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Foreword

Security has been elevated to a prominent position in today’s IT world, rank-
ing high in many studies investigating the issues that need to be addressed in
the development of IT, the Internet, and e-commerce. Security is easy to do
on paper, be it compiling lists of security requirements or proposing abstract
security architectures. The devil, as so often, lies in the details, and the tech-
nical challenge in implementing security has been aptly described as pro-
gramming Satan’s computer [Anderson & Needham, Springer LNCS 1000].
It should therefore be no surprise that the literature on security is much
stronger on abstract designs and on “solutions” that are not closely matched
to actual problems than on the construction of concrete security systems,
which is a slow and arduous process.

The history of CORBA security provides a fitting illustration of the
points just made. The CORBA security architecture started off as a paper
design with an impressive list of desiderata. Attempts to implement this
architecture exposed various inconsistencies and areas that needed further
work. Over the years, the CORBA security architecture has now developed
in concert with its implementations. The demand to deliver CORBA services
over the Internet has had a strong influence on this process. To some extent
it has refocused the CORBA security goals by putting a stronger emphasis on
communications security and on the interaction of CORBA security services
with standard Internet security components like firewalls or the SSL/TLS
protocol. CORBA security will keep evolving in reaction to the demands
users are putting on the CORBA platform.

Xili
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For real security, security has to be done for real. It is therefore particu-
larly gratifying to see a book that is founded on a concrete implementation
of a security system. This book presents the general goals and features of
CORBA security in the context of the MICOSec system the authors have
been developing. The advantages of this approach should be twofold. First,
the views of the authors have been tempered by their practical experiences in
trying to fit security mechanisms into the CORBA middleware framework.
Secondly, the book can serve as a user guide to an actual CORBA security
system. Thus, readers interested in evaluating the merits of CORBA security,
or of middleware security in general, need not restrict themselves to a mere
paper analysis but have a basis for experimentation to gain real experience.
Real experience with CORBA security in a variety of applications is, in turn,
the input that should drive the continuing development of the CORBA
security architecture.

Thus, the book not only presents a snapshot of the current state of
CORBA security, it hopefully can also help to turn the wheels of progress in
this field.

Dieter Gollmann
Cambridge, UK.
January 2002



Preface

In recent years, demand has increased for distributed applications in complex
and heterogeneous IT systems (e.g., for telecommunications and banking).
As part of the development of such applications, implementers had to repeat-
edly solve the same problems related to distributed computing. These prob-
lems ranged from technical details such as byte ordering and addressing
servers in networks to processing complex transactions. To take this work off
application developers, an abstraction layer can be introduced to segregate
applications from the underlying communication layers. From the applica-
tion perspective, this so-called middleware layer transparently takes care of all
communications tasks. The most advanced middleware architecture today is
the Object Management Architecture (OMA), which has been developed by
the Object Management Group (OMG) consortium since 1989. The core
component of the OMA is the Common Object Request Broker Architec-
ture (CORBA), which defines an Object Request Broker (ORB) that pro-
vides the abstraction layer and automatically takes care of all underlying
communications tasks. CORBA is mechanism independent (i.e., supports
remote method invocations across several network types, across differing
hardware platforms, and across differing programming languages).

In the first half of the 1990s, lack of effective security features pre-
vented the deployment of many CORBA-based applications for the Internet
or other insecure networks, such as e-commerce or network management
applications. In response to the rising demand for security, the OMG speci-
fied the CORBA security services, which define a comprehensive set of

XV
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security features for CORBA systems, ranging from authentication and
access control to audit and nonrepudiation.

This book should be considered both as a textbook that explains the
CORBA security services architecture and its design rationale in a precise
and comprehensive manner and as a hands-on reference on how to use the
CORBA security services in practice.

The first part of this book (Chapters 1-3) covers the architecture and
design rationale behind the CORBA security services in detail. Chapter 1
introduces the main design features and essential use of CORBA to set the
scene for the remainder of the book. Chapter 2 defines a number of basic
security concepts in the context of CORBA and is intended for an audience
that is not too familiar with information security terminology and theory.
Chapter 3 comprises an in-depth, but at the same time conceptual, descrip-
tion of the CORBA security services architecture.

The second part of this book (Chapters 4-7) is concerned with the
hands-on use of MICOSec, an Open Source implementation of the CORBA
security services specification. Chapter 4 illustrates how MICOSec is
installed and configured. Chapters 5 and 6 describe how you can use
the application-facing interfaces that CORBA security offers from within
your own applications. Chapter 7 then shows how CORBA security can
be used to secure applications that should remain unmodified (e.g., legacy
applications).
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Introduction to CORBA

1.1 Why CORBA?

1.1.1 The Business Perspective

The first question many people might ask when they first hear about the
Common Object Request Broker Architecture (CORBA) is why they would
ever want to choose CORBA. This question is often asked by people outside
the software engineering profession. Some of CORBA’s more technical
advantages are sometimes not easy to understand without knowledge of
object-oriented programming or of the inherent communications difficulties
in distributed systems. But even without a technical background, it is easy to
see why CORBA is useful for distributed application development.

The main reason CORBA is important is because businesses today live
in a world connected by computer networks, in which users need to share
information across enterprises as never before. This information to be shared
comes from many different sources, such as stand-alone applications on vari-
ous differing hardware and software platforms, and only a few of them are
designed to interoperate with other applications on their own platforms, let
alone with applications on differing platforms. If an application does share
information with other applications, it can normally only interoperate with a
select few.

Integrating these isolated applications and systems is generally not easy.
Converters between data formats and communications protocols are often
necessary. This requires a custom solution, which can be time-consuming
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and expensive because of the number of different applications that need to
be connected. It is impossible to reuse software components that have been
written for incompatible platforms. If updates to the system are necessary at a
later point in time, even more time and money will be spent. In addition,
components normally do not interoperate efficiently within ad hoc or pro-
prietary integration solutions since the applications were not designed with
interoperability in mind. Poor integration leads to organizational inefficien-
cies, such as redundant data entry and multistep data conversion. These
processes are costly, time consuming, and error-prone. From a user perspec-
tive, poor integration results in the need to learn disparate applications, since
user skills cannot be transferred from one system to another.

For example, managers need to be able to pull data they need from
several sources (e.g., marketing department’s graphics, finance department’s
spreadsheets, design data) over the network, including both current and his-
torical data, to reach their business decisions. Or consider large companies,
which often have systems that have been evolving over decades, including
mainframes, personal computers, local-area networks (LAN), wide-area net-
works (WAN), and multiple database management systems. These systems
run a diverse set of applications on different operating systems. Frequent
changes in the software environment, due to new business needs, new tech-
nology, and organizational changes, could be carried out more efficiently in
an integrated environment.

Another example is the management of different legacy systems in tele-
communications environments, such as phone switching and signaling sys-
tems. A centralized, integrated management infrastructure could reduce
administrational efforts, as well as the maximum accepted latency of the
system.

1.1.2 The Technical Perspective

In a nutshell, CORBA is a specification for a software library the Object
Request Broker (ORB) with standardized object interfaces that allow soft-
ware objects to talk to each other across a network in a well-defined way. In
addition, CORBA automatically applies a range of useful services to commu-
nications. CORBA’s beauty is that it does all this largely transparently to the
application programmer. After the ORB is initialized, all CORBA objects
can be invoked like normal software objects.

The generic term for systems like CORBA is middleware—software
that resides between an application and the inner workings of the system
hosting the application. Middleware insulates applications from the
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software’s lower-level details and complexities so that the application devel-
oper only has to deal with a single application programmers interface (API)
of some sort—the middleware handles other details such as mediating com-
munications to remote objects. Instead of coding to operating systems or
low-level interfaces, the application developer can use middleware to work
on a higher level in the application, while the middleware provides the
lower-level details. CORBA is communications middleware because it insu-
lates an application from the details of the communications kernel. However,
software developed in accordance with the CORBA specification does not
necessarily need to communicate over a network—it could just as well use
methods that are contained in the client’s own address space.

From a technical perspective, CORBA has many advantages, both for
software engineers and the enterprise as a whole. The CORBA architecture
exhibits the following general design features:

Transparency

CORBA hides many of the inherent difficulties of distributed object com-
puting from the application programmer. All invocations of methods in
remote objects will be handled transparently by CORBA. To the application
programmer, all object calls appear to be local invocations. The application
programmer does not even need to know where the object is located on the
network at the point the invocation is carried out.

In addition, CORBA automatically provides a number of useful serv-
ices to network communications, such as transaction processing or naming.
Most of these services can be bought as add-on software packages, which can
be plugged into the ORB to add the required functionality to CORBA. The
main focus of this book, the CORBA security service, is one such service.

The fact that CORBA is largely transparent on the application layer
simplifies the programming of applications in distributed systems and, there-
fore, can reduce the overall application development cost, as application pro-
grammers do not have to be CORBA specialists to use CORBA to connect
their application components.

Platform independence

CORBA has its own language to describe object interfaces, the so-called
Interface Definition Language (IDL), which can be compiled into a variety
of target programming languages and platforms. This way, CORBA inter-
faces are independent of the programming language used to implement the
client and server objects. For example, it is possible to have CORBA inter-
faces for a browser-based Java front end, a PC-based C++ middle tier, and a
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UNIX-based C back end. All these software objects can be connected across
this heterogeneous environment with CORBA because all object interfaces
have an IDL representation.

CORBA also provides its own communications protocols, which run
on top of a variety of conventional network protocols (e.g., TCP/IP).

Portability

A CORBA application can be easily ported from one ORB product to
another—as long as there is an ORB product that support the same pro-
gramming language for which the CORBA application object was originally
developed, of course. Porting of applications is possible because CORBA
standardizes the interfaces visible from the application layer, so all compliant
ORBs exhibit the same interfaces to which the application is connected. In
practice, however, there are minor differences between ORB products from
different vendors, so a little bit of tweaking may be necessary to port applica-
tions between differing ORBs.

In theory, CORBA’s add-on ORB level services, such as security and
transaction processing should also be portable because CORBA standardizes
interfaces between the ORB and these services, which all compliant CORBA
vendors have to support. These interfaces, appropriately called interceptors,
intercept messages as they pass through the ORB and apply service-specific
functionality, such as encryption or transaction processing, to them.

Software reuse

CORBA is best at avoiding unnecessary development costs if many software
objects can be reused in various parts of the system, because CORBA pro-
vides the means to access all objects flexibly across platform and program-
ming language boundaries. This means that software does not need to be
ported to different programming languages or platforms anymore, hence the
total cost and effort of software development and maintenance can be reduced.

Integration

As mentioned earlier, CORBA is platform- and programming-language—
independent, and therefore allows the integration of software components
from various sources. For example, a Java front end in a Web browser can use
information from a UNIX-based back-end customer database and from an
AS/400-based accounts database to provide an integrated view of customers
and their accounts. Most major enterprises have a large number of legacy sys-
tems that contain information that is critical to the business but that can
often not automatically be tapped into from modern systems because of
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incompatibilities of data formats and communication protocols. In practice,
CORBA’s solution to this problem is often its biggest selling point, and
many companies successfully managed to develop so-called “CORBA wrap-
pers” to provide an IDL interface to their legacy systems.

CORBA achieves integration across networks with differing technolo-
gies through its own communications protocols that can run on a variety of
underlying transport mechanisms. These CORBA protocols standardize
message and data formats so that the nature of the underlying network pro-
tocols and topology becomes irrelevant as long as the transport mechanism
can convey CORBA messages. The most commonly used CORBA protocol
is the Internet-Inter-ORB Protocol (IIOP), which specifies how CORBA
messages are transported over the Internet via TCP/IP.

Interoperability

The core idea behind CORBA is that interoperability between objects run-
ning on compliant CORBA products from different vendors is possible
because CORBA specifies its own standardized communications protocols
and interface definition language. Therefore—at least in theory—all compli-
ant CORBA products should be able to interoperate.

However, it is important to understand that CORBA cannot always
provide interoperability if the underlying technology does not match. For
example, if two different security service implementations use different cryp-
tographic algorithms to protect their communications, then CORBA will
not be able to abstract from these inherent incompatibilities. How should the
recipient know how to decrypt a message encrypted with an unknown or
unsupported cryptographic algorithm?

Flexibility

CORBA is largely mechanism-independent, which means that ORBs will be
able to integrate objects from any platform as long as a valid language map-
ping exists, and from any underlying technology as long as the mechanisms
can be fitted to the CORBA interfaces. For example, CORBA’s communica-
tions protocols can be mapped onto a variety of different transport mecha-
nisms. CORBA add-on object services are also designed to support a variety
of underlying mechanisms, such as different cryptographic algorithms in the
security service.

This feature of CORBA makes it possible to use CORBA in a variety
of application domains. For example, both telecommunications providers
and medical health care companies have successfully deployed CORBA.
From a security perspective, CORBA has been used to secure a wide range of
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different application types (e.g., just-in-time communications at large manu-
facturing companies, as well as Internet e-commerce applications).

Location Transparency

CORBA today needs to be able to support mobile applications, for example,
in wireless environments with mobile devices where servers change their loca-
tion often. Such objects are often called nomadic, and CORBA’s naming and
trading services, as well as its location-transparent invocation mechanism,
provide the means to locate and invoke these nomadic objects.

Scalability

CORBA was always intended to support environments with a potentially
large number of objects and users. Therefore, the CORBA architecture was
designed in such a way that it would not pose any restrictions on the number
of objects and users in the system. It also tries to actively support the manage-
ment of large systems.

1.2 The Object Management Group

CORBA was first published in 1990 by the Object Management Group
(OMG) [1], a nonprofit organization founded in 1989, that has since grown
to more than 800 member companies, representing the entire spectrum of
the computer industry. The OMG is the world’s largest software consor-
tium, and its objective is to establish object-oriented industry guidelines for
integrating distributed applications based on a variety of existing technolo-
gies. To achieve this, OMG specifications are designed to be both rich
enough to be useful as a standard and flexible enough to accommodate a
wide variety of distributed systems.

The first key specifications adopted by the OMG is the Object Man-
agement Architecture (OMA), which provides a complete architectural
framework for CORBA that is rich and flexible at the same time. The defini-
tions of CORBA’s main parts are contained in the Common Object Request
Broker Architecture 2] and CORBAservices: Common Object Services Specifica-
tions [3]. A copy of the specifications and information on updates can be
obtained from the OMG Web site, http://www.omg.org.

The OMG standardization process is purely vendor-driven and open to
all members, and all submissions in reply to request for information (RFI)
and request for proposal (RFP) documents have to be implemented by the
submitting company within a specified timeframe. The final standard is
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adopted by a voting scheme based on both business and technical merit.
There are a large number of separate committees in the OMG for the

CORBA platform, CORBA services, and application domains.

1.3 The OMA

1.3.1 Introduction

In November 1990, the OMG defined an object-oriented architecture for
platform-independent application interactions called the OMA [4], which is
an abstract umbrella architecture for all OMG specifications. It categorizes
the areas of CORBA standards depending on purpose and level of abstrac-
tion.

The OMA is composed of an object model and a reference model. The
object model defines how objects distributed across heterogeneous environ-
ments can be described, while the reference model characterizes interactions
between those objects. Through adherence to the OMA, CORBA enables
the development and deployment of interoperable distributed object systems
in heterogeneous environments.

In the OMA object model, an object is an encapsulated entity with a
distinct immutable identity whose services can be accessed only through
well-defined interfaces. Clients issue requests to objects that perform services
on their behalf. The implementation and location of each object is hidden
from the requesting client. Although the OMA implies that all participating
software components are objects, it is important to note that applications
need only support or use OMG-compliant interfaces to participate in the
OMA. They need not themselves be constructed using the object-oriented
paradigm. Existing nonobject-oriented software can be embedded in objects
called object wrappers that participate in the OMA.

The OMG OMA reference model groups object interfaces into inter-
face categories that are conceptually linked by an ORB. At the bottom of the
standards is the ORB that implements the communication infrastructure
through which all CORBA-compliant objects communicate. The ORB
mediates all communications between objects and transparently activates
those objects that are not running when they are invoked. The CORBA serv-
ices are the fundamental interfaces bridging the gap between clients and the
ORB, and they are often compared with operating system service calls.
Located on top of the ORB and CORBA services are the CORBA domains
and CORBA facilities. The CORBA domains are vertical facilities like finan-
cial services and health care, whereas CORBA facilities are standards and
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services used horizontally across applications and domains (e.g., system
management).

Figure 1.1 shows the ORB and the different interface categories
described in the reference model.

132 ORB

The ORB is the central component of the OMA that glues all the other com-
ponents together. The Common Object Request Broker: Architecture and Speci-
fication [2] defines the programming interfaces to the ORB. Note that all
OMG specifications define objects just in terms of IDL interfaces and their
semantics and not in terms of their particular implementation. This allows
CORBA vendors considerable flexibility in the design of their particular
implementation, which is important because different environments often
pose specific constraints and requirements on the ORB. For example, ORB
implementations for mainframe computers will be quite different from the
ones that reside in embedded systems. But despite differences in the actual
implementation, the CORBA specifications ensure that all ORBs can com-
municate with each other.

Nonstandardized Vertical, Horizontal
application-specific domain-specific facilities
interfaces interfaces interfaces
Application Domain Common Application-
interfaces interfaces facilities oriented
7y = = < components
\ 4 \ 4 \ 4
ORB
A

Object

services

Horizontal
service
interfaces

System-oriented
components

Figure 1.1

CORBA/OMA reference model interface categories.
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An ORB is the basic mechanism by which objects transparently make
requests to—and receive responses from—each other, either on the same
machine or across the network. Clients do not need to be aware of the com-
munications mechanisms, object activation, object implementation, and
object location. The ORB thus forms the foundation for building applica-
tions constructed from distributed objects and for interoperability between
applications in both homogeneous and heterogeneous environments.

The OMG IDL provides a standard way to define the interfaces to
CORBA objects. IDL is a strongly typed language that is programming lan-
guage—independent. Language mappings allow IDL interfaces to be imple-
mented in the developer’s programming language of choice in a style that is
natural to that language (see Section 1.4.3).

1.3.3 Object Services

Object services are domain-independent (i.e., horizontally-oriented building
blocks that are either fundamental for developing distributed CORBA appli-
cations or that provide a universal basis for application interoperability). In
other words, object services provide system-oriented functionality to
CORBA applications by allowing application developers to call object service
functions instead of writing and calling their own private object service
functions.

The OMG CORBAservices: Common Object Services Specifications [5]
defines a number of different CORBA services that are briefly described in
the following:

o The naming service provides the ability to bind a name to an object
relative to a naming context' (like a telephone directory). A naming
context is an object that contains a set of name bindings in which
each name is unique. The underlying model is very general and flexi-
ble, since the component attribute values are not assigned or inter-
preted by the naming service.

o The event service provides asynchronous interactions between
anonymous objects. It supports asynchronous events, event “fan-in,”
notification “fan-out,” and reliable event delivery. The design is
scaleable and suitable for distributed environments. No centralized

1. A naming context is fundamentally different from a security context. A naming context
binds a name to an object to make it possible to locate it on the network. A security con-
text provides both client and target side with the same security information.
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server or global service is required. Both pull and push event delivery
models are supported. Suppliers can generate events without know-
ing the identities of consumers, and consumers can receive events
without knowing the identities of the suppliers. Event suppliers,
consumers, and channels are objects.

The notification service enhances the event service by supplying not
only the event filtering features, but also structured event types and
varying degrees of control over the quality of service that an event
channel provides.

The life cycle service deals with life, death, and relocation of objects.
It defines operations to copy, move, and remove graphs of related
objects (see also relationship service).

The persistent object service (POS) allows objects to “persist” beyond
the application that creates the object or the clients that use it. POS
allows the state of an object to be saved in a persistent store and
restored when it is needed. The object is responsible for managing
its state but can use or delegate to the POS for the actual work.
There can be a variety of different clients and implementations of
the POS, and they can work together.

The object transaction service (OTS) defines interfaces that allow
multiple, distributed objects to cooperate in order to provide
atomicity. These interfaces enable the objects to either commit all
changes together or to rollback all changes together, even in the
presence of (noncatastrophic) failure. It supports multiple transac-
tion models, including the flat (mandatory) and nested (optional)
models. It also supports interoperability between different program-
ming models and different systems, including the ability to have one
transaction service interoperate with a cooperating transaction serv-

ice using different ORBs.

The OTS supports both implicit (system-managed transac-
tion) and explicit (application-managed) propagation. With implicit
propagation, transactional behavior is not specified in the opera-
tion’s signature. With explicit propagation, applications define their
own mechanisms for sharing a common transaction. The OTS can
be implemented in a TP monitor environment to support the ability
to execute multiple transactions concurrently and to execute clients,
servers, and transaction services in separate processes.
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The concurrency control service enables multiple clients to coordinate
their access to shared resources. Coordinating access to a resource
means that when multiple, concurrent clients access a single
resource, any conflicting actions by the clients are reconciled so that
the resource remains in a consistent state.

Concurrent use of a resource is regulated with locks. Each lock
is associated with a single resource and a single client. There are sev-
eral lock modes that correspond to different categories of access.
This variety of lock modes provides flexible conflict resolution.

The relationship service allows components and objects that know
nothing of each other to be related. This can be done without
changing existing objects or requiring that they add new interfaces.
In other words, dynamic relationships between immutable objects
can be created. The service keeps track of the relationships between
objects; the related objects are not even aware that they are part of a
relationship. The service defines two new kinds of objects: relation-
ships and roles. Roles are the objects in a CORBA system.

The externalization service defines protocols and conventions for
externalizing and internalizing objects. Externalizing an object is to
record the object state in a stream of data, which can then be inter-
nalized into a new object in the same or a different process. A stream
is a data holding area with an associated cursor. A cursor is a pointer
that moves forward and backward as you write and read data to and
from a stream. The data holding area can be in memory, on a disk
file, or across a network.

The licensing service provides a mechanism for producers to control
the use of their intellectual properties. Producers can implement the
licensing service according to their own needs and the needs of their
customers. The current trend is toward component licensing, in
which components will have to be written to automatically register
with license managers. The service lets you meter the use of your
components in a flexible manner and charge accordingly.

The guery service allows users and objects to invoke queries on col-
lections of other objects. The queries are declarative statements with
predicates, and they include the ability to specify values of attributes.
Several query languages can be used (e.g., SQL).

The query service provides an architecture for a nested and
federated service that can coordinate multiple, nested query
evaluators.
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The property service provides the ability to dynamically associate
named values with objects outside the static IDL-type system (i.e.,
properties are essentially typed, named values that can be dynami-
cally associated with an object outside the IDL type system). For
example, it is possible to add an archive property to an existing
document at run-time and mark the document as ready to be
archived. The archive information is associated with the object, but
it is not part of the object’s type.

The time service enables users to obtain current time together with
an error estimate associated with it. It ascertains the order in which
events occurred and computes the interval between two events. It
consists of two services that manage universal time objects (UTO),
time interval objects (T1O), and timer event handler objects. Main-
taining a single notion of time is important for ordering events that
occur in distributed object systems.

The collections service allows the user to manipulate objects in a
group. Collections are groups of objects that, as a group, support
some operations and exhibit specific behaviors that are related to the
nature of the collection rather than to the type of objects they con-
tain. Examples of collections are sets, queues, stacks, lists, and binary
trees.

The trader service allows users to discover objects based on the serv-
ices they provide (like the yellow pages). Exporters advertise their
services with the trader; importers use the trader to discover services
that match their needs. The trading service in a single trading
domain may be distributed over a number of trader objects. Traders
in different domains may be federated.

The security service comprises the following services: identification
and authentication, authorization and access control, security audit-
ing, security of communication, nonrepudiation, and administra-
tion. After reading this book, readers will have in-depth knowledge
about the CORBA security service.

Note that only some usable implementations of these services are

commercially available at the time of this writing, (for example, the naming
service, event service, trading service, object transaction service, relationship
service, and security service) but it is anticipated that the whole range of serv-
ices will be available in the near future.
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1.3.4 Common Facilities and Domains

Common facilities are a collection of services that many applications may
share but which are not as fundamental as the object services. Common
facilities fill the conceptual space between the enabling technology (defined
by the CORBA ORB and object services specification) and the application-
specific unstandardized services that the OMA labels as application objects.
For instance, a system management or electronic mail facility could be classi-
fied as a common facility. Common facilities are divided into two major
categories. The first category contains horizontal common facilities, which are
used by most systems. There are currently four major domains for those
facilities: user interface, information management, systems management, and
task management. The second category describes vertical market facilities,
which support domain-specific tasks associated with vertical market seg-
ments. Information about the architecture of common facilities is in COR-
BAfacilities: Common Facilities Architecture [3].

There are no clear boundaries between CORBA facilities and CORBA
services. The CORBA services were defined from the bottom up, based on
the perceived need for enabling interfaces and capabilities. The CORBA
facilities, on the other hand, are typically derived from top-down needs.
CORBA facilities are concerned with application interoperability and not
with infrastructure and portability issues, which are mainly the responsibility
of the lower-level CORBA services and ORB.

Domain interfaces [1] fill roles similar to object services and common
facilities, but are oriented toward specific application domains, such as
finance, health care, manufacturing, telecommunications, electronic com-
merce, and transportation. In Figure 1.1, multiple boxes are shown for
domain interfaces to indicate the existence of many separate application
domains.

1.35 Application Interfaces

Application objects are developed specifically for a given application. Appli-
cation objects can be built using other, more basic objects, some of them spe-
cific to a particular application object and some taken from the common
facilities. Application objects are not standardized by the OMG.

For example, you could build a word-processing application object
using application-specific objects to handle the creation and editing of a
document, and common facilities objects to handle the printing and storage
of a document.
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1.3.6 Object Frameworks

Figure 1.2 illustrates the other part of the OMA reference model, the con-
cept of object frameworks. These are domain-specific groups of objects that
interact to provide a customizable solution within that application domain
(e.g., telecommunications, medical, finance, manufacturing). In Figure 1.2,
each circle represents a component that uses the ORB to communicate
with other components. The interfaces supported by each component are
indicated.

Within an object framework like the one shown in Figure 1.2, each
component communicates with others on a peer-to-peer basis. That is, each
component is both a client of other services and a server for the services it
provides. In CORBA, the terms client and server are merely roles that are
filled on a per-request basis. Very often, a client for one request is the server
for another. The circles represent components, some with only one interface
category and others with multiple categories.

1.4 CORBA

One of the first specifications to be adopted by the OMG was the Common
Object Request Broker: Architecture and Specification [2]. It details the inter-

faces and characteristics of the ORB component of the OMA. CORBA’s
main features and functional components are discussed in this section:

85 ‘

Al = Application interfaces =Domain interface
CF=Common facilities OS Object services

Figure 1.2 OMA reference model interface use.
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e ORB core;

o OMG IDL;

e Language mappings;

e Static invocation through stubs and skeletons;
e Interface and implementation repositories;

e Dynamic invocation and dispatch;

¢ Object adapters;

e Inter-ORB-protocols.

Most of these are illustrated in Figure 1.3, which also shows how the
components relate to one another.

1.4.1 ORB Core

As mentioned above, the ORB component delivers requests to target objects
and returns responses to the clients making the requests. The ORB’s key fea-
ture is the transparency of client/object communication. The ORB hides the
following:

o Object location (i.e., the client does not know where the target object

resides).
[ Client application object ] [ Target application object ]
A
Y

Static
skeleton

Static
stub
interface

Dynamic
invocation
interface

ORB
interface

ORB
interface

Client-side ORB core

Network Target-side ORB core

=== One interface for all applications
——— One interface per application (IDL-dependent)
——= One interface per object adapter

Figure 1.3 CORBA.
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o Object implementation (i.e., the client does not know how the target
object is implemented, what programming or scripting language(s)
it was written in, or on what operating system and hardware it exe-
cutes).

o Object execution state (i.c., the client does not need to know if the
target object is currently activated or if it is in an executing process
and ready to accept requests). The ORB transparently starts the
object if necessary before delivering the request to it.

o Object communication mechanism (i.e., the client does not need to
know what communication mechanisms the ORB uses).

These ORB features allow application programmers to focus more on
their own application programming and less on low-level distributed system
programming issues.

1.4.2 Object References

To make a request, the client specifies the target object by using an object
reference that is automatically created when a CORBA object is created. An
object reference always refers to the same object instance for which it was cre-
ated, and the client cannot modify it. In other words, object references are
both immutable and opaque. Object references are strongly typed and can
have standardized interoperable formats. These references are called interoper-
able object references (IORs). Alternatively, they can have proprietary formats.
Conceptually, an IOR contains three parts of information:

e A standardized repository ID, a string that identifies the most derived
type of the IOR at the time it was created. This makes it possible to
locate a detailed description of the corresponding interfaces in the
interface repository (see Section 1.4.6).

e Standardized endpoint information that is used by the ORB to estab-
lish the connection to the server identified by the IOR. It contains
protocol information and physical addressing information.

e The ORB-proprietary object key that is used by the ORB to locate
the object adapter, and by the object adapter to locate the servant
that is to be invoked.

IORs that contain multiple endpoint information and object key fields
are called multicomponent profiles, which allow IORs to support more than
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one protocol and transport mechanism. ORBs can use such multicomponent
profiles to dynamically choose the protocol and transport depending on what
the client and server support.

Object references can be obtained in three different ways:

o At object creation: A creation request returns an object reference for
. . 2
the newly created object to the client.

o Through a directory service: A client can invoke a lookup service (e.g.,
naming service and trading service in CORBAservices: Common
Object Service Specifications) in order to obtain object references for
existing objects.

e By converting references to strings and back: An object reference can be
converted into a string and stored into a file or a database. Even after
being stringified and destringified, it can be used to make requests on
the object as long as the object still exists.

143 OMG IDL

Before a client can make requests to an object, it must know the types of
operations supported by the object. An object’s interface specifies the opera-
tions and types that the object supports and thus defines the requests that can
be made on the object. Interfaces for objects are defined in the OMG IDL.
IDL interfaces are similar in syntax to classes in C++ and interfaces in Java.

The following exemplary IDL interface for a bank account illustrates
the similarity between IDL and C++:

interface Account ({
void deposit( in unsigned long amount ) ;
void withdraw( in unsigned long amount ) ;
long balance() ;

}i

Code Example 1: Example IDL interface.

2. Note that CORBA has no special client operations for object creation—generating
objects is done by invoking creation requests, which are just ordinary operation invoca-
tions on other objects called factory objects.

The fact that CORBA has no special object creation function or built-in directory
service is indicative of a key theme of CORBA: Keep the ORB as simple as possible, and
push as much functionality as possible to other OMA components such as object services
and common facilities.
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An important feature of OMG IDL is its language independence. Since
OMG IDL is a declarative language, not a programming language, it forces
interfaces to be defined separately from object implementations. This allows
objects to be constructed using different programming languages and yet still
communicate with one another.

The main features of the IDL type system are summarized below. For
more information, see references [2, 6].

e Built-in types (e.g., long, long long, short, float, double,
long double, char, wchar, boolean, octet, enum, any);

e Constructed types (e.g., struct, union);
e Template types (e.g., string/wstring, sequence, fixed);
e Object reference types;

e Interface inheritance.

144 Language Mappings

As mentioned above, OMG IDL is just a declarative language, not a full-
fledged programming language. As such, it does not provide features like
control constructs, nor can it directly be used to implement distributed
applications. Instead, language mappings determine how IDL is mapped to
the facilities of a given programming language. Important aspects of any lan-
guage mapping are mappings for interfaces (and other pseudo-objects),
types, and objects, to the corresponding constructs of the programming lan-
guage that the IDL is mapped into (e.g., in C++: classes/functions, types,
and programming language objects, respectively). As of this writing,
CORBA standardizes language mappings for C, C++, COBOL, Java, Small-
talk, and Ada 95. Other language mappings also exist but have not yet been
standardized by the OMG.

In practice, an IDL compiler automatically does the language mapping.
It produces client-side code szubs and server-side code skeletons that form the
basis for the actual implementation of the objects in the respective program-
ming language. The details of these files, such as the names and number of
generated source files, vary from ORB to ORB.

IDL language mappings are where the abstractions and concepts speci-
fied in CORBA meet the “real world” of implementation. Thus, their impor-
tance regarding CORBA applications cannot be overstated. A poor or
incomplete mapping results in programmers being unable to effectively
use CORBA technology in their language. Therefore, language mapping
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specifications are always undergoing periodic improvement in order to incor-
porate evolution of programming languages (e.g., Java), and add features that
fulfill new requirements discovered by writing new applications.

1.45 Static Invocation: Stubs and Skeletons

In addition to generating programming language types, IDL language com-
pilers and translators also generate client-side stubs and server-side skeletons.
A stub is a mechanism that effectively creates and issues requests on behalf of
a client, while a skeleton is a mechanism that delivers requests to the CORBA
object implementation. A stub is essentially a proxy for the actual target
object. Dispatching through stubs and skeletons is often called szatic invoca-
tion. IDL stubs and skeletons are built directly into the client application and
the object implementation. Therefore, they both have to have complete a
priori knowledge of the IDL interfaces of the objects being invoked.

A request sent by the client is first converted from the representation in
the programming language to one that is suitable for transmission. Once the
request arrives at the target object, the skeleton converts it to a (possibly dif-
ferent) representation—which depends on the underlying hardware and soft-
ware platform—and dispatches it to the object. The response is sent back the
way it came. Figure 1.3 shows the positions of the stub and skeleton in rela-
tion to the client application, the ORB, and the object implementation.

1.4.6 Interface and Implementation Repositories

The interface repository (IR) provides persistent objects that represent the
IDL information in a form that is available for lookup at run-time. Using the
information in the IR, it is possible for a program to be able to determine
what operations are valid on an object and make an invocation on it, even if
the interface was not known at compile-time. Using the IR interface of the
IR object, applications can traverse an entire hierarchy of IDL information.

For example, an application can start at the root of the IR and iterate
over all the module definitions there to search for the desired object. When
the desired object is found, it can open the IDL file and iterate in a similar
manner over all the definitions to retrieve information on interfaces and
types. This hierarchical approach can be used to examine all the information
stored within an IR.

Since the IR allows applications to programmatically discover type
information at run-time, its real udility lies in its support of CORBA
dynamic invocation (see Section 1.4.7). It can also be used as a source for
generating static support code for applications (as described in Section 1.4.5).
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The implementation repository contains information that allows the
ORB to locate and activate implementations of objects. Ordinarily, installa-
tion of implementations and control of policies related to the activation and
execution of object implementations is done through operations on the
implementation repository. The implementation repository is also a com-
mon place to store additional information associated with implementations
of ORB objects (e.g., debugging information). Figure 1.4 summarizes the
use of the interface repository and implementation repository.

1.4.7 Dynamic Invecation and Dispatch

CORBA supports two interfaces for dynamic invocation: the dynamic invo-
cation interface (DII), which supports dynamic client request invocation,
and the dynamic skeleton interface (DSI), which provides dynamic dispatch
to objects. The DII and DSI can be viewed as a generic stub and generic
skeleton, respectively. Each is an interface provided directly by the ORB, and
neither is dependent on the particular IDL interfaces of the objects being
invoked.
The DIT supports three types of requests:’

o Synchronous invocation: The client invokes the request and then
blocks and waits for the response [similar to a remote procedure call

Implementation

IDL interface definitions . L .
installation information

Interface Implementation Implementation
repository skeletons repository
A
Access Include Describe
Y
[ Client ] [ Target implementation ]

Figure 1.4 Interface and implementation repositories.

3. Currently, CORBA applications must use the DII for deferred synchronous invocation
and one-way invocation. However, this restriction will soon be removed; an asynchro-
nous messaging service is being developed.
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(RPQ)]. This is the most common invocation mode used for
CORBA applications because it is also supported by static stubs.

o Deferred synchronous invocation: The client invokes the request, con-
tinues processing while the request is dispatched, and later collects
the response. This is useful if long-running services are invoked.

o One-way invocation: The client invokes the request and then contin-
ues processing; there is no response.

While the DII offers more flexibility than static stubs, programmers
should be aware of its potential hidden costs. DII is often slow because the
interface repository has to be queried for each object invocation, and this
often requires a transparent request to a remote location. Static invocations
do not suffer from the overhead of accessing the IR since they rely on type
information already compiled into the application.

Analogous to the DII is the server-side DSL,* which allows servers to be
written without having skeletons for the objects compiled statically into the
program. In real-world applications, the DSI is rarely used.

1.4.8 Object Adapters

Object adapters serve as the glue between CORBA object implementations
and the ORB itself. In other words, an object adapter is an interposed entity
that allows a caller to invoke requests on an object even though the caller
does not know that object’s true interface. Figure 1.5 illustrates the role of an
object adapter.

CORBA object adapters are responsible for creating object references.
They also ensure that each target object is incarnated by a servant, and they
pass requests from the server-side ORB to the target servant. The functional-
ity provided by the ORB through an object adapter often also includes inter-
pretation of object references, method invocation, security of interactions,
object and implementation activation and deactivation, mapping object ref-
erences to implementations, and registration of implementations.

CORBA without object adapters would mean that object implementa-
tions would need to connect themselves directly to the ORB to receive
requests. Instead of object adapters, a very complex ORB interface would be

4. Unlike most of the other CORBA subcomponents, which were part of the initial
CORBA specification, the DSI was only introduced at CORBA 2.0.
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Figure 1.5 Role of an object adapter.

required, which would be difficult to standardize. Without object adapters,
the ability of CORBA to flexibly support diverse object and ORB implemen-
tations would be severely compromised.

CORBA allows for multiple object adapters per ORB, addressing the
wide range of object granularities, lifetimes, policies, and implementation
styles. Until Version 2.1, CORBA only specified one object adapter, the
basic object adapter (BOA). CORBA required that a BOA be available in
every ORB, and it specified the functions that had to be provided in a BOA
implementation. When it was first specified, it was hoped that the BOA
would suffice for the majority of object implementations. As a result of the
goal to make the BOA support multiple languages, the specification had to
be made quite vague in some areas. This, in turn, resulted in nontrivial port-
ability problems between BOA implementations because ORB vendors had
to fill in the missing pieces with proprietary solutions.

Since Version 2.2, CORBA specifies the portable object adapter (POA)
that replaced the flawed BOA. The POA supports the whole range of interac-
tions between CORBA objects and programming languages while at the
same time maintaining application portability. Therefore, the BOA specifi-
cation has been removed from CORBA, and the POA is the new standard
object adapter.

1.4.9 Inter-ORB Protocols

CORBA 1.1 was only concerned with creating portable object applications.
CORBA 2.0 introduced a general ORB interoperability architecture that
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answered the demand for direct ORB-to-ORB interoperability and for
bridge-based interoperability. Direct interoperability is possible when two
ORB:s reside in the same domain—in other words, both ORBs understand
the same object references, use the same OMG IDL type system, communi-
cate via the same low-level protocol, and perhaps share the same security
information. Bridge-based interoperability means that ORBs from separate
domains must communicate. The role of such bridges is to map ORB or
domain-specific information from one ORB domain to another.

The ORB interoperability architecture is based on the abstract General
Inter-ORB Protocol (GIOP), which specifies transfer syntax and a standard
set of message formats for ORB interoperation over any connection-oriented
transport. The Internet Inter-ORB Protocol (IIOP) specifies how GIOP is
built over TCP/IP transports. Every ORB that calls itself CORBA-compliant
must either implement IIOP natively or provide a half-bridge to it. IIOP
is by far the most commonly used CORBA protocol today. The ORB
interoperability architecture also provides for other environment-specific
inter-ORB protocols (ESIOP) that allow ORBs to be built for special situa-
tions in which certain distributed computing infrastructure is already in
place.” For example, the first ESIOP adopted was the DCE Common Inter-
ORB Protocol (DCE-CIOP) that can be used by ORBs in environments
where DCE is already installed.

In addition to standard interoperability protocols, standard object ref-
erence formats are necessary for ORB interoperability. CORBA specifies a
standard object reference format called the IOR. An IOR stores information
needed by the ORBs to locate other objects and communicate with them
over one or more protocols (see Section 1.4.2). For example, an IOR con-
taining IIOP information stores host name, TCP/IP port number, and other
required information.

1.5 How Does It All Work Together?

This section tries to put all CORBA components into context. A CORBA
product generally consists of the following components:

5. Note that both the IIOP and DCE/ESIOP have built-in mechanisms for implicitly trans-

mitting context data that is associated with the transaction or security services.
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e The ORB library that gets linked into the application code and acts
as a proxy for all remote method invocations. This library contains

the implementation for the CORBA protocols.

e Some CORBA implementations use some kind of activation
daemon that listens for requests to the host on which it resides, and
restarts the called target ORB and target application object. The
advantage is that not all target ORB and application objects on the
host need to run on a permanent basis.

e The IDL compiler that provides the language mapping from the
standardized object interfaces into matching client stubs and target
skeletons. These stubs and skeletons form the basis of the applica-
tion code (i.e., the application programmer implements the actual
object functionality within the stubs and skeletons).

e Add-on CORBA services such as a naming service, a transaction
service, or a security service can be installed to enrich CORBA’s
middleware functionality. These products are often provided by
highly specialized third-party vendors.

Figure 1.6 shows the main components of CORBA and how they are
interrelated. The following sections offer a brief explanation of the different
APIs used during the CORBA invocation process.

1.5.1 The Client System at Run-Time

Initially, a client application invokes operations on some server application
object. The client can either use the stub-style invocation API (client stub) or
the dynamic invocation API (dynamic invocation interface) to invoke the
operation either statically or dynamically, respectively. Logically, the ORB is
a single component, but it has some functions specific to the client side and
other functions specific to the server side. The client-side ORB handles the
invocation request from the client and selects the related servers and meth-
ods. It validates arguments against the interfaces and sends the request to the
server side ORB or activation component. The application can invoke meth-
ods synchronously or asynchronously. The ORB is linked into the client
application itself. The interface repository stores modules of interface infor-
mation (object references), including descriptions of the operations that are
valid for a given object and the arguments that are valid for an operation.
Context objects contain information about the client environment, or a
request that is not passed as formal arguments of an operation. CORBA



Client computer system

Target computer system

OMG IDL

IDL
source file

v

IDL
compiler

Interface

repository

. Target application |-
Cller?t . objects =
application
objects A
L Dyn. Ser\_/er
I skeleton static
interface | | skeleton
4
LA yal
Y A Context Context [\ 7
‘1( Client Dynamic objects objects
static invocation POA and™_ )
stub interface other object Implementation
adapters > repository
L
A 4 Y \ 4

Client-side ORB

Target-side ORB

10

i Conceptual components

Object
services

Common APIs

facilities L
% Multiple items

Figure 1.6 An architectural overview of CORBA.

VIAOD 01 uornpouy

214



26 Developing Secure Distributed Systems with CORBA

transmits context object information (a list of properties and their values)
from the client to the server, and potentially to other servers.

1.5.2 The Server System at Run-Time

The server-side ORB, which is linked into the server application, receives the
method dispatch request, unmarshals the arguments, sets up the context state
as needed (i.e., context objects), invokes the method dispatcher in the server
skeleton, and completes the invocation. The ORB API enables application
developers to access all ORB functions that do not depend on a specific
object adapter, such as for manipulating object references. The object
adapter API enables method developers to access CORBA functions, such as
registering implementations, authenticating requests, and handling activa-
tion policies. Object adapters perform general ORB-related tasks, for exam-
ple, activating objects and implementations and registering server instances.
The POA is the most commonly used object adapter. The server skeleton
takes these general tasks and ties them to particular implementations and
methods in the server. A server skeleton is a language-specific mapping of
OMG IDL operation definitions into methods. For dynamic invocations,
the DSI API can be used instead of the server skeleton. The server applica-
tion communicates with the server-side ORB and includes one or more
implementations of an object. The method implementations (called servants)
are the parts of a server application that satisfy a client’s request for an opera-
tion on a specific object. The implementation repository is a storage place for
implementation definitions, such as information about which implementa-
tions are installed on a given system.

1.5.3 Other Components

Stubs and skeletons are generated by the IDL compiler. Object references are
created by the object adapter when the object is generated. Object services
provide a set of run-time system level services (see Section 1.3.3). Object
facilities (see Section 1.3.4) are higher-level services than the object services.

1.6 Creating and Running an Application Example

This section will introduce a simple example application and briefly illustrate
how the IDL interface is specified, how the stubs and skeletons are compiled,
how the client and server objects are implemented from the stubs and
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skeletons, and, finally, how the example is executed. Detailed information
about the code example that is described can be found in the documentation

that comes with the MICO CORBA distribution [7].

1.6.1 Writing a CORBA Application

The first step for the programmer is developing the IDL interfaces for all
application objects. As a general rule, an IDL interface should provide as lit-
tle access as possible to internal functions and variables, without inhibiting
the application’s functionality.

Consider an example application in which a bank would maintain its
customers’ accounts. An object that implements such a bank account should
offer the following three operations: deposit a certain amount of money,
withdraw a certain amount of money, and provide a balance that returns the
current account balance. The state of an account object consists of the cur-
rent balance. The following IDL file account . id1 with two interfaces cap-
tures that functionality:

interface Account ({
void deposit ( in unsigned long amount ) ;
void withdraw( in unsigned long amount ) ;
long balance() ;

}i

interface Bank {
Account create () ;

}i
Code Example 2: account . idl

The next step is to run this interface declaration through an IDL com-
piler that will generate code in the target programming language. The
MICO IDL compiler is called 1d1 and is used like this to produce C++ code
stubs and skeletons that run with the POA:

idl —poa —mo-boa account.idl
The IDL compiler will generate two files: account .h and account.cc

that contain the class declarations for the account implementation base class
(POA_account) and the client stub (account _stub). The POA_ prefix in
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the implementation base class name indicates that the POA is used to con-
nect the target object to the target side ORB. account . h contains class dec-
larations for the base class of the account object implementation and the stub
class a client will use to invoke methods on remote account objects.
account . cc contains implementations of those classes and some support-
ing code.

The application programmer now needs to subclass POA_account
(implementing the purely virtual methods) and write a program that uses the
bank account object.

The following first code fragment shows a simple implementation
of the methods provided by the target servant object. The *.h files that
describe the ORB and all other CORBA declarations are automatically
included through account.h. This part of the target object is called a ser-
vant, which is not the same as a server. A servant contains the actual interface
implementation, whereas the server contains the code to bootstrap the system.

#include <fstream.h>
#include “account.h”

/*
* Tmplementation of the Account

*/

class Account impl : virtual public POA Account

{
public:
Account_impl ();

void deposit (CORBA: :ULong) ;
void withdraw (CORBA: :ULong) ;
CORBA: :Long balance () ;

private:
CORBA: :Long bal;

}i

Account impl::Account impl ()

{

bal = 0;
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void

Account impl::deposit (CORBA::ULong amount)

{

bal += amount;

void

Account_impl::withdraw (CORBA::ULong amount)

{

bal -= amount;

CORBA: : Long
Account impl::balance ()

{

return bal;

/*

* Implementation of the Bank

*/

class Bank impl : virtual public POA Bank

{
public:
Account ptr create ();

}i

Account ptr
Bank impl::create ()
/*
* Create a new account

*/

(which is never deleted)

Account impl * ai = new Account impl;
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* Obtain a reference using this.

* This implicitly activates the

* account servant (the RootPOA, which is
* the object’s _default POA,

* has the IMPLICIT ACTIVATION policy)

Account ptr aref = ai-> this ();
assert (!CORBA::is nil (aref));

/*
* Return the reference

*/

return aref;

Code Example 3: server.cc (part 1)

From an application developer’s perspective, this CORBA-enabled applica-
tion code does not differ much from a normal program—apart from the
inheritance and a few simple naming conventions. This is why using
CORBA is rather easy for application programmers.

Next is the main part of the server application (this component is called
the server), which starts the ORB, creates and starts a Bank object, and
writes the object reference to the object into a file Bank.ref. There are
many ways in which the object reference can be transferred from the target
side to the client side, in particular via a naming service or trading service.
However, this simple example just uses a file to transmit the reference so that
no additional CORBA components are required.

Please note that the example uses the POA as a connection mechanism
between the target ORB and target implementation.

int main (int argc, char *argvl[])

/*
* Initialize the ORB
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*/
CORBA: :ORB_var orb = CORBA::ORB init (argc, argv);

/*
* Obtain a reference to the RootPOA and its Manager

*/

CORBA: :Object var poaobj =
orb->resolve initial references (“RootPOA”) ;

PortableServer::POA var poa =
PortableServer::POA:: narrow (poaobj) ;

PortableServer: :POAManager var mgr =
poa->the POAManager () ;

/*
* Create a Bank

*/

Bank impl * micocash = new Bank impl;
/*

* Activate the Bank

*/

PortableServer::0bjectId var oid =
poa->activate object (micocash);

/*
* Write reference to file

*/

ofstream of (“Bank.ref”);
CORBA: :Object var ref =
poa->id to reference (oid.in());

CORBA: :String var str =
orb->object to string (ref.in());
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of < str.in() < endl;
of .close ();

/*
* Activate the POA and start serving requests

*/
printf (“Running.\n”);

mgr->activate () ;
orb->run() ;

/*
* Shutdown (never reached)

*/

poa->destroy (TRUE, TRUE) ;
delete micocash;

return 0;

Code Example 3: server.cc (part 2)

Now the target object is up and running, and the object reference that points
to that object is saved in a file.

The following client application reads the object reference from the file
Bank.ref, binds to the server, opens a new account, deposits 700, with-
draws 250, and displays the result. Again, the *.h files that describe
the ORB and all other CORBA declarations automatically included through

account.h.
#include “account.h”
#ifdef HAVE UNISTD H

#include h
#endif
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int main (int argc, char *argvl[])

{

CORBA: :ORB_var orb = CORBA::ORB init (argc, argv);

/*
* TOR is in Bank.ref in the local directory

*/

char pwd[256], uri[300];
sprintf (uri, “file://%s/Bank.ref”,
getcwd (pwd, 256)) ;

/*
* Connect to the Bank

*/

CORBA: :Object var obj = orb->string to object (uri);
Bank var bank = Bank:: narrow (obj);

if (CORBA::is nil (bank)) ({
printf (“oops: could not locate Bank\n”) ;

exit (1);
}
/*
* Open an account
*/

Account var account = bank->create ();

if (CORBA::is nil (account))
printf (“oops: account is nil\n”);
exit (1);

}

/*
* Deposit and withdraw some money

*/
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account->deposit (700);
account-s>withdraw (450) ;

printf (“Balance is %1d.\n”, account-balance ());
return 0;

}

Code Example 4: client.cc

More information about this code example can be found in the documenta-
tion that comes with the MICO CORBA distribution [7]. Throughout this
book, the functionality of this basic application will be extended step-by-step
with functional components of the CORBA security service.

1.6.2 Running a CORBA Application

After the client and target code have been successfully built, the server appli-
cation needs to be launched on the server machine and the object reference
for the server needs to be transferred to the client machine.

The client application can then be launched. It will read the object ref-
erence for the server application from the file and use it to locate the server
application and bind to it. Finally, the server object can be invoked by the
client application just like a local object.

1.7 Summary

CORBA, an industry specification that has been in development since 1990
by the OMG, allows software objects to talk to each other across the
network. It has many advantages. From a business perspective, CORBA can
help with legacy integration, which leverages the use of both old and new
systems. From a technical point of view, CORBA can provide transparency,
platform independence, portability, software reuse, integration, interoper-
ability, flexibility, and scalability.

CORBA is one part of the OMA, which is an umbrella architecture for
all OMG specifications. The main component of the OMA is the ORB that
glues all the other components on the network together. To achieve this, it
uses system-level object services such as the naming service or security service.
This book is about the CORBA security service. Common facilities and
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domains are similar to object services but more directed at specific applica-
tion needs.

CORBA specifies object interfaces in its own IDL to enable platform
and programming language independence. These IDL interface specifica-
tions are compiled into stubs and skeletons in the underlying programming
language—the application programmer then implements the actual object
functionality using these stubs and skeletons. On the server side, object
adapters such as the POA serve as the glue between CORBA object imple-
mentations and the ORB itself.

The ORB uses object references as pointers to invoke target objects.
Invocation can be done statically or dynamically. Dynamic invocation often
uses repositories that hold interface and implementation information needed
to locate and identify the invoked object. Remote ORBs communicate
through a suite of network-independent CORBA-specific inter-ORB proto-
cols (e.g., the IIOP).

This chapter also contains an example run-through of a CORBA invo-
cation to illustrate how all these different components work together. A code
example of a simple banking application gives a brief introduction to the
application development process using CORBA.

1.8 Further Reading: Books on CORBA

This book is about CORBA security and not about CORBA. Readers should
therefore draw information from other books if they want to know more
about the inner workings of CORBA and other OMA components.

As of this writing, by far the most comprehensive book on CORBA
programming is Advanced CORBA Programming with C++ [6]. It provides
in-depth technical advice and is a good desk reference on the topic. If readers
prefer a light and entertaining read, then try /nstanr CORBA [8], which is
a nontechnical description of CORBA and its components. Other books
worth reading are CORBA 3: Fundamentals and Programming [9] and Enter-
prise Application Integration with CORBA [10].
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The Security Basics

2.1 What Is Security?

Most CORBA people have a hunch regarding what security means in their
systems. This gut feeling is frequently based on urban myths that involve
wily hackers who spend their days attacking computer systems, and some
kind of magic cryptography that can be installed to spoil their malicious
attempts. But this is far from the useful precise definition that is needed in
order to understand what CORBA security is supposed to do. Hence, this
chapter gives a concise characterization of key security concepts and termi-
nology within the context of CORBA environments.

Security is about the protection of assets [1]. Assezs can be tangible (e.g.,
network elements and hosts) or intangible (e.g., information or use of
resources). In either case, the owner of each asset associates a value with it
and, therefore, wants to restrict access to it.

CORBA security concerns information security—other types of secu-
rity, such as physical security, cannot be achieved by CORBA security and
are, therefore, considered outside this book’s scope. The term information
security is used to describe the task of preventing information assets from
being compromised. Depending on the environment, this can include
attacks on stored information, as well as information on the wire. Note that
data is not the same as information—data is rather a representation of infor-
mation. Further, information is the (subjective) interpretation of data. Data
as such often has no value—it is the information conveyed through the data
that has to be protected instead. Hansen [2] and other sources define data as

37
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“physical phenomena chosen by convention to represent certain aspects of
our conceptual and real world. The meanings we assign to data are called
information. Data is used to transmit and store information and to derive
new information by manipulating the data according to formal rules.”

In a similar sense, the ultimate goal of CORBA security is to protect
information resources rather than objects, invocations, or messages. Apply-
ing security to these technical components is rather a means to an end, which
is the protection of the information resources on the system.

Protective countermeasures can be distinguished in three categories [1]:

o Prevention countermeasures: Prevent assets from being damaged
before the attack happens. A real-life example of prevention would
be the locks on the doors of your house.

e Detection countermeasures: Allow you to detect when an asset gets
compromised, giving you information on how the damage has been
caused and who caused it. A burglar alarm in your house is an exam-
ple of a physical detection measure.

e Reaction countermeasures: Allow you to recover the damaged assets or
recover from damage to your assets after they have occurred. For
example, you could call the police to find the burglar.

Each protective measure also has a cost associated with it, which is
mainly based on the effort required to implement the security measures in
the target environment. In the examples given above, these costs would be
the expenses of buying and installing locks and burglar alarms and the effort
spent by police.

2.2 Why Security?

Protection of assets is important because each asset has some value associated
with it that can be lost when the asset is compromised. Tangible assets are
often worth their reselling or buying price, which is generally relatively easy
to determine. Only in some cases is the value of intangible assets as easy to
determine, for example, for a service in which customers get charged on a
per-bandwidth or per-timeslot basis, so that each “stolen” unit corresponds
to a defined monetary value. For most other information assets, it is often
hard to determine or quantify the exact value. This can be due to the fact that
the value of some information has no exact financial equivalent or because
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the potential value is consequential. Examples of information assets that have
a high consequential value are product designs or company strategies.

It is therefore more appropriate to quantify the /oss cost as the value of
assets. The loss cost can be defined as the negative impact when an asset is
compromised: replacement cost, reputational damage, loss of competitive
advantages, and loss of customers.

The purpose of security is to minimize the overall loss associated with
potential attacks. By nature, there is no such thing as total security. Any sys-
tem that provides valuable information resources to authorized users is vul-
nerable in one way or another because it reacts to user actions. Therefore,
effective security enforcement is about finding an appropriate trade-off
between the cost of implementing a security measure and the loss cost of a
successful break-in. This process is often referred to as risk analysis (more on
this topic can be found in Section 2.4.2).

In most commercial environments, the cost of implementing security
measures needs to be lower than the total loss cost associated with all poten-
tial attacks (taking into account the chances of such attacks being successful).
Otherwise, it would be more cost-effective to pay for the loss instead of the
cost of implementing security measures. However, in some environments, in
particular in the military, the definitions of cost and loss can be somewhat
counterintuitive—it may be preferable to destroy some information asset
instead of saving it if that prevents it from getting into the hands of the
enemy. In this case, the loss is not defined by the loss of information but by
the fact that it is valuable because it is unknown to other parties.

2.3 Security Properties Within CORBA

This section extends our definition of information security by distinguishing
a number of different aspects of information security. We first give a generic
classification of the main aspects involved and then describe a number of
additional requirements for the CORBA security architecture. The discus-
sion will show that there is no single universal terminology that fits all sys-
tems. Therefore, we try to identify a set of CORBA specific definitions.
Protection of information assets from unauthorized attempts to access
information or from interference with its operation is often defined as having
the following fundamental goals (as defined in the Common Criteria stan-

dard [3]):

o Confidentiality: The prevention of unauthorized disclosure of
information;
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o [ntegrity: The prevention of unauthorized modification of
information;

e Availability: The prevention of unauthorized withholding of infor-
mation or resources.

These goals are prioritized differently depending on the application
and particular environment. In many commercial systems, availability is
most important, whereas in some military environments, confidentiality may
be more critical. One way of looking at these three main goals is that they all
describe different aspects of access control to information resources. One can
also argue that the list of fundamental goals is incomplete [1] and add
accountability (e.g., if your applications provide e-commerce services where
irrevocable evidence of actions has to be kept). Dependability is another
important requirement related to the reliability of a (security) system in the
face of attacks.

231 Confidentiality

Historically, security and confidentiality were closely related, because in the
early days of computing, information security was mainly a concern to the
military. As a result of the importance of confidentiality in the past, research
in computer security has often concentrated on this topic. Even today, many
people still feel that the main purpose of information security is to stop
unauthorized users from reading (and understanding) sensitive information.
Sometimes the terms security and confidentiality are even used synonomously,
despite the fact that securing a system includes many other aspects. In this
book, confidentiality is considered one part of security.

Confidentiality is enforced by restricting read operations, for example,
by encrypting communications or by implementing access controls. Some-
what counterintuitively, research in information security has found that it is
often also necessary to police write operations to enforce confidentiality. The
Bell-LaPadula model [4] illustrates this phenomenon—confidentiality can
be breached if privileged users who have access to confidential information
are able to write it somewhere else where it is accessible to users who should
not have access to it."

For CORBA security, the following narrow definition of confidential-
ity is most appropriate: Confidentiality denotes the protection of requests

1. Note that this requires the intent of the privileged user to do so.
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and replies from unauthorized reading, as well as the restriction of access to
target operations that return confidential information, so that only author-
ized callers can invoke them.

232 Integrity

In a narrow sense, integrity deals with the prevention of unauthorized writ-
ing. In this interpretation, integrity is the dual of confidentiality. Often-
times, similar security mechanisms achieve both goals.

However, it is not easy to give a concise definition of integrity. There
are, in fact, several differing definitions. In the paper by Clark and Wilson
[5], integrity means that no user of the system, even if authorized, may be
permitted to modify data items in such a way that assets or accounting
records of the company are lost or corrupted. The Orange Book [6] defines
data integrity as external consistency (i.e., the state that exists when comput-
erized data is the same as that in the source document and has not been
exposed to accidental or malicious alteration or destruction). In communica-
tions security, integrity refers to the detection and correction of modifica-
tion, insertion, deletion, or replay of transmitted data, including both
intentional manipulations and random transmission errors [1].

For CORBA security, the latter definition of communications integrity
is most appropriate. In addition, access to target operations that can modify
protected information needs to be included in the definition.

2.3.3 Availability

The ISO/OSI 7498-2 security architecture for communications security [7]
defines availability as the property of being accessible and useable on demand
by an authorized entity. From a security perspective, an availability com-
promise is the prevention of authorized access to resources or delaying of
time-critical operations. It ensures that a malicious attacker cannot launch
so-called denial of service attacks (i.c., prevent legitimate users from having
reasonable access to their systems).

This definition makes sense for CORBA security, although the
CORBA security services [8] are themselves not able to fully provide protec-
tion from denial of service attacks. This is because availability is very much
a concern beyond the traditional boundaries of information security. It
involves engineering techniques that come from areas like fault-tolerant or
real-time computing.
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Availability is often partly the responsibility of other OMA compo-
nents, such as the archive/restore services, or of underlying network or oper-
ating systems services. If the underlying network is vulnerable to denial of
service attacks, then the CORBA security services that use the network can-
not preserve availability. However, CORBA security can protect target
implementations from denial of service attacks by only forwarding author-
ized requests to the application layer.

234 Accountability

The three goals of information security described so far can be interpreted as
three different aspects of the same goal: to prevent unwelcome events by con-
trolling access to resources. However, things can go wrong in any real-world
system, no matter how effective the access controls are. For example, author-
ized actions can lead to security breaches, or bugs in the security system can
be exploited by attackers. Therefore, we add another aspect to our definition
of security that holds users responsible for their actions. The Orange Book [6]
describes accountability as follows: Audit information must be selectively
kept and protected so that actions affecting security can be traced to the
responsible party. To achieve this, the system needs to authenticate users
through an identification and authentication process, and it needs to keep
audit logs of security relevant events associated with each user.

The CORBA security services specify two functional components to
achieve accountability: security audit, which logs security relevant events
(like an unsigned purchase receipt), and nonrepudiation, which generates
irrevocable evidence of user actions (like a signed pay-slip). Although the gen-
eral definition of accountability fits CORBA security, it is not clear which
information can and should be audited in CORBA-based systems. CORBA
security specifies the logging of specific audit events both on a per-invocation
granularity on the ORB layer and more fine-grained on the application layer.

235 Dependability

Security systems have to deal with situations in which proper performance is
required in the face of adverse conditions. The term reliability is concerned
with the reaction of an IT system to failures, whereas safety relates to the
impact of systems failures on their environment. IFIP WG10.4 [9]
describes dependability as a unifying concept—security, reliability, integrity,
and availability are simply aspects of dependability. Dependability is defined
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as the property of a computer system, such that reliance can justifiably be
placed on the service it delivers to its users [10].

Dependability is a desirable property for any security system, because
users have to rely on the security system to enforce the required protection
measures in the intended manner. However, addressing dependability in
CORBA security is hard because several layers play together to enforce the
security measures, and dependability heavily depends on the layers below
CORBA. To achieve dependability, CORBA security ultimately relies on the
security functionality provided on the lowest possible layer, which is consid-
ered to be mostly hidden from the CORBA layer.

On a more general note, dependability of a security system increases
the trustworthiness of the system. The CORBA security services specification
[8] defines trustworthiness as the ability of a system to protect resources from
exposure to misuse through malicious or inadvertent means.

2.4 Security Management

Security in CORBA systems is a difficult technical problem, but it is not just
a technical issue. In many cases, bad security management is the real cause
for security problems; rather than technical weaknesses. To help you prevent
that, this section will explore, in general terms, how information security is
managed on an organizational level. It is important to approach security and
security management within the context of the goals and constraints of the
environment as a whole. Otherwise, the security “solution” may not solve the
real problems.

Good security management has several objectives: the general defi-
nition of the enterprisewide security goals (policy); the identification,
implementation, and documentation of appropriate countermeasures (risk
analysis); and the evaluation of countermeasure effectiveness based on analy-
sis and feedback (audit). Figure 2.1 shows the connections between the dif-
ferent key documents, processes, and parties related to security management,
followed by a more detailed description.

241 Security Policy

Most literature defines the term security policy rather vaguely—at times,
there are even conflicting notions. In practice, it makes sense to define secu-
rity policies on several hierarchical layers of abstraction, more static and
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Figure 2.1 Security management overview.

abstract at the top, and with increasing level of detail and more regular modi-
fications toward the lower layers.

From an organizational point of view, the information security policy
specifies the abstract security goals within the context of the overall enterprise
objectives, such as optimal long-term profit, adherence to data protection
requirements, maintenance of good reputation. Its main objective is to pro-
vide management direction and support for information security [11].

On a technical level, the term security policy is often defined as a set of
rules that state which actions are permitted and which actions are prohibited.
A domain of a security policy is the set of entities (i.e., users, data objects,
machines, administrators) that are governed by the policy [1]. Security rules
are defined by an authorized entity, such as the security manager or adminis-
trator. The CORBA security services specification [8] defines the terms at an
even more technical level: “A security policy is the data that defines what pro-
tection a system’s security services must provide. There are many kinds of
security policies, including an access control policy, audit policy, message
protection policy, and nonrepudiation policy. Security policy domain is
defined as a domain whose objects are all governed by the same security pol-
icy. There are several types of security policy domains, including access con-
trol policy domains and audit policy domains.”

It is useful to define separate terms for security policies on different
levels of abstraction. In this book, we will use the widespread approach of
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calling the abstract high-level document the “information security policy,”
the less abstract refinement of this policy the “security guidelines,” and the
resulting detailed mechanism-specific instructions “security procedures.”

2.4.1.1 Information Security Policy

In essence, on a few pages, the information security policy document states
what security is to be achieved. It defines the organization’s fundamental
goals regarding information security, where the responsibility for security
lies, the organization’s commitment to security, and the scope to which the
security policy should apply. It should cover the security goals from a techni-
cal, social, legal, and management perspective, and ensure that the organiza-
tion’s security aims fit with the overall enterprise management strategy. The
content should be specific enough to provide a useful framework for lower-
level documents, and at the same time be abstract enough to remain rela-
tively static over time. Modifications to this document should only be neces-
sary in exceptional cases, such as major changes in the system environment.

Most enterprise security policies start with general statements like: “All
departments should ensure that adequate information security management
policies are implemented to protect their information assets.” By signing off
these declarations, the enterprise management has to commit itself to sup-
port the information security policy, both financially and through proactive
management. The policy should then clarify critical issues such as asset own-
ership, responsibilities, minimum security requirements, personnel security,
staff/user education, physical security, incident response/reporting/recovery,
auditing, policy revision, and compliance with regulations. For example, a
policy could state the requirement that access to information and resources
should be restricted to authorized personnel.

There are a number of resources available that aid in the development
of an enterprise security policy. The British standard BS 7799 [11] contains a
set of “best practices” guidelines for information security and, more impor-
tantly, how organizations can demonstrate compliance to independent
accredited auditors and receive certification. First published in early 1995, it
was the first set of guidelines by a standards body that could reasonably be
implemented by both small and large businesses. BS 7799 was updated in
1999 to include controls for e-commerce, mobile computing, teleworking,
and outsourcing. The standard addresses 10 key areas of information security
management: security policy, security organization, assets classification and
control, personnel security, physical environmental security, computer
and network management, system access control, systems development and
maintenance, business continuity planning, and compliance. Other useful
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resources are the German IT Baseline Protection Manual [12] and the
ISO/IEC TR 13335 Guidelines for the Management of IT Security
(GMITS) [13].

2.4.1.2 Security Guidelines

Security guidelines identify the countermeasures that should be imple-
mented to accomplish the security goals stated in the information security
policy. If no appropriate countermeasure can be found for a policy state-
ment, or if the countermeasure cannot be implemented in an acceptable (i.c.,
cost-effective) way, then the security guidelines should state this explicitly.
And just like the information security policy, the security guidelines should
be signed off by the security management, which thus takes responsibility
for the choice of countermeasures and their accordance with the enterprise
security goals. Changes to the guidelines can occur from time to time but
only in harmony with the goals set out in the information security policy.

An appropriate security guideline for the aforementioned access restric-
tion example could be along these lines: “The enterprise restricts access to
information and resources through the use of passwords, with appropriate
length and complexity to prevent brute-force attacks; passwords are not to be
shared to ensure clear accountability; passwords are not to be written down,
and they will be renewed on a regular basis.”

24.1.3 Security Procedures

Security procedures state in detail how the identified countermeasures are
to be implemented within particular environments. Because of their detailed
nature, security procedures only apply to the exact configurations and ver-
sions of the system components for which they were written. This means
that, for each countermeasure, there can be several customized procedures,
for example, one for each application, for each ORB product in use on a par-
ticular platform, or one per set of security mechanisms used. Modifications
to these documents can occur frequently as product updates become avail-
able or bugs are detected and patched. Adjustments can be carried out by sys-
tem administrators and programmers whenever they change the system, but
they should only become officially valid after the security manager has signed
off on them to ensure compliance with the security guidelines and with the
overall information security policy.

An exemplary security procedure for the password example above
would be: “Passwords are chosen by the user but must contain at least six
characters, with at least two alphanumeric letters (minimum one capital, one
lowercase), and at least one numeric; passwords are renewed automatically
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every 28 days; the last 10 passwords are stored and cannot be chosen again;
passwords must go through a one-way function before they are transmitted
or stored; the stored values are made resilient to dictionary attacks by using a
salting function (applies to: CORBA Banking v1.0, MICOSec level 2, v1.0,
Compagq iPAQ PocketPC H3600, Handheld Linux V0.4).”

2.4.2 Risk Analysis

The previous section stated that the security policy derives the abstract infor-
mation security goals from the overall business goals, but it did not explain
how guidelines and procedures are generated from that. Knowing what secu-
rity the enterprise wants to achieve is often not sufficient to be able to
develop effective security guidelines and procedures, because in many cases
there is no a priori knowledge of the potential threats to the security of a par-
ticular system.

Therefore, an intermediate step is introduced at which all potential
risks to the security goals are captured and compared to the effectiveness
of corresponding countermeasures. This process is referred to as risk analy-
sis—the procedure used to estimate potential losses that may result from
system vulnerabilities and to quantify the damage that may result if certain
threats occur [13]. The ultimate goal of risk analysis is to help select cost-
effective safeguards that will reduce the residual risk to an acceptable level.

The term risk can be defined as the index of the threats and corre-
sponding vulnerabilities in a system. If both the threat and vulnerability are
considered severe, then the risk is high. If the threat is severe but the vulner-
ability is minor, then the risk may be medium or low. Risk can also be inter-
preted as a measure for the probability of a loss to occur.

Some sources divide the risk analysis process into two parts, risk assess-
ment and risk management. Risk assessment is defined as the assessment of
threats to, impacts on, and vulnerabilities of information and information
processing facilities and the likelihood of their occurrence. Risk management
is the process of identifying, controlling, and minimizing or eliminating
security risks that may affect information systems at an acceptable cost [11].

A full risk analysis proceeds in several steps. Initially, the functionality
of the analyzed system needs to be documented in detail before the actual
risk assessment can be carried out. This ensures that the analyst fully under-
stands the inner workings of the system and prevents undocumented changes
to the system that could alter the results of the analysis. In addition to the
functionality of the system, the documentation should contain a description
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of the technical and organizational environment, to prevent deployment in
inappropriate environments.

This is followed by the risk assessment step that, based on the system
description, identifies threats and vulnerabilities and estimates the resulting
risk. It is important to capture as many potential threats as possible and to
consider all possible causes, such as different attack scenarios and accidental
improper system use. The list of identified threats can be divided into several
categories (dependent on the application), such as client-side, network, and
server-side threats in CORBA systems. Exemplary threats could be “Attack-
ers can tap the network” or “Attackers can send requests to the CORBA
server port.” After that, the analyst tries to list as many system security vul-
nerabilities as possible—things like “Sensitive information is transmitted
over the network in clear,” or “Unprotected IIOP port allows access to server
with sensitive information.” By doing this task independently from the
threat assessment, it is often possible to identify additional threats that previ-
ously have been overlooked. Based on the list of threats and the list of vulner-
abilities, as well as the value of the endangered information, one can then
estimate the corresponding level of risk for each threat/vulnerability pair. If
there is a threat without a corresponding vulnerability (or vice versa), then
there is no risk.

As part of the risk management step, appropriate countermeasures for
each risk are selected and their overall effectiveness is assessed. Sometimes it
may be more cost-effective to accept some risks instead of implementing
countermeasures if they cost more than the greatest potential loss associated
with the risk. In addition to technical and organizational countermeasures,
taking out third-party insurance should also be considered, especially for
high-impact risks that rarely occur. An appropriate countermeasure for the
aforementioned risk examples would be encryption of network traffic and
remote party authentication. But even with effective countermeasures in
place, there will normally still be some residual risks. The level of these risks
and the corresponding countermeasure effectiveness need to be estimated to
provide an overview of the remaining security weaknesses of the system. In
our network example, traffic flow analysis attacks could be a residual risk, but
if the information gained from such an attack cannot be easily used, then
the countermeasure effectiveness would be high. However, if the knowledge
that a particular party invoked something that gives away critical informa-
tion, then the effectiveness would be low.

In the final step, the results of the risk analysis have to be documented
and signed off on by the management, together with the system description.
It is often useful to summarize all parts of the risk analysis in one table that
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contains columns for the security goals, threats, vulnerabilities, risks, coun-
termeasures, and countermeasure effectiveness. The brief content of each
table entry should then be discussed in detail in the remainder of the docu-
mentation to make sure everyone understands how the analyst arrived at the
results. The details should also contain the value of information, technical
aspects of attacks, and evaluations of potential countermeasures.

The effort and expense that goes into developing such a full risk analy-
sis are considerable because it requires a lot of expert knowledge and cannot
be automated. In addition, cooperation between all involved parties is neces-
sary to gather all the required information, which further increases the cost.
And whenever the system or environment changes, the risk analysis needs
to be updated, because any modification can introduce new risks or change
existing ones. But despite all the effort, proper risk analysis generally pays off
through the knowledge gain that comes with it. Without a similarly system-
atic approach, acquiring this knowledge is difficult.

243 Feedback: Analysis and Audit

Maintaining the effectiveness of security policies, guidelines, and procedures
in the face of changing systems and environments is just as important as the
initial development of adequate policies. From the beginning, clear owner-
ship of the different policy documents (and the responsibilities that come
with it) should be assigned. Security procedures can be assigned to security
administrators, guidelines to security management, and the information
security policy to enterprise management. In addition, an overall manage-
ment control structure should be put in place to ensure that policies are actu-
ally implemented at all levels of the enterprise.

Once the policies are implemented, a team of auditors should analyze
the effectiveness of the implemented countermeasures at regular intervals.
This is particularly important at the beginning of the system life cycle, as
various issues that have been overlooked when the policy’s first version was
developed may appear at this stage. In addition to overlooked aspects,
changes can be triggered by system updates, patches, bug reports, new
research results, or changes in the system environment. The feedback pro-
vided by the auditors should prompt appropriate modifications to the docu-
ments. It is also important to have a well-defined reporting procedure for
auditors to prevent policy owners from hiding problems from management.

In Section 2.1, we discussed how countermeasures can be detective,
reactive, and preventive. Analyzing policy effectiveness can be carried out in
three analogous ways: First, security problems can be identified at the time
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they occur so that the damage can be restricted. Event management
and notification systems such as intrusion detection systems (IDS) can
inform the local administrator if a potential attack is taking place, so that
appropriate actions can be taken. For example, a network connection can be
dropped at the firewall if the administrator suspects that an attack is being
carried out over the network.

Security problems can also be identified after they have occurred in the
system, so that they can be prevented in the future or help track down attack-
ers. Analyzing security-relevant log files for suspicious actions and security
breaches can facilitate this. Tools that filter audit log files and assist in the
analysis can considerably reduce the effort.

Finally, security weaknesses can be identified before any security
breaches even occur. One rather unstructured approach, called penerration
testing, involves hiring security professionals who try to attack the system.
Unfortunately, the fact that these hackers are unable to attack the system
does not automatically mean that no one else can attack it. A more analytical
approach is generally preferable, in which security experts perform a concep-
tual security analysis to identify weaknesses on a more formal basis. Either
way, the cost and effort of both these approaches can be significant.

2.5 Threats, Vulnerabilities, and Countermeasures

Three key concepts—threats, vulnerabilities, and countermeasures—come
up in most discussions about security. A hreat is a possible danger to a sys-
tem that might exploit a vulnerability of the system. A vulnerability is a point
where a system is susceptible to attack. The more vulnerabilities you can
identify in your system, and the more threats you believe are in the system
environment, the more carefully you will need to consider how to protect the
system and its information. Techniques for protecting the system are called
countermeasures.

Practical information security is concerned with identifying threats and
vulnerabilities to information systems, as well as protecting against threats to
those systems by applying appropriate countermeasures.

251 Threats

A threat is defined as a possible danger to a system; the danger might be a
person (e.g., hacker), a thing (e.g., faulty piece of equipment), or an event
(e.g., fire or flood) that might exploit a vulnerability of the system. A threat is
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therefore a potential system misuse that could lead to a failure in achieving
the security goals described in Section 2.3. Human attacks are examples of
such threats, as are natural disasters, inadvertent human errors, and internal
hardware or software flaws.

In general, threats fall into three main categories: environmental, acci-
dental misuse, and intentional attacks. Environmental (i.e., physical) threats
are threats that imperil every physical piece of equipment, such as natural dis-
asters, floods, and fires. Accidental threats are normally caused by ignorance
or insufficient training of authorized users. Intentional threats can be distin-
guished into attacks by outsiders, such as hackers or spies, and insiders, such
as disgruntled employees. Examples of typical threats in CORBA systems
include:

e Information compromise: Deliberate or accidental disclosure of confi-
dential data (e.g., masquerading, spoofing, eavesdropping);

e [Integrity violations: Malicious or negligent modification or destruc-
tion of data or system resources (e.g., trapdoor, virus);

o Denial of service: Curtailment or removal of system resources from
authorized users (e.g., flooding);

* Repudiation of some action: Failure to verify the identity of an
authorized user and provide a method for recording the fact (e.g.,
audit modification);

o Malicious or negligent misuse: Active or passive bypassing of controls
by either authorized or unauthorized users (e.g., browsing, infer-
ence, harassment);

In practice, there is no security system that can counter all possible
threats to a system, mainly because there are infinitely many (both physical
and software-based) interactions with the environment, and the nature of
many interactions is unpredictable. For example, although auditors keep
administrators in check and vice versa, a group of collaborating administra-
tors and auditors can modify a system as they wish and remove any trace of
their actions afterward. Also, some countermeasures to potential threats are
outside the scope of what can be countered by any information security sys-
tem (e.g., natural disasters).

In line with this, CORBA security (and middleware security in general)
cannot counter all possible threats to a distributed system—it can only pro-
tect resources managed and controlled within the scope of the middleware.
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In particular, the threats that should be countered by security measures out-
side CORBA security are denial of service attacks and traffic analysis attacks,
which both should be countered by the underlying communications soft-
ware, and Trojan horse attacks, which should be countered by a well-defined
software change control process.

25.2 Vulnerabilities

A vulnerability is a weakness in the security system that might be exploited
by a threat. A threat that exploits a vulnerability is said to perpetrate an attack
on the system. No matter how many countermeasures you put in place, any
system that provides a service to someone will be vulnerable to some residual
attacks. Security policies and countermeasures, such as security technology,
may reduce the likelihood that an attack will be able to penetrate the system’s
defenses, or they may require an intruder to invest so much effort and
resources that it is just not worth it—but there is no such thing as a com-
pletely secure system.

There are various kinds of vulnerabilities, such as physical access to
hardware, natural disasters, or human errors. Most of these are beyond the
scope of what CORBA security could counter. Examples of typical vulner-
abilities in CORBA systems include:

e An authorized user could gain unauthorized access to information

that should be hidden from him.

e A user could masquerade as someone else, so that actions are being
attributed to the wrong person. In a distributed system, a user may
delegate his rights to other objects, so that they can act on his behalf.
Therefore, the threat of rights being delegated too widely causes
additional problems.

e Security controls could be bypassed.
¢ Network communications could be subject to eavesdropping.
¢ Network communications between objects could be tampered with.

e Lack of accountability for (malicious) actions.

Vulnerabilities are often the result of deliberate or unintentional trade-
offs made in system design and implementation, usually to achieve increased
performance or additional functionality. This is acceptable as long as the
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risks associated with the trade-offs are identified and documented, and
responsibility for this decision is clearly assigned.

2.5.3 Countermeasures

Finally, a countermeasure is a protective measure that reduces or removes a
vulnerability. A countermeasure can be an action, device, procedure, or tech-
nique. In general, there are many different types of countermeasures, such as
computer security, communications security and physical security, as well as
policies and procedures.

The CORBA security services implement several countermeasures
through the following basic functional components, which will be described
in more detail in Chapter 3:

e Identification and authentication: Includes authentication of princi-
pals and authentication between clients and target objects;

e Access control: Preventing unauthorized invocation of operations;
o Security audit: Detecting system misuse;

o Communications protection: Includes integrity and confidentiality
protection based on an authenticated security context;

o Nonrepudiation: Generating irrevocable evidence of user actions;
o Security administration: Includes policy creation and management;

o Segregation: Separating applications from each other, data from
functions, user’s duties;

o Automatic security enforcement: Tries to prevent bypassing of coun-
termeasures during object invocation.

2.6 Middleware Security

Distributed middleware systems such as CORBA are more vulnerable to
security breaches than more traditional host-centric systems, because there
are more places where the system can be attacked. Thus, CORBA systems
have specific security requirements that take into account the inherent com-
plexities that result from their distributed nature.

The prime point of attack is the network, which is often accessible to
anyone. Communications can be eavesdropped upon (passive attack), and
attackers can masquerade as legitimate participants, because system interac-
tions are often unpredictable and complex (active attack). Hosts are the other
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main location where distributed systems are vulnerable to various attacks.
This is because, in many cases, the middleware and application objects work
on top of an insecure operating system that, from an application perspective,
cannot be trusted.

In addition to the increased surface area that is susceptible to attacks,
there are a number of issues that further complicate security enforcement and
administration in distributed systems.

2.6.1 Mutual Distrust

In a large distributed system, some components will not trust others. In a
traditional client/server architecture, it is clear who is a client and who is a
server, and typically clients trust servers, but not vice versa. In distributed
CORBA systems, a single object can be client for one request and server for
the next, and therefore the trust relationships are complicated. Although
there are many security mechanisms to ensure the identity of a remote com-
ponent, the system architecture must be designed to ensure that these checks
are always performed.

In many distributed middleware environments, the client operating
systems or the network cannot be trusted to protect the server’s resources
from unauthorized access. Untrusted hosts are a particularly major concern
for electronic commerce applications where cryptographic keys and payment
information have to be stored on the client computer. And even if the client
system were secure, the network itself is often still highly accessible.

2.6.2 Dynamic Interactions

In distributed CORBA systems, it is often hard to know exactly who the
other party is, because there are many flexible interactions between objects.
In many applications, target objects on the network become client objects
and call other targets themselves. Some objects can delegate parts of its
implementation to other objects, for example, by forking out children
objects at run-time that take over some of the work. Firewalls in the commu-
nications path make the topology even more complicated.

CORBA objects can be polymorphic, which makes it easy to replace
one object by another with the same interfaces. However, this feature facili-
tates the installation of Trojan horses. Also, because of object subclassing, the
implementation of an object may evolve over time, so that interactions
between objects in distributed object systems become unpredictable.
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In large Internet-like distributed systems, the situation is even worse
as new components are constantly being added, deleted, and modified. Fur-
thermore, security policies may be changed at run-time. Such dynamic sys-
tems are inherently complex. Consequently, the provision of security is also a
complex issue.

From a technical perspective, part of the problem is caused by the fact
that CORBA does not provide objects with unique identifiers. Objects are
located through their object reference, which changes from time to time,
for example, when a server gets rebooted or when an object gets moved to
another location. CORBA provides a naming service that can provide objects
with identifiers, but most implementations allow the same object to have
more than one identifier, or no identifier at all. On the other hand, unique
identifiers were originally rejected because they were perceived as an obstacle

to scalability.

2.6.3 Scalability

By design, distributed object systems can scale without limit, and security is
difficult to enforce in such very large systems (e.g., millions of objects on the
Internet). Large, possibly geographically distributed systems are cumbersome
to administer, especially if there is no trust between administrators. In large
distributed systems, one often comes across multiple differing security policy
domains, each one enforcing the security requirements of a part of the sys-
tem. As a result, security policies must be able to address interactions across
policy domain boundaries.

2.6.4 Layers of Abstraction

Because of the transparency provided by middleware layering, a great deal of
behind-the-scenes activity is going on, which makes it hard to understand
and administer the interactions that take place between the invoked objects.
CORBA-style distributed middleware architectures are highly layered, and
thus CORBA security is also layered. Complex conversions and abstractions
at the layer boundaries are an area in which vulnerabilities can occur, because
the meaning of security attributes can become imprecise or even incorrect if
it is transformed to fit the architectural requirements of different layers. The
complexity of the layering is further complicated in systems where security
enforcement is widely distributed, in particular, if differing security mecha-
nisms are in use.
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2.7 Summary

CORBA security, and information security in general, is about protecting
information assets. Each asset has a value, and protecting it is important
because it helps minimize the chances that the value is lost. Protective coun-
termeasures can either detect attacks, prevent compromises in the first place,
or react afterwards in order to restrict the damage caused.

There are three central security requirements in any CORBA system,
which all cover different aspects of controlling access to information: confi-
dentiality, which is the protection of requests and replies, as well as target
operations, from unauthorized reading; integrity, the detection and correc-
tion of unwanted changes of transmitted data; and availability, which is
about ensuring that authorized users cannot be denied service.

Making users accountable for their actions is an important additional
requirement in most environments, as is the general dependability of a sys-
tem to enforce security in the face of attacks.

Security concerns threats, vulnerabilities, and countermeasures.
Threats are potential dangers to a system, whereas a vulnerability denotes a
point where a system is susceptible to attacks. Following from that, the index
of a threat and a vulnerability is a measure for the risk associated with the
danger. Countermeasures, both technical and organizational, are put in place
to minimize the risk to an acceptable level.

Distributed CORBA systems are more susceptible to security breaches
than host-centric systems because there are more attack points on the net-
work, as well as on the hosts. Also, the systems are often very large and geo-
graphically distributed and have several domains with differing security
policies. The situation gets even more complicated due to the mutual distrust
between objects, the inherent complexity of often unpredictable and
dynamic interactions, components being dynamically added and removed,
polymorphism and inheritance of objects, and lack of unique object names.
Moreover, a great deal of behind-the-scenes activity is taking place under sev-
eral abstraction layers that exist on each CORBA host. This makes the inner
workings of CORBA difficult to understand and can lead to semantic mis-
matches when security information is passed on from layer to layer.

But the technical aspects alone do not make security in CORBA sys-
tems difficult. Managing security effectively is also a hard task. Rather than
just focusing on the technical issues, one has to approach security from the
enterprise as a whole, including both organizational and technical aspects.
Security management is often based on an abstract hierarchy of documents.
On the abstract end is the unchanging information security policy, which
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defines the goals, responsibilities, and commitments regarding security
within the enterprise. On a medium level are security guidelines that describe
which countermeasures should be implemented. Appropriate countermea-
sures are identified as part of the risk analysis process. On the detailed end,
regularly changing security procedures state in detail how these countermea-
sures are to be implemented within particular systems. There should also be
an audit and feedback loop to make sure that the security remains effective
over time.

2.8 Further Reading: Books on Security

When talking about security, it is important to have a clear understanding
of the key terminology and concepts. Dieter Gollmann’s book on computer
security [1] is by far the best and most up-to-date general introduction
to technical security. It provides a broad overview with concise definitions
and concepts, but at the same time abstracts from unnecessary details. Bob
Blakley’s book on the CORBA Security model [14] provides a more
CORBA-specific, but less solid, introduction to a number of key security
concepts. It is short, and written in a light and entertaining style, but not
shallow. Although it does not explicitly cover CORBA security, Ross Ander-
son’s book on general security engineering [15] is also worth reading. A non-
technical overview of security can be found in Computer Security Basics [16].
It is becoming a little outdated, but it is useful if you are interested in a
broad, but not too deep, introduction.
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The CORBA Security Architecture

3.1 Introduction

The main purpose of most security systems is to control access to informa-
tion, based on a set of security policies. In Chapter 2, you learned how infor-
mation security can be broken down into a number of different aspects,
in particular, confidentiality, integrity, and availability. Accountability and
dependability are often additional important security goals.

But these essential security requirements are not the only criteria for
designing a useful security architecture. A number of additional considera-
tions also need to be taken into account. Most importantly, the security
architecture needs to be designed in such a way that it can be integrated into
the system without breaking the functional requirements of the overall appli-
cation architecture. After all, a security architecture is worthless if it enforces
the necessary security policies but, at the same time, renders the system
unsuitable for its original purpose. In such systems, users will go to great
lengths to circumvent the security enforcement to get the functionality they
need to do their jobs. There is a trade-off between making the security archi-
tecture as unobtrusive as possible and, at the same time, providing effective
security enforcement, and it depends on the particular application where the
best trade-off is. For CORBA security, being unobtrusive means that the
security architecture has to preserve the design requirements of CORBA’s
middleware architecture (as described in Chapter 1), in particular, interoper-
ability, transparency, flexibility, portability, and scalability.

59
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This chapter describes the abstract architectural design of the CORBA
security architecture. We will start with a general description of a number of
design principles (see Section 3.2) and then present the basic functional com-
ponents of the security architecture (Section 3.3). Note that the effectiveness
of the supported functionality will be discussed in more detail in subsequent
chapters. For now, we will simply present an abstract architectural model
of CORBA security without getting bogged down into too much technical
detail or a discussion of its weaknesses.

3.2 Design Goals: CORBA Security Wish List

The CORBA security services specification [1] states that its architecture
was designed with a number of goals in mind. These design goals have to be
understood as a mission statement (or a wish list) rather than a realistic set of
targets, as some of the design criteria are too ambitious and sometimes even
conflict with others. For example, there is a fundamental clash between
interoperability and flexibility [2], because flexibility involves the customiza-
tion of functionality, whereas interoperability can only be accomplished
through standardized functionality and protocols. Another conflict along
these lines is between flexibility and assurance—real assurance can only be
certified if the system as a whole is looked at, and when some component
is changed, the certification needs to be reconsidered. But flexibility in
CORBA security means that components can be changed without affecting
any parts on the layers above (this property is also called portability).

The remainder of this section will discuss the main design requirements
of the CORBA security architecture. There are also a number of require-
ments that are less interesting for our conceptual discussion, such as good
performance and support for object-orientation. Performance depends heav-
ily on the particular implementation, and it is clear that the CORBA security
architecture has to be object-oriented in order to work with CORBA.

3.21 Interoperability

The single most important requirement of the CORBA architecture is
interoperability across heterogeneous systems. Remember that the OMG was
originally founded to establish an architecture that enables interoperability
between objects on top of ORBs from different vendors, which in turn run
on different operating systems.

Also, as we have already mentioned, the security architecture should
aim to integrate with CORBA in a nonobtrusive way, which means that it
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has to preserve the main CORBA requirements. In order to preserve
CORBA interoperability, the security architecture should therefore also be
interoperable, which includes several aspects. First, it should be possible
to provide a set of consistent security policies across a heterogeneous system
in which different vendors provide different ORB and security products.
That way, organizations can implement their distributed system without any
vendor restrictions and can choose the most appropriate technology. For
example, some ORB products are optimized to provide real-time or fault-
tolerance properties, whereas others are optimized for speed or small code
size. A possible scenario could use a heavy fault-tolerant ORB on the server
side and a lightweight ORB product on a wireless client device. Similarly,
there are a wide range of CORBA security products that support security
technology for different purposes. In some Intranet environments, a full-
fledged security system with auditing and nonrepudiation may be required,
whereas a simple Secure Sockets Layer (SSL)-based security service may be
sufficient for some less critical browser-based applications.

Second, objects that reside on a secured ORB should still be able to
interoperate with objects that do not have any security. Of course, such com-
munications will not be secured, and it depends on the particular security
requirements of the application (on the security-enabled end) if this is advis-
able or not. From an architectural viewpoint, this requirement means that
the security protocols have to be layered over the unsecured interoperability
protocols, and that the security enforcement has to be integrated into the
ORB communications path in such a way that it can be switched on or off,
depending on the security policy for each invocation. There are plenty of
possible application scenarios in which an object calls numerous other
objects with varying levels of security. For example, an electronic shopping
cart application calls a catalog object without any security features to allow
the client user to browse the products on sale. Once the user has made a
selection of goods, the application would then call the payment object to
carry out the purchase—and, of course, this call would need to be secured.

A third aspect is interoperability across domains that support different
security policies (e.g., different access control attributes). This feature can be
useful in large-scale systems in which callers select their targets dynamically
and therefore cannot agree a priori on a common set of attributes. The only
viable way to achieve this would involve converters that map attributes from
one security policy to the other, but even that may sometimes be impossible
if the semantics of the attributes differ dramatically. The current version of
the CORBA security specification therefore explicitly excludes interfaces and
protocols for cross-domain interoperability.
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Finally, it may appear to be useful to support interoperability across
systems that support different security technology (e.g., different authenti-
cation mechanisms). The advantage of cross-mechanism interoperability
would be that an appropriate set of security mechanisms could be chosen for
each application environment without inhibiting interoperability. For exam-
ple, the Secure European System for Applications in a Multivendor Environ-
ment (SESAME) would be too heavy to support on a wireless device, whereas
SSL may be too limited in its functionality to protect corporate Intranet
applications. But when the wireless device is used to connect to the Intranet,
secure interoperability should still be possible.

Of course, there are various general problems with this scenario and
with cross-mechanism interoperability. First, the representation of security
policy attributes in CORBA (e.g., for authentication) is not fully
mechanism-independent, which means that the policy can only be evaluated
if the corresponding mechanism is supported. But even if the attributes were
somehow mechanism-independent, there would be a number of semantic
problems: An authenticated SSL identity does not always specify the same
object as a Kerberos identity, so it is unclear which one is meant by the
abstract identity in the policy [3]. In addition, the fact that a particular
mechanism is used is implicitly part of the policy. For example, a target
object that services callers that support a stronger authentication mechanism
may want to reject callers that have been authenticated by weaker mecha-
nisms. Therefore, it may not be desirable to abstract from the underlying
security mechanism at all. On the other hand, not abstracting means that
CORBA security will not be able to interoperate if the underlying security
mechanisms do not match.

Without any abstraction, cross-mechanism interoperability is difficult
to achieve, in particular if incompatible cryptography is used. As previously
described for interoperability of policy attributes, it is possible to design con-
verters that map invocations from one technology to another. But this way, the
converter has to become a trusted third party with access to all cryptographic
keys, which breaks end-to-end security, in particular peer authentication.
Due to all these problems, the CORBA security specification should not be

expected to ever support interoperability between security mechanisms.

322 Transparency and Abstraction

Another big advantage of CORBA is that it insulates application objects
from lower-level details and complexities—the middleware layer abstracts
technical details, such as locating remote objects and mediating invocations
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to them. The fact that CORBA is largely transparent on the application layer
simplifies distributed applications programming, and therefore reduces the
overall application development cost. In addition, application programmers
do not have to be distributed systems experts to connect their application
components.

The security model has to fit seamlessly into the overall middleware
architecture to preserve these transparency requirements. As a result, applica-
tion development should ideally be insulated from security policies and
enforcement, just like all the other technical details that happen behind
the scenes in CORBA-based systems. Ideally, the security system is simply
inserted into the communications path, so that it can enforce the security
policy whenever an invocation arrives at the ORB (either from the applica-
tion above or from the underlying network). The security policies also reside
on the middleware layer and specify the required protection (e.g., which
invocations are to be passed on or if their occurrence should be logged).

Despite the general requirement that application developers are not
required to know about security policies and enforce them for their applica-
tions, it should optionally be possible to enforce application-specific security
for security-aware applications. As a result, the CORBA security specification
distinguishes between security-unaware applications that have been devel-
oped without any concern about security, and security-aware applications
that have been designed with application-specific security features in mind.
Security-unaware applications are protected transparently by various ORB
layer security features, whereas security-aware applications can access a range
of application layer security features to enforce more application-specific and
fine-grained policies. Full transparency is, of course, only a requirement for
ORB layer security features.

But the security architecture should not just cater to application pro-
grammers. From an end-user perspective, security should also be as transpar-
ent as possible. In particular, the architecture should support single sign-on,
so that users can log onto their computer once and then reuse the generated
credentials for a number of applications until they log out or the credentials
expire. This single sign-on feature allows application developers to write
applications in which security enforcement is almost entirely transparent to
users. Also, application development can be done without concern for secu-
rity, as basic security policies can be enforced on the middleware layer (i.e.,
transparent to the applications).

Administrators have to carry the main burden for middleware security,
as they have to set sensible security policies for all involved components.
To do their job, administrators need to look behind the scenes of the
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middleware layer to obtain the necessary in-depth knowledge about the func-
tionality and location of different application components. The administra-
tive model should be simple to understand and manage, and should provide
a single consolidated view of the system. It should allow flexible and fine-
grained security policies and, at the same time, support clustering of users
and objects (e.g., in roles and domains) for scalability. Most issues of the
specified CORBA security model become evident for the administrator—a
number of security attributes in policies contain mechanism-specific infor-
mation that breaks the single view of the system, as well as the abstraction
from the underlying technology; moreover, some parts of the model are
based on inappropriate security information such as the object interface type.
We will discuss these problems in more detail and propose alternative solu-
tions where possible (in Chapter 6).

3.2.3 Flexibility, Portability, and Integration

CORBA was designed to be flexible enough to work in a variety of different
environments, ranging from relatively static Intranets with integrated leg-
acy applications on the one end, to wireless devices on the dynamically
changing Internet on the other. Such diverse CORBA objects can commu-
nicate if there is an IDL language mapping for all participating platforms
and if all nodes communicate through the same CORBA protocol (e.g.,
the GIOP). Most other aspects of a CORBA system, such as the underly-
ing transport layer, can ideally be flexibly replaced without affecting
interoperability.

In line with this, the security architecture should also be flexible
enough to fit a wide range of applications and environments with differing
security requirements. The model should allow a variety of different security
policies and security features, depending on the level of protection required
for information on the system. To accomplish that, the model’s security
attributes and attribute groups can be extended ad lib to reflect additional
requirements. However, the use of extended attributes will inhibit interoper-
ability, as they only work with security implementations that support the
same extended attributes.

In addition, the CORBA security model should be independent of the
underlying security technology.' For example, interfaces specified for secu-
rity of client-target object invocations should hide the used security mecha-
nisms from both the application objects and the ORB (except for some
security administrative functions). The CORBA security model is segregated
from underlying security mechanisms that are only accessible through a
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standardized interface (based on GSS-API [4]). The specification illustrates
how security mechanisms are integrated for a number of standard mecha-
nisms (e.g., Kerberos5 [5-6], SESAME [7-8], SPKM [4], SSL/Transport
Layer Security (TLS) [9]).

As you have already learned, interoperability problems are caused if dif-
ferent CORBA nodes use differing security mechanisms. In fact, there is a
fundamental clash between interoperability and flexibility [2], because flexi-
bility involves the customization of functionality, whereas interoperability
can only be accomplished through standardized functionality and protocols.
On the other hand, the security architecture allows the replacement of
underlying security mechanisms as long as they are replaced on all participat-
ing nodes at the same time. But there are implications for middleware layer
security policies and attributes. For example, authenticated identities in secu-
rity policies are mechanism-specific (e.g., an X.509 certificate), which means
that the content of the attribute also needs to be replaced when the authenti-
cation mechanism changes. The same applies to message protection—the
model should support both symmetric and asymmetric cryptography, but all
keys will have to be changed when the mechanism is replaced.

To allow application objects to be ported to domains that enforce dif-
ferent security policies and use different security mechanisms, security-
unaware applications should be independent from the underlying middle-
ware security system. This way, the underlying technology and policies can
be replaced without affecting the application code. Note that application
portability without modification is only possible for security-unaware appli-
cations, as the security is enforced and administered entirely below the
application. If an object enforces application-layer security, then the inter-
faces to the CORBA security services should hide the particular security
mechanisms used (e.g., for authentication). Note that successful porting of
applications that enforce their own security to systems with different under-
lying CORBA security services and mechanisms depends on the attributes
used to describe the application layer policy. In most cases, policies have to
be changed to reflect the new underlying technology.

But in many application scenarios, CORBA security does not operate
on its own. Often, a security infrastructure of some sort is already in place

1. In a number of countries, the export of cryptographic software is regulated as part of
dual-use export regulations. The security model has to take this into account and make it
possible to ship a CORBA security services implementation without the actual encryp-
tion part. The security service can then be integrated afterwards with a local crypto-

graphic package.
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that has to be integrated into the CORBA system. Therefore, if the system
already provides security protocols and mechanisms, it should be possible to
reuse these without the need for new cryptosystems, logons, access control
repositories, user registries, or policy databases. To achieve that, the architec-
ture is specified to be mostly independent from the underlying security
mechanism and, thus, can integrate with a wide range of security mecha-
nisms and environments, as long as the mechanisms provide sufficiently
well-specified interfaces. In practice, this is only possible if the source code of
the CORBA security service implementation is available, so that preexisting
mechanisms can be integrated into the security architecture.” The specified
model supports a number of different security policy types for access control
and audit, and integrates with various different security mechanisms, which
can be reused if they are already in place in the particular environment. How-
ever, the model does not provide mechanism-independent security policy
attributes, in particular for access control and audit.

In addition to integrating preexisting security mechanisms, the model
should allow the provision of consistent security policies across heterogene-
ous systems that contain legacy applications. The middleware architecture
can enforce security for legacy system components by putting so-called
CORBA wrappers around them, which allow the provision of consistent
security policies, as long as the CORBA security systems (and the underlying
security technology) match on all participating nodes.

3.24 Scalability

The security model should support CORBA systems of different size, rang-
ing from small to very large. The security model as such does not impose
any size restrictions; potential upper limits to the number of participants or
policy entries are purely implementation-specific. The size limit for secure
CORBA systems is often restricted by underlying security mechanisms’ scal-
ability restrictions and policy implementation.

But the CORBA security architecture should provide the means to
make administration of large-scale secure systems easier. To reduce adminis-
trative overhead, individual identities should be grouped into roles (or
groups) with the same privileges. Analogously, objects that share the same
security policy should be grouped into domains. Note that despite its support

2. The source code of both MICO, the example of ORB used throughout this book, and its
MICOSec security services implementation, is freely available under the GNU public
license (see Section 4.2).
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for roles and domains, the current architecture does not include any tools to
manage them in an effective and interoperable way. The OMG is currently
working on an additional security specification to manage domain member-
ship [10] in order to solve this problem.

There is also a requirement to manage the distribution of cryptographic
keys securely and with low administrative overhead. To provide key manage-
ment facilities, the OMG currently specifies how public key infrastructures
(PKI) should be integrated into CORBA security [11]. Again, the upper
limit depends on the actual PKI implementation.

3.25 Reliability and Assurance

Assurance is a qualitative measure of trustworthiness [1]. A security architec-
ture is trustworthy only if all applicable security policies are enforced on all
actions. In the context of CORBA, this means that it should not be possible
for malicious principals to bypass the security system and invoke a method
on the target without triggering the security policy enforcement and protec-
tion required by the security policy. The policy might state in some cases that
no security functionality should be applied, but this has to be determined as
part of the security policy evaluation process, and so the security system is
not bypassed after all.

CORBA provides standard ORB interfaces at which the CORBA
request traffic can be intercepted as it gets passed up or down through the
ORB message path. These so-called interceptors are a convenient place to
integrate the security system with the ORB. However, this means that not
just the security service implementation and all underlying security mecha-
nisms have to be trusted to work reliably but, in fact, the whole ORB also
has to be trusted. The U.S. Trusted Computer System Evaluation Criteria
(TCSEC) [12] calls the set of all system components that has to be trusted the
trusted computing base (TCB) and suggests that security-relevant compo-
nents be segregated into a (preferably small and well-understood) security
kernel. The underlying idea is that the system’s overall security is only as high
as the security of the weakest component in the TCB.

Unfortunately, this monolithic TCB approach is not suitable for many
CORBA environments, partly because of the complexity of distributed mid-
dleware systems, and partly because secure interoperability of CORBA appli-
cations and ORBs is often based on mutual suspicion. Therefore, the
specification defines the concept of a distributed TCB, which denotes the
collection of objects and mechanisms that must be trusted so that end-to-end
security between client and target object is maintained.
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The usefulness of such a definition for real-world systems is question-
able, in particular since it is impossible to put this large number of TCB
components into a small and well-understood security kernel. A distributed
TCB in CORBA can potentially contain the whole stack below the applica-
tion object: the ORBs and object adapters, the associated ORB services, the
security services, underlying security technology, the supporting operating
system, and the lower layer communications software (see Figure 3.1). The
distributed TCB does not extend across several nodes if there is mutual suspi-
cion between the caller and target. But this is normally not a problem as it is
infeasible for attackers to bypass the remote TCB from the network (unless
someone hacks into the underlying operating system). For example, even a
malicious client with a rogue application program, ORB, and security service
cannot invoke methods on any target without triggering the target-side secu-
rity enforcement—the application object does not listen to any network
ports, it is the ORB that will pick up any requests. Therefore, any irregulari-
ties in the authentication or message protection mechanisms (e.g., disabled
encryption) would be noticed by the target security service and the request
would not be passed up into the application.

But trust is also highly related to reliability, which is more an imple-
mentation issue than an architectural concern. Any CORBA security system
may become unreliable if software bugs in the TCB can be exploited and,
due to the high degree of complexity, bugs are almost unavoidable. But, of
course, this applies to any complex system, not just to CORBA and CORBA

security. For example, one of the authors (as an independent securi
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Figure 3.1 Components of the distributed TCB.
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auditor) once encountered a CORBA security system that would encode a
signed session ID into the transmitted byte stream to allow the receiving side
to associate the message with a particular session. Messages without ID
would be transmitted unencrypted. One day, the problem occurred that, due
to inverse byte ordering on differing underlying hardware and software plat-
forms, neither side could find any session IDs and assumed that all commu-
nications should be unencrypted. All testing had been done in a
homogeneous environment where this bug did not manifest. It was assumed
by the developers that the underlying Java Virtual Machine (in line with its
specification) would abstract from these underlying differences. In summary,
the resulting system would transmit sensitive information unencrypted for
CORBA communications across differing underlying hardware, just because
of a bug in one of the underlying layers.

The certification process approves the trustworthiness of a system to a
certain degree and, as a result, establishes confidence in the implemented
security measures. According to the specification, the security model should
support accreditation as defined in government criteria, such as the Euro-
pean Information Technology Security Evaluation Criteria (ITSEC) [13] and
the Common Criteria [14]. However, in practice, it depends on the quality of
the implementation process and the style and quality of the implementation,
rather than on the CORBA security model itself.

3.26 Simplicity

To most readers’ surprise, the 420-page CORBA security services specifica-
tion [1] states in the beginning that the CORBA security model should be
easy to understand and administer, which implies that it should only have a
few concepts and components. Following our discussion about the desire to
have a trusted computing base that defines a small and well-understood secu-
rity kernel, it is clear that a simple model would be likely to result in a more
trustworthy system. A simple model is normally easier to implement; there-
fore, the scope for bugs and misinterpretations is limited.

However, as the mere page number of the specification shows, the
CORBA security architecture does not achieve this target. This is mainly
because it was designed to incorporate a large number of features for a
number of differing environments and scenarios (e.g., automatic security
enforcement for security unaware applications but also fine-grained security
functionality for security-aware applications). As a logical consequence of
that, and because of the inherent complexity of distributed applications secu-
rity, the resulting architecture is bound to be complex as well.
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In Section 3.3, you will get a feel for the complexity of the security
model, even though many tricky details are hidden at this highly conceptual
level. It all makes sense when a number of boxes are drawn and the flow of
data between them is described informally, but many complications only
become obvious when the model is actually implemented in practice. You
will learn more about intricate technical difficulties of practical CORBA
security in Chapters 5 through 7.

3.3 Architectural Components

The CORBA security architecture consists of a number of functional com-
ponents that provide applications with security. This section describes the
security models of the core components for authentication, session establish-
ment, delegation, policies and domains, access control, message protection,
security audit, and nonrepudiation. The purpose of the diagrams presented is
to illustrate on an abstract level how the main objects for each functional
component interact. Note that they do not always reflect the exact object
interfaces and data flows, but are rather meant to give a conceptual under-
standing of the model as a whole.

In principle, the following aspects are covered for each functional com-
ponent: First, the corresponding security policy will be discussed; then the
policy’s evaluation process is examined; and, finally, the policy’s enforcement
is illustrated together with its possible location in the architecture (ORB
layer or application layer).

Despite the fact that the model is logically separated into various func-
tional components, it is important to appreciate the many interdependencies
between them. For example, if the access control component uses the peer
identity as an attribute, then it relies critically on the functionality provided
by the authentication component.

3.3.1 Principals and Credentials

Before talking about the functional components of the security model, it is
necessary to identify who is going to populate it. In classical security models
such as Bell-LaPadula [15], there are two groups of entities in a system—sub-
jects and objects. Users want to access resources, and the security system has
to make sure that access to a resource is restricted to authorized users. Other
models such as Clark-Wilson [16] introduce another entity called procedure,
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which controls access to resources and can only be called by certain users. In
such models, it is assumed that users cannot access resources directly.

The CORBA security model is based on active subjects who can invoke
operations on target objects, but only by going through a security enforcement
component. Subjects and objects can have an identity and a number of privi-
leges (or credentials), which the security enforcement is based on.

3.3.1.1 Principals

A subject in CORBA security is an active entity in the system that tries to
use the system or its resources. A subject is assumed to have an independent
will, which makes it different from other system entities that only react
to invocations. Subjects can be human users, but nonhuman subjects also
exist. Programs can be nonhuman subjects if they carry out actions without
specific commands from users, such as hardware devices or active software
daemons.

In the security model, active entities are called principals, and one of the
central properties of a principal is its identity. An identity describes its princi-
pal uniquely in the sense that no two principals’” identities may be the same.
But at the same time, principals may have several different kinds of unique
identities. For example, a principal may have both a unique audit identity
and a unique access identity.

It may not be clear why not only human users, but also software com-
ponents should be principals in the sense defined above. After all, they are
always started by a user (or administrator) and could therefore—as in the
operating systems world—inherit the identity of that user. The reason is that
objects in complex CORBA systems often need to be authenticated by their
own separate identity and not by the identity of the administrator who
started it. An administrator might, for example, start a whole range of serv-
ices of differing quality (e.g., response time, bandwidth), and the caller wants
to make sure it is actually connecting to the type of service for which it is pay-
ing. This would be impossible if all these services had the same identity
inherited from the administrator. To achieve this, each component has to
authenticate itself to the CORBA security services with some stored authen-
tication information, such as an identity certificate.

3.3.1.2 Credentials

The CORBA security system has to decide what it will do with each princi-
pal’s actions. The information used for this decision is stored in the security
policy. To enforce the policy, the system needs to know for sure who the
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principal is, but it also needs to be able to describe the security-relevant prop-
erties for all principals, which are called credentials.”

The goal of the CORBA authentication process is the generation of
such credentials.* Credentials are the information that describes the security
attributes of a principal [1], whereby attributes can be identities or privileges
of the principal (or both). A privilege is a security attribute that, as opposed
to an identity, does not need to be uniquely associated with a principal.
Examples of privileges include groups, roles, and clearances. An identity
could be the name of the user, whereas a role could be his or her job title
(e.g., administrator). The security attributes described in the credentials
express the principal’s characteristics, which form the basis of the system’s
policies governing that subject.

Whenever the CORBA security system encounters a new and
unknown subject, it automatically assigns a default credential to it, which
contains no identity and only one privilege attribute, called “public.” For
such subjects, a default policy will be enforced. For some subjects, this may
be sufficient. Other subjects require more (nonpublic) privileges, which can
be done by authenticating to the security system (see Section 3.3.4). After
establishing the authentic identity, the security system will assign additional
attributes to it, based on the security policy (see Figure 3.2).

3.3.2 Administration: Policies and Domains

If all objects and principals in large-scale distributed systems were adminis-
tered individually, security management would become more and more
cumbersome the larger the systems get. Therefore, objects that have common
security requirements are grouped into domains. A domain is a distinct

Unauthenticated Authenticated
attributes attributes
Public Identities | | Privileges

Figure 3.2 Credentials and security attributes.

3. Note that not only clients can have credentials. Targets can also have credentials that
contain their identity attributes, etc.

4. Credentials can also be obtained through delegation, which will be described in
Section 3.3.3.
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scope, within which certain common characteristics (policies) are exhibited
and common rules are observed (see Section 3.2.4). Domains can bring the
security administration down to a manageable size.

CORBA security policies specify the level of protection required in the
domain, as well as the actions to be taken for each event. The result of
the policy evaluation depends on a number of security attributes, such as the
caller’s authenticated identity and its other credentials. Domains can be dif-
ferent for different security policies (e.g., access control domain, audit
domain). The ORB makes sure that the policies that apply within a domain
are automatically enforced for each object in that particular domain. In prac-
tice, domains could be centrally managed in a domain server that contains
the policies for its domain (e.g., access control or audit domain server).

Note that cryptographic keys may be necessary for clients to authenti-
cate themselves to the domain server and to protect sensitive credentials from
unauthorized access. These keys need to be set up for all clients, and there
must be keys for secure communication between domain servers from differ-
ent domains. Such key infrastructure support is currently not specified for
CORBA, but there are some current efforts to integrate PKIs [11].

Several types of domains are relevant to security: security policy
domains, security environment domains, and security technology domains.
On a lower level of abstraction, protection domains are used to cluster
objects that trust each other.

3.3.2.1 Security Policy Domains and Roles

Security policies are the rules and criteria that specify which security features
have to be enforced to protect objects and resources. CORBA security poli-
cies define the rules for authentication, secure invocation, privilege delega-
tion, access control, audit, and nonrepudiation [1]. Keeping the policies
independent from the application code allows security administration for
security-unaware objects without changing the application code.

Domains

A security policy domain clusters all objects to which a common security pol-
icy applies (see Figure 3.3). This way, it is possible to administer many
objects with only a few policies, which helps deal with the problem of scale of
distributed object systems. In addition, administrators’ authorities can be
separated by delimiting the scope of administrative activities to one domain
(this is often called “separation of duties”).

When an object is created, it automatically becomes a member of one
or more domains and, therefore, is subject to the security policies of those
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Figure 3.3 Security policy domains.

domains. In other words, a security policy domain is the scope over which a
common security policy is enforced. A domain can have subdomains that
reflect organizational subdivisions (e.g., departments).

In CORBA, it is possible to have overlapping policy domains, either of
the same type or of different types (e.g., access control policy, audit policy).
Also, domains can be federated, whereby each domain keeps most of its
authority but agrees to give members of other domains limited rights. A fed-
eration must be able to handle policy differences across domains (e.g., map-
ping of access roles across domains).

Table 3.1 illustrates conceptually how such a policy table could look
for a particular domain “Bank”.

Roles

So far, we have grouped objects into security policy domains. In larger sys-
tems, it also makes sense to cluster principals into roles (or groups) to reduce
administrative overhead (see Section 3.2.4 and Figure 3.4). This way, the
policy does not need to state how every individual identity has to be treated.

Table 3.1
Access Control Policy Example

Policy for domain “Bank”

Caller identity = “Rudolf”  Invoked operation = "balance” GRANT
Caller identity = "Ulrich”  Invoked operation = “withdraw” ~ GRANT
* * DENY
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Figure 3.4 Roles.

Instead, it uses roles such as “administrator” or “auditor.” Any principal that
owns such a role can carry out the actions associated with that role. Note that
arole is not an identity, as it is shared among a number of principals. In par-
ticular, the audit and nonrepudiation functions often require a unique iden-
tity for each principal to be able to associate responsibilities for actions to
individuals.

ORB Layer and Application Layer Security Policy

Security policies can be enforced either by the ORB or by the application.
The ORB layer security policy is enforced by the ORB (and by the security
services it used, as well as the underlying operating system (OS) that supports
it). Policies of this type are transparently enforced for both security-aware
and security-unaware objects.

Application security policies are enforced by security-aware application
objects, which may have their own security requirements. Application secu-
rity policies may either be grouped in domains or individually customized to
a certain application.

Note that the contents of security policies are mostly domain-specific
(e.g., specific to the used security technology), which often makes cross-
domain communication impossible. To a certain extent, the specification tries
to standardize the semantics of security information (e.g., access rights—see
Section 3.3.6 for more details) to mitigate this problem. However, there are
some fundamental problems with interoperability when policies should be
flexible enough to fit a variety of different application domains [2].
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3.3.2.2 Other Domains

In addition to security policy domains, the specification defines some other,
more conceptual, domains. These are security environment domains, secu-
rity technology domains, and protection domains. Grouping principals and
objects into these domains should make it easier to deploy and manage
secure CORBA systems.

Security environment domains specify the scope over which policy
enforcement may be achieved by some means local to that environment (i.e.,
not by the CORBA security services). For example, extra encryption may not
be necessary when messages are being transferred between objects on the
same machine, because there is no untrusted network. Environment domains
should be exploited where possible, to optimize performance and resource
use, since enforcement of one or more policies (and their associated mecha-
nisms) is not needed. Two possible types of environment domains are con-
sidered in the specification: message protection domains, where integrity and
confidentiality protection are available by some specific means; and identity
domains, where objects can share the same identity.

Security technology domains are domains in which common security
mechanisms are used to enforce policies. For example, the same technology is
available for principal authentication and the same authentication services
are used, or data in transit is protected in the same way, using common key
distribution technology with identical algorithms. The purpose of security
technology domains is to identify which objects use the same underlying
security services. Distinguishing this type of domain helps set up and main-
tain the domain’s underlying services and administer entities in the way
required by this security technology. Also, security technology domains can
help identify where bridges and gateways are necessary for interoperability
between security technology domains. Note that the specification does not
include any security technology-specific administration interfaces.

Protection domains cluster components are assumed to trust each
other. The security architecture should be designed to make sure (at least in
theory) that components from different protection domains cannot interfere
with each other. Maintaining integrity and confidentiality in a secure object
system depends on proper segregation of objects, which may include separat-
ing security services from other components. It must be possible to guarantee
that, to any required level of assurance, the applications cannot bypass them.
Moreover, security services themselves must also be subject to security poli-
cies. The general approach is to establish protection boundaries around
groups of components that are said to belong to a protection domain.
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Components belonging to a protection domain are assumed to trust each
other and no security is needed, but communication across protection
boundaries has to be controlled. It must be possible to constrain interaction
between components to controlled communication paths, for example,
explicit message passing and implicit sharing of memory.

3.3.2.3 Security Administration

The purpose of security policy domains and roles is to make policy admini-
stration of large systems easier. In addition to domain management, security
administration also involves setting up domain servers if required, policy
management, interdomain interoperability and policy agreement between
domains, security mechanism installation and management, providing secure
storage for audit trails and keys, and security service set-up. In general, secu-
rity administration tries to bring together all the different components in
such a way that they provide a secure system without any loopholes (as
opposed to just individual security-enforcing components).

In this section, we will only discuss policy and domain administration.
The CORBA security service defines a DomainManager interface that
allows policy objects to be created, deleted, and updated for different security
functions. Interfaces are provided to locate DomainManagers, but manage-
ment of policy domains and their members is currently not supported. Note
that there is a submission for a Security Domain Membership Management
Service (SDMM) [10], which maps objects to domains. This way, security
enforcement can be based on unchanging domain names rather than the less
useful interface type or the often unpredictable object reference.

Managing security environment domains and security technology
domains is often done in an environment-specific and security technology-
specific way; thus no interfaces are specified in the CORBA security service.
The specification also does not cover administrative functions concerning
the management of underlying mechanisms supporting the security services,
such as authentication services, key distribution services, or certification
authorities. Note that this raises some chicken and egg problems that have to
be carefully considered.

3.3.24 Interoperability

Secure interoperability between objects from different security domains is
often only possible if they both happen to use the same security attributes
and mechanisms, or if a gateway translates object references and messages
between domains. It is not a goal of CORBA to specify such security
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gateways (to translate security mechanisms) and bridges (to translate poli-
cies), as their functionality is highly implementation-specific.

Instead, the specification tries to mitigate the problem by specifying
tokens for some security mechanisms (e.g., Kerberos) and some standard
security attributes (e.g., standard access rights), which have to be supported
by all compliant implementations. This way, objects can at least interoperate
across domain boundaries with a minimum level of protection.

3.3.3 Privilege Delegation

In distributed object systems like CORBA, an invoked object may, in turn,
call other objects to perform parts of the task. The resulting chain of calls
complicates the credentials model (see Section 3.3.1), as credentials will need
to be passed from one object to the other, and intermediate objects will
enforce their own policy on these credentials before they pass them on to the
next target. For example, access decisions may need to be made at each point
in the chain, whereby intermediate objects may use different authorization
schemes and may, therefore, require different access control information to
check which objects in the chain are permitted to invoke further operation
on other objects.

This process is called privilege delegation—the act whereby one princi-
pal authorizes another to use its identity or privileges, perhaps with restric-
tions. The owner of the original credential is called the initiator of the
request, and the recipient of a delegated request is called an intermediate. If
an intermediate chooses to turn the initiator’s received credential into its
invocation credential, then it becomes a delegate. The final recipient of the
request (i.e., the object that performs the requested operation) is called the
target of the request.

In privilege delegation, the initiating principal’s security attributes may
be delegated to further objects in the chain to give the recipient the right to
act on its behalf. Intermediate objects may need to use their own credentials
for some operations and delegated ones for others. The delegation model
allows the initiator to restrict delegation of some of its security attributes. If
no restrictions are placed and only the initiator’s privileges are being used,
this is called impersonation.

3.3.3.1 Policy

There are delegation policies for initiators, all intermediates, and targets,
which reflect the interests of all involved parties.
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¢ The initiator can decide whether or not to allow its credentials to be
delegated (by setting the DelegationMode either to Delegate or
to NoDelegate). This is an important decision because it is often
not easy to revoke delegated credentials once they have been given
away.

e Each intermediate’s policy can specify (on a per-interface granular-
ity) if it should pass on the initiator’s credentials (simple delegation),
its own credentials (no delegation), or a combination of them (com-
posite delegation, combined privileges delegation, traced delega-
tion). Figure 3.5 shows the different delegation schemes supported
by the CORBA security model.

e The target policy specifies which requests should be accepted, based
on the way the associated credentials have been delegated. For
example, an invocation could only be granted if composite dele-
gation has been applied, so that the whole delegation chain can be
evaluated.

3.3.3.2 Enforcement

Controls can be enforced on the client side (including initiators and interme-
diates) before initiating object invocations. Interfaces allow control of privi-
leges delegated, control of target restrictions, and control of time restrictions,
which means that a client can control the delegation of its credentials by
specifying a time window during which the delegated privileges are valid.
The privileges will automatically expire outside this time interval. The client
can also specify the maximum number of method invocations for which a
delegated credential is valid.

The intermediate object is able to extract received privileges from the
request and the active security context, and use them in local security deci-
sions, or when making the next invocation. It can also build (if permitted)
new credentials with changed attributes, using the received ones.

The target object uses the received privileges for local security decisions
when the delegated request arrives, for example, for access control. Note that
all delegation policies are, in fact, enforced by each receiving side, and ulti-
mately of the target object that carries out the operation intended by the ini-
tiator. All the client can do is protect the integrity of its delegation credentials
so that no intermediate can modify them, but it cannot control what inter-
mediates do with these credentials. For example, a malicious intermediate
could pass on credentials even if the NoDelegate option is selected. It is
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then up to the target to find out during authentication that the credentials do
not belong to the intermediate and, consequently, reject the request.

3.3.3.3 ORB Layer and Application Layer

Of course, only security-aware applications can select delegation schemes and
specify target restrictions for themselves. For security-unaware applications,
the administrator has to specify which delegation policies should be used
by default when an object acts as an intermediate. This allows many
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applications to be unaware of the delegation options used, as many controls
are done automatically by the ORB when the intermediate invokes the next
object in the chain. The difference between security-aware and security-
unaware intermediate objects is illustrated in Figure 3.6.

Note that CORBA security reuses delegation functionality of the
underlying security mechanism and is, therefore, limited to the functionality
provided by the security mechanism (which is, in most cases, inadequate or
nonexistent). However, the Common Secure Interoperability (CSI) Version 2
Specification [17] solves this problem by introducing an additional protocol
layer that supports the use of delegation tokens.

3.3.4 Principal Authentication

The CORBA security model divides the process of discovering who a princi-
pal is into three basic steps. First, the system asks a principal to identify itself.
Then it authenticates the claimed identity, because the principal might be
lying. Finally, after establishing that the identity is authentic, it checks the
privileges of the principal within the system.

In other words, authentication is the process of verifying a claimant’s
claimed identity, more specifically “The verification of a claimant’s entitle-
ment to use a claimed identity and/or privilege set” [1]. Different types of
authentication information, such as passwords or cryptographic keys, are
used to establish a claimant’s entitlement to a claimed identity. The critical
point here is that the authentication information is assumed to be known
only to the entity associated with the identity. In the case of passwords, this
means that a claimant has to know the corresponding password during login
to verify the claimed username. In the case of cryptographic keys, the claim-
ant has to provide a valid certificate (signed by a certification authority) that
binds his cryptographic key to his identity. The cryptographic certificate vali-
dation mechanism then ensures that this binding is valid.

The authentication process bootstraps the entire security system. All
other components rely, in one way or another, on the privileges verified dur-
ing the authentication process. For example, access control is often based on
the caller’s identity, which relies on successful authentication. The same
applies to audit, where logged events normally have to be associated with the
event initiator to provide accountability.

Note that this section is only concerned with the authentication of
principals to the system. Peer authentication for remote communications is
covered as part of the secure context establishment (see Section 3.3.5). In
the CORBA security model, peer authentication relies on the credentials
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generated on both sides during the principal authentication process. This
way, a principal has to log in only once to establish a number of authenti-
cated security contexts.

3.3.4.1 Principal Authenticator

The central object of the authentication model is the PrincipalAuthen-
ticator, which provides an authenticate method for principals to
authenticate themselves and create their credentials. In addition to supplying
its claimed identity and associated authentication information (e.g., a pass-
word or certificate), the caller can specify the authentication method to use
(e.g., password validation), and the security mechanism with which to create
the credentials (e.g., X.509 certificate). If the principal wishes to use only a
subset of its privileges in a particular session, then it can also request specific
privilege attributes.

The authenticate method then creates specific credentials for the
caller, depending on the information provided. The newly created creden-
tials object is then placed into the Current/SecurityManager object so
the credentials can be used during security session establishment (see
Section 3.3.5). It can also return mechanism-specific data and some con-
tinuation data if authentication proceeds in several steps (e.g., for chal-
lenge/response authentication mechanisms). This continuation data is used
in subsequent steps of the authentication protocol. Figure 3.7 illustrates the
inputs and outputs of the PrincipalAuthenticator: :authenticate
method.

Claimed Object

oty reference
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Figure 3.7 PrincipalAuthenticator::authenticate.
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3.3.4.2 User Sponsor

Human users provide their claimed identity and authentication information
through a component called the wuser sponsor. The user sponsor then calls the
PrincipalAuthenticator on behalf of the user to generate the creden-
tials. In the simplest case, the user sponsor is just a login window that asks
the user to enter his or her login and password. More elaborate user sponsors
can support more complex authentication mechanisms, such as authentica-
tion based on physical tokens or biometrics.

The specification does not define any interface for the user sponsor,
because it may reside either inside or outside the CORBA system. For exam-
ple, the user sponsor could be part of a preexisting authentication infrastruc-
ture, such as an operating system logon. This important feature allows many
secure CORBA and non-CORBA applications to share the same logon,
which is often referred to as single sign-on (i.e., a user only has to log on once
for each session and not for each individual application). In most cases, the
user sponsor is only useful on the client side because the target wants to know
which individual user is behind the client application. On the target side,
nonhuman principals (application objects) authenticate themselves by calling
the PrincipalAuthenticator: :authenticate method directly.

3.34.3 Policy

The principal authentication policy specifies which identities and privileges
are to be given to a principal based on the presented authentication informa-
tion. This policy is not explicitly modeled in CORBA security, but is rather
implicitly enforced by the underlying authentication mechanism. Based on
the provided security information, the authentication mechanism will decide
which privileges to put into a principal’s credentials object.

Note that the generated credentials will contain some authentication
mechanism-specific data, such as an X.509 certificate that identifies the prin-
cipal. Because of that, the CORBA security model can only support central-
ized administration of principal authentication policies with considerable
effort.

3.3.4.4 Enforcement

Principal authentication policies are enforced by the PrincipalAuthen-
ticator and, ultimately, by the underlying authentication mechanism.
The model only describes how the underlying authentication mechanisms
are integrated into the security architecture. For example, if Kerberos is used,
there is an authentication server that contains authentication information
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and is trusted to authenticate principals correctly. If SSL is used, then there
would be a trusted certification authority that signs cryptographic identity
certificates.

Figure 3.8 illustrates how the main authentication components
interact.

3.3.5 Security Context Establishment

During the authentication process, the principal has been authenticated and
its credentials object, which contains a number of privileges, has been gener-
ated. When the principal tries to invoke a remote object, the CORBA secu-
rity system needs to associate its credentials with the communications and, in
particular, transfer the credentials securely to the remote peer. This is done as
part of the security association establishment process.

3.3.5.1 Security Contexts

A security association denotes “shared security state information that permits
secure communications between two entities” [1]. For each security associa-
tion, a pair of SecurityContext objects (one for the client and one for
the target) provides the shared state information that represents a security
association, such as the credentials used, the target security name, and the
session key.

The main purpose of the security association establishment is the
secure transfer of security information (e.g., credentials and keys) between
communicating parties, because each side normally needs to know for its
security enforcement who the other party is and what it is allowed to do. For
example, access control on the target side often depends on the caller’s iden-
tity; hence the target-side security system needs to have access to this infor-
mation. Establishing the security context can take several exchanges of
messages containing security information (e.g., to handle mutual authentica-
tion or negotiate security mechanisms).

Once a context exists, it can be used for many subsequent interactions.
Note that there is not always a one-to-one relationship between client-target
object pairs and security contexts. Contexts may be shared [(e.g., when a cli-
ent invokes several target objects that have the same (trusted) identity)], and
an object can share several contexts with another object (e.g., if a client uses
different privileges for different invocations on the same object). During the
lifetime of a security context, applications can check its validity (with the
operation is_valid), and may be able to refresh it (with the operation
refresh) if permitted.
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The security context object stores several different types of credentials:

e The OwnCredentials contains the identities and privileges of the
local subject associated with the active context.

e TheReceivedCredentials, which resides on the target side and
contains the identities and privileges of the remote subject from
whom the execution context has most recently received a message (if
it has received any).

e The TargetCredential that resides on the client side and con-
tains a remote principal’s authentication information for the client’s
security context with the server.

e The InvocationCredentials contains the identities and privi-
leges the execution context will use the next time it sends a message.
This is normally the same as the own credentials, but if the execu-
tion context has become a delegate (see Section 3.3.3), then the
invocation credential may be the same as the received credential.

3.3.5.2 Context Creation

Most of the actual context establishment work is done by the so-called
Vault object, which is responsible for creating security context objects and
establishing the security association between client and target. The ORB
interceptor5 calls vault::init security context to request a secu-
rity token that is to be sent to the target. The Vault then generates the
client-side security context object and the token, which essentially contains
the OwnCredential and some other context information. Once the token
is securely transferred to the target side, the ORB security service (interceptor)
there calls Vault::accept security context, which generates the
corresponding target-side security context object. The transferred credentials
from the token are stored as the ReceivedCredentials on the target side.

If the establishment of the security context involves mutual peer
authentication or negotiation of security mechanisms, then several token
exchanges may be necessary. Note that these exchanges, like the Vault
object itself and the security context objects it creates, are invisible to all

5. ORB services are implemented using interceptors. An interceptor is interposed in the in-
vocation/response path between a client and target object. There are two types of inter-
ceptors:

o Request-level interceptors, which perform transformations on a structured request;
o Message-level interceptors, which perform transformation on an unstructured buffer.
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applications. At the end of such a handshake, both parties have access to a
security context object with all related credentials.

In the case of a privilege delegation chain, the Vault object associated
with the intermediate object can automatically create a new security context
when the intermediate object invokes another object. This can trigger
another authentication process.

3.3.5.3 Context Access

The ORB architecture provides a standard way to access information asso-
ciated with the active execution context. An application can find out what
execution context it is in and what that context’s credentials are by calling
the ORB to get its so-called Current and SecurityManager objects and
then querying them to discover any of the credentials associated with the cur-
rent execution context.

The CORBA security model associates security state information,
including the credentials of the active principal, with the Current object.
So, in essence, the Current and SecurityManager objects are just
another way of accessing the information, such as the credentials for the prin-
cipals involved, from the active security context.

Figure 3.9 illustrates how the different objects interact.

3.3.5.4 Interoperability

To support the described protocol exchanges necessary to establish a security
context (and protect messages, see Section 3.3.6), the CORBA IIOP requires
a number of enhancements. To allow for replaceability, these enhancements
are added as a separate Secure-Inter-ORB Protocol (SECIOP)® that is
inserted on top of IIOP and transmits security information and GIOP mes-
sages securely across the network (see Figure 3.10). Where possible, SECIOP
messages are sent together with IIOP messages rather than as separate
exchanges. However, this is not always possible, for example, when a client
wishes to authenticate the target before it is prepared to send an IIOP message.

SECIOP uses standardized security tokens to support the establish-
ment of security contexts. Note that, although the type of security tokens is

6. The specification also defines a security-enhanced DCE-CIOP protocol that runs on top
of DEC’s distributed computing environment (DCE). It takes advantage of the inte-
grated security services provided by DCE authenticated RPC and provides security fea-
tures like cryptographically secured mutual authentication, credentials, integrity and
confidentiality protection, and protection against replay attacks. It can pass a range of
privilege attributes, support controlled delegation, and use secret key technology.
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standardized (e.g., establish context, message context), the number of tokens
used and their content are mechanism-specific. Token details for the following
security mechanisms are specified for use with SECIOP, so that implementa-
tions that use the same mechanism (and consistent policies) can interoperate:

o Kerberos: This mechanism passes the initiator’s identity only for
access control and audit and supports delegation with no controls.

o SESAME: This mechanism can pass a range of privileges, as well as
an identity for access control, and has delegation controls. It has secret
and public key technology options and replaceable algorithms, and
it uses X.509 V3 certificates with associated certificate management.

Only SESAME supports the full CORBA security facilities.

e SPKM: This mechanism passes the initiator’s identity only and does
not support delegation; it uses public key technology. Like SESAME,
it uses X.509 V3 certificates and associated certificate management.

Conformant secure interoperable ORBs will support Kerberos and,
optionally, SESAME and SPKM. For other mechanisms, other token details
may need to be specified to allow for interoperability.

3.3.6 Message Protection

So far, the security system has authenticated the involved parties, created cre-
dentials for them, and established a security context between communicating
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parties (including peer authentication, if required) so that security context
information is available to the client and target side security system. At this
point, the actual invocation request is sent across the network from the client
to the target, and the reply comes back the same way.

Messages can contain valuable information that needs to be protected
or, if modified, they can trigger events on the client or target side that lead
to a direct or consequential loss. For example, sender or recipient network
addresses can be modified to fool either party into committing disastrous
actions. Therefore, messages need to be protected against unauthorized dis-
closure or modification while in transit between a client and target.

3.3.6.1 Policy

Message protection, like many other functional components of the CORBA
security model, is enforced based on a policy. The message protection policy
specifies what quality of protection (QoP) needs to be applied to each message.
The security model supports three different kinds of message protection, and
the QoP policy defines which of them should be applied to a message, and at
what strength:

e Origin authentication, which proves the identity of the sender of the
message to the recipient. Mechanisms for this type of QoP could be
digital signature schemes.

o Confidentiality, which prevents unauthorized disclosure of each mes-
sage data. This is normally done by encrypting the message.

e [Integrity, which prevents undetected, unauthorized modification of
message data and may also detect whether messages are received in
the correct order, or if any messages have been added or removed.
Examples of mechanism types are cryptographic checksums and
sequence numbers.

The security model allows the definition of message protection policies
in three places:

e On the ORB layer, system owners can define two kinds of policies
to ensure that messages transmitted within their systems are ade-
quately protected: client secure invocation policies, which define the
minimum protection that must be applied to messages sent from the
system; and target secure invocation policies, which define both
the minimum protection that must be applied to received messages
and the maximum protection the system can support. This type of
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policy is attached to the Current object (i.e., the active execution
context).

On the application layer, target object owners can define which
message protection needs to be applied, so that data flowing into
and out of their objects is adequately protected. A description of that
policy is written into the target’s object reference, so that callers will
know the minimum required protection, as well as the maximum
supported protection, of the target object.

Finally, the model supports policies through which principals can
control the minimum level of protection that has to be applied to all
messages they send and receive. In addition, they may specify the
maximum level of protection that they are able or willing to support.
This policy is stored in the principal’s Credentials object.

3.3.6.2 Negotiation

To implement the appropriate level of message protection, the CORBA
security system needs to combine the individual policies to arrive at the QoP
that has to be applied to a message. This has been included into the model
to support a weak form of negotiation between the communication parties.
Figure 3.11 illustrates how QoP negotiation works:

e On the sending side, the required effective QoP is the collection of

the required QoP specified in the principal’s credentials, the object
reference, and the Current object. If the client-side maximum sup-
ported QoP, which is specified in the object reference and the Cre-
dentials object, is at least as strong as the required effective QoP,
then the security service will create a SecurityContext object
that implements the required effective QoP. In addition, a context
setup token, which contains the required effective QoP, is generated
and sent to the target side.

On the receiving side, the accepred effective QoP is the collection of
the required QoP specified in Current and the credentials object,
as well as the sender’s applied required effective QoP. If the maxi-
mum supported QoP, which is specified in the object reference and
the Credentials object, is at least as strong as the accepted effec-
tive QoP, then the security service will also create a Security-
Context object that implements the required effective QoP.
Otherwise, the security system will refuse to accept the message.
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3.3.6.3 Enforcement

Enforcement of message protection is done for each message by simply
calling the SecurityContext object, which implements the operations
protect message and reclaim message for protecting messages for
integrity and confidentiality (see Figure 3.12). The security system automati-
cally intercepts all messages and puts them through these functions, so the
message protection cannot easily be bypassed.

Message protection is usually implemented using encryption. Since the
CORBA security model has to fit a variety of purposes and levels of protec-
tion, it allows a choice of cryptographic algorithms for message protection.
Furthermore, request and response may be protected differently, and both
integrity and confidentiality protection can be applied to the same part of the
message. The higher the quality of protection has to be, the better the algo-
rithm needs to be. The effective quality of the protection depends on the
quality of the underlying mechanisms. The ORB just makes sure that the
encryption cannot be bypassed if it is required for the security association.
Note that the underlying cryptography mechanisms are not visible outside
the security service—encryption and integrity protection are totally transpar-
ent to the user.

Also note that encryption is not necessary if systems provide message
protection inherent to the environment (i.e., in the same security environ-
ment domain—see Section 3.3.2). For example, virtual private networks
(VPN) already provide message protection. The ORB does not provide its
own message protection when it operates on such a secure transport layer.

3.3.6.4 Interoperability

To support message protection functionality, the IIOP requires a number of
enhancements. The SECIOP (see Section 3.3.5) securely encapsulates the
GIOP messages to prevent any modification (e.g., deletion, reordering,
replay). Alternatively, the SSL-Inter-ORB Protocol (SSLIOP) can be used to
transfer GIOP messages securely on top of SSL, a widely used secure trans-
port mechanism (see Section 3.4.1).

In addition, the IOR format needs to be enhanced to include the
authenticated identity of the target, relevant target-side security policy attrib-
utes, and the list of security mechanisms supported and required by the tar-
get (for QoP negotiation).

Note that secure interoperability is only supported if ORBs share a
common interoperability protocol, consistent security policies are enforced,
and the same security mechanisms are in use on both sides. In particular, the
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specification does not define any gateways to translate between underlying
security mechanisms (e.g., different encryption algorithms) and security pol-
icy domains. In most cases, such gateways would not fit the underlying trust
model because they need to have access to the cryptographic keys of all par-
ticipants to decrypt and reencrypt all traffic.

3.3.7 Access Control

In the previous steps, the security architecture has set the scene for access
control. CORBA security has authenticated the involved principals and gen-
erated credentials for them. These credentials are then used during security
context establishment to set up an authenticated and protected network link
between communicating parties, so that the client can securely send an invo-
cation request to the target. On its way, the request can go through a chain of
intermediate delegates before it reaches its final destination.

Access control is about restricting access to resources to prevent their
unauthorized use [1]. Whenever the request arrives at the target side, the
security system there needs to decide if the caller is authorized to invoke the
target method. The security model also supports access control at the client
side, which can be used to control which requests client objects can send.

Client-side access control is done independently from target-side access
control. The client-side ORB enforces the client domain access policy (which
checks if the client is allowed to invoke that operation under the given cir-
cumstances) using the information from the target object reference, whereas
the target-side ORB enforces the target domain access policy (which also
checks if that client may invoke that operation under the given circumstances).

Client-side access control is rarely useful in practice. Its purpose is
mainly to prevent the network from getting unnecessarily flooded. Access
control in the sense previously defined is primarily a target-side concern.

3.3.7.1 Policy

The access control policy describes which target methods each principal is
allowed to invoke. To make larger systems manageable, target objects are
grouped in security policy domains to which a common policy applies, and
principals are clustered into roles, groups, or clearances (see Section 3.2.4).
This way, the number of access rules can be reduced dramatically.

But for most access control policies, per-object granularity is not
enough. Objects will frequently export a number of operations with differing
security needs. For example, an electronic banking object Bank could have
a method get admin contact that is accessible to any system user,
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whereas a withdraw operation should be restricted to authorized custom-
ers. To write a policy on such a per-operation granularity would not be scal-
able, as the administer would need to write a separate rule for each operation
on each object.

To solve the scalability problems of per-operation granularity, the
model associates standard sensitivity levels to each operation. This way, the
policy can compare the level required to access the operation with the level
granted to the client and only allow access if the client’s granted level is suffi-
cient.

The specification provides a standard set of access rights to ensure that
both sides interpret access control attributes in the same way. The rights fam-
ily that contains the standard rights includes g (get), s (set), u (use), and m
(manage). Several access rights can be combined in two ways: If the “all”
combinator applies, then the caller has to possess all rights in the list; for the
“any” combinator, any one of the listed rights is sufficient to access the
operation. In the Bank example, the get admin contact operation
could be accessible with any (g, s,u, m), whereas the Withdraw operation
could only be invoked if the caller has 2/ (g, s, u).

In summary, the standard access decision model bases its access deci-
sion on the following:

e The current privileges of the caller (e.g., access ID, roles, groups,
security clearance);

e Any control that is applied to privileges (e.g., lifetime);
e The operation to be invoked;

e The access policies of the target object.

Implementations may define additional rights families to fit the model
to their particular access control requirements. This way, the access control
model can support a number of different policies, such as access control lists
(ACL), capability lists, and role-based access control (RBAC). However, the
use of additional rights families may impede interoperability, since the target
side may not be able to interpret the caller’s privileges correctly.

3.3.7.2 Evaluation

The access control evaluation functionality is encapsulated within the
AccessDecision object:
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e Whenever a message arrives, the ORB security service intercepts it
and passes it to the access decision object to find out if the access is
allowed.

e The access decision object then forwards the caller’s credentials
(from the Current object) to DomainAccessPolicy, which
returns the granted rights for the calling principal.

e AccessDecision then calls the RequiredRights object to find
out the required rights for invoking the target method on the target
object.

e Access decision is now able to compare the granted rights with the
required rights. It will only allow the invocation if the granted rights
match the required rights; otherwise the request will be blocked.
Additional checks can be put in place at this point, such as controls
that are applied to the privileges (e.g., lifetime).

Figure 3.13 illustrates the access policy evaluation process.

3.3.7.3 ORB Layer and Application Layer Access Control

So far, we have only described how access control works on the ORB layer.
At that layer, access control can be applied to both security-aware and
security-unaware applications. In addition, the access controls are built into
the ORB message path and therefore cannot be easily bypassed.

In addition to ORB layer access control, the CORBA security architec-
ture allows security-aware applications to evaluate and enforce their own
application-specific access control policies. Both the client and target appli-
cation can call the DomainManager object of the underlying CORBA secu-
rity system, which uses the policy information in Policy objects to decide if
the invocation should be granted or not. The domain manager gets the
caller’s privileges from the Current context object. Figure 3.14 illustrates
the difference between ORB layer and application layer access control. Both
client and server side show ORB layer access control. The client side also
shows how application layer access control is done if policies are managed in
domains. The AccessDecision object gets the relevant references to the
access control policy from the Current object. The target side illustrates
access control for applications that manage their own policies.
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3.3.7.4 Enforcement

The AccessDecision object does not directly rely on any underlying
security mechanisms for its evaluation, since it uses standardized access
rights. The enforcement is automatic, as long as the security service inter-
cepts all messages at the message path and mediates them through
AccessDecision.

The implementations of DomainAccessPolicy and Required-
Rights, on the other hand, select access rights based on (mechanism-specific)
credentials provided by the authentication, which were transferred during
security context establishment and safeguarded by the message protection
functions previously described. For example, if the access decision depends on
the caller’s identity, then the authentication function needs to be trusted to
generate the correct credentials. In addition, the security context establish-
ment needs to be assumed to transfer the client credentials to the target side
in a trustworthy manner (i.e., without being tampered with). Therefore, the
access control will only be as strong as the authentication, security context
establishment, and message protection functions. Note that this conclusion is
not specific to CORBA security; it also applies to most access control systems.

Also, as with all the functional components described so far, the
CORBA access model assumes a trusted ORB. Every application object must
trust its underlying ORB, as well as all other underlying system components
(e.g., the operating system) to work as it should.

3.3.8 Security Audit

Security audit is the process of recording details about security-relevant
events in an audit log. Audit logs store event details in such a way that they
cannot be modified or tampered with. An audit event is the data collected
about an event in the system for inclusion in the system audit log or in an
alarm notification. For example, the data that should be recorded for particu-
lar method invocation could include the called operation, the caller identities
and privileges, and the time of the invocation.

By analyzing these security audit logs, auditors can detect actual or
attempted security violations. They can also see from the logs whether the
protection measures are adequate and if they comply with established secu-
rity policy and operational procedures.

3.3.8.1 Policy

If everything that happens in the system was recorded (regardless of whether
it is relevant or not), then the audit log would become very large and filled up
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with irrelevant audit events. Consequently, the system performance would
deteriorate, and later analysis of the audit logs would be difficult. Hence,
audit policies are used to restrict what types of event logs are to be generated
under which circumstances.

The CORBA security system stores audit policies in AuditPolicy
objects, which are called by the AuditDecision object to see whether an
event has to be generated. The audit model defines a number of audit selectors
for particular system events. Each time an event occurs, the audit service
looks for the corresponding selector in the audit policy and generates an
event only if it finds the corresponding selector; otherwise, no event will be
created. The specification currently supports selectors for the following secu-
rity event types:

e When principal authentication takes place (e.g., when users log on);
e When secure connections are established;

e When access control checks are enforced;

e When an invocation occurs;

e When changes in the security environment occur;

e When changes in the security policy occur;

e When objects are created;

e When objects are destroyed;

e When nonrepudiation evidence is generated;

e When all events are to be recorded.

The model allows the definition of additional customized event type
selectors to fit to more application-specific requirements (e.g., additionally
defined security attributes like the peer’s network address).

Each selector type in the policy contains a selector value list, which
states the circumstances under which the event will be generated. The value
list will specify one or more (combined with “all” or “any,” as discussed in
Section 3.3.7) of the following values:

The target object interface type;

The target object reference;
The invoked method;

The initiator’s credentials;
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o Whether the operation succeeded or failed’s
¢ The time of the event;

e The day of the week.

In summary, the audit policy describes the conditions that trigger the
audit service to generate a log entry. The description is based on a number of
event categories that contain a number of values. These values restrict the
event generation to the relevant events.

3.3.8.2 ORB Layer and Application Layer Audit

Audit policies can be defined for both the ORB layer and application layer.
ORB layer audit policies (client invocation audit policy, target invocation
audit policy) control, on the client and target side, what events are recorded
as the result of relevant system activities. ORB layer audit policies are
enforced transparently by the security system—this way, security-relevant
audit logs can be generated for security-unaware applications.

Application audit policies control which events are to be audited by
security-aware applications. Which types of events should be logged depends
on the particular application; therefore, it is often necessary to introduce
additional customized event types. For example, one could have an event
type “money transfer,” which creates a log every time money is transferred
into or out of the application.

Figure 3.15 illustrates the main components involved in auditing. The
client application side shows how auditing is done if audit policies are man-
aged using domains. The AuditDecision object gets the relevant refer-
ences to the domain audit policies from the Current object. The target
application side shows auditing for applications that manage their own audit
policies.

3.3.8.3 Policy Evaluation

Each time a request is sent, the client-side security service intercepts it and
calls the AuditDecision object to find out whether an audit event should
be generated. The AuditDecision object then compares the selectors in
the client invocation audit policy for the current execution context with the
request and event data (e.g., time). If the request attributes match the selec-
tors and values, then audit decision returns a positive answer.

7. Itis not clear what this means, in particular for ORB layer audit.
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When the request arrives at the target side, the security service there
also intercepts it and calls its AuditDecision object. On the target side,
the request and event data are compared to the relevant audit selectors in the
target invocation audit policy for the target object.

Application objects have to call AuditDecision themselves when-
ever they send or receive a message, and the audit decision is based on their
application audit policy.

3.3.8.4 Enforcement: Audit Channels

If the AuditDecision object returns a positive answer, then the ORB
or application needs to generate an audit event. This is done by passing the
event data to an associated AuditChannel object, which then stores
the logs in an implementation-specific way. To locate the correct audit chan-
nel, the ORB or application can query their AuditDecision object, which
contains a reference to the audit channel object associated with the policy.
The event data that is passed to the AuditChannel object includes:

e The event type;

o The event initiator’s credentials;

e The time the event occurred;

e The selector values used during the audit decision;

e Other event-specific data (optional).

The audit model only specifies how to pass event data to the
AuditChannel. Within the AuditChannel, this event data can be used
in many implementation-specific ways. Events can be either recorded on disk
for later analysis or alarms can be sent to an administrator.

Because of the implementation-specific nature of the AuditChannel,
the specification does not state how audit logs are administered (i.e., how
audit records are filtered later, how audit trails and channels are kept secure,
and how records can be collected and analyzed).

3.3.9 Nonrepudiation

One of the most complex requirements of the CORBA security architecture
is to provide the means to make principals accountable for their actions. The
security audit logs already described (see Section 3.3.8) are only part of the
solution, because each node can only create audit logs for its own side of
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the communications, and no one can prove to the other side (or to a trusted
arbitrator) that the local logs have not been modified with malicious intent.
For example, the target can delete audit events for a particular invocation
from the audit logs on the target side if a caller tries to prove that it initiated
an invocation that was never carried out. Even worse, if a caller gets billed for
a service associated with a particular invocation, then it cannot prove that it
did not invoke the service if a false entry was inserted into the audit log.

3.3.9.1 Evidence

To solve the problem of disputes, the security model needs to provide func-
tionality to create irrefutable evidence that prevents participants in an action
from convincingly denying their responsibility for the action or from mak-
ing principals accountable for actions in which they were not involved. This
functionality, which is called nonrepudiation, is based on digitally-signed
evidence tokens that are generated by the nonrepudiation service to prove that
a particular principal initiated a specific action. The nonrepudiation service
should give all participants the means to cast doubt on all false accusations
that are made against it (because no valid evidence is available on the accus-
er’s side), and to support all true accusations it wants to make (because valid
evidence is available on the accuser’s side).

The CORBA nonrepudiation model distinguishes normal evidence
tokens from complete evidence tokens, which—in addition to the signa-
ture—contain all information relevant in a future dispute but which may
be unavailable by the time the verification takes place. In the simplest case,
this can include the signer’s digital certificate to prove that the key was valid
at the time of the evidence generation. In more complex cases in which the
environmental parameters change dynamically, the complete evidence token
could also contain the actual message sent, as well as some information about
the state of the system (e.g., the time).

The model supports evidence generation for a number of different
kinds of actions. The most commonly used evidence token types are:

e Proof of origin, which identifies the originator of a message;

o Proof of receipt, which establishes that a message has been received by
a particular party.

3.39.2 Policy

The client and target nonrepudiation policies specify the types of evidence
that should be generated for each message. Evidence generation cannot be
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provided transparently on the ORB layer because nonrepudiation has to cast
liability on principals and not on the underlying ORB. To ensure account-
ability of the principal (or legal entity, such as a service provider) behind a
used application, the ORB must not have access to the principal’s evidence
signing key. Otherwise, the principal could claim that the underlying
CORBA security system abused his key to create false evidence. This measure
is necessary because the digital signatures used to sign the evidence tokens are
generally only binding if they were applied with the explicit consent of the
signer, and if only the owner of the key (i.e., the principal who will be held
liable) could have signed the message.

3.3.9.3 Evidence Generation and Verification

Application objects can use the NRCredentials object to generate and ver-
ify evidence tokens, get token details, and set or retrieve policy details. Gen-
erally, digital signature schemes can generate evidence and protect its
integrity, but the CORBA security model does not mandate any particular
technology to be used in the NRCredentials implementation. Figure 3.16
illustrates where the proof of origin and proof of receipt are generated and
verified for a message transmitted from client to target.

3.3.9.4 Dispute

When a dispute occurs, an independent third party (often called the adjudi-
cator) needs to settle the disagreement based on the nonrepudiation evidence
provided by both parties and in accordance with its policy. The policy has to

Client Generate Verify proof Target
application | proof oforlgln‘ ‘of origin _ | application
NR <« | Client Target [« >
Credentials [  Verify proof Generate proof | Credentials
of receipt of receipt

Figure 3.16 Evidence generation and verification.
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be accepted by all participants and can have a legal basis, such as laws or con-
tractual terms.

The security model does not define how accusations are carried out
or how disputes are settled. One possible implementation could include an
adjudicator server somewhere on the network that can be called by any party
to accuse other parties. This invocation could contain all relevant evidence
tokens and a reference to the accused party. The adjudicator could then
check the validity of the evidence and—if the evidence (e.g., the crypto-
graphic keys and certificates) is valid—contact the accused party, ask for their
evidence, and present both parties with the verdict.

3.4 Secure CORBA on the Internet

CORBA was originally developed for Intranet-centric environments where
legacy applications (e.g., back-end data stores) had to be integrated with
state-of-the-art technology (e.g., an enterprisewide controlling application).
In these early days, CORBA was successfully implemented within rather
static environments with well-defined ownership, simple trust relationships,
and central management (e.g., for large manufacturing systems). Security in
such systems was well understood and rather easy to implement and
administer.

With the unexpected growth of the Internet in the mid-1990s, more
and more applications were designed to be used by a large customer base.
CORBA seemed to be an ideal technology to handle these very large,
dynamic, and distributed applications on very heterogeneous platforms.
When electronic commerce applications became increasingly commonplace,
security was a major concern. It soon turned out that the Intranet-centric
CORBA security model (which was first published in 1995) was not applica-
ble in many cases, partly because it was too heavy to be downloaded with the
client application in a Java applet, and partly because the system could not
cater to the new security requirements. For example, now there was mutual
suspicion between the participants that operated on a potentially hostile
underlying platform, and central security administration was not possible
anymore in these highly dispersed systems. In addition, several (untrusted)
firewalls were in the communications path between the client and target,
which broke CORBA’s end-to-end security model. There is an attempt to
support firewalls within the CORBA security model, which will be described
in this section.

To meet the growing demand for Internet security, the industry inte-
grated the lightweight SSL security protocol into their ORBs in a proprietary
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fashion. This protocol had been in use for many years to secure Internet
traffic. The OMG reacted to the growing number of incompatible SSL-
based products by standardizing the SSL-based SSL-Inter-ORB-Protocol
(SSLIOP), which can be used instead of SECIOP.

Toward the end of the 1990s, an increasing number of Internet users
started using mobile wireless devices such as palm-size organizers and mobile
phones to access services on the Internet. Due to resource restrictions, the
development of demanding applications on such devices is still a challenge.
Another problem is integrating such highly heterogeneous components into
the rest of the system. Today, telecommunications providers and pocket
computer manufacturers acknowledge the need for a common secure appli-
cation platform, and CORBA could be the architecture of choice. But this
depends on the ability of the OMG and its members to redesign the specifi-
cations (in particular, the security architecture) to meet these new require-
ments. Our MICOSec implementation, which is presented in Chapters 4
through 7, was modified to fit those needs and can be used on an off-the-
shelf pocket computer.

341 SSLTLS

SSL/TLS differs from most other security mechanisms used with CORBA.
While mechanisms like Kerberos or SESAME provide a number of security
functions through an interface (e.g., GSS-API) that can be integrated into
CORBA’s SECIOP, the SSL protocol is a secure transport mechanism that
uses network sockets directly as its interface. In other words, SSL can be set
up by the layers above and then automatically enforces security on all traffic
that goes through a particular socket.

To solve the problem that SSL cannot be integrated into the CORBA
security architecture like other security mechanisms, the CORBA com-
munity came up with the idea of pluggable protocols. The new SSLIOP was
introduced as an alternative transport mechanism for IIOP (i.e., replaces the
transport layer of the CORBA architecture). This way, the CORBA security
architecture can set up the SSL connection and then use SSLIOP to commu-
nicate on top of it.

MICO, the ORB used as the basis for MICOSec, provides a proprie-
tary SSL extension, which is reused within MICOSec. Note that most ORB
products support SSL, but because of the late standardization of SSLIOP,
products from different vendors are sometimes incompatible when SSL is used.

SSL uses standard X.509 cryptographic certificates as identity tokens,
which need to be administered. Due to the widespread use of SSL to secure
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Web traffic, a number of off-the-shelf PKI products are available to generate,
verify, update, and revoke SSL keys and certificates.

342 Firewalls

The CORBA security architecture assumes that there is a direct network con-
nection between client and server over which protected IIOP requests and
replies can be sent. All security policies are enforced end-to-end by the ORB
layer security services (or by security-aware applications) on the client and
target side.

Unfortunately, the situation is quite different for many real-world envi-
ronments, where clients and targets reside in subnetworks with different
security policies in such environments. Firewalls enforce a security policy on
all network traffic that crosses the domain boundaries [18]. Objects within
the domain protected by a firewall are said to be within the same enclave. A
firewall controls which callers from outside are allowed to communicate with
which targets within an enclave, and which protocols and applications are
permitted for communication. In addition, it needs to prevent attacks on the
objects within the enclave.

Figure 3.17 shows a typical case where two objects in segregated enter-
prise enclaves communicate over the Internet. Both enclaves are each pro-
tected by firewalls that have to be traversed by all traffic between the client
and target enclave. When a client wants to invoke a target, it needs to con-
tact its firewall, which enforces a security policy and then contacts the target

Client enclave Target enclave

Client Target
firewall firewall

<—> Internet -<—>

Figure 3.17 Invocation across firewalls.
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firewall. The target firewall also enforces its security policy and, provided the
access is granted, relays the traffic to the target.

3.4.2.1 Problem Definition

The CORBA secure interoperability model and its protocols do not easily
integrate with firewalls for a number of reasons: First, there are a number of
conflicting interests. CORBA’s security model is based on end-to-end secu-
rity where components defend themselves (hence, often referred to as “the
self-defense model of object-oriented computing”), while the firewall
approach controls access to relatively unprotected objects at the enclave
boundary (“hard shell and soft inside model”). In the firewall security model,
all network traffic is unprotected and individual objects do not enforce their
own security policy. Instead, the firewall controls access to the objects within
its enclave, based on the caller identifier, the message content, and the target
to be invoked. In CORBA’s end-to-end security model, the client establishes
a protected security context with the target that allows peers to authenticate
themselves and exchange protected messages. Firewalls on the communica-
tions path cannot validate and filter the traffic because the protected mes-
sages are not accessible as plaintext (see Figure 3.18).

Apart from this fundamental clash, there are also several difficulties
of a more technical nature. First, objects are addressed by their IOR, which
contains the host name and port number of the server. If firewalls are in
the communications path, then in some cases the IOR needs to point to the
firewall and contain some information that tells the firewall which target to
contact.

In addition, CORBA allows TCP ports to be dynamically assigned to
target servers (e.g., a new port can be randomly chosen for each object gener-
ated by a factory object). The client gets this port number from the IOR, but
the firewall also needs to know this to enforce its access control policy. In
particular, the firewall needs to know when an object terminates to make

Client

Client

Figure 3.18 Firewall security versus end-to-end security.
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sure that calls to its corresponding port are rejected. This is particularly
important if a new object with different security requirements reuses that
particular port.

Another problem is that CORBA’s callback features blur the distinc-
tion between client and target, as targets can call back clients at some point,
for example, for asynchronous notifications, and client-side firewalls are nor-
mally configured to reject incoming requests to protect clients from network
attacks.

Moreover, traffic can go through several enclaves with differing fire-
walls, for example, if different departments within an enterprise have their
own firewalls to protect their subnetwork.

3.4.2.2 Toward a Solution

On the one extreme, a widespread and technically simple solution involves
tunneling CORBA traffic through well-known ports over well-known proto-
cols such as the Hyper Text Transfer Protocol (HTTP) or its secure version
HTTPS. Its advantage is that it is largely transparent and does not require
any major modifications to the ORB or security architecture, but it has many
downsides. For starters, it cannot solve any of the technical difficulties previ-
ously described. But more importantly, it bypasses the enforcement of the
firewall security policy and therefore jeopardizes the whole enclave.

The other extreme involves compromising end-to-end security by forc-
ing clients to establish a CORBA security context with the firewall instead of
the target. The firewall then establishes another security context with the tar-
get if the access should be granted (such a firewall is called ZIOP layer proxy).
However, this solution has a number of drawbacks. First, it breaks end-to-
end authentication and message protection, as all parties have to trust all fire-
walls on the message path to keep the keys and message data secret. But there
are also functional weaknesses, as the firewall can only interpret the IIOP
header and the message header, whereas the potentially dangerous message
content is only an unstructured byte stream (it can only be understood by the
corresponding stubs and skeletons) and, therefore, cannot be validated.

A trade-off between these radical solutions is to preserve end-to-end
security and transparently provide some basic filtering of the underlying
TCP stream (such a firewall is called 7CP layer proxy). Making sure that call-
ers from certain network addresses can only access a particular port on a par-
ticular host protects the rest of the enclave from attacks (which often is
a more important requirement than protecting the actual CORBA server).
The target object then defends itself from IIOP layer attacks (with the
CORBA security services), while the TCP layer proxy prevents many
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classical TCP layer attacks by rewriting all packets. On the client side, the
widely supported Socket Server (SOCKS) library can be integrated into
the client network stack so that the client traffic is transparently sent to the
SOCKS server, which passes it on to the target. With SOCKS, the client can
dynamically choose the target of the connection. On the server side, different
TCP layer proxies are preferable, as static port mapping is normally required.

Note that these approaches require a number of changes to the ORB,
the IOR, and the CORBA protocols to solve (some of) the technical difficul-
ties described.

3.5 Conformance

Having a sound security architecture is a first and important step toward a
secure CORBA system, but there are many other factors that also determine
whether the resulting system is secure or not. Of particular importance is
the quality of the CORBA security services implementation, as well as its
integration with underlying security mechanisms.

It soon became clear that most CORBA security vendors were not able
or willing to implement products that cover the whole range of specified
security features, partly because the development was deemed too difficult
and expensive, and partly because the resulting products were considered
unsuitable for most customers’ needs.

Consequently, it was decided early on by the OMG that not all prod-
ucts need to support all the facilities defined in the CORBA security specifi-
cation. Instead, two levels of conformance were specified (see Figure 3.19).
For the first level of conformance (level 1 security), it is mandatory to pro-
vide a specified set of security features during object invocation for security-
unaware applications and to allow security-aware applications to enforce
their own access control and auditing. The second conformance level (level 2
security) includes a wider range of security facilities and allows applications

Main
functionality
level

Functional Security Security
option replaceability interoperability

Security | Security | SECIOP, | SECIOP,

Non- ORB | Security | ready ready CSI1, DCE-
repudiation | services | services| ORB | security | Kerberos| CIOP,
services | services | +MD5 |Kerberos

Figure 3.19 Conformance levels and options.
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to control the security provided at object invocation. It also includes
security policy administration. Further conformance options specify nonre-
pudiation, security service replaceability, and secure interoperability.

It is important for customers to know the level to which a CORBA
security product conforms and which options are supported, because buying
a CORBA security product does not automatically mean that the whole
specification has been implemented, and it does not at all imply that the
product is secure. There have been cases in the past where nonconformant
security products were advertised as CORBA security products, even though
the supported functionality differed significantly from the specification. This
section summarizes the different conformance details to help you choose the
right product for your particular needs.

Note that these conformance levels only specify whar has to be imple-
mented (i.e., which interfaces). They do not detail how the different parts of
the model should be implemented to be effective.

3.5.1 Level 1 Security

Level 1 conformant products provide all applications (i.e., both security-
unaware and security-aware) with at least the following functionality:

e Principal authentication inside or outside the object system;

e Secure invocation between client and target object (including unilat-
eral authentication, integrity, and/or confidentiality) on the ORB
layer or outside the object system;

¢ Simple delegation of client security attributes to targets;

e ORB-enforced access control checks, with support for domains and
roles but no support for administration;

e Auditing of security-relevant system events (but not by object invo-
cation).

In addition, security-aware applications can use the level 1 interfaces
to retrieve security attributes, which they may use to enforce their own secu-
rity policies (e.g., access control based on the application state). The level 1
interfaces allow access to security options and attribute details (get
service information and get attributes on Current). No
administrative interfaces are mandatory at this level.

This conformance level specifies the minimum requirements for level 1
conformance. Of course, level 1 conformant implementations can optionally
provide any of the other security features in the specification.
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352 Level 2 Security

For level 2 conformance, security services need to support extra functionality
on top of the level 1 functionality. For both security-unaware and security-
aware applications, conformant products need to support:

e Principal authentication both inside and outside the object system;

¢ Additional secure invocation features, in particular, peer authentica-
tion and message protection at the ORB level. Further integrity
options such as replay/reorder protection can be requested (but need
not be supported). Also, the standard DomainAccessPolicy (for
access control) and selective auditing have to work on a per-
operation granularity.

At level 2, security-aware applications can control in more detail:

e Options for secure invocation: Applications must be able to choose the
quality of protection of messages required, change the privileges in
credentials, and choose which credentials are to be used for object
invocations. They should also be able to specify whether credentials
are to be used only at the target (e.g., for access control) or whether
they can also be delegated.

o Delegation: The application can request (unspecific) “composite”
delegation, and the target can obtain all credentials passed, provided
all participating nodes support this.

For policy administration, all security policy types except nonrepudia-
tion have to be supported, and the standard policy management interfaces
for each of the level 2 policies have to be implemented. ORBs and appli-
cations must be able to find out what ORB layer security policies apply to
them. Applications must also be able to locate and use their application layer
policies to make decisions about what security is needed or to get the infor-
mation needed to enforce the policy.

Level 2 conformant applications have to implement all application
interfaces (except for nonrepudiation, which is optional), all security policy
administration interfaces, and all administrator’s interfaces. However, this
does not mean that all specified values of privilege attributes, delegation
modes, and communications options have to be implemented. Instead, some
of these interfaces may raise a CORBA : : NO- IMPLEMENT exception.
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As with level 1, CORBA security services implementations that con-
form to level 2 can optionally provide any other specified security features.

353 Nonrepudiation Option

An ORB may also conform to the optional security functionality defined in
the specification. Currently, only nonrepudiation is specified. To conform to
the nonrepudiation option, all interfaces for evidence generation and verifi-
cation (NRCredentials) and the nonrepudiation policy (NRPolicy) have
to be implemented.

Note that it is not necessary to fully conform to level 2 in order to be
able to support the nonrepudiation option.

3.5.4 Security Replaceability

Security replaceability specifies the requirements to support the integration
of ORBs and security services from different vendors. If an implementation
does not conform to security replaceability, then the specified standard secu-
rity policies or security services implementation cannot be replaced. There
are two aspects to security replaceability:*

o Security features replaceability allows the security features to be
replaced. This requires an ORB (or the ORB Services it uses) to use
the implementation-level security interfaces defined in the specifica-
tion, such as the Vault, SecurityContext, AccessDeci-
sion, Audit, and PrincipalAuthenticator objects.

o ORB services replaceability is about segregating the ORB from the
security services (and ORB services in general) as much as possible,
so that a variety of differing ORB services products can be integrated
with the ORB. This involves using standardized interceptors to
integrate the security services into the ORB, and using the stan-
dard operation get_policy (and its associated security policy
operations).

8. There is also a weaker third option: An ORB is said to be security ready for replaceabiliry if
it does not provide any security functionality itself, but does support one of the security
replaceability options. This means that later integration with conformant security services
is supported.
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355 CslI

First, conformant ORBs must be able to generate and use the security-
enhanced IORs with the specified security tags. Second, conformant ORBs
must use one of the specified security protocols (e.g., the SECIOP or
SSLIOP) to transmit and receive the security tokens needed to establish secu-
rity associations and the protected messages used for protected messages once
the association has been established.

CSl is specified in three levels of incremental functionality, and imple-
menters can choose to support the option most appropriate for their product:

e CSI level 0 includes identity-based policies without delegation;
access and audit policies are based on the identity of the initiator.

o CSI level 1 contains identity-based policies with unrestricted delega-
tion (i.e., impersonation). Access and audit policies are based on the
identity of the initiator or delegate (depending on the delegation

policy).

e CSI level 2 involves identity- and privilege-based policies with con-
trolled delegation. A wider range of access and audit policies are sup-
ported (e.g., role-based access controls and mandatory access
controls).

ORBs can only interoperate securely if they use the same security
mechanisms (or use a bridge between them, if available) and specify all
the cryptographic profiles they support. Therefore, for each CSI level, a set
of standard security mechanisms and algorithms has to be supported with
SECIOP: SPKM for CSI level 0, KerberosV5 for CSI level 0 or 1, and
CSI-ECMA (public key, secret key, or hybrid) for CSI level 0, 1, or 2. Alter-
natively, SSL (implementing the SSLIOP) or DCE (implementing both the
DCE-CIOP and SECIOP protocols) can be used as underlying security
mechanisms in conformant products. Figure 3.20 summarizes which mecha-
nisms can be used at each CSI level.

To overcome weaknesses in the underlying secure communications
mechanisms (e.g., SSL’s missing support for delegation), the OMG specified
an additional Security Attribute Service (SAS) as part of the CS/v2 architec-
ture [17]. It introduces an additional security protocol layer on top of the
underlying secure transport mechanism that provides client authentication,
delegation, and privilege token functionality. The SAS protocol is modeled
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I10P DCE-CIOP
SECIOP SSLIOP DCE

SPKM Kerberos5 | CSI-ECMA SSL security
csio v 4 4 v 4
CSI1 X v v X v
CSI2 X X v X 4

Figure 3.20 CSl levels.

after the Generic Security Service API (GSSAPI) token exchange paradigm
[19] and exchanges its protocol elements in the GIOP service context.

In essence, the SAS protocol allows tokens to be exchanged across a
secure underlying transport. The X.509 identity tokens exchanged at the
attribute layer allow an intermediate to act on behalf of (i.e., impersonate)
some identity other than its own. To accept such a delegated identity, the
target either has to trust the intermediate directly or base its trust on a proxy
rule certificate (called authorization token [20]) that has been signed either
by the initiator or a trusted privilege authority. Such a proxy certificate speci-
fies whether or not the intermediate is authorized to act on behalf of the ini-
tiator. More details on the CSIv2-SAS delegation protocol can be found in
Section 6.7.

Although CSIv2 is security related, it is not specified within the
CORBA security services specification, but as part of CORBA v2.4. At the
time of this writing, the relatively new CSIv2 protocol is hardly used in prac-
tice, but it is likely that it will be widely used in the near future; first, because
it runs on top of the extremely widely-used SSL protocol, and secondly
because it is supported by both CORBA and Enterprise Java Beans (E]JB)
and, thus, enables secure interoperability between both technologies.

3.6 Features or Wish List?

Now that the main design goals (see Section 3.2) have been introduced, as
well as a conceptual overview of the security architecture (see Sections 3.3
and 3.4), it is time to take a brief reality check. Does the security architecture
live up to its design goals? Can it live up to all of them?

The list of design goals is very ambitious and has to be understood as
a wish list—if all these goals could be achieved, then most of the problems
of distributed systems research and information security research would be
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solved. But the mission of the OMG and its members is not to get deeply
involved in fundamental research but to produce specifications for a standard
middleware architecture.

One of the main difficulties is that some goals conflict with others. We
already mentioned that there is a clash between interoperability and flexibil-
ity [2], because flexibility involves the customization of functionality,
whereas interoperability requires some standardized functionality. Also,
effective assurance can only be achieved (and certified) by looking at the sys-
tem as a whole, whereas portability means that components can be changed
without affecting the layers above. It is clear that the security architecture can
only try to find the best trade-off between such conflicting goals.

Third, some design goals depend on the actual implementation of the
ORB and CORBA security services product, in particular, the assurance,
performance, and scalability goals. Note that OMG specifications only spec-
ify object interfaces but do not dictate how objects are to be implemented.
This way, OMG specifications allow for a wide range of possible implemen-
tations but, while being able to prevent major obstacles, cannot ultimately
ensure performance and scalability for concrete implementations

How secure the resulting system is also depends heavily on the effec-
tiveness of the underlying security mechanisms. CORBA security is only as
strong as the weakest mechanism (i.e., the resulting system is vulnerable if
any bugs exist in the security mechanisms, even if the CORBA security archi-
tecture has been correctly implemented).

We will now briefly examine potential shortcomings of the CORBA
security model for each of the main design goals introduced in Section 3.2.

3.6.1 Interoperability

By specifying common attribute types, access rights families, and audit selec-
tor types, the model tries to support consistent security policies across differ-
ent ORB and security services products. In addition, the CSI specification
specifies a common set of security mechanisms, as well as standard security-
enhanced protocols and object references. But despite that, security poli-
cies across differing security mechanisms are often inconsistent because the
security attribute content within policies (or on-the-wire tokens) is mostly
security mechanism—specific. The reasoning behind this is that mechanism-
specific attributes often cannot be abstracted without semantic mismatches
or granularity problems [3].

Interoperability between nodes with differing security attributes or dif-
fering underlying security mechanisms require mechanism-specific bridges.
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These implementation-specific bridges, which are not part of the specifica-
tion, need to be secured and trusted to map correctly. They are difficult to
design and implement and introduce the same potential semantic and granu-
larity problems previously mentioned.

3.6.2 Transparency and Abstraction

The single sign-on feature can make CORBA security almost invisible for
users. From an application programmer’s perspective, ORB layer security
features can be (almost) transparently enforced for security-unaware applica-
tions. Applications do not even need to know the nature of the underlying
security mechanisms, because all policies are handled outside the application
on the middleware layer.

For administrators, CORBA security is not transparent. This is not
a problem, as administrators have to deeply understand the system to be
able to specify appropriate policies. However, the fact that CORBA security
cannot effectively abstract the content of security attributes from under-
lying security mechanisms creates administrative problems. Central policy
administration tools have to be able to handle all types of (mechanism-
specific) attribute content, and attribute content will need to be updated
when security mechanisms at a node in the system are changed.

The attempt to provide some level of attribute abstraction by using
interface types to describe objects, instead of the particular object instance,
makes the situation worse. This is partly because interface names in CORBA
cannot be obtained reliably for various reasons (e.g., interface inheritance),
and partly because interface types do not describe the identities of object
(instances) well enough.

3.6.3 Flexibility, Portability, Integration

We previously described why flexibility clashes with interoperability. To sup-
port interoperability, CSI specifies a number of standard mechanisms. These
mechanisms have to be supported on all participating nodes and cannot
be modified without changing them everywhere and without also modifying
the attribute content in the policies. This inhibits mechanism flexibility and
code portability.

Flexibility and portability also clash with assurance. Assurance can only
be certified by analyzing the system as a whole, and the certification needs to
be reevaluated whenever system components are modified. This clashes with
portability, which promotes that components can be changed without affect-
ing the rest of the system.
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The integration of SSL shows that not all security mechanisms can be
integrated into the architecture—the work-around of using SSL as an alter-
native transport does not integrate with various core components of the
model (e.g., the Vault object).

3.6.4 Scalability

The upper limit of users, objects, policy entries, etc., depends on the actual
implementation. From an administration perspective, scalability is supported
in CORBA security through domains and roles (or groups, clearances, etc.),
but no tools are specified to manage them. Therefore, it is not possible to
manage CORBA systems in an interoperable way, which ultimately inhibits
scalability. Note that management of cryptographic keys also needs to be
scalable, which depends largely on the particular PKI implementation and on
the way it is integrated into CORBA.

The upcoming Security Domain Membership Management Service [10]
and CORBA PKI [11] specifications should help mitigate this problem.

3.6.5 Reliability and Assurance

Automatic security enforcement by intercepting all traffic on the ORB mes-
sage path (through interceptors) is a sound architectural feature, but its reli-
ability depends to a large extent on the style and quality of the actual
implementation. Real assurance is difficult to certify for applications built on
top of the CORBA security model, because a lot of components on different
layers of the architecture play together to enforce security, and because there
is no small trustworthy security kernel in the CORBA security model.

Also, the flexibility and portability goals, which encourage frequent
“plug and play” of different components, jeopardize the system’s reliability as
a whole. This is because combining components that are individually certi-
fied to be secure does not automatically imply that the resulting system is also
secure [21]. To solve this problem, it would be necessary to reevaluate and
recertify the whole system after every modification.

3.6.6 Simplicity

The CORBA security architecture is not simple and easy to understand for
many reasons. First, it tries to cater to many application requirements with a
one-fits-all architecture, and, in particular, it tries to trade-off many conflict-
ing design goals. Also, security enforcement in distributed object systems is
inherently complex because systems are large, dynamic, and heterogeneous.
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Abstracting in such systems is not easy and, thus, the architecture gains fur-
ther complexity.

Administration of the CORBA security architecture is complicated
because of its support for many different policy and mechanism types, and
because there is often mutual distrust between participants.

3.7 Summary
In order to be useful, the CORBA security architecture has to fit to CORBA

in a nonobtrusive way, which means that it has to preserve the main CORBA
requirements. To achieve this, the security model was designed with a
number of design goals in mind:

The most important requirement is interoperability between products
from different vendors, different security policies, and different security tech-
nologies. In addition, the security model should provide as much manspar-
ency as possible and abstract security-unaware applications from the
complexities of the underlying security system, while at the same time allow-
ing security-aware applications to enforce more specific and fine-grained
policies. Administrators should be presented with a consolidated view of the
system to make security management easier. Moreover, flexibility is needed
to allow the use of many different security mechanisms and policy types. To
achieve portability, the security model needs to be segregated as much as pos-
sible from underlying mechanisms, and the application needs to be isolated
as much as possible from the security system. Also, consistent integration
with preexisting security infrastructure is an important feature. The security
architecture should not impose any scalability restrictions and should facili-
tate security administration for large systems by clustering principals and
objects into groups and domains. A security system is only trustworthy if
there is assurance that all security policies are automatically enforced correctly
on all actions (i.e., malicious objects should not be able to bypass the security
system). Simplicity of the security model helps reduce the number of poten-
tial bugs and, thus, improves the security system’s reliability.

Realistically, the security architecture cannot live up to all of the design
goals introduced, partly because some goals conflict with others (e.g.,
interoperability and flexibility, or flexibility and assurance), and partly
because some design goals (e.g., assurance, performance, and scalability)
depend on the quality of the particular implementation and underlying secu-
rity mechanisms.

The CORBA security architecture consists of a number of functional
components that provide applications with security. Figure 3.21 illustrates
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the location of the main conceptual components and the interactions
between them.

The CORBA security model is based on active subjects who can invoke
operations on passive target objects, but only by going through a security
enforcement component. Subjects and objects are called principals if they
have a unique identity and a number of credentials. The security policies are
based on these credentials. To allow security policy administration of large-
scale systems, the security model clusters objects into domains and principals
into groups (or roles, clearances, etc.). Security policies can be enforced
either by the ORB or by the application. The ORB layer security policy is
transparently enforced by the ORB for both security-aware and security-
unaware objects, while application layer security policies are enforced only
by security-aware application objects, which may have their own security
requirements.

In distributed object systems like CORBA, an invoked object may
in turn call other objects to perform parts of the task. This process is called
privilege delegation—the act whereby one principal authorizes another to use
its identity or privileges, perhaps with restrictions. Delegation policies on the
ORB layer and on the application layer specify how credentials can be dele-
gated (on the initiator side), how they should be passed on (on the interme-
diate side), and which credentials should be accepted (on the target side).

The principal authentication component allows principals to authenti-
cate themselves to the system and create their personal credentials. Human
users normally provide their claimed identity and authentication informa-
tion to a user sponsor (inside or outside the object system), which then calls
the principal authenticator on their behalf. The principal authentication pol-
icy is implicitly enforced by the underlying authentication mechanism: Based
on the provided security information, the authentication mechanism will
decide which privileges to put into the credentials object.

When the principal wants to securely invoke a remote object, the
CORBA security system needs to associate its credentials with the communi-
cations, and, in particular, transfer the credentials securely to the remote
peer. This is done as part of the security association establishment process. In
the model, the security context is set up by the Vault object. The Current
and SecurityManager objects are just another way of accessing informa-
tion associated with the active security context. To support the protocol
exchanges necessary for security context establishment, the IIOP requires a
number of enhancements that are part of the SECIOP.

Now the actual invocation request can be sent across the network. Mes-
sage protection policies on the ORB and application layer, as well as in the
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object reference, specify the minimum quality of protection that needs to be
applied to each message (i.e., origin authentication, integrity, confidentiality)
and the maximum supported quality of protection. The security system can
combine these individual policies to arrive at the effective quality of
protection that has to be applied to the message. Message protection (i.c.,
encryption) is enforced by the SecurityContext object.

Access control is about controlling which target methods each principal
is allowed to invoke. The access policy object returns the granted rights for
the calling principal, whereas the required rights object returns the required
rights to call the target. By comparing both, the access decision object can
find out if the invocation should be granted or not and enforce this decision.
Again, access control can be done transparently on the ORB layer and more
fine-grained on the application layer.

Security audit is the process of recording details about security-relevant
events in an audit log (also called audit channel). The audit decision object
triggers the generation of a log entry based on the audit policy, which speci-
fies the types of events that have to be recorded. As before, audit policies can
be defined on the ORB layer and on the application layer.

Nonrepudiation is about generating irrefutable evidence (proof of ori-
gin and receipt) that prevents participants in an action from convincingly
denying their responsibility. This proof consists of cryptographically signed
evidence tokens, which are generated by the NRCredentials object. This
object can only be used by applications (i.e., not transparently), so that gener-
ated evidence can be undeniably attributed to a particular object or principal.

CORBA was originally developed for Intranet-centric environments
with central administration. The growing use of CORBA on the Internet
changed the situation: Now there was mutual suspicion between participants
who operated on potentially hostile underlying platforms, and central secu-
rity administration was not possible anymore in these highly dispersed sys-
tems. In addition, several firewalls were in the communications path between
the client and target, which broke CORBA’s end-to-end security model.
There are several attempts to support firewalls within the CORBA security
model (tunneling, IIOP layer proxy, TCP layer proxy). To meet the growing
demand for Internet security, the lightweight security protocol SSL/TLS was
also incorporated below the model as an alternative transport mechanism
(SSLIOP), which can be used instead of SECIOP.

It became clear early on in the specification life cycle that most
CORBA security vendors were not able or willing to implement products
that cover the whole range of specified security features. Consequently, it was
decided by the OMG that not all products needed to support all the facilities
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defined in the CORBA security specification. Instead, two levels of confor-
mance were specified: For the first level of conformance (level 1 security),
it is mandatory to provide a specified set of security features during object
invocation for security-unaware applications and to allow security-aware
applications to enforce their own access control and auditing. The second
conformance level (level 2 security) includes a wider range of security facili-
ties and allows applications to control the security provided at object invoca-
tion. It also includes security policy administration. Further conformance
options specify nonrepudiation, security service replaceability, and secure
interoperability.

3.8 Further Reading: Books on CORBA Security

At the time of this writing, there is not a lot of material available on the
CORBA security architecture. The only book entirely dedicated to CORBA
security is by Bob Blakley [22], which provides a lightly written introduction
to the key concepts and components with entertaining examples. On the
other extreme, the most detailed and technical work on the CORBA security
architecture can, of course, be found in the CORBA security services specifi-
cation [1]. However, the current version is 420 pages long, not very intui-
tively structured, and not easy to read. In addition, Hartman’s book [23]
covers CORBA and EJB in the more applied context of enterprise security.
Dieter Gollmann’s book on computer security [24] also contains a very brief
and abstract introduction to CORBA security. Other introductory articles
on CORBA security include those mentioned in the reference list [25-28].
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Getting Started with MICOSec

4.1 Introduction

In Chapters 1 through 3, you learned the mainly theoretical concepts of
CORBA and its security architecture. In Chapters 4 through 6, you will see
how CORBA security is used in practice. This chapter is mainly concerned
with installing and configuring the ORB and the security services, while
Chapters 5 and 6 discuss using the application-facing CORBA security inter-
faces. Finally, Chapter 7 illustrates the use of CORBA security for security-
unaware applications.

All examples in this book use MICOSec, our CORBA security services
implementation, which was originally developed for research purposes and is
“freely” available. It was designed to be used with the MICO ORB, which is
also available as “free” software. MICOSec is implemented as conformant to
the specification as possible, so most of the examples given here should also
work with other compliant implementations.

4.2 Free Software

MICOSec is available as “free” software, a term coined in 1983 when
Richard Stallman announced his plans to develop a freely available version of
UNIX called GNU [1]. GNU is a nested acronym that stands for “GNU’s
Not Unix.” The GNU project later defined “free software” as a matter of lib-
erty (like free speech), not price (such as free beer) [2]. In practice, however,
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this distinction is fuzzy. After all, free software in the sense of free speech is
automatically available to anyone, and so it does not make sense to charge for
it. As a consequence, free software is in practice more like both free speech
and free beer.

According to the GNU philosophy, users are allowed to run, copy, dis-
tribute, study, change, and improve the software, as long as they adhere to
the licensing conditions laid out in the GNU General Public License (GPL)
or the GNU Library General Public License (LGPL).

In general, these licenses ensure that everybody who modifies free soft-
ware makes the resulting code available under the same licensing conditions.
This even applies if free software is used in conjunction with any software
that is licensed differently (e.g., commercial products). Any software that
contains components that are under the GPL must in turn be freely available.
In a way, GPL software infects all other software it is used with, and therefore
this property is often referred to as viral.

The main difference between the GPL and LGPL is that the latter
allows the use of free software within proprietary programs if they are distinct
software libraries that are just linked into the application. In this case, the
application source code can remain unpublished, as long as the library source
code is freely available. Products that adhere to the GPL or the LGPL are also
approved by the Open Source Initiative (OSI) as OSI Certified Open Source
Software [3].

43 MICO

The MICO project [4] was founded in December 1996 by Arno Puder to
provide a freely available and fully compliant implementation of the
CORBA 2.3 standard [5]. The original name MICO extended to Mini
CORBA, but when MICO became bigger, the name did not seem appropri-
ate anymore, and, consequently, the meaning was changed to MICO
Is CORBA (inspired by the acronym GNU). In June 1999, MICO was
branded CORBA compliant by the OpenGroup [6], effective proof that
OpenSource [3] can produce quality software.

431 Overview

MICO is a C++ based CORBA 2.3 compliant ORB implementation. It does
not require any proprietary libraries and tools to be compiled or executed.
Resulting from its academic origin, the MICO implementation has a clear
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and modular design even for implementing internals to ensure easy
extensibility.

Recent versions of MICO (v 2.3.x) include the following features (see
[7] for details):

e Compiler for IDL to C++ mapping;

e Dynamic invocation interface (DII) and dynamic skeleton interface

(DSI);

e IR and graphical interface repository browser that allows invoking of
arbitrary methods on arbitrary interfaces;

e IIOP as native protocol (ORB prepared for multiprotocol support);

¢ Object adapters: POA and BOA, including all activation modes,
support for object migration, and the implementation repository.
The BOA can load object implementations into clients at run-time
using loadable modules;

¢ Support for secure communication and authentication using SSL;
¢ Interceptor interfaces;

e Objects by value (OBV);

e Support for nested method invocations;

e The type “Any” offers an interface for inserting and extracting con-
structed types that were not known at compile time (dynamic “Any”

is also supported);

e Support for using MICO from within X11 applications (Xt, Qt, and
Gtk) and Tcl/Tk;

e CORBA services, such as interoperable naming service, trading serv-
ice, event service, relationship service, property service, time service.

4.3.2 Installation

To get you started, this section briefly describes how MICO is compiled and
configured. Please refer to the MICO user’s guides [7, 8] for more detailed
information if you encounter any problems during installation. The MICO
sources can be obtained from the MICO Web site.'

1. http://www.mico.org
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To compile MICO on UNIX platforms, you will need recent versions
of GNU make (v3.7 or newer) and GNU gcc (v2.95 or newer) and its match-
ing 1ibg++ library. As an alternative compiler, eges (v1.x) can be used. To
compile the graphical user interface, flex (v.2.5.2 or newer) and bison
(v1.22 or newer) are also required. And if you would like to compile the
graphical interface repository browser, then you will also need Sun’s JDK
(v1.1.5) and the parser generator JavaCUP (v0.10g).

Note that you will not need to install MICO separate from MICOSec,
as the latter comes as a bundle with all the MICO sources. Section 4.4.2
explains in detail how MICOSec is installed. If you would like to install the
plain nonsecurity MICO, just unzip the archive for UNIX into a subdirec-
tory called mico using the following command:

gzip -dc mico-<versions.tar.gz | tar xf -

Next, the MICO Makefile needs to be configured for your system. This
can be done automatically by running configure with the proper com-
mand line options. The option —help gives you an overview of all supported
command line options (alternatively, a list of all options can also be found in

the MICO user’s guide [7]).

cd mico
./configure <options>

To compile and install the programs and libraries, use gmake:

gmake
gmake install

MICO has been tested on Solaris, FreeBSD, AIX, Linux, Digital Unix,
HP-UX, Ultrix, and Microsoft Windows N'T or 95, but it should also run on
a number of other platforms (see [7] for details).

44 MICOSec

MICOSec [9, 10] was originally developed as part of a research project in
the telecommunications sector to analyze the viability of middleware security
concepts. All sources and code examples are freely available from the MICO-
Sec Web site, http://www.micosec.org.
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441 Overview

MICOSec is a level 2 conformant implementation of the CORBA Security
Services v1.7 draft [11]. This draft standard was used because the specifica-
tion’s last official version v1.2 [12] was considered outdated at the time the
implementation was planned.

MICO was chosen as the underlying ORB because it is freely available,
C++ based, very modular and clearly structured, and thus easily extensible.

One of the original requirements was to analyze CORBA security in
open systems such as the Internet. As a result, SSL, which is widely used on
the Internet today, was selected as a basic security mechanism for MICOSec.
This allowed the use of MICO’s built-in proprietary SSLIOP implemen-
tation, which is largely based on OpenssL. Further, it was decided not
to support Kerberos, a security mechanism hardly used outside the United
States.

The current version of the Open Source version of MICOSec supports:

e All features of MICO, including the POA;
e Security for security-aware and security-unaware applications;
e IIOP for unprotected communications;

e SSLIOP, based on SSLv3 with all cryptographic algorithms sup-
ported by OpensSsL;

e Extensible attributes for X.509 certificates;

e Policies for secure invocation;

e Principal authentication;

e Message protection;

e Extended level 1 interfaces;

e Security domain mapping with domain membership management;
e Domain-based access control;

e Domain-based auditing with storage of audit records in various
channels (file, UNIX syslog, PostgreSQL database).

The functionality for principal authentication, security context estab-
lishment, and message protection are all based on SSL. Although MICOSec
was implemented as conformant as possible, it was decided to add some
extensions in order to leverage all features of SSL. In particular, extra security
attributes were added to make the content of X.509 certificates available to
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clients and targets. This way, it is possible to query security attributes such as
the organization or certification authority of a certificate, which facilitates
the specification of security policies in large systems with many users. With
the standard security attributes, only the identity of the principal can be
obtained. Note that most features of MICOSec are limited by the function-
ality provided by SSL (e.g., SSL only supports authentication of the target or
mutual authentication, while authentication of the client is not possible).

Both the access control and audit policies use the domain names pro-
vided by the object domain mapping to express targets (see Section 6.6).
Both the access control and audit service were implemented using request-
level interceptors, which are initialized when the application is launched.
This way, the services are automatically called by the ORB whenever a mes-
sage arrives, which allows access control and auditing for security-unaware
applications. In addition, it is possible for security-aware applications to
define their own application-level access control and audit policy. The audit
records can be recorded into a flat file, UNIX syslog, or a relational data-
base (e.g., the Open Source database PostgresQL).

4.4.2 Installation

MICOSec is released as a complete distribution package that includes
MICO. The security additions are directly included in the MICO sources, so
that the set-up procedure is almost unchanged from the standard MICO
installation. Therefore, the installation of MICOSec is relatively trivial once
you manage to successfully install MICO. The main additional installation
hurdle is to set up various prerequisites necessary for running MICOSec.

MICOSec has been tested on FreeBSD, Linux, and Solaris (Sparc, with
gcc). If you have problems building it, check if your platform is supported
by the standard MICO (Version 2.3.6). Some platforms and compilers have
problems with MICO’s C++-code in general. MICOSec compiles best with
the GNU C++ compiler gcc (v 2.95.2).

4421 Prerequisites

Before MICOSec can be installed, all underlying mechanisms have to be set
up: The OpensSsL library, which is used by MICOSec as its basic underlying
security mechanism for authentication and message protection, and the
PostgreSQL database, which can be used to store audit records.

Note that MICOSec also requires £lex (v.2.5.2 or newer), which is
preinstalled on most UNIX systems. If you do not have it, you can download
it from the MICO Web site.
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OpenSSL

First, the Open Source SSL library OpenssL (v0.9.6b or later”) has to be
installed, if it is not already preinstalled on the used operating system. Older
versions of OpenSSL are not supported, in particular OpenSSL’ s predeces-
sor SSLeay, which cannot be used with MICOSec.

To install oOpensSL on UNIX platforms, you will need Perl 5, an
ANSI C compatible compiler, and a supported Unix operating system.
Decompress the archive into a temporary directory with the following
command:

tar xvfz openssl-<versions>.tar.gz

Then run the following commands inside the openssl-<version>
directory:

./config
make

make test
make install

This will build and install OpenSSL in the default location /usr/
local/ssl. If you want to install it anywhere else, run config like this:

./config —prefix=/usr/local —
openssldir=/usr/local/openssl

If any of these steps fails, see the installation notes that come with the
OpensSSL archive. The installation notes also specify several options
to ./config (or ./Configure) to customize the build, such as noshared,
which prevents the creation of shared libraries.

Note that sometimes problems are caused by incorrect or mixed instal-
lations of OpenSSL and SSLeay. In this case, the MICOSec build fails with
obscure errors. Make sure you only use the latest version of OpenSSL.

It takes several rather complex commands to generate X.509 certificate
files (.pem files). We will discuss how to generate such X.509 certificates
in Section 5.4.2. For the moment, you can simply use the pregenerated

2. Available from http://www.openssl.org
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certificates that come with the examples shipped as part of the MICOSec
distribution.

PostgreSaL

If the audit data should be stored in a SQL database, MICOSec also requires
the Open Source object-relational database management system (DBMS)
PostgreSQL to be installed. PostgresQL (in the past also called Post -
gres95) is derived from the Postgres package (developed at the Univer-
sity of California at Berkeley). With more than a decade of development
behind it, PostgreSQL is the most advanced Open Source database avail-
able today, offering multiversion concurrency control and supporting almost
all SQL constructs.

Before you start, create a PostgreSQL superuser account, from which
the server will run. The PostgreSQL superuser owns the PostgreSQL
binaries and database files. As the database superuser, all protection mecha-
nisms may be bypassed and any data accessed arbitrarily. In addition, the
PostgreSQL superuser is allowed to execute some support programs that
are generally not available to all users. Note that the PostgreSQL superuser
is not the same as the UNIX root superuser. For security reasons, the
PostgreSQL superuser should be a separate, unprivileged account [i.e.,
with a nonzero user identifier (UID)]. If PostgreSQL is preinstalled on
your UNIX system, then this account will be called postgres. The follow-
ing installation instructions assume this account name for the PostgreSQL
superuser account, and that you are logged on as the PostgreSQL
superuser.

The code and installation information for UNIX platforms can be
found at the PostgresoL Web site.” Download the archive from there and
uncompress it with the following command:

tar xvfz postgresqgl-<versions>.tar.gz
Next, configure the makefiles for your system. It is this step at which you can
specify your actual installation path for the build process and make choices
about what gets installed. Inside the postgresqgl-<versions direc-

tory, change into the src subdirectory and type:

./configure <options>

3. Available from http://www.postgresql.org
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For a complete list of options, use:
./configure -help

Note that building PostgreSQL requires GNU make. It will not work
with other make programs. To compile the program, simply type:

gmake

Next, install the PostgreSQL executable files and libraries. You should
complete this step as the user that you want the installed executables to be
owned by (this does not have to be the same as the database superuser).

gmake install

Now that the database binaries have been installed, a new database installa-
tion (i.e., the working data files) needs to be created. To do this, you must
log in to your PostgreSQL superuser account postgres (for security rea-
sons, it will not work as root).

mkdir /usr/local/pgsgl/data

chown postgres /usr/local/pgsqgl/data

su - postgres

/usr/local/pgsgl/bin/initdb -D /usr/local/pgsqgl/data

The -D option (“directory”) specifies the location where the data will be
stored. Make sure that the superuser account can write to the directory
before starting initdb.

You can now start the database server by running the following
command:

/usr/local/pgsgl/bin/postmaster -D
/usr/local/pgsqgl/data

If you prefer to put the server in the background instead, then use the follow-
ing command:

nohup /usr/local/pgsqgl/bin/postmaster -D
/usr/local/pgsgl/data \
</dev/null >>server.log 2>>1 &
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The postmaster is the process that acts as a clearinghouse for requests to
the PostgreSQL system (i.e., keeps track of any system errors and commu-
nication between the back-end processes). The MICOSec audit function will
connect to the postmaster.

If you generated shared libraries, tell your system how to find the new
shared libraries. How to do this varies between different platforms. One
method is to set the environment variable LD_ LIBRARY PATH:

e For sh, ksh, bash, zsh:

LD LIBRARY PATH=/usr/local/pgsql/lib
export LD LIBRARY PATH

e Forcshortcsh:
setenv LD LIBRARY PATH /usr/local/pgsql/lib
e Another option is to use export as follows:

export PGLIB=/usr/local/pgsgl/lib
export PGDATA=/usr/local/pgsgl/data

Finally, to make sure the MICOSec run-time can use the PostgreSQL
database, you need to set up some environment variables. First, you probably
want to include /usr/local/pgsgl/bin (or equivalent) into your PATH.
To do this, add the following to your shell start-up file, such as
~/.bash profile (or /etc/profile, if you want it to affect every
user):

PATH=$PATH: /usr/local/pgsgl/bin
export PATH

Once the server is running, a new database can be created. Assume you want
to create a database named auditdb, then you can do this with the follow-
ing command:

createdb auditdb

Database names must have an alphabetic first character and are limited to 31
characters in length. Note that not every user has authorization to become a
database administrator. If PostgreSQL refuses to create databases for you,
then the administrator needs to grant you permission to create databases.
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You can also test the newly built server. To do so, run the regression
tests (/src/test/regress), a test suite to verify that PostgreSQL runs
properly on your machine.

PostgreSQL is a complex piece of software, and its installation and
configuration is not simple. If you run into any problems, the best option is
to consult the PostgreSQL Administrator’s Guide [13] for more information.

4422 MICOSec Installation

Once these components have been installed, proceed with the standard
MICO installation from the sources as already described in the MICO
installation guidelines. The first step is to configure MICOSec. This is done
the same way as for MICO, but using the following MICOSec-specific
options:

e First, make sure that MICO’s SSL support is enabled by using the
following configuration parameter, where <path> should point to
the directory where OpenSSL has been installed:

—with-ssl=<path>

e By default, MICOSec only supports the CORBA Security level 1
interfaces. To enable the interfaces for CORBA Security level 2, the
following configuration parameter has to be included:

—enable-csl2

e By default, MICOSec only supports the storage of audit records in a
flat file and UNIX syslog. To configure MICOSec to use Post -
greSQL as the SQL database, add the following parameter, where
<path> points to the directory where PostgreSQL has been
installed:

—with-pgsgl=<path>
The following example illustrates how MICOSec is configured for level 2
security with OpenSSL and PostgreSQL installed at the specified

locations:

./configure —with-ssl=/usr/local/ssl —enable-csl2
— with-pgsgl=/usr/local/pgsql
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After the correct configuration has been set up, MICOSec is built with
MICO as described in Section 4.3.2. To compile and install the programs
and libraries for UNIX, use gmake:

gmake
gmake install

45 Summary

MICOSec is a freely available level 2 conformant implementation of the
CORBA Security Services v1.7 draft [11]. The main property of free software
is that the source code is publicly available, and that users are allowed to run,
copy, distribute, study, change, and improve the software, as long as they
make their code also freely available.

The current version of MICOSec supports all features of MICO,
including the POA, security for security-aware and security-unaware applica-
tions, IIOP for unprotected communications, SSLIOP based on OpenssL
SSLv3, extensible attributes for X.509 certificates, policies for secure invoca-
tion and auditing, principal authentication, message protection, extended
level 1 interfaces, and auditing with storage of audit records in various chan-
nels (file, UNIX syslog, SQL database).

MICOSec comes as a combined package with the MICO ORB, which
is a freely available and fully compliant C++ implementation of the CORBA
2.3 standard that runs on a number of different platforms. The installation of
MICOSec is almost identical to the MICO installation as both products
reside within the same source tree. Before MICOSec can be compiled,
OpenSSL and the PostgreSQL database system (both are also available as
Open Source) have to be installed.

4.6 Further Reading on MICO and MICOSec

The MICOSec User’s Guide [10] includes essentially the same information on
how to install MICOSec as this chapter. For more information on how to
install and configure OpensSsL, look at the respective installation notes that
come with the source code. For more information on the PostgreSQL
database, consult the PostgreSQL Administrator’s Guide [13].

More information on installation and configuration of the MICO
ORB can be found in MICO—An Open Source CORBA 2.3 Implementation
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[8]. It explains how to install and use MICO, documents all features, and
includes a tutorial.
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Security Level 1

5.1 Introduction

This hands-on chapter will illustrate how you can use CORBA security con-
formance level 1 interfaces in your applications. To do this, we will extend
the Bank example introduced in Chapter 1 to use the interfaces available at
security level 1.

To support level 1, CORBA security implementations have to imple-
ment a subset of the full CORBA security functionality, as well as the
application-facing level 1 interface that allows applications to access security
attributes from the current security context. Most of the functionality is
provided automatically on the ORB layer (i.e., for security-unaware applica-
tions). Remember that security-unaware means that security policies can
be enforced for an application without requiring any modifications to the
application code. The application is simply linked together with a security-
enhanced ORB and then becomes secure, provided an adequate policy is in
place.

Level 2 includes a wider range of security facilities and allows applica-
tions to control the security provided at object invocation. It also includes
security policy administration. Further conformance options specify nonre-
pudiation, security service replaceability, and secure interoperability. The use
of level 2 interfaces will be discussed in detail in Chapter 6, and Chapter 7
will cover using CORBA security for security-unaware applications.

At first glance, supporting level 1 interfaces does not make sense for
security services implementations that, like MICOSec, also support all level 2
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interfaces. After all, anyone who just wants to use the level 1 functionality
could use the relevant subset of the level 2 interfaces. But this is not the case,
as the level 1 interface is not a strict subset of the level 2 interfaces. The level
1 interface allows applications to access security attributes directly, whereas,
the level 2 security introduces the more complex concept of credentials,
which contain the security attributes. Consequently, the level 1 interface is
easier to handle.

MICOSec supports both the level 1 and level 2 interfaces, but since the
level 1 implementation is internally based on the level 2 functionality, it is
not possible to enable the level 1 interface without enabling the level 2 inter-
faces at the same time. MICOSec also implements the functionality required
for level 1 or level 2 security-unaware applications, which will be discussed in
Chapter 7. This chapter only covers the use of MICOSec’s level 1 interfaces.

5.2 Level 1 Functionality

According to the CORBA security services specification [1], level 1 confor-
mant implementations should automatically provide the following function-
ality to security-unaware applications:

e Principal authentication inside or outside the object system;

e Secure invocation between client and target object (including unilat-
eral authentication, integrity and/or confidentiality) on the ORB
layer or outside the object system;

e Simple delegation of client security attributes to targets, depending
on the supported CSI level;

e ORB-enforced access control checks (with support for domains and
roles), but no support for administration;

e Auditing of security-relevant system events (but not by object invo-
cation).

The specification neither mandates any internal interfaces nor gives
any implementation guidelines; therefore, security services implementers
are free to provide the specified functionality whichever way they prefer. For
MICOSec, it was most elegant to reuse the richer implementation that had
already been developed in conformance with the security-unaware level 2
functionality (see Chapter 7), instead of producing a separate implementa-
tion for level 1.
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This chapter is mainly concerned with the application-facing level 1
interfaces, which security-aware applications can use to retrieve security
attributes directly. These attributes can then be used to enforce application-
specific security policies (e.g., access control based on the application state).
The level 1 interface allows access to security options and attribute details.

5.3 Level 1 Interface

Despite its limited functionality, the level 1 interface is very useful for many
real-world applications. It provides a very simple and convenient way to
obtain the peer attributes directly from the Current object (i.e., the security
context), without having to bother with the handling of more complex level
2 Credentials objects. In practice, this is exactly the functionality that is
often needed to allow applications to enforce their own specific security
requirements.

To access security attributes, the CORBA security services specification
only defines a single level 1 interface:

module SecurityLevell (
interface Current : CORBA::Current {
Security::AttributelList get attributes (
in Security::AttributeTypelist attributes
)
}i
}i

IDL 1: CORBA security level 1 interface.

The operation Current::get attributes allows an application
(i.e., target-side implementation) to obtain the security attributes of the cli-
ent on whose behalf it is operating. The most common example of such
attributes would be the identity of the calling principal. The application can
then use these attributes to control access to its functions or data and to log
security-relevant events.

However, the simple level 1 interface cannot support the reverse flow of
security attributes (i.e., allow client-side applications to obtain security
attributes of the target-side). This is because in a servant there is a secure
association with exactly one client at a time. On the client side, however,
there may be more than one association with different servers, and within the
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specified interface, there is no way to select for which association the attrib-
utes should be obtained.

However, in SSL-based applications, authentication of the client by
the target is not enough. The client also wants to know which target it is
communicating with. To solve this problem, MICOSec level 1 introduces an
additional operation Current: :get_target_attributes. This inter-
face allows client applications to select a secure association to a particular tar-
get by its IOR, which is passed to MICOSec as an additional parameter.
Current::get_target_attributes returns the attributes of the target
corresponding to the association selected by the IOR. The following IDL
shows the extended MICOSec level 1 interface that includes the operation
Current::get target attributes:

module SecurityLevell
interface Current : CORBA::Current {

Security::AttributelList get attributes (
in Security::AttributeTypelist attributes
)

Security::Attributelist get target attributes (
in Security::AttributeTypelList attributes,
in Object obj

IDL 2: Extended MICOSec security level 1 interface.

Note that this operation is a nonstandard addition to the CORBA secu-
rity services specification v1.7, which should only be used if portability across
different ORB and security services products is not an issue.

Despite its elegance and simplicity, this extended level 1 interface does
not fully conform to the conventions set out in the specification. CORBA
Security Services Version 1.5 and above distinguish between SecurityMan-
ager and Current. The Current object is only used to obtain thread-
specific security information in servants, whereas the SecurityManager
object, which is associated with the process as a whole, should be used in the
server and client. So, in order to conform to this, the operation should more
appropriately be moved to SecurityManager: :get target attrib-
utes, but for simplicity reasons it was decided to keep it in Current.
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5.4 A Security-Aware Bank Application Example

Remember the bank application example introduced in Chapter 1, in which
a bank server should maintain accounts for its clients. Bank account objects
offer the following three operations: deposit a certain amount of money,
withdraw a certain amount of money, and an operation balance that
returns the current account balance. The state of an account object consists
of the current balance. The Bank interface provides an operation to create
new bank accounts. The following IDL file account.idl captures that
functionality:

interface Account {
void deposit( in unsigned long amount ) ;
void withdraw( in unsigned long amount ) ;
long balance() ;

}i

interface Bank {
Account create ();

}i
IDL 3: account.idl.

In this chapter, we will use the standard level 1 interface to allow the target-
side bank application to check the caller’s security attributes. In real-world
applications, these attributes could be used to authenticate the legitimate
owner of a bank account. In addition, we use the extended MICOSec inter-
face on the client-side to retrieve the target’s security attributes. This way,
clients could ensure that they are talking to the real bank and not to some
malicious application that exports the same interface.

For the sake of simplicity, our example does not contain any policy
evaluation code. Instead, it simply outputs the remote peer’s security attrib-
utes on the console, so you can visually check the security attributes of the
remote peer. This illustrates well how level 1 functionality can be used in
practice, but at the same time it keeps the example code short and simple.

5.41 Building and Running the Example

Build the programs in the /demo/security/11 subdirectory using the
provided Makefile. The building process works exactly the same way as for
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the standard MICO demo programs. First, the IDL file is translated with the
arguments for using the POA, then the client and target code is compiled
and linked. From a linking perspective, the MICOSec code is part of the
MICO library. Therefore, it is not necessary to link an additional security
library in order to security-enhance the demo program.

Running programs differs slightly from normal MICO use, because
security-enhanced applications need to access the security information from
the OpenSSL certificate and key files. But since there are no application-
facing level 1 interfaces that allow the specification of the certificate and key
file names from within the application source code, an alternate approach is
necessary—the certificate and key files have to be provided at the command
line when the application is launched.

The bank server is started with the following small shell script
called rss:

#!/bin/sh

ADDR=ggl:inet:’uname -n’:12456

./server -ORBIIOPAddr S$ADDR -ORBSSLcert
ServerCert.pem -ORBSSLkey ServerKey.pem
-ORBSSLverify 0

Shell script: Server shell script.

The command line arguments are the same as the MICO SSL options
and will be described in more detail in Section 5.4.2:

e ORBIIOPAddr defines the socket of the server. Note that the
“ssl:” in the ADDR variable tells the ORB to bind to a SSL-socket
waiting for SSLIOP requests instead of to a simple TCP-socket serv-
ing ITOP.

e ORBSSLcert defines the X.509 certificate to use.

e ORBSSLkey defines the OpenSSL private key pair file.

e ORBSSLverify defines the depth of the certificate verification
path.

When running the shell script, you should get the following console
output:
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[}

% ./rss

Start Bank server

narrow to SecuritylLevellServer: :Current
Running.

The first line just informs you that the ORB is being initialized. After that,
a reference to SecurityLevellServer: :Current is created, and the
Bank object is initiated. The target-side bank implementation is now ready
to process requests.

The client is started in the script res:

#!/bin/sh

ADDR=ggl:inet:’uname -n’:12456

./client -ORBBindAddr S$ADDR -ORBSSLcert
ClientCert.pem -ORBSSLkey ClientKey.pem
-ORBSSLverify 0

Shell script: Client shell script.

The command line arguments are the same, except for the additional
argument ORBBindAddr, which specifies the socket to which the client
should connect.

You can now start the client in another command line window and see
from the console output how MICOSec level 1 provides the client appli-
cation with the security attribute of the target-side X.509 certificate. The
underlying SSL protocol makes sure that all this information is authentic:

% ./rcs
SSL verify error: self signed certificate
Received 1 attributes
1 2 /C=UK/ST=Server State/L=Cambridge/0O=0ObjectSecurity
Ltd./OU=RD/CN=Server Test
deposit - 700
withdraw - 450
Balance is 250.

o
o

Shell script: Client-side screen output.
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Note that the example certificates that come with the Bank code cause
the OpensSSL implementation to generate an error message, which states that
the certificate is self-signed. This is correct because no X.509 certificate
authority file was given in the example. SSL will be discussed in more detail
in Section 5.4.2.

The application then indicates that it retrieved a security attribute and
outputs the server identity before it invokes any operations on the server.

On the server side, we get the following output when the shell script is
started:

[}

% ./rss

Start Bank server

narrow to SecurityLevellServer::Current

Running.

SSL verify error: self signed certificate
Received 1 attributes

1 2 /C=UK/ST=Client State/L=Cambridge/O=0ObjectSecurity
Ltd./OU=RD/CN=Client Test

Shell script: Target-side screen output.

As expected, the target application (in fact, the withdraw servant
implementation, as you will see in Section 5.4.3) outputs the calling remote
peer identity.

In real-world applications, the obtained security information could be
used both on the client and target side for simple application-level access
control and auditing. For example, the target application could compare
the caller identity to a list of clients that are allowed to invoke a particular
operation.

Note that in this example, both client and server use a MICO-specific
bind mechanism, which is not conformant to the CORBA 2.3 standard. Of
course, it would also be possible to instead use the standard mechanism that
involves IORs. For the sake of simplicity, it is assumed in our example that
both client and server are executed on the same host. If you would like to run
the client on machines other than the server host, simply replace the ADDR
value (which now points to the local host described by its hostname) with the
appropriate hostname of the server.
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5.4.2 SSL and X.509 Certificates

MICOSec reuses MICO’s built-in SSL support for its authentication and
message protection. MICO, in turn, uses the underlying OpensSsL library,
which provides the actual SSL functionality.

The SSL protocol was originally developed by Netscape, mainly to pro-
tect World Wide Web traffic. The IETF developed a draft on Transport
Layer Security (TLS), which is almost identical with SSL Version 3, and so
the protocol is now known as SSL/TLS [2]. Logically, SSL resides above the
TCP layer and below the middleware layer. From a CORBA perspective,
SSL is just another transport layer below IIOP.

SSL keeps its own session state, which includes information related
to cryptographic algorithms, such as a session identifier, the specification of
the cipher suite, shared secret keys, and certificates. The actual protocol is
divided into two components, the handshake layer and the record layer. The
handshake layer is concerned with the negotiation of the used cipher suite,
with establishing the necessary keying material, and with authentication,
while the record layer is responsible for the encryption. For authentication,
SSL uses X.509 identity certificates, which have to be countersigned by a
certificate authority (CA) to bind the identity to a cryptographic public key
pair.

In essence, the SSL handshake works like this: The client-side SSL
library initiates the protocol by sending a message with a random number,
a list of suggested ciphers ordered according to the client’s preference, and
maybe a suggested compression algorithm. The target-side SSL library then
selects one cipher suite from the suggested list (including the algorithm
for key exchange, encryption, and hashing) and sends it back to the client,
together with its certificate and another random number. In this message, the
target can also request a certificate from the client. Once the used cipher has
been defined, the client generates a random number (PreMasterSecret),
which is transformed into keying information (MasterSecret) using the ran-
dom numbers generated by the client and target. The PreMasterSecret is
then securely sent to the target, using the key management algorithm speci-
fied in the selected cipher suite and the target’s public key. With this infor-
mation, the target can also generate the MasterSecret, so that both parties
possess a shared secret key. After that, all traffic can be encrypted by the
record layer protocol.

To configure the SSL protocol, MICOSec uses the following MICO

SSL command line arguments:
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e ORBSSLcert <certificate file>

This command line option specifies the file that holds the X.509
certificate for the launched client or target. OpensSsL files use the
extension . pem for key and certificate files. This argument defaults
to default.pem.

ORBSSLkey <key file>

This option specifies the .pem file that holds the key pair for the
launched client or target. It defaults to the same file as the certificate

file.

ORBSSLcipher <colon separated list of preferred
cipherss>

This parameter can be used to specify the ciphers that the launched
client or target is willing to support. If it is not specified, then
an implementation-specific default policy is used instead, which
depends on the cryptographic functions supported by the specific
implementation, as well as on cryptography export regulations and
patents in some countries.

Commonly used cipher suites include: NULL-MDS5,
RC4-MD5, EXP-RC4-MDS5, IDEA-CBC-MD5, RC2-CBC-
MD5, EXP-RC2-CBC-MD5, DES-CBC-MD5, DES-CBC-SHA,
DES-CBC3-MD5, DES-CBC3-SHA, and DES-CFB-M1.

ORBSSLverify <verify depths>

If this parameter is specified, then the peer must supply a valid cer-
tificate; otherwise the connection setup will fail. <verify depths>
specifies how many hops of the chain of certification authorities
should be checked. By default, the validity of the peer certificate is
not checked.

ORBSSLCAfile <CAfilename>

This argument specifies the .pem file that holds the certificates
of CAs.

ORBSSLCApath <CA pathnames>

This parameter can point to the directory that contains . pem files hold-
ing certificates of CAs. It defaults to /usr/local/ssl/certs.
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SSL 3.0 generally provides excellent security against eavesdropping and
other passive attacks, but in CORBA it is sometimes possible to obtain useful
information even from encrypted requests, for example, if different objects
are bound to different ports. The most dangerous passive attack is counting
the byte length of an encrypted request: A CORBA operation with fixed-
length data types normally has the same length during transmission, even
when encrypted, so a passive attacker might be able to derive the operation
invoked just by counting the transmitted bytes. Traffic padding would be
necessary to counter these so-called traffic analysis attacks, but the CORBA
security services explicitly do not support that.

Academic research also identified a number of active attacks that could
be carried out against some SSL implementations, most notably the change
cipher spec-dropping attack (also called cipher suite rollback attack), in which
an attacker forces a connection into a weaker cipher than necessary by editing
the cipher suite list in the handshake protocol. Another attack along these
lines involves spoofing of the key exchange algorithm (also called key exchange
algorithm rollback attack), to force the use of a weaker key exchange algo-
rithm [3]. Both attacks can easily be prevented if the chosen cipher suite
is checked by the application, or if both client and target are configured to
accept only a single matching cipher suite.

You might have noticed two SSL-related error messages when you exe-
cuted the example:

SSL verify error: self signed certificate
SSL verify error: Certificate has expired

This is not an error, it simply states that the certificates that come with the
example are not trustworthy because they are self-signed and expired. Also,
no X.509 certificate authority file was specified in the example.

For secure real-world CORBA applications, you should generate trust-
worthy keys, certificates, and certificate authorities. To generate a new pri-
vate key file (by default saved as privkey.pem), you can use the following
openssl parameters:

openssl genrsa (RSA private key), or
openssl gendsa (DSA private key)

Next, you will need to get a certificate from a CA, which binds your identity
to the generated private key. To do that, you will need to generate a certificate
signing request and send it to your certification authority. It will then have to
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sign it and return the corresponding certificate. To generate a request, use
the following command:

openssl req -new -key privkey.pem -out reqg.pem

Now, req.pem can be sent to the certificate authority, where the certificate
can be generated with the command:

openssl ca -in reg.pem -out newcert.pem

More information on key generation and CAs can be found in the OpensSsL
manual pages [4]. Note that the configuration and maintenance of a full
X.509 PKI is a complex and laborious task, which is not directly related to
CORBA security and, thus, will not be covered in detail in this book. Please
consult specialist literature if you would like to know more about PKIs and

X.509 [5].

5.4.3 The Target

In this section, we will describe how the level 1 security interface is used from
the target-side example bank application. The nonsecured version of the
account example was introduced in Chapter 1, and we will now compare it
with this security-enhanced version to see the main differences. If you are not
familiar with the (nonsecure) Bank example, you can also consult the MICO
documentation [6] for more details on how MICO and the demo programs
work. The nonsecured account example is part of the standard MICO distri-
bution (in the subdirectory demo). The source code and IDL files for the
security-enhanced level 1 version can be found in the subdirectory
demo/security/11.

Like any other CORBA application, the target-side implementation
comes in two logical parts. The server part is used to launch the application
and the ORB, whereas the implementation of the actual functionality behind
the target object’s interface resides in the servant.

We will first look at the server source code. First, level 1 security
requires an instance of the SecurityCurrent object (named security-
current and seccur in this example) for further use:

/*
* A Bank factory that creates Account objects

*/
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#include “account.h”

CORBA: :ORB_var orb;
CORBA: :Object var securitycurrent;
SecurityLevell::Current_var seccur;

The first part of the main server function remains unchanged from the non-

secured version. It initializes the ORB, the POA, and the POA manager.

int main (int argc, char *argv/([])

{

/*
* Initialize the ORB

*/

cout < “Start Bank server\n”;
orb = CORBA::ORB init (argc, argv, “mico-local-orb”);

/*
* Obtain a reference to the RootPOA and its Manager

*/

PortableServer: :POA var poa;
CORBA: :Object var poaobj =

orb-> resolve initial references (“RootPOA”);
poa = PortableServer::POA:: narrow (poaobj) ;
PortableServer: :POAManager var mgr =

poa-> the POAManager () ;

The only security-related addition to the server involves getting a pointer
to the Current object. Remember that Current contains the security
information associated with a particular session. The main purpose of the
level 1 interface is to allow applications to retrieve this information from
the application layer. This Current object is obtained by resolving an ini-
tial reference called SecurityCurrent and then narrowing it to the
SecurityLevell: :Current type.

Note that, in this example, the resulting SecurityLevell::
Current object instance seccur is declared global. This is done to avoid
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having to resolve and narrow the initial reference each time a servant that uses
seccur is called. Using local variables would be cleaner for real-world applica-
tions, but in this example the goal is to keep the code as simple as possible. The
reference to SecurityCurrent is obtained and stored in seccur as follows:

/*
* Get SecurityCurrent

*/

securitycurrent = orb->
resolve initial references (“SecurityCurrent”) ;
cout << “narrow to SecuritylevellServer::Current\n”;

seccur =
SecuritylLevell::Current:: narrow (securitycurrent) ;

assert (!CORBA::is nil (seccur)) ;

The rest of the server source code remains unchanged from the unsecured
version. It first creates a new Bank object instance and tells the POA to acti-
vate it. After that, it activates the POA manager and the ORB. The target-
side bank application is now ready to receive requests from the client side.

/*
* Create a Bank

*/
Bank impl * micocash = new Bank impl;

/*
* Activate the Bank
*/

PortableServer::0bjectId var oid =
poa->activate object (micocash);

/*
* Activate the POA and start serving requests

*/
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printf (“Running.\n”);
mgr->activate () ;
orb->run () ;

/*
* Shutdown (never reached)

*/

poa->destroy (TRUE, TRUE) ;
delete micocash;

return 0;

}

The servant implements the functionality of the Account and Bank inter-
faces. Account provides operations to deposit an amount of money, with-
draw money, and query the balance of the account. The first code fragment
initializes the Account object with a zero balance:

/*
* Tmplementation of the Account

*/

class Account impl : virtual public POA Account

{

public:
Account_impl ();

void deposit (CORBA: :ULong) ;
void withdraw (CORBA: :ULong) ;
CORBA: :Long balance () ;

private:
CORBA: :Long bal;

}i

Account impl::Account impl ()

{

bal = 0;
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In this example, only the withdraw servant implementation has been modi-
fied to use the operation get attributes from the level 1 interfaces to
obtain a list of security attributes from SecurityCurrent.

The get_attributes operation needs to be provided with an azrib-
ute list, a standard data structure defined in the specification. As an input
parameter, this list specifies which attributes should be obtained. After the
call has completed, the list contains the obtained security attributes as an out-
put parameter. This list variable is generated and populated in several steps.
First, an attribute variable at has to be created. Next, the types of the secu-
rity attributes that should be obtained have to specified. The CORBA secu-
rity services specification defines a number of such standard security astribute
Jfamilies and attribute types in the file security.idl. On top of these,
MICOSec defines a number of additional attributes that provide access to
SSL-specific information, such as the X.509 properties of the remote princi-
pal, as well as environmental information, such as the hostname of the
remote peer.

Security attributes consist of an asribute value (e.g., the principals
identity) and a defining authority. To achieve maximum flexibility, the attrib-
ute value content is of the type Opaque (i.e., a sequence of plain octets).
However, this makes the portability of the attribute value interpretation
practically impossible, because the meaning of the attribute content normally
depends on the particular security mechanisms used. MICOSec returns as
value a text string with the requested information, so it can easily be printed
and processed with string functions. The defining authority parame-
ter is rarely used in practice. It describes who defined the associated attribute
type (not who defined the information in the value). For all OMG-defined
standard types, this parameter is empty.

In our example application, we only want to obtain a single attribute—
the client access identity—which is identified by family <0:1> and attribute
AccessID (a full list of available attributes is described in Section 5.4.4). So
an attribute list of length one is created (named at1), into which the gener-
ated attribute at is stored.

To keep the code as short as possible, the example simply prints the
content of the client’s access identity on the standard output whenever the
client withdraws money from his account. In practice, you would, of course,
rather compare the retrieved attributes with the target’s security policy and
only grant the withdraw operation if they match. The example could easily
be extended to grant or deny access based on the caller’s AccessID and an
access control list. For simplicity, the deposit and balance operations
remain unchanged.
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void Account impl::deposit (CORBA::ULong amount)

{

bal += amount;

void Account impl::withdraw (CORBA::ULong amount)

{

Security: :ExtensibleFamily fam;
fam.family definer = 0;

fam.family = 1;

Security: :AttributeType at;
at.attribute family = fam;
at.attribute type = Security::AccessId;
Security::AttributeTypelList atl;
atl.length (1) ;

atl[0] =at;

Security::AttributelList var al =
seccur->get attributes( atl );

cout
<< “Received "
<< (*al) .length()
<< “ attributes\n”;

for ( int ctr = 0; ctr (*al).length(); ctr++) {

cout
<<(*al) [ctr] .attribute type.attribute family
.family
<< M7
<< (*al) [ctr] .attribute type.attribute type << ™ ”
<< &(*al) [ctr] .value[0] << ™~
<< &(*al) [ctr] .defining authority[0]
<< endl;

bal -= amount;
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CORBA: :Long Account impl::balance ()

{
}

The Bank interface implementation remains unchanged from the nonse-
cured version. Its create operation creates and activates new bank
accounts, and returns a reference to the new bank account to the caller.

/*
* Implementation of the Bank

*/

class Bank impl : virtual public POA Bank

{

public:

return bal;

Account ptr create ();

Account_ptr Bank impl::create ()

{

/*
* Create a new account (which is never deleted)
*/
Account impl * ai = new Account impl;
/*

* Obtain a reference using this.
* This implicitly activates the
* account servant
* (the RootPOA, which is the object’s _default POA,
* has the IMPLICIT ACTIVATION policy)
*/
Account ptr aref = ai-> this ();
assert (!CORBA::is nil (aref));

/*
* Return the reference

*/

return aref;
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5.44 Security Attributes

In the previous section, you learned how the requested security attributes are
specified and passed to MICOSec. This section provides an overview of the
kinds of security attribute types available to the application.

5.4.4.1 Standard Attributes

The CORBA security services specification defines two standard attribute
families and their types, which are summarized in Table 5.1.

The standard CORBASec attribute families define separate identities
for different security aspects of the peer, such as an identity for access control
(AccessId), auditing (AuditId), accounting (AccountingId), and non-
repudiation (NonRepudiationId). SSL, the security mechanism used
by MICOSec, supports only one identity, so all these different CORBASec
identities are set to this single identity described by the X.509 certificate.

The Public attribute caters to unauthenticated or anonymous peers.
If a peer did not authenticate itself to CORBASec, it has only this single
default attribute.

Some security mechanisms, such as SESAME, support roles and
groups, and so CORBASec defines the attribute types PrimaryGroupId to

Tabie 5.1
Standard Attribute Types

Family 0—Identity Attributes

1 Auditld
2 Accountingld
3 NonRepudiationld

Family 1—Privilege Attributes

Public
Accessld
PrimaryGroupld
Groupld

Role
AttributeSet

Clearance

o N o O N =

Capability
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obtain this information. According to the specification, SSL-based imple-
mentations do not use this attribute type and the security enforcement is
only based on the peer’s identity. In practice this is not sufficient, and
so MICOSec maps the peer’s X.509 organization’s unit to the Primary
GroupId attribute type.

GroupId, Role, AttributeSet, Clearance, and Capability
cannot be supported with SSL as the underlying security mechanism, and are
therefore not used by MICOSec.

5.4.4.2 MICOSec Attribute Families 10 and 11

On top of that, MICOSec uses the extended attribute family identifiers 10
and 11 for its security attributes. Note that the CORBA security services
specification mandates that custom attribute families are to be located above
family 7. The MICOSec specific attribute type family 10 allows access to the
content of X.509 certificates, whereas family 11 provides other information
from the current security context.

In family 10, MICOSec specifies extended attributes for X.509 certifi-
cates, because the standard CORBASec attribute families do not fit well to
SSL. On the one hand, they define attribute types that are not supported by
SSL and, on the other hand, they do not specify enough attributes to retrieve
all the information from X.509 certificates. For example, there is no attribute
type to obtain the certification authority that has issued a certificate. The
MICOSec specific attribute family 10 provides a better way of processing
information directly from X.509 certificates (see Table 5.2).

The Xx509Subject attribute identifies the entity associated with the
certificate. The entity is called subjecrand is described by a nonempty distin-
guished name.

X509Issuer identifies the CA that has signed and issued the certifi-
cate. This field contains the issuer’s distinguished name.

As already described in Section 5.4.2, a cipher suite is chosen during
the SSL security context establishment between client and server. The chosen
cipher suite depends on the cryptographic algorithms supported by client
and server and on the session establishment policy set by the user. The desig-
nation of the cipher suite used for the security context can be obtained with
the attribute type X509Cipher.

The attributes 4 through 9 are just shortcuts to the different parts of
the distinguished name of the subject. Attributes 10 through 15 specify the
analogous parts for the issuer. Instead of obtaining the distinguished name
and then parsing the returned string for the desired information, they can be
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Table 5.2
MICOSec Extended Attribute Family 10

Family 10—X.509 Certificate Attributes

o ~N o o B W N =

—_ . s s
g LN, O W

X509Subject
X509Issuer
X509Cipher
X509Subject_CN
X509Subject_C
X509Subject_L
X509Subject_ST
X509Subject_0
X509Subject_0U
X509Issuer_CN
X509Issuer_C
X509Issuer_L
X509Issuer_ST
X509Issuer_0
X509Issuer_0U

Subject’s identity
Issuer’s identity
Cipher suite

Subject’s designation
Subject’s country
Subject’s city
Subject’s state
Subject’s organization
Subject’s organization unit
Issuer’s designation
Issuer’s country
Issuer’s city

Issuer’s state

Issuer’s organization

Issuer’s organization unit

Table 5.3
MICOSec Extended Attribute Family 11

Family 11—MICOSec Low Level Attributes

AuthMethod
PeerAddress

retrieved directly using these attribute types. The MICOSec specific family
11 provides additional access to useful low-level information (see Table 5.3).
AuthMethod specifies the authentication method used. In MICOSec, it
always returns the string “ssI”. In addition, the remote peer’s complete net-
work address, the hostname, and the port number can be obtained with the
attribute PeerAddress.
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5.4.5 The Client

In our bank account example, the client would also like to know which target
it is talking to. For many real-world applications this is a security requirement,
because it can prevent confidential data (e.g., transaction numbers in a bank-
ing environment) from being accidentally sent to the wrong server.

To obtain the target’s security attributes through level 1 interfaces,
the client example application has been modified similarly to the target’s
withdraw operation. But first, the client has to instantiate its Security
Levell: :Current object:

#include “account.h”

CORBA: :ORB_var orb;
CORBA: :Object var securitycurrent;
SecurityLevell::Current var seccur;

int main (int argc, char *argvl[])
{
CORBA: :ORB_var orb =
CORBA: :ORB_init (argc, argv, “mico-local-orb”);

Just like on the target side, the client first has to obtain a reference to the
SecurityLevell: :Current object by resolving and narrowing the ini-
tial reference to SecurityCurrent:

/*
*  Get SecurityCurrent

*/

securitycurrent = orb->resolve initial references
(“SecurityCurrent”) ;

/*
* Narrow to SecurityLevellServer::Current

*/

seccur =
SecurityLevell: :Current:: narrow(securitycurrent) ;
assert (!CORBA::is nil (seccur)) ;
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Next, the client has to bind to the Bank server. In the nonsecure bank exam-
ple, this binding just sets up a network connection between the client and
server. In this security-enhanced version, it also sets up an SSL connection
between the peers and exchanges the security information associated with the
security session, such as keys and certificates.

/*
* Connect to the Bank

*/
CORBA: :Object var obj = orb->bind (“IDL:Bank:1.0");

if (CORBA::is nil (obj)) {
printf (“oops: bind to Bank failed\n”);
exit (1) ;

Bank var bank = Bank:: narrow (obj) ;
assert (!CORBA::is nil (bank)) ;

Before operations on the Bank and Account interfaces can be called, the
requested security attributes have to be specified within an attribute list vari-
able. This is done in exactly the same way as on the target side. First, the fam-
ily and the security attribute AccessId have to be created and specified.
After that, a security attribute list is created and populated with the generated
security attribute.

/*
* Get and print attributes of server

*/

Security: :ExtensibleFamily fam;
fam.family definer = 0;

fam.family = 1;

Security: :AttributeType at;
at.attribute family = fam;
at.attribute type = Security::AccessId;
Security::AttributeTypelList atl;
atl.length (1) ;

atl[0] =at;
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Now the target security attributes can be obtained by calling get _target_
attributes on the SecurityLevell: :Current object. This noncon-
formant addition to the level 1 interface is necessary to provide clients with a
means to select the security context from which the security attributes should
be retrieved. The context can be selected by passing the corresponding server
IOR as an additional argument:

Security::AttributelList var al =
seccur-get target attributes( atl, bank );

The retrieved security attribute list content is then printed on the standard
output in exactly the same way as on the target side example:

cout << “Received ”
<< (*al) .length(()
<< “ attributes\n”;

for ( int ctr = 0; ctr (*al).length(); ctr++) {

cout

<< (*al) [ctr] .attribute type.
attribute family.family
<< v 7
<< (*al) [ctr] .attribute type.attribute type
<< v 7
<< &(*al) [ctr] .value[O0]
<< N7
<< &(*al) [ctr] .defining authority [0]

<< endl;

After the client has connected to the target-side bank application and
obtained its security attributes through the level 1 security interface, it creates
a new Account object and uses the operations to deposit and withdraw cash
and query the account balance.

/*
* Open an account

*/
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Account_var account = bank->create ();
if (CORBA::is nil (account)) ({
printf (“oops: account is nil\n”);
exit (1);

/*
* Deposit and withdraw some money

*/

cout << “deposit - 700\n”;

account->deposit (700) ;

cout << “withdraw - 450\n”;

account->withdraw (450) ;

printf (“Balance is %1d.\n”, account-balance ());
return O;

5.5 Implementation Overview and Conformance

Level 1 security is not spectacular; for a lot of its basic functionality, it just
reuses the functionality provided by SSL. In particular, level 1 does not
give applications direct control over the ORB layer security functionality—
the application-facing interfaces only allow applications to retrieve security
attributes from the current security context.

Principal authentication is done by the underlying SSL library.
Remember that, for level 1, the X.509 identity certificate has to be supplied
from the command line when the client and target applications are launched.
This certificate is then simply passed on to the PrincipalAuthentica-
tor object, and a Credentials object with the corresponding security
attributes is attached to the Current security context. In our level 1 imple-
mentation, the Credentials object simply contains the whole certificate
as the identity. The peer object can then verify the authenticity of the
claimed identity from the certificate. The SSL handshake automatically
makes sure that the certificates are transferred securely across the SSL
connection.

MICOSec’s security context establishment is automatically launched
when the ORB tries to bind to a remote object. Remember from the general
discussion in Chapter 3 that the security service is connected to the ORB
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through so-called interceptor interfaces. For most security mechanisms,
MICOSec would therefore have to listen to the request-level interceptor pro-
vided by ORB and establish a security context whenever the ORB opens a
new connection.

But SSL is not a normal security mechanism; for the ORB, SSL is just
another transport mechanism, very much like TCP. So whenever the ORB
wants to connect to a target object for which there is not already a security
context in place, it calls the underlying SSL library to establish an SSL con-
nection between the SSL sockets on both sides.

In our case, however, MICO already comes with its own SSL support,
so instead of calling its own SSL implementation, MICOSec communicates
with OpenSSL through the interfaces provided by MICO. Also, the SSL
configuration option initializes MICO in such a way that it automatically
uses SSL instead of plain TCP to connect to the target. It is due to this par-
ticular feature that, in this implementation, the actual flow of the certificates
between the ORB and MICOSec is the reverse of what you would expect.
It is MICO rather than MICOSec that provides the hook to SSL. Initially,
the certificate is provided to MICO’s SSL implementation when the applica-
tion is launched. MICOSec then retrieves them from MICO’s SSL hooks
when the SSL security context has been set up. It then puts them into its
SecurityLevell: :Current object in order to make it available to the
application layer. So MICOSec essentially piggybacks onto MICO’s SSL
support, which is an elegant design feature. From the application layer, the
whole SSL handshake is fully transparent.

SSL supports a number of different options for peer authentication (in
particular, unilateral or mutual authentication), as well as a number of dif-
ferent cryptographic algorithms and key lengths for peer authentication and
message protection. This flexibility was a design requirement for its original
use as a security protocol for World Wide Web traffic, because export regu-
lations in the 1990s prohibited the export and use of some cryptographic
algorithms in a number of countries. Consequently, there were many SSL
implementations with differing cipher suites, and so the negotiation of the
used ciphers was necessary for each connection. The preferred order of cipher
suites and which cipher suite is selected depends on the particular underlying
hardware and software platform on the client and target side. On the other
hand, the administrator can specify which algorithms should be available for
negotiation and in which order of preference.

Using the negotiated cipher suite, as well as the loaded keys and certifi-
cates, SSL authenticates the peer and encrypts all network traffic associated
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with the established SSL context to protect it against unauthorized dis-
closure and modification. This is done automatically on the transport layer.
All MICOSec level 1 has to do is retrieve information about the used ciphers
and the involved identities from the SSL security context and put it into
the SecurityLevell: :Current object, so that applications can retrieve
all this information by using get attributes and get_ target
attributes. To achieve this, the authors of MICOSec decided to specify
additional noncompliant security attributes for this X.509 specific informa-
tion (see Section 5.4.4 for a complete list of security attributes). Our level 1
example only retrieves the access identity, but it could easily be extended to
also retrieve the used cipher suite.

Level 1 conformance also mandates ORB-enforced access control
(with support for domains and roles) and auditing (of security-relevant sys-
tem events). But there are no application-facing interfaces, so this function-
ality has to be provided for security-unaware applications. The MICOSec
implementation is also security level 2—conformant, and since the level 1
security-unaware functionality is a strict subset of level 2, it automatically
conforms to the level 1 access control and audit requirements. A level 2
conformant security—unaware bank account example will be presented in
Chapter 7.

Finally, the CSI part of the CORBA security services mandates the
support of simple delegation for some underlying security mechanisms, in
particular Kerberos (for CSI 1) and SESAME (for CSI 2). Simple delega-
tion means that the target believes that it communicates with the client,
although, in fact, it talks to the intermediate. This type of delegation is also
called impersonation, because the intermediate object can use the caller’s
credentials as if they were its own. However, SSL is classified as CSI 0, for
which no delegation support is required. There are a number of reasons
why SSL cannot effectively support delegation: The delegation credential is
essentially the X.509 certificate that binds the caller identity to the public
key and, ultimately, to the SSL connection. If the intermediate is supposed
to establish an SSL connection with exactly the same SSL properties as
the one between the client and the intermediate, then it needs all keys
and certificates of the client. In practice, this is totally against the basic
rule that keys and certificates should not be shared between different par-
ties, as this compromises accountability. Therefore, level 1 conformant
simple delegation should not be supported by SSL-based CORBA
security implementations (unless CSIv2-SAS is also supported, see
Section 6.7.2.2).
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5.6 Summary

This chapter describes how the CORBA security level 1 interfaces are used
in practice. This is done by extending the Bank example introduced in
Chapter 1 to use the interfaces available at security level 1.

Level 1 interfaces are not a strict subset of level 2 interfaces, but rather
they provide a simpler way of accessing level 1 functionality. They allow
applications to access security attributes directly, whereas level 2 security
introduces the more complex concept of credentials, which contain the secu-
rity attributes. Consequently, level 1 interfaces are easier to handle. The stan-
dard SecurityLevell::Current interface only contains a single
operation get_attributes for the target side. MICOSec provides an
additional (nonstandard) operation get target attributes that
allows the client side to retrieve the security attributes of a secure association
with a particular target (specified by its IOR).

In addition to SSL-based authentication and message protection, level
1 security also includes ORB layer access control and audit. However, level 1
does not mandate any application-facing interfaces for that, so this function-
ality will instead be described in Chapter 7. Also note that, in accordance
with CSI level 0, delegation is not supported by SSL.

When level 1 applications are launched, they have to be provided with
a number of command line arguments that specify SSL-specific information,
such as key and certificate files, as well as the server socket. Certificates can be
generated and signed with OpensSL.

In addition to the standard CORBA Security attribute, MICOSec
introduces a number of SSL-specific security attributes to access the X.509
certificate content and other low-level information, such as the remote
socket. These attributes can be used to access security context information
directly from the application layer.

MICOSec level 1 elegantly reuses MICO’s SSL support, which simply
treats SSL as an alternative underlying transport mechanism. MICOSec
retrieves the security context information from MICO and includes it in the
CORBA security context, so that it can be easily retrieved through the level 1
interface.

5.7 Further Reading

There is no literature on the actual use of CORBA security level 1 interfaces.
ObjectSecurity’s MICOSec User’s Guide [7] is the only other documentation
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on MICO Security level 1, but it is kept very brief and does not contain any
information that goes beyond what is described in this chapter. Some specifi-
cation details on interfaces and conformance can be found in the CORBA
security services specification [1]. However, the information related to level 1
is not very readable, is spread throughout the lengthy specification, and does
not give any explicit use guidelines.
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Security Level 2

6.1 Introduction

In this chapter, you will learn how to use the full set of MICOSec’s security
features from within your application. For demonstration purposes, we will
again extend our Bank example application from Chapter 1 to access under-
lying CORBA security features, but this time we will use the CORBA secu-
rity level 2 interfaces.

Level 2 security incorporates a wider range of security facilities than
level 1 and allows applications to control the security provided at object
invocation at a finer granularity. It also supports interfaces for security policy
administration. To make all functionality accessible from the application
layer, level 2 security provides a rich set of application-facing interfaces. Note
that this chapter is only concerned with application-facing interfaces. The
use of CORBA security for security-unaware applications will be covered in
Chapter 7.

Level 2 security has many advantages, but these benefits come at a
price. While level 2 functionality and interfaces are richer and more flexible
than at level 1, they are, at the same time, more complex in their use. In par-
ticular, level 2 security associations are based on the more flexible concept of
Credentials objects instead of Current. Credentials contain the security
attributes of local and remote principals, as well as fine-grained security asso-
ciation policies. We will describe the level 2 credentials model in Section 6.3.

This chapter is structured into several subsections, which present the
interfaces to the different security functions. This way, the use pattern for
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each functional component can be studied in isolation. In real-world appli-
cations, such an approach is not recommended because there are many inter-
actions between functional components that need to be considered. For
example, principal authentication is often a precondition for access control.

In the following section, we will briefly look at the CORBA security
level 2 functionality before describing the level 2 security-enhanced client
and server example programs.

6.2 Level 2 Functionality Overview

For level 2 conformance, the security services need to support extra function-
ality on top of level 1 functionality. As level 1 functionality has already been
described in Section 5.2, we will only describe which additional features are
required.

At the ORB layer (i.e., for both security-unaware and security-aware
applications) level 2 conformant products need to provide the following
functionality:

e Principal authentication both inside and outside the object system;

¢ Additional secure invocation features, in particular, peer authentica-
tion and message protection at the ORB level;

e Further integrity options, such as replay/reorder protection (can be
requested, but need not be supported by all implementations);

e Access control (DomainAccessPolicy) and selective auditing
have to support a per-operation granularity.

In addition, application-facing interfaces can be used to control in
more detail (i.e., from security-aware applications):

e Secure invocation: Applications must be able to choose the quality of
protection of messages required, change the privileges in credentials,
and choose which credentials are to be used for object invocations.

e Delegation: Applications should also be able to specify whether cre-
dentials are to be used only at the target (e.g., for access control), or
whether they can also be delegated. The application can request
(unspecific) “composite” delegation, and the target can obtain all
credentials passed, provided all participating nodes support this.
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For policy administration, all security policy types (except nonrepudia-
tion) have to be supported, and the standardized policy management inter-
faces for each of the level 2 policies have to be implemented. ORBs and
applications must be able to obtain the ORB layer security policies that apply
to them. Applications must also be able to locate and use their application
layer policies to make decisions about what security is needed or to get the
information needed to enforce the policy.

Level 2 conformant applications have to implement all application
interfaces (except nonrepudiation, which is optional), all security policy
administration interfaces, and all administrator’s interfaces. However, this
does not automatically imply that all specified values of privilege attributes,
delegation modes, and communications options have to be implemented.
Instead, some of these interfaces may raise a CORBA: :NO-IMPLEMENT
exception. Raising this exception can, for example, be necessary in cases
where the underlying security mechanism cannot support a particular attrib-
ute, mode, or option.

And as with level 1, CORBA security services implementations that
conform to level 2 can optionally provide any other specified security fea-
tures. Currently, only nonrepudiation is specified as an optional security fea-
ture. To conform to the nonrepudiation option, all interfaces for evidence
generation and verification (NRCredentials) and the nonrepudiation pol-
icy (NRPolicy) have to be implemented. Additional conformance options
specify security service replaceability and secure interoperability. But since
these options describe the interface between the security service implementa-
tion and the ORB, and not the interface between the application and the
security service, they are not described here.

6.3 Principal Authentication and Secure Association

CORBA security level 2 is based on the flexible concept of using Creden-
tials objects to describe security properties of principals and fine-grained
policies for secure associations.

In this section, we will introduce the first example application, which
demonstrates the use of two main security functions; principal authentica-
tion establishes the credentials of the client and the target Bank application,
while the setup of a secure association transfers these credentials to the remote
side. All credentials information can be accessed from the application layer
and used for security enforcement.



176 Developing Secure Distributed Systems with CORBA

6.3.1 Principal Authentication

Credentials objects hold the security information related to local (and
remote) principals, such as the principal’s privilege and identity attributes.
Application programmers can obtain these security attributes from the
CORBA security implementation.

The specification defines several different types of Credentials':
ownCredentials, ReceivedCredentials, and TargetCredentials.
ownCredentials are normally created during principal authentication,
whereas ReceivedCredentials (at the target) and TargetCreden-
tials (at the client) are generated when a secure association is set up. In
addition, it is possible get a copy of existing Credentials objects or ask for
a Credentials object via Current /SecurityManager.

6.3.1.1 Own Credentials

The Credentials object (which, for the sake of clarity, is called Own-
Credentials throughout this book to prevent any confusion with other
types of credentials) is normally generated during principal authentication
and holds the local security attributes of the principal associated with an
application. OwnCredentials denotes the first element of the own
credentials list in the Credentials object. Both client and target
have their ownCredentials. In MICOSec, OwnCredentials objects
are created by the PrincipalAuthenticator object (which is described
in Section 6.3.1.2) and can be used by the application to access information
from its own X.509 certificate. Both client and target have their Own-
Credentials, which are exchanged as they establish a secure association.

In addition to the specific privilege and identity attributes for the com-
municating parties, all Credentials objects also contain at least one
unspecific attribute of type Public (see Figure 6.1). This generic attribute
allows the specification of policies that apply to anyone to be specified in
much the same way as policies based on other, more restricted, attributes.

In addition, Credentials objects contain a number of more techni-
cal (read-only) security attributes, such as:

o The (invocation) credentials type, which specifies if the credentials are
own credentials, received credentials, or target credentials;

1. In fact, the terms refer to the values that can be taken by the Credentials: :creden-
tials_type attribute.
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Figure 6.1 Credentials.

o The authentication state, which shows if the Credentials were
successfully initialized during principal authentication or not, if the
authentication has expired, or if a multistep authentication process
is only partially completed;

o The mechanism type, which specifies both the mechanism supported
for the secure association (e.g., Kerberos5) and the used crypto-

graphic profiles (e.g., MD5_RSA);

o The supported and required options for both incoming and outgoing
secure associations, such as integrity, confidentiality, replay detec-
tion, target or client authentication, as well as the supported delega-
tion type.

Applications access Credentials through a number of operations,
which provide the functionality to:

o Specify default security association options;
¢ Modify security attributes in the Credentials;

e Obtain information about the security attributes currently in the
Credentials;

e Obutain information about a security feature for a given communica-
tions direction;

e Check if the Credentials are still valid, and refresh them if they
have timed oug;

¢ Create an exact copy of the Credentials object;

¢ Destroy a Credentials object.
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6.3.1.2 Principal Authenticator

Before a CORBA client can securely invoke an object, it needs to establish
its OwnCredentials by calling the PrincipalAuthenticator object
(see Figure 6.2). The generated credentials are then associated with its princi-
pal by the CORBA security service, so that they can be automatically used to
set up the secure association between communicating parties whenever that
principal invokes an object.

PrincipalAuthenticator was originally only intended as the
client-side interface behind a login client (or user sponsor). The login cli-
ent would ask the user for his username and password and then invoke the
authenticate operation on the PrincipalAuthenticator object to
create its associated OwnCredentials. Alternatively, this login client could
be implemented outside the CORBA system to allow for single sign-on.
For example, the operating system user login could be tweaked to invoke
PrincipalAuthenticator as part of the operating system login proce-
dure, so that credentials could be generated automatically whenever a user
logs in. With CORBA security services implementations based on traditional
authentication mechanisms such as Kerberos or SESAME, the target appli-
cation would get its OwnCredentials from some mechanism outside the
CORBA system. However, in SSL-based implementations such as MICO-
Sec, the target also needs to establish its OwnCredentials from a certifi-
cate by calling its PrincipalAuthenticator.

In addition to creating an OwnCredentials object, the Principal-
Authenticator returns its authentication status, which can be successful,
failed, or expired. In addition, the authentication process can be incomplete,

Claimed Object

! Reference
Identity / to Credentials
Authentication

Authentication

Information ™~ |_—7 Service Specific

Privilege princi Data
pal
Selector P Authenticator: :
authenticate Continuation

Authentication/ Data (used in

Method \ continue authentication)
gredentl_als / Return Value
Menehratl.on (success, failure,

echanism continue, expired)

Figure 6.2 Principal authenticator interface.
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as some authentication schemes, such as challenge-response mechanisms,
may require more than one step to complete. To support these multistep
authentication methods, PrincipalAuthenticator provides an opera-
tion continue authentication, which has to be called until the
authentication process has completed. SSL authentication is done within one
step, so this functionality is not required in MICOSec.

6.3.2 Secure Association

The secure association is automatically set up by the CORBA security serv-
ices when the client-side ORB tries to invoke an operation on a target for the
first time. This process involves several parts. First, a handshake protocol is
normally carried out to create an authenticated and protected communica-
tions channel based on some specified secure association options. On top of
that, the client’s OwnCredentials are securely transferred to the target-
side ORB, and vice versa.

The exact inner workings of the secure association set-up depend on
the nature of the underlying security mechanism. Normally, the ORB bind-
ing process establishes an unprotected network connection and then informs
the security service implementation that a new binding exists. The security
service then invokes its underlying security mechanism, which sets up the
secure association on top of the existing network connection. While this is
true for most security mechanisms, SSL-based implementations such as
MICOSec require the integration of SSL as an alternative transport protocol
into the ORB. This is because the SSL protocol already includes the set-up of
a plain TCP/IP network connection and, thus, cannot be used on top of a
preexisting network connection.

The transferred credentials are called ReceivedCredentials on the
target-side and are available from the application layer through the Current
interface. The client-side equivalent is called TargetCredentials and
can be accessed through the SecurityManager interface (see Figure 6.3).

6.3.2.1 Received Credentials

This target-side object represents the secure association between the servant
and its associated client. It contains the credentials of the authenticated client
principal that made the invocation and, therefore, includes much of the same
information as the client’s OwnCredentials object, such as privilege
attributes and identities.” ReceivedCredentials are used within servants

2. The ReceivedCredentials interface inherits from the Credentials interface.
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to obtain the attributes of the client that invoked the operation on the ser-
vant, the used association options, the delegation state of the remote princi-
pal, and the delegation mode of the ReceivedCredentials.

6.3.2.2 Target Credentials

This client-side object contains the target’s security attributes and, thus, is
the reverse of the ReceivedCredentials object. Target credentials can,
for example, be used to check the target identity before any sensitive infor-
mation is transferred to the target. Note that TargetCredentials may
not be used for further invocations, while ReceivedCredentials can
be delegated. If a client invokes an operation on different servers, then there
are different target credentials for each server, so that on the client side each
server is associated with its own set of target credentials.

6.3.3 Security-Aware Bank Example: Authentication and Secure Association

We will now extend the Bank example application from Chapter 1 to use
the level 2 security interfaces, just as we did for the level 1 example in
Section 5.4. It is based on the following IDL interface, which you are proba-
bly familiar with by now:
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interface Account ({
void deposit( in unsigned long amount ) ;
void withdraw( in unsigned long amount ) ;
long balance() ;

}i

interface Bank {
Account create ();

}i

IDL 1: account.idl

In the following sections, we will describe how the level 2 interfaces are used
in MICOSec for principal authentication and secure association establish-
ment. After that, subsequent sections will demonstrate using other security
functionality components, such as access control and audit.

6.3.4 Building and Running the Example

The source code and IDL for this first level 2 security example can be found
in the MICOSec directory demo/security/tutorial. It is built the
same way as a normal POA-based MICO application, which has already
been described. Additional libraries are not required in order to run this
example.

The main difference to the level 1 security example described in
Chapter 5 is that you do not need to provide any additional flags this time—
the level 2 interfaces allow applications to take care of keys and certificates
themselves. Executing the example is, therefore, easy; the client and server
shell scripts only contain two lines each:

ADDR=gsl:inet:’uname -n’:12456
./server -ORBIIOPAddr $ADDR

Server shell script

ADDR=gsl:inet:’uname -n’:12456
./client -ORBIIOPAddr $ADDR

Client shell script
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First, the server is started as usual by executing the shell script . /rss.
It activates the target application, creates its OwnCredentials from an
X.509 certificate, and prints the credentials information out on the console.
Then it waits for invocations:

charon% ./rss

Start Bank server

Own credentials 1 attributes

family = 1 type = 2 /C=UK/ST=Server
State/L=Cambridge/O=0bjectSecurity
Ltd./OU=RD/CN=Server Test/Email=servere@test
Running.

Next, the client is started by running . /rcs. Before it binds to the target, it
also creates its OwnCredentials from the X.509 certificate and outputs
them. It then outputs the target’s identity attribute to demonstrate how secu-
rity attributes can be obtained from the TargetCredentials:

charon% ./rcs

Own credentials 1 attributes

family = 1 type = 2 /C=UK/ST=Client
State/L=Cambridge/O=0bjectSecurity
Ltd./OU=RD/CN=Client Test/Email=client@test
Server credentials 2 attributes

family = 1 type = 2 /C=UK/ST=Server
State/L=Cambridge/0O=0bjectSecurity Ltd./OU=
RD/CN=Server Test/Email=server@test

family = 11 type = 2
ssl:inet:charon.objectsecurity.com:12458
deposit - 700

withdraw - 450

Balance is 250.

charon%

When the withdraw operation is invoked, the server also outputs the
identity attribute of the remote caller to demonstrate the use of the
ReceivedCredentials:

Received credentials 1 attributes
1 2 /C=UK/ST=Client State/L=Cambridge/O=ObjectSecurity
Ltd./OU=RD/CN=Client Test/Email=client@test



Security Level 2 183

The main difference between this example and the level 1 example in
Chapter 5 is that this time no command line arguments are necessary. Both
client and target get the file names of their X.509 certificates directly from
the application source code.

Also note that this example uses an object reference (IOR) for the bind-
ing instead of the MICO-specific binding mechanism in CORBA. There are
many ways to transfer object references from the target to client, including
proprietary means, full-blown naming services, or other out-of-bound means
of communication. For simplicity, this example transfers the object reference
through a file. To do that, the target first stringifies the object reference
and stores it in a file named Bank.ref. The client then reads that file and
processes it back into an IOR object, which is then used to connect to the
target. Note that this modification was only introduced to demonstrate
the different binding methods throughout this book and has no relevance
to the security interfaces as such.

6.3.5 The Target

The following minimal CORBA security level 2 target application demon-
strates the use of objects for principal authentication and secure association
establishment. The nonsecured version of the account example has already
been introduced in Chapter 1, and we will now compare it with this
security-enhanced version to see the main differences.

The target first obtains its process-specific initial object, the Secu-
rityManager, and then creates its own Credentials objects using
PrincipalAuthenticator. If the servant for the withdraw operation
is called, an initial object Current is obtained from the ORB. This
object is used to get the ReceivedCredentials object, which represents
the secure association with the client that invoked the servant. The
get_attributes operation is then used to obtain the attributes from
the Credentials object.

Like any other CORBA application, the target-side implementation
comes in two logical parts. The server part is used to launch the application
and the ORB, whereas the implementation of the actual functionality behind
the target object’s interface resides in the servant. Both are analyzed in turn in
the following subsections.

6.3.5.1 The Server

As in Chapter 5, we will look at the POA-based server source code first.
The main nonsecurity-related difference to the level 1 example is that this
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example uses an IOR instead of the MICO-specific bind mechanism. First,
level 2 security creates a pointer to a SecurityManager object:

#include <fstream.h>
#include “account.h”

CORBA: :ORB_var orb;
CORBA: :Object var securitymanager;
SecurityLevel2::SecurityManager var secman;

The first part of the main function remains unchanged from the unsecured
version. It just initializes the ORB and the POA:

int main (int argc, char *argvl[])

{

cout << “Start Bank server\n”;
orb = CORBA::ORB init (argc, argv, “mico-local-orb”);

PortableServer: :POA var poa;
CORBA: :Object var poaobj =

orb-> resolve initial references (“RootPOA”) ;
poa = PortableServer::POA:: narrow (poaobj) ;
PortableServer: :POAManager var mgr =

poa-> the POAManager () ;

Next, the application needs to get the initial objects to reference the security
service, just as it does for other services such as the naming service. These
security-related objects are SecurityManager and Current.’ Securi -
tyManager is used to access capsule-specific security information associated

3. Untl CORBASec Version 1.5, there was only Current. SecurityManager was
introduced in Version 1.7.
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with the ORB and its process, whereas Current contains security informa-
tion related to thread-specific operation in servants.

In the main function of the server there are no separate threads; all
security information is specific only to the ORB and the server process as a
whole, so the correct initial reference is SecurityManager. The reference
to this locally constrained object is obtained by calling the resolve
initial references method on the ORB, followed by narrowing to
the appropriate class. Operations on these objects are used to access the
security information in the ORB, for example, to create credentials and get
credentials or security policies.

securitymanager =
orb-> resolve initial references
(“SecurityManager”) ;
assert (!CORBA::1is nil (securitymanager)) ;

secman = SecuritylLevel2::SecurityManager::
_narrow (securitymanager) ;
assert (!CORBA::is nil (secman)) ;

Now the target’s OwnCredentials object can be created from its associ-
ated X.509 certificate. This is done by calling the authenticate operation
on the PrincipialAuthenticator object. But before that, we have to
choose the correct authentication method:

Security::AuthenticationMethod our method =
(Security: :AuthenticationMethod)
SecurityLevel2: :KeyCertCAPass;

The next step is to get an empty data structure for the authentication data
from the SecurityManager. In the case of MICOSec, the X.509
certificate data needs to be provided to the underlying SSL implemen-
tation. Unfortunately, the integration of SSL into CORBA security
services is underspecified, so the exact content of this data structure is
implementation-specific and, thus, not portable. The used data structure
therefore needs to be of the unspecific type Any:



186 Developing Secure Distributed Systems with CORBA

Security::SSLKeyCertCAPass method struct;

CORBA: :Any* any struct =
secman -> get method data (our_method) ;
*any struct >>= method struct;

This structure must be filled with the correct information about the target’s
X.509 certificate: the file name of the server key, the file name of the server
X.509 certificate, the file name of the certificate authority X.509 certificate,
and the directory of the CA certificate (if it is not already supplied in
CAfile). Also, it is possible to specify a password to unlock the key, but
this is currently unsupported in MICOSec. The following code fragment
shows how this is done:

method struct.key = “ServerKey.pem”;
method struct.cert = “ServerCert.pem”;
method struct.CAfile = “list.pem”;

method struct.CAdir = “”;
method struct.pass = “;

CORBA: :Any* out any struct;
out any struct = new CORBA::Any;
*out any struct <<= method struct;

Remember that in our level 1 example application it was not possible to spec-
ify this information from within the application, so it had to be provided
manually at the command line.

In the next step, we get a pointer to the PrincipalAuthenticator
object from the SecurityManager:

SecurityLevel2::PrincipalAuthenticator ptr pa =
secman -> principal authenticator () ;

Before the authenticate operation can be invoked, various arguments
have to be specified:

e First, we can optionally select a user-specified cipher suite (e.g.,
IDEA-CBC-SHA) or use a default cipher.

¢ Next, the implementation-specific security name must be set to “ss1”.
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e The next line shows how the target can specify additional privileges,
which it would like to be authenticated. This feature is currently not

supported by MICOSec.

e The creds object stores the obtained Credentials. Often, the
OownCredentials attribute is used instead.

e The final two arguments are used for multiple-step authentication,
such as challenge-response protocols. This is also not supported in
the current version of MICOSec because, from the perspective of
the CORBA security services, SSL completes in a single step.

The following code fragment shows how the arguments are defined:
const char* mechanism = “”;

/* Optional:

* const char* mechanism = “IDEA-CBC-SHA";
*/
const char* security name = “ssl”;

Security: :Attributelist privileges;
SecurityLevel2::Credentials ptr creds;

CORBA: :Any* continuation data;
CORBA: :Any* auth specific data;

Now the authenticate operation can be called with all the specified argu-
ments. [t generates the target’s own credentials and returns them in Creds.
If something goes wrong, an exception is raised.

try
pa -> authenticate( our method, mechanism,
security name, *out any struct,privileges,
creds,continuation data,auth specific data) ;

}

catch (...)
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cout << “authentication failed” <<endl;
delete out_ any struct;
return 0;

After successful authentication, the target’s OwnCredentials are auto-
matically entered as the first element of the SecurityManager’s own
credentials attribute list (own credentials). This is how the Own-
Credentials can be obtained from there:

SecurityLevel2::Credentials ptr own_ cred;
own cred = (*(secman -> own credentials())) [0];

We can then obtain the target’s security attribute from the OwnCreden-
tials object in a similar way as in the level 1 example. First, an attribute
type list has to be instantiated and filled with the information about the
requested attribute:

Security::ExtensibleFamily faml;
faml.family definer = 0;

faml.family = 1;

Security::AttributeType atl;
atl.attribute family = faml;
atl.attribute type = Security::AccessId;
Security: :AttributeTypelList atll;
atll.length(1) ;

atll[0]=atl;

ThcntheCredentialsobkctcm1bead«xiﬁntheauﬂbum&4Inconuaﬂ
to the level 1 server, get _attributes is now called on the Credentials
object and not on SecurityManager. This allows CORBA security level 2
to obtain attributes from different Credentials to access different kinds of
security information. To get the target’s own attributes (which come from
its X.509 certificate), the operation is invoked on the OwnCredentials

4. Some attribute types are not useful for the principal’s own credentials. For example, the
MICO-specific attribute “PeerAddress” does not make sense here, as there is no
secure association with a remote peer at this point.
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object. get_attributes returns a list of the desired attributes, which is
printed out on the standard output just like in the level 1 example:

Security::AttributelList_var all =

own cred -> get attributes(atll);
cout << “Own credentials”

<< (*all) .length() << “ attributes\n”;

for ( int ctr = 0; ctr (*all).length(); ctr++) {

cout << “family =~

<< (*all) [ctr] .attribute type.
attribute family.family

w oz

<<

<< “type ="

<< (*all) [ctr] .attribute type.attribute type
<< w n

<< &(*all) [ctr] .valuelO0]

<< w "

<< &(*all) [ctr] .defining authority[0]
<< endl;

The application can get these credentials directly after it creates the initial
object SecurityManager (i.e., before it activates the POA or receives any
requests from clients). This is possible both in client and target applications
and can, for example, be used to check the identity of the user principal.

The last part of the service remains unchanged. It creates a Bank object
instance, registers it with the POA, writes the IOR to a file, and activates the
ORB and the POA manager:

Bank_impl * micocash = new Bank_impl;

PortableServer: :0bjectId var oid =
poa-> activate object (micocash);

ofstream of (“Bank.ref”);
CORBA: :Object var ref =

poa-> id to reference (oid.in());
CORBA: :String var str =

orb-> object to string (ref.in());
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of << str.in() << endl;
of .close () ;

printf (“Running.\n”) ;

mgr->activate () ;
orb->run() ;

poa->destroy (TRUE, TRUE) ;
delete micocash;

return 0;

}

6.3.5.2 The Servant

In most application scenarios, the target would like to know which client
invokes its operations. This check cannot be done in the server main func-
tion because there is no exact association between the server and its clients.
The security information in the server main function is associated with the
ORB instance or the server process as a whole.

The POA dispatches requests from the clients to servants, so within the
servant (i.e., the actual implementation of the operations in the server appli-
cation), there is a clear secure association with the client that invoked the
operation. Consequently, the servant is the right place to ask the ORB about
the client’s security attributes; in the servant, this information is specific to
the thread of execution. There might be more than one servant thread, with
every thread associated with a different client and a different set of security
attributes. These thread-specific Credentials have to be accessed through
Current and not through the process-specific SecurityManager object,
which was used in the server part of the target application.

This section will illustrate how the client’s security attributes can be
accessed from within the servant. The first code fragment, which implements
the operations bal and deposit, remains unchanged from the nonsecured
version:

class Account_impl : virtual public POA Account

{
public:
Account_impl () ;
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void deposit (CORBA: :ULong) ;
void withdraw (CORBA: :ULong) ;
CORBA: :Long balance () ;

private:
CORBA: :Long bal;

¥

Account impl::Account impl ()

{

bal = 0;

void
Account impl::deposit (CORBA::ULong amount)

{

bal += amount;

The security-related functionality that retrieves the security attributes of the
invoking client is part of the withdraw implementation:

void
Account impl::withdraw (CORBA::ULong amount)

{

First of all, we need to get the SecurityCurrent object and narrow it to
the correct data type:

CORBA: :Object var securitycurrent;
SecurityLevel2: :Current var seccur;
securitycurrent =
orb-> resolve initial references
(“SecurityCurrent”) ;
assert (!CORBA::is nil (securitycurrent)) ;

seccur = Securitylevel2::Current::
_narrow (securitycurrent) ;
assert (!CORBA::is nil (seccur)) ;
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In the servant, we are interested in the attributes of the client that invoked
the servant. To get that information, we need to obtain the Received-
Credentials object, which was transferred from client to target during the
secure association establishment:

SecurityLevel2: :ReceivedCredentials var rc =
seccur->received credentials() ;

Now it is possible to access the security attributes from the credentials as pre-
viously described. Again, we create an instance of a security attribute list and
fill it with the requested attribute:

Security: :ExtensibleFamily fam;
fam.family definer = 0;

fam.family = 1;

Security: :AttributeType at;
at.attribute family = fam;
at.attribute type = Security::AccessId;
Security: :AttributeTypelist atl;
atl.length(1) ;

atl[0] =at;

Then we call get_attributes on the ReceivedCredentials object
to retrieve the specified attribute:

Security::Attributelist var al =
rc->get attributes( atl );

Finally, the content of the retrieved attribute is printed out on the console:

cout << “Received credentials”
<< (*al) .length() << “ attributes\n”;
for ( int ctr = 0; ctr (*al).length(); ctr++) {
cout
<< (*al) [ctr] .attribute type.
attribute family.family

<<

<< (*al) [ctr] .attribute type.attribute type
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<< W1

<< &(*al) [ctr] .value[0] < ™ "
<< &(*al) [ctr] .defining authority[0]
<< endl;

From here, the rest of the servant code remains unchanged. It imple-
ments the balance operation and the Bank interface with its create
operation:

bal -= amount;

}

CORBA: : Long
Account impl::balance ()

{

return bal;

class Bank impl : virtual public POA Bank

{
public:
Account ptr create ();

}i

Account ptr
Bank impl::create ()

{

Account impl * ai = new Account impl;

Account ptr aref = ai-> this ();
assert (!CORBA::is nil (aref));

return aref;
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6.3.6 The Client

This section examines the security enhancements in the client source code.
In many respects, the client-side use of level 2 interfaces is quite similar to the
server part. In particular, SecurityManager is used throughout the client

code.

The client first resolves the initial object, the SecurityManager
Then it calls the PrincipalAuthenticator to create its OwnCreden-
tials, using the security information from a X.509 certificate, and prints
the credentials content out on the console. In the next step, it binds to a
server and prints several attributes from the TargetCredentials (i.e.,
from the remote peer of the secure association) before it invokes operations
on the target. We will now discuss the security-related extensions of the cli-

ent code in more detail:

#include “account.h”

#ifdef HAVE UNISTD H
#include <unistd.h>
#endif

CORBA: :ORB_var orb;
CORBA: :Object var securitymanager;
SecurityLevel2::SecurityManager var secman;

int
main (int argc, char *argv[]) {
CORBA: :ORB_var orb =

CORBA::ORB init (argc, argv, “mico-local-orb”);

As usual, we first resolve the reference to the SecurityManager object:

securitymanager =
orb-> resolve initial references
(“SecurityManager”) ;
secman = SecurityLevel2::SecurityManager: :
_narrow (securitymanager) ;
assert (!CORBA::1is nil (secman)) ;

Next, the authentication method has to be specified. Again, this is done

exactly as in the previously described code examples for the target:
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Security::AuthenticationMethod our method =
(Security: :AuthenticationMethod) SecurityLevel2: :
KeyCertCAPass;

Once the method has been set, the client has to create a variable for the
authentication data and feed information about the client’s security informa-
tion into it. In MICOSec, the file names of X.509 certificate and key files
have to be provided as follows:

Security::SSLKeyCertCAPass *method struct;
method struct = new Security::SSLKeyCertCAPass;
CORBA: :Any* any struct =

secman -> get method data(our method) ;
*any struct >>= *method struct;
method struct -> key = “ClientKey.pem”;
method struct -> cert = “ClientCert.pem”;
method struct -> CAfile = “”;
method struct -> CAdir = “7;
method struct -> pass = “;

CORBA: :Any* out any struct;
out any struct = new CORBA::Any;
*out _any struct <<= *method_ struct;

The client then calls the authenticate operation on the Principal-
Authenticator, which creates its OwnCredentials object and adds it
to the OwnCredentials list in SecurityManager:

SecurityLevel2::PrincipalAuthenticator ptr pa =
secman -> principal authenticator () ;

const char* mechanism = “”;

const char* security name = “ssl”;

Security::AttributelList privileges;

SecurityLevel2::Credentials ptr creds;

CORBA: :Any* continuation data;

CORBA: :Any* auth specific data;

try
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pa -> authenticate( our method, “IDEA-CBC-SHA”,
security name, *out any struct,privileges,
creds,continuation data,auth specific data);

}

catch (...)
cout << “authentication failed” <<endl;
delete out any struct;
return 0;

delete out_any struct;

Now, the client obtains its OwnCredentials, which have been put in
as the first element in the SecurityManager’s own credentials attri-
bute list. Before the attribute content can be obtained, a security attribute
type list has to be instantiated and filled with the requested security attribute:

SecurityLevel2: :Credentials ptr own_ cred;
own cred = (*(secman -> own credentials())) [0];

Security: :ExtensibleFamily faml;
faml.family definer = 0;

faml.family = 1;

Security::AttributeType atl;
atl.attribute family = faml;
atl.attribute type = Security::AccessId;
Security::AttributeTypelList atll;
atll.length(1) ;

atll[0]=atl;

We can now get the security attributes from the Credentials and print
them out on the console:

Security::AttributelList_var all =
own cred->get attributes(atll);
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cout << “Own credentials”
<< (*all) .length()
<< “ attributes\n”;

for ( int ctr = 0; ctr (*all).length(); ctr++) {
cout

<< “family = "

<< (*all) [ctr] .attribute type.
attribute family.family
<< N7
<< “type ="
<< (*all) [ctr] .attribute type.attribute type
<< v 7
<< &(*all) [ctr] .value[O0]
<< 7
<< &(*all) [ctr] .defining authority[0]

<< endl;

This part just reads the stringified IOR from the file Bank . ref, converts it
back to an object, and binds to the Bank target application:

char pwd[256], uri[300];
sprintf (uri, “file://%s/Bank.ref”,
getcwd (pwd, 256)) ;

CORBA: :Object var obj = orb->string to object (uri);
Bank var bank = Bank:: narrow (obj) ;
assert (!CORBA::is _nil (bank)) ;

Now that a connection to the bank has been established, the client can
obtain the target’s security attributes in a similar way as described for the
OwnCredentials above. These TargetCredentials contain the secu-
rity attributes of the target, but not directly. Normally, they are just a refer-
ence to an object with security mechanism-specific content. Again, we first
create a security attribute type list with the requested attribute:
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Security: :ExtensibleFamily fam2;
fam2.family definer = 0;

fam2.family = 1;

Security: :AttributeType at;
at.attribute family = fam2;
at.attribute type = Security::AccessId;
Security::AttributeTypelList atl;
atl.length(2);

atl[0] =at;

Security: :AttributeType at2;
fam2.family = 11;

at2.attribute family = fam2;
at2.attribute type = Security::PeerAddress;
atl[1l]=at2;

So far, the client-side modifications to the code look very similar to the ones
for the target. Indeed, the process for getting the initial object Security-
Manager and the OwnCredentials is identical to the target.

However, there is one notable difference to the target side: A servant
has exactly one secure association with the client on whose behalf the ser-
vant is called. Therefore, it is clear which attributes the application wants to
obtain in the servant.

On the client side, the situation is different. A client might call opera-
tions on several different targets, and several secure associations with differ-
ent servers and hosts might exist. Consequently, it is necessary on the client
side to tell the security service for which secure association the attributes
should be obtained. This is done by specifying the secure association through
the corresponding IOR of the target:

SecurityLevel2::TargetCredentials var tc =

secman->get target credentials (bank) ;

The parameter bank is the IOR of the target server, and the operation
get target credentials on the SecurityManager obtains the
TargetCredentials. We can get the target’s security attributes from it in
the usual fashion and print them out on the console:
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Security::Attributelist var al =
tc -> get attributes(atl) ;

cout << “Server credentials ”
<< (*al) .length() << “ attributes\n”;

for ( int ctr = 0; ctr (*al).length(); ctr++) {
cout
<< “family = "
<< (*al) [ctr] .attribute type.
attribute family.family

w o

<<
<< “type ="

<< (*al) [ctr] .attribute type.attribute type
<< 7

<< &(*al) [ctr] .value[O0]
<< M7

<< &(*al) [ctr] .defining authority[0]

<< endl;

}

The rest of the client code is unchanged. It creates an account object on the
target side and invokes a few operations, including withdraw, which trigger
the security code on the target side:

Account_var account = bank->create ();
if (CORBA::is nil (account)) ({
printf (“oops: account is nil\n”);
exit (1);

cout << “deposit - 700\n”;

account->deposit (700) ;

cout << “withdraw - 450\n”;

account->withdraw (450) ;

printf (“Balance is %1d.\n”, account-s>balance ());
return O;
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6.4 Object Domain Mapper for Access Control and Audit

6.4.1 Introduction

MICOSec’s access control and audit components are implemented on the
middleware layer (i.e., on top of the SSL-based principal authentication,
security context establishment, and message protection functionality
described so far).

Whenever a request arrives at the target, MICOSec checks its access
control policy to see if the access is allowed. If it is allowed, then the invoca-
tion is passed on to the servant; otherwise, it is rejected (access control will be
described in Section 6.5). The audit policy is also checked for each invoca-
tion to see if the action conveyed in the request should be logged (as
described in Section 6.6). This implicitly assumes that it is easy to find the
correct security policy associated with the target that is being invoked. How-
ever, due to the unpredictable and transient nature of the information in the
request header, this turns out to be a difficult task.

This section describes how MICOSec solves this problem by introduc-
ing an object domain mapper (ODM), which helps find the access control or
audit policy associated with the invoked target. ODM is a precondition for
the MICOSec level 2 access control and audit functionality.

On the application layer (i.e., for security-aware applications), access
control and audit are done inside the application, and so the policy is already
associated with the correct target.

At the ORB layer (i.e., for security-unaware applications), the associa-
tion has to be set up using the information available from the request header
and security service. The standard CORBA security access control and audit
models (described in Chapter 3) use object interface types to describe targets
in their security policies. This approach is simple, but it has a number of dis-
advantages: First, the same access policy applies to all objects of the same
type, which is insufficient for most real-world applications. Second, it is not
always possible to determine the most derived interface of an object, because
any operation behind an interface could be implemented by its parent class.

The solution described here is based on an extended version of the
ODM described as part of the Security Domain Membership Management
Service (SDMM) [1]. It uses unchanging domain names to describe target
objects persistently inside the security policies. Whenever an invocation
arrives, the information about the target is extracted from the request header
(plus identity information from the security service) and mapped onto
the domain name. This way, the correct policy for the invoked target can be
looked up based on this unchanging ODM domain name.
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The main design requirements for this ODM are:

o Object life cycle independence: The administration of the map-
ping configuration needs to be independent of the object life cycle.
For example, it should be possible to define the mapping before the
object has been launched.

e Performance: The mapping needs to be fast because it has to be done
for each incoming request.

o Scalability, ease of administration: Grouping objects that have the
same policy into domains allows easy administration of policies in
large-scale applications.

o Flexibility of use: The mapping should work for different types of
CORBA applications (e.g., for different activation modes) and with-
out any modifications to the application code.

o [Independence from the application: It should be possible to do the
mapping without activating the servant, so that the policy can be
enforced before the servant is even activated.

o Ease of integration into the architecture: Changes to the ORB and
security services should be kept at a minimum, to allow for portabil-

ity and replaceability.

o Trust by the rarget: The target has to trust all information used as
part of the mapping process, so the ODM process needs to be kept
inside the target trust domain.

6.42 Mapping Information

As a first step, the ODM has to find the right domain name for each incom-
ing invocation. The information available on the ORB layer is often called
the surrogate for the associated target object. In this section, we examine the

different options for surrogates: the object reference, security attributes, and
the POA name.

6.4.2.1 RequestHeader

The IOR is generated by the POA when the servant is registered with the
POA and contains the information necessary for the client to be able to
invoke the target. The following information inside the IOR is used by the
client to generate the GIOP request header for the invocation:
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e Repository ID: The repository ID is a simple string that describes the

interface type of the object in a standardized format. This type is the
most derived interface (MDI) of the object at the time of its instan-
tiation. However, this type may not reflect the real object type at the
time of the invocation, because as a consequence of changes in the
repository, it is possible that another object (with a derived inter-
face) contains the implementation of the invoked operation instead.

Endpoint: The IOR also contains transport-specific endpoint infor-
mation to locate the server. In the case of IIOP, this endpoint is
a TCP socket <hostname, ports pair to which the transport
should open a TCP connection. Note that this endpoint does not
necessarily connect directly to the target; it could instead point to an
activation daemon (i.e., an implementation repository) that returns
a location forward. This location forward points to the actual target
server. Alternatively, the IOR could point to a firewall, or it could
contain information about several endpoints. The format of such
endpoints is standardized in the CORBA specification and depends
on the underlying transport (e.g., TCP/IP).

Object key: Once the client has established a network connection
to the server, it needs to address the correct target object within
the server process. Depending on the POA policy, the object key in
most cases contains a random identifier of the POA, which is unique
within each server, and a random object identifier, which uniquely
identifies the servant object within the scope of the specified POA.
For scalability reasons, the POA identifier is often chosen at random
by the ORB when the POA is created, and, in most cases, the object
identifier is also randomly chosen by the POA when the object is
activated. The object key format is not standardized by CORBA.
This means that only the POA that registered the object will be able

to interpret the object identifier correctly.

6.4.2.2 X.509 ldentity

The server can also be described by its security attributes. SSL describes the
endpoints of a network connection with attributes from X.509 identity cer-
tificates (i.e., independently from the actual physical address). This has a
number of advantages: The SSL context can traverse transport layer firewalls,
and several servers can have the same identity (i.e., load balancing and redun-
dant services can easily be implemented).
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6.4.2.3 POA Name

POAs are arranged in a hierarchy, with a so-called 700t POA as a root to a tree
of child POAs. Each POA in the tree has operations that allow the insertion
or deletion of new POA:s in the tree. In this hierarchical structure, each POA
has a unique, persistent POA name, which can be obtained at run-time.

6.4.3 MICOSec Mapping Definition

The main goal is to define fine-grained persistent mapping rules for
security-unaware applications. The security administrator should be able to
define the mapping between surrogates (which describe objects or groups of
objects) and their associated domains. This should be possible independently
from the application object life cycle and without any modifications to the
source code. The basic configuration and code example described in this sec-
tion shows how to set up and use MICOSec’s object-to-domain mapping
mechanism. The mapping is defined in a configuration file that is read into
MICOSec to set up a mapping table when the application is launched. It is
also possible at run-time to dynamically create or modify the mapping table.
In addition, it is possible to save the content of the mapping table back into a
persistent file for future use.
The mapping itself can be defined at several levels of granularity:

Default;
X.509 subject;
POA name;

Object identifier.

In most real-world applications, the first three levels of granularity are
sufficient. In this section, we will discuss how each is defined in MICOSec,
while the more unusual ODM on a per-object granularity will be described
in Section 6.4.7.

The lowest level of granularity is specified by a Default domain,
which applies to all objects if no more specific domain mapping rules are
defined in the configuration.

The next level of granularity is defined by the AccessId security
attribute provided by the underlying security mechanism. In the case of
MICOSec, the AccessId contains the subject of the server’s X.509 certifi-
cate. Although CORBA security also defines an audit-specific AuditId,
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MICOSec only uses the AccessId to express principals for both access
control and audit. This makes sense because SSL normally associates a single
X.509 identity with each principal, which means that both Access1d and
AuditId would contain the same value anyway.

By using the certificate-based AccessId, the server can be described
logically inside access control and audit policies (i.e., independently from the
hostname of the physical server location). This allows the elegant implemen-
tation of load balancing and redundancy because several physically separate
servers can have the same logical identifier and will, therefore, be mapped
onto the same domain name. Analogously, several CORBA applications with
separate X.509 identities can run on a single server because the certificate to
use can be specified at the command line when the application is launched,
or in the application source code itself.

The granularity of AccessId depends on the underlying security
mechanism. In the case of MICOSec (and many other implementations),
SSL is used to authenticate network endpoints. As a result, all objects behind
a TCP endpoint will have the same SSL context (i.e., the same security
attributes) and will consequently be mapped onto the same domain name.

The persistent configuration of this mapping is easy. The X.509 certifi-
cate content is already known before the application is even launched, so it
can be stored in a persistent configuration file without any difficulties.

At run-time, the X.509 certificate content can easily be read out of
the security mechanism (through the Credentials object) and be used to
search for the corresponding domain name in the ODM table.

Now that the endpoint (i.e., the ORB) has been logically defined by its
security attributes, the actual target object needs to be specified at a finer
granularity. The only information available from the IOR is the object key,
which contains a reference to the POA that generated the object, and
the object identifier, which describes the exact object within the realm of
the POA. Unfortunately, the POA identifier is only unique within the scope
of its underlying ORB, and the object identifier is chosen randomly by the
POA to allow for good scalability. Only the ORB can interpret the POA
identifier and locate the correct POA. In the same way, only the POA can
interpret the object identifier and pass the request up to the object. Because
of this, neither the POA identifier nor the object identifier can be used for
persistent mapping.

To solve this problem, MICOSec instead exploits the fact that POAs
can be arranged in a hierarchy, with a so-called root POA as a root to a tree
of child POAs. As part of this hierarchical structure, each POA has a
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unique, persistent name (which is different from the POA identifier), that
can be obtained at run-time. By using this POA name, MICOSec can
support a transparent, persistent mapping on the granularity of the POA.
Section 6.4.3.1 illustrates how the ODM is set up.

6.4.3.1 MICOSec Mapping Definition Example

Every application object resides on top of a leaf of the POA hierarchy (which
can also consist of only a single node), with the so-called root POA being the
root of the tree. The root POA has a well-defined default policy that
describes aspects related to object creation. It is possible to get a reference to
this root POA through its initial reference as follows:

CORBA: :Object var poaobj =
orb -> resolve initial references (“RootPOA”) ;
PortableServer: :POA var poa =
PortableServer::POA:: narrow (poaobj) ;

This POA automatically has the persistent name RootPOA, which is not
related to the randomly chosen POA identifier put in the object key. In this
example, the reference to the root POA is called poa. Starting from the root
POA, a hierarchy of child POAs can be created. This example creates a child
POA object called “MyPOA” under the “RootPOA” (mgr is the POA man-
ager and p1 is the POA policy):

PortableServer: :POA var mypoa =
poa-> create POA (“MyPOA”, mgr, pl);

The child POA “MyPOA” has the complete hierarchical name “/Root-
POA/MyPOA” that describes the POA uniquely and persistently. The cru-
cial point is that it does not matter if the POA itself is persistent or
transient—this hierarchical name is independent from the identifier put into
the IOR’s object key. This allows administrators to define POAs independ-
ently from the application life cycle.

To make full use of this POA hierarchy for the ODM, it needs to
reflect the required domain hierarchy. In other words, objects that should
belong to the same security policy domain should be grouped into the scope
of the same POA. The following MICOSec configuration file shows how the
ODM is set up for the per-POA level of granularity:
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# POA-Mapping Domain
# Keys: AccessId, POA

# Default, always applies if

# no mapping was defined

[<Security Attributes]/ /ObjectSecurity

# The different POAs and their Domains

[<Security Attributes>] /RootPOA/ /ObjectSecurity/Domain
[<Security Attributes>] /RootPOA/MyPOA/ /ObjectSecurity/Domainl
[<Security Attribute>] /RootPOA/MyPOA2/ /ObjectSecurity/Domain2
[

<Security Attributes>] /RootPOA/AccountPOA/ /ObjectSecurity/Accounts

Persistent POA Mapping

Such an ODM configuration file has to be created manually by the admin-
istrator and made accessible to MICOSec at the time the application is
launched. The example described below also shows how the ODM con-
figuration can be modified at run-time and stored back into a file. In
Section 6.4.8, we will show how the ODM configuration can be created
or modified at run-time from the application layer.

6.44 Mapping Process

Section 6.4.3 showed how the mapping from POA names to domain names
is configured in MICOSec. This section examines where in the architecture
the actual mapping is carried out and how it is achieved.

In most cases, the right place to do the mapping is where the security
policy has to be enforced. You will learn later in this chapter how MICO-
Sec’s access control and audit policies make use of ODM domain names. If
application layer security is used, then the domain name needs to be deter-
mined by the servant. On the ORB layer, the ODM can be integrated into
the part of the security subsystem that is called whenever an invocation
occurs (i.e., inside the interceptor implementation). Regardless of whether
the ODM is used from the interceptor or the servant, the domain needs
to be determined within the context of the incoming invocation. The ORB
makes this execution context—specific information available to interceptors
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and servants though the Current object. For example, SecurityCur-
rent provides information about the client that invoked the operation.

Moreover, the full POA name can simply be obtained from POA-
Current and mapped directly onto the domain name specified in the con-
figuration file. This is much more elegant and useful than obtaining the
target of an invocation from Current, determining the ORB-specific (ran-
dom) POA reference from the request header, and trying to map it
(somehow) onto a static domain name.

There is an interesting conceptual relationship between the ODM
described here and the CORBA naming service. Analogously to the domain
name service on the Internet, the CORBA naming service resembles the
so-called forward resolving, whereas the ODM resembles reverse resolving:
The naming service maps a name to an IOR, while the ODM maps—at least
conceptually—an IOR back to a name. However, in practice these two
names have quite different semantics, which complicates the conversion of
domain names into IORs and vice versa and, thus, makes it necessary to use

MICOSec’s ODM feature.

6.45 ODM Interfaces

The ODM includes interfaces for objects that represent domains and for
the actual domain mapper. The format of domains is defined in Domain-
Manager.1dl (as specified in [1]):

module SecurityDomain{
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

}i

typedef sequence <NameComponents> Name;
typedef sequence <Name> NamelList;
typedef unsigned short PolicyCombinator;
interface Namelterator;

A domain is defined by a sequence of names, with each containing two
strings: The identifier string contains the component in the domain path,
and the type string can contain an unspecified description of the component.
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The interfaces for the ODM, the ODM manager, and the actual ODM
mapper are defined in odm. 1d1 (also specified as part of [1]). The first inter-
face Manager contains operations to set domain names, get domain names,

remove domain names, set the parent ODM key, set the default parent
ODM, and set the default name key:

interface Manager {
typedef unsigned short ODMGranularity ;

void set domain name key (
in ODMGranularity granularity,
in Security: :0Opaque key,
in SecurityDomain: :NameList domainNameList

) i

SecurityDomain: :NameList get domain names (
in Security: :0Opaque key
)i

void remove domain names (
in Security: :0Opaque key

void set parent odm key (
in Security: :0Opaque key,
in ObjectDomainMapping: :Manager odm

void set default parent odm (
in ObjectDomainMapping: :Manager odm

void set default name key (
in SecurityDomain: :NameList domainNameList

The main task of the following ODM factory is to create the ODM man-
ager. In addition, the MICOSec-specific interface was extended by opera-
tions to load and save ODM configuration files:
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interface Factory f{
ObjectDomainMapping: :Manager create () ;

//extension
boolean loadConfigFile (in string filename) ;
boolean saveConfigFile (in string filename) ;

}i

interface ODM
ObjectDomainMapping: :Factory create () ;

Vi
}i

#endif

6.4.6 Static Per-POA Granularity

This section illustrates how the mapping process is used. The use is the same
in the servant (i.e., for security-aware applications) and interceptor (i.e., for
security-unaware applications).

First, references to the underlying ORB and the SecurityManager
are created. Note that this does not create the ORB but rather establishes a
pointer to the existing underlying ORB:

CORBA: :ORB_var orb;
CORBA: :Object var securitymanager;
SecurityLevel2::SecurityManager var secman;

orb = CORBA::0RB instance (“mico-local-orb”, FALSE) ;

securitymanager =
orb-> resolve initial references
(“SecurityManager”) ;
assert (!CORBA::1s nil (securitymanager)) ;
secman = SecuritylLevel2::SecurityManager::
_narrow (securitymanager) ;
assert (!CORBA::is nil (secman)) ;
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Next, the AccessID of the target has to be determined, which is part of the
own_credentials object of the target. This is done in exactly the same
way as described in Section 6.3. First, a reference to the OwnCredentials
has to be created:

SecurityLevel2::Credentials ptr own_cred;
own cred = (*(secman -> own credentials())) [0];

Then an attribute type family fam1 is created and set to specify which attri-
butes should be obtained (i.e., the AccessID):

Security: :ExtensibleFamily faml;
faml.family definer = 0;

faml.family = 1;

Security::AttributeType atl;
atl.attribute family = faml;
atl.attribute type = Security::AccessId;
Security::AttributeTypelList atll;
Security::AttributeTypelList atll;
atll.length (1) ;

atll[0]=atl;

Now the AccessID security attribute can be obtained from the Own-
Credentials object:

Security::AttributelList_var all =
own cred-> get attributes(atll) ;

The obtained identity is now stored in a string key1 in a format that con-
tains brackets before and after the attribute content:

string keyl = “[”;
for ( int ctr = 0; ctr < (*all).length(); ctr++)

{
}

keyl += ] ”;

keyl += (char *) (&(*all) [ctr] .value[0]) ;

Next, the POA of the current execution context is determined by calling the
operation get_POA on the reference to the POACurrent:
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CORBA: :Object var poao =
orb-> resolve initial references
(“POACurrent”) ;
PortableServer: :Current var cpoa =
PortableServer::Current:: narrow (poao) ;

PortableServer::POA ptr poa = cpoa->get POA() ;

Next, a few variables are created that are needed to determine the full name
of the POA (i.e., the full path through the POA hierarchy by iterating
through the POA hierarchy). This iteration process starts at the actual POA
leaf that the object resides on and appends the name of each underlying
POA to a string tstr until the root POA is reached. At the end of this
process, key1l contains the full POA name in the same format as specified in
the ODM configuration table:

PortableServer: :POA ptr np = poa;
string key2;
string tstr;

while (np != NULL) {
tstr = np->the name() ;
if (key2.length() 0)
tstr += '/’ ;
tstr += key2;
key2 = tstr;
np = np->the parent () ;

}

cout << “POA=" << key2 << endl;
keyl += key2;

For the actual mapping, a pointer to the ODMManager is required. If an
ODMManager is available, then the string key1 that contains the full POA
name is copied into a variable of the type Opagque. Once this is done, the
operation get_domain names can be invoked on the ODMManager to
obtain the domain name associated with the POA name:
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ObjectDomainMapping: :Manager ptr dmanager =
poa->get ODM() ;
if (dmanager) {

Security: :0paque okey;

int len = keyl.length();

okey.length(len) ;

for (int 1 = 0; i1 < len; i++)
okey[i] = keylI[il;

SecurityDomain: :NameList * list =
dmanager-> get domain names (okey) ;

The operation get_domain names returns a list of the domain names of
which the target object is a member. As a last step, the domain names can be
printed out on the console like this:

cout << “Domain=";
for (int i = 0; 1 < (*list).length(); i++) {
SecurityDomain: :Name nm = (*list) [1];
for (int j = 0; j nm.length(); j++) {
SecurityDomain: :NameComponent nc = nml[j];
cout << “/” << nc.id;

}

cout << endl;

The purpose of this code example was to describe the basic ODM function-
ality. MICOSec does not come with an explicit ODM example, because
Sections 6.5 and 6.6 already demonstrate the use of the MICOSec ODM in

the context of level 2 access control and audit.

6.4.7 Per-Object Granularity

In some cases, per-object granularitcy ODM is required to express specific
security policies for individual objects. However, persistent mapping at the
level of object instances cannot be achieved elegantly, because CORBA does
not assign persistent names to objects. Therefore, it is preferable for most
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real-world applications to instead match the POA hierarchy with the
required granularity.

If per-object granularity is needed, then substantial modifications to
the application source code are necessary, and the IDAssignmentPolicy
of the POA needs to support the USER_ID policy, which (as opposed to the
SYSTEM_ID policy) allows applications to set their own object identifier in
the IOR themselves.

To configure per-object granularity ODM, the object identifier has
to be appended to the <Security Attributes, POA name> pair in
the configuration file, and a domain name needs to be specified for it. If the
mapping should be persistent, then the application-specific identifier needs
to match the identifier that has been put into the configuration file. During
the mapping process, the object identifier needs to be added to the string that
is supplied to the ODM. If no match is found, then the search is automati-
cally repeated without the object identifier (i.e., on a per-POA granularity).

6.4.8 Dynamic Configuration

The per-POA granularity example in Section 6.4.6 defined a persistent map-
ping between object and security domains in a configuration file. In some
cases, it may be necessary during the application lifetime to dynamically cre-
ate or modify the mapping or to add application-specific object identifiers
into the mapping configuration file at run-time. This section illustrates how
this is done inside the servant implementation.

First, an ODM factory for the ODM needs to be created by invoking
create on the narrowed initial reference to ODM:

CORBA: :Object var objodm =
orb-> resolve initial references (“ODM”) ;
ObjectDomainMapping: :0DM_var odm =
ObjectDomainMapping: :0DM: : narrow (objodm) ;
ObjectDomainMapping: :Factory var factory =
odm-> create() ;

Next, a child POA called “MyPOA” is created, which registers the generated
ODM factory:

PortableServer: :POA var mypoa =
poa-> create POA (“MyPOA”, mgr, pl);
mypoa->registerODMFactory (factory) ;



214 Developing Secure Distributed Systems with CORBA

Now the newly created domain manager is associated with the POA. It can
be accessed by calling get _oDM:

ObjectDomainMapping: :Manager ptr dmanager =
mypoa-> get ODM() ;

In this example, we would like to query if a domain exists in the configura-
tion file for a defined key. Later, we will show how new keys can be inserted
into the configuration. If required, a preexisting configuration file could
be read into the ODM by calling the 1oadConfigFile operation on the
ODM factory before this is done.

To ask the ODM if a domain name exists for a key, we first have to
define the key okey that has to be searched for:

string key = “[/C=UK/ST=Server
State/L=Cambridge/0O=0bjectSecurity Ltd./OU=RD/C
N=ServerTest/Email=server@test] MyPOA";
Security: :0Opaque okey;
int len = key.length() ;
okey.length(len) ;
for (int 1 = 0; 1 < len; i++)

okey[i] = keyl[i];

Once this is done, the list of domain objects can be retrieved and the domain
names can be extracted as follows:

SecurityDomain: :NameList * list =
dmanager-> get domain names (okey) ;

for (int i = 0; i < (*1list).length(); i++) {
SecurityDomain: :Name nm = (*list) [i];
for (int j = 0; j nm.length(); j++) {
SecurityDomain: :NameComponent nc = nml[j];
cout << j << " " << nc.id << endl;

}

It is also possible to define a new mapping in the configuration that involves
the following three steps. First, the new key has to be defined and stored in a
suitable variable:
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Security: :0paque okey?2;
string key2 = “[/C=UK/ST=Server
State/L=Cambridge/O=0bjectSecurity
Ltd./OU=RD/CN=ServerTest/Email=server@test]
MyPOATR"” ;
len = key2.length() ;
okey2.length(len) ;
for (int 1 = 0; 1 < len; i++)

okey2[i] = key2[i];

Next, a hierarchical domain name for the key has to be created. In this exam-
ple, the hierarchy contains only a single layer:

SecurityDomain: :NameList dl;
dl.length(1);

SecurityDomain: :NameComponent nc;

nc.id = CORBA::string dup (“New Domain”) ;
nc.kind = CORBA::string dup(“”);
SecurityDomain: :Name nm;

nm. length (1) ;

nm[0] = nc;

dl[o]

nm;
Finally, the entry has to be inserted into the mapping table by calling

set_domain name key. This operation allows the modification or com-
plete redefinition of the mapping table at run-time:

dmanager2->set_domain name_ key
((CORBA: :UShort)2, okey2, dl);

If needed, the new ODM configuration can also be stored in a file:

factory->saveConfigFile (“newconfig.cnf”) ;

6.4.9 Maodifications to the CORBA Specification

One of the goals of the ODM architecture was to keep modifications to
the existing CORBA specification as minimal as possible to fulfill CORBA’s
portability and replaceability requirements.
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Only a few modifications to the MICO ORB were necessary; in par-
ticular, two functions to the POA to allow the registration of an ODM fac-
tory with a POA and to query the ODM:

void registerODMFactory
(in ::0bjectDomainMapping: :Factory fry) ;

ObjectDomainMapping: :Manager ptr
MICOPOA: :POA impl::get ODM()

Also, an initial reference “ODM” had to be added, so that a reference to
the ODM can be obtained. This reference is necessary to allow access to the
ODM from within interceptors and servants. Without this, features like
dynamic configuration could not be implemented.

6.5 Access Control

Access control in CORBA is based on access policies that are associated with
the targets to be protected. These policies are evaluated and enforced when-
ever an invocation arrives. As part of the process, the rights required to access
the target are compared to the rights granted to the calling principal. If the
principal’s rights match the target’s required rights, then access is allowed.
Otherwise, the invocation is rejected (see Section 3.3.6 for more details).
CORBA security access control mainly involves the following objects:

e AccessDecision carries out the evaluation of the access policy.
e RequiredRights states the target access policy.

e DomainAccessPolicy contains the rights associated with calling
principals.

e DomainManager is responsible for managing this (and other) poli-
cies for a domain.

Whenever a request arrives at the target ORB, the security service
queries the DomainAccessPolicy object for the rights granted to
the CORBA principal associated with the request’s mechanism-specific
security context information. The DomainAccessPolicy for each domain
is managed by that domain’s DomainManager. The security service also
obtains the rights required to access the invoked target object type and
operation from the RequiredRights object. Based on this information,
the AccessDecision object allows access only if the principal’s access
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rights from DomainAccessPolicy are sufficient to meet the target’s
RequiredRights.

Therefore, an early version of MICOSec implemented domain-based
access control according to the CORBA security specification (see 3.3.7).
But the practical evaluation identified a number of issues: First, it was
unclear how the access control decision object could find the required rights
associated with a target object, as neither the IOR nor the interface type is
useable in practice (see 6.4.1). As a result, the domain name (which we get
from the ODM) had to be used for this purpose. In addition, it was deemed
not very intuitive to map target objects to domains, and then use these
domains to map principals to their granted rights. Target objects, their
domains, and their associated security policies are one logical unit. Also,
from a more technical perspective, the domain-based mapping of principals
to granted rights unnecessarily complicates the integration of directory serv-
ices that store user’s rights.

In MICOSec, these issues were solved by changing the access control
(nonconformant to the current specification) in such a way that the mapping
of the principal’s attributes to its granted rights is not domain based. Instead,
a principal simply has a set of granted rights to invoke operations on all
objects. On the target side, objects are mapped to domains that are associated
with the security policy to apply and with the required rights. Note that these
issues are not limited to access control; the audit service also has to find the
object’s audit policy. We will see later (in section 6.6) that the problems can
be solved there in a similar way.

The standard AccessDecision object deals with access rights on a
very coarse granularity: get, set, use, and manage are the only specified
standard rights used to describe access to particular operations. It is also
possible to define additional access rights to express more specific policies.
Figure 6.4 illustrates how the main components of the access control model
are related.

Access Control Policy

Domain Required
Access Rights
Policy 8

Request | Access [Allowed?

e Target
”| Decision ~ g

Caller

Figure 6.4 ORB layer access control.
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In MICOSec’s access control policy, the target operations to which the
policy should apply are expressed by the target’s operation name and domain
name. Domain names are supplied by the ODM, which maps the target’s
X.509 identity and POA name in the hierarchy (and maybe also its object
identifier) into its domain name. MICOSec allows for any letter of the alpha-
bet to be used as a right, with the letters “g”, “s”, “u”, and “m” representing
the standardized rights get, set, use, and manage defined in the CORBA
security services specification.

The calling principals are expressed by their X.509 identities and are
accessible through the AccessID security attribute. It is also possible to
cluster users into groups based on the organizational unit (OU) attribute of
the X.509 certificate. These groups are represented in CORBA security by
the PrimaryGroupID security attribute.

The example described in this section shows how the different opera-
tions are used to set up an ORB layer access policy from within the server.

6.5.1 Interfaces

The CORBA security services specification defines a number of types related
to access control rights (in the file Security.idl), in particular, the defi-
nition of a right, a list of rights, and the combinators applicable to rights
(union or intersection)’:

struct Right {
ExtensibleFamily rights family;
string rights list;

}i
typedef sequence <Right> RightsList;

enum RightsCombinator {
SecAllRights,
SecAnyRight

Vi

The interfaces for RequiredRights and AccessDecision are
described in the file SecurityLevel2.idl. The RequiredRights
interface contains operations to get and set the specific rights required to
access a particular target operation:

5. In the current CORBA security services specification, this is called right, but the new
CORBA 2.4 IDL does not support this anymore. Therefore, the name was changed to
rights_list. Note that this is a MICOSec-specific modification to the specification.
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interface RequiredRights({
void get required rights(
in Object obj,
in CORBA::Identifier operation name,
in CORBA: :RepositoryId interface name,
out Security::RightsList rights,
out Security::RightsCombinator rights combinator

)i

void set required rights(
in CORBA: :Identifier operation name,
in CORBA: :RepositoryId interface name,
in Security::RightsList rights,
in Security::RightsCombinator rights combinator
)i
}i

The AccessDecision interface is called during the access control enforce-
ment to check if the access is allowed or not, depending on the Creden-
tials of the caller, the target object, operation, and interface name:

interface AccessDecision { // Locality Constrained

boolean access allowed (
in SecurityLevel2::CredentialsList cred list,
in Object target,
in CORBA: :Identifier operation name,
in CORBA::Identifier target interface name
)i
}i

The AccessPolicy interface is described in SecurityAdmin.idl. It is
the root interface for the various kinds of invocation access control policies.
It contains operations to obtain the rights that have been granted to a speci-
fied principal:

interface AccessPolicy : CORBA::Policy ({

Security::RightsList get effective rights (
in Security::Attributelist attrib list,
in Security::ExtensibleFamily rights family

)i
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Security::RightsList get all effective rights(
in Security::AttributelList attrib list
)i
}i

The interface DomainAccessPolicy inherits from AccessPolicy and
provides discretionary access policy management semantics. It has operations
to grant, revoke, replace, and get rights for a particular principal:

interface DomainAccessPolicy : AccessPolicy {
void grant rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del_ state,
in Security::RightsList rights
) ;

void revoke rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del state,
in Security::RightsList rights

)

void replace rights (
in Security::SecAttribute priv_attr,
in Security::DelegationState del state,
in Security::RightsList rights

)

Security::RightsList get rights (

in Security::SecAttribute priv_attr,

in Security::DelegationState del state,

in Security::ExtensibleFamily rights family
)

Security::RightsList get all rights(
in Security::SecAttribute priv_attr,
in Security::DelegationState del state
)

6.52 The Bank Example

The access control example consists of the usual bank account application,
which contains the Account interface (with the usual operations deposit,
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withdraw, and balance) and the Bank interface (with two operations
create and open). In this example, all level 2 access control functionality is
configured from within the server and enforced automatically on the ORB
layer. The client applications do not contain any access control functionality;
their only purpose is to trigger the access control enforcement on the tar-
get side.

The example involves three client principals and two target objects with five
operations. Each principal has different access rights for each target operation:

e Manager: The manager of the application can create bank accounts.
To do that, the manager is granted the manage right. The example
comes with one certificate for the manager.

o Owner/Wife: The owner and his wife are users of the bank account
application. They require the use and get rights to open accounts,
deposit/withdraw money, and query the balance. The example
comes with certificates for both principals, which should both also
belong to the same PrimaryGroupID “family”.

The target host is also expressed by a certificate.

On the target host, the ODM groups Bank objects into the domain
“bank” and Account objects into the domain “accounts.” In this example,
it is pure coincidence that objects are grouped into domains depending on
their type. Normally, domains and the types of their member objects are not
related.

Table 6.1 shows which rights are granted to the manager and
owner/wife principal identities and through which standard CORBA secu-
rity attributes they can be accessed.

Table 6.2 summarizes the content of the target-side access control poli-
cies. It states which access rights should be required, depending on the
domain name, interface type, and operation name.

6.5.3 Building and Running the Example

The level 2 access control example is compiled by using the Makefile in
the MICOSec subdirectory /demo/security/acl-aware. This directory
also contains the X.509 certificates for the three principals (manager . pem,
owner .pem, and wife.pem) and other configuration files.

The target application is started by executing the shell script rss. It
contains command line arguments to set up MICOSec for the example. The
first arguments bootstrap SSL, using the server X.509 certificate, and the
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Table 6.1
Granted Rights
Security Attribute Attribute Value (ldentities)  Granted Right
AccessID Manager Manage
PrimaryGrouplID “family” Owner and wife Use
Table 6.2
Required Rights
Type/Domain (Policy Required Rights (Rights
Combinator union) Interface Operation Combinator any)
/Access/Bank Bank create Manage
/Access/Bank Bank open Use, get
/Access/Accounts Account deposit Use, set
/Access/Accounts Account withdraw Use, get
/Access/Accounts Account balance Use

server key. Then the parameters for the MICOSec audit service are provided:
the ODM configuration file that contains the audit domain information, the
audit filter configuration file, the type of audit channel (plain text file), and
the name of the log file. Note that no specific command line arguments for
access control are supplied; all of the access control functionality is instead set
from within the server to demonstrate the use of the level 2 interfaces:

. /server

-ORBIIOPAddr ssl:inet:’uname -n’:12466
-ORBSSLcert ServerCert.pem
-ORBSSLkey ServerKey.pem
-ORBSSLverify 0

-ODMConfig config.cnf
-AuditConfig audit.cnf
-AuditType file
-AuditArchName server.log
-AccessControl on
-Paranoid yes

Server shell script
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Once the server is running, the client shell script rcs can be executed.
It starts three different client applications in turn to demonstrate the access
control enforcement for all three principals. First, the client application is
executed with the X.509 certificate of the manager and the SSL private key.
Note that in our simplified example, all principals will use the same SSL pri-
vate key (key.pem)—in a real-world application, clients would, of course,
have separate keys to protect them from one another. The manager’s c1i-
ent application invokes the operations create, deposit, withdraw, and
balance.

Then the client2 application is launched twice, once with the X.509
certificate of the owner and once with the X.509 certificate of the wife.
Both times, it invokes the operations open, deposit, withdraw, and
balance.

This is the client shell script:

#!/bin/sh
ADDR=gsl:inet:’uname -n’:12456

echo “Manager”

./client

-ORBBindAddr $ADDR
-ORBSSLcert manager.pem
-ORBSSLkey key.pem
-ORBSSLverify 0

echo “Owner”
./client2

-ORBBindAddr $ADDR
-ORBSSLcert owner.pem
-ORBSSLkey key.pem
-ORBSSLverify 0

echo “Wife”
./client2
-ORBBindAddr $SADDR
-ORBSSLcert wife.pem
-ORBSSLkey key.pem
-ORBSSLverify 0

Client shell script
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When executed, both the client and target applications produce con-
sole output to illustrate how the access control policy is enforced. On the
client side, we get the following output, which shows that the policy was
enforced correctly: The manager can create accounts, but not deposit/
withdraw or check the balance; the owner and wife can open accounts,
deposit/withdraw, and query the balance. Note that there is no relation
between creating and opening accounts because accounts are not persistent
in this simplified application scenario. The difference is only symbolic to
demonstrate how security policies for different operations can be enforced:

Manager

Manager started
Manager: Account OK
Couldn’t deposit!
Couldn’t withdraw!
Couldn’t get balance!
Balance is -1.
Owner

Owner/Wife started
Balance is 250.
Wife

Owner/Wife started
Balance is 250.

The target-side output shows the result of each access control policy evalua-
tion. Whether access is granted or not depends on the invoked interface and
operation, and matches with the policy described previously:

Running.

server: after unmarshal for: create
RepoId=IDL:Bank:1.0

+++ allowed! +++

server: after unmarshal for: deposit
RepoId=IDL:Account:1.0

—- denied! —-

server: after unmarshal for: withdraw
RepoId=IDL:Account:1.0

—- denied! —-

server: after unmarshal for: balance
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RepoId=IDL:Account:1.0

—- denied! —-

server: after unmarshal for: open
RepoId=IDL:Bank:1.0

+++ allowed! +++

server: after unmarshal for: deposit
RepoId=IDL:Account:1.0

+++ allowed! +++

server: after unmarshal for: withdraw
RepoId=IDL:Account:1.0

+++ allowed! +++

server: after unmarshal for: balance
RepoId=IDL:Account:1.0

+++ allowed! +++

server: after unmarshal for: open
RepoId=IDL:Bank:1.0

+++ allowed! +++

server: after unmarshal for: deposit
RepoId=IDL:Account:1.0

+++ allowed! +++

server: after unmarshal for: withdraw
RepoId=IDL:Account:1.0

+++ allowed! +++

server: after unmarshal for: balance
RepoId=IDL:Account:1.0

+++ allowed! +++

6.5.4 The Target

The file server. cc contains the Bank servant and server implementation.
Access control can be evaluated and enforced on the application layer or
on the ORB layer. Application-layer access control involves the evaluation of
security attributes (provided either by MICOSec or the application itself),
and the enforcement of a specific access policy within the application.
Application-layer access control will not be explicitly covered because it only
involves using the Current /SecurityManager objects to obtain security
attributes, which has already been described in detail in Section 6.3. This
example illustrates MICOSec’s automatic access control enforcement at the
ORB layer and, as a consequence, the servant implementation does not con-
tain any security-relevant code.
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The ORB layer access control policy can be configured either from the
application layer (i.e., from within the server implementation) or transpar-
ently from outside the object system by supplying command-line arguments
and configuration files. The server implementation of this example illustrates
how the ORB layer access control is configured from the application layer,
using the level 2 security interfaces.

6.5.4.1 The Servant

As with other examples in this book, the servant contains the implementa-
tion of the Bank factory that creates Account objects, which contain opera-
tions to deposit and withdraw money and to query the balance. The
first part of the servant implementation does not contain any security-related
modifications:

#include <fstream.h>
#include “account.h”

class Account impl : virtual public POA Account
{
public:

Account_impl () ;

void deposit (CORBA: :ULong) ;
void withdraw (CORBA: :ULong) ;
CORBA: :Long balance () ;

private:
CORBA: :Long bal;

}i

Account_impl::Account impl ()
{
bal = 0;
}
void
Account impl::deposit (CORBA::ULong amount)

{

bal += amount;
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void
Account impl::withdraw (CORBA::ULong amount)

{

bal -= amount;

CORBA: : Long
Account impl::balance ()

{

return bal;

The implementation of the Bank object varies slightly from the examples
described so far to make use of MICOSec’s ODM feature. To use ODM for
domain name-based access control, the factory has to register the created
Accounts with a different POA in the POA hierarchy. This POA name
is then mapped to a domain name by the ODM. The required domain for
newly created account objects can be specified by passing the POA associated
with the domain name as a parameter to the Bank when it is instantiated.

class Bank impl : virtual public POA Bank

{
public:
Bank impl (){};
Bank impl (PortableServer::POA ptr);
Account_ptr create ();
Account ptr open ();
private:
PortableServer: :POA var localpoa;

}i

The POA reference that has been passed into the Bank during instantiation
is now duplicated and made available through the variable 1ocalpoa:

Bank impl::Bank impl (PortableServer::POA ptr poa)
{

localpoa = PortableServer::POA:: duplicate (_poa) ;

}
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The create operation creates a new Account object and registers it with
the POA associated with the domain. It then returns a pointer for the created
account to the caller:

Account ptr
Bank impl::create ()

{

Account impl * ai = new Account impl;

PortableServer: :0bjectId var oid =
localpoa->activate object (ai);

CORBA: :Object var ref =
localpoa->id to reference (oid.in());

Account ptr aref = Account:: narrow(ref) ;

return aref;

In this example, the bank also provides another operation, open, which
has exactly the same functionality as create. It has been added to dem-
onstrate how several different operations on the Bank objects can require
different access rights. In our example, create will be treated as a
function that allows the manager to symbolically open an account for a
client (and thus requires manage rights), whereas open is reserved for the
owner of the account to open a new account (and needs use and get

rights).

Account_ptr
Bank impl::open ()
{
Account impl * ai = new Account impl;
PortableServer: :0bjectId var oid =
localpoa->activate object (ai);
CORBA: :Object_var ref =
localpoa->id _to reference (oid.in());
Account_ptr aref = Account:: narrow(ref) ;
return aref;
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6.5.4.2 The Server

The main task of the example server is to set up MICOSec’s access control
functionality. This includes setting up the POA hierarchy to express the
required domains. Then the object domain mapping table is configured
based on the POA hierarchy, and a corresponding domain manager hierar-
chy is created. The domain manager at each node holds the policies applica-
ble to the domain, in this case, the access policy. This access policy can be set
with the required rights for each domain. Finally, access rights are granted to
the principals by adding them to the associated SecurityManager.

We will now examine the code in more detail. As a first step, the server
code initializes the ORB and gets a reference to the Root POA. The Root -
POA will not contain any objects; it just serves as a root to a tree that contains
the POAs associated with the domains:

int
main (int argc, char *argv([])
{
CORBA: :ORB_var orb = CORBA::ORB init (argc, argv);
CORBA: :Object var poaobj =
orb->resolve initial references (“RootPOA”) ;
PortableServer: :POA var poa =
PortableServer::POA:: narrow (poaobj) ;
PortableServer: :POAManager var mgr =
poa->the POAManager () ;

Then it gets initial reference to the ODM and narrows it to the pointer odm.
This reference is used to create an ODM factory:

CORBA: :Object var objodm =

orb->resolve initial references (“ODM”) ;
ObjectDomainMapping: :ODM_var

odm = ObjectDomainMapping: :0DM: : narrow (objodm) ;
ObjectDomainMapping: :Factory var

factory = odm->create() ;

The example now loads the configuration file into the ODM factory. If the
value NULL is supplied, then the file name from the command line argu-
ments is used. In this example, the configuration file only contains domain
mappings for security auditing; all access domain mappings are commented
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out. Instead, the ODM for access control will be set manually, which illus-
trates better how access policy mappings can be set from within the server:

CORBA: :Boolean res = factory->loadConfigFile (NULL) ;

6.5.4.3 POA Hierarchy

The first step involves setting up a POA hierarchy that reflects the domain
names. For this purpose, two other POAs—BankPOA and Account POA—
are created with (empty) default policies. These POAs will be used to
describe the domains for Bank and Account objects (the Root POA will not
contain any objects). The BankPOA contains the Bank objects, the factory
for Account objects. The Account POA contains the Account objects pro-
duced by the Bank object:

CORBA: :PolicyList pl;
pl.length(0) ;

PortableServer: :POA var bankpoa =
poa->create POA (“BankPOA”, mgr, pl);

PortableServer: :POA var accountpoa =
poa->create POA (“AccountPOA”, mgr, pl);

To make use of the POA hierarchy for the ODM, all three POAs now have
to be registered with the ODM factory:

poa->registerODMFactory (factory) ;
bankpoa->registerODMFactory (factory) ;
accountpoa->registerODMFactory (factory) ;

6.5.4.4 Object Domain Mapping

The second step configures the object domain mapping. In this example, the
ODM is set manually from within the server. First, we get a pointer to
the ODM manager, which is used to configure the individual mappings
from the X.509 identity of the server host and the full POA names to domain
names:

ObjectDomainMapping: :Manager ptr dmanagerl =
poa->get ODM() ;
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Default

We start by configuring the default mapping to the domain Access. All tar-
get objects that are not explicitly in another domain are automatically put
into the Access domain. This involves a number of steps: First, the key has
to be defined as a string and copied to an Opaque data type:

Security: :0Opaque okey?2;

string key2 = “[/C=UK/ST=Server
State/L=Cambridge/0O=0bjectSecurity Ltd.
/OU=RD/CN=Server Test/Email=server@test]”;

int len = key2.length() ;

okey2.length(len) ;

for (int i = 0; i len; i++)
okey2[i] = key2[i];

Then, a security domain list with only a single list item has to be defined and
populated with a name component.

SecurityDomain: :NameList dl;
dl.length(1);

The NameComponent is set to have the name “Access” and the type
“Access.” Note that the type (kind) of the NameComponent must be set to
the function the security domain is used for. In this case, it is set to the type
“Access” because it is used as an access control domain.

SecurityDomain: :NameComponent nc;
nc.id = CORBA::string dup (“Access”) ;
nc.kind = CORBA::string dup (“Access”) ;
SecurityDomain: :Name nm;

nm.length (1) ;

nm([0] = nc;

Once the name component has been defined, it is put into the domain name
list that was previously set up:

dl[0] = nm;
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Finally, the mapping can be added to the ODM manager. The level of
granularity is set to be “1” (i.e., the default (lowest) level of granularity).

dmanagerl->
set domain name key ((CORBA: :UShort)1l, okey2, dl);

Bank

Now we can set the mapping for the “Bank” domain. It maps the key <server
host X.509 identity, /RootPOA/BankPOA/> to the domain “/Access/Bank”
(i.e., the domain “Bank” used for access control). In this example, ODM
maps at a per-POA granularity, so all objects within the scope of “/Root-
POA/BankPOA” will be in the domain “/Access/Bank”. Again, we first
define the key for the mapping:

Security: :0paque okey3;

string key3 = “[/C=UK/ST=Server
State/L=Cambridge/O=0bjectSecurity Ltd.
/OU=RD/CN=Server
Test/Email=server@test] /Root POA/BankPOA” ;

int len3 = key3.length() ;

okey3.length(len3) ;

for (int i = 0; i < len3; i++)
okey3[i] = key3I[i];

SecurityDomain: :NameList dl3;

dl3.length(1) ;

Then we define a single domain list with a domain name that consists of two
<« » « »
name components, “Access” and “Bank”:

SecurityDomain: :NameComponent nc3;
nc3.id = CORBA::string dup (“Access”) ;
nc3.kind = CORBA::string dup (“Access”) ;
SecurityDomain: :Name nm3;
nm3.length(2) ;

nm3 [0] = nc3;

nc3.id = CORBA::string dup (“Bank”) ;
nc3.kind = CORBA::string dup (“Access”) ;
nm3 [1] = nc3;

dl3[0] = nm3;
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Then, we set the mapping of this key to the domain name at the medium
granularity level “2” (i.e., per-POA granularity):

dmanagerl->
set domain name key ((CORBA: :UShort)2, okey3, dl3);

Account

Setting the mapping for the Account objects is done in a similar fashion. All
Account objects will be held within the scope of the “AccountPOA” and
will be mapped onto the domain “Accounts” of type “Access.”

Security: :0Opaque okevy4;

string key4 = “[/C=UK/ST=Server
State/L=Cambridge/0=0bjectSecurity Ltd.
/OU=RD/CN=Server
Test/Email=server@test] /RootPOA/AccountPOA” ;

int len4 = key4.length();

okey4.length(len4) ;

for (int i1 = 0; i < len4; i++)
okey4 [i] = key4[i];

SecurityDomain: :NameList dl4;

dl4.length(1) ;

SecurityDomain: :NameComponent nc4;
nc4.id = CORBA::string dup (“Access”) ;
nc4.kind = CORBA::string dup (“Access”) ;
SecurityDomain: :Name nm4;
nm4 . length(2) ;
nm4 [0] = nc3;
nc4.id = CORBA::string dup (“Accounts”) ;
nc4.kind = CORBA::string dup (“Access”) ;
nm4 [1] = nc3;
dl4a [0] = nm3;
dmanagerl->

set _domain name key ( (CORBA::UShort)2, okey4, dl4);

Finally, the ODM mapping is saved into an ODM configuration file
ODM. map. This way, the configuration is made persistent for future use.

factory->saveConfigFile (“ODM.map”) ;
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6.5.45 Domain Manager's Hierarchy

In step three, we have to create a hierarchy of DomainManager objects that
matches the POA hierarchy. For demonstration purposes, we separate this
process from the previous one (i.e., we define all the domain names again
as they are needed). It would also be possible to reuse the domain names
defined above, but this way it becomes clearer which variables are used in
what context.

To begin, we get an initial reference for the DomainManagerFac-
tory and narrow it to factobj. It will be used to create the individual
DomainManager objects:

CORBA: :Object var factobj =
orb-> resolve initial references
(“DomainManagerFactory”) ;
SecurityDomain: :DomainManagerFactory var dmfactory =
SecurityDomain: :DomainManagerFactory: :
_narrow (factobj) ;

Default

We first define a root DomainManager dmroot of type “Access” for the
default root domain and cast it to the correct type:

dmfactory-add root domain manager (“Access”) ;
SecurityDomain: :DomainManagerAdmin ptr dmroot =
dmfactory->get root domain manager (“Access”) ;
SecurityDomain: :DomainAuthorityAdmin ptr daaroot =
SecurityDomain: :DomainAuthorityAdmin: :
_narrow (dmroot) ;

Bank

Now we have to create a DomainManager for the second level domain
“Bank” of the type “Access™:

SecurityDomain: :DomainManagerAdmin ptr ndo =
dmfactory->create domain manager () ;

Then a domain name “Bank” (with type “Access”) is defined and added to
the DomainManager:
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SecurityDomain: :Name first;

first.length (1) ;

first[0] .id = CORBA::string dup (“Bank”) ;
first[0] .kind = CORBA::string dup (“Access”) ;

daaroot->add domain manager (ndo, first);

Account

The same has to be done for the “Accounts” domain (type “Access”):

SecurityDomain: :DomainManagerAdmin ptr ndol =
dmfactory->create domain manager () ;

SecurityDomain: :Name second;

second. length (1) ;

second [0] .id = CORBA::string dup (“Accounts”) ;

second [0] .kind = CORBA: :string dup (“Access”) ;

daaroot->add _domain manager (ndol, second) ;

6.5.4.6 Required Rights

Step four involves setting the rights required to access the target objects.
Although MICOSec supports the use of any single alphabetic characters
as an access right, this example only uses the standardized four rights get g,
set s, use u, and manage m.

Default

The default domain “Access” should automatically apply to any target object
on the specified host that is not covered by any of the other, more specific
domains (i.e., “Bank” or “Accounts”). In this example (as well as in most
real-world application scenarios), objects in the default domain do not
require any specific rights.

Bank

Target objects in the “Bank” access control domain should require specific
access rights. “Access” is the root of the access control domain hierarchy, so
we have to look for this domain. The domain name and the length have to be
defined relative to that root. The name variable is then filled with the domain
name specified in the variable £irst, which has been previously defined for
the “Bank” DomainManager:
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SecurityDomain: :Name fullnameBank;
fullnameBank.length (1) ;
fullnameBank [0] = first[0];

Then we get the DomainManager for the defined full name of the “Bank”
domain and narrow it to dmath for further use:

SecurityDomain: :DomainManagerAdmin ptr dm =
daaroot->get domain manager (fullnameBank) ;

SecurityDomain: :DomainAuthorityAdmin ptr dmath =
SecurityDomain: :DomainAuthorityAdmin: : narrow (dm) ;

Setting the actual policy for the “Bank” domain involves a number of
steps. First, we have to call the DomainManager associated with the “Bank”
domain to get a reference to the SecTargetInvocationAccess policy

that should be set:

CORBA: :Policy ptr po =
dmath-> get domain policy
(Security: :SecTargetInvocationAccess) ;
SecurityAdmin: :0ObjectAccessPolicy var polBank =
SecurityAdmin: :ObjectAccessPolicy:: narrow (po) ;

We would like to define that the standard manage right m is required to access
the operation create on the Bank interface. Before that can be done, a rights
list with a single list item has to be defined and filled with the manage m right:

Security::RightsList rlistl;

rlistl.length(1);

Security::Right rightl;

rightl.rights family.family definer = 0; // OMG
rightl.rights family.family = 1; // corba

rightl.rights list = CORBA::string dup(“m”) ;
rlistl1[0] = rightl;

Finally, the required right for this operation is set by invoking the operation
set_required rights on the SecTargetInvocationAccess policy
object:
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polBank->set required rights(“create”,
“IDL:Bank:1.0”, rlistl, Security::SecAnyRight) ;

Next, we do the same for the open operation on the Bank interface, but this
time we specify that either use u or get g are required. SecAnyRight states
that any one of the rights is sufficient (union), whereas SecA11Rights
states that all of the specified rights are required (intersection). We chose the
union combinatory.

Security::RightsList rlistl2;
rlistl2.length(2);

rlistl12[0] = rightl;
rlistl2[1] = rightl;
rlist12[0] .rights list = CORBA::string dup(“u”) ;
rlistl2([1] .rights list = CORBA::string dup(“g”) ;

polBank->set required rights (“open”,
“IDL:Bank:1.0”, rlistl2, Security::SecAnyRight) ;

To make this new policy effective, it needs to be fed back into the Domain-
Manager of the “Bank” domain:

dmath->set domain policy (polBank) ;

We also have to tell the DomainManager how this policy should be
combined with other policies. The current version of MICOSec supports the
Union policy combinator, which collects all policies from the domain hierarchy
to the root, and the FirstFit combinator, which applies the first policy (of the
type “access”) found in the hierarchy. We chose the union combinatory.

dmath->set policy combinator
(Security: :SecTargetInvocationAccess,
SecurityDomain: :Union) ;

Accounts

The required access rights for the “Accounts” domain are set in the same
way. Again, we first define its name relative to the root, using the second
domain name already defined. Then we get a reference to the domain manager
and retrieve a reference to the SecTarget InvocationAccess policy:
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SecurityDomain: :Name fullnameAccounts;
fullnameAccounts.length(1) ;
fullnameAccounts [0] = second[0];

SecurityDomain: :DomainManagerAdmin ptr dm2 =
daaroot->get domain manager (fullnameAccounts) ;
SecurityDomain: :DomainAuthorityAdmin ptr dmath2 =

SecurityDomain: :DomainAuthorityAdmin: : narrow(dm2) ;
CORBA: :Policy ptr po2 = dmath->get domain policy

(Security: :SecTargetInvocationAccess) ;
SecurityAdmin: :0ObjectAccessPolicy ptr polAccounts =

SecurityAdmin: :ObjectAccessPolicy:: narrow (po2) ;

Then we set the required rights for the deposit operation on the Account
interface. We specify a right that contains use and set, and set this right in
the access policy. The combinator is set such that either use or set will be
sufficient to access the operation:

Security::RightsList rlist2;

rlist2.length(2) ;

Security::Right right21;

right2l.rights family.family definer = 0; // OMG

right21.rights family.family = 1; // corba
rlist2[0] = right21;
rlist2 = right21;

[1]

rlist2[0] .rights list = CORBA::string dup(“u”) ;

rlist2[1] .rights list CORBA: :string dup(“s”);

polAccounts->set required rights(“deposit”,
“IDL:Account:1.0”, rlist2, Security::SecAnyRight) ;

Access to the balance operation should require the use right:

Security::RightsList rlist3;

rlist3.length (1) ;

rlist3[0] = rightl;

rlist3[0] .rights list = CORBA::string dup(“u”);

polAccounts->set required rights(“balance ”,
“IDL:Account:1.0”, rlist3, Security::SecAnyRight) ;
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To withdraw money, either use or get rights should be required:

rlist2[0] = rightl;
rlist2[1] = rightl;
rlist2[0] .rights list = CORBA::string dup(“u”) ;
rlist2[1] .rights list = CORBA::string dup(“g”) ;

polAccounts->set required rights (“withdraw ”,
“IDL:Account:1.0”, rlist2, Security::SecAnyRight) ;

Now the generated policy can be passed to MICOSec as follows:

dmath2->set domain policy(polAccounts) ;

dmath2->set policy combinator
(Security: :SecTargetInvocationAccess,
SecurityDomain: :Union) ;

6.5.4.7 Rights Granted to Principals

In this final step, rights have to be granted to the principals involved in this
example application. The list of rights granted to all principals is kept in
the SecurityManager object, so we first need to obtain a reference to the
SecurityManager from the ORB:

CORBA: :Object var objsecman =
orb-> resolve _initial references
(“SecurityManager”) ;
SecurityLevel2::SecurityManager var secman =
SecurityLevel2: :SecurityManager: :
_narrow (objsecman) ;

Then we get a reference to the access rights list associated with this
SecurityManager

SecurityLevel2: :AccessRights ptr ar =
secman->access_rights() ;

This list of access rights specifies the rights that have been granted to each
principal. In the access control model, principals are expressed by their
AccessID attribute, and so the access rights have to be associated with the
principal’s AccessID. In MICOSec, the AccessID contains the X.509
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distinguished name of the principal. It is also possible to express groups
of principals by using the X.509 OU identity. Such group identities can be
accessed through the PrimaryGroupId attribute.

Manager

In order to be able to grant access rights to the manager, we need to specify
the manager’s AccessID security attribute. In MICOSec, this is done as fol-
lows. First, we define the manager’s X.509 identity as string and copy it to
the attribute value of type opaque:

int i;

Security::SecAttribute attrl; // manager

attrl.attribute type.attribute family.family definer
= 0;

attrl.attribute type.attribute family.family = 1;

attrl.attribute type.attribute type =
Security: :AccessId;

string str = “/C=UK/ST=State/L=Cambridge/
O=0bjectSecurity Ltd./OU=Section/CN=Manager
/Email=manager@ObjectSecurity.com” ;

len = str.length();

attrl.value.length(len + 1);

for (1 = 0; 1 < len; 1++)
attrl.value[i] = str[i];

attrl.value[len] = 0;

We also have to create a rights list with a single item, the manage right:

Security::RightsList rlistll;
Security::Right right2;

rlistll.length(1); // Manager
right2.rights family.family definer = 0; // OMG
right2.rights family.family = 1; // corba
right2.rights list = CORBA::string dup(“m”) ;
rlistl11[0] = rightl;

Finally, we can grant the manage right to the principal “manager”:
y g ge rig p p g

ar->grant rights
(attrl, Security::SecInitiator, rlistll);
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Owner and Wife

The principals “owner” and his “wife” should both belong to the same group
“family,” which contains the group’s X.509 OU attribute. By using the
X.509 OU attribute instead of the X.509 principal identity, it is possible to
have separate principal identities for “owner” and “wife,” but, at the same
time, associate them with a common PrimaryGroupId “family.”

Security::SecAttribute attr2;

First, we define the group “family”:

attr2.attribute type.attribute family.family definer
= 0;

attr2.attribute type.attribute family.family = 1;

attr2.attribute type.attribute type =
Security: :PrimaryGroupld;

str = “family”;

len = str.length();

attr2.value.length(len + 1) ;

for (i = 0; i < len; i++)
attr2.value[i] = str[i];
attr2.valuel[len] = 0;

Security::RightsList rlist22;
Then we specify a standard right use:

rlist22.length(1) ;
right2.rights family.family definer = 0; // OMG

right2.rights family.family = 1; // corba
right2.rights list = CORBA::string dup (“u”) ;
rlist22[0] = right2;

Finally, we can associate the specified use right with the defined group
“family”:

ar->grant rights
(attr2, Security::SecInitiator, rlist22);
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After running through the five steps the ODM, the required rights of
the domains, and the granted rights to the principals are set. Now both the
ODM and access control will be automatically enforced by MICOSec when-
ever an invocation arrives.

The rest of the server code has not been modified. It creates a Bank
object, activates it, and writes the reference into a file called Bank.ref.
After that, the POA and ORB are activated and start serving requests. As
usual for servers, the shutdown operation at the end is never reached.

Bank impl * micocash =
new Bank impl (accountpoa) ;

PortableServer: :0bjectId var oid =
bankpoa->activate object (micocash);

ofstream of (“Bank.ref”);

CORBA: :Object var ref =
bankpoa->id to reference (oid.in());

CORBA: :String var strn =
orb->object to string (ref.in());

of << strn.in() << endl;

of .close () ;

printf (“Running.\n”)

mgr->activate () ;
orb->run() ;

bankpoa->destroy (TRUE, TRUE) ;
delete micocash;
return 0O;

6.5.5 Client-Side Code Example

In this example (and most real-world applications), the access control is only
enforced at the target side, and so the client application is not concerned
with security. The only difference to the client applications previously
described is that now the client has to be able to handle frequent exceptions
passed back from the target whenever a request gets rejected by the access
control system. The modified client application in this example simply
catches such exceptions and continues. If the client were not modified to
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catch this exception, then it would crash every time a request is rejected by
the target security system.

The example uses two client applications, one for the manager (c1i-
ent . cc) and one for the owner and his wife (c1ient2.cc). We will briefly
discuss each in turn.

6.5.5.1 Manager Client
The client application (client.cc) is used by the manager. It is supplied

with the manager’s X.509 certificate at the command line specified in the cli-
ent shell script. The application code first initializes its underlying ORB:

#include “account.h”

#ifdef HAVE UNISTD H
#include <unistd.h>
#endif

int
main (int argc, char *argv([])

{

cout << "“Manager started” << endl;
CORBA: :ORB_var orb = CORBA::O0RB init (argc, argv);

Then it loads the IOR of the Bank target application, which was saved into
the file Bank . ref (in the local directory) by the server:

char pwd[256], uri[300], uri2[300];
sprintf
(uri, “file://%s/Bank.ref”, getcwd(pwd, 256));

It converts this reference into an IOR object, narrows it, and tries to connect
to the Bank target. The application exits if the connect is unsuccessful, oth-
erwise it continues:

CORBA: :Object var obj = orb->string to object (uri);
Bank var bank = Bank:: narrow (obj);

if (CORBA::is nil (bank)) {
printf (“oops: could not locate Bank\n”) ;
exit (1);
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Now the manager can create an account by calling the create operation on
the Bank. The create operation can only be accessed by managers and,
thus, requires the manage m right. Again, the application exits if the account
creation was unsuccessful; otherwise, it continues:

Account_var account;

try {
account = bank->create ();
} catch (...) {

cout << “Couldn’t create an account!” << endl;

}

if (CORBA::is nil (account)) ({
printf (“oops: account is nil\n”);
exit (1);

}

cout << "“Manager: Account OK\n" ;

Now we can deposit and withdraw some money and query the balance. The
application has to catch all exceptions raised by the invocation to make sure
that the client does not crash if an invocation gets rejected by the server-side
access control enforcement system.

try {
account->deposit (700);
} catch (...) {

cout << “Couldn’t deposit!” << endl;

}

try {
account->withdraw (450) ;
} catch (...) {

cout << “Couldn’t withdraw!” << endl;

}

CORBA: :Long bal = -1;
try {

bal = account->balance () ;
} catch (...) {

cout << “Couldn’t get balance!” << endl;
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printf (“Balance is %1d.\n”, bal);
return 0;

6.5.5.2 Owner and Wife Client

The second client application (client2.cc) is run twice by the client shell
script. The first time it is supplied with the owner’s X.509 certificate, while
the wife’s certificate is used the second time. The code is almost identical to
the previous client application; the only difference is that other operations
are invoked this time.

#include “account.h”

#ifdef HAVE UNISTD H
#include <unistd.h>
#endif

int
main (int argc, char *argvl([])

{
cout << “Owner/Wife started” << endl;
CORBA: :ORB _var orb = CORBA::ORB init (argc, argv);
This application also loads the IOR of the Bank target application:
char pwd[256], uri[300];
sprintf
(uri, “file://%s/Bank.ref”, getcwd(pwd, 256));

It connects to the Bank target as follows:

CORBA: :Object var obj = orb->string to object (uri);
Bank_var bank = Bank:: narrow (obj);

if (CORBA::is nil (bank)) {
printf (“oops: could not locate Bank\n”) ;
exit (1) ;
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Then it tries to open an account, using the open operation on Bank instead
of the create operation that was used in the previous client application. In
this example, the only difference to the create operation is that it requires
different access rights. The open operation can be accessed by principals

who posses the use and get rights, while manage is required to invoke
create.

Account_ var account;

try {
account = bank-sopen () ;
} catch (...) {
cout << “Couldn’t open an account!” ,<< endl;

if (CORBA::is nil (account)) {
printf (“oops: account is nil\n”);
exit (1) ;

Finally, it also tries to deposit and withdraw some money and query the
balance:

try {
account->deposit (700) ;
} catch (...) {

cout << “Couldn’t deposit!” << endl;

}

try {
account->withdraw (450) ;
} catch (...) {

cout << “Couldn’t withdraw!” << endl;

printf (“Balance is %1d.\n”, account-sbalance ());

return 0;
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6.6 Security Auditing

Security auditing makes users accountable for security-related actions and,
thus, assists in the detection of actual or attempted security violations. This is
achieved by recording details of security-relevant events in the system, such
as principal authentication or object invocations. Security administrators can
specify audit policies that describe which events should be audited and under
which circumstances.

The CORBA security services specification conceptually separates secu-
rity auditing from its nonrepudiation functionality, which is used at the
application layer to create irrefutable evidence of the delivery or receipt of an
invocation. Nonrepudiation evidence gets cryptographically linked to the
principal identity when it is generated. Note that nonrepudiation is not part
of level 2 security; instead, the specification describes it as an optional secu-
rity facility. It will, therefore, not be covered at this point.

From a more technical perspective, auditing is not only useful for
logging security relevant events but can also be used for debugging complex
distributed systems as it produces a trail of all object invocations.

MICOSec’s security auditing component supports selective auditing
to three different audit storages: the standard Unix logging mechanism sys-
log, a flat file, and an SQL database (PostgresQL). The generation of
audit log entries is always done automatically at the ORB layer. The audit
storage can be set either from the command line for security-unaware appli-
cations or through the level 2 audit interfaces for security-aware applications.
Audit policies can only be set through the level 2 audit interfaces, from either
the application or a security management tool. This section only covers the
use of MICOSec’s auditing functionality from the application layer—the use
for security-unaware applications will be discussed in Chapter 7.

6.6.1 Audit Interfaces

The CORBA security auditing functionality mainly resides in the locally
constrained objects AuditDecision and AuditChannel.

AuditDecision can be used to find out if an audit log should be
created for a particular event. Internally, AuditDecision uses the infor-
mation from the AuditPolicy to reach its decision. It also contains
information about its associated audit storage, which is encapsulated in the
AuditChannel object. The IDL interface for AuditDecision looks as
follows:
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interface AuditDecision { // Locality Constrained
boolean audit needed (
in Security::AuditEventType event type,
in Security::SelectorValueList value list
)i
readonly attribute AuditChannel audit channel;

}i
IDL 2: Standard audit decision

MICOSec’s extended AuditDecision interface includes an additional
operation create, which can be used to set up the physical audit storage for
the AuditChannel from within the application:

boolean create(
in string arch type,
in string arch name

) i
IDL 3: Audit decision extension

The first argument selects the type of audit storage, while the second speci-
fies storage type depend details, such as the file name or database name.
Table 6.3 summarizes how MICOSec auditing can be set up to use a flat file,
UNIX syslog, or PostgreSQL database:

Table 6.3
Audit Storage Types

Storage Type  Storage Dependent Details  Description

file AuditLog.log Writes audit data to a flat file called
AuditLog.log
syslog <prioritys> Writes audit data to the Unix syslog
with the given priority
db auditdb= Writes the audit records to PostgresQL
objectsecurity and uses a database called

objectsecurity. Additional arguments
can be given as a comma-separated list
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The AuditChannel object has an identifier and contains one opera-
tion audit_write, which generates a log entry in the corresponding audit
storage. It accepts the information that has to be logged, such as:

e The event type;

o A list of credentials of the principal responsible for the eveng;

e The time the event occurred;

o A list of selector values;

¢ Event-specific data associated with the event type.

This is the IDL interface of the AuditChannel object:

interface AuditChannel
void audit write (

in
in
in
in
in

Security::AuditEventType event type,
CredentialsList creds,

Security::UtcT time,
Security::SelectorValuelList descriptors,
any event specific data

readonly attribute Security::AuditChannelId

}i

audit channel id;

IDL 4: Audit channel

6.6.2 Audit Filtering Policies

MICOSec allows auditing of a wide range of security-related events, but
logging all of them would soon produce a large and unmanageable amount
of irrelevant data. It is therefore necessary to restrict the event generation to
only the relevant subset of all auditable events.

To reduce the number of logged events, CORBA security uses audit
filtering policies to specify the circumstances under which object invocation
is audited, such as:

e Specified operations on objects;

e Failed operations;
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e Use of certain operations during certain time intervals (e.g., during
the weekend);

¢ Operations invoked by a certain principal;

¢ Any combinations of these.

These audit filters can be defined in the respective audit policies
on the client side (SecClientInvocationAudit) and server side
(SecTargetInvocationAudit). Both are based on the Security-
Admin: :AuditPolicy object, which provides operations to set, clear,
replace, and retrieve audit selectors and to associate a particular audit channel
with the policy:

interface AuditPolicy : CORBA::Policy {
void set audit selectors (
in CORBA: :RepositoryId object type,
in Security::AuditEventTypelist events,
in Security::SelectorValuelList selectors,
in Security::AuditCombinator audit combinator

) i

void clear audit selectors (
in CORBA: :RepositoryId object type,
in Security::AuditEventTypelList events

) i

void replace audit selectors (
in CORBA: :RepositoryIdf object type,
in Security::AuditEventTypelist events,
in Security::SelectorValuelList selectors,
in Security::AuditCombinator audit combinator

) i

void get audit selectors (
in CORBA: :RepositoryId object type,
in Security::AuditEventType event type
out Security::SelectorValuelList selectors,
out Security::AuditCombinator audit combinator
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void set audit channel (
in Security::AuditChannelId audit channel id
)i
}i

IDL 5: Audit Policy

Within the audit policy, administrators can specify which events
should be logged and under which circumstances. This is done by combining
so-called audir selectors with the required audir event types. The combination
method is selected with a so-called AuditCombinator, which can be set
either to require all (SecAllSelectors) or any (SecAnySelector) of
the selectors to match. The specification defines the standard event types
summarized in Table 6.4.

MICOSec currently only supports the audit event types that can be
fully implemented within the security services implementation: Audit-
PrincipalAuth, which logs principal authentication; AuditSession-
Auth, which logs the TCP connect; AuditInvocation, which gets

Tabie 6.4
Standard Event Types

Event Type Event Description

AuditAll All supported event types
AuditPrincipalAuth Principal authentication
AuditInvocation Invocation

AuditSessionAuth Session authentication
AuditAuthorization Authorization

AuditSecEnvChange Change of the security environment

(currently unsupported in MICOSec)

AuditPolicyChange Policy change
(currently unsupported in MICOSec)

AuditObjectCreation Object creation
(currently unsupported in MICOSec)

AuditObjectDestruction  Object destruction
(currently unsupported in MICOSec)

AuditNonRepudiation Nonrepudiation
(currently unsupported in MICOSec)
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triggered when an object is invoked; and AuditAuthorization, which
logs access control decisions. The other audit event types are not imple-
mented, as they would require significant changes to the MICO ORB and
object adapter, in particular, for the event types related to object creation
and destruction.

For each event type, a number of audit attributes (so-called audit selec-
tors) can be selected, such as the interface or operation name. Each selector
has to be filled with the corresponding value, such as the actual operation
name. Table 6.5 summarizes the different selector types and their values.

An audit log entry is only generated when the event type specified in
the AuditPolicy occurs and when all or any (depending on the combina-
tor) of the specified selector values match with the event. In the example in
Section 6.6.3, the event type is “invocation” and the selector is “operation”
with the value “hel1l0o” as the operation name.

6.6.3 Building and Running the Example

As with the other examples, the audit demo application, which can be found
in the MICO subdirectory /demo/security/audit-aware, is compiled
by running make. The server and client application are again launched
through the small shell scripts rss and rcs. There is no significant output
on the console, but after the invocation is completed, the file server.log
contains a number of log entries for principal authentication, the binding,
the invocation of the hello operation, and the disconnect.

Table 6.5
Standard Audit Policy

Value on audit write

Selector Type

oraudit needed

Selector Type Description

Interface name
Object reference
Operation
Initiator
Success/failure
Time

Day of week

CORBA: :RepositoryId
IOR

op_name

Credentials

boolean

utc

DayOfTheWeek

Target interface repository ID
Target object reference
Invoked operation

Credentials of the initiator of the invocation

Success/failure of the event

Time when the event occurred

Day of the week on which audit is to be done
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Each log entry contains the following information:

e Time and date;

e Event type;

e Interface name;

e Object reference;

e Operation name;

e Initiator credentials;

e Information regarding the success or failure of the logged event;

e Information regarding whether the log was generated by a server or a
client.

As part of the MICOSec audit example, the following audit log entry is
created, because we have defined the selectors to trigger the creation of audit
log entries for invocations of the operation hello:

Fri Sep 9 20:57:15 2001

Event=[AuditInvocation]

InterfaceName=[IDL:Hello:1.0]
ObjectRef=[iioploc://ssl:inet:ul201.0bjectsecurity.com:
12466//131.111.218.202/1568/984171429/%5f0]
Operation=[hello]

Initiator=[/C=UK/ST=Client
State/L=Cambridge/0O=0bjectSecurity Ltd./OU=RD/CN=Client
Test/Email=client@test]

SuccessFailure=[no_info]

clientserver=[server]

Server.log

6.6.4 Target Example

This subsection discusses the example program in the usual fashion to show
how the AuditChannel, AuditDecision, and AuditPolicy objects
are used in practice. Note that this example only focuses on the target side.
The client application is not relevant here; it simply acts as a trigger for the
target’s auditing functionality.

The server source code can be logically divided into two parts. The first
part shows how the AuditChannel object is initialized, whereas the second



254 Developing Secure Distributed Systems with CORBA

part describes how the selectors in the AuditPolicy can be set from within
the application.

The code starts with an implementation of the servants that implement
two trivial operations hello and olleh, which each print out their name
on the standard output:

#include <iostream.h>
#include “hello.h”

class Hello impl : virtual public POA Hello {
public:
void hello () {
cout << “Start Servant hello\n”;
cout << “hello\n”;
cout << “End Servant hello\n”;
1
void olleh () {
cout << “Start Servant olleh\n”;
cout << “olleh\n”;
cout << “End Servant olleh\n”;

}
¥

The first logical part of the server source code initializes the POA, the ser-
vants, and the SecurityManager object in the usual fashion:

int
main (int argc, char *argvl([])

{

CORBA: :ORB_var orb = CORBA::ORB init

(argc, argv, “mico-local-orb”);
PortableServer: :POA var poa;
CORBA: :Object var poaobj =

orb-> resolve initial references (“RootPOA") ;
poa = PortableServer::POA:: narrow (poaobj);
PortableServer: :POAManager var mgr =
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poa-> the POAManager () ;
Hello impl * micohello = new Hello impl;
PortableServer::0bjectId var oid =

poa-> activate object (micohello);
CORBA: :Object var ref =

poa-> id to reference (oid.in());
CORBA: :String var ref str =

orb-> object to string (ref.in());

CORBA: :Object var sm =
orb-> resolve initial references
(“SecurityManager”) ;
SecurityLevel2::SecurityManager var secman =
SecurityLevel2: :SecurityManager:: narrow (sm) ;

MICOSec’s auditing is, like access control, based on security domains.
Before the audit policies can be configured, it is necessary to define the map-
ping between the objects and their security domains. This is done exactly like
in the access control example, just with a different name and type. For the
sake of simplicity, we only define a single domain called “/Audit”.

ObjectDomainMapping: :0DM_var odm =
ObjectDomainMapping: :0DM: : narrow (objodm) ;

ObjectDomainMapping: :Factory var factory =
odm->current () ; // in case we already have some ODM

if (CORBA::is nil (factory))
factory = odm->create(); // we don’t have ODM
poa->registerODMFactory (factory) ;

ObjectDomainMapping: :Manager ptr dmanagerl =
poa->get ODM() ;
Security: :0paque okey?2;
string key2 = “[/C=UK/ST=Server State
/L=Cambridge/0O=0ObjectSecurity Ltd.
/OU=RD/CN=Server Test
/Email=server@ObjectSecurity.com] /”;
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int len = key2.length() ;

okey2.length(len) ;

for (int 1 = 0; 1 < len; i++)
okey2[i] = key2[i];

SecurityDomain: :NameList dl;
dl.length(1) ;

SecurityDomain: :NameComponent nc;

nc.id = CORBA::string dup (“Audit”) ;

nc.kind = CORBA::string dup (“Audit”);

SecurityDomain: :Name nm;

nm. length (1) ;

nm[0] nc;

dl[0] = nm;

dmanagerl->set_domain name_ key
((CORBA: :UShort)1l, okey2, dl);

factory->saveConfigFile (“ODM.map”) ;

CORBA: :Object var factobj =
orb->resolve initial references
(“DomainManagerFactory”) ;
SecurityDomain: :DomainManagerFactory var dmfactory =
SecurityDomain: :DomainManagerFactory: :
_narrow (factobj) ;

dmfactory->add_root domain manager (“Audit”) ;
SecurityDomain: :DomainManagerAdmin ptr dmroot =
dmfactory->get root domain manager (“Audit”) ;
SecurityDomain: :DomainAuthorityAdmin ptr daaroot =
SecurityDomain: :DomainAuthorityAdmin: :
_narrow (dmroot) ;

After that, it gets a pointer to the AuditDecision object from the Secu-
rityManager and invokes the MICOSec-specific operation create on it
to establish a file called server.log as a new physical audit storage:
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Securitylevel2::AuditDecision ptr auditdes =
secman-> audit_decision() ;

SecurityLevel2: :AuditChannel ptr old channel =
auditdes->audit_channel () ;

CORBA: :Boolean audit =
auditdes-> create(“file”, “server.log”);

The next logical part of the server shows how to set an audit policy that makes
sure that only invocations on the operation hello are logged. This involves the
following steps: First, a reference to the PolicyCurrent has to be obtained.
PolicyCurrent contains references to all target-side security policies:

CORBA: :Object var policy current obj =
orb-> resolve initial references
(“PolicyCurrent”) ;
SecurityLevel2::PolicyCurrent var policy current =
SecurityLevel2::PolicyCurrent: :
_narrow (policy current obj) ;
assert (!CORBA::1is nil (policy current)) ;

PolicyCurrent is then used to get a pointer to the target-side Audit-
Policy (SecTargetInvocationAudit) by narrowing down the first
item in the policy type sequence as follows:

CORBA: : PolicyTypeSeq policy types;
policy types.length(1l);
policy types[0] = Security::SecTargetInvocationAudit;

CORBA: :PolicyList * policies =
policy current -> get policy overrides
(policy types) ;

CORBA: :Policy ptr policy = (*policies) [0];

SecurityAdmin: :AuditPolicy ptr audit policy =
SecurityAdmin: :AuditPolicy:: narrow(policy) ;
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Now the AuditPolicy object is available through the pointer audit_
policy. It will be used to set the audit events, selectors, and combinators.
But before that can be done, a list of the events to audit has to be created and
filled with the right values. In our example, we would like to audit invoca-
tions, so we select the event type AuditInvocation:

Security: :AuditEventTypelist events;
events.length (1) ;

Security: :ExtensibleFamily family;
family.family definer = 0;
family.family = 12;

events [0] .event family = family;
events [0] .event type = Security::AuditInvocation;

Then a list of selectors is created and filled with a list of the selector types
that specify which events should be audited. For simplicity, this example
only uses one selector type, the name of the invoked operation. As a selector
value, we define the operation hello so that a log entry will be created
whenever this operation is invoked:

int 1 = 0;
Security::SelectorValuelist selectors;
selectors.length(0) ;

1++;

selectors.length(i+1) ;

selectors[i] .selector = Security::0Operation;
selectors[i] .value <<= “hello”;

14++;

selectors.length (i+1) ;

If more than one selector is specified, then the application has to decide
whether the record should be written if all selectors are true (SecAll-
Selectors) or if at least one of the selectors is true (SecAnySelector).
In this example, we set the combinator such that all selectors must be true:

Security::AuditCombinator audit combinator =
Security::SecAllSelectors;
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Then we can invoke the set_audit selectors operation on Audit-
Policy to set the audit policy for the specified event:

audit policy->set audit selectors
(v ,events,selectors,audit combinator ) ;

Finally, we associate the audit policy with the audit domain:
daaroot->set domain policy(audit policy) ;

The remainder of the server code activates the servants through the POA
manager and runs the ORB:

cout << “Activate Servant\n”;
mgr->activate () ;

orb->run () ;

return O;

}

6.7 Delegation

6.7.1 Overview

The CORBA security services support delegation of Credentials for both
security-unaware and security-aware applications. Delegation means that, if
an initiator has invoked an intermediate, then this intermediate can invoke a
target on behalf of the initiator. To indicate the initiator’s identity to the
target, the intermediate needs to pass some or all of the initiator’s credentials
(and possibly some of its own credentials) to the target. This can be repeated
several times, so that the initiator’s credentials are delegated to the final target
through a chain of invocations.

The decision regarding which credentials are used when an intermedi-
ate object in a chain invokes another object is controlled by the delegation
policy at each node. The SecurityAdmin: :DelegationPolicy object
has operations that allow security administrators to set and get the delegation
mode, such as no delegation (i.e., use the intermediate’s credentials), imper-
sonation (i.e., use the initiator’s credentials), and several compositions of the
initiator’s and intermediate’s credentials.

For a security-unaware intermediate object, the specified delegation
mode is automatically enforced by the CORBA security services (see
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Figure 6.5). Whenever the intermediate object invokes a target on behalf of
the initiator, the CORBA security services query the intermediate’s delega-
tion policy to find out whether the delegated credentials of the initiator or
the own credentials of the intermediate (or a combination of both) should
become the credentials to be used for the next invocation. If necessary, the
intermediate object’s principal will also be authenticated by the CORBA
security services. The CORBA security services can retrieve the received ini-
tiator’s credentials from the intermediate’s Current object, combine it with
the intermediate’s own credentials, and set the resulting invocation creden-
tials in Current. These credentials will then automatically be used for invo-
cations from the intermediate to the target.

Security-aware applications can actively decide on a case-by-case basis
which credentials are to be used when invoking further targets (see Figure
6.6). To do that, an application can use the get _attributes operation on
Current to obtain the initiator’s own credentials. After processing them
according to the application’s delegation requirements, it can put them back
into Current (using set_attributes) to make them available for subse-
quent invocations. Applications are also able to specify whether credentials
are to be used only at the target (e.g., for access control), or whether they can
also be delegated further (including the delegation mode). It is important to

Security-unaware intermediate object

Intermediate Object
(first Target, then Client)

Client Target

A

A

Current
object

(includes
Credentials)

Figure 6.5 Security-unaware delegation.
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Security-aware intermediate object

Client Intermediate Object Target
¢ | (first Target, then Client) |

A A
Get Set
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Current
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changed/
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Figure 6.6 Security-aware delegation.

keep in mind that the features described here rely on the capability of the
underlying security mechanisms to support delegation. In Section 6.7.2, we
will discuss why CORBA security services implementations that are based
on SSL cannot support delegation of credentials and how an additional secu-
rity protocol layer can solve this problem.

6.7.2 Delegation Mechanisms

6.7.2.1 SSL Transport Layer Security

SSL is integrated into the CORBA security architecture as a security-
enhanced underlying transport mechanism that provides (target-only or
mutual) authentication and message encryption between two network sock-
ets. Whenever a client ORB initiates an invocation, it opens an SSL connec-
tion to the target instead of a plain TCP/IP connection.

Each endpoint is associated with a cryptographic private key, and there
is a publicly available X.509 identity certificate that links the corresponding
public key to a principal name. This identity certificate is digitally signed by
a certification authority that is trusted by both parties. The SSL authentica-
tion process verifies that the SSL implementation behind the remote socket
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has access to the private key that corresponds to the public key associated
with the identity certificate. This mechanism works well as long as no delega-
tion is required.

Now, if an intermediate would like to invoke another target on behalf
of the initiator (i.e., impersonate the initiator), it would need to have access
to the initiator’s private key in order to authenticate successfully. However,
this is not possible because the trustworthiness of the authentication process
relies critically on the fact that private keys are only known to their respective
owner and they are never revealed to anyone. As a result, SSL alone cannot
support the delegation functionality described in the CORBA security serv-
ices specification.

6.7.2.2 Security Attribute Service (CSIv2-SAS)

To overcome this (and other) weaknesses of the underlying secure transport,
the OMG specified a security attribute service (SAS) as part of the Common
Secure Interoperability (CSIv2) architecture [2]. The SAS resides on top of the
underlying secure transport mechanism (typically SSL°) and provides client
authentication, delegation, and privilege token functionality.

The SAS protocol is modeled after the GSSAPI token exchange para-
digm [3] and exchanges its protocol elements in the GIOP service context. It
consists of the following two layers:

e The higher attribute layer allows clients to transfer identity and
privilege attribute tokens to a target where they may be applied in
access control decisions. We will describe how this layer enables
delegation over SSL.

o The lower client authentication layer can perform client authentica-
tion where sufficient authentication could not be accomplished by
the underlying secure transport layer (e.g., when SSL is used). This
functionality is not relevant to our discussion about delegation.

In essence, the SAS protocol allows tokens to be exchanged across
a secure underlying transport. The X.509 identity tokens exchanged at the
attribute layer allow an intermediate to act on behalf of (i.e., impersonate)
some identity other than its own. To accept such a delegated identity, the
target either has to trust the intermediate directly or base its trust on a proxy
rule certificate (called authorization token [4]) that has been signed either by

6. Or SECIOP.
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the initiator or a trusted privilege authority. Such a proxy certificate specifies

whether or not the intermediate is authorized to act on the initiator’s behalf.
Figure 6.7 illustrates the basic steps involved in the SAS delegation

process, assuming SSL is used as an underlying secure transport mechanism.

1.

When the initiator A invokes the intermediate node B, the underly-
ing secure transport layer sets up a secure, authenticated SSL con-
nection between A and B.

With the IIOP request from A to B, the SAS protocol then transfers
an identity token (e.g., X.509) that links A’s identity to its crypto-
graphic public key.

Now the intermediate node B decides to invoke the target C on A’s
behalf, which establishes a secure SSL connection between B and
C. At this point, C can only verify that B is on the other end.

To inform C that B’s invocation has, in fact, been done on behalf
of A, the SAS protocol then transfers A’s identity token from B
to C.

In addition, C needs a token (signed by A or a trusted privilege
authority) that states that B is entitled to act on A’s behalf. Using
the public key from A’s identity token (or the key associated with
the privilege authority), C can verify the validity of the delegation
and either accept or reject the request. This process is called for-
ward trust evaluation, because the client (or the privilege authority)
decides on the proxy rules. Alternatively, the target can evaluate its
own set of proxy rules, which is called backward trust evaluation.

Although CSIv2 is security related, it is not specified within the
CORBA security services specification but as part of CORBA v2.4. The cur-
rent CORBA security services (v1.8. draft) do not provide any specific level 2

® ® ®

Identity Token:
Token: |H“B proxy SAS
A for A”
D
B
Transport Layer Authentication Transport Layer Authentication SSL

Figure 6.7 CSlv2-SAS delegation.
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security interfaces to get or set CSIv2 tokens, but the existing get_
attributes and set_attributes operations on Current can be used
to insert and retrieve Credentials (which conceptually form the basis of
SAS tokens).

At the time of this writing, the relatively new CSIv2 protocol is
hardly used in practice, but it is likely that it will be widely used in the near
future, first because it runs on top of the extremely widely-used SSL pro-
tocol, and secondly because it is supported by both CORBA and EJB and,
thus, enables secure interoperability between both technologies. Currently,
no implementation of CSIv2 is available for the standard MICO or MICO-
Sec distribution, but it is anticipated that one will become available in the
near future.

6.8 Implementation Overview and Conformance

Level 2 principal authentication and security context establishment are
implemented in the same way as previously described for level 1 security (see
Section 5.5). In fact, both level 1 and level 2 implementations are part of
a single MICOSec implementation, which reuses the security functionality
automatically provided by SSL whenever a transport connection is estab-
lished.

One of the main design differences between both conformance levels is
that level 2 uses the more flexible Credentials model to represent security
attributes to the application layer. In line with level 2 conformance require-
ments, it is also possible to choose the quality of protection from the
application layer (by selecting the SSL cipher suite), to change the privileges
in Credentials object and to choose which credentials are to be used for
object invocations (by setting them as the invocation credentials). SSL also
supports the required peer authentication and message protection at (or
rather below) the ORB layer and protection from replay/reorder attacks.
Most other SSL-related implementation details are cumbersome and irrele-
vant to the user, and will therefore not be discussed here. For example, SSL
policies such as TrustInClient have to be set up within the SSL imple-
mentation to conform to level 2 security.

Principal authentication from within the application is done the same
way as for level 1. The application either calls the PrincipalAuthenti-
cator with an identity certificate as a parameter, or a certificate is supplied
to MICOSec as a command line argument.

Although the ODM is of critical importance to MICOSec’s access con-
trol and audit functionality, it is currently not part of security level 2. As a
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consequence, ODM and its modifications to MICO’s ORB and POA imple-
mentation, as well as changes in the CORBA access control and audit
models, are not covered by level 2 conformance requirements. However,
MICOSec’s ODM is based on the SDMM [1], which should become an
adopted OMG standard in the near future.

One of the goals of the ODM architecture was to keep modifications to
the CORBA specification as minimal as possible to fulfill CORBA’s portabil-
ity and replaceability requirements. A few modifications to the MICO ORB
were necessary, in particular two functions to the POA (register-
ODMFactory and get_ODM), which allow the registration of an ODM fac-
tory with a POA and to query the ODM. Also, an initial reference “oDM”
had to be added, so that a reference to the ODM can be obtained from
within interceptors and servants. Other internal details of ODM are
MICO-specific and subject to frequent change.

Although conceptually separate, access control and audit (as well as the
ODM) are implemented inside a single MICO-specific interceptor so-called
the AuditInterceptor. This is mainly done for MICO-specific optimi-
zation reasons. Whenever a message arrives at the ORB layer, the relevant
access control and audit policies are evaluated and enforced automatically
inside this interceptor. As part of this process, the interceptor implementa-
tion obtains the necessary data (e.g., security attributes) from the SSL trans-
port layer and the request header from the ORB and compares it to the
policy. Based on the policy, it then reaches a decision and enforces it accord-
ingly. At this level of abstraction, everything is implemented close to the
specification. Internally, there are more implementation details that are not
directly relevant to the user’ and which are subject to frequent change in
order to keep up with changes in the MICO ORB. Both access control and
audit policies use ODM domain names to describe the target objects the pol-
icy should apply to in an unchanging and human-readable way.

For Credentials delegation, MICOSec relies on the implementa-
tion of the SAS, which allows security tokens to be sent over a secure trans-
port connection. These token layers enable initiators (or trusted third parties)
to grant intermediates the right to act on behalf of the initiator. The SAS can
be integrated into MICOSec without any changes to the application-facing
level 2 interfaces, because all tokens can be easily accessed through the exist-
ing Current/SecurityManager interface.

7. For example, the Standard Template Library (STL) is used to search the rights lists.



266 Developing Secure Distributed Systems with CORBA

6.9 Summary

This chapter covers the use of the application-facing CORBA security level 2
interfaces. For demonstration purposes, the bank application from Chapter 1
is modified several times to make use of different security level 2 interfaces.

Level 2 security incorporates a rich set of application-facing interfaces
to make use of the full set of the security facilities described in the CORBA
security services specification. The level 2 interfaces allow applications to
administer fine-grained policies to control the security provided at object
invocation. While the level 2 functionality and interfaces are richer and more
flexible than those at level 1, they are, at the same time, more complex in
their use, in particular the interfaces related to security associations.

The level 2 security associations are based on the more flexible concept
of Credentials objects instead of Current. Credentials are normally
established during principal authentication and hold the security attributes
of local and remote principals (such as the X.509 certificate identity) and
fine-grained security association policies. The Bank authentication example
illustrates how principal authentication and security association establish-
ment are used in practice. It shows the use of the SecurityManager,
Credentials, and PrincipalAuthenticator interfaces and how
security attributes can be obtained from the application layer.

To allow administrators to express target objects in a scalable, unchang-
ing, well-defined, and human-readable way, MICOSec’s ODM maps “tran-
sient” target addressing information (such as the object reference or security
attributes) onto persistent and “unchanging” domain names. This allows
administrators to easily associate access control and audit policies with the
target objects (or operations) to which the policy should apply.

MICOSec’s access control functionality uses ODM domain names to
associate access policies with the targets. The Bank access control example
demonstrates the use of the objects AccessDecision, Required-
Rights, and DomainManager, which are used to bootstrap the ORB layer
access control enforcement and configure the access policy. All access
control-related modifications to the example code are in the server, so that
the servant implementation remains unmodified (i.e., security-unaware).
The example involves three principals with different access rights for differ-
ent target operations and demonstrates how invocations are granted or
rejected (based on the access policy).

MICOSec’s security auditing component supports selective audit log
generation into three different audit storages: the standard Unix logging
mechanism syslog, a flat file, and an SQL database (PostgresQL). The
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generation of audit log entries is always done automatically at the ORB layer.
The simple auditing example shows how the audit storage and audit policies
can be set through level 2 audit interfaces AuditDecision, Audit-
Channel, and AuditPolicy. Again, audit policies are associated with the
invoked target by using ODM domain names.

Delegation of Credentials cannot be supported by CORBA secu-
rity services implementations that only use SSL transport layer security
contexts to set up ORB layer security associations. On the SSL layer, an end-
point is identified by a public key certificate that corresponds to the private
key used to encrypt the channel between two endpoints. The trustworthiness
of the whole process relies critically on the fact that private keys are never
revealed, so that the use of the private key proves the identity associated with
the key. Now, if an intermediate target node wants to take on the initiator’s
identity (i.e., impersonate the initiator) when it invokes another target, then
it would need to have access to the initiator’s private key. To enable delega-
tion, the OMG specified a SAS as part of the CSIv2 architecture [2]. The
SAS resides on top of the underlying secure transport mechanism and pro-
vides an extra protocol layer that can be used to transfer tokens. This allows
initiators to grant to other identities the right to be an intermediate and
enables targets to verify that an intermediate node has been endorsed by the
initiator.

6.10 Further Reading

There is no other literature apart from this book that is related to the use
of CORBA security level 2 interfaces. Specific details on interfaces and con-
formance can be found in the CORBA security services specification [5].
Unfortunately, the specification’s current version is not very readable and
does not give any explicit use guidelines. The MICOSec User’s Guide [6] con-
tains a limited amount of documentation on MICOSec’s level 2 interfaces
and its use but does not go beyond what is already described in this chapter.
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Security-Unaware Functionality

7.1 Introduction

In Chapters 5 and 6, you learned how to use the CORBA security services
from within your security-aware application. Applications can use the level 1
or level 2 application-facing interfaces for two purposes: to configure the pol-
icy (and other options) for the underlying ORB layer security functionality
and to obtain security-related information from the ORB layer for fine-
grained security enforcement within the application.

But the CORBA security services architecture also caters to security-
unaware applications. These applications should not contain any security-
related code; instead, all security configuration is done by other means. In
MICOSec, various security configuration parameters have to be supplied as
command line arguments when the application is launched. Some of the
arguments also specify configuration files (e.g., for object domain mapping,
access control, and audit).

Although less flexible than application layer security, ORB layer secu-
rity for security-unaware applications has a number of advantages. First, it
allows the separation of the application development task from the security
system implementation. This way, application developers do not need to
know anything about security and security policy, which allows them to
focus on the actual application development process. Secondly, it allows
security administrators to configure the automatic enforcement of security
policies that can be managed without any active involvement of the applica-
tion developer or user.

269
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This chapter describes the configuration of MICOSec’s functionality
for security-unaware applications. This involves command line arguments to
set up SSL parameters and X.509 identity certificates for principal authen-
tication and security association establishment, as well as configuration
files for object domain mapping, access control policies, principal rights, and
audi filters.

Section 7.2 summarizes the main functional parts that have to be sup-
ported at the ORB layer for level 1 and level 2 conformance. The subsequent
sections then describe the command line arguments and configuration files
required to set up MICOSec for security-unaware applications.

1.2 Security-Unaware Functionality Overview

The CORBA security services specification [1] defines which security fea-
tures have to be provided at the ORB layer to security-unaware applications
(i.e., without the need for any security-related modifications to the applica-
tion source code). The specified functionality includes support for the
configuration of security features and security policies, as well as the actual
evaluation and enforcement of security policies.

The range of supported ORB layer security features depends on the
conformance level. Level 1 conformant products need to provide the follow-
ing functionality at the ORB layer:

e Principal authentication inside or outside the object system;

e Secure invocation between client and target object (including uni-
lateral authentication, integrity, and/or confidentiality) on the ORB
layer or outside the object system;

e Simple delegation of client security attributes to targets, depending
on the supported CSI level;

e ORB-enforced access control checks, with support for domains and
roles but no support for administration;

e Auditing of security-relevant system events (but not by object invo-
cation).

For level 2 conformance, security services need to support extra ORB
layer functionality on top of the level 1 functionality:

e Principal authentication both inside and outside the object system;
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¢ Additional secure invocation features, in particular, peer authentica-
tion and message protection at the ORB level;

e Further integrity options, such as replay/reorder protection (can be
requested, but need not be supported by all implementations);

e Access control and selective auditing have to support a per-operation
granularity.

As far as the functionality for security-unaware applications is con-
cerned, level 1 defines a strict subset of level 2. We discussed in Chapters 5
and 6 that the internal architecture differs between the two conformance lev-
els, in particular with respect to the Credentials model. But since there
are no application-facing interfaces for security-unaware applications, these
differences are not visible outside the ORB layer.

The following sections illustrate the configuration of MICOSec’s level
2 conformant features for security-unaware applications.

1.3 Principal Authentication and Secure Association

The principal authentication process associates an application object with a
principal identity (e.g., the user’s identity) and makes the resulting creden-
tials available for use during security association establishment. In MICO-
Sec, a principal identity consists of an X.509 identity certificate and a
corresponding key pair. To configure the SSL transport layer, both the cer-
tificate and key file have to be supplied to MICOSec as an additional com-
mand line argument when the application is launched.

Once the SSL parameters have been set up, the SSL transport layer
automatically establishes the security association whenever an invocation
occurs, unless a security association to the target has already been previously
set up by an earlier invocation.

731 Command Line Arguments

MICOSec uses the following MICO SSL command line arguments for prin-
cipal authentication (i.e., to specify the files that contain the X.509 certificate
and cryptographic key):

® ORBSSLcert <certificate file>
This command line option specifies the file that holds the X.509
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certificate for the launched client or target application. OpenSSL
files use the extension .pem for key and certificate files. This argu-
ment defaults to default .pem.

e ORBSSLkey <key file>
This option specifies the .pem file that holds the key pair for the
launched client or target application. It defaults to the same file as
the certificate file.

The SSL automatically establishes the security association whenever a
new transport connection is established. As part of this process, the certifi-
cates are transferred securely to the remote peer, and optionally checked
for validity with a certification authority. Also, the ciphers that should be
used during the association are negotiated. The following MICO SSL com-
mand line arguments configure MICOSec’s ORB layer security association
features:

e ORBSSLcipher <colon separated list of preferred
ciphers>

This parameter can be used to specify the ciphers that the launched
client or target is willing to support. If it is not specified, then
an implementation-specific default policy is used instead, which
depends on the cryptographic functions supported by the specific
implementation, as well as on cryptography export regulations and
patents in some countries.

Commonly used cipher suites include: NULL-MD5, RC4-
MD5, EXP-RC4-MD5, IDEA-CBC-MD5, RC2-CBC-MD5,
EXP-RC2-CBC-MD5, DES-CBC-MD5, DES-CBC-SHA, DES-
CBC3-MD5, DES-CBC3-SHA, and DES-CFB-MI.

e ORBSSLverify <verify depth>
If this parameter is specified, then the peer must supply a valid cer-
tificate, otherwise the connection setup will fail. <verify depths
specifies how many hops of the chain of certification authorities
should be checked. By default, the validity of the peer certificate is
not checked.

e ORBSSLCAfile <CA filename>
This argument specifies the . pem file that holds the certificates of
certificate authorities (CA).
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e ORBSSLCApath <CA pathname>
This parameter can point to the directory that contains .pemn files
holding certificates of CAs. It defaults to /usr/local/ssl/certs.

132 Example Configuration

The security-unaware access control example (which can be found in the
MICOSec subdirectory /demo/security/acl-unaware) demonstrates
the configuration of the SSL parameters related to principal authentication
and security association establishment. The application functionality is iden-
tical to the security-aware access control example described in Section 6.5,
but this time the application code does not contain any security-related code.

The server and client start-up shell scripts show the use of the configu-
ration parameters described in this section:

. /server

-ORBIIOPAddr ssl:inet:’uname -n’:12466
-ORBSSLcert ServerCert.pem

-ORBSSLkey ServerKey.pem
-ORBSSLverify 0

Server shell script

As described in Section 6.5, the client shell script starts three clients for the
manager, the owner, and the owner’s wife. A different X.509 identity cer-
tificate is supplied each time. For the sake of simplicity, the same key pair
is used for all invocations. In most real-world environments, each principal
would have a separate key pair, so that no user can eavesdrop on communica-
tions by other users.

#!/bin/sh
ADDR=gsl:inet:’uname -n’:12456

echo “Manager”

./client

-ORBBindAddr $ADDR
-ORBSSLcert manager.pem
-ORBSSLkey key.pem
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-ORBSSLverify 0

echo “Owner”
./client?2
-ORBBindAddr S$ADDR
-ORBSSLcert owner.pem
-ORBSSLkey key.pem
-ORBSSLverify 0

echo “Wife”
./client?2
-ORBBindAddr S$ADDR
-ORBSSLcert wife.pem
-ORBSSLkey key.pem
-ORBSSLverify 0

Client shell script

7.4 Object Domain Mapping

MICOSec’s object domain mapping feature provides unchanging domain
names that can be used to describe target objects inside access control and
audit policies. Its functionality is based on the object domain mapper
described as part of the SDMM [2]. In MICOSec, the ODM maps X.509
identities and POA names (and optionally object identifiers) onto hierarchi-
cal domain names.

Once the application program has been launched, the supplied ODM
configuration is set up inside MICOSec. Whenever an invocation arrives at
the target side, the mapping is automatically carried out to locate the access
control and audit policies associated with the invoked target object.

The configuration file is supplied to MICOSec with the following

command line argument:

e ODMConfig <config files>
This argument specifies the . enf file that holds the ODM mapping
table.

The content of the configuration file defines mappings from X.509
identities and POA names (and optionally object identifiers) to hierarchical
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domain names. The following example ODM configuration file is part of the
security-unaware access control example, which can be found in the MICO-
Sec subfolder /demo/security/acl-unaware. It configures the domain
mappings both for access control (“Bank” and “Account”) and audit (“d1”):

[ /C=UK/ST=Server State/L=Cambridge/O=0bjectSecurity
Ltd./OU=RD/CN=Server Test/Email=server@test ]
/

/Access

[ /C=UK/ST=Server State/L=Cambridge/O=0ObjectSecurity
Ltd./OU=RD/CN=Server Test/Email=server@test ]
/
/Audit

[ /C=UK/ST=Server State/L=Cambridge/O=0ObjectSecurity
Ltd./OU=RD/CN=Server Test/Email=server@test ]
/Root POA/MyPOA/

/Access/Bank

[ /C=UK/ST=Server State/L=Cambridge/O=0ObjectSecurity
Ltd./OU=RD/CN=Server Test/Email=server@test ]
/RootPOA/AccountPOA/

/Access/Accounts

[ /C=UK/ST=Server State/L=Cambridge/0O=0ObjectSecurity
Ltd./OU=RD/CN=Server Test/Email=server@test ]
/RootPOA/AccountPOA/

/Audit/d1l

Configuration file for object domain mapping (ODM.cnf)

The application code remains unaffected by the ODM configuration and
mapping processes. However, it is still necessary to manually establish a POA
hierarchy that reflects the domain name hierarchy defined in the ODM con-
figuration file. This is done by calling the create_POA operation.

PortableServer: :POA var mypoa =
poa->create POA (“MyPOA”, mgr, pl);
mypoa->registerODMFactory (factory) ;
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In many complex real-world applications, there is already an existing POA
hierarchy that reflects the business logic, because different objects often
require different POA policies. This existing POA hierarchy can simply be
reused for ODM. For security-unaware applications, MICOSec automati-
cally registers the POA in the ODM.

1.5 Access Control

Access control is about restricting access to target objects. Access control
enforcement can either be done at the application layer for security-aware
applications or at the ORB layer for security-unaware applications. The con-
figuration of MICOSec’s ORB layer access control features can be done in
two ways, either from within the application (by using the security level 2
interfaces) or with a number of configuration files, which need to be speci-
fied as command line arguments when the application is launched.

15.1 Bank Example

The security-unaware access control example can be found in the MICOSec
subfolder /demo/security/acl-unaware. It has the same functionality
as the security-aware access control example described in Section 6.5, but this
time the rights are not set from within the application. Instead, two configu-
ration files specify the rights granted to principals and the rights required to
access target objects.

The example consists of the usual bank account application, which
contains the Account interface (with the usual operations deposit,
withdraw, and balance) and the Bank interface (with two operations
create and open). It involves three client principals and two target objects
with five operations. Each principal has different access rights for each target
operation.

On the target host, the ODM groups Bank objects into the domain
“Bank” and Account objects into the domain “Accounts.” The target host
is expressed by a certificate, and the domains are represented by the POA
hierarchy:

[ /C=UK/ST=Server State/L=Cambridge/O=0ObjectSecurity
Ltd./OU=RD/CN=Server Test
/Email=server@ObjectSecurity.com ]
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/Access

[ /C=UK/ST=Server State/L=Cambridge/O=0ObjectSecurity
Ltd./OU=RD/CN=Server Test
/Email= server@ObjectSecurity.com ]

/Root POA/MyPOA/

/Access/Bank

[ /C=UK/ST=Server State/L=Cambridge/O=0ObjectSecurity
Ltd./OU=RD/CN=Server Test
/Email= server@ObjectSecurity.com ]
/RootPOA/AccountPOA/
/Access/Accounts

Configuration file for object domain mapping (ODM.cnf)

In addition to the ODM configuration file, ORB layer access control
requires two other configuration files: the granted rights file and the required
rights file.

The granted rights file defines the rights granted to the different princi-
pals in the system. The rights granted to the manager and owner/wife princi-
pal identities are summarized in Table 7.1.

In the configuration file, this information is represented as follows:
First, the manager’s principal identity (AccessId) is represented as the
X.509 identity, followed by the manage right corba:m. Next, the access
right use (corba:u) is associated with the group (GroupId) “family,”
which is stored as the OU attribute in the X.509 certificate of the owner and
the wife:

Table 7.1
Granted Rights
Security Attribute Attribute Value (Identities)  Granted Right
AccessID Manager Manage
PrimaryGroupID “family”  Owner and wife Use
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# Manager

[/C=UK/ST=State/L=Cambridge/O=0bjectSecurity
Ltd./OU=Section/CN=Manager/Email=manager@Object
Security.com] AccessId:corba:m

# Owner and wife

[family] GroupId:corba:u
Granted rights configuration file (rights.cnf)

The configuration file name can be supplied to MICOSec through the

following command line argument:

e RightsConfig <config file>

This argument specifies the . cnf file that holds the granted rights
table.

Table 7.2 summarizes the content of the required rights configuration
file. It shows which interface and operations require which rights, and into
which domain the objects of this type are placed.

This information is expressed in the corresponding configuration file as
follows: The required rights for the domain “/Access/Bank” and “/Access/
Accounts” are each defined in a substructure that specifies the interface, the
operation name, and the required right. In addition, the rights and policy
combinators are specified for each case:

Table 7.2

Required Rights
Type/Domain (Policy Required Rights (Rights
Combinator union) Interface Operation Combinator any)
/Access/Bank Bank create Manage
/Access/Bank Bank open Use, get
/Access/Accounts Account deposit Use, set
/Access/Accounts Account withdraw Use, get
/Access/Accounts Account balance Use
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# Bank operations

/Access/Bank Combinator = Union
IDL:Bank:1.0 create corba:SecAnyRight:m
IDL:Bank:1.0 open corba:SecAnyRight :ug

#Account operations

/Access/Accounts Combinator = Union
IDL:Account:1.0 deposit corba:SecAnyRight:us
IDL:Account:1.0 withdraw corba:SecAnyRight:ug
IDL:Account:1.0 balance corba:SecAnyRight:u

Required rights configuration file (access.cnf)

In addition to the four standard access rights (g, s, u, m), MICOSec supports
all lowercase and uppercase characters as rights. It also supports two meza
rights, which are useful to express general security policies:

e “x”: No rights are required to invoke this operation; everybody is
allowed to invoke it.

“-”: No effective right matches this meta right; nobody is allowed to
invoke the operation.

The policy combinators specify how policies are collected in the
domain hierarchy:

e “Union”: The access control mechanism iterates through the whole
domain tree, collects the required rights, and combines them.

e “FirstFit”: The access control searches in the domain tree for the
first occurrence of a matching access policy, and applies it. All other
policies on the way toward the root are ignored.
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The configuration file name can be supplied to MICOSec with the fol-
lowing command line argument:

e AccessConfig <config file>
This argument specifies the . cnf file that holds the required rights
table.

In addition, it is possible to set the following flags at the command line:

e Paranoid <yes, nos
A default policy has to be applied if there is no entry for an operation
in the list of required rights. This flag defines the default access con-
trol policy. If the flag is set to “yes”, the default policy is to deny
access, analogous to the “-” meta right. If it is set to “no”, invoca-
tions of this operation are allowed, analogous to the “*” meta right.

e AccessControl <on, offs>
This flag is used to enable or disable the access control as a whole. It
can be used if access control is not needed, but the administrator
does not want to redefine the configuration files to permit everything.

The security-unaware access control example comes with the usual
shell scripts: rss for the server and rcs for the client. Both command line
arguments related to access control are included in the server shell script and
specify the configuration files described above (in this example access . cnf
and rights.cnf) to be used.

1.6 Security Auditing

Security auditing makes users accountable for security-related actions and,
thus, assists in the detection of actual or attempted security violations. This
is achieved by recording details (but not irrefutable evidence) of security-
relevant events in the system, such as principal authentication or object invo-
cations. Security administrators can specify audit policies that describe which
events should be audited and under which circumstances.

MICOSec’s security auditing component supports selective auditing
to three different audit storages: the standard Unix logging mechanism sys-
log, a flat file, and an SQL database (PostgresQL). The generation of
audit log entries is always done automatically at the ORB layer. The audit



Security-Unaware Functionality 281

storage can be set either from the command line for security-unaware
applications or through the level 2 audit interfaces for security-aware applica-
tions. This section covers the configuration of MICOSec’s auditing func-
tionality for security-unaware applications.

Security-unaware auditing is enabled by setting the audit channels
at the command line, without modifying the application source code. The
options for the different channels, file, syslog, or database are:

e AuditType selects the audit channel; the arguments are:
. file Write audit data to a flat file.
o syslog Worite audit data to the Unix syslog.
. db Write audit data to the PostgreSQL database.

e AuditArchName specifies audit channel dependent details for the
chosen audit name, such as the file name, syslog priority, or database
name.

The following examples show the use of these command line options:

e -AuditType db -AuditArchName dbname=objectsecu-
rity writes the audit records to PostgreSQL and uses a database
“objectsecurity”. Additional arguments can be given as a
comma-separated list.

e -AuditType syslog -AuditArchName 1 writes the records
to the Unix syslog with the given priority 1.

e -AuditType file -AuditArchName AuditLog.log writes
the records to the file AuditLog. log.

716.1 Example Configuration

The security-unaware audit example in the MICOSec subdirectory demo/
security/audit-unaware illustrates how the audit filters are configured
from the command line and with an audit filter configuration file. The client
applications Client and Client2 are identical to the security-aware access
control example described in Section 6.5. The server code is identical to the
code described in Section 7.5 for the access control example.

The client shell script rcs only sets up the parameters related to SSL
keys and certificates, as no auditing will be done on the client side. The server
shell script rss does the same, but then also specifies the filename of the
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ODM configuration file to be used. In addition, it contains the following
audit-related command line arguments:

./server
-AuditConfig audit.cnf

-AuditType file
-AuditArchName server.log

Server shell script

The file specifies the file that contains the audit configuration (audit . enf),
the type of audit channel (£ile), and the audit channel file name
(server.log).

The audit configuration file contains the event filter specifications
for two audit domains, the root “/Audit” and one branch “/Audit/d1.” The
root domain contains the most general default audit filter policy. It will apply
to all events to which no more specific policies apply. For the domain
“/Audit/d1”, the configuration file audit.cnf specifies a more specific
audit policy:

/Audit

{

(

server:Any * [PrincipalAuth, SessionAuth]
)

}

/Audit/d1l

{

(

server:Any IDL:Account:1.0 [Authorization]

Initiator = [ /C=UK/ST=Cambridge/L=Cambridge/
O=ObjectSecurity/OU=Domainl/CN=manager/
Email=manager@objectsecurity.com ]

DayOfWeek = [Wed ]

Time = [2001/05/29:11:15:00-2001/05/30:16:00:00]
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SuccessFailure = [ false]

)

(server:All IDL:Bank:1.0 [Invocation]

Initiator = [ /C=UK/ST=Cambridge/L=Cambridge/
O=ObjectSecurity/OU=Domainl/CN=manager/
Email=manager@objectsecurity.com ]

DayOfWeek = [Wed]

)

Audit configuration file (audit.cnf)

To express the audit policy, we first state the name of the domain branch.
In our example, the root name is “/Audit”, whereas the branch domain is
“/Audit/d1”. Next, audit filters are defined inside the “{}” brackets, and
each individual audit filter specification is surrounded by “ ()”

The prefix “server” means that the audit event has to occur on
the server side audit (MICOSec currently does not support client-side audit).
“Any” stands for the audit combinator SecAnySelector, whereas “A11”
means SecAllSelectors. These values determine how many of the speci-
fied audit selectors need to match the event in order to trigger the creation of
an audit log entry.

Next, the interface name follows. In the case of the default audit policy,
“*” means that the filter should apply to all interfaces.

Inside the brackets “[17, we can specify then the list of audit event
types we are interested in. Possible values are shown in Table 7.3.

Table 7.3
Audit Events

Audit Event Types

All
PrincipalAuth
SessionAuth
Authorization

Invocation
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The audit event types “Invocation” and “Authorization” are
related to specific interfaces, whereas the other event types, “Principa-
1Auth” and “SessionAuth,” are interface independent.

The root audit policy specified in this example will match all events of
the two specified types (“PrincipalAuth” and “SessionAuth”), because
no specific audit selectors have been supplied.

The branch “/Audit/d1” defines a much more fine-grained audit pol-
icy with two filters for the different interfaces “IDL:Account:1.0” and
“IDL:Bank:1.0.” Filters can be defined using one of the selectors in
Table 7.4.

Again, it would be possible to describe a default policy for this audit
domain, using “*” as an interface name. This way, it is possible to cover all
audit events for which no audit filters are explicitly specified. If no event and
event parameters match any of the filters defined for the specified domain,
then this default policy will be tested. If there is also no match, then the par-
ent domain will be tested in turn, potentially until the default policy of the
root domain is reached.

To be able to make use of audit domains, we also need to map an
appropriate POA hierarchy onto appropriate branches of the audit domain
hierarchy in the ODM configuration file. In this example, the file con-
fig.cnf defines mappings for the two audit domains as follows:

Table 7.4
Audit Selectors

Audit Selector  Value

Initiator Credentials attribute AuditId

DayOfWeek Mon, Tue, Wed, Thu, Fri, Sat, Sun

SuccessFailure false, true

Time yyyy/mm/dd:hh:mm: ss-yyyy/mm/dd:hh:mm: ss, (i.e., time

interval—without any blank spaces)

Operation Any interface operation or pseudo operation
(e.g., connect, disconnect, principalauth)
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# Configuration file for Domain mapping

[/C=UK/ST=Server State/L=Cambridge/0O=0bjectSecurity
Ltd./OU=RD/CN=Server Test/Email=server@test]/
/Audit

[/C=UK/ST=Server State/L=Cambridge/O=0bjectSecurity
Ltd./OU=RD/CN=Server
Test/Email=server@test] /RootPOA/AccountPOA/ /Audit/dl

Object domain mapping configuration (ODM.cnf)

1.7 Delegation

7171 Overview

Delegation means that, if an initiator invokes an intermediate object, then
this intermediate can, in turn, invoke a target on behalf of the initiator. To
indicate the initiator’s identity to the target, the intermediate needs to pass
some or all of the initiator’s credentials (and possibly some of its own creden-
tials) to the target. This delegation process can be repeated several times, so
that the initiator’s credentials are transferred to the final target through a
chain of invocations.

The CORBA security services architecture specifies delegation support
of credentials for both security-unaware and security-aware applications. For
a security-unaware intermediate object, the specified delegation mode is
automatically enforced by the CORBA security services (see Figure 7.1).
Whenever the intermediate object invokes a target on behalf of the initiator,
the CORBA security services query the intermediate’s delegation policy to
find out whether the delegated credentials of the initiator or the own creden-
tials of the intermediate (or a combination of both) should become the cre-
dentials to be used for the next invocation. If necessary, the intermediate
object’s principal will also be authenticated by CORBA security services. The
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Security-unaware intermediate object

Intermediate Object
(first Target, then Client)

Client Target

A

A

Current
object

(includes
Credentials)

Figure 7.1 Security-unaware delegation.

CORBA security services can retrieve the received initiator’s credentials from
the intermediate’s current object, combine it with the intermediate’s own
credentials, and set the resulting invocation credentials in Current. These
credentials will then automatically be used for invocations from the interme-
diate to the target. When a target receives an invocation from an intermedi-
ate, it needs to ensure that this intermediate is authorized to impersonate the
original initiator.

1.1.2 SSL and Delegation

We already explained in Section 6.7 that these described delegation features
rely on the capability of underlying security mechanisms to support
delegation.

CORBA security services implementations that are only based on SSL
as a security mechanism cannot support delegation of Credentials
because each SSL endpoint is associated with a specific cryptographic private
key. Each private key is linked to a corresponding public key, which in turn
is linked to the principal identity in the X.509 identity certificate. The cer-
tificate binds the public key to the principal name. This publicly available
identity certificate is digitally signed by a certification authority that is
trusted by both parties. The SSL authentication process checks whether the
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SSL implementation behind the remote socket has access to the private key
that corresponds to the public key in the certificate. This mechanism works
well as long as no delegation is required. But if an intermediate wants to
invoke another target on behalf of the initiator, then it would need to have
access to the initiator’s private key, which by definition should only be
known to the initiator.

71.1.3 CSlv2-SAS Delegation

To overcome this problem, the OMG specified a Security Attribute Service
(SAS) as part of the Common Secure Interoperability (CSIv2) architecture [3].
It introduces an additional security protocol layer on top of the underlying
secure transport mechanism that provides client authentication, delegation,
and privilege token functionality. The SAS protocol is modeled after the
Generic Security Service API (GSSAPI) token exchange paradigm [4] and
exchanges its protocol elements in the GIOP service context.

In essence, the SAS protocol allows tokens to be exchanged across a
secure underlying transport. The X.509 identity tokens exchanged at the
attribute layer allow an intermediate to act on behalf of (i.e., impersonate)
some identity other than its own. To accept such a delegated identity, the target
either has to trust the intermediate directly or base its trust on a proxy rule cer-
tificate (called authorization token [5]) that has been signed either by the initiator
or a trusted privilege authority. Such a proxy certificate specifies whether the
intermediate is authorized to act on behalf of the initiator or not. More details
on the CSIv2-SAS delegation protocol can be found in Section 6.7.

Although CSIv2 is security related, it is not specified within the CORBA
security services specification but as part of CORBA v2.4. At the time of writ-
ing, the relatively new CSIv2 protocol is hardly used in practice, but it is likely
that it will be widely used in the near future, first because it runs on top of
the extremely widely-used SSL protocol, and second because it is supported by
both CORBA and EJB and, thus, enables secure interoperability between both
technologies. Currently, no implementation of CSIv2 is available for the stan-
dard MICO or MICOSec distribution, but it is anticipated that one will

become available in the near future.

1.8 Implementation Overview and Conformance

As we have discussed, MICOSec can secure applications that do not contain
any security-related code. To achieve that, various functional components



288 Developing Secure Distributed Systems with CORBA

have to be configured with a number of command line arguments and con-
figuration files. As far as security-unaware functionality is concerned, level 1
conformance is a strict subset of level 2 conformance, and so this section only
covers the richer level 2 conformance requirements.

The parameters for SSL, which takes care of principal authentication
and security association establishment (including mutual authentication and
replay/reorder protection), can be supplied as command line arguments. As a
result, no modifications to the application source code are required. Due to
the fact that SSL is a secure transport layer that replaces TCP/IP as a network
protocol, it is, as such, not considered part of the MICOSec security services.
Instead, it is integrated into the MICO ORB as an alternative transport
layer. For the administrator, however, it appears to be part of MICOSec,
because the format of these MICO-specific command line arguments is the
same as for other MICOSec security features.

The ODM table is supplied to MICOSec as a command line argument
that specifies a mapping configuration file. The file content specifies which
X.509 identities, POA names, and object identifiers should be mapped
onto which domain names. In addition, it is necessary to manually create
the corresponding POA hierarchy from within the target application.

Access control is also configured with command line arguments that
name two configuration files. One file associates required access rights with
targets, while the other file grants corresponding access rights to the princi-
pals. This way, no modifications to the application code are necessary to con-
figure and enforce access control.

Security auditing can also be done without any changes to the source
code. The command line parameters specify the audit filter configuration file
to use, the type of audit storage, and a storage-dependent parameter (e.g.,
a file name). Again, filters can be defined on a per-domain basis, using the
domain names supplied by the ODM.

As already illustrated in Section 6.7, delegation cannot be supported
without an additional CSIv2 protocol layer that supports the use of dele-
gation tokens. With respect to security-unaware applications, it is easy to
implement CSIv2 in such a way that the application source code remains
unmodified. However, it is most likely that this will involve additional com-
mand line arguments to specify delegation tokens.

Most of MICOSec’s security enforcement is implemented inside inter-
ceptors, which are called by the ORB at several points in the invocation path.
An interceptor is a routine that is called by the ORB during the processing
of requests. On the target side, it allows access to the GIOP message and
request before and after a servant is called.
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There are two different types of interceptors in CORBA:

o Message level interceptors that offer access to the GIOP message octet
stream;

 Request level interceptors that handle marshaled GIOP requests.

In MICO, the best place for access control and auditing is the request
level interceptor Interceptor::after unmarshal because it provides
access to the maximum amount of useful information, such as the operation to
be invoked. Message level interceptors are not used by MICOSec since all mes-
sage protection is provided by the underlying SSL transport layer.

These interceptors can also be used by programmers to add custom-
security functionality below the application layer (i.e., without any modifica-
tions to the application source code). For example, it is possible to obtain
information from the request and security attributes. However, interceptor
programming is highly ORB- and version-specific and, thus, will not be cov-
ered in detail in this book.

Since this chapter is concerned with CORBA security for security-
unaware applications, it describes how the access control features can be
configured solely with command line arguments and configuration files (i.e.,
without any modifications to the application source code). But it is also pos-
sible to load and bootstrap configuration files from within the application.
Configuration files can be loaded and set up using the MICOSec specific
operation loadConfigFile on the corresponding security-related objects
(e.g., ODMFactory, RequiredRights). In the same way, the operation
saveConfigFile can be used to store a created or modified configuration
back into a configuration file. Although this makes applications security-
aware in CORBA security conformance terms, it is just another way of boot-
strapping MICOSec’s security-unaware functionality.

7.9 Summary

This chapter covers the use of MICOSec for applications that should remain
security-unaware (i.e., the application does not contain any security-related
code). As far as security-unaware functionality is concerned, level 1 confor-
mance is a strict subset of level 2. Therefore, this chapter only needs to deal
with the richer level 2 conformance requirements to cover both levels. It
describes the command line arguments to set up SSL parameters and X.509
identity certificates for principal authentication and security association
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establishment, as well as configuration files for object domain mapping,
access control policies, principal rights, and audit filters.

The standard MICO SSL command line arguments are used to config-
ure MICOSec’s principal authentication and security association establish-
ment. This way, certificates and cryptographic keys can be supplied to
MICOSec without any active involvement of the application.

MICOSec’s ODM functionality also uses a command line argument
that points to the ODM configuration file, which contains all the mappings
from X.509 identities and POA names (and, optionally, object identifiers) to
hierarchical domain names. However, to make this work, the application
needs to create a POA hierarchy that matches the ODM domain hierarchy.

The access control and audit features also work for security-unaware
applications, again bootstrapped with command line arguments, which point
to configuration files that specify required access rights, granted access rights,
and audit filters. Both access control and audit policies can use the domain
names supplied by the ODM to describe target objects. In addition, the
auditing component requires extra parameters to select one of three different
audit storages: the standard Unix logging mechanism syslog, a flat file, and
an SQL database (PostgreSQL).

Delegation of credentials cannot be supported by CORBA secu-
rity services implementations that only use SSL transport layer security con-
texts to set up ORB layer security associations. On the SSL layer, an
endpoint is identified by a public key certificate that corresponds to the pri-
vate key used to encrypt the channel between two endpoints. Now, if an
intermediate target node wants to take on the initiator’s identity (i.e., imper-
sonate the initiator) when it invokes another target, then it would need to
have access to the initiator’s private key. However, the trustworthiness of the
whole process relies critically on the fact that private keys are never revealed,
so that the use of the private key proves the identity associated with the key.
To enable delegation, the OMG specified a Security Attribute Service (SAS)
as part of the Common Secure Interoperability (CSIv2) architecture [3]. The
SAS resides on top of the underlying secure transport mechanism and pro-
vides an extra protocol layer that can be used to transfer tokens. This allows
initiators to grant the right to be an intermediate to other identities and
enables targets to verify if an intermediate node has been endorsed by the
initiator.
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7.10 Further Reading

The CORBA security services specification [1] only standardizes which
security features have to be supported at the ORB layer for security-unaware
applications, but it does not specify any use guidelines. As a result, the
command line arguments and configuration files covered in this chapter are
MICOSec specific. Therefore, they are not described anywhere else in the
literature, apart from the MICOSec User’s Guide [6], which does not go
beyond what has been described in this chapter.
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CORBA, 39-43

dependability, 40

security, 39-43

security architecture, 60-70
Government criteria

Common Criteria and, 69

ITSEC and, 69
GroupID attribute, 162
Groups, 124

Identification process, 42, 53
Identity, 71-72, 124

attributes, 161

defined, 71

principals and, 71

privilege versus, 72

Identity tokens, 262, 287
IDL compiler, 24-26, 131
Impersonation, 78
Implementation repository, 20
Implicit propagation, 10
Information assets, 38—39
Information security policy, 44-46

defined, 44—46

development resources, 45-46

See also Security management
Initiator, 78
Integration

as advantage, 4-5

as design goal, 64-66, 122

legacy applications and, 66

other security and, 65-66

trade-offs, 120-21
Integrity, 4041, 56

defined, 4041

message protection, 91

See also Security
Interceptors

defined, 288, 288-89

message-level, 87, 289

ORB integration and, 67
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request-level, 87, 289
Interface categories, 8
Interface Definition Language (IDL)
defined, 3
interface repository and, 19
language mappings and, 18-19
OMG and, 17-18
ORB and, 8-9
static invocation and, 19
stubs and skeletons and, 19
Interface repository (IR), 19-20,
24-25, 131
Interfaces
access control, 218-20
application, 13
auditing, 247-49
domain, 13
level 1 security, 145-46
Intermediate, 78
Intermediate objects, 82
International export, 65
Internet CORBA, 108-13
background, 108-9
challenges, 109
firewalls and, 110-13
pluggable protocols and, 109
SOCKS and, 113
solutions, 112—13
SSL, 108-10
SSL/TLS, 109-10
tunneling and, 112

Internet Inter-ORB Protocol (IIOP), 23

Interoperability, 122
as advantage, 5
bridge—based, 23
conformance and, 117-18
cross—mechanism, 62
as design goal, 60-62
direct, 23
domains, 77-78
firewalls and, 111-12
flexibility and, 64-66
limitations, 75
message protection and, 94-96
multiple policies and, 61
OTS supporting, 10

security architecture and, 59, 60-62

security contexts and, 88-90
trade-offs, 119-20
unsecure objects and, 61
Interoperable object references
(IOR), 16-17
firewalls and, 111
information parts, 16
obtaining, 17
Inter-ORB protocols, 22-23

InvocationCredentials credential, 87

Kerberos, 84, 90

Language mappings, 18-19
Legacy applications integration, 66
Level 1 security, 113-14, 126, 143-71
attribute specification, 147-60
attribute types, 161-63
building/running, 147-50
certificate work—around, 148
client, 164-67
conformance, 167-69
defined, 113
example, security-aware, 147-67
functionality, 114, 144-45
IDL files, 154
implementation overview, 167-69
interface, 145-46
introduction, 143-44
reference books, 170
security-unaware applications
and, 143-44
source code, 154
SSL/X.509 certificates, 151-54
summary, 170

targets, 14546, 154-60, 164-67

Level 2 security, 115-16, 126, 173-268

access control, 216—46

access control ODM, 200-216
auditing, 247-59

auditing ODM, 200-216
conformance, 264—66

defined, 113-14

delegation, 259-64

example, target, 183-94
functionality, 115, 174-75
implementation overview, 264-66
introduction, 173-74
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Level 2 security (continued)
ODM, 200-216
policy administration, 115
principal authentication, 175-79
reference books, 267-68
secure association, 175, 179-81
summary, 266-67

Library General Public License

(LGPL), 130

Licensing service, 11

Life cycle service, 10

Location transparency, 6

Loss cost, 39

Message-level interceptors, 87, 289
Message protection, 90-96, 123, 124-25
enforcement, 94
interoperability, 94-96
introduction, 90-91
negotiation, 92-93
policy, 91-92
QoP, 91-93
MICO, 130-32
features, 131
installation, 131-32
nonsecurity version, 132
overview, 130-31
platforms, 132
MICOSec, 132-40
attribute families 10 and 11, 162—-63
auditing, 134
free software, 129-30
GNU and, 129-30
installation, 134—40
introduction, 129
mapping definition, 203-6
mapping process, 206—7
OpenSSL and, 135-36
origination, 132
OSI and, 130
overview, 133-34
PostgreSQL DBMS and, 136-39
prerequisites, 134
reference books, 140—41
SSL and, 133-34, 168-69
summary, 140
supported software, 133

Middleware

defined, 2-3

dynamic interactions and, 54-55

layers of abstraction, 55

mutual distrust and, 54

scalability, 55

security, 53-55

security policies and, 63
Multicomponent profiles, 16-17
Mutual distrust, 54

Naming service, 9
Nonrepudiation, 105-8, 125
adjudicators and, 107-8
defined, 53, 106
disputes, 107-8
evidence, 106-7
level 1 security, 114, 116
level 2 security, 115-16, 174
policy, 106-7
verification, 107
Notification service, 10

Object adapters (OA), 21-22, 26
basic (BOA), 22
defined, 21
multiple, 22

ORB-related tasks and, 26
portable (POA), 22
role of, 22

Object domain mapping

(ODM), 200-216, 274-76

access control, 200-216
access control example, 22046
design requirements, 201
dynamic configuration, 213-15
information, 201-3
interfaces, 207-9
introduction, 200-201
level 2 security, 200-216, 264-65
MICOSec mapping definition, 203-6
MICOSec mapping process, 206—7
per-object granularity, 212-13
POA name, 203
request header, 201-2
specification modifications, 215-16
static per-POA granularity, 209-12
X.509 identity, 202
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Object frameworks, 14
Object key, 16, 202
Object Management Architecture
(OMA), 6, 7-14
application interfaces, 13
common facilities, 13
domain interfaces, 13
introduction to, 7—8
object frameworks, 14
object services, 9-12, 13
ORB and, 8-9
reference model interface categories, 8
reference model interface use, 14
Object Management Group
(OMG), 6-7, 119
OMA and, 6-14
standardization process, 6—7
Object model, 7
Object references, 16-17, 21, 123
endpoint information, 16
multicomponent profiles, 16-17
object adapters (OA) and, 21
object key, 16
repository ID, 16
Object Request Broker. See ORB
Objects, 70-71
Object services, 9-12, 13
collections, 12
concurrency control, 11
externalization, 11
licensing, 11
life cycle, 10
notification, 10
OTS, 10
POS, 10
property, 12
query, 11
relationship, 11
security, 12
time, 12
trader, 12
Object transaction service (OTS), 10
OMG IDL, 17-18
One-way invocation, 21
Open Source SSL (OpenSSL)
library, 135-36, 151
ORB, 2,7, 8-9, 15-16

context access and, 88
core, 15-16
defined, 2
IDL and, 8-9
interceptors and, 67
security—unaware applications and, 63
TCB and, 67-68
TCSEC and, 67
transparency and, 63
ORB layer
access control, 98-100, 217, 226
audit policies, 103-5
level 2 functionality, 174-75
message protection, 91-92
privilege delegation, 80-81
security features, 63
security policy, 75
Origin authentication, 91
OSI Certified Open Source Software, 130
ownCredentials credential, 87, 176-77

Palm-size computers, 109
Peer authentication
interoperability and, 62
mutual, 87
remote, 85
Penetration testing, 50
Per-object granularity, 212-13
Persistent object service (POS), 10
Platform independence, 3—4
Pluggable protocols, 109
Policies
access control, 96-97
administrative model and, 72-73, 77
application layer, 103-5
information security, 44—46
level 2 administration, 115
message protection, 91-92
nonrepudiation, 106-7
ORSB layer, 103-5
principal authentication, 84
privilege delegation, 78-79
security auditing, 1014, 249-52
security management, 43-46
See also Security policy
Portability
as advantage, 4
as design goal, 64-66, 122
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Portability (continued) ORB Layer and, 80-81
security architecture and, 59 policies, 78-79
security-unaware applications and, 65 schemes, 80
trade-offs, 120-21 Procedure, 70-71
See also Flexibility Proof of origin, 106-7

Portable object adapter Proof of receipt, 106-7

(POA), 22, 131, 133, 154-57 Property service, 12
hierarchy example, 230 Protected invocation, 95
level 1 security, 148, 155-57 Protection domains, 7677
level 2 security, 203, 265 Proxy rule certificates, 118, 262-63, 287
MICO and, 131, 133 Public, 176-77

ODM and, 274-76 . .

security-unaware audit and, 284 Quality of p rotection (QoP), 91
postgresor DBMS, 136-39 accepted effective, 92-93
maximum supported, 92-93

Prevention countermeasures, 38 )
message protection and, 91-93

Principal authentication, 81-85, 124 - .
credentials and, 176-77 required effective, 92-93

cryptographic keys and, 81 Query service, 11

defined, 81

enforcement, 84—85

Reaction countermeasures, 38

ReceivedCredentials credential, 87

example, 180-83 Reference model, 7-8
identity and, 81

illustrated, 86
level 2 security, 176-79, 264

interface categories, 8
interface use, 14
Relationship service, 11

policy, 84 Reliability

principal authenticator and, 83 bugs and, 68-69

privileges and, 81 dependability vs., 42

security-unaware functionality as design goal, 6769
and, 271-74 TCB and, 67-69

single sign-on and, 84 trade-offs, 121

_user sponsor and, 84 Replaceability, 116
Principals, 70-72, 124 Repository ID, 16, 202
defined, 71

Request-level interceptors, 87

identity and, 71 level 1 security, 168

message protection and, 92 security-unaware applications and, 289

. s}lbjects and, 71 Reverse resolving, 207
Privilege Rights family, 97
attributes, 161 Risk analysis, 39, 47-49
defined, 72 approval of, 4849
identity vs., 72 assessment, 47-48
Privilege delegation, 78-81, 124 countermeasures and, 48—49
application layer and, 80-81 defined, 47

defined, 78, 124

enforcement, 79—80

documentation of, 47—-49

management, 4748
impersonation, 78 steps, 47-49

initiator of, 78

system functionality and, 47
intermediate and, 78

See also Security management
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Role attribute, 162
Roles

administration, 77

scalability and, 66-67

security policy and, 74-75, 124
Run-time

client system at, 24-26

server system at, 26

Scalability
administrative model and, 66-67
as advantage, 6
as design goal, 66-67, 122
domains, 6667
limitations, 121
middleware and, 55
roles and, 66—67
security architecture and, 59
Secure association, 179-83
example, 180-83
level 2 security and, 179-80
ReceivedCredentials
credential, 179-80
security-unaware applications
and, 271-74
SSL and, 179
TargetCredentials credential, 180
Secure-Inter-ORB Protocol
(SECIOP), 88-90
Secure invocation, 174
Secure Sockets Layer. See SSL
Security
availability, 40-42
confidentiality, 3941
defined, 37-38, 40-41
goals, 39-43
information assets and, 38-39
integrity, 40—41
loss cost and, 39
middleware, 53-55
priorities, 39-43
purpose, 38-39
reference books, 57-58
requirements, 56
service, 12
summary, 56-57
threats, 50—52

vulnerabilities, 50, 52-53
See also Countermeasures; Security
management
Security administration, 53
Security architecture, 59-128
components, 70-108
conformance, 11318
design goals, 60-70
illustrated, 123
introduction, 59—60
reference books, 12628
summary, 122-26
trade-offs, 118-22
Security association, 85, 124
Security Attribute Service
(SAS), 26264, 287
Security auditing, 101-8, 125, 247-59
application layer, 103-5
countermeasures and, 53
defined, 53, 101
enforcement, 105
example, 252-59
filtering policies, 249-52
interfaces, 247-49
level 2, 247-59
ORSB layer, 103-5
overview, 49-50, 123
policy, 101-4
policy evaluation, 103-5
security-unaware applications
and, 280-85
selectors, 102
selector value list, 102—3
See also Nonrepudiation
Security-aware applications
access control, 98—100
defined, 63
delegation, 26061
level 1 security and, 114
level 2 security and, 115
Security contexts, 85-90, 123
access, 88
establishment, 87-90
interoperability and, 88-90
InvocationCredentials
credential, 87
message protection and, 93
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Security contexts (continued)

ownCredentials credential, 87
ReceivedCredentials credential, 87

security association and, 85
SESAME, 90
SPKM, 90

TargetCredentials credential, 87

Vault object, 87-88
Security Domain Membership
Management Service
(SDMM), 77, 121
Security guidelines
changes, 46
defined, 45, 46
Security management, 43-50
analysis/audit of, 49-50
domain of, 44
feedback, 49—50
guidelines, 45, 46
illustrated, 44
information security policy
and, 44, 4546
message protection and, 93
overview, 43—44
ownership assignment, 49
penetration testing and, 50
policy, 43-46
principal authentication and, 86
procedures, 45, 4647
risk analysis, 4749
security context and, 89
security policy and, 43-47
summary, 56-57
See also Security policy
Security manager, 86, 89, 93
Securitymanager, 185
Security policy, 4346, 124
application layer, 75
defined, 44
domains, 44, 73-74
guidelines, 46
information, 45—46
level 2 security, 174
middleware and, 63
ORB Layer, 75
procedures, 45, 46-47

See also Security management

Security procedures
changes, 46-47
defined, 44, 46-47
See also Security management
Security-unaware applications
access control and, 276-80, 289
command line arguments, 271-73
conformance, 287—89
defined, 63, 143
delegation, 259-60, 285-87
example, access control, 276-80
example, audit, 281-85
example, configuration, 273-74
functionality, 269-91
implementation overview, 287-89
introduction, 269-70
level 1 conformance and, 270-71
level 1 functionality and, 143-44
level 1 security and, 114
level 2 conformance and, 270-71
level 2 security and, 115
ODM and, 274-76
overview, 27071
portability and, 65
principal authentication, 271-74
reference books, 291
secure association, 271-74
security auditing, 280-85
summary, 289-91
support range, 270-73
Segregation, 53
Selector value list, 1023
Servants, 190-93
Server skeleton, 26
Server system, 26
Services. See Object services
SESAME, 90
Simplicity
as design goal, 69-70, 122
trade-offs, 121-22
Single sign-on, 84
Skeletons, 19
Socket Server (SOCKS), 113
Software reuse, 4
SPKM, 90
SSL

delegation and, 261-62, 286-87, 290
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endpoint, 267

internet CORBA and, 108-10
interoperability and, 61

level 1 conformance and, 167—69
level 1 implementation and, 167-69
MICOSec and, 133-34

MICOSec mapping and, 204

Open Source library, 135-36, 151
secure association and, 179, 271-73
security attributes and, 161-62

security-unaware implementation, 288
X.509 certificates and, 109-10, 151-54

X.509 identity and, 202

SSL-Inter-ORB-protocol
(SSLIOP), 94, 109, 118, 133

SSL/TLS, 109-10, 125
Standardization process, 6-7
Static invocation, 19
Static per-POA granularity, 209-12
Stubs, 19
Stub-style invocation API, 24-25
Subjects, 70-71, 124
Surrogate, 201
Synchronous invocation, 20-21

TargetCredentials credential, 87
Targets
access control example, 225-42
audit example, 253-59
defined, 78
security-aware example, 183-94
Technology domains, 76
Threats, 50-52
countermeasure limits and, 51-52
defined, 50-51
denial of service, 51
information compromising, 51
integrity violation, 51
malicious/negligent, 51
outside COBRA, 51-52
repudiation, 51
Time service, 12
Tokens
authorization, 262—63
context creation and, 87
delegation, 81
evidence, 106

exchanges, 87
identity, 118, 262
Kerberos, 90
message protection and, 93
principal authenticator and, 84
proof of origin, 106-7
proof of receipt, 106-7
security, 78, 88-89
SESAME, 90
SPKM, 90
Trader service, 12
Traffic analysis attacks, 52
Transparency
administrative model and, 63—-64
as advantage, 3
as design goal, 62-64, 122
end-users and, 63
security architecture and, 59
trade-offs, 120
Trojan horses
polymorphic objects and, 54
security measures, 52
Trusted Computer System Evaluation
Criteria (TCSEC), 67
Trusted computing base (TCB), 67-69
components, 68
defined, 67
reliability and, 67-69
Tunneling, 112

User sponsor, 84, 124

Vault object, 87-88, 89
Vulnerabilities, 50, 52—53
defined, 52

examples, 52

Wrappers, 66

X.509 certificates, 151-54, 16263, 167

family 10 and, 162-63
MICOSec and, 151-54
security-unaware applications
and, 271-72
SSL/TLS and, 109-10
X509Cipher attribute, 162-63
X5091Issuer attribute, 162—-63
X509Subject attribute, 162-63
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