. Determine the identity of the object, ObjectId, using the
Servant._object_id() method (a convenient alternative to the
PortableServer.Current interface). From the ObjectId, determine the type of
object (an org.omg.CORBA.RepositoryId).

2. Call operation() on the ServerRequest object to determine the name of the
invoked operation.

3. Given the type of the object and the name of the invoked operation, determine
the list of parameters for the invocation.
This step requires a named value list (org.omg.CORBA.NVList) to be con-
structed that has entries for each of the IDL in, inout, and out parameters. The
parameters in the NVList must be in the same order as they appear in IDL.
NVList can be constructed either by remotely contacting the interface reposi-
tory (see Chapter 22) or by retrieving the NVList from a cache. The use of a
cache is highly recommended for reasons of efficiency.
When constructing an operation’s NVList for the first time, the
ORB.create_operation_list() method is useful.

4. Call arguments() on the ServerRequest object, passing in the NVList that was
constructed in the previous step.
After this call, the entries in the NVList that correspond to in or inout parame-
ters are initialized with the data received from the client.

J a v a I m p l e m e n t i n g a D S I S e r v a n t 8 2 5

Listing 19.6 continued

23 0672318121 CH19 6/21/01 8:07 AM Page 825

5. The in and inout parameters can be parsed with the help of the DynamicAny
module.

6. The DSI servant does some work to process the request.
In the case of the LEGACY adapter example, the request is converted to a
LEGACY request and forwarded to the appropriate legacy server.

7. The out and inout parameters and return value can be constructed with the
help of the DynamicAny module.
The out and inout parameters are updated by modifying the entries in the
NVList that correspond to out or inout parameters.

8. Call set_result() on the ServerRequest object, passing an any that contains
the return value of the operation. This call must be made even if the return type
of the operation is void.

9. Alternatively, if you want to raise an exception call set_exception() instead,
pass an any that contains the exception.

Other DynamicImplementation Methods
The methods discussed in this section are inherited from org.omg.PortableServer.
Servant.

The following methods must be overridden:

• Servant._all_interfaces()

This method performs the task of mapping an ObjectId and POA object refer-
ence to repository IDs that identify the type of the target object. The first ele-
ment (zero index) of the array must be the most derived type; the remaining
elements of the array are the base types of the interface. See the section
“Mapping ObjectIds to Interface Types,” earlier in this chapter.

• Servant._non_existent()

The _non_existent() operation is a pseudo-operation that can be called
remotely, like regular IDL operations. It tests whether or not a CORBA object
exists. The CORBA object being tested can be identified using the
Servant._object_id() method.
The _non_existent() operation returns TRUE if the CORBA object definitely
does not exist. Otherwise, it returns FALSE.
The default implementation of _non_existent() always returns FALSE.
This function must be overridden by a DSI servant to return TRUE or FALSE as
appropriate.

The following methods can optionally be overridden:

• Servant._default_POA()

This function returns a reference to the POA associated with the servant and
can be called outside the context of an invocation dispatch.
The _default_POA() function is unlikely to be used by a DSI servant, but it is
good practice to override this function just in case.

8 2 6 C h a p t e r 1 9 : D y n a m i c S k e l e t o n I n t e r f a c e

23 0672318121 CH19 6/21/01 8:07 AM Page 826

• Servant._is_a()

The _is_a() operation is a pseudo-operation that can be called remotely, like
regular IDL operations. It tests whether a CORBA object is of a particular type.
The CORBA object being tested can be identified using the
Servant._object_id() method. The type being tested for is passed as the
repository_id argument.
The _is_a() operation returns TRUE if repository_id matches the type of the
object exactly or if it matches any of the object’s base classes. Otherwise, it
returns FALSE.
The default implementation of _is_a() identifies the type of the object and all
of its base classes using the _all_interfaces() method.
It is normally unnecessary to override this method in the Java mapping.

• Servant._get_interface()

This function returns a reference to a CORBA::InterfaceDef interface reposi-
tory object for the type of CORBA object currently being invoked on. The
object’s type is identified by the first element of the string array returned by the
_all_interfaces() method.
It is normally unnecessary to override this method.

The following method cannot be overridden:

• Servant._this_object()

The _this_object() method returns an object reference (of org.omg.CORBA.
Object type) for the CORBA object currently being invoked on.

J a v a I m p l e m e n t i n g a D S I S e r v a n t 8 2 7

23 0672318121 CH19 6/21/01 8:07 AM Page 827

23 0672318121 CH19 6/21/01 8:07 AM Page 828

Interface Repository
The interface repository is a repository of meta-data for appli-
cation IDL. Once an IDL file has been put into the interface
repository, a complete description of all the definitions appear-
ing in that IDL file becomes available to CORBA applications.
This is a natural complement to the dynamic features of
CORBA—the dynamic invocation interface (DII) and the
dynamic skeleton interface (DSI). When using either the DII or
the DSI, it is necessary for an application to find descriptions
of IDL interfaces at runtime. This information can be retrieved
at any time from the interface repository (assuming the defini-
tions have been entered into the repository).

The interface repository is itself a CORBA server, and interac-
tion with the repository is performed through a set of IDL
interfaces that describe the repository. This has the advantage
that the interface repository can be accessed remotely, and a
central interface repository can provide dynamic type informa-
tion for any number of CORBA applications.

When an IDL file is put into the interface repository, it is ana-
lyzed into its component definitions and decomposed into a
parse tree. Each node of the parse tree represents a particular
IDL definition. For example, there are nodes to represent the
definitions of an interface, an operation, each of the con-
structed CORBA types, and so on. This chapter describes how
to traverse the parse tree and how to get at the description of
various IDL definitions using the interface repository IDL.

The interface repository is most often used, in combination
with the DII and DSI, to build bridges between CORBA and
other distributed computing standards. A good example of this
would be a bridge between CORBA and Microsoft’s DCOM,
for which several commercial implementations are currently

C H A P T E R 2 0

In
te

rfa
ce

 R
e
p

o
sito

ry

24 0672318121 CH20 6/20/01 4:58 PM Page 829

available. Such a bridge can dynamically convert invocations back and forth between
the CORBA and the DCOM environments, as long as the relevant IDL is stored in the
interface repository.

Structure of the Interface Repository
The interface repository has an object-oriented structure and is itself described in terms
of IDL. See the section “IDL for the Interface Repository,” later in this chapter, for a
complete IDL listing.

The interface repository IDL contains a fairly large number of interfaces. Some of
these interfaces represent concrete grammatical constructs, which are the nodes of the
parse tree. Other interfaces serve as base interfaces that group together different kinds
of grammatical constructs.

Nodes of the Parse Tree
For each node of the parse tree within the interface repository, NodeType, you typically
have the following corresponding entities in the interface repository IDL:

• A CORBA::NodeTypeDef interface.
For example, the CORBA::InterfaceDef and CORBA::OperationDef interfaces
represent the IDL definition of an interface and an operation, respectively.

• A CORBA::NodeTypeDescription struct (not defined for all node types).
For complicated nodes, it is more efficient to retrieve node properties all at
once by retrieving a description struct. For example, a
CORBA::InterfaceDescription and a CORBA::OperationDescription can be
obtained to describe an interface node and an operation node, respectively.

There are a couple of special cases. Simple types, such as int, long, octet, and so on,
do not map to a unique NodeTypeDef interface. They are handled generically by the
PrimitiveDef interface instead.

CAUTION
Beware of some confusing terminology in the interface repository IDL. The gram-
matical construction involving the IDL typedef keyword is represented by the
AliasDef interface: This is not to be confused with the TypedefDef interface, which
is really a base interface for a variety of different node types (see the following
section).

Base Interfaces
There are a number of interfaces in the interface repository that are used purely as base
interfaces. These interfaces are useful for grouping similar types of objects within the
interface repository. Many useful operations are also declared in these base interfaces.

Table 20.1 lists the base interfaces used in the interface repository, accompanied by a
short description of each.

8 3 0 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 830

Table 20.1 Interface Repository—Base Interfaces

Base Interface Description

CORBA::IRObject This is the base interface for all node types in the interface
repository.

CORBA::Contained A base interface for nodes that can be contained within a wider
scope.
Nodes of Contained type always have a name. Unnamed types
(ArrayDef, FixedDef, PrimitiveDef, SequenceDef, StringDef, and
WstringDef) do not inherit from CORBA::Contained.

CORBA::Container A base interface for nodes that can contain other nodes.
The only nodes inheriting from CORBA::Container are Repository,
ModuleDef, InterfaceDef, ValueDef, ExceptionDef, StructDef, and
UnionDef.

CORBA::IDLType A base interface for all nodes representing data types that are
valid for use as operation parameters or return values.
The following nodes do not inherit from this interface:
Repository, ModuleDef, AttributeDef, OperationDef, ConstantDef,
and ExceptionDef.

CORBA::TypedefDef A base interface for nodes that define a new, named data type.
Note that this interface does not represent an IDL typedef con-
struction.
The nodes inheriting from CORBA::TypedefDef are AliasDef,
EnumDef, NativeDef, StructDef, UnionDef, and ValueBoxDef.

ExceptionDef, StructDef, and UnionDef inherit from Container because IDL syntax
allows the following unusual type of construction:

//IDL
struct Foo {

string s;
struct Bar { long l; short s; } my_bar;

};

In this example, the Bar struct is declared within the scope of the Foo struct. Therefore,
in terms of the interface repository parse tree, the StructDef representing Foo contains
the StructDef representing Bar. Similar types of construction are possible using
ExceptionDef and UnionDef.

Using the Interface Repository
The interface repository provides a meta-description of IDL and, of necessity, is fairly
long and complex (as can be seen from Listing 20.6). This short section describes some
of the basic tasks associated with using the interface repository, but it is beyond the
scope of this chapter to describe the interface repository IDL in great detail. The basic
tasks are as follows:

• Populating the interface repository
• Making an initial connection

U s i n g t h e I n t e r f a c e R e p o s i t o r y 8 3 1

24 0672318121 CH20 6/20/01 4:58 PM Page 831

• Searching the parse tree
• Iterating over the parse tree

Populating the Interface Repository
Before you can begin using the interface repository, it is necessary to populate it with
some IDL definitions. If you examine Listing 20.6, later in this chapter, you can see
that the NodeTypeDef interfaces consist of a readable part and a writeable part. The
writeable part of the interface, in principle, can be used to add nodes to the parse tree,
thereby populating the interface repository with definitions.

In practice, however, you almost never use the writeable interface. ORB vendors invari-
ably provide a tool or utility to populate the interface repository. Typically, you would
specify your IDL file as an argument to a command-line tool. The tool parses your IDL,
checking it for grammatical correctness, and updates the interface repository while
making sure that your IDL is consistent with existing definitions.

Making an Initial Connection
The interface repository is usually a standalone server that is accessed remotely by
CORBA applications. There are two basic methods for getting an initial reference to
the interface repository:

• Use the initialization service.
Call CORBA::ORB::resolve_initial_references(), passing in the
“InterfaceRepository” string. The object reference returned by
resolve_initial_references() should be narrowed to the
CORBA::Repository_ptr type (C++) or the org.omg.CORBA.Repository type
(Java).
This approach is illustrated in Listing 20.4 and Listing 20.5, later in this chapter.

• Use the CORBA::Object::get_interface() pseudo-operation.
Given an object reference, the get_interface() pseudo-operation lets you find
the object’s CORBA::InterfaceDef using just a single invocation. The
get_interface() operation maps to C++ and Java as follows:
//C++
CORBA::InterfaceDef_ptr CORBA::Object::_get_interface();

//Java
org.omg.CORBA.Object org.omg.CORBA.Object._get_interface_def();
//The return value is actually of type ‘org.omg.CORBA.InterfaceDef’

Once a reference to a CORBA::InterfaceDef object has been obtained, a com-
plete description of the object’s interface can be retrieved from the interface
repository.

Searching the Parse Tree
Most of the interface repository’s search capability is provided by the
CORBA::Container base interface. It defines two search operations, as shown in
Listing 20.1.

8 3 2 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 832

Listing 20.1 Search Operations in CORBA::Container
#pragma prefix “omg.org”
module CORBA {

typedef string Identifier;
typedef string ScopedName;
typedef string RepositoryId;
//...
enum DefinitionKind {

dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native

};
//...
interface Container : IRObject {

Contained lookup (in ScopedName search_name);

ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited

);
//...

};
};

The search operations work as follows:

• CORBA::Container::lookup()

The search_name argument is the scoped name of the node you are trying to
locate, relative to the container you are invoking on.
Consider, for example, the RecycleBroker module of Chapter 3, “A Sample
CORBA System.” If you invoke lookup() on the ModuleDef that represents the
RecycleBroker module, you can specify a search_name of “Customer::get_
details” to get a reference to the OperationDef object for get_details().
Alternatively, you could specify the absolute scoped name “::RecycleBroker::
Customer::get_details” instead.

• CORBA::Container::lookup_name()

The search_name argument is the local (non-scoped) name of the node you are
trying to locate. For example, it might be the operation name, “get_details”.
The levels_to_search argument specifies how many levels of containment are
descended in the course of the search. A value of 1 searches only the current
object. A value of -1 searches all levels of containment without limit.

U s i n g t h e I n t e r f a c e R e p o s i t o r y 8 3 3

24 0672318121 CH20 6/20/01 4:58 PM Page 833

The limit_type argument is used to restrict the search to certain kinds of
node. Each kind of node is identified by a CORBA::DefinitionKind enumerated
constant. For example, to restrict the search to OperationDef nodes, you can
pass CORBA::dk_Operation (C++) or org.omg.CORBA.DefinitionKind.dk_
Operation (Java). To make an unlimited search, you can pass CORBA::dk_all.
The exclude_inherited flag applies only to InterfaceDef and ValueDef

nodes (otherwise it is ignored). It specifies whether inherited definitions should
also be searched.

There is one additional search operation provided by the CORBA::Repository interface,
as shown in Listing 20.2.

Listing 20.2 Search Operation in CORBA::Repository
#pragma prefix “omg.org”
module CORBA {

interface Repository : Container {
Contained lookup_id (in RepositoryId search_id);
//...

};
};

The lookup_id() search operation works as follows:

• CORBA::Repository::lookup_id()

The search_id argument is a standard repository ID. If you consider, for
example, the RecycleBroker module from Chapter 3, the RecycleBroker::
WasteItemAdmin interface can be found by passing the string
“IDL:RecycleBroker/WasteItemAdmin:1.0” to lookup_id().

Iterating Over the Parse Tree
Occasionally you might need to iterate over a part of the interface repository. For exam-
ple, there might be some actions that you want to perform for every interface in a cer-
tain module or for every operation and attribute in a certain module. For these sorts of
action, you need to be able to iterate over the complete contents of a container. Listing
20.3 shows the Container operations that provide this functionality.

Listing 20.3 Content Operations in CORBA::Container
#pragma prefix “omg.org”

module CORBA {
//...
interface Container : IRObject {

ContainedSeq contents (
in DefinitionKind limit_type,
in boolean exclude_inherited

);

8 3 4 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 834

struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

};
typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);
//...

};
};

Two operations are provided in the CORBA::Container interface to allow you to iterate
over a container’s contents:

• CORBA::Container::contents()

The limit_type argument is used to restrict the list of contents to certain kinds
of node. Each kind of node is identified by a CORBA::DefinitionKind enumer-
ated constant, as explained in the previous section, “Searching the Parse Tree.”
The CORBA::dk_all value can be used to search without restrictions.
The exclude_inherited flag applies only to InterfaceDef and ValueDef

nodes (otherwise it is ignored). It specifies whether inherited definitions should
also be listed.
The return value is a sequence of Contained nodes that are either directly con-
tained or inherited by this object.

• CORBA::Container::describe_contents()

describe_contents() is provided as an optimization over the simpler
contents() operation. It lists the contents and retrieves description structs in a
single step.
The limit_type and exclude_inherited arguments have exactly the same
effect as for the contents() operation.
The max_returned_objects argument allows you to set an upper limit to the
length of the returned DescriptionSeq sequence. A value of -1 allows the
length to be unlimited.
The return value is a sequence of Description structs that contain full details
of each node that has been found. Consider, for example, a case where the
returned contents are all OperationDef nodes. For each Description struct in
the sequence, Container::Description::kind is equal to
CORBA::dk_Operation. Container::Description::contained_object is a
reference to an OperationDef object. The Container::Description::value is
an any that contains a CORBA::OperationDescription struct.

U s i n g t h e I n t e r f a c e R e p o s i t o r y 8 3 5

24 0672318121 CH20 6/20/01 4:58 PM Page 835

An Example of Reading from the Interface
Repository
This example is based on the RecycleBroker IDL as described in Chapter 3. It is
assumed that the interface repository is already populated with the RecycleBroker IDL
before this example is run.

The code in Listing 20.4 and Listing 20.5 shows the CORBA::Container::lookup()
operation being used in two ways:

1. In the first part of the example, lookup() is used to find the
“RecycleBroker::WasteItemAdmin” interface. This identifier is specified rela-
tive to the Repository scope because it is invoked on a CORBA::Repository
object.
The code prints out all of the operation names belonging to the
WasteItemAdmin interface.

2. In the second part of the example, lookup() is used to find the
“::RecycleBroker” module.
All of the interfaces in the RecycleBroker module are enumerated using
CORBA::Container::contents(), and the names of their operations and attrib-
utes are printed.

Listing 20.4 C++ Printing the Names of Operations and Attributes
//C++

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

#include “RecycleBrokerAll.hh”

// main() -- the main client program.
//
int
main(int argc, char **argv)
{

try
{

// Initialise the ORB.
// Note: ORB_init will process any -ORB arguments
// and remove them from argc/argv, so it should
// be called before any other argument processing.
//
CORBA::ORB_var orbV = CORBA::ORB_init(argc, argv);

CORBA::Object_var objV;

8 3 6 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 836

Listing 20.4 continued
// Get a reference to a ‘Repository’ object
objV = orbV->resolve_initial_references(“InterfaceRepository”);
CORBA::Repository_var intf_repV

= CORBA::Repository::_narrow(objV.in());
if (CORBA::is_nil(intf_repV.in())) {

cerr << “error: narrow to ‘CORBA::Repository’ failed.” << endl;
exit(1);

}

//--
// List the Operation Names of a Specific Interface
//--

// Find the ‘RecycleBroker::WasteItemAdmin’ interface
CORBA::Contained_var contV

= intf_repV->lookup(“RecycleBroker::WasteItemAdmin”);

CORBA::InterfaceDef_var intf_defV
= CORBA::InterfaceDef::_narrow(contV.in());

if (CORBA::is_nil(intf_defV.in()))
{

cerr << “error: narrow to ‘CORBA::InterfaceDef’ failed.” << endl;
exit(1);

}

CORBA::InterfaceDef::FullInterfaceDescription_var full_descV
= intf_defV->describe_interface();

// List the names of all the operations.
for (CORBA::ULong l=0; l < full_descV->operations.length(); l++)
{

cout << “operation: \”” << full_descV->operations[l].name
<< “\”” << endl;

}

//--
// Operations and Attributes of all Interfaces in ‘RecycleBroker’
//--

// Get a list of all interfaces in the ‘RecycleBroker’ module
contV = intf_repV->lookup(“::RecycleBroker”);
CORBA::ModuleDef_var module_defV

= CORBA::ModuleDef::_narrow(contV.in());
if (CORBA::is_nil(module_defV.in()))
{

A n E x a m p l e o f R e a d i n g f r o m t h e I n t e r f a c e R e p o s i t o r y 8 3 7

24 0672318121 CH20 6/20/01 4:58 PM Page 837

Listing 20.4 continued
cerr << “error: narrow to ‘CORBA::ModuleDef’ failed.” << endl;
exit(1);

}

CORBA::ContainedSeq_var cont_seqV
= module_defV->contents(

CORBA::dk_Interface, // DefinitionKind
0 // exclude_inherited (ignored)

);
for (CORBA::ULong n=0; n < cont_seqV->length(); n++)
{

intf_defV = CORBA::InterfaceDef::_narrow(cont_seqV[n]);
if (CORBA::is_nil(intf_defV.in()))
{

cerr << “error: narrow to ‘CORBA::InterfaceDef’ failed.”
<< endl;

exit(1);
}

full_descV = intf_defV->describe_interface();
cout << endl

<< “interface: \”” << full_descV->name << “\”” << endl;

// List the names of all the operations and attributes.
CORBA::ULong m;
for (m=0; m < full_descV->operations.length(); m++)
{

cout << “operation: \”” << full_descV->operations[m].name
<< “\”” << endl;

}
for (m=0; m < full_descV->attributes.length(); m++)
{

cout << “attribute: \”” << full_descV->attributes[m].name
<< “\”” << endl;

}
}

// No exceptions, return gracefully.
//
return 0;

}
catch(CORBA::Exception &ex)
{

cerr << “Unexpected CORBA exception: “ << ex << endl;
}

8 3 8 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 838

Listing 20.4 continued
// We had an exception, return a non-0 exit status.
return 1;

}

Listing 20.5 Java Printing the Names of Operations and Attributes
//Java
package Pure.IFRDemo;

import java.io.*;
import org.omg.CORBA.*;

public class javaclient
{

public static void main (String args[])
{
System.out.println(“Initializing ORB”);
ORB orb = ORB.init(args, null);

org.omg.CORBA.Object obj = null;

try {
// Get a reference to a ‘Repository’ object
obj = orb.resolve_initial_references(“InterfaceRepository”);
Repository intf_rep = RepositoryHelper.narrow(obj);

//--
// List the Operation Names of a Specific Interface
//--
System.out.println(“About to lookup ‘WasteItemAdmin’ interface”);
// Find the ‘RecycleBroker::WasteItemAdmin’ interface
Contained cont = intf_rep.lookup(“RecycleBroker::WasteItemAdmin”);

InterfaceDef intf_def = InterfaceDefHelper.narrow(cont);

System.out.println(“About to call ‘describe_interface’”);
org.omg.CORBA.InterfaceDefPackage.FullInterfaceDescription full_desc

= intf_def.describe_interface();

// List the names of all the operations.
for (int l=0; l < full_desc.operations.length; l++)
{

System.out.println(“operation: \””
+ full_desc.operations[l].name + “\””);

}

A n E x a m p l e o f R e a d i n g f r o m t h e I n t e r f a c e R e p o s i t o r y 8 3 9

24 0672318121 CH20 6/20/01 4:58 PM Page 839

Listing 20.4 continued
//--
// Operations and Attributes of all Interfaces in ‘RecycleBroker’
//--
// Get a list of all interfaces in the ‘RecycleBroker’ module
cont = intf_rep.lookup(“::RecycleBroker”);
ModuleDef module_def = ModuleDefHelper.narrow(cont);

Contained[] cont_seq
= module_def.contents(

DefinitionKind.dk_Interface, // DefinitionKind
false // exclude_inherited (ignored)

);
for (int n=0; n < cont_seq.length; n++)
{

intf_def = InterfaceDefHelper.narrow(cont_seq[n]);

full_desc = intf_def.describe_interface();
System.out.println(“\ninterface: \”” + full_desc.name + “\””);

// List the names of all the operations and attributes.
int m;
for (m=0; m < full_desc.operations.length; m++)
{

System.out.println(“operation: \””
+ full_desc.operations[m].name + “\””);

}
for (m=0; m < full_desc.attributes.length; m++)
{

System.out.println(“attribute: \””
+ full_desc.attributes[m].name + “\””);

}
}

}
catch (org.omg.CORBA.SystemException sysEx) {

System.out.println(“SystemException: “ + sysEx);
}
catch (Exception ex) {

System.out.println(“Exception: “ + ex);
}

System.out.println(“Done”);
orb.shutdown (true);

}
}

8 4 0 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 840

An interesting feature of this example is that it uses CORBA::InterfaceDef::
describe_interface() to get hold of a FullInterfaceDescription struct. The
FullInterfaceDescription struct is provided in addition to the plain
InterfaceDescription struct as a convenient optimization. The
FullInterfaceDescription struct provides not only information about the interface
but also complete details of its operations and attributes. These details are retrieved at
once using a single remote invocation of describe_interface().

IDL for the Interface Repository
Listing 20.6 shows the complete IDL for the interface repository.

Listing 20.6 Complete IDL for the Interface Repository
//IDL
#pragma prefix “omg.org”
module CORBA {

typedef string Identifier;
typedef string ScopedName;
typedef string RepositoryId;

enum DefinitionKind {
pragma version DefinitionKind 2.3

dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
dk_Wstring, dk_Fixed,
dk_Value, dk_ValueBox, dk_ValueMember,
dk_Native

};

interface IRObject {
pragma version IRObject 2.3

// read interface
readonly attribute DefinitionKind def_kind;
// write interface
void destroy ();

};

typedef string VersionSpec;

interface Contained;
interface Repository;
interface Container;

interface Contained : IRObject {
pragma version Contained 2.3

I D L f o r t h e I n t e r f a c e R e p o s i t o r y 8 4 1

24 0672318121 CH20 6/20/01 4:58 PM Page 841

Listing 20.6 continued
// read/write interface
attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;
// read interface
readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;
struct Description {

DefinitionKind kind;
any value;

};
Description describe ();
// write interface
void move (

in Container new_container,
in Identifier new_name,
in VersionSpec new_version

);
};

interface ModuleDef;
interface ConstantDef;
interface IDLType;
interface StructDef;
interface UnionDef;
interface EnumDef;
interface AliasDef;
interface ExceptionDef;
interface NativeDef;

interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;

interface ValueDef;
typedef sequence <ValueDef> ValueDefSeq;

interface ValueBoxDef;

typedef sequence <Contained> ContainedSeq;
struct StructMember {

Identifier name;
TypeCode type;
IDLType type_def;

};
typedef sequence <StructMember> StructMemberSeq;

8 4 2 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 842

Listing 20.6 continued
struct Initializer {

pragma version Initializer 2.3
StructMemberSeq members;
Identifier name;

};
typedef sequence <Initializer> InitializerSeq;

struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;

};
typedef sequence <UnionMember> UnionMemberSeq;

typedef sequence <Identifier> EnumMemberSeq;

interface Container : IRObject {
pragma version Container 2.3

// read interface
Contained lookup (in ScopedName search_name);
ContainedSeq contents (

in DefinitionKind limit_type,
in boolean exclude_inherited

);
ContainedSeq lookup_name (

in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited

);

struct Description {
Contained contained_object;
DefinitionKind kind;
any value;

};
typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs

);
// write interface
ModuleDef create_module (

in RepositoryId id,
in Identifier name,

I D L f o r t h e I n t e r f a c e R e p o s i t o r y 8 4 3

24 0672318121 CH20 6/20/01 4:58 PM Page 843

Listing 20.6 continued
in VersionSpec version

);
ConstantDef create_constant (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);
StructDef create_struct (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);
UnionDef create_union (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members

);
EnumDef create_enum (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

);
AliasDef create_alias (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type

);
InterfaceDef create_interface (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces,
in boolean is_abstract

);
ValueDef create_value(

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,

8 4 4 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 844

Listing 20.6 continued
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in InitializerSeq initializers

);
ValueBoxDef create_value_box(

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type_def

);
ExceptionDef create_exception(

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);
NativeDef create_native(

in RepositoryId id,
in Identifier name,
in VersionSpec version,

);
};

interface IDLType : IRObject {
pragma version IDLType 2.3

readonly attribute TypeCode type;
};

interface PrimitiveDef;
interface StringDef;
interface SequenceDef;
interface ArrayDef;
interface WstringDef;
interface FixedDef;

enum PrimitiveKind {
pragma version PrimitiveKind 2.3

pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_longlong, pk_ulonglong, pk_longdouble,
pk_wchar, pk_wstring, pk_value_base

};

interface Repository : Container {
pragma version Repository 2.3

// read interface

I D L f o r t h e I n t e r f a c e R e p o s i t o r y 8 4 5

24 0672318121 CH20 6/20/01 4:58 PM Page 845

Listing 20.6 continued
Contained lookup_id (in RepositoryId search_id);
TypeCode get_canonical_typecode(in TypeCode tc);
PrimitiveDef get_primitive (in PrimitiveKind kind);
// write interface
StringDef create_string (in unsigned long bound);
WstringDef create_wstring (in unsigned long bound);
SequenceDef create_sequence (

in unsigned long bound,
in IDLType element_type

);
ArrayDef create_array (

in unsigned long length,
in IDLType element_type

);
FixedDef create_fixed (

in unsigned short digits,
in short scale

);
};

interface ModuleDef : Container, Contained {
pragma version ModuleDef 2.3

};

struct ModuleDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;

};

interface ConstantDef : Contained {
pragma version ConstantDef 2.3

readonly attribute TypeCode type;
attribute IDLType type_def;
attribute any value;

};

struct ConstantDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
any value;

};

8 4 6 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 846

Listing 20.6 continued
interface TypedefDef : Contained, IDLType {

pragma version TypedefDef 2.3
};

struct TypeDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};

interface StructDef : TypedefDef, Container {
pragma version StructDef 2.3

attribute StructMemberSeq members;
};

interface UnionDef : TypedefDef, Container {
pragma version UnionDef 2.3

readonly attribute TypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

};

interface EnumDef : TypedefDef {
pragma version EnumDef 2.3

attribute EnumMemberSeq members;
};

interface AliasDef : TypedefDef {
pragma version AliasDef 2.3

attribute IDLType original_type_def;
};

interface NativeDef : TypedefDef {
pragma version NativeDef 2.3

};

interface PrimitiveDef: IDLType {
pragma version PrimitiveDef 2.3

readonly attribute PrimitiveKind kind;
};

interface StringDef : IDLType {
pragma version StringDef 2.3

attribute unsigned long bound;
};

I D L f o r t h e I n t e r f a c e R e p o s i t o r y 8 4 7

24 0672318121 CH20 6/20/01 4:58 PM Page 847

Listing 20.6 continued
interface WstringDef : IDLType {

pragma version WstringDef 2.3
attribute unsigned long bound;

};

interface FixedDef : IDLType {
pragma version FixedDef 2.3

attribute unsigned short digits;
attribute short scale;

};

interface SequenceDef : IDLType {
pragma version SequenceDef 2.3

attribute unsigned long bound;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};

interface ArrayDef : IDLType {
pragma version ArrayDef 2.3

attribute unsigned long length;
readonly attribute TypeCode element_type;
attribute IDLType element_type_def;

};

interface ExceptionDef : Contained, Container {
pragma version ExceptionDef 2.3

readonly attribute TypeCode type;
attribute StructMemberSeq members;

};

struct ExceptionDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;

};

enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {
pragma version AttributeDef 2.3

readonly attribute TypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

};

8 4 8 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 848

Listing 20.6 continued
struct AttributeDescription {

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
AttributeMode mode;

};

enum OperationMode {OP_NORMAL, OP_ONEWAY};
enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {
Identifier name;
TypeCode type;
IDLType type_def;
ParameterMode mode;

};

typedef sequence <ParameterDescription> ParDescriptionSeq;
typedef Identifier ContextIdentifier;
typedef sequence <ContextIdentifier> ContextIdSeq;
typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionDescription> ExcDescriptionSeq;
interface OperationDef : Contained {

pragma version OperationDef 2.3
readonly attribute TypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextIdSeq contexts;
attribute ExceptionDefSeq exceptions;

};

struct OperationDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode result;
OperationMode mode;
ContextIdSeq contexts;
ParDescriptionSeq parameters;
ExcDescriptionSeq exceptions;

};

typedef sequence <RepositoryId> RepositoryIdSeq;
typedef sequence <OperationDescription> OpDescriptionSeq;
typedef sequence <AttributeDescription> AttrDescriptionSeq;

I D L f o r t h e I n t e r f a c e R e p o s i t o r y 8 4 9

24 0672318121 CH20 6/20/01 4:58 PM Page 849

Listing 20.6 continued
interface InterfaceDef : Container, Contained, IDLType {

pragma version InterfaceDef 2.3
// read/write interface
attribute InterfaceDefSeq base_interfaces;
attribute boolean is_abstract;
// read interface
boolean is_a (

in RepositoryId interface_id
);
struct FullInterfaceDescription {

pragma version FullInterfaceDescription 2.3
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;
boolean is_abstract;

};
FullInterfaceDescription describe_interface();
// write interface
AttributeDef create_attribute (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);
OperationDef create_operation (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct InterfaceDescription {
pragma version InterfaceDescription 2.3

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;

8 5 0 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 850

Listing 20.6 continued
RepositoryIdSeq base_interfaces;
boolean is_abstract;

};

typedef short Visibility;
const Visibility PRIVATE_MEMBER = 0;
const Visibility PUBLIC_MEMBER = 1;

struct ValueMember {
pragma version ValueMember 2.3

Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
TypeCode type;
IDLType type_def;
Visibility access;

};
typedef sequence <ValueMember> ValueMemberSeq;

interface ValueMemberDef : Contained {
pragma version ValueMemberDef 2.3

readonly attribute TypeCode type;
attribute IDLType type_def;
attribute Visibility access;

};

interface ValueDef : Container, Contained, IDLType {
pragma version ValueDef 2.3

// read/write interface
attribute InterfaceDefSeq supported_interfaces;
attribute InitializerSeq initializers;
attribute ValueDef base_value;
attribute ValueDefSeq abstract_base_values;
attribute boolean is_abstract;
attribute boolean is_custom;
attribute boolean is_truncatable;
// read interface
boolean is_a(

in RepositoryId id
);
struct FullValueDescription {

pragma version FullValueDescription 2.3
Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;

I D L f o r t h e I n t e r f a c e R e p o s i t o r y 8 5 1

24 0672318121 CH20 6/20/01 4:58 PM Page 851

Listing 20.6 continued
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
ValueMemberSeq members;
InitializerSeq initializers;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;
boolean is_truncatable;
RepositoryId base_value;
TypeCode type;

};
FullValueDescription describe_value();
ValueMemberDef create_value_member(

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in Visibility access

);
AttributeDef create_attribute(

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

);
OperationDef create_operation (

in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts

);
};

struct ValueDescription {
pragma version ValueDescription 2.3

Identifier name;
RepositoryId id;
boolean is_abstract;
boolean is_custom;
RepositoryId defined_in;
VersionSpec version;
RepositoryIdSeq supported_interfaces;
RepositoryIdSeq abstract_base_values;

8 5 2 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 852

Listing 20.6 continued
boolean is_truncatable;
RepositoryId base_value;

};

interface ValueBoxDef : TypedefDef {
pragma version ValueBoxDef 2.3

attribute IDLType original_type_def;
};

enum TCKind { // PIDL
pragma version TCKind 2.3

tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed,
tk_value, tk_value_box,
tk_native,
tk_abstract_interface

};

typedef short ValueModifier; // PIDL
const ValueModifier VM_NONE = 0;
const ValueModifier VM_CUSTOM = 1;
const ValueModifier VM_ABSTRACT = 2;
const ValueModifier VM_TRUNCATABLE = 3;

interface TypeCode { // PIDL
pragma version TypeCode 2.3

exception Bounds {};
exception BadKind {};
// for all TypeCode kinds
boolean equal (in TypeCode tc);
boolean equivalent(in TypeCode tc);
TypeCode get_compact_typecode();
TCKind kind ();
// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// and tk_except
RepositoryId id () raises (BadKind);
// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias,
// tk_value, tk_value_box, tk_native, tk_abstract_interface
// and tk_except
Identifier name () raises (BadKind);
// for tk_struct, tk_union, tk_enum, tk_value,

I D L f o r t h e I n t e r f a c e R e p o s i t o r y 8 5 3

24 0672318121 CH20 6/20/01 4:58 PM Page 853

Listing 20.6 continued
// and tk_except
unsigned long member_count () raises (BadKind);
Identifier member_name (in unsigned long index)

raises (BadKind, Bounds);
// for tk_struct, tk_union, tk_value, and tk_except
TypeCode member_type (in unsigned long index)

raises (BadKind, Bounds);
// for tk_union
any member_label (in unsigned long index)

raises (BadKind, Bounds);
TypeCode discriminator_type () raises (BadKind);
long default_index () raises (BadKind);
// for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKind);
// for tk_sequence, tk_array, tk_value_box, and tk_alias
TypeCode content_type () raises (BadKind);
// for tk_fixed
unsigned short fixed_digits() raises (BadKind);
short fixed_scale() raises (BadKind);
// for tk_value
Visibility member_visibility(in unsigned long index)

raises(BadKind, Bounds);
ValueModifier type_modifier() raises(BadKind);
TypeCode concrete_base_type() raises(BadKind);

};

// Only the TypeCode related part of interface ORB shown below.
// For complete description of interface ORB see Chapter 4.

interface ORB { // PIDL
pragma version ORB 2.3

// other operations ...
TypeCode create_struct_tc (

in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);
TypeCode create_union_tc (

in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);
TypeCode create_enum_tc (

in RepositoryId id,
in Identifier name,
in EnumMemberSeq members

);

8 5 4 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 854

Listing 20.6 continued
TypeCode create_alias_tc (

in RepositoryId id,
in Identifier name,
in TypeCode original_type

);
TypeCode create_exception_tc (

in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);
TypeCode create_interface_tc (

in RepositoryId id,
in Identifier name

);
TypeCode create_string_tc (

in unsigned long bound
);
TypeCode create_wstring_tc (

in unsigned long bound
);
TypeCode create_fixed_tc (

in unsigned short digits,
in unsigned short scale

);
TypeCode create_sequence_tc (

in unsigned long bound,
in TypeCode element_type

);
TypeCode create_recursive_sequence_tc (// deprecated

in unsigned long bound,
in unsigned long offset

);
TypeCode create_array_tc (

in unsigned long length,
in TypeCode element_type

);
TypeCode create_value_tc (

in RepositoryId id,
in Identifier name,
in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMemberSeq members

);
TypeCode create_value_box_tc (

in RepositoryId id,
in Identifier name,
in TypeCode boxed_type

);

I D L f o r t h e I n t e r f a c e R e p o s i t o r y 8 5 5

24 0672318121 CH20 6/20/01 4:58 PM Page 855

Listing 20.6 continued
TypeCode create_native_tc (

in RepositoryId id,
in Identifier name

);
TypeCode create_recursive_tc(

in RepositoryId id
);
TypeCode create_abstract_interface_tc(

in RepositoryId id,
in Identifier name

);
};

};

8 5 6 C h a p t e r 2 0 : I n t e r f a c e R e p o s i t o r y

24 0672318121 CH20 6/20/01 4:58 PM Page 856

CORBA System Exceptions
CORBA provides a set of exceptions that can be raised in the
course of any operation invocation without having to be
declared in IDL. These are called system exceptions.

The standard system exceptions are defined by a set of cate-
gories that should be understood by any CORBA-compliant
ORB.

System exceptions are transmitted across the network in a for-
mat defined by the General Inter-ORB Protocol (GIOP—see
Chapter 14, “Internet Inter-ORB Protocol”). The content of a
system exception is defined by the struct shown in
Listing 21.1.

Listing 21.1 GIOP Format of a System Exception
//IDL
// Valid for GIOP versions 1.0, 1.1 and 1.2
struct SystemExceptionReplyBody {

string exception_id;
unsigned long minor_code_value;
unsigned long completion_status;

};

The exception_id string identifies the major category of
exception. The name of the major category is thus transmitted
over the network in the form of a string, for example
OBJECT_NOT_EXIST or BAD_OPERATION.

minor_code_value is used to identify the exception more
exactly. It is subdivided into the high-order 20 bits, the Vendor
Minor Codeset ID (VMCID), and the low-order 12 bits, the
minor code. Every vendor is allowed to define its own set of
minor codes to use in conjunction with its own, unique
VMCID. VMCIDs are assigned by the OMG. The OMG itself

C H A P T E R 2 1

C
O

R
B

A
 S

y
ste

m
 E

x
ce

p
tio

n
s

25 0672318121 CH21 6/20/01 5:51 PM Page 857

has a VMCID assigned to it, called the OMGVMCID (equal to 0x4f4d0000), that is
used to define standard minor codes.

completion_status indicates whether or not the operation finished before the excep-
tion was raised. The possible values for completion_status shown in Table 21.1.

Table 21.1 Possible Values of completion_status

Value Description

COMPLETED_YES The operation definitely finished before the exception was
raised.

COMPLETED_NO Processing of the operation had not begun when the exception
was raised.

COMPLETED_MAYBE It is impossible to determine whether the operation finished or
not.

Listing 21.2 shows how the standard system exceptions are represented in pseudo-IDL.

Listing 21.2 Standard System Exceptions IDL
//IDL
module CORBA {

const unsigned long OMGVMCID = \x4f4d0000;

#define ex_body {unsigned long minor; completion_status completed;}
enum completion_status { COMPLETED_YES,

COMPLETED_NO,
COMPLETED_MAYBE};

enum exception_type { NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION};

exception UNKNOWN ex_body; // the unknown exception
exception BAD_PARAM ex_body; // an invalid parameter was

// passed
exception NO_MEMORY ex_body; // dynamic memory allocation

// failure
exception IMP_LIMIT ex_body; // violated implementation

// limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; // invalid object reference
exception NO_PERMISSION ex_body; // no permission for

// attempted op.
exception INTERNAL ex_body; // ORB internal error
exception MARSHAL ex_body; // error marshaling

// param/result

8 5 8 C h a p t e r 2 1 : C O R B A S y s t e m E x c e p t i o n s

25 0672318121 CH21 6/20/01 5:51 PM Page 858

exception INITIALIZE ex_body; // ORB initialization failure
exception NO_IMPLEMENT ex_body; // operation implementation

// unavailable
exception BAD_TYPECODE ex_body; // bad typecode
exception BAD_OPERATION ex_body; // invalid operation
exception NO_RESOURCES ex_body; // insufficient resources

// for req.
exception NO_RESPONSE ex_body; // response to req. not yet

// available
exception PERSIST_STORE ex_body; // persistent storage failure
exception BAD_INV_ORDER ex_body; // routine invocations

// out of order
exception TRANSIENT ex_body; // transient failure - reissue

// request
exception FREE_MEM ex_body; // cannot free memory
exception INV_IDENT ex_body; // invalid identifier syntax
exception INV_FLAG ex_body; // invalid flag was specified
exception INTF_REPOS ex_body; // error accessing interface

// repository
exception BAD_CONTEXT ex_body; // error processing context

// object
exception OBJ_ADAPTER ex_body; // failure detected by object

// adapter
exception DATA_CONVERSION ex_body; // data conversion error
exception OBJECT_NOT_EXIST ex_body; // non-existent object,

// delete reference
exception TRANSACTION_REQUIRED

ex_body; // transaction required
exception TRANSACTION_ROLLEDBACK

ex_body; // transaction rolled
// back

exception INVALID_TRANSACTION
ex_body; // invalid transaction

exception INV_POLICY ex_body; // invalid policy
exception CODESET_INCOMPATIBLE

ex_body; // incompatible code set
};

The major exception categories in Listing 21.2 are explained in the rest of this chapter.

BAD_CONTEXT When a client invokes an operation whose declara-
tion includes a context clause, BAD_CONTEXT might
be raised if the invocation does not include context
values required by the operation.

BAD_INV_ORDER This exception might be raised if a client invokes the
operations of an object, or pseudo-object, in the
wrong order.

C O R B A S y s t e m E x c e p t i o n s 8 5 9

Listing 21.2 continued

25 0672318121 CH21 6/20/01 5:51 PM Page 859

BAD_OPERATION This exception is raised if a client attempts to invoke
an operation that is not part of the target object’s
interface. This exception can occur only if the target
object does exist.

BAD_PARAM This exception is raised under the following circum-
stances:

• If a parameter is of the wrong type, which can
happen when using the dynamic invocation
interface (DII).

• If a parameter is of the correct type but has a
value that is unacceptable. For example, it
might be raised if a parameter is out of range.

BAD_TYPECODE This exception is raised by the CORBA::ORB object if
it encounters a malformed type code value.

CODESET_INCOMPATIBLE This exception is raised when the process of codeset
negotiation fails to find compatible native codesets
for strings and wide strings.

COMM_FAILURE This exception is raised if a communication failure
occurs after the request has been sent to the server
but before a reply has been received. For example, a
connection that has been established using sockets
over TCP/IP might give rise to a COMM_FAILURE if
the socket is closed before the reply is received or if
an attempted socket read() gives an error.

DATA_CONVERSION This exception is raised if an ORB cannot convert
marshaled data to or from its native representation.
This generally indicates a feature limitation of the
ORB. For example, DATA_CONVERSION might be
raised if an ORB is unable to convert a wide string
to its native format.

FREE_MEM This exception is raised if the ORB attempts unsuc-
cessfully to free dynamic memory.

IMP_LIMIT The exception is raised if an implementation limit of
any sort is reached by the ORB at run time.

INITIALIZE This exception is raised if an ORB encounters a
problem during its initialization phase. For example,
it might be raised if the ORB fails to obtain the sys-
tem resources that it needs.

INTERNAL This exception is raised if a failure that is not con-
nected to either application code or external
resources occurs in the ORB. For example, the
INTERNAL exception might be raised if an ORB’s
internal data structures were corrupted.

8 6 0 C h a p t e r 2 1 : C O R B A S y s t e m E x c e p t i o n s

25 0672318121 CH21 6/20/01 5:51 PM Page 860

INTF_REPOS This exception is raised if the ORB cannot contact
the interface repository or if some other problem
with the interface repository is detected.

INVALID_TRANSACTION When using the CORBA Object Transaction Service
(OTS), a client might embed a transaction context in
a request message. The INVALID_TRANSACTION
exception is raised if the transaction context is con-
sidered to be invalid by the server that receives the
request.

INV_FLAG This exception can be raised in the context of the
dynamic invocation interface (DII) when
CORBA::ORB::create_request() is invoked. It can
also be raised in other contexts where flags are
passed in ORB operations.

INV_IDENT This exception is raised in the context of dynamic
features of CORBA, if a syntactically incorrect IDL
identifier is used. For example, INV_IDENT might be
raised when using the DII if a specified operation
name includes illegal characters.

INV_OBJREF This exception is raised if an object reference is mal-
formed in some way. For example, INV_OBJREF is
raised by the ORB::string_to_object() operation
if a corrupted stringified interoperable object refer-
ence (IOR) is passed as its argument.

INV_POLICY This exception is raised if a CORBA::Policy object
of the wrong type is passed to an operation or if a
set of CORBA::Policy objects with incompatible val-
ues is passed to an operation. For example, the
INV_POLICY exception might be raised by the
PortableServer::POA::create_POA() operation if
an incompatible set of policy values is passed to it.

MARSHAL This exception is raised if a General Inter-ORB
Protocol (GIOP) request or reply message is mal-
formed in some way.

NO_IMPLEMENT This exception is raised if the invoked operation
exists but no implementation is provided for it. For
example, a developer might choose to throw a
CORBA::NO_IMPLEMENT system exception in the body
of an operation that has not been implemented yet.

NO_MEMORY This exception is raised if the ORB runtime runs out
of memory.

C O R B A S y s t e m E x c e p t i o n s 8 6 1

25 0672318121 CH21 6/20/01 5:51 PM Page 861

NO_PERMISSION This exception is raised if a client has insufficient
privileges for an attempted operation. It usually
occurs in the context of the CORBA Security
Service.

NO_RESOURCES This exception is raised if the ORB encounters a
resource limitation of any kind.

NO_RESPONSE The dynamic invocation interface (DII) provides a
mechanism for making deferred synchronous calls.
The NO_RESPONSE exception is raised if an attempt is
made to retrieve the result of an invocation before
the response is available. In practice, it can be raised
when either CORBA::Request::result() or
CORBA::Request::return_value() is invoked pre-
maturely (in C++) or when either
Request.result() or Request.return_value() is
invoked prematurely (in Java).

OBJ_ADAPTER This exception is raised if any kind of error occurs
that is associated primarily with an object adapter.
For example, the OBJ_ADAPTER exception may be
raised if an error occurs during the configuration or
initialization of an object adapter.

OBJECT_NOT_EXIST This exception is raised whenever a client attempts
to make an invocation on a non-existent object. It is
intended as an authoritative notice that the object
never existed or has been permanently deleted.
In practice, however, it is difficult to guarantee that
this exception implies non-existence. For example, a
buggy implementation of a servant activator might
fail to activate an object that does exist, thereby mis-
takenly raising an OBJECT_NOT_EXIST exception.

PERSIST_STORE This exception can be raised if any kind of error
occurs that has to do with persistent storage (data-
base errors).

TRANSACTION_REQUIRED When using the CORBA Object Transaction
Service, a client can embed a transaction context in
a request message. The TRANSACTION_REQUIRED
exception is raised if the server requires a transac-
tion context for the invocation but none was present
in the request message.

TRANSACTION_ROLLEDBACK When using the CORBA Object Transaction
Service, the TRANSACTION_ROLLEDBACK exception is
raised within the context of a transaction to indicate
that the transaction has been rolled back or marked
to roll back by the server.

8 6 2 C h a p t e r 2 1 : C O R B A S y s t e m E x c e p t i o n s

25 0672318121 CH21 6/20/01 5:51 PM Page 862

TRANSIENT This exception is raised if an invocation request can-
not be sent to the server. For example, if the request
is mediated via sockets over TCP/IP, the TRANSIENT
exception might be raised if the socket connection
cannot be opened to the remote server.

UNKNOWN This exception is a catch-all for unidentified excep-
tions. There are three main kinds of UNKNOWN
exception:

• Exceptions that do not fit into any of the exist-
ing categories of system exception.

• System exceptions received from a remote
server that have an unknown exception_id.
These exceptions are converted to the UNKNOWN
system exception on the client side before
being raised to the client application code.

• User exceptions not declared in the raises
clause of the corresponding IDL operation.
The client stub does not have the necessary
code to process the user exception in this case
and raises the UNKNOWN system exception
instead.

C O R B A S y s t e m E x c e p t i o n s 8 6 3

25 0672318121 CH21 6/20/01 5:51 PM Page 863

25 0672318121 CH21 6/20/01 5:51 PM Page 864

I N D E X

Symbols
\ (backslash), 248-249, 761
/ binary operator, 762-763
| binary operator, 762
% binary operator, 762
& binary operator, 762
* binary operator, 762-763
+ binary operator, 762-763
- binary operator, 762-763
<< binary operator, 762
>> binary operator, 762
{ } (braces), 208
. (dot), 247, 249
/./. (empty name components), 249
/ (forward slash), 247-249
<<= (insertion operator), 392
>>= (insertion operator), 392
~ (tilde), unary operator, 762
+ unary operator, 763
_ (underscore), 43-44

A
abstract interfaces, 517-519
abstract value types, syntax, 517
abstract views, remote invocations, 290
Account interface (AccountVal type), defini-

tions, 493
Account objects, 220-221
AccountFactory interface, 220-221
AccountVal type

declaring as regular value, code, 487
definitions, code, 493
passing by value, code, 489

AccountVal value type, public members, 500
ACME Recycling, 139, 141

CORBA objects, 148-149
RecycleBroker IDL, 141-148

26 0672318121 index 6/21/01 1:00 PM Page 865

acquisitions of companies, computer net-
works, 5

activate_object() operation, 311
activate() operation, 456
activating servants, 292
activation

implicit, 133-134, 378-381
lazy, 340, 360-364
records, 17

activators, servant (POAs), 345-346
active object maps (POAs), 291, 375
active servers, invoking on, 18
ACTIVE state (POAManager object), 383
adapters. See also POAs

LEGACY, 814-815, 820-821, 825-826
object, 14

add_value() method, arguments, 803
administrative domains (ORB IDs), 51
administrative files, ORB, 51
adopted specifications, 6
agent clients, 146
algorithms (functions)

create() or find(), 327
lazy find() operation, 365
unknown adapter(), 387

AliasDef interface, 830
aliases

CORBA types, 439
type, inserting or extracting, 440-441
unwinding, 443

aliasing IDL, 24
all_interfaces() method, 816, 827
allocating memory, 158-167
allocation functions, strings, 46
ambiguity in IDL interface inheritance,

209-211
ambiguous basic types, 400, 412
any data type, 197
any IDL (dynamic), 788-793
any types, 167, 389

AnyPasser interface, 392-394, 420-423
C++, CORBA::Any class, 409, 419
CORBA::Any class, 392

C++ extractions, 411-419
C++ insertions, 394-409

CORBA::Any var class, 392
DynamicAny module, 769
extracting, code, 419, 436
IDL mapping for, 46-47
IDL module, 391-392

inserting, code, 409, 429
interfaces, 769
Java, org.omg.CORBA.Any class, 429-436
mapping, 769
org.omg.CORBA.Any class

Java extractions, 434-436
Java insertions, 423-429

passing
with C++, 392
with Java, 420

stub code, 769
type codes, 436-441, 771-780
when not to use, 390-391
when to use, 390

Any value, 543
AnyPasser interface, 392-394, 420-423
APIs (application programming interfaces),

13
component constructor() placeholder, 584
entity types, 571
GET_OBJ_REF_FROM_KEY() place-

holder, 584
proprietary, placeholders, 584
REGISTER_EXECUTOR_WITH_

CONTAINER() placeholder, 584
session types, 571

applets, creating ORB objects with Java, 54
application programming interfaces. See

APIs
applications. See also RecycleBroker

Book Repository client-server applications,
23-25

CORBA, initialization steps, 251
deploying

CORBA objects, finding, 15-16
servers, activating, 16-19
servers, locating, 16-19

initializing
CORBA objects, locating, 56-57
initial references, resolving, 56
ORB objects, 50-55
orb.properties file, 55-56

LEGACY adapter, 814
running with Portable Interceptors, code,

485-486
servers (invoking on)

active, 18
dormant, 17-18
transient CORBA objects, 19

8 6 6 a c q u i s i t i o n s o f c o m p a n i e s , c o m p u t e r n e t w o r k s

26 0672318121 index 6/21/01 1:00 PM Page 866

architectures
acquisitions of companies, computer net-

works, 5
CCM (CORBA Component Model),

552-556
legacy systems, 5
legislation, 5
mergers, computer networks, 5
middleware, 5-6
object management, 19
OMA (object management architecture), 6
OMG (Object Management Group), 6
ORB (Object Request Broker), 6

CORBA requirements, 8-10
IIOP (Internet Inter-ORB Protocol),

11
OMG IDL (interface definition lan-

guage), 10-11
RPCs (remote procedure calls), 7-8

Recycle Broker, 139-141
technology, 5

archives
assembly archive files, 605-606
CORBA components, 606

arguments
Add value() method, 803
command-line

-ORBDefaultInitRef, 283
-ORBInitRef, 282-283

ctx, 807
flags, 808
obj, 448
ObjectID, 254
-ORBOption Value, 53
result, creating NamedValue, 808
waste, 448
wasteitem_id, 448

arguments().item(itemIndex) call, 804
arg_list operation, 808
arithmetical operations, constant expressions,

123
array types, 166-167, 177, 179

C++ (CORBA::Any class), 407, 417
extracting, code, 417, 434-435
IDL, 630-636
inserting, code, 407, 427
Java (org.omg.CORBA.Any class), 427,

434-435
arrayName_copy() function, 179
arrayName_dup() function, 178

arrays
dynamically-allocated, managing, 632
fixed-length, 197
TicTacToe, mapping, 632-636
variable-length, 197

assemblers, component, 605-607
assembly archive files, 605-606
assignments

behavior with smart pointers, 216
data types, 170
left-shift, <<= (insertion operator), 392
mixed

between ptr and var types, 216-218
data types, 173

mixed pointers, 173
ptr = var type, 217-218
right-shift, >>= (insertion operator), 392
semantics, var types (smart pointers), 155
var = ptr type, 217

associating POAs and POAManagers, 382
assumptions, transports, 621-625
asynchronous communication, 523
asynchronous invocations, 809-810
attributes

extended, syntax, 557
IDL, 209-210, 602
names, printing, 836-840
plain, 24
read-only, 24, 557
writeable, syntax, 557

authentication (security lifetime policy), 609
automatic object activation, 343

B
backslash (\), 248-249, 761
BAD CONTEXT (system exception), 859
BAD INV ORDER (system exception), 859
BAD OPERATION (system exception), 860
BAD PARAM (system exception), 860
BAD TYPECODE (system exception), 860
Bar interface, 49
Bar_ptr type, 49
Bar signature class, 48
Bar_var type, 49
BarHelper class, 49
BarHolder class, 49
base home names, 559
base interfaces, 147, 830-831
base-8 (octal) integer literal, 759
base-10 (decimal) integer literal, 759

b a s e - 1 0 (d e c i m a l) i n t e g e r l i t e r a l 8 6 7

26 0672318121 index 6/21/01 1:00 PM Page 867

base-16 (hexadecimal) integer literal, 759
basic (ambiguous) types

C++, CORBA::Any class, 400, 412
extracting, code, 412

basic (unambiguous) types
C++, CORBA::Any class, 398-400,

411-412
extracting, code, 411-412

basic components, CCM architecture,
553-559

basic data type, 197
basic level (CCM), 552
basic object adapter (BOA), 14
basic types

ambiguous, inserting, 400
C++, CORBA::Any class, 394, 409
extracting, code, 429-431
IDL mapping for, 44
inserting, code, 423-424
Java, org.omg.CORBA.Any class,

423-424, 429-431
unambituous, inserting, 398-400

behavior, assignment with smart pointers, 216
binary operators

%, 762
&, 762
*, 762-763
-, 762-763
/, 762-763
|, 762
+, 762-763
<<, 762
>>, 762
integer expressions, 762

bind_context() operation, code to declare,
267

bind new context() operation, 256
bind() operation, 255-256
binding iterators, 269-271
binding names, server mainline, 262-264
binding objects, 246
BindingIterator interface, 269-271
bindings

context, creating, 256
listBindings() method, 271-274
lists, 270-274
objects, creating, 255-256, 260-262
resolving, 256

bindObjectPath() method, 260-262
bk_collection clients, 29-30, 113-114
bk_search client, 62-63, 87

BlobStack interface, 389
BOA (basic object adapter), 14
Book Repository

bk collection clients, 29-30
BookRepository CollectionImpl class dec-

laration, C++ server code, 30-31
client code, 25-30
client-server applications, 23-25
Collection interface, code, 25-29
FlexibleCollectionImpl class, inheritance

hierarchy, 106
IDL module, code, 23-24, 57-58, 81-82,

102-103
server code, 30-43

BookRepository::BorrowableCollection
class, implementing with Java, 107
interface implementation, code, 89-93,

108-109
BookRepository_BorrowableCollectionImpl

class declaration, C++ code, 87-88
BookRepository::Collection

IDL interface implementation, code, 33-36
interface, 25

BookRepository_CollectionImpl
class, 32
servant class, inheritance hierarchy, 32-33

BookRepository::FlexibleCollection interface
implementation, code, 104-105

BookRepository_FlexibleCollectionImpl class
declaration, C++ code, 103-104

BookRepository::SearchableCollection inter-
face implementation, code, 65-68

BookRepository_SearchableCollectionImpl
class declaration, C++ code, 63-64

boolean
DynAny type, 770, 781
IDL, 45, 637-639

Bootstrap interface, 817
BorrowableCollection interface (clients),

code, 83-86
Borrower DB class, declaration code, 94-95
bounded sequence types, 163-164
bounded string types, 159, 173-174
bounded WString types, 160, 174
braces ({ }), 208
BranchOffice

interface, 146
object, code, 313-315, 336-338

BranchOffice::get_browsing() operation, 306
bridge support, 10
Browsing CORBA object, creating, 313

8 6 8 b a s e - 1 6 (h e x a d e c i m a l) i n t e g e r l i t e r a l

26 0672318121 index 6/21/01 1:00 PM Page 868

Browsing object references, generating, 336
built-in CORBA types, 437-438
built-in IDL types

array, 630-636
boolean, 637-639
char, 640-642
double, 643-645
enum, 645-649
exception, 650-654
fixed, 655-660
float, 660-662
long, 663-665
long double, 666-667
long long, 668-669
native, 670
Object, 671
octet, 671-673
sequence, 674-680
short, 681-683
string, 683-686
struct, 687-692
union, 693-700
unsigned long, 703-705
unsigned long long, 706-709
unsigned short, 709-712
wchar, 712-714
wstring, 715-718

businesses, ACME Recycling, 139-149
BuyingCH keyless component home, code to

declare, 560
BuyingCHImpl executor class

C++ code, 585-587
Java code, 586-589

BuyingCImpl executor class
C++ code, 571-574
Java code, 572-576

C
C++

ambiguous basic types, 400, 412
any types, 392, 409, 419
AnyPasser interface, 392
array types, 407, 417
assignment semantics, 155
Bar_ptr type, 49
Bar signature class, 48
Bar_var type, 49
bindObjectPath() method, code to imple-

ment, 260-261
BookRepository::BorrowableCollection

interface, code to implement, 89-91

BookRepository_BorrowableCollection-
Impl class declaration, code, 87-88

BookRepository::Collection IDL interface,
implementing, 33-35

BookRepository CollectionImpl class dec-
laration, code, 30-31

BookRepository::FlexibleCollection inter-
face, code to implement, 104

BookRepository_FlexibleCollectionImpl
class declaration, code, 103-104

BookRepository::SearchableCollection
interface, implementing, 65-66

BookRepository_SearchableCollection-
Impl class declaration, 63-64

BorrowableCollection interface, clients,
code, 83-85

Borrower DB class declaration, code,
94-95

callback client main() function, code,
452-454

classes, 496
clients, 265-266, 392-393
Collection

client, CORBA Naming Service,
code, 110-111

DB class, declaration, 68-69
interface, client code, 25-27
object, code to activate, 133-134

CORBA 2.4.2 core specification (IDL data
types), 629

CORBA::Any class, 392
CORBA::Any var class, 392
CORBA::Exception class, 751
CORBA::SystemException class, 752
CORBA::UnknownUserException::excep-

tion() method, 806
CORBA::UserException class, 754
create request() methods, code for signa-

tures, 806-807
createContextPath() method, code to

implement, 257-258
database records, 321
declarations

BuyingCHImpl executor class,
code, 585

BuyingCImpl executor class, code,
571

RecycleBroker_WasteItemDetails-
Factory class, code, 505

RecycleBroker_WasteItemDetails-
Impl class, code, 502-503

C + + 8 6 9

26 0672318121 index 6/21/01 1:00 PM Page 869

WasteItemCHImpl executor class,
code, 590

WasteItemCImpl executor class,
code, 577

definitions
RecycleBroker_WasteItemDetails-

Factory class, code, 505
RecycleBroker_WasteItemDetails-

Impl class, code, 503-504
DII exceptions, code to process, 804-805
DSI servants, 817-822
DynAny type with boolean, 781
DynStruct object, code to create for VarLen

instances, 782-783
DynUnion object, code to create for Poly

instances, 785-786
exception class hierarchy, 96
exception types, 408, 418
extractions from CORBA::Any class, any

types, 409-419
fixed precision numbers types, 406, 416
general form, 154-155
IDL constants

boolean, 638
char, 641
definitions, code for scopes, 124
double, 644
enum, 647
fixed, 658
float, 662
long, 664
long double, 667
long long, 669
octet, 672
short, 682
string, 686
unsigned long, 705
unsigned long long, 708
unsigned short, 711
wchar, 714
wstring, 717

IDL mapping, 47-50
IDL structs, mapping, 70, 73
IDL unbounded sequences, mapping, 73
implementations

BuyingCHImpl executor class,
code, 586-587

BuyingCImpl executor class, code,
572-574

WasteItemCHImpl executor class,
code, 591-593

WasteItemCImpl executor class,
code, 578-580

in() method, 155-156
inheritance hierarchies

BookRepository_CollectionImpl
servant class, 32

values, 512, 515
inout() method, 155-156
insertions into CORBA::Any class,

394-409
interfaces

mapping, 47, 211-212
types, code to determine, 816

invocations, 798-800
keywords, 129-130
listBindings() method, implementing,

271-272
local interfaces, implementing, 350
mapped identifiers and keywords, 129
memory management, 211-218
modules, mapping, 47
multiple inheritance, IDL interfaces, 106
narrow() function, 253
nil object references, 218-219
object references, 408, 419, 222-229
ORB objects, creating, 52
out() method, 155-156
POA_InterfaceName class, 377
PortableServer functions, 755
prefixes, clashes, 130
primary_interface() function, 816
PurePullConsumer.C code, 534-538
PurePushSupplier.C code, 538-541
RecursiveList type, creating type codes,

778-779
recursiveUnbind() method, implementing,

274-275
registrations,

RecycleBroker_WasteItemDetailsFactory
value factory, code, 506-507

request() method, code for signature, 797
retn() method, 155-156
SearchableCollection interface, clients,

59-60
sendEvent() operation, 393-394
sequence objects, 73
sequence types, 405-406, 416
ServantActivator::etherealize() function,

357-359

8 7 0 C + +

26 0672318121 index 6/21/01 1:00 PM Page 870

servant inheritance hierarchy, 32, 106
servers

AnyPasser interface, 393-394
initialization, 37-38, 114-117
mainline binding names, 262-263

signature class, 48
smart pointers, 152-154
static functions, managing arrays, 632
STL (standard template library), 352
string functions, allocation and dealloca-

tion, 46
string types, 401-402, 413-414
string (wide) types, 403-404, 414-415
struct types, 405, 415
suffixes, clashes, 130
tie (delegation) approach, 107
type codes, 437-439, 774
unambiguous basic types, 398-400,

411-412
union types, 406-407, 416-417
UnknownUserException class, 753
useArrayVarLen() operation, code to

invoke, 635
VarLen struct, type code, code to create,

774-775
WasteItemAdmin::get_item_details()

operation, code to implement, 508
<c++ array name>, 632
C++ code

array type, 634
attribute names, printing, 836-839
BranchOffice object, 313-314, 336-337
BuyingCHImpl executor class, 585-587
BuyingCImpl executor class, declaration

of, 571-574
callback client main() function, 452-454
callees or callers, 186-192
classes in DSI servants, 818-819
client of Collection interface, 25-27
CORBA Interoperable Naming Service,

initial references, 251-252
CORBA objects, 379-380
etherealize() operation, 357-358
exception type, 652
IDL constant definition scopes, 124
inheritance hierarchy for values, 512
long syntax, activating Collection object,

133
MyAdapterActivator class, declaring,

386-387

ObjectIdMapper class, implementing,
318-319

operation names, printing, 836-839
POAs, 345-346, 370-371
RecycleBroker::BranchOffice::get brows-

ing() operation, implementing, 311-312,
333-334

RecycleBroker_WasteItem_i::_incarnate()
function, 356

RecycleBroker::WasteItemAdmin,
360-362, 365-366

RecycleBroker::WasteItemAdmin::create()
operation, implementing, 322-324

RecycleBroker::WasteItemAdmin::find()
operation, implementing, 322-324

RecycleBroker::WasteItemCallback inter-
face, implementing, 451-452

RecycleBroker::WasteItemRegister inter-
face, implementing, 449-450

sequence type, 678
servant activator class, 351-354
ServantLocator class, mapping, 373-374
service objects, creating POAs, 330-331
session object POAs, creating, 306-307
signature, request() method, 797
struct type, 690
this() method, activating Collection object,

134
union type, 698
WasteItemAdmin object, 327-328
WasteItemCHImpl executor class, 590-593
WasteItemCImpl executor class, 577-580

C++ mapping
array type, 631-634
CORBA::Context interface, 720
CORBA::ContextList interface, 721
CORBA::Environment interface, 722
CORBA::ExceptionList interface, 723
CORBA::NamedValue interface, 725
CORBA::NVList interface, 726
CORBA::Object interface, 729
CORBA::ORB interface, 735
CORBA::Request interface, 742
CORBA::ServerRequest interface, 744
CORBA::TypeCode interface, 747
CORBA::ValueBase interface, 750
dynamic implementation classes

(PortableServer module), 755
exception type, 652

C + + m a p p i n g 8 7 1

26 0672318121 index 6/21/01 1:00 PM Page 871

IDL constants
boolean, 638
char, 641
double, 644
enum, 647
fixed, 656
float, 661
identifiers, 124
long, 664
long double, 667
long long, 669
octet, 672
short, 681
string, 685
unsigned long, 704
unsigned long long, 707
unsigned short, 710
wchar, 713
wstring, 716

PortableServer::Servant native type, 756
regular value types, 496-499
sequence type, 675
string types, 45
struct type, 689
TicTacToe array, code, 632-634
union type, 696
wstring types, 45
values, 512, 515

C++ Programming Language (The), 352
callbacks

C++ code, callback client main() function,
452-454

clients, 445-447
distributed deadlocks, 447-448
implementing, 445-446
interfaces, 598-601
Java code, callback client main() function,

454-456
objects, 445
oneway operations, 448-457
POA Manager, activating, 456
RecycleBroker::WasteItemCallback inter-

face, 451-452
RecycleBroker::WasteItemRegister inter-

face, 449-451
TRANSIENT lifespan policy values, 446
WasteItemCallback interface, 448
WasteItemRegister interface, 448

callees code, 186-189, 192-196
callers code, 186-192

calls
arguments().item(itemIndex), 804
item(itemIndex).value(), 804
object-oriented remote procedures, 7
req.arguments(), 804
RPCs (remote procedure calls), 7-8
try_pull(), 543

CancelRequest message, 624
case sensitivity, IDL identifiers, 43
catching exceptions, 100-102
categories

system exceptions, 859-863
components, CCM (CORBA Component

Model), 554
CCM (CORBA Component Model)

architecture, 552-556
basic level, 552
component homes, 553
components, 553, 601-604
Components::Basic::EntityComponent

operations, 583
Components::Basic::SessionComponent

operations, 576-577
components::CCMHome interface, 589,

596
Components::CCMObject operations, 576,

583
Components IDL module, interfaces,

598-601
components::KeylessCCMHome interface,

589
containers, 553
CORBA servers, simplifying, 551
CORBA services, 551
deploying, 604-607
EJB (Enterprise Java Beans), comparing,

552
extended level, 552
POA functionality, 551
policy constraints, 610
ready-made component support, 551
RecycleBroker::BuyingCHExplicit inter-

face, 590
RecycleBroker::BuyingCHImplicit inter-

face, 589
RecycleBroker::WasteItemCHExplicit

interface, 597
RecycleBroker::WasteItemCHImplicit

interface, 596
roles, 604
security policies, 609-610

8 7 2 C + + m a p p i n g

26 0672318121 index 6/21/01 1:00 PM Page 872

servant lifetime policies, 608
transaction policies, 608-609

ccm_activate() method, 576, 583
ccm_load() method, 583
ccm_passivate() method, 577, 583
ccm_remove() method, 577, 583
ccm_save() method, 583
CCMContext interface, 599
CDR (Common Data Representation) encod-

ing, 621-623
array type, 631
boolean type (IDL), 637
char type (IDL), 640
double type (IDL), 643
enum type (IDL), 646
exception type, 651
fixed type (IDL), 656
float type (IDL), 660
long double type (IDL), 666
long long type (IDL), 668
long type (IDL), 663
octet type (IDL), 671
sequence type, 675
short type (IDL), 681
string type (IDL), 684
struct type, 689
union type, 695
unsigned long long type (IDL), 707
unsigned long type (IDL), 704
unsigned short type (IDL), 710
wchar type (IDL), 712
wstring type (IDL), 716

channels. See Event Channel
char * dumb pointer, 153
char type

CDR encoding, 640
IDL

constant declarations, 640-642
mapping for, 45

character literals (IDL grammar), 760-761
characters (IDL grammar), 760
checked exceptions, 97
child POAs, 293, 296-297
clashes, C++ and Java, 130-131
clashing identifiers, IDL interface inheri-

tance, 210
classes

Bar signature, 48
BarHelper, 49
BarHolder, 49

BookRepository CollectionImpl declara-
tion, C++ server code, 30-31

BookRepository FlexibleCollectionImpl,
C++ or Java servant inheritance hierar-
chy, 106

BookRepository::BorrowableCollection,
implementing with Java, 107

BookRepository_BorrowableCollection-
Impl declaration, C++ code, 87-88

BookRepository_CollectionImpl, 32
BookRepository_FlexibleCollectionImpl

declaration, C++ code, 103-104
BookRepository_SearchableCollection-

Impl declaration, C++ code, 63-64
Borrower DB declaration, code, 94-95
BuyingCHImpl executor, 585-589
BuyingCImpl executor, 571-576
C++

code in DSI servants, 818-819
CORBA::Exception, 751
CORBA::SystemException, 752
CORBA::UserException, 754
exception class hierarchy, 96
generated from ValueName value

type, 496
OBV ValueName, 496
servant inheritance hierarchy, 106
UnknownUserException, 753
ValueName, 496

Collection DB declaration, code, 68-69
CORBA.ServerRequest, code, 822-823
CORBA::Any, 392-419
derivedHelper, 227
dynamic implementation, PortableServer

module, 755
Exception (IDL), 751
HiddenInterface, 234-235
InterfaceNamePOA (Java), 377
Java

exception class hierarchy, 96
generated from ValueName value

type, 499
java.lang.Exception, 751, 806
org.omg.CORBA.SystemException,

752
org.omg.CORBA.UnknownUser-

Exception, 753
org.omg.CORBA.UserException,

754
servant inheritance hierarchy, 106
ValueName, 499

c l a s s e s 8 7 3

26 0672318121 index 6/21/01 1:00 PM Page 873

JavaType, 76
JavaTypeHelper, 76, 79
JavaTypeHolder, 76
MyAdapterActivate, 386-387
ObjectIdMapper, 318-320
org.omg.CORBA.Any, 420-436
POA_InterfaceName (C++), 377
PortableServer.DynamicImplementation,

code, 823-825
PortableServer.Servant, code, 823-825
PortableServer::ServantBase, 32
PublicInterface, 234-235
queue templates, functions, 352
RecycleBroker_WasteItemDetailsFactory,

505
RecycleBroker_WasteItemDetailsImp,

502-504
RefCountServantBase, 32
servant (POAs), 291
servant activator, 351-355
ServantLocator, 373-374
signature, 48
SmartPtr, 152
SystemException (IDL), 751
T var, 155
UnknownUserException (IDL), 753
ValueNameImpl, outline, code, 497
var, 73
varaCORBA::Any var, 392
WasteItem database records, 321
WasteItemCHImpl executor, 590-596
WasteItemCImpl executor, 577-582
WasteItemDetailsFactoryImpl, 506

client-driven server memory, 342
client-server applications

bk collection clients, 29-30
BookRepository CollectionImpl class,

30-31
client code, 25-30
Collection interface, 25-29
IDL BookRepository module, code, 23-24
IDL constructs, 24
server code, 30-43

client-side interception points,
ClientRequestInfo validity, 473-474

client-side Interceptors, 461-465
client-side mapping, interfaces, 48-49
client side, out parameters, 80
ClientRequestInfo validity, client-side inter-

ception points, 473-474
ClientRequestInterceptor interface, 461-463

clients
agent, 146
bk collection, 29-30, 113-114
BK search, 87
bk_search, 62-63
BorrowableCollection interface, 83-86
C++, AnyPasser interface, 392-393
callback, processing invocations, 445-447
code

Book Repository, 25-30
exception handling, 83-87

Collection, CORBA Naming Service,
110-113

component-aware, 597
component-unaware, 597-598
CORBA Interoperable Naming Service,

265-267
CORBA Naming Service code, 110-114
customer, 146
implementing, 597-598
Java, AnyPasser interface, 420-421
multithreaded, callbacks or distributed

deadlocks, 447
object references, 29
ORB objects, 29
public IDL. code, 233-236
resolving names, 265-267
SearchableCollection interface, 59-62
single-threaded

callbacks, 446
distributed deadlocks, 447

CloseConnection message, 624
code. See also C++ code; Java code; syntax;

type codes
abstract interface types, syntax, 518
abstract value types, syntax, 517
Account object, 220
AccountFactory interface, 220
AccountVal

object, definitions, 493
type, 487-489, 493
value type public members, 496-500

ambiguous basic types, 400, 412
any types, 409, 419, 429, 436
applications, running with Portable

Interceptors, 485-486
array types, 407, 417, 427, 434-435
basic components, 557-559
basic types, 423-424, 429-431
bind_context() operation, declaring, 267

8 7 4 c l a s s e s

26 0672318121 index 6/21/01 1:00 PM Page 874

BookRepository IDL, 57-58, 81-82,
102-103

Bootstrap interface, 817
BuyingCH keyless component home decla-

ration, 560
callees or callers, 186-196
clients, 83-86

Book Repository, 25-30
Borrower DB class declaration,

94-95
BranchOffice object, 314-315
clients resolving names, 266-267
Collection client, 110-113
Collection DB class declaration,

68-69
CORBA Interoperable Naming

Service initial references, 251-253
CORBA Naming Service, 110-114
CORBA objects, 379-380
CORBA.ServerRequest class,

822-823
create request() method signatures,

806-807
createContextPath() method, imple-

menting, 257-260
DII exceptions, processing, 804-805
DynAny type with a boolean, 781
DynStruct object, creating for

VarLen instances, 782-784
DynUnion object, creating for Poly

instances, 785-787
etherealize() method, implement-

ing, 359
etherealize() operation, implement-

ing, 357-358
exception handling, 83-87
exception type, 652-654
get browsing() operation, imple-

menting, 312-313
global constraints, mapping,

124-125
IDL constant definition scopes, 124
interface types, determining, 816
invocations for DII, 798-799
listBindings() method, implement-

ing, 271-272
MyAdapterActivator class, declar-

ing, 386-387
ObjectIdMapper class, implement-

ing, 318-319
operation names, printing, 836-839

POAs, creating, 345-346, 370-371
Poly union, creating type codes,

776-777
recursiveUnbind() method, imple-

menting, 274-275
RecycleBroker_WasteItem_i::_

incarnate() function, 356
RecycleBroker::BranchOffice::get

browsing() operation, implement-
ing, 311-312, 333-334

RecycleBroker::WasteItemAdmin::
create() operation, implementing,
322-324

RecycleBroker::WasteItemAdmin::
find() operation, implementing,
322-324

RecycleBroker::WasteItemAdmin
object, 365-366

RecycleBroker::WasteItemAdmin
servant, implementing with lazy
activation, 360-362

RecycleBroker::WasteItemCallback
interface, implementing, 451-452

RecycleBroker::WasteItemRegister
interface, implementing, 449-450

SearchableCollection interface
clients, 59-60

sendEvent() operation, 393-394
sequence type, 678
servant activator class, 351-354
ServantLocator class, mapping,

373-374
server initialization, 37-38, 114-117
server mainline binding names,

262-263
service objects, creating POAs,

330-331
session object POAs, creating,

306-307
struct type, 690
union type, 698
VarLen struct, creating type code,

774-775
WasteItemAdmin object, 327-328

Components IDL module, 598-601,
611-617

CORBA::Container
base interface, search operations,

832-833
interface, content operations,

834-835

c o d e 8 7 5

26 0672318121 index 6/21/01 1:00 PM Page 875

CORBA::Repository interface, search
operations, 834

CosEventChannelAdmin.idl code, 546-548
CosEventComm.idl code, 548
CosTypedEventChannelAdmin.idl code,

549-550
CosTypedEventComm.idl code, 550
entity object POAs, IDL, 315-316
equivalent IDL, 558
exception types, 408, 418, 428, 435
fixed precision numbers, 406, 416, 427,

434
GIOP (General Inter-ORB Protocol) for-

mat, system exceptions, 857
IDL

BookRepository module, 23-24
CORBA::Object interface, 728
CORBA::ValueBase interface, 750
CosNaming module, 284-287
data types, 156-157
DII, 797
DynamicAny module, 788-793
hidden for servers, 233-234
IDL constant definitions, 121-124
Initialization Service, 284
interface repository, 841-856
list() operation, declaring, 269-270
POA policies, 298-300
Poly union, 776
PortableServer::AdapterActivator

interface, defining, 385-386
PortableServer::Current interface,

defining, 377
PortableServer::POAManager inter-

face, 383-384
public for clients, 233-236
repository IDs, 126
SampleTypes module, 391-392
ServantLocator interface, 368
session objects POAs, 305
syntax, regular value types, 495-496
VarLen struct, 774

IDL constants
boolean, 638-639
C++ mapping, 638
char, C++, 641-642
double, 644-645
enum, 647-648
fixed, 656-660
float, 661-662
long, 664-665

long double, 667
long long, 669-670
octet, 672-673
short, 681-683
string, C++, 686
string, 685-687
unsigned long, 704-706
unsigned long long, 707-709
unsigned short, 710-712
wchar, 713-715
wstring, 716-718

JavaBranchOffice object, 337-338
keyfull component homes, 562-564
object references

creating in IDL, 341-342
extracting, 419, 435-436
inserting, 408, 428-429

objects, deactivating in IDL, 344
OMG IDL grammar in EGNF notation,

764-768
Portable Interceptors, registering, 483-485
printTicTacToe() operation, implementing,

635-636
pseudo-IDL

CORBA::Context interface, 719
CORBA::ContextList interface, 721
CORBA::Environment interface,

722
CORBA::ExceptionList interface,

723
CORBA::NamedValue interface,

724
CORBA::NVList interface, 726
CORBA::ORB interface, 731-735
CORBA::Request interface, 741
CORBA::ServerRequest interface,

744
CORBA::TypeCode interface, 745

Pull Supplier Proxy, creating, 542
PurePullConsumer.C, 534-538
PurePullConsumer.java, 527-531
PurePushSupplier.C, 538-541
PurePushSupplier.java, 531-534
RecursiveList type, type codes, creating,

778-779
RecycleBroker::BuyingCH component

homes to equivalent IDL, 563
RecycleBroker IDL, 141-146, 566-569
RecycleBroker::WasteItemCH component

homes to equivalent IDL, 564-565

8 7 6 c o d e

26 0672318121 index 6/21/01 1:00 PM Page 876

RecycleBroker_WasteItemDetailsFactory,
505-507

RecycleBroker_WasteItemDetailsImpl
class, 502-504

RequestInfo Interface, defining, 471
resursive structs, IDL, 778
sequence types, 405-406, 416, 426, 433
ServantActivator interface, IDL, 339-340
servants (default), IDL to register, 376
server-side Interceptors, writing, 480-483
servers

Book Repository, 30-43
CORBA Naming Service, 114-121
exception handling, 87-95
multiply-inheriting IDL interfaces,

103-105
skeleton, 12-13, 376, 813
string types, 401-402, 413-414, 425-426,

432-433
string (wide) types, 403-404, 414-415
struct types, 405, 415, 426, 433
stub, 12-13, 769, 795
system exceptions, IDL, 858-859
TicTacToe array, mapping to C++, 632-634
type, creating dynamically, 771-780
type codes, IDL for creating, 772-774
TypeCode types, 429, 436
unambiguous basic types, 398-400,

411-412
union types, 406-407, 416-417, 427, 434
useArrayVarLen() operation, invoking,

635
ValueName value type, implementing in

Java, 500
ValueNameImple class outline, 497
WasteItemAdmin::get_item_details()

operation, 508-509
WasteItemC component, declaring,

557-558
WasteItemCH keyfull component home

declaration, 561-562
WasteItemDetails value type, IDL defini-

tion, 501-502
WasteItemDetailsFactoryImp, 506-508
WasteItemDetailsFull value type, 510-514
WasteItemDetailsImpl class, Java defini-

tion, 504
CODESET INCOMPATIBLE (system excep-

tion), 860

Collection, 20
client, CORBA Naming Service, 110-113
DB class, declaration, 68-69
interface, 23-29
object, activating. 133-134

colliding identifiers, 43
collocated case in parameters, passing,

181-183
COMM FAILURE (system exception), 860
command-line arguments

-ORBDefaultInitRef, 283
-ORBInitRef, 282-283

command-line parameters, ORB, 51
comments (IDL), 24
Common Data Representation. See CDR
Common Object Request Broker

Architecture. See CORBA
communications (asynchronous, indirect, syn-

chronous), 523
compact type codes, 440
companies, computer networks, mergers and

acquisitions, 5
comparing

CCM (CORBA Component Model) and
EJB (Enterprise Java Beans), 552

type codes, 442-443
compilers, IDL, 11-12
compiling, extended IDL, 556, 569
complete type codes, 439-440
completion status, 858
complex types (IDL), mapping, 69
component (servant lifetime policy), 608
component assemblers, assembly archive

files, 605-606
component assembly descriptor file, 606
component constructor() API placeholder,

584
component descriptors, 605
component executors, 570
component homes, 553

base home name, 559
component name, 559
declarations, 558-562
equivalent IDL, 556
implementing, 584
inheritance, 565-566
key types, 559
keyfull, 559-565, 590-597
keyless, 559-563, 585-590
persistence, 584-585

c o m p o n e n t h o m e s 8 7 7

26 0672318121 index 6/21/01 1:00 PM Page 877

RecycleBroker::BuyingCH, code to equiv-
alent IDL, 563

RecycleBroker::WasteItemCH, code to
equivalent IDL, 564-565

syntax, 559
component keyword, 556
component packages, 605
component-aware clients, 597
component-unaware clients, 597-598
components

assemblers, 605-607
attributes, 602
authentication (security lifetime policy),

609
basic, 557-558
CCM (CORBA Component Model) archi-

tecture, 553-556
clients, implementing, 597-598
component (servant lifetime policy), 608
container-managed transactions (transac-

tion lifetime policy), 608
containers

interactions, 554
servant lifetime policy, 608

CORBA component archives, 606
deployers, 606-607
entity, 555, 571, 577-583
equivalent IDL, 556
equivalent interfaces, 603
event sources, 602-604
extended, 601-604
facets, 601-602
IDL, 556-569
implementing, 570-571, 605
instantiating, 585
integrity (security lifetime policy), 609
IOR (interoperable object reference),

240-242
MANDATORY (transaction lifetime poli-

cy), 609
method (servant lifetime policy), 608
names, 257-260, 559
NEVER (transaction lifetime policy), 609
NOT SUPPORTED (transaction lifetime

policy), 608
policy constraints, 610
privacy (security lifetime policy), 609
process

CCM (CORBA Component Model),
555-556

implementing, 577-583

property files, 606
ready-made, support, 551
receptacles, 601-603
Recycle Broker, IDL declarations, 566-569
references, 584-585
registering, 584
REQUIRED (transaction lifetime policy),

608
REQUIRES NEW (transaction lifetime

policy), 609
self-managed transactions (transaction life-

time policy), 608
service (CCM), 555
session

API types, 571
CCM (CORBA Component Model),

555
implementing, 571-576

skeletons, generating, 569-570
stringified names, 248
SUPPORTS (transaction lifetime policy),

609
Syntax, mapping, 558
transaction (servant lifetime policy), 608
WasteItemC, 557-558

Components IDL module
callback interfaces, code to define, 600-601
code, 611-617
internal interfaces, code to define, 598-599

Components::Basic::EntityComponent oper-
ations, 583

Components::Basic::SessionComponent
operations, 576-577

Components::CCMHome interface, 589, 596
Components::CCMObject operations, 576,

583
Components::KeylessCCMHome interface,

589
compound types (C++), CORBA::Any class,

395-398, 409
computers, 5
concepts

IDL compilers, 11-12
Java code, 13
language mappings, 12-13
object adapters, 14
object references, 13-14
ORB (Object Request Broker), 15

Concurrency (CORBA Service), 20
configuration_complete() method, 576
confirmItem() operation, 797

8 7 8 c o m p o n e n t h o m e s

26 0672318121 index 6/21/01 1:00 PM Page 878

connect() method, 527
connections, initial, 832
connect_pull_consumer() method, 542
constant definitions (IDL) , 121-124
constant expressions, arithmetical operations,

123
constants (IDL)

boolean, 637-638
C++ mapping, 638
char, 640-642
double, 643-644
enum, 646-648
fixed, 655-656, 659
float, 660-662
identifiers, 121-125
interface inheritance, 210-211
long, 663-665
long double, 666-667
long long, 668-669
octet, 671-673
short, 681-682
string, 684-685
unsigned long, 704-705
unsigned long long, 706-708
unsigned short, 709-711
wchar, 712-714
wstring, 716-718

constraints
component policies, 610
global, mapping, 124-125
policies, 610

constructors, ServantActivatorImpl(), 351
constructs, IDL, 24
ConsumerAdmin, Pull Supplier Proxy, code

to create, 542
consumers

Event Channel, implementing, 542-544
Event Service, 524-525
Proxy Pull Consumer, 526
PurePullConsumer.java code, 527-531

consuming C++ insertions into CORBA::Any
class, 396-398

container (servant lifetime policy), 608
container-managed transactions (transaction

lifetime policy), 608
containers, 553

CCM (CORBA Component Model) archi-
tecture, 554

components, 554, 607
policy constraints, 610
progamming environment, 598-601

providers, 605
security policies, 609-610
servant lifetime policies, 608
transaction policies, 608-609

content operations, CORBA::Container
interface, code, 834-835

ContextList, creating, 808
contexts

bindings, creating, 256
expressions, 131-132
naming contexts, deleting, 274-276

control interfaces (RecycleBroker IDL),
147-148

conversion methods of objects, 203-204
conversion operations, 256-257
converting var type to parameter type,

155-156
copying

C++ insertions into CORBA::Any class,
395-396

data types, 170-172
lifecycle operation, 212
sequences, 75-76
struct types, 72

CORBA (Common Object Request Broker
Architecture), 5-6

1.1 specification, 619
2.0 specification, 619
2.4 specification, 620
2.4+ draft specification (portable

Interceptors), 459
2.4.2 core specification (IDL data types),

629
facilities, 19-20
Notification Service, OMG specification,

769
requirements, 8-10
servers, simplifying with CCM, 551
Services, 19-20, 551

CORBA Comonent Model. See CCM
CORBA Interoperable Naming Service, 245

BindingIterator interface, 269-271
bindings, resolving, 256
clients, 265-267
context bindings, creating, 256
conversion operations, 256-257
federated naming services, 267-269
IDL, 284-287
initial object references, 282-283
initial references, C++ code, 251-252
initialization services, 250-254

C O R B A I n t e r o p e r a b l e N a m i n g S e r v i c e 8 7 9

26 0672318121 index 6/21/01 1:00 PM Page 879

iterators, binding, 269-271
name utility, 257-262, 271-276
names, 247-250
object bindings, creating, 255-256
object URLs (uniform resource locators),

276-282
operations, 254-255
overview, 245-247
server mainline, 262-265
servers, 257

CORBA.ServerRequest class, code, 822-823
corbaloc:: object URLs, 276
corbaloc:iiop: object URLs, 276-280
corbaloc:rir: object URLs, 276-279
corbaname:: object URLs, 277
corbaname:iiop: object URLs, 277-282
corbaname:rir: object URLs, 277-281
CORBA::Any class, 392-419
CORBA::Any type, 527
CORBA::Any var class, 392
CORBA::Container base interface, 832-833
CORBA::Container interface, 831-835
CORBA::Container::contents() operation,

835
CORBA::Container::describe_contents()

operation, 835
CORBA::Container::lookup_name() opera-

tion, 833-834
CORBA::Container::lookup() operation,

833, 836
CORBA::Context interface, 719-720
CORBA::ContextList interface, 721
CORBA::DynAny type, 796
CORBA::Environment interface, 722-723
CORBA::IDLType interface, 831
CORBA::InterfaceDef interface, 830
CORBA::InterfaceDescription interface, 830
CORBA::IRObject interface, 831
CORBA::is_nil() function, 29
CORBA::NamedValue interface, 724-725
CORBA::NodeTypeDef interface, 830
CORBA::NodeTypeDescription interface, 830
CORBA::NVList interface, 726-727
CORBA::Object::get_interface() pseudo-

operation, 832
CORBA::Object interface, 727-730
CORBA::Object pseudo-interface, 796
CORBA::OperationDef interface, 830
CORBA::OperationDescription interface,

830

CORBA::ORB::destroy() operation, 30
CORBA::ORB_init() operation, 251
CORBA::ORB::list_initial_services() opera-

tion, 251
CORBA::ORB::resolve_initial_references()

operation, 251, 832
CORBA::ORB::run() operation, 446-447
CORBA::ORB::shutdown() operation, 30
CORBA::ORB interface, 731-735
CORBA::ORB type, 796
CORBA::Repository interface, 834
CORBA::Request interface, 741-743
CORBA::Request objects, 796-808
CORBA::ServerRequest interface, 744-745
CORBA::TypeCode interface, 745-748
CORBA::TypeCode type, 796
CORBA::TypeCode::equal() operation,

442-443
CORBA::TypeCode::equivalent() operation,

443
CORBA::TypedefDef interface, 831
CORBA::UnknownUserException::excep-

tion() method, 806
CORBA::ValueBase interface, 750-751
core elements, GIOP (General Inter-ORB

Protocol), 621-625
CosEventChannelAdmin.idl code, 546-548
CosEventComm.idl code, 548
CosNaming module, code for IDL, 284-287
CosNaming::Name (raw names), 249-250
CosTypedEventChannelAdmin.idl code,

549-550
CosTypedEventComm.idl code, 550
counting references with pointers, 213-215
counting functions, value types, 499
create() method, 596
create() operation, 221, 316, 327
create any() method, 55
create operation list() operation, 808
create request() methods, 806-808
create type tc() method, 55
createContextPath() method, 257-261
create_DB_record() function, 322
create_list() operation, 808
create_named_value() method, 808
create_POA() operation, definition, 296
create_recursive_tc() operation, 778
create_reference()

method, 204-205
operation, 342

8 8 0 C O R B A I n t e r o p e r a b l e N a m i n g S e r v i c e

26 0672318121 index 6/21/01 1:00 PM Page 880

create_reference_with_id()
method, 204-205
operation, 342

create_request() method, 797
create_sequence_tc() operation, 778
create_struct_tc() operation, 778
creation lifecycle operation, 212
crosslinks, naming services, 268
ctx argument, 807
current_component() operation, 785
current object, PortableInterceptor::Current

(PICurrent) object, 476-477
custom value types, transmitting, 521
customer clients, 146
customizing persistence, 584-585
cycles, creating naming graphs, 268

D
daemon processes, 16
dangling pointers, 214
data (boolean) DynAny type, 770
DATA CONVERSION (system exception),

860
data interfaces (RecycleBroker IDL), 147
data types, 156-157, 170-179, 197, 629. See

also any types
databases

keys, mapping to ObjectIds, 317-320
ORB, 51
records, managing, 320-322

deactivate_object() operation, 345
deactivating

CORBA objects, 344-345
Objects, IDL code, 344
servants, 292, 344-345

deadlocks, distributed, avoiding in callbacks,
447-448

deallocating
memory, 168-170
sequences, 76
struct types, 72

deallocation functions, strings, 46
decimal (base-10) integer literal, 759
declarations

AccountVal type as regular value, code,
487

basic component home, syntax, 559
basic components, 557-558
bind_context() operation, code, 267

BookRepository CollectionImpl class, C++
server code, 30-31

BookRepository_BorrowableCollection-
Impl class, C++ code, 87-88

BookRepository_FlexibleCollectionImpl
class, C++ code, 103-104

BookRepository_SearchableCollection-
Impl class, C++ code, 63-64

Borrower DB class, code, 94-95
BuyingCH keyless component home, code,

560
C++

BuyingCHImpl executor class,
code, 585

BuyingCImpl executor class, code,
571

RecycleBroker_WasteItemDetails-
Factory class, code, 505

RecycleBroker_WasteItemDetails-
Impl class, code, 502-503

WasteItemCHImpl executor class,
code, 590

WasteItemCImpl executor class,
code, 577

Collection DB class, code, 68-69
component homes, 558-559
exception types, 99
explicit, mapping, 564
forward, 207-208
IDL constants

boolean, 637-639
C++ mapping, 638
char, 640-642
double, 643-644
enum, 646-648
fixed, 655-660
float, 660-663
long, 663-665
long double, 666-667
long long, 668-670
octet, 671-673
short, 681-683
string, 684-686
unsigned long, 704-706
unsigned long long, 706-709
unsigned short, 709-712
wchar, 712-715
wstring, 716-718

IDL list() operation, code, 269-270

d e c l a r a t i o n s 8 8 1

26 0672318121 index 6/21/01 1:00 PM Page 881

Java
BuyingCHImpl executor class,

code, 586
BuyingCImpl executor class, code,

572
WasteItemCHImpl executor class,

code, 590
WasteItemCImpl executor class,

code, 577-578
MyAdapterActivator class, code, 386-387
Recycle Broker IDL, code, 566-569
servant activator class, C++ code, 351-352
variables, 41
WasteItemC component, code, 557-558
WasteItemCH keyfull component home,

code, 561-562
decomposed CORBA objects, 291
deep copy, data types, 170-172
default POA() function, 36, 381, 821, 826
default POAs (portable object adapters)

policies, 297-298
servants, 375-378

default servants, registering, IDL code, 376
default() method, 165
defining

Components IDL module, interfaces, code,
598-601

IDL, 556-569
PortableServer::AdapterActivator interface,

IDL code, 385-386
PortableServer::Current interface, IDL

code, 377
RequestInfo Interface, code, 471

definitions
AccountVal object, code, 493
C++

RecycleBroker_WasteItemDetails-
Factory class, code, 505

RecycleBroker_WasteItemDetails-
Impl class, code, 503-504

create_POA() operation, 296
IDL constants, 121-124
implementation (IDL), 569-570
Java

WasteItemDetailsFactoryImpl class,
code, 506

WasteItemDetailsImpl class, code,
504

ORB core, 459
refactored, WasteItemDetailsFull value

type, 510

delegation (tie) approach, 107
delete method, 168
deleting

naming contexts, 274-276
recursive (deallocating memory), 168-170
stack elements, 389

deployers, component, 606-607
deploying

applications, 15-19
CCM (CORBA Component Model),

604-607
dereg_callback() operation, 449-451
derived type, 225-227
derivedHelper class, 227
descriptors, component, 605
design goals, GIOP (General Inter-ORB

Protocol), 620-621
destroy() operation, DynAny interface,

780-782
destroy operations, Account objects, 221
destruction life cycle operation, 212
diagrams, state transition (POAManagers),

383
DII (Dynamic Invocation Interface), 795, 829

asynchronous invocations, 809-810
C++ invocations, code, 798-799
CORBA::DynAny type, 796
CORBA::Request objects, 796-797,

806-808
CORBA::TypeCode type, 796
DynamicAny module, 770-771
exceptions, code to process, 804-805
IDL, code, 797
Java invocations, code, 800-803
oneway invocations, 809
processing, 797-806
pseudo-interfaces, 810-811

directives, preprocessor, 128-129
DISCARDING state (POAManager object),

383
distributed deadlocks, avoiding in callbacks,

447-448
domain task forces, object management

architecture, 21
domain-specific specifications, object man-

agement architecture, 21
domains, administrative (ORB IDs), 51
dormant servers, invoking on, 17-18
dot (.), 247-249
double type (IDL), 643-644
downcast() method, 805

8 8 2 d e c l a r a t i o n s

26 0672318121 index 6/21/01 1:00 PM Page 882

downloading, CORBA standard, 6
DSI (dynamic skeleton interface), 813-815,

829
Bootstrap interface, 817
default servant POAs (portable object

adapters), 377
DynamicAny module, 770-771
ObjectIds, mapping to interface types,

816-817
servants, 815-827

dumb pointers, 153, 213
duplicate() method, 224
dynamic any IDL, 788-793
dynamic CORBA, narrowing object refer-

ences, 233
dynamic creations, type codes, 771-780
dynamic implementation classes, mapping,

755
Dynamic Invocation Interface. See DII
dynamic skeleton interface. See DSI
dynamically-allocated arrays, managing, 632
DynamicAny module, 814

any IDL (dynamic), 788-793
DynAny type, 770
IDL, code, 788-793
interfaces, 769-771

DynamicAny::DynAny type, 796
DynamicImplementation

functions, 818-822
methods, 822-827

DynamicImplementation.invoke() method,
825-826

DynAny type
boolean, 770, 781
creating, 780-782
destroying, 780-782
DynStruct object, creating, 782-785
DynUnion object, creating, 785-788
initializing, 782
interfaces, 770, 780-782
type codes, 771-780
types, creating, 788

DynAnyFactory interface, 780
DynArray interface, 770
DynEnum interface, 770
DynFixed interface, 770
DynSequence interface, 770
DynStruct

interface, 770
object, 782-785

DynUnion
interface, 770
object, 785-788

DynValue interface, 770

E
e-businesses, ACME Recycling, 139-149
EBNF notation, OMG IDL grammar, 764-768
EJB (Enterprise Java Beans) and CCM

(CORBA Component Model), comparing,
552

elements (core), 621-625
emitter event sources, 604
empty fields, stringified names, 249
empty name components (././.), 249
encoding CDR (Common Data

Representation)
array type, 631
boolean type (IDL), 637
char type (IDL), 640
double type (IDL), 643
enum type (IDL), 646
exception type, 651
fixed type (IDL), 656
float type (IDL), 660
long type (IDL), 663
long double type (IDL), 666
long long type (IDL), 668
octet type (IDL), 671
sequence type, 675
short type (IDL), 681
string type (IDL), 684
struct type, 689
union type, 695
unsigned long type (IDL), 704
unsigned long long type (IDL), 707
unsigned short type (IDL), 710
wchar type (IDL), 712
wstring type (IDL), 716

EnterpriseComponent interface, 601
entity API types, 571
entity components (CCM), 555, 577-583
entity objects, 148, 303

creating, 304
factories, 322-329
lazy activation, 340
lifecycles, 340
long-lived, 304
persistent, 304
POAs (portable object adapters), 315-322
scalability, 148

e n t i t y o b j e c t s 8 8 3

26 0672318121 index 6/21/01 1:00 PM Page 883

EntityComponent interface, 601
EntityContext interface, 599
enum type (IDL), 645

CDR encoding, 646
IDL, 646-648

enums, IDL, 24
environments (secure),

operations, invoking, 609-610
programming, 598

equivalent IDL, 556-558, 562-565
equivalent interfaces of components, 603
escape character (backslash), 248-249
escape mechanism (URL) for strings, 278
escape sequences, narrow and wide charac-

ters (IDL grammar), 760
escaped identifiers, 43
escaped IDL identifiers, 43-44
etherealize()

function, flags, 358-359
method, Java code to implement, 359
operation, C++ code, 357-358

Event (CORBA Service), 20
Event Channel, 524

Consumers, implementing, 542-544
ORB, 541
PurePullConsumer.C code, 534-538
PurePullConsumer.java code, 527-531
PurePushSupplier.C code, 538-541
PurePushSupplier.java code, 531-534
Suppliers, implementing, 544-546

event flow models (Event Service), 525-526
Event Service, 524-527, 546-550
events

sinks, 603-604
sources, 603-604
untyped, 527

Events Service, 523
evictions

object, 343
strategies for servants, 369

evictor patterns
automatic object activation, 343
entity object lifecycle, 340
objects in servers, 342-344
POAs, implementing, 343
servant locator POAs, 369-370

Exception class (IDL), 751
ExceptionList, creating, 808
exceptions

checked, 97
DII, code, 804-805

exception class hierarchy, C++ or Java, 96
ForwardRequest, 468
handling, code, 83-88, 90-95
IDL interface inheritance, ambiguity reso-

lutions, 210-211
informative, 98
java.lang.Exception class, 806
native exception handling, integration, 98
processing, 804-806
propagating across networks, 99
raises clause, 99
systems, 96, 100
types

C++, CORBA::Any class, 408, 418
declaration, 99
extracting, code, 418, 435
IDL, 650-653, 751-754
inserting, code, 408, 428
Java, org.omg.CORBA.Any class,

428, 435
mapping to Java, 98
OutOfRange user, Java mapping,

653
unchecked, 97
user, 96

exception_id string, 857
executor classes. See classes
executors (component), 570
explicit declarations, mapping, 564
exponents (IDL grammar), 759
exporting object references, 42
expressions, 123, 131-132, 761-763
extended attribute syntax, 557
extended components, 553, 601-604
extended IDL, 556, 569
extended level (CCM), 552
External Data Representation (XDR), 622
external interfaces, 598
Externalization (CORBA Service), 20
extract() method, 435
extractions

ambiguous basic types, code, 412
any types, code, 419, 436
array types, code, 417, 434-435
basic types, code, 429-431
C++, from CORBA::Any class, any types,

409-419
exception types, code, 418, 435
fixed precision numbers, code, 416, 434
Java, from org.omg.CORBA.Any class,

any types, 429-436

8 8 4 E n t i t y C o m p o n e n t i n t e r f a c e

26 0672318121 index 6/21/01 1:00 PM Page 884

object references, code, 419, 435-436
read-only, C++ from CORBA::Any class,

410
sequence types, code, 416, 433
string types, code, 413-415, 432-433
struct types, code, 415, 433
type aliases, 440-441
TypeCode types, code, 436
unambiguous basic types, code, 411-412
union types, code, 416-417, 434

extract_Object() method, 435

F
facets, components, 601-604
facilities, CORBA, 19-20
factories

creating, 365-367
entity object, 322-329
factory keyword, 560
interfaces (RecycleBroker IDL), 147-148
lazy, 360-365
objects, 220-221, 304-305
operations, syntax, 559-560
service objects, 334-338
session objects, 311-315
value, 491-492, 504-508

federated naming services, 267-269
fields, stringified names, 249
files

04Listing01.idl, 156
administrative, ORB, 51
assembly archives, 605-606
component assembly descriptor, 606
component properties, 606
non-public.idl, 233
orb.properties, 55-56
public.idl, 233

file:// (object URL format), 277
find methods, 597
find() operation, 221, 316, 327
finder interfaces, 221
finder operations, syntax, 559-560
finding

CORBA objects, 15-16
database records, 321

find_by_primary_key() method, 596
find_DB_record() function, 322
find_object() operation, 817
fixed data type, 197

fixed-lengths
array, 197
struct data type, 197
types, 179-180, 190-192
union, 197

fixed-points
expressions (IDL grammar), 763
literals (IDL grammar), 760
sub-expressions, 763

fixed precision numbers
C++, CORBA::Any class, 406, 416
extracting, code, 434
inserting, code, 427
Java, org.omg.CORBA.Any class, 427, 434
types, 406-416

fixed types, 46-47, 164
CDR encoding, 656
IDL constant declarations, 655-660

flags
argument, 808
cleanup in progress, 359
remaining activations, 358

float types (IDL),
CDR encoding, 660
IDL constant declarations, 660-662

floating points
expressions (IDL grammar), 763
literals (IDL grammar), 759-760
sub-expressions, 763
types, IDL mapping for, 45

flow of incoming requests, controlling, 294
flow rules for Interceptors, 463
Foo interface, 205

conversion methods, 216
forward declarations, 208
mapping to dumb pointers, 212
mapping to smart pointers, 214
nil objects, 219

Foo_var type, 214
for_consumers() function, 542
for_suppliers() function, 544
Forces, domain task, 21
formal specifications, 6
formats

messages, 621-624
object URLs, 276-277
OMG IDL, repository IDs, 126

forms, var types (smart pointers), 154-155
forward declarations, 207-208
forward slash (/), 247-249
ForwardRequest exception, 468

F o r w a r d R e q u e s t e x c e p t i o n 8 8 5

26 0672318121 index 6/21/01 1:00 PM Page 885

Fragment message, 624
FREE MEM (system exception), 860
front() function, 352
ftp:// (object URL format), 277
functions

arrayName_copy(), 179
arrayName_dup(), 178
C++

declaration, database records, 321
PortableServer (IDL), 755
sequence objects, 73
ServantActivator::etherealize(),

implementing servant activators,
357-359

static, managing arrays, 632
callback client main(), code, 452-456
CORBA is_nil(), 29, 219, 226
counting, value types, 499
create_DB_record(), 322
default_POA(), 36, 381, 821, 826
DynamicImplementation, 821-822
etherealize(), flags, 358-359
find_DB_record(), 322
for consumers(), 542
for suppliers(), 544
front(), 352
Java declaration, database records, 321
length() accessor, 73
length() modifier, 73
main(), 37, 41-43, 452-456
maximum() accessor, 73
narrow(), 225-227, 253
ObjectIdMapper::extract_type_from_

ObjectId(), 356
object_to_string(), 56
OctetSeq::get_buffer(), 75
ORB.init(), properties, 53
pop(), 352
primary_interface(), 816, 822
processException(), 805
process_user_input(), 446-447
push(element type elem)(), 352
queue template class, 352
read_reference(), 29
RecycleBroker_WasteItem_i::_incarnate(),

C++ code, 356
resolve_initial_references(), 253
ServantActivatorImpl::incarnate(), 356
ServantBase, 821-822
string allocation or deallocation, 46
string_to_object(), 56

this(), 379-381, 817
this_object(), 822
unknown adapter(), algorithm, 387
ValueName, 499

G
garbage collection for session objects, 149
general forms, var types (smart pointers),

154-155
General Inter-ORB Protocol (GIOP), 619-626
get_browsing() operation, 146, 312-313
get_buying() operation, 146
get_ccm_home() method, 576
get_component_def() method, 589
get_home_def() method, 589
GET_OBJ_REF_FROM_KEY() API place-

holder, 584
get_primary_key() method, 576, 583
get primitive tc() method, 55
get response() operation, 809
get_selling() operation, 146
get_values() method, 78
getResult() method, 194
GIOP (General Inter-ORB Protocol), 619-626
global constraints, mapping, 124-125
grammar (IDL), 759-768
graphs, 268-269, 521

H
handling exceptions, 81-95
headers of component homes, 559
HeadOffice interface, 146
Helper type (Java IDL), 76-77, 757-758
helper types (Java), 76-79
hexadecimal (base-16) integer literal, 759
hidden IDL for servers, code, 233-234
HiddenInterface class, 234-235
hiding

interfaces, 233-235
operations, 235-236

hierarchies
C++

BookRepository Collection Impl
servant class, 32

exception class, 96
inheritance hierarchy of values, 515
servant inheritance, 32, 106

federated naming services, 268-269

8 8 6 F r a g m e n t m e s s a g e

26 0672318121 index 6/21/01 1:00 PM Page 886

Java
BookRepository Collection Impl

servant class, 33
exception class, 96
inheritance, 108, 516
servant inheritance, 33, 106

POAs (portable object adapters), 293-294
Holder type (Java) , 76-79, 758
HOLDING state (POAManager object), 383
home keyword, 556
homes. See component homes
HTTP (Hypertext Transfer Protocol), 625
HTTP Servlet, 141
http:// (object URL format), 277

I
ID

assignment policies, 310-311
uniqueness policy, 333

id field (empty), 249
IdAssignmentPolicy (POA)

child values, 298
entity objects, 317
implicit activation values, 378
RootPOA object values, 297
service objects, 333
SYSTEM_ID, 205
USER_ID , 205

identifiers
C++ mapped, 124, 129
clashing, IDL interface inheritance, 210
colliding, 43
escaped, 43
IDL

C++, 129-130
case sensitivity, 43
context expressions, 131-132
escaped, 43-44
Java, 130-131
recursive types, 125-126
repository IDs, 126-129

Java mapped, 124-125, 130
mapping, 121-124
POAs (portable object adapters), 291

identifying CORBA objects, 317
IDL (interface definition language), 10-11,

156-158, 206. See also PIDL
AliasDef interface, 830
aliasing, 24
any (dynamic), 788-793

any type, 389-394, 420-423, 436-443
BookRepository module, code, 23-24,

57-58, 81-82, 102-103
BookRepository::Collection interface,

implementing 33-36
boolean constants, 637-639
char constants, 640-642
component skeletons, generating, 569-570
Components IDL module, code, 611-617
CORBA::Any class, 392-419
CORBA::Object interface, 728
CORBA::ValueBase interface, 750
Collection interface, 23-24
comments, 24
compilers, 11-12
component keyword, 556
Components IDL module, interfaces,

598-601
constant definitions, code, 121-124
constants

boolean, 638-639
C++ mapping, 638
char, 641-642
double, 644-645
enum, 647-649
fixed, 658-, 660
float, 662-663
long, 664-665
long double, 667
long long, 669-670
octet, 672-673
short, 682-683
string, 686-687
unsigned long, 705-706
unsigned long long, 708-709
unsigned short, 711-712
wchar, 714-715
wstring, 717-718

constructs, 24
CosEventChannelAdmin.idl code, 546-548
CosEventComm.idl code, 548
CosNaming module, code, 284-287
CosTypedEventChannelAdmin.idl code,

549-550
CosTypedEventComm.idl code, 550
data types, 156-157, 629
default servants, code to register, 376
defining for components, 556-569
definitions, WasteItemDetails value type,

code, 501-502
DII, code, 797

I D L (i n t e r f a c e d e f i n i t i o n l a n g u a g e) 8 8 7

26 0672318121 index 6/21/01 1:00 PM Page 887

double constants, 643-644
DynamicAny module, code, 788-793
entity object POAs, code, 315-316
enums, 24, 646-648
equivalent, 556-565
extended, 556, 569
fixed constants, 655-656, 659
float constant, 660-662
grammar, 759-768
hidden for servers, code, 233-234
home keyword, 556
identifiers, 121-132
implementation definition, 569-570
Initialization Service, code, 284
interfaces, 24, 206

CORBA::Request objects, 797
forward declarations, 207-208
inheritance, 209-211
Java, 97-98, 107-109
list() operation, 269-271
multiple inheritances, 102-106
operations, no overloading, 208-209
PIDL (Pseudo-IDL), 211
repository, 829, 841-856
stub code, 795

list() operation, code to declare, 269-270
long constants, 663-665
long double constants, 666-667
long long constants, 668-669
mapping, 43-50, 69-79, 96-101
modules, 24
object references, 341-344
octet constants, 671-673
OMG IDL format, repository IDs, 126
operations, 230-232
org.omg.CORBA.Any class, Java, 423-436
POAs (portable object adapters) policies,

298-300
Poly union, code, 776
PortableServer::AdapterActivator interface,

code to define, 385-386
PortableServer::Current interface, code to

define, 377
PortableServer::POAManager interface,

code, 383-384
primary keys, 559
public for clients, code, 233-236
recursive structs, code, 778
Recycle Broker, 141-148, 566-569, 836,

841
regular value types, 501-502

repository IDs, code, 126
SampleTypes module, code, 391-392
ServantActivator interface, code, 339-340
ServantLocator interfacecode, 368
session objects POAs, code, 305
short constants, 681-682
string constants, 684-686
structs, mapping, 70, 73
syntax

array type, 630-631
enum type, 646
exception type, 650-651
fixed type, 655
regular value types, 495-496
sequence type, 674-675
string type, 683
struct type, 687-689
union type, 693-695
user exceptions, 99
wstring type, 715

system exceptions, code, 858-859
type codes, code for creating, 772-774
TypeDef interface, 830
typedef keyword, 24, 830
types

exception, 751-754
Java Helper, 757-758
Java Holder, 758
mapping to Java, 131
Portableserver module, 754-757

types (built-in)
array, 630-636
boolean, 637-639
char, 640-642
double, 643-645
enum, 645-648
exception, 650-654
fixed, 655-659
float, 660-663
long, 663-665
long double, 666-667
long long, 668-670
native, 670
Object, 671
octet, 671-673
short, 681-683
string, 683-687
struct, 687-692
union, 693-702
unsigned long, 703-706
unsigned long long, 706-709

8 8 8 I D L (i n t e r f a c e d e f i n i t i o n l a n g u a g e)

26 0672318121 index 6/21/01 1:00 PM Page 888

unsigned short, 709-712
wchar, 712-715
wstring, 715-718

unbounded sequences, mapping, 73
unsigned long constants, 704-705
unsigned long long constants 706-708
unsigned short constants, 709-711
VarLen struct, code, 774
WasteItem interface, code to refactor,

513-514
wchar constants, 712-714
wstring constants, 716-718
Zoo module, code, 221-222

IDs
ORB, 50-51
repository, 126-129

IdUniquenessPolicy (POA policy)
child POA values, 298
entity objects, 317
RootPOA object values, 297
service objects, 333

IIOP (Internet inter-ORB protocol), 11, 141
GIOP (General Inter-ORB Protocol),

619-625
IOR (Interoperable Object Reference),

625-626
profiles, 237-238, 626

illegal interfaces, 209
IMP LIMIT (system exception), 860
implementations

bindObjectPath() method, code, 260-261
BookRepository::BorrowableCollection,

89-93, 108-109
BookRepository::Collection IDL interface,

code, 33-36
BookRepository::FlexibleCollection inter-

face, code, 104-105
BookRepository::SearchableCollection

interface, code, 65-68
C++

BuyingCHImpl executor class,
code, 586-587

BuyingCImpl executor class, code,
572-574

WasteItemCHImpl executor class,
code, 591-593

WasteItemCImpl executor class,
code, 578-580

callbacks, 445-446
clients, 597-598
component homes, 584-596

components, 570-571
Consumers (Event Channel), 542-544
createContextPath() method, code,

257-260
default servant POAs (portable object

adapters), 377-378
definition (IDL), 569-570
DSI servants, 817-826
entity components, 577-583
entity object factory, 322-327
etherealize() operation, 357-359
evictor patterns (POAs), 343
Java

BuyingCHImpl executor class,
code, 588-589

BuyingCImpl executor class, code,
574-576

WasteItemCHImpl executor class,
code, 594-596

WasteItemCImpl executor class,
code, 580-582

lazy factories, 360-365
listBindings() method, code, 271-274
POAs (portable object adapters), 291
Polymorphic, IDL operations, 232
printTicTacToe() operation, code, 635-636
process components, 577-583
recursiveUnbind() method, code, 274-276
Recycle Broker, 148-149
RecycleBroker::BranchOffice::get brows-

ing() operation, code, 333-335
RecycleBroker::WasteItemAdmin::create()

operation, code, 322-326
RecycleBroker::WasteItemAdmin::find()

operation, code, 322-326
RecycleBroker::WasteItemAdmin servant,

code, 360-364
RecycleBroker::WasteItemCallback inter-

face, code, 451-452
RecycleBroker::WasteItemRegister inter-

face, code, 449-451
regular value types, 501-504
repositories, activation records, 17
sample, oneway operations (callbacks),

449-457
SearchableCollection::find_by_title()

operation, Java code, 81
sendEvent() operation, code, 393-394,

421-422
servant activators, 351-359
servant locators, 375

i m p l e m e n t a t i o n s 8 8 9

26 0672318121 index 6/21/01 1:00 PM Page 889

service object factories, 334-336
session components, 571-576
session object factories, 311-313
Suppliers (Event Channel), 544-546
value factory, 504-506
ValueName value type, Java code, 500
WasteItemAdmin::get_item_details()

operation, code, 508-509
implementors, component, 605
implicit activation

POAs (portable object adapters), 378-381
servers, 133-134

ImplicitActivationPolicy (POA policy)
child POAs, values, 298
entity objects, 317
implicit activation, values, 378
RootPOA object, values, 297
service objects, 333

in parameters, passing, 181-184
INACTIVE state (POAManager object), 383
incoming requests, controlling flow, 294
indirect communication, 523
information, request information (request

Interceptors), 471-476
informative exceptions, 98
inheritance

approach, 107
C++

hierarchy for values, 512, 515
servant inheritance hierarchy, 32

component homes, 565-566
IDL interfaces, 209-211
Java

IDL interfaces, 107-109
hierarchy for values, 512-513, 516
servant inheritance hierarchy, 33

multiple-inheriting IDL interfaces, 102-106
rules, value types, 519-520
trees, DSI servants, 817, 822
“truncatably,” code, 511
values, 509-515

inhomogeneity of computer systems, 5
initial connections, 832
initial object references, 282-283
initial references

CORBA Interoperable Naming Service,
code, 252-253

ORB, 52
resolving, 56

Initialization Service, code for IDL, 284
initialization services, 250-254, 832

INITIALIZE (system exception), 860
initializing

applications, 50-57
CORBA applications, steps, 251
DynAny type, 782
DynStruct object, 784
DynUnion object, 787
memory, 158-167
ORB, 41-42, 50-57
root POA, 41-42
sequences, 74
servers, code, 37-41, 114-119
struct types, 71

inout parameter, 184-189, 800
insert boolean() operation initializing, 782
insert() method, 428
inserting

ambiguous basic types, code, 400
any types, code, 409, 429
array types, code, 407, 427
basic types, code, 423-424
exception types, code, 408, 428
fixed precision numbers, code, 406, 427
object references, code, 408, 428-429
sequence types, code, 405-406, 426
string types, code, 401-404, 425-426
struct types, code, 405, 426
type aliases, 440-441
TypeCode types, code, 429
unambiguous basic types, code, 398-400
union types, code, 406-407, 427
vars into CORBA::Any class, 398

insertion operator
<<= or >>=, 392
passing pointers, 398

insertions
C++ into CORBA::Any class, 394-409
Java into org.omg.CORBA.Any class,

423-429
insert_Object() methods, 428
instances

ClientRequestInterceptor, 463
object references, 201
Poly, creating DynUnion object, 785-787
ServerRequestInterceptor, 468
VarLen, creating DynStruct object,

782-784
WasteItem object, creating with Java, 516

instantiating components, 585

8 9 0 i m p l e m e n t a t i o n s

26 0672318121 index 6/21/01 1:00 PM Page 890

integers
expressions, operators, 762
literals (IDL grammar), 759
types, IDL mapping for, 44

integration, native exception handling, 98
integrity (security lifetime policy), 609
interception points

client-side, 461-463, 473-474
receive exception, 462
receive other, 462
receive reply, 462
receive request, 467
send exception, 468
send other, 468
send poll, 462
send reply, 468
send request, 462
server-side, 467-468, 475

Interceptors, 459. See also portable
Interceptors; request Interceptors

ClientRequestInterceptor instance, 463
client-side, 461-465, 473-474
flow rules, 463
ForwardRequest exception, 468
IOR Interceptor, 477-478
ORBInitializer object, 478
ORBInitInfo object, 478
receive exception interception point, 462
receive other interception point, 462
receive reply interception point, 462
receive request interception point, 467
registering, 478-480
RequestInfo Interface, code to define, 471
send exception interception point, 468
send other interception point, 468
send poll interception point, 462
send reply interception point, 468
send request interception point, 462
ServerRequestInfo interface, 474
ServerRequestInterceptor instance, 468
server-side, 467-471, 475, 480-483

interface definition language. See IDL
Interface Repository, 235, 795, 814, 829-832

CORBA::Container
base interface, search operations,

code, 832-833
interface, content operations, code,

834-835
CORBA::Repository interface, search

operations, code, 834
IDL code, 841-856

initial connections, 832
initialization services, 832
parse trees, 832-835
populating, 832
reading from, 836, 841
RecycleBroker IDL, reading from, 836,

841
structure, 830-831

InterfaceNamePOA (Java) class, 377
interfaces

abstract, 517-519
Account, code for definitions, 493
AccountFactory, 220-221
AliasDef, 830
any type, 769
AnyPasser, 392-394, 420-423
Bar, 49
base, 147, 830-831
BindingIterator, 269-271
BlobStack, 389
BookRepository::BorrowableCollection,

code, 89-93, 108-109
BookRepository::Collection, 25, 33-36
BookRepository::FlexibleCollection, code,

104-105
BookRepository::SearchableCollection,

code, 65-68
Bootstrap, 817
BorrowableCollection, clients, code, 83-86
BranchOffice, 146
C++ mapping, 211-212
callback, 598, 600-601
CCMContext, 599
ClientRequestInterceptor, 461
Collection, 23-29
Components::CCMHome, 589, 596
Components::KeylessCCMHome, 589
control (RecycleBroker IDL), 147-148
CORBA, ORB, 771, 774
CORBA::Context, 719-720
CORBA::ContextList, 721
CORBA::Environment, 722-723
CORBA::ExceptionList, 723-724
CORBA::NamedValue, 724-725
CORBA::NVList, 726-727
CORBA::Object, 727-730
CORBA::ORB, 731-737
CORBA::Request, 741-743
CORBA::ServerRequest, 744-745
CORBA::TypeCode, 745-748
CORBA::ValueBase, 750-751

i n t e r f a c e s 8 9 1

26 0672318121 index 6/21/01 1:00 PM Page 891

CORBA::Container, 831-835
CORBA::IDLType interface, 831
CORBA::InterfaceDef, 830
CORBA::InterfaceDescription, 830
CORBA::IRObject interface, 831
CORBA::NodeTypeDef, 830
CORBA::NodeTypeDescription, 830
CORBA::OperationDef, 830
CORBA::OperationDescription, 830
CORBA::Repository, 834
CORBA::TypedefDef interface, 831
data (RecycleBroker IDL), 147
DII (Dynamic Invocation Interface),

770-771, 795-796, 829
DSI (dynamic skeleton interface), 377,

770-771, 813-815, 829
DynamicAny module, 769-771
DynAny type, 770, 780-788
DynAnyFactory, 780
DynArray, 770
DynEnum, 770
DynFixed, 770
DynSequence, 770
DynStruct, 770
DynUnion, 770
DynValue, 770
EnterpriseComponent, 601
EntityComponent, 601
EntityContext, 599
equivalent for components, 603
external, 598
factory (RecycleBroker IDL), 147-148
finder, 221
Foo, 205

conversion methods, 216
forward declarations, 208
mapping to dumb pointers, 212
mapping to smart pointers, 214
nil objects, 219

HeadOffice, 146
HiddenInterface class, 234-235
hiding, 233-235
IDL, 24, 206, 269-271

CORBA::Request objects, 797
forward declarations, 207-208
inheritance, 209-211
Java inheritance, 107-109
mapping, 47-49, 97-98
multiple inheritance, 106, 102-105
operations, no overloading, 208-209

PIDL (Pseudo-IDL), 211
stub code, 795

illegal, 209
internal, 598-600
local, 349-351
locality-constrained, 349
mapping, C++ and Java, 47
NamingContextExt, 245
NodeTypeDef, writeable and readable

parts, 832
Office, 146
PassByReference, code for definitions, 493
PassByValue, code to pass by value, 489
PolicyFactory, 477-478
portable Interceptor, 460
PortableServer::AdapterActivator, IDL

code to define, 385-386
PortableServer::POAManager, IDL code,

383-384
pseudo 796, 810-811
PublicInterface class, 234-235
PullSupplier, 542
RecycleBroker IDL, 147-148
RecycleBroker::BuyingCHExplicit, 590
RecycleBroker::BuyingCHImplicit, 589
RecycleBroker::WasteItemCallback, code,

451-452
RecycleBroker::WasteItemCHExplicit, 597
RecycleBroker::WasteItemCHImplicit, 596
RecycleBroker::WasteItemRegister, code,

449-451
repository, request() method, 804
RequestInfo Interface, code to define, 471
SearchableCollection, clients, 59-62
ServantActivator, IDL code, 339-340
ServantLocator, IDL code, 368
ServerRequestInfo, 474
servers, skeleton code, 813
SessionComponent, 601
SessionContext, 599
SessionSynchronization, 601
SII (Static Invocation Interface), 795
TypeDef, 830
types, code, 816
UserTransaction, 600
values inheriting from, 513-516
WasteItem, code to refactor, 513-514
WasteItemAdmin, create() or find() opera-

tion, 316
WasteItemCallback, 448

8 9 2 i n t e r f a c e s

26 0672318121 index 6/21/01 1:00 PM Page 892

WasteItemRegister, 448
ZooManager, 230

interface_name db_key (ObjectId), 318
INTERNAL (system exception), 860
internal interfaces, 598-600
Internet inter-ORB protocol. See IIOP,
Interoperable Naming Service. See CORBA

Interoperable Naming Service
interoperable object reference. See IOR
INTF REPOS (system exception), 861
IntfName, 212-213
INV FLAG (system exception), 861
INV IDENT (system exception), 861
INV OBJREF (system exception), 861
INV POLICY (system exception), 861
INVALID TRANSACTION (system excep-

tion), 861
Inventory::confirmItem() operation, invok-

ing, 798-804
invocations, 291-292

asynchronous, 809-810
C++, request() method, 798-800
Java, request() method, 800-804
oneway, 809
processing, 368-369, 445-447
remote, 29, 184, 290
request() method, 798
SearchableCollection::find_by_title()

operation, Java code, 80
invoke()

method, 800
operation, 820-821, 825-826

invoking
on active servers, 18
on dormant servers, 17-18
sendEvent() operation, code, 393, 420-421
operations in secure environments,

609-610
on transient CORBA objects, 19
useArrayFixLen() operation, Java code,

636
useArrayVarLen() operation

C++ code, 635
Java code, 636-637

IOR (Interoperable Object Reference), 15,
201, 276, 625

components, 240-242
IIOP profiles, structure, 237-238
Interceptor, 477-478
location information, 202
profile components, 626

properties, 626
stringified object references, 238-240
structure, 236-237

is_a() operation, 821, 827
is in collection() operation, 24
isMultiThread parameter, 309
isPersistent parameter, 309
item(itemIndex).value() call, 804
iterating over parse trees, 834-835
iterators, binding, 269-271

J
Java

all_interfaces() method, 816
any types, 420, 429, 436
AnyPasser interface, 420
array types, 427, 434-435
Bar interface, 49
BarHelper class, 49
BarHolder class, 49
basic types, 423-424, 429-431
bindObjectPath() method, code to imple-

ment, 261
BookRepository::

BorrowableCollection class, imple-
menting, 107

BorrowableCollection interface,
implementation, code, 91-93,
108-109

Collection IDL interface, imple-
mentation, 35-36

FlexibleCollection interface, imple-
mentation, code, 105

SearchableCollection interface,
implementation, 66-68

BorrowableCollection interface, clients,
code, 85-86

Borrower DB class, declaration, code, 95
callback client main() function, code,

454-456
classes, 499
clients, 266-267, 420-421
code

array type, 636
attribute names, printing, 839-840
exception type, 654
operation names, printing, 839-840
sequence type, 680
struct type, 692
union type, 702

J a v a 8 9 3

26 0672318121 index 6/21/01 1:00 PM Page 893

Collection
client, CORBA Naming Service,

code, 112-113
DB class, declaration, 69
interface, client code, 27-29
object, 133-134

CORBA 2.4.2 core specification (IDL data
types), 629

CORBA.ServerRequest class, code,
822-823

create request() methods, code for signa-
tures, 807

createContextPath() method, code to
implement, 258-260

database records, 321
declarations

BuyingCHImpl executor class,
code, 586

BuyingCImpl executor class, code,
572

WasteItemCHImpl executor class,
code, 590

WasteItemCImpl executor class,
code, 577-578

definitions, 504-506
delegation (tie) approach, 107
DII exceptions, code to process, 805
DSI servants, 822-827
DynAny type with boolean, 781
DynStruct object, code to create for VarLen

instances, 783-784
DynUnion object, code to create for Poly

instances, 786-787
exception class hierarchy, 96
exception types

code to extract, 435
code to insert, 428
mapping, 98

extractions from org.omg.CORBA.Any
class, 429-436

fixed precision numbers, 427, 434
global constraints, mapping, 124-125
Helper types, 76-79, 757-758
Holder types, 76-79, 758
IDL

interface inheritance, 107-109
mapping, 47
structs, mapping, 70, 73
types, mapping, 131
unbounded sequences, mapping, 73

IDL constants
boolean, 639
char, 642
double, 645
enum, 649
fixed, 660
float, 663
long, 665
long long, 670
octet, 673
short, 683
string, 687
unsigned long, 706
unsigned long long, 709
unsigned short, 712
wchar, 715
wstring, 718

implementations
BuyingCHImpl executor class,

code, 588-589
BuyingCImpl executor class, code,

574-576
WasteItemCHImpl executor class,

code, 594-596
WasteItemCImpl executor class,

code, 580-582
inheritance

approach, 107
hierarchy, 33, 108
hierarchy for values, code, 512-513,

516
insertions into org.omg.CORBA.Any class,

423-429
InterfaceNamePOA class, 377
interfaces, 47, 816
invocations, 800-804
java.lang.Exception class, 751
keywords, clashes, 130-131
lang.Exception class, exceptions, 806
listBindings() method, implementing,

272-274
local interfaces, implementing, 350-351
mapped identifiers and keywords, 130
mapping

array type, 636
CORBA::Context interface, 720
CORBA::ContextList interface, 721
CORBA::Environment interface,

723
CORBA::ExceptionList interface,

724

8 9 4 J a v a

26 0672318121 index 6/21/01 1:00 PM Page 894

CORBA::NamedValue interface,
725

CORBA::NVList interface, 727
CORBA::Object interface, 730
CORBA::ORB interface, 737
CORBA::Request interface, 743
CORBA::ServerRequest interface,

745
CORBA::TypeCode interface, 748
CORBA::ValueBase interface, 751
dynamic implementation classes

(PortableServer module), 755
exception type, 653
IDL identifier constants, 124-125
OutOfRange user exception type,

653
PortableServer::Servant native type,

757
regular value types, 499-501
sequence type, 679
struct type, 691
types in IDL interfaces, 97-98
union type, 700

modules, mapping, 47
narrow() function, 253
nil object references, 219-220
object references

extracting, code, 435-436
inserting, code, 428-429
narrowing, 227-228
org.omg.CORBA.Object type,

229-230
widening, 224-225

ORB objects, 52-55
-ORBOption Value arguments, 53
org.omg.CORBA.

Any class, 420
SystemException class, 752
UnknownUserException class, 753
UnknownUserException.except()

method, 806
UserException class, 754

PortableServer, 823-825
PurePullConsumer.java code, 527-531
PurePushSupplier.java code, 531-534
RecursiveList type, type codes, creating,

779
recursiveUnbind() method, implementing,

275-276
registrations, WasteItemDetailsFactoryImpl

value factory, code, 507-508

request() method, code for signature, 797
SearchableCollection::find_by_title()

operation, 80-81
SearchableCollection interface, clients,

61-62
sendEvent() operation, 420-422
sequence types, 426-433
servant inheritance hierarchy,

BookRepository FlexibleCollectionImpl
class, 33, 106

ServantActivator.etherealize() method,
implementing servant activators, 359

Server Pages. See JSP
servers

AnyPasser interface, 421-423
initialization, CORBA Naming

Service, code, 39-41, 117-119
mainline binding names, 263-264

signature interfaces, 49
skeleton code, 12-13
string types, 425-426, 432-433
struct types, 426, 433
stub code, 12-13
suffixes, clashes, 131
system properties, 51
TicTacToe array type, mapping, 636
tie (delegation) approach, 107
Type class, 76
type codes, 774
TypeCode types, 429, 436
TypeHelper class, 76, 79
TypeHolder class, 76
union types, 427, 434
useArrayFixLen() operation, code to

invoke, 636
useArrayVarLen() operation, code to

invoke, 636-637
ValueName value type, implementing,

code, 500
VarLen struct, type code, code to create,

775
WasteItem object instance, creating, 516
WasteItemAdmin::get_item_details()

operation, code to implement, 509
WasteItemCallback::notify() operation,

451
Java code

array type, 636
attribute names, printing, 839-840
bindObjectPath() method, implementing,

261

J a v a c o d e 8 9 5

26 0672318121 index 6/21/01 1:00 PM Page 895

BookRepository::BorrowableCollection
interface implementation, 91-93, 108-109

BookRepository::Collection IDL interface
implementation, 35-36

BookRepository::FlexibleCollection inter-
face implementation, 105

BookRepository::SearchableCollection
interface implementation, 66-68

BranchOffice object, 314-315, 337-338
BuyingCHImpl executor class, 586-589
BuyingCImpl executor class, 572-576
callback client main() function, 454-456
client of Collection interface, 27-29
CORBA Interoperable Naming Service,

initial references, 252-253
CORBA objects, 380
etherealize() method, implementing, 359
get browsing() operation, implementing,

312-313
inheritance hierarchy for values, 512-513
interface types, determining, 816
invocations for DII, 800-803
listBindings() method, implementing,

272-274
long syntax, activating Collection object,

133
MyAdapterActivator class, declaring, 387
ObjectIdMapper class, implementing,

319-320
operation names, printing, 839-840
POAs, 346-348, 371-373
Poly union, creating type codes, 777
PortableServer.DynamicImplementation

class, 823-825
PortableServer.Servant class, 823-825
recursiveUnbind() method, implementing,

275-276
RecycleBroker WasteItem i. incarnate()

method, 356-357
RecycleBroker::

BranchOffice::get browsing() oper-
ation, implementing, 334-335

WasteItemAdmin::create() opera-
tion, implementing, 324-326

WasteItemAdmin::find() operation,
implementing, 324-326

WasteItemAdmin object, 366-367
WasteItemAdmin servant, imple-

menting with lazy activation,
362-364

WasteItemCallback interface,
implementing, 452

WasteItemRegister interface, imple-
menting, 450-451

SearchableCollection::find_by_title()
operation, 80-81

SearchableCollection interface clients,
61-62

sendEvent() operation, 420-422
sequence type, 680
servant activator class, implementing,

354-355
ServantLocator class, mapping, 374
server initialization, 39-41, 117-119
server mainline binding names, 263-264
service objects, POAs, creating, 331-332
session object POAs, creating, 307-308
signature, request() method, 797
struct type, 692
this() method, activating Collection object,

134
union type, 702
useArrayFixLen() operation, invoking,

636
useArrayVarLen() operation, invoking,

636-637
VarLen struct, creating type code, 775
WasteItem object instance, creating, 516
WasteItemAdmin object, 328-329
WasteItemCHImpl executor class, 590,

594-596
WasteItemCImpl executor class, 577-582
Zoo module, 221-222

Java mapping
CORBA::Context interface, 720
CORBA::ContextList interface, 721
CORBA::Environment interface, 723
CORBA::ExceptionList interface, 724
CORBA::NamedValue interface, 725
CORBA::NVList interface, 727
CORBA::Object interface, 730
CORBA::ORB interface, 737
CORBA::Request interface, 743
CORBA::ServerRequest interface, 745
CORBA::TypeCode interface, 748
CORBA::ValueBase interface, 751
IDL constants

boolean, 639
char, 642
double, 644
enum, 648

8 9 6 J a v a c o d e

26 0672318121 index 6/21/01 1:00 PM Page 896

fixed, 659
float, 662
long, 665
long long, 669
octet, 673
short, 682
string, 686
unsigned long, 705
unsigned long long, 708
unsigned short, 711
wchar, 714
wstring, 718

values inheriting from, 512-513, 516
JSP (JavaServer Pages), HTTP Servlet, 141

K
keyfull component homes, 559-565, 590-597
keyless component homes, 559-563, 585-590
keys

database, mapping to ObjectIds, 317-320
object, 202
primary, 559
types, 559

keywords
C++, clashes, 130
C++ mapped, 129
component, 556
factory, 560
home, 556
Java, 130-131
typedef, 830

kind field (empty), 249

L
languages

IDL, 10
mappings, OMG Web site, 12-13
programming neutrality, 9

last in, first out (LIFO), 525
layers, OSI Model, 620
lazy activation, 340-342, 360-365
lazy find() operation, algorithm, 365
left-shift assignment,

<<= (insertion operator), 392
LEGACY adapter, invoke() operation,

814-815, 820-821, 825-826
legacy systems, 5
legislation, computer infrastructure, 5
length() accessor or modifier function, 73
levels, CCM, 552

libraries, C++ STL (standard template
library), 352

Licensing (CORBA Service), 20
Life Cycle (CORBA Service), 20
lifecycles

entity objects, 340
object reference operations, 204-205, 212
parameters, 180-181
persistent objects, 301
POAManager, 381-382
transient objects, 301

lifespan policies, POAs (portable object
adapters), session objects, 310

LifespanPolicy (POA policy)
child POAs, values, 298
entity objects, 317
RootPOA object, values, 297
service objects, 333

LIFO (last in, first out), 525
limitations, oneway operations (callbacks),

449
links, crosslinks, naming services, 268
list() operation, 269-271
listBinding() method, 271-274
listBindings() method, implementing,

271-274
listings. See code
lists, bindings, 270-274
literals (IDL grammar), 637, 759-761
local, 349-351
locality-constrained interfaces (DynamicAny

module), 349, 770
LocateReply message, 624
LocateRequest message, 624
locating, 16-19, 56-57
LOCATION FORWARD (Reply message),

624
LOCATION FORWARD PERM (Reply mes-

sage), 624
locations

information, IOR, 202
objects, 201
transparency, objects, 9, 206

locators, servant, 367
implementing, 375
POAs, 368-373

long
double type (IDL), 666-667
long type (IDL), 668-670
syntax, Collection object, 133
type (IDL), 663-665

l o n g 8 9 7

26 0672318121 index 6/21/01 1:00 PM Page 897

long-lived entity objects, 304
longevity, object references, 205
lookup_id() search operation, 834

M
main() function, 37, 41-43

C++ callback client, code, 452-454
Java callback client, code, 454-456

mainline servers, CORBA Interoperable
Naming Service, 262-265

managers, POAs (portable object adapters),
293

activating, 42
associating, 382
creating, 381
incoming requests, conrolling flow, 294
lifecycle, 381-382
state transitions, 383-385
states of, 293, 383

managing. See also memory management
(C++)

database records, 320-322
dynamically-allocated arrays, 632
memory, request() method, 800

MANDATORY (transaction lifetime policy),
609

mapping
any type, 769
C++

array type, 631-634
CORBA::Context interface, 720
CORBA::ContextList interface, 721
CORBA::Environment interface,

722
CORBA::ExceptionList interface,

723
CORBA::NamedValue interface,

725
CORBA::NVList interface, 726
CORBA::Object interface, 729
CORBA::ORB interface, 735
CORBA::Request interface, 742
CORBA::ServerRequest interface,

744
CORBA::TypeCode interface, 747
CORBA::ValueBase interface, 750
dynamic implementation classes

(PortableServer module), 755
exception type, 652
IDL identifiers, constants, 124

interfaces, 211-212
PortableServer::Servant native type,

756
regular value types, 496-499
sequence types, 675
string types, 45
struct types, 689
union types, 696
values inheriting from interfaces,

515
values inheriting from values, 512
wstring types, 45

client-side, interfaces, 48-49
component syntax, 558
database keys to ObjectIds, 317-320
exception types to Java, 98
explicit declarations, 564
global constraints, Java code, 124-125
IDL, 96

complex types, 69
CORBA system exceptions,

100-102
CORBA user exceptions, 98-100
identifiers, 121-132
Java Helper types, 76-79
Java Holder types, 76-79
Java mapping, types in IDL inter-

faces, 97-98
struct types, 70-73
types to Java, 131
unbounded sequence types, 73-76

interfaces in C++ and Java, 47
Java

array type, 636
CORBA::Context interface, 720
CORBA::ContextList interface, 721
CORBA::Environment interface,

723
CORBA::ExceptionList interface,

724
CORBA::NamedValue interface,

725
CORBA::NVList interface, 727
CORBA::Object interface, 730
CORBA::ORB interface, 737
CORBA::Request interface, 743
CORBA::ServerRequest interface,

745
CORBA::TypeCode interface, 748
CORBA::ValueBase interface, 751

8 9 8 l o n g - l i v e d e n t i t y o b j e c t s

26 0672318121 index 6/21/01 1:00 PM Page 898

dynamic implementation classes
(PortableServer module), 755

exception type, 653
Helper type, 76-77
Holder type, 76-77
IDL identifiers, constants, 124-125
PortableServer::Servant native type,

757
regular value types, 499-501
sequence type, 679
struct type, 691
TicTacToe array type, 636
union type, 700
values inheriting from interfaces,

516
values inheriting from values,

512-513
keyfull component homes, 563-565
keyless component homes, 562-563
languages, OMG Web site, 12-13
modules in C++ and Java, 47
ObjectIDs

interface types, 816-817
servants, 291-293

OutOfRange user exception type, Java, 653
servant locator POAs (portable object

adapters) for
PortableServer::ServantLocator opera-
tion, 373-375

ServantLocator class, 373-374
TicTacToe array to C++, code, 632-634

maps
active object maps, 291, 375
no active object maps, 376

MARSHAL (system exception), 861
maximum() accessor function, 73
Mediator, 523

Event Channel
Consumers, implementing, 542-544
ORB, 541
PurePullConsumer.C code, 534-538
PurePullConsumer.java code,

527-531
PurePushSupplier.C code, 538-541
PurePushSupplier.java code,

531-534
Suppliers, implementing, 544-546

Event Service
CosEventChannelAdmin.idl code,

546-548
CosEventComm.idl code, 548

CosTypedEventChannelAdmin.idl
code, 549-550

CosTypedEventComm.idl code, 550
patterns, 524-526

members, public, 496-497, 500
memory

allocating
any types, 167
array types, 166-167
fixed types, 164
object references, 167
sequence types, 161-164
string types, 158-160
struct types, 160-161
union types, 165
VarLen structs, 162

any types, 167
array types, 166-167
data types

array types, 177-179
assignments, 170, 173
copying, 170
deep copy, 170-172
sequence types, 176-177
shallow copy, 170-172
string types, bounded or unbounded,

173-174
struct types, 175-176
union types, 176-177
WString types, bounded or

unbounded, 174
deallocating, 168-170
fixed types, 164
initializing

any types, 167
array types, 166-167
fixed types, 164
object references, 167
sequence types, bounded, 163-164
sequence types, unbounded,

161-163
string types, 158-160
struct types, 160-161
union types, 165

object references, 167
parameter passing

fixed-length types, 179-180
in parameters, 183-184
inout parameters, 184-189
memory management rules,

197-198

m e m o r y 8 9 9

26 0672318121 index 6/21/01 1:00 PM Page 899

out parameters, 190-194
parameter lifecycle, 180-181
retn() method, 194
return values, 194-196
types of, 197
variable-length types, 179-180

sequence types, 161-164
servers, 342
struct types, 160-161
union types, 165
WString types, bounded, 159-160

memory management
C++, 211

ptr = var type assignment, 217-218
ptr and var types, mixed assign-

ments, 216-218
ptr types, 212-214
smart pointers, 152-156
var = ptr type assignment, 217
var types, 214-216

IDL, data types, code, 156-158
request() method, 800
rules, 197-198

merging computer networks, 5
MessageError message, 624
messages

formats, GIOP (General Inter-ORB
Protocol), 621-624

passing (Event Service), 524
methods

add value(), arguments, 803
all_interfaces(), 816, 827
bindObjectPath(), 260-262
ccm_activate(), 576, 583
ccm_load(), 583
ccm_passivate(), 577, 583
ccm_remove(), 577, 583
ccm_save(), 583
configuration_complete(), 576
connect(), 527
connect_pull_consumer(), 542
CORBA::is_nil() method, 805
CORBA::UnknownUserException::

exception(), 806
create(), 596
create, 55, 806-808
create_named_value(), 808
create_reference(), 204-205
create_reference_with_id(), 204-205
create_request(), 797
createContextPath(), 257-261

default(), 165
delete, 168
downcast(), 805
_duplicate(), 213
duplicate(), 212, 224
DynamicImplementation, overriding,

822-827
DynamicImplementation.invoke(),

825-826
etherealize(), Java code to implement, 359
extract(), 435
extract Object(), 435
find, 597
find_by_primary_key(), 596
get primitive tc(), 55
get_ccm_home() method, 576
get_component_def(), 589
get_home_def(), 589
get_primary_key(), 576, 583
get_values(), 78
getResult(), 194
in(), 155-156
inout(), 155-156
insert Object(), 428
insert(), 428
IntfName
invoke(), 800
Java ServantActivator.etherealize(), 359
listBindings(), 271-274
memory, deallocating, 168
narrow(), 227
nil(), 219
nset_entity_context(), 583
object conversions, 203-204
Object ptr), 168
object_to_string() method, 201
org.omg.CORBA.UnknownUser-

Exception.except(), 806
out(), 155-156
passIn(), 183
passInout(), 186
pull(), 526-527
push(), 527
receive request() method, 480
receiveOut(), 192
recursiveUnbind(), 274-276
RecycleBroker WasteItem i. incarnate(),

Java code, 356-357
release(), 212-214
remove(), 576, 596
remove_component(), 589

9 0 0 m e m o r y

26 0672318121 index 6/21/01 1:00 PM Page 900

request(), 796
C++ invocations, 798-800
C++ signature, code, 797
interface repository, 804
invocations, 798
Java invocations, 800-804
Java signature, code, 797
memory management, 800

resolve_initial_references(), 541, 544
retn(), 155-156, 194, 398
send reply() method, 480
send_oneway(), semantics or syntax, 809
servant lifetime policy, 608
Servant._all_interfaces(), overriding, 826
Servant._default_POA(), overriding, 826
Servant._get_interface(), overriding, 827
Servant._is_a(), overriding, 827
Servant._non_existent(), overriding, 826
Servant._this_object(), not overriding, 827
singleton ORB, 55
string free(char *), 168
string_to_object(), 202
this(), 133-134, 205
this_object(), 827
try pull(), 526-527
void

<arrayName>_free(<arrayName>_slice*)
method, 168

Zoo.GiraffeHelper.narrow(), 228
middleware, 5-6
minor_code_value, 857
mixed, assignments or pointers, 173, 216-218
models. See also CCM

event flow (Event Service), 525-526
ORB CTRL (thread policy), 309
OSI Reference Model, GIOP (General

Inter-ORB Protocol), 620
Pull, 526
Push, 525-526
SINGLE THREAD (thread policy), 309

modules. See also DynamicAny
BookRepository IDL, code, 57-58, 81-82,

102-103
Components IDL, code, 611-617
CosNaming, code for IDL, 284-287
DynamicAny, 814
IDL, 24, 47-48, 391-392
mapping, C++ and Java, 47
PortableServer, 754-757

SampleTypes, IDL data types, code,
391-392

Zoo, code, 221-222
MULTIPLE ID policy value, 333
multiple inheritance, IDL interfaces, 106
multiplex receptacles, 603
MULTIPLE_ID ID uniqueness policy value,

333
MULTIPLE_ID policy value, servant refer-

ence counting approach, 358-359
multiple-inheriting IDL interfaces, 102-103
multithreaded callback clients, distributed

deadlocks, 447
MyAdapterActivator class, 386-387

N
naive view of objects, 200
name utility

bindObjectPath() method, 260-262
createContextPath() method, 257-260
listBindings() method, 271-274
recursiveUnbind() method, 274-276

NamedValue, creating for result argument,
808

names
attributes, 836-840
base home, 559
binding with server mainline, 262-264
components, creating, 257-260, 559
CORBA Interoperable Naming Service,

247-250
CORBA Naming Service, 57, 110-121
operations, 836-840
raw, 247-250
resolving, 256, 265-267
stringified, 247-249

naming. See also CORBA Interoperable
Naming Service

contexts, deleting, 274-276
graphs, cycles, creating, 268

NamingContextExt interface, 245
narrow characters (IDL grammar), escape

sequences, 760
narrow() function, 225-227, 253
narrowing, object references, 225-228,

232-233
native

exception handling, integration, 98
types, 756-757, 670

n a t i v e 9 0 1

26 0672318121 index 6/21/01 1:00 PM Page 901

NEEDS ADDRESSING MODE (Reply mes-
sage), 624

networks, 5, 99
neutrality of programming languages, 9
NEVER (transaction lifetime policy), 609
next () operation, 785
nil() method, 219
nil object references, 218-220
nilness, testing object refrences, 253
no active object maps, default servant POA

policies, 376
NO IMPLEMENT (system exception), 861
NO MEMORY (system exception), 861
NO PERMISSION (system exception), 862
NO RESOURCES (system exception), 862
NO RESPONSE (system exception), 862
nodes of parse trees, 830
NodeType (parse tree), 830
NodeTypeDef interfaces, writeable and read-

able parts, 832
NON RETAIN policy value, 348
non-public.idl file, 233
non_existent() operation, 821, 826
NOT SUPPORTED (transaction lifetime poli-

cy), 608
notations, EBNF, 764-768
Notification (CORBA Service), 20
notify() operation, 448
NO_EXCEPTION (Reply message), 623
numbers, fixed precision

C++, CORBA::Any class, 406, 416
code to extract, 434
code to insert, 406, 427
Java, org.omg.CORBA.Any class, 427, 434
types, code to extract, 416

O
OBJ ADAPTER (system exception), 862
obj argument, 448
object-oriented RPCs (remote procedure

calls), 7-8
ObjectId, 254, 290-291, 318
ObjectID strings, OMG-defined values, 254
ObjectIdMapper class, 318-320
ObjectIdMapper::extract_type_from_Object

Id() function, 356
ObjectIds, mapping to

database keys, 317-320
interface types, 816-817
servants, 291-293

objects. See also OMG; ORB; POAs
Account, 220-221
AccountVal, definitions, code, 493
active object maps (POAs), 291, 375
adapters, 14
automatic activation, 343
bindings, 246, 255-256, 260-262
BOA (basic object adapter), 14
BranchOffice, 313-315, 336-338
Browsing CORBA, creating, 313
callback, 445
Collection, 133-134
conversion methods, 203-204
CORBA, 148-149

C++ code, creating with this() func-
tion, 379-380

creating, 292
deactivating, 344-345
decomposing, 291
entity, 303-304
factory, 304-305
identifying, 317
Java code 380
locating, 56-57
ObjectId, 290-291
persistent, 132-133, 301-303
session, 303-304
transient, 132-133, 301-302

CORBA::Request, 796
create request() methods, 806-808
exceptions, processing, 804-806
IDL interfaces, 797
request() method, 797-804

deactivating, IDL code, 344
DynStruct, 782-785
DynUnion, 785-788
entity

CORBA, 304, 340
creating, 304
factories, 322-329
lifecycles 340
long-lived, 304
persistent, 304
POA (portable object adapters),

policies, 315-322
scalability, 148

eviction, 343
factory, 220-221, 305
finding, 15-16
in servers, evictor pattern, 342-344
information about, 201

9 0 2 N E E D S A D D R E S S I N G M O D E (R e p l y m e s s a g e)

26 0672318121 index 6/21/01 1:00 PM Page 902

initial references, 282-283
IOR (interoperable object reference), 15
location transparency, 201, 206
management architecture, (OMA), 19-21
no active object maps, default servant POA

policies, 376
NOT EXIST (system exception), 862
object references, 199-205
orientation, 8-9
persistent, lifecycle, 301
PortableInterceptor::Current (PICurrent),

476-477
PortableServer::POA::create_POA()

operation, 294
process, 149
RecycleBroker::WasteItemAdmin, 365-367
references, 13-14, 29, 167, 253, 290

Browsing, generating, 336
C++, CORBA::Any class, 408,

418-419
C++ memory management, 211-218
C++ nil, 218-219
calling delete, 214
creating, IDL code, 341-342
dangling pointers, 214
data types, 197
exporting, 42, 419, 435-436
factory objects, 220-221
IDL interfaces, 206-211
IIOP profiles, structure, 237-238
inserting, code, 408, 428-429
instances, 201
IOR (interoperable object refer-

ence), 201-202, 236-237, 240-242
Java nil, 219-220
Java, org.omg.CORBA.Any class,

428-429, 435-436
lifecycle, 204-205, 212
location transparency, 206
longevity, 205
naming services, 245
narrowing, 232-233
nil, 218-220
object URLs (uniform resource

locators), converting to, 277
objects, 199-206
polymorphism, 221-236
representations, 201-202
solutions for obtaining, 16
stringified, parsed, 201, 238-240
this() method, 205

RootPOA, 293-298
sequence (C++), 73
servant, 204-205
ServantActivator, creating local, 350-351
ServantManager, 339
service

factories, 334-338
POAs (portable object adapters),

330-333
properties, 330

session, 148
creating, 303
factories, 311-315
garbage collection, 149
POAs (portable object adapters),

305-311
stringified object references, 56
transient, 19, 301
types, 201, 228, 671
URLs, (uniform resource locators),

276-282
values

abstract interfaces, 517-519
inheritance rules, 519-520
interfaces, inheriting from, 513-516
regular value types, 495-509
types, 487-495, 509
values, inheriting from, 509-513

views, naive and realistic, 200
WasteItem, instance, creating with Java,

516
WasteItemAdmin, 327-329

object_key, 202
object_to_string()

function, 56
operation, 236

OBV ValueName class (C++), 496
octal (base-8) integer literal, 759
octet type (IDL), 45, 671-673
OctetSeq::get_buffer() function, 75
Office interface, 146
OMA (object management architecture), 6
OMG (Object Management Group), 200

CORBA facilities, 20
CORBA Services, 19-20
domain task forces, 21
domain-specific specifications, 21
grammar in EGNF notation, code, 764-768
IDL (interface definition language), 10-11,

126

O M G (O b j e c t M a n a g e m e n t G r o u p) 9 0 3

26 0672318121 index 6/21/01 1:00 PM Page 903

specification (CORBA Notification
Service), 769

task forces, OMG Web site, 21
technology process, 6
Web site, 6, 13

OMG-defined values, ObjectID strings, 254
ONC External Data Representation (XDR),

622
oneway

invocations, 809
operations (callbacks), 448-457

operations
activate(), 456
activate_object with id(), 311
activate_object(), 311
arg_list, 808
arithmetical, constant expressions, 123
bind(), semantics, 255-256
bind_context(), code to declare, 267
bind new context(), 256
BranchOffice::get_browsing(), 306
C++ sequence objects, 73
Components::Basic::EntityComponent,

583
Components::Basic::SessionComponent,

576-577
Components::CCMObject, 576, 583
confirmItem(), 797
CORBA Interoperable Naming Service,

254-257
CORBA::

Container::contents(), 835
Container::describe_contents(), 835
Container::lookup(), 833, 836
Container::lookup_name(),

833-834
Object::get_interface()

pseudo-operation, 832
ORB::destroy(), 30
ORB::list_initial_services(), 251
ORB::resolve_initial_references(),

251, 832
ORB::run(), 446-447
ORB::shutdown(), 30
ORB_init(), 251
TypeCode::equal(), type codes,

comparing, 442-443
TypeCode::equivalent(), type

codes, comparing, 443
create(), 221, 316, 327
create_list(), 808

create operation list(), 808
create_POA(), definition, 296
create_recursive_tc(), 778
create_reference(), 342
create_reference_with_id(), 342
create_sequence_tc(), 778
create_struct_tc(), 774, 778
create_union_tc(), 776
current_component(), 785
deactivate_object(), 345
dereg_callback(), 449-451
destroy, Account objects, 221
destroy(), DynAny interface, 780
etherealize(), 357-358
find(), 221, 327, 316
find_object(), 817
finder, syntax, 560
get_browsing(), 146, 312-313
get_buying(), 146
get response(), 809
get_selling(), 146
hiding, 235-236
IDL, 208-210, 230-232
initialization service, 250-251
insert boolean(), DynAny type, initializ-

ing, 782
Inventory::confirmItem(), 798-804
invoke(), LEGACY adapter, 820-821,

825-826
invoking in secure environments, 609-610
is_a(), 235, 821, 827
is in collection(), 24
lazy find(), algorithm, 365
list(), 269-271
names, 836-840
next(), 785
non_existent(), 821, 826
notify(), 448
object references, 212, 342
object_to_string(), 236
oneway (callbacks), 448
operator[], 73
perform_work(), 446
poll response(), 809-810
PortableServer::POA::create_POA(),

294-296
PortableServer::ServantLocator, mapping

for servant locator POAs, 373-375
printTicTacToe(), code to implement,

635-636

9 0 4 O M G (O b j e c t M a n a g e m e n t G r o u p)

26 0672318121 index 6/21/01 1:00 PM Page 904

rebind(), 255-256, semantics, 255
RecycleBroker::BranchOffice::

get browsing(), 311-312, 333-335
RecycleBroker::WasteItemAdmin::

create(), 322-327, 364
RecycleBroker::WasteItemAdmin::find(),

322-327, 365
reg_callback(), 448, 451, 456
resolve(), 256
resolve_initial_references(), 296
resolve str(), 256
resolve_str(), 228-229
rewind(), 785
run(), 446
search, lookup id(), 834
Java code, 80-81
seek(), 784
sendEvent(), 392-394, 420-422
send_deferred(), 809
ServantActivator::incarnate(), servant acti-

vators, implementing, 355-357
to name(), 256-257
to string(), 256-257
to url(), 256-257
useArrayFixLen(), code to invoke, 636
useArrayVarLen(), code to invoke,

635-637
WasteItemAdmin::get_item_details(),

508-509
WasteItemCallback::notify(), 451-452
ZooManager, getAllAnimals(), 230

operators
binary, 762-763
insertion pointers, passing, 398
unary, 762-763

operator[] operation, 73
ORB (Object Request Broker), 6, 15, 201, 541

administrative files, 51
architecture, 7
ClientRequestInterceptor instance, 463
command-line parameters, 51
CORBA, 8-10, 317-318
core, definition, 459
CTRL model (thread policy), 309
daemon processes, 16
databases, 51
GIOP, (General Inter-ORB Protocol),

619-626
IDs, administrative domains, 50-51
IIOP (Internet inter-ORB protocol), 11,

619

Inheritance, discovering, 235
initial references, 52
initializing, 41-42
interceptors, 459
Interface Repository, 235
Java system properties, 51
objects, initialization, 29, 52-57
OMG, IDL (interface definition language),

10-11
protocols, 237
requests, processing, 42-43
RPCs, (remote procedure calls), 7-8
ServerRequestInterceptor instance, 468
services, 459
shutting down, 30
singleton, methods, 55
synchronous communication, 523

ORB.init() function, properties, 53
orb.properties file, 55-56
-ORBDefaultInitRef command-line argu-

ment, 283
ORBInitializer object, 478
ORBInitInfo object, 478
-ORBInitRef command-line argument,

282-283
-ORBOption Value arguments, 53
org.omg.CORBA.Any class, 420

Java extraction, 431-436
Java insertion, 423-429

org.omg.CORBA.Object type, 229-230
org.omg.CORBA.ORBClass property, 53
org.omg.CORBA.ORBSingletonClass proper-

ty, 53
org.omg.CORBA.UnknownUser-

Exception.except() method, 806
orientations, objects, 8-9
OSI Model layers, 620
OSI Reference Model, GIOP (General Inter-

ORB Protocol), 620
out parameters, 80-81, 190-194, 800
outlines, ValueName Impl class code, 497
OutOfRange user exception type, Java map-

ping, 653
overloading operations, no overloading,

208-209
overriding

default OA() function, 381
default_POA() function, 36
DynamicImplementation, 818-827
_primary_interface() function, 821
Servant._all_interfaces() method, 826

o v e r r i d i n g 9 0 5

26 0672318121 index 6/21/01 1:00 PM Page 905

Servant._default_POA() method, 826
Servant._get_interface() method, 827
Servant._is_a() method, 827
Servant._non_existent() method, 826
Servant._this_object(), not overriding, 827
ServantBase, 821-822
_this() fucnction, not overriding, 822

overviews, CORBA Interoperable Naming
Service, 245-247

P
packages, component, 605
parameters

command-line, ORB, 51
in, 181-184
inout, 184-189, 800
isMultiThread, 309
isPersistent, 309
lifecycle, 180-181
out, 80-81, 190-194, 800
parentPOAP, 309
passing

fixed-length types, 179-180
in parameters, 181-184
inout parameters, 184-189
memory management rules,

197-198
out parameters, 190-194
parameter lifecycle, 180-181
retn() method, 194
return values, 194-196
types of, 197
variable-length types, 179-180

POAManagerP, 309
POAName, 309
receiving, 771
returning, 79
sending, 771
system exceptions, 860
types, converting to var type, 155-156

parentPOAP parameter, 309
parse tree, nodes, 830-835
parsed stringified object references, 239
pass by reference semantics, 492-493, 495
pass by value semantics, value factories,

488-492
PassByReference interface, AccountVal

object definitions, code, 493
PassByValue interface, AccountVal type pass-

ing by value, code, 489

passIn() method, 183
passing

AccountVal type by value, code, 489
any type, 392, 420
messages (Event Service), 524
parameters

fixed-length types, 179-180
in parameters, 181-184
inout parameters, 184-189
memory management rules,

197-198
out parameters, 190-194
parameter lifecycle, 180-181
retn() method, 194
return values, 194-196
types of, 197
variable-length types, 179-180

pointers, 398
values as return values, 508-509

passInout() method, 186
patterns. See also Mediator

Consumers, 524-525
Event Channels, 524
event flow models, 525
evictor, 340-344, 369-370
message passing, 524
proxy, 526
Pull model, 526
Push model, 525-526
Suppliers, 524-525

perform_work() operation, 446
PERSIST STORE (system exception), 862
persistence, 584-585

CORBA objects, 132-133
entity objects, 304
objects, lifecycle, 301-303

PERSISTENT lifespan policy value, 317
Persistent Object (CORBA Service), 20
Persistent State (CORBA Service), 20
PERSISTENT value (lifespan policy), 310
PIDL (Pseudo-IDL), 211. See also IDL

CORBA::Context interface, 719-720
CORBA::ContextList interface, 721
CORBA::Environment interface, 722-723
CORBA::ExceptionList interface, 723-724
CORBA::NamedValue interface, 724-725
CORBA::NVList interface, 726-727
CORBA::Object interface, 727-730
CORBA::ORB interface, 731-737
CORBA::Request interface, 741-743
CORBA::ServerRequest interface, 744-745

9 0 6 o v e r r i d i n g

26 0672318121 index 6/21/01 1:00 PM Page 906

CORBA::TypeCode interface, 745-748
CORBA::ValueBase interface, 750-751

placeholders, 584
plain attributes, Collection interface, 24
POAName parameter, 309
POAs (portable object adapters), 289

activate_object() operation, 311
activate_object with id() operation, 311
activating, 385-388
active object maps, 291
BranchOffice object, 313-314, 336-338
BranchOffice::get_browsing() operation,

306
child POAs, creating, 293, 296-297
CORBA objects

C++ code, 379-380
creating, 292
decomposing, 291
entity, 303-304, 340
factory, 304-305
Java code, 380
ObjectId, 291
persistent, 301-303
session, 303-304
transient, 301-302

conversion methods, 203-204
create_POA() operation, definition, 296
default servant POA policies, 375-376
DSI servants, registering, 815
entity objects

creating, 304, 317
database keys, mapping to

ObjectIds, 317-320
database records, managing,

320-322
factories, 322-329
IDL, code, 315-316
long-lived, 304
persistent, 304

etherealize()
operation, 357-358
method, Java code to implement,

359
evictor patterns, implementing, 343
factory objects, 305
functionality, 551
get browsing() operation, Java code to

implement, 312-313
hierarchy, 293-294
ID assignment policy, 205, 310

identity, 291
IDL, 341-344
implementations, 291
implicit activation, 378-381
invocations, 290-292, 368-369
lifespan policy, 310
managers, 42, 293-294, 381-385, 456
MyAdapterActivator class, 386-387
ObjectIdMapper class, 318-320
ObjectIds, mapping to servants, 291-293
objects, 301
ORB, identifying CORBA objects,

317-318
persistent objects, lifecycle, 301
POAManagers, 381-385
policies

default, 297-298
DSI servants, 815
for entity objects, 317
IDL, 298-300
implicit activation, 378
RootPOA object, 297-298
ServantActivator, 348
service objects, 333
types, 296
values, 297, 373

PortableServer::AdapterActivator interface,
IDL code to define, 385-386

PortableServer::Current interface, IDL
code to define, 377

PortableServer::POAManager interface,
IDL code, 383-384

RecycleBroker_WasteItem_i::_incarnate()
function, C++ code, 356

RecycleBroker_WasteItem_i._incarnate()
method, Java code, 356-357

RecycleBroker::
BranchOffice::get browsing() oper-

ation, 311-312, 333-334
WasteItemAdmin object, 365-367
WasteItemAdmin servant, 360-364
WasteItemAdmin::create() opera-

tion, 322-326
WasteItemAdmin::find() operation,

322-326
remote invocations, abstract view, 290
root, initializing, 41-42
RootPOAa

child, 293
object, 293-298

P O A s 9 0 7

26 0672318121 index 6/21/01 1:00 PM Page 907

servant activators, 292, 338
C++ code to create, 345-346
creating, 345-348
factories, creating, 365-367
implementing, 351-359
Java code to create, 346-348
lazy activation of servants, 340-342
lazy factories, implementing,

360-365
local interfaces, 349-351
objects in servers, evictor pattern,

342-344
request processing policy, 348-349
servant retention policy, 348
servants, deactivating, 344-345

ServantActivator interface, IDL code,
339-340

ServantLocator
class, 373-374
interface, IDL code, 368

servants
class, 291
deactivation, 292
default, 375-378
locators, 367-375
responsibilities, 292

service objects, 330-338
session objects, 305-315
thread policy, 309
transient objects, lifecycle, 301
WasteItem class, database records
C++ declaration of functions 321
Java declaration of functions 321
WasteItemAdmin object, 327-329

POA_InterfaceName (C++) class, 377
POAsLPortableServer::POA::create_POA()

IDL operation, 296
point flow, 463-465, 468-471
pointers

char *, 153
dangling, 214
dumb, 153, 213
mixed, assignments, 173
passing, 398
smart, 215

assignment behavior, 216
String var type, 153-154
references, counting, 215
var types, 152-156

points of interception
client-side, 461-463, 473-474
receive, 462, 467
send, 462, 468
server-side, 467-468, 475

policies
authentication (security lifetime policy),

609
components

constraints, 610
servant lifetime policy, 608

container (servant lifetime policy), 608
container-managed transactions (transac-

tion lifetime policy), 608
ID (POAs)

assignment, session objects,
310-311

uniqueness, service objects, 333
IDAssignmentPolicy (POA policy)

child, values, 298
entity objects, 317
implicit activation, values, 378
RootPOA object, values, 297
service objects, 333

IdUniquenessPolicy (POA policy)
child, values, 298
entity objects, 317
RootPOA object, values, 297
service objects, 333

ImplicitActivationPolicy (POA policy)
child, values, 298
entity objects, 317
implicit activation, values, 378
RootPOA object, values, 297
service objects, 333

integrity (security lifetime policy), 609
lifespan, POAs (portable object adapters),

session objects, 310
LifespanPolicy (POA policy)

child, values, 298
entity objects, 317
RootPOA object, values, 297
service objects, 333

MANDATORY (transaction lifetime poli-
cy), 609

method (servant lifetime policy), 608
NEVER (transaction lifetime policy), 609
NOT SUPPORTED (transaction lifetime

policy), 608

9 0 8 P O A s

26 0672318121 index 6/21/01 1:00 PM Page 908

POAs (portable object adapters), 296
default, 297-298
DSI servants, 815
entity objects, 317
IDL, 298-300
implicit activation, 378
RootPOA object, 297-298
ServantActivator, 348
ServantLocator, 373
service objects, 333

privacy (security lifetime policy), 609
request processing, 348-349, 373
RequestProcessingPolicy (POA policy)

child, values, 298
default servant, 375-376
entity objects, 317
RootPOA object, values, 297
ServantActivator, 348
ServantLocator, values, 373
service objects, 333

REQUIRED (transaction lifetime policy),
608

REQUIRES NEW (transaction lifetime
policy), 609

security, 609-610
self-managed transactions (transaction life-

time policy), 608
servant lifetime, 608
servant retention, 348, 373
ServantRetentionPolicy (POA policy)

child, values, 298
default servant, 375-376
entity objects, 317
implicit activation, values, 378
RootPOA object, values, 297
ServantLocator, values, 373
service objects, 333

SUPPORTS (transaction lifetime policy),
609

thread (POAs), session objects, 309
ThreadPolicy (POA policy)

child, values, 298
entity objects, 317
RootPOA object, values, 297
ServantActivator, 348
service objects, 333
type, 297

transaction, 608-609
types (POAs), 296
values (POAs), 297

PolicyFactory interface, 477-478
poll response() operation, 809-810
Poly instances, DynUnion object, 785-787
Poly union, 776-777
polymorphism

IDL operations, polymorphic implementa-
tion, 232

object references, 221-235
pop() function, 352
populating the interface repository, 832
portable Interceptors

applications, code to run, 485-486
CORBA v2.4+ draft specification, 459
Current object, 476-477
interfaces, PortableInterceptor, 460
PortableInterceptor::Current (PICurrent)

object, 476-477
registering, code, 483-485
server-side Interceptors, code to write,

480-483
writing, 480

portable object adapters. See POAs
PortableInterceptor, portable Interceptor

interfaces, 460
PortableInterceptor::Current (PICurrent)

object, 476-477
PortableServer, 754-757
PortableServer.DynamicImplementation

class, code, 823-825
PortableServer.Servant class, code, 823-825
PortableServer::

AdapterActivator interface, IDL code to
define, 385-386

POAManager interface, IDL code, 383-384
POA::create_POA() IDL operation, 296
POA::create_POA() operation, 294
RequestProcessingPolicy type, 348-349
ServantActivator, 339
ServantBase class, 32
ServantLocator, 339, 373-375
Servant native type, 756-757

ports, extended components, 601-602
#pragma, version preprocessor directive,

128-129
precision numbers (fixed)

C++ extractions from CORBA::Any class,
416

C++ insertions into CORBA::Any class,
406

p r e c i s i o n n u m b e r s 9 0 9

26 0672318121 index 6/21/01 1:00 PM Page 909

Java extractions from
org.omg.CORBA.Any class, 434

Java insertions into org.omg.CORBA.Any
class, 427

prefixes, C++ clashes, 130
primary_interface() function, 816, 822
primary keys, 559
printing, 836-840
printTicTacToe() operation, implementing

code, 635-636
privacy (security lifetime policy), 609
processes, 6, 16

components, 555-556, 577-583
objects, 149

processException() function, 805
processing

DII exceptions, 804-805
exceptions, 804-806
invocations, 368-369, 445-447
requests, 42-43, 348-349

process_user_input() function, 446-447
profile components, IOR (Interoperable

Object Reference) contents, 626
profiles, 237-238, 626
programming

client-server application
bk collection client, 29-30
C++ BokRepository CollectionImpl

class declaration, 30-31
C++ client of Collection interface,

25-27
client code, 25-30
IDL BookRepository module, code,

23-24
IDL constructs, 24
Java client of Collection interface,

27, 29
server code, 30-43

container environment, 598-601
environments, containers, 598
language neutrality, 9

properties
components, files, 606
IOR (Interoperable Object Reference), 626
Java system, 51
local interfaces, 349
ORB.init() function, 53
org.omg.CORBA.ORBClass, 53
org.omg.CORBA.ORBSingletonClass, 53
service objects, 330

Property (CORBA Service), 20

proprietary APIs, placeholders, 584
protocols

GIOP (General Inter-ORB Protocol),
619-626

HTTP (Hypertext Transfer Protocol), 625
IIOP (Internet inter-ORB protocol), 11,

141, 619
providers, container, 605
proxies, 526, 542
proxy object. See object reference
Proxy Pull Consumer, 526
Proxy Pull Supplier, 526
Pseudo-IDL. See PIDL
pseudo-interfaces, CORBA::Object, 796,

810-811
pseudo-operations,

CORBA::Object::get_interface(), 832
ptr = var type, assignment, 217-218
ptr types (C++), 49-50, 212-214
public IDL for clients, 233-236
public members, AccountVal value type,

496-497, 500
public.idl file, 233
PublicInterface class, 234-235
publisher event sources, 604
Pull model, 526
Pull Supplier Proxy, code to create, 542
pull() method, 526-527
PullSupplier interface, 542
PurePullConsumer.C code, 534-538
PurePullConsumer.java code, 527-531
PurePushSupplier.C code, 538-541
PurePushSupplier.java code, 531-534
Push model, 525-526
push() method, 527
push(element type elem)() function, 352

Q-R
Query (CORBA Service), 20
queue template class, functions, 352

raises clause, 99
raw names, 247, 249-250
read-only

attributes, 24, 557
extractions, C++ from CORBA::Any class,

410
read_reference() function, 29
readable parts, NodeTypeDef interfaces, 832

9 1 0 p r e c i s i o n n u m b e r s

26 0672318121 index 6/21/01 1:00 PM Page 910

reading from interface repository or
RecycleBroker IDL, 836, 841

ready-made component support, 551
realistic view of objects, 200
rebind() operation, 255-256
receive exception interception point, 462
receive other interception point, 462
receive reply interception point, 462
receive request interception point, 467
receive request service contexts interception

point, 467
receive request() method, 480
receiveOut() method, 192
receiving

out parameters, 190-194
parameters, 771

receptacles, 601-603
records, 17, 321
recursive

deletion (deallocating memory), 168-170
IDL types, 125-126
structs, IDL code, 778
types, type code, creating dynamically,

778-780
RecursiveList type, type codes, 778-779
recursiveUnbind() method, implementing,

274-276
RecycleBroker

ACME Recycling, 139-149
agent clients, 146
architecture, 139-141
CCM (CORBA Component Model),

566-569
CORBA objects, 148-149
customer clients, 146
IDL, 141, 836, 841
implementing, 148-149
RecycleBroker IDL, 141-148
WasteItem_i::_incarnate() function, C++

code, 356
WasteItem_i._incarnate() method, Java

code, 356-357
_WasteItemDetailsFactory

class, 505
value factory, 506-507

_WasteItemDetailsImpl class, 502-504
RecycleBroker::

BranchOffice::get browsing() operation,
311-312, 333-335

BuyingCH component home, code to
equivalent IDL, 563

BuyingCHExplicit interface, 589-590
WasteItemAdmin

object, 365-367
servant, 360-364

WasteItemAdmin::create() operation,
322-327, 364

WasteItemAdmin::find() operation,
322-327, 365

WasteItemCallback interface, 451-452
WasteItemCH component homes, code to

equivalent IDL, 564-565
WasteItemCHExplicit interface, 597
WasteItemCHImplicit interface, 596
WasteItemRegister interface, 449-451

redeclarations (IDL operations), no redecla-
rations, 231-232

refactored definitions, WasteItemDetailsFull
value type code, 510

refactoring, WasteItemDetailsFull value type
code, 513-514

RefCountServantBase class, 32
references. See also objects, references

Browsing object, generating, 336
components, 584-585
CORBA Interoperable Naming Service,

251-253
counting, 213-215
initial, 52, 56
initial object, 282-283
pass by reference semantics, 492-495
RootPOA object, obtaining, 295-296
stringified object, 56

registering
components, 584
default servants, IDL code, 376
DSI servants, with POA, 815
Interceptors, 478-480
Portable Interceptors, code, 483-485
value factory, 506-508

REGISTER_EXECUTOR_WITH_
CONTAINER() API placeholder, 584

registrations, 506-508
regular value types

C++ mapping, 496-499
IDL, 495-496, 501-502
implementing, 501-504
Java mapping, 499-501
values, 504-509

regular values, 487-489, 493
reg_callback() operation, 448, 451, 456
Relationship (CORBA Service), 20

R e l a t i o n s h i p 9 1 1

26 0672318121 index 6/21/01 1:00 PM Page 911

remaining_activations flag, 358-359
remote

invocations, 29, 184, 290
procedure calls (RPCs), 7

remove() method, 576, 596
remove_component() method, 589
removing ORB object options with Java,

53-54
Reply message, 623-624
repositories. See also interface repository

implementation, activation records, 17
IDs, 126-129
interfaces, 795, 804, 814

representations, 201-202, 439-440
reprocessor directives, 128-129
req.arguments() call, 804
Request message, 623
request() method, 796

C++, 797-800
interface repository, 804
invocations, 798
Java, 797, 800-804
memory management, 800

RequestInfo Interface, defining code, 471
RequestProcessingPolicy (POA policy)

child, values, 298
default servant, 375-376
entity objects, 317
RootPOA object, values, 297
ServantActivator, 348
ServantLocator, values, 373
service objects, 333

request Interceptors, 460
client-side Interceptor, 461-465
request information, 471-476
server-side Interceptor, 467-471

requests
incoming, controlling flow, 294
information (request Interceptors), 471-476
processing, 42-43, 348-349, 373

REQUIRED (transaction lifetime policy), 608
requirements for CORBA, 8-10
REQUIRES NEW (transaction lifetime poli-

cy), 609
resolve() operation, 256
resolve_initial_references()

function, 253
method, 541, 544
operation, 296

resolve_str() operation, 228-229, 256

resolving
initial references, 56
bindings, 256
names, clients, 265-267

result argument, creating NamedValue, 808
RETAIN policy value, 348
retaining servants, policy, 348
retn() method, 194, 398,
return values, 194-196, 508-509
returning, parameters, 79-81
rewind() operation, 785
right-shift assignment, >>= (insertion opera-

tor), 392
roles of CCM (CORBA Component Module),

604
Root POAs (portable object adapters)

child POAs, 293
hierarchy, 294
initializing, 41-42
object, 293-298

RPCs (remote procedure calls), 7-8
rules

IDL identifiers, 121-132
inheritance, value types, 519-520
memory management, 197-198

run() operation, 446
running applications with Portable

Interceptors code, 485-486

S
SampleTypes module, IDL data types code,

391-392
scalability of entity objects, 148
scopes, IDL constant definitions, 123-124
search operations, 832-834
SearchableCollection interface, clients, 59-62
SearchableCollection::find_by_title() opera-

tion, 80-81
searching, parse trees, 832-834
secure environments, invoking operations,

609-610
Security (CORBA Service), 20
security policies, 609-610
seek() operation, 784
self-managed transactions (transaction life-

time policy), 608
semantics

assignment, var types (smart pointers), 155
bind() operation, 256
BindingIterator interface, 270

9 1 2 r e m a i n i n g _ a c t i v a t i o n s f l a g

26 0672318121 index 6/21/01 1:00 PM Page 912

list() operation, 270
location transparency, 206
pass by reference, 492-495
pass by value, value factories, 488-492
rebind() operation, 255
send oneway() method, 809
value types, 487-495

send
Event() operation, 392-394, 420-422
exception interception point, 468
other interception point, 468
poll interception point, 462
reply interception point, 468
reply() method, 480
request interception point, 462

sending, parameters, 771
send_deferred() operation, 809
send_oneway() method, 809
sequences

accessing, 75
copying, 75-76
data type, 197
deallocating, 76
escape, narrow and wide characters (IDL

grammar), 760
objects, C++, 73
initializing, 74
types, 176-177

bounded, 163-164
C++, 405-406, 416
extracting, code, 416, 433
inserting, code, 405-406, 426
Java, 426, 433
unbounded, 161-163

types (IDL)
C++, 675, 678
CDR encoding, 675
IDL syntax, 674-675
Java, 679-680

Servant._all_interfaces() method, overriding,
826

Servant._default_POA() method, overriding,
826

Servant._get_interface() method, overriding,
827

Servant._is_a() method, overriding, 827
Servant._non_existent() method, overriding,

826
Servant._this_object() method, not overrid-

ing, 827
ServantActivator, 348

ServantActivator object, creating local,
350-351

ServantActivatorImpl() constructor, 351
ServantActivatorImpl::incarnate() function,

356
ServantActivator::incarnate() operation,

implementing servant activators, 355-357
ServantBase, 821-822
ServantLocator

class, 373-374
interface, IDL code, 368

ServantManager objects, 339
ServantRetentionPolicy (POA policy)

child, values, 298
entity objects, 317
implicit activation, values, 378
RootPOA object, values, 297
ServantLocator, values, 373
ServantRetentionPolicy, 375-376
service objects, 333

servants
activating, 292
activator POAs (portable object adapters),

338
class, 351-355
factories, creating, 365-367
implementing, 351-359
lazy factories, 360-365
local interfaces, 349-351
objects in servers, evictor pattern,

342-344
POAs, creating, 345-348
request processing policy, 348-349
servant retention policy, 348
servants, 340-345

classes (POAs). See classes
creating and activating, 42
deactivating, 292, 344-345
default, registering IDL code, 376
DSI

C++, 817-819
DynamicImplementation methods,

overriding, 822-827
DynamicImplementation.invoke()

methods, 825-826
implementing with Java, 822
interface support, 816
Java inheritance trees, 822
POA policies, 815
registering with POA, 815

s e r v a n t s 9 1 3

26 0672318121 index 6/21/01 1:00 PM Page 913

eviction strategies, 369
implementation objects, 204
inheritance hierarchy, 106
lazy activation, 340-342
lifetime policies, 608
locators, 367-375
objects, 204-205
ObjectIds, mapping, 291-293
POAs (portable object adapters), 375-378
RecycleBroker::WasteItemAdmin, 360-364
reference counting, 357-359
retention policy, 348, 373

server-driven server memory, 342
server-side interception points,

ServerRequestInfo validity, 475
server-side Interceptors, 467-471, 480-483
ServerRequestInfo

interface, 474
validity, server-side interception points,

475
ServerRequestInterceptor instance, 468
servers

activating, 16-19
BookRepository CollectionImpl class, dec-

laration, C++ server code, 30-31
C++, AnyPasser interface, 393-394
code

Book Repository, 30-43
exception handling, 87-95
multiply-inheriting IDL interfaces,

103-105
CORBA

Interoperable Naming Service, 257,
262-265

Naming Service code, 114-121
objects, transient and persistent,

132-133
simplifying with CCM, 551

dormant, invoking on, 17-18
hidden IDL, code, 233-234
implementation repository, activation

records, 17
implicit activation, 133-134
initializing, 37-41, 114-119
Java, AnyPasser interface, 421-423
locating, 16-19
main() function, 37, 41-43
mainline, binding names, 262-264
memory, 342
objects in evictor pattern, 342-344
ORB daemon processes, 16

POA responsibilities, 292
side, out parameters, 80-81
skeleton code, 813
this() method, 133-134
transient CORBA objects, invoking on, 19

services. See also CORBA Interoperable
Naming Service

components (CCM), 555
CORBA Services, 19-20, 551
Event, 523
initialization, 250-254, 832
Initialization Service, code for IDL, 284
objects

factories, 334-338
POAs (portable object adapters),

330-333
properties, 330

ORB services, 459
sessions

API types, 571
components, 555, 571-576
objects, 148, 304

CORBA, creating, 303
creating, 303
factories, 311-315
factory objects, 305
garbage collection, 149
POAs, (portable object adapters),

305-311
SessionComponent interface, 601
SessionContext interface, 599
SessionSynchronization interface, 601
setting, AccountVal value type public mem-

bers, code, 497, 500
set_discriminator() operation, 787
shallow copy, data types, 170-172
short type (IDL), 681-683
shutting down, ORB, 30
signatures

class, 48
create request() methods, 806-807
Java interfaces, 49
request() method, 797

SII (Static Invocation Interface), 795
simplex receptacles, 603
SINGLE THREAD model (thread policy),

309
single-threaded clients, 446-447
singletons, creating ORB objects with Java,

55
sinks, event, 602, 604

9 1 4 s e r v a n t s

26 0672318121 index 6/21/01 1:00 PM Page 914

skeleton code, 12, 813
components, generating, 569-570
Java, 13
static, default servant POAs (portable

object adapters), 376
slashes

\ (backslash), 248-249, 761
/ (forward slash), 247-249

smart pointers
assignment behavior, 216
String var type, 153-154
references, counting, 215
var types, 152-156

SmartPtr class, 152
sources, events, 602-604
spaces, stringified names, 249
specializations, GIOP (General Inter-ORB

Protocol), 625-626
specifications

adopted, 6
CORBA 1.1, 619
CORBA 2.0, 619
CORBA 2.4, 620
CORBA 2.4.2 (IDL data types), 629
CORBA v2.4+ draft specification (portable

Interceptors), 459
domain-specific, 21
formal, 6
OMG (CORBA Notification Service), 769

stacks, elements, 389
standards, downloading CORBA, 6
state transition diagrams (POAManagers),

293, 383-385
static functions (C++), managing arrays, 632
Static Invocation Interface (SII), 795
static skeleton code, default servant POAs

(portable object adapters), 376, 813
status, completion, 858
STL (standard template library), C++, 352
strategies, servant evictions, 369
stringified names, 247-249
stringified object references, parsed, 56, 201,

238-240
strings

allocation functions, 46
bounded, 159
data type, 197
deallocation functions, 46
dumb pointers, 153
exception_id, 857
Java, 424-426, 431-433

literals (IDL grammar), 761
Memory, 158-159
ObjectID, OMG-defined values, 254
smart pointers, 153
types

bounded, 173-174
C++, 45, 400-402, 413-414
extracting, code, 413-414, 432-433
IDL, 45-46, 683-686
inserting code, 401-402, 425-426
unbounded, 173-174
wide, 159-160, 402-404, 414-415
WString types, 174

URL escape mechanism, 278
wide, 159-160

Java, 424-426, 431-433
string literals, 761

WString types, bounded, 159-160
string_to_object() function, 56
Stroustrup, Bjarne, 352
structs

IDL, mapping, 70, 73
fixed-length, 197
recursive, IDL code, 778
type code, creating dynamically, 774-776
types, 160-161, 175-176

C++, 405, 415
extracting, code, 415, 433
inserting, code, 405, 426
Java, 426, 433

types (IDL)
C++, 689-690
CDR encoding, 689
copying, 72
deallocating, 72
IDL syntax, 687-689
initializing, 71
Java, 691-692
mapping, 70-71

VarLen
IDL code, 774
memory allocation, 162
type code, creating, 774-775

structures, 236-238, 830-831
stubs

code
any type, 769
Java, 12-13
SII (Static Invocation Interface),

795
narrowing object references, 232

s t u b s 9 1 5

26 0672318121 index 6/21/01 1:00 PM Page 915

sub-expressions, 763
suffixes, 130-131
Suppliers

Event Channel, implementing, 544-546
Event Service, 524-525
Proxy Pull Consumer, 526
Pull Supplier Proxy, code to create, 542
PullSupplier interface, 542
PurePullConsumer.C code, 534-538
PurePushSupplier.C code, 538-541
PurePushSupplier.java code, 531-534

supports
bridges, 10
ready-made components, 551
transaction lifetime policy, 609

surrogates, proxies, 526
synchronous communication, 523
syntax. See also code

abstract interface types, 518
abstract value types, 517
basic components, 557-559
components, 558-559
extended attributes, 557
factory operations, 559-560
finder operations, 559-560
forward declarations, 208
IDL

array type, 630-631
enum type, 646
exception type, 650-651
fixed type, 655
identifiers, 124-132
interfaces, 206-211
regular value types, 495-496
sequence type, 674-675
string type, 683
struct type, 687-689
union type, 693-695
user exceptions, 99
wstring type, 715

IDL constants
boolean, declaring, 638
char, declaring, 640
double, declaring, 643
enum, declaring, 646
fixed, declaring, 656
float, declaring, 661
long double, declaring, 666
long long, declaring, 668
long, declaring, 663
octet, declaring, 671

short, declaring, 681
string, declaring, 684
unsigned long, declaring, 704
unsigned long long, declaring, 707
unsigned short, declaring, 710
wchar, declaring, 713
wstring, declaring, 716

location transparency, 206
long, 133
read-only attributes, 557
send oneway() method, 809
writeable attributes, 557

SYSTEM_EXCEPTION (Reply message),
624

SYSTEM ID value (ID assignment policy),
310

SYSTEM_ID ID assignment policy value, 333
SystemException class (IDL), 751
systems, 5

exceptions, 96, 100
catching, 102
categories, parameters, 859-863
completion status, values, 858
exception_id string, 857
GIOP (General Inter-ORB Protocol)

format, code, 857
IDL, code, 858-859
minor_code_value, 857
OBJECT_NOT_EXIST, 205
throwing, 101-102
VMCID (Vendor Minor Codeset

ID), 857
properties, Java, 51

T
T *= T * assignment, 173
T *= T var assignment, 173
T var, 155-156
T_var class, 155
T var = T * assignment, 173
T var = T var assignment, 173
Tables, 197-198
tagged components (profile components), 626
tags

TAG_ALTERNATE_IIOP_ADDRESS = 3,
241

TAG_ASSOCIATION_OPTIONS = 13,
241

TAG_CODE_SETS = 1, 240

9 1 6 s u b - e x p r e s s i o n s

26 0672318121 index 6/21/01 1:00 PM Page 916

TAG_COMPLETE_OBJECT_KEY = 5,
242

TAG_CSI_ECMA_Hybrid_SEC_MECH =
19, 241

TAG_CSI_ECMA_Public_SEC_MECH =
21, 241

TAG_CSI_ECMA_Secret_SEC_MECH =
18, 241

TAG_DCE_BINDING_NAME = 101, 242
TAG_DCE_NO_PIPES = 102, 242
TAG_DCE_SEC_MECH = 103, 242
TAG_DCE_STRING_BINDING = 100,

241
TAG_ENDPOINT_ID_POSITION = 6,

242
TAG_GENERIC_SEC_MECH = 22, 241
TAG_INTERNET_IOP, 238
TAG_JAVA_CODEBASE = 25, 241
TAG_KerberosV5_SEC_MECH = 17, 241
TAG_LOCATION_POLICY = 12, 242
TAG_ORB_TYPE = 0, 240
TAG_POLICIES = 2, 241
TAG_SEC_NAME = 14, 240
TAG_SPKM_1_SEC_MECH = 15, 241
TAG_SPKM_2_SEC_MECH = 16, 241
TAG_SSL_SEC_TRANS = 20, 241

TAG_ALTERNATE_IIOP_ADDRESS = 3
tag, 241

TAG_ASSOCIATION_OPTIONS = 13 tag,
241

TAG_CODE_SETS = 1 tag, 240
TAG_COMPLETE_OBJECT_KEY = 5 tag,

242
TAG_CSI_ECMA_Hybrid_SEC_MECH = 19

tag, 241
TAG_CSI_ECMA_Public_SEC_MECH = 21

tag, 241
TAG_CSI_ECMA_Secret_SEC_MECH = 18

tag, 241
TAG_DCE_BINDING_NAME = 101 tag, 242
TAG_DCE_NO_PIPES = 102 tag, 242
TAG_DCE_SEC_MECH = 103 tag, 242
TAG_DCE_STRING_BINDING = 100 tag,

241
TAG_ENDPOINT_ID_POSITION = 6 tag,

242
TAG_GENERIC_SEC_MECH = 22 tag, 241
TAG_INTERNET_IOP tag, 238
TAG_JAVA_CODEBASE = 25 tag, 241
TAG_KerberosV5_SEC_MECH = 17 tag, 241
TAG_LOCATION_POLICY = 12 tag, 242

TAG_ORB_TYPE = 0 tag, 240
TAG_POLICIES = 2 tag, 241
TAG_SEC_NAME = 14 tags, 240
TAG_SPKM_1_SEC_MECH = 15 tag, 241
TAG_SPKM_2_SEC_MECH = 16 tag, 241
TAG_SSL_SEC_TRANS = 20 tag, 241
task forces (OMG), OMG Web site, 21
TCP/IP, IIOP (Internet Inter-ORB Protocol),

625
technology

architecture, 5
process (OMG), 6

templates, 352
testing object references for nilness, 253
this()

function, 379-381, 817
method, 133-134, 205

this_object()
function, 822
method, 827

thread policies, session objects, 309
threading, 446-447
ThreadPolicy (POA policy)

child, values, 298
entity objects, 317
RootPOA object, values, 297
ServantActivator, 348
service objects, 333
type, 297

throwing, 99-102
TicTacToe array, 632-636
tie approaches, 107-108
tilde (~), unary operator, 762
Time (CORBA Service), 20
to name() operation, 256-257
to string() operation, 256-257
to url() operation, 256-257
Trading Object (CORBA Service), 20
Transaction

CORBA Service, 20
policies, 608-609
REQUIRED (system exception), 862
ROLLEDBACK (system exception), 862
servant lifetime policy, 608

TRANSIENT
CORBA objects, invoking on, 19, 132-133
lifespan policy values, 310, 333, 446
objects, lifecycle, 301-302
system exception, 863

transitions (state) of POA Manager, 383-385
transmitting values, 521

t r a n s m i t t i n g v a l u e s 9 1 7

26 0672318121 index 6/21/01 1:00 PM Page 917

transparency, location (CORBA objects), 9
transport assumptions, GIOP (General Inter-

ORB Protocol), 621, 624-625
trees

C++ inheritance, DSI servants, 817
Java inheritance, DSI servants, 822
parse, 830-835

truncatably inheritance,
WqasteItemDetailsFull value type code, 511

try_pull()
call, 543
method, 526-527

type codes, 436. See also code
aliases, 440-441
C++ constants, 437-439
compact, 440
comparing, 442-443
complete, 439-440
creating dynamically, 771-774
IDL for creating, code, 772-774
Poly union, 776-777
recursive types, creating dynamically,

778-780
representations, 439
structs, creating dynamically, 774-776
unions, creating dynamically, 776-777

TypeCode types, 429, 436
typedef

IDL, 24
keyword, 830

TypeDef interface, 830
types

any
C++ extractions from CORBA::Any

class, 419
C++ insertions into CORBA::Any

class, 409
IDL mapping for, 46-47
Java extractions from

org.omg.CORBA.Any class, 436
Java insertions into

org.omg.CORBA.Any class, 429
array

C++ extractions from CORBA::Any
class, 417

C++ insertions into CORBA::Any
class, 407

Java extractions from
org.omg.CORBA.Any class,
434-435

Java insertions into
org.omg.CORBA.Any class, 427

basic
ambiguous, 400, 412
C++ extractions from CORBA::Any

class, 409
C++ insertions into CORBA::Any

class, 394
IDL mapping for, 44
Java extractions from

org.omg.CORBA.Any class,
429-431

Java insertions into
org.omg.CORBA.Any class,
423-424

unambiguous, 398-400, 411-412
boolean, IDL mapping for, 45
char, IDL mapping for, 45
complex, IDL mapping, 69
compound, 395-398, 409
codes, 774
keys, 559
CORBA

aliases of, 439
built-in, 437-438
user-defined, 438

CORBA::Any, 527
CORBA::DynAny, 796
CORBA::ORB, 796
CORBA::TypeCode, 796
custom values, transmitting, 521
derived, 225-227
DynAny, creating, 788, 796
exception

C++ extractions from CORBA::Any
class, 418

C++ insertions into CORBA::Any
class, 408

Java extractions from
org.omg.CORBA.Any class, 435

Java insertions into
org.omg.CORBA.Any class, 428

mapping to Java, 98
fixed, IDL mapping for, 46-47
fixed-length, 179
floating point, IDL mapping for, 45
Foo_var, 214
helper (Java), 76-79
Holder (Java), 76-79
IDL, 131, 210-211, 629
integer, IDL mapping for, 44
interfaces, 816-817

9 1 8 t r a n s p a r e n c y, l o c a t i o n

26 0672318121 index 6/21/01 1:00 PM Page 918

IntfName
ptr, 211
var, 212

Java Helper, 76-79
Java Holder, 76-79
keys, 559
Object, 228-229
of objects, 201
octet, IDL mapping for, 45
org.omg.CORBA.Object, 229-230
parameters, passing

fixed-length types, 179-180
in parameters, 181-184
inout parameters, 184-189
memory management rules,

197-198
out parameters, 190-194
parameter lifecycle, 180-181
retn() method, 194
return values, 194-196
types of, 197
variable-length types, 179-180

ptr (C++), 49-50, 212-214
ptr = var, assignment, 217-218
ptr and var, mixed assignments, 216-218
recursive, 125-126, 778-780
regular values

C++ mapping, 496-499
IDL, 495-496, 501-502
implementing, 501-504
Java mapping, 499-501
value factory, 504-508
value, passing as return values,

508-509
RepositoryId, 204
sequence

C++ extractions from CORBA::Any
class, 416

C++ insertions into CORBA::Any
class, 405-406

Java extractions from
org.omg.CORBA.Any class, 433

Java insertions into
org.omg.CORBA.Any class, 426

string
C++ extractions from CORBA::Any

class, 413-414
C++ insertions into CORBA::Any

class, 400-402

C++ mapping, 45
IDL mapping for, 45-46

string (wide), 402-404, 414-415
struct

C++ extractions from CORBA::Any
class, 415

C++ insertions into CORBA::Any
class, 405

copying, 72
deallocating, 72
IDL mapping, 70-71
initializing, 71
Java extractions from

org.omg.CORBA.Any class, 433
Java insertions into

org.omg.CORBA.Any class, 426
StructMemberSeq, 774-776
TypeCode, 429, 436
unbounded sequence (IDL), 73-76
union

C++ extractions from CORBA::Any
class, 416-417

C++ insertions into CORBA::Any
class, 406-407

Java extractions from
org.omg.CORBA.Any class, 434

Java insertions into
org.omg.CORBA.Any class, 427

UnionMemberSeq, 776-777
values

abstract, 517-519
AccountVal, 496-497, 500
counting functions, 499
inheritance rules, 519-520
inheriting from interfaces, 513-516
inheriting from values, 509-513
ValueName, 496, 499-500
WasteItemDetails, IDL definition,

code, 501-502
WasteItemDetailsFull, 510-514

var, 214-216, 398
var (C++), 49-50
var = ptr, assignment, 217
variable-length, 179
wchar, IDL mapping for, 45
wstring, 45-46

U
unambiguous basic types, 398-400, 411-412
unary operators, 762-763

u n a r y o p e r a t o r s 9 1 9

26 0672318121 index 6/21/01 1:00 PM Page 919

unbounded
sequences, 73-76, 161-163
string types, 173-174
WString types, 174

unchecked exceptions, 97
underscore (_), 43-44
unions, 197, 776-777

types, 165, 176-177
C++, 406-407, 416-417
extracting, code, 416-417, 434
inserting, code, 406-407, 427
Java, 427, 434

types (IDL),
C++ code, 698
C++ mapping, 696
CDR encoding, 695
IDL syntax, 693-695
Java code, 702
Java mapping, 700

UNIQUE ID policy value, 333
UNKNOWN (system exception), 863
unknown adapter() function, algorithm, 387
UnknownUserException class (IDL), 753
unset_entity_context() method, 583
unsigned

long long type (IDL), 706-709
long type (IDL), 703-706
short type (IDL), 709-712

untyped events, 527
unwinding aliases, 443
URLs (uniform resource locators), objects,

276-281
USE ACTIVE OBJECT MAP ONLY

(PortableServer::RequestProcessingPolicy
type), 348

USE DEFAULT SERVANT ONLY
(PortableServer::RequestProcessingPolicy
type), 348

USE SERVANT MANAGER ONLY
(PortableServer::RequestProcessingPolicy
type), 349

useArrayFixLen() operation, Java code to
invoke, 636

useArrayVarLen() operation, invoking,
635-637

USER_EXCEPTION (Reply message), 623
user exceptions, 96-100
USER_ID ID assignment policy value, 317
USER ID value (ID assignment policy), 310
user-defined CORBA types, 438
UserException class (IDL), 754

UserTransaction interface, 600
utilities (names)

bindObjectPath() method, 260-262
createContextPath() method, 257-260
listBindings() method, 271-274
recursiveUnbind() method, 274-276

V
validations, 473-475
ValueName

class
C+, 496
Java, 499

Helper class (Java), 499
Holder class (Java), 499
Impl class, outline code, 497
init class (C++), 496
value type, 496, 499-500
ValueFactory class (Java), 499
var class (C++), 496

values
abstract, 517
Any, 543
C++ inheritance hierarchy, 512, 515
completion status, 858
factories, 491-492, 504-508
graphs, transmitting, 521
initial object references, 282-283
Java inheritance hierarchy, 512-513, 516
minor code, 857
OMG-defined, ObjectID strings, 254
passing as return valuees, 508-509
PERSISTENT (lifespan policy), 310
regular value types, 495

C++ mapping, 496-499
IDL, 495-496, 501-502
implementing, 501-504
Java mapping, 499-501
passing as return values, 508-509
value factory, 504-508

return (memory management), 194-196
SYSTEM ID (ID assignment policy), 310
TRANSIENT (lifespan policy), 310
types

abstracts, 517-519
AccountVal, 496-497, 500
counting functions, 499
inheritance rules, 519-520
objects, 487-509
ValueName, 496, 499-500

9 2 0 u n b o u n d e d

26 0672318121 index 6/21/01 1:00 PM Page 920

values 509-516
WasteItemDetails, IDL definition,

code, 501-502
WasteItemDetailsFull, 510-514

USER ID (ID assignment policy), 310
var = ptr type, assignment, 217
variable-length, 179-180, 192-194, 197
variables, declaring, 41
VarLen

instances, DynStruct object, 782-784
structs, 162, 774-775

vars
class, 73
CORBA::Any, 392
inserting into CORBA::Any class, 398
types, 30

assignment semantics, 155
C++, 49-50, 214-216, 398
converting to parameter types,

155-156
general form, 154-155
in() method, 155-156
inout() method, 155-156
out() method, 155-156
ptr types, mixed assignments

between, 216-218
retn() method, 155-156
smart pointer, 152
String var type, 153-154

Vendor Minor Codeset ID), 857
versions of naming services, 245
views, 200, 290
VMCID (Vendor Minor Codeset ID), 857
void

<arrayName>_free(<arrayName>_slice*)
method, 168

void CORBA, 168

W
waste argument, 448
WasteItem

Admin
interface, 316
object, 327-329

Admin::get_item_details() operation,
508-509

C component, 448, 557-558
Callback interface, 448
Callback::notify() operation, 451-452

CH keyfull component home, code to
declare, 561-562

CHImpl executor class, 590-596
CImpl executor class, 577-582
class, database records, 321
Details value type, IDL definition, code,

501-502
DetailsFactoryImpl

class, Java definition code, 506
value factory, Java registration code,

507-508
DetailsFull value type, 510-514
interface, WasteItemDetailsFull value type,

code to refactor, 513-514
object, creating instance with Java, 516
DetailsImpl class, Java definition code, 504
Register interface, 448

wasteitem_id argument, 448
wchar types (IDL), 45, 712-715
Web sites, OMG

Corba standard, downloading, 6
language mappings, 13
OMG task forces, 21

wide characters (IDL grammar), escape
sequences, 760

wide strings
Java, 424-426, 431-433
literals, 761
types, 159-160, 402-404, 414-415

widening object references, 222-225
writeable attributes, syntax, 557
writeable parts, NodeTypeDef interfaces, 832
writing

Portable Interceptors, 480
server-side Interceptors, code, 480-483

WString, types, 45-46
bounded, 159-160, 174
data, 197
IDL, 715-718
unbounded, 174

X-Z
XDR (External Data Representation), 622

ZOO module, code, 221-222
Zoo.GiraffeHelper.narrow() method, 228
ZooManager, 23

Z o o M a n a g e r 9 2 1

26 0672318121 index 6/21/01 1:00 PM Page 921

	PURE CORBA
	Copyright ® 2002 by Sams Publishing
	Overview
	Contents
	About the Author

	Introduction
	How This Book Is Organized

	PART I CONCEPTUAL REFERENCE
	CHAPTER 1 CORBA Architecture
	The Rise of Middleware
	The Object Management Group
	The Common Object Request Broker Architecture
	Basic CORBA Concepts
	Deployment of CORBA Applications
	The Object Management Architecture
	Summary

	CHAPTER 2 Programming with CORBA
	A Basic Client-Server Application—Example 1
	Basic IDL Mapping (Example 1)
	Initializing a CORBA Application
	Adding an IDL Interface for Searching— Example 2
	IDL Mapping for Some Complex Types (Example 2)
	Returning Parameters
	Adding Exception Handling—Example 3
	IDL Mapping (3)
	Adding a Multiply-Inheriting IDL Interface— Example 4
	Multiple Inheritance and the Delegation (Tie) Approach (Example 4)
	Adding CORBA Naming Service Support— Example 5
	More IDL Syntax and Rules for Mapping Identifiers
	More About Servers
	Summary

	PART I I TECHNIQUES
	CHAPTER 3 A Sample CORBA System
	Recycle Broker Architecture
	Recycle Broker IDL
	Recycle Broker Implementation
	Summary

	CHAPTER 4 Memory Management
	C++ Smart Pointer Types _var
	Sample IDL
	Allocating and Initializing
	Deallocating
	Assignment and Copying
	Parameter Passing
	Summary

	CHAPTER 5 Object References
	CORBA Objects and Object References
	IDL Syntax of Interfaces
	C++ Memory Management
	Nil Object Reference
	Factory Objects
	Polymorphism
	Interoperable Object Reference
	Summary

	CHAPTER 6 Interoperable Naming Service
	Overview
	Names
	The Initialization Service
	Basic Operations
	Server Example
	Client Example
	Federated Naming Service
	Binding Iterators and the list() Operation
	Object URLs
	Specifying Values for Initial References
	Summary
	Initialization Service Pseudo-IDL
	Naming Service IDL

	CHAPTER 7 The Portable Object Adapter
	Understanding the POA
	POA Policies
	Types of CORBA Objects
	A POA for Session Objects
	A POA for Entity Objects
	A POA for Service Objects
	Servant Activator POA
	Servant Locator POA
	Default Servant POA
	Implicit Activation
	The POAManager
	POA Activation
	Summary

	CHAPTER 8 The any Type
	Introduction to the any Type
	A Sample IDL Module
	C++ Example of Passing anys
	C++ Insertion into CORBA::Any
	C++ Extraction from CORBA::Any
	Java Example of Passing anys
	Java Insertion into org.omg.CORBA.Any
	Extraction from org.omg.CORBA.Any
	Type Codes
	Summary

	CHAPTER 9 Callbacks
	Processing Invocations in a Client
	Avoiding Deadlock in Callbacks
	Callback Example Using oneway Operations
	Summary

	CHAPTER 10 Interceptors
	Portable Interceptor Interface
	Request Interceptors
	Portable Interceptor Current
	IOR Interceptor
	PolicyFactory Interface
	Registering Interceptors
	Writing and Using Portable Interceptors
	Summary

	CHAPTER 11 Objects by Value
	Overview of Value Semantics
	Regular Value Type
	Example of a Regular Value Implementation
	Other Kinds of Value Type
	Summary

	CHAPTER 12 Events Service
	CORBA Event Service Patterns
	Using an Event Channel
	Summary

	CHAPTER 13 CORBA Components
	Basic Architecture
	Defining IDL for Components
	Generating Component Skeletons
	Implementing Components
	Implementing Component Homes
	Implementing Clients
	Container Programming Environment
	Extended Components
	Development and Deployment Roles
	Component Assembly and Deployment
	Summary
	Components IDL Module

	CHAPTER 14 The Internet Inter-ORB Protocol
	GIOP: The Basis for IIOP
	IIOP Specialization of GIOP
	Summary

	PART I I I SYNTAX REFERENCE
	CHAPTER 15 IDL Data Types
	Built-In IDL Types
	Pseudo-IDL from the CORBA Module
	Exception Types
	The PortableServer Module
	Java Helper and Holder Types

	CHAPTER 16 IDL Grammar
	Literals
	Expressions
	OMG IDL Grammar in EBNF Notation

	CHAPTER 17 DynAny Type
	Introduction to the DynamicAny Module
	Dynamic Creation of Type Codes
	Creating and Destroying a DynAny
	DynAny Examples
	Dynamic any IDL

	CHAPTER 18 Dynamic Invocation Interface
	Overview of the DII
	Use of CORBA::DynAny and CORBA::TypeCode
	Using CORBA::Request Objects
	oneway Invocations
	Asynchronous Invocations
	Pseudo-Interfaces

	CHAPTER 19 Dynamic Skeleton Interface
	Overview of the DSI
	C++ Implementing a DSI Servant
	Java Implementing a DSI Servant

	CHAPTER 20 Interface Repository
	Structure of the Interface Repository
	Using the Interface Repository
	An Example of Reading from the Interface Repository
	IDL for the Interface Repository

	CHAPTER 21 CORBA System Exceptions

	INDEX

